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Abstract 

The main aim of this mini-thesis is to give a description of some of the basic methods and techniques 

that have been developed to calculate the character tables of groups of extension type. We restrict 

our attention to split extensions G of the normal subgroup N of G by the subgroup G with the 

property that every irreducible character of N can be extended to an irreducible character of its 

inertia group in G. This is particularly true when N is abelian. We are therefore interested in this 

special case for which Bernd Fischer developed the theory of Fischer matrices based on the Clifford 

Theory, to calculate the character tables for both split and non-split extensions. 

Before the character table can be determined, the conjugacy classes of our group extensions are 

calculated using the method of coset analysis. As mentioned earlier we concentrate on examples of 

split extensions G in which N is always abelian, that is, either cyclic or elementary abelian. 

A brief outline of the classical theory of characters pertinent to this study, is followed by a detailed 

discussion of the Clifford theory which provides the basis for the theory of Fischer matrices. Some 

of the properties of these Fischer matrices which make their calculation much easier, are also given. 

In our final chapter, we give four examples illustrating the use of both the classical theory as well 

as the Fischer matrices to calculate the character tables of our examples which are all maximal 

subgroups of their respective groups. 
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Chapter 1 

INTRODUCTION 

The classification of finite simple groups is a landmark of tremendous importance in the develop­

ment of finite group theory. It states that each finite simple group is isomorphic to exactly one of 

the following: 

•Acyclic group of prime order, 

• An alternating group An of degree at least 5, 

• A group of Lie type, 

• One of twenty-six sporadic simple groups. 

The form of this result, and in particular the existence of the twenty-six sporadic groups, raises many 

questions. Subsequent work has focussed on attempts to understand these groups, their maximal 

subgroups and automorphism groups. The study of maximal subgroups of the sporadic groups is 

very important to reveal the structure of the sporadic groups themselves. 

Since the classification of all finite simple groups, more recent work in group theory has involved 

methods of calculating character tables of maximal subgroups of finite simple groups. The character 

tables of all the maximal subgroups are not yet known. Most of these maximal subgroups are ex-
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tensions of elementary abelian groups, so methods have been developed for calculating the character 

tables of extensions of elementary abelian groups. A knowledge of the character table of a group 

provides considerable information about the group, and hence it is of importance in the physical 

sciences as well as in pure mathematics. Character tables of finite groups can be constructed us­

ing various techniques. For example, the Schreier-Sims algorithm, Todd-Coxeter coset enumeration 

method, the Burnside-Dixon algorithm and various other techniques. However Bernd Fischer pre­

sented a powerful and interesting technique for calculating the character tables of group extensions. 

This technique, which is known as the technique of the Fischer-Clifford matrices, derives its funda­

mentals from the Clifford theory. If G = N.G is an appropriate extension of N by G, the method 

involves the construction of a nonsingular matrix for each conjugacy class of G / N. In this mini­

thesis, we apply the Fischer-Clifford theory only to split extensions. This technique has also been 

discussed and used by many other researchers, but applied only to split extensions or to the case when 

every irreducible character of N can be extended to an irreducible character of its intertia group in G. 

However the same method cannot be used to construct character tables of certain non-split group 

extensions. For example, it cannot be applied to the non-split extensions of the forms 37 • 0 7(3) and 

37 • ( 0 7(3) : 2) which are maximal subgroups of Fischer's largest sporadic simple group Fi~4 and 

its automorphism group Fi24 , respectively. In an attempt to generalize these methods to such type 

of non-split group extensions, Ali [1] considered the projective representations and characters and 

showed how the technique of Fischer-Clifford matrices can be applied to any such type of non-split 

extensions. However in order to apply this technique, the projective characters of the inertia factors 

must be known and these can be difficult to determine for some groups. Ali [1] successfully applied 

the technique of Fischer-Clifford matrices and determined the Fischer-Clifford matrices and hence 

the character tables of the non-split extensions 37 • 0 7 (3) and 37 
· (07(3): 2). 

In Chapter 2 we give some preliminary results on group extensions and group characters that will 

be required in the subsequent chapters. In Section 2.1 we define group extensions and discuss some 

3 

http://etd.uwc.ac.za



basic results. In Section 2.2 we discuss the conjugacy classes of group extensions. We briefly discuss 

the technique of coset analysis for computing the conjugacy classes of group extensions G of N by G 

where N is an abelian normal subgroup of G. This technique was developed and first used by Maori 

in [16] , [17] and has since been widely used for computing the conjugacy classes of group extensions. 

In Section 2.3 we give an example of how the technique of coset analysis is applied to calculate the 

conjugacy classes of a group of extension type. 

Chapter 3 deals with the basic results on representations and characters of finite groups such as 

Maschke's theorem and its general form, Schur's lemma and Frobenius Reciprocity. Restriction and 

induction of characters are discussed in great detail. Row and column orthogonality relations for 

irreducible characters are given. The relation between irreducible characters and conjugacy classes 

is also discussed. 

Chapter 4 is devoted to the study of Clifford theory for ordinary representations of a group G and its 

related consequences which will be required to describe the Fischer-Clifford matrices. In Section 4.1 

we study the relationship between characters of a group G and its normal subgroup N. We present 

various sufficient conditions for the extendibility of an irreducible character 0 of N to its inertia 

group H in G. In Section 4.2 we describe the theory of the Fischer-Clifford matrices. If G=N.G is 

an appropriate group extension of N by G , the technique involves the construction of a non-singular 

matrix for each conjugacy class of G / N ~ G. Then by using these matrices together with the fusion 

maps and character tables of some subgroups of G which are inertia factors of the inertia groups 

in G, we are able to construct the complete character table of G. In this mini-thesis we apply this 

technique only to split group extensions. This technique has been discussed and used (mainly to 

split extensions) in, among many others, Maori and Mpono [19], [20], [21], Mpono [22] and Whitley 

[26]. This section deals with the properties of the Fischer-Clifford matrices which are helpful in their 

computations. In particular we study a special case of Fischer-Clifford matrices of an extension G 

= N.G with the property that every irreducible character of N can be extended to an irreducible 
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character of its inertia group in G. 

For notation on the conjugacy classes of elements, we follow the notation used in the ATLAS [3]. All 

our groups and sets are finite unless otherwise specified. For the accuracy and time-efficiency of data, 

extensive use was made of the program MAGMA[14], to compute conjugacy classes, centralizers of 

the representatives of conjugacy classes, character tables and inertia factors of the subgroups N and 

G of the split extension G. 
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Chapter 2 

THE CONJUGACY CLASSES OF 

GROUP EXTENSIONS 

In this chapter some basic theory on group extensions is first given in section 2.1 and then a method 

for finding the conjugacy classes of group extensions is described in section 2.2. In section 2.3 we 

look at an example due to Whitley[26] to illustrate how the theory developed in section 2.2 is used to 

calculate the conjugacy classes of the group 23 : GL3 (2). For section 2.1, the books by Rotman[24] 

and Gorenstein[8] were used as references while for section 2.2 we used the works of Whitley[26], 

Moori[18], Moori and Mpono[15] and Salleh[25]. 

2.1 Definitions and Basic Results 

Definition 2.1.1 If N and G are groups, an extension of N by G is a group G that satisfies the 

fallowing properties 

1. N <1 G 
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2. G/N~G. 

We say that G is a split extension of N by G if G contains subgroups N and G1 with 

G1 ~ G such that 

l.N<1G 

In this case G is also called a semi-direct product of N by G, and we identify G1 with G. 

Note 1 If G is a semi-direct product of N by G, then every g E G can be uniquely expressed 

in the form g = ng, where n EN and g E G. Multiplication in G satisfies (n1g1)(n2g2) = n1n~1 g1g2, 

where n9 denotes gng-1. 

Definition 2.1.2 The automorphism group of a group G, denoted by Aut(G), is the set of all auto­

morphisms of G under the binary operation of composition. 

If G is a split extension of N by G , then there is a homomorphism 0 : G -+ Aut(N) given by 

09 (n) = gng-1 = n9 (n EN, g E G), where we denote 0(g) by 09 . Thus G acts on N, and we say that 

the extension G realizes 0. 

Conversely, given any groups N and G, and 0 : G -+ Aut(N), we can define a semi-direct product 

of N by G that realizes 0 as follows. Let G be the set of ordered pairs (n,g)(n E N,g E G) with 

multiplication (n1, g1)(n2, g2) = (n1091 (n2), g1g2). Then G is a semi-direct product of N by G. 
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Hence a split extension of N by G is completely described by the map 0 : G---+ Aut(N), that is, it 

is described by the way G acts on N. 

We use the ATLAS [3] notation and let N.G denote an arbitrary extension of N by G. A split 

extension is denoted by N : G or N : 0 G, where 0 : G ---+ Aut(N) determines the extension. A 

non-split extension is denoted by N · G. 

If G is a split extension of N by G, then G = NG = ugEG Ng, so G may be regarded as a right 

transversal for N in G (that is, a complete set of right coset representatives of N in G). Now sup­

pose G is any extension of N by G, not necessarily split. Since G/N ~ G, there is an epimorphism 

,\ : G---+ G with kernel N. For g E G, define a lifting of g to be an element g E G such that ,\(g) = g. 

Then choosing a lifting of each element of G, we get the set {g: g E G} which is a transversal for N 

in G. 

We now show that for a non-split extension G of N by G, where N is abelian, G acts on N. This 

result can be obtained from Rotman[24]. 

Lemma 2.1.3 Let G be an extension of an abelian group N by G , then there is a homomorphism 

0 : G ---+ Aut(N) such that 09 (n) = gn?r 1(n E N), and 0 is independent of the choice of liftings 

{g: g E G}. 

Proof: For a E G, denote conjugation by a by 'Ya· Since N is normal in G, 'YalN is an automorphism 

of N and the functionµ: G---+ Aut(N) defined by µ(a)= 'YalN is a homomorphism. 

If a E N, then µ(a) = lN, since N is abelian. Therefore there is a homomorphism µ* : G / N ---+ 

Aut(N) defined by µ*(Na)= µ(a). 

Now G ~ G / N and for any lifting {g : g E G} , the map cp : G ---+ G / N defined by cp(g) = Ng is an 

isomorphism. If {h: h E G} is another choice of liftings , then gh-
1 

E N so that Ng= Nh. 

Therefore the isomorphism cp is independent of the choice of liftings. Now let 0 : G ---+ Aut(N) be 

the compositeµ* o cp. If g E G and g E G is a lifting of g , then 0(g) = µ*(cp(g)) = µ*(Ng) = µ(g) E 

Aut(N), so for n E N, 0g(n) = µ(g)(n) = gng- 1 = n?i, as required. □ 
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Note 2 Let G be an extension of an abelian group N by G. For each g E G we choose a lifting 

g E G, and for convenience we take I= 1. We identify G with G/N under the isomorphism g - Ng. 

Now {g: g E G} is a right transversal for Nin G, so every element h E G has a unique expression 

of the form h = ng (n EN, g E G), and we have the following relations. 

1. gn = nYg, where n EN and g E G. 

2. gh = f(g, h)gh for some f(g, h) E N, where g, h E G. 

2.2 The Conjugacy Classes of Group Extensions 

Let G = N.G, where N is abelian. Then for each conjugacy class [g] in G with representative g E G, 

we analyse the coset Ng, where g is a lifting of g in G and G = ugEG Ng. To each class representative 

g E G with lifting g E G, we define 

C9 = {x E G: x(Ng) = (Ng)x}. 

Then C9 being the set stabilizer of Ng in Gunder the action by conjugation of G on Ng, is a sub­

group of G. The following lemmas and their proofs due to Whitley[26] and Moori and Mpono[15] 

will be required in the next section . 

Lemma 2.2.1 N <l C9. 

Proof: For any n E N 

the last step following from the fact that (n- 1 )9 E N since N <l G. 

Hence N ~ C9 . From N ~ Cg~ G and N <l G, we obtain N <l Cg. □ 
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Lemma 2.2.2 Cg/N = Cc;N(Ng). 

Proof: Consider N k E G / N. Then 

Nk E Cc;N(Ng) {=:::::} 

{=:::::} 

{=:::::} 

{=:::::} 

{=:::::} 

{=:::::} 

{=:::::} 

{=:::::} 

Thus we obtain that Cg/N = Cc;N(Ng). □ 

Nk(Ng)(Nkt 1 = Ng 

NkNgNk- 1 = Ng 

NkNgk- 1 = Ng 

NkNngk- 1 = Ng \:/nE N 

Nkngk- 1 = Ng \:/nEN 

kngk- 1 E Ng \:/nE N 

k E Cg 

Nk E Cg/N. 

From the two preceding lemmas, we have that C9 = N.C-a;N(Ng). For a lifting g E G of g E G, we 

can identify Cc;N(Ng) with Ce(g) and write Cg= N.Ce(g) in general. If G = N : G then we can 

identify Cg with Cg = { x E G : x( Ng) = (Ng )x} and in this case we obtain the following corollary. 

Corollary 2.2.3 Let G = N: G. Then Cg= N: Ce(g). 

Proof: We have already shown in the Lemma 2.2.1 that N <l Cg. Now we show that Ce(g) :S Cg 

and that N n Ce(g) = {le}- Let x E Ce(g). Then we obtain (Ng)x = x(Ng)x-1 = xNgx-1 = 

Nxgx- 1 =Ng.Thus x E Cg and hence Ce(g) :S Cg. Since NnCe(g) :S NnG = {le}, then 

we have that N n Ce(g) = {le}. This completes the proof. □ 

The conjugacy classes of G will be determined from the action by conjugation of Cg, for each conju­

gacy class [g]e of G, on the elements of Ng or in the case of a split extension on the elements of Ng. 
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Since Cg = N : Cc(g), we act first N and then act {h: h E Cc(g)} on the elements of Ng. Where 

as usual h denotes the lifting of h in Cc(g). The outline of this action is given in two steps by Moori 

and Mpono [15] as follows: 

STEP 1: The action of Non Ng: 

Let CN(g) be the stabilizer of gin N. Then for any n E N we have 

x E CN(ng) {:} x(ng)x- 1 = ng 

{:} xnx-1xgx-1 = ng 

{:} n(xgx-1
) = ng, since N is abelian 

{:} xgx- 1 = g 

{:} X E CN(g). 

Thus CN(g) fixes every element of Ng. Now let ICN(g)I = k. Then under the action of N, Ng splits 

into k orbits Q1, Q2, ... , Qk, where 

T' for i E { 1, ... , k} . 

STEP 2: The action of {h: h E Cc(g)} on Ng 

Since the elements of Ng are now in the orbits Q1 , ... , Qk from step 1 above, we need only to act 

{h: h E Cc(g)} on the k orbits. Suppose that under this action h of the orbits Qi, ... , Qk fuse 

together to form one orbit 6 1, then the J1s obtained this way must satisfy 

Lj fj = k 
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and we have 

I L.il = fj X 1P 
Thus for x = d1g E L.1, we obtain that 

l[xla I IL.ii x l[g]cl 

and thus we obtain that 

INI IGI 
fj x k x ICc(g)I 

IGI 
fj x klCc(g)I 

IGI 
l[x]cl 

IGI x klCc_i!J)I 
fjlGI 

klCc(g)I 

Ji 
Thus to calculate the conjugacy classes of G = N.G, we need to find the values of k and the JJs for 

each class representative g E G. We note that the values of k can be determined from the action of 

G on N(given in lemma 2.1.3). If G = N : G (a split extension) however, we analyse the coset Ng 

instead of Ng since in the split case G ::; G. Under the action of N on Ng, we always assume that 

g E Q1 . Since Cc(g) fixes g, Q1 does not fuse with any other Qi. Hence we will always have that 

Ji= 1. Hence 

j 

m 
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where the sum is taken over all m such that g (/. Qm, 

We now apply the method described in the Step 1 and Step 2 in the next section. 

2.3 The Conjugacy Classes of 23 : GL3(2) 

In this section we give the conjugacy classes of the group G = N : G where N is an elementary 

abelian group of order 8 and G ~ GL3 (2), as calculated by Whitley[26], where G acts naturally on 

N. 

We regard N as the vector space Vi(2) of dimension three over a field of two elements. Let N be 

generated by { e1 , e2 , e3 } with e; = l for 1 ::; i ::; 3, so 

To determine the conjugacy classes of G we analyse the cosets Ng where g is a representative of a 

class of G. (Note that the extension is split, so G = ugEGNg). Now 

ICc(x)I = k.lCJ;(g)I, 

where f-; of the k blocks of the coset Ng have fused to give a class of G containing x.We need the 

conjugacy classes of G, so we exhibit them here (obtained from ATLAS [3]). 

class (lA) (2A) (3A) (4A) (7A) (7B) 

centralizer 168 8 3 4 7 7 

Table 1.3.1: The conjugacy table of GL3 (2). 

The representatives thus must come from the classes mentioned in the table above: 
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• g =le: 

For g the identity of G, g fixes all elements of N, so k = 8. Since G is transitive on N - { 1} 

under the action of Cc(g) = G , we have two orbits with Ji = 1 and h = 7, so this coset gives 

two classes of G: 

x = 1, class(l), ICa(x)I = 8 x 168 = 1344 

• g E (2A): 

We take 

g=(~ ~ ~ 
0 1 0 

with ICc(g)I = 8. The action of g on N is represented by the cycle structure 

Now we act 

1 1 1 1 1 1 

Ca(g) = \ 0 1 0 1 1 0 ) 
0 0 1 1 0 1 

on these orbits. 
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For eg EN g, h E Cc(g), (eg)h = ehgh = ehg so we obtain the following orbits: 

{g, e2e3g}Cc(g) = {g, e2e3g}, { e1g, e1e2e3g} Cc(g) = { e1g, e1e2e3g}, {e2g, e3g} Cc(g) 

= {e2g,e3g,e1e2g,e1e3g} 

Therefore we get three classes of G: 

Ji= 1, x = g, class(22), ICa(x)I = 4 x 8 = 32; 

• g E (3A): 

We take 
0 1 0 

g = 0 0 1 

1 0 0 

with ICc(g)I = 3. The action of g on N is represented by (l)(e1e2e3)(e1 e2 e3)(e1e2 e1e3 e2e3), 

so k = 2 which means we must have two blocks. These cannot fuse together under Cc(g), since 

gCc(g) = {g}. Therefore we have two classes of G, with Ji = 1 and h = 1: 

x = g, class(31), ICa(x)I = 2 x 3 = 6; 

• g E (4A): 
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We get two classes of G once more: 

x = g, class(42), ICc(x)I = 8; 

• g E (7 A) : 

For the class (7 A), we have k = 1, so each coset has just one class in G. We thus get the class 

(71) of G, with centralizer of order 7. 

• g E (7B): 

This case works the same as for the previous class and we obtain class (72) of G, with centralizer 

of order 7. 

class of G (lA) (2A) (3A) (4A) (7A) (7B) 

class of G (1) (21) (22) (23) (41) (31) (61) (42) (43) (71) (72) 

centralizer 1344 192 32 32 16 6 6 8 8 7 7 

Table 1.3.2: The conjugacy table of 23 : GL3(2). 
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Chapter 3 

REPRESENTATIONS AND 

CHARACTERS 

Two ways of approaching representation and character theory are through the use of modules on the 

one hand ( for instance, the approach used by James and Liebeck [10] ), and through the classical 

approach used by Feit[5] for example, on the other hand. Our discussion is along the classical ap­

proach and for this purpose we follow the class notes of Moori[18]. 

We give some basic results on the representations and characters of finite groups in this chapter. In 

the first section, theorems and lemmas will almost always be stated without proofs. Section 3.2 deals 

with the relationship between characters of groups and the and characters of their subgroups, while 

in section 3.3 we shall look at the role of normal subgroups in the calculation of characters of a group. 

In the last two sections mentioned, only the proofs of the main results ( that is those results dealing 

more directly with the techniques of finding the characters of a group) are given. These proofs are 

mainly taken from Moori's notes [18]. 
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3.1 Basic Concepts 

Definition 3.1.1 Let G be a group. Let f: G - GLn(F) be a homomorphism. Then we say that f 

is a matrix representation of G of degree n (or dimension n), over the field F. 

If Ker(!) = {le}, then we say that f is a faithful representation of G. In this situation G ~ 

Image(!), so that G is isomorphic to a subgroup of GLn(F). 

Definition 3.1.2 Let f : G - GLn(F) be a representation of G over the field F. The function 

x: G - F defined by x(g) = trace(f(g)) is called the character off. 

Definition 3.1.3 If</> : G - F is a Junction from a group G to a field F which is constant on 

conjugacy classes of G, that is </>(g) = </>(xgx-1 
), Vx E G, then</> is a class function. 

Lemma 3.1.4 A character is a class Junction. 

Proof: See [18, Lemma i.4 ] 

Definition 3.1.5 Two representations p, </> : G - GLn(F) are said to be equivalent if there exists 

an n x n matrix P over F such that 

p- 1p(g)P = </>(g), Vg E G. 

Theorem 3.1.6 Equivalent representations have the same character. 
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Proof: See [18,Theorem i.5] 

Before defining the concepts of reducibility and irreducibility of representations and characters, we 

need to say what is meant by a reducible and an irreducible set of matrices. If S is a set of matrices, 

then S is reducible if :3 m, k E N, and :3 P E G Ln ( F) such that \:/ A E S we have 

p-'AP = ( ~ ; ) 

where B is an m x m matrix, D is a k x k matrix, C is a k x m matrix and O is the zero matrix. If 

no such P exists, we say that S is irreducible. Furthermore if C = 0 \:/ A E S, we say that S is fully 

reducible and if :3 PE GLn(F) such that 

p- 1AP 

0 

0 

0 

where each Bi is irreducible, we say S is completely reducible. 

\:/AES, 

Definition 3.1.7 Let f: G-+ GLn(F) be a representation of Gover F and let S = {f(g): g E G}. 

We say that f is reducible, fully reducible, or completely reducible if S is reducible, fully reducible, 

or completely reducible, respectively. 

Definition 3.1.8 If XP is a character afforded by a representation p of G, then we say that Xp is an 

irreducible character of G if p is an irreducible representation. 

19 

http://etd.uwc.ac.za



Definition 3.1.9 Let p: G---+ GLn(F) and¢ : G---+ GLm(F) be two representations of G over F. 

Define p + ¢: G---+ GLn+m(F) by 

(p + cp)(g) = ( p(g)nxn 

Dmxn 

Dnxm ) = p(g) (fj cp(g), 
cp(g)mxm 

\/gE G. 

Then p -t- ¢ is a representation of G over F, of degree n + m. 

If Xi and x2 are the characters of p and ¢ respectively and x is the character of p + ¢, then for all 

g E G we have x(g) = x1(g) + x2(g). 

Theorem 3.1.10 (Maschke 's theorem) Let G be a finite group. Let f be a representation of G over 

a field F whose characteristic is either equal to zero or is a prime that does not divide IGI. If f is 

reducible, then f is fully reducible. 

Proof: See [18,Theorem i.6] 

Theorem 3.1.11 ( The general form of Maschke's theorem) 

Let G be a finite group and F be a field whose characteristic is either equal to zero or is a prime that 

does not divide IGI. Then every representation of G over F is completely reducible. 

Proof: See [5,(1.1) ] 

Theorem 3.1.12 (Schur's lemma) Let p: G---+ GLn(F) and q>: G---+ GLm(F) be two representa­

tions of a group G over a field F. Assume there exists an m x n matrix P such that Pp(g) = cp(g)P 

for all g E G. Then either P = Omxn or P is non-singular so that p(g) = p-1¢(g)P (that is, p and 

¢ are equivalent representations). 
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Proof: See [5,(1.2)] 

Definition 3.1.13 Let G be a finite group and assume that the characteristic of the field F does 

not divide IGI. If p and <P are two functions from G into F, we define an innerproduct (,) by the 

J allowing rule: 

where ibi stands for IGl-i in F. 

Theorem 3.1.14 The inner product (, ) is bilinear: 

(i} (pi+ P2, </J) = (pi, </J) + (p2, </J) 

(ii} (p, <Pi + ,fa2) = (p, <Pi) + (p, </J2) 

(iii} ( ap, </J ) = a(p, </J) = (p, a</J), \/ a E F 

and symmetric: 

(p, </J) = (</J, p) 
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Proof: 

(i) 

(p1 + P2, ¢) - l~I L (P1 + P2) (g)cp(g-1) 
gEG 

(ii) Similar to (i). 

(iii) 

and 

- l~I L (P1(g) + P2(g))¢(g-
1

) 

gEG 

- l~I L (P1(g)cp(g-1)+p1(g)cp(g-1)),F being an additive abelian group 
gEG 

- l~I LP1(g)cp(g-l) + l~I LP2(g)¢(g-1), 
gEG gEG 

- (pi,¢)+ (p2, ¢) 

(ap,¢) - l~I L (ap)(g)<j)(g-1) 
gEG 

- l~I L a(p(g) )¢(g-1) 
gEG 

= al~I LP(g)<j)(g-1) 
gEG 

- a(p, ¢) 

(ap,¢) = l~I L(ap)(g)<j)(g-1) 
gEG 

- l~I I:ap(g)</J(g-1) 
gEG 
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1 ~ -1 1cf ~p(g)a</>(g ), F 
gEG 

being a multiplicative abelian group 

l~I L p(g) (a</)) (g-1) 
gEG 

(p, a¢) 

To complete the proof, see [18,Theorem i.11]. □ 

Note 1 If p: G-, GLn(C) is a representation of a group G, then we denote the (i,j) entry of p(g) 

by PiJ (g). Hence PiJ (g) is a map from G into C. 

For the rest of this chapter we shall mean finite groups when mentioning groups, unless explicit 

exceptions are made and all representations will be over the field C of complex numbers. 

Theorem 3.1.15 Let G be a finite group and let p and</> be two irreducible representations of G. 

(i) If p and </> are inequivalent, then 

Proof: See [18, Theorem ii.1 ] 

Theorem 3.1.16 Let G be a finite group and let p and </> be two irreducible representations of G, 

with characters Xp and X¢. 
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{i) If p and cp are equivalent, then 

{ii) If p and cp are not equivalent, then 

Proof: See [18,Theorem ii.2] 

Theorem 3.1.17 Two representations of a group G are equivalent if and only if they have the same 

characters. 

Proof: See [18,Corollary ii.4] 

Lemma 3.1.18 {i) If 

k 

X = L ,\iXi 
i = 1 

where Xi are distinct irreducible characters of a group G and ,\i are nonnegative integers, then 

k 

(x, x) = L ,\;. 
i = 1 

{ii} If X is a character of G, then x is irreducible if and only if (x, x) = l. 
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Proof: 

(i) 

(x, x) 
i=l i=l 

k k 

L ,\i L ,\i(Xi ' Xi ) 
i=l i=l 

i = 1 

(ii)By theorem 3.l.16(iii), we have that if xis irreducible, then (x, x) = 1. 

For the converse, assume that (x , x ) = 1. Let 

k 

X = L AiXi 
i = 1 

where Xi are distinct irreducible characters of G and ,\i are nonnegative integers, then by (i), we have 

k 

L .-\; = (x , x ) = 1 
i = 1 

¢=? .-\; = 1, for some i = 1, 2, ... , k 

Thus x = Xi is irreducible. □ 
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Note 2 If Ci is a conjugacy class of G, then 

is also a conjugacy class of G and Ci = Ci' if and only if g ~ g- 1 for all g E Ci. 

Theorem 3.1.19 Let Irr(G) = {xi, X2, ... , xd- Then 

(i} 
1
~

1 
LgEG Xi(g)x1(g) = 8ij, (row orthogonality) 

(ii} I:;= 1 Xs(gi)Xs(g1) = 8ij' ICc(g1)1 , (column orthogonality) 

Proof: See [18, Theorem ii.17] 

Theorem 3.1.20 The number of irreducible characters of a group G equals the number of conjugacy 

classes of G. 

Proof: See [18, Theorem ii.18] 

Proposition 3.1.21 Let G = ( x ) be a cyclic group of order n. Let 

unity in C, k = 0, 1, 2, ... , n - 1. Define Pk: G -----t (C* by 

( m) [ 2k,r i ]m Pk X = e n • 

2k1r · -i e n be the n-th roots of 

Fork= 0, 1, 2, ... , n - 1, Pk defines then distinct irreducible representations of G. 
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Proof: We first show that Pk is well defined: 

Let xm=xm',where m=sn + t, m'=s'n + t', s,s'EZand t, t' =0,1,2, ... ,n-1. 

From which we get xt = xt' ⇒ t = t'. 

If, [e 
2
:" i ]m =I= [e 

2
:" i ]m', then we have 

[e 2:..- i ]m-m' =/= l ⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

giving a contradiction. Hence Pk is well defined. 

Next we show that Pk is a homomorphism: 

[e 2:" i ](s-s')n + (t-t') 

[e 2:" i ](s-s')n =/= l 

Pk(X(s-s')n) =/= l 

Pk(x0
) =/= l 

[e 2:..- i lo 
=I= 1, 

Pk(xt)Pk(xt') 

[e 2:"ir [e 2:"it 

Pk(xt+t') 

Pk(xt.xt') 

Pk(xm.xm') 

So Pk is a homomorphism and hence a representation. 
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Pk is unique: 

Let Pk= Pk' with k, k' :Sn. Now \/g E (x), g = xr where r = 0, 1, 2, ... , n - 1. So we have 

( 2k,r. r i _ 2k1 
,r. r i) 

⇒ e n n =1 

=;, e 27;..r (k-k')i = 1 

⇒ P(k-k')(xr) = 1, \/ r = 0, 1, 2, ... , n - 1. 

⇒ k - k' = 0, so that k = k'. 

Lastly we must show that Pk is irreducible: 

We use lemma 3.1.18(ii). 

1 I: n 
gE(x) 

1 I: n 
gE(x) 

1 
-n 
n 

1. 

Hence Pk is irreducible. 

This completes the proof of the proposition. □ 

Definition 3.1.22 Let P = (Pij)mxm and Q = (%)nxn be two matrices. Then the mn X mn matrix 

P 0 Q is defined by 
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From this definition, we can show that 

(P 0 Q)(P' ® Q') =(PP')® (QQ') (*) : 

P11Q P12Q 

P21Q P22Q 

Pm1Q Pm2Q 

m 

(P ® Q )(P' ® Q') ( L PilQPiiQ' )mn x mn 
k = 1 

m 

( L PilPiiQQ' )mn x mn 
k = 1 

(PP') 0 (QQ'). 

Definition 3.1.23 Let T and U be representations of a group G, then the tensor product T 0 U 

is defined by: 

(T 0 U)(g) : T(g) 0 U(g) 

Theorem 3.1.24 Let T and U be representations of a group G, then 

(i) T ® U is a representation of G. 

(ii) if X(T 0 u) is the character afforded by T 0 U then 

X(r 0 u) = xrxu 
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Proof: See [18,Theorem iii.I] 

Definition 3.1.25 Let G = H x K be the direct product of two groups H and K and let T : H ----+ 

GLm(C) and U : K ----+ GLn(C) be representations of H and K, respectively. Since every element 

g E G, can be expressed uniquely in the form g = hk, for some h E H and some k E K, the direct 

product T x U can be defined by 

(T x U)(g) : = T(h) 0 U(k) 

From the uniqueness of g = hk and because representations T and U are well defined, it can be 

shown that T x U is well defined. Also for g = hk and g' = h'k' with h, h' EH and k, k' E K, we have 

(T x U)(g)(T x U)(g') (T(h) 0 U(k))(T(h') 0 U(k')) 

T(h)T(h') 0 U(k)U(k'), by (*) 

T(hh') 0 U(kk') 

(T X U)(gg'), 

which means T x U is a homomorphism and therefore a representation. 

From definition 3.1.22, we can deduce that for two matrices P and Q, that 

Trace(P 0 Q) = Trace(P).Trace(Q). 

So we show the following 
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X( T X u )(g) Trace( ( T x U )(g) ) 

Trace( T(h) 0 U(k) ) 

Trace(T( h)) .Trace( U ( k)) 

and the next theorem tells us that all the characters of a direct product are constructed in this way. 

Theorem 3.1.26 Let G = H x K be the direct product of two groups H and K. Then the direct 

product of any irreducible character of H and any irreducible character of K is an irreducible char­

acter of G. Moreover, every irreducible character of G can be constructed 

in this way. 

Proof: See [18,Theorem iii.2] 

Definition 3. 1.27 Let x be a character of a group G. For n E (NU { 0}), we define xn by 

If G is a group and H is a subgroup of G, then we can use the irreducible characters of G to find 

at least some of the characters of H and vice versa. We deal with the methods of doing this in the 

following section and use the notes of Moori[18] again. 

3.2 Restriction and Induction of Characters 

Definition 3.2.1 Let G be a group and H be a subgroup of G. If p: G ------t GLn(<C) is a represen­

tation of G, then (p 1 H) : H ------t GLn(<C) given by 
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(pl H)(h) p(h), V h EH, 

is a representation of H. We say that pl H is the restriction of p to H. If Xp is the character of p, 

then XP l H is the character of pl H. We refer to XP l H as the restriction of XP to H. 

Theorem 3.2.2 Let G be a group and H ~ G. If 'ljJ is a character of H, then there is 

an irreducible character x of G such 

(xlH,'I/J)H =I= o. 

Proof: See [18,Theorem iv.1.1 ]. 

Theorem 3.2.3 Let G be a group and H ~ G. If 

then 

XE Irr(G) and Irr(H) = {'I/J1,'I/J2,••·,'I/Jr}, 

X lH 

r 

r 

L 8i'I/Ji, where 8i E (NU {O}) and 
i=l 

L8; < [G: H] (**) 
i=l 

Moreover, we have equality in ( * *) if and only if x (g) = 0, V g E ( G \ H). 

Proof: Since x l H is a character of H, :38i E (N U { 0}) such that 

X l H 
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Now 

and 

Hence we get 

From 

we obtain that 

T T 

(x l H,x l H)H - \ L 8(¢i, L 8dJi) H 
i=l i=l 

T 

- L8i (VJi,VJi)H 

i=l 
T 

- Z:8; 
i=l 

(x l H,x l H)H - l L -IHI x(h).x(h). 
hEH 

1'""' -IHI L....t x(h).x(h) so that 
i=l 

T 

hEH 

IHIZ:::8; - L x(h).x(h) (* * *) 
i=l hEH 

1 = (x,x)a 

1 '""' -- 1cf L....t x(g).x(g) 
gEG 

- l~I L x(g).x(g) + l~I L x(g).x(g) 
gEH gE(G\H) 

IHI T 2 1 -- TcTL8i +Tcf L x(g).x(g) by(***) 
i=l gE(G\H) 

IHI ~ 2 1 '""' 12 - Tel L....t 8i + Tcf L....t lx(g) 
i=l gE(G\H) 
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and therefore 

IGI 
IHI =[G:H] 

Also 

1 
IGI L lx(g)l2 

gE(G\H) 

0 if and only if 

lx(g)l2 0 V g E (G \ H). 

Hence 

1 
IGI L lx(g)l2 

gE(G\H) 

0 if and only if 

x(g) 0 V g E (G \ H) 

and we have the equality in ( **). □ 

We have seen how the irreducible characters of G can be used to find characters of a subgroup H 

and can now look at a technique of finding the characters of G from the irreducible characters of any 

subgroup. We start with the following definition. 

Definition 3.2.4 Let H be a subgroup of G. The right transversal of H in G is a set of representa­

tives for the right cosets of H in G. 

The following theorem tells us how a representation of H can be extended to a representation of G. 

Theorem 3.2.5 Let H be a subgroup of G and T be a representation of H of degree n. 

Extend T to G by T 0 (g) = T(g) if g EH and T 0 (g) = Onxn if g ~ H . Let {xi, x2, ... , Xr} 

be a right transversal of H in G. Define T j G by 
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(T j G)(g) 

T 0 (xigx1
1

) T 0 (xigx21
) 

T°(x2gx1
1

) T 0(x2gx21
) 

T 0 (xngX1 1
) T 0 (xngx;- 1

) 

(T°(xigx-;1)).. , \:/ g E G. 
i,J=l,2, ... ,r 

Then T j G is a representation of G of degree nr. 

Proof: See [18, theorem iv.2.1]. 

T 0 (xigx;: 1
) 

T 0 (x2gx;: 1
) 

Definition 3.2.6 The representation T j G defined in the previous theorem is said to be induced 

from the representation T of H. Let cp be the character afforded by T. Then the character afforded 

by T j G is called the induced character from cp and is denoted by cpc. If we extend cp to G by 

¢0 (g) = cp(g) if g EH and ¢0 (g) = 0 if g (/. H, then 

cpc(g) Trace( (T j G)(g)) 
T 

I: Trace ( (T0 (xigx;- 1
)) 

i=l 
T 

L¢0 (xigx;-1) 
i=l 

In order to construct a formula to find the induced character, the next two propositions are needed. 
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Proposition 3.2. 7 If H ~ G and <P is a character of H, then <Pc is independent of the choice of 

transversal. 

Proof: See [18, Proposition iv. 2.2 ]. 

Proposition 3.2.8 The values of the induced character are given by 

G 1 ~ 0 -1) 
</J (g) - TTJf ~ </J (xgx , 

xEG 

gE G 

Proof: See [18, Proposition iv.2.3 ]. 

The following proposition provides us with a formula to calculate the induced character and the 

proof is provided by Moori [18, Proposition iv.2.4 ]. 

Proposition 3.2.9 Let H :S G, <p be a character of H and g E G. Let [g] denote the conjugacy 

class containing g. 

(i) If H n [g] = 0, then </>c(g) 0, 

(ii) If H n [g] =/- 0, then 

where x1 , x2 , ... , Xm are representatives of classes of H that fuse to [g]. (That is H n [g] breaks 

up into m conjugacy classes of H with representations xi, x2, ... , Xm.) 
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Proof: By Proposition 3.2.8, we have 

G( ) 1 ~ O -1 <p g IHI~¢ (xgx ). 
xEG 

If Hn [g] 0, then xgx- 1 ¢. H for all x E G, so ¢0 (xgx- 1 ) 0. 

If H n [g] -=/:- 0, then as x runs over G, xgx-1 covers [g] exactly ICc(g)I times, so 

The restriction and induction of characters are related and can be expressed by means of a matrix 

which we call the Frobenius Reciprocity table. To obtain this relationship, we shall take the route 

through class functions. We shall use the proof given by Moori [18] for the main result( the Frobenius 

Reciprocity theorem ) in establishing the relationship. 

Definition 3.2.10 Let H be a subgroup of G and <p be a class function on H then the induced class 

function <pc on G is defined by 

1 ~ 0( -1 IHI~ <p xgx ), 
xEG 

g E G 
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where ¢0 coincides with <p on H and is zero otherwise. Notice that 

Thus <pc is also a class function on G. 

Note 3 If H ~ G and <p is a class function on G, then <p 1 H is a class function on H. 

Theorem 3.2.11 {Frobenius Reciprocity) 

Let H ~ G, <p be a class function on H and 'I/; a class fuction on G. Then 

( <p , 'I/; l H)H 

Proof: 

By definition 

1 ~ G -Tcf L../P (g).1/J(g) 
gEG 

1 ~ ( 1 ~ 0 -1 )-Tcf L..t IHI L..t <p (xgx ) .'lj;(g) 
gEG xEG 
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Let y = xgx-i. Then as g runs over G, xgx-i runs through G. Also since 'lj.J is a class function on 

G, 'lj.J(y) = 'l/J(xgx-i) = 'l/J(g). Thus by(****) we have 

IGl~IHI L L </>o(y).'lj.J(y) 
yEG xEG 

IGl~IHI L ( L </>o(y).'l/J(y)) 
xEG yEG 

IGtlHI IGI L </>o(y).'lj.J(y) 
yEG 

1!1 I: <l>(y).'l/J(y) 
yEH 

( </> ' 'ljJ l H) H □ 

Corollary 3.2.12 Let H::; G. Assume that Irr(G) = {xi, x2 , ••. , Xr} and Irr(H) 

Suppose that 

Proof: See [18,Corollary iv.3.2 ]. 

Xi l H 
i=i 

r 

0 1,f ~ th 'I'. ~ aiiXi, en 
j=i 

aii bij, Vi, j. 

Remark 1 (Frobenius Reciprocity table) 

Let H ::; G. Assume that Irr(G) = {xi, X2, ... , Xr }and Irr(H) 

previous corollary we have 
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s 

Xj l H I: ai/lpi and 
i=l 
r 

1/Jf LaijXj, then 
j=l 

the matrix A (aij)sr is called the Frobenius Reciprocity table for G and H. 

3.3 Normal Subgroups 

In this section we shall look mainly at how the irreducible characters of a quotient group of a group 

G can be used to find some of the characters of G itself . 

In order to justify a definition for the concept ker(x) , where x is a character of G , we state lemma 

3.3.1 and lemma 3.3.2 and prove the lemma 3.3.2 using the thesis of Whitley [26]. 

Lemma 3.3.1 Let x be a character of a group G afforded by the representation T. Then for g E G, 

T(g) is similar to a diagonal matrix diag(e 1 , e2, ... , en) where each ei is a complex root of unity. Then 

x(g) = e1 + e2 + ... +en and x(g- 1
) = x(g), where x denotes the complex conjugate of x. 

Proof: See [9,Lemma 2.15]. 

Lemma 3.3.2 Let x be a character of a group G afforded by the representation T. Then g E ker(T) 

if and only if x(g) = x(l). 

Proof: 

Let n = x(l), so n is the degree of T. If g E ker(T) then T(g) = In = T(l), where In is the 
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n x n identity matrix, so x(g) = n = x(l). Conversely, assume x(g) = x(l) = n. By lemma 3.3.1, 

x(g) = e1 + e2 + ... + en , where each ei is a complex root of unity. Therefore, e1 + e2 + ... + en = n. 

But leil = 1 for all i, so we must have ei = 1 Vi. Hence T(g) is similar to diag(ei, e2, ... , en) = In, 

so g E ker(T). □ 

Definition 3.3.3 Let x be a character of a group G. We define 

ker(x) {g E G: x(g) x(l)}. 

We note from lemma 3.3.2 that ker(x) is a normal subgroup of G. The next two theorems taken 

from the Moori-notes[18] will tell us how the normal subgroups of G can be determined from its 

character table and how we can tell whether G is simple or not. 

Theorem 3.3.4 Let N be a normal subgroup of G. Then there exists irreducible characters Xi, X2, ... , Xs 

of G such that 

s 

N nker(xi)-
i=l 

Proof: See [18, Theorem v.3]. 

Theorem 3.3.5 A group G is simple if and only if x(g) =/- x(l) for all nontrivial 

irreducible characters of G and for all non-identity elements g of G. 

Proof: See [18, Theorem v.4]. 

The following results form the basis for another tool in finding the characters of a group. 
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Theorem 3.3.6 Let N be a normal subgroup of G. 

( a) Let x be a character of G / N and x : G ---t C be defined by 

x(9) x(gN) for g E G, 

Then x is a character of G and x has the same degree as X-

(b) Let x be a character of G, N ::; ker(x) and x : G / N ---t C be defined by 

x(gN) x(g) for 9 E G, 

Then X is a character of G / N. 

(c) In both of the statements above, x is an irreducible character of G/N if and only if X is an 

irreducible character of G. 

Proof: 

(a) Let T be the representation of degree n that affords x and define T : G ---t GLn(C) by 

T(9) = T(9N). Then for 91, 92 E G, 

So T is well-defined. Also 

91 = 92 ===> 91N = 92N 

===> T(91N) = T(92N) 

===> T(91) = T(92)-
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Hence T is a homomorphism and therefore a representation. 

Now Trace(T(g)) = Trace(T(gN)) = x(gN) = x(g) for all g E G, so T affords X· Moreover 

Im = T(l) = T(N) In 

and so the degree of x is the same as that of x. 

(b) Let T be the representation that affords x and define T: G/N ----t GLn(C) by T(gN) = T(g). 

Then for g1, g2 E G, 

g1N = g2N ===? 

===? 

===? 

===? 

===? 

thus T is well-defined and 

Hence T a representation. 

g"11g2 EN :S ker(x) = ker(T) 

T(g11g2) = I, the identity matrix 

T(g11 )T(g2) = I 

T(g1) = T(g2) 

T(g1N) = T(g2N) 

T(g1g2N) 

T(g1g2) 

T(g1)T(g2) 

T(g1N)T(g2N) 

Trace(T(gN)) = Trace(T(g)) = x(g) = x(gN) for all g E G, so T affords X· 
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t 

xlN = Z::)xlN, 0i)0i. 
i=l 

But (XIN,0i) = (XIN,0) since 0i and 0 are conjugate and so the proof is complete. D 

Definition 4.1.2 Let N <l G and 0 E Irr(N). Then 10 (0) = {g E G: 09 = 0} is the inertia group 

of 0 in G. 

Since 10 (0) is the stabilizer of 0 in the action of G on Irr(N), we have that 10 (0) is a subgroup 

of G and N ~ 10 (0). Also [G : 10 (0)] is the size of the orbit containing 0, so in the formula 

XIN = e I::!=1 0i, we have t = [G : 10 (0)]. 

As a consequence of Clifford's theorem, we have the following theorem. 

Theorem 4.1.3 Let N <l G, 0 E Irr(N) and H = 10 (0). Then induction to G maps 

the irreducible characters of H that contain 0 in their restriction to N faithfully 

onto the irreducible characters of G which contain 0 in their restiction to N. 

Proof: See [26,Theorem 3.3.2] 

Theorem 4.1.3 shows that to find the irreducible characters of G that contain 0 in their restriction 

to N, it suffices to find the irreducible characters of H = 10 ( 0) that contain 0 in their restriction. If 

0 can be extended to an irreducible character 'I/; of H ( that is, 'I/; E Irr(H) with 'I/JIN= 0), then the 

relevant characters of H can be obtained by using the following theorem. 

Theorem 4.1.4 (Gallaghar (6/) With N, G, 0 and H as above, if 0 extends to a character 

'I/; E J rr( H) then as /3 ranges over all irreducible characters of H that contain N in their kernel, 
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(3'1/J ranges over all irreducible characters of H that contain 0 in their restriction. 

Proof: By definition of H, 0 is the only H-conjugate of 0, so by Clifford's theorem, 01llN = f0 for 

some integer f. Comparing degrees, 01llN = [H: N]0, so 

(0, 0HIN) 

[H:N]. 

Now we claim that 91l = Lf3 (3(1 )(3'1/J, where (3 runs over all irreducible characters of H that contain 

Nin their kernel, or, equivalently, over all irreducible characters of H/N. Both 0H and Lf3f3(1)(3'1/J 

are zero off N because for g (j. N, 01l(g) = 0 since xgx-1 (j. NV x E G, and by the column orthogo­

nality for the character table of H / N since g does not belong to N, we have 

z:= (3(1)((3'1/J)(g) = Z:(f3(1)(3(g))'I/J(g) = o. 
f3 f3 

Also 

0H1N [H: N]0 = (L (3(1)(3'1/J)IN 
f3 

because for g E N, 

I: (3(1)(3(g)'I/J(g) 
f3 f3 

[H: N]'I/J(g) 

[H: N]0(g). 
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Therefore 0H L{3 /3(1)/3'1/J as claimed. Now 

[H: N] (0H, 0H) 

- (I: /3(1){3'1/J, I: 1(1),'lj;) 
(3 , 

I: /3(1),(1)(/3'1/J, 1'1/J). 
(3,, 

The diagonal terms contribute at least L/3(1) 2 = [H: N] so the /3'1/J are irreducible and distinct. 

These /3'1/J are all the irreducible constituents of 0H, so are all the irreducible characters of H that 

contain 0 in their restriction, since for <p E Irr ( H), ( <p IN, 0) = ( <p, 0H). □ 

Note 1 Now suppose G is an extension of N by G. If every irreducible character of N can be 

extended to its inertia group in G, then by application of theorems 4.1.3 and 4.1.4 the characters of 

G can be obtained as follows: 

Let 01, 02, ... , 0t be representatives of the orbits of G on Irr(N). For each i, let Hi = Ic;(0i) and let 

'I/Ji E Irr(Hi) with 'I/Ji IN = 0i. Now each irreducible character of G contains some 0i in its restriction 

to N by Clifford's theorem, so by theorems 4.1.3 and 4.1.4 we have 

t 

Irr(G) U { (/3'1/Jif: /3 E Irr(Hi), NC ker(/3)} 
i=l 

Hence the characters of G fall into blocks, with each block corresponding to an inertia group. 

We now quote some results which give sufficient conditions for the irreducible characters of N to be 

extendible to their respective inertia groups, so that the above method can be used to calculate the 

characters of G. 
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The following result and proof was obtained from Curtis and Reiner ([4, page 353]). 

Theorem 4.1.5 {Mackey's theorem) Suppose that N is a normal subgroup of H such 

that N is abelian and H is a semi-direct product of N and H for some H :::; H. If 

0 E Irr(N) is invariant in H ( that is, 0h = 0, V h E H ) then 0 can be extended to 

a linear character of H. 

Proof: Since His a semi-direct product, any h EH can be written uniquely ash= nk, n EN, k EH. 

Define x on H by x(nk) = 0(n). Since N is abelian, 0 has degree 1, hence is linear, and the fact that 

0 = Oh for all h E H implies that 0(n) = 0(hnh- 1 ) for all h EH. Then if h1 = n1k1, h2 = n2k2, 

we have 

x(h1h2) - x(n1k1n2k2) 

x(n1n;1 k1k2) 

0(n1n;1
) 

0(n1)0(n;1
) 

0(n1)0(n2) 

0(n1n2) = x(h1)x(h2). 

Therefore x is a linear character of H, and x IN = 0. □ 

Since in all our examples that we will consider, N is abelian and the extension is split, Mackey's 

theorem will apply. Mackey's theorem is a corollary of a more general result by Karpilovsky [11] 

which we state without proof. 

Theorem 4.1.6 Let the group H contain a subgroup H of order n such that H = NH for N normal 

in H and let x E Irr(N) be invariant in H. Then x extends to an irreducible character 

50 

http://etd.uwc.ac.za



of H if the following conditions hold: 

1. (m, n) = 1 where m = x(l), 

2. N n H ::; N' where N' is the derived subgroup of N. 

Another extension theorem which can be found in [7] is the following: 

Theorem 4.1. 7 If N is a normal subgroup of H and 0 is an irreducible character of N that is 

invariant in H, then 0 is extendable to an irreducible character of H if 

-. ~ -([H . N], 0(1)) - 1. 

4.2 Properties of Fischer Matrices 

In this section we give some properties of the Fischer matrices. We however need to look at some 

background material first. 

Let G be an extension of N by G, with the property that every irreducible character of N can be 

extended to its inertia group. With the notation of the previous chapter we have that 

[Irr(G) = LJ!=1{(,/JVJi}°: ,BE Irr(Hi) with N c ker(,B)}] Now we show how the character table 

G can be constructed using this result. We construct a matrix for each conjugacy class of G (the 

Fischer matrices). Then the character table of G can be constructed using these matrices and the 

character tables of factor groups of the inertia groups. These constructions of Fischer matrices have 

been discussed by Salleh [25], List [12] and List and Mahmoud [13]. 

As previously, let 01 , ... , 0t be representatives of the orbits of G on Irr(N), and let Hi = I0 (0i) and 

Hi = Hi/N. Let Vli be an extension of 0i to Hi. We take 01 = lN, so H1 = G and H1 = G. We 
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consider a conjugacy class [g] of G with representative g. Let X(g) = {x1 , ... Xc(g)} be representatives 

of G-conjugacy classes of elements of the coset Ng. Take x1 = g. Let R(g) be a set of pairs (i, y) 

where i E {1, ... , t} such that Hi contains an element of [g], and y ranges over representatives of the 

conjugacy classes of Hi that fuse to [g]. Corresponding to this y E Hi, let {y1k} be representatives of 

conjugacy classes of Hi that contain liftings of y. 

If {3 E Irr(Hi) with NC ker(/3), then {3 has been lifted from some SE Irr(Hi), with S(y) = {3(y1J 
for any lifting Ylk of y. For convenience we write {J(y) for S(y). 

Now, using the formula for induced characters given in Proposition 3.2.9., we have 

~ ~' ICa(xj)I 
~ ~ IC-:-(y1 )I ('¢if3)(yik) 

y:(i,y)ER(g) k H, k 

~ ~' ICa(xj)I A 

~ ~ IC-:-(Yt )I 1Pi(Y1k){3(y) 
y:(i,y)ER(g) k H, k 

L (L' l~_:~::)jl 1Pi(Ytk)) {J(y) 
y:(i,y)ER(g) k H, k 

By E/ we mean that we sum over those k for which y1k is conjugate to x3 in G. Now we define the 

Fischer matrix M(g) = (a(i,y)) with columns indexed by X(g) and rows indexed by R(g) by 

Then 

('¢if3f (xj) = L a(i,yi(y). 
y:(i,y)ER(g) 

The rows of M (g) can be divided into blocks, each block corresponding to an inertia group. Denote 

the submatrix corresponding to Hi by Mi (g), and let Ci (g) be the fragment of the character table of 

Hi consisting of the columns corresponding to classes that fuse to [g]. Then, by the above relation , 

the characters of G at the classes represented by X(g) obtained from inducing characters of Hi are 

given by the matrix product Ci (g) .Mi (g). 
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We now state a result of Brauer and prove a lemma which will be needed later. 

Lemma 4.2.1 (Brauer) Let A be a group of automorphisms of a group K. Then A also acts on 

Irr(K) and the number of orbits of A on Irr(K) is the same as that on the conjugacy classes of K. 

Proof: See [8, 4.5.2] 

Lemma 4.2.2 Let A be a group of automorphisms of a group K , so A acts on Irr(K) and on the 

conjugacy classes of K with the same number of orbits on each by the previous lemma. Suppose we 

have the fallowing matrix describing these actions: 

1 1 1 1 

St atj 

where aii = 1 for j = 1, ... t, li 's are lengths of orbits A on the conjugacy classes of K, 

si 's are lengths of orbits of A on Irr(K), 

aii is the sum of si irreducible characters of Kon the element Xj, where Xj is an element of the orbit 

of length li. 

Then the following relation holds for i, i' E {1, ... t}: 

t 

Laijai'ili = 1Klsi6ii' 
j=l 

Proof: Let si denote the sum of si irreducible characters of K, so si(xj) = aij· Then 

t t 

< Si, Si'>= IKl- 1Lljsi(xj)Si1 (xj) = IKl-l L ljaijai'j 
j=l j=l 
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But by orthogonality of irreducible characters, < si, si' >= 8ii'si, so 

t 

L ljaijai'i = 1Klsi8ii'· D 
j=l 

Now let M(g) = (aii,y)) be the Fischer matrix for G = N.G at g E G. We present M(g) with 

corresponding "weights" for columns and rows as follows: 

ICH2(Y)I 

ICH2(Y1)I 

1 1 1 

The matrix M(g) is divided into blocks (separated by horizontal lines), each corresponding to an 

inertia group. Note that a{i,g) = 1 for all j E {1, ... , c(g)}. Fischer has shown that M(g) is square 
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and nonsingular(see[13]). In the following propositions and note we give further properties of Fischer 

matrices. 

Proposition 4.2.3 ( column orthogonality) 

L ICH;(Y)la{i,y)a{;,y) = 8iJ' IC0 (xi)I 
(i,y)ER(g) 

Proof:The partial character table of G at classes x1 , ... , Xc(g) is 

where Ci(g), Mi(g) are as defined earlier in this section. 

By column orthogonality of the character table of G, we have 

ICc(xi)18ii' = t L ( L a{i,y)/3i(y))( L a{:,y,ii(y')) 
i=l (3;Elrr(H;) y:(i,y)ER(g) y':(i,y')ER(g) 

- t L (La{i,y)a{;,yii(y)/3i(Y) + LLa(i,y)a{;,y')/3i(y)/3i(Y')) 
i=l (3;Elrr(H;) y Y y'fy 

t (La{i,y)a{;,Y) L /3i(y)/3i(Y) + LLa(i,y)a(:,y') L f3i(y)/3i(y')) 
i=l y (3;Elrr(H;) y y'fy (3;Elrr(H;) 

- t. ( ~:0l,,,1a{;,,i!C«.(Y)I + O) 

L a{i,y)a{;,y)ICH;(Y)I. □ 
(i,y)ER(g) 
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Proposition 4.2.4 (List /12}) At the identity of G, the matrix M(l) is the matrix with rows equal 

to orbit sums of the action of G on Irr(N) with duplicate columns discarded. 

For this matrix we have a{i,l) = [G : Hi], and an orthogonality relation for rows: 

t 

L a(i,1)a(i',l) \Cc(xj )l-1 
= 8ii'\CH;(l)\-1 

= 8ii' \Hi\-1 

j=l 

Proof:: The (i, l),lh entry of M(l) is 

where we sum over representatives of conjugacy classes of Hi that fuse to [xi] in G. Therefore 

a{i,l) = vf (xi). By theorem 4.1.3 '1/Jf is an irreducible character of G, and < '1/Jf\N, 0i >=< 

'1/Ji\N, 0i >= l. Therefore, by Clifford's Theorem (Theorem 4.1.1), '1/JflN = I:
0 

Xa, where we sum over 

all Xa E Irr(N) in the orbit containing 0i. Now Xj E N, and a(i,l) = I:
0 
x0 (xj)- The orthogonality 

relation follows by Lemma 4.2.2. □ 

Note 1 If N is an elementary abelian group (which is the case for our calculations), then List[12] 

has also shown the following for M(g), where g =J 1: 

If G is a split extension of N by G, then M(g) is the matrix of orbit sums of Cg (as defined in section 

2.2) acting on the rows of the character table for a certain factor group of N with duplicate columns 

discarded. 

If the extension is not split, M (g) is the matrix of orbit sums of Cg acting on the rows of the character 

table with duplicate columns discarded and with each row multiplied by a p - th root of unity where 

\NI = pn for some n. It may be that the root of unity for each row is 1. 

For these matrices (N elementary abelian, any extension) a(i,y) = 
1
~:YJ)1

1
, and we have an orthogo-, 

nality relation for rows (as a consequence of Lemma 4.2.2.): 
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c(g) 

L mJa(i,y)a1i',y') = 8(i,y)(i',y1)ICc(g)IICH;(Y)l-1 INI = 8(i,y)(i',y')a(i,y)INI 
j=l 

where mj =[Cg: C0 (xj)]. 

(In the notation of section 2.2, mj is the length of the orbit ~ 1 of Cg, so m1 = fl:I) 

The relations given in the above propositions and note will be used later in our calculations of Fischer 

matrices, so for convenience we list them in a theorem. 

Theorem 4.2.5 For a Fischer matrix M(g) = (a1i,y)) of G = N.G we have the following relations. 

1. atl,g) = 1 for all j E {1, ... , c(g)}. 

2. L ICH;(Y)ia1i,y)a(;,y) = 81J'ICc(x1)l-
(i,y)ER(g) 

3 I,, N . l t b z · th 1 - ICc(g)I d 
• J is e emen ary a e ian, en a(i,y) - ICH;(Y)I' an 

c(g) 

4- L m1a(i,y)a1i',y') = 8(i,y)(i',y')a(i,y)INI. 
j=l 
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Chapter 5 

CHARACTER TABLES OF SOME 

GROUP EXTENSIONS 

In this chapter we show how the theory developed earlier can be used to calculate the character 

tables of some groups of extension type. We will only deal with split extensions and the examples 

that we use are taken from the ATLAS [3]. Our first example 24 : 15 is a maximal subgroup of 

the group GL(2, 16). We now proceed to calculate the character table of this group using classical 

methods in our first section. We use the notation that was developed earlier. 

5.1 The Character Table of 24
: 15 

Let G be a split extension of N, an elementary abelian two-group of order 16, by G, a cyclic subgroup 

of GL(4, 2) of order 15. We use the method of coset analysis , described in section 2.2 of chapter 

2, to calculate the conjugacy classes of G. G can be generated by the following element of order 15 
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in G 

X= 

0 1 0 1 

0 0 1 0 

1 0 0 0 

0 1 0 0 

and N ~ V(4, 2) , the vector space of dimension four over a field of two elements. G , being cyclic, 

has 15 conjugacy classes each of which consists of a single element which is a power of x. In this 

example, we thus work with fifteen cosets, namely N xJ where j = 0, 1, 2, ... , 14. For each j we must 

consider the action of N ~ (e1,e2,e3,e4) and Ce(xJ) on NxJ. 

Action of N and Ce(le) on Nle : 

le fixes all elements of N so that CN(Ie) = N. That is we have sixteen orbits, Qs withs= 1, 2, ... , 16 

, each containing one element. Now Ce(Ie) = G so we only need to look at the action of x on N. 

This action is represented by the cycle structure (e1 e1e3 e1e2e3 e1e2 e2 e3). So 

16 

61 = {1} = Q1 and 62 = LJ Qs. 
s=2 

Hence f1 = 1 and h = 15. We obtain the following : 

I C-c(le) I= k x l~~(le)I = 16 ~ 15 = 240; 

Ji x IGI 1 x 240 
l[le]cl = k x ICe(le)I = 16 x 15 = l; 

Action of N and Ce(x) on Nx: 

16 X 15 
IC0 (ei)I = h = 16; 

15 X 240 
l[e1]cl = 16 x 15 = 15. 

CN(x) = {le}- So ICN(x)I = k = I and therefore f = 1. Also Ce(x) = G so we have IC0 (x)I = 15. 

In fact IC0 (x1)1 = 15 for all j = 1, 2, ... , 14 because the action of x1 is represented by a 15 - cycle 

and hence x1(j =/- 0) fixes only lN. We thus have CN(xJ) = {1} ,j =/- 0 and so k = 1 and again f = 1. 

With Ce(xJ) = G,j =/- 0 we have IC0 (xJ)I = 15, \;/ j = 1, 2, ... , 14. With that, the conjugacy table of 
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G is completed : 

class (1) (e1) (x) (x2) (x3) (x4) (x5) (xB) (x1) (xs) (xg) (xlO) (xll) (x12) 

hi 1 15 16 16 16 16 16 16 16 16 16 16 16 16 

order 1 2 15 15 15 15 15 15 15 15 15 15 15 15 

centralizer 240 16 15 15 15 15 15 15 15 15 15 15 15 15 

Table 5.1.1.A: The conjugacy table of 24
: 15. 

class (xl3) (x14) 

hi 16 16 

order 15 15 

centralizer 15 15 

Table 5.1.1.B : The conjugacy table of 24 
: 15(continued). 

We use the method of inducing characters of subgroups of G ( discussed in section 2.2)to calculate 

the character table of G. In this case we will make use of the irreducible characters of N and G. 

The character table of N ~ Z2 x Z2 x Z2 x Z2 is easily calculated from the character table of 

~ = (a : a2 = 1) by using the product of these characters (theorem 2.1.26). We give the character 

tables of Z2 and N. 
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class (1) (a) 
centralizer 2 2 

'I/J1 1 1 

'I/J2 1 -1 

Table 5.1.2: The character table of Z2 • 

class (1) (e3e4) (e4) (e2e4) (e2) (e2e3e4) (e1e2) (e1e4) (e3) (e1e2e4) (e1e3) 

hi 1 1 1 1 1 1 1 1 1 1 1 

order 1 2 2 2 2 2 2 2 2 2 2 

centralizer 16 16 16 16 16 16 16 16 16 16 16 

71 1 1 1 1 1 1 1 1 1 1 1 

72 1 1 1 1 1 1 -1 -1 1 -1 -1 

73 1 1 1 -1 -1 -1 -1 1 1 -1 1 

74 1 1 1 -1 -1 -1 1 -1 1 1 -1 

75 1 -1 1 1 1 -1 1 1 -1 1 -1 

76 1 -1 1 1 1 -1 -1 -1 -1 -1 1 

77 1 -1 1 -1 -1 1 -1 1 -1 -1 -1 

'Tg 1 -1 1 -1 -1 1 1 -1 -1 1 1 

'Tg 1 -1 -1 -1 1 -1 1 -1 1 -1 1 

710 1 -1 -1 -1 1 -1 -1 1 1 1 -1 

Tu 1 -1 -1 1 -1 1 -1 -1 1 1 1 

712 1 -1 -1 1 -1 1 1 1 1 -1 -1 

713 1 1 -1 -1 1 1 1 -1 -1 -1 -1 

714 1 1 -1 -1 1 1 -1 1 -1 1 1 

715 1 1 -1 1 -1 -1 -1 -1 -1 1 -1 

716 1 1 -1 1 -1 -1 1 1 -1 -1 1 

Table 5.1.3.A : The character table of the group 24 . 
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class (e2e3) (e1) (e1e2e3e4) (e1e2e3) (e1e3e4) 

hi 1 1 1 1 1 

order 2 2 2 2 2 

centralizer 16 16 16 16 16 

71 1 1 1 1 1 

72 1 -1 -1 -1 -1 

73 -1 1 -1 -1 1 

74 -1 -1 1 1 -1 

75 -1 1 -1 -1 -1 

75 -1 -1 1 1 1 

77 1 1 1 1 -1 

7g 1 -1 -1 -1 1 

79 1 1 -1 1 -1 

710 1 -1 1 -1 1 

711 -1 1 1 -1 -1 

712 -1 -1 -1 1 1 

713 -1 1 1 -1 1 

714 -1 -1 -1 1 -1 

715 1 1 -1 1 1 

715 1 -1 1 -1 -1 

Table 5.1.3.B : The character table of the group 24 (continued). 

We have seen in proposition 3.1.21 that if H = (x: xn = 1), then Pk : H---+ C* defined by 

( m) [ 2k1ri]m Pk X = e n 

defines n irreducible representations of H. So the character table of G = (x : x15 = 1) is completely 

determined by its representatives of this type. The character table of G is as follows : 
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class 1 X x2 x3 x4 x5 X6 x7 X8 xg XlO Xll x12 x13 x14 

hi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

order 1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 

ICa(g)I 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 

Po 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

PI 1 WI w2 
1 w3 

1 
w4 

1 
w5 

1 
wB 

1 
w7 

1 
ws 

1 
wg 

1 
WlO 

1 
wll 

1 
w12 

1 
w13 

1 
w14 

1 

P2 1 W2 w~ w3 
2 

w4 
2 

w5 
2 

wB 
2 

w7 
2 

ws 
2 

wg 
2 

WlO 
2 

Wll 
2 

Wl2 
2 wJ3 w14 

2 

p3 1 W3 w2 
3 

w3 
3 

w4 
3 

w5 
3 

wB 
3 

w7 
3 

wB 
3 

wg 
3 

WlO 
3 

wll 
3 

wl2 
3 

w13 
3 

w14 
3 

p4 1 W4 w2 
4 w3 

4 
w4 

4 
w5 

4 
wB 

4 
w7 

4 
ws 

4 w9 
4 wlo Wll 

4 
w12 

4 
w13 

4 
w14 

4 

p5 1 W5 wl wg w4 
5 wg wB 

5 wl ws 
5 wi wJO Wll 

5 
w12 

5 wJ3 wJ4 

PB 1 W5 wi wi w4 
6 wi wB 

6 wJ w~ wl wJO wll 
6 

w12 
6 wJ3 wJ4 

p7 1 W7 w? w? w4 
7 w~ wB 

7 wJ ws 
7 Wj WlO 

7 
Wll 

7 w}2 w}3 Wj4 

Ps 1 Wg w2 
8 

w3 
8 

w4 
8 w~ wB 

8 
w7 

8 
ws 

8 wl WlO 
8 

Wll 
8 

wl2 
8 wJ3 w14 

8 

pg 1 Wg w2 
9 

w3 
9 

w4 
9 

w5 
9 

wB 
9 

w7 
9 

ws 
9 w8 WlO 

9 
Wll 

9 
w12 

9 wJ3 w14 
9 

Pio 1 W10 2 3 4 5 6 7 8 9 WlO Wll w12 w13 w14 W10 W10 W10 W10 W10 W10 W10 W10 10 10 10 10 10 

Pu 1 Wu 2 3 4 5 6 7 8 9 WlO wll w12 w13 w14 Wu Wu Wu Wu Wu Wu Wu Wu 11 11 11 11 11 

P12 1 W12 
2 3 4 5 6 7 8 9 WlO wll w12 wI3 w14 W12 W12 W12 W12 W12 W12 W12 W12 12 12 12 12 12 

P13 1 W13 2 3 4 5 6 7 8 9 WlO Wll w12 w13 w14 W13 W13 W13 W13 W13 W13 W13 W13 13 13 13 13 13 

PI4 1 W14 2 3 4 5 6 7 8 9 WlO Wll Wl2 w13 w14 W14 W14 W14 W14 W14 W14 W14 W14 14 14 14 14 14 

Table 5.1.4: The character table of Z15 • 

k 
2k,ri 

where for each = 1, 2, ... , 14, wk= e1S. 
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We use the formula in proposition 3.2.9 to induce the irreducible characters of N and G to G. 

If TE IrrN, then 

TC (1) - 240 ( l ;~l)) = 15T(l) 

Tc(e1) 16 I: T(g) I: T(g) -= 
gEN,gf-1 

16 
gEN,gf-1 

TC(xi) = 0, for each i = 1, 2, ... , 14 

and we obtain the following characters of G : 

class 1 e1 X x2 x3 x4 x5 x6 x7 XS x9 XlO Xll x12 

hi 1 15 16 16 16 16 16 16 16 16 16 16 16 16 

order 1 2 15 15 15 15 15 15 15 15 15 15 15 15 

centralizer 240 16 15 15 15 15 15 15 15 15 15 15 15 15 

TC 
1 15 15 0 0 0 0 0 0 0 0 0 0 0 0 

T.c 
2 15 -1 0 0 0 0 0 0 0 0 0 0 0 0 

Table 5.1.5: The induced characters of G from N. 

240 ( 1. p(l)) = 240p(l) = 16. p(l) 
ICc(l)I 15 

= 0 

If p E Irr( G), then 

pc(l) 

pc(e1) 

pc(xi) 15 (pi~i)) = p(xi) for each i = 1, 2, ... , 14 
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The characters of G induced from G are : 

class 1 e1 X x2 x3 x4 x5 x6 x1 xB xg XlO Xll x12 x13 x14 

hi 1 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 

order 1 2 15 15 15 15 15 15 15 15 15 15 15 15 15 15 

ICa(g)I 240 16 15 15 15 15 15 15 15 15 15 15 15 15 15 15 

pf 16 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

l! 16 0 W1 W2 W3 W4 W5 W6 W7 Wg Wg W10 Wu W12 W13 W14 

pf 16 0 W2 W4 w6 Wg W10 W12 W14 W1 W3 W5 W7 Wg Wu W13 

pf 16 0 W3 w6 Wg W12 1 W3 W6 Wg W12 1 W3 W6 Wg W12 

Pt 16 0 W4 Wg W12 W1 W5 Wg W13 W2 W6 W1Q W14 W3 W7 Wu 

pf 16 0 W5 W10 1 W5 W10 1 W5 W10 1 W5 W10 1 W5 W10 

Pt 16 0 W6 W12 W3 Wg 1 W6 W12 W3 Wg 1 W6 W12 W3 Wg 

ll 16 0 W7 W14 W6 W13 W5 W12 W4 Wu W3 W10 W2 Wg W1 Wg 

ll 16 0 Wg W1 Wg W2 W10 W3 Wu W4 W12 W5 W13 W6 W14 W7 

p~ 16 0 Wg W3 W12 w6 1 Wg W3 W12 w6 1 Wg W3 W12 w6 

a 
P10 16 0 W10 W5 1 W10 W5 1 W10 W5 1 W10 W5 1 W10 W5 

a 
Pu 16 0 Wu W7 W3 W14 W10 W6 W2 W13 Wg W5 W1 W12 Wg W4 

a 
P12 16 0 W12 Wg w6 W3 1 W12 Wg w6 W3 1 W12 Wg W6 W3 

a 
P13 16 0 W13 Wu Wg W7 W5 W3 W1 W14 W12 W10 Wg W6 W4 W2 

a 
P14 16 0 W14 W13 W12 Wu W10 Wg Wg W7 w6 W5 W4 W3 W2 W1 

Table 5.1.6: The induced characters of G from G. 

where for each k = 1, 2, ... , 14, 
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Besides the trivial character Xo, we have another irreducible character of G in rf, since 

For each i = 1,2, ... , 14, 

2. 

Hence none of these characters are irreducible, but for each i , 

This means that for each i 1, 2, ... , 14, py is the sum of two irreducible characters of G of 

which one is rf. Hence for each i, Xi py - rf is an irreducible character of G. With 

this, we now have all the irreducible characters of G. 
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class 1 e1 

hi 1 15 

order 1 2 

ICa(g)I 240 16 

Xo 1 1 

XI 1 1 

X2 1 1 

X3 1 1 

X4 1 1 

X5 1 1 

X6 1 1 

X1 1 1 

Xs 1 1 

X9 1 1 

X10 1 1 

X11 1 1 

X12 1 1 

X13 1 1 

X14 1 1 

X15 = T{ 1 -1 

where for each k 

X x2 x3 x4 x5 x6 x1 xs xg 

16 16 16 16 16 16 16 16 16 

15 15 15 15 15 15 15 15 15 

15 15 15 15 15 15 15 15 15 

1 1 1 1 1 1 1 1 1 

W1 W2 W3 W4 W5 W6 W7 Ws Wg 

W2 W4 W6 Ws W10 W12 W14 W1 W3 

W3 w6 Wg W12 1 W3 W6 Wg W12 

W4 Ws W12 W1 W5 Wg W13 W2 W6 

W5 W10 1 W5 W10 1 W5 W10 1 

W6 W12 W3 Wg 1 W6 W12 W3 Wg 

W7 W14 W6 W13 W5 W12 W4 W11 W3 

Ws W1 Wg W2 W10 W3 W11 W4 W12 

Wg W3 W12 W6 1 Wg W3 W12 W6 

W10 W5 1 W10 W5 1 W10 W5 1 

W11 W7 W3 W14 W10 W6 W2 W13 Wg 

W12 Wg W6 W3 1 W12 Wg W6 W3 

W13 W11 Wg W7 W5 W3 W1 W14 W12 

W14 W13 W12 W11 W10 Wg Ws W7 W6 

0 0 0 0 0 0 0 0 0 

Table 5.1.7: The character table of 24 : 15 

1, 2, ... , 14, Wk 
2k,ri 

e7"5. 
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XlO Xll x12 x13 x14 

16 16 16 16 16 

15 15 15 15 15 

15 15 15 15 15 

1 1 1 1 1 

W10 W11 W12 W13 W14 

W5 W7 Wg W11 W13 

1 W3 w6 Wg W12 

W10 W14 W3 W7 W11 

W5 W10 1 W5 W10 

1 W6 W12 W3 Wg 

W10 W2 Wg W1 Ws 

W5 W13 w6 W14 W7 

1 Wg W3 W12 w6 

W10 W5 1 W10 W5 

W5 W1 W12 Ws W4 

1 W12 Wg W6 W3 

W10 Ws w6 W4 W2 

W5 W4 W3 W2 W1 

0 0 0 0 0 
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We now continue with our second example. 

5.2 The Character Table of 11: 5 

Let G = 11 : 5, be the semi-direct product of a cyclic group N of order 11 by a cyclic group G of 

order 5. This group is a maximal subgroup of the group GL(2, 11). Here the action of G on N is 

by conjugation. 

Let 

N 

G 

(b) 

(a) 

{1,b,b2
, ... ,b10

}, b11 = 1 

and 

For this extension one defines an action of G on N : 

by 

where a : b t----t b2 . 

0 : G ~ Aut(N) ~ Z10 

0: 1 t----t 1 

a t----t a 2 

a2 t----t a4 

a3 
t----t ci 

a4 t----t as' 

(a) a 10 = 1 

Since IGI = 55 , it is an easy exercise to see that G = 11 : 5 must be one of the following groups : 
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G1 (a, b I a5 = 1 = b11 
' 

ab= ba) 

G2 (a, b I a5 = 1 = b11 

' 
ab= b3a) 

G3 (a,b a5 = 1 = b11 
' 

ab= b4a) 

G4 (a,b a5 = 1 = b11 
' 

ab= b5a) 

Gs (a,b a5 = 1 = b11 

' 
ab= b9a) 

After checking, it can be seen that our group is in fact G3 . 

We now immediately proceed to calculate the conjugacy classes of 11 : 5 by coset analysis. Here 

we analyze the the cosets Ng, where g is representative of a class of G, to determine the conjugacy 

classes of G. Firstly, we act N and then Ca(g) on the elements of Ng.The action of N and Ca(g) on 

Ng is by conjugation. The method of coset analysis is discussed in section 2.2 and we will use the 

notation likewise. So IC0 (x) =klCtx)I, where fi of the k blocks of the coset Ng have fused to give a 

class of G containing x. Also G = ugEG Ng because G is a split extension. 

Each of the five classes of G , contains only one element. G is cyclic ,hence Cc(g) =G for all g E G. 

The set of conjugacy classes of G is {[1], [a], [a2], [a3], [a4]}. Now we are ready to calculate the con­

jugacy classes of G. 

•g = 1 E G: 

The identity element of G fixes all elements of N. Therefore CN(l) = N and hence k = 11 = INI. 

The coset N splits into 11 orbits, Q1, Q2, ... , Q11 ,each containing 111 = 1 element. Thus we obtain: 

Q1 = {1}, Q2 = {b}, Q3 = {b2} = Q4 = {b3}, Qs = {b4}, QB= {b5}, 

Q7 = {b6}, Qs = {b7}, Qg = {b8}, Q10 = {b9} and Q11 = {b10} . 

Now we act Cc(l) = G on the orbits Qi, 1 ::; i ::; 11. We obtain : 

61 = Q? = {1}, 

6 2 = {b}c = {b,b3 ,b4,b5 ,b9
} and 

63 = {b2 ,b6 ,b7 ,b8 ,b10} 

Thus, under the action of Ca(l) , we obtain three orbits with Ji = 1 and h = h = 5 and so this 

coset gives three classes of G : 
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Ji = 1, x = 1, ICa(l)I = 11 x 5 = 55; 

h = 5, x = b, ICa(b)I = 11
;

5 = 11; 

h = 5, X = b2, ICa(b2)1 = 115x5 = 11. 

•g = a E G: 

The action of g on N fixes only the identity element. Hence ICN(a)I = 1 and therefore the coset Na 

has only one class in G. 

Also for the classes [a2], [a3]and[a4
] we have k = 1 and hence the cosets Ng has only class each in G. 

So the conjugacy classes of N ai ,j = 1,2,3,4 , are as follows : 

ICa(ai)I = 5 , for each j = 1,2,3,4 and 

l[aJJcl = 11 , for each j = 1,2,3,4 . 

The process of coset analysis is done and the conjugacy classes of G are as follows : 

classes 1 a a2 a3 a4 b b2 

no. of elements 1 11 11 11 11 5 5 

order 1 11 11 11 11 5 5 

centralizer 55 5 5 5 5 11 11 

Table 5.2.1 : The conjugacy classes of 11: 5. 

We immediately proceed to compute the irreducible characters of G. The methods of lifting and 

induction of characters are being used to compute the character table of G. These methods are 

fully described in sections 3.2 and 3.3 of our text. Now G ~ G / N and by theorem 3.3.6 some of the 

irreducible characters of G can be found by lifting the irreducible characters of G to G. The 

character table of G is calculated by making use of proposition 3.1.21 ,so our first five irreducible 

characters of G are the liftings Xi, i = 1,2, ... ,5, of Xi E frrG . 
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G/N K Ka Ka2 Ka3 Ka4 

classes of G 1 a a2 a3 a4 

no. of elements 1 1 1 1 1 

X1 1 1 1 1 1 

X2 1 w w2 w3 w4 

X3 1 w2 w4 w w3 

X4 1 w3 w w4 w2 

X5 1 w4 w3 w2 w 

Table 5.2.2: The character table of G/N ~ G 

where w 
2,ri 

eT 

We still need two more irreducible characters of G. For this purpose we induce the characters of Z5 

to G and exactly two more irreducible characters of Gare found. So, we are done with the process 

of finding all the irreducible characters of G. See the tables below. 
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classes 1 b b2 b3 b4 b5 b6 b1 bs bg blO 

no. of elements 1 1 1 1 1 1 1 1 1 1 1 

order 1 11 11 11 11 11 11 11 11 11 11 

To 1 1 1 1 1 1 1 1 1 1 1 

71 1 V v2 v3 v4 v5 v6 v7 vs vg VlO 

72 1 v2 v4 v6 vs VlO V v3 v5 v7 vg 

T3 1 v3 v6 vg V v4 v7 VlO v2 v5 vs 

74 1 v4 vs V v5 vg v2 v6 VlO v3 v7 

75 1 v5 VlO v4 vg v3 vs v2 v7 V v6 

76 1 v6 V v7 v2 v5 vs v3 vg VlO v5 

T7 1 v7 v3 VlO v6 v2 vg v5 V vs v4 

Ts 1 vs v5 v2 VlO v7 v4 V vg v6 v3 

Tg 1 vg v7 v5 v3 V VlO vs v6 v4 v2 

T10 1 VlO v9 vs v7 v6 v5 v4 v3 v2 V 

Table 5.2.3 : The character table of Z11 
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classes 1 a a2 a3 a4 b b2 

no. of elements 1 11 11 11 11 5 5 

order 1 11 11 11 11 5 5 

centralizer 55 5 5 5 5 11 11 
G 

5 0 0 0 0 5 5 7,-
0 

G 5 0 0 0 0 d 7- C 1 

G 5 0 0 0 0 d r.- C 2 

G 
5 0 0 0 0 d 7- C 3 

G 
5 0 0 0 0 d 7- C 4 

G 
5 0 0 0 0 d 7,- C 5 

G 5 0 0 0 0 d 7,- C 6 

G 5 0 0 0 0 d 7,- C 7 

G 5 0 0 0 0 d C 7,-
8 

G 5 0 0 0 0 d 7,- C 9 

G 
5 0 0 0 0 d Tio C 

Table 5.2.4 : Characters of G induced from Z11 

where, 

c v + v3 + v4 + v5 + v9 
; 

d v2 + v6 + v7 + v8 + v10 
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classes 1 a a2 a3 a4 b b2 

no. of elements 1 11 11 11 11 5 5 

order 1 11 11 11 11 5 5 

centralizer 55 5 5 5 5 11 11 

X1 1 1 1 1 1 1 1 

X2 1 w w2 w3 w4 1 1 

X3 1 w2 w4 w w3 1 1 

X4 1 w3 w w4 w2 1 1 

Xs 1 w4 w3 w2 w 1 1 

X6 5 0 0 0 0 C d 

X1 5 0 0 0 0 d C 

Table 5.2.5 : The character table of 11 : 5. 
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We now continue with our 3rd example. 

5.3 The Character Table of 23 : SP(2, 2) 

In [23] the conjugacy classes of 23 : SP(2, 2) were obtained using GAP. We use coset analysis to 

illustrate an alternative method to calculate the conjugacy classes of 23 
: SP(2, 2). To compute the 

character table of 23 : SP(2, 2) we let G = SP(2, 2) act by conjugation on N = 23
. We make use of 

the Fischer-Clifford theory which enables us to compute the irreducible characters of our extension 

through the use of Fischer Matrices. The material developed in sections 4.1 and 4.2 will be utilised 

in the process of constructing the character table of the split extension 23 : SP(2, 2). We use the 

same notation employed in these sections. 

Let G = N: G where N is an elementary abelian 2-group of order 8 and G = SP(2, 2). SP(2, 2) is 

the sympletic group of dimension 2 over GF(2). Also 23 : SP(2, 2) 9:'. P(2) : H. 

Let P(2) be generated by { e1, e2 , e3 }, where 

1 1 1 1 1 0 1 1 1 1 1 0 

0 1 0 1 0 1 0 1 0 1 0 1 
e1 = ,e2 = and ea= 

0 0 1 1 0 0 1 1 0 0 1 1 

0 0 0 1 0 0 0 1 0 0 0 1 

and e;= 1, for 1 ~ i ~ 3. 

1000 1101 1001 1100 

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 
1 = ,e1e2 = ,e1e3 = ,e2ea = 

0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 
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and 

1 0 1 0 

0 1 0 1 
e1e2 e3 = 

0 0 1 0 

0 0 0 1 

Let H = (a, /3) = {1, a, (3, (32
, a(3, (3a }, where a 2 = 1 = (33 and, 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

0 1 0 0 0 0 1 0 
,/32 = 

0 1 1 0 0 0 1 0 
a= ,/3 = ,a/3 = 

0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

and 
1 0 0 0 

0 1 1 0 
(3a = 

0 0 1 0 

0 0 0 1 

The operation on the elements of G is matrix multiplication. Also G acts by conjugation on N. 

We will now immediately employ the process of computing the conjugacy classes of G.Firstly, we 

calculate the conjugacy classes of H by means of MAGMA: 

classes (lA) (2A) (3A) 

no. of elements 1 3 2 

order 1 2 3 

centralizer 6 2 3 

Table 5.3.1 : The conjugacy classes of G = H. 
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Using the method discussed in chapter2, section2.2, we act N and Cc(g) by conjugation on the cosets 

Ng where g E {(lA), (2A), (3A)} to compute the conjugacy classes of G. 

• g =le: 

For g the identity of G , g fixes all the elements of N , so k = ICN(lc)I = 8. So the coset N 

splits into eight orbits, Qi, where 1 ~ i ~ 8. Each orbit containing~ = i = 1 element. Under 

the action of Ca(lc) = G these orbits are fused as follows : 

61 = {l}G = {l} ==} f1 = 1, 

62 = Qf = {e1}G = {e1,e2,e1e2} = {Q2LJQ3LJQ5} ==} h = 3, 

63 = QCj = {e3}G= {e3,e2e3,e1e2e3} = {Q4LJQ1LJQ8} ==} h = 3, 

64 = QCj = {e1e3}G = {e1e3} = Q6 ==} 14 = 1, 

So this coset gives four conjugacy classes of G as follows : 

ICc(l)I = 8
~

6 = 48, l[l]cl = /!6 = 1 

ICc(e1)I = 8
;

6 = 16, l[e1]cl = 3
8:~

8 = 3 

ICa(e3)l = 8
;

6 = 16, l[e3]cl = 3
8:~

8 = 3 

ICa(e1e3)I = 48, l[e1e3]cl = 1 

• g E (2A): 

We take 

g = /3a = 

1 0 0 0 

0 1 1 0 

0 0 1 0 

0 0 0 1 

The action of g on N fixes the following elements: {1, e2, e1e3, e1e2e3}. Therefore ICN(g)j = k 

= 4 and hence Ng splits into 4 orbits of 2 elements each. Under the action of N on Ng we 

obtain the following orbits : 
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Qi= {g,e2g}, Q2 = {e1g,e1e2g}, 

Q3 = {e3g,e2e3g,} and Q4 = {e1e3g,e1e2e3g}. 

Cc(g) = (/3a) = {1,/3a} ====> ICc(g)I = 2 

Under the action of Cc(g) on Ng we obtain the following orbits : 

A _ QCc(g) _ Q A _ QCc(g) Q A _ QCc(g) _ Q d A _ QCc(g) _ Q L...l.1 - 1 - 1 , L...l.2 - 2 = 2 , L...l.3 - 3 - 3 an L...l.4 - 4 - 4· 

And so the action on this coset Ng gives us 4 conjugacy classes of G: 

jCc(g)j = kxl~~(g)I = 4~2 = 8 

I [g]cj = kft;l~)I = ~xx~
8 

= 6 

The computation of the cardinality of the three remaining classes is exactly the same as the 

class 6 1 above. 

• g E (3A): 

We take 

1 0 0 0 

0 0 1 0 
g=/3= 

0 1 1 0 

0 0 0 1 

The action of g on N fixes the elements { 1, e1 e3 } of N ====> IC N (g) I = k = 2 and hence Ng 

splits into 2 orbits of 4 elements each. 

Under the action of N on Ng the following 2 orbits are obtained: 

Q1 = {g, e1g, e2g, e1e2g} and 

Q2 = { e3g, e1 e3g, e2e3g, e1 e2e3g} 

Cc(g) = (/3) = {1, /3, /32} ====> ICc(g)I = 3 

These orbits can't fuse together under Cc(g), since gCc(g) = {g}. Therefore we have two classes 

of G, each with f = l : 

x = g, class(31), ICa(x)I = 6, l[x]al = 8 
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x Thus the conjugacy classes of Gare as follows : 

classes of G (IA) (2A) (3A) 

classes of G (1) (21) (22) (23) (24) ( 41) (42) (25) (31) (61) 

hi 1 3 3 1 6 6 6 6 8 8 

ICa(x)I 48 16 16 48 8 8 8 8 6 6 

Table 5.3.2 : The conjugacy classes of 23 : 8P(2, 2). 

We proceed to compute the Fischer Matrices. The construction of the Clifford-Fischer matrices 

and the determination of the inertia factors of the classes of G are based on the theory developed in 

sections 4.1 and 4.2. From the action of G on Irr(N) we obtain the same number of orbits as when 

G acts on N,(see Lemma 4.2.1). There are 4 orbits , where two have length 3 and the other two 

orbits length 1. Hence there are 4 inertia groups Hi where i = 1, 2, 3, 4. The inertia groups are H1 

= H 4 = G and H 2 = H 3 , where [G: H 3] = [G: H4] = 3. Let Hi= HdN, and the following inertia 

factors are obtained: H 1 = H 4 = G ~ 83 and H 2 = H3 = ((3a) ~ ((23)) :::; 83 • Note that [G: H 2] = 

[G: H3] = 3 and all the inertia factors are maximal subgroups of G, which were determined through 

the use of the computer program MAGMA. 

See the tables below for the irreducible characters and fusion maps into G of the inertia factors : 

classes (IA) (2A) (3A) 

no. of elements(hi) 1 3 2 

centralizer 6 2 3 

'!p1 1 1 1 

'I/J2 1 -1 1 

'!p3 2 0 -1 
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Table 5.3.3 : The character table of H1 = H4~ S3 . 

classes (lA) (2A) 

hi 1 1 

centralizer 2 2 

Table 5.3.4: The character table of H2 = H3 . 

I classes of H 2 II classes of G I 

(lA) (lA) 

(2A) (2A) 

Table 5.3.5: The fusion map of H2 into G. 

Now to calculate the Fischer matrices we will use the relations of Theorem 4.2.5. Note that all 

the relations hold, since N is elementary abelian. For every g in Ng, we have the Fischer matrix 

M (g). For each matrix M (g), we index the columns by the orders of the centralizers of the class 

representatives of G which comes from Ng and the rows by the orders of the centralizers of the class 

representatives of the inertia factors which fuse to [g] in G. See the discussion after Lemma 4.2.2. 

Also note that the Fischer matrices M (g) are all square and nonsingular, and that the sizes of these 

matrices are determined by the number of G-conj ugacy classes of the cosets Ng. Corresponding to 

the identity element of G, we let 

48 16 16 48 
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6 a1 a2 a3 a4 

2 b1 b2 b3 b4 
M(la) = 

2 C1 C2 C3 C4 

6 d1 d2 d3 d4 

because the action of G on N delivered four classes of G, and hence we obtained a 4 x 4 matrix. By 

the first and third relations of Theorem 4.2.5: a1 = a2 = a3 = a4 = 1; b1 = c1 = 3 and d1 = I.Column 

orthoganality given by the 2nd relation of Theorem 4.2.5, resulted in the following equations : 

6 + 2lb2l2 + 2lc212 + 6ld21 2 = 16 

6 + 6b2 + 6c2 + 6d2 = 0 

6 + 2jb3j2jc312 + 6jd3j2 = 16 

6 + 6b3 + 6c3 + 6d3 = 0 

6 + 2jb4j 2 + 2jc4j2 + 6jd412 = 48 

6 + 6b4 + 6c4 + 6d4 = 0 

6 + 2b2.b3 + 2c2c3 + 6d2d3 = 0 

6 + 2b2b4 + 2c2c4 + 6d2d4 = 0 

6 + 2b3b4 + 2c3c4 + 6d3d4 = 0 

Solving these equations simultaneously the following matrix is obtained : 

48 16 16 48 

6 1 1 1 1 

2 3 -1 1 -3 
M(la) = 

2 3 -1 -1 3 

6 1 1 -1 -1 
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Similarly, we compute the other Fischer matrices which appear below : 

• g E (2A): 

8 8 8 8 

2 1 1 1 1 

M(g) = 
2 1 -1 1 -1 

2 1 -1 -1 1 

2 1 1 -1 -1 

• g E (3A) : 

6 6 

3 ( 1 1) M(g) = 
3 1 -1 

We are now ready to determine the character table of G. There are four inertia factors, hence the 

characters of G are divided into four blocks. This process is described as follows : multiplying 

rows of the matrix M (g) with sections of the character tables of the inertia factors fusing 

to the class [g]. 

The identity element of G corresponds to : 

1 1 1 1 

M(la) = 
3 -1 1 -3 

3 -1 -1 3 

1 1 -1 -1 

By multiplying each row of M(l) by the columns in the character tables of the inertia factors which 
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correspond with the classes fusing to le respectively, we obtain the values of the characters of G on 

the G-classes with representatives 1, e1 , e3 , e1e3 : 

1 1 1 1 1 

1 ( 1 1 1 1 )= 1 1 1 1 

2 2 2 2 2 

-1 1 

-1 1 
-3) 
-3 

-1 -1 

-1 -1 

We determine the values of the irreducible characters of G corresponding to the class of G with 

representation (3a in a similar fashion : 

1 1 1 1 1 

-1 ( 1 1 1 1) = -1 -1 -1 -1 

0 0 0 0 0 

-1 1 -1 ) = ( l 
-1 

83 

http://etd.uwc.ac.za



( 
l ) ( 1 -1 -1 1 ) = ( l 

-1 -1 

-1 -1 

1 1 

1 1 1 -1 -1 

-1 ( 1 1 -1 -1 ) = -1 -1 1 1 

0 0 0 0 0 

The values of the characters of G corresponding to class of G with representative (3 are as follows : 

1 

1 

-1 

1 

1 

-1 

84 

1 1 

1 1 

-1 -1 

1 -1 

1 -1 

-1 1 
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The process of computing the irreducible characters is completed, and the character table is as follows 

classes( G) 

hi 

ICa(x)I 

X1 

X2 

X3 

X4 

Xs 

X6 

X1 

xs 

Xg 

X10 

(1) (21) 

1 3 

48 16 

1 1 

1 1 

2 2 

3 -1 

-1 

3 -1 

3 -1 

1 1 

(22) (23) 

3 1 

16 48 

1 1 

1 1 

2 2 

1 -3 

1 -3 

-1 3 

-1 3 

-1 -1 

(24) ( 41) (42) (2s) (31) 

6 6 6 6 8 

8 8 8 8 6 

1 1 1 1 1 

-1 -1 -1 -1 1 

0 0 0 0 -1 

1 -1 1 -1 0 

-1 1 -1 1 0 

1 -1 -1 1 0 

-1 1 1 -1 0 

1 1 -1 -1 1 

Table 5.3.6: The Character Table of 23
: SP(2, 2). 

85 

(61) 

8 

6 

1 

1 

-1 

0 

0 

0 

0 

-1 
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And now we discuss our last split-extension. 

5.4 The Character Table of 24 : S5 

We let G = N : G where N is an elementary abelian 2-group of order 16 and G = 85 . Now 

N ~ V(2, 4) = < e1, e2, e3, e4 >, the vector space of dimension 4 over a field of two elements, and 

the symmetric group 85 is generated by (12) and (12345). By identifying (12) and (12345) with 

91 = 

0 1 0 0 

1 0 0 0 

0 0 1 0 

0 0 0 1 

0 1 0 0 

0 0 1 0 

0 0 0 1 

1 1 1 1 

respectively, we can regard 85 as the subgroup < 91, 92 > of GL(2, 4) ~ As , that is, 

G = 85 ~ < 91,92 > ~ GL(2,4). Note that 8 5 ~ 86 and that 86 is a maximal subgroup of As. The 

group < 91, 92 > then acts naturally on V(2, 4) ~ N. 

To determine the conjugacy classes of G we use the method of Coset Analysis described earlier. We 

need the conjugacy classes of S5 • These are obtained using MAGMA. We start by taking representa­

tives 9 from these conjugacy classes and consider the action of N and Cc (9) on the cosets N 9. The 

conjugacy classes of S5 is as follows : 

classes (IA) (2A) (2B) (3A) (4A) (5A) (6A) 

no. of elements 1 10 15 20 30 24 20 

ICc(9)1 120 12 8 6 4 5 6 

Table 5.4.1 : The conjugacy classes of 85 . 

We now proceed to compute the conjugacy classes of 24 : S5 : 
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• g = 1: 

The identity element of G fixes all elements of N, so k = 16. Hence Ng splits into 16 orbits, 

Qi where i = 1, 2, ... , 16. Under the action of Ca(l) = G the orbits of Ng fuse as follows: 

61 = {1} 

6'1.={ei}G={e1, e2, e3, e4, e1e2e3e4} 

63 = {e1e2}G = {e1e2, e2e3, e2e3e4, e1e3, e3e4, e1e2e4, e2e4, e1e4, e1e2e3, e1e3e4}. Hence 

Ji = 1 , h = 5 and h = 10. 

Hence we obtained the following classes of G from the coset N : 

ICa(l)I = 16x/20 = 1920 and l[l]al = i;;i;g = 1 ; 

ICa(e1)I = 16
x5

120 = 384 and l[e1Jal = ~;;i;g = 5 and 

ICa(e1e2)I = 16~t20 = 192 and l[e1e2]al = %xx\9;g =10 

• g E (2A) : 

g= 

0 0 0 1 

0 1 0 0 

0 0 1 0 

1 0 0 0 

therefore k = 8. The coset Ng splits into eight orbits, Qi where i = 1, 2, ... , 8, under the action 

of N. 
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Cc(g) = \ 

1 0 0 0 

0 1 0 0 

1 1 1 1 

0 0 0 1 

1 0 0 0 

1 1 1 1 

0 1 0 0 

0 0 0 1 

0 0 0 1 

0 0 1 0 

1 1 1 1 

1 0 0 0 

) 

Note that ICc(g) I = 12. Under the action of Cc(g) the orbits of the coset Ng fuse as follows : 

b~ = Qfc(g) = {g, e1e4g}Cc(g) = Qi 

b2 = Qfc(g) = {e1g, e4g}Cc(g) = Q2 

b3 = Qfc(g) = {e2g, e1e2e4g}Cc(9) = {e2g, e1e2e4g, e3g, e1e3e4g, e2e3g, e1e2e3e4g} = 

Q3 UQ4UQ1 

b4 = Qfc(g) = {e1e2g, e2e4g}Cc(9) = {e1e2g, e2e4g, e1e3g, e3e4g, e1e2e3g, e2e3e4g} = Qs U 

Q6 U Q8, where 

Ji = 1, h = 1, h = 3, f4 = 3 

The action of N and G on the coset Ng give the following classes of G : 

ICa(g)I = 
8

~
12 

= 96 and l[g]cl = 
1~:~;0 

= 20; 

ICa(e1)I = 96 and lhlcl = 20; 

ICa(e2)I = 8 x}2 = 32 and l[e2]cl = 3;;~;0 = 60; 

ICa(e1e2)I = 32 and l[e1e2]cl = 60. 

• g E (2B): 
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0 0 0 1 

0 1 0 0 
g= 

1 1 1 1 

1 0 0 0 

The action of g fixes the elements { 1, e2, e1e4, e1e2e4} of N and hence k = 4. Under the 

action of N on Ng we obtained four orbits, Qi where i = 1,2, ... ,4, with each orbit containing 

4 elements. 

0 0 0 1 0 0 1 0 

Ca(g) = \ 
0 1 0 0 0 1 0 0 ) 
0 0 1 0 0 0 0 1 

1 0 0 0 1 1 1 1 

Note that ICa(g)I = 8. Under the action of Ca(g) on Ng the following orbits fuse as follows: 

= Q2 UQ3 

63 = QC:,c(g) = { e1e3, e3e4, e1e2e3, e2e3e4}Cc(9) = Q4 

The action of Ca(g) and N on the coset Ng give the following classes of G : 

ICc(g)I = 4~8 = 32 and l[g]cl = 1~~9;° = 60 

ICa(e1g)I = 4; 8 ~ 16 and l[e1g]cl = 2~~9
;

0 = 120 

ICa(e1e3g)I = 32 and l[e1e3Jcl = 60 

• g E (3A): 
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1 0 0 0 

0 0 1 0 
g= 

1 1 1 1 

0 0 0 1 

The action of g fixes the elements { 1, e1, e4, e1e4} of N and hence k = 4. Therefore, under 

the action of N, Ng splits into 4 orbits Qi where i = 1,2,3,4 and each orbit containing 4 elements. 

0 0 0 1 0 0 0 1 

Cc(g) = \ 
0 1 0 0 0 0 1 0 

0 0 1 0 1 1 1 1 

1 0 0 0 1 0 0 0 

ICc(g)I = 6. Under the action of Cc(g) the orbits fuse as follows: 

61 = Qfc(g) = {g, e2e3g, e1e2e4g, e1e3e4}Cc(9) = Q1 

62 = Qfc(g) = {e1g, e2e4g, e3e4g, e1e2e3g}Cc(9) = Q2 U Q4 

63 = Qfc(g) = {e2g, e3g, e1e4g, e1e2e3e4g}Cc(9) = Q3 

Hence we obtain 

Ji = 1, 12 = 2, and h = 1 

) 

The action of Cc (g) and N on the coset Ng give us the following classes of G : 

ICa(Y)I = 4; 6 = 24 and l[Ylcl = 1~~9
6
20 = 80; 

ICa(e1g)I = 4; 6 = 12 and l[e1g]cl = 2~~9
;

0 = 160 

ICa(e2g)I = 24 and l[e2g]cl = 80 
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• g E (4A): 

g= 

0 0 1 0 

0 1 0 0 

0 0 0 1 

1 1 1 1 

The action of g fixes the elements {1, e2} of N and hence k = 2. Therefore, under the action 

of N, the coset Ng splits into 2 orbits each containing 8 elements. 

0 0 1 0 

Cc(g) = \ 
0 1 0 0 

) 
0 0 0 1 

1 1 1 1 

ICc(g)I = 4. Under the action of Cc(g) the orbits of the coset Ng stay unchanged and are as 

follows: 

So the coset Ng gives the following classes of G : 

ICa(g)I = 8 and l[g]cl = 240 

ICa(e1g)I = 8 and l[e1g]cl = 240 

• g E (5A) : 
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0 1 0 0 

0 0 1 0 
g= 

0 0 0 1 

1 1 1 1 

Here k = 1 and hence we obtained only one class of G, which is as follows: 

61 = ICa(g)I = 5 and l[g]d =384. 

Note that ICc(g)I =5. 

• g E (6A): 

g= 

0 0 0 1 

1 1 1 1 

0 1 0 0 

1 0 0 0 

Under action of g on N we obtain that ICN(g)I = 2. Hence the coset Ng splits into 2 orbits, 

Qi where i = 1,2, under the action of N. 

0 0 0 1 0 0 0 1 

Cc(g) = \ 
0 1 0 0 0 0 1 0 ) 
0 0 1 0 1 1 1 1 

1 0 0 0 1 0 0 0 

Note that ICc(g)I =6. Under the action of Cc(g) the 2 orbits of Ng are unchanged and hence 

we obtained the following classes of G: 
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ICc(g)I =12 and l[g]al = 160; 

IC0 (e1g)I = 12 and l[eig]0 1 = 160. 

The process of computing the conjugacy classes of G is done. See the table below. 

classes of G (lA) (2A) (2B) 

classes of G (1) (21) (22) (2a) ( 41) (24) (42) (25) (4a) (44) (31) 

hi 1 5 10 20 20 60 60 60 120 60 80 

ICa(!i)I 1920 384 192 96 96 32 32 32 16 32 24 

Table 5.4.2.A : The conjugacy classes of 24 : S5 . 

classes of G (4A) (5A) (6A) 

classes of G (45) (81) (51) (6a) (121) 

hi 240 240 384 160 160 

ICa(lJ)I 8 8 5 12 12 

Table 5.4.2.B : The conjugacy classes of 24 : S5 (continue). 

(3A) 

(61) (62) 

160 80 

12 24 

We are now ready to compute the Fischer matrices. From the action of G on Irr(N) we obtain three 

orbits and determine the inertia groups, Hi where i = 1,2,3, from these orbits. The lengths of these 

orbits are 1, 5 and 10. Note [G : H 1] = 1, [G : H2] = 5 and [G : H 3] = 10. Hence the inertia factors 

, which are maximal subgroups of G, are as follows: 
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The inertia factors, character tables of the inertia factors and the fusion maps of the inertia factors 

into G were all determined through the use of MAGMA. See tables below. 

classes (lA) (2A) (2B) (3A) (4A) (5A) (6A) 

hi 1 10 15 20 30 24 20 

ICc(g)I 120 12 8 6 4 5 6 

VJ1 1 1 1 1 1 1 1 

VJ2 1 -1 1 1 -1 1 -1 

V)3 4 2 0 1 0 -1 -1 

VJ4 4 -2 0 1 0 -1 1 

VJ5 5 1 1 -1 -1 0 1 

VJ6 5 -1 1 -1 1 0 -1 

VJ7 6 0 -2 0 0 1 0 

Table 5.4.3: The character table of S5 = H1 . 

classes (lA) (2A) (2B) (3A) (4A) 

hi 1 2 2 3 4 

ICH2(h2)I 24 4 8 3 4 

r1 1 1 1 1 1 

r2 1 -1 1 1 -1 

f3 2 0 2 -1 0 

r4 3 1 -1 0 -1 

rs 3 -1 -1 0 1 

Table 5.4.4: The character table of S4 = H2 • 
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classes (1) (2A) (2B) (2C) (3A) (6A) 

hi 1 3 1 3 2 2 

ICH3(h3)I 12 4 12 4 6 6 

(()1 1 1 1 1 1 1 

(()2 1 -1 1 -1 1 1 

<()3 1 1 -1 -1 1 -1 

<()4 1 -1 -1 1 1 -1 

(()5 2 0 2 0 -1 -1 

<()6 2 0 -2 0 -1 1 

Table 5.4.5: The character table of S3 x S2 = H3. 

(lA) (lA) 

(2A) (2A) 

(2B) (2B) 

(3A) (3A) 

(4A) (4A) 

Table 5.4.6 : The fusion map of S4 into S5 • 
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(lA) (lA) 

(2A) (2A) 

(2B) (2A) 

(2C) (2B) 

(3A) (3A) 

(6A) (6A) 

Table 5.4.7: The fusion map of S3 x S2 into S5 • 

The Fischer matrices are computed through the use of the relations of Theoerem 4.2.5 (see example 

5.3) and are as follows: 

• g =le: 

• g E (2A) : 

120 

M(lc) = 24 

12 

M(g) = 

12 

4 

4 

12 

96 

1920 384 192 

1 1 1 

5 -3 1 

10 2 -2 

96 96 32 32 

1 1 1 1 

3 3 -1 -1 

3 -3 -1 1 

1 -1 1 -1 
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• g E (2B): 

32 16 32 

8 1 1 1 

M(g) = 8 1 -1 1 

4 2 0 -2 
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• g E (3A): 

• g E (4A) : 

• g E (5A) : 

• g E (6A) : 

24 12 24 

6 1 1 1 

M(g) = 3 2 0 -2 

6 1 -1 1 

8 8 

M(g) = 4 ( 1 1 ) 
4 1 -1 

5 

M(g) = 5 ( 1 ) 

12 12 

M(g) = 6 ( 1 1 ) 
6 1 -1 

We are now ready to compute the character table of G. There are three inertia factors and hence 

Irr( G) are divived into three blocks. Each block of irreducible characters corresponds to an inertia 

factor group. Irr( G) are computed from the Fischer matrices and the character tables of the inertia 

factors. This process dictates to multiplying rows of the matrix M (g) with sections of the character 
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tables of the inertia factors fusing to the class of g in G. This process was fully illustrated in section 

5.3. We conlude this section with the character table of 24 : S5 . 

classes of G (lA) (2A) (2B) (3A) 

classes of G (1) (21) (22) (23) ( 41) (24) (42) (25) (43) (44) (31) (61) (62) 

hi 1 5 10 20 20 60 60 60 120 60 80 160 80 

ICa(g)I 1920 384 192 96 96 32 32 32 16 32 24 12 24 

X1 1 1 1 1 1 1 1 1 1 1 1 1 1 

X2 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 

X3 4 4 4 2 2 2 2 0 0 0 1 1 1 

X4 4 4 4 -2 -2 -2 -2 0 0 0 1 1 1 

X5 5 5 5 1 1 1 1 1 1 1 -1 -1 -1 

XB 5 5 5 -1 -1 -1 -1 1 1 1 -1 -1 -1 

X1 6 6 6 0 0 0 0 -2 -2 -2 0 0 0 

Xs 5 -3 1 3 3 -1 -1 1 -1 1 2 0 -2 

X9 5 -3 1 -3 -3 1 1 1 -1 1 2 0 -2 

X10 10 -6 2 0 0 0 0 2 -2 2 -2 0 2 

Xu 15 -9 3 3 3 -1 -1 -1 1 -1 0 0 0 

X12 15 -9 3 -3 -3 1 1 -1 1 -1 0 0 0 

X13 10 2 -2 4 -4 0 0 2 0 -2 1 -1 1 

Xl4 10 2 -2 -2 2 2 -2 -2 0 2 1 -1 1 

X15 10 2 -2 2 -2 -2 2 -2 0 2 1 -1 1 

Xrn 10 2 -2 -4 4 0 0 2 0 -2 1 -1 1 

X11 20 4 -4 2 -2 2 -2 0 0 0 -1 1 -1 

X1s 20 4 -4 -2 2 -2 2 0 0 0 -1 1 -1 

Table 5.4.8.A: The character table of 24 : S5. 
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classes of G (4A) (5A) (6A) 

classes of G (45) (81) (51) (6a) (121) 

hi 240 240 384 160 160 

ICa(g)I 8 8 5 12 12 

X1 1 1 1 1 1 

X2 -1 -1 1 -1 -1 

Xa 0 0 -1 -1 -1 

X4 0 0 -1 1 1 

X5 -1 -1 0 1 1 

XB 1 1 0 -1 -1 

X1 0 0 1 0 0 

Xs 1 -1 0 0 0 

X9 -1 1 0 0 0 

X10 0 0 0 0 0 

Xu -1 1 0 0 0 

X12 1 -1 0 0 0 

Xia 0 0 0 1 -1 

X14 0 0 0 1 -1 

X15 0 0 0 -1 1 

X16 0 0 0 -1 1 

X11 0 0 0 -1 1 

Xis 0 0 0 1 -1 

Table 5.4.8.B : The character table of 24 : S5 (continue). 
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