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(ii)

SUMMARY

H. Fitting proved that the product of two normal nil-
potent subgroups H and K of a group, is itself nil-
potent.

Several authors have proved statements of the following
type:
(A) If H and K are normal subgroups of a group G and

if HeP, KEP then HKEP, where P is a group theoretical
property.

We have considered the question of to what extent the
requirement that H and K be normal can be relaxed in
(A). This is done by replacing normal by subnormal or
serial.
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CHAPTER 1

FITTING'S THEOREM FOR NILPOTENT SUBGROUPS

§1.1 INTRODUCTION

H. Fitting proved that if H and K are normal nilpotent
subgroups of G, then so is HK ([1 ] Hilfssatz 10, p. 100).
The question arises if this result could be generalized

to other group theoretical properties.

If a group G has normal E-groups (groups with property E)
H and K and if HK is also an E-group then E is called a

multiproperty. (1.1)

Theorems of this type have been proved by a number of authors.
We have the well-known Hirsch-Plotkin Theorem (See [10] and
[13]) that local nilpotence is a multiproperty. P. Hall

([ 61) proved hypercentrality is a multiproperty. FC -
nilpotency and FC - hypercentrality turn out to be multipro-
perties. This was shown by K.K. Hickin and J.A. Wenzel

({9 1. H. Heineken and I.J. Mohamed ([ 8 1) proved that
both the normalizer condition and the subnormality condition

are not multiproperties.

The question we are to consider is whether the requirement
that H and K be normal in (1.1) can be relaxed. This will
be done by replacing normality by subnormality or serial in

some of the results mentioned above.
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§1.2 NOTATION

Let H and K be subgroups of a group G.

If there exists a series

H = HO 4 Hy 4 Ho @ ... an = G

we say that H is n-4tep subnormal in G and follow the

well-known notation due to P. Hall ([ 7 1) by writing Ha"G.

If there exists an ascending series of subgroups H, linking

H to G such that

4
fy Ha+1
and
H = UH, for all limit ordinals a,we
L

say that H is serdiaf in G and following Gruenberg ([ 2 1)

write HewaG.

For x;,x2€G the commutator xi'xz'x;x,would be denoted by

[x;,x2] and more generally for k>1

[X1,---,Xk+1] = [[X1,---,Xk], xk+1].

The convention is adopted that for k=0 ,[xl,...,xk+1] = Xi.

The following well-known standard commutator identities

([ 41) will often be referred to:

[xy,z] = [x,2z17 [y,z] (1.2)
[x,yz] = [x,z]1[x,y]? (1.3)
Ix7h,yl= Iy,x1¥ (1.4)
[x,y 1= fy,x17 " (1.5)
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The commutator group [H,K,K,...,K] with n terms K, is

written [H,nK] with the convention that [H,OK] = H.

The notation Ym(H) denotes [H H], m21, the ferms o4

‘m-1

the Lowen centrnal senies of H.
Thus H is wnilpotent of class n if Yn+1(H) =1 # Yn(H).

As usual the teams of the upper central sernies of H shall
be written 1 = ZO(H), Zi(H), ...y Zi(H) or simply Zi if H
is understood, where

Z the centre of H.

i+l the centre of %—

i i

L, = UZy if y is a limit ordinal.
A group G is a ZA-gnroup if and only if its upper central
chain, possibly continued transfinitely, leads to the group

G.

The nonmad clLosure of H in G is the smallest normal subgroup

of G which contains H and is denoted by HG. Clearly

G

H™ = H[H,G].

A group G is Locally - nilpotent if every finitely-generated

subgroup of G is nilpotent.

Let G be a group:

PO(G) = 1, the unit subgroup.

http://etd.uwc.ac.za/



F; (G) is the set of elements of G which posses
a finite number of conjugates.
Fd+1(G) is defined inductively to be the complete

inverse image of F, (F—%ET) , for all ordinals a.

a
Fu(G) = U{FB(G) : B<al}, if a is a limit ordinal.

For all ordinals o, Fa(G) is a characteristic subgroup

of G.

A group G is called FC-nifpofent of class n if there

exists an integer n such that Fn_l(G)#G and Fn(G)=G.

G is called FC-hypercentral of class a if there exists

an ordinal o such that FB(G) # G for B<a and Fa(G) = G.

http://etd.uwc.ac.za/



§1.3 FITTING'S THEOREM

Fitting's Theorem that the product MN of normal nilpotent
subgroups M and N of a group G is nilpotent,is well-known

and easy proofs can be found in textbooks (see for example

[41).

The question, however, arises if it is possible to describe
the lower central series (upper central series) of MN in
terms of the lower central series (upper central series)

of M and the lower central series (upper central series) of
N. We give an inclusion relation for the lower central
series in Theorem 1.4 below. To facilitate the proof of
this we give a set of generators for Yk(<M,N>) for subgroups

M and N of a group G in Lemma 1.1 and its corollaries.

Lemma 1.1
If M and N are subgroups of the group G, then
Yk(<M,N>) = <[x1,...,xk]y I Vy€<M,N>, Vx; 3 either

X.EM or X.€N>.
1 1

Proof:

The proof is by induction on k. Clearly for k=1, the lemma
is trivially true by definition of commutators. Assume

the result is true for 1lgr<k. Then by the commutator iden-
tities in §1.2 Yy (<M,N>) is generated by [[xl,...,xk_ll,y]
and all their conjugates in <M,N> for all X; such that either

xiEM or x,€N and ye<M,N>. By the commutator identities
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[xh...,xk_l,y] is a product of commutators
[x1,X2,00., xk_l,xk] and their conjugates in <M,N>,

where either x,€M or x,€N. This proves the lemma.o

The following two corollaries are but special cases of

the lemma.

Corollary 1.2
If M and N are subgroups of G and if N<G then

Yk (MN)

<[x1,...,xk]y : Vy€EN, either xiEM or x;€EN>.

Corollary 1.3
If MaG, N<G then

Yk(MN) = <[X1,---,Xk] 1y x; 3 either xiEM or Xi€N>'

These corollaries follow since conjugation is a homomor-

phism.o

Theorem 1.4
If M and N are normal, nilpotent subgroups of G of

nilpotency class m and n respectively, then
k-1

Y (MN) <y, M)y (N) Ty M)y, (N} for k>l
s=1

Y (M)Y (N) for k=1

and MN is nilpotent of class at most m+n.

Proof:
The proof is by induction on k. The result is trivially
true for k=1. Suppose true for k-1 (k>1).

http://etd.uwc.ac.za/



By Corollary 1.3 of Lemma 1.1, Yk(MN) is generated by the
commutators [xl,xz,...xk] for all X, such that either

xi€M or xiEN.

Consider the generator [xl,...,xk]. If none of the X3
is an element of M, then [xl,...,xk]-e Yk(N). On the other

hand if none of the Xy is an element of N, then

[X1,---,Xk] € Yk(M).

Suppose now that s, (s<k), be the number of X4 which are
elements of M. Then k-s of the x; are elements of N and
so clearly since MdaG, N<G, [xl,...,xk] € YS(M)nYk_S(N).
Thus

k-1

Y (NM) < vy (M) vy (N) 521 Yo M) Ny g (N).

If we put k = m+n+l1 then
+

LN < Tty ) ny
s=1

Y (N) = 1.

m+n+ m+n+l-s

For if s>m+1 then YS(M) n vy (N) = 1 since M is nil-

m+n+l-s
potent of class m, while if s<m+1 then m+n+l-s»n+1 and so

again YS(M) n Ym+n+1-s(N) = 1, since N is nilpotent of class

n. Thus MN is nilpotent of class <m+n. O

It appears unlikely that the equality holds in the inclusion
relations in Theorem 1.4 for 1l<k<m+n+1l and this question
will not be considered any further. However, a few simple
consequences of the theorem must be noted. These give some
conditions under which the bound m+n for the nilpotency class

of MN is not attained.
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Corollary 1.5

If YS(M) n Yk_s(N) = 1 for 1<sg<k-1 then MN is

nilpotent of class at most max (m,n).

This result is immediately clear if one notes that if

k = max (m+1, n+l) then
k-1

Yy (MN) < 521 YoM Ny _((N). @

Corollary 1.6
If ym(M) N yn(N) = 1, then MN is nilpotent of class

< m+n.

If we choose k = m+n then

Yy ) € YZ 0000 Y (). 0

Corollary 1.7
If M n y (N) =1 and M is abelian or y (M) n'N =1
and N is abelian then MN is nilpotent of class at

most n or m.

In the first case chosing k=n+1l

Yoep (MN) € M 0oy (N)

while in the second case one chooses k = m+1l and

Y  MN) € Y, (0 0N, o
The bound obtained in Theorem 1.4 is a least upper bound.

As no example of this could be found in the literature,

such an example will be given here. To do this the
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following result which is due to P. Hall ([ 5 1), is

needed.

Lemma 1.8 (P. Hall. [51).
If V is a vector space over the prime field of p
elements with basis (v ), n=0, *1, #2,... and & and

n are linear transformations of V defined by

v.E =v for all n

n n+l
and
= + . = i
von Votvis vpn v if n#g O

~

then the group G = <n;,N2,..., Noen” of linear

transformations of V, where n; = E—lngl and n,& are

defined above, is nilpotent of class at least m+n.

Proof:

The first step is to show that
and

Now we have

<
3
i
<
'_h
—
oy
1

i}

<
[

1
[
—
3
]

i e

—

1]
~
<
o
+
<
—
—
oY
e
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and V. v._i(ngi)

=
n

= v (E1)
= V.

j-1i+1

= V.
J

Next one has to show that n? = 1, for each i.
i

Now
P _ p-1
Vini (Vini)ni
(v, +v,, )nP71
i i+l

& XVI; FRVETY )

=Vi
Therefore n? = 1, for each 1.

i
An easy induction shows that
vilny,..ooon 1= vawv g

It follows in the same way as above that
vl[nl,...,nm] = V,+V

and

+v

\' [n

m+1 m+1’°°""? ‘'m+n m+1 "m+n+1l.

It can be shown that each nj commutes with all its con-
jugates in G.

Let Yy be the subgroup generated by the conjugates of N
in G.  Then Y, < G for each i, and G = YaYo..olY .

Since each n; commutes with all its conjugates in G, the
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Y; are all abelian. By Fitting's Theorem G is nilpotent

of class at most m+n. But [n;,...,N ] maps vi onto

m+n

Vi+V and so G is of class at least m+n.

m+n+1

... Y . . By Fitting's

Let A = Y1Yp... Y and B = Yo+ m+n

Theorem, A is nilpotent of class at most m and B is nil-

potent of class at most n. O

Theorem 1.9
There exists a group G with normal, nilpotent sub-
groups M and N of classes m and n respectively such

that MN is nilpotent of class precisely m+n.

Proof:

Let G be the group generated by the elements X1,X2, 000, X0 0

subject to the defining relations

=1, 1i=1,2,...,m*tn, p a prime (1.6)

and X; commutes with all its conjugates in G for each
i=1,2,...,m+n. (1.7)
Such a group G exists because x; commutes with all its
conjugates in G if and only if [g, zxi] =1V geG and

so G is the group with defining relations

XE =1, [g,zxi] =1 V gE€G

and has factor group the elementary abelian group

X.]>.

G =<x;, : xP =1 = [x.,
i 17]

1

Let X; be the subgroup generated by the conjugates of X4

http://etd.uwc.ac.za/
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in G.

Then Xi<G for each i, and G = X1X2...Xm+n.

By (1.7) the Xi are all abelian. Hence G is nilpotent
of class at most m+n, by Fitting's Theorem.

eee X . By Fitting's

Let M = X1X2...Xm and N = X n+n

m+1
Theorem M is nilpotent of class at most m and N is nil-

potent of class at most n.
Let G, A and B be the groups defined in Lemma 1.8.

The mapping ¢: X; >Ny i=1,2,...,m+n defines a homomor-

phism of G onto G. Consequently the nilpotency class
of G cannot be less than m+n.

The mapping ¢;: X.

il 13 b i=1,2,...,m defines a homomor-

phism of M onto A. But [nl,..,nm] maps vi onto vi+v..,

and so A is of class at least m and consequently the class
of M cannot be less than m.

Similarly the mapping ¢2 : X; > My, i=m+1,...,m+n defines

a homomorphism of N onto B. But [n 1 maps

m+1*° "2 'm+n

n+1 onto Vel + Voen+l and so B is of class at least n.

Consequently the class of N cannot be less than n.

v

Hence we have proved that the nilpotency classes of MN, M
and N are precisely m+n, m and n respectively. This

proves the theorem. o

ooQoo0
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CHAPTER 2

GENERALIZATION OF FITTING'S THEOREM FOR NILPOTENT

GROUPS

Fitting's. Theorem cannot be generalized by replacing
M4G (or N4G) by an arbitrary nilpotent subgroup M of
G (or N of G). The symmetric group on three symbols
shows this clearly since it can be generated by two

cyclic subgroups, one of which is a normal subgroup.

In view of this example it seems natural to enquire if
the conclusion of Fitting's Theorem remains true by re-
placing N and M normal subgroups of G by generalizations
of normal subgroups. Thus we would like to consider
replacing N and M normal by N and M subnormal or even
serial. Robinson ([141) proved that if M is subnormal
in r steps in G and N normal in G then the conclusion of
Fitting's Theorem still holds. . An‘alternative proof of

this result is given here.

Theorem 2.1
T _ - .
If N4aG, Ma'G, yn+1(N) =1 ym+1(M) then MN is

nilpotent of class at most rn+m.

Proof:

The case r=1 is Fitting's Theorem and thus provides a

basis for induction on r. Assume the result is true

for all groups in which M is subnormal in fewer than r

steps.
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Since for any two subgroups H and K of a group G,

[H,K] @ <H,K>, we have that

[N, M] < [N M] @ ...9 [N,M] a <N,M>

‘r-1
and therefore

M = M[N, M] < MIN

rp-1M1 @ oo @ MIN,MT @ <N,M>

Thus M is subnormal in at most r-1 steps in M[N,M], while
[N,M] < M[N,M]. But M and [N,M] are nilpotent of classes
m and n at most and so by the induction hypothesis the
product M[N,M] is nilpotent of class (r-1)n+m at most.

N and M[N,M] are normal nilpotent subgroups of <N,M> and
so by Fitting's Theorem their product MN is nilpotent of

class (r-1)n+m+n=rn+m at most. O

Theorem 2.1 suggests that the least upper bound of the nil-
potency class of G = MN with N<G, Ma'G is an increasing
function of r (as well as of n and m). Thus it appears
unlikely that the condition M 449G can be relaxed to M=dG.
The next example shows that the condition M 4 4G cannot be

relaxed to M««G.

Theorem 2.2
There exists a non-nilpotent group G with abelian

subgroups H and K, H4G, KedG and G = HK.

Proof:
Let H be the free abelian group on an infinite set of

generators a_, a;, a,,

o’
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The map b which maps

a; ajaj-l’ a, o J

can be extended to a homomorphism of H. b maps the
generators onto a set of generators.

Let b~ ! denote the inverse of b then

- J -7
b ! :a., > a, I a§ }), jz1

J Ji=1 J7¢
a, * a,
Hence b defines an automorphism of H. Denote the sub-

group of Aut(H) generated by b by K. Let G be theé holo-

morph of H with respect to K and identify H and K with

their images in G. Then G = HK and satisfies the rela-
tions
[ai,aj] =1, [ai,b] =a;_q, [a, ,b] =1
Since
K<ao,al,...,an> 4 K<ao,a1,..., an+1>,
KeaG,

Thus G is a product of the normal abelian group H and the
serial abelian subgroup K but is not nilpotent since

Yn(G) = H for n>1. o

Robinson's result proved in Theorem 2.1 can be stated in

a more general form, namely:

Thoerem 2.3

If P is a multiproperty of groups and is also inherited
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by subgroups then if N<4G, M <4 G and NEP, MEP then

MNEP.

Proof:

Suppose M is subnormal in r steps in G. For r=1 the
theorem is true since P is a multiproperty. Assume the
result is true for all groups in which M is subnormal in
fewer than r steps.

Since for any two subgroups H and K of a group G,

[H,K] 4 <H,K>,we have that

[N, M] <« [N, M} 4 ...a [N,M] @ <N,M>

-1
and therefore

M = M[N,rM] 4 MIN M] <« ...2 M[N,M] < <N,M>

’r-1

Thus M is subnormal in at most r-1 steps in M[N,M], while
[N,M] « MI[N,M]. But Me€P and [N,M]€P and so by the in-
duction hypothesis -the product M[N,M]€P.

MIN,M] and N are normal subgroups of <M,N>, Hence

MN = M[N,MIN€EP since P is a multiproperty. o

The conclusion of Fitting's Theorem, however, does not
hold if one insists that both N and M are subnormal of
indices of subnormality greater than one.

D.S. Robinson ([14] section 5; page 155) defines C to be
the class of all groups in which each pair of subnormal
subgroups generates a subnormal subgroup. He then con-

structs an example of a group which is not in the class C.
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Robinson attributes this kind of construction to P. Hall.
This example is to be used to establish the following

result.

Theorem 2.4
There exists a non-nilpotent group G with abelian
subgroups P and Q such that P<42G and Q42G and

G = <P,Q>.

Proof:

Let Z denote the set of all integers and let S be the

set of all subsets X of Z such that there exists integers
2 = 2(X) and L = L(X), ¢ <L, with the property that X con-
tains all integers < & and no integer > L. Roughly

speaking, X contains all large negative integers but no

large positive integers.

Let A and B be two elementary abelian 2-groups with sets

of basis elements respectively

and (b

(ay)yes x) xes-

For each n€Z two maps of M = A X B, u, and v,, are defined

by the rules

[A,u] =1 = [B,v,] (2.1)
[bx,un] = ay,. and [aX,vn] = bX+n ; (2.2)
for each Xe€S. Our notation here is as fol?ows:
If ny,n,, ..., n. are integers, (r being finite), and
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XeS, is to mean ay where Y=Xuﬁlﬂu(n2)...u(nr)

aX+n1+n2+...+n
T
if the ni's are all different and none of them belong to

X: Wi
; otherwise aX+n1+n2+...+nr = 1.

g Also [bx,un]

Similar remarks apply to bX+n1+n2+...+n

- un
is used to denote bxlbX .

The maps u, and v, can be extended to homomorphisms of M

and they map the generators on to a set of generators.

The inverses of u. and v exist

n
and u;l
by = byay.,
V;l
ay' =aybyiy

Thus the mappings uy and v, are automorphisms of M.

Denote the subgroup of Aut(M) generated by the U, by H
and the subgroup of Aut(M) generated by the Voo by K.
Let G be the split extension of M by the group of auto-
morphisms J = <H,K>.

H centralises the factors of the series

I < A4M-=AXSB

and so H is abelian.
K centralises the factors of the series

I «9BaM=AXSB

and so K is abelian.

It is immediately clear that
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Let z = [um,vn]. It will now be shown that
[Zmn’aX] - aX+m+n and [Zmn’bX]= bX+m+n
-1 -1
[Zmn’aX] - [um Vi umVn’aX]
vr_llumvn u v v
— -1 -1-
= [um ,ax] [vn,aﬂ [um,ax] [vn,aX]
-1
= [ay,u ]Zmn [a,,V ]Vn “n'n [u ,a ]Vn [v_,ay]
X" m X’'n m?>~X n’-X
-1
V. u.v
_ n mn
= 1. by c 1. by,
v
_ n
(bX+n aX+m+n) : bX+n
L2
- bX+n aX+m+n
- aX+m+n'
Similarly [zmn,bX] = byymen-
Furthermore Zén = 1 since:
z
mn _
ax T ax¥X+m+n
z2 z z
2, MM _ (g mny“mn
X X
z
_ , mn
N (aXaX+m+n)
_ 2
= ax8+m+n
= ay.
and 2
Zmn Zmn
by = (bxPyimen)

http://etd.uwc.ac.za/
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X" X+m+n

2 —
Therefore Zn 1.

The next step is to show that

[zmn’uzl = 1= [Zmn’vzl'

It is immediately clear that since z maps A + A and u,

mn
acts as an identity on A, [Zmn’ull acts like an identity
on A.
(z . vl
So we need only consider bX 2 :
Now -1 =1
bzmnul Zmnuz
X
ulz u
b £ "mn 2
- (bXbX+m+n)
zZ__u
= mn £
- (bXaX+£bX+m+n aX+m+n+2)
Yy
- (bXbX+m+n Ax+2 AX+m+n+g bX+m+n aXmﬁn+2)
u

_ L

= (by axsy)

= 2

= by 34

= bX'
Thus [Zmn’uz] 1.
Similarly for [Zmn’vz]'

Let P = <ay, u, X€ES, nei>
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and

Q = <bx,vm : X€S, m€Z>.

By the rules (2.1) and (2.2) P and Q are abelian.

It will be shown that P<4?G and Q<?%G.

The normal closure of P in G is P, = P[P,G].

[P,G] is generated by [ax,vn] , [bX’un]’ [um,vn] and

all their conjugates in G.

So P; is generated by ay, Uy, [ax,vn]g, [bx,un]g, Zﬁn
where ge€G.

Thus P; is generated by ays Ups z%n, b§+n’ a§+n
Define P, = PP1 = P[{P,P11].

Since M4aG it follows that b§+n’ a§+n€M and hence [P,P;]

is generated by

-8

g
mn] ’ ]

g
X+m~ °? [u ]

[u 0 8X+m

g
[aX, n’Zmn] s [un,b

and all their conjugates in P;.

So P, is generated by

g1

g g
n? Zmn] ’ [un’ bX+m

g1 g1

g
ax> Yn» [3X* Zmn] , [u

vV g€G, V gi€P,.

Now let g€G then g=xy where x€M and y€J.

X 1s a word in the (aX)XES and (bY)Y€s

and
04 €1 g

y = uql Vet Yq Vi
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where o;, =0orl, ey = O or 1.
g =
Also z> Zon [zmn,g]

= Zmn [Zmn'xy]

= Zmn [Zmn’y] [Zmn’x]

It was proved that z,n commutes with all uy and vy and
since y is a word in u, and Voo [zmn,y] = 1.
Also by (2.3), and since x is a word in (ax)XES and

(bY)YES’ [Zmn,x]EM and since M«G, [zmn,x]y € M.

From what has just been proved it follows that
[ax,zin] , [un,zgn], [un,b§+m], [un,a§+n] all lie in
A<P.

It is thus sufficient to show that

g1
X1 ep v X1€A

where x; is a word in the ay (XeS), Vv g.€P;.

Let g, = xi1xi2"°xis where xij, j=1,2,...,s

is any one of the above generators of P, and these X5

T
are their own inverses.

Now

X.
i
T )
ay = aXEA if xir ay (YES)
= aXEA if X; T oug
T
= i = K8 g
ay if xir bX+m or ay, .
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= ax38+m+n ir mn [Zmn’ gl

since [zmn,g]EM and M is abelian.

So one can conclude that P,<P and thus P<2G.

By applying the same argument as above to Q, it can be
shown that Q<?%G.

To see that G is not nilpotent one need only note that

for any integer n>0

. s X 1 € v,(G)

1 # [aX’st’x s

.
S3 n+1

where s;€Z, i=2,3, ... ,n+l are all different and none of

them belong to the set X and furthermore

~
i}

vs if 1 is even

and

e
]

uS if i is odd. o

Let G be a group generated by subnormal subgroups H and
K. If a and b are non-negative integers then Roseblade

([15]) proved that there is an integer c such that
c(¢) < ga) g(b)

where G(C) is the c-th term of the derived series of G.

No such relation exists between the terms of the lower
central series of G, H and K. This is shown by theorem

2.4, since Q<2G, P<?G,

¥2(Q) = 1 = ¥2(P) but va(6) = v,(C) = M # 1
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and G = <P,Q>.

However, there are circumstances under which such a re-
lation exists. This is shown by the next theorem which

is due to S.E. Stonehewer.

Theorem 2.5 (S.E. Stonehewer [16])

Suppose that the subgroups H, K are subnormal in
their join G and that G = HK. Then given any
positive integers ci,c2, there exists an integer

d such that

vq(6) < vo (H) v (K)

Proof:

Let Ha™G and proceed by induction on m. Thus suppose

m=1, so that H4G. Then YCI(H)qG and hence without loss

of generality,we may assume that Ye (H) = 1.
1
Let
G =K, 2K 2...2 K, =KX
5
be the normal closure series of K in G that is, K. = K

i+1

for 0g<ign-1.

Suppose that for some i, 1<ign-1 there is an integer di+l

such that

Yd (Ki+l) < YCz(K).
i+l

For example this is the case if i=n-1.
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Let Y = Ydi+1(Ki+l)' Then YdKi.
Also since G = HK. we have

1+1°

K; = (HDK;) K,

1 1

with both factors normal in Ki’ Moreover HﬂKi, as a

K.
subgroup of H, is nilpotent; and 1;1 is nilpotent.
K.
Thus by Fitting's Theorem T; is nilpotent. Therefore

there 1is an integer di such that

Ydi(Ki) s YCz(K).

It follows, by induction on i decreasing, that there is

an integer d(=d0) such that

vq(G) s Yo, (K) as required.

Now suppose that m32 and that the theorem is true for
smaller values of m.

m-1

G 5o that Ha™ 1H, and H, = H(H,nK).

Let Hl = H

Then by induction on m, there is an integer c3; such that

YC3(H1) <y 1(H) YCZ(Han)-

C

But G = H,K and hence by the case m=1, with H; replacing

H, there is an integer d such that

Ya(6) s v (Hi) v (K) < vo (H) v, (K). o
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In conclusion it can be mentioned that D.S. Robinson
([141) proved that if H and K are two subnormal sub-
groups of a group G and if J = <H,K> can be finitely
generated then J is nilpotent. This result has also

been proved by P. Hall ([51).

It shall be shown in chapter 3 that this result is in

fact an easy consequence of the Hirsch-Plotkin Theorem.

oo0o0
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CHAPTER 3

FITTING'S THEOREM FOR LOCALLY-NILPOTENT SUBGROUPS AND

ZA-SUBGROUPS

§3.1 THE HIRSCH-PLOTKIN THEOREM

The Hirsch-Plotkin theorem states that the product MN of
normal locally-nilpotent subgroups M and N of a group G
is itself locally-nilpotent. The theorem was proved
independently by K.A. Hirsch ([10]) and B. Plotkin
([131) and is well-known. In this section the proof of
K.A. Hirsch will be given. It is then shown that the
theorem can be generalized by replacing normal by sub-

normal and even serial.

Theorem 3.1 (K.A. Hirsch [10]).

The group generated by two locally-nilpotent normal
subgroups A and B of an arbitrary group G,is itself

locally-nilpotent.

Proof:

Let

albcl), azb(z) anb(n)

g v * 0y

be any arbitrary finite system of elements in <A,B>.

The group

G = <a1b(1)’ azb(z) y oo ey anb(n)>

will be nilpotent if one can embed it in a nilpotent
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subgroup of <A,B>.

Let

and

Y = (1) . p(m)s,

*
Since B is a finitely generated subgroup of B, it is nil-
potent and therefore satisfies the maximal condition for
subgroups.
*
Therefore B has a principal series
1 = BO < By € B, € ... < Bk = B (3.1)

where the groups B. (i =1,2,...k) are all normal subgroups

B1+1

By

%
of B and the factor groups are cyclic (of finite or

infinite order).
B.

Let bj be a generating element of B—l— , j=1,2,...,k, so
j-1

that in particular

B. = <b;,bs,...,b.>.
j 1,V2, ’J

For each j (j=1,2...,k) construct a group Aj which satis-

fies the following conditions:

(1) Aj is a finitely-generated subgroup of A which

contains Ao

(2) In the ascending chain

A. <« <A.,B;> 4 <A.,B,> 4 ... 4 <A.,B.> 3.2
j i jre i*7i (3.2)

all members are nilpotent.
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Begin by putting j=1.

Form repeated commutators of b, with all the generating

elements of Ao'

We get
1 2
als af )’ af ) ’ 1
1 2
as, ag )’ ag ) ’ 4
(1) (2)
an’ a‘n b an b b
where

j j

(o]

- = ) 3.3
as aj ( )

There are only finitely many elements

k .
yo ooy a£ ), i=1,2,...,n

aj, afl), a£2)

since a%N) = 1 for some N = N(1).

This is so since B 4 G and B is locally-nilpotent.

Let A; be the group generated by

a

g 00 0y

. agl), agz) agk) yo oo i=1,2,...,n
i 1 i i

Furthermore A, 4 <A,,B;> since for each element am,nFl,Zv..

we have

b7t all) by = al0) 0% e g (3.4)
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One now has to show that <A;,B;> is nilpotent. Since
A; is nilpotent, it'has a non-trivial centre, Z(A;).

If 1#z€Z(A;) then as above, form repeated commutators of
b, with z, giving z, z(l), z(z), ... and after a finite

number of steps one obtains

Z(n) = [Z(n_l), b;] =1

n-1
Thus z( )€ Z(<A,,B,>)

Assume that

,m-i-1)¢ Zipy (<A1,Bi>)
then
271D by o 2BHe 7 (<ny,By5)
SR
Therefore

z € 2, (<A1,B1>)

and hence
Z(A1) < Z,(<A1,B1>), since Z(A,)) is

finitely generated.
Let Q = <A1,B1> = A B,

and assume that

Zi(Al) < Zml(Q)-

http://etd.uwc.ac.za/



- 31 -

Letting bars denote cosets modulo Zi(Ax) (which is
normal ' in Q), we have by the argument above that
Z(Ay) < an(Q) for some integer nz. Then by the in-
duction hypothesis
5 (_Q )
an(Q) c an \Z mj'}
s0 2, (A1) €2, (Q) = Z, (Q) say.

Since A; is nilpotent, it follows by induction that

Ay € 2 (Q.
T

Therefore

2y 11 (@

(
A, \

[
B

-

=?\—landA1 272 (Q.

S 2

But %T is cyclic and so Z<%T

It follows that
Zmr+1(Q) = Q'

Hence Q is nilpotent.
In the general case Ai is taken to be the group generated

by the ay (m=1,2,...,n) and all commutators of the form
a=[a, b b ce.y, b1 (3.5)

where i>a 202 2 0. 20 > 1.

There are in fact finitely many different commutators of

this type so that condition (1) is satisfied for Ai‘
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In exactly the same way as above it can be shown that
Ay is normal in <A;,B1> and that <A;,B.> is nilpotent.
Assume that condition (2) in the chain (3.2) is satisfied

up to <A,, Bj-1>‘ One has to prove that

<A.,B. .> 4 <Ai,Bj> = <Ai’Bj-1’bj>'

Since Bj-l 4 B., it will be sufficient to prove that for

j’
each commutator (3.5)

1

b; abj €<Ai’Bj-1>' (3.6)
Choose r such that o 2 J > Oy
Put

la_, ba1 3 ,bar] = 2

where a is a generating element of Ai'

Thus
b;labj = b;l[a, bar+1, ’b“s] bJ
=[b labj, b-! bar+1 bj, ,b bas bJ]
Here b;l ébj = a [é,bj] is a product of two generators of
A; and all other elements, that is, b;l bai bj (i=r+1,...,s)
are in Bj-l since a.,q € j-1 and Bj-l 4 Bj and this proves

(3.6).

In a similar way it follows that <Ai’Bj> is nilpotent.
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*
Thus a nilpotent group <Ay ,B,> = <Ay,B > has been found
*
which contains the subgroup <A ,B > and hence
<a1b(1), azb(z) anb(n)>. This proves the theorem. o

b ]

Corollary 3.2

In any group G, the join of all normal locally-nil-

potent subgroups of G is itself locally-nilpotent. o

The question arises whether the Hirsch-Plotkin Theorem re-
mains true by replacing M and N normal subgroups of G by gene-
ralizations of normal subgroups. One way would be to con-
sider replacing M and N normal by M and N subnormal or

even serial. The conclusion of the Hirsch-Plotkin Theorem
remains true if one replaces M<G by M<adG. This is what

the next theorem states:

Theorem 3.3

If M and N are locally-nilpotent subgroups of a group

G and if N<G, M<<G, then MN is locally-nilpotent.

Proof:

The theorem follows from the Hirsch-Plotkin Theorem and

Theorem 2.3. o

P. Hall ([ 5]) proved that the conclusion of the Hirsch-

Plotkin Theorem holds if one insists that both M and N are
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subnormal of indices of subnormality greater than one.
The condition M4<G and N<<4G can be relaxed even further
to M»<dG and NedG. The proof of this result will be a
consequence of Lemma 3.5 which is due to K.W. Gruenberg
([z1. Before proceding with the proof of Lemma 3.5

the definition of a o-local property is needed.

Definition 3.4

If P is agiven group property and G has a local
system all of whose members have property P, then

G iscalled locally P. If it should happen that all
the subgroups of the local system are also serial

in G, then G is said to be o-locally P. The proper-
ty P is called 0-local if o-locally P is the same as

P.

Lemma 3.5 (K.W. Gruenberg [ 21).

If P is a multi - and a o-local property and K is a
serial subgroup of G possessing P, then K, the normal

closure of K in G, also possesses P.

Proof:

Let
K=K <K, 9...«¢ K =6

0O o

be a series from K to G and for each )\ define HA to be the
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Ky

normal closure of K in K,, that is, H, = K'% = K[K,KA].
Thus
Ko
- - K _
Ho = K = KW = K
Ka
H; = K = KI[K,K;] = K
K G
H, = K % = K[X,G] = K” = K
We show that HAQHA+1
Let
k
ATl
LT
and
k. €H, .
Then
- _1 - -1
1 1
(kk+1 k, kk+1) (kA k2 kk) (k)\+1 klkk+1)

()7 G ke k) (k)

"1 1
(k)70 ko (k, k)

t
k,k K
kz)\AEKA=H

]

X"

Hence it follows that H, < H For each 1limit ordinal

A A+l

A, Hy = U Hu.
U<A
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is a series, and so HA is serial in G. The lemma is
proved by induction on A. Suppose that Hﬁ has property
P for all u<).

If X is a 1limit ordinal then the set of all Hu with p<i

provides a o-local system of Hk all of whose members have

P. Thus H, is o-locally P and hence is P. If however,

A
A is not a limit ordinal then it 1is clear that

x ' H, ,x 94 K Y x €K

A-1 A-1 AT
Since
T
and
K eiHy

it follows that

H, = <K : v x€K,> < <Hj_; @ V xeK,>.
Conversely
Hyop € Hy
and so
(KKA-I)X ) (KKx)x A
Therefore
HA = <H;\(_1 1 xEKA> = ngAHi-l

The product of any finite number of conjugates of H)\_1

by elements in K, again has P since P is a multi-property

A
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and also of course, is a normal subgroup of HA'
Thus the set of all such products is a o-local system

of H, whose elements all have P, and so HA is o-locally

A
P. Thus, whatever the nature of A, Hx is P, and the in-

duction is complete. o

The following corollaries are consequences of Lemma 3.5

and the Hirsch-Plotkin Theorem.

Corollary 3.6

If MwdaG, NodG, M and N are both locally-nilpotent

subgroups of G, then <M,N> is also locally-nilpotent.

Proof:

The corollary is an immediate consequence of Lemma 3.5 and
the Hirsch-Plotkin Theorem since <M,N> < MN and the normal
closures M and N of M and N respectively are locally-nil-

potent. o

Corollary 3.7

Let H and K be two subnormal nilpotent subgroups of
a group G and suppose J = <H,K> can be finitely

generated. Then J is nilpotent.

Proof:

Since J is finitely generated, it can be generated by

two finitely generated subgroups, one contained in H and
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the other in K. Now any subgroup of H or K is sub-
normal in G and nilpotent, so one may assume that H and
K are finitely generated. By Lemma 3.5 the normal
closure of K in G is locally-nilpotent. Similarly
the normal closure of H in G is locally nilpotent.
Hence AK » <H,K> is locally nilpotent by the Hirsch-
Plotkin Theorem, where H is the normal closure of H

in G and K is the normal closure of K in G.

But J = <H,K> is finitely generated. Hence J is nil-

potent and this completes the proof. o

§3.2 FITTING'S THEOREM FOR ZA-SUBGROUPS

The question arises if Fitting's Theorem could be genera-
lized to other group theoretical properties. P. Hall
([ 61) proved that hypercentrality is a property E which

satisfies (1.1). The proof of his result is given here.

Theorem 3.8 (P. Hall [ 61])

If H9G, K<G and H and K are both ZA-groups, then HK

is a ZA-group.

Proof:
We may suppose H # 1, then Z(H) # 1 where Z(H) denotes

the centre of H and Z(H)<G.

If
Z(H) n K =1
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then
[z(H),K] ¢ Z(H) n K = 1.

Therefore

Z(H) € Z(HK).

However if

Z(H) n K # 1

then there exists a first term Yu such that Z(H)ﬂYu # 1.
Then w is not a limit ordinal number, say u = A+l,

and

(Z(H) n Yu,K] < Z(H) n [Yu’K]

IN

Z(H) 0 Y, =1

since A<y and hence the centre of HK contains Z(H)ﬂYu
and is therefore non-trivial.

Let

1 <2, ¢ ... Za <...5L

be the upper central chain of.HK.

Then

=
1

[

[aN]

which is a product of two normal ZA-groups, the images

of H and K.
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By the above HK has a non-trivial centre, but %, the

L
centre of IX, by definition, is trivial.  This is a
contradiction and it follows that HK = L. Thus HK is

a ZA-group. D

The symmetric group on three symbols shows that the above
theorem cannot be generalized by replacing H<G (K<G) by
an arbitrary ZA-subgroup H of G (or K of G) since it can
be generated by two cyclic subgroups one of which is a

normal subgroup.

The question then arises whether the conclusion of P.
Hall's Theorem remains true if we replace K normal in G
by K subnormal in G. The next theorem shows that this

is indeed the case.

Theorem 3.9

If H and K are ZA-subgroups of a group G and if H«G,

K<<G, then HK is a ZA-group.

Proof:

The theorem follows from P. Hall's Theorem and Theorem

2.3. o
The conclusion of Theorem 3.8 does not hold if one insists

that both H and K are subnormal of indices of subnormality

greater than one. The next theorem shows this,
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Theorem 3.10

There exists a group G which is not hypercentral
with hypercentral subgroups P and Q and P<’G,

Q4%G and G = <P,Q>.

Proof:

The example used in Theorem 2.4 is also used to prove

Theorem 3.10. It should only be noted that Z(G) = 1.

00000
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CHAPTER 4

FITTING'S THEOREM FOR FC-NILPOTENT AND FC-HYPERCENTRAL

GROUPS,

§4.1 THE PRODUCT OF TWO NORMAL FC-NILPOTENT

SUBGROUPS OF A GROUP.

Fitting's Theorem can be generalized to FC-nilpotence.

In a paper by K.K. Hickin and J.A. Wenzel ([ 9 1) the
authors prove that the product of two normal FC-nil-
potent subgroups of a group, is itself FC-nilpotent.

It should be observed that for finite groups FC-nilpotence
and nilpotence means the same thing. To establish the
above mentioned result due to K.K. Hickin and J.A. Wenzel,
some preliminary results are stated as lemmas. The proof
of Lemma 4.1, which is due to F. Haimo ([3 ]), will not be

given here.

Lemma 4.1 (F. Haimo [ 31]).
Let N be a normal subgroup of a group G such that

(a) N < F (G) and
(b) there exists a positive integer k for which
G

N is FC-nilpotent of FC-class k.

Then G is FC-nilpotent of FC-class ¢ m+k. o
Lemma 4.2 (K.K. Hickin and J.A. Wenzel [9 ]).
Let L<G, MdG. Suppose L € M and L < FY(G)’ some

i _ .- M (G
ordinal y. Then M c FY+1(G) if T S Fl\f)‘
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Proof:

If I < (%), then for m€M the index of the centralizer
G
L

of mL in + is finite.
. FY(G) G . .
Now since -1 71 there exists a homomorphism Tt
such that
G
T G L G
L FYiGi FYiGi
L
. . . . G
So the centralizer of mFY(G) has finite index in ?;TET'
F .1(G)
(G \ y+1
€ . 1
So mFY(G) Fl\F;TﬁT} _F;TGT_
Therefore M < FY+1(G). o
Lemma 4.3 (K.K. Hickin and J.A. Wenzel [91]).
Let H and K be normal subgroups of a group G. For

any pair of non-negative integers (i,j) define a

subgroup by

G(i,j) = Fi(H) n Fj(K).
Then
G(i,j) < Fi+j-l(HK)'
Proof:
Let F(k) denote Fk(HK). Since Fi(H) is a characteristic

subgroup H and H<G, Fi(H)QG.
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Similarly Fj(K)aG so G(i,j)<G. Put s = i+j. The
result is proved by induction on s. If s = 1, the

result is clear. Assume the statement is true for all

s ¢ t.
If i = 0, then G(0,j) = 1.
If j = 0, then G(i,0) = 1.

Thus it is assumed that i # O # j.

G(i-l,j) c Fi"'j—Z(HK)

and

G(i,j-1) € E,,. ,(HK)

i+j

by the induction hypothesis.
Let

L = G(i-1,j) 6(i,j-1) € By, _,(HK)

and let

x € G(i,j).

The number of conjugates (xFi_l(H))? h € H, is finite.

Thus x has a finite number of conjugates mod Fi_l(H).
Hence x has a finite number of conjugates

mod Fi_l(H)ﬂPj(K) and so x has a finite number of con-

jugates mod L.
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Let

h

Con(x,H) = {x  : h € H},

then Con(x,H) has a finite number of members mod L.
\k

Similarly, the number of conjugates (x Fj-l(K)/ R

k € K, is finite.

Thus x has a finite number of conjugates mod Fj_l(K).

Hence x has a finite number of conjugates
mod Fi(H)nFj_l(K) and so x has a finite number of con-

jugates mod L.

Let

k

Con(x,K) = {x k € K},

then Con(x,K) has a finite number of members mod L.
Therefore Con (Con(x,H),K) has a finite number of members

mod L and so

Hence

By Lemma 4.2
G(i,j) € Fj, 1 (HK)

and this completes the induction. o
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Theorem 4.4 (K.K. Hickin and J.A. Wenzel [9]1).

If H and K are normal subgroups of G and if H
and K are FC-nilpotent of FC-class n and m respec-
tively, with n > m, then HK is FC-nilpotent of FC-

class at most Zn+m-1.

Proof:

Lemma 4.3 shows that

HAK = G(n,m) < Fn 1(HK).

+m-
As the FC-class of HK < n, the FC-class of
HAK =

HK is < n+(n+m-1) = 2n+m-1 by Lemma 4.1. O

The next theorem proves that this last result still

holds if K normal in G is replaced by K subnormal in G.

Theorem 4.5

If HaG, K99G and if H and K are both FC-nilpotent

then HK is FC-nilpotent.

Proof:

The theorem follows from Theorem 4.4 and Theorem 2.3. O

The question arises whether the conclusion of Theorem

4.4 remains true if it required that KedG. This means
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that one would like to know whether the condition
K<44G can be relaxed to KedG. The next theorem shows

that this cannot be done.

Theorem 4.6

There exists a non-FC-nilpotent group G with FC-
nilpotent subgroups H and K, HaG, K~d4G such that

G = HK.

Proof:

Let G be the group defined in Theorem 2.2.

Thus G 1s a pfoduct of the normal FC-nilpotent sub-
group H and the serial FC-nilpotent subgroup K. It

only remains to show that G is non-FC-nilpotent.

It is clear that a, € F;(G). We want to show that

F;(G) = <a >.

Let
1 # x € G,
then
n; N, Ilm k
X = ar ar .o ar b
1 T2 n
and it is assumed that none of the a, = a, and k # O.

i
We show that the element x does not have a finite number

of conjugates.
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Now
nm
-1 m k
ag (arl a b )a2
. m
n: n k
- m _-1
= ar1 a” a, b a,
m
n;
m =1 k
= a a (a,*ba,)
T, m L L
m
- m 1 k
= arl. a. (b 2_1)
m
We show by induction on k that
1’11 n -~ k
m
a, -eeay (bak_l)
m
k k k
) bk ﬁ ani a(l)ni a(k)ni a‘(
— r— T =1 —= " °“r.-k -1
1=1 1 1 1-

k !
where ([) = T‘l%‘k—?r

This statement is true for k = 1 since

ni nm _1
ar ... 4a bal_1
1 m
=1 n -1 nm -1
= bb ar1b ... bb a. bal_1
m
n n, n n 1
= ba a. 4 ay 3y -1 g1
m
m n n. -1
=b I a a 1 a .
i=1 T ri—l 2-1
Now
n; n
m -1 ,k+1
arl .. @ . (bal_l)

http://etd.uwc.ac.za/

1)

(4.1)

(4.2)



n, n
_ m -1 k -1
= a, ... 3y (ba, ;)" ba, ;4
m
k k k
bk I]![l ni (l)ni (k)ni -(1)
B 4r. %r.-1 a a
i=1 i Titho e 0

As in (4.2) and by applying the identity

oo = D

we get
n, n
-1 m , k+1
a, (arl... arm b )az
k k k+1
K 1 m ni ( :1)1'11 (k:i)nl "( 1 )
+
= b I a_ a oo @ a
i=1 I’i I'-l-l I‘i—k-l Q/_].

and our assertion is proved by induction.

Also
ala:1. a:: b¥ agl
= a: . ;12: a, bk a;l
R
= azi a:: (bag_l)k
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)

-1
- 3 ba, ;-

k+1
- (k"'l)

2-k-1



conon g O & @
= b iI=Il ari arl_l ar-_k az_l...az-k.
(4.3)
Next we consider the case where k = O. We show by induc-
tion on t that
p-t 01 anm pt
T’ ro
m n. (F)n, (9n,
= I a 1 a 1 a t 1
This is true for t = 1 since
. n, n
arl. ! b
i n, N N2 -1 nm
= b arl b a_ b bb a. b (4.5)
m
n; 1’11 n nm
- %y, arl-l dr %r -1
m n, n
) 121 "ry %r-l
Then
- n, n
! m
m
- 1 ‘t n
m
RS (Pn, (E)ni\
= b} NI a_ a a_ _. |b
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As in (4.5) and by applying the identity

t ty _ t+l
i o+ 5 = (5
we get
b'(t+1) 1 anm bt+1
T m
t+1 t+1
moony (a7dny (ee1)my
= @I a a
i=1 I‘i ri_l ri—t-l
and our assertion is proved by induction. By (4.1),
n, n
(4.3) and (4.4) it is clear that x = a . am bk € G
T3 I'm
does not have a finite number of conjugates. Hence we
conclude that F; (G) = <a,>.
Let
G
o G » —/——
<a_>
be a mapping defined by
o aj > a, <a>
a; > ap <ag >
3; * 3341 <37
b + b <g0>.

The mapping a can be extended to a homomorphism of G.

n, n

The element (arl arm bk) <a > is the image of
m

n o

1
a a
r,-1 %r,-1

nm
a

k
r -1 b
m

under o.
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m Mh ok
Furthermore a a b™ € ker o
T T
m
n
o
> (ar a m bk) = <a_ >
1 m
n, n
m k
= a b" <a > = <a >
r,+1 r +1
n, n
m k
Aand a b <a >
ar1+1 r +1 € <a
m
Pu—, = = = =k =0
n; Na nm
So a is an isomorphism.
Since
G
G = <g >?

it follows that

<a;><a >
() - S

ZEE? <a0>
and so
F, (G) = <ao,a1>
and in general
Pn(G) = <@ ,81,.00, ap>.

Therefore G is not FC-nilpotent. o

§4.2 THE PRODUCT OF TWO NORMAL FC-HYPERCENTRAL

SUBGROUPS OF A GROUP

Fitting's Theorem can be generalized to FC-hypercentrality.

K.K. Hickin and J.A. Wenzel ([ 91) proved that the product
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of two normal FC-hypercentral subgroups of a group, is
itself FC-hypercentral. Results which are required to
establish this, are stated as lemmas. The proof of Lemma

4.7, which is due to J.H. Hoelzer ([111), is not given here.

Lemma 4.7 (J.H. Hoelzer [11])

If H is a non-trivial normal subgroup of an FC-hyper-

central group G, then H N F,(G) # E. o

Lemma 4.8 (K.K. Hickin and J.A. Wenzel [91).

If H and XK are normal subgroups of a group G and
if H and K are FC-hypercentral groups and HK # E,

then, Fy(HK)# E.

Proof:

If Hn K = E, then HK = HXK
and
F; (HXK) = F;(H) X F1(X) # E.
If Hn K # E, then Hn K is a non-trivial normal subgroup

of H. By Lemma 4.7

L = (HnK) n F,(H) # E.
and L<G since F;(H) is a characteristic subgroup of H and

H<G.
Now
LN Fi(K) # E

since L is a non-trivial normal subgroup of K.
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But

L n Fi(K) = [(HNK) n Fy(H)] n F.(K)

F1 (H) n P1 (K)

= M’
which is normal in G.

Let x € M-E. Consider the set

A= {xhk : h € Hand k € K}.

Then A is a subset of M. As h ranges over H, xh.takes

on a finite number of values, say Xi,Xz2, ..., X, all of
which lie in M. As x; € Fi1(K), x? takes on a finite number
of values as k ranges over K for 1 < i < n. Thus x € F; (HK),

and so F;(HK) # E. o

Theorem 4.9 (K.K. Hickin and J.A. Wenzel [9 ]).

Let H and K be non-trivial normal subgroups of a group
G such that G = HK. If H and K are FC-hypercentral,

then G is FC-hypercentral.

Proof:

Suppose the theorem is not true. By Lemma 4.8, F;(HK) # E.
Suppose that there exists an ordinal o such that
Fa(G) Fa+1(G) # G.

Then

_ ¢ [HE_(6)] [KF ()]
RS 30 () 1 (<) IR S €6 I

Now G is a product of two normal FC-hypercentral groups
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and G # E. By Lemma 4.8 F,(G) # E. Therefore Fa+1(G),
which is the complete inverse image of F:(G), is strictly

greater than Fa(G)‘ This is a contradiction. o

The conclusion of Theorem 4.9 still holds if K normal in

G is replaced by K subnormal in G. This is shown by the

next theorem.

Theorem 4.10
If H<G, K99G and H is FC-hypercentral and K is

FC-hypercentral, then HK is FC-hypercentral.

Proof:

The theorem follows from Theorem 4.9 and Theorem 2.3. o

00000
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ABSTRACT

H. Fitting proved that the product of two normal nil-
potent subgroups H and K of a group, is itself nil-
potent.

Several authors have proved statements of the following
type:

(A) If H and K are normal subgroups of a group G and
if HeEP, KEP then HKEP, where P is a group theoretical
property.

We have considered the question of to what extent the
requirement that H and K be normal can be relaxed in
(A). This is done by replacing normal by subnormal or

serial.

In Chapter I Fitting's Theorem is proved and a few
simple consequences of the theorem are stated as corol-
laries. The bound attained in Fitting's Theorem for
the nilpotency class of the product of two normal nil-
potent subgroups of a group, turns out to be a least

upper bound.

In Chapter 2 we are concerned with the generalization
of Fitting's Theorem in the case of nilpotent subgroups
H and K. If we replace K normal in G by K subnormal
in G, the conclusion of Fitting's Theorem still holds.
However this is not the case if we replace K normal in
G by K serial in G. This is shown by an example. If
we insist that the indices of subnormality of both H
and K are greater than one, then Fitting's Theorem does

not remain true.
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Chapter 3 deals with the Hirsch-Plotkin Theorem. It
is shown that the conclusion of the Hirsch-Plotkin
Theorem still holds if H and K are serial in G.

K.K. Hickin and J.A. Wenzel proved that the product
of two normal FC-nilpotent subgroups H and K of a
group G, is itself FC-nilpotent. They also proved
that the product of two normal FC-hypercentral sub-
groups H and K of a group G, is itself FC-hypercentral.
In Chapter 4 it is shown that the result remains true
if KaG is replaced by K<<G. An example is produced
to show that K<¢<G cannot be relaxed to Kx<4G in the

case of FC-nilpotence.
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