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(i)
ABSTRACT

Given a finite set X of distinct symbols the symmetric group Sx and the alternating
group Ax are obtained without further constructions. More interesting groups are
contrived, however, by imposing a certain structure on the set X and observing the

subgroups formed by those elements of Sx that preserve this structure.

In this thesis we concern ourselves with one such imposition viz. that defining the notion of
a finite projective plane. We look at the different subgroups of Sx arising in this manner,
with particular emphasis on the projective linear groups and their action on the projective

plane.

We conclude this work with a detailed study of the structure of the projective linear groups
of orders 168 and 5616, respectively. Of particular interest to us are the distinct
conjugacy classes of these groups, and the manner in which they relate to one another,

within each particular group.
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(iii)

PREFACE

In Chapter 1 we present results relevant to the topic of this thesis. Section 1.1 deals with
the concept of group representations and group characters. We also see how the structure
constants of a finite group are evident of the interaction of the group’s distinct conjugacy
classes. The latter becomes a useful tool in our study of the two projective linear groups

investigated in Chapter 3.

In 1.2 we present results pertaining to projective geometries and their associated groups.
Empbhasis is placed on those projective geometries of (projective) dimension two. We show
that the latter comply with the abstract definition of a finite projective plane and look at

the action of the projective linear groups on the projective plane.

Section 1.3 is devoted to the relationships between projective geometries and other areas in

Mathematics.

In Chapter 2 we proceed to construct a number of finite projective planes and show the

existence of a bijection between projective planes of the same order.

Chapter 3 concludes this work with a detailed study of the structure of the projective linear

groups PGL(3,2) and PGL(3,3).
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(iv)
NOTATION

G, a finite group

Z(G), the centre of G

|G|, the order of G

Xi, group characters

Ki, conjugacy classes

C(K), centralizer of K

Fq, a finite field with q elements, q a prime power

p, an F—representation of G

A, an element of F

F:= F~{0}

Il_, the integers modulo m

V =V(n,q), an n-dimensional vector space over the field F with q elements

GL(V) = GL(n,q), the general linear group of non-singular transformations of
V = V(n,q)

SL(V) = SL(n,q), the special linear group of V = V(n,q)

PGL(V) = PGL(n,q), the projective general linear group over V = V(n,q)

PSL(V) = PSL(n,q), the projective special linear group over V = V(n,q)

PG(n—1,q), projective geometry of (projective) dimension n—1

~, equivalent to

[x], the equivalence class of x

x", the orthogonal complement of x

<x>, the subspace generated by x

C.p structure constants
ij
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(v)

Ai_ ¢ Square matrix with ¢ ¢ ¥ ij—th entry
j ij

S, a finite set

card (S), the cardinality of S

L, afamily of subsets of S

" 0, a permutation
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CHAPTER 1

PRELIMINARIES

Two distinct areas relevant to the topic of this thesis are dealt with in this chapter, the
first being that of group representations, whilst the second consists of topics from finite
geometries and their associated groups. Results to be referred to in subsequent chapters
are stated, often without proof. At the same time we will present results relevant to our
theme in order to enhance understanding and to identify its relations with other areas in

Mathematics.
1.1 GROUP REPRESENTATIONS

Let G be a finite group and {Kx’ L Kn} the set of its distinct conjugacy classes (we say
n is the class number of G). If F is any field and V is an m—dimensional vector space
over I, then a group homomorphism p:G - GL(V), where GL(V) is the set of all
nonsingular F-linear transformations of V', is called an F-representation of G. In this

case m is called the degree of the representation p. If p is injective it is called faithful.

Given a basis B of V, we have that p(g), for all g € G, has an associated matrix
[p(g)]B, so that the map Xp : G- F defined by g - trace ([p(g)]B), is well defined. We
call Xp the character of the representation p. Now, if B’ is any other basis for V ,
then there exists a nonsingular mxm matrix P such that P-l[p(g)]BP = [p(g)]B’ , and
since trace (XAX-I) = trace (A) for any square matrix A and nonsingular matrix X, we

have that X p(g) = trace ([o(g)]g’) = trace ([o(g)lg). Hence we have;
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1.1.1 Lemma: The character X y of the representation p is independent of the choice of
basis B of V and clearly, if g = hah"!, for g,h,a € G, then Xp(a) =X p(g) ie X ) is

constant valued on the conjugancy classes K of G. o
1

Now, let FG denote the set of all formal sums T fx, f € F and, with a finite number of
xeG* X

exceptions, fx = 0. With addition and multiplication defined by
()Efxx) + (i}f;x): = i}(fx + f;)x and
(§fxx)(§f;x): = §(yz!=3x fyfz)x, respectively,

we call FG the group ring of G over F. Since F isa field, FG has a natural

F—module structure given by f(Xf x) = E(ff )x, where f € F. This makes FG into an
XX X X

F—vector space. Furthermore, the centre of FG, Z(FG), has the natural basis

{1, Xy e X }, where x: = d 2 g x ({11}, [20], [26]). Its dimension therefore equals the
n 1 .
1 .

class number of G.

Now, if p:G -+ GL(V) is an F—representation of G with degree n, then V can be turned

into a right FG~module by means of the rule

a( & fx):= % f (ap(x)]), whereae V.
xeG * xeG *

G
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Conversely, if V is a right FG—module with F—dimension n, there exists a corresponding
F-representation p:G + GL(V) of degree n given by a[p(g)] = ag, where a ¢ V. Thus,
what we have is none other than a bijection between the F—representations of G with

degree n, and the right FG—modules with F—dimension n.

We call two F—representations p and p | of a group G equivalent if they arise from
A A

isomorphic right FG—modules V and V!, respectively. From the aforementioned

bijection it follows that equivalent representations have the same degree and character.

An F—representation p of G is called reducible if the right FG—module V from which it
arises has a proper nonzero submodule. An F—representation is called irreducible if its
associated right FG—module V has no proper nonzero submodules (if V itselfis

nontrivial).

1.1.2 Proposition ([26]): Every character is a sum of irreducible characters (where the sum

X + Y of characters X and Y is defined by (X + Y)(g) = X(g) + Y(g), g€ G). o

The following result, due to Frobenius and also stated without proof, provides a

fundamental relation between the irreducible characters of a group G.

1.1.3 Proposition ([26]): Let G be a finite group and F afield. Let X and Y be

distinct irreducible characters of F—representations of G. Then,;

(i) I XY =0

http://etd.uwc.ac.za/



(ii) If F is algebraically closed and its characteristic does not divide the order of G, then

-1
xAZJGX(X)X(x )= |G|

(iii) If F has characteristic 0, then

(|G|)-1 ) X(x)X(x-L) is always a positive integer.
x€G

o

1.1.3 (i) and (ii) are called the orthogonality relations.

In view of the fact that the number of irreducible characters equals the class number
(see[11]), it is convenient to display the character values of a group G in a table which we
call the character table of G. In particular, if G is a finite group with {Kl, ey Kn}, the
set of its distinct conjugacy classes, F an algebraically closed field whose characteristic
does not divide the order of G, and Xl, cery Xn are the irreducible F—characters of G,

then we write;

1 n
X X(l) x(n)
1 1 1
X X( l) x(n)
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Here Xi(J) denotes the value of the character X on the conjucacy class K .
i J

The orthogonality properties of the characters may now be translated into row and column
orthogonality of the character table in the following manner:

' By 1.1.3 we can write ng xi(x)xj(rl) = mdij, where m = |G| and dij is the
Kronecker delta function. Writing li = |Ki| and

Kax= (Ki)", this becomes

2 X{xe) = ms Q
r=i

which expresses the orthogonality of rows of the character table, whilst

ij

Bx (x0T ©

i=]

expresses the orthogonality of columns of the character table.

When F = C, the field of complex numbers, equations 1 and 2 become

n
N4 Xi(r)—)ij(r) = mé
r

i
r=1 J

and

; Ki(r)xi(s) = ? JrS’

i=t

respectively, where X : G~ is given by X (g) = X, (g) andis called the complex
1 1

conjugate of X .
1
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If Ki, Kj and K ¢ e distinct conjugacy classes of a finite group G, then the number of
solutions (x,y) of xy = z, where x € Ki, yE€ Kj andz € K o 18 called the structure
constant 'c_,l of G. Thus, if K.K,: ={xy:xe K,yeK } then each element of K,
occurs ¢, it times in K K Thus the structure constants connect the conjugacy classes of
G with respect to product formation. The following formula for computing the structure

constants of a group was established by Burnside ([8]).

1.1.4 Proposition : Let n be the number of conjugacy classes of the finite group G, and let
’Kl, .-, K be its distinct conjugacy classes. Let x_be a representative of the elements
n 1

in K, 1<i<{n. Then
1

n
. Kin = lﬁ lcij ZK 0 where

K 11K | g X(x )X(x )X(x,)

C./= !

1) x
|G|

where |K,|, |K_| are the orders of the conjugacy classes K and K respectively,

x(1)

X(x, ), X(x ) are the values of the character X on the conjugacy classes K and K
respectlvely, X( 1) is the value of the character X on the identity, and |G| is the order
of G.

From (3] we obtain a generalization of this product to that of any finite number of

conjugacy classes viz.
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K .K =|Kil|"'|Kim| X(xil)...X(xin)X(xt)

¥
: . |G| X x(1) (m—1)

Burnside’s formula therefore allows us to compute the structure constants of a group G
when the irreducible characters of G are known. Conversely, the character table of a

group G may be determined if its structure constants are known ([11]).

The usefulness of representation theory, and in particular that of group characters, in the
study of finite groups is well known. A number of results on abstract groups have been
proved through the use of group characters, the best known being that of Burnside which
states that a finite group whose order has at most two distinct prime divisors, must be

solvable. Basic references [11], [20], [21] and [26] may be consulted.
1.2 FINITE GEOMETRIES AND THEIR ASSOCIATED GROUPS

Throughout this section, let V = V(n,q) denote an n—dimensional vector space over the
field F with q = p* elements, where p is a prime. In section 1.1 we defined the general
linear group GL(V) to be the set of all linear automorphisms of V over F. The set of
all linear automorphisms of V of determinant 1 is called the special linear group SL(V).
It is easy to see that the inverse £ ' of a linear automorphism ¢ of V is also a linear
automorphism, and since (det £) (det £ ) = det (£.£ )=det (1) = 1 the linear
automorphisms have nonzero determinant. If § is the determinant map, then it is clear
that § maps GL(V) into F = F~{0}. Furthermore,

§v.w) = det(v.w) = det(v).det(w) for all v,w € GL(V), so that § is in fact a
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*
homomorphism of GL(V) onto the multiplicative group F . Since SL(V), by
definition, is the kernel of this map, we have, by the first isomorphism theorem for groups,

that;

1.2.1 Lemma : SL(V) is a normal subgroup of GL(V) and
*
[GL(V) : SL(V)] = |F | = ¢-1.

For each pair of ordered bases {vl, =0 vn}, {wl, s wn} of V there exists a unique linear
automorphism £ of V such that l(vi) =W, 1<i<n and conversely, for each linear
automorphism ¢, {l(vl),...,l(vn)} is an ordered basis. Thus the order of GL(V) is equal
to the number of ordered bases of V. Since |V| =q" and the first member of an
ordered basis may be any nonzero element of V it can be chosen in q"—1 ways. The
second member, linearly independent on the first, may be chosen in q"—q ways, the third

in q"—q* ways, and soon. Continuing in this fashion we find that:

1.2.2 Lemma : The orders of GL(V) and SL(V) are given by :

6 16Lv)] = D2 T (qi

1=1

(i)  [SL(V)] = QX(e-D)/2

i

(q™-1), from Lemma 1.2.1. o
2

[T e -]

From Biggs, et al ([7]) we have the following result concerning the centres of GL(V) and
SL(V).
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1.2.3 Lemma : The centre of GL(V) consists of the q—1 scalar transformations g - Ag,
(AeF ), whilst the centre of SL(V) consists of those scalar transformations for which

A =1. o

If V=V(n,q) is a vector space over a field F, then the equation x = )y, where

X3, €V = V~{0}, \ ¢ F", defines an equivalence relation on V*. We shall denote by
[x] the equivalence class of x € V*. The set of equivalence classes

PG(V)={[x]: x¢€ V*} is called a projective geometry (vector space) of projective
dimension n—1. When necessary, to avoid ambiguity we shall write PG(n—-1,q) for

PG(V).

%
Let ¢:V - PG(V) be the natural map x-[x]. A subset S of PG(V) of the form
*
¢(W ), for some (m+1)~dimensional subspace W of V, is called a projective
m-subspace or a projective geometry of (projective) dimension m. If m=0,10r2, S is

called a projective point, a projective line, or a projective plane, respectively.
1.2.4 Example : Let V(n, 2) be any n—dimensional vector space over the field F = l

then |V| =29 Since F has only one element, 1, PG(n—1,2) has 2°~1 points.

O
1.2.5 Lemma : If V has dimension n > 2, then;
*
(i) for x,y € V', [x] # [y] if and only if {x,y} is linearly independent.

(ii) every two distinct points in PG(n~1, q) lie on a unique line.
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Proof: (i) If [x] # [y], then x# )y, forany A€ F', and {x,y} is linearly independent.
Conversely, if {x,y} is linearly independent, then x # Ay, for all A € F*, and hence
[x] # [y].

: *

(i) Let [x] # [y] be pointsin PG(n—1,q) with x,y € V representing each. A projective
* *

line L containing both [x] and [y] is of the form (W ), where W isa

2—dimensional subspace of V containing x and y. By (i) above {x,y} is linearly

independent, so that <x,y> = W. This proves both the existence and uniqueness of L.

o
1.2.6 Proposition : The points and lines of PG(2,q) satisfy the following:
(i) every pair of distinct points lie on a unique common line,

(ii) every pair of distinct lines intersect at a unique common point,

(iii) PG(2,q) contains a set of four points with the property that no three of them lie on a

common line.
Proof: (i) was proved in 1.2.5 (ii)
(i) If Ll and L2 are distinct lines in PG(2,q), then there exist 2—dimensional vector

spaces V ,i=1,2, such that L = {[x]| x€ V;}. Since dim(Vl n V2) =1,
1 1

{[x]| x € Vl n V2} represents a unique point on L1 and L2.
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(iii) We show that the points of the subspaces generated by the vectors {(1,0,0), (0,1,0),
(0,0,1), (1,1,1)} exhibit the required property. Suppose that the first three vectors in our
set generate subspaces which, as points, lie on a common line. This implies that there is a
2—dimensional subspace containing the three vectors. However, our three vectors are
linearly independent, which leads to a contradiction. Since any subset of three vectors
from our set is linearly independent the same will result when considering all such subsets.

a

1.2.7 Example : Consider PG(2,2) of example 1.2.4. A 1—dimensional subspace (line) in
PG(2,2) is the image of a 2—dimensional subspace W of V(3,2). (W] in PG(2,2)
contains 3 points, since W contains 4 points, one being the origin. Choosing coordinates
'(xl,xz,xa) for a point x in V and denoting by [xl,xz,xa] the point [x] in PG(2,2) we
obtain;

The subspace W with equation X +x +x = 0 gives rise to a line [W] in
PG(2,2) containing the points [1,0,1], [1,1,0] and [0,1,1]. The subspace with equation
x +x =0 gives rise to aline in PG(2,2) containing [1,1,0], [0,0,1] and [1,1,1].
Continuing in this fashion we obtain seven lines, the other five being {[1,0,0,], [1,1,1],
[0,1,1]}, {[0,1,0], [1,1,1], [1,0,1]}, {[1,0,0,], [1,0,1], [0,0,1]}, {[0,1,0], [0,1,1,], [0,0,1]} and
{[1,0,0], [1,1,0], [0,1,0]}. With the points [1,0,0], [0,1,0], [0,0,1], [1,1,1] satisfying the
third property of 1.2.6 we see that PG(2,2) exhibits all three of the properties given. O

1.2.8 Proposition ([27]): (i) For every n > 0 and every prime power q, the number of

points in PG(n—1,q) is (qn—l) /(g-1). In particular, every projective line has exactly
q+1 points.
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(ii) The number of projective lines in PG(2,q) equals the number of points in PG(2,q)
viz. q>+q+1. Wesay q is the order of PG(2,q). o

As an example, consider PG(2,2) of 1.2.7. We see that PG(2,2) contains 224+2+1 = 7

points, 7 lines, and each line contains 3 points.

Given g€ GL(V), we define a permutation g of PG(V) by the rule é[x] = [g(x)], for
XE€ v This definition is independent of the chosen representative of [x] since, if

[x] = [x’], then x = Ax’, for some ) € F*, and g(x) = g(Ax’) = Ag(x’), so that

[8(x)] = [g(x’)]. However, g - é is not faithful, since some non—identity automorphisms

may well induce the identity on PG(V). In fact, we have:

1.2.9 Lemma ([7]): For ge GL(V), the induced permutation é is the identity on

PG(V) if and only if g is a scalar transformation. a]
Since we are not concerned with the action of the scalar transformations on PG(V), we
eliminate them by ‘collapsing’ the general and special linear groups onto their respective

centres. To this effect we obtain;

1.2.10  The projective general linear group PGL(V) and the projective special linear
group PSL(V) are respectively defined as follows;

PGL(V): = GL(V), Z(GL(V)),

PSL(V): = SUV), Z(SL(V)),
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and their orders are;

PGL(V)| = /2 1 (giyy,

i=2

|PSL(V)| = [ged(q—1,n)] | PGL(V)],

where ged (,) denotes the highest common factor and V has dimension n»2 ([7]).

u!
A group G of permutations is said to be transitive if, given a pair of letters a, b (which
need not be distinct), there is at least one permutation € G which transforms a into b.
G is said to be k—transitive if it contains at least one permutation ¢ which changes any
ordered set of k distinct objects 3,3, .8 into any other such set bn’ b2, e bk (the

two sets may have elements in common).
From [7] we have;

1.2.11 Proposition : Both PGL(V) and PSL(V) act 2—transitively on the points of
PG(n-1,q). That they are not 3 —transitive on PG(2,q) is clear from 1.2.6. o

1.2.12 Proposition : PSL(V) is simple, provided that n > 2 and (n,q) # (2,2) or (2,3).

o
A permutation 0 on the points of PG(V) that takes lines to lines in PG(V) is called a

colineation. Thus, the set of colineations of PG(V) is a subgroup of the symmetric group

on PG(V).
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If [x] and [y] are distinct points on a linein PG(V), then dim<x,y> = 2. Thus for
each g € GL(V), dim (g<x,y>) = dim<g(x),g(y)> = 2 and hence [g(x)] and g[y] are

~

distinct points on a line in PG(V). Therefore g is a colineation, where é[x] = [g(x)], for

all xeV.

If V isa vector space over a field F, then a permutation £ of V, such that

Ux+y) = {x)+4y),

{Xx) = o \){(x), where x,y € V, A € F, and « is a fixed automorphism for each ¢, is
called a semilinear automorphism of V. It isobvious that if a is the identity

automorphism, then £ is linear.

For example, let V be a vector space over the field F with q =22 If a is the
automorphism a:A -+ A? and £ is a permutation of V with {(x+y) = {x)+{y), and
{Ax) = a(A){(x) = A*(x), where x,y € V, X € F, then £ is a semilinear automorphism of
V.

Each semilinear automorphism £ of V induces a permutation ¢ of PG(V) in the same
way as for linear automorphisms so that ¢ is also a colineation of PG(V).

The group of all colineations of PG(V) is denoted by I'L(V). GL(V) and SL(V) are
subgroups of T'L(V) whilst PGL(V) and PSL(V) are quotient groups of 'L(V) ([7]).
If |[F| =p, then |Aut(F)| =r, and [[L(V): GL(V)] =r.

We earlier defined a projective geometry PG(V) of (projective) dimension two, to be a
pfojective plane. However, since there exist other structures, not quite the same as a
PG(V), that exhibit the properties of PG(2,q) (see [16]), we need to give a more general

definition;
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1.2.13 A finite projective plane or geometry is a finite set S, together with a family £ of

subsets of S, satisfying:
PP1: Each pair of distinct elements of S belongs to only one set ¢ in £
PP,: The intersection of each pair of distinct setsin £ is a single element of S.

PP3: At least four elements of S have the property that no three of them occur in a

single set o of L.

The analogy with 1.2.6 is clear when we consider the points of PG(2,q) to be the elements
of S with the lines of PG(2,q) being the elements of L.

1.2.14 Example: Numbering the points of PG(2,2) constructed in example 1.2.7 from 1
to 7 we obtain:

S = {1,2,3,4,5,6,7} and

L=1{124}, {2,3,5}, {3,4,6}, {4,5,7}, {5,6,1}, {6,7,2}, {7,1,3}.

Thus far all known projective'planes have order a prime power, the most well known
unsolved problem in the study of projective planes being the question on the existence of a
projective plane of order other than a prime power. The only result showing the general
non—existence of any finite projective plane of given order is the Bruck—Ryser theorem
which states that if q =1 or 2 (mod 4), then there cannot be a projective plane of order q
unless q can be expressed as a sum of two integral squares. For a proof, see [16],

pp 87 — 89.
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1.3 RELATIONSHIPS WITH OTHER AREAS

A projective plane PG(2,q) may also be described in terms of a (0,1)—matrix A in the

following manner;

Let Pl, ..., P and L1’ ..., L denote the points and lines of PG(2,q), respectively.

m m
Then the matrix A of zeros and ones will have as its ij-th entry the number 1 if and only
if Pi ison L. Wecall A theincidence matrix of PG(2,q).

i

1.3.1 Example: From Example 1.2.14, with the given order, we have that:

>

il
=== =
OO O = O
OO = OO
O = O OO
ORHROOD -
HEOOO RO
—HOOO MO M

From [19] we also have:

1.3.2 Proposition : For m > 3 an mxm (0,1)—matrix A defines a projective plane if and

onlyif ATA = AAT = kI+J where J is the kxk matrix, all of whose entries are 1.

A balanced incomplete block design (BIBD) ([15]) of type (b,v,r,k,A) consists of a family
Bi, i=1 to b, of subsets of a set V with v elements such that (i) |Bi| =k < v for
alli, (ii) |{i|x€ Bi}| =r forall xeV, (iii) |{i|xe€ Biandy € Bi}| = A for all

x$y inV.
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BIBD’s are used in statistics in the design of experiments in which it is not convenient to
test every value of a factor a against every value of a factor f, for varying values of a
third factor 4. The block Bi is normally considered to be the i—th set of experiments
and V is considered to be the set of varieties to be tested. We show that a projective

plane of order q isa BIBD of type (q*+q+1, q>+q+1, q+1, q+1, 1):

Let PG(2,q) be the set of q?>+q+1 points of the projective plane of order q, and let B,
for 1<i<q?+q+1, be the lines of the plane. By 1.2.6 and 1.2.8 each line contains q+1

points and each point occurs on q+1 lines. Therefore

(i) IB|=gq+1< q%+q +1 for all i,

(i) |{i|xe Bi}l = q+1 for all x € PG(2,q),

(i) |{i]x € Bi andyeB}| =1 forall x+#yePG(2,q).
1

A further interesting application of finite geometries lies in its interaction with Abelian
groups. Every projective geometry PG(n—1,q), where q = p* (p a prime), can be
represented by an Abelian group G of order p™* and of type (1, ..., 1). This implies that
every abstract theorem pertaining to the geometry PG(n—1, q) may be translated into a
corresponding result relating to the Abelian group G. Conversely, some of the results
concerning the group G may well be translated into results pertaining to PG(n—-1,q). A
detailed exposé of this relation may be found in [9], pages 328 — 344.
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CHAPTER 2
SOME FINITE PROJECTIVE PLANES
2.1 INTRODUCTION

In this section we explain the methodology that will be followed for the construction of

some finite projective planes in the subsequent sections.

Let V be a 3—dimensional euclidean space over the finite field F. The construction of
finite projective planes is based on the following fact regarding the 2—dimensional
subspaces of V.

If U and W are 2—dimensional subspaces of V,

then U=W or dim(UnW)=1.

For each x € V~{0}, let [x]*: = {[u] | we x"}, where x" is the orthogonal complement
of x in V. [x]* isalinein PG(V). Now, for distinct [x], [y] € PG(V), we have that
x* =y*: 3 [x] = [y] - a contradiction. So we must have dim(x*ny*)=1; hence [x]"

intersects [y]* in the point {[z] | z € x* ny*}.

Thus, if we consider the set PG(V) together with the lines £: = {[x]* | x € V~{0}},

then :

(a) For each distinct pair [x], [y] € PG(V), [x], [y] € [2]*, where <z>: = <x,y>".

(b) From the above we have that either [x]* = [y]* or [x]* intersects [y]" ina
unique point. '

(c) The elements [1,0,0], [0,1,0], [0,0,1] and [1,1,1] cannot lie in any one element of
L.
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Thus, the pair (PG(V), £) is a projective plane.

In the sequel we will use this method to construct finite projective planes associated with
sets PG(2,3), PG(2,4), PG(2,5) and PG(2,8). The chapter is concluded by providing an
algorithm to construct an isomorphism between planes which are obtained by renumbering

the elements of PG(V).
2.2 A PROJECTIVE PLANE FOR PG(2,3)

Let V(3,3) be a vector space over the field F = 7, with addition and multiplication
defined by

+ 0 1 2
0 0 T 2
1 1 2 0
2 2 0 T
and
0 T 2
0 0 0 0
T 0 1 2
0 2 1 ,
respectively.
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*
Choosing representatives for the equivalence classes of V  we obtain;

[1,0,0], [0,1,0], [1,1,0], [1,2,0,], [0,0,1], [1,0,1], [1,0,2], [0,1,1], [0,1,2], [1,1,1], [1,1,2],
[1,2,1], and [1,2,2].

Numbering the equivalence classes from 1 to 13 and determining the orthogonal

complement of each, we have;

i [x], [x] *

1 [1,0,0] {2,5,8,9}

2 [0,1,0] | {1,5,6,7}

3 [1,1,0] {4,5,12,13}
4 [1,2,0] {3,5,10,11}
5 [0,0,1] {1,2,3,4}

6 [1,0,1] {2,7,11,13}
7 [1,0,2] {2,6,10,12}
8 [0,1,1] {1,9,11,12}
9 [0,1,2]  {1,8,10,13}
10 [1,1,1] {4,7,9,10}
11 [1,1,2] {4,6,8,11}
12 [1,2,1] {3,7,8,12}
13 [1,2,2] {3,6,9,13}

With the third axiom of 1.2.13 satisfied by the set {1,2,5,10}, it is easily verified that we

have a projective plane of order 3.
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2.3 A PROJECTIVE PLANE FOR PG(24)

Let F be the field F = {0, 1, x, y}, where y = x+1, with addition and multiplication
defined by

+ 0 1 X y
0 0 1 x y
1 1 0 y X
x X y 0 1
y y X 1 0
and

0 1 X y
0 0 0 0 0
1 0 1 X y
x 0 X y 1
y 0 y 1 x ,
respectively.

*
In this case V has 63 elements and, since F has 3 nonzero scalars, we have 21
equivalence classes. Again choosing representatives for the distinct classes, numbering

them from 1 to 21, and determining their orthogonal complements we obtain:
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i | [x], [x] *

1 [1,0,0] {2,3,6,20,21}

2 [0,1,0] {1,3,5,10,11}

3 [0,0,1] {1,2,4,8,9}

4 [1,1,0] {3,4,7,14,18}

5 [1,0,1] {2,5,7,13,17}

6 [0,1,1] {1,6,7,12,19}

7 [1,1,1] {4,5,6,15,16}

8 [x,1,0] {3,9,15,17,19}
9 [1,%,0] {3,8,12,13,16}
10 [x,0,1] {2,11,16,18,19}
11 [1,0,x] {2,10,12,14,15}
12 [x,1,1] {6,9,11,13,14}
13 [x,1,%,] {5,9,12,18,21}
14 [1,1,x+1] {4,11,12,17,20}
15 [x,x+1,1] {7,8,11,15,21}
16 [x,1,x+1] {7,9,10,16,20}
17 [1,x,1] {5,8,14,19,20}
18 [1,1,%] {4,10,13,19,21}
19 [x+1,1,1] {6,8,10,17,18}
20 [0,1,%] {1,14,16,17,21}
21 [0,1,x+1] {1,13,15,18,20}

With {1,2,3,7} satisfying PP3 of 1.2.13 we again have a projective plane, this time of

order 4.
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2.4 A PROJECTIVE PLANE FOR PG(2,5)

Let F be the field F = ”5 with addition and multiplication defined by

+ 0 T 2 3 i
0 0 1 2 3 4
T T 2 3 i 0
2 2 3 i 0 T
3 3 i 0 T v
Y 4 0 T 2 3
and

0 I 2 3 1
1) 1) 0 0 0 0
T 0 T 2 3 i
2 0 2 i 1 3
3 0 3 T 1 2
i 0 1 3 2 1 ,
respectively.

*
Numbering the 31 equivalence classes of V' and determining their orthogonal
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complements, we obtain:

i [x], [x].*

1 [1,0,0] {2,3,11,19,22,24}
2 [0,1,0] {1,3,4,8,16,17}

3 [0,0,1] {1,2,5,7,9,18}

4 [1,0,1] {2,17,21,25,27,28}
5 [1,1,0] {3,18,20,26,27,31}
6 [1,1,1] {10,13,15,17,18,19}
7 [2,1,0] {3,7,13,23,25,29}
8 2,0,1] {2,8,15,23,26,30}
9 [3,1,0] {3,9,10,12,28,30}
10 [3,1,1] {6,9,16,19,25,26}
11 [0,2,1] {1,11,12,15,25,31}
12 [1,2,1] {9,11,14,17,20,23}
13 [1,3,1] {6,7,17,24,30,31}
14 [1,1,2] {12,16,18,21,23,24}
15 [1,1,3] {6,8,11,18,28,29}
16 [3,0,1] {2,10,14,16,29,31}
17 [4,0,1] {2,4,6,12,13,20}
18 [1,4,0] {3,5,6,14,15,21}
19 [0,4,1] {1,6,10,22,23,27}
20 [1,4,1] {5,12,17,22,26,29}
21 [1,1,4] {4,14,18,22,25 27}
22 [0,1,1] {1,19,20,21,29,30}
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b,

23

24
| 25
26
27
28
29
30
31

[2,1,1]
[0,3,1]
[2,1,3]
[2,3,1]
[4,1,1]
[1,2,4]
[3,4,1]
[1,2,3]
{2,3,4]

{7,8,12,14,19,27}
{1,13,14,24,26,28}
{4,7,10,11,21,26}
{5,8,10,20,24,25}
{4,5,19,23,28,31}
{4,9,15,24,27,29}
{7,15,16,20,22,28}
{8,9,13,21,22,31}
{5,11,13,16,27,30}

Here the set {1,2,3,6} satisfies PP3 of 1.2.13 and we have a projective plane of order 5.

2.5 A PROJECTIVE PLANE FOR PG(2,7)

Let F bethefield F=17 . with addition and multiplication defined by

+ 0 1 2 3 i 5 6
0 0 1 2 3 1 5 6
1 1 2 3 g 5 6 0
2 2 3 3 5 6 0 1
3 3 i 5 6 0 1 2
7 g 5 6 0 T 2 3
5 5 6 0 1 2 3 g
6 6 0 T 2 3 g 5
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0 1 2 3 1 5 6
0 0 0 0 0 0 0 0
T 0 1 2 3 1 5 6
2 0 2 i 6 1 3 5
3 0 3 6 2 5 1 1
1 0 1 1 5 2 6 3
5 0 5 3 1 6 { 2,
A I 1) S N — 3 3 i
respectively.

Following the same procedure as in the preceding sections, we obtain:

i [,

b,

—

[1,0,0]
[0,1,0]
(1,1,0]
[0,1,1]
[0,0,1]
[1,0,1]
[1,1,1]
[1,2,1]

© 0o O O s N

[1,2,0]

{2,4,5,49,50,51,52,53}
{1,5,6,44,45,46,47,48}
{5,18,19,23,36,40,42,55}
{1,14,20,34,37,40,53,57}
{1,2,3,9,10,12,17,19}
{2,18,21,26,29,34,43,48}
{16,19,24,28,33,38,48,53}
{13,17,22,27,32,40,48,52}
{5,16,17,25,37,39,43,56}
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i [x], [x].*

10 [2,1,0] {5,11,12,20,21,22,38,54}
11 [3,1,1] {10,13,21,31,36,39,46,53}
12 [3,1,0] {5,10,14,24,27,29,35,41}
13 [4,1,1] {8,11,17,23,29,30,45,53}
14 [6,3,4] {4,12,25,28,29,31,40,44}
15 [1,2,3] {15,17,34,35,36,38,44,51}
16 [5,1,1] {7,9,27,42,43,44 53,54}
17 [5,1,0] {5,8,9,13,15,26,28,57}

18 [6,1,1] {3,6,22,25,26,35,53,55}
19 [6,1,0] {3,5,7,30,31,32,33,34}

20 [2,3,4] {4,10,32,38,43,45,55,57}
21 [2,3,5] {6,10,11,28,34,42 52,56}
22 [2,3,6] {8,10,18,22,33,37,44,50}
23 [3,4,5] {3,13,29,37,38,42,47,49}
24 [3,5,6] {7,12,24,26,36,37,45,52}
25 [4,5,6] {9,14,18,30,38,46,52,56}
26 [5,3,2] {6,17,18,24,31,49,54 57}
27 [6,3,2] {8,12,16,27,34,46,49,55}
28 [6,5,3] {7,14,17,21,28,47,50,55}
29 [4,2,3] {6,12,13,14,23,33,43,51}
30 [1,1,2] {13,19,25,34,41,45 50,54}
31 [1,1,3] {11,14,19,26,32,39,44,49}
32 [1,1,4] {8,19,20,31,35,43,47,52}
33 [1,1,5] {7,19,22,29,46,51,56,57}
34 [1,1,6] {4,6,15,19,21,27,30,37}
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b

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

[2,1,1]
[3,4,1]
[4,5,2]
(3,1,3]
[5,1,5]
[6,1,6]
[1,4,1]
[6,1,4]
(5,1,2]
[1,0,2]
[1,0,3]
{1,0,4]
[1,0,5]
[1,0,6]
[0,1,2]
[0,1,3]
[0,1,4]
[0,1,5]
{0,1,6]
(6,2,3]
[6,1,5]
(4,5,1]
[1,2,5]

{12,15,18,32,41,47,53,56}
{3,11,15,24,40,43,46,50}
{4,9,22,23,24,34,39 47}
{7,10,15,20,23,25,48,49}
{9,11,31,37,41,48,51,55}
{3,4,8,14,36,48,54,56}
{12,30,35,39,42,48,50,57}
{3,16,21,23,41,44,52,57}
{6,9,16,20,29,32,36,50}
{2,14,15,16,22,31,42,45}
{2,13,20,24,30,44,55,56}
{2,11,25,27,33,36,47,57}
{2,23,28,32,35,37,46,54}
{2,6,7,8,38,39,40,41}
{1,23,26,27,31,38,50,56}
{1,22,28,30,36,41,43,49}
{1,15,29,33,39,52,54,55}
{1,8,21,24,25,32,42,51}
{1,4,7,11,13,16,18,35}
{10,16,26,30,40,47,51,54}
{3,18,20,27,28,39,45,51}
{9,21,25,33,35,40,45,49}
{4,17,20,26,33,41,42,46}

Here the set {1,2,5,7} satisfies PP3 of 1.2.13 and we have a projective plane of order 7.
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2.6 A PROJECTIVE PLANE FOR PG(238)

Let F be the field F = {0, 1, x, Vo ¥p¥o¥, ys}, where y, = x2,
y,=x+1, y, = x24x, y,= x24-x+1, y, = x2+1, with addition and multiplication defined
by:
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and

0 1 x yl y2 y3 y4 y5
0 0 0 0 0 0 0 0 0
1 0 1 x yl y2 y3 y4 y5
x 0 N yl y'2 y3 y4 y5 1
Y, 0 = v, Y, Y, Y, 1 X
y2 0 y2 y3 y4 y5 ] x yl
y3 0 y3 }’4 y5 = % y1 y2
Y, 0 Y, ¥ 1 x Y, y, Y,
Y, 0 Y, 1 x Y, s Y, Y
respectively.

Again we find the orthogonal complements of the 73 equivalence classes to obtain:
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Sy

"o o ~I O ot b 0 N e

I N N R N I - T S S e S e S o S SO o
= W N = O O 00 =~ O Ol bW N = O

[1,0,0]

[1,1,0]

[1,1,1]

[0,1,1]

[0,0,1]

(1,0,1]

[0,1,0]
[x,x2,0]
[x,x+1,0]
[x,x2+x,0]
[x,x3+x+1,0]
[x,x2+1,0]
[x,x%x+1]
[x,%x2,x*+x]
[x,x%x2+x+])
[x,x2x2+1]
(x,x21]
[x,x+1,1]
[x,x24+x,1]
[x,x2+x+1,1]
[x,x2+1,1]
[0,x,x7]
[0,x,x+1]
[0,%,x%+x]

{4,5,7,22,23,24,25,26,27}
{2,3,5,39,40,41,42,43 44}
{2,4,6,14,18,59,63,67,69}
{1,3,4,34,35,36,37,38,45}
{1,2,7,8,9,10,11,12,73}
{3,6,7,46,47,48,49,50,51}
{1,5,6,28,29,30,31,32,33}
{5,45,51,68,69,70,71,72,73}
{5,12,21,38,50,64,65,66,67}
{5,11,20,37,49,60,61,62,63}
{5,10,19,36,48,56,57,58,59}
{5,9,18,34,47,52,53,54,55}
{15,18,27,32,36,39,50,61,73}
{3,14,21,26,31,55,56,60,73}
{13,25,30,38,44,49,54,59,73}
{20,24,29,35,43,48,53,67,73}
{19,23,28,34,42,46,63,66,73}
{3,13,12,18,24,28,58,62,71}
{11,17,25,28,36,40,51,55,67}
{10,16,26,28,37,44,50,53,60}
{9,14,27,28,43,45,49,57,65)
{1,27,44,46,52,56,62,67,72}
{1,17,26,43,47,59,61,66,71}
{1,16,18,25,42,48,60,65,70}
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b,

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

[0,x,x2+x+1]
[0,x,x2+1]
[0,x,1]

[x,0,x7]
[x,0,x+1]
[x,0,x2+Xx]
[x,0,x2+x+1]
[x,0,x%+1]
[x,0,1]
[x,x+1,x+1]
[x,x%,x%
[x,x2+x,x2+1]
[x,x24x+1,x+x+1]
[x,x241,x2+1]
[x,x,x%]
[x,x,x+1]
[x,%,x2+x]
[x,%,x34x+1]
[x,x,x2+1]
[x,x,1]

[x,1,1]

[x,x2,x]
[x,x+1,x]
[x,x2+x,x] .

[x,x2+x+1,x]

{1,15,19,24,41,49,55,64,69}
{1,14,20,23,40,50,54,58,68}
{1,13,21,22,39,51,53,57,63}
{7,17,18,19,20,21,33,44,45}
{7,16,32,38,43,55,58,63,72}
{7,15,31,37,42,54,57,67,71}
{7,14,30,36,41,53,62,66,70}
{7,13,29,34,40,56,61,65,69}
{7,28,35,39,52,59,60,64,68}
{4,12,17,32,42,49,53,56,68}
{4,16,33,40,47,57,62,64,73}
{4,11,13,19,31,43,50,52,70}
{4,10,20,30,39,46,55,65,71}
{4,9,15,29,44,51,58,60,66}

{2,13,27,33,37,48,55,66,68}
{2,19,26,32,35,51,54,62,65}
{2,25,31,45,46,53,58,61,64}
{2,17,24,30,34,50,57,60,72}
{2,16,21,23,29,36,49,52,71}
{2,15,20,22,28,38,47,56,70}
{4,8,21,28,41,48,54,61,72}

{6,17,22,37,41,52,58,65,73}
{6,12,23,35,44,55,57,61,70}
{6,11,16,24,39,45,54,56,66}
{6,10,15,21,25,34,43,62,68)
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b,

50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

[x,x?+1,x]

[x,1,x]

[x,x+1,x7
[x,x+1,x%+x]
[x,x+1,x24x+1]
[x,x+1,x2+1]
[x,x24x,x+1]
[x,x24+x,x 2 +x+1]
[x,x2+x,x2+1]
[x,x2+x,x7
[x,x24+x+1,x7
[x,x24+x+1,x+1]
[x,x?+x+1,x%+x]
[x,x2+x+1,x241]
[x,x2+1,x7
[x,x2+1,x+1]
[x,x2+1,x%+x]
[x,x2+1,x34x+1]
[x,1,x7]

[x,1,x+1]
[x,1,x%+x]
[x,1,x24+x+1]
[x,1,x2+1]

[x,1,0]

{6,9,13,20,26,36,42,64,72}
{6,8,19,27,38,40,53,60,71}
{12,22,33,36,43,46,54,60,60}
{12,16,20,27,31,34,41,51,59}
{12,15,26,30,40,45,48,52,63}
{12,14,19,25,29,37,39,47,72}
{11,14,22,32,34,44,48,64,71}
{11,21,27,30,35,42,47,58,69}
{11,18,26,29,38,41,46,57,68}
{3,11,15,23,33,53,59,65,72}
{10,14,24,33,38,42,51,52,61}
{10,13,23,32,41,45 47,60,67}
{10,18,22,31,35,40,49,66,72}
{3,10,17,27,29,54,63,64,70}
{9,25,33,35,41,50,56,63,71}
{9,21,24,32,37,40,46,59,70}
{9,17,23,31,38,39,48,62,69}
{3,9,16,19,22,30,61,67,68}
{8,26,33,34,39,49,58,67,70}
{3,8,20,25,32,52,57,66}
{8,24,31,36,44,47,63,65,68}
{8,18,23,30,37,43,51,56,64}
{8,22,29,42,45,50,55,59,62}
{5,8,13,14,15,16,17,35,46}
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With the set {1,3,5,7} satisfying PP3 of 1.2.13 we have a projective plane of order 8.

2.7 ISOMORPHIC PROJECTIVE PLANES

A permutation ¢ on PG(V) is an isomorphism from (PG(V),[) to (PG(V),,C') if
0f) el , forall Lel

It is easily seen that a renumbering of the equivalence classes will in each case result in a
different projective plane. This renumbering would necessarily define a bijection which
preserves the orthogonality relation between vectors, i.e. if # is the bijection, then

x.y =0 implies &x).4(y) = 0. In concluding this chapter we provide a general
procedure, which depends solely on the manipulation of the associated incidence matrices,

to establish the required bijection between two projective planes of the same order.

An (r,5)-interchange operation on an nxn incidence matrix A is the operation which
interchanges rows r and s of A toobtain A’, followed by the interchange of columns r
and s of A’ toobtain A”. The sequence of operation on the rows and columns in this
definition is immaterial since:

if E(r,s) is the matrix obtained from the nxn identity matrix by interchanging
rows r and s, then A’ = E(r,8).A (effecting the row operation on A), and
A” = A’.E(r,s) (effecting the column operation on A’). Hence A” = [E(1,5).A].E(1,s).
But, since matrix multiplication is associative, we have that A” = E(r,s).[A.E(r,s)] i.e.

the column operation may be executed before the row operation.
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2.6.1 Example
010
Let A= {100
001].

Executing the (2,3)—interchange operation we obtain:

010
A’ = [001]|, after row operation on A,
100
001
and A” = |010], after column operation on A’.
100

On the other hand, reversing the order of operations we obtain:

001
A’= 1100(, after column operation on A,
010
001
and A” = |0 10|, after row operation on A’.
100

Two incidence matrices are said to be equivalent if one can be obtained from the other by a

sequence of (r,s)—interchanges, for a finite sequence of r and s values.
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2.6.2 Algorithm: For any projective geometry (S,£) (as defined in 1.2.13) such that

card (S) = card (£) there exists an incidence matrix I(S,L).

Without loss of generality, assume that S = {1,2,3,...,n}.
Define the bijection f:S-£ recursively as follows:
consistently apply the rule that;

if s isin f(r), then r must bein f(s).

Step 1:

Let (1) be an arbitrary element of £

and let 1(S,£)(k,1) = I(S,L)(1,k)

= 1,if k € {(1)

= 0, otherwise (where I(S,C)(i,j) denotes the ij—th entry of I(S,[)).
Step 2:

For each k€ f(1) select f(k) such that

@) lef(k) '

(ii) f(k) # f(k’) if k#k’

(iii)  if I(S,L)(k,s) = 1, then s must bein f(k)

(iv)  if I(S,L)(s,k) =1, then k must bein f(s).
Now fill in row and column k of I(S,£) as prescribed in step 1.
Step 3:

For each s € f(k), where k € f(1), proceed as in step 2.
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2.6.3 Example:

Let [l = {(1,2,4), (2,3,5), (3,4,6), (4,5,7), (5,6,1), (6,7,2), (7,1,3)} and suppose
f(1) = (2,3,5).

( Then, by Step 1, above,

with the remaining entries still to be ascertained in steps 2 and 3.

Now if k=2, 3, or 5, then f(k) = (1,2,4), (5,6,1), or (7,3,1). Choosing (2) = (5,6,1)
we have, by the definition of f above, that f(5) = (1,2,4). Therefore (3) = (7,3,1).
Thus

o
(=R e B = ]

o o

o ©
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Since f(5) = (1,2,4) it follows that f(4) must contain 5. Therefore f(4) = (2,3,5),
(4,5,7), or (5,6,1). But f(4) # (2,3,5) = f(1) and £(4) # (5,6,1) = f(2). Hence

f(4) = (4,5,7), so that a = 1, b1 =a = 0, and c =a= 1. Furthermore,

f(2) = (5,6,1) » f(6) must contain 2. Therefore f(6) = (1,2,4), (2,3,5), or (6,7,2).
However, f(5) = (1,2,4) and (1) = (2,3,5), so that f(6) = (6,7,2). Thus

b=¢c=b =1.
2 2 3

Finally, since f(7) must contain 3 and 6 we have that £(7) = (3,4,6), so that

0 1 1 0 1 0 0

1 0 0 0 1 1 0

1 0 1 0 0 13
I= 0 0

—
—
Ll (<= § L
S M
o O O
s
—

2.6.4 Algorithm: Let P1 and P2 be projective planes on the sets Sl and S2 of the same
order q. If the associated incidence matrices are equivalent, then Pl and P2 are

isomorphic.
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Let (sl,rl), (sz,rz),..., (sk,rk) be the interchanges required to establish the equivalence
between the incidence matrices Il and 12 of Pl and P2, respectively. Execute the
permutations (sl,rl), (32,r2),..., (sk,rk) on the ordered set {1,2,3,...,n}, n> q, to obtain
{ppyp }

For example, if the interchanges were (2,3), (5,3) and (4,2), then the permutations on
the ordered set {1,2,3,4,5,6} will sequentially be:

1234560 (2:3) (132456) (5:3) n3sa26 (42) (145326},
Define now the map 4: 52 - Sl, &i) = P In the above example ¢ will be the
permutation (2,4,3,5). It is easily seen that @ is a bijection between the points and lines

of P and P.
1 2

2.6.5 Example: For the numbering
1: = (1,0,0), 2: =(0,1,0),
3: = (1,1,0), 4: = (0,0,1),
5: = (1,0,1), 6: =(0,1,1),
7: =(1,1,1), i.e. for
£2 = {(1,2,3), (1,4,5), (1,6,7), (2,4,6), (3,4,7), (2,5,7), (3,5,6)}, we have the

incidence matrix
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1 0 1 0
1 1 0 0
1 0 0 1
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

-
o O O
—

o
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I we obtain:

after the (4,5) interchange,



and

(== e A e ]

(=] § | <~

—4] —

—
—

o O O
o

after the (5,6) interchange,

—
o O
o o o o

—

0 0 = J, after the (3,6)
0 1 1 interchange.

0 0 1 1

0 1 1 0Y |

Sequentially executing the permutations (4,5)—, (5,6)— and (3,6)— on the ordered set

{1,2,3,4,5,6,7} we obtain:

(1,234,567 (4, 52 {1,2,35,4,6,7} (5 6; (1,235,647 (3, 6; {1,2,4,5,6,3,7}.

Hence the required bijection will be the permutation (3,4,5,6}. In executing this

permutation 6 = (3,4,5,6) on £2 we obtain:
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(2,4,6) = (2,5,3)
#1,4,5) = (1,5,6)
6(3,4,7) = (4,5,7)
0(1,2,3) = (1,2,4)
#2,5,7) = (2,6,7)
#1,6,7) = (1,3,7)
6(3,5,6) = (4,6,3)
ie. 0:[:2-»[:1. Similarly, for 6-'= (6,5,4,3) we have §!: £1-+£2. Hence # is an
isomorphism between the two projective planes Pl and P2 represented by the incidence

matrices I and J, repectively.
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CHAPTER 3
TWO PROJECTIVE GENERAL LINEAR GROUPS

In this chapter we calculate the structural constants of the centres of the group rings
PGL(3,2) and PGL(3,3). This information is part of a collection required for an

investigation into the group—theoretic nature and implications of the structural constants.

Secondly, no text on group rings explicitly provided this information, although the centre
reflects many of the intrinsic group theoretic properties of the groups themselves. This is
a major consideration in the works of Arad et al on simple groups (see [1], [2], [3], [4]).

The work therefore complements the existing texts for the aforementioned purpose.

If F isafield, G a finite group, and {xl, - xt} a basis for the centre of the group ring,
Z(FG), as a vectorspace over F, then t equals the class number and each x_ is
1

completely described by the conjugacy classes of G. Furthermore, since the product maps

f. :Z(FG) - Z(FG), y -+ xy

1

are F-linear maps, there exists a txt matrix A _such that
1

[xy] = Aly]

where [v] denotes the co—ordinate vector of v with respect to the ordered basis

{xx’ vy xt} found on page 2. The entries of the matrices Ai, which are called the
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structural constants of the group, are solely dependent on the properties of the group and
there exists a well established formula, using the characters of the group, to determine

them.

In this chapter all the necessary detail required to establish these matrix entries are
provided, and the entries are calculated for the groups PGL(3,2) and PGL(3,3) (the first
two groups within the family PGL(V) which conforms to the construction methods).

Due to the large orders of these groups computer algorithms were used to determine some

of this information.
3.1 PGL(3,2)

Let V be a 3—dimensional vector space over the field F = Z,. In chapter one (see
example 1.2.7) we constructed the projective plane PG(2,2) consisting of the finite set

S = {1,2,3,4,5,6,7}, with the family

£ =[{1,2,4}, {2,3,5}, {3,4,6}, {4,5,7}, {5,6,1}, {6,7,2}, {7,1,3}] of subsets of S. Since F
has no automorphisms other than the identity, we have [[L(V):GL(V)] = 1. Therefore
the general linear group GL(V) contains all the colineations of PG(2,2). Furthermore,
since the identity is the only nonzero scalar in F, we have

|Z(GL(V)| =1, sothat |GL(V)| = |PGL(V)|

i.e. GL(V)=PGL(V). In this case the projective general linear group PGL(V)
therefore contains all colineations of the plane PG(2,2).

By 1210 [PGL(V)[ =2°C)/? & (2141)

1—1

= 168
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Moreover, since ged(q—1,n) = ged(1,3) = 1, we have, by 1.2.10, that
IPSL(V)| = |[PGL(V)| ie. PGL(V) = PSL(V). Thus, by 1.2.12 PGL(V) is simple.

PGL(V) is 2—transitive on PG(2,2), by 1.2.11. That it is not 3~transitive is readily seen
from the lines of PG(2,2). For example, there is no colineation that can take the subset
(line) {2,3,5} to {2,3,7}. This also follows readily from the definition of the finite
projective plane. For suppose that G, the group of permissible permutations on a
projective geometry (S,C) is 3—transitive and £€ £ is such that {abe}ct If d#c,

then there exists a ¢ € G such that

(o(2),0(b),o(c)) = (a,b,d)

But then there exists an £ € £ such that {a,b,d} C # and hence [£n¢] > 2, violating
PP2 of 1.2.13.

In determining the conjugacy classes of PGL(V) we obtain six distinct classes. The order,

together with a representative of each class, is presented below:

I Class Class Respresentative Class order
1. Kl identity 1

2. K (2,4)(5,6) 21

3. K, (2,7,6)(4,3,5) 56

£ K, (2347)(56) 42

5. K (1,2,3,4,5,6,7) 24

6. K (1,7,6,5,4,3,2) 24

http://etd.uwc.ac.za/



— 46 —

From Arad, et al ([3]) we obtain the character table of PGL(V):

I 1 2 3 4 5 6
Class Kl K2 K3 K4 Ks K6
|C(D)| 168 8 3 4 1 7
X, 1 1 1 1 1 1
X, 3 -1 0 1 w w
X, 3 o e 1 w w
X, 6 1 2rcr—0yy-Ox o=l

X5 7 -1 1 -1 0 0
X 8 0 -1 0 1 1

where C(I) is the centralizer of the class numbered I and w= —1FV 71
2

Before proceeding to determine the structure constants of PGL(3,2), consider the
following argument;

Let G be a finite group with Kl, veey Kn its distinct conjugacy classes. For a fixed

e K o 53, there are n? structure constants cij 0 since we have n choices for i and n
choices for j. This must be done for each of the n con jugacy classes, 8o that we have a
total of n’.n = n? structure constants. Of course, not all of the structure constants are

distinct, particularly since multiplication of conjugacy classes is commutative

ie. ¢ ,=c
it~ il
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Hence, by the above argument, PGL(3,2), consisting of 6 distinct conjugacy classes, will
have a total of 6° = 216 structure constants. We will use Burnside’s formula (1.1.4) to
calculate the constants. For example.

o VKK yx (K g (K )5 TKY
492 TPGL(3,2) X x (1) ’

where |K4|, |K3| are the orders of the conjugacy classes numbered 4 and 3 respectively,

X(K4), X(Ka) are the values of the character X on the classes K4 and K3, respectively,

X (K 2 ) is the complex conjugate of the value of X on K2, and X(l) is the value of X
on the identity i.e. on Kl.

Hence we obtain;

=42.56_[1.1.1+1.0.(—1)+1.0.(—1) 0.0.2

- +
43,2 168 1 3 3 6

(—1).1.(—1)+0.(—1).0]
7 8

=16 =c_ , i.e. eachelement of K occurs 16 timesin K K .
342 2 4 3

. 24.42 1.1.1+w.1.0+w.

1
54,3 168 1 3 3 6
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Finally, we present the structure constants of PGL(3,2) in matrix form, as follows ;

the matrix A { will have as its ij-th entry, the structure constant c 0
ij B

ij1

COoONOoOOO

COCO~O
OCOOOMOO
1<
OO OCOO
OO OoOOO
L J

r 1
COOOO M

For example, the entry in the third row and fourth column of the above matrix is the
structure constant c which is of course equal to ¢ ar etc.
12 19
From A“l we see that the conjugacy classes Kl, K2, Ka and K4 all contain their own
ij 1

‘inverses, whilst K5 consists of the inverses of KG.

Pt et
WD O
00O S

ij2

1]
OCOoOOoOOHHO
O O 0O OO0 W =

—

OONDOOO
O QWO OO
oo O

[ e

b
D ONOD =
—
AN O

DO Ww D

ij3

WWwoDZTwo
WWwhoOowWwo
W w

r 1
COO=OO
—_

— =
(o No Mo Na Ne o Nen)
bt
o DO

g

il
co~ocoo
N N X =)
00O W00 D
O 00D
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— N
NN g

ij5

et p—t
QOB ~JO

>

Il
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OROOCOoOO
N O~J~JO O
— et O
OHOIIO

[

— N
NN R go
fu—y

ije

>

il
1) L
= ===
OO
O~
OO0
= e O =

=

3.2 PGL(3,3)

In 2.1 we constructed a projective plane of order 3, consisting of the set

S = {1,2,3,4,5,6,7,8,9,10,11,12,13} and the family of subsets £ = [{2,5,8,9}, {1,5,6,7},
{4,5,12,13}, {3,510,11}, {1,234}, {2,7,11,13}, {2,6,10,12}, {1,9,11,12}, {1,8,10,13},
{4,7,9,10}, {4,6,8,11}, {3,7,8,12}, {3,6,9,13}] over the field F = T,.

Since the identity is the only field automorphism on H3 ={0,1,2} we again have that
[FL(V) : GL(V)] =1 i.e. the general linear group GL(V) is the group of all colineations
of PG(2,3). By 1.2.2 the order of GL(V) is

|GLV(3,3)| = 33G-10/2 (8'-1) = 3%(3—1)(3%1)(3%1) = 11 232

i=1
and, since the field ”3 contains two nonzero scalars, the order of the projective general

linear group, PGL(V), is;
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|PGL(3,3)| = 33(3-)/2 1T (311

= 3%(32-1)(3%-1)

= 5616

Again we find that the projective general linear group is the same as the projective special
linear group, PSL(3,3), since |PSL(3,3)| = [ged(2,3)]"!|PGL(3,3)]
= 1-|PGL(3,3)|.

Hence, by 1.2.12 PGL(3,3) is simple. It is 2—transitive by 1.2.11. That it is not
3—transitive is evident. For example, no colineation can take the line {2,5,8,9} to

{2,5,10,11}.

PGL(3,3) has 12 distinct conjugacy classes and a representative of each class, together

with the order of each class are given below:
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Class Class Representative Class order
Kl identity 1
K, (6,7)(8,9)(10,11)(12,13) 117
K3 (2,8,9)(3,10,11)(4,13,12) 104
K, (1,11,13)(2,8,9)(3,4,6)(7,10,12) 624
K (2,5)(8,9)(3,7,4,6)(10,11,13,12) 702
K, (8,9)(1,7,6)(3,13,10,4,11,12) 936
K, (2,9,8,5)(3,12,13,7,4,11,10,6) 702
K8 (2,5,8,9)(3,6,10,11,4,7,13,12) 702
K (1,5,2,6,8,10,11,13,3,7,9,12,4) 432
K (1,58,11,12,13,10,3,7,2,6,9,4) 432
Kll (1,4,12,9,7,3,13,11,10,8,6,2,5) 432
K (1,4,9,6,2,7,3,10,13,12,11,8,5) 432

—
(-]
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The character table of PGL(3,3) is given below:

I 1 2 3 4 5 6 7 8 9 10 11 12
Class K K K K K K K K K K K K
i 2 3 4 5 ] 7 8 9 10 11 12
| C(I)] 5616 48 54 9 8 6 8 8 13 13 13 13
X, 1 1 1 1 1 1 1 1 1 1 1
X, 12 4 3 0 0 1 0 0 -1 -1 -1 -1
X, 13 =3 4 1 1 0 -1 -1 0 0 0 0
X, 16 0 —2 1 0 0 0 0 w w w w
1 2 3 4
X 16 0 -2 1 0 0 0 0 w w w w
5 4 { 2 3
X 16 0 -2 1 0 0 0 0 w w w w
6 3 4 1 2
X 16 0 -2 1 0 0 0 0 w w w w
7 4 2 3 4 1
X8 26 2 -1 -1 2 -1 0 0 0 0 0 0
X9 26 -2 -1 -1 0 1 v v 0 0 0 0
x10 26 S B—— | -1 0 1 v v 0 0 0 0
" 27 3 0 0 -1 0 -1 -1 1 1 1 1
39 -1 -3 0 -1 -1 1 1 0 0 0 0

where C(I) is the centralizer of the class numbered I, w = a+a’+ad, W, = a’+a’+ab,

w, = ai+al'+al? w = o'+t +alt, o = 2™/ B v=p+p% and f= e2™/s,
3 :
PGL(3,3) has 12" = 1728 structure constants. In concluding this chapter we again use

Burnside’s formula (1.1.4) to calculate the constants and present them in matrix form as

before i.e. the matrix A { shall have as its ij—th entry the structure constant ¢ ¢
- ij ij
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[ 1 0 0 0 0 0 0 0 0 0 0 0
0 117 0 0 0 0 0 0 0 0 0 0
0 0 104 o0 0 0 0 0 0 0 0 0
0 0 0 624 0 0 0 0 0 0 0 0
0 0 0 0 702 o0 0 0 0 0 0 0
0 0 0 0 0 936 0 0 0 0 0 0

Aijl = 0 0 0 0 0 0 0 702 o0 0 0 0
0 0 0 0 0 0 72 o0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 432 0

0 0 0. 0 0 0 0 0 0 0 0 432

0 0 0 0 0 0 0 0 432 0 0 0

| 0 0 0 0 0 0 0 0 0 432 0 0

Again the structure constants given in A“l above show that the conjugacy classes
ij
Kl, K2, K3, K4, K5 and K6 all contain their own inverses, whilst K7 consists of the

inverses of Ks, K9 of the inverses of K“, and Kno of the inverses of sz'

http://etd.uwc.ac.za/



ij2 =

L)
o o o] (=] (o) (=4 o (== o o

¥
(=] o (=] (=] (=] o o o (=]

12
16
16
24
48

o O o o o o

45
27
27

o o o o

40
24

o O o o

13
36
27
27

o O o o o o

128
96
96
48
48
48
48

36
48
108
108
54
54
54
54
54
54

24

48
102
96
120
120
48
48
48
48

27
108
108
135

54

54

54

54

54

54

48
40
128
96
192
120
120
48
48
48
48

45
27
108
135
189
108
108
54
54
54
54

24
96
120
120
102
48
48
48
48
48

27

54
54
108
135
108
54
54
54
54

24
96
120
120
48
102
48
48
48
48

27

54
54
108
108
135
54
54
54
54

http://etd.uwc.ac.za/

48
48
48
48
48
48
48
48
48

54
54
54
54
54
54
54

54

48
48
48
48
48
48
48
48
48

54
54
54
54
54
54
54
54

48
48
48
48
48
48
48
48
48

54
54
54
54
54

54
54
54

48
48
48
48
48
48
48
48
48

54
54
54
54
54
54

54
54




L)
(=] (=] o] o o [we) o o

o o O o o o o

o O O ©

—

L O O w o

24
18

O © ©o ©

@ O = O

16
20
20

@ G oo oo

16
16
20

Q@ ©o oo oo o oo

84
90
108
72
72
45
45
45
45

16
80
72
112
72
72
48
48
48
48

http://etd.uwc.ac.za/

18
90
81
126
81

81

54

54

54

54

17
16
72
116
96
80
80
56
56
56
96

~ 55 —

24
18
108
126
138
117
117
72
72
72
72

16
20
112
96
164
120
120
72
72
72
72

18

72
81
117
108
81
54
54
54
54

20

72
80
120
89
89
56
56
56
56

18

72
81
117
81
108
54
54
54
54

20

72
80
120
89
89
56
56
96
56

45
54
72
54
54
27
27
54
27

48
56
72
56
56
32
32
32
32

45
54
72
54
54
27
27
27
54

48
56
72
56
56
32
32
32
32

45
54
72
54
54
54
27
27
27

48
96
72
56
56
32
32
32
32

45
54
72
54
54
27
54
27
27

48
56
72
56
56
32
32
32
32




L]
o (o] =] o o

o O O o o o©

o O o o o o©

]
o o (=} (=] o

[y

[y

16
12
24
15

DD Y O O

o O oo Co

12
15
21
12

@ OO O b © (=~ B = - R = - B

co o oo oo

16
12
72
84
92
78
78
48
48
48
48

16

64
72
104
72
96
48
48
48
48

12
15
84
72
123
90
90
54
54
54
54

20

72
80
120
89
89
56
56
56
56

—56 —

24
21
92
123
171
120
120
66
66
.66
66

20
16
104
120
160
132
96
72
72
72
72

15
12
78
90
120
72
99
54
54
54
54

16
72
89
132
80
80
56
56
56
96

15
12
78
90
120
99
72
54
54
54
54

17
20
96
89
96
80
80
56
56
56
56

http://etd.uwc.ac.za/

48
54
66
54
54
36
36
36
36

48
56
72
56
56
32
32
32
32

48
54
66
54
54
36
36
36
36

48
56
(P
56
56
32
32
32
32

48
54
66
54
54
36
36
36
36

48
56
72
56
56
32
32
32
32

48
54
66
54
54
36
36
36
36

48
56
72
56
56
32
32
32
32




ijo =

L
o o [e==] (=] [ [==] (=]

o O o o

L}
(=] o (=]

ok

o O O o o o o o

[u—y

o © O Gco oo

13
13
13
13
13
13
13
13
13

ww O e O

® o o oo

13

13 .

13
13
13

13
13
13

16

64
72
104
96
72
48
48
48
48

13
13
65
78
104
78
78
78
39
39
39

http://etd.uwc.ac.za/

20

72
80
120
89
89
56
96
56
56

13
13
78
91
117
91
91
52
52
52
52

—57—

20
16
104
120
160
96
132
72
72
72
72

13

13
104
117
143
117
117
78
78
78
78

0 1
17 8
20 16
9 72
89 89
96 132
80 80
80 80
56 56
96 56
56 56
56 56
0 0
13 13
13 13
78 78
91 91
117 117
91 91
91 9
52 52
52 52
52 52
52 52

48
56
72
56
56
32
32
32
32

13

78
52
78
52
52
13
40
13
40

48
56
72
56
56
32
32
32
32

13
13
39
52
78
52
52
40
13
40
40

48
56
72
56
56
32
32
32
32

13
13
39
52
78
52
52
13
40
67
13

48
56
72
56
56
32
32
32
32

13
13
39
52
78
52
52
40
40
13
40




ijio =

ijn=

L]
o [o=] (=] (=] (=] (=] [ o o o

©c O ©O O O o o o o

13
13
13
13
13
13
13
13
13

13
13
13
13
13
13
13
13
13

13
13
13
13
13
13

13.

13

13
13
13
13
13
13
13

13

13
13
65
78
104
78
78
39
78
39
39

13
13
65

78

104
78
78
39
39
78
39

13
13
78
91
117
91
91
52
52
52
52

13
13
78
91
117
91
91
52
52
52
52

— 5H8 —

13
13
104
117
143
117
117
78
78
78
78

13
13
104
117
143
117
117
78
78
78
78

0 0
13 13
13 13
78 78
91 91
117 117
91 91
91 91
52 52
52 52
52 52
52 52
0 0
13 13
13 13
8 78
91 91
117 117
91 91
91 91
52 52
52 52
52 52
52 52

http://etd.uwc.ac.za/

13
13
39
52
78
52
52
40
40
40
13

13
13
39
52
78
52
52
67
13
13
40

13

78
52
78
52
52
40
13
40
13

13
13
39
52
78
52
52
13
40
40
40

13
13
39
52
78
52
52
40
40
13
40

13

78
52
78
52
52
13
40
13
40

13
13
39
52
78
52
52
13
13
40
67

13
13
39
52
78
52
52
40
40
40
13




ijiz =

1
[ (=) o o o (=] (=] o < o (=]

13
—t

13
13
13
13
13
13
13
13
13

13
13
13
13
13
13
13
13

13
13
65
78
104
78
78
39
39
39
78

http://etd.uwc.ac.za/

13
13
78
91
117
91
91
52
52
52
52

— 50 —

13
13
104
117
143
117
117
78
78
78
78

0 0
13 13
13 13
78 78
91 91
117 117
91 91
91 91
52 52
52 52
52 52
52 52

13
13
39
52
78
52
52
13
40
40
40

13
13
39
52
78
52
52
40
67
13
13

13
13
39
52
78
52
52
40
13
40
40

13

78
52
78
52
52
40
13
40
13




—60 —

REFERENCES

[1] Arad Z, On products of conjugacy classes and irreducible characters in finite groups,
Proc. Symp. Pure Math. 47 No.2 (1987), 3-9.

(2] Survey on table algebras and applications to finite group theory, Ring
Theory 1989, 96—-110 Israel Math. Conf. Proc., 1, 1989.

[3] and Herzog M, Lecture notes in Mathematics, Volume 1112, Products of
conjugacy classes in groups, Springer—Verlag, 1985.

[4] ‘ and Lipman—Gutweter, H, On products of characters in finite groups.
Houston J. Math. 15 (1989), no.3, 305—326.

[5] Aschbacher Michael, The Finite Simple Groups and their classification, Yale
Mathematical Monographs 7, Yale University Press, 1980.

[6] Atkins P.W., Child M.S. and Phillips C.S.G, Tables for Group Theory, Oxford
University Press, 1970.

[7] Biggs N.L. and White A.T, Permutation groups and Combinational structures,
Cambridge University Press, 1979.

[8] Burnside W, The Theory of Groups of Finite Order, second edition, Cambridge
University Press, 1911.

[9] Carmichael Robert D, Introduction to the Theory of Finite Groups, Dover
Publications, 1956.

[10] Chillag D. and Herzog M, On the length of the conjugacy classes of finite groups, J.
Algebra 131 (1990) 110-125.

[11] Curtis Charles W. and Reiner Irving, Representation theory of Finite Groups and
Associated Algebras, John Wiley & Sons, 1962.

http://etd.uwc.ac.za/



[12]
[13]

[14]
[15]

[16]
[17]
[18]
[19]
[20]

[21]
[22]
[23]

(24]
(25]

[26]

—-61—

Dembowski P, Finite Geometries, Springer—Verlag, 1968.
Greub Werner, Linear Algebra, fourth edition, Springer—Verlag, 1975.

Green J.H, The characters of the finite general linear groups, Trans. Amer. Math.
Soc. 80 (1955), 402—447.

Gupta S.C. and Kapoor P.K., Fundamentals of Applied Statistics, 3rd Edition,
S.Chand and Sons, 1987.

Hughes D.R. and Piper F.C, Projective Planes, Springer—Verlag, 1973.

Hungerford Thomas W, Algebra, Springer—Verlag, 1974.

James G.D, The irreducible representations of the finite linear groups, Proc. London
Math. Soc. (3) 52 (1986), 236—268.

Ki Hang Kim and Roush Fred W, Applied Algebra, Ellis Horwood, 1983.

Lang Serge, Algebra, Addison—Wesley, 1977.

Lederman Walter, Introduction to Group Characters, Cambridge University Press,
1977.

-, Introduction to the Theory of Finite Groups, Oliver and

Boyd, 1961.

Mackey George W, Unitary Group Representations in Physics, Probability, and
Number Theory, Benjamin—Cummings, 1978.

Noble B. and Daniel W, Applied Linear Algebra, Prentice Hall, 1977.
Passman D.S, Permutation groups, Benjamin, 1968.

Robinson D.J.S, A Course in the Theory of Groups, Springer—Verlag, 1982.

http://etd.uwc.ac.za/



—-62—

[27] Rotman J.J, An Introduction to the Theory of Groups, third edition, Wm. C.
Brown, 1988.

[28] Winter David J, The Structure of Fields, Springer—Verlag, 1974.

http://etd.uwc.ac.za/



	Title
	Contents
	Abstract
	Chapter 1 Preliminaries
	Chapter 2 Some Finite Projective Planes
	Chapter 3 Two Projective General Linear Groups
	References



