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Abstract

Using the complete genome, Saccharomyces cerevisiae, which duplicated after its

speciation fuom Kluyveromyces lactics, a dataset of 119 putative S. cerevisiae - K.

lactis ortholog-pairs was constructed. S. cerevisiae paralogous pairs that are likely to

have duplicated during the whole genome duplication of S. cerevisiae were obtained

and the approach taken in our previous work (Nembaware et al., 20OZ), was repeated

to test whether the presence of a paralogue in S. cerevisiae had an effect on the rate

of sequence divergence of the 119 pairs of orthologous genes. We found, however,

that substitutions at synonymous sites had reached saturation and this prevented us

from being able to repeat the previous finding with S. cerevistae and K. lactis . From

this study a publicly available web-server (http://hamlyn.sanbi.ac.zal-victoria) that

automates the calculation of Ka:Ks values given a pairs homologous CDS sequences

is presented.

The second part of this work consisted of clustering a protein set from 15 completely

sequenced genomes based simply on results of BLAST homology searches.

Observations from this study will contribute to future work on and the creation of a

database of orphan genes.
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1. Literature Review

1.1 What is gene duplication?

Gene duplication is a mutation that results in identical copies of a gene thus increasing

the number of copies of a DNA segment (Li, 1997). Characteristic of any other

mutation, gene duplications are random, occur across phyla and the sizes of the

duplicated DNA segment fluctuate. Gene duplications can occur on a small-scale, that

is, gene segments, or at the level of complete genes. On the other hand the duplicated

genes could be products of larger scale duplications i.e. whole chromosomes or even

whole genomes can be duplicated (Wolfe, 2001). In this review the emphasis is on

any form of duplication that results in whole genes increasing in number unlike gene

segments i.e. domains and exons.

L.2 Evidence of Duplications

1.2.1 Whole genome duplications

Although met with a huge amount of scepticism (Hughes et aL, 2001), the hypothesis

of whole-genome duplications in a number of organisms has been backed by a

significant amount of evidence (Vision and Tanksley, 2000). Whole gene duplications

are rare events that are followed by massive gene loss, however evidence of their

occurrence can be found in many gene clusters. For example, invertebrates have a

single copy of the Hox gene cluster whereas vertebrates such as human have four

copies, implying the occurrence of large (or even whole-genome) duplications after

the split of vertebrates from invertebrates (Hughes, 1999).

Substantial evidence of whole genome duplications comes from whole genome

sequences. The dot matrix plots of the complete Arabidopsis genome, pairs off most

of the genomic segments (Vision and Tanksley, 2000), which could only be explained

by the occurrence of at least one whole genome duplication. The Arabidopsis Genome

Initiative, 2000, and Lynch and Conery, 2000 share the same findings of a whole

Arabidopsis genome duplication having occurred. Lynch and Conery's conclusion is

based on their dating of gene duplications in Arabidopsis that were estimated to have
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occurred 65 million years ago. Several other organisms have shown strong evidence

of whole genome duplication having occurred in the past (Wolfe and Shields 1997;

Wong et a1.,2002).

Evidence of whole genome duplication in the human genome was not conclusive

from the initial draft. This issue was recently addressed by Gu et al., 2002, who

supported a whole genome duplication in human from the observation of a rapid

increase in paralogous genes after the speciation of human from invertebrates (Martin,

1999; Wolfe, 2001). Various other independent studies and extensive discussions

support whole genome duplication in human (Mclysaught et a1.,2002; Wolfe, 2001).

ln view of this more organisms are expected to show similar evidence with the

availability of their complete sequences. However, due to a high rate of divergence

and gene loss between ancient duplicated segments most duplicates could have been

lost or diverged rapidly such that they are no longer detectable.

1.2.2 Small-scale duplications

There has been substantial evidence for both recent and ancient segmental

duplications @ichler, 2001). Using a quarter of human gene families, the age

distribution of the gene families highlighted an average rate of -10 million segmental

duplications per genome per million years (Gu et al., 2002). Previously, using a

different method, Lynch and Conery, 2000 estimated a similar average rate of the

occurrence of segmental and tandem duplications.

Syntenic regions in comparative genome maps can provide evidence of segmental

duplication (Blanc et al., 2000). In hominids, the gene order is highly conserved in

paired chromosomal regions (Wolfe, 2001). In the human genome similar regions on

chromosomes 2,7,12 arrd 17 are evidence of ancient duplications (Venter et al., 2O0O).

1.2.2,1Gene families

Chromosomal mapping studies have shown that consecutive gene duplications (both

large scale and small scale), give rise to gene families (Li, 1997). Gene families are a

group of duplicate genes that may have similar functions. Members of a gene family
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usually exist as a cluster. In spite of gene translocations, and deletions a significant

number of gene clusters are still intact and they provide evidence of recent tandem

gene duplications (Brooke et al., 1998).

1.3 Mechanisms of duplications

1.3.1 Replication errors

Replication errors are frequent both in somatic and gametic cells. Such errors if not

fatal, could be disease causing (Li, 1997). One such error is unequal crossing over

during meiosis that can cause tandem gene duplications (Li, 1997). In addition to

tandem gene duplications, there is a high chance of reproduction errors ultimately

resulting in the doubling of genomes. In organisms with well-differentiated sex

chromosomes, polypoidy is likely to be eliminated, unlike in bisexual genomes

(Wolfe,2001).

1.3.2 Jumping genes

Transposons, Jumping genes' also ensure the continual occulrence of gene

duplications. Q,i et al.,2OOI). There are two distinct types of ffansposons Class I and

Class tr. The retrotransposons (Class I) transcribe DNA into RNA. The RNA is then

reverse transcribed and inserted into a new location (Clark and Kidwell, 1997). This

mechanism results in duplicates being found on different chromosomes, which are

almost always in opposite direction. Class tr ffansposons simply copy DNA and

translocate it into another part of the genome. Activation of a transposed gene is rare,

however experimental work supports a feasible mechanism (Moran, 1999).

1.4 Fate of duplicated genes

1.4.1 Gene loss

Amino amino acid altering mutations occur in all organisms and a large fraction of

them are deleterious (Fay and Wu, 2001). In hominids, -387o of amino acid mutations

are significantly deleterious @yre-Walker et al., 1999). Due to purifying selection,
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most deleterious mutations are lost from the gene pool. However, in the case of

duplicates, deleterious mutations on one copy are likely to escape any form of

selection, as the other gene pair will still be functioning normally. Such deleterious

mutations can result in the formation of pseudogenes (Lynch and Conery, 2000;

Harrison et aL.,2002).

Lynch and Conery, 2000 also suggested that the silencing of one gene of a duplicate

gene pair is important in the speciation of organisms. This speciation model describes

how the loss of different copies of a duplicated gene in geographically separated

populations could genetically isolate these populations (Lynch and Conery, 2000).

1.4.2 Preservation of duplicates

1.4.2.1 Redundancy in function

Redundancy in function is common in recent duplicates but rare in older ones (Lynch

and Conery, 2000). Maintenance of this redundancy in function is often advantageous

depending on the functional specificity of the redundant pair (Gu et aI.,2002). Several

cases of identical paralogs are associated with increased quantities of the gene

products required for normal functioning of the organism (Nowak et al., 2001).

Paralogs with a transcriptional function frequently maintain redundancy in function so

as to produce large amounts of the plotein when needed 0.;i,1997). Genes for rRNA

and tRNAs are in duplicates and the duplicates maintain the same function as they are

required in large quantities during the S phase of the cell cycle when DNA is

replicated (Li, 1997). Yet another example of the advantage of maintaining

redundancy in function in paralogous gene pairs is found in S. cerevisiae. When

phosphate is a limiting factor to growth in S. cerevisiae, a duplicate of the phosphate

acid carrier gene enables the gene to produce twice the amount of enzyme to utilize

the surplus phosphate effectively (Li,1997).

Maintaining redundancy in function in paralogs minimizes the phenotypic effects of

null alleles and/or developmental accidents hence increase fitness of the organism

(Wagner, 2000; Cooke et al., t997). ln multi-domain developmental genes, point

mutations in one of the redundant gene pair often have severe impact on the organism
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unlike complete deletion of these genes (Gibson and Spring, 1998). This could be

interpreted as a way of preventing loss in redundancy of such genes (Gibson and

Spring, 1998). Its crucial not to make any conclusion on a pair of paralogs that have

maintained redundancy in function before dating their duplication event, as young

duplicates are most likely to have redundant functions.

1.4.2.2 Creation of novel gene functions

Soon after duplication both copies of the gene perform the same function. With two

copies retaining the same function, selection pressure may be freed on one copy; the

result could be the creation of a novel gene (Force et al., 1999: LWch and Conery,

2000). There has even been speculation that this creation of new function might even

result in the formation of a new species (Taylor et al., 2001). Differentiation in

function usually requires a significant number of amino acid changing substitutions.

However there are cases in which only one amino acid replacement is required for

creation of differentiation of function of paralogs. For example in the case of lactate

dehydrogenase and its paralog, malate dehydrogenase, only one amino acid

replacement is required for switching between the two A, D97).

Functional divergences of duplicates could be the underlying cause of physiological

and morphological differences in ancestrally related species. Due to duplicates

evolving new functions, S. cerevisiae has acquired novel genes that make it a far

better sugar fermentor than any of the other yeasts flilolfe and Shields, 1997)'

Although the new metabolic functions acquired by S. cerevisiae are in disagreement

with Cooke et al., L99'7 who pointed out that developmental genes are more likely to

acquire new developmental functions than metabolic functions, this finding makes the

S. cerevisiae duplicates of great interest.

Duplication followed by divergence could be the fundamental genetic change that

sparked the progression of ancient invertebrates into complex vertebrates. Duplication

of the AmpiEomes gene of the invertebrate amphioxus gave rise to two genes

Eomesodermin and T-brain-l in vertebrates (Ruvinsky et al.,2O0O).The Eomesoderm

and AmpiEomes have an identical function in the mesoderm formation, however the
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duplicate copy T-brain-l has acquired a novel function essential in the development

of the forebrain (Ruvinsky et al., 2O0O).

1.4.2.3 Subfunctionalization

Subfunctionalization of duplicates has recently been proposed (Lynch and Force,

lggg). Complementary mutations can occur on the duplicates especially if the original

gene performed more than one function or coded for multiple domains (Force et al.,

1999).In such instances, the function of the parent gene could be partitioned between

the duplicates (Lynch and Force, 1999). Survival of gene clusters resulting from

tandem duplications can be attributed to subfunctionalization. Most gene clusters code

for proteins subunits of a functional complex. For activation of such complexies, the

proteins segments anneal to each other. Selection could favour the compactness of the

clusters, as it would become extremely difficult to co-ordinate augmentation of the

gene clusters' products if the individual genes were positioned far from each other

(Skaer et a\.,2002).

1.5.1 Comparative genomics

Homology is based on corlmon ancestry and thus provides information about past

evolution of related species (Fitch, 2000). There are two broad categories of

homologous sequences, orthologs and paralogs. Orthologs refer to genes in different

genomes that have evolved vertically from a common ancestral gene (Theben,2002;

Li, 1997). Paralogs on the other hand, as discussed in the previous sections, are

homologs within the same genome and result from duplication events (Jensen, 2001).

To detect homology, comparative analysis of species that originated from the same

ancestor is used. Darwin's comparative analysis of morphological features has given

way to sequences comparisons. Comparative genomics is the art of equating genomes

at molecular level in search of their similarities and differences (Copley et al., 2001;

Makalowski and Boguski, 1998). The similarities and differences may reflect how the

species have diverged from their ancestral species in terms of gene birth and death.

Gene duplicates and their subsequent fates make the field of comparative genomics
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fascinating as one to one mapping of orthologous sequences is almost always

distorted.

Comparison of full genome sequences of 13 bacterial species has allowed for the first

time a chance to see the addition and loss of all the genes in compared species,

showing that2O-50%o of the genes are gained or lost (Snel er a1.,1999). Comparisons

of genomes can be at different levels, gene structure, protein coding gene content and

location or even nucleotide base frequencies.

1.5.2 Determining Orthology

It is vital to identify accurately orthologous pairs for evolutionary studies, functional

assignments along with better understanding of variation and connections between

species (Mushegian et a1.,1998; Chervitz et al., 1998). In human model organisms,

studies of orthologs in both disease and normal states have profound effect on disease

conffol and eradication. Failure to resolve orthologs can lead to misinterpretation of

disease gene biochemistry and unfruitful medical results (Mushegian et a1.,1998).

Currently orthologs for 178 of the 287 human disease genes have been identified in

Drosophila (Rubin., 2000). It is predicated that the number of 'orphan' disease genes

will reduce radically with the availability of complete genome sequences of other

primates (Rubin, 2000).

Functionally annotating novel protein sequences based on their high percentage of

similarity with an annotated ortholog is dependent on the precision of the assignment

(Mushiegan et al., 1998). However there are cases in which orthologs may have subtle

physiological and functional differences. For example, iron ftansporters in yeast have

their human counterparts as copper ffansporters (Askwith and Kaplan, 1998).

Finding unique genes is just as important as assignment of orthologous relationships.

There are two major explanations to the existence of orphan genes. Many orphans

genes might consist of genes whose phylogenetic distribution is restricted to certain

evolutionary lineages e.g. they are specific to plants or vertebrates. Some orphan

genes may diverge rapidly between closely related species because the proteins they

encode are unconstrained in their sequence evolution, or under selective pressure,
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whereas their sfiucture and function might be conserved even between distantly

related organisms. Unique genes in bacterial species have been shown frequently to

encode pathogenic products. Drugs can often be formulated that target such species-

specific genes and their pathways.

Currently there is no sure way of assigning orthology. Regardless of the method used,

there is always a need to validate the putative dataset construct (Wheelan et a1.,1999).

With the growing number of complete genomes previously ortholog databases are

continually being reviewed and revised.

1.5.2.1 Similarity methods

Sequence comparisons allow one to infer orthology through similarity measures.

Orthology inferences using entire sets of proteins encoded by two species have

increased confidence in the similarity-based methods (Huynen and Bork,1998). The

first-ever comparison of two complete protein sets of Caenorhabditis elegans and

Saccharomyces cerevisiae produced relatively consistent set of orthologous proteins

as most of the pairs carried out the same biological functions (Chervitz et al., 1998).

Although orthology (as the term is used here) does not necessary mean the genes

should carry out the same function, in the study by Chervitz et al., 1998 most of the

orthologs sharing a function perform core biological functions. Such genes with core-

biology functionality could have been conserved after the speciation of C. elegans and

S. cerevisiae.

Genes may have very different evolutionary rates (Mushegian et al., 1998). With

different evolutionary rates, pairs of orthologs from two organisms may exhibit

different degrees of similarities making it difficult to decide what cut-off to use when

inferri n g orthology from sequence similarity.

I.5.2.2 BLAST

Currently BLAST (Altshul, 1996) is the most widely used tool for inferring orthology.

Although the Smith-Waterman algorithm is more sensitive than the BLAST

algorithm, its CPU intensive character hampers its popularity. There have been
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several concerns concerning the performance of BLAST in similarity searches. An

assessment of sequence comparison methods in the identification of distant

evolutionary relationships, BLAST was the worst performer (Brenner et al., 1998).

BLAST only identified l5%o of the evolutionary relationships in comparison to

SSEARCH and FASTA, which were capable of identifying about lSVo the

homologous relationships (Brenner et al., 1 998).

1.5.5.3 Limitations of BLAST

Multi-domain Proteins

BLAST's algorithm picks up similarities by local alignments, which are likely to be

motifs or domains (Tatusov et al., 1997). Non-orthologous proteins with identical

domains are likely to be picked up as false positives. Hence, multi-domain proteins

pose a serious problem in BLAST searches. Non-orthologous proteins that simply

possess orthologous domains are classified falsely as orthologs.

Convergent evolution

Convergent evolution has been known to occur. Genes that evolved in parallel exhibit

a degree of similarity posing problems in orthology assignment (Haney, 1999;

Huynen and Bork, 1998). Convergent evolution is common in bacterial species hence

non-orthologous genes can be falsely classified as homologs (Haney, 1999).

Sequence divergence

Due to divergence, similarities in homologs can be corroded such that BLAST cannot

pick them as homologs. A specific example is the Guanylyl cyclase gene from A.

thaliana. The guanylyl cyclase gene product is required for catalysing the formation

of guanosine monophosphate (cGMP) from guanosine triphosphate (GTP). When the

A. thaliana guanylyl cyclase gene is BLAST searched against the NCBI database no

significant hits are found in Arabidopsis itself nor to guanylyl cyclase genes in other

organisms. (Ludidi and Gehring, 2000). The proteins that had significant hits with the

guanylyl cyclase genes were human predicted proteins surprisingly the other guanylyl
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cyclase homologoues had very poor scores with the query protein. A plausible reason

for this observation could be that the guanylyl cyclase under-study could have

divergent rapidly from the rest of the gene family. There is also a chance that the

molecule may not be a homologue of previously annotated guanylyl cyclases. The

same problem is experienced with the presellin enzpe gene. Sequence database

searches using all available methods including different types of profile analysis, have

failed to detect any appreciable sequence similarity between presenilins and any

known proteases which belong to the same family as itself (Steiner et al., 2000).

Pattern searches of both the guanylyl cyclase and presenilin gene identified signatures

present in each of their families, suggesting that they are catalytically active. ln-vitro

assays of the guanylyl cyclase have also confirmed catalytic activity.

Gene duplications and Horizontal gene transfer.

Gene duplications, their subsequent fates and horizontal gene fiansfers result in

complex orthologous relationships. When using BLAST the highest hit is considered

the closest homolog of the query. Even though it is accurate in some instances,

detection of the highest-hit is also not capable of identifying one (many)-to-many

evolutionary associations.

Furthermore, in using BLAST there is no way of distinguishing between horizontal

gene transfers and gene duplications (Huynen and Bork, 1998). Such transferred

genes often display nucleotide frequencies different from the rest of the genome that

allow them to be identified (Huynen and Bork, 1998).

1.5.3 Protein Clusters

The fastest and easiest way to do whole genome comparisons is through comparison

of their open reading frames (ORFs) comparisons. Protein sequences allow detection

of distant ancesffal relationships to be established as compared to nucleotide

sequences (Brenner et al., 1998).

Posfediting of BLAST results, through clustering creates more informative networks

of protein relationships. Due to the complex evolutionary relationships that exist
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between proteins, clustering has been carried out to group homologous proteins. This

involves making graphs. Each sequence is a vertex, an edge joins it to another protein.

The edge can be weighted according to statistical significance of the alignment score

between two proteins. This weighting allows one to remove and add edges to see how

the number of vertices fluctuate, reflecting the strength and weaknesses of the

evolutionary relationships between the proteins.

1.5.3.2 COGs

Clustering has paved way to databases such as COGs (Clusters of Orthologous

groups) Tatusov et al, 20Ol). Similarity searches were performed on complete

genomes. Orthologous proteins that are identified through reciprocal best hits are

classified as a COG. The clusters would include orthologs from different organisms

and sometimes a cluster may contain paralogs due to gene duplications. Functional

classification of proteins from newly sequenced genomes using the COGs database

has resulted in 17 broad functional goups.

1.6 Evolutionary distances

Ancestrally related DNA sequences commonly have a significant amount of

differences. The observable differences in sequences alignments are indels and

substitutions. The number of base substitutions per site can estimate evolutionary

distances. Base substitutions that occur in protein-coding sequences can be classified

as synonymous and non-synonymous substitutions because the degeneracy of the

genetic code (Hughes, 1999). Synonymous mutations do not alter the amino acid

sequences while non-synonymous substitutions do cause a change in the amino acid

sequence. Non-synonymous substitutions have a high probability of being deleterious

although they may have no effect or even improve the protein.

1.6.1 Ka/Ks calculations

The ratio of the number of nonsynonymous substitutions per nonsynonymous site

(Ka) and the number of synonymous substitutions per synonymous site (Ks) is a

powerful measure of the selective pressure acting on a pair of homologous sequences.
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According to the Kimura's neutral theory of evolution, Ks is proportional to the

mutation rate of the gene &i,1997). Commonly purifying selection is detected where

Ka./Ks << 1, whereas in positively selected genes Ka./Ks is greater than l. If amino

acid changes are neutral owing to neutral substitutions, Ka/Ks is close to 1. However,

Ka:Ks is not totally reliable, in cases where one part of the gene experiences positive

selection and the other part neutral selection, Ka/Ks detects false purifying selection

(Li, 1997 ; Hurst, 2002).

Besides evolutionary analysis, Ka:Ks ratio test has been used in increasing the

accuracy of gene predictions (Nekrutenko et al., 2001). The Ka:Ks ratio is used to

identify/confirm protein coding exons using human/mouse orthologous sequences, as

Ks is normally larger than Ka in coding regions (Nekrutenko et a1.,2001). Where the

Ka./Ks ratio is significantly less than one for a human/mouse orthologous genomic

sequence that contains a reading frame, such a region is more likely to be a protein-

coding region (Nekrutenko et a1.,2001).

Although the Ka;Ks test cannot on its own be used for gene prediction as it is

incapable of identifying exon/intron boundaries, promoters and poly-adenylation sites

it can be incorporated into other gene prediction methods making them more robust

(Nekrutenko et al., 2001).

For Ka and Ks estimations to be feasible, sequences should be divergent enough to

observe the substitutions that have occurred (Hughes, 1999). On the other-end of the

spectra very divergent sequences can reach saturation in their Ks values, see Figure 1.

The number of substitutions observed become too high to make an estimate of the

number of substitutions that might have occurred.
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Figure 1: Effects of saturation on synonymous substitutions.

When differences between the sequences are above 75Vo, estimations of genetic distances are

unreliable. This is from a simple Juke-Cantor model.

(Graph from http://hiv-web.lanl.gov/content/hiv-db/TREE_TUTORIAUTTee-tutorial.html).

1.6.2 Conservative and Radical non-synonymous substitutions

The use of CDSs for Ka./Ks calculations may become unfeasible as synonymous

substitutions have a tendency to become saturated. In addition to saturation, base

frequencies may vary between sequences making alignments unfeasible. In such

instances, selection studies on CDS sequences have been abandoned for protein

sequences (Yang et al., 1998; Zhang,2000; Hughes, 2001). The ratio of radical (RA)

and conservative amino acid (CO) replacements can be used to detect the type of

selection that favours change of certain properties of amino acids (Hughes, 1999).

Amino acids have distinct physiochemical properties that can be utilized for CO and

RA for example charge and polarity. A radical substitution in a radical non-

s)monymous site (RA) can lead to changes in the amino acid hence in the protein as a

whole (Hughes et al., 2000; Hughes, 2000). Although there are cases in which

positive selection in genes has been detected when RA > CO, there has been a strong

critique of this method (Smith and Hurst, 1998). The method has no way of

distinguishing between other factors (unrelated to selection) that might result in an

increase in RA as compared to genuine amino acid changes in favour of adaptation

(Smith and Hurst, 1998).

20

3



Chapter 2

Effect of paralogs on the rate of divergence of

Kluvyromyces lactics and Saccharomyces

cerevisine orthologs
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2.1 Introduction

Gene duplications have unquestionably played a significant role in the innovation of

gene functions (Li, L997;Lynch and Force, 2000; Martin, 1999) and developmental

pathways fl.;i,1997). Furthermore gene duplication events have recently been

hypothesised to confibute in the creation of new species (Lynch, 1999;Nowak et al.,

1997). Although neuffal evolution promotes loss of a significant portion of duplicates

the few that are retained are of gteat value in studying sequence divergence patterns

(Hughes, 1993).

In an attempt to elucidate the evolutionary forces acting on pairs of paralogs,

Kondrashov et a1.,2002 reported that young duplicated genes evolve faster than

orthologs that share the same magnitude of divergence. Using a genome wide analysis

of a nearly complete genome Lynch and Conery, 2000 suggested neuffal evolution

immediately after duplication followed by purifying pressure as the paralogs acquire

different roles. However, Lynch and Conery,2000 did not take into account the effect

of averaging Ka:Ks of gene pairs that diverged at different times. To illustrate the

limitation of Lynch and Conery's study, in a previous study we estimated the Ka:Ks

ratios between 119 pairs of chimpanzee-human orthologs with diverse divergence

times (Nembaware et a1.,2002). The average Ka:Ks obtained was far too high,

reflecting a figure that would be appropriate only for recently diverged sequences

(Nembaware et al., 20O2).

To measure the effect of the presence of a human duplicate on the rate of sequence

divergence more accurately, two databases of human-mouse orthologs were created

based on the synonymous distance of the human gene to its paralog (Nembaware er

a1.,2002). From an initial human-mouse olthologous dataset of 5341 gene pairs, 180

human-mouse orthologs with close paralogs were identifed followed by a set of 70

gene pairs with intermediate human paralogs. By using only gene pairs that diverged

during a common period our results provided greater insight on the effect a paralog

can have on sequence diverge of orthologs (Nembaware et al., 2002). For a set of

paralogs that appeared at about the same time as the human and mouse speciation,

acceleration in the rate of non-synonymous substitution in a set of mouse and human
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orthologs was observed compared to the human-mouse orthologs with a very close

paralog (Nembaware et a1.,2002).

Aims of study

The aim of the study presented here was to replicate a previous study done on human-

mouse orthologs (Nembaware et a1.,2002) on .S. cerevisae and K. lactics. According

to Wolfe and Shields , 1997, the S. cerevisiae whole genome duplication occurred

after the speciation of S. cerevisae from K. lactics, making these two genomes ideal

for assembling a dataset for use in this current study. As mentioned previously, it is

essential to compare Ka:Ks ratios of gene pairs that share a common divergence time.

The S. cerevisiae paralogs from Wolfe amd Shields' dataset are ideal for this as they

diverged at the same time.

Although use of Ka:Ks for detection of positively selected genes has its shortfalls

(Hughes, 1999), the Ka:Ks ratios are useful for characteization of the evolutionary

forces acting on homologs (Zhang, et al., 2O0O; Nembaware et al., 2OO2), therefore

this method was implemented in this study.

Another aim of the study was to create web-server that automates estimation of Ka:Ks

values for sets of protein-coding nucleotide sequences.
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2.2Data and Methods

2.2.1K.lactis

K. lactis 144 proteins were downloaded from the SWISSPROT database

(http://srs.ebi.ac.uk/srs6bin/cgi-bin/wgetz) on the 15ll0l200l. Proteins from the

SWISSPROT database were chosen over other databases as it is a manually curated

database with minimal redundancy. All the available K. lactis nucleotide sequences,

which amounted to 7106, were also downloaded from the NCBI taxonomy browser

(http ://www.ncbi.nlm.nih. gov).

2.2.25. cerevisiae

The set of sequences used by Wolfe and Shields (1997) to investigate whole genome

duplication in S. cerevisiae was obtained from their website. This set consisted of

5790 open reading frames as well as the nucleotide sequences of the 16 S. cerevisiae

chromosomes. 406 pairs of paralogs retained after the S. cerevisiae genome

duplication were also part of the S. cerevisiae data. The presence of these 406 gene

paralogous pairs thus served as a point of entry into this current study

2.2.3 Identification of K. lactis and S. cerevisiae Orthologues

I44 K. lactis proteins were used as queries in a BLASTP search against the whole S.

cerevisiae genome ORFs to identify putative orthologs. A threshold E-value cut-off of

0.0001 was used after examining the score distribution. Similarity measures may not

be the best method for assigning orthologous relationships but if one or both genomes

are completely sequenced it has been shown to produce plausible results (Rubin,

2000). Orthologous relationships between K lactis and S. cerevisiae are expected to be

1:1 or l:2 mappings as speciation from K lactis predates the whole genome

duplication of S. cerevi.siae which occurred -100 million years ago. The set of 406 S.

cerevisiae paralogs aids in the task of distinguishing between ortholog-pairs that have

a surviving paralog (1:2 orthologous relationship) from the S. cerevisiae whole

genome duplication and those that do not. The number of genes in S. cerevisiae and

K. lactis is very similar as well, which should make the orthologous relationships

simpler to map (Ozier-kalogeropoulos et al., 1998 and Wong et al., 2001). In

addition, research that leads to the understanding of both organisms is of great benefit
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as both yeast species are of interest to industrial fermentation (Ozier-Kalogeropooulos

et al., 1998). The genetic code is degenerate i.e. two or more codons code for the

same amino acid. As a result protein sequences are more conserved and more

appropriate for defining orthologs between highly divergent organisms (Wheelan et

a1.,1999; Mushegian et al., 1998; Chervitz et al., 1998). A PERL script was designed

and used to extract the query and best hits with a score better or equal to the above

threshold, see APPENDIX.

2.2.4 Analysis of the orthologs

Needle from the EMBOSS package, was used to calculate the percentage identity of

the orthologous pairs (Wheelan et al., 1999). Needle is a global alignment tool. For

the gap opening and gap closing penalties the default values were used.

2.2.5 Estimation of evolutionary rates

Calculation of the Ka (rate of non-synonymous substitution) and Ks (rate of

synonymous substitution) values was done using a PERL script; calc-ka-ks.pl from a

previous study (Nembaware et al., 2002) Modifications have since been made to

make the scripts more efficient and to make use of a likelihood model. A brief

overview of the procedure carried out by the calc-Ka-Ks.pl script is in Figure 2. See

APPENDIX for PERL script.

2.2.5.1Input

Obtaining the CDSs that are required as input into the calc-Ka-Ks.pl was a critical

part of the project; particularly for K. lactis. which is still undergoing sequencing. The

K. lactis proteins were BLAST searched against the K. /ccris DNA sequences. The

frame and the coordinates of the K. lactis DNA alignment to the K. lactis protein were

parsed out and these were used to extract the CDS for K. lactis proteins using Perl

scripts written for this project.
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For ^S. cerevisiae the ORF dataset used had the CDS coordinates relative to the

chromosome. A PERL script was designed to take the co-ordinates from the S.

cerevisiae ORF and splice out the corresponding CDS from the chromosome.

2.2.5.2 Aligning the protein sequences

The first stage in the calc_Ka_Ks.pl script is translation of the CDSs into their

corresponding protein sequences. For this step, transeq, an EMBOSS tool is used. The

script had to be altered, to reverse complement some DNA sequences before

translating them to their corresponding protein sequences. Revseq, and EMBOSS

program was used for altering the DNA orientation when necessary. ClustalW was

used to align the two pairs of protein sequences obtained from this stage. This protein

alignment is used later as a template for the CDS alignments as well as for protein

distances, which are parsed out by a sub-routine in the calc-Ka-Ks.pl script.

2.2.5.3 Nucleotide (CDS) sequence alignment

The output from the proteins alignment in the previous stage is needed as template for

the CDS alignments. TRANALIGN, an EMBOSS program has been developed to

align nucleotide sequences using the protein alignments as a guide. It requires two

files on the command line, with the protein sequences in one file and the CDS in

another.

2.2.5.4 Codeml Program

The codeml program is part of the PAML package which is freely available from the

following website http://abacus.gene.ucl.ac.uk/software/oaml.html. Codeml

implements a Maximum Likelihood estimate of pairwise non-synonymous and

synonymous substitutions. Codeml accounts for transition/transversion rate bias as

well as codon usage bias more efficiently than other methods (Goldman and Yang,

1994;Yang and Nielsen, 1998).
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Basic Model for Likelihood analysis

The basic model for likelihood analysis is the Goldman and Yang, 1994 codon

substitution model. The substitution rate from codon i to j, where i and j are not

identical is

0 if the codon pair have one or more differences in their positions

nj for synonymous transversion,

rzj for synonymous transitions

nalj for nonsynonymous transversion

corzci for nonsynonymous transtion

key

rn : transtion/transversion rate ratio

rrp Ka,/Ks

ftj :equilibrium frequency of codon j

Output for the calc-Ka-Ks.pl

The output from the codeml program is written to a file. The ouput includes the

sequence of both homologous pairs, protein distances, number of synonymous and

non-synonymous sites, Ks, Ka and the Ka:Ks ratios. The results are written in a

tabular form, which makes post-processing of results efficient.

2.2.6Web-server for Ks and Ka estimations

Calculation of Ka./Ks ratios can be very tedious especially for those unfamiliar with

molecular evolution packages such as EMBOSS, ClustalW and PAML and the

required sequence format changes. The majoriry of Ka:Ks calculation software is only

compatable with UND( based systems, e.g. GenomeHistory (Conant and Wagner,

2002) and this can be a major inconvenience to researchers not familiar with this

operating system. It is thus useful to have a web-based and easy-to-use tool that can
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calculate KalKs ratios for sets of coding sequences easily. This tool would be

especially attractive for researchers without access to UND( based systems.

Codeml from the PAML package is not user friendly especially to researchers with

minimal UND( skills. Through this project, the easy-to-use calc-Ka-Ks.pl pipeline

for Ks and Ka estimations was made available from the SANBI website. In addition

to this, for researchers only interested in calculations Ka and Ks for one pair of

sequences, a web-server has been created which utilises a CGI version of the

calc-Ka_Ks.pl script.

2.3 Results

2.3.lDatabase of K.lactis and S. cerevisiae putative Orthologs

121 pairs of K. lactis S. cerevisiae orthologs were retained but two cases were

detected where two K. lactis proteins had an identical S. cerevisiae protein. A list of

the generated 119 putative K. lactis and S. cerevisiae orthologs can be viewed at

http :/ftramlyn. sanbi. ac.zal-victoria/database. html.

2.3.1.2 Percent identities of the dataset of 119 S. cerevisiae and K. lactis

orthologous proteins

Global alignments of the S. cerevisiae and K. lactis orthologous amino acid sequences

resulted in the percentage identity distribution illustrated in Figure 3. Average identity

= 67.84Vo and the standard deviation = 16.707o with a range from 28.127o-97.07Vo.

The presence of low percentage identities in some of the orthologs is expected, the

cut-off similarity is 26Vo identity.

2.3.2 Estimation of Ka and Ks for K. lactis and S. cerevisine orthologs

A total of 107 orthologs were used for further analysis. For the remaining 12 pairs,

CDS could not be successful obtained due to frame shifts in the K. lactics DNA. The

Ks distribution of the 107 putative orthologs (Figure 4) showed less than 40 pairs with

Ks values less than 3.7. The rest of the orthologs had Ks well above 3.4 with some
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outliers exhibiting Ks well above 70. Only six Ks values were below 0.75. The

average Ks value for the whole dataset is above 20, indicating saturation of

substitutions at the synonymous sites (see Chapter 1). With saturated Ks values, the

Ka: Ks ratios can no longer be used as a measure of selective pressure.

The distribution of Ka (Figure 5) illustrates active selection against most non-

synonymous mutations as expected as the distribution is skewed to the left.

2.3.3 Protein distances and CDS distances

Output from the calc_Ka-Ks.pl script included amino acid distances of the orthologs.

These amino acid distances, shown in a scatter plot (Figure 6) were calculated using

Clustalw. The average protein distance was 0.63 with a standard deviation of 0.63 for

the 107 dataset.

Investigating the orthologs with a paralog present and those without

The average amino acid divergence of the whole ortholog set was compared to the

average value of amino acid divergence of ortholog pairs for which a paralogous gene

was present in 
^S. cerevisiae. The Ks values could not be considered as they were

saturated. The Ka values were not significantly ifferent for the two sets contrary to the

results for the previous study. Although there is a 0.10 difference in the Ka values of

the whole orthologs dataset as compared to the smaller dataset, it should be noted that

the standard deviations are very large.
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Summary of the evolutionary distance calculations

RevSeq
Transeq

ClustalW

CDS alignments
*CDS alignments

Figure 2 Summary of the intermediate stages implemented in the cals-Ka-Ks.pl script in

calculation of Ka:Ks ratios. A stage that has been omitted to minimize clutter in the script is

that calculation of nucleic distances using ClustalW. The Output format is described in detail

in the text.

Proteins Proteins

Protein alignments
*Protein distances

Traalign
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Table 1: Comparison of the whole orthologous set to the smaller set of orthologs that have paralogs

present

Datasets Whole orthologous dataset (107) Duplicated orthologs (13)

Ks: ave (sd)

Ka: ave (sd)

Amino acid

distances

20.76 (23)

0.36 (0.31)

0.634 (0.63)

r7.to (21)

0.33 (0.2s)

0.s3 (0.46)
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2.4 Discussion and Conclusion

2.4.1 Orthologous dataset

Accuracy in identification of orthologous relationships using similarity measures

increases with the compeleteness of the genomes in question (Huynen and Bork,

1998). Although the K. lactis genome is far from complete and the protein set used in

this study represents a very small percentage of the K. lactis genome, S. cerevisiae

(the first eukaryote to be sequenced) is complete and well characterised. The

observation that two pairs of K. lactis genes share one S. cerevisiae protein as their

best BLAST hit provides evidence of duplication events that have occurred in K.

lactis. This is the only case of possible gene duplications in K. lactis since the

divergence of S. cerevtsiae and K. lactis that has been reported (Wolfe and Shields,

1997; Wong et al.,20Ol).

2.4.2Rate of evolution of K. lactis and S. cerevisiae orthologs

The measures of the Ka: Ks ratios were computed using codeml program from

PAML, which makes use of a maximum likelihood approach (Yang and Nielsen,

1997). Despite using a maximum likelihood approach, which has realistic models on

mutations and substitution processes (Yang and Nielsen, 1997), saturation in Ks was

observed for almost all the sequence pairs under study. Selection is measured in terms

of the ratio of Ka: Ks, such an analysis is only applicable to cases in which Ks < 3

(Smith and Eyre-Walker, 2001). Previous goups that have experienced the saturation

of Ks values have resorted to calculating the radical and conservative non-

synonymous changes in the amino acid sequences (Zhang, 2000; Ford, 2001).

However, the possibility that factors unrelated to selection, influence the ratio of

radical to conservative changes was pointed out by Dagan et al, 20O2, and as a result

we did not compare radical and non-radical amino acid replacements in this project.

Previous work, including our own work on mouse and human orthologs, showed

evidence of the affect of duplication on orthologue divergence (Nembaware et al.,

2002: Malawoski and Boguski 1998). The speciation of human and mouse has been

estimated to have occurred -100 million years ago, there was little saturation in

synonymous substitutions (Nembaware et a1.,2002; Malawoski and Boguski, 1998).

Based on that observation, it seemed reasonable to expect that the synonymous
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substitutions between K. lactics and S. cerevisiae orthologs that diverged -150

million years ago might not be saturated.

Factors Contributing to saturation of Ks

Several molecular characteristics have been observed to correlate with synonomous

substitution rates. GC content, codon bias and different mutational rates among

species and even among genomic regions in the same species contribute to differences

in the Ks values (Matassi et al., 1999). All the factors that could contribute to

saturation in the Ks values could all be playing a role as the inter-play between the

factors is not always clear.

Effect of the presence of a paralog on an ortholog

To understand the mechanisms that govern evolution of duplicated genes, there has

been a number of studies that have attempted to correlate various factors (gene family

size of paralog, functional group etc) to the rate of evolution of duplicated genes

(Conant and Wagner, 2002: Lynch and Conery, 2000). Lynch and Conery, 2000

concluded from their analysis of Ka:Ks values of duplicates that was an increase in

the efficiency of purifying selection acting on duplicates with time. However Lynch

and Conery's findings are compromised as the authors disregarded the effect the age

of a paralog can have on Ka values. Using chimpanzee and human orthologs, our

previous study took into account the age of duplicates for each analysis, only

duplicates that share a divergence time were used. This method employed by

Nembaware et al., 2002, quantified the effect of a retaining a duplicate on the rate of

evolution of an ortholog (Nembaware et al., 2002). The presence of an ancient

paralog was shown to increase the rate of non-synonymous substitution in ortholog-

pairs. Although the aim of this study was to employ the same, approach that we have

used previously (Nembaware et a1.,2002), the research was hindered by saturation of

Ks values. Comparison of protein distances was of little use as the standard deviations

were too large.
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2.4.4Web-server for Ks and Ka calculations

A web-server that calculates Ka:Ks ratios was set up. A similar website has been set-

up SNAP which is at

(http://hivweb.lanl.gov/content/hivdb/SNAP VEBSNAP/SNAP.htmI) (Ota and Nei,

1994) but this website implements an approximate method and requires an alignment

as input. The approximate method implemented by SNAP, does not model rate

variation across sites effectively as researchers have since shown their preference to

maximum likelihood methods such as the one implemented on our website. The

script, calc_Ka_Ks.pl was modified into a CGI perl program. The parameter settings

in the codeml.ctl file are in the READ-ME file available from the website

(htto://hamlyn.sanbi.ac.zal-victoria). A screen shot is illustrated in Figure 7 below.

For datasets that are too big to down load, there is also an option of downloading the

original calc_Ka_Ks.pl perl script. A sample of the results from the web-server is

shown in Figure 8. Future improvements to the web-server will include an e-mail of

the in-frame alignments used as input for codeml to the user. Its essential for the user

to have accessto the alignments used as a check on the quality of the calculation.
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Figure 8 A screen shot of the web-server for calculation of Ka:Ks using Codeml. There are

three options available of which two are shown in the figure. Option I is to paste two pairs of

sequences for the Ka:Ks calculations. Option three is uploading a file of sequences onto the

server .The last option is a free download of the script used.
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Date: Fri, 15 Nov 200212222:35 +0200

From: Victoria Nembaware <victoria@sanbi.ac.za>

To: jaechild @ hotmail.com

Subject : Results-Ka-Ks

nucleic acid distances protein distances S N Ks Ka

This parE contains a list of error messages for why divergence
calculations could not be carried out for certain pairs of
orthologous sequences which have been entered inEo the program

0.307 0.200

Sequence names

Ks/Ka
sEQ_1 SEQ_2

ERROR LOG FILE: web infile

377.1 1248.9 2.9896 0.tr94 0.0399

Figure 9: An example of an email with results from the web-seryer calculating Ka:Ks

ratios. If for some reason the Ka:Ks could not be calculated, the heading

error_lopweb_infile could have a paragaph briefly describing why the calculation

could not be carried out by the perl script calc-Ks-Ka.pl.
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Chapter 3

Exploration of graphs

obtained from BLAST results
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3.1 Introduction

The primary step after sequencing of a gene is identification of homologs, largely

through BLAST searches. The inadequacies of the BLAST tool have been highlighted

in its failure to detect close homologs of proteins such the guanlyly cyclase (discussed

in Introduction). Such limitations of the sequence similarity programs in identifying

homologues, has led to clustering methodology gaining in popularity (Periere et al.,

2000; Yona et al., 2000; Sasson et al., 1998). By clustering sequences into groups,

based on the E-score values associated with them, one can discover relationships that

direct sequence comparisons fail to uncover (Yona et al.,20N).

Motivation for this investigation stems from the observation that sequence similarity

searches done on complete genomes increase the chances of finding accurate

homologous relationships (Bork and Huynen, 1999). In addition, this could also

provide information about proteins missing from the genomes. This investigation is

largely an exploratory study, and is cenffed on analysing graphs constructed from a

BLAST output from a set of proteins from 15 completely sequenced genomes queried

against itself. This investigation does not attempt to produce a clustering tool for

effective clustering therefore makes no use of complex algorithms. We implement a

very basic PERL script to create graphical representation of the BLAST output. Each

protein is taken as a node and pairs of nodes are connected if they have a BLAST

match with an E-value less than or equal to a cut-off value.

From this study we have emphasized the number of connected clusters that visit each

genome at a particular cut-off as well as complete clusters. These results were aimed

at estimating the homologous networks that exist among the genomes.

Unlike the COGS and Clustr and HOBACGEEN databases (Perriere et a1.,200O), that

aim to define groups of related proteins, the - study is intended at providing the base

for potential future work on defining and analysis of "orphan genes".
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3.2.Data acquisition and methods

3.2.1 Complete Genomes

Completely sequenced genomes have increased drastically as the sequencing

technologies are constantly improving. Presently, there is a total of 118 published

completely sequenced genomes are more than 300 still undergoing sequencing. Most

of these complete genomic sequences have been made available to the public through

various genome initiatives as listed at the GOLD website

(http://wit.integratedgenomics.com/GOlD/completegenomes.html). For the current

study, 15 genomes that represent the almost all the major phyla of organisms were

selected. Table 1 gives an outline of the organisms used as well as the corresponding

websites from which they can be downloaded.
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Table 1: Genome used for the BLAST analysis

Organism Website

Aquiftx aeolicus

Arabidopsis thaliana

Borrelia burgdorferi

Caenorhabditis ele gans

Dros ophila melano gaste r

Haemophilus influenzae

Helicobacter pylori

Homo sapiens

Listeria monocyto gene s

My c ob acte rium tub e rcul os i s

Oryza sativa

S ac char omy c e s c e r ev is i ae

Streptoc oc cus pneumoniae

Synechocysris PCC6803

Vibrio cholerae

htp://www.bio.nite.go jp/

http://www .tigr.orgl

htp://www.tigr.orgl

http ://www. sanger. ac.uk/

http ://fl ybase.harvard.edu : 708 1/

htp://www .tigr.or!

http://www .tigr.or!

http://www.ensembl.org

http ://www. ncbi.nlm.nih. gov

http://www .tigr.orgl

http ://www.ncbi.nlm.hih. gov

http://www.sanger.ac.uk/

http://www.tigr.org/

http ://www.ncbi.nlm.nih. gov

http://www .tigr.orgl

3.2.2 P r e-clustering phase

Open reading frames (ORFs) of 15 complete genomes were downloaded the web

sites shown in Table 1 above. ORFS of the downloaded complete genomes were

concatenated and stored in one file (Figure 9). A comprehensive all-against-all

sequence comparison, using BLASTp based on the matrix BLOSUM62 was

performed. The option of filtering low complexity sequences was switched on for the

BLASTp search to reduce noise. Default values of BLAST parameters were used. To

reduce the time required for the clustering process, blast results were parsed, for all

the query-hit pairs. The accessions for each query and hit were transformed so that
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there would be uniformity for each specific organism. Standardisation of each record

was essential for the clustering stage.

3.2.3 Exploration of BLAST results

The E-scores values from the BLAST output were used as edges joining the nodes

(proteins). Only queries and hits that have E-scores better or equal to the stipulated

threshold were used in the clustering procedure. This means that short proteins with

E-values larger than the cut-off will be omitted from the analysis instead of

contributing to the number of orphans. With the algorithm described below, a graph

was constructed and analysed at the specified E-scores cut-offs.

Algorithm for Graph theory implementation:

Aleorithm

if new Query

current Query= query;

unless Query is contained in a cluster

make new cluster with I element

= current_query;

Case 1: Hit is not already contained in a cluster {

add hit to cc of cunent_query

)

Case 2: Hit is contained in cluste(Z ){

merge cluster(Z) && cluster of current-query

)

The Perl script used in this parsing is in APPENDIX

Clusters

As illustrated in Figure 10, a cluster is defined if it contains at least one protein.

Clusters containing only one protein are terrned orphans. Orphans are a result of self-

hits at a specified cut-off. A perl script was designed to implement the algorithm

shown above. Clusters were created at various cut-offs E-score cut-off.
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Hits and
Scores

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, ZhengZ}nng, Webb Miller, and David J. Lipman (1997),

"Gapped BLAST and PSI-BLAST: a new generation of protein database search
prograrns", Nucleic Acids Res. 25:3389-3402.

BLASTP 2.2.1 [Apr-13-2001]

Query= At1g01.010

Sequences producing significant alignments:

0.0
6.1
6.1

29
40
29

.done

Score (bits) E Value

Searching.

ENSP0000025E499
oNPP000002sM99
ENSP00000288922

Database: Homo_sapiens.pep. fa
29,076 sequences; 12,218,578 total letters

QUERY

HIT-A H!T.B
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Figure 10: An illustration of the clustering procedure for a graphical representation of

BLAST results. 3a shows a sample outline of BLAST. In 3b, Each box enclosing either a

query or a query and its hit represents a cluster. The doned lines represent orphans while the

solid lines represent connected compounds.
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3.2.3 Blast search of Arabidopsis genome against the human genome

The human genome is a point of reference for most of the studies that are carried out

in various other genomes. A significant number of genes in human that are disease

causing have orthologs in Arabidopsis (Arabidopsis Genome Initiative, 2000). The

importance of establishing homologous relationships between the distantly related

species therefore cannot be ruled out. BLAST can give a general indication of the

homology that exists between two organisms when the distribution of the scores is

analyses.

3.3 Results

3.3.1 Arabidopsis versus Human genome

The Arabidopsis genome has quite a significant number of hits to the human genome

(results not shown). Since the two genomes are complete this is expected. The

guanylyl cyclase gene has its best non-self-hit at a cut-off of Le-23 which is a

reasonable score however its second best hit is a predicated human gene hence is of

minimal value in characterisation of this putative gene.

3.3.2 Cluster analyses

3.3.2.1The guanylyl cyclase gene

In the unclustered BLAST output the Arabidopsis guanylyl cyclase has its closest hit

as a human entry. The human entry is a predicted proteins hence this would not be

very helpful for characterisation of the proposed guanylyl cyclase gene. The guanylyl

cyclase gene has its best non-self hit at an E-score of 5e-23 while the remaining hits

have highly insignificant hits (0.70). However when the E-score cut-off is relaxed,

the guanylyl cyclase clustered with various other proteins, which are bound to be

some of its closest homologs.
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3.3.2.3 Distribution of Clusters

At stringent E-value cut-off very few proteins clustered, as expected. At stringent E-

values such as 0 and 1e-180, most of the proteins only have themselves as hits. The

number of clusters increases gradually as shown in Figure 11 as queries have more

non-self hits at such E-score cut-offs. As the E-score stringency is relaxed at about

le-ZO, the number of clusters decreases drastically as most of the clusters begin to

merge forming bigger clusters.

The orphan gene clusters are lower than expected as some of the proteins hit their

homologs as their best hit instead of themselves due to shortcomings of the BLAST

tool as well as annotation inaccuracies. When a query has its best E-scores and P-

scores being shared by two differently named hits, the BLAST tool outputs the results

in alphabetical order, this seems to have affected the orphan's distribution to some

extent. The graph tails off as stringency becomes more relaxed mainly because at

these values many proteins exist in connected clusters thus drastically decreasing the

overall number of clusters as well as the number of orphans.

Complete clusters

A complete cluster, as discussed here, refers to clusters that contain at least one

protein from each of the 15 organisms. The complete clusters are distributed as shown

in Figure 12. At the tail of the curve a significant portion of the BLAST output is

clustered into one huge connected cluster with very few proteins that are self hits still

existing as unconnected clusters (orphans).

For each genome, a cluster was counted only if it contained a protein sequence from

that specific genome. Figure 13 shows the number of such clusters per genome.

Arabidopsis has the most number of clusters associated with it at stringent E-score

values. This is unexpected as the human genome has more proteins than any of the

other genomes, this is observation requires further study. The proportion of short

proteins in all the genomes could be investigated as well as the distribution of

domains. Both these factors could be influencing the distribution of the number of

clusters associated to each genome.
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3.4 Discussions and Conclusion

3.4.1 Database of complete genomes

The informativeness of a homology search increases when complete genomes are

used (Chervlz et al., 1998; Huynen and Bork, 1998). Complete genomes provide a

higher probability in the identification of homology. Chervitz et al., 1998, reported an

informative set of orthologs after reciprocal BLAST searches using complete

eukaryotic genomes. To increase the validity of the COGs database only complete

organisms were used in the analysis (Tatusov,2001; Perrire et a1.,200). Therefore in

the present study, 13 complete genomes that represent as many organisms as possible

from all the three kingdoms of life were used for the all-against -all BLAST search.

3.4.2 Exploration of BLAST results

Proteins that consist of multiple structural and functional domains are more common

in eukaryotes than any of the other simpler life forms. The eukaryotes have the largest

number of clusters in which their proteins are found at all the E-value cut-offs. Sasson

et al., 1998 to validate their clustering algorithm, used InterPro (database of protein

domains) to check the percentage of proteins in a cluster that shared a common

domain.

3.4.3 Orphans

Orphan genes are resources in providing insights in the uniqueness of species (Salama

et al,2O0O). Several orphans have been implicated in virulence of pathogens. BLAST

searches of complete genomes can give a preliminary indication of orphan gene

candidates. For genes such as guanylyl cyclase, sequence similarity searching was

incapable of detecting the homologs at low E-value cut-offs (Ludidi and Gehring,

2001). Irss stringent cut-off in clustering analysis has been shown to detect homologs

in other clustering procedures (Portugaly and Linaial, 2000). In this study the

guanylyl cyclase was examined and confirmed this clustering evidence. When a less
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stringent cut-off was used guanylyl cyclase clustered off with a significant number of

its own homologs unlike at low cut-offs where it clustered with only one human

homolog.

3.4.4 Advantages of complete genomes for BLAST searches

Inadequacies of sequence algorithms paved way to the classification of homologous

proteins sequences through clustering Perriere et a1.,2000. The clustering described

allows genes to be exposed to various other evolutionary associations. Clustering may

aid in revealing concealed homologous relationships among protein sequences that

pair-wise BLAST is incapable of detecting. With the use of complete genomes, the

advantages of clustering observed in the past, using incomplete genomes, are likely to

be enhanced.

3.4.4 Future Work on Orphans

Previous groups have not attempted to answer the question raised by genes such as the

guanylyl cyclase gene. It is in a class of genes that fails to detect homologs in

completely sequenced genomes. The clustering algorithm implemented in this project

does not involve normalisation of the database hence this aspect of the program can

be improved during future work. There is a need to provide a web-based tool that

navigates a BLAST graph space and provides homologs for such genes, to aid

researchers speed up sequence characterisations. The design concept of the web-page

interface is illustrated in Figure 14.

Results for option I of the Figure 14 would include the number of orphan clusters at

specific cut-offs. And as for option 2, the results would include the number of proteins

in the cluster as well the proteins sequences that it clusters with. Such a procedure can

be the first point of reference for characterisation of the genes where BLAST has

failed. The user has the option of defining the e-score cut-off they would like to use

for the clustering process
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OPTION 1:

1. E-score cut-off

2. Complete genomes to be used in clustering (use Key)

OPTION 2:

3. Paste sequence

KEY

Organism

Aquifux aeolicus

Arabidopsis thaliana

Borrelia burgdorferi

Caenorhabditis elegans

Dros ophila melano gas ter

H aemophilus inJluenzae

Helicobacter pylori

Homo sapiens

Listeria monocyto gene s

My c obac t e rium tube rc ulo s i s

Oryza sativa

Sac charomyc e s c e revis iae

Streptoc oc cus pneumoniae

Synechocysris PCC6803

Vibrio cholerae

Number

I
2

3

4

5

6

7

8

9

10

1l

12

13

l4
l5

Figure 14: For option 1, the user can use the web-page to access the distribution of

orphans from a BLAST file of selected complete genomes. Option 2 would allow the

user to follow clustering of a sequence at various E-value cut-offs.
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Chapter 4

Concluding Comments
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Questions concerning sequence divergence have been primarily approached using

single sequence comparative studies heralded by the cytochrome C studies in the

1960s &i,1997). The results of such studies may give a reflection on the evolution of

single genes but have very limited information on the evolutionary forces acting on

the genome as a whole. The increasing number of complete genomes aids in

understanding the rate of sequence divergences, as well as uncovering the factors

governing the rate of divergence (Lynch and Conery, 2000)'

Comparative genomics has made it apparent that such small-scale sequence

divergence studies may mask other greater forces controlling homologous sequences

(Lynch and Conery, 2000). Homology describes a relationship between genes and is

based on quantitative similarity measures (Theben, 2001). Homology implies that the

sequences under comparison diverged in evolution from a corlmon origin. The

accumulation of base substitutions is a continual process and is crucial insffumental in

shaping the molecular sequence. Recently a significant amount of research has been

aimed at elucidating the rate at which sequences diverge and the factors that influence

their divergence (Conant andWagner,2002; Spring,2OO2; Cherviz et al., 1998).

The unifying concept in this thesis is that of analysing sequence divergence making

reference to complete sets of protein coding sequences. ln chapter 2 the rate of

divergence of orthologs was studied in a way analogous to our previous study

(Nembaware et al.,2OO2). Although the results were not conclusive the study resulted

in an application that can facilitate future sequence divergence studies as the Ka:Ks

calculations have been geatly simplified through the introduction of a web-server.

In Chapter 3, a widely used similarity measure tool, BLAST is analysed. Genes such

as the guanylyl cyclase inspired this study. Genes in this class diverge to such an

extent that they are no longer detectable using simple sequence similarity measures.

Using the clustering method described, detection of distant homologs can be enhanced

without the need for profile searching. This expoloratory study has become

preliminary work in the creation of an orphan webserver. The operation of the

"orphan server" described in the discussion section of Chapter 3 will eventually utilise

an increased number of completely sequenced genomes to enhance the number

homologs that can be clustered hence reducing the number of orphans. Yet another
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functionality that can be added is that of association of the clusters to gene ontology

(http://www. geneontology.org) (Kyrpides, 1999).
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Appendix

1. Perl script for parsing blast results:

# I /usr /bin/ perl -w

print STDERR "B1asE output\n";
$fi1e - <STDIN>;;

open(15,'$fi1e" ) ;
$count = 0;
while (<IN>) t

if (i_=-/^Query-\s(\S+) \s+1.*) \s$/) t
$gueryname = $1;

if (5- =-/^Seguences producing significant/) {
<IN>;

# $- = <rN>;
$_-<rN>;

/ (\S+) \s+ 1 . *) \s+ (\s+1 \s+ (\S+) /;
$name = $1;
$P-score =$3;
$e-score = $4;

$one = "1e";
if ($e-score =-/^e\-\S+71 1

ge_score =-s/e/ $one/;

)
print

" $querlmame# $name# $ e-score# $ P-score \ n " ;
$count++;

)
)
print "Best hits with specified cut-offs points or better =
$counE\n" ;

2. calc-ka-ks.pl : perl script for calculation synonymous and non-synonymous
substitutions

#l /usr/bin/per1 -w

##############################################################
##### # ### # ## #### #

NAME: cs-Ks-Ka.p1
LANGUAGE: perl

DEPENDENCIES: Uses EMBOSS, clustalw

# DESCRIPTION: Eakes the accession numbers of pairs of
orthologous genes and

#
#
#
#
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#
#
#

# produces a distance datsabase containing estimates of the
number of pairwise
# estimates of synonymous and nonsynonymous per site between
two aligned
# nucleic acids which code for proteins. Utilises Codeml- to do
so.

# USAGE: input shoufd be a fil-e containing the accession
numbers of pairs of
# orthol-ogous seq&tences separated by either a space or tab
deliminator.
#
# OUTPUT: 1: namel 2: name2 3: nucleotide distance 4: protein
distance
# 5: total number of sites 6: totaL number of non-degenerate
sites
# 7: total number of two-foId degeneraEe siEes
# 8: total number of four-fo1d degenerate sites 9: Ks 10: Ks
standard deviation

11: Ka L2: Ka standard deviaEion 13: KalKs

##############################################################
## # ### ## # # ## ####

sl - L;
$ortho_file = "web_infi1e" ;
$path = " /cipO/research/victoria / 2002lRESULTS/RUNPIPE" ;
open (fNFrLE, '$path/$ortho-fiIe") I I die "Can'E open
$orEho_file: $!"i
open (OUTPUT, "+>>$path/dist-db-$ortho-fi1e") I I die "Can'E
open dist_db_$ortho-f i1e\n " ;
open (LOG, "+>>$path/error-log-$ortho-fi1e" ) ;

$date = 'date'i

print LOG

----\ - 
il .

---- \rr ,
print LOG 'ERROR LOG PART: $ortho-file\n";
print LOG "This part of the output contains a list of error
messgaes for why divergence \n";
print LOG 'calculaLions coul-d not be carried out for certain
pairs of \n",'
print LOG 'orthologous sequences which have been entered into
the program\n";
print LOG
ll 

=============================================================

====\n\n";
print LOG '$date";

while (<INFILE>)
{

@fields = spfit (/\s+/, $-);
Sorthol-nrq = $fields[0] ;

Sorthol_nuc =-sl\s+ 1 1 g'
Sortho2-nrs = $fields[1] ;

$ortho2_nuc =-sl\s+ 1 1 g'
syst,em( "cp $path/$orEhol-nuc $path/nuc1" ) ;
system( "cp $path/$ortho2-nuc $path/nuc2" ) ;
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###########next few lines are for Lhe yeasE data only

if ($orthol-nuc =-/\.R/) t
system ("revseq -sequence $path/$orthol-nuc -outseq

$path/nuc1 " ) ;
) else { system("cp $path/$orthol-nuc $path/nuc1");
)
if ($ortho2_nuc =-/\.R/) t
system ("revseq -seqpence $path/$ortho2-nuc -outseq

$path/nuc2 " ) ;
) else { system("cp $path/$ortho2-nuc $path/nuc2");
)

##################

system("transeq $paLh/nuc1 -outseq $path/prot1" ) ;
system("Eranseq $path/nuc2 -outseq $path/proL2" ) ;
&remove_star ( " Spath/nuc1 " ) ;
system( "cp $path/yes-stop $path/nucl-" ),'
&remove_star ( " $path/nuc2 " ) ;
system( "cp $path/yes-stop $path/nuc2" ) ;
system("cat $path/prot1 $path/prot2 > $path/protein-fi1e-1" ) ;
system( "c1ustalw -infiLe=$path/protein-fi1e-1 -output=gde -
outf ile=$path/prot_a1ign_1 . gde" ) ;
system("clustafw $path/prot-a1ign-1.gde -tree -kimura -
outputtree=dist" ) ;
$prot-dist = &get-dist ( "$path/prot-aIign-1 .dst" ) ;

open (GDE, "$path/prot-atign-t.gde") | |

print LOG 'Can't. open prot-align-1.gde\n";
open (FASTA, '>$path/nrot-a1ign-1. fasta" )

I I print LOG "Can't open prot-a1ign-1.fasta\n";
while (<GDE>)

t
s/%/>/;
print FASTA $-;

)
close (FASTA);
close(Gonl;

system ( " cat $path/prot-align-1 . fasta
$path/nuc1 $path/nuc2 > $path/a11-seq-1. fasta" ) ;

open (ALL-SEQ, "$path/a11-seq-1. fasta" )

I I prinE LOG "Can't open al-I-seq-1 . fasta\n" ;
open

" >$path/nucjrot_1 . f asta" )

NAME_SEQ,
I print LOG "Can'E open

nucJrot-1 . f asta in order to change seq names\n" ;

while
$ctcs =0;

(<ALL_SEQ> )

{
s/_L/ /;
s/_4//;

if(/^>/) {
$ctcs++;

if ($ctcs =- 1)
$name1 = $-;
)
if(Sctcs -- 2)
$name2 = $-;
i
if ( $ctcs -= 3 )
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g_ = gnamel;
)
if($ctcs -- 4\ {
g_ = gname2;
)

)
unless (/>/ ) {

tr/A-Z/a-z/;
)

print NAIIE-SEQ $-;
)
close (NAME-SEQ) ;
close(ALL-SEQ);
#system( "perl align3aa.PI

nucarot_1 .fasta");
system("cat $path/nuc1 $path/nuc2 >

$path/nuc-aI1') ;
system( "tranalign $path/nuc-alf

$paEh/nucarot-1 . fasta -outseq $path/tranalign.out" ) ;
open (CONVERT, "$path/tranalign.out" )

print LOG "Can't open tranalign.out in order to convert its
sequence format\n";
print "HERE\n";

open (NEWFORMAT,

" >$path/nucarot-1 . aligned. gde " ) | | print LOG 'Can' t open
nucJrot-1 .aligned.gde in order to print new sequence format
to it\n";

Scs-len = 0;
<CONVERT>;
WHrLE: while (<CONVERT>) t

if(/>/) {
last WHILE;
)

$cs-]en = $cs-1en + length($-) - L;
)

close (CONVERT) ;
open (CONVERT, "$path/tranalign.out") I I

print, LOG "Can't open Eranalign.out in order to convert its
sequence format\n";

while (<CONVERT>)
{

s/>/#/;
print NEWFORMAT $-;

)
cfose (NEWFORMAT) ;
close(CONVERT);

&pad-nucleotide-sequence ( " $path/tranalign. out " ) ;
#print 'HERE calling clustal withinfile =
nucJrot-1 .aligned.gde and output should be a Eree\n";

system( "cl-ustalw -
inf ile=$path/nucjrot-1 .aligned.gde -tree -kimura -
outpuLtree=dist" ) ;

$nuc-dist =
&get_dist ( " $path/nucjrot-1. aligned.dst" ) i

system( "cLustalw -
infile=$path/nucJrot-1 .a1igned. gde -convert -output=gcg -
outf ile=$path/nucarot_1 . a1igned. 9c9 " ) ;

OPCN (CODEMLFORD1IAT,

">$path/nucJroE-1 .a1igned.cdml ') ll print LOG 'Can'E open
nucarot-1 .aligned.cdml- in order to print new sequence formaL
to it\n";
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open (CONVERT, "$path/tranalign.out") | |

print LOG "Can't open nucarot-1 'fasta.aligned2aa in order to
convert its sequence format\n";

print CODEMLFORMAT "2 $cs-len\n";
while (<CONVERT>) t

s/>/ /;
print, CODEMLFORMAT $-;

)
close (CODEMLFORMAT) ;
close(CONVERT);

#system( "rm Spath/rst" ) ;
system( "$path/codeml" ) ;

&parse-codeml- ( ) ;
print OUTPUT "$orthol-nuc\t" ;
print OUTPUT "Sortho2-nuc\t" ;
print OUTPUT "$S\t";
print OUTPUT 'SN\t";
print OUTPUT " $ks-val-ue\t " ;
print OUTPUT "$ka-va1ue\t" ;

print OUTPUT "$ka-ks-value\n" ;
system( "rm $path/nucJrot-1. aligned. cdml" ) ;
system( "rm $path/protein-file-1" ) ;
system( "rm Spath/prot-align-1.gde" ) i
system( "rm $path/prot-a1ign-1. fasta" ) ;
#sysEem( "rm $paEh/prot-a1ign-1.dst" ) ;
system("rm $path/nuc1 $path/nuc2 $path/prot1 $paEl1/proL2") ;
system( "rm $path/alI-seq1 . fasta" ) ;
system( "rm $path/nucJrot-l-. fasta" ) ;
sysEem( "rm $path/tranalign.out" ) ;
system("rm $paLh/nucjrot-1 .aligned.dst" ) ;
system( "rm $paEh/nucjrot-1. aligned. gcg" ) ;
system("rm $path/nucjrot-1 . aligned.ph" ) ;
system( "rm $paEh/prot-a1ign-1.Ph" ) ;
sysEem( "rm $path/protein-file-1.dnd" ) ;
system( "rm $path/nucjrot-1. aligned. gde" ) ;
system( "chmod 0777 $paEh/error-1og-web-infi1e" ) ;
system( "chmod 0777 $path/disE-db-web-infife" ) ;

print
" \ n \ n \ n\ n \ n\ n \ n \ n \ n \ n \ n \ n \ nxxxxxxxxxXXXxx \ n \ n \ n\ n \ n\ n \ n " ;
)
close (OUTPUT);
close (LOG);
system( "chmod 0777 $path/error-1og-web-infiIe" ) ;
system( "chmod 0777 $path/dist-db-web-infi1e" ) ;
system ( "cat $path/dist-db-web-infil-e
$path/error-1og-web-infi1e > $path/results-web-infile" ) ;
system( "chmod 0777 SpaEh/results-web-infi1e" ) ;

##############################################################
####

sub pad_nucleotide_sequence {
$infile = $_[0];
$outfile = $-[0]; #same fiLe as infile
$ct = 0;
Gseq - O;
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print "padding sequence=$infil-e\n" ;
open(IN, "$infi1e");

while (<IN>) {
if.(/>/) {
$ct++;
$namelSctl = $-;
)
eLse{
chomp($-);
gseqIgct] = gseqlSctl $_;
)

)
if (length($seq[1]) > length($seq[2]) ) {
Sseq[2] = $seq[2] . "-" x (length($seq[1] )

lensth($seql2ll);
)

elsif (lensth ( $seq[2 ] )

$seq[2] = $seq[1]
length($seqtll ) );

)

cl-ose ( IN) ;
open (OUT, ">$outfi1e" ) ;
$ct = 0;
print OUT '$name [1] " ;

Sct =print

close (OUT) ;
)

sub parse_codeml t
$ks_value = "notfound" ;
$ka_ks_value = "notfound" ;
$ka_value = "notfound" ;
$S = "notfound";
$N = "notfound";

open (RST,"$path/rst") II die

while(<RST>) t
#print STDERR "here\n" ;

> lensth($seq[1] ) )

" x (length($seq[2])
{

while($ct * 50 < length($seq[1] )

$sub - substr($seq[1], $cE*50, 50) ;
print OUT'$sub\n";
$ct++;
)

0;
OUT '$name l2l " ;

while($ct * 50 < length($see[1] )

Ssub = substr(Sseq[2] , $ct,*50,50) ;
print OUT '$sub\n";
$ct,++;
)

1) t

1) t

"can't open rst f il-e\n";

if (/2\s+1\s+ (\S+1 \s+(\S+) \s+ 1\S+) \s+(\S+1 \s+ (\S+) /) t
$ks-value = $4;
$ka-ks-value = $5;
$ka-va1ue = $3;
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