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ABSTRACT  

  

The study uses remote sensing and statistical techniques in assessing land use land cover 

impacts on surface water quality in the Heuningnes Catchment, Cape Agulhas, South Africa. 

Firstly, a review of the advancements made in extracting water quality information because of 

land use land cover impacts, specifically the advancements of modelling techniques that 

consider spatiotemporal variations across water quality parameters was conducted. The review 

results show that advancements made across small-scale waterbodies and developing countries 

such as sub-Saharan Africa are impaired by resource and data constraints. The land cover 

classification findings showed that the Support Vector Machine (SVM) successfully 

categorized LULC in the catchment, with good overall accuracy (55% and 75%) and kappa 

coefficients (0.43 and 0.69), for July 2017 and July 2018. The Heuningnes catchment has 

recorded high concentrations of total phosphorus (TP) and total nitrogen (TN), 20mg/l and 18.9 

mg/l, for March and July 2018 respectively, indicating a predominantly agricultural region. 

Water Ratio Index (WRI) performed the best overall accuracies, ranging between 75% and 

81%. Band ratio regression techniques presented a significant positive relationship (0.4 and 

1.88), in extracting water quality parameters, between July 2017 and July 2018. This research 

confirms the significant impacts of land management practices on surface water quality. 

Furthermore, Sentinel-2 has a high spatial resolution in accurately extracting water features, 

gathering timely data for dynamic changes in land cover that constantly occur; and is useful in 

assessing non-optical factors like TP and TN.  

Keywords: Land use land cover; Remotely sensed data; Sentinel-2; Surface water quality; 

Water-based indices; Geographically Weighted Regression; Water resource management.  
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CHAPTER ONE 

  

1.1. Introduction   

Surface water bodies and water resources, which serves as a supply to activities across different 

sectors, are under threat, because of anthropogenic activities, therefore resulting in the 

deterioration of water resources (Kondraju & Rajan, 2019). The leading factors affecting water 

quality is the growth of global population as it serves as the umbrella for which other additional 

factors contribute to the impacts on water quality. With population growth there is a greater 

magnitude of demands to be met, and greater strain is placed on environmental resources (He 

et al., 2008). Failure to monitor and assess water quality changes, climate change and other 

environmental changes will result in ecological, health, and socio-economic effects as water is 

a vital resource. Additionally, the understanding and assessment of historical and present 

impacts of land use and land cover (LULC) management and practices is necessary for effective 

water resource management. Water resources therefore requires routine monitoring by 

assessing, planning and managing water quality (He et al., 2008).  

An increase in population increases food demand and therefore exerting pressure on land 

resources to supply food, which involves the extensive use of fertilizers. Reduced quality of 

soil and surface water bodies occurs through the increased application of fertilizers resulting in 

increased waste concentrations downstream (Mattikalli & Richards, 1996). Additional factors 

contributing to the way in which the transport of contaminants is affected, is vegetation cover, 

soil properties, the degree to which land is exploited and the spatial distribution of settlements, 

agricultural activities, and industrialized buildings within a catchment. Severe impacts can 

occur when changes in surface water is neglected and not monitored such as water shortages, 

flooding and waterborne disease outbreaks (Feyisa et al., 2014).   

It is critical to assess water quality, as different water users require different water chemistry 

namely agricultural, industrial, and domestic use, through applying various physical, chemical, 

and biological parameters. Therefore, in understanding the origin of contaminants there is a 

probability of managing problems that arise from water contaminants, and understanding the 

degree to which it affects uses and users and research ways to alleviate threats it may pose 

(Ritchie et al., 2003). The source of contaminants vary depending on the main activity practiced 

in the particular region, this provides framework for efficient research purposes. In 

understanding changes of water quality, appropriate water treatment techniques can be applied 

http://etd.uwc.ac.za/
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to the various and frequent water uses to maintain resource quality and availability (Raman Bai 

et al., 2009).   

In addition to agricultural activities, urbanization results in the development of impervious 

structures which increases runoff (Wicke et al., 2012). Along with excess nutrients discharged 

from agricultural activities, the occurrence of soil erosion and the resulting suspended sediment 

contributes to surface water quality degradation. Additionally, anthropogenic impacts 

aggravates degradation through water abstraction, dam construction and water pollution 

(Aguilera et al., 2012; Mattikalli & Richards, 1996). Specifically, dam construction poses 

adverse impacts such as inundation, flow manipulation and fragmentation where inundation is 

directly related to the degradation of surface water quality through the release of greenhouse 

gas (Nilsson et al., 2005). Burning natural vegetation within a catchment is practiced for the 

management and protection of native plant species, studies where the seasonal burning of 

vegetation of different ages presented different results such as 23 year old fynbos increased 

rainfall by 200 mm and 12 year old fynbos slightly influenced streamflow dynamics, as it is 

related to the percent vegetation canopy cover (Van Wilgen, 1994). As water quality 

deteriorates, terrestrial and aquatic ecosystems suffer and increased suspended sediments 

concentrations increases turbidity and therefore limiting sunlight penetration required for 

photosynthesis (Giri, 2013). With increased degradation of water quality comes increased cost 

for purification techniques, to ensure safe water quality standards (Tsegaye et al., 2006).   

The motive behind remote sensing techniques for assessing the change in water quality patterns 

is driven by the time-consuming task of in situ water quality measurements, although accurate 

it can become an expensive technique. Remote sensing techniques is therefore extensively 

researched to uncover most efficient methods to achieve a spatial and temporal variation in 

water quality. This study therefore assesses the accuracy of water quality estimates obtained 

from remote sensing in comparison to in situ measurements. It was noted that a few studies 

such as Bonansea et al., (2015) which has displayed accurate results, however, no inclusion of 

the effects of environmental factors is discussed. Remote sensing techniques has the ability to 

provide spatial and temporal information on suspended matter present in surface water bodies, 

through estimating and mapping suspended sediment concentrations (Usali & Ismail, 2010). 

Remote sensing provides spatially variable results over a short temporal scale, allowing for a 

greater dataset to be continuously analysed (Somvanshi.S et al., 2012).  
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1.2. Aims and objectives.  

1.2.1. Aim  

The aim of the study is to assess the water quality in the Heuningnes Catchment, Cape Agulhas 

using remote sensing and statistical techniques, to determine the land use practices of 

significant influence on water quality. This study can be used for effective water resource 

management, specifically in inaccessible areas.    

1.2.2. Objectives  

The specific objectives are to:  

a) identify and determine the impacts of land cover and land use on water quality.   

b) assess the use of remote sensing to predict surface water quality with remotely sensed data  

1.3. Thesis outline  

Chapter one: A comprehensive summary of the background of the relevant research is given 

in this chapter. This section includes research main aim and objectives of the study.   

Chapter two: This chapter provides a detailed review of remote sensing techniques and spatial 

modelling to evaluate the effects of land management activities on surface water quality, South 

Africa. Furthermore, discusses the impacts of land use land cover on surface water resources; 

and modelling techniques for determining the relationship between land use land cover and 

surface water quality. Remote sensing application to land use land cover monitoring and water 

quality monitoring is addressed. Traditional techniques for identifying LULC impacts on 

surface water quality is reviewed and advancements made in Remote sensing technology in 

land use land cover and water quality monitoring. Challenges with remote sensing for 

monitoring LULC and extracting water quality data has also been addressed.   

Chapter three: This chapter highlights methodology to achieve land use land cover 

classification and a brief description of the selected study area: the Heuningnes Catchment, 

Cape Agulhas, South Africa.   

Chapter four: This chapter highlights methodology of remotely sensed data and the statistical 

analysis for the prediction of surface water quality for the Heuningnes Catchment, Cape 

Agulhas, South Africa.  

Chapter five: This chapter provides a synthesis of major research results. Major 

recommendations and significant findings, along with limitations of the study are also included 

in this chapter.   

http://etd.uwc.ac.za/
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CHAPTER TWO  

Remote sensing techniques and spatial modelling to evaluate the effects of land  

management activities on surface water quality, South Africa.  

2.1 ABSTRACT  

This chapter reviews satellite image classification techniques which effectively monitors and 

classifies LULC. An emphasis is placed on the development of image classification techniques 

to determine LULC change. The research highlights the various techniques applied for optimal 

surface water body extractions, and advancements in water-based indices, therefore focussing 

on Modified Normalized Difference Water Index (MNDWI), Water Ratio Index (WRI) and 

Automated Weighted Extraction Index (AWEI). Thus, this research highlights various remote 

sensing techniques to assess the impacts of LULC on surface water quality and predicting 

surface water quality. Furthermore, this thesis highlights the importance and the benefits of 

remote sensing techniques in developing countries.   

Keywords: land use/land cover; surface water bodies; Sentinel-2; automated water extraction 

index.   

2.2 Introduction  

Surface water bodies, providing water for natural and anthropogenic activities, are under threat 

and therefore resulting in the deterioration of water resources. Leading factors affecting water 

quality is the growth of global population as it serves as the umbrella for which other additional 

factors contribute to the impacts on water quality. With population growth there is a greater 

magnitude of demands to be met, and greater strain is placed on environmental resources (He 

et al., 2008). Failure to monitor and assess water quality changes, climate change and other 

environmental changes will result in ecological, health, social and economic effects as water is 

a vital resource. Additionally, the understanding and assessment of historical and present 

impacts of LULC management and practices is necessary for effective water resource 

management. Water resources therefore requires routine monitoring, assessing, planning, and 

managing water quality (He et al., 2008). An increasing population increases food demand and 

therefore exerting pressure on land resources to supply food, which involves the extensive use 

of fertilizers. Severe impacts can occur when changes in surface water is neglected and not 

monitored such as water shortages, flooding, and waterborne disease outbreaks (Feyisa et al., 

2014).  The quality of water provides information pertaining to land use activities in the 

surrounding area, as well as the land cover of the area. Through tracking the compounds present 
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in surface water quality provides a direct link to the source of contamination, and representation 

of the area of interest. The relationship between LULC and water quality is not largely known 

and understood (Namugize et al., 2018a). To understand the impacts of land use and land cover 

it is necessary to firstly define this interconnected concept. Land cover is defined as land and 

topographic characteristics such as the spatial distribution of vegetation type and their species 

as well as surface water distribution, groundwater, soil and other natural landforms and physical 

man-made structures, structures such as roads, railways, and built-up areas. The motive behind 

remote sensing techniques for assessing the change in water quality patterns is driven by the 

time-consuming task of in situ water quality measurements, although accurate it can become 

an expensive method (Chingombe, 2012). Remote sensing techniques are therefore extensively 

researched to uncover most efficient methods to achieve a spatial and temporal variation in 

water quality. This study will therefore assess the accuracy of water quality estimates obtained 

from remote sensing in comparison to in situ measurements. It is observed that a few studies 

such as Bonansea et al., (2015), which has displayed accurate results however no inclusion of 

the effects of environmental factors are discussed. Remote sensing techniques has the ability 

to provide spatial and temporal information on suspended matter present in surface water 

bodies, through estimating and mapping suspended sediment concentrations (Usali & Ismail, 

2010). Remote sensing provides spatially variable results over a short temporal scale, allowing 

for a greater dataset to be analysed, continually (Somvanshi. et al., 2012). Therefore, this thesis 

aims to further discuss and analyse 1) the relationship between land use land cover and water 

quality 2) the impacts of LULC on water quality, and 3) assessing the use of remote sensing to 

predict surface water quality with remotely sensed data. Furthermore, limitations and 

recommendations regarding materials and methods is discussed. This thesis aims to highlight 

and present the advancements and challenges in remote sensing approaches in assessing the 

impacts of LULC on surface water quality.   

2.3 Impacts of land use land cover on surface water resources  

Impacts of land use land cover changes have been assessed and quantified over numerous 

decades. Studies have shown the influences of LULC on surface albedo and thus affecting the 

global climate (Lambin & Geist, 2006). The collective, global impacts of LULC can affect 

earth system functioning. Land use and land cover can influence the dynamics of a catchment, 

such as the hydrological response, geomorphology, and soil properties. The influence on 

catchment dynamics is associated with the varying distribution of precipitation into different 

components such as evapotranspiration, interception, infiltration, runoff, and the rate of 

groundwater recharge, within the hydrological cycle. The land coverage therefore has a major 
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influence on water quality parameter concentrations (Aduah et al., 2015; Li et al., 2008; 

Namugize et al., 2018b). LULC affects the way in which compounds are filtered for their 

transport along a river, and before infiltration into groundwater. The spatial variations of 

vegetation affects hydrological processes, and regions occupied permanently by grasslands or 

forests experiences lower soil losses and sediment yields (Serpa et al., 2015). Wan et al., (2014) 

expresses the importance of understanding how the different catchment regions experiences 

varying impacts, where upstream reaches have fewer impacts as opposed to downstream 

reaches as well as steeper and flatter areas.   

In areas dominated by agriculture, the degradation of surface water quality was found to be a 

result of the excess export of nutrients such as nitrogen, phosphorous and suspended sediments 

(Lambin & Geist, 2006). These parameters are found in fertilizers and used for crop production 

which leaches into the soil, and in turn results in run-off to water bodies causing eutrophication. 

Concentrations of these parameters are therefore analysed to portray the quality of the water 

bodies. Along with excess nutrients, the occurrence of soil erosion and the resulting suspended 

sediment contributes to surface water quality degradation (Issaka & Ashraf, 2017). 

Additionally, anthropogenic impacts aggravates degradation through water abstraction, dam 

construction and water pollution (Aguilera et al., 2012; Mattikalli & Richards, 1996). 

Specifically, dam construction poses adverse impacts such as inundation, flow manipulation 

and fragmentation where inundation is directly related to the degradation of surface water 

quality through the release of greenhouse gas, sedimentation, and an overabundance of 

nutrients (Nilsson, et al., 2005). Water quality is impacted according to the surrounding 

industries and activities, as run off from each industry or activity affects water quality to 

different degrees. Studies have shown the combined impacts of climate change and LULC 

change in degrading water quality, where regions with agricultural settings resulted in 

significant discharges of nitrates and phosphorous, into surface water bodies (Wu, et al., 2012; 

El-Khoury, et al., 2015; Mehdi, et al., 2015). This is evident in observing the average nitrogen 

levels present in waterways from the agricultural sector, which has had a 36% global increase 

since 1990 (Kanianska, 2016). Along with the impacts of various industries and human 

activities, comes along the increasing impact of climate change which exacerbates the impact 

of water quality. The vulnerability of water to being impacted is dependent on catchment 

conditions. With an increase in climate change, an already vulnerable waterbody with poor 

water quality could undergo worsened states as climate change results in lower flows within 

rivers (Mehdi, et al., 2015). The study by Nilsson & Renofalt (2008), evidence that when flows 

have been reduced, there is less volume for dilution and therefore an increase in the downstream 

concentrations of point discharges and resulting in toxic concentrations to ecosystems and 
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human health. This motivates for the need to understand the connection between LULC and 

surface water interactions (Nilsson & Renofalt, 2008).   

2.4 Modelling techniques for determining the relationship between land use land cover and 

surface water quality  

Land use is referred to as the way in which humans, animals and other living organisms make 

use of ecosystem services within a holistic cycle. Ecosystem services such as prey and predator 

cycles within the Animalia Kingdom (Lambin & Geist, 2006). To determine the effect land use 

and land cover changes has on water quality, there is a need to determine the relationship 

between LULC and water quality, and their interactions. In addition to understanding the 

relationship, understanding importance of the riparian zone in maintaining water quality is as 

significant, in this way, methods for further protection of the riparian zone can be applied. The 

presence of the riparian zone is important for the way in which it regulates and controls the 

inflow of nitrates, phosphorous, and sediments into a stream however, where riparian zones has 

been removed, bank erosion occurs, and in turn leads back to the change and increase of 

nitrates, phosphorous and sediments. Therefore, analysing water quality from the riparian zone 

aids in the understanding and interpretation of water quality, as the riparian zone is a direct 

connection with terrestrial landscapes and streams (Mello et al., 2018, 2020; Gregory, et al., 

1991).   

Land use land cover and water quality have a complex relationship. The use of statistical 

modelling to quantify the relationship was found to be more popular due to its simplicity, as 

physical models require larger input data sets, together with calibration and validation of data 

sets (Giri & Qiu, 2016). Traditional methods have been applied namely: multiple linear 

regression (MLR), redundancy analysis (RDA), ordinary least square (OLS) and constrained 

least square (CLS) regression models. The above-mentioned models have been used for their 

simplicity and ability in approximating the effects of independent variables. However, the 

challenge experienced is the limitation to account for the spatial variation of the LULC and 

water quality relationship. Therefore, the current method in aid of determining the complex 

relationship between LULC and water quality, is known as the geographically weighted 

regression (GWR) regression model. The advantage of GWR allows for the integration of 

sample point coordinates into a regression equation to determine the relationship between 

LULC and water quality. This method has specifically been applied in North America, Europe, 

and Asia (Giri & Qiu, 2016). Previous, traditional statistical methods lack the importance of 

discovering and considering spatio-temporal characteristics of LULC and water quality 

interactions (Giri & Qiu, 2016). The Bayesian hierarchical framework has been applied in a 
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study conducted in China by Wan, et al. (2014) in determining the effect of LULC on stream 

water quality. More specifically the Bayesian hierarchical model has the ability to compute 

missing data, allows for prediction and account for spatially varying regression parameters, 

successfully proven in studies conducted by (Blangiardo et al., 2011; Wan et al., 2014; Wikle 

& Anderson, 2003), indicative that this method can be applied broadly, ensuring adaptability. 

In Further understanding the relationship between LULC and water quality, it is important to 

understand how this relationship varies according to factors of seasonal variations, the intensity 

of land use, watershed characteristics, and the configuration and composition of the landscape 

(Mello et al., 2020).   

Furthermore, to increase accuracy and reliability of determining the relationship between 

LULC and water quality using statistical models, Giri & Qiu (2016) has proven it necessary to 

use a combination of LULC indicators to eliminate flaws present within the indicator in use. 

The results show the inaccuracy of the sole use of the landscape development intensity (LDI) 

index, as it was not able to specify the exact location of the land use affecting water quality 

(Wan, et al., 2014) (Giri & Qiu, 2016). Therefore, Giri & Qiu (2016) proposed the incorporation 

of statistical models as a complementary sense, in accounting for various factors. Current 

multivariate statistical techniques include a cluster analysis (CA), principal component analysis 

(PCA), and factor analysis (FA) as well as discriminate analysis (DA). A study conducted by 

Barakat (2016) applied CA, PCA, FA and DA in order to assess the temporal and spatial 

variations of water quality, as well as to determine potential and significant contamination 

sources and to classify sampling sites according to water status. The results of the above 

mentioned multivariate statistical techniques presented the efficiency of these techniques as it 

produces reliable water quality information based on only a few monitoring sites and only 

requiring limited water quality parameters to be assessed. This may be especially relevant in 

studies where sufficient resources and technologies are inaccessible and unavailable. 

Furthermore, these techniques (FA) presented the parameters of concern, such as discharge and 

organic pollution, within the Indus River, Pakistan (Barakat, et al., 2016; Baluch & Hashmi, 

2019).   
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Table 1: A summary of literature research on quantifying the relationship between land use/land 

cover and water quality, across a global scale.   

Country  Methods   Research Findings  References   

China   Multivariate regression 

model: Redundancy 

Analysis (RDA) and 

Partial Least Squares 

Structural Equation  

Modelling (PLS-SEM)  

Water quality parameters displayed 

different results across different 

seasons. During the dry period, the 

watershed location was solely affected 

by urban cover. However, the rainy 

period was associated with organic 

and inorganic pollutants from 

agriculture and urban cover. The 

outcome displayed a negative 

correlation between urban and organic 

pollutants to water quality.     

(Wang,  et  

al., 2021)  

North  

America,  

Europe,  

Asia  

Geographically  

Weighted  Regression  

(GWR)  

Results presented a positive 

correlation between land use land 

cover and water quality, indicating the 

degradation of water quality with land 

use land cover change.   

(Giri  &  

Qiu, 2016)  

Morocco  Multivariate  statistics  

such as Pearson’s 

correlation, principal 

component analysis 

(PCA) and CA.    

Results presented by PCA indicated 

that the differences in water quality 

parameters stem from point source 

contamination, non-point source 

contamination as well as natural 

processes such as soil weathering.  

  

CA displayed the spatial and temporal 

variations that occur, affecting water 

quality, which is indicative of rainfall 

being a source of contamination.   

(Barakat, et 

al., 2016)  

  

2.5 Remote sensing application to land use land cover monitoring  

Rawat & Kumar (2015) carried out a study whereby LULC classes are classified and thereafter, 

change is detected from the conversion of one kind of LULC class to another, over a significant 

period. Studies by Obeidat et al. (2019) and Rawat & Kumar (2015), indicate the use of the 
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maximum likelihood classifier as a common classification method for land use land cover 

monitoring, in detecting different types of LULC classes such as built-up, agriculture and 

indigenous forests. To determine the amount of change that has occurred across land use and 

land cover, studies have presented the traditional method of detecting LULC change, which is 

the use of Normalized Difference Vegetation Index (NDVI), across remotely sensed images 

(Maselli, 2004; Lunetta, et al., 2006; Ramoelo, 2007). This vegetation index is applied to 

predict as well as assess the status of vegetation cover, as it expresses vegetation health, and is 

widely used for its ability to account for issues of sun elevation angle causing shadow variations 

and is not affected by topography (Obeidat, et al., 2019). The satellite imagery provides 

information on the location, type, and extent of LULC changes that have occurred, particularly 

according to its spatial and temporal characteristics (Obeidat, et al., 2019). Additionally, 

Obeidat et al. (2019) analyses high NDVI values, typically above 0.15 as dense vegetation, as 

opposed to zero NDVI values indicating no vegetation. This guidance allows for the 

observation of vegetation status of a specific period (Obeidat, et al., 2019).   

Obeidat et al. (2019), presents a method for quantifying the amount and type of change that has 

occurred over a significant period, by presenting a compilation of various possible change 

outcomes, which is known as thematic change. Obeidat et al. (2019), presents a further method 

how image difference method is used to calculate how brightness values have changed with 

time, and the results of image difference directly displays LULC changes and displayed across 

a grayscale image. By observing the decrease in reflectance, image difference displays 

vegetated areas and areas which once were dry, and with time became saturated. Furthermore, 

the degradation of vegetation cover is observed by an increase in reflectance (Obeidat, et al., 

2019). The above brings insight about the various LULC changes that have occurred across a 

given study area and period, by monitoring the changes of image brightness.  

Table 2: A summary of literature research on land use/ land cover classification and change 

detection, across a global scale.   

 

Country  Sensor  Methods  Research Findings  References  
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India    Multispectral  

Landsat  

Thematic  

Mapper    

Supervised classification: 

Maximum Likelihood  

Classification.  

Change detection 

techniques: traditional 

post-classification cross 

tabulation, cross 

correlation analysis, 

neural networks, 

knowledge-based expert 

systems, image  

segmentation and object 

oriented classification. As 

well as the use of NDWI, 

MNDWI and normalized 

difference built-up index  

(NDBI)  

Urban land increased 

from 23.7% in 1986 

to 32.8% in 2002. 

Whereas agriculture, 

forest and wetland 

decreased from  

69.6% to 60.5%  

(Rawat  

Kumar,  

2015)  

&  

 India   Landsat  

Thematic  

Mapper   

Supervised classification 

method, maximum 

likelihood algorithm to 

perform land use land 

cover classification.   

  

Post-classification method 

for detecting land change, 

through pixel comparisons 

for change interpretation.   

Classification results 

showed an overall 

accuracy of 90.29% 

in 1990 and 92.13% 

on 2010.  

  

Change detection 

results depict 

positive and negative  

LULC change 

patterns, in the class 

of vegetation, 

agriculture, barren, 

built-up and water 

body. 

 (Rawat  &  

Kumar,  

2015)  
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England  Landsat MSS 

and SPOT  

HRV  

Unsupervised method of 

classification, specifically 

the K-means cluster. As 

well as obtaining land use 

land cover information 

through digital image 

processing.   

  

Land use change detection 

was achieved by the  

Boolean logic.  

The method results in 

the grouping of pixels 

according to their 

spectral reflectance.  

Thereafter, producing 

various land cover 

classes, portrayed 

across land use land 

cover distribution 

maps.    

  

Land use change 

detection indicated an 

increase in the use of 

nitrogen and 

phosphorous 

fertilizers.   

  

  

(Mattikalli  

&  

Richards,  

1996)  

  

2.6 Remote Sensing techniques for water quality monitoring     

In the monitoring of water quality, Lambin & Geist (2006) presents evidence of the fact that 

water quantity and quality is dependent on the surface over which it flows as it encounters 

terrestrial characteristics. Examples of terrestrial contact includes forestation, changes in 

croplands, urbanization, and mineral extraction, and in turn affecting the hydrological cycle 

(Steffen, et al., 2004). Through the excess export of nutrients such as nitrogen and phosphorous, 

which is the product of fertilizers within the agricultural sector, eutrophication takes place. 

Eutrophication results in weed growth and an overall poor, indigestible water quality (Steffen, 

et al., 2004; Lambin & Geist, 2006). Furthermore, Tilman (1999) and Pimentel, et al (2004) 

studies states that 90% of diseases occur because of poor water quality, predominantly in third 

world countries. The above mentioned is evident that a relationship exists between land use 

land cover and water quality.   
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Studies have mentioned and presented the results of water indices applied in acquiring surface 

water information as opposed to inter-spectral relation methods, the way in which surface water 

has changed over a specific period (Zhai, et al., 2015; Wang, et al., 2020). Changes including 

channel width, volume of a river network, and the deterioration of water quality. With 

extracting surface water information, there is knowledge constraints posed by machine learning 

algorithms in training professionals, as opposed to traditional algorithms. With regards to 

machine learning algorithms, a study conducted by Li et al. (2013), stated the inability of 

machine learning algorithms to rapidly map surface water information across country and 

worldwide scales. Therefore, there has been a more common use within traditional methods for 

surface water extraction. More specifically, the common method used is the multi-band method, 

where a water index is used in combination with remote sensing indices. Specifically, the multi-

band method as it performs better in producing higher water extraction accuracies and 

efficiency in surface water extraction across a larger scale (Li, et al., 2013; Feyisa, et al., 2014; 

Dong, et al., 2016; Fisher, et al., 2016; Tulbure, et al., 2016; Mohammadi, et al., 2017; Chen, 

et al., 2017; Wang, et al., 2018; Wang, et al., 2020).     

The importance of utilising indices assessing vegetation conditions and the presence of 

vegetation, produces information pertaining to the way in which vegetation has changed as a 

result to land use land cover change, and the result of vegetation conditions due to the use of 

poor water quality through irrigation (Land and Water Development Division of FAO, 1997).. 

Rawat & Kumar (2015) presented the benefits of integrating the indices: MNDWI, EVI, and 

NDVI as a method to minimise flaws present in each above-mentioned indices, and therefore 

more accurately extracting surface water bodies and identifying water bodies against non-water 

bodies. This achieved by use of spectral combinations within the use of indices (Wang, et al., 

2020). Thereafter, the change observed among surface water bodies can be the driver to further 

investigating cause of change (Rawat & Kumar, 2015).    

Giri & Qiu (2016) conducted a study displaying the use of water quality indices such as the 

Water quality index (WQI) mentioned above, as well as the Contamination potential index. 

However, the challenge of CPI is the inability of the index to be applied only to non-point 

source pollution due to its complex nature and therefore making it more challenging to 

accurately estimate flow rate and area of contamination, especially since flow rate and 

contaminated area is vital for quantifying waste material. Therefore, a study conducted by 

Sapna et al. (2018) made use of the Water Quality Index (WQI) which aids in resolving water 

quality data in order to be simply interpreted by the public and to avoid complexities. WQI 

presents water quality data over a particular area and time, as a single value, and therefore 
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provides an overall description of the water quality of concerning parameters. WQI quantified 

by the following overall mathematical equation:  

𝑊𝑄𝐼 =  Wi Pi     eq. 1  
 Pi  

Equation 1, first assigns a range of 1-6 to water quality parameters of concern, representing the 

degree to which water quality affects human health, which is known as the parameter's weight 

in affecting human health. The equation above may also be applied to analyse water quality for 

general use (Lion, et al., 2004; Sapkal & Valunjkar, 2013). WQI is correlated with water quality 

parameters and analysed to determine either a negative or positive correlation. Concerning 

parameters are determined by the following factors: its effect on human health; the 

concentration of the parameter in comparison to insignificant parameters; and the possibility 

of treatment or removal. The study evidences the suitability of WQI in determining the state of 

water quality for drinking purposes as well as general use (Sapkal & Valunjkar, 2013). WQI 

moreover describes the impacts of certain water quality parameters in relation to World Health 

Organization (WHO) standards. The Water Quality Index (WQI) is commonly used which aids 

in resolving water quality data to be simply interpreted by the public and to avoid complexities. 

WQI presents water quality data over a particular area and time, as a single value, and therefore 

provides an overall description of the water quality of concerning parameters.   

Table 3: A summary of literature research on water body delineation and water quality 

extraction, across a global scale.  

Country  Sensor  Methods  Research Findings  References  

India    Landsat  

Thematic  

Mapper  

(TM)  

Remote 

sensing 

indices, 

normalized 

difference  

water index 

(NDWI) and  

modified 

normalized 

difference water 

index 

(MNDWI) to 

detect changes 

of water bodies 

(El-Asmar, et  

al., 2013)   

The accuracy assessment of 

the classification indicates 

an overall accuracy of  

90.29%  for  1990  and  

92.13% for 2010. In 1990, 

0.90% was classified under 

water body and in 2010, 

there is a deduction in water 

body of 0.82%   

(Rawat  &  

Kumar,  

2015)  
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China  Landsat TM,  

Landsat  

ETM+,  

Landsat OLI 

and Sentinel- 

2  

Multispectral  

Instruments  

(MSI)  

Water 

extraction 

algorithms: 

Modified  

Normalized  

Difference  

 Water  index  

(MNDWI),  

Enhanced  

Vegetation  

Index  (EVI)  

and 

Normalized  

Difference  

Vegetation  

Index (NDVI) 

to map surface 

water bodies.   

  

  

The results display accurate 

classification and dynamic 

monitoring of surface water 

bodies, with overall 

accuracy being 95.9%, the 

producer accuracy at 

93.24% and the kappa 

coefficient 0.91.  

  

Furthermore, the results 

displayed a decreasing 

trend in seasonal 

waterbodies across the 

Hetao Plain whereas more 

permanent waterbodies 

displayed an increasing 

trend as a result of annual 

precipitation.  

(Wang, et  

al., 2020)  

Denmark  Landsat  5  

TM   

Comparison of  

different 

classification 

methods 

namely:  

MNDWI  and  

Maximum  

Likelihood  

(ML). As well 

as the improved  

AWEI produced a higher 

accuracy in extracting 

water bodies as opposed to 

MNDWI and ML, as it is 

especially applicable in 

mountainous regions, and 

effective for omitting cloud 

and hill shade limitations.  

Kappa coefficient showed a  

 0.93  classification  

(Feyisa, et 

al., 2014)  
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  classification 

method 

developed, 

Automated  

Water  

Extraction  

Index (AWEI).  

accuracy, with AWEI.    

  

  

2.7 Traditional techniques for identifying LULC impacts on surface water quality  

Remote sensing is used to determine the physico-chemical and biological characteristics of 

waterbodies, as well as by identifying possible pollution or contamination sources. This 

information found in waterbodies is related to remote sensing reflectance. To understand 

remote sensing techniques for monitoring water quality parameters, it is imperative that 

individual parameters are identified and thoroughly understood to determine whether a 

relationship exists between water quality parameters and radiance data and therefore relate 

water quality parameters to spectral reflectance values and determine which section of the 

electromagnetic spectrum water radiates to.   

To get to the source of water quality changes, it is necessary to firstly identify and apply 

methods which help identify additional influences on water quality. These factors are LULC 

impacts, climatic factors, and hydrologic conditions. In this way there is the ability to eliminate 

factors which cause insignificant changes and place emphasis on factors of concern (Spooner, 

et al., 2014). Furthermore, Giri & Qiu (2016) have proposed various methods to determine 

these water quality variables such as riparian zone approach, hydrologic sensitive areas, 

nonspatial land use matrix and critical source areas, to describe factors that have additional 

impacts on water quality status. However, the limitation found with this approach is the 

inability to accurately delineate a riparian zone as well as it lacks the representation of any 

hydrological variations present (Giri & Qiu, 2016). Because of riparian zone approach 

limitations, hydrologic sensitive area functions as a contributing area towards runoff, and 

therefore supports and accounts for limitations experienced with the riparian zone approach. 

Automatically, this method is related to the effects of land use land cover change on water 

quality due to the active runoff serving as a vehicle of potentially polluting factors. The 

application of non-spatial land use metrics presented results from a study by Schueler (1994), 
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where it indicated the direct deterioration of stream water quality is the result of a 10 percent 

conversion to impervious surfaces. These methods mentioned above as water quality behaviour 

indicators, are analysed to determine the way in which water quality behaves, which can 

therefore be related to the status of water quality for an area under investigation. Collectively, 

explanatory variables utilise the percentage of land use land cover change, such as the 

conversion of land to urban impervious areas, to determine the impacts of that specific change 

on water quality (Giri & Qiu, 2016).   

The study conducted by Dewidar & Khedr (2001) has determined the relationship between the 

following water quality parameters: potassium (K+) and sodium (Na+), total phosphorous., 

total nitrogen, dissolved oxygen, pH, and salinity, through the use of regression models for the 

various water quality parameters namely: salinity, sodium and potassium model and related in 

accordance with radiance values, and the results displayed a significant positive correlation 

between salinity, sodium and potassium (Dewidar & Khedr, 2001). Somvanshi.S et al. (2012) 

suggests the STATISTICA 6.0 software to relate water quality parameters to spectral 

reflectance using a multiple linear regression to produce multiple correlation coefficients (R2). 

The result of this method is to test which independent variable is more favourable with the 

dependent variables, to produce an effective regression model to estimate water quality 

parameters. A previous study conducted by Ritchie & Charles (1996) and Usali & Ismail (2010) 

developed an empirical equation relating remote sensing measurement of radiance and water 

quality parameters of concern, determined by spectral reflectance values of a parameter. The 

above study proposed the following equation:  

Y = A + BX or Y = ABX   eq. 2  

A parameter of importance that commonly occurs in surface water is suspended matter, as it 

relates to the primary production and fluxes of heavy metals as well as this parameter provides 

awareness to micro-pollutants that are present within the water resource and acts as an 

important function of water quality management. Therefore, the above-mentioned equation was 

developed to estimate suspended sediments. The variables present the following: Y refers to 

the remote sensing measurement, either radiance, reflectance or energy. Water quality 

parameters of concern is represented by the variable X. Variables A and B presents the value 

obtained from the statistical relationship between spectral reflectance, of water quality 

parameters, and measured in situ water quality parameters. In this study it is revealed that 

suspended matter is found to increase reflection of surface water in the visible and near infrared 

range of the electromagnetic spectrum, between the wavelengths 705 nm and 865 nm. The 

surface water reflection within these ranges is influenced by the texture, colour, and water depth 
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of sediments as well as sun angles. A more specific range of water quality parameter estimation 

is between 400 and 850nm (Ritchie & Schiebe, 1976; Dekker, et al., 2002; Usali & Ismail, 

2010).   

Remote sensing produces a spectral radiance known as L( ), and is observed against the 

interaction of incident solar radiation with surface water constituents, the result of this 

interaction is indicative of a positive empirical relationship between suspended sediments and 

L ( ). The empirical relationship between SS and L ( ) is applied to estimate suspended sediment 

concentrations. To increase effectiveness of this method, understand environmental factors 

affecting these variables such as suspended sediment concentration, the grain size of the 

sediment, sensing geometry, and water depth and water components. The following conditions 

is ensured for the correction of influential environmental factors: cloudless skies; a wind speed 

of 10 knots; and at midday where the solar zenith angles falls between 30  and 60  (Atkins et 

al., 2016; Novo et al., 1989; Ritchie et al., 1976).   

Turbidity is measured by the rate light is scattered from suspended solids therefore, the greater 

the amount of scattered light the higher the turbidity concentration present in water. Campbell 

et al. (2011) discussed the extraction of water quality data based on remote sensing spectral 

data, through the way a parameter such as turbidity absorbs and scatters light, these interactions 

are modelled using a semi-analytical approach. This refers to the way in which spectral data is 

analysed and processed in relation to water quality parameters. Parameters present in surface 

water bodies contains information, which is extracted by remote sensing, providing deductions 

about that specific parameter. Furthermore, this approach is especially important for requiring 

minimal field data and accounting for numerous time scales, as opposed to the empirical and 

analytical method. Campbell et al. (2011) developed linear equation models for identifying the 

optical properties of water and the way in which water quality parameters behave, in terms of 

absorption; scattering and backscattering; and volume scattering. Therefore, it can be deduced 

that the absorption of a water quality parameter is relative to the total concentration of the water 

quality parameter present of a particular waterbody. This approach aims to provide accurate 

estimations of water quality parameters (Rijkeboer & Dekker, 1997; Campbell, et al., 2011).   

The effectiveness of applying image classification techniques is based on the environment and 

the purpose of investigation. To gain optimal results of land change detection, methods are 

required to produce classification maps to display categorical land cover changes and address 

future land changes (Aduah et al., 2015). To quantify the relationship of the two variables, 

LULC is determined and classified along with delineating surface water bodies. Namugize et 

al. (2018b) avoided the over estimation of sub-catchment areas by combing the use of 
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automated hydrology and arc hydro tools of ArcGIS 10.1. The extraction of surface water 

bodies is compromised by low accuracy when using Landsat imagery therefore, Feyisa et al. 

(2014) proposed various water classification methods such as thematic classification, linear 

unmixing, single-band thresholding and two-band spectral water indices to be assessed. The 

above study has proposed that with a combination of the above-mentioned classification 

methods, accurate results is obtained in comparison to the individual application of each 

classification method. This will allow for minimal accuracy problems where discrepancies can 

be made between water and hill shade or cloud shadows, and low albedo urban surfaces. 

However, Feyisa et al. (2014) proposed the Automated Water Extraction Index (AWEI) method 

which is a multiple-band index, to resolve challenges. The use of this method is supported by 

the high accuracies obtained, when compared to Modified Normalized Difference Water Index 

(MNDWI) and Maximum Likelihood (ML) classifiers, as AWEI ensured that 50% of errors is 

omitted, specifically when applied to water bodies (Feyisa et al., 2014). This method is 

especially suitable as it has been applied in a range of climates, particularly South Africa with 

its mountain ranges, which is the region of interest within the study. Feyisa et al. (2014) has 

formulated and redeveloped AWEI, a multiple-band index, where shadow impacts usually 

effect the accuracy of extracting water bodies, and therefore more specifically developed the 

AWEIsh (Automated Water Extraction Index Shadow) most importantly for separating water 

from non-water pixels and further, to eliminate classification errors. AWEIsh (Eq.1) is more 

commonly used in areas with a predominant presence of snow, ice, and high albedo however 

without significant built-up area present. AWEInsh (Eq.2) is applied in regions where shadow 

effects don’t pose major impacts on water surface extractions and classifications, however, is 

applied where there is a combination of high albedo and shadow regions are present. Specific 

environmental conditions in testing the effectivity of the AWEI, is the application of the index 

in a range of environmental conditions, such as humid temperate, sub-tropical and tropical dry 

regions, as well as a range of land cover types (Feyisa et al., 2014). Land cover types range 

from mountainous regions, built-up areas and deep hill-shade areas in Denmark, Switzerland, 

Ethiopia, South Africa, and New Zealand. The AWEI equations is expressed as follows:   

AWEIsh = 4 x ( band2 - band5) – (0.25 x band4 + 2.75 x band7)                                                 (1)  

AWEInsh = band + 2.5 x band – 1.5 x ( band4 + band5) – 0.25 x band7                         

(2)  

 displays the spectral reflectance values of Landsat 5 TM bands where: band 1(blue), band 

2(green), band 4(NIR), band 5(SWIR) and band 7(SWIR). Large negative results are associated 

with vegetation, soil and built-up areas which has high reflectance values within near infrared 
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and shortwave infrared bands, whereas low reflectance bands are associated with shadow 

surfaces. The formulation of the two above mentioned equations is in aid of accounting for 

limitations where, in applying only one of the AWEI equations, and AWEInsh is unable to 

classify shadowed areas and low albedo surfaces from water surfaces (Feyisa, et al., 2014).   

2.8 Advancements made in remote sensing technology in land use land cover and water 

quality monitoring   

The contamination of water has become a worldwide issue impacting many countries and 

communities. Water quality is monitored to ensure corrective measures are taken place. The 

aim is to examine the various traditional and advanced water quality monitoring techniques to 

assess their suitability. The study conducted by Griffith (2002) is used to depict the 

advancements of remote sensing and GIS in monitoring and assessing water quality status. 

About 20 years ago, traditional methods are seen as time consuming and expensive, particularly 

over large-scale areas. Certainly, different satellites are used and applied according to the 

specific scenario in question, to optimise results. A global application of remote sensing 

technology is evident, seen in use as early as 1984, where applied in India specifically for 

hydrological applications and water resource management (Bhavsar, 1984). With the 

advancement of remote sensing technology, initially with the development of Landsat 1 in 

1972, Landsat Thematic Mapper (LTM) has been largely used and applied to inland water 

quality monitoring studies. Lambin & Geist (2006) expresses the project responsible for the 

tracing of land use land cover change of historical and modern-day information obtained during 

the past 300 years, using census data, tax records and land surveys, globally, between 1981 and 

2001. The project expressed in the above-mentioned study is known as the Global Observation 

of Forest and Land Cover Dynamics (GOFC- GOLD).    

A significant development can be seen through the study conducted by Munyati &  

Ratshibvumo (2011) where Landsat TM/ Enhanced Thematic Mapper Plus (ETM+), was used  

for linking water quality to vegetation cover, where it has been discovered that waterbodies 

high in turbidity levels are found close to bare land where runoff is high, and therefore assists 

in monitoring water quality of degraded areas ( Munyati & Ratshibvumo, 2010). Advancements 

made in remote sensing industry stems from experiencing various challenges, such as the 

influences of cloud and vegetation in the veiling of optical sensors. Among many others, the 

introduction of Digital Elevation Models (DEM) aids in omitting shadow effects presented by 

clouds, vegetation, and mountain shadows, with the earliest use of elevation data implemented 

in 1986 with the use of the SPOT 1 satellite (Balasubramanian, 2017). Recently, advancements 

have resulted in the ability to obtain surface water information solely through remote sensing 
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optical imagery, such as the measurement of river discharge, and along with other 

environmental applications (Huang, et al., 2018). These advancements altogether aid in 

meeting demands with regards to surface water applications, at global and regional scales and 

small-scale waterbodies specifically in Sub-Saharan Africa (Dube, et al., 2015; Huang, et al., 

2018). Sentinel-2 satellites were produced by the European Space Agency (ESA) and the  

European Union (EU) in 2015, succeeding the initial Sentinel-1A satellite produced in 2014.   

The suitability and accuracy of Sentinel-2 has been tested in the study conducted by Phiri et al. 

(2020), which has presented many advantages of the use of Sentinel-2 images. Senitnel-2 has 

been developed with multispectral scanners, allowing for higher spatial resolution, temporal 

resolution and furthermore for its various applications. Sentinel-2 Multispectral Instrument 

(MSI) contains spectral bands: RGB and Near-Infra-Red (NIR) and Short-Wavelength InfraRed 

(SWIR) with resolutions of 10m and 20m respectively. These bands are specifically relevant 

for obtaining surface water information (Yang, et al., 2017).      

2.9 Challenges with remote sensing for monitoring LULC and extracting water quality data  

There are various limitations of remote sensing, especially experienced when remote sensing 

is used to extract water quality data from smaller waterbodies, as well as the availability of 

insitu measurements required to validate remote sensing obtained measurements (Dube, et al., 

2015). Challenges experienced is that of incident energy affecting remote sensing reflectance 

and significantly altering the outcome, and therefore requiring thorough atmospheric correction 

of data (Lavery, et al., 1993). More specifically, challenges related to sensors where 

multispectral sensors are preferred over hyperspectral sensors, especially for use in subSaharan 

Africa where there are certain financial constraints, as well as the limited access to 

hyperspectral data. Overall, there is a specific degradation of surface water quality within 

developing countries, namely sub-Saharan Africa, therefore requiring the frequent and 

thorough monitoring of surface water quality (Chawira, et al., 2013). Although, hyperspectral 

sensors have been proven more accurate in remote sensing of water quality as opposed to 

broadband multispectral sensors, this is not necessarily the case in developing countries where 

financial resources and skilled individuals are limited. (Dube et al., 2015), presented the need 

to develop advanced techniques, specifically the advancement of medium to fine-resolution 

multispectral data to achieve the water quality monitoring specifically of small-scale 

waterbodies, as there have been limitations of resolutions of certain sensors such as coarse 

resolutions obtained from MERIS data.   
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2.10 Conclusion   

Due to the ever-changing society and exponential growth of the human population, human 

needs and demands have too increased. To account for this growth, there is a need to convert 

the land cover to the appropriate land cover required, such as urban development, commonly 

resulting in a change from pristine natural land to polluted urban areas. In addition to the above, 

there is a need for the conversion of land cover to agricultural land to meet food security. 

However, waste and pollution accumulated from either of the mentioned land cover classes has 

vastly affected water sources. The impacts coupled with these land use land cover changes will 

continue to affect surrounding environments, vital water resources as well as human health and 

livelihood. Therefore, many studies have determined the suitability, performance, and 

effectiveness of remote sensing to predict, monitor and assess these changes and impacts, and 

ways in which to solve for this and reduce major impacts. Literature has presented advanced 

methods of accurately classifying LULC classes, and indices to extract surface waterbodies 

such as the development of more advanced algorithms allows for the utilisation of medium to 

fine-resolution multispectral data to achieve the water quality monitoring of small-scale 

waterbodies. Furthermore, in addition to these advancements, the development of models for 

relating LULC and water quality parameters to determine LULC classes with significant effect 

on surface waterbodies. Most importantly, there is a need in applying the above-mentioned 

methods specifically to developing countries with a history of poor financial resources, in 

countries such as Sub-saharan Africa. This is especially necessary as developing areas are more 

vulnerable to polluted waterbodies, and advancements are to be applied to obtain water quality 

parameters effectively and accurately with remote sensing techniques, and in so providing 

better spatial coverage of polluted waterbodies to plan and make timely decisions.   
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CHAPTER THREE  

The use of remotely sensed data for land use land cover classification for the  

Heuningnes Catchment, Cape Agulhas, South Africa.  

3.1 Abstract  

The study aimed to assess the performance of machine-learning techniques for the classification 

of land use land cover classes, and its impacts on the Heuningnes Catchment, Cape Agulhas, 

South Africa. Urban and agricultural land use land cover practices have a major influence on 

the quality of surface water bodies. Diverse forms of land cover have different effects on 

hydrological features, such as flow rate, runoff, and overland flow. Sentinel-2 images were used 

to compute image classification using the machine-learning technique, Support Vector Machine 

(SVM), for July 2017, October 2017, March 2018, and July 2018, representing the dry and wet 

periods of the Heuningnes Catchment. Classification results indicates a steady increase of bare 

rock and soil, increasing from October 2017 to July 2018 with 18%, which is directly linked to 

changes in surface water quality. The wet season, July 2017, and July 2018, displays the highest 

classification percent of vegetation cover. The overall accuracy ranged between 55% and 75%, 

specifically the wet season presented greater overall accuracies of 75%. The performance of 

SVM is expressed as a moderate to substantial level agreement, with kappa statistics of 0.43 to 

0.69. For mapping land cover and estimating forest parameters, particularly with the red-edge 

band, Sentinel-2 provides timely, high-resolution data which accounts for dynamic 

environmental changes across a large area.   

Keywords: Machine-learning algorithms; Land use land cover; Remotely sensed data.   

 3.2 Introduction   

Managed water resources are important for the benefits they provide to the economy, social 

institutions, and infrastructure (Horne et al., 2017). Among the benefits is access to safe and 

healthy drinking water; ecosystem services such as drought, disease, and food control; 

recreational facilities and aesthetic features (Kim, 2021). There is a positive correlation 

between LULC impacts and water quality degradation. Various land cover types result in 

different effects on hydrological characteristics, such as changes in flow rate, runoff, and 

overland flow. These changes occur due to urbanization where there is an increased 

development of impervious surfaces, such as buildings, roads, and concrete surfaces. The 

development of such impervious surfaces directly impacts the water quality, as various harmful 

materials become incorporated with water, as runoff occurs. Poor water quality has a direct 

impact on the following factors, such as water temperature, sediment arrangement, fluvial 
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geomorphology, aquatic ecosystems, and ecological biodiversity. Therefore, resulting in water 

quality degradation. Furthermore, majorly affected surface water quality is related to regions 

dominated by agricultural activities due to the extensive use of fertilizers and chemicals, 

therefore being the dominant pollutant, along with nitrogen and phosphorus. However, regions 

dominated by forested and woodland areas displays a positive impact on surface water quality. 

This is a result of their nutrient absorption function, and being able to intercept pollutants, from 

polluting waterbodies (Cheng et al., 2022). Early identification of pollution sources allows for 

timely action to be taken. It is therefore crucial to monitor land use land cover change to manage 

the impacts of these changes. This is especially important, in protecting developing countries 

as it is significantly impacted by LULC types and changes, due to poor infrastructure and lack 

of financial resources available and may therefore easily succumb to flood and drought damage, 

and may experience health issues such as diarrhoea, vomiting, cardiovascular disease and 

hypertension. The impacts of LULC have been researched for decades due to its impact on 

surface water quality (Cheng et al., 2022; Ighalo et al., 2021; Park & Lee, 2020).   

The application of remote sensing, together with geographic information system (GIS) 

techniques, for land use land cover monitoring and change detection, results in extracting 

highresolution, multispectral information, and data which covers large inaccessible areas, on a 

realtime basis. Providing data which is more cost and time effective. These techniques allow 

for the mapping of land cover changes, and understanding urbanization, a factor responsible 

for the degradation of water quality (Butt et al., 2015). Furthermore, this information is used to 

ensure strategies necessary for spatial planning, utilization, and conservation of vital land 

resources, to sustain the exponential growth of human populations, and to make provision for 

increasing land degradation. Traditional use of remote sensing application presented limitations 

of time consuming, expensive and lacks updated information of continuously changing land 

use patterns. The advancement of remote sensing technologies, specifically Landsat 1 in 1972, 

has brought about achieving applications for natural resource monitoring and ecosystem 

processes. Additionally, the launch of Sentinel-2 in 2015, has majorly impacted the specific 

monitoring of land use land cover, due to its multispectral, and high spatial and temporal 

resolution capabilities and the availability of timely and free access data over large scale areas 

(Phiri, et al., 2020).  

 

For identifying land use land cover types, image classification is applied to achieve accuracy 

and precision in determining various land use land cover types. (Phiri, et al., 2020) has found 

that Sentinel-2 classifications of land use land cover is dominated by machine-learning 

techniques namely, as random forests (RF) and support vector machine (SVM) and is great in 
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improving accuracies for land use land cover classifications. Additionally, classification 

algorithms is categorized into two groups namely, supervised, and unsupervised classification, 

each yielding different results, which is dependent on spatiotemporal resolutions and system 

processes (Talukdar et al., 2020). Supervised classification focuses on user inputs, and 

predominantly used method due to the continuous advancements made with classification 

algorithms, and therefore yielding more accurate results. For supervised classification, land 

cover classes are trained by the user, based on pixels of similar characteristics, and individual 

land cover types is determined by these training classes selected by the user (Phiri, et al., 2020; 

Rwanga & Ndambuki, 2017). Unsupervised classification is a clustering technique, which does 

not require the creation of training samples by the user, as classes are automatically generated 

without regarding thematic characteristics of land cover types, however this technique has 

many limitations. 

This study aims to assess the use of remote sensing and geographic information system (GIS) 

techniques for mapping and change-detection of land use land cover within the Heuningnes 

catchment, South Africa. The techniques involve the image classifications and accuracy 

assessments, and to determine various land use land cover types with significant impact on the 

quality of surface water quality.   

3.3 Materials and methods  

3.3.1 Selected study area  

The study was conducted in The Heuningnes catchment, the Overberg District in the Western 

Cape Province, South Africa (34.4874° S, 20.0450° E). The catchment covers an area of 1 401 

km2 which includes towns such as Bredasdorp, Napier, and Elim. The Droe, Kars, Poort and 

the Nuwejaars river, form part of the sub-catchments within the Heuningnes catchment (Clark 

et al., 2015). The Nuwejaars River then feeds the Soetendalsvlei, with a width of 3km and 

length of 8km, and is the (Mkunyana, et al., 2019) (Figure 1). The Heuningnes River feeds an 

estuary, called the Heuningnes River estuary, it extends over 19 km with 1475 ha of open water, 

at the South Coast (Estuarine & Plan, 2019). The river estuary is joined by two tributaries, the  

Kars River and the Nuwejaars River. The topography is described as mountainous within the 

upper reaches of the catchment, and gradually becoming flattered towards the lower-lying areas 

alongside the coast. More specifically, the topography of the sub catchments within the 

Heuningnes catchment, is categorized as steep, flat, and undulating Land cover types and uses 

are categorized as agricultural, industrial, irrigation and recreational activities. These activities 

are contributing factors to water quality within the Heuningnes catchment, specifically runoff 

of pesticides and fertilizers and wastewater from treatment plants. Recreational activities which 
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involve fishing and the introduction of alien invasive species, which majorly affect water 

availability in the area, as they consume larger quantities of water compared to indigenous 

vegetation.   

The geology of the region is classified by shales and sandstones of the Table Mountain Group, 

where the shale deposits are found downstream due to slow moving water, and the porous 

sandstone allows for water percolation and storage of significant amounts of water. Soil 

characteristics of this region is classified as shallow, medium, and moderate sandy clay loams 

(Clark et al., 2015). Weather stations are located at the following locations: Moddervlei, Napier, 

Spanjaardskloof, Tiersfontein, Tussenberg, and Visserdrift. These weather stations record 

minimum and maximum temperatures and relative humidity, wind speed, wind direction, 

pressure, solar radiation, and rainfall, which is obtained from the database of the Institute of 

Water Studies (IWS). The catchment experiences a Mediterranean w and receives about 450 

mm of rain per year along the coast and 650 mm inland along foothills. Maximum temperatures 

are experienced in January at 27 °C and minimum temperatures in July and August at 8 °C. 

Agricultural activities are dominant within this region, and more specifically the Heuningnes 

river estuary (Estuarine & Plan, 2019). Fynbos accounts for 41% of the land cover types. 

Vegetation in the area, as different vegetation may also contribute to certain water qualities, as 

well as geology, as phosphates and nitrogen may be present in water quality due to certain rock 

types.   
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Figure 3. 1. The Heuningnes Catchment, Cape Agulhas, South Africa.   

3.3.2 Satellite data acquisition   

Sentinel-2 images were used to assess the land use land cover activities on surface water quality, 

in the Heuningnes catchment, Cape Agulhas, South Africa. Images were obtained from the 

USGS earth explorer website (https://www.usgs.gov), and represented the period between July 

2017 and July 2018, containing wet and dry periods, October 2017 and March 2018, to observe 

how land use land cover may have changed, as well as how surface water bodies and streams 

may have changed. Typically to observe whether surface water quality has further deteriorated 

or rehabilitated. This specific period selected was based on water quality sampling, which took 

place. Images were selected with a 10% less cloud coverage however, images containing a 

percentage of cloud cover, underwent atmospheric correction.   

3.3.3 Image pre-processing and classification  

These images were pre-processed in Quantum GIS, for atmospheric correction by applying the 

dark object subtraction (DOS1) correction tool, which considers and corrects shaded objects, 

and is an essential step in obtaining true colour of inland water bodies (Bi et al., 2018) (Rumora 

et al., 2020). Atmospheric correction is vital as it ensures accuracy in classification results. 

Additionally, image segmentation was applied as pre-processing step for the preparation of the 
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image classification. The segment mean shift algorithm groups pixels of a similar spectral and 

spatial characteristic, to reduce noise effects, because of overlapping pixels causing 

inaccuracies within the final classification result. Typically, where pixels of waterbodies and 

certain vegetation types group together and identifies as the same or similar objects. 

Furthermore, segmentation is the process of using similar smaller units together to produce 

larger regions, where different land cover classes can be discerned. Further processing was 

done in a GIS environment, where bands 5, 6, 7, 8a, 11 and 12 were resampled from a 20m and 

60m resolution respectively to a 10m resolution. Once the bands were resampled, Sentinel-2 

images were mosaicked resulting in a single complete image of the study area, an integration 

of the extracted bands 8, 4, 3 and 2, and resulting in a complete study area image. See table 3.1 

displaying Sentinel-2 band number, description, wavelength unit and resolution.   

For image classifications, five different land use classes were observed namely: surface 

waterbodies and streams; vegetation collective including indigenous, grasslands, invasive 

plants, and agricultural land; bare rock and soil; urban and other, which includes hill shade. 

Classifications was achieved by applying the supervised classification method, Support Vector 

Machine (SVM). As stated by (Rudrapal, 2015), SVM can function regardless of having a small 

training dataset, it is less prone to noise and continues to produce accurate results. For 

preparation of SVM, training samples were prepared by creating polygon signatures where a 

class is assigned to pixels representing the various land use land cover classes.   

Table 3. 1. Spatial and spectral properties of Sentinel – 2 satellite data.   

Band number  

2  

Band description  

Blue  

Wavelength unit   

490 nm  

Resolution  

10 m  

3  Green  560 nm  10 m  

4  Red  665 nm  10 m  

5  Visible and Near  

Infrared (VNIR)  

705 nm  20 m  

6  Visible and Near  

Infrared (VNIR)  

740 nm  20 m  

7  Visible and Near  783 nm  20 m  

Infrared (VNIR)  

8  Visible and Near  842 nm  10 m  

Infrared (VNIR)  

8a  Visible and Near  865 nm  20 m  

Infrared (VNIR)  

11 Short Wave Infrared  1610 nm  20 m  

http://etd.uwc.ac.za/



45  

  

(SWIR)   

12 Short Wave Infrared  2190 nm  20 m  

(SWIR)  

 
  

3.3.4 Accuracy Assessments   

Accuracy assessments performed was to evaluate the accuracy of image classifications. A total 

of 350 points were created to determine the image classification accuracy, the 350 is a collection 

of 70 points per class, for a total of 5 classes namely: surface waterbodies and streams; 

vegetation collective including indigenous, grasslands, invasive plants, and agricultural land; 

bare rock and soil; urban and other, which includes hill shade. To evaluate the accuracy and 

performance of the image classification and to identify errors pertaining to the image 

classification technique, an error matrix is created, to demonstrate the classified pixels to the 

reference pixels. Evenly distributed reference points are created based on visual observations 

made on the image, of the different classes being classified. These reference points are then 

compared to the classified image to see whether there is correspondence between them. The 

results of the accuracy assessment will determine whether the classification algorithm used, 

provides acceptable results or not. The accuracy assessments measurements in use are the 

overall accuracy, user’s accuracy, and producer’s accuracy. The producer accuracy refers to the 

correctly classified pixels for each class, in relation to the total reference points created for each 

class and indicates how well the Support Vector Machine will classify a new dataset of classes; 

and whereas user accuracy represents the correctly classified pixels proportionate to validated 

points for each class. The overall accuracy refers to the number of correctly classified pixels 

proportionate to the incorrectly classified pixels, and where the kappa statistic represents the 

agreement of the classification technique (Olofsson et al., 2013; Rwanga & Ndambuki, 2017; 

Zhen et al., 2013).  
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Figure 3. 2. Flow chart illustrating the process for image classification of a Sentinel – 2 image.  
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3.4 Results  

3.4.1 Climate Data  

Climate data received from the Institute of Water Studies (IWS) to observe rainfall and 

temperature variation across the Heuningnes catchment, see figure 2. The highest average 

rainfall was recorded as 10.43mm within Tierfontein in 2017, and the lowest average rainfall 

was recorded as 4.46mm within Napier in 2018. In 2018, Spanjaardskloof recorded the highest 

maximum temperature of 24.42 °C and in 2017, Moddervlei recorded the lowest minimum 

temperature of 9.98 °C.   

 

Figure 3. 3. Displaying the climate data for 2017 and 2018 of Moddervlei, Napier, 

Spanjaardskloof, Tiersfontein and Vissersdrift.   

3.4.2 Classification accuracies   

Table 3.2 displays accuracy assessment results of Support Vector Machine image classification, 

for Sentinel -2, using kappa statistics, producer and user accuracy, and overall accuracy for July 

2017 to July 2018, as well as determining omission and commission error. Omission error is 

the percentage of reference pixels that has been excluded from the classification, which should 

have been classed as a specific land cover class. The SVM algorithm error of omission, for July 

2017 was 54% for urban areas; 100% for vegetation for October 2017; 67% for vegetation for 

March 2018; and 51% for bare rock and soil for July 2018. Specifically for October 2017, the 

high omission error percentage indicated that none of the pixels were classified as vegetation. 

Commission error is the percent that the reference pixels were incorrectly classified as a class. 

The commission error for July 2017 was 43% for urban area; 100% for vegetation for October 

2017; 60% for urban area for March 2018; and 48% for urban area for July 2018. The high 

commission errors can be seen as the over classification of a certain class.  

  

0 

2 

4 

6 

8 

10 

12 

0 

5 

10 

15 

20 

25 

30 

2017 2018 

Year 

Rainfall (mm) Max. Temperature (°C) Min. Temperature (°C) 

http://etd.uwc.ac.za/



48  

  

For the wet seasons, July 2017 and July 2018, the overall accuracy is 75%, with a kappa 

coefficient of 0.69. According to (Rwanga & Ndambuki, 2017), this kappa value indicates a 

substantial level of agreement, within the SVM classification algorithm used. The five land 

cover classes had a producer accuracy, ranging between 46% and 97% and user accuracies 

ranging between 52% and 96%, for the wet season. For the dry seasons, October 2017 and 

March 2018, the overall accuracy ranges between 55% and 66%, with kappa coefficients of 

0.43 and 0.58 respectively, indicating moderate level agreement (Rwanga & Ndambuki, 2017). 

The five land cover classes had a producer accuracy, ranging between 0% to 100% and user 

accuracies ranging between 40% and 96%, for the dry season.   

Table 3. 2. Sentinel – 2 image classification accuracies, with support vector machine (SVM), 

for the Heuningnes Catchment for the wet season, July 2017 and July 2018, and the dry season, 

October 2017, and March 2018.   

  July 2017  October 2017  March 2018  July 2018  

Class  Producer  User  Producer  User  Producer  User  Producer  User  

Water  79  96  76  96  76  88  77  93  

Vegetation  96  69  0  69  33  64  96  78  

Other  97  91  100  61  93  93  91  96  

Bare rock  

& soil  

57  62  19  62  53  71  49  61  

Urban  46  57  79  45  76  40  61  52  

Overall  

Accuracy  

75%  55%  66%  75%  

Kappa  

Coefficient   

69%  43%  58%  69%  

  

3.4.3 Mapping land use land cover and observing changes   

Figure 3.3 illustrates LULC classification of surface waterbodies and streams, vegetation, bare 

rock, and soil, urban and other, with includes hill shade, for the wet seasons of July 2017 and  

July 2018 and for the dry seasons, October 2017, and March 2018. From the figure below 

(Figure 3.4) vegetation is the dominant land cover class for the Heuningnes catchment with a 

total of 77% coverage in July 2017. October 2017 holds the lowest vegetation cover percentage 

of 33%. For 2018, March had the highest water coverage percentage of 12%, and October 2017, 

the lowest water coverage with only 1%. It is evident that the wet season has the highest 

vegetation cover. Urban and other, has a 29% and 35% coverage respectively, and is recorded 
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as the period with the highest urban and other land cover. These land cover types are 

predominantly along the Western part of the catchment, and along the coast, for October 2017 

specifically. The other land cover type is predominantly present within the mountain range area, 

at the centre of the Heuningnes catchment, as most of the other land cover type consists of hill 

shade effects. In March 2018 and July 2018, bare rock and soil has increased from 2% in 

October 2017, to 17% in March 2018 and then a further increase to 18% in July 2018.   

 
  

  

Figure 3. 4. Displaying the image classification with support vector machine (SVM), for the 

period between July 2017 and July 2018, covering the wet season and October 2017 and March 

2018, the dry season, for the Heuningnes Catchment.    
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Figure 3. 5. Graph illustrating the area of land use land cover classes, and the changes between 

July 2017 and July 2018, for the Heuningnes Catchment.   

3.5 Discussion  

The study conducted was focused on ensuring the application of a suitable image classification 

algorithm for land use land cover analysis, within the Heuningnes Catchment, Cape Agulhas, 

South Africa, during the wet season of July 2017 and July 2018, and the dry season, October 

2017, and March 2018. Results indicates that the wet seasons, July 2017, and July 2018, display 

the highest percentage of vegetation cover.  

Image classification is vital to monitor environmental factors, as classification techniques 

evaluate each individual pixel, and assesses the spectral information of land cover for the 

creation of thematic maps, relevant for specific environmental applications such as monitoring 

land use land cover. However, classification algorithms experience several factors affecting the 

accuracy of classification results, such as the spatial resolution of the satellite used (Foody, 

2008). Classification results show a common error of mixed pixels which occurred throughout 

the image analysis, predominantly between waterbodies and vegetation covers, predominantly 

due to the Voelvlei and Soetendalsvlei environment. In correcting the error of mixed pixels, an 

object-based classification technique was applied, such as image segmentation which is 

responsible for aggregating spectrally similar objects as a specific class (Y. Chen et al., 2018).   

Classification results for October 2017 depicts an overestimation of urban areas and hill shade, 

with a 100% producers’ accuracy, and none of the pixels were classified as vegetation, with a 

user’s accuracy of 69%. For March 2018, waterbodies within this catchment appeared to be 

over classified. The use of SVM is best suited for land cover mapping as opposed to other 

classification algorithms such as maximum likelihood classification, as SVM doesn’t assume 
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that data is normally distributed and therefore including a wider range of values, allowing for 

representation. SVM does not require large training sets, however, still succeeds in achieving 

more accurate results (Kang et al., 2018). The results indicate SVM effective in classifying the 

various land cover types with an overall accuracy ranging between 55% and 75%, and kappa 

coefficients ranging between 43% and 69%, for the period July 2017 to July 2018. The over 

classification error could be a result of the image segmentation technique employed, as the 

algorithm may result in over segmentation of objects where low spatial resolution images are 

used, and high-resolution images may result in under segmentation (Y. Chen et al., 2018; Liu 

& Xia, 2010).    

The specific use of Sentinel-2 for land cover mapping, is the accessibility of data, particularly 

economically beneficial for developing countries. For land cover mapping, especially with the 

presence of the red-edge band 5, for its ability for mapping and predicting forest parameters. 

Sentinel-2 ensures high resolution and timely data to account for dynamic environmental 

changes, across extensive areas (Astola et al., 2019; Phiri, Simwanda, Salekin, Nyirenda, et al., 

2020).   

3.6 Conclusion  

The study focused on the use of Sentinel-2 data in image classification for land use land cover 

mapping, between July 2017 and July 2018, for the Heuningnes Catchment, Cape Agulhas, 

South Africa. Sentinel-2 was especially successful in mapping land use land cover, vegetation, 

hill shade, waterbodies and streams, and urban areas. A few limitations were experiencing 

mixed pixels between waterbodies and vegetation cover, as well as the over classification of 

hill shade and urban cover. However, the overall classification accuracies ranging between 55% 

and 75%, indicating high classification accuracies and kappa coefficients of 43% to 69%, 

indicating substantial level agreements of the support vector machine (SVM) algorithm. It is 

concluded that the application of Sentinel-2 for land cover mapping can be used to retrieve high 

resolution and timely information for the constant dynamic changes of land cover.   
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CHAPTER FOUR  

Remotely sensed data and the statistical analysis for the prediction of surface water 

quality for the Heuningnes Catchment, Cape Agulhas, South Africa.  

4.1 Abstract  

Information on water quality can be obtained in a timely and cost-effective manner, owing to 

remote sensing and machine learning techniques. The concentrations of the following surface 

water quality parameters namely: nitrates, phosphorus, total nitrogen and total phosphorous 

was assessed for July 2017 to July 2018. Due to the red-edge band group of bands 4, 5 and 6, 

as well as the satellite’s spectral and spatial characteristics, Sentinel-2 is the most efficient 

satellite for extracting total phosphorus and total nitrogen. Sentinel-2 images were used to apply 

a linear regression model for the prediction of surface water parameters and was validated 

against in-situ field measurements collected. The performance of the regression model was 

assessed using coefficient of determination (R2) and Root Mean Square Error (RMSE). The 

strength of the relationship between band ratios predicted water parameters and in-situ 

measurements presented R2 between 0.4 and 1.88, representing significant positive 

relationships. March 2018 represents the highest total phosphorus concentration of 20 mg/l as 

a result of the Voelvlei outlet. July 2018 represents the highest total nitrogen concentration of 

18.9 mg/l due to the Nuwejaars tributary location, a point of nutrient influx.   

Keywords: Sentinel-2; Regression analysis; Water quality prediction; water resource 

management.  

4.2 Introduction  

The quantity of available water resources is vital for the sustenance of life, it is therefore much 

greater to ensure the quality of available water resources remains pure. To ensure safe water 

quality, pollution factors such as pollution sources and the degree of pollution, should be known 

and understood. This knowledge is vital for understanding how pollution factors can be 

mitigated, and for policy creation for water resource management. Water quality is defined by 

the physical, chemical, and biological composition of water. These compositions are measured 

according to human and ecosystem requirements, necessary for livelihood and sustainability, 

and therefore used as a standard of measurement for ensuring safe water quality overall. 

Furthermore, water pollution sources are categorised as being discharge to water bodies, either 

directly or indirectly, and is defined by point or non-point pollution sources. Point pollution 

sources are those linked to a specific source such as leakage from a sewage treatment plant or 

construction sites. Non-point pollution sources, however, cannot be linked to a specific source 

but is a collective of various pollution sources such as storm water runoff, which is a cumulation 
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of runoff from agricultural and urban environments. These pollution sources may also be 

described as occurring either naturally or anthropogenically (Shah et al., 2021)  

Remote sensing and machine learning approaches has introduced cost-effective and timely 

ways of obtaining water quality information. As water quality alters on a spatial and temporal 

basis, therefore requiring the collection of frequent data, which could pose financial 

implications, a time-consuming and labour-intensive task, due to sampling and laboratory 

analysis (Avdan et al., 2019). Field data collection is limited to providing spatial and temporal 

variation of water quality parameters, as it only provides a point reference, and certain 

topographic positions, such as mountainous regions limit accessibility of certain water bodies. 

Water quality parameters possess different chemical and physical structures, according to the 

various pollutants present within water bodies. Water quality parameters such as total 

phosphorus and total nitrogen is categorized as a non-optical parameter indicating a weak signal 

for remote sensing and therefore requiring the integration of remote sensing with multiple linear 

regression models. Sentinel-2 was found to be the effective satellite for extracting total 

phosphorus and total nitrogen, due to the red-edge band group of bands 4,5 and 6, and the 

spatial and spectral properties of Sentinel-2 (Hassan et al., 2020).   

Additionally, these limitations has resulted in the advancements of remote sensing techniques 

and machine learning approaches with band ratio combinations, more so for the prediction of 

water quality parameters. The combination of band ratios with regression models, produces 

significant coefficient of determination values, for the prediction of water quality parameters 

(Avdan et al., 2019; Nouraki et al., 2021). The application of band ratio techniques allows for 

water quality prediction related to regions with insufficient in-situ data (Torbick et al., 2013). 

This study aims to compare the field collected water quality parameters to water quality 

parameters obtained from remotely sensed data and statistical analysis. With the specific 

observation and analysis of the following water quality parameters, nitrate, and phosphate, and 

the use of statistical analysis for water quality parameter prediction.  

4.3 Materials and Methods  

4.3.1 In-situ measurements of water quality parameters  

Water quality samples were collected between July 2017 to July 2018, during the wet season 

and dry season of October 2017 and March 2018. Water sample data was collected with 250ml 

plastic bottles, along the course of various rivers within the Heuningnes catchment, with a total 

of 180 samples collected. There are many important water quality parameters to test for 

however, in this study the following parameters was collected and analysed, namely: nitrate, 
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total nitrogen, phosphate and total phosphorous. The samples were collected across a variation 

of locations ranging from urban locations, tributaries, a dairy farm, hay fields and vlei locations.   

  

Figure 4. 1. Depicts the sampling locations across the Heuningnes Catchment. NJ 1 = 

Soetendalsvlei outlet bridge; NJ 2 = SANParks Offices; NJ 3 = Dairy farm; NJ 4 = Hay field 

close to Elandsdrift farm; NJ 5 = A bridge in Elim; NJ 6 = Nuwejaars river bridge; NJ 7 = 

Moddervlei site; NJ 8 = Voelvlei outlet bridge; VOB = Voelvlei outlet; PT 1, JS 1 and ETS = 

Tributary to Nuwejaars.   

4.3.2 Spatial interpolation of water quality parameters  

The kriging interpolation technique was used within the ArcGIS software, to determine the 

spatial distribution of water quality parameters, nitrates, phosphates, total nitrogen, and total 

phosphorus, across the Heuningnes Catchment. Kriging allows for the estimation of surface 

water quality distribution, and particularly in regions without in-situ measurements. Kriging is 

used as it yields accurate results by minimizing potential errors (Nagalakshmi et al., 2016; 

Weerasinghe & Handapangoda, 2019).   

4.3.3 Statistical Analysis and band ratios for water quality parameter prediction   

In-situ measurements of water quality parameters were correlated with water quality parameter 

estimation from remotely sensed data, by assessing satellite reflectance with the 

physicochemical properties of water. Specifically, various band ratio combinations were 

http://etd.uwc.ac.za/



64  

  

assessed to determine the combination yielding the most significant result. The various band 

ratio combinations for total phosphorus (TP) and nitrogen were between blue and shortwave 

infrared (B2/B11); shortwave infrared and blue (B12/B2); green and red (B3/B4), green and 

near-infrared (B3/B8); red and near-infrared (B4/B8); and near-infrared and red (B8/B4). The 

independent variable was the various band ratios, correlated against measured water quality 

parameters as the dependent variable. The significance of the regression relationship was 

measured by the coefficient of determination (R2), and the predictive model determined by the 

root mean square error (RMSE) (El Saadi et al., 2014).   

4.4 Results  

4.4.1 Spatial distribution of water quality parameters  

For in-site measurements, July 2018 recorded the highest total nitrogen concentration of 18.9 

mg/l and the lowest total nitrogen concentration of 0.1 mg/l. In March 2018, the highest total 

phosphorus concentration was recorded, of 20 mg/l, with July 2017 recording the lowest total 

phosphorus concentration of 2.7 mg/l. The average total nitrogen between July 2017 and July 

2018 ranged between 0.45 mg/l and 2.26 mg/l, and the average total phosphorus ranged 

between 1.95mg/l and 3.74 mg/l. Phosphate and total phosphorus has high standard deviations 

of 5.77 mg/l and 5.3 mg/l, in March 2018 and July 2018, respectively. Figure 4.2 (a-h) 

represents remotely sensed estimated spatial distribution of total nitrogen and total phosphorus 

between July 2017 and July 2018. For July 2017, higher total nitrogen concentrations, 1.99 

mg/l, is distributed along the tributary point to the Nuwejaars river, and slightly lower TN 

concentrations to be predominant across the Heuningnes catchment, figure 4.2 (a). However, 

higher TP concentrations, 2.12 mg/l, can be seen predominantly present across the entire 

Heuningnes catchment, for July 2017, figure 4.2 (b). For October 2017, TN concentrations, 

2.90 mg/l, are evenly distributed across the catchment, figure 4.2 (c). TP concentrations, 0.49 

mg/l, are shown to be in various locations NJ1, NJ3, NJ5, NJ7, NJ8 and PT1, and lower TP 

concentrations, 0.32 mg/l, is evenly distributed across the catchment. In March 2018, TN and 

TP concentrations is located close to SANPark offices, 3.66 mg/l and 8.96 mg/l respectively. 

In July 2018, TN concentrations, 9.30 mg/l, is distributed close to a bridge and tributaries to 

the Nuwejaars River.   
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Table 4. 1. Descriptive statistics of measured water quality parameters within the Heuningnes 

Catchment, for July 2017 to July 2018.  

 
July 2017  

Water quality parameter  

(mg/l)  

Min.  Max.  Mean  Std. Dev.  

Nitrate  0.1  0.7  0.23  0.18  

Total Nitrogen  0.2  2  0.72  0.55  

Phosphate  0.3  2.3  1.73  0.61  

Total Phosphorus   0.7  2.7  2.11  0.57  

  

 
October 2017  

Water quality parameter  

(mg/l)  

Min.  Max.  Mean  Std. Dev.  

Nitrate  0  0.3  0.11  0.12  

Total Nitrogen  0.3  0.5  0.45  0.07  

Phosphate  1.4  3.6  2.63  0.63  

Total Phosphorus   1.9  3.8  2.9  0.58  

  

 
March 2018  

Water quality parameter  

(mg/l)  

Min.  Max.  Mean  Std. Dev.  

Nitrate  0.1  0.6  0.3  0.15  

Total Nitrogen  0.4  4.4  0.93  1.14  

Phosphate  0.2  18.6  3.23  5.77  

Total Phosphorus   0.5  20  3.74  6  

  

 
July 2018  

Water quality parameter  

(mg/l)  

Min.  Max.  Mean  Std. Dev.  

Nitrate  0  4.2  0.51  1.18  

Total Nitrogen  0.1  18.9  2.26  5.3  

Phosphate  1  3.7  1.7  0.72  
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Total Phosphorus   1.3  3.9  1.95  0.73  
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Figure 4. 2. (a-h) Depicts the spatial distribution of in-situ measurements of total nitrogen and 

total phosphorus, between July 2017 and July 2018, across the Heuningnes Catchment.   

4.4.2 Regression analysis between measured and predicted water quality parameters  

ANOVA test was performed to determine regression models to understand the relationship 

between measured water quality parameters and water quality parameters predicted with 

spectral band ratios. For July 2017, results show a significant positive relationship, p<0, 

between the dependent variable, total phosphorus, and the band ratio between green and red 

(B3/B4), with a R2 of 0.56, and RMSE and MAE values of 0. Correlation between nitrogen and 

band ratio shortwave infra-red and blue (B12/B2), indicates a negative R2 value of -0.06 

however, low RMSE and MAE values of 0.02 and 0.01 respectively, p<0.03. For October 2017, 

the R2 value of 1.83 indicates a significant positive relationship, p<0.32, between nitrogen and 

the band ratio between green and red (B3/B4), and RMSE and MAE values of 0.01 and 0 

respectively. For total phosphorus, a significant relationship exists with a R2 value of 0.4 for 

various band ratios namely, green, and red (B3/B4), green and near-infrared (B3/B8), and red 

and near-infrared (B4/B8). For March 2018, results show a significant positive relationship 

between nitrogen and band ratio shortwave infra-red and blue (B12/B2), with a R2 value of 

1.88, and RMSE and MAE values of 0.32 and 0.23 respectively. Total phosphorus also displays 

a significant positive relationship with band ratio shortwave infra-red and blue (B12/B2), with 

a R2 value of 10.34, and RMSE and MAE values of 0.72 and 0.52. In July 2018 the regression 

between nitrogen and band ratio (B12/B2) displays an unusually high R2 value of 268.3, and 

high RMSE and MAE values of 2.09 and 1.9 respectively. The result for total phosphorus 

displays a negative of R2 value of -0.04 for band ratios (B2/B11), (B3/B4), and (B4/B8) 

however, low RMSE and MAE values of 0.   

Table 4. 2. Regression models for remotely sensed water quality parameter prediction, a using 

spectral band ratios.  

 
July 2017            

Water  quality  

parameters   

Band Ratio  Prediction model  RMSE  MAE  R2  

Nitrogen  B12/B2  y= -0,000x+0,2296  0,020  0,007  -0,063  

Total Phosphorus  B3/B4  y=1,025x-0,05  0,000  0,000  0,556  
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October 2017            

Water  quality  

parameters   

Band Ratio  Prediction model  RMSE  MAE  R2  

Nitrogen  B3/B4  y= -0,000x+0,4537  0,005  0,001  1,827  

Total Phosphorus  B3/B4  y=1.1366x-0,3934  0,000  0,000  0,404  

  B3/B8  y=1.1366x-0,3934  0,000  0,000  0,404  

  B4/B8  y=1.1366x-0,3934  0,000  0,000  0,404  

  

 
March 2018            

Water  quality  

parameters   

Band Ratio  Prediction model  RMSE  MAE  R2  

Nitrogen  B12/B2  y=0,000x+1,1652  0,320  0,232  1,8753  

Total Phosphorus  B12/B2  y=0,000x+4,1037  0,717  0,522  10,336  

  

 
July 2018            

Water  quality  

parameters   

Band Ratio  Prediction model  RMSE  MAE  R2  

Nitrogen  B12/B2  y= -0,000x+4,1476  2,092  1,891  268,3  

Total Phosphorus  B2/B11  y=x+0,0121  0,000  0,000  -0,044  

  B3/B4  y=x+0,0121  0,000  0,000  -0,044  

  B3/B8  y=x+0,0121  0,000  0,000  -0,044  

  B4/B8  y=x+0,0121  0,000  0,000  -0,044  
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Figure 4. 3. Displaying predictive models to determine water quality parameters, displaying the 

relationship between predicted and measured TN and TP between July 2017 and July 2018.   

4.5 Discussion  

The study conducted was focused on extracting water quality parameter information with 

remotely sensed data, for the creation of prediction models for water quality parameters, 

specifically total phosphorus, and total nitrogen, within the Heuningnes Catchment, Cape 

Agulhas, South Africa. This particularly highlighted the significance of remote sensed data with 

regression models for advancing water resource management, by reducing financial challenges, 

ensuring time-efficiency, reduced labour intensity while increasing accuracy.  

March 2018 represents the lowest measured total phosphorus (TP) value of 0.5 mg/l, with the 

highest measured TP value of 20 mg/l. The highest value could be representative of the 

sampling location being around the South African National Parks (SANPARKS) offices and 

the Voelvlei outlet. The Voelvlei environment is particularly responsible for the high TP 
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concentrations as vleis is the natural habitat of waterbirds, and these species may have 

significant influence on nutrient cycling as a result of their consumption and excretion 

processes (Scherer et al., 1995). July 2018 represents the lowest measured total nitrogen (TN) 

value of 0.1 mg/l, with the highest measured TN value of 18.9 mg/l. The highest value could 

be representative of the sampling location being the tributary location of the Nuwejaars river, 

resulting in the influx of nutrients at this location. Overall, the high values of TP and TN is 

representative of the Heuningnes catchment being predominantly agricultural and farmland 

region. These water quality parameters are especially associated with these practices. Total 

phosphorus and total nitrogen is particularly difficult to measure due to it having non-optical 

properties, as certain satellite sensors are unable to extract information from those parameters. 

The analysis shows Sentinel-2 to be successful in monitoring non-optical parameters such as 

TP and TN, and especially useful when integrated with machine learning techniques. In July 

2017 the low values of RMSE, MAE and R2 indicates great accuracy of the resultant regression 

model for both total nitrogen and total phosphorus, with the band ratios shortwave infra-red 

and blue (B12/B2), and green and red (B3/B4) respectively. October 2017 displays low values 

for RMSE, MAE and R2, for total nitrogen and total phosphorus when correlated with band 

ratio green and red (B3/B4). Between July 2017 and July 2018, the R2 values indicate the 

relevance of band ratios in predicting total phosphorus and total nitrogen concentrations.   

4.6 Conclusion  

The study assessed the predictive mapping of water quality parameters for the Heuningnes 

Catchment, Cape Agulhas, South Africa, with the use of in-situ measurements collected. Band 

ratio regression techniques was successful in extracting spectral information from water quality 

parameters, total phosphorous (TP) and total nitrogen (TN). The significant coefficient of 

determination indicated the successful application of remote sensing and regression models for 

the prediction of water quality parameters, in comparison to in-site measured water quality 

parameters. Sentinel-2 satellite has been successful in measuring non-optical parameters such 

as total phosphorus and total nitrogen, because of its high spatial and temporal, and spectral 

properties, especially when Sentinel-2 is integrated with machine learning techniques. The land 

use land cover classes assessed is evident of the predicted water quality parameters. This 

analysis can be useful in predicting water quality parameters, to implement safe water quality 

standards and water use, and to undertake precautionary measures toward public health.    
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CHAPTER FIVE  

The use of remotely sensed data and spatial modelling techniques to assess the impacts 

of different land management practices on surface water quality for the Heuningnes 

Catchment, Cape Agulhas, South Africa: A synthesis  

5.1 Introduction  

Many surfaces water resources experience degradation because of land use activities and 

certain land cover types. It is vital to monitor surface water resources to mitigate further 

deterioration, and threat. Therefore, firstly understanding the nature of potential threats are 

important. Furthermore, land use and land cover affect GIS and remote sensing aids in the 

timely extraction of necessary earth surface information required. Sentinel-2 satellite has been 

proven favourable in the specific application to land management; together with the image 

classification technique Support Vector Machine (SVM) in categorizing various land use and 

land cover classes (Talukdar et al., 2020). Total phosphorous (TP) and total nitrogen (TN) were 

used as water quality indicators, and band ratio regression algorithms were successful in 

obtaining spectral information. When compared to on-site measured water quality metrics, the 

considerable coefficient of determination demonstrated the successful application of remote 

sensing and regression models for the prediction of water quality parameters (Avdan et al., 

2019; Nouraki et al., 2021; Torbick et al., 2013). Therefore, the objectives of this work aimed 

to:   

a) identify and determine the impacts of LULC on water quality.   

b) assess the use of remote sensing to predict surface water quality with remotely sensed data.  

5.2 Summary of findings   

In determining the impact land use land cover classes has on surface water quality, Support 

Vector Machine (SVM) was used as the image classification technique to identify various land 

use land cover classes. The usage of SVM is better suited for mapping land cover since it does 

not assume that the data is normally distributed and consequently includes a wider range of 

values, allowing for representation. SVM still succeeds in producing more accurate results 

while not requiring extensive training data (Kang et al., 2018). The findings show that SVM is 

effective in categorizing the different types of land cover, with an overall accuracy of about 

55%. Sentinel-2's excellent spatial resolution has helped in extracting water features with the 

highest degree of accuracy. One of the objectives aimed to extract water quality parameter 

information from remotely sensed data. This underlined the importance of using remote sensing 

data integrated with regression models to advance water resource management by lowering 

http://etd.uwc.ac.za/



80  

  

costs, ensuring efficiency, lowering labour intensity, and increasing accuracies. Total 

phosphorus (TP) and total nitrogen (TN) were used as water quality parameters, band ratio 

regression algorithms were successful in obtaining spectral information. The significant 

coefficient of determination demonstrated the effective use of regression models and remote 

sensing for the prediction of water quality parameters.   

5.3 Conclusion  

The main aim of the study was to assess the water quality in the Heuningnes Catchment, Cape 

Agulhas using remote sensing and statistical techniques, to determine land use practice of 

significant influence on water quality. This study can be used for effective water resource 

management, specifically in inaccessible areas, and countries with insufficient financial 

resources. Throughout this study there has been significant achievements with regards to 

identifying land use land cover activities with significant impact on surface water quality and 

remote sensing technique, band ratio regression, in effectively estimating surface water quality 

parameters.   

• Sentinel-2 can be used to acquire timely, high-resolution data for land cover mapping, 

to account for dynamic changes in land cover.  

• High concentrations of total phosphorous (TP) and total nitrogen (TN) are attributed to 

agricultural activities and the presence of Vleis which habitat’s waterbirds.   

• Machine learning techniques and Sentinel-2 has successfully measured non-optical 

parameters, total phosphorous (TP) and total nitrogen (TN), necessary for water quality 

parameter predictions.  

5.4 Recommendations    

Throughout conducting this research, below are a few recommendations to consider for 

advanced water resource monitoring and management:  

• Local agricultural communities should be made aware of certain agricultural activities 

contributing to increases of total phosphorous (TP) and total nitrogen (TN) 

concentrations.  

• Ensuring the representativeness of band-ratio regression models by applying the model 

to various locations and environmental conditions, and a data set across a larger period.  
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