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ABSTRACT 

One of the crucial ways by which Staphylococcus aureus develops resistance to 

antibiotics is biofilm formation, a protective mechanism involving extracellular 

polymeric substance (EPS) matrix that shields microorganisms from the effects of 

antibiotics, mechanical forces, pH, and host immune responses. While some 

encouraging results point to the possible use of FDA-approved medications against 

biofilms, more research is needed due to sporadic and patchy data. The complex 

chemical diversity of natural compounds makes them a reservoir of bioactive 

molecules for drug discovery. This study seeks to identify effective potential 

antibiofilm compounds from a query dataset compiled from two African natural 

product databases (SANCDb and AfroDb). 

A database of known antibiofilm compounds was created from ChEMBL, PubChem, 

and other related databases while a query dataset of natural products was compiled 

for this study. The ligand similarity (LS) searches were unable to unequivocally 

identify distinct differences in the molecular structures and functional group moiety 

of the active and inactive compounds. The flexophore similarity metric detected 

correlations between the query dataset and the known antibiofilm molecules. Using 

a machine learning approach, the Random Forest (RF) predictive model displayed 

better superior accuracy in predicting the antibiofilm bioactivity of natural 

compounds in the query database. Consensus scoring of compounds identified from 

LS searches and the RF predictive model was done to select hit compounds for 

docking. The analysis of docking scores revealed that the CNP0160461 and 

CNP0037371 exhibit the strongest binding with identified Staphylococcus aureus 

biofilm-associated proteins. 
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Chapter One 

Introduction 

1.1 Background Studies 

Multidrug-resistant Staphylococcus aureus (MRSA) infections have become a 

great threat to public health because they are capable of causing serious and life-

threatening infections in humans. Multidrug-resistant (MDR) bacteria are 

resistant to three or more classes of antimicrobial drugs and are difficult to treat 

(Jernigan et al., 2020).  In terms of drug resistance, Staphylococcus aureus has 

been able to steadily acquire new modes of resistance to nearly all antibiotics 

(Kakoullis et al., 2021). Resistance is rapidly evolving as a defence mechanism 

against antibiotics. The use of antibiotics has played an important role in 

medicine, saving lives, but there is an emergence of almost unavoidable 

resistance to the available antibiotics. However, while synergistic combination 

of antibiotics for the treatment of bacterial infections has been successful, there 

has been some glaring drawbacks as well (Assis et al., 2017). The failure of 

antibiotic treatments for Staphylococcus aureus infections has been attributed to 

the mechanism of biofilm formation. Biofilm formation offers increased 

protection from antibiotics, mechanical forces, nutrient scarcity, pH, and host 

immune response (Divakar et al., 2019). Biofilm have the ability to undergo 

series of nutrient recycling hence promoting  the growth and survival of 

microorganism within the matrix (Bamford et al., 2023).  
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1.2 Research problem 

Staphylococcus aureus is of major concern because of its ability to cause diverse 

potentially fatal infections. Contaminated medical devices are viable sources of 

contact S. aureus-associated skin and soft tissue infections. Biofilm formation is 

the key virulence factor and a key survival strategy for Staphylococcus aureus. 

Biofilms are capable of providing an inactive but constantly changing 

environment in which the bacterial cells can achieve homeostasis (Tong et al., 

2015). Antibiotic resistance is reportedly up to 1000-fold greater in biofilm-

bacterial cells, which are able to tolerate significantly higher levels of antibiotics 

than planktonic bacteria (Penesyan et al., 2019). The formation of biofilm by 

bacteria imposes great challenges on the use of conventional antimicrobials. 

While some encouraging results point to the possible use of FDA-approved 

medications against biofilms, more research is necessary as data is still sporadic 

and patchy (Hawas et al., 2022). Therefore, new, and effective antibiofilm 

molecules to combat the multidrug-resistance in Staphylococcus aureus 

infections are urgently needed. Due to the fact that natural compounds and their 

analogues exhibit a vast array of scaffolds and structural complexity, interest in 

natural products as drug leads is currently resurgent, particularly in the fight 

against antimicrobial resistance. Because natural compounds and their analogues 

are characterised by enormous scaffold diversity and structural complexity, 

interest in natural products as drug leads is currently being revived, particularly 

for combating antimicrobial resistance (Atanasov et al., 2021).  Hence, this study 

adopted computational approaches such as ligand similarity searches, machine 
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learning, and molecular docking approaches to identify natural compounds with 

antibiofilm activity against multidrug-resistant Staphylococcus aureus. 

1.3 Significance of the study 

Infections associated with biofilms are difficult to treat. Prior to now, the 

conventional laboratory compound testing known as “high throughput screening” 

was used in the discovery of novel bioactive compounds, but it was time-

consuming and inefficient. Also, several compounds had to be synthesised and 

tested experimentally. Therefore, this study adopted a computational approach 

that is cost-effective, time-efficient, and reproducible to identify compounds with 

antibiofilm activity against multidrug-resistant Staphylococcus aureus from a 

natural compound database. The identification of these natural antibiofilm agents 

and their further drug development will likely reduce the emerging resistance to 

current antibiotics by Staphylococcus aureus. The novel antibiofilm agents can 

then be used independently or in conjunction with current antimicrobial drugs. 

1.4 Aim 

This study seeks to identify potential antibiofilm hit compounds from two 

African natural product databases (AfroDb and SANCDb) against multidrug-

resistant Staphylococcus aureus using in-silico approaches. 

 1.5 Objectives 

The objectives of the study are: 

1. To collate and build a database of active and inactive antibiofilm

compounds from bioassays in a literature search, collate the biofilm-

associated proteins of Staphyloccocus aureus involved in cellular
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aggregation within the biofilm and retrieve compounds from AFRODb 

and SANCDb. Subsequently, study the properties of compounds with 

reported antibiofilm properties and conduct a flexophore similarity search 

between the known active antibiofilm compounds and the query 

databases. 

2. To build an antibiofilm predictive model with a combination of important

molecular descriptors and fingerprints of the known active and inactive

antibiofilm compounds using a machine learning approach, then use this

to predict the antibiofilm activity of the natural compounds from the

query databases.

3. To develop a consensus scoring function for the hit compounds identified

in objectives 1 and 2 above.

4. To perform molecular docking studies on consensus-scored hit

antibiofilm compounds with Staphylococcus aureus biofilm-associated

proteins to predict the possible mechanism of antibiofilm activity.

1.6 Thesis outline 

This thesis consists of seven Chapters in total. Chapter One presents the 

background studies and a general overview of this thesis. This is followed by the 

identification of the research problem and the study’s significance. There’s a 

description of the aim and objectives of the study. The final section of Chapter 

One is the outline of the subsequent Chapters. Chapter Two provides a literature 

review on Staphylococcus aureus infections and a description of developmental 

stages in biofilm formation. The Chapter discusses the clinical burden constituted 

by Staphylococcal biofilm-associated infections. In addition, the current 
4 
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approaches, successes, and challenges to discovering antibiofilm compounds 

were discussed. It discusses the epidemiology and prevalence of resistance in 

Staphylococcus aureus. Chapter Two further identifies the role of natural 

compounds as potential antibiofilm in drug discovery. It also discusses the use of 

computational tools to find new therapies. 

Chapter Three provides details of data collection and curation. It explains how 

the “Simplified Molecular Input Line Entry System (SMILES)” structures of 

active and inactive antibiofilm compounds and “query databases” retrieved were 

used to generate their corresponding chemical structures. Ligand similarity 

searches were conducted by analysing the molecular fragment and flexophore 

descriptors of known active antibiofilm compounds to identify potential 

antibiofilm compounds from the query databases. Chapter Four involves using 

machine learning approaches to build antibiofilm predictive models using 

important molecular features and descriptors of the known actives and inactive 

compounds. The model with better predictive accuracy was used to predict the 

antibiofilm activity of natural compounds in the query databases to identify the 

hits. 

In Chapter Five, consensus scoring was used to rank the prediction of potential 

antibiofilm compounds from ligand similarity searches and Random Forest 

predictive model. Chapter Six utilised reverse docking (RD) to understand the 

protein-ligand interaction and predict the possible mechanism of action for the 

antibiofilm activities of the high-ranked consensus-scored compounds when they 

bind to Staphylococcus aureus biofilm-associated proteins. Chapter Seven 

5 
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summarises the major findings of this study based on the objectives in Chapter 

One. Additionally, it offers the study’s limitations and suggestions for future 

research. 
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Chapter Two 

Literature review 

2.1 Staphylococcus aureus infections 

Staphylococcus aureus is a gram positive bacteria belonging to the genus 

Staphylococcus. It has a diameter of about 0.8μm in diameter, can grow 

aerobically or anaerobically, and thrives best at 37 °C and pH 7.4 (Guo et al., 

2020). On a blood agar plate, they form dense, shiny and round colonies 

(Gonzalez-Sato et al., 2019). Staphylococcus aureus lacks spores or flagella and 

has a capsule capable of producing yellow pigment and decomposing mannitol. 

Additionally, it has also been discovered that S. aureus tests positive for plasma 

coagulase, lactose fermentation, and deoxyribonuclease tests (Tayeb-fligelman 

et al., 2017). Staphylococcus aureus has been indicated as one of the most 

frequent worldwide causes of health problems and death (Cheung et al., 2021). 

Staphylococcus aureus is a significant contributor to both hospital-acquired and 

community-acquired infections, and it places a heavy burden on the healthcare 

system. For instance, majority of cases of bone infection (Osteomyelitis) are 

caused by S. aureus. Staphylococcus aureus is also capable of infecting 

orthopaedic implants such as prosthetic joints, external fixtures, fragment 

implants, etc. (Dasilva et al., 2013). The development of biofilm is crucial in 

chronic infections (Lister & Horswill, 2014). Staphylococcus spp. that develop 

biofilms are important reservoirs for the spread of ocular infections. Keratitis, 

conjunctivitis, and endophthalmitis are among the ocular diseases associated with 

S. aureus biofilm (Archer et al., 2011). Chronic wound infections such as diabetic
7 
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foot ulcers and venous stasis ulcers have also been linked to S. aureus biofilms. 

Other moderately severe S. aureus skin infections, such as furuncles, abscesses, 

and wound infections are typically not life- threatening but can cause significant 

morbidity and discomfort. It is known that Staphylococci are the most common 

cause of infection linked to biofilms. This unique status of Staphylococci among 

biofilm-associated pathogens is due to the fact that Staphylococci are commonly 

found commensal bacteria on the human skin and mucous surfaces and those of 

many other mammals (Otto, 2019). Asymptomatic commensal colonization of S. 

aureus can be considered as an important prerequisite for further infection. The 

frequent touching and nose picking as well as the distribution that results are 

thought to be the source of this association. Skin infections may arise from minor 

scratches on the skin and become invasive if bacterial penetrate through the 

epithelial protective barrier. Additionally, Staphylococcus aureus can be 

acquired from animals, particularly in the livestock sector where the emergence 

of livestock-associated Methicillin-resistant Staphylococcus aureus (LA- 

MRSA) has raised serious concerns. A common source of infection in the 

hospital environment is the contamination of indwelling medical devices. The 

primary mechanism responsible for this infection route is the ability of S. aureus 

to attach to the devices and to the matrix molecules that cover the devices shortly 

after insertion, forming a biofilm on the device. Food poisoning is a unique 

instance of acute S. aureus infection that occurs when contaminated foods 

containing Staphylococcal enterotoxins (SEs) are consumed. Staphylococcus 

aureus can potentially exploit favourable circumstances or initial damage caused 

by other pathogens in an opportunistic manner. For example, S. aureus secondary 

8 
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infections are frequently the primary cause for death in lung infections that are 

initiated by a viral infection like the flu (Cheung et al., 2021). In studies involving 

patients with chronic venous leg ulcers, S. aureus was identified as the most 

frequently isolated bacterium from such wound infections, and S. aureus-positive 

cultures were detected in 88–93.5% of wound infections (Gjodsbol et al., 2006). 

2.2.1 Overview of microbial biofilm formation 

A biofilm can be referred to as a sessile community of microorganisms 

characterised by cells that are embedded in a matrix of extracellular polymeric 

substances (EPS) composed of polysaccharides, proteins, and nucleic acids, 

resulting in a changed gene expression, protein production, metabolic activity, 

and growth (Kraranjec et al., 2021). Microorganisms embedded in the biofilm 

matrix have a low metabolic rate, which explains the antibiotic-resistance 

properties of biofilms. The biofilm acts as a diffusion barrier to slow down 

antimicrobial agent infiltration and minimize the concentration of the antibiotic 

intracellularly as a result of poor biofilm penetration (Archer et al., 2011). The 

matrix captures and chemically renders antibiotics that somehow manage to find 

their way into the matrix inactive. Also, efflux pumps and secretion systems 

actively remove any residual antibiotic from within the biofilm. The biofilm 

matrix is made up of proteins (e.g., fibrin), essential nutrients, and minerals. The 

extracellular biofilm matrix contains 1-2% polysaccharides (e.g., alginate), < 1% 

DNA, < 1% RNA, ions, and 97% water. The EPS matrix (0.2 -1.0μm thick) 

strengthens the interaction among microorganisms and shields them from 

mechanical stress or the effects of antibiotics (Sahoo et al., 2021). The 

composition of the biofilm matrix varies between strains but generally can 

9 
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contain host factors, polysaccharides, proteins, and extracellular DNA 

(Montanaro et al., 2011).  In a nutrient-deficient condition such as starvation, a 

good survival strategy is biofilm formation (Moormeier & Bayles, 2017). Biofilm 

have the ability to undergo series of nutrient recycling hence promoting  the 

growth and survival of microorganism within the matrix (Bamford et al., 2023). 

Understanding the biology of biofilms makes it clear how important their 

complementary tactics are for both the microorganisms and the surrounding EPS 

matrix to either prevent the initiation of a biofilm or disrupt existing biofilms 

(Koo et al., 2018). Antibiotic penetration into biofilms rely mainly on the EPS 

structure which confers impermeability to large molecules of antibiotics. The 

outer EPS layer which resembles a capsule limit the entry of various antibacterial. 

According to the study by Mosaddad et al., 2019, the EPS matrix can expel the 

harmful molecules out of the matrix rather than allowing their entry into the 

biofilms.  Extra-polymeric substances have the ability to impede the actions of 

antibiotic activities by means of enzymatic breakdown pathways and diffusion-

reaction.  Although, the composition of EPS differs throughout different 

biofilms, it often comprises of lipopolysaccharide and alginate, which work 

together as a barrier to the diffusion of antibacterial drug (Macià et al., 2014). 

Some biofilms contain residues of mannuronic acid and guluronic acid in their 

extracellular polymer shell which may operate as virulence factors to prolong 

infections by inhibiting immune responses and by shielding the biofilms from 

antibiotics, such as Ciprofloxacin, Gentamicin and Ceftazidime (Mirghani et al., 

2022). 
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2.2.2 Developmental stages of biofilm formation 

Biofilm developmental stages, as depicted in Figure 2.1, have been divided into 

four major, well-regulated events: (i) Initial attachment (ii) Biofilm 

multiplication (iii) Maturation (iv) Dispersal. An individual planktonic cell 

reversibly binds to a surface, and if the cells do not dissociate, they will bind 

irreversibly to the surface during the initial attachment. Surface proteins referred 

to as MSCRAMMs (Microbial Surface Components Recognizing Adhesive 

Matrix Molecules) facilitates this attachment (Foster et al., 2014). During 

infection, these proteins, such as fibrinogen, fibronectin, and collagen, play an 

important role in attachment to host factors (Lister & Horswill, 2014).  

In the presence of a sufficient nutrient source, the adhered S. aureus cells will 

start to divide and accumulate following adsorption to a surface. Cell division 

and the production of the extracellular polymeric matrix are the two important 

processes that leads to biofilm maturation. Some proteins, like the SdrC, FnBPs, 

and ClfB proteins, play important roles in attachment and accumulation of 

biofilms. Serine-aspartate repeat-containing protein C (SdrC) at the cell-cell 

adhesion stage of biofilm formation engage in low-affinity homophilic bonds that 

promote intercellular adhesion ( Foster et al., 2014). Fibronectin binding proteins 

(FnBPs) are also involved in cell adhesion stage allowing cells to bind together 

as the biofilm accumulates (T. J. Foster, 2016). The Clumping factor B (ClfB) 

promotes colonization of S. aureus in the host, facilitates biofilm formation, and 

causes virulence by binding soluble fibrinogen for immune escape (Abraham & 

Jefferson, 2012). 
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The final stage of biofilm development is seed dispersal, in which microcolonies 

separate in response to genetically programmed responses that mediate the seed 

dispersal process (Archer et al., 2011). Biofilm matrix dispersion can be mediated 

by proteases, nucleases, and proteins with surfactant activity. At this stage, some 

exo-polymeric substance components are broken down, allowing bacteria to 

escape from the biofilm (Kranjec et al., 2021). In this way, microcolonies migrate 

from the original site of infection to unaffected regions of the host system to 

enhance the continuous formation of biofilm and promote infection spread. 

Interest has been drawn towards biofilm dispersal as a means of treating chronic 

infections because dispersal aids the exposure and killing of metabolically active 

cells, making them vulnerable to the effects of antibiotics and the immune system 

(Kumar Shukla & Rao, 2013; Lauderdale et al., 2010). Additionally, dispersal 

mechanisms might be adapted to prevent the formation of biofilm on medical 

implants (Lazar et al., 2021; Opdensteinen et al., 2021).  
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Figure 2.1 Developmental stages of S. aureus biofilm (Adapted from Alves 

Carneiro et al., 2020) 

2.2.3 Clinical burden constituted by Staphylococcal biofilms 

Biofilm-producing pathogens such as S. aureus have become well-known for 

causing persistent and chronic infections in humans. Conventional antibiotics are 

used to treat Staphylococcal biofilm-associated infections, but their misuse and 

overuse led to a 10 to 1000-fold increase in antibiotic resistance strains brought 

about by biofilm formation (Divakar et al., 2019; Steinig et al., 2019).  Some 

antibiotics, like aminoglycosides, fluoroquinolones, β-lactams, and are inert 

against the bacteria in inner anaerobic biofilm because the antibiotics become 

inactive when oxygen and nutrient are not present (Mirghani et al., 2022). 

Bacterial biofilm is not only recalcitrant to the effect of antibiotics but also to the 

host immune system. Additionally, antibiotic resistance is also accelerated by 

poor infection prevention and control. Increased mortality and morbidity have 
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been associated with biofilm-related infections and infected medical implants, 

often requiring surgical treatments and prolonged hospitalization. As a result, 

there is an increased cost associated with the treatment of S. aureus infections 

(Cheung et al., 2021). 

2.3 Epidemiology 

If clinicians are to choose appropriate therapy, it is crucial to comprehend the 

prevalence of resistance in S. aureus. There is a distressing increase in 

antimicrobial resistance prevalence. Multidrug-resistance has prompted the 

licensing of new antimicrobial agents but resistance to the more recently 

introduced antibiotics has also emerged. 

Staphylococcus aureus bacteria can be classified as both a commensal and a 

dangerous human pathogen. It is a major contributing factor to clinically 

significant infections including those that affect the skin, soft tissues, lungs, 

bones, contaminated prosthetics and medical devices (Tong et al., 2015). A few 

prospective studies have revealed a higher incidence of S. aureus infection in 

Africa than in industrialized countries. In South Africa, the annual incidence of S. 

aureus bacteremia was 3.28 cases per 1000 hospital admissions. Mozambique 

reported between 101–178 cases per 100 000, with the highest incidence in 

children under the age of five. In Kilifi, Kenya, the prevalence of SAB among 

children that are 5years of age was 27 per 100,000 (Schaumburg et al., 2014). 

The study “A meta-analysis prevalence of resistance of S. aureus to different 

antibiotics in Nigeria” by Ezeh et al., 2023, reported that the prevalence of 

resistance of S. aureus to different antibiotics ranges from 13 to 82%. Results 

showed a very high degree of resistance to Penicillin-G (82%]), Cloxacillin 
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(77%), Amoxacillin (74%), Cefuroxime (69%), Ampicillin (68% [95%). 

Moderately resistance to Erythromycin (47%), Chloramphenicol (47%), 

Methicillin (46%), ofloxacin (24%) and Rifampicin (24%). Low resistance was 

observed in Vancomycin (13%).  The incidence of invasive MRSA in the black 

population (66.5 per 100,000 person-years) in the United States was reported to 

be more than twice that in the white population (27.7 per 100,000) person-years 

This shows that there is a likelihood of a prevalence of SAB is associated with 

ethnicity (Jernigan et al., 2020). In Australia, the indigenous population have 5.8 

to 20 times higher incidence of S. aureus bacteremia (SAB) than the non-

indigenous Australians. Although socioeconomic status differences between 

indigenous compared to non-indigenous populations has a role to play, but does 

not fully explain the disparity between these groups (Hewagama et al., 2012; 

Tong et al.,2012).   

2.3 Current approaches, success, and challenges to discovering antibiofilm 

compounds. 

Once an antibiotic is clinically proven to be effective and is widely used for 

therapeutic purposes, its days are numbered because resistance that is clinically 

significant appears over periods of months or years. There is a struggle in the 

development of new approaches to combat infectious diseases due to the failure 

of existing antimicrobial therapies, which is of serious concern in the health 

community (Fleming & Rumbaugh, 2017). Several approaches, such as 

nanotechnology, quorum sensing, biofilm dispersal strategies, bacteriophages, 

and biosurfactants have been used in the discovery of antibiofilm compounds. 
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2.3.1 Nanotechnology 

Nanotechnology provides a great platform for improving the physicochemical 

characteristics of various compounds to develop effective antimicrobials (Huh & 

Kwon, 2011). Ag nanoparticles enhance the antibacterial and antibiofilm activity 

in a synergistic manner. During iron oxide nanoparticle treatment, there has been 

a report of a substantial decrease in the growth of S. aureus and Pseudomonas 

aeruginosa biofilms on biomaterial and pluronic-coated surfaces (Thukkaram et 

al., 2014). Chitosan nanoparticles and ZnO-eugenol combination has been shown 

to effectively stop bacteria biofilm formation within the sealer–dentin interfaces 

of root segments (Dasilva et al., 2013). At higher concentrations of the Au 

nanoparticles, the formation of microbial biofilms was also inhibited 

(Sathyanarayanan et al., 2013). There is proof that nanomaterials could be used 

to prevent biofilm from forming on medical and biomedical equipment and food 

packaging materials. The toxicity of these nanoparticles to cells and biomolecules 

is of great concern, and they have restricted their clinical applicability (Joris et 

al., 2013).  Currently, toxicological information about the effects of nanoparticles 

on human health is not readily available. However, new findings indicate that 

toxicity of multi-organ systems when antibiofilm nanoparticles are 

therapeutically administered by the formation of reactive oxygen species (ROS) 

because of interaction between nanoparticles and cell materials (Singh et al., 

2017). 

2.3.2 Quorum sensing 

Targeting quorum sensing (QS) to regulate the virulence of bacteria can also be 

a tactic to control diseases (O’Loughlin et al., 2013). Because quorum sensing 
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plays an important role in microbial infections and biofilm development, finding 

compounds that are capable of interfering with QS in pathogenic bacteria is an 

emerging field for researchers. Three main types of quorum signalling exist: 

Gram (-) bacteria use N-acyl homoserine lactone (AHL)-based signalling, Gram 

(+) bacteria use autoinducing peptide (AIP)-based signalling and  some 

autoinducer-2 (AI-2)-based signalling is found in some Gram (-) and Gram (+) 

bacteria (González-Ortiz et al., 2014). Different quorum sensing inhibitors have 

shown clinical advantages when used in combination with other antimicrobials. 

Structure-based virtual screening (SBVS) and in-silico docking analysis were 

used to look for potential quorum sensing inhibitors of P. aeruginosa (Lu et al., 

2019). However, a limited success rate exists despite their applicability in clinical 

settings due to poor solubility, delivery, bioavailability, and stability. In many 

cases, studies frequently do not incorporate quorum sensing-independent 

controls, and toxicity is only determined by evaluating the impact on growth in a 

complex growth medium. Hence, as a result, the evidence for quorum sensing 

disruption is not always very strong, and many compounds that are presented to 

be quorum sensing inhibitors may actually be false positives when further studies 

are done (Defoirdt et al., 2013; Gorske & Blackwell, 2006).  

2.3.3 Use of Biofilm dispersal strategy 

The use of biofilm dispersing agents as a strategy has become an intense area of 

study because dispersed bacterial cells are typically more responsive to 

antimicrobial treatment than bacterial cells that are embedded in a biofilm matrix. 

Varieties of promising dispersal agents have been discovered (Fleming & 

Rumbaugh, 2017; Verderosa et al., 2019). A gel preparation composed of 
17 
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Dispersin B and the disinfectant Triclosan has been sold for the treatment of skin 

and wound infections as well as the disinfection of medical equipment. The 

drawback is that; Dispersin B cannot be used to treat systemic biofilm-mediated 

infections because the bacterial enzymes have immunogenic properties. The use 

of dispersal agents can also be problematic despite being promising because if 

dispersal cells are left untreated, there is a possibility of translocating and seeding 

an infection in new sites, resulting in the spread of the initial infection. Therefore, 

dispersal agents are used concurrently with other antimicrobial agents to exert a 

synergistic clinical effect (Marvasi et al., 2014; Reffuveille et al., 2015). But, 

ensuring the concurrent presence of dispersal agents and antimicrobial agents in 

the correct concentration at the target site for treatment is challenging in the 

clinical setting (Fleming & Rumbaugh, 2018). Another challenge is the fact that 

drug co-administration of dispersal agents and antibiotics for treatments can lead 

to a higher risk of adverse effects, complex drug interactions, and side effects 

(Tamma et al., 2012).  

2.3.4 Bacteriophages 

Bacteriophages represent the most abundant biological entities on earth and 

constitute the absolute majority of life forms, and it is estimated that phage 

predation lessens the global bacterial population by half every 48 hours (Hendrix, 

2002). The use of phage in therapy is increasing because of its recognised 

advantages over conventional agents. They are self-replicating and specific in 

action at the site of infection, thereby encouraging effective treatment of 

antibiotic-resistant pathogens. It involves the use of bacteria’s natural predators; 

viruses that are capable of selectively infecting bacteria. Lytic phage interrupts 
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normal metabolism in bacteria and causes rapid lysis of bacteria (Carson et al., 

2010). Bacteriophages alone or in combination with standard therapeutic agents 

are another attractive approach to consider in the treatment of biofilm infections. 

There are reports to show that bacteriophages are capable of degrading biofilm 

matrixes by initiating depolymerase production, which degrades the 

exopolymeric matrix components of the biofilm, leading to penetration of the 

inner layers of the biofilm (Azeredo & Sutherland, 2008). While some biofilms 

possess open structures with water-filled channels to give phage access to the 

inner biofilm layer, there is a diffusion limitation, particularly in dense biofilm 

structures. It is crucial to keep in mind that there are probably few chances of 

finding a specific phage with increased lytic capability and a specific host range. 

Genetic engineering of phages can be used to develop new genes with specific 

polysaccharide depolymerases, DNAse, and proteases and to alter their host 

range to be able to efficiently degrade biofilms. The biofilm matrix serves as a 

storehouse of proteolytic enzymes as well as endoglucanases, which can 

inactivate bacteriophages. New genes can be engineered into the phages to enable 

them to destroy the bacteria found in the biofilm matrix. These isolated phages 

must be further characterized; an effective means of phage delivery and an in 

vivo analysis of phage performance need to be done to safeguard the phages 

against the human immune system (Azeredo & Sutherland, 2008).  

2.3.5 Biosurfactants 

Biosurfactants are another promising group of compounds that may be used in 

the treatment of biofilm-related infections. Biosurfactants and bioemulsifiers are 

used interchangeably in different kinds of literature. Because they have both a 
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hydrophobic moiety and a hydrophilic group, biosurfactants enable the presence 

of amphiphilic molecules at the interface between polar and nonpolar media. 

Biosurfactants (BS) prevents biofilm formation by reducing cell surface 

hydrophobicity, impeding the electron transport chain, distorting protein 

structure, interfering with quorum sensing, thus lowering the cellular energy 

demand (Satpute et al., 2016). Biosurfactants act by inhibiting biofilm 

physicochemical properties on the surface to reduce adhesion (Janek et al., 2012) 

and by downregulating bacterial gene expression involved in biofilm formation. 

The biosurfactant group is one type of chemical produced by microorganisms, 

and they are considered environmentally safe because they are biodegradable, 

biocompatible, and digestible. Different classes of biosurfactants are produced 

by different kinds of microorganisms possessing antibacterial, antifungal, and 

anti-biofilm activities (Paraszkiewicz et al., 2021). It was hypothesised that 

adding biosurfactant to mature biofilms causes rapid dispersion, changes the 

morphological changes of biofilm structures, and modifies the cell-surface 

hydrophobicity of the tested bacteria. This can ultimately impede the rate of 

deposition as well as the development of biofilm. Most of the biosurfactant 

compositions have not been fully investigated. Among the reports, about half 

(50%) of the 40 cell-associated biosurfactants omit structural details because 

their intricate structures are challenging to elucidate. Proteinaceous cell-

associated biosurfactant and surlactin are the two that Lactobacilli spp. produce 

the most frequently (Satpute et al., 2016). Rhamnolipid (a biosurfactant)-silver 

and iron nanoparticle complexes have been demonstrated to be efficient against 

Salmonella enteritids, S. aureus, Bacillus pumilus, L. monocytogenes, and 
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Yarrowia lipolytica (Paraszkiewicz et al., 2021). Although biosurfactants have 

enormous potential as antibiofilm agents, little is known about how toxic they are 

to humans.  

2.4 Natural compounds as a potential source of anti-biofilm compounds 

The need for agents that can prevent biofilm formation is urgent due to the 

important role that biofilm plays in infections and the emergence of multidrug-

resistance (Lu et al., 2019). The existence of biofilm occurs in more than 90% of 

bacteria as a means of adaptive resistance to antimicrobial agents, which impedes 

effective treatment of acute and chronic infections (Li & Lee, 2017; Masák et al., 

2014). This condition necessitates strategies to be developed for anti-biofilm 

agents that are specific and non-toxic.  

Drug discovery and development are significantly influenced by natural 

products. For centuries, herbal treatments have been used in different cultures. 

There are recent reports that plant extracts are capable of regulating biofilm 

formation. For example, garlic extracts have compounds with antimicrobial 

activity, and quorum sensing is also inhibited by garlic extract (Bjarnsholt et al., 

2005). Plant extracts from C. trilobus and Coptis chinensis have anti-adhesion 

effects at the adhesion stage of biofilm formation by inhibiting the membrane 

enzyme sortase (Kim et al., 2002). Rich in polyphenols, cranberry fruits influence 

the activity of proteolytic enzymes that inhibit the formation of essential elements 

of biofilms such as extracellular materials, carbohydrate production, proteolytic 

activities, and coaggregation (Duarte et al., 2006). Pseudomonas aeruginosa 

biofilm-associated genes were significantly inhibited by an extract from Herba 

patriniae (Fu et al., 2017). Phloretin, by the mechanism of efflux protein genes, 
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has anti-biofilm activity at low concentrations (1–256μg/ml) against S. aureus 

RN4220 and SA1199B (Lopes et al., 2017). Wheat-bran has shown the potential 

to obstruct bacterial quorum sensing systems by downregulating acyl-

homoserine lactones (AHL), quorum-sensing signal molecules for gram-negative 

bacteria. The soluble extract of wheat bran at 5% showed anti-biofilm activity 

(González-Ortiz et al., 2014). Hence, natural products are regarded as a rich 

reservoir of bioactive compounds with therapeutic potential due to their 

remarkable chemical diversity.  

Naturally occurring compounds are receiving immense attention due to 

increasing awareness about the side effects associated with the use of chemicals 

and traditional antibiotics (Chifiriuc et al., 2012). Up until now, a number of 

studies have examined the inhibitory effects of natural products on the formation 

and development of bacterial biofilm, suggesting their potential as a substitute 

for bacterial infection treatment (Lu et al., 2019). Natural compounds continue to 

be an abundant source of biologically active and diverse chemotypes. Natural 

therapeutic agents may have fewer side effects because they exert their 

physiological and pharmacological effects inside living cells. Natural products 

have a wider range of molecular properties, such as lower molecular mass, 

partition coefficient, and structural diversity although some natural compounds 

violate these. Additionally, natural products interact more with proteins, 

enzymes, and other biological molecules. Also, natural products have molecular 

rigidity and contain fewer heavy metals when compared with their synthetic 

alternatives (Mathur & Hoskins, 2017). 
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There are indications that more studies need to be performed because previous 

studies on plant-derived extracts failed to identify the molecular structures of 

antibiofilm bioactive molecules. For the development and assessment of natural 

antibiofilm agents in clinical applications, there is a need for enhanced efficacy 

and safety, either alone or in combination with other antimicrobial agents, which 

are essential to achieving great control of bacterial infectious disease in 

healthcare (Lu et al., 2019).  

2.5 The use of computational tools in drug design 

The use of high-throughput screening and combinatorial chemistry, which are 

traditional methods has led to an increase in the number of structural and 

biological data available to support rational decision-making in the 

pharmaceutical industries. This led to the introduction of a technique called 

cheminformatics (Gillet, 2019). Computational drug design is taking priority as 

a means of finding new therapeutics. Computational drug discovery is primarily 

used by chemist to reduce large compound databases into manageable sets of 

compounds with predicted activity that can be further tested experimentally. 

Also, through structure-activity relationship studies, it can be used to direct the 

optimization of binding affinity and pharmacokinetic parameters during lead 

compound optimization and to design novel chemotypes. It is not only aimed at 

explaining the molecular basis of therapeutic activity but also to predict possible 

derivatives that would improve the bioactivity of interest (Sliwoski et al., 2014). 

Structure-based and ligand-based computer-aided drug discovery are two 

subtypes of computational discovery. 
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Drug discovery processes can be made more effective by combining high-

throughput screening and computational tools. Because predicted active 

compounds will be given priority and predicted inactive compounds will be 

skipped, this lowers the number of compounds for in-vitro screening while 

maintaining the likelihood of lead compound discovery, i.e., lowers the cost, 

time, and work required for high-throughput screening (Sliwoski et al., 2014). 

For instance, scientists at Pharmacia (now a division of Pfizer) effectively 

showed the potential of computational drug discovery when they used 

computational tools in parallel with HTS to screen 400,000 compounds for 

inhibitory bioactivity against tyrosine phosphatase-1B, an enzyme implicated in 

diabetes that hydrolyzes phosphotyrosines and inactivates insulin receptors. The 

outcome displayed two hit lists that were very dissimilar to one another. The 

docking hits were surprisingly found to be more drug-like than the HTS hits. The 

variety of both hit lists and how they differ from one another imply that docking 

and HTS may be complementary techniques (Doman et al., 2002). Examples of 

drugs that are discovered using computational tools include the Angiotensin-

converting enzyme (ACE) inhibitor captopril (Talele et al., 2010), carbonic 

anhydrase inhibitor dorzolamide (Vijayakrishnan 2009), saquinavir, ritonavir 

and indinavir, which are three drugs for the treatment of human 

immunodeficiency virus (HIV): (Drie, 2007), and tirofiban, a fibrinogen 

antagonist (Hartman et al., 1992).  There was a recent study by Alves-Barroco et 

al. (2019) in which computational tools were used to screen molecules in the 

context of an antibiofilm agent to examine the presence of a biofilm regulatory 

protein BrpA homolog in Streptococcus dysgalactiae subsp. dysgalactiae 
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(SDSD) using high throughput virtual screening and molecular docking. In the 

study, five ligand molecules with high binding affinity to the hydrophobic cleft 

of the protein were chosen as potential inhibitor candidates for the SDSD BrpA-

like protein. 

2.5.1 Structure-based computer-aided drug discovery 

Structure-based computer-aided drug discovery has gained widespread 

acceptance in drug discovery. Some libraries and databases are available for 

protein structures (Kalyaanamoorthy & Chen, 2011). Protein Data Bank (PDB) 

has the nuclear magnetic resonance (NMR) and crystallographic structure of 

proteins available for research purposes. Proteins are made up of amino acid 

residues, which are important for protein-receptor binding to ligands. Structure-

based virtual screening is useful, especially when the 3D structure of the 

biological protein target is available. Structure-based computer-aided drug 

discovery requires prior knowledge of the protein’s biological target to calculate 

binding energy and interactions for all ligands tested during screening.  

The most widely used technique in structure-based virtual screening is molecular 

docking. Structure-based computer-aided drug design makes it simple to 

visualize the binding energy and binding mode of the ligands. Molecular docking 

adopts a scoring function for the different conformations to aid the analysis of 

the interaction between the protein and the ligands. The scoring functions are the 

mathematical methods put in place to predict the interaction between the protein 

and the ligands. To make scoring functions less complex, a lot of assumptions 

and simplifications must be made, which inevitably reduces their accuracy. The 

main flaw in docking in terms of accuracy is the existence of inadequate scoring 
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functions. The expensive calculations are still impractical for the analysis of 

numerous protein-ligand complexes and occasionally inaccurate (Kitchen et al., 

2004). To solve this problem, using multiple scoring functions has been shown 

to improve accuracy and it leads to the identification of lead molecules. This is 

done by rescoring all the docked poses using a different function. Additionally, 

to evaluate and simulate the conformational space of a protein, additional 

computational methods like molecular dynamics and molecular mechanics are 

required (Sliwoski et al., 2014). 

2.5.2 Ligand-based computer-aided drug discovery 

Computational tools are available to make predictions from a set of compounds 

to prioritise them for further expensive in-vitro experimental studies to be able to 

identify compounds with desirable bioactivity (Gillet, 2019). This type of virtual 

screening adopted in studies depends on the type of available information. The 

goal is to retain the physicochemical properties most crucial for their desired 

interactions and ignore irrelevant data to the interactions. Ligand-based 

computer-aided drug discovery techniques are generally used when the target 

protein’s 3D structure is unavailable and cannot be determined by homology 

modelling but information about active and inactive compounds of intended 

bioactivity is known (Sliwoski et al., 2014). For example, if the actives are 

known, a compound flexophore similarity search and pharmacophore mapping 

can be done to check other databases for compounds with similar activity 

(Khedkar et al., 2007). Also, if active and inactive compounds are known from 

bioassays, predictive classifier models can be built using machine learning tools 

to make predictions about compounds whose activity is unknown (An et al., 
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2021). QSAR techniques can also be adopted in ligand-based computer-aided 

drug discovery (Neves et al., 2018). 

2.5.3 Molecular similarity search 

Molecular similarity search has long been adopted in cheminformatics. Three 

major components of molecular similarity are required: (i) a representation that 

encodes similar molecular and chemical features, (ii) a potential weighting of 

representational features, and (iii) a similarity coefficient (Gillet, 2019). The 

similarity coefficient ranges from “0” to “1”. The limitation of similarity search 

is that compounds sharing similar features can be identified ambiguously and are 

subjective except if they share the same pharmacophore. Similarity, like beauty, 

is more or less in the eye of the beholder. There are occasionally issues when 

attempting to quantify them and formally describe similarity relationships 

(Maggiora et al., 2014).  

 A small chemical modification can result in a significant change in bioactivity, 

a form of structural activity discontinuity (activity cliff) (Stumpfe et al., 2014). 

This can be explained with the concept of activity cliffs, which are groups of 

similar compounds and structures with significant activity differences. Activity 

cliffs may be traced to the presence or absence of specific receptor-ligand 

interactions, e.g., an important H-bond, a complementary fit of an aromatic group 

into a binding pocket, or an ionic interaction (Stumpfe & Bajorath, 2012). 

Similarity analysis has its place in drug development, but there is a need to further 

investigate these compounds obtained from similarity searches with other 

computational methods. 

27 

http://etd.uwc.ac.za/



28 

 

2.5.4 Machine learning 

The popularity of machine-learning techniques is growing because of their 

capacity to make accurate predictions. In order to model, analyse, and predict 

various biological responses and processes during the drug discovery phase, 

pharmaceutical companies now frequently use machine learning tools (Lo et al., 

2018). Machine learning algorithms are able to learn complex patterns from 

datasets to accurately forecast annotations on other data samples. A computer 

program uses a machine-learning algorithm to learn from experience (E) 

regarding the class of tasks (T) and performance (P) is measured, which improves 

with experience (E) (Tu, 2019). The input set of data with annotated labels (active 

and inactive) is called training data for the model to learn to make accurate 

predictions. To learn from the input data (compounds labelled as active and 

inactive), the machine-learning algorithm encodes a specific loss function. Loss 

function is the penalty that the learner incurs every time it commits an error, such 

as accidentally placing an active compound into an inactive bin during learning 

from the input training data. As a result, the algorithm gains the ability to learn 

to classify the input examples correctly. The learning algorithm is then capable 

of predicting the class label of the new compound (Zhang et al., 2021).  Despite 

the potential advantages of machine learning in drug discovery, there are a 

number of obstacles that must be taken into account. The availability of 

appropriate data is one of the key obstacles in machine learning because machine 

learning-based approaches typically need a lot of data for training purposes. The 

accuracy and reliability of the results can be impacted by limited quantity, low 

quality, and inconsistent data. Modern machine learning-based approaches 
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cannot take the place of conventional experimental methods or the knowledge 

and expertise of human researchers.  Machine learning can only make predictions 

based on the available data, and the results must then be validated and evaluated 

by human researchers (Blanco-González et al., 2023) 

2.6 Conclusion 

The National Institutes of Health claimed that biofilms are responsible for 80 

percent of all chronic infections and 65% of all microbial infections, making 

biofilms a significant healthcare issue (Jamal et al., 2018). Biofilms are capable 

of settling on biological and non-biological surfaces, putting almost all patients 

at high risk, especially those with injuries, burns, inflammation, tissue damage, 

and patients with implanted devices and they can affect almost every organ of the 

body (Vestby et al., 2020). Planktonic bacteria have the ability to separate from 

a mature biofilm, spread to other organ systems, colonise them, and result in 

bacteremia or sepsis (Fleming & Rumbaugh, 2018). This is due to the fact that 

bacteria trapped in biofilms are extremely adaptable to antimicrobial treatment 

when compared to an identical bacterium in its free-floating planktonic state 

(Verderosa et al., 2019).  

A global crisis such as the COVID-19 pandemic was evidently worsened by the 

overuse of antibiotics. Therefore, understanding biofilm formation and the 

development of antibiofilm agents to fight antibiotic resistance are priorities in 

the healthcare system (Strathdee et al., 2020). Despite this requirement and 

importance, there are presently no approved antibiofilm agents, and the majority 

of the previous studies used general antiseptics such as chlorhexidine or 

antibiotics such as cefazolin that are not biofilm-specific (An et al., 2021). The 
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difficulty in developing an antibiofilm agent is evidenced by the fact that there 

are no approved antibiofilm candidates despite ample years of research. Likely 

reasons for this could be the adoption of inaccurate models that show efficacy in 

in-vivo and in-vitro studies but fail in human studies, or because low priority is 

assigned to this class of drug (An et al., 2021). Adopting a combination of 

computational tools gives researchers the chance of discovering and developing 

some successful anti-biofilm agents. Computational methods that can be adopted 

to hasten the development of antibiofilm compounds against multidrug-resistant 

S. aureus have been reviewed in this chapter.
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Chapter Three 

Ligand similarity approach to discovery of potential antibiofilm 

hit compounds from two African natural product databases 

against multi-drug resistant Staphylococcus aureus 

3.1 Introduction 

Ligand-based drug discovery is an important aspect of computer-aided drug 

discovery.  This method used in drug discovery is based on the principle that 

compounds that are structurally similar tend to have approximately similar 

biological activity. Important molecular fragment properties such as 2D 

properties, 3D properties, physicochemical properties, and flexophore 

descriptors are to be taken into consideration when looking for structural 

similarity because of their significant impact on the chemical characteristics 

necessary for binding to a target and to exhibit a desired pharmacological effect. 

Molecular descriptors are mathematical functions applied to molecular 

representations to characterise molecular properties (Danishuddin & Khan, 

2016). There are different types of descriptors, mainly: 1D, 2D, 3D, 4D, 5D, and 

6D. 1D is based on the composition formula, 2D is based on the molecular graph, 

and 3D is based on the 3D molecular conformations. The 1D descriptor can 

explain the number of carbon atoms, number of heavy atoms and the number of 

carbon atoms, but it cannot explain related 2D or 3D information, for example, 

the number of aromatic rings, the number of double bonds, or the molecular 

surface area. Application of 1D and 2D topological descriptors has become 
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increasingly popular because these properties are derived from molecular 

structures using low computational resources. It is important to keep in mind that 

they do not encode conformational information, which limits their relevance for 

predicting the conformation-dependent properties of drugs (Helguera et al., 

2008). An advantage of 3D descriptors is that they consider the 3D structures of 

ligands and are additionally applicable to sets of structurally diverse compounds. 

The major drawbacks of 3D-QSAR are that (i) it is not relevant to huge data sets 

containing more than several thousand compounds, which are usually taken into 

consideration in high-throughput screening, and (ii) 3D descriptors in QSAR 

analysis involve the computational complexity of conformer generation and 

structure alignments (Lo et al., 2018). 

Comparing molecules is a frequent task in computer-aided drug discovery. 

Vector-based descriptors such as 2D and 3D have high performance for similarity 

calculations, but there could be a loss of information by condensing the molecular 

information into a descriptor vector. This is because the description of a molecule 

as a static arrangement of pharmacophore features cannot adequately describe its 

bioactivity. 4D, 5D, and 6D descriptors are multidimensional descriptors. They 

include the parameters involved in the structure and flexibility of the receptor-

binding site in conjunction with ligand topology. 4D descriptors are based on 

reference grids and molecular dynamic simulations. Multiple conformations, 

orientations, protonation states, and isosteriomers are used to compute 5D 

descriptors, whereas solvation terms make up 6D descriptors (Peter et al., 2018). 
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A novel descriptor called flexophore fingerprint was introduced in the software 

Data Warrior (Sander et al., 2015). Flexophore compares similarities in chemical 

space orthogonal to chemical fingerprint descriptors of molecules while 

considering molecular flexibility (Von Korff et al., 2008). chemical space 

orthogonal to chemical fingerprint descriptors. Since the proposition of the 

induced fit theory, flexophore as a molecular descriptor has reflected dynamic 

conformational changes of molecules that occur during the recognition process 

of ligand binding to the target, which has been found to play a key role in drug 

discovery. Hence, molecules with similar flexophores are able to mimic similar 

bindings to the target of interest (Schuffenhauer et al., 2012). The descriptors 

similarly produced from the database molecules are compared to the query, and 

the database can then be sorted according to the similarity values of the 

flexophores. The comparison is based on the hypothesis that highly similar 

molecules to the query are more likely to be active than molecules that have a 

lower similarity i.e. the bioactivities of compounds that are structurally similar 

tend to be correlated more frequently than those of dissimilar ones (Cortés-

Ciriano et al., 2020). 

3.2 Method 

Databases explored for this study are PubChem 

(https://pubchem.ncbi.nlm.nih.gov/), ChEMBL 

(https://www.ebi.ac.uk/chembl/), the aBiofilm database 

(http://bioinfo.imtech.res.in/manojk/abiofilm/), the South African Natural 

Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/) and AfroDb 

(Ntie-Kang et al., 2013)  The data collection was done using a Dell PC Windows 
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10 with an Intel Core i5, a 64-bit operating system, and an x64-based processor. 

An electronic search was conducted in August 2021 on available databases.  

3.2.1 Collection of active and inactive antibiofilm compounds against 

Staphylococcus aureus 

An electronic search was conducted on December 20, 2021 on the following 

databases PUBCHEM (https://pubchem.ncbi.nlm.nih.gov/), ChEMBL 

(https://www.ebi.ac.uk/chembl/)  and aBiofilm database for reported active and 

inactive antibiofilm compounds against Staphylococcus aureus. The keywords 

used were “antibiofilm”, “Staphylococcus aureus”. The ‘aBiofilm’ resources 

(http://bioinfo.imtech.res.in/manojk/abiofilm/) harbour a database, a predictor, 

and the data visualisation modules. The database contains biological, chemical, 

and structural details of 5027 anti-biofilm agents (1720 unique) reported from 

1988 to 2017. These agents target over 140 organisms, including Gram-negative, 

Gram-positive bacteria and fungi. They are mainly chemicals, peptides, phages, 

secondary metabolites, antibodies, nanoparticles, and extracts (Rajput et al., 

2018).   

From the literature studies, compounds with active and inactive antibiofilm 

activity of compounds against S. aureus were retrieved. Their respective bioassay 

ID, PUBCHEM CID, PUBCHEM activity, PUBCHEM standard value, 

PUBCHEM standard type, and PUBCHEM standard units were retrieved. 

According to the PUBCHEM assay presentation, compounds are marked as 

active if their activity is </=50uM or if ChEMBL specifically reports them as 

active. From the aBiofilm database, compound ID, name, formula, and activity 

were retrieved. No literature reference standard was found for antibiofilm 
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percentage inhibition. Compounds with an inhibition percentage greater than 

50% were marked as ACTIVE. For the activity expressed in folds, compounds 

with >2folds were marked as active. 

3.2.2 Query databases 

The query dataset of 411,180 compounds was collated from the South African 

Natural Compounds Database (SANCDb; https://sancdb.rubi.ru.ac.za/) and 

AfroDb (https://doi.org/10.1371/journal.pone.0078085), from which potential 

antibiofilm compounds against MDRSA will be identified in this study. 

SANCDb is a free database containing natural chemical compounds of South 

African origin. It was created in 2015 and has been useful in drug discovery 

studies for hit identification. On the other hand, AfroDb is a database of diverse 

natural compounds from African medicinal plants. 

3.2.3 Retrieval of SMILES structures of datasets and generation of 

compound structures 

The “Simplified Molecular Input Line Entry System (SMILES)” structures of 

active and inactive antibiofilm compounds and query dataset retrieved from 

SANCDB and AfroDb were used to generate their corresponding mol files of 

FragFp chemical structures using OSIRIS Datawarrior software (Sander et al., 

2015). 

3.2.4 Data characterization 

To evaluate the structural differences between active and inactive antibiofilm 

compounds against S. aureus, the concepts of neighbour tree, scaffolds, 

flexophore similarity, and principal component analysis were adopted. The data 
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used for this chapter were the active and inactive compounds collected as 

previously described (3.3.1).  

3.2.5 Calculation of compound properties and descriptors 

DataWarrior software is capable of computing various properties of a compound 

directly from its chemical structure (Elaziz et al., 2018).  In this study, 

Datawarrior was used to calculate and explore the chemical space diversity of 

collated active and inactive antibiofilm compounds, which is important for a 

comparative assessment of their structural and physicochemical properties. 

Flexophore descriptors of these compounds from their chemical structures were 

also generated. The key compound properties calculated were total average mol. 

weight in g/mol, cLogP, cLogS, H-acceptors, H-donors, relative polar surface 

area, topological polar surface area, electronegative atom count, stereocentre 

count, rotatable bond count, ring closure count, aromatic atom count, sp3-atom 

count, and symmetric atom count. Ring counts are also calculated, such as small 

ring counts, small ring count without hetero atoms, small ring counts with 

heteroatoms, small fully saturated ring counts, small non-aromatic ring counts, 

aromatic ring counts, small, saturated carbo-ring counts, carbo-aromatic ring 

counts, small carbo-non-aromatic ring counts, carbo-aromatic ring counts, small 

saturated hetero-ring counts, small hetero-non-aromatic ring counts, and hetero-

aromatic ring counts. Box plots were generated for the molecular properties of 

active and inactive compounds with statistical significance set at p< 0.05.  
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3.2.6 Similarity charts and Scaffold analysis 

This methodology of similarity charts is based on the principle that compounds 

that are similar would exhibit similar bioactivity. OSIRIS Datawarrior software 

(Sander et al., 2015) was used for similarity charts, and scaffold analysis. The 

similarity analysis calculates the entire fragment similarity between all 

compounds. The most similar neighbours are grouped together depending on 

their attractive forces, which increases with similarity. The resulting similar 

neighbour trees (clusters of compounds with similar features) are connected with 

a connecting line were analysed to identify the fragments that are related to the 

activity.  

Scaffolds break down molecules into a framework of core structure and 

substituents. The scaffold analysis locates the core structure(s) of every 

molecule. The method used to locate the core structure(s) of the active and 

inactive compounds depends on the chosen Scaffold type. For this study, to 

generate the core structures, scaffolds for active and inactive compounds were 

analysed using the two different scaffold types: (i) Murcko scaffold: This 

includes every direct connection between the molecule’s plain ring systems. 

Substituents, that do not contain ring systems are removed from rings and ring 

connecting chains and Ring systems with substitution patterns. (ii)Ring systems 

with substitution pattern: This mode identifies all annelated ring and single-ring 

systems without any substituents, but it also indicates that each ring atom has 

been substituted and that the original molecule contained an exeo-cyclic, non-

hydrogen substituent. 
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 The scaffold frequency file option was selected for DataWarrior to create a new 

document listing all detected scaffolds and their occurrence frequency. Auto-

SAR analysis was carried out using two scaffold types: the Murcko scaffold and 

the most central ring system. DataWarrior decomposes the structures by 

analysing scaffolds and substituents. 

3.2.7 Flexophore similarity 

The flexophore similarity concept is based on the claim that compounds with 

similar flexophore would have similar properties (Chhabra et al., 2021). A high 

flexophore similarity score indicates that the size, shape, and pharmacophore 

points of two molecules are comparable. The flexophore similarity scores were 

generated in OSIRIS DataWarrior software (Sander et al., 2015) based on the 

flexophore descriptor calculations of known active antibiofilm compounds to 

evaluate the query compound database with an automatic similarity limit of 85%. 

3.3 Results and Discussion 

3.3.1 Data collection and characterization 

A total of 256 active compounds and 51 inactive compounds were collected from 

PubChem. A total of 67 active compounds and 54 inactive compounds were 

collected from aBiofilm database. Hence, there were a total of 323 active 

compounds and 105 inactive 

compounds(https://docs.google.com/spreadsheets/d/1XbScRvRuiK1-

HBjmajK_9ro1N9Wfjz_s/edit?usp=drive_link&ouid=11668411891676257522

4&rtpof=true&sd=true) . For the query database, a total of 411,180 natural 

compounds were compiled from both SANCDB and AfroDb 
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(https://docs.google.com/spreadsheets/d/1lTW6n59hfLADsdjSqJTjLOhrQu_81

0-

v/edit?usp=drive_link&ouid=116684118916762575224&rtpof=true&sd=true).  

3.3.2 Calculation of properties and descriptors 

Here we present the molecular properties that showed significant differences 

between the active and inactive compounds. Properties and descriptors of active 

and inactive antibiofilm compounds were profiled 

(https://drive.google.com/file/d/1muk5iqShLnG2Ln5tddkaAp7d21ZTfDPz/vie

w?usp=drive_link). Molecular descriptors were derived from the chemical 

structure of the compounds. From the calculation of properties and the 

distribution using boxplot, the statistically significant properties having p<0.05 

e.g., cLogP, hydrogen acceptor, hydrogen donor, electronegative atoms, aromatic

atoms, hetero-rings, and saturated rings, are represented in Figures 3.1(a, b, c, d, 

and e). 
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Figure 3.1(a) Box plot of cLogP of active and inactive antibiofilm compounds 

against S. aureus with significant P value <0.05. The red and black lines represent 

the statistical mean and median of each distribution respectively. 

Figure 3.1(b) Box plot of H-Donors of active and inactive antibiofilm 

compounds against S. aureus with significant P value <0.05. The red and black 

lines represent the statistical mean and median of each distribution respectively. 
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Figure 3.1(c) Box plot of Aromatic atoms of active and inactive antibiofilm 

compounds against S. aureus with significant P value <0.05. The red and black 

lines represent the statistical mean and median of each distribution respectively. 
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Figure 3.1(d) Box plot of Hetero-rings of active and inactive antibiofilm 

compounds against S. aureus with significant P value <0.05. The red and black 

lines represent the statistical mean and median of each distribution respectively 
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Figure 3.1(e) Box plot of Saturated Rings of active and inactive antibiofilm 

compounds against Staphylococcus aureus with significant P value <0.05. The 

red and black lines represent the statistical mean and median of each distribution 

respectively. 
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The physicochemical properties of a compound could reveal the binding 

behaviours of the target of interest. The measure of hydrophilicity and 

hydrophobicity of a molecule expressed as a logarithm of the partition coefficient 

between n-octanol and water (cLogP) in this study shows that the reported active 

and inactive antibiofilm compounds have a cLogP value of <5. According to the 

Linpiski rule of 5, an oral drug should have a cLogP value of <5, and for good 

absorption, the ideal value is between 1.35 and 1.8.  The active compounds in 

this study have a better cLogP value than the inactive compounds. 

Compounds that are hydrogen bond donors can stabilise the 3D structure of 

binding sites. In general, H-bond donors are also less polar, thus enhancing the 

binding affinity at drug targets and also having an influence on the ADMET 

properties of a compound (Coimbra et al., 2020). This study reveals a higher 

number of H-bond donors among the active antibiofilm compounds. It was 

hypothesised that the more aromatic atoms present in a compound, the fewer the 

hydrophilic interactions and the higher the membrane permeability. This result 

shows that more aromatic atoms are seen in the active compounds than in the 

inactive compounds. A large number of heteroatoms in natural and synthetic 

compounds exhibit medicinal properties. There is no significant difference in 

terms of the presence of heteroatoms in the active and inactive antibiofilm 

compounds. It is observed that more saturated rings are present in the active 

compounds. 

3.3.3 Similarity charts 

An important concept in medicinal chemistry and drug discovery is chemical 

similarity, which notes similar compounds with enhanced bioactivities. There is
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a well-established hypothesis that structurally similar molecules will have similar 

functions (Rao, 2021). The dataset was explored to see potential similarities in 

chemical structures between the reported active and inactive antibiofilm 

compounds using fragment and flexophore molecular fingerprints. The 

neighbour similarity trees are shown in Figures 3.2(a) and 3.2(b). Most similar 

neighbours are considered for every molecule; similar neighbours are connected 

by attractive forces. It was hypothesised that compounds that are connected in 

neighbouring trees will exhibit similar activity. In contradiction to this 

assumption, the result of the similarity tree shows compounds that are similar but 

have different activity profiles, i.e., some active compounds have cores 

(scaffolds) that are very similar to the ones present in inactive compounds. This 

could be explained by the concept of an activity cliff that manifests when a 

modest structural change significantly modifies the biological characteristics of 

the compound (Rao, 2021). To further get an insight into the structure differences 

observed in the similarity landscape, a close inspection of the structure in selected 

clusters (A, B, and C) was done, and the results are presented below in Figure 

3.3(a-h). Analysing the resulting neighbour tree helps to determine the 

similarities and differences between the core fragments for both active and 

inactive compounds. The neighbour tree analysis shows no distinctive difference 

between the core fragments of known active and inactive antibiofilm compounds.  
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Figure 3.2(a) Resulting similarity tree for both active and inactive antibiofilm 

compounds using molecular fragment fingerprint Active antibiofilm compounds 

denoted with red dots and non-active are blue dots. Similar neighbour compounds 

are connected with a connecting line to form a cluster.  

Figure 3.2(b) Resulting similarity tree for both active and inactive antibiofilm 

compounds using flexophore molecular fingerprint. Active and inactive 

antibiofilm compounds are denoted in red dots and blue dots respectively. Similar 

neighbour compounds with similar flexophore are connected with a connecting 

line to form a cluster. 
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Figure 3.3(a) Analysis of neighbour tree A showing the core structure and 

substituents with their corresponding activity class 

Figure 3.3(b) Analysis of neighbour tree A cont'd. showing the core structure 

and substituents with their corresponding activity class 
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Figure 3.3(c) Analysis of neighbour tree A cont'd showing the core structure and 

substituents with their corresponding activity class. 

Figure 3.3(d) Analysis of neighbour tree A cont'd. showing the core structure 

and substituents with their corresponding activity class 
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Figure 3.3(e) Analysis of neighbour tree B showing the core structure and 

substituents with their corresponding activity class 

Figure 3.3(f) Analysis of neighbour tree B cont'd. showing the core structure and 

substituents with their corresponding activity class 
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Figure 3.3(g) Analysis of neighbour tree C showing the core structure and 

substituents with their corresponding activity class 
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Figure 3.3(h) Analysis of neighbour tree C cont'd. showing the core structure 

and substituents with their corresponding activity class 

3.3.4 Analysing scaffold  

There is a need to identify scaffolds in compounds with antibiofilm activity 

against S. aureus. The technique used to locate the core structure(s) depends on 

(i) the Most central ring system: in which the core structure is the molecule’s 

ring system, that is closest to its topological center, and (ii) the Murcko scaffold, 

which has all plain ring systems of the given molecule and all direct links between 

them. Substituents that do not contain ring systems are removed from rings and 

ring-connecting chains. The scaffold diversity in terms of Murcko scaffold 

analysis demonstrates a thorough representation of diverse chemical scaffolds. 

Murcko scaffold analysis revealed unique scaffolds A, B, C, and D, as shown in 

figures 3.4(a) and 3.4(b), with varying degrees of frequency. Figure 3.4(c) listed 
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all identifiable scaffolds and provided a wider view of the functional differences 

between active and inactive compounds. There are scaffolds that are not 

outrightly similar between active and inactive compounds. Scaffolds A and D are 

present in both active and inactive groups but at a higher frequency in the active 

group. Scaffolds B and C in both the active and inactive groups are similar. Figure 

3.4(c) compares the similarities between the scaffolds of active and inactive 

compounds. The pyrrole ring, indole ring, imidazole, and amide functional 

groups constitute these scaffolds in both active and inactive compounds. Recent 

studies of antibiofilm agents revealed that moieties such as imidazole, phenols, 

indole, triazole, sulfide, furanone, bromopyrrole and peptides contribute to 

antibiofilm activities (Rabin et al., 2015). These identified scaffolds can serve as 

a promising lead for further derivatization of unique molecules and diverse 

analogues for antibiofilm drug discovery targeting S. aureus.  
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Figure 3.4(a) Murcko scaffolds of Active antibiofilm using Datawarrior. Unique 

scaffolds that are similar to those in the inactive group are labelled A, B, C, and 

D. The colours indicate the frequency of the scaffolds, where the blue and red

colour represent smallest and largest values respectively. 
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Figure 3.4(b) Murcko scaffolds of Inactive antibiofilm using Datawarrior. 

Unique scaffolds that are similar to those in the active group are labelled A, B, 

C, and D. The colours indicate the frequency of the scaffolds, where the blue and 

red colour represent smallest and largest values respectively. 
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Figure 3.4(c) Comparison between scaffolds A, B, C, and D of active and 

inactive antibiofilm compounds 

3.3.5 Flexophore similarity search by comparing Active antibiofilm 

compounds and Query dataset. 

The main approach is to compare the flexophore of compounds with known 

antibiofilm activity with the query dataset, whose antibiofilm bioactivity is not 

known. The selection of natural compounds in the query dataset was done using 

the flexophore similarity score to identify potential hits. The flexophore 

descriptor allows for predicting 3D-pharmacophore similarities. It provides a 

powerful and an easy-to-use way to see if any two molecules may have 
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compatible protein-binding behaviour. A high flexophore similarity signals that 

a significant portion of conformers of both molecules are compatible with regards 

to the size, shape, flexibility, and pharmacophore points (Sander et al., 2015). 

Compound flexophore similarity makes it possible to predict the biological 

behaviour of compounds because they are expected to exert their biological 

effects similarly, but they need to be subjected to further in-silico studies for 

validation to improve the reliability of the prediction. The flexophore descriptor 

calculation of active antibiofilm compounds was used to evaluate the query 

compound database. 43,957 compound pairs with flexophore similarity greater 

than 85% were generated from 411,180 compounds in the query database 

(https://docs.google.com/spreadsheets/d/1maJToebF0QtmITYRB-

3ldyqsHF4qpMDe/edit?usp=sharing&ouid=107704633229501699630&rtpof=t 

rue&sd=true. This result demonstrated a significant level of flexophore 

similarity with the possibility that identified natural compounds will demonstrate 

similar antibiofilm bioactivity. The flexophore descriptors were able to enrich 

active molecules, where chemical similarity based on descriptors totally failed. 

Compound pairs of similar flexophore descriptors are shown in Figure 3.5 and 

Figure 3.6 presented a histogram showing the frequency distribution of 

flexophore similarity score Overall, results from this study proves that the 

flexophore descriptors are capable of successfully encoding 3-D protein-binding 

behaviour rather than ligand FragFp chemical similarity. This is in line with 

studies from Von Korff et al., 2008 that showed that flexophore descriptors used 

to model biological similarity not only outperform chemical fingerprints but also 
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identify biologically active compounds where topological pharmacophore 

comparisons could not succeed.  

Figure 3.5 Compound pairs of similar flexophore of reported active antibiofilm 
compounds (ID 1) to natural compounds in the query dataset (ID 2) with their 
corresponding chemical structure and flexophore similarity score. 
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Figure 3.6 Histogram showing the frequency distribution of flexophore 

similarity score. Total count 43,957 of the query dataset, mean similarity score 

0.88926, min 0.850000, Std 0.033, 25% 0.863030, 50% 0.880180, 75% 

0.907270, max 1.000000. 

3.4 Conclusion  

Similarity charts/activity cliffs, scaffold analysis of active and inactive 

antibiofilm compounds resulted in no clear-cut difference and an overlap in 

functional groups identified. This occurrence can be explained by the concept of 

activity cliffs, in which structurally similar compounds have large differences in 

potency.  Hence, flexophore as a molecular descriptor that expresses molecular 

flexibility became important for this study. The flexophore similarity metric 

highlighted the similarities between query datasets and the known active 

antibiofilm molecules, which would not have been detected simply by chemical 

similarity searches. 43,956 compound pairs with flexophore similarity greater 

than 85% were generated from 411,180 compounds in the query database. The 

pyrrole ring, indole ring, imidazole, and amide functional groups constitute the 

scaffolds in both active and inactive compounds. These identified scaffolds can 

serve as a promising lead for further derivatization of unique molecules and 

diverse analogues for antibiofilm drug discovery targeting S. aureus. 
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Chapter Four 

Building a predictive model using a machine learning approach 

4.1 Introduction 

Staphylococcus aureus, with the emergence of antibiotic resistance has become 

an opportunistic pathogen that is capable of causing life-threatening infections 

(Dalman et al., 2019). Staphylococcal infection therapy is currently faced with 

many difficulties, not only due to the increasing resistance to the current 

antibacterial treatments and the multiple virulence factors it produces but also 

due to its biofilm formation ability (Jaśkiewicz et al., 2019). Machine learning as 

a branch of artificial intelligence, is becoming a promising pillar for overcoming 

the high failure rate in drug development. Machine learning methods have found 

extensive applications in predicting compound properties and in the area of drug 

discovery (Paraszkiewicz et al., 2021). Machine learning makes use of algorithms 

to analyse input training data, learn from it, and use it to make predictions on 

another set of related or unrelated data (Egieyeh et al., 2018). Currently, there is 

no antibiofilm predictive model for natural products with antibiofilm activity. 

Some publications are available for bioassays that report compounds with 

antibiofilm activity. In an attempt to discover potential antibiofilm compounds 

against multidrug resistant S. aureus, it may be expedient to learn from reported 

compounds from antibiofilm bioassays and thereafter predict the bioactivity of 

natural compounds from the query database. Machine learning can help in 

providing accurate predictions and ranking of compounds that could be further 
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tested for in-vitro and in-vivo activity. This will help reduce the extensive cost, 

time, and resources involved in antibiofilm laboratory bioassays. Hence, using 

machine learning approaches, reported antibiofilm bioactivity data of some 

compounds collated as described in Chapter three was utilised to build accurate 

antibiofilm predictive models. In this study, using a machine learning approach, 

four predictive models were built from the active and inactive antibiofilm 

bioactivity classes and a combination of molecular descriptors and molecular 

fingerprints in the dataset. The performances of the predictive models could be 

assessed with standard model evaluation parameters, namely: ROC (Receiver 

Operating Characteristic) area under the curve, and accuracy. The predictive 

models built in this study were used to screen for potential hit compounds from 

query dataset (SANCDb and AfroDb). 

4.2 Materials and Methods 

In this chapter, the aim is to evaluate the predictive power of models trained with 

datasets of compounds with reported antibiofilm activity against MDRSA and 

subsequently apply the trained model to the query natural compound dataset. 

Active and inactive compounds were compiled as described in Chapter Three. 

KNIME software (version 4.5.1) was used to construct and validate models that 

are capable of predicting antibiofilm bioactivity. An original Konstanz 

Information Miner (KNIME) workflow was set up as shown in Figure 3.1(a-d) 

for machine learning using active and inactive antibiofilm datasets so as to 

forecast the antibiofilm activity class of natural compound query databases. 
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4.2.1 Data 

The dataset used in this study consists of the reported active and inactive 

antibiofilm compounds, collated according to the description in chapter three of 

this study. Konstanz Information Miner software (KNIME version 4.5.1) was 

used to construct and validate models that can predict antibiofilm bioactivity. 

A total of 428 (75% active and 25% inactive) compounds were used in this 

study(https://docs.google.com/spreadsheets/d/1XbScRvRuiK1-

HBjmajK_9ro1N9Wfjz_s/edit?usp=drive_link&ouid=11668411891676257522

4&rtpof=true&sd=true) . For the query database, a total of 411,180 natural 

compounds were compiled from both SANCDB and AfroDB 

(https://docs.google.com/spreadsheets/d/1lTW6n59hfLADsdjSqJTjLOhrQu_81

0-

v/edit?usp=drive_link&ouid=116684118916762575224&rtpof=true&sd=true). 

4.2.2 Machine learning algorithms 

Four classifier algorithms were used to learn from the dataset: Multilayer 

perceptron (MLP), Support Vector Machine (SVM), Random Forest (RF) and 

XGBOOST classifier. The specific classifiers were selected in order to represent 

four main types of classifier models: Random Forest represents tree-based 

classifiers; SMO represents function-based classifiers; XGBOOST is used in 

regression binary classifications and the Multilayer Perceptron represents neural 

network classifiers. The classifier algorithms were carried out with Weka 

(Waikato Environment for Knowledge Analysis) 3.6 nodes in KNIME. 
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4.2.3 Dataset pre-processing and calculation of molecular descriptors and 

molecular fingerprints 

The input data was classified into active and inactive compounds. The machine 

learning experiment begins with data preparation, such as the generation of an 

RDKit molecule from Smiles, adding hydrogen to an RDKit molecule, and 

kekulizing an RDKit molecule. Fingerprints are generated for the molecules, and 

molecular descriptors are calculated for each molecule in the input table. The 

molecular descriptors were then normalised using a minimum-maximum 

normalisation node. The bit vector that represent the molecular fingerprint was 

expanded into individual columns for each compound. 

4.2.4 Class Imbalance and cost-sensitive classification 

The bioactivity class imbalance was identified as a major drawback to building 

an accurate model. As observed in this study, bioactivity classes in the datasets 

used are imbalanced because one class is overly represented (approximately 75% 

active class and 25% inactive class). Hence, the SMOTE (Synthetic Minority 

Over-Sampling Technique) node within KNIME was used to balance the 

bioactivity classes. To enrich the inactive instances in the training dataset, the 

SMOTE node oversamples the input dataset. 

4.2.5 Selection of descriptors and features 

The real-world data is noisy and may contain features that may be redundant, 

misleading, irrelevant, and that do not necessarily have good correlation with the 

output. The “backward feature elimination” loop was used in this study to filter 
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features to be applied during the building of models. The main idea behind feature 

selection is to select only features that shows strong correlation with the output. 

There are many kinds of feature selections methods — forward selection, 

recursive feature elimination, bidirectional elimination, and backward 

elimination. The simplest and the most widely used one is backward elimination. 

In forward feature selection, one feature is added at a time, and the addition is 

stopped when your model no longer improves or start to worsen. Backward 

feature elimination commences with a regression model that includes a full set of 

features and one feature is gradually removed at a time according to the feature 

whose removal makes the biggest improvement. The removal of features is 

stopped when the removal makes the predictive model to worsen. The core role 

of the “Backward Feature Elimination” meta-node in KNIME was to optimise 

the model prediction performance by feeding the model with the most significant 

descriptors and features that are crucial to building an effective classifier model. 

It is faster and more economical in building a predictive model (Saurabh Pal, 

2021). 

4.2.6 Training and Evaluation of performance of antibiofilm predictive 

models 

Model training requires that an input dataset be split into a “training” dataset and 

a “test” or “validation” dataset (Nantasenamat et al., 2010). This process of 

gauging the model to the training data set is called “model training”. In this study, 

to learn from the dataset, a combination of molecular descriptors and fingerprints 

(circular FCFP6, circular ECFP4, MACC FCFP6, and MACC ECFP4) were 
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added to aid the accuracy of the predictions. Support Vector Machine (SVM), 

Multi-layer perceptron (MLP), Random Forest (RF), and XGBOOST were the 

four classifier learning algorithms used. To train the models, the input data were 

labelled as active and inactive which provided a baseline for each model to 

measure its performance against, helping them to learn the important features and 

descriptors over time and then analysing the relationships between the two 

classes of activity. 

The “trained” machine learning models were validated, and their predictive 

performance was evaluated by using the test or validation dataset that was not 

part of the training dataset. The performances of all models were compared to 

determine the model with the highest accuracy. The models have prediction 

accuracy ranging from 0-1, where 1 indicates high biofilm inhibition activity. 

The performances of the classifier models were also evaluated by accuracy 

statistics and the receiver operating characteristic (ROC) curve after a 10-fold 

cross-validation of a training set and prediction of the bioactivity class of an 

independent test set. In the KNIME workflows (Fig.4.1), the scorer node and the 

ROC node were connected to the output from the predictor nodes. The area under 

the curve (AUC) value was also computed from the ROC curve. The results from 

the scorer node include the accuracy of the prediction and a confusion matrix. 

Accuracy shows the proximity of measurement results to the true value. The 

model with the best prediction accuracy was further used to evaluate the query 

compound database to predict their antibiofilm activity. 
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Figure 4.1(a) Screenshot of the KNIME workflow used to build the Random 

Forest classifier machine-learning model 
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Figure 4.1(b) Screenshot of the KNIME workflow used to build the MLP 

classifier. 
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Figure 4.1(c) Screenshot of the KNIME workflow used to build the XGBOOST 

classifier machine-learning model. 

Figure 4.1(d) Screenshot of the KNIME workflow used to build the SVM 

classifier machine-learning model. 

4.3 Results and Discussion 

A total of 122 molecular descriptors were generated using the RDKit descriptor 

calculation node for the antibiofilm dataset: active = 325 (75%), inactive = 106 

(25%). The resulting data was then passed on to the “Feature Elimination” 

metanode to remove redundant molecular descriptors combined with molecular 

fingerprints to train models. The class imbalance in bioactivity (75% active and 
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25% inactive) was identified as a limitation of these models because the active 

class is greater than the inactive class as represented in the dataset used. Hence, 

the “SMOTE” (Synthetic Minority Over-Sampling Techniques) node within the 

KNIME software was used to balance the bioactivity class. This node 

oversamples the input data by adding artificial rows to enrich the training data 

and adjust the class distribution. There could be different data division situations 

for training and test sets e.g., 70%–30%, 80%–20, and 90%–10%. “Training and 

testing data division influence on hybrid Machine Learning model process” 

conducted by Tao et al., (2020) revealed that 90%–10% data division attained 

better prediction capability. The dataset for this study was split into 90:10 to train 

and test the model. According to literatures, for a small dataset of less than 1000, 

90%–10% data division is the best and to further improve the accuracy, 10-fold 

cross validation was adopted. 

The values of the accuracy of the models is presented in Table 1 below. Accuracy 

is the proportion of compounds that were accurately classified as active and 

inactive after testing the trained model. The performances of the models were 

assessed by prediction accuracy statistics and the ROC (receivers operating 

characteristics) curve after cross-validation with an independent test set.  

Table 4 Value of the Accuracy and ROC curve of the models 
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From the results, the Random Forest 

https://docs.google.com/spreadsheets/d/17rcp47m-KJ4ZI-f85ZBAZt1-

w6zVtQaW/edit?usp=sharing&ouid=107704633229501699630&rtpof=true&sd 

=true) and XGBOOST model 

(https://docs.google.com/spreadsheets/d/1NTGa2zTwwJXmTrFlQT7yZXcN_I 

SZ9qgO/edit?usp=drive_link&ouid=107704633229501699630&rtpof=true&sd 

=true)  showed similar results. These two models were further used to predict the 

antibiofilm activity of compounds in the query databases. XGBOOST model 

result is more difficult to interpret, it predicted over 90 percent of the compounds 

in the query dataset as active with varying degrees of prediction confidence that 

is as low as 0.5. Random forest model result for activity prediction on the other 

hand was easy to interpret. The compounds predicted are ranked according to the 

prediction confidence of the models. A total of 30,097 compounds out of 411, 

180 query dataset have Random Forest activity prediction of greater than 0.85. 

The machine learning model generated in this study helps generate hypotheses 

and hastens laboratory experimental verification in a less expensive and time-

saving manner. 
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Figure 4.2 A and C represent ROC-AUC curve of Random forest and 

XGBOOST with B and D showing overfitting of the respective models with 

MACC+ FCFP6 fingerprint. Dark blue and red colour represents active and 

inactive compounds respectively. ROC-AUC plot evaluates model performance 

after training. 

4.4 Conclusion 

The machine learning approach was used to build antibiofilm predictive models 

that can predict the antibiofilm bioactivity of compounds. Important molecular 

descriptors and fingerprints of the active and inactive compounds combined were 

used for building predictive machine-learning models. Random Forest, 

XGBOOST, MLP, and SVM classifier models were built, but Random Forest 

and XGBOOST showed better predictive accuracy for the dataset. The Random 

Forest predictive model (accuracy 95.97%, ROC curve 0.977) was used to predict 

the antibiofilm bioactivity of natural compounds in the query database. Hit 

compounds with a prediction confidence of greater than 0.85 from the Random 
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Forest model were selected, which is a high threshold to avoid investing 

resources in compounds that are not promising for the drug development process. 

Overall, knowledge from this study could aid in the discovery of hit compounds 

that may be prioritised for the expensive processes of laboratory synthesis, in-

vitro, and in-vivo bioactivity studies. 
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Chapter five 

Consensus scoring for compounds from flexophore similarity 

search and Random Forest predicted model. 

5.1 Introduction 

The primary aim of this chapter is to use consensus scoring to rank the predictions 

of potential antibiofilm compounds from flexophore similarity studies and a 

Random Forest predictive model. This approach preferentially ranks the 

identified compounds to subject the highly ranked consensus-scored compound 

to further studies. A homologous set of initial scores is the prerequisite for this 

statistical consensus evaluation. In the early stages of drug discovery, scoring is 

often used to screen compound libraries for possible hits. The three commonly 

used statistical normalisation procedures are: (i) Ranking to represent docking 

scores for each target assigned against ascending ranks. This implies that ligands 

with more negative scores rank higher. (ii) Minimum–Maximum score scale 

(min–max scale) to rescale to a [0, 1] domain for each target and then deduct the 

score from the minimum score. The outcome is then divided by the difference 

between the maximum and minimum score.  (iii) Z-score in which the min–max 

docking scores are mean-averaged or zero-centred and rescaled (Nhat et al., 

2023).  

5.2 Methods and Materials 

Data for consensus scoring were the results generated from flexophore 

similarity search https://docs.google.com/spreadsheets/d/1H--
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9gd7Wr5VZoeQxAFTPvpC6Uz3g4eVa/edit?usp=drive_link&ouid=1166841

18916762575224&rtpof=true&sd=true), and Random Forest predictive model 

(https://docs.google.com/spreadsheets/d/17rcp47m-KJ4ZI-f85ZBAZt1-

w6zVtQaW/edit?usp=sharing&ouid=107704633229501699630&rtpof=true&

sd=true). Top compounds from flexophore similarity search and Random 

Forest predictive model were compared to identify if they both predict the same 

set of compounds and also to identify compounds that are equally predicted as 

top compounds by both approaches. 

The average mean score was employed as a measure of central tendency, i.e., a 

typical representative value of prediction. Min-max normalization technique 

subtracts the data values with the minimum and divides it by the range, i.e., the 

difference between maximum and minimum. 

X∗=[X−min(X)]/range(X) 

X∗=[X−min(X)]/[max(X)−min(X)] 

where min(X) is the minimum; max(X) is the maximum; and range(X) is the 

difference between maximum and minimum. The range is in the interval of [0, 

1], and the length of the interval is 1 (Sinsomboonthong, 2022)  

The z-score can be calculated by subtracting the population mean from the raw 

score, or data point in question and then dividing the difference by the standard 

deviation:  

z = (x - u) / σ 

where x is the score in question, u is the mean score, and σ is the standard 

deviation. (Id et al., 2018) 
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Histogram plots for the distribution of flexophore similarity score, random 

forest machine learning prediction confidence, Z-score normalized average, 

and the average mean score was done, where average score = (flexophore 

similarity score + random forest machine learning prediction confidence)/2.  

5.3 Results and Discussion 

Comparison of results of flexophore similarity search and Random forest 

predictive model shows that they both predicted two different sets as to 

compounds 

(https://docs.google.com/spreadsheets/d/1a7joGY7B2Hsc8zbN39xa2fEIfW_ae 

61t/edit?usp=drive_link&ouid=116684118916762575224&rtpof=true&sd=tru). 

Top 30,097 compounds (approximately 10% of 411,180 query compounds) have 

flexophore similarity score >0.85 

(https://docs.google.com/spreadsheets/d/1VQrJHuCvxepZAhJhPXSINwSeY2l5 

2OEp/edit?usp=drive_link&ouid=116684118916762575224&rtpof=true&sd=tr 

ue). A total of 45,576 compounds (approximately 7% out of 411,180 query 

compounds) have Random Forest activity prediction confidence of >0.85. To 

avoid taking false positive results or missing out important compounds that may 

show activity when subjected to further studies, the concept of consensus scoring 

of top compounds predicted by both approaches was adopted. 

The main benefit of consensus scoring over individual virtual screening is its 

ability to reduce false positives and negatives (Nhat et al., 2023). Figure 5.1(a), 

(b), (c), and (d) shows the histogram plot for the distribution of Random Forest 

Machine Learning predictive confidence (RF-ML), flexophore similarity score, 

average score, and Z-score normalized average score respectively. The peak bars 
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in the histogram represent the most common values. In statistics, a measurement 

that describes the relationship of a value to the mean of a group of values is 

referred to as the Z-score. The Z-score is a measure of the standard deviation 

from the mean. If a Z-score is 0, it implies that the data point score is identical to 

the mean score. If the data point is above average, a positive Z-score will be 

observed. A negative z-score indicates the data point is below average. A Z-score 

close to 0 means the data point is close to average. A data point can be considered 

unusual if its Z-score is above 3 or below −3. From the Z-score result 

(https://docs.google.com/spreadsheets/d/1-

rkUw_9b4819Dj4c6EYpMxOFvu3SPc2i/edit?usp=sharing&ouid=1077046332 

29501699630&rtpof=true&sd=true) and average mean score 

(https://docs.google.com/spreadsheets/d/1xYqMppaDW1CWflF6c-

5jb5GKnMpatvLs/edit?usp=drive_link&ouid=116684118916762575224&rtpof 

=true&sd=true, 99.9% of the z-scores are close to the average mean prediction 

score. For this study, a high threshold of 0.85 average mean prediction score was 

employed so that resources will not be invested in compounds that may later fail 

in the process of drug development. 
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Figure 5.1(a) Showing the Distribution of RF-ML prediction confidence. The 

prediction scaled from ‘0’ to ‘1’, the higher the prediction confidence value, the 

better the chance antibiofilm property. 

Figure 5.1(b) Histogram showing the distribution of flexophore similarity score. 

The score ranges from ‘0.85’ to ‘1’, the higher the score the greater the similarity 

between the natural compound flexophore and the known active antibiofilm 

compound flexophore 
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Figure 5.1(c) Histogram showing the distribution of average score = (flexophore 

similarity score + RF ML prediction confidence)/2 

Figure 5.1(d) Histogram showing the distribution of Z-score normalized average 

score. 

5.4 Conclusion 

Consensus scoring techniques can be more robust and effective than using the 

broader set of available scores for the antibiofilm compounds from the ligand 

similarity searches and Random Forest machine learning approaches. Consensus 
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scoring combines different scores to compensate for errors from individual 

scoring functions, therefore improving the probability of finding the antibiofilm 

hit compounds. 
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Chapter Six 

Reverse molecular docking of top ranking consensus-scored 

compounds with antibiofilm activity 

6.1 Introduction 

In the early stages of drug discovery, docking and scoring are often used to screen 

compound libraries for the identification of possible hits against a given protein 

target. A powerful computational tool for the identification of potential 

interactions between ligands and biological targets is molecular docking. The 

ability of one or more compounds to bind to a target protein can be evaluated in 

silico using reverse docking (RD). This strategy is useful for the identification of 

molecular targets of bioactive compounds, finding alternative uses for drugs, 

proposing new molecular mechanisms, or predicting drug toxicity (Chang et al., 

2021). The aim of this chapter is to utilize reverse docking (RD) to understand 

the protein-ligand interaction and predict the possible mechanism of action for 

the antibiofilm activities of the top 142 identified compounds from mean and Z-

score consensus scoring against multidrug-resistant Staphylococcus 

(https://docs.google.com/spreadsheets/d/14YWvXRp-

2bFSfLtsHqQL9sXQ0MdDm0VD/edit?usp=sharing&ouid=116684118916762

575224&rtpof=true&sd=true). 

6.2 Methods and Materials 

Glide docking was performed using Schrodinger Maestro Release 2021-2. The 

Staphylococcus aureus biofilm-associated proteins for this docking study were 
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retrieved from the BioSIM database 

(https://drive.google.com/file/d/1CCAXfEbJgOYp0y8slGiQO7FvYTZ0aw1N/v

iew?usp=drive_link).  

6.2.1 Ligand preparation 

Different tautomeric and protonation states are generated for the 142 ligands. A 

total of 225 ligand states were generated as Maestro output. In addition to 

generating states, Epik also assigns an energetic penalty for each ligand state. 

6.2.2 Protein selection 

A total of 39 S. aureus biofilm-associated proteins were compiled from the 

Biosim database 

(https://drive.google.com/drive/folders/1qyDMZC3giLuoVLuyFR9R7QgKQEF

TdOUw?usp=drive_link). A significant database of protein sequences and their 

related in-depth annotation is the UniProt (https://www.uniprot.org/). 

Information about protein name, category, function, and subcellular location 

were retrieved from UniProt. 3TIQ, 5DBL, 4WVE, and 3TIP are SasG (S.  aureus 

surface protein G) proteins that are involved in the adhesion stage of biofilm 

formation. Adhesion is a process in which planktonically growing 

microorganisms of identical species aggregate and develop on solid substrates 

while moving through a liquid and produce extracellular polymers that make 

attachment and matrix formation easier, which alters the organism’s growth rate 

and gene transcription. SasG’s fibrillary structure explains its ability to mask the 

binding of S. aureus microbial surface components by recognising adhesive 

matrix molecules (MSCRAMMs) to their ligands and promoting the formation 

of biofilm. These proteins are located sub-cellularly in the cell wall. 
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4AE5 trap protein, a transcriptional regulator located in the cell membrane is 

involved in signal transduction. The activation of the aggregation system and 

subsequent RNAIII synthesis phosphorylated TRAP results in the production of 

several virulence factors. It regulates the expression of the majority of toxins and 

genes known to be essential for the formation of biofilm. 3GEU (IcaR protein) is 

also a transcriptional regulator that represses transcription of the IcaADBC 

operon necessary for biofilm production. 7DM0, 7C7R, and 7C7U are matrix 

proteins involved in cell-abiotic substrate adhesion, cell-cell adhesion, and 

single-species submerged biofilm formation, i.e., the adhesion of a cell to an 

underlying abiotic substrate and the attachment of one cell to another cell via 

adhesion molecules. The subcellular location of these proteins is in the cell wall. 

4B60, 4B5Z, 2RL0, 2RKZ, 3CAL, and 2RKY are fibronectin-binding proteins 

located in the cell wall. They have several interchangeable fibronectin (Fn) 

binding sites, each capable of promoting adhesion to both soluble and 

immobilised forms of Fn. This confers on S. aureus the ability to penetrate 

endothelial cells both in-vivo and in-vitro without the need for extra factors, 

although in a slow and inefficient way through rearrangements in host cells. This 

invasion process is facilitated by integrin alpha-5 and beta-1 promotes bacterial 

attachment to both soluble and immobilised forms of fibrinogen using a unique 

binding site located within the 17C-terminal residues of the gamma-chain of 

human fibrinogen. Both plasma proteins function as a bridge between the 

bacterium and host cell, promote attachment to immobilised elastin peptides in a 

dose-dependent and saturable manner, promote attachment to both full-length 
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and segments of immobilised human tropoelastin at multiple sites in a dose-

dependent and pH-dependent manner, and promote adherence to and aggregation 

of activated platelets independently of other S. aureus surface molecules. 

3AU0, 3ASW, 3AT0, 4F24, 4F20, 4F1Z, 4F27, 5JQ6 and 2VR3 are ClfB 

(clumping factor B, fibrinogen-binding protein B) located in the cell wall. They 

are cell surface-associated proteins that are linked to virulence because they 

promote bacterial adhesion to both alpha- and beta-chains of human fibrinogen, 

inducing the formation of bacterial clumps. 3BS1, 4XYQ, 4XXE, 4XQQ, 4XQN, 

4XQJ, 4XY0, 4G4K, and 4BX1 are transcriptional regulators that are necessary 

for high-level post-exponential phase expression of a few secreted proteins. 3BS1 

and 4XYQ are found in the cytoplasm. 7VF0, 7VFK, 7VFL, 7VFN, 7VFM, and 

7EC1 are transferases. They belong to glycosyltransferase, a group 1 family 

protein. They are involved in the catalysis of the transfer of a glycosyl group from 

one compound to another. 

6.2.3 Identifying binding sites in protein targets 

The site map program on Schrodinger Maestro software (version 2021_2) was 

used to identify druggable binding pockets and rank the potential binding sites of 

the biofilm-associated proteins. Top-ranked sites were generated with their 

corresponding x, y, and z coordinates. The first-ranked site was selected for use 

in protein grid generation for docking. A druggable binding pocket is 

characterised by a favourable hydrophobic and hydrophilic balance. According 

to Michel et al., (2019), a druggability score (D-Score) of 0.80 is identified as a 

difficult target. D-scores higher than 1.1 are considered excellent drug targets. D-
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score values smaller than 0.8 are undruggable.  Undruggable targets are strongly 

hydrophilic, have no hydrophobic character, are relatively small in size, are very 

shallow, and require covalent bonding. Difficult targets are sufficiently 

hydrophilic and less hydrophobic, and they require administration as a prodrug 

that is cleaved in-vivo to produce ionic functionality that may be essential for 

ligand binding. They are classified as difficult targets because their design as 

prodrugs complicates the developmental process of drug design. Druggable 

targets are of reasonable size, and hydrophobicity with unexceptional 

hydrophilicity (Halgren, 2009). Druggability prediction is very significant 

because it allows focusing mainly on promising targets with good prospects for 

drug development. 17 proteins out of the 39 biofilm-associated proteins have a 

good druggability score of greater than 0.8 from the site-map  

(https://docs.google.com/spreadsheets/d/10ShssbijX7kq-

xK2QnwVMNQSSZMwBAip/edit?usp=drive_link&ouid=1166841189167625

75224&rtpof=true&sd=true). 

6.2.4 Grid generation and Docking 

Grid generation of the protein receptors is used to define the binding pockets. 

The binding sites of the proteins are buried at the centre of the grid box because 

glide docking does not deal with the entire protein structure but the grid. An inner 

box is set up at the centroid of the predicted binding site on the protein (Ban et 

al., 2018). GLIDE docking was used because it searches for favourable 

interactions between ligand molecules and the receptor molecule (Friesner et al., 

2006). The XP (extra-precision) GlideScore algorithm was implemented to 
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achieve a much better prediction and ranking of compounds. Poses were 

generated as a zip file and are the combination of the position and orientation of 

a ligand relative to a receptor, alongside its conformation in flexible docking 

(https://drive.google.com/drive/folders/1q0j0zzz52mHphTI8L4OEfLMWSCbU

wQZC?usp=drive_link). 

6.3 Results and Discussion 

The docking results are sorted based on the best scoring pose for each 

compound(https://docs.google.com/spreadsheets/d/1xHrNoG6kJYowKf0Pexv

MuWEcq0gfr-

Ny/edit?usp=drive_link&ouid=116684118916762575224&rtpof=true&sd=true)

. The docking score represents the potential energy change that occurs when the 

protein and ligand interact (Li et al., 2019). A negative score indicates a strong 

binding, and a less negative or even positive score indicates a weak or non-

existing binding (Narges et al., 2021). The higher the negative docking score 

values, the greater the ligand-protein interaction, i.e., it suggests that ligands with 

more negative scores rank higher. The summary result consists of the best 

docking scores of ligands for the 17 S.  aureus biofilm-associated proteins. Table 

2 revealed the protein-ligand interaction analysis, which is crucial for 

comprehending the mechanisms of the biological inhibition of biofilm formation 

in MDRSA. Also, they reveal a theoretical framework for the identification of 

novel antibiofilm agent and hastens the selection of drug hits and their subsequent 

developments. Figure 6.1 below represents the glide D-score distribution of the 

docked ligands with each of the 17 S. aureus biofilm-associated proteins that are 

important in the formation of biofilm in S.  aureus. CNP0160461 and 
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CNP0037371 showed the strongest binding with all the docked biofilm-

associated proteins. 

Figure 6 Showing the glide docking scores of the S.  aureus biofilm-associated 

protein with identified natural compounds from the consensus scoring of results 

from flexophore similarity chart and random forest predictive model.  The 

coloured bars show how a score compares to others. Longer bars represent higher 

docking scores, shorter bars represent smaller docking scores, and missing values 

represent no existing docking interaction. 
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LIGAND PROTEIN INTERACTION(No of H-bond (residues) 
CNP0037371 3GEU 5(TYR 96, SER 100, GLU 150) 

CNP0037371 7C7R 8(LEU 720, TYR 526, GLY 380, PRO 379, ASP 378, GLU 539) 

CNP0037371 7EC1 7(GLU 184, PRO 183, THR 203, ASN 7, VAL 226) 

CNP0037371 7VF0 6(ASN 25, ASN 22, LYS 18, GLU 414, GLU 308, TYR 306) 

CNP0037371 7VFK 8(ARG 150, GLU 161, LYS 174, GLU 202, VAL 185, PRO 183,TRP 41) 

CNP0037371 7VFM 7(LEU 410, SER 409,TYR 393, SER 387, LEU 386, TYR 52) 

CNP0160461 2VR3 8(LYS 389, THR 289, LYS 293, LEU 285, TYR 338, ASN 530) 

CNP0160461 3ASW 7(LYS 333, LEU 301, ILE 300, ASN 268, ASP 330, GLY 269,ASP 272) 

CNP0160461 3AT0 6(ASP 330, LYS 333, ILE 379, GLY 269) 

CNP0160461 3AU0 7(ALA 448, THR 393, LYS 391, ARG 432, GLU 490) 

CNP0160461 4F1Z 8(ASP 330, ASN 268, TYR 273, ASN 278, ILE 379) 

CNP0160461 4F20 5(ALA 448, ILE 379, ARG 331) 

CNP0160461 4F24 7( ASP 272, LYS 391, GLY 269, ASN 268, ILE 379, ASP 330) 

CNP0160461 4F27 6(ASP 272, ARG 331, ASP 270, GLY 269, ILE 379) 

CNP0160461 5JQ6 8(TYR 448, LEU 444, ALA 441, PRO 402, GLU 370, LYS 381) 

CNP0160461 7VFL 
10(GLH 406, LYS 334, HIE 246, SER 409, LEU410, ARG 329, LEU 13, 
LYS 18) 

CNP0160461 7VFN 3(SER 394, ALA 396, GLN 466) 

Table 2 Summary of interaction analysis for S. aureus biofilm-associated 
proteins and identified hits from consensus scoring 

6.4 Conclusion 

The docking study provided an opportunity to compare the top-ranked poses of 

the identified natural compounds based on consensus scoring. The ranking is a 

measure of the protein-ligand interactions of the natural compounds to identify 

potential antibiofilm compounds against multidrug-resistant S. aureus. The 

analysis of docking scores showed that the CNP0160461 and CNP0037371 have 

the strongest binding with identified S. aureus biofilm-associated proteins. Also, 

the result shows that the antibiofilm activity of the identified compounds against 

MDRSA is mediated by multiple targets i.e., the identified compounds are acting 

on multiple S aureus biofilm-associated proteins. 
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Chapter Seven 

Conclusion, limitations, and recommendations 

Multidrug-resistant Staphylococcus aureus poses threats to public health. 

Biofilm formation is the key virulence factor and a key survival strategy for 

Staphylococcus aureus and currently no approved drugs specifically targeting 

bacterial biofilms exist. Engineering next generation versions of current 

antibiotics results in substantially more failures than leads because it frequently 

involves screening large libraries, which are challenging to curate and fail to 

reflect the chemistry that is inherent to antibiotic molecules (Brown et al., 2014). 

Hence, this study was targeted at discovering natural compounds with antibiofilm 

activity against multidrug-resistant S. aureus using computational tools.  

7.1 Summary of findings 

The following is a succinct summary of the results for this study’s objectives: 

1. To collate and build a database of active and inactive antibiofilm compounds

from bioassays in a literature search, collate the biofilm-associated proteins of 

S. aureus involved in cellular aggregation within the biofilm and retrieve 

compounds from natural compound databases. 

Based on the search, a total of 323 active compounds and 105 inactive 

compounds were retrieved. A Biofilm structural database (BioSIM) was used to 

compile 39 S. aureus target proteins involved in biofilm formation. A query 

database of 411,180 natural compounds was collated from SANCDb and 

AfroDB.  
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2. To study the properties of compounds with reported antibiofilm properties e.g., 

compound flexophore and use them to query the natural compound database for 

active and inactive antibiofilm properties. 

Flexophore similarity search approach detected compounds that could not be 

detected by simple ligand similarity search. From 411,180 natural compounds 

query dataset 43,596 compound pairs of compounds with flexophore similarity 

greater than 85%. 

3. To build an antibiofilm predictive model for multidrug-resistant 

Staphylococcus aureus using a machine learning approach. 

Machine learning approach utilised important molecular descriptors and features 

to build predictive models. The Random Forest and XGBOOST models were 

further used to predict the antibiofilm activity of compounds in the query 

databases. XGBOOST model result was more difficult to interpret, it predicted 

over 90 percent of the compounds in the query dataset as active with varying 

degrees of prediction confidence that is as low as 0.5. Random forest model result 

for activity prediction on the other hand was easy to interpret. A total of 30,097 

compounds from 411,180 query dataset have Random Forest activity prediction 

confidence of greater than 0.85. 

4. To perform consensus of potential antibiofilm compounds generated from 

ligand similarity searches and Machine Learning predictive model 

Consensus scoring increases the likelihood of discovering the antibiofilm hit 

compounds by combining various scores to make up for flaws from individual 
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scoring functions. Consensus scoring identified 142 potential antibiofilm 

compounds. 

5. To perform molecular docking studies on consensus scoring predictions of 

antibiofilm compounds with Staphylococcus aureus biofilm-associated proteins 

 Glide docking studies on the 142 selected compounds revealed possible 

mechanisms of action by analysing their interactions with S. aureus biofilm-

associated proteins. CNP0160461 and CNP0037371 show the strongest binding 

among all the docked biofilm-associated proteins. This docking study shows that 

the antibiofilm activity of the identified compounds against MDRSA is by acting 

on multiple targets.   

7.2 Limitations 

The results of ligand similarity searches were unable to unequivocally identify 

distinct differences in molecular structures of active and inactive compounds. 

Compounds that are structurally unrelated to known compounds with activity 

may nonetheless exhibit activity. In a recent study on a deep learning approach 

to finding new antibiotics, the model found antibacterial compounds that are 

structurally very different from known antibiotics (Stokes et al., 2020). Because 

algorithms can only learn from the data provided, the quality of the data used to 

train machine learning models has a significant impact on the accuracy of their 

predictions. The predictions made by machine learning models could be impacted 

if they learn unimportant features (noise) from the data provided. An interesting 

future work will be to discover how combining different classifiers in one model 

will result in prediction performance improvement. 
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7.3 Recommendations and Conclusion 

The compounds that were found to be active in this study have never been known 

to have antibiofilm activity against multidrug-resistant S. aureus. Hence, 

compounds with good binding affinity for biofilm-associated proteins of 

Staphylococcus aureus identified in this study could be researched further for the 

generation of potent antibiofilm agents for multidrug-resistant Staphylococcus 

aureus. Finally, to further support the in-silico predictions drawn from this study, 

extensive in-vitro and in-vivo studies are needed.  
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Appendices 

Appendix (a) protein-ligand interaction for 2VR3 and 3ASW Staphylococcus 

aureus biofilm associated proteins (BaPs)  

Appendix (b) protein-ligand interaction for 3AT0 and 3AU0 Staphylococcus 

aureus biofilm associated proteins (BAPs)  
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Appendix (c) protein-ligand interaction for 3GEU and 4F1Z Staphylococcus 

aureus biofilm associated proteins (BaPs)  
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Appendix (d) protein-ligand interaction for 4F20 and 4F24 Staphylococcus 

aureus biofilm associated proteins (BaPs)  

Appendix (e) protein-ligand interaction for 4F27 and 5JQ6 Staphylococcus 

aureus biofilm associated proteins (BaPs)  
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Appendix (f) protein-ligand interaction for 7C7R and 7EC1 Staphylococcus 

aureus biofilm associated proteins (BaPs)  
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Appendix (g) protein-ligand interaction for 7VF0 and 7VFK Staphylococcus 

aureus biofilm associated proteins (BaPs)  

Appendix (h) protein-ligand interaction for 7VFL and 7VFM Staphylococcus 

aureus biofilm associated proteins (BaPs)  
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Appendix (i) protein-ligand interaction for 7VFN Staphylococcus aureus biofilm 

associated proteins (BaPs)  
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