
UNIVERSITY of the 

WESTERN CAPE 

POWER STUDIES OF MULTIVARIATE 

TWO-SAMPLE TESTS OF COMPARISON 

IAN JOHN SILUYELE 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Magister Scientiae in Statistics in the Faculty of Natural Sciences at the University 

of the Western Cape. 

SUPERVISOR : PROFESSOR CHRIS KOEN 

July 6, 2007 

UN IVERS I TY ofthf! 

\\lESTERN C.APE 

http://etd.uwc.ac.za/



Multivariate two-sample problem 

Non-parametric tests 

Multivariate two-sample test 

Permutation method 

Data depth 

Multivariate empirical dis 

Euclidean distance 

Interpoint distance distri 

Nearest neighbour tests 

Power 

KEYWORDS 

UN IVERS I TY o/ tht!' 

\VESTERN C1\P£ 

http://etd.uwc.ac.za/



ABSTRACT 

POWER STUDIES OF MULTIVARIATE TWO-SAMPLE TESTS OF 

COMPARISON 

IAN JOHN SILUYELE 

MSc Statistics Thesis, Department of Statistics, University of the Western Cape. 

The multivariate two-sample tests provide a means to test the match between 

two multivariate distributions. Although many tests exist in the literature, 

er of these procedures. The 

studies reported in the ness, in terms of power, of 

seven such tests with a 1~1:m1nme11!fl~milltl:V-7i~:e7J~ative power of the tests was 

investigated against loc alternatives. Samples were 

drawn from bivariate e iform populations. Results 

from the power studi ·g e test which is the most 

powerful in all situati . 7- . R ~r 1c i1 ~statistics is recommended 

for specific alternativ1 rEs TE RN C.AP E 

A possible supplementary non-parametric graphical procedure, such as the 

Depth-Depth plot , can be recommended for diagnosing possible differences 

between the multivariate samples, if the null hypothesis is rejected. 

As an example of the utility of the procedures for real data, the multivariate 

two-sample tests were applied to photometric data of twenty galactic globular 

clusters. The results from the analyses support the recommendations associ­

ated with specific test statistics. 
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Chapter 1 

General Introduction and 

Objectives 

1.1 Introduction 

whether two samples draw 

Such statistical problems a 

research, is the need to test 

underlying distribution. 

Eru:ntwo.,-s. le wblems. Often, researchers 
l ~K~ o 01~ 

are interested in determining whether the two samp es observed from some specific 

studies or phenomena are s~Xifti~lfy lhir~ t & {}or. '-' et ailed explanation of the 

two-sample problem is given in Chapter 2. In particular, this thesis focuses on the 

multivariate two-sample problem. A statistical measure of the degree of compati­

bility of the two samples is the basis of the two-sample statistics (see Friedman and 

Rafsky, 1979; Baringhaus and Franz, 2001; Hall and Tajvidi, 2002; Maa, Pearl and 

Bartoszynski, 1996; Henze, 1988; Greenberg, 2006; Rosenbaum, 2005; Weiss, 1960). 

Primarily, the objective of two-sample tests of comparison treated here is to test the 

validity of the hypothesis that: 

The two observed samples come from populations with identical 

distributions. 

Generally, the form of the common distribution assumed under the null hypothesis is 

not known. For this reason, a parametric approach is ruled out, and non-parametric 

methods indicated. 

1 
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Chapter 1: General Introduction and Objectives 2 

Ideally, any statistical test for assessing the hypothesis above should satisfy the 

following properties: 

1. it should be consistent and have good power against all alternatives; 

2. the test statistic should be distribution-free and have a known null distribution. 

The implication of property (1) is that as the number of observations in the samples 

increase, the test should be able to reject the hypothesis if the distributions of the 

parent populations of the two samples are different . As far as property (2) is con­

cerned, it has been difficult to determine the exact null distributions of two-sample 

test statistics and, therefore, asymptotic approximations have been used instead. 

Asymptotic approximations depend on assumptions which may not always be met 

and, furthermore, asymptotic t available for all multivariate two-

sample test statistics (fo -- nz statistic (Baringhaus and 

Franz, 2001)) . Therefore, ~~au~ -, r-1-1- ... a, lsi;R;HH'tihculties of satisfying property 

(2) stated above, the distr· 

be approximated very ace 

2A.1 of Chapter 2. The 

possible even if the assum • 

under the null hypothesis can 

method described in Section 

the null distribution is also 

l".P U:rl'l>L''1',"'.,'r;l.'t'f;, u.,,,,r,u11,1ctt9t ic distribution are satisfied. 

,\lESTERN C.APE 
1.2 The Research Problem 

The validity of the null hypothesis is not difficult to assess when the two independent 

samples being investigated are univariate. In this case, there are several well-known 

two-sample tests which genuinely satisfy the aforementioned properties. Some of the 

most commonly used include the Mann-Whitney, two-sample Kolmogorov-Smirnov, 

Smirnov deviation, Wald-Wolfowitz runs, Cramer-von Mises, Anderson-Darling, and 

x2 tests. Descriptions of these tests can be found in, for example, (Fisz, 1963; Fried­

man and Rafsky, 1979; Gibbons, 1985; Rohatgi, 1984; Thas, 2001). 

Conceptually, some of the univariate tests can be extended to multivariate set­

tings albeit for large sample sizes. One such example is the x2 test. Although it 

can be applied to multidimensional cells, it requires binning and the choice of bin 

sizes is arbitrary. Many suggestions on binning procedures exist in literature (see 

Steele (2002) for references). However, in high dimensional space finite, samples are 

http://etd.uwc.ac.za/



3 1.2 The Research Problem 

sparse, a phenomenon referred to in the literature by the term curse of dimension­

ality (Annis, 2006). Therefore, tests based on binning are inefficient (have lower 

power) , unless the sample sizes are very large. On the other hand, tests which 

are based on the ranks have no obvious nor unique extension to multivariate set­

tings because there is essentially more than one way of ranking higher dimensional 

observations (Friedman and Rafsky, 1979; Liu, Parelius and Singh, 1999). When 

applied to marginal distributions, as some researchers have suggested, they neglect 

information embedded in the dependence structures of the data sets that may be 

essential in accounting for the degree of similarity between them. Consequently, re­

search has been prompted in the area of new non-parametric two-sample procedures. 

Various multivariate two-sample tests satisfying the two aforementioned require-

because of recent theoretica __________ e, Morgenstern's proof of 

Deuber's theory (Morgenster '"""".r-.;:-1,~~.J.,,,,..,""J"'-'(. .. r....... anz, 2001); the theoretical 

framework for dimension red ' artoszyriski (1996) ; and the 

expanding capabilities of mo s which can cope with the 

heavy computational dema s date at least as far back 

as 1960 (Weiss, 1960). In et Tit~/ P.i perties of practical impor-

tance such as distribution-£ ,~ e~,1° Sf< cy c~ i tE ll alternative hypotheses, 

and relative power performance of the proposed tests have been studied and illus­

trated via Monte Carlo experiments (Friedman and Rafsky, 1979; Baringhaus and 

Franz, 2001; Hall and Tajvidi, 2002) , while in others these properties have not been 

investigated (for example Maa, Pearl and Bartoszyriski, 1996). 

The lack of information about the comparative power properties of the available 

tests motivated this study. The power of a selection of multivariate two-sample 

statistics is investigated in the thesis for a variety of distributions. Bivariate normal 

(symmetric, mesokurtic and infinite support), bivariate exponential (highly skewed 

and infinite support) and bivariate uniform (symmetric, highly platykurtic and finite 

support) are used in the studies. The variety of distributions considered will enable 

users to make informed decisions concerning the test to use. 

Power against differences in location (shift) , scale (dispersion) , and correlation are 

studied. Fixed sample sizes are used. The significance levels in the power studies 

http://etd.uwc.ac.za/



Chapter 1: General Introduction and Objectives 4 

are fixed at a nominal standard value of 5%. 

1.3 Objectives 

In summary, the work presented in the thesis aims to: 

1. provide a review of the literature on multivariate two-sample test statistics for 

continuous data; 

2. conduct power studies of the multivariate two-sample test statistics for selected 

bivariate distributions; 

3. compare the relative power o 

1.4 

Chapter 2 states the two­

tation and concepts whi 

ted test statistics. 

uces various terminology, no­

esis. 

UN IVERS I TY n/ tht..a 
Chapter 3 reviews the te ~-iS a~ • €~ 1 , ¼~5~ • g a few not used in the power 

study. The selection of the tests is primarily based on three criteria including ap­

plicability in arbitrary dimensional settings (although only bivariate examples are 

studied), appealing logic, and, most importantly, simplicity. The study of the liter­

ature is mainly limited to statistical tests but also includes an informal exploratory 

tool for assessing the equality of two multivariate distributions by graphical means. 

Although there are multivariate two-sample tests for both continuous and discrete 

data, this thesis concentrates on tests developed for continuous data. 

A distinction is made between three broad classes of multivariate two-sample tests 

investigated in the thesis, namely: 

1. graphical exploratory techniques; 

2. empirical distribution function type; 

3. interpoint distance type. 

http://etd.uwc.ac.za/



5 1.4 The Thesis Structure 

The general methodology for computing the power of multivariate two-sample statis­

tics, described in Chapter ~{, is outlined in Chapter 4. The results from power studies 

performed through Monte Carlo simulations for a variety of distributions and pa­

rameter values , are presented and discussed. 

Applications of the studied multivariate two-sample statistics to real data are re­

ported in Chapter 5. More applications of the statistics are given by Koen and 

Siluyele (2007) (see the article in the directory Accepted Paper, on the accompany­

ing CD). 

The thesis concludes in Chapter 6 with recommendations and an outlook for possi­

ble extensions. 

Computer programs, which 

on the accompanying compa 

The CD also includes auxilli 

----------- ults reported, are included 

in g was done in MATLAB. 

UN IVERS I TY nftht! 

.\\fESTERN CAPE 
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Chapter 2 

An Introduction to Two-Sample 

Testing 

This chapter gives a formj~~~~~~:~~~l~['.t:~~g!tple problem. Some basic ter-
minology and notation thl are also presented. Some of 

the terminology given her theory, hence, for a detailed 

exposition see the proba • auer, 1972). 

UN IVERS I TY of tht! 

2.1 Basic D efl Tit:r -~ RN Cat\P E 

The notation X={X1, .. . } and Y={Y1, . . . } will be used to represent collections 

of d-dimensional random vectors ( d > l), defined on sample spaces Sx and Sy, 

respectively. Realizations of X and Y will be denoted by respectively x and y . The 

sets X and Y will be called continuous if all their elements Xi, for all i , and Yj, for 

all j , are continuous random vectors . Throughout this thesis, X and Y are assumed 

to be continuous random vectors drawn from continuous multivariate distributions. 

For continuous X and Y , we assume that the cumulative distribution functions 

denoted respectively by F(x) and G(y) are differentiable. Hence, the multivariate 

probability density functions of both x and y exist and will be denoted by f(X) and 

g(Y). Finite sample sizes of X and Y will be represented by m and n respectively. 

The combined sample shall be denoted by 

1 ~ i ~ m , 

m+ 1 ~ i ~ N, 

6 
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7 2.2 The Two-Sample Problem 

where N = m + n. This notation is used for both random vectors Xi and Yj , and 

their realizations xi and y j. 

We digress slightly in order to clarify the meaning of the underlying distribution 

function of the observed sample. The cumulative distribution function is uniquely 

related to a specifically constructed probability law PF and choice of an appropriate 

a--algebra Bon the sample space S. The three mathematical objects together form 

a probability space (S, B , PF) (Bauer, 1972). When an experiment is conducted, a 

point x in the sample space S is randomly sampled according to the probability 

law PF. The process PF is called the underlying data generating mechanism. Ad­

ditionally, PF is regarded as an abstract formulation of a statistical or probabilistic 

model of the mechanism that generates the sample points. The point x which is 

chosen determines the outco :Ii ccording to the definition of 

a probability space, the even.;.-_-"":;=-=-----=---_-"'"'_c-,_=_-=-__ =- ,...----- nd the measure PF(x) de­
notes the probability of obs come x (Bauer, 1972). In 

this thesis, we will not make 

assumptions about the uniqu 

where necessary, the proba: 

made. The cumulative dist ib 

statistical or probabilistic m ~fts ~ 

experiment. 

2.2 The Two-Sample Problem 

bability space but , instead, 

distribution function and, 

probability space will be 

~ F (x) , is regarded as the 

le which is observed in the 

A classical problem in statistical analysis is testing the equality of two distributions 

based on independent multivariate samples. Several proposals have been made in 

the literature (Baringhaus and Franz, 2001; Hall and Tajvidi, 2002; Friedman and 

Rafsky, 1979; Henze, 1988; Greenberg, 2006; Maa, Pearl and Bartoszynski, 1996). 

The question can be addressed by the application of one of the multivariate two­

sample testing procedures outlined in Chapter :J. This kind of problem is generally 

referred to as the two-sample problem. 

As in classical hypothesis testing, two hypotheses are constructed in the context 

of the two-sample problem: the general null hypothesis, the assertion of equality 

http://etd.uwc.ac.za/



Chapter 2: An Introduction to Two-SBJnple Testing 8 

of distributions; and the general alternative hypothesis, the negation of the null 

hypothesis. 

2.2.1 The General Null Hypothesis 

Generally, the hypothesis given on page 1 is symbolically stated as: 

(2.1) 

where F and G are the true but unknown cumulative distribution functions of the 

random variables Xi and Yi, respectively. 

In practice, the assumptions, as a • are that the cumulative distri-

bution functions, F(x) ix; and g(y) are assumed to be 

continuous on their suppo en the null hypothesis is true, 
,,__r.,--i,....,,,......,.....,._.....,....,.......,.. ........ 

the cumulative distributio sample spaces. If the sample 

spaces were not identical, sample space might be used 

to test for differences bet functions (Hall and Tajvidi, 

2002). No knowledge of an 1s proc a1me y t e researcher under the hypoth-

esis (2. 1) , only their equi"' 1 JeVERS I TY o/ thr! 

,\1ESTERN CAPE 
2.2.2 The Alternative Hypothesis 

In the general setting, when the null hypothesis is not true, we do not know in 

what sense the true distributions F(x) and G(y) of the two populations differ from 

each other. Therefore, the alternative hypothesis is taken to be the negation of the 

hypothesis at (2.1) represented symbolically by 

H1 : F(x)=/=G(x) for at least one x. (2.2) 

Two-sample tests constructed for this purpose, and which are sensitive to all types of 

deviations from the null hypothesis, are called omnibus tests. Unfortunately, tests of 

this nature possess very low power for some specific alternatives compared to those 

two-sample tests which are designed to detect very specific deviations from the null 

hypothesis in the direction of the alternatives. 

http://etd.uwc.ac.za/



9 2.3 Sigr1ificance Testing 

2.3 Significance Testing 

In the present context, significance tests indicate whether an observed measure of 

discrepancy between the distributions of two samples could reasonably occur just 

by chance in the selection processes of the random samples. Highly significant 

discrepancies imply that there are differences between the respective populations 

from which the samples were drawn. Generally, testing for significance involves the 

following procedures: 

a. choose the test statistic which measures possible differences; 

b. determine the sampling distribution which the statistic would have if the pop­

ulations were the same, that is when the null hypothesis is true; 

The statement that the diso 

implies the null hypothesis 

extreme or more extreme th 

~..,.,..,- •• ~.+. ,.,,.....,~,n_-,,,n present in the population 

the value of a statistic as 

taking the null hypothesis 

to be true, is the p-value. P significance are evidence 

against the null hypothesis atg .§f]a']_t e, ~pancy in the populations 

from which the samples wer1\~ ~"°T ER N CA p E 

2.4 Estimation of Sampling Distribution 

The sampling distribution is the distribution of a statistic based on a random sample 

from the population. Statistical inference relies on the sampling distribution of the 

statistics. However, if the exact or asymptotic null distribution of the statistic is 

unknown, then it may still be possible to estimate the null distribution and the p­

value of the statistic by either bootstrapping or permutation methods (Baringhaus 

and Franz, 2001). The latter method is used for two-sample problems considered 

in the thesis. Bootstrapping can also be applied (for details regarding this method 

see Baringhaus and Franz (2001)). In implementing the permutation method to 

estimate the sampling distribution of the statistic, the observed random sample is 

taken to be the "population". Then, in the place of many random samples from the 

population, many resamples are created by repeatedly sampling without replacement 

from the original samples as is explained below. 

http://etd.uwc.ac.za/



Chapter 2: An Introduction to Two-Sample Testing 10 

2.4.1 The Permutation Method 

Permutation distributions provide reliable substitutes for formula-based asymptotic 

distributions of statistics. The main step in the general procedure of permutation 

tests is to form permutation samples in a way that is consistent with the null hypoth­

esis. Below is an outline of the permutation procedure for testing the compatibility 

between distributions of two multivariate samples. 

Consider two multivariate samples X and Y of sizes m and n drawn independently. 

We merge the samples, since under the null hypothesis the underlying multivariate 

distributions of the parent populations are presumed to be the same. Thus the 

population under the null hypothesis is represented by the original pooled sample 

Z. From this sample, we le of size m and assign it -to 

sample x(l). The remain1~~ u:s.~~:.W!~W.l..l.!:..!al.lJ'omes sample y(l). The sam-

ple x(l) is an ordinary s ) drawn without replacement 

(sampling without replac e randomly draw an observa­

is computed - in the co 

the two observed multiv 

ain) . The statistic of interest 

. • ld.ng process and computation 

of the statistic are repea """~ .. a.,lil em ermutations of the two sam­

ple combinations from the pooled sample Z, where N = m + n. The distribution 

formed by the statistics from the resamples estimates the sampling distribution of 

the statistic when the null hypothesis is true, and is called a "permutation distri­

bution conditioned on the pooled samples" (Hall and Tajvidi, 2002). Obtain order 

statistics and then choose an integer Vo from the set {1, ... , Vo, . .. , Q}, such that 

a' = 1 - ~ is as large as possible, without exceeding the nominal significance level 

a. Take as the critical point the Voth order statistic. Label this value t0/. Then 

a' will accurately approximate the exact level of the resulting test. The hypothesis 

at (2.1) is rejected if the observed value of the statistic is greater than to:, , for tests 

with upper tail rejection regions, for example, the Henze's nearest neighbour test 

(Henze, 1988). For tests with lower tail rejection region, for example, the Friedman­

Rafsky statistic (Friedman and Rafsky, 1979), an analogous procedure is carried out. 

For large N , the value of Q is very large making this procedure laborious and 

expensive in terms of computer power and time. Therefore, in circumstances where 

http://etd.uwc.ac.za/



11 2.4 Estimation of Sampling Distribution 

a is given, choose integers V and B, which are such that V < B , B < Q and 

a ~ 1 - B~l , where V is the position of the Vth order statistic of permutation 

statistics and B is the number of permutations, and proceed as outlined above (Hall 

and Tajvidi, 2002). In order to obtain accurately estimated p-values, the value of 

B must be sufficiently large because accuracy of estimation improves as B becomes 

larger. In the studies reported below, B = 500. The procedure was implemented in 

MATLAB using the routine permutation_resamples .min the folder Statistics 

on the accompanying CD. 

UN IVERS I TY oftht! 

Vl'TESTERN C.APE 
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Chapter 3 

Literature Review 

In view of the large literature on mu • riate two-sample tests of comparison, we 

cannot describe adequate a l nt developments on the sub-

in the power study, and m a us informal and formal proce-

dures have been proposed , e hypothesis (2.1). Generally, 

the tests studied in this w egories, namely, the graphical 

approach, empirical distribution function based tests, and those based on interpoint 
distances of observations 'Q J)IW I TY o/ thr:-

'\l EST ERN Ci\.P E 

3.1 The Graphical Approach To Multivariate 

Two-Sample Testing 

This is an exploratory visual approach to comparing the underlying distributions 

of two multivariate samples. It involves computing the depth of each data point 

with respect to the centroids of each of the two samples, giving N pairs of depth 

values (the depth is a measure of "closeness" to the centroid). A plot of the N depth 

pairs constitutes a "depth-depth plot" or DD-plot. In their work, Liu, Parelius and 

Singh (1999) observed that different distributional characteristics of the data exhibit 

different patterns in DD-plots. Distributional differences studied by them included 

location and scale among others. 

The procedure is presented in more detail as follows. Consider samples X and 

Y of sizes m and n respectively. Denote their population distributions by F and G 

12 
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13 
3.1 The Graphical Approach 'lb Multivariate 

Two-Sample Testing 

respectively. Let Z be the pooled sample. Generally, data depth is a way of measur­

ing how central a given observation x E ]Rd is with respect to a given distribution or, 

alternatively, a data cloud. Thus, given the two multivariate samples, the DD-plot 

is the plot of the depth values of each observation from the pooled sample Z, relative 

to F (or sample X) and relative to G (or sample Y) . If both samples are from the 

same population, we would expect to see points in the DD-plot cluster around a 

45 degree line passing through the origin. Changes in the relation between the two 

samples will result in changes in the DD-plot. 

Several methods of measuring data depth have been proposed (see Liu, Parelius 

and Singh (1999) for references). Some examples of data depth discussed in Liu, 

Parelius and Singh (1999) include Euclidean depth, Oja depth, simplicial depth, 

ness of this method is demon-

strated in this thesis via the 

The Mahalanobis depth Mh F is defined by 

(3.1) 

where MhDF(z) and MhDc(z) are depth values of z with respect to F and G 

respectively. Since F and G are unknown, we construct a DD-plot using a sample 

version of (3.2): 

where 

{ 1 + (zi - X)E; 1 (zi - X)' }-1 and 

{ 1 + ( Zi - Y) t~ 1( Zi - Y)'} - l . 

(3.3) 

(3.4) 

http://etd.uwc.ac.za/
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In (:3.4), X and Y are sample mean vectors and Ex and Ev are sample covariance 

matrices of X and Y, respectively. 

A MATLAB implementation is given on the accompanying CD in the folder 

Data Depth. 

3.2 Tests Based on the Empirical Distribution 

Function (EDF) 

These tests compare two multivariate samples by assessing the proximity of their 

sample EDFs. To describe the test statistic, the definition of the EDF is critical 

and, therefore, I begin by 

In one dimension, the cu 

x) and is estimated from t 

is defined as F(x) = P(X ~ 

R ~ 11 number of observations ~ x 
n~v N \I SiT~of the 
\\TES r: ~APE 

n 
(3.5) 

In (:J.5), I(XJ ~ x) is an indicator function which assumes the value one, when the 

inequality is satisfied, and zero when it is not. Therefore, in one dimension, the EDF 

is a step function with jumps of size 1/n at every observed point. In more than one 

dimensional the cumulative distribution function (CDF) F(x, y , .. . ), analogous to 

the one dimension case, could be defined as 

F(x, y, .. . ) = P(X ~ x , Y ~ y, .. . ). (3.6) 

The definition of the cumulative distribution function in (3.6) is non-unique because 

the direction of ordering of the observations { x , y, . .. } is arbitrary. In one dimension, 

the direction of ordering is immaterial because P(X ~ x) = 1 - P(X ~ x), so 

that the only two realistic data orderings give equivalent distribution functions. In 

two dimensions there are four evident ways of ordering the observations, given by 

( X ~ x, Y ~ y), ( X ~ x, Y ~ y), ( X ~ x, Y ~ y) , and ( X ~ x , Y ~ y), and each 

http://etd.uwc.ac.za/



15 
3.2 Tests Based on the Empirical Distribution 

Function (EDF) 

is equally valid for the definition of the cumulative distribution function (Peacock, 

1983). The corresponding forms of the CDFs are given by 

F 1(x, y) 

F2(x, y) 

F3(x, y) 

F4 (x, y) 

P(X :s;x, Y :s;y) , 

P(X :s;x, Y?_y) , 

P(X?.x, Y :s;y), 

P(X?.x, Y?_y). 

The corresponding EDFs are defined as: 

1 N 

NL I(Xj :s; x, Yj :s; y), 
j 

y), 

y), 

I(Xt· > x, Yj ?. y), 
SI Y n/ tht! 

(3.7) 

(3.8) 

where I(· , ·) is an indicator\ )~~§oI, ~Mc~as~ mef t~ value one, when the ar­

gument is true, and zero, when the argument is false. The empirical distribution 

functions defined in (3.8) are all consistent estimators for the corresponding CDFs 

in (3.7). By contrast with the one-dimensional case they are not all equivalent. 

Justel, Pena and Zamar (1997) presents an alternative procedure for defining higher 

dimensional empirical distribution functions. 

One example of a test statistic based on the empirical distribution function is the 

simplified Kolmogorov-Smirnov form described in subsection :3.2.1. It is the only 

test investigated in this thesis which involves the empirical distribution functions 

of the samples. In the test, the goal is to find the largest difference between the 

two empirical distribution functions of the samples and this is adopted as the test 

statistic (Greenberg, 2006). 

http://etd.uwc.ac.za/
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3.2.1 The Simplified Kolmogorov-Smirnov Test 

The two-sample Kolmogorov-Smirnov test was generalized to two dimensions origi­

nally postulated by Peacock (1983) and later modified by Fasano and Franscechini 

(1987). In Peacock's procedure, one searches for the largest difference between the 

two empirical distribution functions of the two dimensional samples. Implemen­

tation of his test requires that the EDFs of the two samples be evaluated in all 

the N 2 points z = ( z k1, Zt2) (k, £ = 1, ... , N) where z E Z. Therefore, the test 

of Peacock (1983) is computationally prohibitive especially when the sample sizes 

are large. In dimensions higher than two the computational problem is exacerbated 

further. Therefore, Fasano and Franscechini (1987) proposed a variant of Peacock's 

test which requires the evaluation of the empirical distribution functions of the two 

samples only in the N obs 

tationally, and in fact it 1i s:.;Su.:i:.::~t:c..1.W~tl:il...~~~~, 
adopted as a test statistic 

significantly quicker, compu­

ics (Greenberg, 2006). They 

nee evaluated by ranging over 

the two samples in turn i , ound observed sample points 

i.e. using all four definitio puter routines for their test 

are given in Press, Teul<o s y (1992). Greenberg (2006) 

further simplified the for i·hg evaluation of the EDF to 

F1(x, y) in (:18). There ~ fnr ..,,n , rr1 ... :-combined sample of size N , 

Greenberg's simplified Kolmogorov-Smirnov (SKS) test requires only N evaluations 

of each of the two EDFs. Obviously, this is a huge improvement as regards the com­

putation burden involved compared to the tests by Peacock (1983) and Fasano and 

Franscechini (1987). Nevertheless, it comes at the expense of power because results 

from an empirical investigation into the power performance of the three versions of 

the test, as reported in Greenberg's thesis (Greenberg, 2006) , indicate that the SKS 

test possesses the lowest power. The lower power of the SKS test is attributable 

to fact that less information from the data is used, as compared with the Peacock 

(1983) and Fasano and Franscechini (1987) statistics. Nonetheless, empirical studies 

suggest that the SKS test is consistent and has reasonable power properties (Green­

berg, 2006) . The SKS test is preferable for application in more than two dimensions 

because it is currently the only computationally feasible form. 

To see the convenience of the SKS test in more than two dimensions, consider the 

case of two trivariate samples with combined size N . Peacock's test will require that 
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17 3.3 Statistics Based on Interpoint Distance 

the EDFs of the two samples be evaluated in 8N3 points. For the test of Fasano 

and Franscechini (1987), the evaluations reduce to 2x8N, whereas, for the SKS test, 

only 2N evaluations are required. In general, 2d+l Nd evaluations of the EDFs are 

needed for the test of Peacock ( 1983), 2d+1 N for the test of Fasano and Franscechini 

(1987), and 2N for the SKS test. The computational burden of the other tests 

(Peacock, 1983 and Fasano and Franscechini, 1987) in arbitrary dimensions renders 

them impracticable. 

Formally, for bivariate samples X = {(x1j, y1j); l:Sj:Sm} and Y = {(x2k, Y2k); l:Sk:Sn} , 

with respective empirical distribution functions Fm and Fn, 

Ti - ✓ mn sKs - m + n sup 

For the bivariate SKS statist 

the EDF is used [see (3.8)]. 

(3.9) 

s only the form F4(x , y) of 

mply be denoted by TsKs· 

The MATLAB routine for c~~~~~~~~~~~~KS_perm_test .m (Green­

berg, 2006), given in the dir~(;torx,. s .. tatis:t,ics ~Q. the accompanying CD. 
Li N 1 V ER~IT Y of thf!' 

The test statistic (~~-9) is ul-~aEcS s~ s&~h o . c!lif.(2.1) against the alterna­

tive hypothesis (2 .2). The null distribution of TsKs is not known and, therefore, 

the critical value and the p-value of TsKs are estimated by the permutation method 

described in Section 2.4. l . Values of T sKs greater than the critical value, estab­

lishes the difference between population distributions of the observed multivariate 

samples. 

3.3 Statistics Based on Interpoint Distance 

The majority of multivariate tests investigated in this thesis are based on interpoint 

distances of the samples. Some typical examples of distance functions are 

(3.10) 
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d 

L lui - vi I , (3.11) 
i=l 

{ 
d }½ 
~ (ui - vi)2 , (3.12) 

where ui and Vi are components of d-dimensional vectors u and v , observations from 

multivariate samples X or Y or Z. The Euclidean metric in (:3.12) is used through-

out the thesis, unless stated otherwise. 

Henze (1988) , Schilling (1986) , Weiss (1960) , Hall and Tajvidi (2002), and Friedman 

and Rafsky (1979) have used interpoint distances for determining nearest neighbours 

in their proposed multivariate two-sample tests of comparison. Other tests discussed 

in this chapter which are b • ct ces are those proposed by Bar-

inghaus and Franz (2001 - [d 005 hile the work of Maa, Pearl 

and Bartoszynski (1996) i =-=crn===--•• or dimension reduction which 

results in univariate distri 

detail in the following sect 

es. The tests are explained in 

3 3 1 Th H . N IV J Y o t ~t t. t. . . e enze eares eig uo r a IS IC 
\\TESTERN ,1\PE 

The statistics proposed by Henze (1988) and Schilling (1986) are quite similar. The 

test statistic by Henze (1988) is preferable because unlike Schilling's (Schilling, 1986) 

which is restricted to the Euclidean metric for determination of nearest neighbours, 

it is available for general distance metrics [see equations (:~.10), (::Ul) and (::U2) for 

some examples of distance metrics available]. Schilling (1986) studied the theoretical 

properties of his statistics, including consistency and power. Power performance of 

the various statistics introduced in his paper was studied in a simulation experiment 

in which conditions were matched with those used by Friedman and Rafsky (1979) 

in their power studies. The conclusions which were drawn from their investigations 

are also true for the statistic proposed by Henze (1988) , as stated in the latter paper. 

In this thesis, the test statistic by Henze (1988) is preferred. 

The test proposed by Henze ( 1988) is defined in the following way ( see Section 2. 2 for 

notation). Let 11·11 represent a general norm on JRd . Define the rth nearest neighbour 

of Zi by Nr(Zi) , as that observation Zj which is such that IIZ11 - Zil l ~ IIZj - Zi ll 
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19 3.3 Statistics Based on Interpoint Distance 

for exactly r - l values of v , l-5:vsN; v-/i , j . Define the indicator function 

if Zi and Nr(Zi) are from the same sample, 

otherwise. 

Let K be a small integer (typically 1 s Ks 6). To test the null hypothesis H0, we 

use the statistic given by 
N K 

TH(K) =LL Ij(i) , 
j=l i=l 

that is, the number of same-type nearest neighbours amongst the K nearest neigh­

bours, and summed over the pooled samples. If the two populations are not identi­

cal, samples from one population will tend to cluster together in d-space. Therefore, 

large values of T H(Kl are expected under the alternative hypothesis (2.2). Henze 

(1988) showed that for large sam of the error of the first kind 

does not depend on the hyp 

totically distribution-free. 

conditionally on the pooled s 

T H(KJ is asymptotically norm 

as follows: 

erefore , the test is asymp­

the null hypothesis is true, 

istance metric, the statistic 

ution of T H(Kl is calculated 

(i) Define an indicator va • SITY of tht! 

a~ = { 1 ' 
.f Vi ES T F R N Cf A PE . hb f 1 z j 1s amongst tE.e set o • K nearest ne1g ours o zi , 

tJ 0 
' 

otherwise; 

(ii) For each observation Zj in the K nearest neighbour graph of z1 , .. . , zN, the 

indegree is given by 
N 

dt) =Lat, l-5:jsN; 
i=l 

(iii) Define the quantities c~K) and vJK) by 

(iv) The parameters of the asymptotic distribution of TH(Kl are approximated by 

E(T ) = K {m(m -1) + n(n -1)} 
H(K) N -1 ' (3.13) 
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Var(TH(K)) K mn 
--x 
N-1 

20 

{ 4(m - l)(n - 1) (1 + vtl - _Ei__) +A}, (3.14) 
(N - 2)(N - 3) N - 1 

where 
A= (l _ 4(m - l)(n - 1)) c(K)_ 

(N - 2)(N - 3) N 

For sufficiently large sample sizes m and n , 

is approximately standard normal. The null hypothesis (2.l) is rejected at the 

nominal significance level a, if 

where C0 is the 100(1 -

bution function (Henze, 19 . ). 

ard normal cumulative distri-

The MATLAB computer routmes or computmg t e statistic T HCK> are given on 

the accompanying CD in • Nle; t Jl aJi 7 i s th enzeNN_perm_test .mis the 

permutation implementa • ~ eE ed. HenzeNN_Asy _test. m is 

the asymptotic implementation of the test. 

3.3.2 The Hall-Tajvidi Statistics 

In a somewhat similar procedure to the work by Henze (1988) and Schilling (1986) , 

Hall and Tajvidi (2002) made use of interpoint distances to determine the number 

of nearest neighbours of each observations in the pooled sample. The interpoint 

distances can be computed by any of the equations (3.10), (3.11), and (:3. 12). Their 

test statistic as defined at (:3.1 5) is a weighted sum of absolute deviations of the 

number of nearest neighbours of each observation from the respective samples, from 

their respective expected values deduced by permutation argument. The power of 

the statistics for various combination of weights are investigated in a simulation 

study. Hall and Tajvidi (2002) performed the study of power of the two statistics 

at (:3. 15) for location as well as scale alternatives in a multivariate setting, and 

included Mann-Whitney and two-sample Kolmogorov-Smirnov for the same distri-
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21 3.3 Statistics Based on Interpoint Distance 

butional characteristics in a univariate setting. 

The computational procedure of the statistics is described in the following way. 

The distance measure denoted by D(u, v) on the sample space, is the basis for the 

test. Compute distances of each observation to all other observations in the pooled 

sample Z, i.e. compute D(Xi, Zk) for ZkEZ\Xi { i = 1, ... , m }, and D(Yi, Zk) for 

ZkEZ\ Yi {i = 1, ... , n}. For {j = 1, ... , m+n-1 }, define the following quantities: 

(i) Mi(j) is the number of observations in Y that are among the j nearest neigh­

bours of Xi in Z\Xi (i = 1, ... , m); 

(ii) Ni(j) is the number of observations in X that are among the j nearest neigh­

bours of Yi in Z\ Y i (i = 1, . .. , n) . 

Mi(j) and Ni(j) are comp of the column vector of 

ordered distances. For dist sample X, the number of -~~..,.;;.;;.,....;;...,;.;;;.i,~~;;,,;;;;;..,.;.;;..,.;;.;;~ 
nearest observations up to th l it.-P-.;11:111n d while distances involving 

observations from sample Y , ons up to the size of sample 

X, are used. Hall and Taj vi • • onal on the pooled sample 

Z, Mi(j) and Ni(j) are hy~~I wtrwall~ di~~9ut d r~ndom variables when the 
11 h h . . .. h LI l~. l V ..t.l<.31 ·1 r o th~ 

nu ypot es1s 1s true, wit means 
\\.TESTERN ,.APE . . 

. nJ . mJ 
E 0 (Mi(J)IZ) = m + n _ 1 and Eo (Ni(J)IZ) = m + n _ 1 , 

where E0 is the expectation when the null hypothesis H0 , is true. 

Let DM and DN denote the deviations of Mand N from their mean values under 

H0 , then 

Statistics THT and SHT for testing the null hypothesis against the omnibus alternative 

are given by 

THT = 
l m n l n m 

- LL[DMi(j)J'Ywi(j) +- LL[DNi(j)J'Yw2(j) 
m n 

i=l j=l i=l j=l 

n m 

LW1(j)SUP1::;i::;m[DMi(j)J'Y + LW2(j)sup1::;i::;n[DNi(j)J'Y, (3.15) 
j=l j=l 
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where, is a positive exponents (1 ::; , ::; 2.5 in Hall and Tajvidi (2002)) and wk(j) 
(k = 1, 2) are weight functions. Hall and Tajvidi (2002) suggested the possibilities: 

(ii) w1(j) = j and w2(j) = j ; 

(iii) w1(j) = n + 1 - j and w2(j) = m + 1 - j. 

The sampling distribution and critical values of T HT and SHT under the null hypoth­

esis (2.1) are evaluated by the permutation method. When the samples are from 

identical populations, small values of both statistics T HT and SHT, are expected. 

The MATLAB program Hall_Tajv· 

on the accompanying C 

statistics. 

3.3.3 

The test also referred to as 

and Rafsky (1979). In e 

runs test. Friedman and 

rm_test .m, in the folder Statistics, 

• on implementation of the two 

• is a proposition of Friedman 

tttsion of the Wald-Wolfowitz 

t ¥ F,orting scheme for higher di-
mensional random variables which is analogous to a sorted list in the univariate 

case. They used the minimum spanning tree (MST) , constructed from interpoint 

distances of the pooled multivariate sample points, as a generalization of the uni­

variate sorted list. Their test statistic is the number of subtrees which result when 

incompatible connections (edges connecting points from different samples) are re­

moved. Some theoretical properties of their statistic were investigated by Henze 
and Penrose (1999). Henze and Penrose (1999) confirmed its asymptotic normal­

ity and showed theoretically that the multivariate two-sample tests based on it are 

universally consistent as conjectured by Friedman and Rafsky (1979). Friedman 

and Rafsky (1979) compared the power of their statistics to parametric competitors 

(normal likelihood ratio and normal scores test) for location and scale alternatives. 

Given a finite set Z of d-dimensional points (d 2:: 1), define the spanning tree on 

Z as the set of points all of which are connected, such that the connections ( called 

edges) have no loops. In other words, starting from any node on the spanning 
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tree, it is impossible to return to that point in any way except by backtracking i.e. 

retracing the path you have taken. The tree length is the total of its Euclidean 

edge lengths. Therefore, an MST is the spanning tree for which the total Euclidean 

length of the connections is the smallest possible. That is, if each edge ( i , j) of a 

spanning tree has a Euclidean length &ii , a spanning tree which minimises the sum 

~ &ii is called an MST. A MATLAB routine for MST is available on the internet 

from http://www .models .kvl .dk/users/fans/Some_matlab/MST/index.asp. In 

principle the MST is not necessarily unique, since there may be more than one span­

ning tree with the same minimal Euclidean length, if there are two or more edges of 

identical Euclidean length. 

To perform the test we proceed as follows: 

1. Construct the minimu d sample points Z; 

2. Remove all edges which oi in to point in Y; 

3. Define the Friedman-Rafsk statistic T FR,.i.... as the number of disjointed subtrees 
(runs) that results. UN IVERS I .t Y n/ tht! 

\\lESTERN C.APE 
Equivalently, T FR is one more than the number of edges in the minimum spanning 

tree which joins observations from different samples. We can compute T FR by count­

ing the number of edges linking observations from different samples and then add 

one to the total. If samples are from the same population, observations will be well 

mixed and large values of the statistic T FR are expected. Hence, small values of T FR 

provide evidence against the null hypothesis ( 2. l ). 

Under the null hypothesis the permutation distribution of the statistic is asymp­

totically normal with mean and variance given by 

E(TFR) 
2mn 
N+l , 
2mn(2mn- N) 

N 2 (N -1) + 
2mn(C - N + 2) [N(N -1) - 4mn + 2] 

N(N - l)(N - 2)(N - 3) 
(3.16) 
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The parameter C is dependent on the configuration of the MST. It is the number 

of edge pairs sharing a common node and is given by 

l N 

C = - °" d·(d · - 1) 2L.....t i i , 

i=l 

where di is the degree of node i. The degree of a node is the number of edges incident 

on it. 

The standardized statistic is given by 

T - TFR - E(TFR) 

FR - Jvar(TFR IZ) , 
(3.17) 

which is asymptotically s "' 

t1 The Friedman-Rafsky sta 

Friedman-Rafsky_Asy_t 

CD. Friedman-Rafsky _R 

e 

test. 

-
~ ~ - ••maI. 

Ila ■ I ■ ■ I ■ ■ I ■ ■• • • ■ 

ic...r l ttl od R ·• ~e 
.mi tl diJ Gto J St 

J 

~ 

~ 
m 

i,i 

_ H _ 

g the MATLAB routine 

st ies on the accompanying 

implementation of the same 

UN IVERS I TY o/ thf! 

3.3.4 tion Test 

The work by Maa, Pearl and Bartoszyriski (1996) proposes a theoretical framework 

for dimension reduction of two multivariate samples into three sets of univariate 

samples of interpoint distances. Motivated by the recognition that most multivari­

ate two-sample tests are based on interpoint distances of observations in the samples, 

they showed that under mild conditions, the parent distributions of the two multi­

variate samples are different, if and only if the distributions of interpoint distances 

differ within and between distributions. They further suggested using any three­

sample statistic (see Kiefer (1959) for some of the appropriate statistics) for testing 

the homogeneity hypothesis that the three univariate samples have the same distri­

bution. For this thesis, statistics by Kiefer (1959) and Fisz (1963) were preferred 

because they are consistent and have good power properties. 

To compute the test statistic we need a distance function h defined on Illd. The 

function h must satisfy some mild assumptions (see lemma 1 on page 1071 in Maa, 
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25 3.3 Statistics Based on Interpoint Distance 

Pearl and Bartoszynski (1996)). Some suitable examples of hare given in equations 

(3.10) to (3.12). 

The hypothesis of equality of two independent continuous multivariate populations 

is equivalently formulated in terms of the equality of the univariate distributions of 

interpoint distances as theorem :1. :3. 1 due to Maa, Pearl and Bartoszynski (1996) 

shows. 

Theorem 3.3.1 : Let X1, X2, X3 be independently and identically distributed d­

dimensional random variables with density f and cumulative distribution function 

F, let Y1, Y2, Y3 be independently and identically distributed d-dimensional random 

variables with density g and cumulative di ·bution function G, and suppose that the 

X 's and Y 's are independe 5~~~i ~iil=lid h satisfy the conditions 
of lemma 1 of Maa, Pearl 

ly i f F = G, (3.18) 

where =e indicates equality 

UN IVERS I TY oftht! 
Maa, Pearl and Bartoszyns ·\( 9 IF , j e ,9 e hypothesis of equality of 

the distributions of interpoint distances ( equation (:3.18)) is true for all distributions 

F and G, and every h. It is noteworthy that the three sets of interpoint distances 

are not independent. This has implications for assessing the differences between the 

three underlying distributions. 

To test the hypothesis (3.18), choose a function h, such as the Euclidean metric 

(equation 3.12) and compute the following pairwise distances 

k = l , ... , m - l; £ = k + l, .. . , m;(3.19) 

k = l , . .. , n - l; £ = k + l , . . . , n ; (3.20) 

k = 1, ... , m; £ = 1, ... , n. (3.21) 
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Then, any omnibus univariate test for assessing the equality of three distributions 

is used to test the hypothesis formulated in theorem :3.:U, namely, h(Xk, Xe) =e 

h(Y k, Ye) =e h(Xk, Ye). Rejection of the hypothesis is evidence against the of 

equality of the underlying distributions of the two independent multivariate popu­

lations. 

One possible statistic for testing the hypothesis at (;3. 18) is the three-sample Kol­

mogorov - Smirnov test proposed by David (1958). However, the statistic is very 

restrictive because it requires that the number of observations in the two samples be 

equal. This requirement makes it unsuitable for implementation in the IPDD (In­

terpoint distance distribution) test because the sizes of the three univariate samples 

of interpoint distances resulting from the multivariate samples are always unequal. 

However, a number of suitab · • the literature (Fisz, 1963; Kiefer, 

1959). Fisz (1963) discuss~....,....,...,,n"i,ct..,,.~,.-, e ity of distributions of k inde-
pendent samples. These t blem above (see Section 10.13 

in Fisz (1963)) . Kiefer (19 testing the null hypothesis of 

equality of k univariate y both Fisz (1963) and Kiefer 

(1959) are designed for i -----~---- , the three sets of interpoint 

distances in (3. 1!-J) to (:J. 2O . Ifi'"U.ey (:).. d.ent . This is not important in 

the context of this test, u•u,vui..,.,.'-IU tests.rm h an asymptotic formulae are 
' l "ril \.., .t 

used to calculate significance levels. 

Let Sj,ni(x), j = 1, 2, 3 be the EDFs of the three samples. Define the following 

quantities 

The statistic given by Fisz (1963) is 

(3.22) 

where 
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The Kiefer (1959) statistic for testing the equality of the three populations is defined 

by 

where 
A 1 3 

S(x) = ----I: njSj,ni(x). 
n1 + n2 + n3 j=l 

(3.23) 

The statistics T F and T K will be referred to as "interpoint distance distribution" 

(IPDD) statistics in subsequent chapters. 

IPDD_Asy_test .m and IPDD_perm_test .mare the MATLAB programs in the folder 

Statistics, on the accompanying C 

mented. In the power studie 

was used. 

A variant of the above is to on er 

neighbour interpoint distan 

The test is referred to as th 

ation IPDD_perm_test .m, 

istributions of the nearest 

s of interpoint distances. 

Denoting by II · II the Eucli&\lJ£d~stkrrce~rj_d!tlA~r&l space JRd , the three sets 

of distances are: 

mjn llxi - xjll i,j = 1, .. . , m ; 
i , J 

min IIYk - Yell k, f = 1, ... , n; 
kt-e 

min llxk -Yell k = 1, ... , m; f = 1, ... , n (3.24) 

where x EX and y E Y. The dimension reduction results in three univariate sam­

ples of sizes m , n and m + n. The statistics (3.22) and (3.23) are used to test the 

equality of the three univariate distributions. In the sequel, the notation T~N and 

T~N is used for the NNDD statistics. 

The MATLAB routine NNDD_perm_test .m in the folder Statistics, on the ac­

companying CD, was used to implement the NNDD test via the statistics T~N and 
TNN 

K • 
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3.3.5 The Baringhaus-Franz Statistic 

The statistic due to Baringhaus and Franz (2001) was motivated by a conjecture by 

Deuber (see Morgenstern (2001) for references). Deuber conjectured that: 

(A) For equal numbers of black and white points randomly distributed in Euclidean 

space the sum of the pairwise distances between points of equal colors is less 

than or equal to the sum of the pairwise distances between points of different 

colour; 

(B) Equality holds only in the case when black and white points coincide. 

The result is stated equivalently as 

where U and V represe 

empirical distributions F~fvt1it_r~ 
Vi, V2 EV. 

\\.TES TERN 

(3.25) 

hite points with respective 

an.cl .Franz, 2001), and u1, u2 E U ; 
oJ tht..a 

C1\PE 

For independent X 1, X2 , Y 1 , Y 2 Baringhaus and Franz (2001) deduced the inequal­

ity 

(3.26) 

Equality holds only if the two populations are identical (Baringhaus and Franz, 

2001). 

The proof by Morgenstern (2001) of the conjecture (:.3 .25) motivated the test of 

Baringhaus and Franz (2001). Their test statistic is a weighted sum of interpoint 

distances within and between samples. It is shown to be consistent against all 

alternatives and has good power performance against some parametric and non­

parametric competitors for location and scale alternatives. 

With the assumption that X and Y have finite expectation, Baringhaus and Franz 

(2001) proposed using the sample version of (:~.2f5) to assess the validity of the 
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hypothesis of equality of the distributions i.e. 

TaF = 

(3.27) 

The hypothesis (2.1) is rejected for large values of TaF· 

The critical value and p-value of the statistic are obtainable by either bootstrapping 

or the permutation method (Baringhaus and Franz, 2001) . In this thesis, the test is 

implemented using the permutation method. 

The MATLAB routine Bar 

Statistics on the accomp 

3.3.6 The Weiss St 

, in the directory 

implementation of the test. 

The work of Weiss (1960) ist}~jr, Wjt~Pff- c;~if ?h~enze (1988) and Schilling 
(1986). Weiss (1960) used interpoint distances to construct non-overlapping spheres 

around observations of one Ja'\In~1~J.'cftiffiNea~s'~feit hbour from the same sam­

ple. The test statistic is the number of spheres which contain no observations from 

the other sample. Few theoretical properties of the statistic are known. 

The procedure for computing the statistic is as follows: 

(i) For each observation Xi, calculate the Euclidean distance 

(ii) Denote by Si the number of Y k E {Y 1 ... , Y n} which are contained in the 

open sphere 

i.e. the number of Y k lying completely inside the sphere of radius ~ centered 

on Xi. 
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(iii) For a non-negative integer r, define the indicator function 

( ) _ { 1 , if Si = r 
Ii r -

0 , otherwise. 

(iv) Taking the case where r = 0, the test statistic is given by 

When sample Xis different from sample Y, the combined sample is not properly 

mixed. Many observations in X are isolated from the observations in Y and, as a 

result a large value of the test statistic T (0) is expected. Therefore, the test is for 

large values of the statisti ('i] Y are interchanged, the test 

statistic is denoted by Tn ~l..!..!e!!.!J'l,.!i~~ ~~~~W!!.11 hypothesis (2.1) is rejected if 

t2t;,;Jtht..a 
(3.28) 

where 1 = !f!: and dis th si! rE( , 61 )PE 

3.3. 7 The Cross-Match Test 

In a proposed test similar to that of Friedman and Rafsky (1979), Rosenbaum (2005) 

used the interpoint distances to construct an optimal non-bipartite matching (ONM) 

of observations from the pooled sample. An ONM is a procedure for matching ob­

servations into disjoint pairs that minimizes the total sum of distances within pairs. 

The number of pairs made up of observations from different samples, known as 

"cross-matches", is of interest. The number of cross-matches is the test statistic. 

The test is distribution-free and the null distribution of the test statistic is known 

for small samples. For large samples, asymptotic normality applies (Rosenbaum, 

2005). The power performance of the test statistic was investigated empirically in 

the univariate case. However, it is unknown whether the test statistic is universally 

consistent, or has satisfactory power in the multivariate setting because such prop­

erties were not ascertained in the study. 
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The computation of the test statistic proceeds as follows: 

(i) Firstly, the components of the pooled sample Z are ranked individually from 

1 to N. The vector R is the d-tuple of ranks of the components of Zi. 

(ii) The distance D(R, Rj) is defined to be the Mahalanobis distance between 

vectors R i and Ri i.e. 

where SR is the sample covariance matrix of the ranks. Clearly, there are (r) 
distinct pairwise distances D(R, Rj) -

(iii) Using the (r) interpoint 

(Rosenbaum, 2005). is an even integer. If N 

(iv) 

is an odd integer, an ( 

D(R, R N+i) = 0 for i = 1 •• 

and discard the pair co 

To define the cross-match test statistic let Tf be the number of pairs with k 

observations from sam~ • , Y£i,~ 2.½l'."eV J fn~ing the role of X and Y, 

T~ = Tt Tf = Ti an r. ... ~ d.Cn el1i tnber of cross-matches Tf, 

henceforth denoted by T 1, is invariant and therefore, is taken to be the test 

statistic (Rosenbaum, 2005). 

(v) If samples X and Y are from identical populations, a large number of Xi are 

optimally matched to Y i. Consequently, small values of T1 are significant 

(Rosenbaum, 2005). 

Under the null hypothesis, the exact small sample permutation distribution of T1 is 

given by 
2t1 ( ~)! 

P(T1 = t1IZ) = NC I I ,· mto.t1 .t2. 

The same distribution is obtained when m and n are interchanged. For sufficiently 

large samples, Rosenbaum (2005) showed that the asymptotic distribution of T1 is 

normal with parameters approximated by 

E(T) = mn and 
1 N-1 
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3.3.8 Notes 

2mn(m - l)(n - 1) 
(N - 3)(N - 1)2 • 

32 

(3.29) 

(i) Multivariate two-sample tests described in this chapter can be used to perform 

goodness-of-fit tests. To perform the goodness-of-fit test, given a sample X, 

a Monte Carlo sample Y is drawn from the specified distribution, and the 

hypothesis of equality of the two multivariate samples is tested. Of course, 

the size of sample Y would need to be generally large, which may render such 

an approach cumbersome in practical applications. 

(ii) Most of the test statistics described above are based on the distances between 

observations. Changing a 

tentially influence t 

i ct nee between sample points can po­

test. The Euclidea1~M!;!-r':"'I Sb"":"'"-"otJ. ... ~ -,e--....Ji ... ll~3i',-:-":'IJ";;e-.c(.j~ ... le ..... 

and some affine trans 

may be affected by 

d therefore the result of the 

it is invariant to orthogonal 

inst some specific alternatives 

etric. All test statistics dis-

cussed, except the istics, satisfy the invariance 

property under ort .• ~ ..... ...,.. .. ..,, . , x Jormations. The SKS statis-

tic_ is i~variant to ti\µif ~s°f'tifll ~ ict ~~{ep~e the or~eri~g of the sa~ple 
pomts m d-space, for example, componentw1se standard1zat10n and scalmg. 

The invariance of the cross-match statistic is with respect to transformations 

that preserve componentwise rankings of the observations and the Mahalanobis 

interpoint distance of the ranks. 

(iii) The Hall-Tajvidi statistics T HT and SHT allow for choices of the exponents I and 

weights wk(j). Empirical studies of the two statistics, for many combinations 

of exponents and weights, have shown that there are only minor differences in 

power properties of the different versions of the statistics. Thus, the simplest 

versions, with constant weights wk(j) = 1 and exponent,= 1.0, can be used 

confidently with minimal loss of power (Hall and Tajvidi, 2002). In the power 

studies reported in Chapter 4, the simplest versions of the statistics T HT and 

SHT were used. 

(iv) Excepting the test statistic by Weiss (1960) , all the test statistics discussed 

are symmetric - they give the same value when the roles of X and Y are 
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interchanged. Clearly, generally Tm(0)#Tn(0) in (:3.28). To remove the lack 

of symmetry, Weiss (1960) suggested using the mean of Tm(0) and Tn(O) as a 

test statistic. 

( v) Only seven of the nine multivariate two-sample tests discussed above were 

considered in the power studies. The test proposed by Weiss (1960) has some 

unknown theoretical properties while the complexity of implementation of the 

statistic by Rosenbaum (2005) prompted its omission. 

(vi) Results from initial simulations suggested that the powers of the statistics TF 

and T K are similar, as are powers of T;N and T~N. Therefore, in subsequent 

chapters, only the powers of TK and T ~N are reported, for IPDD and NNDD 

tests respectively, in all power stud~ where the similarity in power was ob­

served. 
~ 

1• ■ I ■ ■ I ■ ■ I ■ ■ I ■ ■ I 

- - - - -

UN IVERS I TY n/ thf! 

\\.TESTERN C.APE 
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Chapter 4 

Power Studies 

This chapter gives a discus • 

ate two-sample test statisti.1-1· ~ ...... =.....,.=.......,=~~M.4 

used in the reported powe 

4.4. Additionally, a graphi a e 

samples based on the DD-

ance of some of the multivari­

arious conditions which were 

esults are reported in Section 

ility between two multivariate 

4.5. The MATLAB routines 

used in the power analyses are given m e 1rec ory ower Studies, on the accom-

panying CD. UN IVERS I TY n/ tht!' 

,\lESTERN C.APE 
A major concern in application of the proposed multivariate two-sample tests in-

vestigated in this study is the limited information on their performance. In some 

studies, this concern was addressed in a limited fashion. For example, Baringhaus 

and Franz (2001) studied the power of the test statistic T BF under various condi­

tions, including dimensionality and distributional characteristics like location and 

scale. The authors considered sampling from multivariate normal as well as non­

normal populations, including the multivariate logistic population. They compared 

the power of the statistic T BF to other test statistics in both the univariate and 

multivariate settings. Their results suggest that the power of T BF is very close to 

Hotelling's T2 statistic for multivariate normal location alternatives, and has consid­

erably more power than the statistic TH(Kl of Henze (1988) for multivariate logistic 

alternatives. Friedman and Rafsky (1979) investigated the power of the T FR rela­

tive to parametric competitors. They studied the sensitivity of T FR , among other 

statistics, to the combination of dimensionality and distributional characteristics for 

multivariate normal samples. The results revealed that the power of T FR generally 

34 
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improves when more than one minimum spanning tree (preferably three or more) are 

used in high dimensions, when compared to other parametric and non-parametric 

competitors, for both multivariate normal location and scale alternatives. Schilling 

(1986) conducted a power study based on a combination of dimensionality, dis­

tributional characteristics and the number of nearest neighbours. Schilling (1986) 

sampled from the multivariate normal population. Information about the power of 

T H(K) can be deduced from his results. The powers of T HT and SHT were studied by 

Hall and Tajvidi (2002) for bivariate normal scale alternatives and choice of distance 

metric [see (3.10) to (3.12)] . The results of the study suggest that SHT has slightly 

better power than THT when variables are correlated (p = 0.5) (Hall and Tajvidi, 

2002). 

the factors such as dimen-

sionality, type of parent distn ces, but also on the sample ................ -.. ............ ...__ ................. 
sizes and level of significance. s ( m and n), test statistics 

will detect differences betwee robability. In other words, 

the test statistics have power sample sizes are increased, 

a property known as consist 11 test statistics described 

in Chapter 3. The difficultyU e required to attain good 

power was emphasized by 6) suggested that scien-

tific inquiry can be retarded because many worthwhile research projects cannot be 

conducted, since the sample sizes required to achieve adequate power of some test 

statistics may be difficult, if not impossible, to attain. The power problem of the 

test statistics can be ameliorated by capitalizing on the fact that some statistics 

are more powerful in detecting specific deviations from the null. As a result , an 

investigation into the powers of the test statistics described in the preceding chapter 

is worthwhile. 

4.1 Sampled Populations 

There are many distributions that are of practical interest. The selection of three 

distributions for this study at least reflects some variety of properties of distributions. 

The power of some of the test statistics described in Chapter ~~ was studied for 

samples drawn from three bivariate populations. The populations sampled were: 
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bivariate normal; bivariate uniform; and bivariate exponential. The populations are 

discussed in the following sections. 

4. 1. 1 Bivariate Normal Population 

The bivariate normal population is a symmetric and mesokurtic distribution. Loca­

tion, scale, and correlation alternatives were considered. In all studies for bivariate 

normal populations, sample X was drawn from the standard bivariate normal distri­

bution BVN(0,I). For location alternatives, sample Y was drawn from the bivariate 

normal distribution BVN(1L,I) with mean vector /L ~ ( ! ) , where Ll. ranged over 

the interval [0,2]. For the scale alternatives , sample Y was drawn from the BVN(O, 
(J 0 

:E8) with covariance matrix :E , where a- was varied from 1 

BVN(0, :Ee) with covarian 

over the interval [0,0.99]. 

4.1.2 Bivariate 

The bivariate uniform po 

mte p Y) were drawn from the 

, where p was ranged 
p 1 

Section 4.4.3. 

o,j thf! 

et i • Jl ighly platykurtic distribution. 

The standard bivariate uniform distribution is one with observations uniformly dis­

tributed in the unit square and is denoted by BVU[0, 1]. The power performance 

of some of the test statistics was studied for location, scale, and correlation alter­

natives, as in the bivariate normal case. In all simulation experiments of bivariate 

uniform population, sample X was drawn from the standard bivariate uniform distri­

bution BVU[0, 1]. For location alternatives, sample Y was drawn from the bivariate 

uniform distribution with the mean vector shifted by ( ! ) . The parameter Ll 

was varied from 0 to 0.5. In the case of the scale and correlation alternatives, Y 
was sampled from bivariate uniform populations differing from BVU[O, 1] only by 

covariance matrices. The conditions used for the scale and correlation alternatives 

are the identical to those used for the similar alternatives in the bivariate normal 

cases. Results are presented in Section 4.4.4. 
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4.1.3 Bivariate Exponential Population 

A highly skewed population which was studied, is the bivariate exponential popu­

lation. Scale/location and correlation alternatives were considered. In both cases, 

sample X was sampled from the standard bivariate exponential distribution BVE(l), 

with independent marginals and marginal means Ai = A2 = 1. Sample Y was drawn 

from the BVE distribution with covariance matrix E, of the form ( ~ ~ ) , where 

O" was varied from 1 to 6.5, for location/scale alternatives. Correlation alternatives 

were dealt with as for the bivariate normal case. The results are reported in Section 

4.4.5. 

4.2 Estimation of "nite Samples 

The power of a multivariate tJ::~~un)~:ltJ,z,:i~:t~r'l-~:'-ffl the probability of rejecting 

the null hypothesis (2.1), giv plex non-parametric multi­

les or commercial software 

( e.g. SAS, S-Plus, SPSS) ¥!~~~~~~~~~~~or most univariate para­

me~ric ~ests. 1n this case,_ Nt :J.1{'$1 .'P?fr9hot de a very useful way of 
est1matmg power. In the simulation experiments, tl'ie simulated samples X and Y 
were generated independent"M'r ES TE RN C 1\ P E 

The algorithm for estimating power of any test statistic numerically is as follows: 

1. Simulate a sample, X of size m according to a standard multivariate dis­

tribution F , and a sample Y of size n according to a specified multivariate 

distribution G; 

2. Calculate the multivariate two-sample test statistic; 

3. If the test statistic is statistically significant at the pre-specified a -level, the 

result is noted; 

4. Return to step one and repeat the procedure a large number of times W. 

The estimated power h, the probability of a statistically significant result, is obtained 

by computing the proportion of the runs (replicates) which produced significant 
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results: 

f;, = Number of times H0 is rejected at a-level in W replications. ( 4_ 1) 
Total number of replications (W) 

By sampling theory, h is a binomial random variable. Therefore, for sufficiently 

large W, the distribution of h is approximately normal with mean n and standard 

deviation ( also known as the standard error of the proportions) of 

(4.2) 

Equation (4.2) indicates 

number of replicates W. 

statistic, the number of re 

the estimated power on the 

~ ~ l.lll,S!.1,,1..!.u...!,&.i.!.!!.~~:,!Jll,l.i.O~mation of the power of a test 

large. 

4.3 Computaf1on ;re 
UN IVERS I TY of tht! 

Power simulations were • ~ /\ ftware package on a 3 Giga­

Hertz Pentium 4 computer. Every point in the parameter range considered, for all 

the alternatives reported in the subsequent sections, represents a specific number 

of replicates W and permutations B. Due to considerations of computing time and 

computing resources, power was approximated for a fairly small number of replica­

tions W = 500 and permutations B = 500, and few points in the parameter ranges 

were chosen. For the ranges of location, scale and correlation, ten equally spaced 

points were used, hence the non-smooth nature of the reported power functions 

appearing below. Therefore, under the conditions for which power studies were con­

ducted, the tests can be arranged in the following ascending order of computational 

times: Baringhaus-Franz, SKS, IPDD, NNDD, Henze, Hall-Tajvidi, and Friedman­

Rafsky tests. In general, the computational time for each set of results in Figures 

4.9 to 4. 17 was approximately 6 days. 

The multivariate two-sample tests studied are intensive computationally because 

of the nature of the algorithms required to compute the statistics, for example, the 

http://etd.uwc.ac.za/



39 4. 4 Power Comparisons 

Friedman-Rafsky and Hall-Tajvidi statistics. If the computer implementation is not 

efficient computationally, the demand is exacerbated further. The implementation 

of the tests was done by the permutation method except for the Friedman-Rafsky 

statistic T FR for which the asymptotic result was used. The latter strategy was 

supported by results of trial simulations. 

4.4 Power Comparisons 

Most of the power studies of multivariate two-sample tests reported in the litera­

ture concentrated on null hypotheses defined by the standard multivariate normal 

distribution against location or scale alternatives or both. The Friedman-Rafsky 

and Hall-Tajvidi tests are examples. In thesis, the power performance of some 

multivariate two-sample st • 3 viz. Baringhaus-Franz 

TaF, Friedman-Rafsky TFR, 1..11.cl1t.l)oo<U'.A.Sµ,.i.,UJ.WLJ.-J1~u.1;1..""""Wl",l(Q.enze TH(K), IPDD statistics 

TF and TK, NNDD statistics atistic TsKs, are studied for 

various alternative distributia , . Figures of the power func-

4.4.1 Estimates of E 

Under the null hypothesis, the power n must be equal to the nominal significance 

level a (Thas, 2001). In this study, some statistical tests investigated are imple­

mented with approximate critical values and significance level a. The implication 

is that the exact p-values were replaced with values approximated from the samples 

by the permutation method. As a result , power evaluated under the null hypothesis 

may be slightly different from the nominal significance level a for some test statistics. 

The lack of conformity of the approximated power h to a under the null hypothesis 

is known as the bias of a test statistic with respect to the given nominal signifi­

cance level a (Greenberg, 2006). Different test statistics deviate differently from 

the nominal significance level a , that is, some test statistics underestimate while 

others overestimate the power under the null hypothesis. Bias is caused by several 

factors viz . sample size, number of permutations and number of replications among 

others. The bias is significantly reduced by using large sample sizes m and n, and 

a sufficiently large number of permutations B as well as replications W (Thas, 2001). 
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To check for accuracy of type I error probabilities for the studied test statistics, 

simulations were done for samples of sizes m = 60 and n = 50 with W = 2000 

replications. The nominal significance levels used were 0.010, 0.050, and 0.100. The 

p-values were approximated by using the empirical results of B = 500 permutations, 

conditioned on the pooled samples. The estimate of type I error probabilities are 

proportions of the 2000 replicates which were declared significant at the indicated 

nominal significance level. Table 4.1 shows empirical levels of all the test statistics 

for the populations studied. The results generally indicate good approximations to 

nominal significance levels. Approximations for nominal level 0.050 seem equally 

good across all test statistics in Table 4.1. On the whole, the deviations of the 

estimated probabilities from nominal values are satisfactorily small. 

Statistics 

TnF 

TFR 

TttT 

SttT 

TH(4) 
T F 

TK 
TNN 

T~N 
K 

TsKS 

o=0.01 

0.005 
0.007 
0.009 
0.009 
0.016 
0.009 
0.010 
0.013 
0.013 
0.007 

robabilities 
Bivariate Uniform 

0.043 
0.052 
0.044 
0.050 
0.058 0.108 0.017 0.062 0.108 
0.063 U 1'1 9V E o c§ f T o S Of 2 
0.062 0.108 0.009 0.048 'j 0.093 

0.055,,v :j'lQ!! N o ~ \ I! 1 
0.059 . o~ o:~51.il- o: 85 
0.041 0.099 0.010 0.046 0.090 

o=0.01 

0.007 
0.007 
0.008 
0.009 
0.012 
0.008 
0.008 
0.01 2 
0.009 
0.013 

o=0.05 o=0.10 

0.049 0.101 
0.047 0.075 
0.050 0.108 
0.049 0.097 
o.o,J.3 0.091 
0.05.1 0.096 
0.050 0.096 
0.049 0.096 
0.047 0.095 
0.050 0.097 

Preliminary empirical studies of the multivariate two-sample tests have shown that 

sufficient accuracy in estimating a with W = 500 replicates is guaranteed for a mod­

erate size of B = 500 permutation resamples. Therefore, in the simulation studies 

of the tests reported subsequently, sample sizes were m = 60 and n = 50, while 

the number of replicates W and permutation resamples P were fixed at 500. The 

power properties of the test statistics were investigated for a nominal significance 

level a = 0.050. 

http://etd.uwc.ac.za/



41 4.4 Power Comparisons 

4.4.2 The Parameter K in the Henze statistic TH<K> 

Henze's statistic TH(Kl is a function of K, the number of nearest neighbours taken 

into account. When the value of K is changed, the statistical properties of T HCKJ are 

significantly influenced. Particularly, the power performance of T H(KJ improves with 

increasing K. However, beyond a certain value, further increase of K produces a 

diminishing return on the power. Figures 4.1 to 4.8 show power functions of TH(KJ 

at a nominal significance level a = 0.05, for all populations. The value of K was 

range from 1 to 9. 
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Figure 4.1: Power functions for TH(KJ for bivariate normal location alternatives. 

http://etd.uwc.ac.za/



Chapter 4: Power Studies 

0.9 

ai 
> 0.8 
~ 
-;R, 
0 
LO 0.7 
ai 

0 
::c: 0.6 
0 
C 
0 0.5 ti 
Q) 

-~ 
0.4 -0 

C 
0 0.3 'E 
8. e 0.2 a.. 

Figure 4.2: 

0.9 

ai 
> 0.8 ~ 

-;R, 
0 
LO 0.7 
ai 

0 
::c: 0.6 -0 
C 
0 0.5 ., 
0 
Q) 

-~ 
0.4 -0 

C 
0 0.3 'E 
8. e 0.2 a.. 

0.1 

0 
0 

Figure 4.3: 

. -◊- . TH(1) 

•• 0 •• TH(2) 

. -*- . TH(3) 

- • - TH(4) . ·.,;( 

• - • - • TH(5) .. ·,, ,:,, 
-a- TH(6) 

.·,r 
. ,::.-: ,,.;,fY 

•• ♦ •• TH(7) 
, · ,'. ,,..,,. 

. ',( ' . / / 

- TH(B) 
,' ~ "ff - - -~ / / 

.1. ✓Y .-, • o • 
•• TH(9) ·" // */ .. ••• 

/ / . . 
, · .,,, ·" o · 

1 ·. , / . • - --<Y' ' . ,; ,,, · .• 1>-
1 '/ . * .··· .,· 

.--- _. o .,· 
~ . . ·• ' 

;, <'·:~- -- <f 

4.5 5 5.5 

normal scale alternatives. 

:~:- .· ~:(} N IVERS I TY o/ th!! 

-*- TH 3 ES TERN 
- * - TH(4) 

- • - • TH (5) 

-a- TH(6) 

• • · • •• TH(7) 

- - - TH(B) 

• TH(9) 

0.2 0.4 0.6 
Difference in correlation p 

0.8 

Power functions for T H(KJ for bivariate normal correlation alterna­
tives. 

42 

http://etd.uwc.ac.za/



43 

Q) 0.9 
> 
~ 

~ 0.8 
IO 

ni 
0.7 0 

J: 
Cl 
C 0.6 u 
Q) 

"f 
Cf) 

0.5 
Q) 

C. 
E 0.4 
co 
Cf) 

0 
C 

0.3 
0 :e 

0.2 8. e a. 0.1 

0.1 

Figure 4.4: Power functio 

Q) 0.9 
> 
~ 
:::l! 0 0.8 
IO 

16 
0.7 0 

::c 
Cl 
C 0.6 
~ 
Q) 

-~ 
0.5 

Cf) 
Q) 

a. 
E 0.4 
co 
Cf) -0 0.3 
C 
0 :e 

0.2 0 a. e 
c.. 

0.1 

0 
1 2 

I 

I> 
I 

I 

3 

I 

I 

4 

I 

Difference in Scale cr 
5 

4.4 Power Comparisons 

- --

. -◊- . TH (1) 

• • O ·· TH (2) 

. -*- . TH(3) 

- * -TH(4) 

• - • - • TH(5) 

-a-- TH (6) 

.. * . TH (7) 

- - - TH (S) 

' . ..... TH (9) 

0.4 0.5 

rm location alternatives. 

6 

Figure 4 .5: Power functions for TH(K) for bivariate uniform scale alternatives. 

http://etd.uwc.ac.za/



Chapter 4: Power Studies 

a; 0.9 

~ 
"#- 0.8 
1/) 

ca 
0 0.7 

I 
Cl 

'fl 0.6 
CD -~ 
8l a. 
E 
(ti 
Ul 

0 
C 
0 
'E g_ 
e 
a. 0.1 -...-.-.-

0 
0 

Figure 4.6: 
tives. 

0.9 

I 

I 

. -◊- . TH(1) 

, "0 " TH (2) 

. -*- . TH(3) 

- * - TH(4) 

• - • - • TH(5) 

-e- TH(6) 

.. . .. TH(7) 

- - - TH(8) 

• • TH(9) 

0.8 

uniform correlation alterna-

j 0.8 
-9:! 

-◊- TH N IVERS I TY of tht! 
.. 0 • TH 2 

;,. 

~ 0.7 
ca 

0 
I 0.6 
Cl 
C 

ts 
CD 0.5 
"e' 
Ul 
Q) 

a. 
E 

0.4 

(ti 
Ul 
0 0.3 
C 
0 §_ 0.2 

e 
a. 0.1 

-*- TH~~ Es TERN 

- * - TH(4) 

• - • - • TH(5) 

-e- TH(6) 

... . .. TH(7) 

- - - TH(8) 

••• TH(9) 

2 3 

,• :,... 
C1\P £;. ;_-:-.··· 

,.·.,, .·• .· .,,,. . 
, ;,, 

-.,, 
-✓• · 

/ ' 

,,. 

4 

,,, ,,, 

,,. ,,. 

5 
Difference in scale/location a 

6 

Figure 4. 7: Power functions for TH(K l for bivariate exponential scale/location 
alternatives. 

44 

http://etd.uwc.ac.za/



45 

ai 0.9 
> 
~ 
~ 0 0.8 
LO 

cu 
0 0.7 

J: 
Cl 
C 0.6 
~ 
(I) 

-~ 
"' 

0.5 
(I) 

C. 
E 0.4 
(1J 

"' -0 
C 

0.3 
0 
t: 

0.2 8. e 
a.. 

0.1 

0 
0 0.2 

Figure 4.8: Power functio 
natives. 

Some observations can be 

I 

I 

I 

I 

4.4 Power Comparisons 

· -¢- · TH(1) 

.. ·O .. TH (2) 

'-*- ' TH(3) 

- • -TH(4) 

• - ' - ' TH(5) 

-e- TH(6) 

···•· · TH(7) 

- - -TH(8) 

' •• '' •• TH(9) 

0.8 
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number of the nearest nei~~ O,t1l s f jtPd.rJ n~o~1et test statistics T H(K) with 
power functions which are c1eatr'y d1stmgmsliabfe 1fr"om each other. Generally, for 

K~4, the power performance increased more slowly with increasing K except for the 

case of bivariate exponential scale/location alternatives (Figure 4.7). This suggests 

that when the number of nearest neighbours K is at least 4, the power of the test 

statistic T H(KJ is minimally affected by the increase in K. The results provide a useful 

guideline when selecting the value used in the power study because no criterion 

for choosing an optimal value of K is available (Schilling, 1986). Therefore, for 

simulations reported subsequently, K = 1 (for comparison) and K = 4 are used. 

4.4.3 Bivariate Normal Distribution 

This section discusses result of the power studies when the populations sampled are 

normal differing in locations (Figure 4.9 ), scale (Figure 4.10 ), and correlations 

(Figure 4.12 ). The test statistics compared are TaF , TFR, THT, SHT, TH(KJ, T~N ' TK, 

and TsKs• 
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Location Differences 

Figure 4.9 shows results from the power studies of the bivariate normal location al­

ternatives. Empirical results suggest that when there is a location difference between 

the two bivariate normal populations, the Baringhaus-Franz statistic TBF performs 

better than every other test statistic for the whole range of the location shifts. This 

result is not surprising because T BF is known to be relatively sensitive to location 

differences between multivariate normal populations (Baringhaus and Franz, 2001). 

Baringhaus and Franz (2001) showed empirically that T BF compares satisfactorily 

well to the parametric competitor, Hotelling's T2 statistic, for a similar setting. As 

Figure 4.9 shows, the performances of TsKs , THT and SHT are virtually the same. 
The statistic T H<4> showed moderate power, while the remainder - particularly T~N 
- performed poorly. 
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Scale Differences 

Univariate tests of Kolmogorov-Smirnov type are known to be generally sensitive 

non-parametric tests for differences in scale (Hall and Tajvidi, 2002). However, the 

theoretical property is not obviously generalizable to the higher dimensional type of 

Kolmogorov-Smirnov statistics as attested by the poor performance of T sKs for this 

setting. The statistic T K is seen to dominate the other non-parametric statistics 

for normal scale alternatives. It is not surprising that the statistic on the full set 

of interpoint distances T K is much more sensitive to scale differences than the one 

based only on the nearest neighbour distances, T~N - Performances of the THT , SHT, 

TH( 4> and T BF statistics are similar, with T FR somewhat worse. The performances of 

the T sKs, T H(i> and T~N statistics are poor. 
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Figure 4.10: Power functions for bivariate normal scale alternatives. 

Sometimes, particular deviations from the null hypothesis are not of interest. I 

digress slightly to consider the case where the two sample means are set equal in 
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order to eliminate the possibility of a significant result due to different population 

means (Figure 4.11). 
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Figure 4.11: Power functions for location-adjusted bivariate normal scale alter­
natives. 

Additional power studies done for the normal scale alternatives, in which the two bi­

variate normal samples were mean centered, are reported in Figure 4.11. In the case 

of the IPDD statistics, the distribution of the between-sample distances [see (:3.21)] 

of the adjusted samples was ignored and only the distributions of within-sample 

distances [see (3.19) and (:3.20)] were considered. To assess the equality of the two 

resulting univariate distributions, the two-sample univariate Kolmogorov-Smirnov 

test statistic was used. Results indicate that the Kolmogorov-Smirnov statistic is 

especially sensitive against the scale alternatives. The performance ranking of the 

statistics is similar to that in Figure 4.10, with the power of the usual Kolmogorov­

Smirnov statistic matching that of the statistic T K. Noticeable in Figure 4.11 is the 

poor performances of the statistics T aF and T sKs for small scale differences. 
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Correlation Differences 
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Figure 4 .12: Power functions for bivariate normal correlation alternatives. 

The results in Figure 4.12 show that the performance of statistics T H(4l and T F R are 

substantially better than those of the other statistics for the correlation alternatives, 

with T H( i J and T~N next best . A common feature of these four statistics is that they 

are all based in some way on nearest neighbour distances of the sample observations. 

Therefore, this suggest that differences in dependence structure could more easily be 

detected using nearest neighbour based test statistics. It is clear the test statistics 

T F R and T H(4 l are recommended for normal correlation alternatives. Note that the 

power curves for T F is shown explicitly, as the power for this IPDD statistic is 

considerably lower than that of T K in this instance. 
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4.4.4 Bivariate Uniform Distribution 

Location Differences 

The powers of the test sta.t istics are considerably different for sufficiently large lo­

cation differences (Figure 4.13). Generally, T BF is the most powerful. The statistics 

r ;:N and T K are poorest. 
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Scale Differences 
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Figure 4.14: Power functions for bivariate uniform scale alternatives. 

As is apparent from Figure 4.14, the powers of TaF , TK , TsKs, THT, and SHT are high 

for this setting. For T FR the performance was moderate while that of the statistic 

T~N was clearly the worst. Thus, based on these results, it is clear that all the test 

statistics except T H(tl, T~N and T FR, have good power against bivariate uniform scale 

differences. 
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Similarities and differences between the results from two scale alternatives in Figures 

4. 10 and 4.14 are: 

( i) the statistics T F and T K performs very well against scale alternatives for both 

populations; 

(ii) T~N had the lowest power against scale alternatives for both populations. The 

powers of T HT, SHT, T H(4)and T BF are generally high against scale alternatives 

for both populations; 

(iv) the performance of TsKs is very good against bivariate uniform scale alterna­

tives but poor against bivariate normal scale alternatives; 

(v) higher powers were generally observed for all the statistics against bivariate 

uniform scale altern • normal scale alternatives. 
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Correlation Differences 
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The results are shown in Figure 4.15. In general, the power functions show that 

the performances of T BF and T H c4i were noticeably better and that of T K was the 

poorest for this setting. 
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4.4.5 Bivariate Exponential Distribution 

Scale/Location Differences 
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Figure 4.16 shows the results from the power studies for exponential scale/location 

alternatives. There are large differences in power between statistics. Clearly, T BF 

has the highest power while T H(iJ and T~N have the lowest power for this setting. The 

performances of T sKs, T K, T HT and SHT are intermediate and very similar. Noticeable 

in Figure 4.16, is the underperformance of most nearest neighbour based statistics 

TFR, THc4>, TH(i> and T ~N for this setting. This implies that nearest neighbour based 

statistics are not appropriate for scale problems when samples are drawn from highly 

skewed (exponential) populations. 
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Major similarities and differences between the result of the exponential scale/location 

alternatives in Figure 4. Hi and those observed for location alternatives of the normal 

(Figure 4.9) and uniform (Figure 4.13) populations are: 

(i) T BF is the most powerful statistic against location alternatives for all three 

populations; 

(ii) the power of T K is similar to that of T~N for bivariate uniform location alterna­

tives but very different for the case of the bivariate normal location alternatives 

and bivariate exponential scale/location alternatives. The latter performed 

particularly poorly against location alternatives across all populations; 

(iii) the powers of T sKs, T HT and SHT are high against bivariate normal location 

location alternatives but mediocre 

against the bivariate u 

(iv) T H{4l performed very w,,_.--":~, ~7, ...... ..,....--....... ..,..,....._.--.....-. and bivariate uniform lo-

cation alternatives, but ·variate exponential 

scale/location alternati 

Correlation Differences UNIVERSITY of th t:" 

Figures 4.17 (a) and (b) shcMi\Mt§nlt · ~Nr cti~n~ of all test statistics when 

populations sampled are bivariate exponential differing in dependence structures. 

The results in Figure 4. 17 (b) were obtained to verify those in (a) as the curve 

shapes for several of the statistics (particularly T K, T F and T tt<i>) appear unusual. 

The powers of most test statistics are generally high with T tt<4> best for this setting. 

Clearly, over the whole range of the correlation, T F and T K have far less power than 

other test statistics. There are several examples of changes in power of statistics 

with changes in the magnitude of correlations (for example TFR and T 8 p; TsKs and 

THT; THT and TH{1J)-
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Figure 4 .17: Power functions for bivariate exponential correlation alternatives. 
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Some noticeable differences and similarities among the results for correlation differ­

ences in Figures 4.17, 4. 12 and 4.15 are: 

(i) the powers of TH<4> and TBF were generally the highest in detecting correla­

tion differences, but the latter performed very poorly against bivariate normal 

correlation alternatives; 

(ii) the performances of T F and T K were the poorest against correlation differences 

across all the populations; 

(iii) generally, the powers of all the statistics were high against the bivariate uni­

form correlation alternatives; 

(iv) the powers of all the statistics are e erally low against bivariate normal cor-

relation alternatives. :o: • ilar for small differences 

in correlation. 

4.4.6 General D iscu 

It is not possible to recom two-sample test statistic 

as having the highest powe11 1 11i~1t·~~!~ h lfowever, some test statis-

tics were shown to have go ~ ~ !,"F,',1--'!,! ur s ,<jf p :{Jes of alternatives for all 
populations. Therefore, based on the results from the power studies, recommenda­

tions about the power of the test statistics against specific departures from the null 

hypothesis are made with regard to the type alternatives: 

(i) The powers of statistics TBF , TsKs, TH(4), THT and SHT were generally high 

against location alternatives. This is true regardless of the distribution sam­

pled. These test statistics showed robustness to distributional geometry. The 

statistic T BF by Baringhaus and Franz ( 2001) should be preferred to other 

statistics for location-shift problems. 

(ii) The statistics TK , TBF , TH(4 ), THT and TsK were shown to generally be powerful 

for scale alternatives. However, the power properties of the statistics exhibited 

dependence on the distributional geometry of the sampled populations. The 

power of T BF was low for samples from the bivariate normal distribution. 

Overall, the statistic T K is good across all populations and therefore should 

be given preference for scale problems. 
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(iii) The statistics TH(4J, TFR and TH(iJ were generally powerful for the correlation 

alternatives. T BF performed well for uniform and exponential distributions 

but very poorly for normal distributions. Particularly, T H(4J and T FR are con­

siderably robust to all the populations investigated and should therefore be 

preferred to other test statistics for correlation problems. 

4.5 The Depth-Depth Plots 

The concept of data-depth has been used for various multivariate analysis tech­

niques, among them multivariate comparison, multivariate classification and multi­

variate outlier detection. In this section, multivariate comparisons of two distribu­

tions based on the data-depth metric are discussed. The technique is illustrated via 

the DD-plot. The Mahalai:~~~~~~~~~ntify the depth of the sample 
points. DD-plots, which s .. j;l,..:...:=~=~==~...:=t pooled sample relative to the 

two sample centroids are aracteristics studied include 

location and scale (for stu s see Liu, Parelius and Singh 

(1999) and references ther • . 100 and n = 100 were used in 

all cases. 
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4.5 The Depth-Depth Plots 
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Y of thr!' 
• ~ nte:.\_d·. tt butions. 

If the null hypothesis (2.1) is true, the DD-plot defined in Section 3.1 should be 

clustered along the line y = x, as Figure 4.18 shows. The two samples were drawn 

from the standard bivariate normal population BVN(O,I) . This pattern is expected 

irrespective of the sampled population (Liu, Parelius and Singh, 1999). 
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Figure 4.19: DD-plot for distributions with location difference. 

Figure 4.19 shows the DD-plot with one sample from BVN(O,I) and the other sample 

from BVN(µ,I) with the location shifted to µ = (1, o?. In this case, the DD-plot 

shows an obvious deviation from the line y = x, in a symmetric fashion as if the 

DD-plot were a scatter plot. The pattern of departure from linearity characterizes 

the location difference (Liu, Parelius and Singh, 1999). 
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Figure 4.20: DD-plot for distributions with scale difference. 

Figure 4.20 shows the DD-plot with one sample from BVN(O,I) and the other sample 

from the BVN(O,41). Notice the arching of points above the diagonal line (y = x). In 

Figure 4.20, the depth values calculated with respect to BVN(O,41) were plotted as x­

co-ordinates. Typically, this pattern of deviation from linearity, or its reflection with 

respect to the line y = x, serves as an indicator of scale differences in multivariate 

settings (Liu, Parelius and Singh, 1999). 
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Chapter 5 

Analysis of Cluster Data 

A globular cluster is a spherical coll of typically tens of thousands of stars, 

placed closely together i ·:gh stellar density toward the 

centre. In this chapter, da il'l'l>li1R-1':l-¥1f.J'A1'11~htness measurements of glob-

ular cluster stars to illust - ¢~:(ml~~• imensional data by means of 

the multivariate two-samp LAB programmes, as well as 

the datasets used in the ~~~~~~~~~~~he folder Cluster Analysis 

Routines , on the accom~_rf~:RSITY o/ thf!' 

Piotto et al. (2002) used t r &~ IR e- vl;u}a: 1 - of stellar dynamics and stel­

lar evolution in globular clusters. The data sets (available at the Padova Globular 

Cluster Group archives at http : // dipastro . astro. uni pd . it/ globular) contain 

brightness data of the stars in globular clusters. The measurements were recorded 

from the Wide Field and Planetary Camera 2 (WFPC2) images: WFPC2 is a camera 

installed on the Hubble Space Telescope (HST). The camera features four detectors. 

Three of these, arranged in a reverse L-formation, comprise the Wide Field Camera 

(WFC) and adjacent to them is the Planetary Camera (PC) , a fourth detector with 

different optics to afford more detailed view over a smaller region of the visual field 1 . 

WFC and PC images are typically combined, producing the WFPC2's characteristic 

image shape, such as Figure 5.1, for the cluster NGC 4833. PC image recordings are 

identified by "chip number l " (where "chip" refers to the detector). Measurements 
from the WFCs are referred to as chip numbers 2, 3 and 4, depending on which of 

the three WFC detectors was used. Photometric (i.e. brightness or intensity) data 

1seehttp:// en .wikipedia.org/wiki/Wide_Field_and_Planetary_Camera_2 
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from the four detectors are stored in a single file known as a "4-chip-stack file", for 

each globular cluster. Table 5. 1 shows a partial 4-chip-stack photometric file of 

the NGC 4833 cluster. For each data set , the positions (x, y) of the stars reported 

in the photometric files were extracted by chip number and then an appropriate 

co-ordinate transformation was applied to find relative spatial positions of the stars. 

Figure 5.1 shows the orientations of the four images from the PC, WFC2, WFC3 

and WFC4 cameras for the NGC 4833 cluster. 

Figure 5.2 illustrates selected stellar positions of the observations on PC, WF2, and 

WF4, for the cluster NGC 4833 which were used in the analyses. Geometrically, the 

three portions considered in Figure 5.2, for the NGC 4833 cluster, are congruent. 

The purpose of the statistical analysis is to study the homogeneity of the stellar 

brightness properties across the his aim is facilitated by first 

comparing stars from two reg e outer quarters of chips 2 ................. -.. ............. ..____.. ........... 
and 4 are used for this purpo thesis of equal populations 

is accepted, these two sets of ared with the photometric 

properties of the stars from th at is, chip 1 stars [step (ii)]. 

Single-chip data sets containlj. ~q~g;~ ~tl the chip through two dif-

ferent filters denoted by F43 M'_E?S a!Ji_i t ncentrated on the F439W 

and F555W brightness data. These were analyzed as bivariate data on the variables 

colour index, X1 = F439W - F555W and brightness, X2 = F555W. 

The procedures were performed for all the clusters analyzed. Figures 5.~~ to 5. 22 

show scatter plots of the data sets which were analyzed, with vertical axes inverted. 

Tables 5.2 and 5.~1 list the cluster ID numbers and the results from the analyses 

using the statistics investigated in the power studies. The p-values of all the test 

statistics were obtained by 1000 permutation resamplings, for sufficient accuracy of 

approximation, except the Friedman-Rafsky statistic T FR, for which p-values were 

determined from its asymptotic distribution. 
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Table 5.1: Partial 4-chip-stack photometric data file for the NGC 4833 cluster 
Star ID x y F555W F439W chip number 
5 432.064 61.282 18.5258 19.1433 1 
6 447.406 65.432 18.0003 18.4545 1 
7 343.364 66.036 17.2418 17.8572 1 
8 712.872 66.410 19.0763 19.7303 1 
9 90.294 68.673 16.8930 17.5895 1 
10 393.481 71.595 18.6304 19.1865 1 

2 80.910 2 
4 85.712 2 
3 60.687 2 
6 421.098 2 
5 120.278 2 
7 468.331 2 

2 187.361 3 
3 159.096 . . . 3 
4 212.348 5 ~-- 3 
5 224.151 

~ ~ 4 s .. 3 
7 83.709 . . . . .. 3 
8 143.122 53.230 15.2634 15.9719 3 

2 734.712 47.386 19.3115 19.9200 4 
1 713.135 47.396 19.5922 20.1691 4 
4 386.161 49.782 18.9025 19.3369 4 
3 274.041 49.950 18.6494 19.2055 4 
6 309.335 51.572 19.1918 19.7320 4 
5 300.909 51.604 19.7955 20.1825 4 
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Table 5.2: Step (i) p-values of the globular cluster test statistics 
TBF TFtt. TF TK TNN 

F 
TNN 

K TsKS TH(4) THT SH'r 

IC 1257 0.759 0.190 0.769 0.716 0.049 0.085 0.728 0.721 0.781 0.757 
IC 4499 0.705 0.615 0.737 0.743 0.455 0.587 0.207 0.829 0.393 0.293 
NGC 3201 0.011 0.500 0.032 0.032 0.194 0.250 0.004 0.443 0.002 0.003 
NGC 4147 0.259 0 .018 0.143 0.121 0.210 0.227 0.756 0.118 0.281 0.426 
NGC 4372 0.914 0.916 0.597 0.597 0.081 0.031 0.656 0.972 0.923 0.836 
NGC 4590 0.117 0.057 0.067 0.067 0.270 0.115 0 .001 0.001 0.196 0.126 
NGC 4833 0.050 0.547 0.005 0.005 0.230 0.239 0.030 0.241 0.560 0.531 
NGC 5634 0.371 0.752 0.865 0.868 0.305 0.331 0.268 0.702 0.490 0.396 
NGC 6171 0.013 0.260 0.525 0.529 0.767 0.809 0.011 0.048 0.049 0.046 
NGC 6218 0.753 0.302 0.790 0.799 0.256 0.150 0.594 0.558 0.522 0.370 
NGC 6235 0.015 0.022 0.037 0 .042 0.663 0.760 0.375 0.186 0.098 0.129 
NGC 6256 0.446 0.165 0.855 0.791 0.439 0.281 0.210 0.399 
NGC 6287 0.002 0.001 0.360 0.238 0.001 0 .003 0.001 0.001 
NGC 6325 0.001 0.285 0.008 0.015 0.032 0.055 
NGC 6342 0.103 0 .005 0.002 0.002 0.276 0.223 
NGC 6355 0.001 0.640 0.003 0.803 0.005 0 .001 
NGC 6362 0.541 0.281 0.094 0.116 0.687 0.555 
NGC 6380 0.143 0 .004 .019 0.121 0.073 0.026 
NGC 6401 0.161 0.698 0.109 0.622 0.112 0.087 
NGC 6838 0.340 0.514 0.236 0.234 0.353 0.268 
Bold p-values indicate signific 

UN IV£R~· ~T)7 o th1~ Table 5.3: Step (ii) p-va ues o t e gob lar c uster test statistics 
Tar TFR \\f ~rS T :![ R ~N C ~ ip EisKS TH(4) TnT Sin 

IC 1257 0.368 0.015 0.352 0.394 0 .04 3 0 .010 0.015 0 .028 0.433 0.197 
IC 4499 0.001 0.271 0.159 0.052 0.656 0.413 0.001 0.003 0.001 0.001 
NGC 3201 0 .001 0.003 0.096 0.098 0.800 0.606 0.004 0.001 0.003 0 .001 
NGC 4147 0 .038 0.006 0.016 0.019 0.270 0.317 0.018 0.281 0.056 0.031 
NGC 4372 0.001 0.076 0.101 0.089 0.095 0.090 0 .011 0.001 0 .050 0.014 
NGC 4590 0.001 0.017 0.267 0.308 0.424 0.242 0.001 0.001 0.001 0.001 
NGC 4833 0.001 0.000 0.079 0.104 0.002 0.001 0.001 0.001 0 .001 0.001 
NGC 5634 0.001 0.000 0.751 0.718 0.082 0.285 0.001 0.001 0.002 0.003 
NGC 6171 0 .002 0.032 0.147 0.184 0.914 0.948 0.029 0.011 0.008 0.009 
NGC 6218 0 .001 0.000 0 .016 0.021 0.290 0.014 0.001 0.001 0.001 0.001 
NGC 6235 0.001 0.010 0.099 0.148 0.004 0 .001 0.001 0.039 0.002 0.001 
NGC 6256 0.001 0.000 0 .001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
NGC 6287 0.001 0.000 0.024 0.052 0.001 0.001 0.001 0.002 0.001 0.001 
NGC 6325 0.006 0.003 0.094 0.072 0.016 0.103 0.001 0.001 0.002 0.001 
NGC 6:142 0.001 0.010 0 .001 0.001 0.001 0.001 0 .001 0.002 0.001 0.001 
NGC 6355 0.001 0.008 0.120 0.177 0.363 0.106 0.001 0.004 0.010 0.001 
NGC 6362 0.003 0.330 0.196 0.189 0.148 0.152 0 .002 0.279 0 .027 0.008 
NGC 6380 0 .001 0.000 0.001 0.001 0.001 0.001 0 .001 0.001 0.001 0.001 
NGC 6401 0.003 0.202 0.679 0.749 0.023 0.036 0 .001 0.010 0.008 0.001 
NGC 6838 0.416 0.326 0.341 0.332 0.971 0.949 0.254 0.128 0.201 0.259 
Bold p-values indicate significance of the statistics at 5% nominal level. 
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Interpretation of the results in Tables 5.2 and 5.3 is aided by summarizing as follows: 

(a) count the number of rejections at the given nominal level a for step (i) results 

in Table 5.2 and compute the percentage for each test statistic; 

(b) repeat the procedure for step (ii) results in Table 5.3. 

Table 5.4: Percentages (%) of data sets in Tables 5.2 and 5.3 for which the null hy­
pothesis was rejected at the 5% level for each test statist ic 

T F !l T F 

Step (i) 35 25 20 15 5 
Step (ii) 90 75 30 25 45 

TNN 
K 

5 
45 

TsKs 
45 
95 

25 
85 

25 
85 

25 
90 

An examination of Table 5.4 suggests that the test statistics TaF , TFR, TsKs, THc4>, 

T HT , and SHT have similar discrim.i-B large percentages of rejection 

for these test statistics in ste ..., ........... -.. ................................... ey are sensitive against the 
type of departures from equal--... --~ ~icuimoo~ ~ m cluster colour - brightness 

data. Moreover, the six test hapter 4 to have similarly 

high powers against location-
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Figure 5.22: Scatter plot for NGC 6838 cluster data. 
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Chapter 6 

Conclusion 

Little is known about the practical a lication of multivariate two-sample tests. 

Possible reasons are: ign~!!~~~~~~!~~he variety of statistical tests 
for multivariate two-samp • of ready-to-use software; and 

the reluctance by practitia , e is known about their power 

and robustness. It was ag ' st studies were done of the rel-

ative power of the selecte ated the powers of the EDF 

and interpoint distance type tests for a range of alternatives from bivariate distri­

butions of the exponentilJ ~fui'X~a 1', ~ On the basis of the results 

from the power studies, 1 \w t possible to make a general 

recommendation to always use a particular multivariate two-sample test statistic, 

irrespective of the sampled distribution. Table 6.1 shows a general summary of the 

recommendations based on the study in Chapter 4. 

Table 6.1: Statistics recommended for analysis 
Al ternatives Statistics 

TaF 

Location T sKs 
THT 
SaT 

Scale TF 
T K 

Correlation TH(4) 
T FR 

Results from the power studies suggest that some tests have power against specific 

alternatives and may not be useful for other alternatives. Particular choices de­

pend on the type of potential differences between the populations that are deemed 
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important to detect. If the user is going to rely on one and only one multivari­

ate two-sample test, then the Baringhaus-Franz statistic T 8F is recommended for 

location alternatives; the IPDD test via either T F or T K should be preferred for 

scale problems; and the nearest neighbour test statistic T H(4> should be the choice 

for correlation alternatives. These recommendations are based on the good power, 

which is either comparable or superior to the other tests, against the entire range 

of alternatives considered in the power studies. Other multivariate two-sample test 

statistics which have good power are those shown in Table 6.1. Moreover, the im­

plementation of these test statistics is fairly easy and computationally fast. The 

Baringhaus-Franz statistic is available as a ready-to-use test known as the Cramer 

test in the R language (Baringhaus and Franz, 2001). 

departure from the null hyp · - ypothesis can be comple­
,.,._,rt,,,,...-,.,,_ .,., as the DD-plots. 

................................................... "'"""At 

mented with a non-parametr~· ;;gi~~~ 

In the power studies, perm the exact distributions for 

the selected test statistics em of the statistic T FR for 

which the asymptotic distrlli o \ w .£:f _L"'•-"'.,._ .-considerations of compu-

tation time. The large nu lil1!_ gf ~ iol ~ }t_S ~ enerally provides a more 

accurate approximation of the exact distribution of the test statistic than asymp­

totic forms . Furthermore, for some of the test statistics, asymptotic distributions are 

unavailable. However, the use of asymptotic distributions of the multivariate two­

sample tests should be recommended if their accuracy is guaranteed for relatively 

small sample sizes, because the permutation method is very demanding computa­

tionally and could take hours to days to produce results. Besides, many potential 

users of the multivariate two-sample tests may have neither the necessary skills nor 

the inclination to empirically determine p-values each time they apply the tests. 

The utility of the multivariate two-sample tests was demonstrated in the analysis of 

photometric data sets of twenty galactic globular clusters. An additional application 

of the test statistics is given by Koen and Siluyele (2007). 
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Chapter 6: Conclusion 80 

The determination of the power of the test statistics for different types of bivariate 

distributions, and the inclusion of the correlation alternatives, are the much needed 

extensions to published studies of the multivariate two-sample tests. However, sub­

stantial scope exists for further extensions: 

(i) other significance levels and sample sizes; 

(ii) more complicated alternatives to the null hypothesis; 

(iii) higher dimensionality of the samples; 

(iv) other distributions, which may include mixtures of distributions. 
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