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Abstract

In his influential book, [Csá63] Á. Császár developed the well-known theory of syntopogenous
structures on a set. His intention was to create a comprehensive framework that simultaneously
encompasses the study of topological, proximal, and uniform structures. In the same monograph,
he demonstrated independently, along with Pervin [Per62], that every topological space possesses
a compatible quasi-uniformity. A similar observation was noted for a uniform space, provided
the topological space is completely regular. On the other hand, Herrlich in [Her74a] introduced
the concept of “nearness” with the aim of unifying various topological structures.

This Ph.D. thesis aims to investigate topogenous orders and their generalizations, such as
quasi-uniformities, syntopogenous structures, on complete lattices which extend and generalize
existing literature in this field. We explore the study of quasi-uniformities through the lens
of syntopogenous structures, and establish a Galois connection between these two constructs.
Furthermore, we provide conditions under which certain Császár structures are order isomorphic
to quasi-uniformities on a complete lattice.

As Császár structures are deeply rooted in pointfree topology, our research naturally extends
into the realm of frames. We establish a correspondence between pre-nearness and Császár
structures. In line with these ideas, we also delve into the relationship between pre-uniformities
and entourage quasi-uniformities in the context of frames.
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Chapter 1

Introduction

In the early sixties, Császár presented his book, Foundations of general topology [Csá63]. He
aimed to develop a theory that generalizes several branches of pure mathematics. Császár’s
theory encompasses uniform structures, topological structures, and proximity structures. He
demonstrated that proximity structures act as bridge between topological and uniform struc-
tures. Furthermore, he examined various properties of syntopogenous spaces including com-
pleteness and compactness, and constructed a completion of a syntopogenous structure through
the utilization of Cauchy filters.

In the same book, Császár suggested the concept of quasi-uniformity on a set which was
already introduced by Nachibin [Nac48] in 1948 under the term semi-uniform structures. Since
then, quasi-uniform structures have been extensively explored and documented in the literature
for both frames and spaces. For further details, refer to sources such as [Kün92] and [LF82] for
insights into spaces, and [Fri86] and [Pic95] for perspectives on frames. Additionally, the readers
can also explore the references provided in these works for a comprehensive understanding of
the subject matter.

In separate works, Pervin [Per62] and Császár [Csá63] demonstrated that every topological
space has a compatible quasi-uniformity and this observation holds true for a uniform space,
provided the topological space in question is completely regular. In this context, it becomes
apparent that quasi-uniform structures provide an additional perspective on topological struc-
tures.

In 1974, Herrlich [Her74a] introduced the concept of nearness structures on a set. His inten-
tion was unifying various concepts of topological structures. He also suggested a correspondence
between symmetric syntopogenous spaces and nearness spaces.

It is now evident that Császár’s structures, which serve as the cornerstone of this Ph.D.
thesis, manifest themselves in numerous mathematical structures. In fact, not only are they
omnipresent in numerous mathematical spaces but they also hold greater significance in point-
free topology. Indeed, one of the most pleasing features of syntopogenous structures is their
remarkable ability to seamlessly bridge the gap between points and open sets, even in the con-
text of their global nature. It is because of this reason that Császár himself considered them
as a natural point of departute of the study of pointfree topology. A formal definition of synto-
pogenous structures in pointfree topology was given by Chung [Chu08] (see also [Chu05] for the
case of complete lattices). In [WL95], the authors investigated syntopogenous structures on a
complete distributive lattice. They examined the question of cotopology, quasi-uniformity, and
T -structures.

Recently, a categorical study of quasi-uniform structures through syntopogenous structures
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was initiated in [HI19]. This study digs into the concepts of completion and completeness within
the categorical framework. Among many discoveries made, it was shown that a quasi-uniformity
can be viewed as a collection of families of closure operators on a category.

The classical theory of quasi-uniform structures is presented in terms of entourages [LF82]
and conjugate covers [GS72]. While both approaches are well-documented in the context of
frames, the latter seems to have received more attention for obvious reasons, see Frith [Fri86]
and Picado [Pic95]. Nevertheless, the former approach has also been explored in pointfree
topology, see [FHL93a, FHL93b, FHL94].

In their paper, [BP96], Banaschewski and Pultr were the first to axiomatize the concept of
nearness with dual objectives. On one hand, the aim was to establish the pointfree counterpart
of nearness spaces, as defined by Herrlich [Her74a], on the other hand, the goal was to address
the limitations of uniform frames. In fact, nearness frames are uniform frames that lack the
star-refinement axiom.

In this dissertation, we explore various questions, with a particular emphasis on the following
two primary inquiries:

We introduce a comprehensive theory of quasi-uniformity on general complete lattices, en-
compassing the Fletcher’s et al. theory of entourage quasi-uniformity when applied on frames
[FHL93a] on one hand, and, on the other hand, the results presented in [HI19]. In fact,
a quasi-uniformity, respectively, a syntopogenous structure on a category X supplied with an
(E ,M)-factorization structure for morphism is obtained when, for each object X of X , a quasi-
uniformity, respectively, a syntpogenous structure is defined on the subobject lattice of X such
that each morphism f : X −→ Y in X is quasi-uniformly respectively syntopogenously continu-
ous on the suboject lattices of X and Y . Our study of quasi-uniformities is facilitated by the use
of the concept of syntopogenous structures.

Furthermore, while all the structures mentioned above are well-defined in pointfree topology,
as far as our current knowledge goes, there is no clear correspondence between nearness struc-
tures and Császár structures within the context of frames. In this dissertation, our aim is to
address and bridge this gap.

In more detail, this Ph.D. dissertation is structured as follows:

Chapter 2 presents the fundamental definitions and key results that are relevant to the rest
of this dissertation.

In Chapter 3 we define and study topogenous orders on complete lattices. We extend numer-
ous notions from topological categories to the realm of general complete lattice theory, including
closure and interior operations, which yields several classical results from topological categories
as a special case. We prove that topogenous order encompasses both closure and interior opera-
tors within lattices. In this context, the results in [HIR16] become special cases. Further, if we
narrow down our examination of topogenous orders to frames, our results serve as a pointfree
counterpart to the results in [Chu88]. Furthermore, we characterize the so-called “ Strict maps”
both in frames and in topology. Our methods of proof share similarities with those utilised in
[HIR16]. We conclude the chapter with a number of examples highlighting the importance of
studying topogenous orders within complete lattices.

In Chapter 4 we use syntopogenous structures to examine quasi-uniformities on complete
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lattices. We show that the syntopogenous structures (in the sense of our definition) are order
isomorphic to a base of a quasi-uniformity on a complete lattice. Moreover, when we con-
sider syntopogenous structures that do not preserve necessarily meets, we establish a Galois
connection between quasi-uniformities and syntopogenous structures on a complete lattice. Fur-
thermore, we prove that any

�
-structure of a complete lattice determines a base of a transitive

quasi-uniformity on the lattice in question. It should be noted that, except for the results in
Section 4.4, all our results in this chapter can be restricted to frames. This observation will be
explored in the next chapter. We conclude this chapter by establishing a relationship between
SYT, the category of syntopogenous spaces and SYNTFrm, that of syntopogenous frames.

Chapter 5 relates pre-nearness and semi-Császár structures on frames. More precisely, it
establishes a correspondence between the category of pre-nearness frames [BP93] and a novel
category of semi-Császár structures that we introduce. Moreover, when considering the concept
of quasi-uniformities in a frame, we will demonstrate that interpolative Császár structures are
in a one-to-one correspondence with the bases of a quasi-uniformity. In concluding the chap-
ter, we build upon the findings of [FHL93b] and [Pic95], to establish a relationship between a
base of an entourage quasi-uniformity and a base of pre-uniformities within the context of frames.

In the last chapter, our focus is dedicated to the examination of particular morphisms within a
general category equipped with an (E ,M)-factorization structure for morphisms. This (E ,M)-
factorization structure permits us to delve into various noteworthy ordering mechanisms and
extend the applicability of several established findings. In particular, we define strict maps with
respect to two topogenous orders, generalizing “closed maps” relative to two closure operators
introduced in [Hol09]. We also define the open maps with respect to two interior operators.
Using the topogenous order derived from a functor as introduced [Ira19], we extend the scope
of closed maps as defined by G. Castellini and E. Giulli [CG05, CG01].

Some of the main findings in the thesis are being prepared for publication in the following
manuscripts:

(1) B. Iragi and D. Holgate. On Császár orders and Pre-nearness on frames (Ready for
submission);

(2) B. Iragi and D. Holgate. Topogenous orders and related maps in Top and in Frm (In
preparation);

(3) B. Iragi. Overview of Császár Orders and Quasi-uniformities on Complete Lattices (sub-
mitted for publication).
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Chapter 2

PRELIMINARIES

This chapter provides an overview of some definitions and key results concerning lattices, cate-
gory, Galois adjunction, and topology that are essential for the subsequent chapters. Many of
the results appearing here are widely documented in the literature, and therefore, most of the
statements will be presented without formal proofs. As far as frames are concerned, our guiding
principle is well-established: whenever a property of a given topological space can be expressed
entirely in terms of the lattice of its open sets, it bears significance for us in our exploration of
frames.

2.1 Lattice

A partially ordered set, or a poset, is a pair (X,≤) where X is a set and “ ≤ ” a partial order
on X, that is, “ ≤ ” is reflexive, transitive and antisymmetric. If “ ≤ ” only possesses the first
two properties, it is referred to as a preorder.

Let Y be a subset of a poset X. An element x ∈ X is said to be an upper bound (respectively,
lower bound) of Y if y ≤ x (y ≥ x) for all y ∈ Y . The join of Y is the least upper bound of Y
and the meet of Y is the greatest lower bound of Y . They are, respectively, denoted

�
Y and�

Y . However, if Y has two elements only, say, Y = {x, y}, the meet and join of Y are written
as

�
Y = x∧y and

�
Y = x∨y, respectively. Similarly, if Y = {yi | i ∈ I}, we will write �i∈I yi��

i∈I yi
�
when we want to denote the join and the meet of the set Y , respectively.

A poset X is said to be a:

• meet-semilattice (join-semilattice) if any two elements x, y ∈ X have meet (join);

• lattice if any two elements x, y ∈ X have a meet and join;

Let X be a lattice. Then X is said to be:

• distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) holds for all x, y, z ∈ X;

• bounded if each of its finite subsets has a meet and a join. That is to say X is a lattice
with a least (bottom) element denoted by 0X and a greatest (top) element denoted by 1X .
It should be noted that the subscripts on 0 and 1 can be omitted if it is clear from the
context which lattice is being referred to.
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• complete if each subset of X has a meet and a join. In fact, every complete lattice X is
always bounded with

0X =
�

∅ =
�

X and 1X =
�

∅ =
�

X

• complemented if it is bounded and each element x ∈ X has a complement, that is, an
element y with

x ∨ y = 1X and x ∧ y = 0X

• Boolean algebra if it is complemented and distributive.

In a Boolean algebra B, the following distributive law

(
�

A) ∧ b =
�

{a ∧ b | a ∈ A}

holds for all A ⊆ B, b ∈ B, provided
�

A exists.

In a lattice X with 0X , an element a ∈ X is said to have a pseudocomplement if there exists
a greatest element x ∈ X satisfying a ∧ x = 0X . We shall denote such an element x by a∗.
Equally, we say that a∗ is a pseudocomplement of a if

x ∧ a = 0X ⇔ x ≤ a∗

for all x ∈ X. Moreover, if the binary meet distributes over arbitrary joins, then a∗ also satisfies

a∗ =
�

{x ∈ X | x ∧ a = 0X}.

The pseudocomplement of an element if it exists, it is unique. We shall say that a lattice X is
pseudocomplemented if each of its elements has a pseudocomplement.

Fact: In a bounded distributive lattice each complement is also a pseudocomplement.

Example 2.1.1. For any topological space X, the lattice ΩX, representing the open sets of X,

is a pseudocomplemented lattice. For all B ∈ ΩX, B∗ is given by X \ B. For A ∈ ΩX, we

obtain that

A ∩B = ∅ ⇔ A ⊆ X \B ⇔ A ⊆ X \B
The verification of the following properties of pseudocomplement is straightforward:

(P1) (1X)∗ = 0X and (0X)∗ = 1X ;

(P2) x ≤ y ⇒ y∗ ≤ x∗;

(P3) x ≤ x∗∗;

(P4) x∗∗∗ = x∗;

(P5) (x ∨ y)∗ = x∗ ∧ y∗.

Let X and Y be any two lattices. A map f : X −→ Y is said to be a lattice homomorphism if
it preserves the lattice structures, that is,

f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y)

for all x, y ∈ X and f(0X) = 0Y and f(1X) = 1Y , provided X and Y are bounded.
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2.2 Galois connection

Galois connections represent a powerful tool in mathematics. They enable the seamless transition
between two distinct mathematical structures. They are generalizations of the correspondence
between subgroups and subfields explored in Galois theory.

Definition 2.2.1. [Ern04] Let A = (A,≤) and B = (B,≤�) be two posets or simply preordered

classes and f : A −→ B and g : B −→ A be two order preserving mappings such that for all

a ∈ A and b ∈ B,

f(a) ≤� b ⇔ a ≤ g(b)

Then, f and g establish a Galois connection between A and B. Or, equivalently, the pair of

order preserving maps f : A −→ B and g : B −→ A satisfying

f(g(y)) ≤ y for all y ∈ B and x ≤ g(f(x)) for all x ∈ A.

In such cases, f is said to be the left Galois adjoint of g and g the right Galois adjoint of f .

This relationship is commonly denoted by f � g or (f, g) or

A
f

⊥
�� B.

g
��

In fact, the maps f and g exhibit other noteworthy characteristics, including the fact that
they uniquely determine each other. Furthermore, the following few lemmas, from D. Dikranjan
and W. Tholen [DT95], describe additional aspects of their behavior:

Lemma 2.2.2. [DT95] Let f : A −→ B and g : B −→ A be a pair of mappings between posets

A and B. Then, the following are equivalent:

(i) f � g;

(ii) f and g are order preserving mappings and a ≤ gf(a) and fg(b) ≤ b for all a ∈ A and

b ∈ B;

(iii) f is order preserving mapping and g(b) = max{a ∈ A | f(a) ≤ b} for all b ∈ B;

(iv) g is order preserving mapping and f(a) = min{a ∈ A | a ≤ g(b)} for all a ∈ A.

Lemma 2.2.3. [DT95] Assume f � g. Then

(1) f(
�

i∈I ai) =
�

i∈I f(ai), provided
�

i∈I ai, exists;

(2) g(
�

i∈I bi) =
�

i∈I g(bi), provided
�

i∈I bi, exists.

Lemma 2.2.4. [DT95] Let A and B be two posets.

(1) If arbitrary joins exists in A, then any mapping f : A −→ B that preserves arbitrary joins

has a right adjoint;

(2) If arbitrary meets exists in B, then any mapping g : B −→ A that preserves arbitrary

meets has a left adjoint.

7

http://etd.uwc.ac.za



2.3 Category and Functor

The notion of posets and order preserving maps, elucidated above, can be extended to more
general frameworks: category and functor. Further, since the concepts of category and functor
will be frequently used in this work, we dedicate this section to some concepts of categories and
functors that are pertinent to the subsequent discussions in this work. The reader who needs a
deeper insight into the topics of this section should consult [AHS90] and many other books of
category theory.

A category X is a mathematical structure consisting of the following data:

(1) a class ObX whose elements X,Y, Z, ... are called X -objects;

(2) for every pair (X,Y ) of X -objects, a set HomX (X,Y ), whose elements will be called
morphisms from X to Y ;

(3) for every triple of objects X,Y, Z, a composition law

HomX (X,Y )×HomX (Y, Z) −→ HomX (X,Z)

(f, g) −→ g ◦ f

(4) for every object X ∈ A, a morphism 1X ∈ HomX (X,X), called the identity on X such
that the following conditions hold:

(1) Associativity law: given a morphisms f ∈ HomX (X,Y ), g ∈ HomX (Y, Z), h ∈
HomX (Z,W ), the following equation

h ◦ (g ◦ f) = (h ◦ g) ◦ f

holds;

(2) Identity law: for all f ∈ HomX (X,Y ),

f ◦ 1X = f and 1Y ◦ f = f ;

(3) The sets HomX (X,Y ) are pairwise disjoint.

In this work, we will regularly use the notation f : X −→ Y in place of f ∈ HomX (X,Y ).

Example 2.3.1. (1) Let TOP be the category of topological spaces: ObTOP is the class of all

topological spaces, HomTOP(X,Y ) is the set of continuous maps from X to Y .

(2) Let Haus be the category of Hausdorff topological spaces: ObHaus is the class of Hausdorff

topological spaces. HomHaus(X,Y ) is the set of all continuous maps from X to Y .

Let X and Y be two categories. The category Y is said to be a subcategory of X if the
following conditions are satisfied:

(1) ObY ⊆ ObX ;

(2) HomY(X,Y ) ⊆ HomX (X,Y ) for every X,Y ∈ ObY ;
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(3) The composition of morphisms in Y is induced by the composition of morphisms in X ;

(4) The identity morphisms in Y are identity morphisms in X .

Furthermore, if for any pair (X,Y ) of objects of Y, we have HomY(X,Y ) = HomX (X,Y ) then
Y is called a full subcategory of the category X .

Considering the Examples (2.3.1), it is clear that the category Haus is a full subcategory of
the category TOP.

Let X be a given category. The dual (opposite) category of X , denoted by X op, is the
category obtained in the following way:

(1) ObX op=ObX ;

(2) HomX op(X,Y )= HomX (Y,X) (that means the morphisms of X op are those of X pointing
in the opposite direction);

(3) HomX op(X,Y )×HomX op(Y, Z) −→ HomX op(X,Z) is defined as follows:

gop ◦ fop = (f ◦ g)op

for all fop ∈ HomX op(X,Y ) and gop ∈ HomX op(Y,X);

(4) The identities in X op are exactly the same as the ones in X .

As we have just observed, a category X has two types of data, its objects and its morphisms.
Thus, a functor a F from category X to a category Y will need to have two components, one
that acts on objects, and one that operates on morphisms. Thus,

Given any two categories X and Y, a covariant functor (respectively, contravariant
functor) F : X −→ Y comprises the following data:

(1) A mapping X �−→ FX : ObX −→ ObY;

(2) for every pair (X,Y ) of X -objects, a mapping f �−→ F (f): HomX (X,Y ) −→ HomY(FX,FY )
such that the following axioms hold:

(a) for any X -objects X, F (1X) = 1FX ;

(b) for any f ∈ HomX (X,Y ), g ∈ HomY(Y,Z) we have: F (g◦f) = F (g)◦F (f) ( respectively,
F (g ◦ f) = F (f) ◦ F (g)).

It should be clear to the reader that F : X −→ Y is a covariant functor if and only if
F : X op −→ Y is a contravariant functor.

There are plenty of adjoint situations between two posets/ categories in various branches of
mathematics. In the next section, we present the canonical place where this occurs the most
and which will be extensively utilized throughout this work.
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Pseudofunctor

Let X be a general category. P : X −→ Pos is a pseudofunctor to the category Pos of posets
and order preserving maps between them when, to any X in X it assigns a poset PX and to
any morphism f : X −→ Y in X it assigns a Galois connection

PX
fo

⊥
��
PY

f∗
��

that is, for all a ∈ PX and b ∈ PY , it holds that

fo(a) ≤ b ⇔ a ≤ f∗(b).

Note: In this thesis, we shall sometimes treat the posets PX merely not as posets but as com-
plete lattices.

The above adjunction has the following direct consequences, which we will need throughout
this thesis.

Lemma 2.3.1. (1) a ≤ f∗(fo(a)), for all a ∈ PX;

(2) fo(f∗(b)) ≤ b, for all b ∈ PY ;

(3) fo(
�

i∈I ai) =
�

i∈I f
o(ai) whenever ai ∈ PX;

(4) f∗(
�

i∈I bi) =
�

i∈I f
∗(bi) whenever bi ∈ PY .

Moreover, if, in a certain category, the right adjoint f∗ exhibits commutativity with all joins,
in view of Proposition (3.3.8), it possesses a right adjoint. We denote it by f∗ and it is defined
by

f∗(a) =
�

{b ∈ PY | f∗(b) ≤ a}
for all a ∈ PX. In this instance, we obtain the following alternative diagram:

PY
f∗

⊥
��
PX

f∗
��

Equivalently,
f∗(c) ≤ d ⇔ c ≤ f∗(d)

for all c ∈ PY and d ∈ PX. Furthermore, an analogous observation to the statement of Lemma
(2.3.1) can also be made in this context.

A more practical and common example of such functor is obtained when the X = Set and
P taken to be the powerset functor in the following way:

Let X be a set, and consider the powerset PX of X, forming a poset. Let f : X −→ Y be a
function. The functor P establishes the image-preimage adjunction

PX
fo

⊥
��
PY

f−1
��

10
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between PX and PY .
In fact, any function f : X −→ Y between two sets X and Y gives rise to three mappings
between PX and PY which we provide below:

fo : PX −→ PY which takes A ⊆ X to fo(A) and f−1 : PY −→ PX which sends B ⊆ Y
to its pre-image under f , that is, f−1(B). Then the following diagram

PX
fo

⊥
��
PY

f−1
��

is a Galois connection between (PX,⊆) and (PY,⊆).

Further, the fact that the pre-image behaves well with the set operations (union and inter-
section) ensures that it also has a right adjoint f∗ : PX −→ PY . It is given by

f∗(A) =
�

{B ⊆ Y | f−1(B) ⊆ A} (2.3.1)

In addition to this, the following observation is also clear for any subset A of X

Y \ f∗(A) =
�

{Y \B | f−1(B) ⊆ A};

=
�

{Y \B | X \A ⊆ X \ f−1(B) = f−1(Y \B)};

=
�

{Y \B | fo(X \A) ⊆ Y \B};
= fo(X \A).

Thus, the expression in (2.3.1) is a equivalent to

f∗(A) = Y \ fo(X \A). (2.3.2)

Therefore, we obtain another adjunction:

PX
f∗
� ��

PY
f−1

��

which defines a new Galois connection between the posets (PX,⊆) and (PY,⊆).

Let X be any category and P : X −→ Pos a pseudofunctor to the category of posets and order
preserving maps between. This pseudofunctor P assigns, to any two morphisms f : X −→ Y
and g : Y −→ Z in X , the following successive Galois adjoints

PX
fo

⊥
��
PY

f∗
��

go

⊥
��
PZ

g∗
��

Now, since Galois adjoints are unique, it follows that:

(i) (g ◦ f)o(a) = go(fo(a)) for all a ∈ X;

(ii) (g ◦ f)∗(b) = f∗(g∗(b)) for all b ∈ Z.

Note: Although we have explicitly defined the concept of a pseudofunctor, which will be
widely used in this work, we shall often recall its definition whenever clarity requires it.
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2.4 Category of Frames and Frame Homomorphisms

One of the categories which will play a significant role in this dissertation is the category Frm.

A frame L is a complete lattice satisfying the following distributivity law:

a ∧
�

C =
�

{a ∧ c | c ∈ C}

for all a ∈ L and C ⊆ L. We will denote by 0L and 1L the bottom and top elements of the frame
L, respectively. In certain cases, we will omit the subsripts in 0L and 1L when clarity does not
necessitate it.

A subframe M of a frame L is a subset M ⊆ L which is itself a frame under the same
operations as L, that is to say, (∧ and

�
) as L and both 1L and 0L belong to M .

A frame homomorphism is a map h : L −→ M between frames that preserves:

• all joins, that is, h(
�

S) =
�{h(s) : s ∈ S for any S ⊆ L}; including the bottom element

(h(0L) = 0M );

• finite meet, that is, h(s ∧ v) = h(s) ∧ h(v) for all s, v ∈ L; including the top element
(h(1L) = 1M ).

Frames and frame homomorphisms are objects and morphisms of the category Frm.

The example motivating the study of frames and frame homomorphisms stems from topology:
for every topological space (X,ΩX), the complete lattice ΩX of open subsets of X is a frame.
The infima and suprema ΩX are given by

�

i∈I
Ai = int

��

i∈I
Ai

�
and

�

i∈I
Ai =

�

i∈I
Ai

The bottom element of ΩX is ∅ and the top element is X. A frame constructed in this way is
termed spatial. It is essential to highlight that not all frames are spatial. For an illustration of
frames which are not spatial, we mention the non-atomic complete Boolean algebras.

In fact, there exists a contravariant functorial relationship between Top and Frm which
we describe below. Given a topological space (X,ΩX), the lattice of open sets, is a frame and
given any continuous map f : (X,ΩX) −→ (Y,ΩY ), the map Ω(f) : ΩY −→ ΩX where

Ωf(A) = f−1(A)

for all A ∈ ΩY , is a frame homomorphism. It turns out that

Ω : Top −→ Frm

is a contravariant functor called the open functor from Top to Frm.

Definition 2.4.1. Let 2 represent the two-point frame {0, 1}. A point of a frame L is a frame

homomorphism h : L −→ 2.
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The collection of all the points of the frame L is called the spectrum of L. It is denoted by
ΣL. For each a ∈ L, put

Σa = {ν : L −→ 2 | ν(a) = 1}
Then, the set τ = {Σa | a ∈ L} is the spectral topology and the pair (ΣL, τ) is a topological
space. We shall frequently write ΣL when referring to the topological space (ΣL, τ).

Now, let h : L −→ M be a frame homomorphism. The mapping

Σh : ΣM −→ ΣL

defined by (Σh)(ν) = ν ◦ h, where ν is a point of M , is a continuous map. This leads again to a
contravariant functor

Σ : Frm −→ Top

called spectrum functor from Frm to Top.

We, thus, have the following well-established theorem that permits the transition between
the categories Top and Frm bidirectionally:

Theorem 2.4.2. The functors Σ : Frm −→ Top and Ω : Top −→ Frm are adjoint on the

right.

The dual category of Frm is Frmop = Loc, the category of locales and localic maps. In
fact, the category Loc offers to pointfree topologists an opportunity of reasoning topologically
on frames. When they do so, the functors Ω : Top −→ Frm and Σ : Frm −→ Top become
covariant.

Among many other examples of frames and frame homomophisms, we mention:

• Every complete Boolean algebra is a frame;

• Every finite distributive lattice is a frame;

• Every lattice homomorphism h : A −→ B with both A and B finite lattices is a frame
homomorphism;

• Every Boolean homomorphism between complete Boolean algebras is a frame homomor-
phism.

A frame L is said to be regular if each x ∈ L can be written as

x =
�

{a ∈ L | a ≺ x}

where the notation a ≺ x reads a rather below x and it is defined by

a ≺ x if and only if a∗ ∨ x = 1L

Equivalently, a ≺ x in case there is an element z, called a separating element, such that

x ∧ z = 0L and z ∨ a = 1L.
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On the other hand, a frame L is called completely regular if each x ∈ L can be written as
the join of elements completely below it, that is,

x =
�

{a ∈ L | a ≺≺ x}

where the relation a ≺≺ x, which reads a completely below x, means that there exists a
family of elements

{ri ∈ L, i ∈ Q ∩ [0, 1]}
such that r0 = a and r1 = x, ri ≺ rj whenever i < j.

Because of the join-preserving feature, every frame homomorphism h : L −→ M is always
associated with a right adjoint h∗ : M −→ L such that h(x) ≤ y holds in M if and only if
x ≤ h∗(y) holds in L, and for all x ∈ L, h∗(x) is given by

h∗(x) =
�

{y ∈ L | h(y) ≤ x}.

Hence, the diagram

L
h

⊥
��
M.

h∗
��

is an adjoint pair.

Note that h∗ is not, in general, a frame homomorphism, however, it preserves meets. More-
over, we note the following properties of h∗ for a given frame homomorphism h : L −→ M :

• h is onto if and only if h(h∗(x)) = x for all x ∈ M ;

• h is one-to-one if and only if h∗(h(y)) = y for all y ∈ L;

• because of the adjunction, h � h∗, h(h∗(x)) ≤ x and y ≤ h∗(h(y)) for all y ∈ M,x ∈ L.

The concept of closed and dense frame homomorphisms will play a crucial role in the subsequent
discussions. We recall the definition below.

Definition 2.4.3. A frame homomophism h : L −→ M is said to be:

(1) dense if h(x) = 0M implies x = 0L, equivalently h : L −→ M is dense if h∗(0M ) = 0L;

(2) closed if

h∗(h(x) ∨ y) = x ∨ h∗(y)

for all x ∈ L and y ∈ M .

The following well-known lemma, which establishes a connection between dense onto frame
homomorphisms, their adjoints, and pseudocomplements, will play a significant role in the sub-
sequent chapters.

Lemma 2.4.4. Let h : L −→ M be a dense onto frame homomorphism. Then for all x ∈ L, y ∈
M , we have that:

(1) (h(x))∗ = h(x∗);

14

http://etd.uwc.ac.za



(2) (h∗(y))∗ = h∗(y∗).

Proof.

(1) (h(x))∗ =
�

{z ∈ M | z ∧ h(x) = 0}

=
�

{h(y) ∈ M | h(y) ∧ h(x) = 0}, since h is onto

=
�

{h(y) ∈ M | h(y ∧ x) = 0}

=
�

{h(y) ∈ M | y ∧ x = 0}, since h is dense

= h
��

{y ∈ L | y ∧ x = 0}
�

= h(x∗).

(2) h(h∗(y) ∧ (h∗(y))∗) = h(0) ⇒ h(h∗(y)) ∧ h(h∗(y))∗ = 0

⇒ y ∧ h(h∗(y))∗ = 0

⇒ h(h∗(y))∗ ≤ y∗

⇒ (h∗(y))∗ ≤ h∗(y∗)

Conversely,

h(h∗(y∗) ∧ h∗(y)) = h(h∗(y∗)) ∧ h(h∗(y));

= y∗ ∧ y since h is onto;

= 0

Thus, h(h∗(y∗) ∧ h∗(y)) = 0 and since h is dense, h∗(y∗) ∧ (h∗(y) = 0 and h∗(y∗) ≤ (h∗(y))∗.

�

Following [DN10], we shall say that a frame homomorphism h : L −→ M is nearly open if
it satisfies (h(x))∗ = h(x∗). In other words all dense and onto frame homomorphisms are nearly
open.

2.5 Compactness and Compactification

There are several different ways of characterizing compactness of a topological space. For obvious
reasons, the one using open covers can be easily generalized to frames. Let A be a subset of L.
Then A is called a cover of L if

�
A = 1L. B ⊆ A is called a subcover of A if B covers L also.

A frame L is said to be compact if each of its covers has a finite subcover.

Definition 2.5.1. A dense and onto frame homomorphism h : M −→ L is called a compacti-

fication of the frame L if M is a compact and regular frame.
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2.6 Ideals

A subset I of a frame L is called an ideal if it satisfies the following:

(i) 0L ∈ I;

(ii) x, y ∈ I implies x ∨ y ∈ I; that is; I is closed under finite joins;

(iii) x ≤ y and y ∈ I implies x ∈ I; that is; I is a downset.

Dualizing the axioms of an ideal gives rise to the concept of a filter in a frame. However, it
is important to note that this concept will not be utilized in the context of this work.

The set of all ideals within the frame L is denote by JL. This is itself a frame ordered by
the set inclusion. In fact, it is also a compact frame. As far as downsets are concerned, there is
a notation

↓ A = {b ∈ L | there exists a ∈ A with b ≤ a}
for A ⊆ L. For x ∈ L, the principal ideal ↓ {x} is written as ↓ x and ↓: L −→ JL is a frame
homomorphism which is also right adjoint to the join map

�
: JL −→ L. Moreover, the join

map
�

is always dense and onto. Thus, the pair (
�
,JL) forms a compactification of the frame

L if JL is regular.

Note: Although the notion of an (E ,M) factorization will be frequently mentioned in early
chapters, we ask the reader to bear with us. The notion will only be formally defined in the last
chapter as that is where we will need it the most.
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Chapter 3

OVERVIEW OF TOPOGENOUS

ORDERS ON COMPLETE

LATTICES

3.1 Motivation and Settings

As highlighted in the introductory chapter, the concept of syntopogenous structures on a set
[Csá63] generalizes that of topological, proximal and uniform structures simultaneously.

Syntopogenous structures are families of topogenous structures on a set. As one of the
aims of this work is to define and investigate syntopogenous structures on complete lattices,
we dedicate this chapter to developing an understanding of topogenous structures within the
context of complete lattices. Let’s start by revisiting the definition of topogenous orders on a
given set.

Definition 3.1.1. [Csá63] Let X be a non-empty set, and let � be an order relation on PX,

the powerset of X, such that:

(1) ∅ � ∅ and X �X;

(2) A �B ⇒ A ⊆ B for all A,B ∈ PX;

(3) A ⊆ C �B ⊆ D ⇒ A �D for all A,B,C,D ∈ PX;

(4) (a) if A �B and C �D then A ∩ C �B ∩D for all A,B,C,D ∈ PX;

(b) if A �B and C �D then A ∪ C �B ∪D for all A,B,C,D ∈ PX ;

(5) A �B ⇒ X \B �X \A, for all A,B ∈ PX.

We shall refer to the binary relation �X on a set X as a topogenous order on X if it satisfies
(1)-(4). Such a relation is termed perfect topogenous order provided, in addition, (b) holds for
arbitrary union, and it is called symmetric if it satisfies (5). Consequently, the pair (X, �X)
is called a topogenous space (respectively, perfect topogenous space, symmetric topogenous
space) provided that �X is a topogenous order (respectively, perfect topogenous order, symmetric
topogenous order) on the set X.
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Definition 3.1.2. [Csá63] If (X, �X) and (Y, �Y ) are topogenous spaces, a function f : (X, �X) −→
(Y, �Y ) is said to be a topogenous map if

A �Y B ⇒ f−1(A) �X f−1(B) (3.1.1)

for all A,B ⊆ Y.

If the function f : (X, �X) −→ (Y, �Y ) satisfies (3.1.1), we shall also say that it is topoge-
nously continuous.

We use the symbol TopG (respectively, PTopG, STopG) to denote the categories of to-
pogenous spaces (respectively, perfect topogenous spaces, symmetric topogenous spaces) and
topogenously continuous maps between them. In [Chu88], Chung proved the following:

TOP, the category of topological spaces and continuous maps is isomorphic to the category
PTopG.

Császár motivated the study of topogenous orders on a topological space (X, τ) by introduc-
ing the following order:

A �B ⇔ Ao ⊆ B

for all A,B ⊆ X.

Example 3.1.1. (1) [Fla72] Let X represent the set of real numbers and � any positive num-

ber. The order relation <� defined by

A <� B ⇔ supA+ � ≤ inf(X \B)

for all A,B ⊆ X, is a topogenous order on X.

(2) Let (X, d) be a metric space and as in the previous example, � any positive number. For

all A,B ⊆ X, define,

A �B ⇔ A� ⊆ B

where

A� = {x ∈ X | d(x,A) ≤ �}

is a topogenous order on (X, d).

In 1968, E. Čech [Čec68] introduced the study of closure operators on a given set X. These
operators are maps k : PX −→ PX, where PX represents the power set of X, and they satisfy
the following axioms: groundedness, extensiveness and order preservation. Idempotent closure
operators which were also introduced in the same paper, were intensively discussed in [Sie34]
and in numerous other books. In fact, closure operators have several pleasing applications in
various branches of mathematics, including data analysis [SWW98], quantum mechanics [Aer99]
and [Pir98]. As mentionned in [Šla22], the set theoretic closure operators may be generalized by
considering them on partially ordered sets instead of the Boolean algebra PX. These generalized
closure operations which are extensive, order preserving and idempotent have strong relationship
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with Galois connection and has been extensively studied in categorical topology yielding satisfac-
tory results. For further details, we refer the reader to the book [DT95] of Dikranjan and Tholen.

Historically, the study of closure operator, also interior operator on abstract categories re-
quires the notion of (E ,M)-factorization stuctures and that of subobjects. More precisely, a
closure (interior) operation on a category X equipped with (E ,M)-factorization stucture is ob-
tained when, for each object X of X , a closure (interior) operator is given on a subobject lattice
such that each X -morphism f : X −→ Y is continuous with respect to closure (interior) operator
on subobject lattices of X and Y . Therefore, exploring the behavior of a closure (interior) oper-
ator within an abstract category involves studying the properties of closure (interior) operator
on the subobject lattice in the relevant category. To substantiate the points made above, the
reader is referred to [DT95], and [Vor00] for closure and interior operators, respectively.

Recently, the study of topogenous order on a general category emerged in [HIR16]. In the
paper, a topogenous order � on a category X with a well defined (E ,M)-factorization stucture
for morphisms is defined on a subobject lattice of an object X of X . This definition guarantees
that every morphism f : X −→ Y in X is topogenously continuous on the subobject lattices of
X and Y .

In summary, investigating closure (interior) operator and topogenous orders on a category
entails examining the behavior of closure (interior) operator and topogenous orders on the
subobject lattices of objects within that category. It is worth emphasizing that, in each case,
these subobject lattices are always assumed to be complete. It is clear that the concept of a
complete lattice plays a central role in the study of topogenous orders, including closure and
interior operators, even at the categorical level.

In fact, this is not surprising to us, as indicated by the authors in [HIR16]. They highlighted
that the concepts of (E ,M)-factorization stuctures and that of subobjects are not essential in
the study of topogenous orders on a category.

The existence of a pseudofunctor F : X −→ Pos, which maps each object X in X to a poset
FX, and to every morphism f : X −→ Y in X an adjoint pair

FX ⊥ FY

fo

f∗

is sufficient.

In this present chapter, we aim to define and study topogenous orders on general complete
lattices. We extend numerous notions from topological categories to the realm of general com-
plete lattice theory, including closure and interior operators, which yields several classical results
from topological category as a special case. We demonstrate that topogenous orders encompass
both closure and interior operators within lattices. In this context, the results in [HIR16] ap-
pears as a special case. Moreover, if we narrow down our examination of topogenous orders to
frames, our results serve as a pointfree counterpart to the findings in [Chu88]. Our methods of
proof share similarities with those utilised in [HIR16]. We also characterise the so-called strict
maps both in frames and in topology. We conclude the chapter with a number of illustrative
examples, highlighting the importance of studying topogenous within complete lattices.
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3.2 Closure and Interior Operations on Complete Lattices

We begin this section by presenting some well-known facts about closure and interior operations
on complete lattices which are relevant to this chapter and the subsequent ones. While closure
and interior operations are dually order isomorphic when defined on the same lattice, we be-
lieve it is important to study both notions independently since we will use them separately at
times. Regarding closure, we establish a bijective correspondence between closure systems and
idempotent closure operations on a lattice. In the case of non-idempotent closure operations,
we obtain a Galois connection between closure systems and closure operations on a lattice. We
conclude this section with a few illustrative examples.

Definition 3.2.1. Let X be a complete lattice and let kX : X −→ X be a mapping on X. Then

k is called a closure operation on X if it satisfies the following conditions:

(K1) expansive, that is, x ≤ kX(x) for all x ∈ X;

(K2) order preserving, that is, x ≤ y ⇒ kX(x) ≤ kX(y) for all x, y ∈ X.

Moreover, a closure operation on a complete lattice X is said to be:

(K3) idempotent if kX(kX(x)) = kX(x) for all x ∈ X;

(K4) additive if k(x ∨ y) = k(x) ∨ k(y) for all x, y ∈ X;

(K5) grounded if k(0X) = 0X .

We represent the collection of all the closure operations on the lattice X by C(X). It is
pre-ordered with the following relation: k ≤ k� provided k(y) ≤ k�(y) for all y ∈ X. The symbol
idC(X), adC(X) and gC(X) will be used to denote the collections of all the idempotent, additive
and grounded closure operations on the lattice X, respectively.

Given a complete lattice X and an idempotent closure operation k on X, the pair (X, kX)
is called a closure system. It is important not to confuse this with a closure space. A closure
space should be understood as a pair (X, kX) where X is generally a non-ordered set, and k
is a closure operation in the usual sense. That is, a closure operation on the Boolean lattice
(P (X),⊆) satisfying the axioms all of Definition (3.2.1).

Definition 3.2.2. [Rom08] LetX be a complete lattice. A subset S ofX is called a
�
-structure,

or closure system if S is closed under arbitrary meet in X, meaning that A ⊆ S implies
�

A ∈ S.

As described in [Rom08], one compelling aspect of
�
-structure lies in their ability to char-

acterize closed sets of a closure operator which is a widely used concept in mathematics.

Any subset of a complete lattice X induces a closure operation on X and this closure oper-
ation is idempotent if the subset under consideration is closed under meet.

Proposition 3.2.1. Let X be any complete lattice and S ⊆ X. Then for all x ∈ X,

kS(x) =
�

{y ∈ S | x ≤ y} (3.2.2)

is a closure operation on X. In addition, if S is a
�
-structure in X then kS is idempotent.
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Proof. Evidently, kS is a closure operation on X. To prove k is idempotent, one uses (K1) to

show that k(a) ≤ k(k(a)), on one hand, on the other hand, k(k(x)) =
�{y ∈ S | k(x) ≤ y} ≤

k(x), since k(x) is defined in terms of meet. Thus, k(k(x)) = k(x).

�

For a complete lattice X, we use the symbol MS(X) to denote the collection of all the
�
-

structures on X. Ordered with the set inclusion, MS(X) can be seen to be a complete lattice.
The arbitrary meets and arbitrary joins are given by the set theoretic union and intersection
giving suprema and infima. The least element of MS(X) is the set containing the bottom ele-
ment of X and the top element is the lattice itself, X.

Now let π : MS(X) −→ C(X) be the map defined by π(S) = kS where

kS(a) =
�

{x ∈ S | a ≤ x}

for all S ∈ MS(X). A restriction of π on idC(X) will also be denoted by Υ. Further, we denote
by ξ : C(X) −→ MS(X) the map defined by ξ(k) = Sk, where

Sk = {x ∈ X | x = k(x)}

for all k ∈ CX. The restriction of ξ on idC(X) will also be denoted by ς.

Theorem 3.2.3. The π : MS(X) −→ C(X) and ξ : C(X) −→ MS(X) are (Galois) joint between

(MS(X),⊆)op and (C(X),≤) with π to the right and ξ to the left.

Proof. It is easy to check that the maps π and ξ are order preserving. Let X be a complete

lattice and S a closure system. By Proposition (3.2.1), kS is an idempotent closure operation on

X. Further, Sk is a meet structure: if A ⊆ Sk then
�

A ≤ a for all a ∈ A, and since k preserves

order, we obtain k(
�

A) ≤ k(a) = a for all a ∈ A. In particular, k(
�

A) ≤ �
A. Also, by (K1),

A ≤ k(
�

A). Thus
�

A = k(
�

A) and so
�

A ∈ Sk.

Let S ∈ MS(X). If a ∈ S then a ∈ {x ∈ S | a ≤ x} which implies that kS(a) ≤ a and so

kS(a) = a by (K1) and a ∈ SkS . Conversely, a ∈ SkS implies a =
�{x ∈ S | a ≤ x} ∈ S, since

S is a meet structure. Hence ξ(π(S)) = SkS = S, on the other hand,

kS
k
(a) =

�
{x ∈ Sk | a ≤ x};

=
�

{x ∈ X | a ≤ x = k(x)}.

But if x = k(x) then a ≤ x ⇒ k(a) ≤ k(x) = x and k(a) ≤ x ⇒ a ≤ k(a) ≤ x. Thus, a ≤ x ⇔
k(a) ≤ x, so kS

k
(a) =

�{x ∈ Sk | k(a) ≤ x}. This shows that, in general, a ≤ k(a) ≤ kS
k
(a),

that is, k ≤ π(ξ(k)).

�

Corollary 3.2.4. There is a bijective correspondence between MS(X) and idC(X).
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Proof. By Theorem (3.2.3), the mappings Υ and ς restrict to ς : MS(X) −→ idC(X) and

Υ : idC(X) −→ MS(X). By the same theorem, k ≤ ς(Υ(k)). On the other hand, if k is

idempotent, then k(a) = k(k(a)) means that k(a) ∈ Sk and k(a) ∈ {x ∈ Sk | a ≤ x} thus

kS
k
(a) ≤ k(a) and ς(Υ(k)) ≤ k. Therefore kS

k
= k

�

The following example provides more insight into the connection between closure and closure
systems on a lattice.

Example 3.2.1. The lattice X = N ∪ {∞} is complete with n ≤ ∞ for all n ∈ N. Define

k(n) = n + 1. Note ∞ + 1 = ∞. Then k(n) is a closure operation on X, since n ≤ k(n) and

n ≤ m ⇒ k(n) ≤ k(m). Sk = {n ∈ X | n = n+1} = {∞} and kS
k
(a) =

�{n ∈ Sk | a ≤ n} = ∞
for all a ∈ X.

For the rest of the section, we provide a number of examples on closure operations on lattices.

(1) There is one well-known additive and idempotent closure operation on a frame called
nucleus. Let L be a frame. A nucleus on L is a mapping j : L −→ L such that:

(i) a ≤ j(a);

(ii) if a ≤ b ⇒ j(a) ≤ j(b);

(iii) j(a ∧ b) = j(a) ∧ (b);

(iv) j(a) = j(j(a)).

Definition 3.2.5. Let L be a frame. An element s in L is called a prime element if for

all a, b ∈ L, a ∧ b ≤ s implies a ≤ s or b ≤ s.

(2) The following lemma provides an other example of a closure operation on a lattice.

Lemma 3.2.6. Let L be a frame. For all a ∈ L, put

kL(a) =
�

{s ∈ L | s is prime and a ≤ s}

Then kL(a) is an additive and idempotent closure operation on L.

Proof. (K1) is clear. For (K2), if a ≤ b then {s ∈ L | s is a prime and a ≤ s} ⊆ {s ∈ L | s
is prime and b ≤ s}, thus in particular,

�{s ∈ L | s is a prime and a ≤ s} ≤ �{s ∈ L | s
is prime and b ≤ s} and this gives k(a) ≤ k(b). Further, let a, b ∈ L, k(a∧b) =

�{s ∈ L | s
is a prime and a ∧ b ≤ s}=�{s ∈ L | s a is prime and a ≤ s or b ≤ s}=k(a ∧ b), that

is k is additive. Lastly, for idempotency, one easily checks that k(k(a)) =
�{s ∈ L | s

is a prime and k(a) ≤ s} ≤ k(a) and that by (K1), k(x) ≤ k(k(x)) always holds. Thus,

k(x) = k(k(x)).

Definition 3.2.7. Let X be a complete lattice and let iX : X −→ X be a mapping on X. Then

iX is called an interior operation on X if it satisfies the following axioms:
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(I1) contractive iX(x) ≤ x for all x ∈ X;

(I2) order preserving x ≤ y ⇒ iX(x) ≤ iX(y), for all x, y ∈ X;

In addition, an interior operation on a complete lattice X is classified as:

(I3) idempotent if iX(iX(x)) = iX(x) for all x ∈ X;

(I4) additive if i(x ∨ y) = i(x) ∨ i(y) for all x ∈ X;

(I5) grounded if i(1X) = 1X .

The set comprising all the interior operations on a lattice X will be denoted by the symbol
INT (X). It is pre-ordered with the following relation: i ≤ i� if and only if i(x) ≤ i�(x) for all
x ∈ X. Additionally, we utilize the symbols idINT (X), adINT (X) and gINT (X) to represent
the collections of all the idempotent, additive and grounded interior operations on the lattice
X, respectively.

Proposition 3.2.2. Let X be a complete lattice and N a subset of X. Then the function iNX ,

which associates to each x ∈ X,

iNX(x) =
�

{y ∈ N | y ≤ x}

is an interior operation on the lattice X. Furthermore, if N satisfies the condition of being

closed under arbitrary joins (A ⊆ N implies
�

A ∈ N), then iN is idempotent.

Proof. It is straight forward to see that iNX is an interior operation on X. For idempotency,

iNX(iNX(x)) =
�{p ∈ N | p ≤ iNX(x)} ≥ iNX(x), since N is join preserving, and by, (I1),

iNX(iNX(x)) ≤ iNX(x).

�

We are now ready to introduce the central concept of this chapter.

3.3 Topogenous Orders on Complete Lattices

We define and study topogenous orders on complete lattices. We explore their fundamental
properties. One of the key insights in this section is that topogenous orders respecting arbitrary
meets correspond nicely to closure, and the topogenous orders which respect arbitrary joins
to interior operations. The findings in this section encompass the work of Holgate et al. as
documented in [HIR16]. The examples we furnish at the end of the chapter substantiate this
assertion. Furthermore, when we extend our consideration to frames rather than just complete
lattices, our results offer a pointfree counterpart to the work of Chung in [Chu88], where the
study focused on topogenous spaces.

Definition 3.3.1. Let X be a complete lattice. A topogenous order on X is an order relation

�X on X fulfiling the following axioms:

(T1) x �X y ⇒ x ≤ y for all x, y ∈ X;
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(T2) x ≤ w �X z ≤ y ⇒ x �X y, for all x, y, z, w ∈ X.

The set of all topogenous orders on the lattice X is denoted by TORD(X), and it is pre-
ordered in the following manner: � ⊆ �

�
if and only if (x � y ⇒ x �

�
y) for all x, y ∈ X. Clearly

⊆ is a partial order on TORD(X).

Furthermore, we shall say that a topogenous order on a lattice X respects meets if for all
x, y, a, b ∈ L, x � a and y � b implies x ∧ y � a ∧ b.

One of the reasons why we find it interesting to work with topogenous orders is that they
subsume both closure and interior operators.

3.3.1 Topogenous Orders Which Respect Joins or Interior Operation on

Complete Lattices

We show that the join respecting topogenous orders correspond nicely to interior operations on
a complete lattice. As a consequence of this, the idempotent interior operations are precisely
the interpolative topogenous orders.

(T3) Let X be a given complete lattice and �X a topogenous order on X. For all S ⊆ X, if
s �X y for all s ∈ S then

�
S �X y.

(T4) x �X y implies there exists z in X such that x �X z �X y.

Considering the formulas (T3) and (T4), we obtain two families of topogenous orders and ac-
cordingly two types of subcategories of TORD(X):

• �−TORD(X) the class of all topogenous orders which respect join.

• INTORD(X) the class of all topogenous orders which interpolate.

Lemma 3.3.2. Let X be a complete lattice and � ∈ TORD(X). The assignment i = {iX :

X −→ X} given by

i�X(x) =
�

{y ∈ X | y � x} (3.3.3)

for all x ∈ X defines an interior operation on X.

Proposition 3.3.1.
�−TORD(X) is order isomorphic to INT (X) with the inverse assign-

ments defined by

i�X(x) =
�

{y | y � x} and x �iX y ⇔ x ≤ i(y)

for all x, y ∈ X.

Proof. (I1) and (I2) follow from Lemma (??). On the other hand, (T1) follows from (I1)

and (T2) from (I2). The maps i −→ �i and � −→ i� are order preserving: indeed take �, �� ∈�
-TORD(X) such that � ⊆ ��. Then {z ∈ X| z � x} ⊆ {z ∈ X | z �� y}. In particular,�{z ∈ X| z � x} ≤ �{z ∈ X | z �� y}. Hence i�X(x) ≤ i�

�

X(x) for all x ∈ X. For the converse,

if i, i� ∈ INT(X) and i ≤ i� then x ≤ i(a) ⇒ x ≤ iX(a) ≤ i�X(a) ⇒ x ≤ i�X(a) showing that

�i ⊆ �i
�
. Lastly, x �i

�
y is equivalent to x � y. On one hand, if i ∈ INT (X), and a ∈ X,

then i�
i
(a) =

�{b | b �iX a} =
�{b | b ≤ i(a)} = i(a). On the other hand, if a �i

�

X b then

a ≤ i�X(b) =
�{t | t � b} ⇒ a � b, where the implication follows since � preserves arbitrary joins.
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�

We denote by
�
-INTORD(X) the collection of all topogenous orders that respect arbitrary joins

and are interpolative.

Corollary 3.3.3.
�
-INTORD(X)=IdINT(X)

Proof. Let i ∈ INT (X) and x ∈ X. If i(x) = i(i(x)), then

y �i x ⇒ y ≤ i(x) = i(i(x))

⇒ y ≤ i(i(x)) ≤ i(x)

⇒ y ≤ i(z) ≤ i(x); where z = i(x)

⇒ y �i z �i x

Therefore �i interpolates. If � interpolates, then x � y ⇒ ∃ z ∈ X such that x � z � y ⇒ x � z ≤
i�(y) ⇒ x � i�(y); Thus, {b ∈ X | b � y} ⊆ {a ∈ X | a � i�(y)} implying that i�X(y) =

�{b ∈
X | b � y} ≤ �{a ∈ X | a � i�(y)} = i�X(i�X(y)), and this shows that i� is idempotent.

�

Definition 3.3.4. Let �, �� ∈ TORD(X). The topogenous order �X ◦ ��
X defined by

x �X ◦ ��
X y if ∃ z ∈ X : x �X z �

�
X y

for all x, y, z ∈ X is called the composition of topogenous orders. Clearly, � interpolates if

� ◦ � = �.

Proposition 3.3.2. Let �, �
� ∈ �

-INTORD(X) and x, y ∈ X. Then x �X ◦ �
�
X y ⇔ x ≤

i�X(i�
�

X(y)).

Proof. On one hand, if �, �
� ∈ �

-INTORD(X) and x �X ◦ �
�
X y for all x, y ∈ X. Then there

exists z ∈ X such that x �X z �
�
X y and since both �, �

�
preserve joins, we get x ≤ i�L(z) and

z ≤ i�
�

L (y). Hence x ≤ i�X(i�
�

X(y)).

Conversely, let x ≤ i�X(i�
�

X(y)) then by setting z = �
�
X(y), we obtain x �X i�(i�

�

X(y)) which is

equivalent to x �X ◦ ��
X y. This completes the proof.

�

Confining our examination to frames, in the next lemma, we prove that the interior operation
defined in (3.3.3) is a frame homomorphism. This result will be instrumental in establishing a
connection between the interior operation and symmetric topogenous orders.

Lemma 3.3.5. Let X be a frame and � a meet respecting topogenous order on X such that

0X � 0X and 1X � 1X . The interior operation defined in (3.3.3) is a frame homomorphism

provided the interior operation in question is additive.
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Proof. Clearly, i� preserves both the top and the bottom elements, that is, i�X(0X) = 0X and

i�X(1X) = 1X . To conclude the proof, we only need to show that i� preserves finite meets, that

is, we need prove that i�X(a∧ b) = i�X(a)∧ i�X(b) for all a, b ∈ X. Since for any interior operation

i�L(a ∧ b) ≤ i�X(a) ∧ i�X(b)

always holds, it suffices to show the other inequality. To this end and for a, b, z ∈ X, let

z ≤ i�X(a) ∧ i�X(b).

Then z ≤ i�X(a) and z ≤ i�X(b). Thus, by definition of i�, we get

z ≤
�

{x | x � a} and z ≤
�

{y | y � b}.

It follows, from the last two inequalities, that z ≤ �{x | x � a} ∧�{y | y � b}. Hence, putting

t =
�{x | x � a}, we obtain

z ≤ t ∧
�

{y | y � b} ⇒ z ≤
�

{t ∧ y | y � b};

⇒ z ≤
�

{y ∧
�

{x | x � a} | y � b};

⇒ z ≤
�

{
�

{x ∧ y | x � a} | y � b};

⇒ z ≤
�

{x ∧ y | (x � a) and (y � b)};

⇒ z ≤
�

{g ∈ X | g � (a ∧ b)};
⇒ z ≤ i�X(a ∧ b).

This means that i�X(a)∧ i�X(b) ≤ i�X(a∧b) and together with the other inequality, we have shown

that i� is a frame homomorphism.

�

Definition 3.3.6. Let X be a frame and � a topogenous order on X. We shall say that � is

symmetric if for all a, b ∈ X, x � y ⇒ y∗ � x∗. Where (∗) stands for pseudocomplement.

The next proposition relates interior operation (join respecting topogenous orders) and sym-
metric topogenous orders on the frame X.

Proposition 3.3.3. Let X be a frame, i an interior operation on X. If i preserves pseudocom-

plement, then x �i y ⇒ y∗ �i x∗ for all x, y ∈ X.

Proof. Let i be an interior operation on X. Then for x, y ∈ X, we have

x �i y ⇒ i(x) ≤ x ≤ i(y) ≤ y;

⇒ y∗ ≤ i(y)∗ ≤ x∗ ≤ i(x)∗;

⇒ y∗ ≤ i(x∗) since i preserves ()∗;

⇒ y∗ �i x∗.

�
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3.3.2 Topogenous Orders Which Respect Meets or Closure Operation on

Complete Lattices

We simultaneously examine topogenous orders and closure operations on a complete lattice. We
prove that topogenous orders which respect meets are order isomorphic to closure operations,
and hence the idempotent closure operations are the interpolative ones.

(T5) For all A ⊆ X, if x �X a for all a ∈ A then x �X
�

A.

In fact, (T5) defines a new type of subcategory of TORD(X). It is denoted by
�
-TORD(X) and

it is the class of all topogenous orders which respect arbitrary meet on X. Applying analogous
reasoning to Lemma (3.3.2) and Proposition (3.3.1) leads to the following conclusions:

Lemma 3.3.7. Let X be a complete lattice and � ∈ TORD(X). The assignment k�X : X −→ X

given by

k�X(x) =
�

{y ∈ X | x � y}

is a closure operation on X.

Proposition 3.3.4.
�
-TORD(X) is order isomorphic to C(X) with the inverse correspondences

defined by

k�(x) =
�

{y | x � y} and x �k y ⇔ kX(x) ≤ y

for all x ∈ X.

Denoting by
�
-INTORD(X) the collection of all interpolative topogenous orders which pre-

serve meet, we also obtain the following corollary,

Corollary 3.3.8.
�
-INTORD(X) is equivalent to IdC(X)

which is also not hard to prove.

Definition 3.3.9. Let X be a complete lattice. An element x ∈ X is said to be �-strict if x �x.

It is clear that if � ∈ �−TORD(X), then the �-strict elements are equivalent to the open
ones in a lattice while if � ∈ �−TORD(X), then the �-strict elements are equivalent to the
closed elements.

Definition 3.3.10. (1)
�
-aTORD(X): The collection of all topogenous orders in

�
-TORD(X)

satisfying

x � y and a � b ⇒ x ∨ a � y ∨ b

for all x, y, a, b ∈ X.

(2)
�
-gTORD(X) the collection of all topogenous orders in

�
-TORD(X) satisfying

0X � 0X

Proposition 3.3.5. Let X be a complete lattice. The following equivalences hold:

(1)
�
-gTORD(X) ∼= gC(X)
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(2)
�
-aTORD(X) ∼= adC(X)

Lemma 3.3.11. Let X be a complete lattice and {�i, i ∈ I} ⊆ TORD(X). Define L by

L =
�

{�i, i ∈ I} (3.3.4)

Then L is a topogenous order on X. Furthermore, L satisfies (T3) and (T5) provided each �

does.

Similarly

Lemma 3.3.12. Let X be a complete lattice and {�iX , i ∈ I} ⊆ TORD(X). Define K by

K =
�

{�i, i ∈ I}

Then K is a topogenous order on X. In addition, K satisfies (T3) and (T5) provided each �

does.

We recall that INT (X), C(X) and TORD(X) are pointwise ordered collections of all the
interior operations, closure operations and topogenous orders on the complete lattice X, respec-
tively.

The following schematic representation provides a summary of our discussions above. It
gives a more general description of the diagram in ([HIR16]) obtain for on a general category.

�
−TORD(X) ∼=op C(X) � � �� TORD(X)

�� ��
INT(X)� ��� ∼=

�
−TORD(X)

3.3.3 Topogenously Continuous Maps

We extend the well known notion of continuous maps from classical topogenous orders (in the
sense of Császár) to our more general settings. Having shown that topogenous orders comprise
both closure and interior operators, it is natural to first transfer the concept of a continuous
map from the classical closure and interior operators to the general setting we provided.

In order to achieve our goal, throughout the remainder of this section, we shall consider a
general category X and a pseudofunctor P described in the introductory chapter:

Let X be a general category and P : X −→ Pos a pseudofunctor to the category of partially
ordered sets and order preserving maps between them which to any morphism f : X −→ Y in
X , we have a Galois connection

PX ⊥ PY

fo

f∗
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k-Continuous Morphism

Definition 3.3.13. Let k = {kPX : PX −→ PX}, X ∈ X be a family of endomaps on each

PX, X ∈ X . An X -morphism f : X −→ Y is said to be k-continuous if

fo(kX(x)) ≤ kY (f
o(x)) (3.3.5)

for every x ∈ PX.

Definition 3.3.14. A family k = {kPX : PX −→ PX}X∈X is said to be a closure operator on

X if each kPX is a closure operation on PX and every X -morphism is k-continuous.

Thanks to the Galois connection, the above continuity condition can also be equivalently
expressed in terms of the right adjoint as shown below.

Proposition 3.3.6. Let f : X −→ Y be a morphism in X and k a closure operator on X . Then

f is k-continuous if and only if:

kX(f∗(y)) ≤ f∗(kY (y)) (3.3.6)

for each y ∈ PY.

Proof. Let f : X −→ Y be k-continuous. Then for each y ∈ PY , we have that fo(kX(f∗(y)) ≤
kY (f

o(f∗y)) ≤ kY (y). It follows that fo(kX(f∗(y)) ≤ kY (y) and kX(f∗(y)) ≤ f∗(kY (y)) as

required.

On the other hand, assume (3.3.6) holds, then for each x ∈ P (X), x ≤ f∗(fo(x)) implies

that kX(x) ≤ kX(f∗(fo(x))) ≤ f∗(kX(fo(x))) giving kX(x) ≤ f∗(kX(fo(x))) and fo(kX(x)) ≤
kY (f

o(x)).

�
Let k be a closure operator on X . An element x ∈ X is said to be closed (with respect to k)

if k(x) = k.

Moreover, if one replaces the inequalities in (3.3.5) and in (3.3.6) by equalities, the well know
notion of k-closed and k-open morphisms are obtained. These maps have been widely studied
within the context of categories equipped with (E ,M)-factorization structure and important
results have been obtained both in algebra and in topology. See [DT95] for reference.

Definition 3.3.15. Let k be any closure operator on the category X . A morphism f : X −→ Y

is called k-closed if:

fo(kX(x) ∼= kY (f
o(x));

for all x ∈ PX.

k-open if

kX(f∗(y)) ∼= f∗(kY (y))

for all y ∈ PY .

29

http://etd.uwc.ac.za



Remark 3.3.16. Let f : X −→ Y be any morphism in X , x ∈ PX and y ∈ PY . The following

equivalent formulation of k-closed and k-open will be needed. f is said to be:

k-closed if and only if

kY (f
o(x)) ≤ fo(kX(x))

for all x ∈ PX.

k-open if and only if

f∗(kY (y)) ≤ kX(f∗(y))

for all y ∈ PY .

i-Continuous Morphism

Definition 3.3.17. Let i = {iPX : PX −→ PX} be a family of endomaps on each PX, X ∈ X .

An X -morphism f : X −→ Y is said to be i-continuous if

f∗(iY (y)) ≤ iX(f∗(y)) (3.3.7)

for every y ∈ PY .

Definition 3.3.18. A family i = {iPX : PX −→ PX}X∈X is said to be an interior operator on

X if each iPX is an interior operation on PX and every X -morphism is i-continuous.

As in the case of closure operator, interior operator can be expressed in terms of the right
adjoint ( right to f∗).

Proposition 3.3.7. Let f : X −→ Y be any morphism in the category X and i an interior

operator on X . If f∗ preserves all joins, then f is i-continuous if and only if

iY (f∗(x)) ≤ f∗(iX(x)) (3.3.8)

for all x ∈ PX

Proof. If f∗(iY (y)) ≤ iX(f∗(y)) holds for all y ∈ PY then f∗(iY (f∗(x)) ≤ iX(f∗(f∗(x)) for

all x ∈ PX. Since f∗ is adjoint to the left, we obtain iX(f∗(f∗(x)) ≤ iX(x)) which gives

f∗(iY (f∗(x)) ≤ iX(x) and iY (f∗(x)) ≤ f∗(iX(x)) as needed.

For the converse, if iY (f∗(x)) ≤ f∗(iX(x)) holds for all x ∈ PX then f∗(iX(f∗(y)) ≥
iY (f∗(f∗(y)). Since f∗ is adjoint to the right, it follows that iY (f∗(f∗(y)) ≥ iY (y) and f∗(iX(f∗(y) ≥
iY (y). Thus f

∗(iY (y)) ≤ iX(f∗(y)), that is, f is i-continuous.

�

Like in the case of closure operator, by replacing the inequalities in (3.3.7) and (3.3.8)
by equalities the so-called i-open and i-closed morphisms are obtained. These morphisms are
well defined and examined in [Ass19] within the context of categories equipped with (E ,M)-
factorization structure. See also references cited for further exploration.
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Definition 3.3.19. Let f : X −→ Y be any morphism in X and i an interior operator on X .

Then f is said to be: i-open if

f∗(iY (y) ∼= iX(f∗(y))

for every y ∈ PY .

Moreover, if f∗ preserves all joins, then f is i-closed if

iY (f∗(x)) ∼= f∗(iX(x))

for all x ∈ PX

Remark 3.3.20. Let f : X −→ Y be any morphism in X , x ∈ PX, y ∈ PY . If f∗ preserves

all joins, we also have the following equivalent formulation to the i-open (i-closed) property:

(a) f is i-open if and only if

iX(f∗(y)) ≤ f∗(iY (y))

for all y ∈ PY

(b) f is i-closed if and only if

f∗(iX(x)) ≤ iY (f∗(x))

for all x ∈ PX

We provide a few examples of interior operators. We only choose those which cannot be di-
rectly translated to closure operators via complementation. Details about many more examples
on interior operators can be found in [Ass19] and references therein.

Note: For consistency with the upcoming sections, we use h for frame homomorphisms,
even though we could have used f∗.

Example 3.3.1. Let X=Frm be the category of frames and frame homomorphisms. For each

L ∈ Frm, let ≺ symbolize the rather below relation. The map i≺L : L −→ L given by

i≺L (x) =
�

{b | b ≺ x}

defines an interior operation on L associated with the rather below relation. Futhermore, since

every frame homomorphism h : L −→ M preserve ≺, it follows that

h(iL(x)) ≤ iL(h(x))

for all x ∈ L. Thus, the family

i = {i≺L | L ∈ Frm} (3.3.9)

is an interior operator on Frm associated with the rather below. Note that if L is a regular

frame then the interior operator defined in (3.3.9) is the discrete operator. Moreover, it should

also be noted that one could replace ≺ with the completely below relation (≺≺) and obtain

analogous results.
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Although the notion of pre-uniformity is utilized in the next example, it will be formally
discussed in Chapter 5.

Example 3.3.2. [BO94, BP93] Given a frame L and U a preuniformity on L. The map

iL : L −→ L given by

i�L(a) =
�

{x ∈ L | x � a}

where x � a means Ax ≤ a for some A ∈ U is an interior operation on L induced by the

preuniformity U . Furthermore if h : L −→ M is a uniform homomorphism between pre-uniform

frames, we also have that

h(i�L(x)) ≤ i�M (h(x))

Thus, the family i = {iL | L ∈ PUniFrm} is an interior operator on pre-uniform frames.

Note that PUniFrm stands for the category of pre-uniform frame and uniform frame homo-

morphisms.

The following proposition establishes a nice connection between onto frame homomorphisms,
their right adjoints, and the interior operator on frames.

Proposition 3.3.8. Let L and M be not necessarily regular frames and h : M −→ L an onto

frame homomorphism. Further, let r : L −→ M be the right adjoint of h. Then, for all x ∈ L,

iL(x) = h(iM (r(x)))

defines an interior operation on L for which the frame homomorphism h : M −→ L is continu-

ous. Furthermore, iL is additive and idempotent, provided iM satisfies the same properties.

Proof. (1) (I1) iL(x) = h(iM (r(x))) ≤ h((r(x))) = x, since h is onto. Thus iL(x) ≤ x for all

x ∈ L.

(I2) For all x, y ∈ L, if x ≤ y giving r(x) ≤ r(y) then iM ((r(x))) ≤ iM ((r(y))). Applying h

both sides, we obtain h(iM ((r(x)))) ≤ h(iM ((r(y)))). Hence iL(x) ≤ iL(y).

Lastly, since r is a right adjoint, x ≤ r(h(x)) then h(iM (x)) ≤ h(iM (r(h(x)))) = (h(iM (r)))h(x) =

iL(h(x)). Therefore h is i-continuous.

(2) If iM is additive, then

iL(x ∧ y) = h(iM (r(x ∧ y)))

= h(iM (r(x) ∧ r(y))) since r is right adjoint

= h(iM (r(x))) ∧ h(iM (r(y))) since iM is additive

= ihL(x) ∧ ihL(x)

That is ihL is additive.
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If iM is idempotent, then

iL(iL(x)) = h(iM (r(h(iM (r(x))))))

≤ iL(h(r(h(iM (r(x))))))

= iL(h(iM (r(x))))

≥ h(iM (iM (r(x)))

= h(iM (r(x)) = ihL(x).

Thus ihL is idempotent. This completes the proof.

�

Remark 3.3.21. It is important to note that if either L or M is a regular frame, the interior

operator defined above reduces to the discrete interior operator.

We are now ready to formulate the definition of topogenously continuous morphism within
a general category:

Definition 3.3.22. A topogenous order on X is a family

� = {�PX , X ∈ X}

such that each �PX is a topogenous order on PX and each X -morphism f : X −→ Y satisfies

x �Y y ⇒ f∗(x) �X f∗(y) (3.3.10)

for all x, y ∈ PY .

When (3.3.10) holds, we say that f : X −→ Y is topogenously continuous or that it is �-
continuous. The properties of the Galois connections permit us to express the above �-continuity
condition in the following equivalent manner:

Proposition 3.3.9. A morphism f : X −→ Y in X is topogenously continuous if and only if

fo(x) �Y y ⇒ x �X f∗(y) (3.3.11)

for all x ∈ PX and y ∈ PY.

Proof. If (3.3.11) holds, then, since fo(f∗(b)) ≤ b for all b ∈ PY

b �Y y ⇒ fo(f∗(b)) ≤ b �Y y;

⇒ fo(f∗(b)) �Y y; by (T2)

⇒ f∗(b) �X f∗(y). Hence (T3) .

Conversely, if (3.3.10) holds and since for all x ∈ PX, x ≤ f∗(fo(x)),

fo(x) �Y y ⇒ x ≤ f∗(fo(x)) �X f∗(y);

⇒ x �X f∗(y).
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�

Furthermore,

Proposition 3.3.10. If f∗ commutes with all joins, we say that a morphism f : X −→ Y in X
is topogenously continuous if and only if

x �Y f∗(y) ⇒ f∗(x) �X y (3.3.12)

for all y ∈ PX and x ∈ PY.

Proof. If (3.3.12) holds, then

a �Y y ⇒ a �Y y ≤ f∗(f∗(y));

⇒ a �Y f∗(f∗(y));

⇒ f∗(a) �X f∗(y).

Conversely if (T3) holds and since f∗(f∗(a)) ≤ a for all a ∈ PX then y �Y f∗(a) ⇒ f∗(y) �X
f∗(f∗(a)) ≤ a and by (T2), we obtain f∗(y) �X a.

�

Proposition 3.3.11. Let f : X −→ Y be a morphism in X . Let i be an interior operator on X
and � a topogenous order on X . If f∗ commutes with all joins, then:

(i) f is i-continuous if f is �i-continuous;

(ii) f is �-continuous if f is i�-continuous;

Proof. (i) If f : X −→ Y is i-continuous then for all x, y ∈ PY

x �iY y ⇒ x ≤ i(y);

⇒ f∗(x) ≤ f∗(iX(y)) ≤ iY (f
∗(y));

⇒ f∗(x) ≤ iY (f
∗(y));

⇒ f∗(x) �iX f∗(y).

Conversely if f : X −→ Y is �-continuous then for all x ∈ P (Y )

f∗(i�Y (x)) = f∗(
�

{y ∈ X | y � x});

=
�

{f∗(y) | y ∈ X, y � x};

≤
�

{f∗(y) ∈ Y | f∗(y) � f∗(x)};

≤
�

{z ∈ Y | z � f∗(x)} = i�X(f∗(x)).

�
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Remark 3.3.23. In view of Proposition (3.3.11), if i and � are, respectively interior operator

and
�
-respecting topogenous orders on X , then X has i-continuous morphisms if and only if it

has �i-continuous morphisms. This argument holds true since, by Proposition (3.3.1) i = i�
i
.

The following proposition can be proven in a similar manner:

Proposition 3.3.12. Let f : X −→ Y be a morphism in X . Let k be a closure operator on X
and � a topogenous order on X . Then

(i) If f is k-continuous then f is �k-continuous;

(ii) If f is �-continuous then f is k�-continuous.

Remark 3.3.24. As in Remark (3.3.23), Proposition (3.3.12) means that if k and � are, re-

spectively closure operator and
�
-respecting topogenous order on X , then X has k-continuous

morphisms if and only if it has �k-continuous morphisms. To substantiate this, one only needs

to see that, by Proposition (3.3.4), k = k�
k
.

We have shown that topogenous orders provide a general setting in which one can study
closure and interior operations at the same time on one hand, whilist on the other hand, they
facilitate an extension of well known results from closure and interior operations. In the next
section, our intention is to characterize the so-called strict maps in a general category, with a
particular emphasis on two categories, namely Frm and Top.

3.4 Strict Morphisms in a Category

Definition 3.4.1. Let X be a general category and P : X −→ Pos a pseudofunctor to the

category of partially ordered sets and order preserving maps which to any morphism f : X −→ Y

in X assigns a Galois adjoint:

PX ⊥ PY

fo

f∗

Let � be a topogenous order on X . Then an X -morphism f : X −→ Y is said to be a strict

morphism,or �-strict, if

fo(a) �Y b ⇔ a �X f∗(b) (3.4.13)

for all a ∈ PX and b ∈ PY .

If � respects arbitrary joins, the �-strict morphisms are precisely the i-open morphisms.
While if � respects arbitrary meets, �-strict morphisms are the k-closed morphisms. We address
this in the coming two propositions.

Proposition 3.4.1. Let X be a general category and � a topogenous order on X . If � respects

arbitrary joins, then a morphism f : X −→ Y in X is �-strict if and only if f is i-open, that is,

for all y ∈ PY , f∗(i�(y)) = i�(f∗(y)).
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Proof. Let � be a topogenous order that respects arbitrary joins and f∗ a right adjoint to fo.

Then if f is �-strict, we have

x ≤ fo(iY (y)) ⇔ fo(x) ≤ iY (y);

⇔ fo(x) �Y y;

⇔ x �X f∗(y);

⇔ x ≤ iX(f∗(y)).

Conversely, if f∗(i�(y)) = i�(f∗(x)) holds, then

x �X f∗(y) ⇔ x ≤ (i�X(f∗(y));

⇔ x ≤ f∗(i�Y (y));

⇔ f(x) ≤ i�Y (y);

⇔ f(x) �Y y.

Similarly, taking into account the fact that if � respects arbitray meets, x �k y is equivalent
to k(x) ≤ y, we also prove the following:

Proposition 3.4.2. Let X be a general category and � a topogenous order on X , If � respects

arbitrary meets then a morphism f : X −→ Y in X is �-strict if and only if f is k-closed, that

to say, for any x ∈ PX, fo(k�(x)) = k�(fo(x)).

These stricts maps were introduced and discussed in [HIR16] on categories equipped with
(E ,M) structures for morphisms. In fact, the notion of strict morphisms we present here is a
natural way of transferring the concept of strict morphisms to our general context.

3.4.1 Characterization and Behavior of Strict Morphisms in a Category

We dedicate this section to characterizing and explaining the behavior of strict maps in a general
category.

Proposition 3.4.3. Let f : X −→ Y be a morphism in X and � a topogenous order on X .

Then f is �-strict if and only if fo and f∗ preserve �.

Proof. If f is strict, then for all a, b ∈ X, c ∈ Y ;

a � b ⇒ a � b ≤ f∗(fo(b)), since f∗ is left adjoint;

⇒ a � f∗(fo(b)), by (T2);

⇒ fo(a) � fo(b).

Thus fo preserves the order. Conversely, if fo preserves the order, then

a � f∗(c) ⇒ fo(a) � fo(f∗(c)) ≤ c;

⇒ fo(a) � c.
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Further, by the continuity condition, f∗ always preserves the order. For the converse, assume

f∗ preserves �

fo(a) � c ⇒ f∗(fo(a)) � f∗(c);

⇒ a ≤ f∗(fo(a)) � f∗(c);

⇒ a � f∗(c).

�

In view of Proposition (3.4.3) if X is any category and � a topogenous order on X , a morphism
in X will be said to be �-strict if both the left and the right adjoint preserve �.

Proposition 3.4.4. Let � be a topogenous order on the category X . The assertions in the

following statements are always true.

(a) The class of all �-morphisms are closed under isomorphisms.

(b) If f : X −→ Y and g : Y −→ Z are �-strict then g ◦ f is �-strict.

(c) If g ◦ f is �-strict and f is surjective, that is, fo(f∗(x)) = x then g is �-strict.

(d) If g ◦ f is �-strict and g is a monomorphism, that is, g∗(go(y)) = y then f is �-strict.

Proof. (a) is clear.

(b) If f : X −→ Y and g : Y −→ Z are �-strict then

a �X (g ◦ f)∗(b) = f∗(g∗(b)) ⇔ fo(a) �Y g∗(b);

⇔ (go ◦ fo)(a) = (gf)o(a) �Y b.

(c) If fo(f∗(x)) = x, then

x � g∗(y) ⇒ f∗(x) �Y f∗(g∗(y)) = (gf)∗(y);

⇒ (gf)o(f∗(x)) = go(fo(f∗(x))) �Z y;

⇒ go(x) �Z y.

Similarly if g∗(go(y)) = y, we can prove that f is �-strict.

�

As we indicated earlier, the purpose of this section is not only to extend the notion of strict
morphisms, initially defined on a category equipped with an (E ,M)-factorization structure for
morphisms, to our general context, but also to characterize these strict morphisms both in the
category of frames and that of topological spaces.
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3.4.2 Strict Morphisms in Top and Frm

In this section, our intention is to characterize strict morphisms within the category of frames
and frame homomorphisms as well as within the category of topological spaces and continuous
maps. It’s important for the reader to note that the concept of strict morphisms exhibits
favorable behavior in topology. More specifically, these maps correspond neatly to closed and
open morphisms with respect to closure and interior operators, respectively.

In the context of frames, however, strict morphisms do not provide favorable features, as we
will show later in this section. Nevertheless, we have established a relationship with nearly open
and closed frame homomorphisms. We believe that achieving a nicer correspondence with other
existing maps in the literature (in the context of frames/locales) may require incorporating the
concept of sublocales. This still needs a further investigation.

Expression of Strict Maps in Top

Let X = Top, the category of topological spaces and continuous maps between them and P ,
the powerset functor. To each continous map f : X −→ Y the powerset functor assigns the
image-preimage adjunction

PX ⊥ PY

fo

f−1

between PX and PY , the power set lattices of X and Y , respectively. We also have that

fo(A) ⊆ B ⇔ A ⊆ f−1(B)

for all A ⊆ X and B ⊆ Y . Consider the following topogenous order on Top:

A �B ⇔ Ā ⊆ B ⇔ A ⊆ C ⊆ B (3.4.14)

for some closed C ⊆ X, X ∈ Top.

Proposition 3.4.5. The following statements are true for any map f : X −→ Y :

(i) f−1 preserves � if and only f is continous;

(ii) if f is continuous then fo preserves � if and only if f is closed.

Proof. (i) If f−1 preserves �, then A closed implies A � A ⇒ f−1(A) � f−1(A) ⇒ f−1(A) is

closed. Hence f is continuous. Conversely, if f is continuous, then:

Ā ⊆ B ⇒ f−1(A) ⊆ f−1(Ā) ⊆ f−1(B) ⇒ f−1(A) ⊆ f−1(B). Therefore, f−1 preserves the

order.

(ii) The forward implication is clear. For the backward, if f is closed, then

A �B ⇒ there exists a closed set C such that A ⊆ C ⊆ B;

⇒ fo(A) ⊆ fo(C) ⊆ fo(B) with fo(C) closed;

⇒ fo(A) � fo(B).
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�
Moreover, if we consider the topogenous order:

A �B ⇔ A ⊆ Bo (3.4.15)

we can show, as in Proposition (3.4.5), that:

Proposition 3.4.6. For any map f : X −→ Y , the following are equivalent:

(i) f−1 preserves � if and only f is continous;

(ii) if f is continuous then f preserves � if and only if f is open.

In general,

Proposition 3.4.7. If k is any closure operator on Top and � the topogenous order defined in

analogy to (3.4.14). Then f is �-strict if and only if f is k-closed.

Proof. If f is �-strict then

k(A) ⊆ k(A) ⇒ A � k(A);

⇒ fo(A) � fo(k(A)) since f is strict;

⇒ k(fo(A)) ⊆ fo(k(A)).

Conversely, if f is k-closed

k(A) �B ⇒ k(A) ⊆ B ⇒ fo(k(A)) ⊆ fo(B);

⇒ k(fo(A)) ⊆ fo(k(A)) ⊆ fo(B);

⇒ fo(A) � fo(B);

That is to say f is strict.

�
Furthermore, since for every continuous map f : X −→ Y , the inverse image f−1 commutes

with all unions, it has a right adjoint f∗ defined by

f∗(A) =
�

{B ∈ PY | f−1(B) ⊆ A}
Equivalently

f∗(A) = Y \ f(X \A)
for all A ⊆ X. Thus, we have the following alternative adjunction

PY
f−1

⊥
��
PX

f∗
��

between PX and PY and also,

f−1(B) ⊆ A ⇔ B ⊆ f∗(A)

for all B ⊆ Y and A ⊆ X.

Consider again the topogenous order in (3.4.14).
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Proposition 3.4.8. Let f : X −→ Y be a continuous map and � a topogenous order on Top.

Then f is �-strict if and only if f is open.

Proof. For the forward implication, we have

A open ⇒ X \A �X \A;
⇒ f∗(X \A) � f∗(X \A);
⇒ Y \ fo(A) � Y \ fo(A);

⇒ fo(A) is open.

For the backward implication, we obtain

A �B ⇒ X \B ⊆ X \A ⊆ X \A, where X \A is open;

⇒ fo(X \B) ⊆ fo(X \A) ⊆ fo(X \A), where fo(X \A) is open;

⇒ Y \ fo(X \A) ⊆ Y \ fo(X \A) ⊆ Y \ fo(X \B), where Y \ fo(X \A) is closed;

⇒ f∗(A) � f∗(B).

�
Similarly, by considering the topogenous order in (3.4.15), we can establish the following

proposition:

Proposition 3.4.9. Let f : X −→ Y be a continuous map and � a topogenous order on Top.

Then f is �-strict if and only if f is closed.

Proposition 3.4.10. Let f : X −→ Y be a continuous map, k a closure operator on Top and �

the topogenous order defined in analogy to (3.4.14). Then f is �-strict if and only if f is k-open.

Proof. On one hand, if f is �-strict then

f−1(A) � k(f−1(A)) ⇒ f∗(f−1(A)) � f∗(k(f−1(A))), since f is strict;

⇒ A ⊆ f∗(f−1(A)) � f∗(k(f−1(A))), since f−1 � f∗;

⇒ A � f∗(k(f−1(A))), by (T2);

⇒ k(A) ⊆ f∗(k(f−1(A))), Definition of (3.4.14);

⇒ f−1(k(A)) ⊆ k(f−1(A)), again since f−1 � f∗.

On the other hand, since A �B ⇒ k(A) ⊆ B and if we assume that k(f∗(A)) ⊆ f∗(B), then

f−1(k(f∗(A)) ⊆ k(f−1(A)) f is k-open

⊆ k(A) (f−1 � f∗);

⊆ B.

Thus, f−1(k(f∗(A))) ⊆ B ⇒ k(f∗(A)) ⊆ f∗(B) and

f∗(A) � f∗(B)

showing that f is �-strict.

�
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Expression of Strict Maps in Frm

In order to understand the notion of strict maps in frames, we have to walk away from the
powerset lattice of a space and consider its “open set lattice”. More explicitly, let X be a space.
We consider its lattice of open sets ΩX instead of PX. Each continuous map f : X −→ Y gives
rise to the Galois adjunction:

ΩY ⊥ ΩX

f−1

f∗

between ΩX and ΩY . That means, for all A ∈ ΩX, B ∈ ΩY :

B ⊆ f∗(A) ⇔ f−1(B) ⊆ A;

⇔ X \A ⊆ X \ f−1(B) = f−1(Y \B);

⇔ fo(X \A) ⊆ Y \B;

⇔ B ⊆ Y \ fo(X \A).

Thus
f∗(A) = (Y \ fo(X \A))o = Y \ fo(X \A) (3.4.16)

It should be clear to the reader that the topogenous order A �B ⇔ A ⊆ Bo is no longer useful
in this context as we are exclusively working with open subsets.

Now consider the alternative topogenous order: A ⊆ B ⇔ A∗ ∪ B = X, where A∗ stands
for the pseudocomplement of A in the lattice ΩX viewed as a frame. Given that, by continuity
condition, f−1 always preserves �, strictness in this context will mean that f∗ preserves �.
Indeed, using the expression (3.4.16), we have:

A ⊆ B ⇒ f∗(A) ⊆ f∗(B);

⇒ Y \ fo(X \A) ⊆ Y \ fo(X \B);

⇒ fo(X \B) ⊆ Y \ fo(X \A) = fo(X \A)o;
⇒ fo(X \B) ⊆ fo(X \A)o.

Proposition 3.4.11. Let f : X −→ Y be a continuous map. Then:

(i) f is open and closed implies f is strict;

(ii) f is strict then A clopen implies fo(A) is also clopen.

Remark 3.4.2. In general for any continuous map f : X −→ Y

(i) Closed does not always imply strict;

(ii) Open does not always imply strict.

Counter examples:

For (i), let f : R −→ R be a constant function with fo(x) = 0, ∀x ∈ R.
fo(A) = {0} is closed for any A ⊆ R, A �= ∅, and fo(∅) = ∅ is closed.

41

http://etd.uwc.ac.za



f∗(A) = R \ fo(X \A) = R \ {0} ∀A �= R.
f∗(A) = R \ {0} = R.
Thus f∗(A) is not topogenously below f∗(B) for all A,B ⊆ R.

For (ii), let f : R −→ R such that for all x ∈ R, fo(x) = arctan(x). Then f is open but

f∗(∅) = R \ fo(X \ ∅) = R \ [π/2,π/2] and ∅ ⊆ ∅, yet f∗(∅) = R \ (π/2,π/2) � R \ [π/2,π/2] =
f∗(∅).

In particular, if f : X −→ Y is �-strict then ∅ � ∅ ⇒ f∗(∅) � f∗(∅) ⇒ fo(X) ⊆ fo(X)
o

and fo(X) is clopen. Hence, if f is not dense then Y is disconnected. As a matter of fact, no
f : X −→ R that is not dense can be strict.

As we have already indicated earlier, one of the fascinating features of Á Császár orders is
they dont rely on points in most cases. This fact make them interesting to pointfree topol-
ogists. In fact, our discussions in the previous paragraph show that the topogenous order
A � B ⇒ A ⊆ B has a well established meaning in pointfree topology.

[Pic00] Taking into account the pseudocomplement A∗ in ΩX, that is, X \A, we have

A ⊆ B ⇒ A∗ ∪B = X

equivalently

X = A∗ ∪B ≡ A ≺ B

which is the well known rather below relation. In the context of general frames, define a ≺ b
if a∗ ∨ b = 1. In this case, the rather below relation serves as the most compelling example to
motivate our study of topogenous orders on frames. Besides, frame homomorphisms for which
the right adjoint preserves the rather below relations appear as best examples of strict frame
homomorphisms.

To start, we recall that each frame homomorphism h : L −→ M is associated with a right
adjoint h∗ : M −→ L, hence the following diagram

L ⊥ M

h

h∗

always holds in the category Frm. This also means that for all x ∈ L, y ∈ M , h(x) ≤ y is
equivalent to x ≤ h∗(y).

Definition 3.4.3. Let � be a topogenous order on Frm. A frame homomorphism h : L −→ M

is called �-strict if

h(x) � y ⇒ x � h∗(y)

for all x ∈ L and y ∈ M .

Since frame homomorphisms always preserve the order, the following proposition charac-
terises strict frames homomorphisms.
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Proposition 3.4.12. Let h : L −→ M be a frame homomorphism and h∗ its right adjoint. Let

� be a topogenous order on Frm. Then h is �-strict if and only if h∗ preserves �, that is,

x �M y ⇒ h∗(x) �L h∗(y)

for all x, y ∈ M .

Proof. Similar to the one of Proposition (3.4.3).

�

In view of Proposition (3.4.12), strict frame homomorphisms are those frame homomor-
phisms for which the right adjoint preserves the topogenous order.

The next proposition, whose proof follows a computational approach similar to that of Propo-
sition (3.4.4), outlines the fundamental properties of these maps.

Proposition 3.4.13. Let � be a topogenous order on Frm and L
h−→ M

g−→ L be strict frame

homomorphisms. Then:

(i) g ◦ h is �-strict ;

(ii) if g ◦ h is �-strict and h is surjective then g is �-strict;

(iii) if g ◦ h is �-strict and g is one-one then h is �-strict;

Proof. (i) if h : X −→ Y and g : Y −→ Z are �-strict, then

a � (g ◦ h)∗(b) = h∗(g∗(b));

⇒ h(a) � g∗(b);

⇒ g(h(a)) � b;

⇒ (g ◦ h)(a) � b.

(ii) If h is surjective, that is, h(h∗(a)) = a for all a ∈ X, then

g(a) � b ⇒ g(h(h∗(a))) � b;

⇒ h∗(a) � (gh)∗(b) = h∗(g∗(b));

⇒ h(h∗(a)) � h(h∗(g∗(b))), since h preserves �;

⇒ a � g∗(b).

Similarly one shows that if g is one-to-one, that is, g∗(g(b)) = b for all b ∈ Y then h(a) � b ⇒
a � h∗(b)

�
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Proposition 3.4.14. Let h : L −→ M be a one-to-one frame homomorphism that preserves

pseudocomplement. Then

x ≺ y ⇔ h(x) ≺ h(y)

for all x, y ∈ L.

Proof. The forward implication follows immediately for any frame homomorphism from h(x∗) ≤
h(x)∗. For the backward implication, since x ≺ y ⇔ x∗ ∨ y = 1, we have

h(x) ≺ h(y) ⇒ h(x)∗ ∨ h(y) = 1M ;

⇒ h(x∗) ∨ h(y) = 1M ;

⇒ h(x∗ ∨ y) = 1M ;

⇒ h∗(h(x∗ ∨ y)) = h∗(1M );

⇒ x∗ ∨ y = 1L;

⇒ x ≺ y.

�

Proposition 3.4.15. Let h : L −→ M be a dense and onto frame homomorphism. Then

h∗(a) ≺ h∗(b) ⇒ a ≺ b (3.4.17)

for all b, a ∈ M. Furthermore, if h∗ preserves finite join, the other implication also holds.

Proof.

(⇒) h∗(a) ≺ h∗(b) ⇒ h∗(a)∗ ∨ h∗(b) = 1;

⇒ h∗(a∗) ∨ h∗(b) = 1;

⇒ h(h∗(a∗)) ∨ h(h∗(b)) = 1;

⇒ a∗ ∨ b = 1;

⇒ a ≺ b.

(⇐) a ≺ b implies there exists a separating element c ∈ L such that a ∧ c = 0L and c ∨ b = 1L.

This in turn implies that h∗(a) ∧ h∗(c) = h∗(0L) and h∗(c) ∨ h∗(b) = h∗(1M ) = 1L, since

by assumption h∗ preserves finite join. By denseness of h, that is, h∗(0M ) = 0L, we obtain

h∗(a) ∧ h∗(c) = 0L and h∗(c) ∨ h∗(b) = h∗(1M ) = 1L. In consequence h∗(a) ≺ h∗(b)

�

We conclude this section by the following proposition which shows that the strict frame
homomorphisms are intricately connected with closed frame homomorphisms:

Proposition 3.4.16. Let h : L −→ M be a frame homomorphism. If h preserves pseudocom-

plements, then h closed implies h is ≺-strict.
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Proof. If h is closed, for all x ∈ L and y ∈ M , we have

h(x) ≺ y ⇔ h(x)∗ ∨ y = 1M ;

⇔ h(x∗) ∨ y = 1M ;

⇒ h∗(h(x∗) ∨ y) = h∗(1M ) since h is closed;

⇔ x∗ ∨ h∗(y) = 1L;

⇔ x ≺ h∗(y).

�

3.5 More Examples of Topogenous Orders

(I). Let X = Grp be the category of groups and group homomorphisms and P the pseudo-
functor which assigns to any group homomorphism f : G −→ F the following adjuction

P(G)
fo

⊥
��
P(F)

f−1
��

between P (G) and P (F ), where P (G) and P (F ) represent complete lattices of all subgroups of
the groups G and F , respectively.

Consider the order relation � defined on P (G) as follows:

G1 �G2 ⇔ G1 ⊆ N ⊆ G2

with N a normal subgroup of G.
Then � is a topogenous order on P (G). Moreover, since f−1 preserves normal subgroups, it

follows that f−1(G1) � f
−1(G2) whenever G1 �G2. Thus the family

� = {�G, G ∈ Grp}
is a topogenous order on Grp.

Further, for any subgroup E of the group G, the set

iG(E) =
�

{F �G | F ≤ E}

where F ≤ E means that F is a subgroup of E, is an idempotent interior operation on L(G).
Furthermore, since

f−1(iG(E)) ≤ iG(f
−1(E)) (3.5.18)

the family
i = {iG, G ∈ Grp}

is an interior operator on Grp.

(II). Topogenous Order on the Lattice of Fibers of Topological Functors:

Using Skula’s modification of a topological space, we define a topogenous order on the lattice
of fibers of topological functors.
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Definition 3.5.1. Let (X, τ) be a topological space. The Skula modification of X is the

space (X, τS) where τS is the topology generated by the sets in τ and their complements, that

is, τS given by

τS = {∪i∈ICi | Ci ∈ τ or X \ Ci ∈ τ}.

Definition 3.5.2. For a given functor F : A −→ X , let IniF and FinF denote the classes of all

F -initial and F -final morphisms in A respectively. F is called a fibration if every g : X −→ FA

has F -initial (F -cartesian) lifting, that is, there is exists a morphism f ∈ IniF with Ff = g.

Dually F is called a cofibration if every morphism g� : FB −→ Y has F -final (F -co-cartesian)

lifting, that is, there exists a morphism h ∈ FinF with Fh = g�.

For a given X ∈ Ob(X ), F−1X:={A ∈ Ob(A) | FA = X}. When F is a fibration any
morphism f : X −→ Y in X induces a functor f∗(−) : F−1Y −→ F−1X and for any B ∈ F−1Y ,
f∗(B) = A where A is the domain of the chosen F -Cartesian lifting of f : X −→ FB. Dually,
when F is a cofibration, f : X −→ Y gives rise to a functor fo(−) : F−1X −→ F−1Y and
for any A ∈ F−1X, fo(A) = B where B is the codomain of the chosen F -co-Cartesian lifting
of f : FA −→ Y . Thus for a fibration and cofibration functor F : A −→ X , any morphism
f : X −→ Y in X assigns an adjoint pair

F−1X
fo

⊥
��
F−1Y.

f∗
��

As an illustrative example of the above scenario, let F be the forgetful functor from Top, the
category of topological spaces and continuous maps between them, to Set, that of sets and func-
tions. For any set X, F−1X is identified with the lattice of all topologies on X and for any func-
tion f : X −→ Y , fo(τX) = λY is the lagest topology on F−1Y such that f : (X, τ) −→ (Y,λY )
is continuous. Dually, given any λY , f

∗(λY ) = τX is the smallest topology on X for which is
f : (X, τ) −→ (Y,λY ) is continuous.

In this instance F : Top −→ Set can be viewed as being both a fibration and cofibration
so that for each function f : X −→ Y and τ ∈ F−1X, σ ∈ F−1Y with F−1X and F−1Y being
fibers of topologies of X and Y , respectively, we have fo(τ) ⊆ σ ⇔ τ ⊆ f−1(σ), that is to mean
we have a Galois connection

F−1X
fo

⊥
��
F−1Y

f−1
�� .

Proposition 3.5.1. Let � be a given order relation on the lattice F−1X. For all τ,λ ∈ F−1X,

defined � by

τ � λ if and only if λ ⊆ λS ⊆ τ

where S is the Skula modification of λ. Then � is a topogenous order on F−1X for which each

f : X −→ Y is �-continuous.

Proof. For (T1), τ � λ ⇒ λ ⊆ τ , by definition. For (T2), let τ, τ
�,λ,λ� be in F−1X, if

τ � ⊆ τ � λ ⊆ λ� ⇒ τ � ⊆ τ ⊆ λ ⊆ λS ⊆ λ�

⇒ τ � ⊆ λS ⊆ λ�

⇒ τ � � λ�
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(T3), let f : X −→ Y be fuction and F−1X, F−1Y the lattices of topologies on X and Y

respectively. If τ ⊆ τS ⊆ λ, then f−1(τ) ⊆ f−1(τS) ⊆ f−1(λ). Since inverse image preserves

arbitrary union and f−1(Y \ Ci) = X \ f−1(Ci), it follows that f
−1(τS) is a Skula modification

of f−1(τ) and f−1(τ) � f−1(λ).

�

(III) More on Topogenous Orders on Frames

(1) Let L ∈ Frm and x, y ∈ L. Define x�y if and only if x ≤ y. Then � = {≤L | L ∈ Frm}
is a topogenous order on Frm.

(2) Recall from [Dub19] that an element a in a frame L is called compact if, for any
S ⊆ L, the condition a ≤ �

E implies a ≤ �
S for some finite S ⊆ E. We denote by L(L)

the set of compact elements in L. The frame L is said to be algebraic if each of its elements
is the join of compact elements below it. Furthermore, if for all a, b ∈ L(L), a ∧ b ∈ L(L),
then L is said to have the finite intersection property (FIP ) on compact elements. A com-
pact algebraic frame with FIP is called a coherent frame. Moreover, a frame homomorphism
between algebraic frames is called a coherent map if it maps compact elements to compact ele-
ments. The category of algebraic frames and coherent maps between them is denoted by AFrm.

Now let L ∈ AFrm and a, b ∈ L. Put

a �L b ⇔ a ≤ c ≤ b

for some compact element c. Then � is a topogenous order on L. Further, since coherent maps
between algebraic frames preserve compact elements, it follows that h(a) � h(b) whenever a � b.
Therefore, the family

� = {�L | L ∈ AFrm}

is a topogenous order on AFrm.

(IV ) Topogenous Order on the Frame of Ideals

We consider a topogenous order on the frame of ideals. For the join-preserving topogenous
orders we define an interior operator associated with it. We also lift the topogenous order on
a frame to its frame of ideals. That is, given a topogenous order � on a frame L, we defined a
new topogenous order �• on JL. It is shown that �• interpolates provided � does.

Proposition 3.5.2. Let L be a frame and JL the frame of ideals of L. Consider the following

order relation:

I �JL J ⇔
�

I ∈ J

for all I, J ∈ JL. Then �JL is a topogenous order on JL.

Proof. (T1) For all I, J ∈ JL, I �JL J ⇒ �
I ∈ J ⇔ a ∈ J ∀ a ∈ I ⇔ I ⊆ J .
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(T2) For all I, I �, J, J � ∈ JL, we put,

I � ⊆ I �JL J ⊆ J � ⇔
�

J � ≤
�

I ∈ J ⊆ J �;

⇒
�

I � ∈ J � since J � is a an ideal ;

⇒ I � �JL J �

�

The next proposition provides an interior operator on frames associated with �JL.

Proposition 3.5.3. Let L be a frame and JL the lattice of ideals of L and let � ∈ �−TORD(JL).

The assignement i = {i�JL : JL −→ JL} given by

i�JL(J) =
�

{I ∈ JL | I � J}

is an interior operation on JL.

Proposition 3.5.4. Let L be any frame and JL the lattice of all the ideals of L. Let � be a

topogenous order on L. For all J, I ∈ JL, define

I �• J ⇔ ∀ x ∈ I, ∃ y ∈ J, x � y. (3.5.19)

(1) �• is a topogenous order on JL;

(2) �• interpolates provided � does.

Proof. Note that for all x, y ∈ L, x � y ⇔↓ x�• ↓ y: Indeed, x � y ⇒↓ x�• ↓ y since

a ∈↓ x ⇒ a ≤ x�y ⇒ a�y ∈↓ y.On the other hand, if ↓ x�• ↓ y then x�y, since x ∈↓ x ⇒ ∃ b ∈↓ y

with x � b ≤ y ⇒ x � y.

(1) let I, J be in JL then I �• J if and only if for all x ∈ I, there exists y ∈ J such that x � y

but by x � y implies x ≤ y and since J is ideal, x ∈ J . Thus I ⊆ J.

For (T2) If for all I, J, J �, I � ∈ JL, I ⊆ I � �• J � ⊆ J then x ∈ I implies x ∈ I � and so by

definition of �•, there exists y ∈ J � such that x � y but J � � J , so y ∈ J and I � J .

(2) If � interpolates then for all I, J ∈ JL, I �• J implies for all x ∈ I there exists y ∈ J

such that x � y and since � interpolates, there is a b ∈ J � ∈ JL with x � b � y and I �• J � �• J .

�
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Chapter 4

SYNTOPOGENOUS

STRUCTURES AND

QUASI-UNIFORMITIES ON

COMPLETE LATTICES

The concept of syntopogenous structures, since its inception in the 1960s, has been explored
by numerous researchers, each approaching it with various objectives: In frames, for instance,
Chung [Chu08, Chu01] introduced the concept of H-complete weak syntopogenous frames. Us-
ing the notion of convergence of filters and that of filter traces of strict extensions, he provided
a characterization of the H-completions of regular weak syntopogenous frames. In [WL95],
the authors investigated the unification of co-topology, quasi-uniformities and T -structures on
complete distributive lattices. They established the general theory of syntopogenous structures
on complete distributive lattices and generalized the corresponding theory in both general and
fuzzy topology. They examined connectedness in this type of syntopogenous structures and nat-
urally addressed the connectedness of fuzzy syntopogenous structures. Recently, syntopogenous
structures were successfully utilized in [Ira19] to investigate quasi-uniformities in the framework
of general categories and significant results were obtained.

To our knowledges, except the two papers aforementioned, no further study of syntopogenous
structures has been done as far as syntopogenous structures on complete lattices is concerned.
Given the current surge of interest in complete lattices (frames), it seems necessary for us to
complete the work done in [Chu08, Chu01] and [WL95] and extend the findings of [Ira19]. In
actual fact, the findings presented in this chapter subsume a substantial portion of existing results
in the literature: syntopogenous structures have been used to study quasi-uniformities on a
general category where the primitive concept has been a “complete lattice” [Ira19]. Indeed, when
studying syntopogenous structures on a general category X supplied with an (E ,M) factorisation
structure, the investigation revolves around the behavior of these orders within the subobject
lattice of an object X. In this context each X -morphism f : X −→ Y is considered to be
syntopogenously continuous between the subobject lattice of the objects X and Y . Furthermore,
all these lattices are always assumed to be complete. Therefore, it is natural to extend the
results from [Ira19] to our more generalized framework. This chapter is partially motivated by
this imperative.
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In concrete terms, we use syntopogenous structures to examine quasi-uniformities on com-
plete lattices. We show that meet-preserving syntopogenous structures are order isomorphic to
a base of a quasi-uniformity on a complete lattice. Consequently, a quasi-uniformity appears as
a family of closure operations on a complete lattice. Moreover, when we consider syntopogenous
structures that do not necessarily preserve meets, we establish a Galois adjunction between
quasi-uniformities and syntopogenous structures on a complete lattice. Furthermore, we prove
that any meet-structure of a complete lattice determines a transitive quasi-uniformity on the
lattice in question. This enables us to characterize all transitive quasi-uniformities compatible
with the lattice.

It should be noted that, apart from the results in Section 4.5, all our findings in this chapter
can be confined to frames. We close the chapter by establishing a relationship between the
category of syntopogenous spaces and that of syntopogenous frames using the so-called open
functor.

4.1 Syntopogenous Spaces

Definition 4.1.1. Let X be a set and SX a family of topogenous orders on PX. Then SX is

called a syntopogenous structure on X if it adheres to the following axioms:

(S1) For any �, �� ∈ SX there exists ��� ∈ SX such that � ⊆ ��� and �� ⊆ ���. In other words, SX

is a directed family of topogenous orders on PX;

(S2) if � ∈ SX there exits �1 ∈ SX such that for all A,B ⊆ X, if A �B then there exists C ⊆ X

with A �1 C �1 B.

The pair (X,SX) is called a syntopogenous space if SX is a syntopogenous structure on the
set X.

Definition 4.1.2.

(b) A map f : (X,SX) −→ (Y,SY ), where (X,SX) and (Y,SY ) are syntopogenous spaces, is

syntopogenously continuous if for every �Y ∈ SY there exists �X ∈ SX such that for all A,B ∈ X,

A �Y B, then f−1(A) �X f−1(B).

Syntopogenous spaces and syntopogenously continuous maps are the objects and morphisms
of the category SYN.

It is less tedious to verify that the category SYN subsumes various topology-related cat-
egories including Unif, Prox, and ToP. These categories correspond to uniform spaces and
uniformly continuous maps, proximity spaces and proximal maps, and topological spaces and
continuous maps, respectively. More precisely, it can be observed that all of these categories are
isomorphic with full subcategories of SYN.

Now, let (X,S) be a syntopogenous space, where S is a collection of orders represented by

S = {�i | i ∈ I} (4.1.1)
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If the collection S defined in (4.1.1) consists of a single relation, then (X,S) is called a topo-
logical space. Moreover, it attains the status of a proximity space when each � ∈ S satisfies
axiom (5) of Definition (3.1.1). On the other hand, if axiom (4b) of Definition (3.1.1) holds for
an infinite union in a proximity space (X,S), it is characterized as a uniform space.

In his Ph.D. thesis [Chu88], Chung proved that the category Prox is isomorphic to the cat-
egory STopG, the category of symmetric topogenous orders.

Fact: Given a syntopogenous space (X,S). The family

τS = {A ⊆ X | ∀a ∈ A, {a} �i A for some i ∈ I} (4.1.2)

is a topology on (X,S). It is the topology induced by S.

Proposition 4.1.1. Consider a syntopogenous space (X,S). For each A ∈ τS ,

A =
��

B ∈ τS | B �S A
�

(4.1.3)

where �S =
�S

With this new notation, the equation (4.1.2) can be written as

τS = {A ⊆ X | ∀a ∈ A, {a} �S A}

Proof. Before proving that (4.1.3) holds, we first note that for all B ⊆ X, Bo = {x ∈ X | {x}�S
B} ∈ τS :

x ∈ Bo ⇒ {x} �S B;

⇒ ∃ C ⊆ X | {x} �S C �S B.

and C �S B ⇒ C ⊆ Bo since for all x ∈ C, {x} ⊆ C �S B ⇒ {x} �S B. Thus

x ∈ Bo ⇒ {x} �S C �S Bo;

⇒ {x} �S Bo.

Now, to show (4.1.2), on one hand, it is clear that
��

B ∈ τS | B �S A
�
⊆ A, since B �S A ⇒

B ⊆ A. On the other hand if x ∈ A then {x} �S A, by definition of A ∈ τS . So, there exists C

such that {x} �S C �S A and {x} ⊆ Co ⊆ C ⊆ A. But, by the previous argument, Co ∈ τS , so

A ⊆ ��
B ∈ τS | B �S A

�
and this completes the proof.

�

Remark 4.1.3. Let S be a syntopogenous structure on X. For all A,B ⊆ X,

A �S B ⇒ ∃ i | A �i B;

⇒ ∃ C, ∃ j | A �j C �j B;

⇒ A �S C �S B.

51

http://etd.uwc.ac.za



Also, given � ∈ S;

A �B ⇒ A �S B;

⇒ ∃ C | A �S C�S ;B;

⇒ ∃ C, ∃ i, j | A �i C �j B;

⇒ ∃ C, ∃ k, �j ∪ �i ⊆ �k and A �k C �k B.

Thus, in view of (S1) of Definition (4.1.1), (S2) is equivalent to saying that �S is interpolative.

It is important to emphasize that Császár’s axioms are rooted in set algebra and, in most
instances, do not necessitate the use of individual points of the space. This observation under-
scores that syntopogenous structures serve as a point of departure for the concept of “pointfree
topology”.

4.2 Syntopogenous Structures on Complete Lattices

We investigate the notion of syntopogenous structures on a general complete lattice. While our
definition extends beyond [WL95] and, to some extent [HI19], it also encapsulates the work of
Chung [Chu08] as a special case.

In the context of a syntopogenous space (X,S), the syntopogenous structure on X is defined
using topogenous orders on P (X). These orders always constitute a sublattice of P (X)×P (X).
Since P (X) is a complete lattice, and in particular, a frame (pointless structure), we aim to
axiomatize the concept of syntopogenous structures on general lattices motivated by Definition
(3.4.3).

Definition 4.2.1. Let X be any complete lattice. A syntopogenous structure SX on X is a

family

SX = {�i | i ∈ I}

of topogenous orders on X which satisfy the following three axioms:

(S1) each �i ∈ SX is a meet-preserving topogenous order on X;

(S2) SX is directed, meaning that for each �i, �j ∈ SX there exists �k ∈ SX such that �i∪�j ⊆ �k;

(S3) For every �i ∈ SX there is �j ∈ SX such that for all x, y ∈ X, if x �i y, then there exists

z ∈ X such that x �j z �j y.

The pair (X,SX) where X is a lattice and SX is a syntopogenous structure on X is called a
syntopogenous lattice. Moreover, we shall say that a syntopogenous structure on a lattice X is
interpolative if each � ∈ S interpolates.Let X be a complete lattice. We represent the collection
of all syntopogenous structures on X as SYNT(X).
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4.3 Quasi-uniformities on Complete Lattices

The general theory of quasi-uniformities on a set is usually presented in terms of entourages or
cover-like approach. While the former has been extensively studied in the context of spaces, the
latter has been demonstrated to be of greater interest to pointfree topologists. As a justification
of this statement see, for instance, ([Fri86],[PP11]).

In this section, we delve into the examination of (entourage) quasi-uniformities on com-
plete lattices. Within the framework of frames, P. Fletcher, W. Hunsaker, and W. Lindgren in
[FHL93b] provided an initial foray into this topic. Diverging from the approach of the authors in
([FHL93b]), who introduced the study of quasi-uniformities through the concept of entourages
on frames, our focus is on the interplay between quasi-uniformities and syntopogenous structures
on lattices.

Definition 4.3.1. Let X be a complete lattice, and U a family of maps from X into X. Then

U is called a quasi-uniformity on X if the following axioms hold:

(Q1) Each U ∈ U is an order preserving map U : X −→ X with idX ≤ U , that is, x ≤ U(x) for

all x ∈ X;

(Q2) For all U, V ∈ U there is W ∈ U such that W ≤ U ∧ V (order taken pointwise in X);

(Q3) For all U ∈ U there is V ∈ U with V ◦ V ≤ U ;

(Q4) If U ∈ U and U ≤ V then V ∈ U .

We denote by Q(X) the collection of all the quasi-uniformities on X. The pair (X,U), where
X is a complete lattice and U a quasi-uniformity on X will be called a quasi-uniform lattice.
In most instances, our focus will be on manipulating the base of a quasi-uniformity. Hence, the
collection adhering to axioms (Q1) through (Q3) is identified as the base of the quasi-uniformity.
We denote by B(X) the collection of all bases of a quasi-uniformity U on X.

We are now ready to set out one of the significant discoveries in this chapter: establishing
an equivalence between a syntopogenous structure and a base of a quasi-uniformity on a lattice.

4.4 Nexus Between Quasi-uniformities and Syntopogenous Struc-

tures on a Complete Lattice

We establish a connection between syntopogenous structures and quasi-uniformities on a com-
plete lattice X. If we consider topogenous orders which respect meets, we demonstrate that
a syntopogenous structure on a complete lattice forms a base of a quasi-uniformity. In other
words, the syntopogenous structure and a basis of a quasi-uniformity are isomorphic. However,
for topogenous orders that do not respect meets, we establish a Galois adjunction between syn-
topogenous structures and quasi-uniformities on a lattice.

Let ≥ be a binary relation on SYNT(X) define SX ≥ S �
X if for all �X ∈ SX there exists

�
�
X ∈ S �

X such that �X ⊆ �
�
X . Thus �� ≥�� is a preorder on SYNT(X). Furthermore, define

B ≥ B� if for all u ∈ B there is v ∈ B� with v ≤ u. Evidently �� ≥�� is a preorder on B(X). Note
that when speaking of B(X), we will always assume it is ordered in the similar manner as Q(X)
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Proposition 4.4.1. Let B(X) be the collection of bases of quasi-uniformity on the lattice X.

For B ∈ B(X) define

SB = {�u | u ∈ B} where x �uX y ⇔ u(x) ≤ y.

Then SB is a syntopogenous structure on X. Futhermore, the map F : B(X) −→ SYNT(X),

taking each B to SB is order preserving.

Proof. (S1) (a) Since idX ≤ U, x �U y ⇒ x ≤ U(x) ≤ y ⇒ x ≤ y;

(b) Since each U is order preserving, then x ≤ y �U z ≤ y ⇒ U(x) ≤ U(y) ≤ z ≤ y ⇒ x �U y;

(c) x �U yi ∀i ∈ I ⇒ U(x) ≤ yi ∀i ∈ I ⇒ U(x) ≤ �
i∈I yi ⇒ x �U

�
i∈I yi and �U is meet

preserving.

(S2) Note that if U ≤ V then x �V y ⇒ U(x) ≤ V (x) ≤ y ⇒ x �U y. Hence given �U , �V ∈ SU ,

since U ∧ V ∈ U , we obtain �U ∪ �V ⊆ �U∧V ∈ SU ;

(S3) Given �U ∈ SU there is V ∈ U with V ◦ V ≤ U . Then x �U y ⇒ U(x) ≤ y. Thus

V (V (x)) ≤ U(x) ≤ y and x �V V (x) �V y.

Let F be the function mapping B �→ SB and let B�, B ∈ SB with B� ≥ B then for all �B
� ∈ SB

there is B ∈ B with B ≤ B�, thus �B ∈ SB with �B
� ⊆ �B that is to mean F(B�) = SB� ≥ SB =

F(B).

�

Proposition 4.4.2. Let S ∈ SYNT(X) and � ∈ S. The assignment

BS = {U� | � ∈ S} with U�
X(x) =

�
{y ∈ X | x � y}

defines a base of a quasi-uniformity U . Moreover the map G : SYNT(X) −→ B(X), taking each

S to BS , is order preserving.

Proof. (Q1) Clearly U� : X −→ X is order preserving and since, by (T1), x � y ⇒ x ≤ y, it

follows that x ≤ U(x).

(Q2) Consider U�1 and U�2 ∈ US for some � ∈ S. Then using (S2), there is �3 with �1∪�2 ⊆ �3

and so for any x ∈ X, {y ∈ X | x �1 y} ⊆ {y ∈ X | x �3 y} giving U�3(x) ≤ U�1(x).

Similarly, it can be shown that U�3 ≤ U�2 and so U�3 ≤ U�1 ∧ U�2 .

(Q3) In view of (S3), given � ∈ S there is �� ∈ S such that x � y implies there is z ∈ X with

x��z��y. Then U��(x) ≤ z��y and so U��(x)��y. This gives that {y |x�y} ⊆ {y |U�(x)��y}
and hence U��(U��(x)) ≤ U�(x), that is, U�� ◦ U�� ≤ U� as needed.

Let G be the function mapping S �→ BS and let S,S � ∈ SYNT(X) with S ≥ S � then for all

� ∈ S there exists �� ∈ S � with � ⊆ �� giving for all U� ∈ BS there is V � ∈ BS�
with V �� ≤ U�

and G(S) = BS ≥ BS�
= G(S �).

54

http://etd.uwc.ac.za



�

In consequence of Propositions (4.4.1) and (4.4.2), the statement of the following theorem
holds:

Theorem 4.4.1. Let B(X) be the collection of all bases of a uniformity on the lattice X and

SYNT(X) that of all the syntopogenous structures on X. Then B(X) and SYNT(X) are order

isomorphic, that is,

B(X) ∼= SYNT(X)

Proof. As per Propositions (4.4.1) and (4.4.2), SU and US constitute syntopogenous structures

and bases of a quasi-uniformity on X, respectively. In addition, the mappings SYNT(X) −→
B(X) and B(X) −→ SYNT(X) are order preserving. The final step is to prove that these

mappings are inverses of each other. Indeed,

U�U (x) =
�

{a ∈ X | x �U a};

=
�

{a ∈ X | U(x) ≤ a};
= U(x).

On the other hand,

x �U
�
y ⇔ U�(x) ≤ y;

⇔
�

{a | x � a} ≤ y;

⇔ x � y, since � ∈
�

-TORD(X). (4.4.4)

�

The culmination of our discussions are summarized in the following theorem which affirms
that a syntopogenous structure and a base of a quasi-uniformity on a complete lattice are
fundamentally equivalent. In other words, the theorem asserts that a syntopogenous structure
is a base of quasi-uniformities on a complete lattice.

If U ∈ B(X), then U � = {U : X −→ X | U is order preserving and there exists V ∈ U with
V ≤ U} is a quasi-uniformity on X. Denote by Q(X) the collection of all quasi-uniformities on
X. We have the following Galois correspondence between B(X) and Q(X).

Theorem 4.4.2.

Q(X)
id

⊥
��
B(X)

()
�

��

between Q(X) and B(X)

Proof.

U � ≥op V ⇔ ∀ V ∈ V ∃ U ∈ U �, U ≤ V ;

⇔ ∀ V ∈ V ∃ U ∈ U , U ≤ V ;

⇔ U ≤ V.
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�
Theorem (4.4.1) implies that a syntopogenous structure on a complete lattice is essentially

the same as the base of a quasi-uniformity. Furthermore, if we remove the requirement that
every S ∈ SY NT (X), every �X ∈ S is respects meets, the reverse implication in equation
(4.4.4) will not hold and, as a result, the isomorphism obtained in Theorem (4.4.1) fails. In
such instances, we establish a Galois connection between B(X) and a subcollection of SYNT(X)
in which topogenous orders need not respect meet. This pivotal insight is central to the next
theorem.

We use SY NT (X) to denote the collection of all syntopogenous structures on the complete
lattice X such that for each S ∈ SY NT (X), every �X ∈ S need not respect meet. We also
use the letters F and G to denote the extension of the mappings F and G on SY NT (X),
respectively.

Theorem 4.4.3. The pair of mappings F : B(X) −→ SY NT (X) and G : SY NT (X) −→ B(X)

form a Galois connection

PQ(X)
F

⊥
��
SYNT(X)

G
��

between B(X) and SY NT (X)

Proof.

S ≥ SU ⇔ ∀ � ∈ S ∃�U ∈ SU , � ⊆ �U ;

⇔ ∀ � ∈ S ∃ U ∈ U , � ⊆ �U ;

⇔ ∀ � ∈ S ∃ U ∈ U , (x � y ⇒ U(x) ≤ y);

⇔ ∀ �U ∈ US ∃ U ∈ U , (U(x) ≤
�

{y | x � y});
⇔ ∀ �U ∈ US ∃ U ∈ U , U ≤ U�;

⇔ US ≥ U .

�

4.5 Closure and Interior Operations Induced by a Quasi-uniformity

Like in the classical case, in this section, we explore the notion of closure and interior operations
induced by the quasi-uniformity in a complete lattice.

The general theory tells us that each quasi-uniform space (X,U) is always associated with
two other quasi-uniformities [FHL94]: the conjugate quasi-uniformity which we denote by Ũ and
the join uniformity denoted by U∗ = U ∨ Ũ . Additionally, these three quasi-uniformities induce
three distinct topologies, denoted as �(U),�(Ũ) and �(U∗). For instance,

�(U) = {A ⊆ X | for each a ∈ A there exists U ∈ U with U(a) ⊆ A.}
If �(U) = � where � is a given topology on X then U is said to be compatible with �. One
also says that (X,�) admits U . In consequence of this, we also have

Ã =
�

{U−1(A) : U ∈ U} and Ao = {x | there exists U ∈ U with U(a) ⊆ A}
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respectively, the closure and interior operators associated with the quasi-uniformity U .

All the concepts mentioned above are highly applicable in the realm of lattice theory and
more importantly within frames, as we shall explore in Section 4.9. Therefore, in accordance
with Proposition (3.3.12) and Theorem (4.4.1), we can derive an interior and closure operator
associated with a quasi-uniformity U on a given lattice X.

Proposition 4.5.1. Let X be a complete lattice and U be a quasi-uniformity on X. Then

(1) The assignment k = {kX : X −→ X, with X a lattice} given by

kU (x) =
�

{U(x) : U ∈ U}

is an idempotent closure operation on X. Dually,

(2) the assignment i = {iX : X −→ X, with X a lattice} given by

iUX(x) =
�

{p ∈ X | U(p) ≤ x forsome U ∈ U}

is an idempotent interior operation on X.

4.6 Transitive Quasi-Uniformity Determined by a Meet Struc-

ture in Lattice

In Chapter 2, we highlighted the significance of a
�
-structure in a complete lattice, as it plays

an important role by characterizing closed subsets of a complete lattice. Thus, we devote this
section to the study of quasi-uniformities induced by a

�
-structure in a complete lattice.

Definition 4.6.1. Let X be a complete lattice and BX a base of a quasi-uniformity U on X.

Then BX is said to be transitive if for every U ∈ BX , U ◦ U = U .

A quasi-uniformity is called transitive if it has a transitive base. The collection of all transi-
tive quasi-uniformities on the complete lattice X will be denoted by TQ(X). The forthcoming
proposition, which bears resemblance with Proposition 3.2 in [HI19], relates interpolative syn-
topogenous structures and transitive bases of a quasi-uniformity.

Proposition 4.6.1. INTSYNT(X) is isomorphic to TQ(X)

Proof. Let S ∈ INTSYNT(X) and � ∈ SX for all x, y ∈ X, if x � y then there is a ∈ X such that

x � a � y which implies U�(x) ≤ a � y and by (T2), we get U�(x) ≤ y. Thus
�{t | U�(x) � t} ≤�{g | x � g} which means that U�(U�(x)) ≤ U�(x). Further, using (PQ(1)), we also have that

U�(x) ≤ U�(U�(x)). Hence U�(x) = U�(U�(x)).

On the other hand, let B be a base of a transitive quasi-uniformity and x �U y for some

U ∈ U . Clearly U(x) = U(U(x)) �U U(x) ≤ y and hence U �U U(x) �U y.

Theorem 4.6.2. Let X be a complete lattice and let M ⊆ MS(X) with M �= 0. If M is closed

under meets then

BM = {UM
X | M ∈ M}
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where UM
X : X −→ X and

UM
X (x) =

�
{y ∈ X | x � y}

is a base of a transitive quasi-uniformity U on X.

Proof. (Q1) is clear. For (Q2), let M,N ∈ M and x ∈ X. Then

(UM ∧ UN )(x) = UM (x) ∧ UN (x);

=
�

{y ∈ M | x ≤ y} ∧
�

{z ∈ N | x ≤ z};

=
�

{c ∈ M ∪N | x ≤ c};
= UN∪M (x).

Now since M,N ⊆ M ∪N then M ∪N ∈ M and so UM ∧ UN ∈ BM.

(iii) Lastly, for (PQ3) note that if x ∈ M then UM (x) = x since M is a
�
-structure, UM (x) =�{y ∈ M | x ≤ y} ∈ M. Hence UM (UM (x)) = UM (x) for any x ∈ X and UM ◦UM = UM .

Thus BM
X is a transitive base for a quasi-uniformity on X.

Theorem (4.6.2) is highly significant as it aids in the construction of quasi-uniformities
generated by idempotent closure operators on a complete lattices.

4.7 Quasi-Uniformly and Syntopogenously Continuous Maps

We extend the well-established classical concept of syntopogenously and quasi-uniformly contin-
uous maps to our general framework. To accomplish this, we revisit the notion of pseudofunctor,
which establishes the context within which we will operate in this section: let X be a general
category and P : X −→ Pos a pseudofunctor to the category of posets and order preserving
maps, which to every morphism f : X −→ Y in X assigns an adjoint pair:

PX
fo

⊥
��
PY

f∗
��

Now,

Quasi-Uniformly Continuous Maps

Definition 4.7.1. A quasi-uniformity on X is a family

U = {UPX | X ∈ X}

such that each UPX is a quasi-uniformity on PX (in the sense of Definition (4.2.1)) and for each

morphism f : X −→ Y ∈ X and each U ∈ UPX there is V ∈ UPX such that

U(f∗(y)) ≤ f∗(V (y)) (4.7.5)

holds for all y ∈ PY . When (4.7.5) holds, we also say that f is quasi-uniformly continuous.
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Remark 4.7.2. If X ∼= Pos, every morphism in X coincides with the right adjoint, that is,

f = f∗ and if furthermore, we assume that f∗ commutes with all joins, in view of Lemma (2.2.4)

f∗ has a right adjoint. Thus, we have the following other adjuction

Y
f∗

⊥
��
X

f∗
��

Of course, as we have already mentioned and without loss of generality, we remind the reader

that in certain instances, we will have to consider the objects in the category Pos to be special

posets such as complete lattices.

The most common situation where this occurs is when X ∼= Frm. Each frame homomor-

phism f : X −→ Y is associated with a right adjoint such that we have the adjuction f � f∗
between the frames X and Y .

Bearing in mind that in Frm f is just the same as f∗, we shall say that f : X −→ Y

(frame homomorphism in this case) is quasi-uniformly continuous if for every U ∈ VY there

exists V ∈ UX such that

U(f∗(y)) ≤ f∗(V (y)) (4.7.6)

holds for all y ∈ Y .

At a certain juncture, we will need a category in which the objects are the quasi-uniform
lattices and morphisms are the quasi-uniformly continuous maps. We will represent this category
with the symbol QUNLatt.

Syntopogenously Continuous Maps

Definition 4.7.3. A syntopogenous structure on a category X is a family

S = {SPX , | X ∈ X}

such that each SPX is a syntopogenous structure on PX and for each f : X −→ Y in X and

each �Y ∈ SPY there exits �X ∈ SPX such that

x �Y y ⇒ f∗(x) �X f∗(y)

for all x, y ∈ PY .

In this case, we say that f is syntopogenously continuous. In accordance with Remark
(4.7.2), if X ∼= Pos the syntopogenously condition implies that for every �X ∈ SX there exists
�Y ∈ SY such that

x �X y ⇒ f∗(x) �Y f∗(y)

for all x, y ∈ Y .
Thanks to Galois adjoint, the continuity condition in Definition (4.7.3) can be alternatively
expressed as follows:
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Proposition 4.7.1. Let S be a syntopogenous structure on X . A morphism f : X −→ Y in X
is said to be syntopogenously continuous if and only if for all �Y ∈ SY there exists �X ∈ SX

such that

fo(x) �Y y ⇒ x �X f∗(y)

for all x ∈ X and y ∈ Y .

Proposition 4.7.2. Suppose that S is a syntopogenous structure on X and f : X −→ Y a

morphism in X such that f∗ preserves all joins. Then f is syntopogenously continuous if and

only if for all �Y ∈ SY there exists �X ∈ SX such that

x �Y f∗(x) ⇒ f∗(y) �X y

for all x ∈ X and y ∈ Y .

We use the symbol SYNTLatt to denote the category of syntopogenous lattices and syn-
topogenously continuous maps.

The Proposition (4.7.3) below relates the quasi-uniformly continuous maps and syntopoge-
nously continuous morphisms in any general category X .

Proposition 4.7.3. Let SU be the syntopogenous structure induced by a quasi-uniformity U and

US the quasi-uniformity induced by a syntopogenous structure S on the category X , respectively.

Let f : X −→ Y be a morphism in X such that f∗ preserves all joins. Then

(1) x �VY y ⇒ f∗(x) �UX f∗(y)

(2) x �UY f∗(z) ⇒ f∗(x) �VX z

for all x, y ∈ Y and z ∈ X.

Proof. Let f : X −→ Y be an X -morphism. If

U(f∗(y)) ≤ f∗(V (y)) (4.7.7)

holds for all y ∈ Y . Then for all x, z ∈ X

x �VY y ⇔ V (x) ≤ y;

⇒ f∗(V (x)) ≤ f∗(y);

⇒ U(f∗(x)) ≤ f∗(V (x)) ≤ f∗(y) by (4.7.7);

⇒ U(f∗(x)) ≤ f∗(y);

⇔ f∗(x) �UX f∗(y).

x �V f∗(z) ⇒ V (x) ≤ f∗(z);

⇒ f∗(V (x)) ≤ f∗(f∗(z)) ≤ z;

⇒ f∗(V (x)) ≤ z;

⇒ U(f∗(x)) ≤ f∗(V (x)) ≤ z by (4.7.7);

⇒ U(f∗(x)) ≤ z ⇔ f∗(x) �U z.
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�

4.8 Example

(1) Let X = Grp represent the category of Groups and group homomorphisms between them.
Each group homomorphism f : G −→ G� induces an adjunction between the lattices of subgroups
of the groups G and G�:

L(G)
fo

⊥
��
L(G’)

f−1
��

Set
S = {�G | G ∈ Grp}

where for all subgroups H1, H2 ⊆ G we define H1 �G H2 if there exists a normal subgroup N in
G with H1 ⊆ N ⊆ H2. Then S is a simple syntopogenous structure on Grp.

One can also express this syntopogenous structure as a structure on a complete lattice: in-
deed, let L(G) be a complete lattice of subgroups of G and consider �G as an order relation on
L(G). Then, (L(G), �G) is a syntopogenous lattice. This means that one can express the �G
either with reference to G or L(G).
Thus, for any group G we have all possible �i on G. We can also think of these as �i on L(G).
Then, if S = {�i} we have that (L(G),S) is a syntopogenous lattice.

(2) Let X = Top, the category of topological spaces and continuous maps. Each continuous
map f : X −→ Y induces the image/preimage adjunction between the powerset lattices as shown
below

PX
fo

⊥
��
PY

f−1
��

Put
S = {�X | X ∈ Top}

where, for all A,B ⊆ X, we define

A �X B ⇔ A ⊆ C ⊆ B

for some C ∈ τ . Then, S is a single syntopogenous structure on Top.

As in the previous example, one can think of this syntopogenous structure as a structure on
PX. So, considering �X as an order relation on PX, then (PX, �X) is a sytopogenous lattice.
Therefore, given a topological space X, we have all �i on X. We can also think of these orders
as �i on PX. Hence, if S = {�i} we have that (PX,S) is a syntopogenous lattice.

4.9 Syntopogenous Structures in Pointfree Topology

As we have already observed in the previous chapters, Császár orders are used as a foundational
framework in pointfree topology. They are utilized to define lattice structures that provide a
way of studying topological spaces in a more abstract way. These orders are fundemantal in
developing the theory of frames, which is one of the key notion in pointfree topology.
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In the realm of spaces, if one reinforces the axioms of a syntopogenous space in certain ways,
not only does it yield a quasi-uniform space but also numerous other topological spaces among
which we may list proximity and uniform spaces. Thus, syntopogenous structures appear as a
general approach to study all these other structures concomitantly.

In pointfree topology the same observations have been made. Apart from Chung [Chu01] who
formally defined a syntopogenous structure on a frame, the syntopogenous structures have been
extensively studied in the context of pointfree topology under the guise of uniform structures
and proximity structures. This means that like in the classical case, syntopogenous structures
on frames encompass uniform structures, proximity structures even quasi-uniformities. Thus,
the category SYNTFrm contains ProxFrm (see [Fri86]) and UniFrm (see [PP11, Pic95]) as
subcategories. As result of this, there is an embedding from UniFrm into SYNTFrm and from
ProxFrm into SYNTFrm. As we shall see below, Frith [Fri86] established a correspondence
between ProxFrm and UniFrm.

On the other hand, if we focus our discussions on frames rather than complete lattices, we
obtain a frame counter part of the results in ([HI19]). In this context, we would say that a quasi-
uniformity is a family of closure operations on a frame and that a syntopogenous structure is a
base of a quasi-uniformity on a frame.

To provide a better understanding of Császár’s orders within a frame, we start by departing
from the lattice of open sets and then generalize this approach to all frames.

Given a topological space X, let us now consider, ΩX the lattice of open sets, instead of PX.
As in the previous chapter, each continuous map f : X −→ Y leads to the following alternative
adjunction:

Ω X
f−1

⊥
��
ΩY

f∗
��

where, as before, f∗ is the dual image and is given by

f∗(A) =
�

{B ⊆ ΩY | f−1(B) ⊆ A}.

Now put
S = {�X | X ∈ Top}

where, for all A,B ∈ ΩX,
A �B ⇔ A ⊆ B ⇔ A∗ ∪B = X

is a syntopogenous structure on Top. Further, speaking of ΩX as a complete lattice of open
subsets of X, let �X be an order relation on ΩX. Then the pair (ΩX, �X) is a syntopogenous
lattice which in this case we could also call syntopogenous frame. Hence, �X can also be ex-
pressed with reference to ΩX.

Taking into account the fact that ΩX is an abstraction of frames and that the topogenous
order A �ΩX B ⇔ A ⊆ B is a general concept applied to any frames, we can now extend the
concept of syntopogenous structures on frames. It is important to acknowledge that the initial
introduction of this concept to frames is due to [Chu01]:

Let L be a given frame and SL a family of topogenous orders on L such that:

(1) SL satisfies (S1) and (S2) of Definition (4.2.1) and ;
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(2) (S3) each x ∈ L can be written as

x =
�

{y ∈ L | y �SL
x}

with �SL
=

�{� ∈ SL}.

Then the pair (L,SL) is called a syntopogenous frame.

Let (M,SM ) be an a syntopogenous frame. Then a frame homomorphism h : L −→ M is
said to be syntopogenously continuous if for any �L ∈ SL there exists �M ∈ SM such that for all
x, y ∈ L, x �L y ⇒ h(x) �M h(y).

The syntopogenous frame homomorphisms and syntopogenous frames correspond to the mor-
phisms and objects in the category SYNTFrm.

We now embark on clarifying the relationship between the categories SYNTFrm and SYT
using the open functor. The spectrum functor still needs more terminology before it is estab-
lished.

Lemma 4.9.1. Let (X,S) be a syntopogenous space. Put ΩX = τS and let ΩS be given by

ΩS = {�i ∩ {τS × τS} | �i ∈ S}

Then (ΩX,ΩS) is a syntopogenous frame.

Proof. By Proposition (4.1.2), τS is a topology. Further, (S1) is clear. (S3) also follows from

Proposition (4.1.2). To conclude, the proof, we must show that (S2) holds. For all A,B ∈ τS ,

A �B ⇒ ∃�1 ∈ S, ∃ C ⊆ X with A �1 C �1 B which holds since Proposition (4.1.2), C ∈ τS .

�

Now, if f : (X,S) −→ (Y,S �) is a syntopogenously continuous map, then the map Ωf :
(ΩY,ΩS �) −→ (ΩX,ΩS) such that for all A,B ∈ ΩY , and �� ∈ S �, there exists � ∈ S with
f−1(A) � f−1(B) whenever A �� B is a syntopogenous frame homomorphism.

Thus, the open functor Ω : SYT −→ SYNTFrm maps each syntopogenous space (X,S) to
the syntopogenous frame (ΩX,ΩS) and to each syntopogenously continuous map f : (X,S) −→
(Y,S �) to the syntopogenously continuous frame homomorphism Ωf : (ΩY,ΩS �) −→ (ΩX,ΩS)

Proximity

Definition 4.9.2. A proximity on a frame L is a binary relation � on L× L such that

(P1) � is a sublattice of L× L

(P2) x � y ⇒ x ≤ y for all x, y ∈ L;

(P3) if a ≤ x � y ≤ b then a � b for all a, b ∈ L;

63

http://etd.uwc.ac.za



(P4) x � y ⇒ y∗ � x∗ for all x, y ∈ L;

(P5) � interpolates;

(P6) each element x ∈ L can be written as x =
�{a ∈ L | a � x}.

The pair (L, �) where � is a proximity on L is called a proximity (or proximal) frame. Let
(L, �) and (M, �) be proximity frames. A frame homomorphism h : L −→ M is a proximity
frame homomorphism if

x �L y ⇒ h(x) �M h(y)

for all x, y ∈ L. Proximity frames and proximity frame homomorphisms are the objects and
morphisms of the category ProxFrm.

The following two propositions which establish a relationship between uniform frames and
proximal frames are due to Frith ([Fri86]):

Proposition 4.9.1. Let (L,A) be a uniform frame. For all x, y ∈ L, define a �A b if and only

if Aa ≤ b for some A ∈ A. Then the pair (L, �A) is a proximal frame.

Proposition 4.9.2. Consider (L,A) a proximal frame. There exists a compatible uniform

structure A� such that A induces �.

The proofs of the above two propositions are available in ([Fri86])

Let L ∈ UniFrm, put
S(L,A) = {�A}

where, for all a, b ∈ L, a �A b if and only if Aa ≤ b for some A ∈ A. Then S(L,A) is a syntopoge-
nous structure on uniform frames.

We note that the notion of quasi-uniformities we introduced in this chapter is compatible
with the entourage quasi-uniformities on frames by Fletcher et al. in [FH91, FHL93b]. This will
be discussed further in the next chapter.
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Chapter 5

PRE-NEARENESS AND CSÁSZÁR

STRUCTURES IN FRAMES

As we have already seen in chapter two, Császár developed the theory of syntopogenous struc-
ture on a set. He aimed to establish a comprehensive framework that encompasses the study of
topological, proximal, and uniform structures simultaneously. Shortly thereafter, in [Her74a],
Herrlich introduced the concept of “nearness” with the idea of unifying various concepts of
topological structures on a set. He further suggested a correspondence between symmetric syn-
topogenous spaces and nearness spaces. While all of these structures are well-defined in pointfree
topology, to the best of our knowledge, there is no clear correspondence between nearness struc-
tures and Császár structures within the context of frames. In this chapter, we intend to bridge
this gap. We will establish a correspondence between the category of pre-nearness frames [BP93]
and a novel category of semi-Császár structures that we introduce. Moreover, when considering
the concept of quasi-uniformities in a frame, we will demonstrate that interpolative Császár
structures are in a one-to-one correspondence with the bases of a quasi-uniformity. Building
upon the findings of [FHL93b] and [Pic95], we conclude the chapter by establishing a relation-
ship between a base of an entourage quasi-uniformity and a base of pre-uniformities within the
framework of frames.

5.1 Nearness Spaces

In [Her74a] Herrlich introduced the concept of “nearness of an arbitrary collection of sets B”.
It is typically denoted by B ∈ µ or µB for some B ∈ µ; which mean “B is near”. His aim was to
bring together different types of topological structures.

There exist several equivalent approaches to axiomatize the category of nearness spaces and
nearness maps between them [Her74b]. In this part of our work, we mention two, which we
intend to link with Császár structures in the context of pointfree topology. Of course, it should
be noted that the approach using covers will be often more intriguing and frequently utilized
given the context of pointfree topology in which we are working.

Definition 5.1.1. [Her74b] Let X be a given set, and µ a non-empty collection of covers of X.

The pair (X,µ) is called a nearness space if the following axioms hold:
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(N1) if A ∈ µ,B ⊆ P (X) and A ≤ B then B ∈ µ;

(N2) if A,B ∈ µ then A ∧ B ∈ µ;

(N3) if A ∈ µ then

intµA = {intµA | A ∈ A} ∈ µ

where for each A ⊆ X,

intµA = {x ∈ X | {A,X \ x} ∈ µ}

Citing [Pic95], we say that the pair (X,µ) is a pre-nearness space if µ satisfies only axiom
(N1) of Definition (5.1.1).

Definition 5.1.2. Let (X,µ) and (Y, ν) be two nearness (pre-nearness) spaces. A function

f : X −→ Y is called a nearness (pre-nearness) map f : (X,µ) −→ (Y, ν) from (X,µ) to (Y, ν)

if f−1(A) ∈ µ whenever A ∈ ν.

Pre-nearness spaces and pre-nearness maps are objects and morphisms of the category PN-
ear. This category includes Near, which is the category of nearness spaces and nearness maps,
as full subcategory.

Herrlich proposed in [Her74b] an equivalent way of axiomatizing the notion of nearness
spaces. In this alternative approach, the members of µ are not necessarily covers. They are
simply subsets of the power set PX.

Definition 5.1.3. Let X be a set, and µ ⊆ P 2X ⊆ P (PX). The pair (X,µ) is called a nearness

space if the following axioms hold:

(N’1)
�A �= ∅ ⇒ A ∈ µ;

(N’2) A �∈ µ,B �∈ µ ⇒ A ∪ B �∈ µ; where

A ∪ B = {A ∪B | A ∈ A, B ∈ B}

(N’3) ∅ ∈ A ⇒ A �∈ µ;

(N’4) B ∈ µ, ∀A ∈ A ∃ B ∈ B, B ⊆ A ⇒ A ∈ µ; where

x ∈ A ⇔ {x,A} ∈ µ

Definition 5.1.4. Let (X,µ) and (Y, η) be nearness spaces. Then f : (X,µ) −→ (Y, η) is called

a nearness map if and only if f : X −→ Y is a function and the following condition is satisfied:

if µB, then η(fB),

where fB = {f(B) | B ∈ B}.
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Proposition 5.1.1. The correspondence

A ∈ µ̃ ⇔ {X \A | A ∈ A} �∈ µ (5.1.1)

provides an alternative description of a nearness on a set X.

Proof. Let µ be a nearness on a set X as defined in Definition (5.1.1). We show that µ̃ satisfies

Definition 5.1.1.

(Ñ1),

{X \A | A ∈ A} �∈ µ ⇒ �{X \A | A ∈ A} = ∅ ⇒ �A = X, which implies that µ̃ is a family of

covers of X.

For (Ñ2),

A,B ∈ µ̃ ⇒ {X \A | A ∈ A}, {X \B | B ∈ B} �∈ µ;

⇒ {X \A ∪X \B | A ∈ A, B ∈ B} �∈ µ;

⇒ {X \ (A ∩B) | A ∈ A, B ∈ B} �∈ µ;

⇒ A ∧ B = {A ∩B | A ∈ A, B ∈ B} ∈ µ̃.

(Ñ3)

X ∈ A ⇒ ∅ ∈ {X \A | A ∈ A};
⇒ {X \A | A ∈ A} �∈ µ;

⇒ A ∈ µ̃.

(Ñ4) A ∈ µ̃ ⇒ {X \A | A ∈ A} �∈ µ, so if ∀A ∈ A, ∃ B ∈ B with

X \B ⊆ X \A

then {X \B | B ∈ B} �∈ µ, that is, B ∈ µ̃.

In accordance with reference [Pic95], we note that if µ is a nearness on X, then intµ is
an idempotent interior operation on P (X). It is the interior operation associated with µ and
satisfies the following axioms:

(i) intµ(A ∩B) = intµ(A) ∩ intµ(B) for all A,B ⊆ X;

(ii) x ∈ intµ(X \ {y}) if and only if y ∈ intµ(X \ {x})

Therefore, any nearness structure on a set X gives rise to a topology satisfying (ii). Sets
endowed with such topology are symmetric topological spaces or Ro-spaces. In fact, they form
a full subcategory of Top denoted by RoTop. Speaking of µ̃, we note the following

x ∈ Ao ⇔ x �∈ X \A;
⇔ {{x}, X \A} �∈ µ;

⇔ Ax = {X \ {x}, A} ∈ µ̃;

(∗) ⇔ {x} ⊆µ̃ A;

∃ A ∈ µ̃, A{x} ⊆ A.
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Where (∗) holds since

(⇒)Ax ∈ µ̃ ,Ax{x} =
�

{U ∈ Ax | {x} ∩ U �= ∅};

=
�

{U ∈ Ax | x ∈ U};
= A ⊆ A.

(⇐) ∃A ∈ µ̃,
�{U ∈ A | x ∈ U} ⊆ A then for U ∈ A,

(i) x ∈ U ⇒ U ⊆ A;

(ii) x �∈ U ⇒ X \ {x} ⊇ U.

From (i) and (ii), we obtain Ax ∈ µ̃.

Herrlich pointed out that (N3) can easily be dropped, and he also noted that replacing A
with A or dropping (N2) still leads to an interesting concept. However, he was not pursuing
such generality.

5.2 Category of Pre-nearness Frames

In pointfree topology, the concept of nearness frame was axiomatized by Banaschewski and Pultr
[BP96] with a dual purpose: on one hand, to obtain the pointfree counterpart of the nearness
spaces, on the another hand, to overcome the limitations of uniform frames. As we shall see
shortly, nearness frames are uniform frames without the star-refinement axiom.

Let L be a frame, and let A be its subset. Then A is called a cover of L if
�

A = 1L. The
collection of all covers of L is denoted by cov(L). It is preordered as follows: a cover A refines
a cover B, written A ≤ B, if

for each a ∈ A there exists b ∈ B such that a ≤ b.

Note that for any A,B ∈ cov(L):

A ∧B = {a ∧ b | a ∈ A, b ∈ B} and A ∨B = A ∪B

Further, for each cover A of L and each element x ∈ L, the element Ax given by

Ax =
�

{a | a ∈ A, x ∧ a �= 0}

and is called the star of a in A. In addition to this, if A is a cover of L, its star, denoted by A∗,
is the set

A∗ = AA = {Aa | a ∈ A}
which is itself a cover since A ≤ A∗. Furthermore, we shall say that a cover A star refines a
cover B, written as A ≤∗ B if AA ≤ B.

Now, let A be a subcollection of covers, and a, b ∈ L, we write

a �A b

and read “a A-strongly below b” if there is A ∈ A with Aa ≤ b.

Given a frame L and A ⊆ cov(L). We consider the following axioms:
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(N1) if A ∈ A and A ≤ B then B ∈ A;

(N2) if A,B ∈ A then A ∧B ∈ A;

(N3) for all A ∈ A there exists B ∈ A such that BB ≤ A;

(N4) A is admissible if each element a ∈ L can be written as the join of all elements b�A a, that
is,

a =
�

{b ∈ L | b �A a}

A collection A of covers of the frame L is called a pre-nearness [Pic95] on L if it satisfies (N1)
and (N2), that is to say a pre-nearness is a filter of covers on L. A is, further called, a pre-
uniformity on L if it satisfies (N1)-(N3) [BP93], a nearness if it satisfies (N1), (N2) and (N4)
[BP96], a uniformity if it fulfills (N1) − (N4) [BP96]. The pair (L,A) is called pre-nearness
frame, pre-uniform frame, nearness frame, uniform frame, respectively if A is a pre-nearness,
pre-uniform, nearness, uniform structure on L, respectively.

Speaking of pre-nearness within a frame L, we denote the collections of all pre-nearnesses
on the frame L by PN(L) and the order on cov(L) can be nicely inherited here.

The next two Lemmas will be useful in the sequel:

Lemma 5.2.1. [Pul84] In a uniform (nearness) frame L, the relation x �A y implies x ≺ y

Proof. If x �A y then Ax ≤ y for some A ∈ A where as before, Ax is given by

Ax =
�

{a ∈ A | a ∧ x �= 0}. Now let b =
�

{a ∈ A | a ∧ x = 0} = x∗

Then b∧x = 0 and Ax∨ b =
�

A = 1L. Thus also y∨ b = 1L. So, since x∧ b = 0 and y∨ b = 1L,

it follows that x ≺ y.

�
In view of the above lemma, every nearness frame is a regular frame.

Lemma 5.2.2. [Pul84] For any frame L, A,B ∈ cov(L) and x, y ∈ L, the following hold:

(i) (A ∧B)x ≤ Ax ∧Bx;

(ii) A(Ax) ≤ Ax.

The uniformly below relation has a number of useful features, of which we mention a few by
means of the following proposition:

Proposition 5.2.1. (1) a �A b ⇒ a ≺ b ⇒ a ≤ b;

(2) a ≤ x �A b ≤ y ⇒ a �A y.

In fact the uniformly below relation can be extended to the arbitrary meet and join as follows:

for all A ∈ A

x �A yi∀i ⇒ Ax ≤ yi ∀i;
⇒ Ax ≤

�
yi;

⇒ x �A
�

yi.
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xi �A y∀i ⇒ ∀ i ∃ Ai ∈ A | Aixi ≤ y;

⇒ Ai ∈ A |
�

(Aixi) = Ai

�
xi ≤ y;

⇒
�

xi �A y.

Let (L,A) and (M,B) be pairs of pre-nearness frames, pre-uniform frames, nearness frames,
uniform frames. A frame homomorphism f : L −→ M is uniformly continuous if

f(A) = {f(a) | a ∈ A} ∈ B whenever A ∈ A.

We denote by PNFrm the category of pre-nearness frames and uniformly continuous maps
between them and by PUniFrm, NFrm and UniFrm the full subcategories of pre-uniform
frames, nearness frames and uniform frames, respectively.

All the above categories have counterparts in realm of spaces, see Section 5.1 and [Pic95] for
more details.

5.3 Category of Császár Structures

Recall from Chapter 3 Lemma (3.3.12) that if L = {�i | i ∈ I} is a family of topogenous orders
on a frame L, the order relation �L given by

�L =
�

{�i | i ∈ I} (5.3.2)

is also a topogenous order on L.

Now, let L be a family of topogenous order and consider the following axioms:

(L1) Each � ∈ L respects:

(•) binary meet: a � b and a � c implies a � b ∧ c;

(•) arbitrary join: a � b for all a ∈ A implies
�

A � b;

(L2) L is directed: for each �1, �2 ∈ L there is �3 ∈ L such that �1 ∪ �2 ⊆ �3;

(L3) admissible, that is, if (5.3.2) holds then

a =
�

{b ∈ L | b �L a}

for any a ∈ L.

The collection L is called:

• a semi-Császár structure if it satisfies (L1) and (L2);

• a Császár structure if it is, furthermore, admissible.
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The pair (L,L) is called a semi-Császár (Császár) frame if L is a semi-Császár (Császár) struc-
ture on L. Note the concept of Császár frame have been used in the literature by [Chu05].

We shall further say that L is interpolative if each � ∈ L interpolates, that is, for each
� ∈ L, x, y ∈ L, x � y implies there exists z ∈ L with x � z � y.

Speaking of Császár structures on a given frame L, we use the symbol CS(L) to denote
the collection of all the Császár structures on L. It is preordered in the following manner: let
L,L� ∈ CSC(L). Put L ❂ L� if for all � ∈ L there exists �� ∈ L� such that � ⊆ �� .

Definition 5.3.1. Let (L,A) and (M,M) be semi-Császár (Császár) frames. A frame homo-

morphism f : L −→ M is continuous (with respect to the Császár structure) if for each �L ∈ L
there exists �M ∈ M such that

f(x) �M f(y) whenever x �L y

for all x, y ∈ L. This is equivalent to saying that

x �L y ⇒ f(x) �M f(y)

for all x, y ∈ L.

We use the symbol CSFrm to denote the category of semi-Császár frames and continuous
frame homomorphisms between them and by CFrm, the full subcategory of CFrm of Császár
frames and continuous (with respect to the Császár structures) frame homomorphisms.

5.4 Correspondence Between the Categories SCFrm and PN-

Frm

We establish a functorial correspondence between the categories of pre-nearness frames and that
of semi-Császár frames.

Proposition 5.4.1. Let (L,L) be a semi-Császár frame. Set

AL = {A ⊆ L | ∃ � ∈ L,
�

A� = 1L}

where

A� = {x ∈ L | ∃ y ∈ A, x � y}.

The pair (L,AL) is a pre-nearness frame. In addtion, the map taking each L to AL is order

preserving.

Proof. Firstly, note that AL ⊆ cov(L): Indeed, if A ∈ AL then, since ∀ x ∈ A� ∃ a ∈ A with

x ≤ a, it follows that �
A� ≤

�
A and

�
A = 1
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Thus AL is a collection of covers.

Assume A ∈ AL and A ≤ B. Since ∀x ∈ A� ∃ a ∈ A with x � a, but since A ≤ B, ∃ b ∈ B

with x � a ≤ b which implies that x � a. Thus, by (T2), we obtain x � b and so A� ⊆ B� and

1 =
�

B� showing that B ∈ AL. Thus if A ∈ AL and A ≤ B then B ∈ AL and so (N1) holds.

Next, let A,B ∈ AL, there exist �1, �2 ∈ L with
�

A�1 =
�

B�2 = 1L. Now pick � ∈ L with

�1∪�2 ⊆ � and � respects meets. Then A�1 ⊆ A� and B�2 ⊆ B� and if x ∈ A�, there exits a ∈ A

with x � a and

x = x ∧
�

B�

= x ∧
�

{y ∈ L | ∃ b ∈ B, y � b}

=
�

{x ∧ y | ∃ b ∈ B, y � b}

≤
�

{z ∧ y | ∃ a ∈ A ∃ b ∈ B, z � a and y � b}

=
�

{z ∧ y | z ∈ A� and y ∈ B�}

But
�{x | x ∈ A�} = 1L and so

�{z ∧ y | z ∈ A� and y ∈ B�} = 1.

In order to prove that A ∧B ∈ AL, we must show that
�
(A ∧B)� = 1, that is,

�
(A ∧B)� =

�
{w ∈ L | ∃ a ∈ A, b ∈ B ,w � a ∧ b} = 1.

If z ∈ A� and y ∈ B�, ∃ a ∈ A, b ∈ B with z � a and y � b. Thus z ∧ y � a and z ∧ y � b. Hence

since � preserves meet, we conclude that z ∧ y � a ∧ b. Thus

1 =
�

{z ∧ y | y ∈ B�, z ∈ A�} ≤
�

{w | ∃ a ∈ A, ∃ b ∈ B,w � a ∧ b}

and,
�
(A ∧B)� = 1.

Thus AL satisfies (N2) and all together shows that AL is a prenearness structure on L.

Let L,L ∈ SC(L) such that L ❂ L. For each � ∈ L, there exists �� ∈ L� with � ⊆ ��. This

gives for all A� ∈ AL there exists A�� ∈ AL�
with A� ⊆ A�� and this proves that AL ❂ AL�

and

so the map taking L to AL is order preserving.

�

In what follows, we denote by ϕ the map taking each L to AL. In fact for any semi-
Császár structure L, ϕ(L) = AL denote the prenearness induced by the semi-Császár structure
L. Besides, the assignment (L,L) −→ (L,ϕ(L)) is functorial. We prove this point in the
subsequent proposition.

Proposition 5.4.2. Let (L,L) and (L,M) be semi-Császár frames such that the map f :

(L,L) −→ (M,M) is a Császár frame homomorphism, Then f : (L,ϕ(L)) −→ (M,ϕ(M))

is a uniform frame homomorphism.

72

http://etd.uwc.ac.za



Proof. Let A ∈ AL and consider

f(A) = {f(a) | a ∈ A} ⊆ M

There exists � ∈ L with
�

A� = 1L. Now, since f is continuous there exists �� ∈ M such that

for all a, b ∈ L, a � b ⇒ f(a) �� f(b). Thus, we obtain:

f(A�) = {f(x) | ∃ a ∈ A, x � a} ⊆ f(A)�
�
= {y | ∃ f(a) ∈ f(A), y �� f(a)}

Moreover, since f is a frame homomorphism, thence

1M = f(1L) = f
��

A�
�
=

�
f
�
A�

�
≤

�
f
�
A
��
.

�

In view of Proposition (5.4.2) if f : (L,L) −→ (M,M) is a SCFrm-morphism then f :
(L,ϕ(L)) −→ (M,ϕ(M)) is a PNFrm morphism.

In this case, we have a functor ψ: PNFrm −→ SCFrm

Proposition 5.4.3. Let (L,A) be a pre-nearness frame. Put

LA = {�A : A ∈ A}

where

x �A y ⇔ Ax ≤ y and Ax =
�

{a ∈ L | a ∧ x �= 0}.

The pair (L,L) is a semi-Császár frame. Lastly the map taking each A to LA is order preserving.

Proof. Since A is a cover, x ≤ Ax, so x �A y ⇒ x ≤ y. Further, since x ≤ y ⇒ Ax ≤ Ay, we

obtain x ≤ y �A z ≤ w ⇒ Ax ≤ Ay ≤ x ≤ w giving x �A w. Thus is a �A is topogenous order.

If x �A y and x �B z for A,B ∈ A and x, y, z ∈ L. Then since x �A∧B y and x �A∧B z, we get

(A∧B)x ≤ y and (A∧B)x ≤ z. Thus (A∧B)x ≤ y ∧ z and x �A∧B y ∧ z. Therefore, it follows

from the above arguments and Proposition 5.2.1 that (L1) is true.

Note that if A ≤ B then Ax ≤ Bx for all x ∈ L. Hence Bx ≤ y ⇒ Ax ≤ y giving

x �B y ⇒ x �A y. In particular, if �A, �B ∈ LA then since A is a pre-nearness, A ∧ B ∈ A and

�A ∪ �B ⊆ �A∧B. Hence (L2) holds and this completes the proof.

Let A,A� ∈ PN(L) such that A ≤ A�. Then for all A ∈ A there exists B ∈ A� with A ≤ B.

Hence �A ∈ LA with �A ⊆ �B. This shows that LA ≤ LA�
and the map A to LA preserves order.

�
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In the sequel, we use the symbol ψ for the map taking each A to LA. Thus, this being said,
given any pre-nearness structure A on the frame L, ψ(A) = LA denotes a semi-Császár structure
induced by the pre-nearness A. In addition to this, the correspondence (L,A) −→ (L,ψ(A)) is
functorial:

Proposition 5.4.4. Let (L,A) and (M,B) be pre-nearness frames such that the map f :

(L,A) −→ (M,B) is a uniform frame homomorphism. Then f : (L,ψ(A)) −→ (M,ψ(B))
is a semi-Császár frame homomorphism.

Proof. Let f : (L,A) −→ (M,B) be a morphism in PNFrm and consider A ∈ A. Then for all

x, y ∈ L:

x �A y ⇒ Ax ≤ y;

⇒ f(Ax) ≤ f(y);

⇒ f(A)f(x) ≤ f(y);

⇒ f(x) �f(A) f(y).

Where the third implication follows since

f(A)f(x) =
�

{f(a) ∈ f(A) | f(a) ∧ f(x) �= 0};

=
�

{f(a) ∈ f(A) | f(a ∧ x) �= 0};

= f
��

{a ∈ A | f(a ∧ x) �= 0}
�
;

≤ f
��

{a ∈ A | a ∧ x �= 0}
�
;

= f(Ax).

Therefore the assignment (L,A) −→ (L,ψ(A)) is indeed functorial.

�

We shall represent the functor from SCFrm to PNFrm by ϕ

By Proposition (5.4.4), if f : (L,A) −→ (M,B) is a morphism in PNFrm then f :
(L,ψ(A)) −→ (M,ψ(B)) is a morphism in SCFrm. It also follows from Proposition (5.4.1)
to Proposition (5.4.4), that the functors ψ and ϕ are well-defined.

Possible Composition ψ and ϕ

Proposition 5.4.5. For any pre-nearness frame, idL : (L,ALA
) −→ (L,A) is a uniform homo-

morphism.

Proof. Let A be a pre-nearness on L and pick B ∈ ALA
. Then there is A ∈ A with

�
B�A = 1L.

For any a ∈ A,

a = a ∧
�

B�A =
�

{a ∧ x | ∃ x �A b, for some b ∈ B}.
If a �= 0 then there exist x ∈ B�A with a∧x �= 0 and x�A b for some b ∈ B. But then a ≤ Ax ≤ b

giving a ≤ b and hence A ≤ B. Since A is a pre-nearness it follows that B ∈ A.
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�

Proposition 5.4.6. For any semi-Császár frame, idL : (L,LAL
) −→ (L,L) is Császár frame

homomorphism.

Proof. Let x �A y for �A ∈ LAL
. Then there is � ∈ L with

�
A� = 1 and Ax ≤ y. Now,

∀ b ∈ A� ∃ a ∈ A with b � a. If b ∧ a �= 0 then x ∧ a �= 0 and b � x � a ≤ Ax ≤ y. Hence b ∧ x � y.

Thus, it follows (L1) that

x = x ∧
�

{b | b ∈ A�} =
�

{x ∧ b | b ∈ A�} � y

�

In view of Propositions (5.4.5) and (5.4.6), we notice that while both ψ and ϕ are well-defined
and they can compose but do not give a canonical result, that is we couldn’t get an equivalence
or Galois connection, as expected. Consequently, the results of our discussions in this section
are encapsulated in the following theorem.

Theorem 5.4.1. The functors ψ and ϕ satisfy

SCFrm
ψ ��

PNFrm
ϕ

�� ,

with ϕ(L,L) = (L,AL), ψ(L,A) = (L,LA) and

(1) ϕ(ψ(A)) ≤ A for all A ∈ PNFrm;

(2) ψ(ϕ(L)) ≤ L for all L ∈ SCFrm.

Proposition 5.4.7. If A is pre-uniformity rather than a nearness then the reverse inequality

holds in Theorem (5.4.1) (1), that is to say, ϕ(ψ(A)) = A.

Proof. Assume that A is a pre-uniformity, recall that

D ∈ ALA ⇔ ∃ C ∈ A,
�

D�C = 1L

where

D�C = {x ∈ L | ∃ d ∈ D,x �C d}.

Now let A ∈ A, since A is a pre-uniformity, there exists B ∈ A such that BB ≤ A, thus for

each x ∈ B, ∃ a ∈ A, Bx ≤ a and so

B ⊆ A�B = {x | ∃ a ∈ A, x �B a} and
�

A�B = 1L.

This shows that A ∈ ALA and A ⊆ ALA
, as required.

�

Proposition 5.4.8. Let A be a pre-uniformity on the frame L. If x�Ay then there exists B ∈ A
with x �B Bx �B y.
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Proof. Let A is a pre-uniformity on the frame L and A ∈ A. Then there exits B ∈ A such that

x �A y ⇒ Ax ≤ y;

⇒ BBx ≤ Ax ≤ y;

⇒ Bx ≤ BBx ≤ Ax ≤ y;

⇔ x �B Bx �B y.

�

Fact: The relation �A can be extended to arbitrary meets and arbitrary joins.

Proof. Let L be a frame and A be any cover on L. Then

x �A yi ∀i ⇒ Ax ≤ yi ∀i;
⇒ Ax ≤

�
yi;

⇒ x �A
�

yi.

xi �A y ⇒ Axi ≤ y ∀i;
⇒

��
Axi

�
;

⇒ A
��

xi
�
≤ y;

⇒
�

xi �A y

�

Every pre-nearness (pre-uniformity) A determines an interior operator on the category PN-
Frm (PUniFrm).

Proposition 5.4.9. Let A be a pre-nearness (pre-uniformity) on the frame L. The assignment

i = {iL : L −→ L; L ∈ PNFrm} given by

i�L(x) =
�

{y ∈ L | y �A x}

is an interior operator on PNFrm (PUniFrm).

Proof. It is clear that i� is an interior operation in L. Now let f : (L,U) −→ (M,V) be a

morphism in PNFrm (PUniFrm) and x ∈ L. Then

f(i�L(x)) = f
��

{y ∈ L | y � x}
�
;

=
�

{f(y) | y ∈ L, y � x} since f is a frame homomorphism;

≤
�

{f(y) ∈ M | f(y) � f(x)} since f ∈ PFrm (PUniFrm);

≤
�

{z ∈ M | z � f(x)} = i�M (f(x)).
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�

Some of our proofs can be streamlined by employing the following notations.

Let L be a given frame, � a topogenous order on L, and A,B covers of L. Define

A �B ⇔ ∀ a ∈ A, ∃ b ∈ B, a � b

then

A� = {b ∈ L | ∃ a ∈ A, b � a} �A
We, thus have the following proposition:

Proposition 5.4.10.
�

A� = 1L ⇔ ∃ B ∈ cov(L), B �A

Proof. The forward implication follows since B = A� � A and for the backward, we then have

that B �A ⇒ B ⊆ A�, so if B is a cover,
�

A� = 1.

�

Based on Proposition (5.4.10) we obtain the following new description of AL:

AL = {A ∈ cov(L) | ∃ � ∈ L ∃ B ∈ cov(L), B �A}.

Also, from B �A ⇒ B ⊆ A� and
�

A� = 1. It follows that

A� = max{B ⊆ L | B �A}.

In [Her74a] Herrlich suggested a correspondence between symmetric syntopogenous spaces
and nearness spaces. This correspondence can be adopted for frames as follows.

Theorem 5.4.2. Let L be a frame and L a semi-Császár structure on L:

L −→ ÃL = {A ⊆ L | ∀a ∈ A ∃ ba ∈ L, ∃ �a ∈ L, ba �a a and {ba | a ∈ A} ∈ cov(L)}.

Then L −→ ÃL is a pre-nearness structure on L. Equivalently

L −→ ÃL = {A ⊆ L | ∀a ∈ A ∃ ba ∈ L, ba �L a, and {ba} �L A ∈ cov(L)}

The next two propositions associate ÃL and AL

Proposition 5.4.11. For any frame L and a semi-Császár structure on L, we have

A ∈ AL ⇔ ∃ � ∈ L ∃ B = {ba | a ∈ A} ∈ cov(L) with B �A

Proof. (⇒) Given � ∈ L and B ∈ cov(L), B �A then for each a ∈ A, set ba =
�{b ∈ B | b � a}.

Then since � respects joins, it follows that ba�a and B� = {ba | a ∈ A}�A. The other implication

is quite clear.

�

77

http://etd.uwc.ac.za



Note: The correspondence in Proposition (5.4.11) can be equivalently expressed as

A ∈ AL ⇔ ∃ B ∈ cov(L) | B �A

Proposition 5.4.12. Given a frame L and L a semi-Császár structure on L, we may write:

A ∈ ÃL ⇔ ∃ B = {ba | a ∈ A} �A ∈ cov(L) with B �L A

Proof. (⇒) Given a frame L and L a semi-Császár structure on L, then ∃ B ∈ cov(L), B �L A.

�

The reverse implication in Proposition (5.4.12) does not seem to hold. Hence in general,
ÃL �= AL.

5.5 Quasi-Uniformities and Interpolative Semi-Császár Struc-

tures on a Frame

This section focuses on the establishment of a correspondence between quasi-uniformities as
developed in the previous chapter and interpolative Császár structures on a given frame L.

We make a slight modification to the definition of Semi-Császár Structures on a frame in
Section 5.3, by asking that each L interpolates and assuming that �L respects arbitrary meet,
that is,

∀ A ⊆ L, if x �L a for all a ∈ A then x �L
�

A,

we obtain a new class of semi-Császár structures on L.
We use ISC(L) to represent . the collection of all the interpolative semi-Császár structures on
L such that each � ∈ L preserves arbitrary meets. This collection is preodered in the same
manner as SC(L). Additionally, as discussed in the previous chapter, Q(L) and B(L) refer to
the collection of all quasi-uniformities and bases of a uniformity on L, respectively. With this
information, we can adapt the results from Chapter Two to this section in the following way:

Proposition 5.5.1. Let B(L) be the collection of bases of a quasi-uniformity on a frame L.

For each UL ∈ B(L) define

LU
L = {�uL | u ∈ UL} with x �uL y ⇔ u(x) ≤ y.

Then LU
L is an interpolating semi-Császár structure on L. It is the semi-Császár structure

associated with the bases of a quasi-uniformity UL. Futhermore, the map π : B(L) −→ ISC(L),

taking each UL to LU , is order preserving.

Proposition 5.5.2. Let L ∈ ISC(L) and � ∈ L. The assignment

UL = {u� | � ∈ L} with u�L(x) =
�

{y ∈ L | x � y}

defines a bases of a quasi-uniformity U . It is the base of a quasi-uniformity induced by the semi-

Császár structure L on L. Moreover, the map φ : ISC(L) −→ B(L), taking each LL −→ UL
L , is

order preserving.
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The proof of the above two propositions closely resemble those of Propositions (4.4.1) and
(4.4.2), respectively. In fact, both propositions illustrate that an interpolative semi-Császár
structure can serve as base of a quasi-uniformity on a frame. This is due to the fact that the
mappings π and φ satisfy π(U) = UL and φ(L) = LU and that they are also inverse to each other,

that is to means for all x, y ∈ L, u ∈ U and � ∈ L, it holds that U�U (x) = U(x) and x�U
�
y ⇔ x�y.

It is worth observing that when considering the collection ISC(L) as defined above and
eliminating the condition that each � ∈ L preserves meets, the isomorphism between B(L) and
ISC(L) fails. Denoting by ISC∗(L) the collection of all interpolative semi-Császár structures
such that � ∈ L does not respect meets, we establish a Galois connection between ISC∗(L) and
B(L).

Proposition 5.5.3. Let ISC∗(L) denote the collection of all the interpolative semi-Császár

structures which do not preserve meets, and B(L) the base of a quasi-uniformity on L. Then

there is a Galois connnection between ISC∗(L) and B(L).

Proof. The proof of this proposition is of the same flavour as the one of Theorem (4.4.3)

�

5.6 Entourage Quasi-Uniformities and Covering Pre-Uniformities

In the classical context, the concept of quasi-uniformity is achieved by dropping the symmetry
axiom from the set of axioms of uniformity. The purpose of this section is to exhibit an entourage
quasi-uniformity base that arises from that the entourage uniformity base developed in [FH91].

We aim to demonstrate that this theory of entourage quasi-uniformity base is equivalent
to the theory of covering pre-uniformity base, which is obtained by excluding the admissibil-
ity property from the covering uniformity base. Furthermore, we also establish a connection
between our general concept of quasi-uniformity introduced in Chapter 4 and the entourage
quasi-uniformity introduced by Fletcher et al [FHL94].

It is important to note that besides Fletcher et al. numerous other authors have also delved
into the study of entourage quasi-uniformities within pointfree topology. In [Pic95], J. Picado
introduced the Weil quasi-uniformities and demonstrated an equivalence between these and the
covering quasi-uniformities proposed by Frith [Fri86]. In [FHL93a], Fletcher, Hunsaker, and
Lindgren established a connection between entourage quasi-uniformities and Frith’s covering
quasi-uniformities. In this context, the symbols QUNFrm, QWUFrm and QUNiFrm denote
the category of covering quasi-uniformities and the uniform homomorphisms between them,
the category of Weil quasi-uniformities and Weil uniform homomorphisms between them, and
the category of entourage quasi-uniformities and quasi-uniform frame homomorphisms between
them, respectively. Importantly, these categories are shown to be equivalent.

In order to achieve this exploration, we shall need the notion of U -small element introduced
in [FH91, FHL93b] and further used by [Pic00].

For a frame L, F will denote the collection of all order-preserving maps from L −→ L. We
define ≤, ∧, and ∨ pointwise on F . Then (F,≤,∧,∨) is a frame.
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Definition 5.6.1. [FHL93b, Pic00] Let L be a frame and U : L −→ L any function. An element

x ∈ L is said to be U -small, if x ∧ y �= 0 implies x ≤ U(y).

Let SU = {x ∈ L | x is U -small} and for each a ∈ L, we denote by

SU (a) =
�

{b ∈ SU | a ∧ b �= 0}.

If U is an order preserving map such that join of SU is the top element of L, that is, if SU covers
L, then U is said to be a �-map.

Definition 5.6.2. [FHL93b] A frame quasi-uniformity base on a frame L is a non-empty col-

lection B of Δ-maps such that:

(EQ1) for every U ∈ BL there exists V ∈ BL such that V ◦ V ≤ U ;

(EQ2) for all U, V ∈ BL there is a join homomorphism W : L −→ L such that W ≤ U ∧ V .

Let L be a frame and B an entourage quasi-uniformity base on L. The entourage quasi-
uniformity U on L generated by B is the collection

U = {V ∈ F such that there is U ∈ B with U ≤ V }.

Let L be a frame and let B be a base for a frame quasi-uniformity on L. In accordance with
Fletcher et al. [FHL93b], if for every U ∈ B and for every x, y ∈ L, we have that

U(x) ∧ y = 0 if and only if U(y) ∧ x = 0

then B is a base for a frame uniformity on L. The members of B are called entourages.

Definition 5.6.3. (1) An entourage quasi-uniform frame is a pair (L,U) where U is an en-

tourage quasi-uniformity on the frame L.

(2) Let (L,U) and (M,V) be entourage quasi-uniform frames. An entourage quasi-uniform

frame homomorphism is a frame homomorphism h : L −→ M such that for each U ∈ U
there exists V ∈ V such that V ◦ h ≤ h ◦ U .

We denote the category of entourage quasi-uniformities and entourage quasi-uniform frame
homomorphisms between them by EQFrm.

For any collection U of entourage quasi-uniformities of the frame L and for all x, y ∈ L, the
relation x �U y means that there exists U ∈ U such that U(x) ≤ y. It is evident that x �U y
implies x ≤ y. In fact, we have:

Proposition 5.6.1. If U is a quasi-uniformity on the frame L and x, y ∈ L, the relation x�U y,

which means that U(x) ≤ y for some U ∈ U , satisfies the following axioms:

(i) it is a sublattice of L× L;

(ii) for all x, y ∈ L, x ≤ y �U z ≤ y implies x �U y;

(iii) �U interpolates, that is, for all x, y ∈ L, x �U y implies there is z ∈ L such that x �U z �U y;
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(iv) for any morphism h : (L,U) −→ (M,V) in EQFrm if x �U y then h(x) �V h(y) for all

x, y ∈ L.

The following Lemma will be essential in proving the next proposition.

Lemma 5.6.4. If U is a �-map, then x ≤ U(x) for all x ∈ L.

Proof. Let U be a �-map, for all x ∈ L, x = x ∧ �{y ∈ L | y is U -small} =
�{x ∧

y | y is U -small and x ∧ y �= 0} ≤ U(x).

�

Theorem 5.6.5. Let U ∈ EQ(L) with BU its base. Then U ∈ Q(L)

Proof.(PQ1) If U ∈ U implies there is V ∈ BU with V ≤ U , then x ≤ V (x) ≤ U(x), for all

x ∈ L. Thus x ≤ U(x) for all x ∈ L.

(PQ2) If U,U � ∈ U implies there is V, V � ∈ Bu with V ≤ U and V � ≤ U �, then By (EQ2), there is

a join-homomorphism W and Z ∈ BU with Z ≤ W ≤ V ∧ V � ≤ U ∧U � and so U ∧U � ∈ U ;

(PQ3) If U ∈ U implies there is V ∈ BU with V ≤ U , then, by (EQ1), there is W ∈ BU with

W ◦W ≤ U and clearly W ∈ U ;

(PQ4) Obvious.

�

In view of the aforementioned proposition, it becomes evident that the Fletcher’s entourage
quasi-uniformities are a special case within our broader framework of quasi-uniformities as ex-
pounded in Chapter 4, that is to say Q(L) ⊆ EQ(L). Unfortunately, we have not been able to
establish that EQ(L) is contained in Q(L). We suspect that this discrepancy may arise from
an incompatibility between our understanding of U -small elements and and our concept of U�.
Further investigation is needed to address this issue.

Nevertheless, Theorem (5.6.5) asserts that our general quasi-uniformity framework, in Chap-
ter 4, when restricted to frames, encompasses Fletcher et al.’s entourage quasi-uniformities and
in consequence the Weil and covering quasi-uniformities.

5.6.1 Quasi-Uniform Frame- Homomorphism

In this section, we establish a connection between syntopogenously continuous frame homomor-
phisms and quasi-uniformly continuous frame homomorphisms:

Definition 5.6.6. Let (L,U) and (M,V) be two entourage quasi-uniform frames. A frame

homomorphism h : L −→ M is called an entourage quasi-uniform frame homomorphism if for

all U ∈ U there exists V ∈ V such that V ◦ h ≤ h ◦ U .

The following proposition shares a similar essence to Proposition (4.7.3).
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Proposition 5.6.2. Let h : L −→ M be a frame homomorphism and h∗ : M −→ L its right

adjoint. Let U and V be entourage quasi-uniformities on the frames L and M , respectively. If h

is a quasi-uniformly continuous frame homomorphism, then the following hold:

(1) x �U y ⇒ h(x) �V h(y)

(2) x �U h∗(z) ⇒ h(x) �V z

for all x, y ∈ L and z ∈ M .

Proof. The proof of the above proposition is similar to the one of Proposition (4.7.3).

�

5.6.2 Quasi-Uniformity Which Determines a Frame

Proposition 5.6.3. Let U be a quasi-uniformity on frames. The assignment i = {iL : L −→
L, L ∈ Frm} given by

iUL(x) =
�

{a ∈ L | U(a) ≤ x for some U ∈ U}

is an idempotent interior operator on frames. It is the interior operator associated with the

quasi-uniformity U .

Proof. (I1) is clear. For (I2), let U be a quasi-uniformity on the frame L and x, y ∈ L

such that x ≤ y, then {a ∈ L | U(a) ≤ x} ⊆ {b ∈ L | U(b) ≤ y}. Thus, in particular�{a ∈ L | U(a) ≤ x} ≤ �{b ∈ L | U(b) ≤ y} and iUL(x) ≤ iUL(y).

For the continuity condition, let h : L −→ M be a quasi-uniform frame hommorphism, with

U and V being quasi-uniformities on L and M , respectively. Then, for every U ∈ U , there is

V ∈ V such that

h(iUL(x)) = h
��

{t | U(t) ≤ x}
�
;

=
�

{h(t) | t ∈ L ,U(t) ≤ x};

≤
�

{a ∈ M | V (h(a)) ≤ x} = iVM (h(x)).

�

Definition 5.6.7. We shall say that a quasi-uniformity U on Frm is compatible with an interior

operation i if

iL(x) =
�

{a ∈ L | U(a) ≤ x for some U ∈ U}

for all a ∈ L
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Considering interior as a special topology, in the classical context, Definition (5.6.7) highlights
the idea of a quasi-uniformity U being compatible with a topology or that of a quasi-uniformity
being generated by a topology. In frames the topology is inherent. So, we need a clear under-
standing of what it means for a frame to be compatible with a quasi-uniformity, that is, what
it signifies for a frame to align with a quasi-uniformity.

In the previous section we have recalled that a quasi-uniformity on a space is always asso-
ciated with two other quasi-uniformities and that each of these three induces a topology. In
order to give an adequate theory of quasi-uniformities for frames, P. Fletcher, W. Hunsaker
and W. Lindgren [FHL94] constructed for each quasi-uniformity U on a frame L, a conjugate
quasi-uniformity Ũ such that the join of U and Ũ is a uniformity on L. Furthermore, they also
constructed two subframes of L which correspond to �(U) and �(Ũ) in the spatial case.

Definition 5.6.8. [FHL94] Let L be a frame and U a quasi-uniformity on L. The frame of U
is a collection denoted by L(U) and given by

L(U) = {a ∈ L | a =
�

{b ∈ L | U(b) ≤ a for some U ∈ U}} (5.6.3)

Clearly, the expression (5.6.3) tells us that a frame of quasi-uniformity U on a frame L is a
family of idempotent interior operations on L.

Proposition 5.6.4. Let L be a given frame and U a quasi-uniformity on L. Then U determines

L or U is compatible with L if and only if L(U) = L.

By Proposition (5.6.4), a frame L is said to be compatible with a quasi-uniformity U if the
collection of all the idempotent interior operations induced by U generates L.

In the following section, we establish a nexus between the concept of a pre-uniformity base
and that of an entourage quasi-uniformity base. The results presented in this final section of this
chapter are a restriction of those in the paper [FH91] which explores the concept of entourage
uniformity on frames. Our main motivation for studying these results is to align them with our
findings in this chapter (refer to the diagram at the bottom of the chapter).

5.6.3 Base of Covering Pre-Uniformity

In this section we present a base covering pre-uniformity derived from the base covering unifor-
mity defined in [FH91].

Definition 5.6.9. Let L be a frame. A collection A of covers of L is called a covering pre-

uniformity base on L if:

(i) For any A,B ∈ A, there exists C ∈ A such that C ≤ A ∧B;

(ii) For any A ∈ A there is B ∈ A such that B∗ ≤ A.

Furthermore, if A is admissible, then we obtain the covering uniformity base by Fletcher et
et al in [FH91].

We say that a frame is uniformizable (pre-uniformizable) if it admits a uniformity (pre-
uniformity) base. Now let L be a frame and A a covering pre-uniformity base on L. The
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covering pre-uniformity λ on L generated by A is the collection of all covers of L that refine
some cover in A. More specifically, the covering pre-uniformity λ generated by A is the collection

λ = {B ∈ cov(L) | ∃ A ∈ A such that A ≤ B}

As we already said, a covering pre-uniform frame is a pair (L,λ) where L is a frame, and
λ a pre-uniformity on L. The remainder of this section is dedicated to establishing an equiva-
lence between EQFrm and PUniFrm, the category of covering pre-uniformities and uniformly
continuous maps defined in section one.

5.6.4 Correspondence Between EQFrm and PUniFrm

Proposition 5.6.5. Let A be a covering pre-uniformity base on a frame. For each A ∈ A,

define

UA : L −→ L by UA(x) = Ax.

Then

UA = {UA : A ∈ A}

is an entourage quasi-uniformity base on L.

Proof. It is clear that UA is an order-preserving map. Similarly, x ≤ U(x) for each x ∈ L. Now,

let B ∈ A such that B∗ ≤ A. Let x ∈ L and set q = Bx. Further, let H = {b ∈ B | b ∧ q �= 0}
and T = {a ∈ A | a ∧ x �= 0}. Then UB ◦ UB(x) =

�
H and UA(x) =

�
T . Let b ∈ H. There

exists a d ∈ B such that b ∧ d �= 0 and d ∧ x �= 0, and there exists an a ∈ A such that b ∨ d ≤ a.

Since a ∧ x �= 0, A ∈ T . Evidently b ≤ a. It follows that
�

S ≤ �
T and so UB ◦ UB ≤ UA.

Let UA, UB ∈ U . Pick C ∈ A such that C ≤ A ∧ B, by Lemma (5.2.2), it follows that

UC ≤ UA ∧ UB. It suffices to show that UC is a join homomorphism. Let {xi, i ∈ I} ⊆ L, be a

collection of elements of L. Then

UC

��

i∈I
xi
�

= C
�

i∈I
xi;

=
�

{c ∈ C | c ∧
��

i∈I
xi
�
�= 0};

=
�

{c ∈ C | c ∧ xi �= 0 for some i ∈ I};

=
�

i∈I
Cxi;

=
�

i∈I
UC(xi).

�

In the sequel if α is a covering pre-uniformity base on a frame L, then U(α) denotes the
entourage quasi-uniformity for which {UA | A ∈ α} is a base.
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Proposition 5.6.6. Let U be an entourage quasi-uniformity base on a frame L. For each U ∈ U ,
let AU be the cover of all the U -small sets and put

AU = {AU | U ∈ U}

Then AU is a covering pre-uniformity base on L.

Proof. Let AU , BV ∈ AU and let W ∈ U such that W ≤ U ∧ V . Let a ∈ AW . Then a is a

W -small set. Assume x ∈ L and x ∧ a �= 0, then a ≤ W (x) ≤ U(x) and similarly a ≤ V (x).

Thus a ∈ AU ∩AV and so AW ≤ AU ∧AV .

Further, let AU ∈ AU and let V ∈ U such that V ◦ V ≤ U holds. Let S = {xα | α ∈ Λ} be

a subset of AV such that for each α,β ∈ Λ, xα ∧ xβ �= 0. Let x =
�

S and assume that a ∈ L

such that a ∧ x �= 0. There exists β ∈ Λ such that xβ ∧ a �= 0 and so xβ ≤ V (a). Therefore

V (xβ) ≤ V ◦ V (a) ≤ U(a). Let α ∈ Λ. Then xβ ∧ xα �= 0 and so xα ≤ g(xβ) ≤ U(a). It follows

that x ≤ U(a) which shows that x is a U -small element and A∗
V ≤ AU .

�

Along these lines if ω stands for an entourage quasi-uniformity base for a frame L, then µ(ω)
denotes the covering pre-uniformity for which {AU | U ∈ ω} is a base.

Proposition 5.6.7. Let L be a pre-uniformizable frame, let α be a covering pre-uniformity on

L and let ω be an entourage quasi-uniformity on L. Then α = µ(U(α)) and ω = U(µ(ω))

Proof. For the proof, see [FH91]

�

The correspondence (L,α) −→ (L,U(α)) is functorial:

Proposition 5.6.8. (L,λ) and (M,µ) be covering uniform frames and let h : L −→ M be

a uniform frame homomorphism. Then h : (L,U(λ)) −→ (M,U(µ)) is an entourage uniform

frame homomorphism.

Proof. Let UA ∈ U(λ) where A ∈ λ. Since h is a uniform frame homomorphism, h(A) ∈ µ and

thus Uh(A) ∈ U(µ). Now, let x ∈ L. Then Uh(A) ◦ h(x) =
�{h(a) | a ∈ A, h(a) ∧ h(x) �= 0} and

h ◦ UA(x) = h(
�{a ∈ A | a ∧ x �= 0}). Since h is a uniform frame homomorphism, we have for

each x, a ∈ L that h(a) ∧ h(x) �= 0 implies a ∧ x �= 0. Therefore, combining all these facts leads

to Uh(A) ◦ h ≤ h ◦ UA.

�

Proposition 5.6.9. Let (L,U) and (M,V) be entourage quasi-uniform frames and let h : L −→
M be an entourage quasi-uniform frame homomorphism. Then h : (L, µ(U)) −→ (M, ν(µ)) is a

uniform frame homomorphism.
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Proof. Let h be an entourage quasi-uniform frame homomorphism. Let A ∈ µ(U) and let

D ∈ µ(U) such that D∗ ≤ A. In view of Proposition (5.6.8) it follows that UD ∈ U and so

there exists V ∈ V such that V ◦ h ≤ h ◦ UD. There exists B ∈ µ(V ) such that UB ≤ V . Thus

UB ◦ h ≤ h ◦ UD. In order to show that B ≤ h(A), we let b ∈ B. Then there exists d ∈ D such

that b ∧ h(d) �= 0. Note that b ≤ Bh(d) = UB ◦ h(d) ≤ h ◦ UD(d) = h(Dd). But there exists

a ∈ A such that Dd ≤ a; hence b ≤ h(a).

�

From the discussion in this section (Proposition (5.6.5) to (5.6.9)), there exists a natural func-
tor from the category EQFrm to the category PUniFrm. In summary, we have the following
theorem. It is an extension of the last theorem of [FH91].

Theorem 5.6.10. The category PUniFrm is isomorphic with the category EQFrm.

Throughout this chapter, the following preordered collections have been used for a given
frame L:

• PN(L) the collection of all the pre-nearnesses on the frame L;

• PU(L) the collection of all the pre-uniformities on the frame L;

• SC(L) the collection of all the semi-Császár structures on the frame L;

• ISC(L) the collection of all the interpolative semi-Császár structures on the frame L such
that each � ∈ L preserves arbitrary meets;

• ISC∗(L) the collection of all the interpolative semi-Császár structures on the frame L such
that each � ∈ L need not to preserve meets;

• B(L) the collection of all the bases of a quasi-uniformity on the frame L;

• EQ(L) the collection of all the entourage quasi-uniformities on the frame L.

Thinking of all structures within a frame L, we have the following schematic diagram which
summarizes our discussions in this chapter:

PN(L) SC(L) ISC(L) ∼= B(L) ISC∗(L)

PU(L) ∼= EQ(L)

⊥
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Chapter 6

OTHER TOPOGENOUS ORDERS

AND RELATED MAPS

6.1 Introduction

In this chapter, our focus is dedicated to the examination of particular mappings within a
general category equipped with an (E ,M)-factorization structure for morphisms. This (E ,M)-
factorization structure enables us to delve into various noteworthy ordering mechanisms and
extend the applicability of several established findings. In particular, we define strict maps with
respect to two topogenous orders, encompassing ”closed maps” relative to two closure operators
introduced in [Hol09]. We also define the open maps with respect to two interior operators.

Besides, using the topogenous order derived from a functor as introduced in [Ira19], we
extend the scope of closed maps originally defined by G. Castellini and E. Giulli [CG05, CG01].
As previously said, the concepts of (E ,M)-factorization and related sub-structures will play
a big role in this chapter. Thus, we begin the section by furnishing the definition of (E ,M)-
factorization of a category and some pertinent insights essential for the objectives of this chapter.
The reader wishing to have more details on (E ,M)-factorization and sub-structures is encouraged
to consult [AHS90].

Definition 6.1.1. Let X be a given category. A pair of classes (E ,M) of morphisms of X where

E is a class of epimorphisms and M a class of monomorphisms, is said to be a factorization

structure on X if:

(1) E and M are closed under composition with isomorphisms, that is, if e ∈ E , g is an

isomorphism in X then g◦e ∈ E and if m ∈ M, g is an isomorphism in X , then m◦g ∈ M;

(2) Every morphism f ∈ X factors as an E-morphism and an M-morphism, that is, f = m ◦ e
with e ∈ E and m ∈ M;

(3) X has a unique (E ,M)-diagonalization property, this means that given a commutative

diagram

• e ��

g

��

•
g�

��• m
�� •
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with e ∈ E and m ∈ M, there is a uniquely determined morphism t satisfying t ◦ e = g

and m ◦ t = g� making the following diagram

• e ��

g

��

•
g�

��t��• m
�� •

commute. In this context, we say that every E-morphism e is orthogonal to every M-

morphism m and write e ⊥ m.

If the statements of the above definition hold, we also say that the category X is (E ,M)-
structured.

The following proposition, due to J. Adámek, H. Herrlich and G. G. Strecker [AHS90],
outlines the properties and characteristics of the E-morphisms andM-morphisms in any category
X .

Proposition 6.1.1. Let X be an (E ,M)-structured category and Iso(X ) the class of isomor-

phisms in X , then the following hold:

(1) E ∩M = Iso(X );

(2) If g ◦ f ∈ M then f ∈ M;

(3) If g ◦ f ∈ E then g ∈ E ;

(4) E and M are closed under composition;

(5) M is closed under intersections;

(6) M is closed under pullbacks, that is, for any pullback diagram

X
f ��

g

��

Y

g�
��

Z
f �
��W

if f � ∈ M then f ∈ M

Remark 6.1.2. (1) The (E ,M)-factorization of a morphism is unique up to isomorphim.

(2) In an (E ,M)-factorization system, the classes E and M determine each other:

(a) E = {e ∈ X | ∀m ∈ M | e ⊥ m};

(b) M = {m ∈ X | ∀e ∈ E | e ⊥ m}.
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In what follows, we shall provide a brief review of the concept of sub-objects, as it will be
necessary for the upcoming sections. Sub-objects are categorical generalizations of mathematical
structures. They are consistently described by special morphisms, which can be thought of as
generalized inclusion maps. To put it more formally, given an object X ∈ X , the collection of
morphisms representing subobjects of X is denoted by subX. This collection is defined by:

subX = {m ∈ M | m : M −→ X} (6.1.1)

Let m : M −→ X and n : N −→ X be any two morphisms in subX, we write m ≤ n if and
only if there exists a morphism j : M −→ N in X such that n ◦ j = m. It is evident that
≤ is a reflexive and transitive binary relation on subX, thereby rendering subX a preordered
class. Furthermore, if m and n also satisfy n ≤ m, we can prove that they are isomorphic.
Symbolically, this is expressed as m ∼= n.

Additionally, since ∼= is an equivalence relation on subX, the quotient class of subX under
∼= forms a partially ordered set. This structure also amounts to a complete lattice with the
standard symbols for joins (if they exist) and meets, namely ∨, � and ∧, �, respectively. The
least element and the greatest element of subX are denoted by 0X : 0X −→ X and 1X : X −→ X,
respectively.

Definition 6.1.3. The category X is said to have M-pullbacks if for each X -morphism f :

X −→ Y and for each n ∈ subY, a pullback diagram

U

g

��

u

��

q

��
M

m
��

p �� N

n
��

X
f
�� Y

exists in X .

The morphism m, which is uniquely determined up to isomorphism, is then named the

inverse image of n under f and is denoted by f−1(n) : f−1(N) −→ X.

The concept of right M-factorization is essential for manipulating the images and inverse
images of subobjects effectively.

Proposition 6.1.2. [DT95] Assume that X have M-pullback and that for every X -morphism

f : X −→ Y , f−1(−) have a left adjoint. Then there exist morphisms e,m in X satisfying:

(a) f = m ◦ e with m : M −→ Y in M and whenever;

(b) (Diagonalization) whenever one has the following commuting diagram

X

��
e
��

u �� N��
w

n

��

M

m
��
Y v

�� Z
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in X with n ∈ M, there is a uniquely determined morphism w : M −→ N such that n◦w = v◦m
and w ◦ e = u.

Definition 6.1.4. A right M-factorization of morphism f : X −→ Y is any factorization

f = m ◦ e such that the axioms (a) and (b) of Proposition (6.1.2).

Definition 6.1.5. Let f : X −→ Y be a morphism in X and m : M −→ X a morphism in

subX, the image of m under f , denoted by f(m) : f(M) −→ Y , is defined as the M-component

of the (E ,M)-factorization of f ◦m as shown in the diagram below:

M
e ��

m

��

f(M)

f(m)
��

X
f
�� Y

Lemma 6.1.6. Let X be a category with M-pullbacks such that every morphism f : X −→ Y

has a right M-factorization. Then maps f−1(−) : subY −→ subX and f(−): subX −→ subY

are order preserving maps.

Proof. To show f−1(−) : subY −→ subX is order preserving, consider m,n ∈ subY such that

m ≤ n. Then there exist t with m = n ◦ t. We then have the following diagram

f−1(M)
w ��

∃!i
��

f−1(m)

��

M

j

��
m

��

f−1(N)
v ��

f−1(n)
��

N

n

��
X

f
�� Y

Clearly, since n ◦ v=f ◦ f−1(n) and m ◦ w = f ◦ f−1(m) then by pullback property the unique

morphism i : f−1(M) −→ f−1(N) exists with f−1(m) = f−1(n) ◦ i, that is, f−1(m) ≤ f−1(n).

Next, let m,n ∈ subX with m ≤ n. Then there exists a morphism j such that m = n ◦ j.
Hence, the following diagram:

N
s ��

n

��

f(N)

f(n)

��

M

j

��

r ��

m

��

f(M)

f(m)
��

X
f
�� Y
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we obtain the following commuting diagram

M

��
r

��

s◦j �� f(N)
��

k

f(n)

��

f(M)

f(m)
��
Y

1Y
�� Y

Now since f(M) and f(N) ∈ subY, from right M-factorization properties, there exist a

unique morphism k : f(M) −→ f(N) such that f(m) = f(n) ◦ k and f(m) ≤ f(n).

�

Proposition 6.1.3. For every morphism f : X −→ Y in X , the pair (f(−), f−1(−)) forms a

Galois connection between subX and subY with f−1(−) being the right, that is,

subX
f

⊥
��
subY

f−1
��

Proof. Note that, since from Lemma (6.1.6) both f−1(−) and f(−) are order preserving maps,

it suffices to establish that for every m ∈ subX, n ∈ subY, f(m) ≤ n if and only if m ≤ f−1(n)

For the forward implication, we assume that f(m) ≤ n. Then there exists an arrow t :

f(M) −→ N with f(m) = n ◦ t. Now consider the following diagram

f−1(N)

f−1(n)

��

n−1(f) ��
��

k

N��

t

n

��

M

m

��

e �� f(M)

f(m)
��

X
f
�� Y

Since f ◦ f−1(n) = n ◦ n−1(f), the universel property of pullbacks asserts the existence of a

unique arrow k : f(M) −→ f−1(N) such that m = k ◦ f−1(n), that is m ≤ f−1(n).

For the backward implication, we let m ≤ f−1(n), then there exists an arrow k : M −→
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f−1(N) such that f−1(n) ◦ k = m as in the triangle at the left of the diagram below.

f−1(N)

f−1(n)

��

n−1(f)

��

��
k

M

m

��

e
��

n−1(f).k�� N��

t

n

��

f(M)

f(m)
��

X
f �� Y

1Y �� Y

Since f(m)◦e = n◦n−1(f)◦k, by diagoalization property, there exists an arrow t : f(M) −→ N

such that f(m) = n ◦ t, i.e f(m) ≤ n .

The aforementioned adjunction yields the following beneficial consequences:

(1) m ≤ f−1(f(m)) and f(f−1(n)) ≤ n;

(2) f(
�

i∈I mi) ∼=
�

i∈I f(mi), if
�

i∈I mi exists;

(3) f−1(
�

i∈I ni) ∼=
�

i∈I f
−1(ni);, if

�
i∈I ni exists;

(4) if f ∈ M, then f−1(f(m)) = m for all m ∈ SubX;

(5) if f ∈ E and E is stable under pullbacks then n = f(f−1(n)) for all n ∈ SubY .

Moreover, if the category X has M-pullbacks, then the preordered class subX has binary meets
for any X ∈ X .

Definition 6.1.7. A category X is said to have M-intersetions if for every family (ni)i∈I in

subX, the following multiple pullback diagram

N

n
��

ti �� Ni

ni��
X

commutes, that is to mean n = ni◦ti. This implies also the existence of the join
�

of subobjects,

in particular, for each object Y ∈ X , the least subobject oY : OY −→ Y exists.

In consequence, a category X will be called M-complete if it has M-pullbacks and M-
intersections.

For the rest of the chapter, we assume the category X is equipped with an (E ,M)-factorization
system for morphisms and that it is M-complete.

As previously indicated in the section, the purpose of this chapter is two fold: firstly, we
intend to extend the concept closed maps with respect to two closure operators [Hol09]. This
is achieved by introducing the notion of strict maps with respect to two topogenous orders.
Secondly, we explore the topogenous orders induced by a faithful functor and employ them
to examine specific maps, some of which encompass closed maps introduced in [CG05, CG01],
as a paticular case. Additionally, we define an interior operator induced by a functor and
demonstrate, as is the case in the classical scenario, it corresponds to the strict map with
respect to the topogenous order induced by a faithful functor.
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6.2 Strict Morphisms with Respect to Two Topogenous Orders

Starting with a category equipped with an (E ,M)-factorization system, Holgate [Hol09] defined
the notion of closed maps with respect to two closure operators.

In this section we aim to establish a comprehensive understanding of strict and final maps
with respect to two topogenous orders. This perspective incorporates Holgate’s definition of
closed maps with respect to two closure operators as a special case. This generalization, which
deals with strict maps in the context of two orders, enables us to precisely determine the criteria
for a morphism within a category to be considered open with respect to two interior operators.

Definition 6.2.1. Consider two topogenous orders �, �� on X . Let f : X −→ Y be a morphism

within the category X . Within this context, we say that f is �, ��-continuous if:

(1) f(m) ��Y n ⇒ m �X f−1(n) for all m ∈ subX and n ∈ subY ;

(2) q �� n ⇒ f−1(q) � f−1(n) for all n, q ∈ subY.

Since a morphism f : X −→ Y in a category is �-strict, respectively �-final if f(m) �Y n ⇔
m�Xf−1(n) respectively if q�n ⇔ f−1(q)�f−1(n) for allm ∈ subX and n, q ∈ subY and also since
f is assumed to be �-continous in X , the important implications are f(m) �Y n ⇐ m �X f−1(n)
respectively q � n ⇐ f−1(q) � f−1(n).

This fact motivates the following definitions of �-strict and �-final morphisms with respect
to two topogenous orders:

Definition 6.2.2. Let �, �� be two topogenous orders on X with respect to M. Let f : X −→ Y

represent a morphism within X . Then f is called:

(1) �, ��-strict if and only if f(m) ��Y n ⇐ m �X f−1(n) for all m ∈ subX and n ∈ subY;

(2) �, ��-final if and only if q �� n ⇐ f−1(q) � f−1(n) for all q, n ∈ subY.

Our main motivation for defining these maps is to offer another way of expressing closed and
final maps with respect to two closure operators in terms of topogenous orders.

Proposition 6.2.1. [Hol09] Let f : X −→ Y be a morphism in X :

(1) If both �, �
� ∈ �

-TORD (X ,M), then f : X −→ Y is �, �
�
-continuous if and only if

f(c�X(m)) ≤ c�
�

Y (f(m)) for all m ∈ subX

(2) If both �, �� ∈ �
-TORD (X ,M), then f : X −→ Y is �, ��-continuous if and only if

f−1(i�Y (n)) ≤ i�
�

X(f−1(n)) for all n ∈ subY

Proposition 6.2.2. Let f : X −→ Y be a morphism in X .

If both �, �� ∈ �
-TORD (X ,M), then f : X −→ Y is �, ��-strict if and only if

f(k�X(m)) ≥ k�
�

Y (f(m))

for all m ∈ subX
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Proof. Let f be �, ��-strict. Then

k�
�

Y (f(m)) ≤ n ⇔ f(m) ��Y n

⇐ m �X f−1(n)

⇔ k�X(m) ≤ f−1(n)

⇔ f(k�X(m)) ≤ n.

Conversely if k�
�

Y (f(m)) ≤ f(k�X(m)). Then

m � f−1(n) ⇔ k�X(m) ≤ f−1(n)

⇔ f(k�X(m)) ≤ n

⇐ k�
�

Y (f(m)) ≤ n

⇐ f(m) ��Y n

�

Furthermore, if �, �� ∈ �
-TORD(X ,M), one can also establish the following proposition:

Proposition 6.2.3. Let f : X −→ Y be a morphism in X . If both �, �� ∈ �
-TORD (X ,M),

then f : X −→ Y is �, ��-strict if and only if

f−1(i�Y (n)) ≥ i�
�

X(f−1(n))

for all n ∈ subY.

The �, ��-strict morphisms have the following features:

Proposition 6.2.4. Let �, ��, ��� be topogenous orders on X with respect to M and f : X −→ Y ,

g : X −→ Y morphisms in X , then:

(1) If f is �, ��-strict and g is ��, ���-strict then g ◦ f is �, ���-strict;

(2) If gf is �, ��-strict and g ∈ M then f is �, ��-strict;

(3) If gf is �, ��-strict and f ∈ E then g is �, ��-strict.

The proof depends on the following observations.

If g ∈ M then g−1(g(n)) = n

If f ∈ E then f(f−1(n)) = n.

Proof.

(1) m ��� (gf)−1(n) = f−1(g−1(n)) ⇒ f(m) �Y g−1(n)

⇒ (fg)(m) �Z n.
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(2) m ��X f−1(n) = f−1(g(g−1(n)) ⇒ (gf)(m) �Z g(n)

⇒ (g(f((m))) �Z g(n)

⇒ f(m) �Z g(n).

(3) m ��X g−1(n) = f−1(m) ⇒� f−1(g−1(n)) = (gf)−1(m) �Z g(n)

⇒ (gf)(f−1(m))) �Z n

⇒ g(m) �Z n.

�

Simlary, we have the following behavior for the �, ��-final morphisms

Proposition 6.2.5. Let �, ��, ��� be topogenous orders on X with respect to M and f : X −→
Y, g : Y −→ Z morphisms in X , then

(1) If f is �, ��-final and g ��, ���-final then g ◦ f is �, ���-final;

(2) If gf is �, ��-final and g ∈ M then f is �, ��-final;

(3) If gf is �, ��-final and f ∈ E then g is �, ��-final.

Proof. for any n,m ∈ subY then

(gf)−1(m) � (gf)−1(m) ⇒ f−1(g−1(m)) � f−1(g−1(n))

⇒ g−1(m) �� g−1(n)

⇒ m ��� n.

f−1(m) � f−1(n) ⇒ f−1(m) � f−1(g−1(g(n)))

⇒ f−1(m) � (gf)−1(g(n))

⇒ (gf)(f−1(m)) � g(n)

⇒ g(m) � g(n)

⇒ m �� n.

m �� n ⇐ (gf)−1(m) � (gf)−1(n)

⇐ f−1(g−1(m)) � f−1(g−1(n))

⇐ g−1(m) � g−1(n).

�
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6.3 Topogenous Order Induced by a Faithful M-Fibration and

Related Maps

Let F : A −→ X be a given functor. Following [CG05, CG01], we adopt the following notations.
The pair (X,m) with X an object of A and m : M −→ FX in M will be called an F -subobject
of X. We also use subFX to denote the class of all F -subobjects of X. In the sequel we will
refer to m instead of (X,m) for an F -subobject when no-confusion is likely to arise.

Definition 6.3.1. [CG05, CG01] An F -closure operator k of A (with respect to (E ,M)) is a

family of functions

{kFX : subFX −→ subFX | X ∈ A}
such that the following axioms hold:

(K1) m ≤ kFX(m) for all m ∈ subFX;

(K2) m ≤ n ⇒ kFX(m) ≤ kFX(n) for all for all m,n ∈ subFX;

(K3) for each A-morphism f : X −→ Y , Ff(kFX(m)) ≤ kFY (Ff(m)) for all m ∈ subFX.

Remark 6.3.2. As in the classical case, under condition (K2) of the above definition, (K3) is

equivalent to the following: given a morphism f : X −→ Y in A and F -subobject n of Y ,

kFX(Ff)−1(n) ≤ (Ff)−1(kFY (n))

Definition 6.3.3. An F -interior operator i of A (with respect to (E ,M)) is a family of maps

{iFX : subFX −→ subFX|X ∈ A}

such that the following axioms hold:

(I1) iFX(m) ≤ m for all m ∈ subFX;

(I2) m ≤ n ⇒ iFX(m) ≤ iFX(n) for all for all m,n ∈ subFX;

(I3) for each X -morphism f : X −→ Y , (Ff)−1(iFY (n)) ≤ iFX(Ff)−1(n) for all n in subFY.

Replacing the inequalities with ” ∼= ” in (I3) and (K3) leads to two classes of morphisms,
namley the kF -closed and iF -open morphisms:

Definition 6.3.4. [CG01] Let kF be a closure operator induced by F on A. An A-morphism

f : X −→ Y is said to be kF -closed if for every F -subobject m of F ,

Ff(kFX(m)) ∼= kFY (Ff(m))

for all m ∈ subFX.

Definition 6.3.5. Let iF be the interior operator induced by F on A. An A-morphism f :

X −→ Y is said to be iF -open if for every F -subobject m of F ,

(Ff)−1(iFY (n))
∼= iFX(Ff)−1(n)

for all n ∈ subFY.
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Recall from [DT95] that for an M-fibration F : A −→ X , (EF ,MF ) where EF = F−1E =
{e ∈ X|Fe ∈ E} and MF = F−1M�

IniF, with IniF the class of F -initial morphisms is a
factorization system in A and M-subobject properties in X are inherited by MF -subobjects in
A. In particular:

(1) A has MF -pullbacks if X has M-pullback;

(2) A is MF -complete if X is M-complete;

(3) The MF -image and MF -inverse image are obtained by initially lifting the M-image and
M-inverse image.

In consequence, we obtain: Ff−1(n) = (Ff)−1Fn and (Ff)(Fm) = Ff(m) for any f ∈ A and
suitable subobjects n and m.

Lemma 6.3.6. Let F : A −→ X be a faithful M-fibration.

(1) for any X ∈ A, subX and subFX are order equivalent with the inverse assignment

λX :subX−→ subFX and δX : subFX −→ subX defined as follows:

λX(m) = Fm and δX(n) = q with Fq = n and q ∈ IniF.

(1) Any morphism f : X −→ Y in A gives rise to the following functors:

f(−): subX −→ subY, f−1(−): subY−→ subX

Ff(−): subFX −→ subFY, (Ff)−1(−): subFY −→ subFX.

We then have for any subobjects m,n, q, p the following:

(1) λY (f(m)) = (Ff)(λX(m));

(2) f(λX(n)) = δY (Ff)(n);

(3) f−1(δY (p)) = δX((Ff)−1(p));

(4) λY (f
−1(q)) = (Ff)−1(λY (q)).

Proposition 6.3.1. [HI19] Let F : A −→ X be a faithful M-fibration and � be a topogenous

order on X with respect to M. Define m�FX n ⇔ Fm�FX λX(n). Then �F is a topogenous order

on A with respect to MF .

Proof. We only prove the continuity condition as (T1) and (T2) can be easly seen to be satisfied.

To this end, let f : X −→ Y be a morphism in A and f(m) �FY n. Then

Ff(m) � λY (n) ⇒ (Ff)Fm �FY λY (n)

⇒Fm �FX (Ff)−1(λY (n))

⇒Fm �FX λY f
−1(n)

⇔m �FX f−1(n).

In consequence of the above-mentioned proposition, the following result arises:
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Proposition 6.3.2. (1) If � ∈ �
-TORD, then m �FX n ⇔ δX(k�FX(Fm)) ≤ n.

(2) If � ∈ �
-TORD, then m �FX n ⇔ m ≤ δX(i�FX(λX(n)).

Proof. (1) If � ∈ �
-TORD, then

m �FX n ⇔ Fm �FX λX(n)

⇔ k�FX(Fm) ≤ λX(n)

⇔ δX(k�FX(Fm)) ≤ δX(λX(n))

⇔ δX(k�FX(Fm)) ≤ n

(2) If � ∈ �
-TORD, then

m �FX n ⇔ Fm � λX(n)

⇔ Fm ≤ i�FX(λX(n))

⇔ δX(Fm) ≤ δX(i�FX(λX(n)))

⇔ m ≤ δX(i�FX(λX(n))).

�

Definition 6.3.7. Let �F be a topogenous order on A. A morphism f : X −→ Y is �F -strict if

f(m) �FX n ⇔ m �FX f−1(n)

for all n ∈ subFX and n ∈ subFY.

Just like in the classical case, if f is �F -strict, then Ff(−) maps �F -strict objects to �F -strict
objects.

The following proposition demonstrates that �F -strict morphisms behave exactly the same
like the � strict ones (strict in the classical case):

Proposition 6.3.3. (1) The class of the �F -strict morphisms are closed under composition

and contains all isomorphisms;

(2) �F -strict morphisms are left cancellable with respect to MF ;

(3) �F -strict morphisms are right cancellable with respect to MF .

As we have already observed, topogenous orders provide a general language in which we
can easily study closure and interior operators simultaneously. In the next two propositions, we
demonstrate that if �F preserves meets, then �F -strict morphisms are precisely the k�-closed
morphisms. Similarly, if �F preserves joins, the �F -strict morphisms correspond to the i�-open
ones. In other words, we are expressing the definitions of kF and iF in terms of orders.

Proposition 6.3.4. Let f : X −→ Y be a morphism in A and �F a meet-preserving topogenous

order on A with respect to MF . Then f is �F -strict if and only if (Ff)(k�FX(m)) = k�FY (Ff(m))
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Proof. On one hand if (Ff)(k�FX(m)) = k�FY (Ff(m)). Then

m �FX f−1(n) ⇔ Fm �FX λX(f−1(n))

⇔ k�FX(Fm) ≤ λX(f−1(n))

⇔ k�FX(Fm) ≤ (Ff)−1(λX(n))

⇔ Ff(k�FX(Fm)) ≤ λX(n)

⇔ k�FY (Ff(m)) ≤ λY (n)

⇔ Ff(m) � λY (n)

⇔ f(m) �FY n.

On the other hand if f is �F -strict. Then

Ff(k�X(m)) ≤ n ⇔ k�FX(m) ≤ (Ff)−1(n)

⇔ m � (Ff)−1(n)

⇔ Ff(m) � n

⇔ k�FY (Ff(m)) ≤ n.

�

Proposition 6.3.5. If f : X −→ Y is a morphism in A and �F a join-preserving a topogenous

order on A with respect to MF . Then f is �F strict if and only if (Ff)−1i�FY (n) = i�FX(Ff)−1(n)

Proof. If (Ff)−1(i�FY (n)) = i�FX((Ff)−1(n)) then for the left hand implication, we have

m �FX f−1(n) ⇔ Fm � λXf−1(n)

⇔ Fm ≤ i�X(λX(f−1(n)))

⇔ Fm ≤ i�X(Ff)−1(λY (n))

⇔ Fm ≤ (Ff)−1(i�FY λY (n))

⇔ (Ff)(Fm) ≤ i�FY (λY (n))

⇔ Ff(m) ≤ i�FY (λY (n))

⇔ Ff(m) � λY (n)

⇔ f(m) �FX n.

�

Moreover if f is �F -strict, then the reverse implication can be easily proved in the similar
manner as the one in Proposition 6.3.4.
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[Ern04] M. Erné. Adjunctions and Galois connections: Origins, history and development.
Galois connections and applications, pages 1–138, 2004.

[FH91] P. Fletcher and W. Hunsaker. Entourage uniformities for frames. Monatshefte für
Mathematik, 112:271–279, 1991.

[FHL93a] P Fletcher, W Hunsaker, and W Lindgren. Characterizations of frame quasi-
uniformities. Quaestiones Mathematicae, 16(4):371–383, 1993.

[FHL93b] P Fletcher, W Hunsaker, and W Lindgren. Totally bounded frame quasi-uniformities.
Commentationes Mathematicae Universitatis Carolinae, 34(3):529–537, 1993.

[FHL94] P Fletcher, W Hunsaker, and W Lindgren. Frame quasi-uniformities. Monatshefte
für Mathematik, 117:223–236, 1994.

[Fla72] C. L. Flax. Syntopogenous structures and real-compactness. Master’s thesis, Univer-
sity of Cape Town, 1972.

[Fri86] L. J. Frith. Structured frames. PhD thesis, University of Cape Town, 1986.

[GS72] T. E. Gantner and R. Steinlage. Characterizations of quasi-uniformities. Journal of
the London Mathematical Society, 2(1):48–52, 1972.

[Her74a] H. Herrlich. A concept of nearness. General Topology and its applications, 4(3):191–
212, 1974.

[Her74b] H. Herrlich. Topological structures. Math. Centre Tracts, 52:59–122, 1974.

[HI19] D. Holgate and M. Iragi. Quasi-uniform and syntopogenous structures on categories.
Topology and its Applications, 263:16–25, 2019.

[HIR16] D. Holgate, M. Iragi, and Ando Razafindrakoto. Topogenous and nearness structures
on categories. Applied Categorical Structures, 24(5):447–455, 2016.

[Hol09] D. Holgate. A generalisation of the functional approach to compactness. Topology
and its Applications, 156(12):2101–2108, 2009.

[IH24] B. Iragi and D. Holgate. Császár structures and pre-nearness on frames. Submitted
for publication, 2024.

[Ira19] M. Iragi. Quasi-uniform and syntopogenous structures on categories. PhD thesis,
University of the Western Cape, 2019.

[Ira24a] B. Iragi. Order relations and related structures in pointfree topology. Submitted for
publication, 2024.

101

http://etd.uwc.ac.za



[Ira24b] B. Iragi. Overview of Császár orders and quasi-uniformities on complete lattices.
Submitted for publication, 2024.

[Kün92] H. P. Künzi. Functorial admissible quasi-uniformities on topological spaces. Topology
and its Applications, 43(1):27–36, 1992.

[LF82] W. Lindgren and P. Fletcher. Quasi-uniform spaces, volume 77. 1982.
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[Sie34] W. Sierpiński. Introduction to general topology. University of Toronto Press, 1934.
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