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I 

ABSTRACT 

This work explores the potential of neglected and underutilized crop species (NUS) in 
addressing agricultural, food, and nutrition security challenges exacerbated by climate change, 
particularly in Southern Africa. Mainstream crops like maize are adversely affected by climate 
variability, leading to increased insecurities. Despite the importance of NUS, limited research 
attention and market preference hinder their development. Additionally, there is a lack of 
criteria for determining their spatial extent in smallholder croplands, complicated by field 
fragmentation and intercropping. To overcome these challenges, this study employs unmanned 
aerial vehicles (UAVs) and high-throughput phenotyping technologies for accurate mapping 
of NUS, specifically sweet potato and taro, in smallholder farms in the Kwazulu-Natal 
Province, South Africa. Three specific objectives guide the study. These were (1) to conduct a 
systematic review of literature on the mapping the spatial distribution and health of NUS crops 
in sub-Saharan Africa, (2) to evaluate the performance of three robust classifiers in mapping 
the spatial distribution of NUS crops based on multispectral UAV data and, (3) to assess the 
performance of object based image analysis (OBIA) and pixel based analysis (PBIA) 
techniques combined with GTB classifier in mapping and delineating the spatial distribution 
of NUS crops. Review of literature revealed a lack of studies in the Global South, highlighting 
the potential of machine learning algorithms with optimal near-infrared and red-edge 
vegetation indices in mapping NUS. Despite slow progress due to high costs and regulations, 
the review findings suggested that integrating machine learning techniques with UAV-acquired 
data is crucial for efficient monitoring of NUS crops in small-scale agricultural areas. This will 
provide essential information for enhancing the efficiency of food production in small-scale 
agricultural areas located in the Global South. In addressing the second objective results 
showed that the tree-based classifiers, i.e., Random Forest (RF) and Gradient Tree Boost 
(GTB), demonstrated superior performance compared to Support Vector Machine (SVM), 
achieving an accuracy rate of over 90% in effectively distinguishing NUS crops. SVM 
produced lower accuracy rates ranging from (42%-74%) and kappa values (0.32 -0.70) across 
all its models. The dataset composed of bands combined with the vegetation indices optimally 
performed when compared to spectral bands dataset. The most optimal classification spectral 
variables selected by the GTB algorithm, which yielded superior performance compared to 
SVM and RF, were primarily derived from the visible bands (Red, Red edge) and the near-
infrared (NIR) band. In comparatively assessing the performance of OBIA and PBIA 
techniques based on GTB for mapping NUS crops, results showed that the PBIA-GTB model 
exhibited a slightly better performance compared to OBIA, with accuracies consistently 
ranging between 1% and 7% higher. The findings of this study suggest that multispectral 
remotely sensed data acquired using unmanned aerial vehicles (UAVs) could optimally map 
the spatial patterns and distributions of NUS amongst other crops in complex and fragmented 
smallholder croplands. The ability to precisely delineate the spatial distribution of NUS crops 
is crucial and required for various purposes which include biodiversity conservation, climate 
resilience, ensuring food security, and promoting sustainable agriculture. The findings derived 
from this study represents a significant step forward in providing local communities and 
smallholder farmers with invaluable knowledge that can contribute to the cultivation and 
utilisation of these crop species, to achieve sustainable development practices. 
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CHAPTER 1                                                                                                            
BACKGROUND AND INTRODUCTION 

 
1.1. Introduction 

The issue of ensuring sufficient and reliable access to nutritious food, also known as food security, is 
becoming a growing concern in developing regions like sub-Saharan Africa (Hlophe-Ginindza and 
Mpandeli, 2021). The rising issue of food insecurity could lead to unpredictable challenges. Food 
demands are estimated to increase twofold by 2050 due to rapid population growth and fast economic 
progress in developing countries (Keating et al., 2014). Meanwhile, arable land is adversely affected by 
land degradation and the impacts of global warming, posing a significant threat to food and nutritional 
security. In light of this, numerous developing countries face the formidable task of eradicating hunger, 
malnutrition, and poverty (Sustainable Development Goals 1 & 2). However, small-scale farmers face 
significant pressures to achieve optimal agricultural productivity despite the constant changes in land 
and environmental circumstances. These include loss of farm income (85% and 80%), increased 
livestock mortalities (72% and 65%), and pest and disease incidences (65% and 56%) (Majaha, 2023). 
Moreover, the increased incidence of droughts has extensively exacerbated this predicament. For 
instance, the drought of 2015-16 resulted in a decline of 8.4% in agricultural production in South Africa 
(Majaha, 2023). Despite the significant contributions made by smallholder farmers, they do not receive 
adequate support from governmental or financial institutions. Furthermore, compared to their large-
scale counterparts, they encounter marginalisation in both markets and policy initiatives (IFAD, 2013). 
Therefore, it is essential to breed stress-tolerant crops that are resource-use efficient and suitable for 
marginal environments to achieve sustainable food and nutrition security within disadvantage 
smallholder communities,  
Neglected and underutilised crop species (NUS) are alternative crops that have demonstrated an ability 
to grow and produce yields in adverse conditions such as water-scarce areas and marginal land 
(Mabhaudhi et al., 2017). NUS crops (e.g., taro and sweet potato) provide higher nutritional value due 
to their nutrient composition and fibre content. Hence, promoting their wider cultivation has the 
potential to help solve several issues concerning food security faced by marginal farming systems 
(Mabhaudhi et al., 2017). However, lack of market preference has slowed their introduction into 
commercial and subsistence food systems. Additionally, there is limited research on NUS crop health, 
nutritional characteristics, and ability to grow and repair degraded farmland (Mabhaudhi et al., 2017). 
While the commercial, environmental, and socio-economic roles of NUS have been recorded, a limited 
understanding of emerging NUS remains. 
Furthermore, despite their significant role, the spatial distribution and arrangement of smallholder crop 
fields remain largely unknown. This lack of clarity in delineating NUS crop parcels is due to the limited 
accessibility to data and skills among smallholder farmers, which are often associated with high costs 
(Persello et al., 2019). Therefore, precise, and accurate information based on NUS crop spatial extent 
and yield estimates must be gathered to improve crop productivity within smallholder farms while 
addressing food and nutrition insecurities and poverty.  
Acquiring an understanding of the spatial distribution of NUS holds great importance in facilitating 
informed decision-making based on area suitability, spatial organisation, and health and vegetation 
trends, which will maximise productivity and food security (Mugiyo et al., 2021) . Since smallholder 
farming systems often implement crop rotation practices; frequent delineation of crops spatial 
arrangement can provide significant advantages in monitoring changes in crop rotation patterns and 
cultivated areas (Xing et al., 2022). Additionally, this will aid in undetstanding the extent of natural 
resource utilisation by smallholder farming systems, such as water and land resources. Traditionally, 
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conventional techniques for gathering data, such as conducting field surveys, have been employed to 
document cultivated crops' spatial distribution and aerial coverage. However, field surveys often lack 
spatial reference associated with crop fields, resulting in limited accuracy and precision. These surveys 
are also known for being time-consuming, labour-intensive, and costly (Ren et al., 2022). As a result, 
there is a requirement for alternative approaches that are cost-effective and can provide timely and 
dependable statistics on crop distribution. 
 
This necessitates introducing sophisticated methods to track NUS spatial distribution and characteristics 
at various scales. Remote sensing (RS) technology and GIS techniques have been advocated for 
quantifying the spatial extent, land suitability and spatially explicit crop health monitoring for improved 
agricultural management. Near real-time monitoring of crop spatial distribution and area coverage has 
been extensively researched using medium to high-resolution remotely sensed data (Jindo et al., 2021, 
Ahmad et al., 2021, de Lima et al., 2021). In a study conducted by Mazarire et al. (2020), it was found 
that Sentinel-2 multispectral instrument (MSI) data, coupled with machine learning algorithms, 
effectively distinguished various crop types, achieving remarkable overall accuracies of 95%. 
Contrastingly, due to coarser spatial resolution, moderate resolution sensors (i.e., Landsat series) may 
have difficulties producing accurate results based on crop spatial distribution. According to Hall et al. 
(2018), a major source of error can arise when diverse crops with similar phenologies are intercropped. 
This could be reified by utilising higher spatial and temporal resolution datasets.  
 
Adopting high to ultra-high-resolution datasets from unmanned aerial vehicles (UAVs) is recommended 
to enhance crop analysis in smallholder farms. These datasets can capture minute variations in crop 
attributes within agricultural fields smaller than a hectare (Avneri et al., 2023, Chimonyo et al., 2020, 
Mazarire, 2020). The significance of deploying UAVs for high throughput phenotyping in smallholder 
croplands is that they bridge a gap between field observations and conventional air and space-borne 
remote sensing through the provision of proximal near-real-time monitoring over various areas in an 
affordable way (Manfreda et al., 2018). Unlike moderate to high-resolution sensors such as Worldview 
3 and Sentinel 2 MSI, UAVs offer the advantage of being deployable at user-defined ground ranges and 
return intervals (Brewer et al., 2022) . However, Worldview is associated with exorbitant acquisition 
expenses, while Sentinel-2 MSI could mask out some information depending on the size of the field. 
This makes UAV-based datasets particularly suitable for mapping NUS crops like taro and sweet 
potatoes, frequently cultivated in small fields. 
 
Recognising the significance of high-throughput UAV data characterised by enhanced spatial and 
temporal resolutions, it is imperative to thoroughly evaluate the synergistic effectiveness of high-
resolution data in conjunction with resilient machine learning methodologies and spectral enhancement 
techniques to precisely quantify the spatial distribution of NUS crops. Machine learning algorithms 
have been demonstrated to accurately map the distribution of commercially important crops (Ndlovu et 
al., 2021). Common machine-learning techniques in crop classification include random forests, artificial 
neural networks, and support vector machines. For example, using UAV data, Liu et al. (2018) classified 
mainstream crops like rice, soybean, wheat, and corn. The combination of RGB data from UAVs and 
the SVM algorithm resulted in accuracy rates exceeding 73 percent and a Kappa statistic of 70. 
Including optimal vegetation indices and digital surface model elevation data further elevated the 
accuracies to more than 90 percent. Hence, this observation highlights the crucial role of machine 
learning algorithms, specifically those incorporating spectral and image enhancement techniques, in 
effectively classifying various types of crops. Therefore, this study sought to evaluate the application 
of UAV-based proximal remote sensing in mapping the spatial distribution of NUS, specifically sweet 
potato and taro, among other crops in a smallholder cropland area. 
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1.2. Rationale  

NUS (Taro and sweet potatoes) are important for food security and nutrition yet they remain under-
utilised and under-researched. As climate-resilient and viable crops for smallholder farms, promoting 
their production could help address hunger and dietary deficiencies. However, key information about 
their distribution and extent is currently unknown, limiting efforts to optimise their cultivation. 
Remotely sensed data from technologies such as unmanned aerial vehicles (UAVs) offers a potential 
solution. UAVs can collect high-resolution, near-real-time imagery at field scale in smallholder 
croplands, which is almost impossible with readily available satellite remotely sensed data. The 
combination of machine learning and image analysis techniques, with UAV data has the potential to 
enhance the mapping of spatial patterns of taro and sweet potato crops within smallholder farming 
systems. The assessment of the efficacy of UAV data in monitoring NUS holds immense importance 
and could provide valuable insights into their actual areal coverage and distribution at the farm scale. 
This information could help support efforts to promote and improve the production of these climate-
resilient, nutrient-dense crops to enhance food security and nutrition among smallholder communities. 
 

1.3. Aim and Specific objectives. 
The main objective of this study is to evaluate the utility of UAV high-throughput phenotyping remotely 
sensed data in mapping and delineating the spatial distribution of NUS crop species (taro and sweet 
potato crops) in smallholder farms.  
 
To achieve this overarching objective, this study specifically sought  

1. To conduct a systematic review of literature on the utility of UAVs in mapping the spatial 
distribution and health of NUS.  

2.  To evaluate the performance of Random Forest algorithm (RF), Support Vector Machine 
(SVM) and Gradient Tree Boost (GTB) algorithms in mapping the spatial distribution of NUS 
in smaller holder fields. 

3. To compare PBIA-GTB and OBIA methods in mapping and delineating the spatial distribution 
of NUS crops at farm scale.  
 

1.4. Chapter Overview  
In addressing the overarching objective, a total of 5 chapters were generated, and some of them were 
presented as standalone chapters. Specifically, chapters 2 to 4 are presented as standalone manuscripts. 
Considering that all these chapters address the same over aching aim within the same study area and 
data sets, inevitable overlaps between some chapters were anticipated. Despite these overlaps, each 
chapter presents specific aspects of mapping NUS in a cropland area characterised by multicopying in 
typical smallholder cropland in Southern Africa. The chapter outline of this study is as follows: 

• Chapter 1: This chapter will outline an overview and introduction of the study. The background, 
aim, objectives and the main concept of the study will be discussed.  

• Chapter 2: This chapter presents a systematic review of the utility of UAVs in mapping the 
spatial distribution and health of NUS and will discuss the body of knowledge and different 
views on the subject matter. This paper has since been published in Remote Sensing (MDPI) 
(Abrahams, M.; Sibanda, M.; Dube, T.; Chimonyo, V.G.P.; Mabhaudhi, T. A Systematic 
Review of UAV Applications for Mapping Neglected and Underutilised Crop Species’ Spatial 
Distribution and Health. Remote Sens. 2023, 15, 4672. https://doi.org/10.3390/rs15194672). 

• Chapter 3: This chapter compares RF, GTB and SVM in mapping the spatial distribution of 
NUS crops using various datasets.  
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• Chapter 4: This chapter assesses the efficacy of Gradient tree boost on pixel and object-based 
image analysis platforms to map NUS crops within smallholder fields. 

• Chapter 5: This chapter serves as a synthesis, offering an overview of all essential research 
findings related to the study's objectives. It presents a comprehensive summary of the key 
research outcomes and their implications. Additionally, this chapter includes conclusions drawn 
from the findings and provides recommendations for future research directions.   
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CHAPTER 2                                                                                                                              
A SYSTEMATIC REVIEW OF UAV APPLICATIONS FOR MAPPING 

NEGLECTED AND UNDERUTILISED CROP SPECIES’ SPATIAL DISTRIBUTION 

AND HEALTH 

 
Abstract: Timely, accurate spatial information on the health of neglected and underutilised crop species 
(NUS) is critical for optimising their production and to ensure food and nutrition security in developing 
countries. Unmanned aerial vehicles (UAVs) equipped with multispectral sensors have significantly 
advanced remote sensing, enabling the provision of near-real-time data for crop analysis at the plot level 
in small, fragmented croplands where NUS are often grown. The objective of this study was to 
systematically review the literature on the remote sensing (RS) of the spatial distribution and health of 
NUS, evaluating the progress, opportunities, challenges, and associated research gaps. This study 
systematically reviewed 171 peer-reviewed articles from Google Scholar, Scopus, and Web of Science 
using the PRISMA approach. The findings of this study showed that the United States (n = 18) and 
China (n = 17) were the primary study locations, with some contributions from the Global South, 
including southern Africa. The observed NUS crop attributes included crop yield, growth, leaf area 
index (LAI), above-ground biomass (AGB), and chlorophyll content. Only 29% of studies explored 
stomatal conductance and the spatial distribution of NUS. Twenty-one studies employed satellite-borne 
sensors, while only eighteen utilised UAV-borne sensors in conjunction with machine learning (ML), 
multivariate, and generic GIS classification techniques for mapping NUS' spatial extent and health. The 
use of UAVs in mapping NUS is progressing slowly, particularly in the Global South, due to exorbitant 
purchasing and operational costs of these UAV’s and restrictive regulations governing their usage. 
Subsequently, research efforts must be directed toward combining ML techniques and UAV-acquired 
data to monitor NUS’ spatial distribution and health to provide necessary information for optimising 
food production in smallholder croplands in the Global South. 
 
Keywords: crop health;  drones;  food security;  NUS;  precision agriculture;  spatial 
distribution;  stomatal conductance;  UAV 
 
2.1. Introduction 
Inherent water scarcity, which is exacerbated by factors such as climate change, population expansion, 
and changes in land use (Food and Organisation, 2021, Fan and Rue, 2020, Mabhaudhi et al., 2017), 
has intensified the pressure on the agricultural sector, particularly in ensuring long-term food supply for 
the expanding populations (Mugiyo et al., 2021, Joshi et al., 2020). Most of the agricultural production 
in developing regions is derived from rainfed farms, which occupy 97% of croplands (Li et al., 2021). 
However, 80% of these croplands are smallholder farms that contribute most of the food production in 
developing regions (Fan and Rue, 2020, Mabhaudhi et al., 2017). However, these croplands are 
marginal due to suppressing agronomic and climatological infrequencies. Therefore, climate variability 
and soil degradation have drastically reduced the production of staple cereal crops, such as maize, 
amplifying food and nutrition security issues in these regions. This has placed local food systems on 
the verge of catastrophe. Hence, establishing innovative methods to combat food and nutrition 
insecurity while optimising production is urgently needed. A paradigm shift from cultivating 
susceptible cereal crops towards diversifying climate-smart crops, such as underutilised crop species 
(NUS), is necessary (Muruganantham et al., 2022). NUS, referred to as alternative, traditional, 
orphaned, or neglected crops, are adapted to flourish in fragile production systems where land 
degradation and drought are topical . Examples include millet, quinoa, teff, Bambara ground nuts, sweet 
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potato, and taro (Mugiyo et al., 2021, Mabhaudhi et al., 2017, Joshi et al., 2020). These crops are stress-
tolerant, require fewer inputs, and are highly adaptable to a broad spectrum of ecological niches (Butilă 
and Boboc, 2022). Including NUS in fragile production systems is one of many strategies for 
safeguarding the well-being of minority populations, meeting sustainable development goals (SDGs), 
leveraging indigenous knowledge systems, and facilitating traditional food and cultural heritages. 
 
A major challenge to mainstreaming NUS is that basic information on genetic and phenotypic traits 
remains scanty and localised, and productivity is generally low. Generating spatially explicit 
information on NUS’ biochemical and morphological characteristics to optimise their productivity 
could contribute to their development and promotion. In this regard, spatially explicit, high-throughput 
phenotyping technologies are required to augment the rapid advancements in phenotyping NUS. This 
will aid in maximising their productivity in fragmented smallholder croplands. 

Generally, field surveys and other traditional methods have been widely used to measure the spatial 
extent, suitability, growth, and morphological attributes of NUS. However, such methods are time-
consuming and expensive, making them unsuitable for continuous precision crop monitoring in areas 
with numerous crop varieties. Over the past few decades, satellite-based Earth-observation 
technologies, such as Landsat and MODIS, have effectively monitored plant growth and health changes 
(Duarte et al., 2022). Satellite-borne remote sensing technologies provide non-invasive, accurate, fast, 
and cost-effective data for estimating traits such as stomatal conductance and chlorophyll content as a 
proxy for crop productivity, hence their use (Ankrah et al., 2023). However, the resolution of these 
freely available satellite sensors provides limited information for high-throughput phenotyping, 
particularly in the context of highly fragmented and diverse smallholder croplands (Opole, 2012). In 
this regard, smallholder croplands require very high-spatial-resolution remote-sensing technologies that 
are affordable and highly efficient (Opole, 2012). 

The advent of UAV-based phenotyping allows access to data with extremely high levels of detail and 
precision. This is ideal for the precise, consistent phenotyping of smallholder farms at the plot level 
(Opole, 2012). However, the capacity of UAV-mounted sensors to differentiate crop types based on 
their spectral responses as a mechanism for plausible high-throughput field phenotyping is yet to be 
determined (Everitt et al., 2007). RS and ML techniques have recently greatly aided high-throughput 
phenotyping technologies (Everitt et al., 2007). For example, Li et al. (2021) combined three ML 
techniques, which included random forest (RFR), support vector regression (SVR), and artificial neural 
network (ANN), in combination with optimal VI’s to predict the red-clover dry matter yields in various 
phenological growth periods. 

Despite the usefulness of UAVs, their application in agriculture, rural development, and, more 
importantly, resource management remains limited (Mabhaudhi et al., 2013). Although some studies 
have attempted to assess the literature on the application of drone-acquired data (Malinao and 
Hernandez, 2018, Mazarire et al., 2020), most of these studies did not systematically and quantitatively 
assess the literature on mapping the spatial distribution and health of NUS crops with a special interest 
in Global South trends. The objective of this study was to systematically review the literature on the 
application of UAV remotely sensed data for mapping the spatial distribution and health of NUS, with 
a particular focus on sweet potatoes and taro. The aim was to understand this field's progress, 
challenges, opportunities, and gaps. Gaining insights into mapping NUS’ spatial extent, morphological 
features, and biochemical traits through remotely sensed data acquired by UAVs could pave the way 
for enhancing food production in South Africa’s smallholder croplands. 
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2.2. Materials and Methods 
2.2.1. Literature Search 
This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) checklist and guidelines for gathering and analysing the literature. In the initial literature 
search phase, keywords, terms, and phrases for searching the literature were generated from other 
literature reviews on NUS (Shao et al., 2020, Che'Ya et al., 2021, Grüner et al., 2021). The methodology 
followed in this study was adopted from the literature (Butilă and Boboc, 2022, Duarte et al., 2022, 
Ankrah et al., 2023, Azizan et al., 2021). The following keywords and their variants were used in this 
study to search for relevant literature: “neglected and underutilised crop species”, “orphan crops”, 
“traditional crops”, “unmanned aerial vehicle(s)”, “drone(s)”, “remote sensing”, “GIS”, “crop health”, 
“stomatal conductance” and “leaf area index”, and “chlorophyll”. Furthermore, the following PRISMA 
statement and its variants were used to search for research pertaining to taro and sweet potatoes: “Taro”, 
“sweet potato”, “unmanned aerial vehicle(s)”, “drone(s)”, “remote sensing”, “GIS”, “crop health”, 
“stomatal conductance” and “leaf area index”, and “chlorophyll”. 

The SCOPUS, Web of Science, and Google Scholar databases were utilised to collect literature using 
the established key search terms. The PRISMA statement served as the framework for the literature 
search procedure. This search was not restricted in terms of time. The Google Scholar, Scopus, and 
Web of Science literature searches yielded 109, 1036, and 90 articles, respectively (n = 1235). In 
preparation for screening, all obtained material was organised in EndNote. The screening procedure 
considered in this study followed the PRISMA procedure, reported as a flowchart (Figure 2-1). For an 
article to be considered in the meta-analysis, it had to meet the following criteria; 

(a) The study focuses on NUS crops, traditional, or orphaned crops, and no other 
vegetation types (e.g., forests or shrubs) were included, since they denoted different 
ecosystems; 
(b) The study focuses on NUS productivity (i.e., LAI, chlorophyll, or stomatal 
conductance) or spatial distribution; 
(c) The study was based on UAV or drone remotely sensed data, GIS, or remote-sensing 
techniques in NUS crop productivity and health mapping; 
(d) The article was published in an accredited journal;  

(e) The article was written in English;  

(f) The article was accessible. 

After eliminating all duplicates (n = 650), 585 remained. In this case, literature not written in English 
was excluded from the analysis (n = 20). The next step was to assess whether the retrieved literature 
covered the context of mapping the spatial distribution or assessed productivity elements of neglected 
and underutilised crops based on remotely sensed data by examining the abstracts. After the title and 
abstract screening, 332 studies were excluded, and 253 remained. Of the remaining articles, 82 were 
not accessible as full texts and were excluded, with 171 articles remaining. The full-length articles of 
the selected abstracts were then sought and downloaded as PDF documents. After the screening 
procedure, 171 articles were retained (Figure 2-1). Then, the bibliographic information, including 
author names, year of publication, title, journal name, issue, volume number, keywords, and abstracts, 
was exported from Endnote as a text file to Microsoft Excel. The Excel database was then used to 
extract and store qualitative and quantitative data from each article, as indicated in the proceeding phase. 

http://etd.uwc.ac.za/
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Figure 2-1: PRISMA flow diagram for selection of studies considered in the review.  

 

2.2.2. Data Extraction 
In the preceding phase, the extracted data in an Excel database were used to generate and extract 
information on progress, gaps, challenges, and opportunities of using UAV technologies to map the 
spatial distribution of different NUS and their health attributes. Specifically, information related to the 
study country, region, NUS type, the type of crop health attribute investigated, sensor type and platform 
type, vegetation indices, predictive or classification algorithms, and optimum spectral variables 
obtained were all retrieved from the literature and documented in the spreadsheet. Some categorical 
variables were converted into numeric values to facilitate analysing and evaluating trends in the 
retrieved literature. During this step, relevant bibliometric information was also collected. As 
mentioned above, the qualitative and quantitative information extracted from each article was added to 
the Excel spreadsheet with the author names, region, year of publication, article title, journal name, and 
abstract, among the other bibliometric data gathered. 

 

2.2.3. Data Analysis 
The retrieved literature and extracted data were subjected to quantitative and qualitative analyses during 
this phase. Basic statistical frequencies were calculated for quantitative analysis. In addition, 
exploratory trend analysis was carried out on the frequency of publications to assess the progress made 
in mapping NUS’ spatial distribution and health attributes utilizing satellite and drone-borne sensors. 
A bibliometric analysis was also conducted to identify trends in co-occurring key terms from the 
retrieved literature. The trends were identified by quantitatively examining the occurrence and co-
occurrence of key terms in the titles and abstracts using the VOS viewer software. Furthermore, the 
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VOS viewer software used the titles and abstracts of all the retrieved literature (171 articles) and only 
those based on UAV-derived datasets (18 articles). This assisted in evaluating how concepts and topics 
evolved in mapping NUS using satellite-based remotely sensed data to drone-acquired data. VOS 
viewer provides network visualisation of key terms in linked clusters. Creating a map in a VOS viewer 
includes four steps, which are: 
 

(1) Selecting a counting method (binary counting or full counting); 
(2) Selecting a minimum number of occurrences for a term (calculating similarity index); 
(3) Calculating the relevance score for the co-occurrence terms and displaying the most 
relevant items based on this score; 
(4) Displaying a map based on the selected terms. 

 
Since only the occurrence, co-occurrence of key terms, and frequency distributions were computed, 
bias assessment was not conducted. As aforementioned, the PRISMA checklist (http://www.prisma-
statement.org/, accessed on 1 July 2022) was used as a guideline to avoid biased reporting. In this 
regard, no further robust bias statistical assessments were conducted since only exploratory data 
analysis was conducted. The review was divided into two main sections to address the research 
objectives. The first section investigated recent advances in mapping NUS crops’ spatial distribution 
and health using remotely sensed data. This section presented and discussed quantitative literature 
trends in analysing NUS’s spatial distribution and health. Throughout this phase, the crop health 
attributes, Earth-observation sensors (cameras), sensor platforms, algorithms, and optimal spectral 
variables used by the community of practice in the retrieved literature were assessed and presented. The 
last phase discussed the challenges, gaps, and opportunities for knowledge generation in mapping 
NUS’s spatial distribution and health using drone-derived remotely sensed data. 

 

2.3. Results 
Figure 2-2 shows the co-occurrence of topical concepts derived from titles and abstracts from (a) studies 
based on satellite-borne data and (b) drone-acquired data. Figure 2-2a illustrates seven topical clusters 
in dark blue, light blue, red, green, purple, yellow, and orange for mapping crop spatial extent and 
health status. The key terms from the “red” cluster were “agriculture”, “spad value”, “low cost”, 
“remote sensing data”, “hyperspectral data”, “multispectral data”, “VIS”, “processing”, “size”, and 
“crop field”, which directly imply the utility of “low-cost remote sensing” systems for mapping and 
monitoring NUS crop productivity (spad-value/chlorophyll) with remotely sensed data in smallholder 
crop fields (Figure 2-2a). The second-largest cluster linked to UAVs was in yellow and contained 
“growth”, “variety”, “trait”, “detection”, “plant-height”, “UAVs”, “drone”, “dsm”, “rgb”, and “msi”. 
This cluster articulates the use of drone remotely sensed (“UAVs”) data in detecting and mapping 
relevant NUS phenotypical attributes (“growth”, “variety”, “trait”, “detection”, and “plant height”). The 
third cluster in dark blue included ‘growth stage’, “lai”, “crop height”, “agdw”, “canopy nitrogen”, 
“weight”, “fusion”, “plsr”, and “rmse” as the key terms in order of importance (Figure 2-2). This cluster 
relates to the estimation of NUS crop productivity attributes (“lai”, “crop height”, “agdw”, “canopy 
nitrogen”, “weight”, “lai”, “crop height”, “agdw”, “canopy nitrogen”, and “weight”) using remotely 
sensed data and regression techniques. The fourth cluster in green contained “population”, “climate 
change”, “water stress”, “food security”, “African leafy vegetable”, “suitable area”, “moisture”, “SSA” 
(Sub-Saharan Africa), and “validation”, among others. This links to the food and nutrition security 
issues in SSA, which are highly impacted by climate variability, such that NUS crops (“African leafy 
vegetable”) are the only suitable crops because of their drought tolerance. The fifth cluster, which is 
light blue, features co-occurring terms, such as “species”, “reflectance”, “density”, “waveband”, “nir”, 
“classification”, and “palmer amaranth”. This cluster relates to the impact of species variability and 
plant or foliage density, which causes the spectral signatures of NUS crops to vary at different 
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wavebands of the EM spectrum, facilitating optimal classification accuracies. The sixth cluster is 
characterised by the co-occurrence of terms such as “plant”, “amaranth”, “phenological”, and “growth 
stage”, which relates to the assessment of NUS crops’ phenological characteristics. 
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Figure 2-2: Topical concepts identified using a bibliometric analysis of titles and abstracts of articles that utilised (a) all remote sensing sensors and (b) only 
drone-acquired data in mapping the NUS. Various coloured lines establish connections between keywords that co-occurred within the same documents. 

  

( a )   ( b )   
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Figure 2-2b illustrates seven topical clusters in dark blue, light blue, red, green, purple, yellow, and 
orange, which were derived using abstracts and titles that utilised drone remotely sensed data in 
mapping NUS crop spatial extent and healthiness. The key terms from the red clusters were “mapping”, 
“crop height”, “growth stage”, “yield” and, “crop yield”, “reflectance index”, “hyperspectral imagery”, 
“random forest”, and “svm”. This cluster relates to using high-resolution remotely sensed data in 
mapping and monitoring NUS productivity elements, such as growth stage, using machine learning. 
The key terms in the green cluster are “phenotyping”, “LAI”, “canopy coverage”, “trait”, “agdw”, 
“prediction”, “uavs”, “dsm”, “fusion”, “VIS”, and “environment”. This cluster relates to using UAV 
remotely sensed data that could be fused with other data for assessing the structural attributes of NUS 
crops (phenotyping). The third cluster in dark blue has the key terms of “remotely sensed data”, “gndvi”, 
“normalised difference vegetation”, “rededge”, “spad value”, and “climate change”. This cluster relates 
to the utility of the widely used spectral variables (“gndvi”, “normalised difference vegetation”, and 
“red-edge”) in monitoring the health of NUS crops. The fourth cluster is orange and has co-occurrence 
terms, such as “high throughput phenotyping”, “rgb”, “msi”, “yield”, and “correlation”. This cluster 
can be attributed to applying the high-throughput phenotyping of NUS through RGB and multispectral 
spectrums in estimating crop yield. The fifth cluster in light blue had “genotype”, “parameter”, and 
“genomic parameters”. This cluster suggests examining the genetic composition of NUS crops by 
assessing optimal parameters to assess and infer their crop health. The sixth cluster has “multispectral 
camera”, “rgb camera”, “rgb image”. This cluster relates to using general colour imagery (in red, green, 
and blue spectrums) acquired using drones for mapping NUS. The last cluster has “hyperspectral data” 
and “multispectral data”. This cluster relates to the utility of multispectral and hyperspectral data in 
mapping and monitoring NUS crop spatial distributions and health. 

 
2.3.1. Progress in Mapping the Spatial Distribution and Health Status of Neglected and 
Underutilised Crop Species 
Significant progress has been attained in detecting, mapping, and monitoring NUS crops’ spatial 
distribution and health status using remotely sensed data (Figure 2-3). However, it should be noted that 
this progress relates to the collective of NUS, but not each individual species. The period between 2003 
and 2013 is marked by a low frequency of published literature based on all Earth-observation sensors 
(Figure 2-3). Between 2014 and 2022, there was a rapid increase in articles that mapped the health and 
spatial distribution of NUS using all Earth-observation sensors. Again, from 2014 to 2022, there was a 
rapid growth in the literature that utilised UAV-acquired remotely sensed data to characterise NUS 
attributes. Despite substantial progress, only a few studies have demonstrated the effectiveness of 
remote sensing technologies in NUS crop classification, characterising their suitability ranges or 
discriminating their varieties based on their phenotypic traits. Specifically, only 3% and 4% of the 
retrieved studies utilised drone and satellite-borne remotely sensed data in mapping the spatial 
distribution of NUS crops, respectively. However, most of the retrieved literature evaluated NUS 
phenological and phenotypic characteristics. 
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Figure 2-3: Frequency of published articles on remote sensing applications of NUS based on (a) all 
sensors and (b) drones. 

Regarding geographic distribution, the studies included in the meta-analysis were conducted in 47 
countries. Most of the retrieved literature was conducted in Asia, America, and Africa. On a national 
scale, most of the studies were conducted in the United States of America (n = 18) (Opole, 2012, Everitt 
et al., 2007), followed by South Africa (n = 18) (Mabhaudhi et al., 2013, Mazarire et al., 2020) and 
China (n = 17) (Malinao and Hernandez, 2018, Shao et al., 2020), (Figure 2-4). Interestingly, most of 
the African studies were conducted in southeast Africa.  

 

 

Figure 2-4: Spatial distribution of studies on remote sensing the attributes and spatial distribution of 
NUS. 

 

The most prevalent NUS in the retrieved literature included sweet potato (Ipomoea batatas), sorghum 
(Sorghum bicolor), amaranth (Amaranthus cruentus), cassava (Manihot esculenta), cowpea (Vigna 
unguiculata), millet (i.e., pearl (Pennisetum glaucum L.R. Br.), finger (Eleusine coracana), and proso 
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millet (Panicum milliaceum)) (Figure 2-5a). UAV-based remotely sensed data was utilised in mapping 
the attributes of amaranth (n= 6) (Che'Ya et al., 2021), Legume (Fabaceae) (n = 2)(Grüner et al., 2021), 
Sweet potato (n = 2) (Ramírez et al., 2021), sorghum (n = 2)(Shi et al., 2016), and bambara groundnut 
(Vigna subterranea) (n = 2) (Suhairi et al., 2020) (Figure 2-5b). Most of the retrieved literature remotely 
sensed various NUS using hyperspectral data, hence the decline in the frequency of NUS studies that 
utilised drone and satellite-acquired remotely sensed data (Figure 2-5). 

 

 

Figure 2-5: Frequency of NUS in the literature remotely sensed using (a) all various sensors and (b) 
exclusively drone-borne sensors. 

Eight key broad research themes emerged from the reviewed literature on NUS. These include 
phenotyping, crop genetics, crop productivity, crop physiology, phenology, crop adaptation, 
classification, and land suitability (Figure 2-6). Most reviewed studies focused on quantifying NUS’ 
physiological and phenological crop traits. A relatively small number of studies characterised crop 
classification and spatial extent. Five studies discriminated crops based on drone-acquired data, while 
six articles were based on satellite-borne remotely sensed data (Figure 2-6). The most extensively 
researched areas based on all satellite-borne sensors included phenology (n = 142), crop physiology (n 
= 110), and crop productivity (n = 104). When considering only the drone-borne sensors, 16 studies 
focused on NUS phenology. These studies mainly assessed external crop attributes, such as crop LAI, 
biomass, crop height, and crop yield periods across the growing season. For example, Jewan et al. 
(2022) monitored six distinct phenological stages of the Bambara groundnut, estimating its yield. Only 
nine studies assessed NUS crop productivity, while seven research studies examined NUS crop health 
and physiology. For instance, Avneri et al. (2023) assessed the utility of a UAV imaging platform 
coupled with an RGB sensor to monitor chickpea’s physiological and morphological parameters, such 
as LAI, biomass, and yield, during irrigation periods. 
Moreover, five studies focused on characterizing NUS crop spatial distribution using classification 
methods, and four concentrated on NUS’s climatic suitability and adaptation. For example, Ramírez et 
al. (2021) utilised vegetation and temperature indices to characterise various sweet potato genotypes 
based on productivity and resilience under drought treatments. Only five studies utilised crop 
phenotyping and breeding techniques. In many instances, crop phenotyping and genotyping included 
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single-nucleotide polymorphism (SNP) markers. SNP markers provide a broad range of applications in 
various crops, including plant variety and cultivar characterization, quantitative trait loci (QTL) 
analysis, the production of a high-density genetic map, and genome-wide association analysis (Xia et 
al., 2019). And lastly, four studies focused on land suitability. Many of the retrieved studies mapped 
the productivity and water stress-related elements.  
 
 

 

Figure 2-6: Frequency of articles that utilised remotely sensed data from drones and satellites to map 
NUS attributes. The thickness of the lines represents the frequency in the retrieved literature. (See 
Supplementary Materials spreadsheet 454 for frequency values). 

 
Specifically, the most extensively researched NUS health attributes included crop yield, growth 
attributes, crop health, chlorophyll content, leaf water content, biomass, photosynthesis, LAI, stomatal 
conductance, canopy height, plant weight, leaf nitrogen, and canopy temperature (Figure 2-7a). The 
most researched NUS attributes in the context of UAV-based remote sensing were crop yield (n = 15), 
growth attributes (n = 13), biomass (n = 11), crop health (n = 10), chlorophyll content (n = 9), canopy 
cover (n = 7), plant/canopy height (n = 7), LAI (n = 6), leaf nitrogen (n = 5), leaf size attributes (n = 5), 
leaf water content (n = 3), and leaf temperature (n = 3). As aforementioned, there were very few studies 
that classified and characterised the spatial distribution of NUS (Figure 2-7b)(Mugiyo et al., 2021). 
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Figure 2-7: Frequency of studies that remotely sensed a specific crop attribute based on (a) all satellite 
and drone-borne sensors and (b) drone-borne sensors only. 

 

2.3.2. Assessing Literature on Classification and Stomatal Conductance Estimation of Taro and 
Sweet Potato Crops 
Based on the findings, 12 articles characterised the spatial distribution of various NUS (Figure 2-8). 
Sweet potato, lentil, and chickpea were the crops that received substantial attention in the literature 
(Figure 2-8). Overall, a limited number of studies have utilised UAV remotely sensed data to classify 
NUS. There is a gap in the research focusing on UAV classifications from 2008 to 2019. Furthermore, 
2020 was the most predominant year for NUS classification studies. Nevertheless, research on the 
spatial distribution of NUS remains sparse and limited to developed regions. The increase in literature 
could point to an increase in the interest in NUS and the general application of UAV-acquired remotely 
sensed data. 

 

Figure 2-8: Frequency of published articles on NUS classifications 
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Fifty articles estimated the stomatal conductance of NUS based on satellite-borne remotely sensed data. 
Specifically, studies in the USA and China mapped these NUS mostly using sensors, such as Planet 
scope, analytical spectral devices, UAVs, MODIS, and Sentinel 2 MSI (Supplementary Figures S1 and 
S2). There was a modest amount of research on stomatal conductance between 2003 and 2011. 
However, the literature related to farmscale stomatal conductance increased from 2013 to 2022 (Figure 
2-9). In remote sensing, the stomatal conductance of NUS, sweet potato received more research 
attention (17 studies), followed by taro (5 studies), cowpea (5 studies), sorghum (4 studies), and 
amaranth (4 studies) (Figure 2-9). Meanwhile, very few studies have been conducted concerning the 
stomatal conductance of crops such as cassava and millet. These crops were less frequent in the 
retrieved literature (Figure 2-9a,b) than previously stated. However, there were few studies on remote 
sensing applications for estimating the stomatal conductance of taro based on UAV-acquired remotely 
sensed data from the retrieved literature. The specific countries and sensors used in mapping these NUS 
are detailed in Supplementary Table S6. 

 

Figure 2-9: Frequency of published articles on mapping NUS stomatal conductance based on (a) all 
sensors for all NUS and (b) only on sweet potato and taro 

 

2.3.3. Types of Sensors and Their Spectral Resolutions 
The utilization of Earth-observation sensors in the remote sensing of NUS studies is significant. 
Thirteen different sensor types were noted in the reviewed literature (Figure 2-10). In terms of sensors, 
the findings of this review revealed that the spectrophotometer was the most widely used sensor for 
characterizing the health status of NUS, being used in 27 studies. Furthermore, research results indicate 
that various studies have used handheld hyperspectral devices to acquire in situ remotely sensed data 
to detect and map NUS biophysical and phenological attributes. The most predominant sensors in the 
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retrieved literature were spectrophotometers (27), UAV-borne sensors (n = 18), spectrometers (n = 18), 
radiometers (n = 11), Sentinel- 2 MSI (n = 9), MODIS (n = 3), and LiDAR (n = 3) (Figure 2-10a). 
Meanwhile, the most frequently used drone-borne sensors were RGB cameras (in 11 studies)(Parra et 
al., 2021), RedEdge-MX (in three studies) (Pereira et al., 2022), and Canon (in three studies)(Jewan et 
al., 2022). These were followed by thermal cameras (Sobejano-Paz et al., 2020), Parrot Sequoia, 
Micasense Altum (Ramírez et al., 2021), CMOS cameras (Liu et al., 2021), and MCA6 (Che'Ya et al., 
2021) in order of frequency in the retrieved literature (Figure 2-10b). 

 

(a)      (b) 

Figure 2-10: Frequency of (a) all sensor and (b) drone-borne sensors that have been used to map the 
spatial distribution of NUS and their attributes. (RGB represents red, green, and blue). 

 

Across all platforms, the multispectral (broadbands) were highly utilised in the literature compared with 
hyperspectral (narrow) bands. The visible section of the electromagnetic spectrum, specifically the red, 
green, and blue (RGB) sections, are primarily the most utilised wavelengths in mapping the spatial 
distribution of NUS crops and their health attributes (Figure 2-11). Specifically, the RGB sections of 
the electromagnetic spectrum (EM) were utilised in 17, 18, and 49 studies based on drone, satellite-
borne, and hyperspectral sensors, respectively (Figure 2-11). The second most widely used section of 
the electromagnetic spectrum in the literature was the NIR section, utilised in 12 studies with drone-
acquired data, 18 studies with satellite-borne sensors, and 38 with spectroscopy. When considering only 
the drone-borne sensors, seven studies utilised the electromagnetic spectrum’s red edge (RE) section. 
In comparison, 12 studies utilised the satellite remotely sensed RE section, while 44 studies utilised RE 
bands from spectroscopy. Few studies attempted to engage the thermal bands in characterising the 
spatial distribution of NUS and their health attributes. Four studies used drone-acquired thermal 
remotely sensed data and a similar number of studies used satellite-acquired thermal bands. Also, only 
five studies utilised the spectroscopy thermal section of the EM (Figure 2-11). When considering drone-
borne sensors, only 2 studies utilised the ultra-violet (UV) and 38 studies used the spectroscopy UV 
section of the EM. 
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Figure 2-11: Visual distribution (frequency) of (a) Spectral characteristics of satellite and drone borne 
sensor, and (b) specific sections of the electromagnetic spectrum they covered in the literature (See 
Supplementary Table S2 for frequency values). UV is ultraviolet, SWIR is shortwave infrared, RE is 
red edge, NiR is near-infrared, and RGB is the red, green, and blue spectra. (See Supplementary 
Materials spreadsheet for frequency values. 

 

2.3.4. UAV Platforms Utilised in the Literature 
Regarding the drone platforms, the DJI fleet was utilised in a marginally higher number of studies in 
relation to all other platforms (n = 12). The Octocopter (Huang et al., 2018), mikrokopter (Che'Ya et 
al., 2021), and Sensfly eBee (Li et al., 2021) each featured in separate single studies (Figure 2-12b). 
When assessing the frequency of each specific sensor in the retrieved literature, it was observed that 
the DJI Phantom 4 Pro was the most frequently used platform across the board (appearing in six studies) 
(Jewan et al., 2022), followed by the Octocopter UAV, which was utilised in one study (Sankaran et 
al., 2018) (Figure 2-12a). Furthermore, quadcopters were the most widely used drone platform type, 
followed by fixed-wing drones (Figure 2-12b). Quadcopter drones were utilised in 16 studies, and fixed-
wing drones were used in only 2 studies. Furthermore, the DJI UAVs were popular in mapping a wider 
range of crops and research domains when compared with other platforms (Supplementary Tables S3 
and S4). This could indicate that these platforms are more popular and versatile. 
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Figure 2-12: Frequency of (a) summarised drone platforms (b) and DJI drones utilised in the literature 
to map the spatial distribution of NUS and their health attributes. 

 

2.3.5. Derived Vegetation Indices in Remote the Spatial Distribution and Health of NUS Crops 
Algebraic combinations derived from multiple spectral bands, which are commonly known as 
vegetation indices (VIs), were used to estimate vegetation vigour and vegetative characteristics (canopy 
biomass, absorbed radiation, and chlorophyll content) in the retrieved literature (Candiago et al., 2015). 
Furthermore, the visible (green: 530–570 nm, red: 640–680 nm, and red edge: 730–740 nm), near-
infrared (770–810 nm), and red edge (730–740 nm) sections of the electromagnetic spectrum were 
common in studies that assessed crop health. The reflectance values of these prominent wavelengths 
are generally used to calculate vegetation indices, such as the normalised difference vegetation index 
(NDVI), NDVI–red edge (NDRE) simple ratio (SR), green normalised difference vegetation index 
(GNDVI), green chlorophyll index (CIgreen), and soil-adjusted vegetation index (SAVI), which were 
frequently used in the retrieved literature (Figure 2-11). All VIs that were used in the literature are also 
listed in Supplementary Table S1. In this regard, there is still room to assess more image transformations 
in mapping the spatial distribution of NUS, such as sweet potato and taro, dominant in smallholder 
croplands. 

 
2.3.6. Statistical and Machine Algorithms Were Utilised in Mapping the Spatial Distribution and 
Health of NUS Crops 
This study’s findings show that several basic statistical procedures, simple regression techniques, and 
machine learning techniques were used in mapping the spatial distribution and health of NUS crops. 
These algorithms can be further subdivided into three categories, which are (i) generic GIS 
classifications, (ii) machine learning and regression techniques, and (iii) multivariate techniques. Based 
on Figure 2-13, the main machine learning algorithms utilised in conjunction with drone-acquired data 
were linear regression (39%), random forest (28%), support vector machine (SVM) (22%), and artificial 
neural network (ANN) (17%), in order of frequency in the literature. Linear regression techniques were 
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the most frequent regression algorithms in assessing NUS crop health (Figure 2-12) (Suhairi et al., 2020, 
Huang et al., 2018). The frequency of linear regression and machine learning-based algorithms was also 
detected during the bibliometric analysis, as illustrated in Figure 2-2b (red cluster). The RF was the 
second most widely used machine learning ensemble, followed by SVM, PLS, linear discriminant 
analysis, and artificial neural network (ANN), in order of frequency in the retrieved literature. 

 

Figure 2-13: Frequency of machine learning and general regression techniques used in remote sensing 
NUS attributes based on all sensors and drone-borne sensors. (GLM is generalised linear model, 
RF/DRF is random forest, LR is linear regression, SVM is support vector machine, OLS is ordinary 
least squares regression, ANN is artificial neural network, BPNN is back propagation neural network, 
GAM is generative adversarial networks, LDA is linear discriminant analysis, and PLS is partial least 
squares regression. (See Supplementary Materials spreadsheet for frequency values).  

In terms of generic statistics and classification techniques, Pearson correlation, ANOVA, maximum 
likelihood (ML), OBIA, and the empirical line method (ELM) were the most frequently utilised 
algorithms based on satellite and drone-borne remotely sensed data (Figure 2-14). The Mahalanobis 
distance, parallelepiped, k-means, and canny edge filtering were some of the popular generic 
classification algorithms used to map NUS based on satellite and drone-acquired remotely sensed data. 
Studies that were based on generic classification were relatively few for each algorithm (<5) when 
compared with all other algorithms utilised in the retrieved literature (Figure 2-14a). Generic 
classification procedures, such as the analytical hierarchical process (AHP), cluster analysis, fuzzy 
logic, and multilayer perceptron, have not yet been utilised in conjunction with drone-acquired remotely 
sensed data for crop mapping (Figure 2-14b). 
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Figure 2-14: Frequency of generic GIS classification techniques used in remote sensing NUS attributes 
based on (a) all sensors and (b) drone-borne sensors. 

 

Regarding multivariate techniques, PCA followed by cluster analysis and multiple regression were the 
most frequently used algorithms based on satellite and drone-acquired data combined (Figure 2-15). 
Studies based on linear mixed model and machine learning algorithm classifications were relatively 
few (<5) compared with PCA and cluster analysis. There seemed to be scanty literature (<5) that utilised 
multivariate techniques in conjunction with drone-acquired data for mapping the spatial distribution of 
NUS and their health attributes. 

 

Figure 2-15: Frequency of multivariate techniques used in remote sensing NUS attributes based on all 
sensors and drone-borne sensors. (See Supplementary Materials spreadsheet for frequency values). 
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2.4. Discussion 
2.4.1. Evolution of Drone Technology Applications in Remote Sensing 
There have been numerous shifts in the key terms of the literature on the remote sensing of the 
distribution and health status of NUS crops. Specifically, there was a shift in the topical terms from 
mere correlations based on RGB remotely sensed data in mapping NUS attributes between 2018 and 
2019 to using hyperspectral data in predicting and mapping NUS crop health attributes, such as yield 
and AGB, in 2020. Currently, research efforts are being exerted towards the fusion of drone-acquired 
data with satellite remotely sensed datasets in conjunction with robust machine learning algorithms, 
such as PLSR and SVM, in characterising yield genotype canopy coverages, amongst others. Progress 
is discussed in detail in the following sub-sections. 

 

2.4.1.1. Frequency of Publication and Their Geographic Distribution 
This study’s findings revealed that the articles that utilised drone-based remotely sensed data in 
mapping the spatial distribution, health, and productivity elements of NUS crops increased gradually 
from 2009 to 2014 (Figure 2-3). This trend was similar to that of published studies that utilised satellite 
remotely sensed data (Figure 2-3b). The rapid changes, improvements, and increased accessibility of 
Earth-observation sensors and platforms could explain this. That period was characterised by limited 
access to high spatial-resolution remotely sensed data for crop monitoring. These findings are echoed 
by numerous reviews, which include Mutanga et al. (2017) and Sibanda et al. (2021b).  In the context 
of satellite-borne sensors, the research period from 2009 to 2014 was mainly dominated by the utility 
of Landsat and MODIS (Funk and Budde, 2009). These sensors were incapable of capturing the land 
fragmentation and heterogeneity associated with NUS. Moreover, the only accessible fine-spatial-
resolution images were those procured from commercial sensors, such as WorldView and QuickBird. 
These sensors are often associated with exorbitant costs that restrict research activities, especially in 
under-developed countries. The potential of NUS was still being researched during that period, and 
research investments were not channelled to the use of satellite-borne sensors. However, the period 
between 2015 and 2022 was marked by a rapid increase in drone platforms and associated sensors, 
hence the rapid increase. This would suggest an increase in the interest in NUS and the improved 
capabilities of drone and satellite sensors. Interestingly, most of these drone-related studies were 
conducted by universities and agricultural institutions in China, America, South America, Europe, and 
Australia (Supplementary Table S6). This could be attributed to the fact that the earliest drone 
technologies emerged in these regions between 1849 and 1916 (Sibanda et al., 2021b). Also, some of 
the mentioned countries are pioneers in the research and preservation of NUS. Since then, technology 
has been spreading and advancing. As a result, there is an increasing need to improve the application 
of UAV technologies for precision agriculture in accordance with NUS spatial extent and health 
assessments. Furthermore, it was noted that most of the studies were conducted on experimental plots, 
in some instances with irrigation facilities at university experimental plots. Generally, commercial 
farmers who are endowed with resources are the most dominant users of these technologies in under-
developed regions, such as southern Africa. No studies were conducted in rainfed smallholder croplands 
in the retrieved literature on remote sensing NUS. The findings of this study imply that these 
technologies are slowly being embraced and incorporated from developed countries to the Global 
South. 

 

2.4.1.2. NUS Crop Attributes That Have Been Remotely Sensed Using Drone-Acquired Data 
The limited number of studies focusing on NUS suggests that the utility of UAVs is still in its infancy 
in practice. In the retrieved literature, there were no studies that indicated whether there are any spectral 
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libraries that have been generated for NUS. This could imply that, despite the significant efforts in 
advancing the remote sensing of NUS, more efforts are still required to match with other crops, such as 
maize. Although the results revealed that, from the year 2020 going onwards, there has been an increase 
in the number of studies, (Merkert and Bushell, 2020) noted that there are still few research efforts 
directed towards NUS (Figure 2-8). In developing countries where NUS are beginning to gain 
recognition, the limited number of studies could be attributed to the expenses associated with drones 
and their accessories. Furthermore, the requirements to license and operate a drone in developing 
countries are still a challenge (Goel et al., 2021, Velusamy et al., 2021). These findings underscore the 
importance of increasing knowledge and literature in the context of NUS to improve our insights into 
them as alternative crops. The findings showed that 16 studies assessed crop phenology, 9 were on 
productivity, and 7 explored physiology using drone-acquired remotely sensed data. However, most of 
the retrieved studies focused on interrelated themes, which explains the high frequencies of studies on 
each crop attribute. Crop attributes, such as physiology, productivity, and phenology, are mutually 
dependent elements that determine crop development and health. According to Fageria et al. (2006), 
crop physiology in particular is a useful crop attribute that could be used to quantify crop growth for 
optimising crop yields. 

The findings of this study showed that 11 NUS crop productivity elements, namely, crop yield, crop 
growth, crop health, chlorophyll content, biomass, LAI, canopy height, cover, leaf nitrogen, leaf water 
content elements, and stomatal conductance, were the most widely researched (Sobejano-Paz et al., 
2020, Aboutalebi et al., 2018). These are the principal optical crop productivity and health elements; 
hence, they are anticipated to be covered extensively in the literature on agricultural remote sensing 
applications. The primary function of remote sensing applications is to optimise yield production and 
the supply of nutrient-rich foods (Sishodia et al., 2020). Additionally, all research efforts have been 
exerted towards optimising agricultural productivity (increasing yields) and addressing sustainable 
goals 1 and 2 on hunger and poverty (Van Wart et al., 2013, Duku et al., 2018, Mutanga et al., 2017, 
Jewan et al., 2022). Subsequently, yield is expected to be the most intensely researched NUS crop 
attribute based on drone and satellite-borne remotely sensed data (Van Wart et al., 2013, Jewan et al., 
2022). 

It must be noted that, in most instances, yield is synonymous with AGB. The findings of this study 
showed that 61% of drone-based remote sensing studies on NUS estimated crop AGB. AGB is an 
important parameter that can also be utilised to predict crop growth, yield. and productivity (Liu et al., 
2022b). The findings of this study also showed that LAI is one of the most researched elements of NUS, 
featuring in 33% of the retrieved literature. This can be attributed to the fact that LAI is yet another 
accurate proxy of plant growth, as illustrated in Figure 2-7. It has been extensively proven to correlate 
with other plant growth indicators, including chlorophyll content, biomass, and, to some extent, yield 
(Ali and Imran, 2020, Buthelezi et al., 2023). LAI represents the structural attributes of the leaf 
components estimated by the area of the leaf per unit of ground surface area (Wu et al., 2022). The area 
covered by leaves per unit of the ground surface changes with the variations in a crop’s growth stage. 
This variable can accurately represent the space available for photon interception across a crop’s 
phenological stages, which can affect yield (Chapepa et al., 2020)  (Blessing et al., 2020). Subsequently, 
LAI is a plausible indicator of canopy health and development that needs to be accurately mapped (Xue 
and Su, 2017). In addition, LAI can affect the surrounding canopy and the microclimate, e.g., radiation 
from the sun is intercepted by leaves, affecting transpiration and leaf surface temperature. This 
ultimately influences the photosynthetic nature of leaves and the stomatal conductance (Williams et al., 
2022). In this regard, LAI was one of the most important NUS attributes in the retrieved literature.  

The chlorophyll content is another predominant NUS attribute covered by 50% of the retrieved 
literature in this study (Raji et al., 2017, Singhal et al., 2019). The chlorophyll content of leaf tissue 
indicates a plant’s physiological structure, nutritional composition, and health (Brewer et al., 2022, 
Tahir et al., 2018). The antenna pigments in chloroplasts absorb incoming solar radiation during 
photosynthetic activities (Monteoliva et al., 2021). The resulting radiation is then transferred to the 
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reaction centre pigments, which discharge electrons to activate the photochemical process (Monteoliva 
et al., 2021).  Specifically, chlorophyll is a very relevant and optical indicator of crop health, since 
chlorophyll highly absorbs energy in the red (650–700 nm) and blue (400–500 nm) regions of the 
electromagnetic spectrum to increase photosynthesis. The types of chlorophyll responsible for the 
higher absorption within the visible spectrum are chlorophylls a and b (Monteoliva et al., 2021). In this 
regard, there is a positive relationship between the leaf total chlorophyll content (chlorophyll a+b), the 
solar radiation absorbed by the leaf tissues, and the photosynthetic rate of the crop (Monteoliva et al., 
2021). Subsequently, a leaf’s biophysical pigments and biochemical photosynthetic processes are 
linked to a plant’s health and productivity. Hence it is considered a suitable proxy for crop health in the 
light of agricultural remote sensing applications (Tahir et al., 2018). 

Meanwhile, the chlorophyll content has been widely proven to correlate positively with the nitrogen 
content in various crop species (Bojović and Marković, 2009, Musa et al., 2016, Blumenthal et al., 
2020, Liu et al., 2019). Indeed, approximately 75% of the total nitrogen is stored within the leaf 
chloroplasts (Li et al., 2013). In this regard, the findings of this study revealed that 28% of the retrieved 
studies estimated nitrogen concentration using drone remotely sensed data, thus rendering the nitrogen 
content another sought-after attribute of NUS. An elevated nitrogen concentration is associated with an 
increased CO2 assimilation rate and stomatal conductance in the crop, which aids in producing 
chlorophyll and green pigments. For example, Muhammad et al. (2021) conducted a related study to 
evaluate the impact of various nitrogen and phosphorous levels and beneficial microbes on enhancing 
canola productivity. The results revealed that nitrogen applied at a rate of 180 kg ha−1 increased plant 
pods, seed pods, the seed-filling duration, seed weight, biological yield, and seed yield. 

The findings of this review also showed that crop structural parameters, such as crop height, crop 
growth, and canopy cover, were explored in 39%, 72%, and 39% of drone- based studies, respectively. 
These crop structural parameters are related to AGB, LAI, and the chlorophyll content, which are 
measured and used to predict the yield. Hence, these parameters are directly linked to food and nutrition 
security. The crop height and growth attributes directly interact with the incident electromagnetic 
energy that is typically measured and used to model productivity. Furthermore, these physiological crop 
variables are sensitive to variations in environmental conditions. These include environmental 
(precipitation, temperature, soil type, etc.) and biochemical conditions (fertility, weeds, pests, and 
diseases). In this regard, these structural attributes are instrumental in monitoring the health of crops to 
optimise crop production; hence, significant research efforts were devoted to them. 

This study showed that stomatal conductance was another optimal NUS health parameter assessed by 
11% of the retrieved studies that utilised drone data. The stomatal conductance measures the degree of 
stomatal opening and can indicate leaf gas exchange (Iseki and Olaleye, 2020). The stomatal 
conductance is strongly associated with leaf transpiration rates, photosynthetic efficiency, chlorophyll 
concentration, and nitrogen concentration (Wijewardana et al., 2019). Specifically, periods of crop 
water stress or drought stress will be limited by the CO2 concentration at carboxylation sites (Cc) inside 
the chloroplast. This is determined by the CO2 diffusion components, i.e., stomatal conductance (gs) 
and mesophyll conductance (gm) (Ouyang et al., 2017). Particularly, the stomata control the CO2 

diffusion into the leaf tissue and water diffusion out of the plant. Therefore, it has been proven that, 
under water deficit conditions, plant stomata will close to prevent major water loss. This consequently 
decreases photosynthesis via the decreased influx of CO2  (Ouyang et al., 2017).  

In this regard, higher stomatal conductance and high photosynthetic efficiency are associated with 
limited moisture stress. Hence, these plants will be healthier, with a higher chlorophyll content and 
green pigment. In this regard, stomatal conductance was among the most researched crop attributes in 
the retrieved literature because it is an accurate proxy of moisture stress and the health status of crops 
(Sobejano-Paz et al., 2020, Iseki and Olaleye, 2020). In fact, the stomatal conductance aids in water use 
and irrigation scheduling as a pathway towards optimising food production. A study by Chai et al. 
(2016)  measured the morpho-physiological traits of Bambara groundnut exposed to progressive mild 
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drought in a controlled environment. Drought stress reduced stomatal conductance significantly (p < 
0.01). Furthermore, higher stomatal density and reduced leaf area were observed in drought-treated 
plants (p < 0.01). This suggests that NUS crops are more resistant to biotic and abiotic stresses, such as 
drought and water stress. Above all, this indicates the prospects of using stomatal conductance as a 
proxy for understanding crop water stress. 

In most studies from the retrieved literature, there were strong correlations between the stomatal 
conductance and water relation status or leaf water content (Sobejano-Paz et al., 2020, Awais et al., 
2022a, Awais et al., 2022b). Specifically, 17% of studies based on drone remote sensing researched the 
NUS leaf water content. Water content is an important indicator of crop health (Sobejano-Paz et al., 
2020, Awais et al., 2022a, Awais et al., 2022b). A plant with higher water potential will produce greener 
pigmentation and have increased crop productivity. According to Ouyang et al. (2017), under water 
deficit or conditions of mild water stress, the stomatal conductance, internal CO2 concentration, and net 
assimilation rate within a plant will decrease, and the A/G ratio will increase. Various studies assessed 
and reported that crop water stress allows for a decline in the total chlorophyll of various crops and a 
decline in plant productivity (Majid and Roza, 2012, Maes and Steppe, 2012, Pineda et al., 2021). This 
includes non-stomatal regulation of photosynthesis, a decline in light and the CO2 concentration, a 
reduction in photochemistry, declining activity of photosynthetic enzymes, and lowered mesophyll 
conductance. For instance, Chibarabada (2018) assessed the stomatal conductance of three grain legume 
crops (groundnut, dry bean, and Bambara groundnut) grown under three water treatments. Their results 
indicated that, under varying water regimes, NUS crops adjusted to constrained soil water through 
stomatal regulation and reduced canopy size. Furthermore, Bambara groundnut showed a positive 
attribute under water-limited conditions. It had the lowest stomatal conductance under all watering 
regimes compared with the other crops. In the context of remote sensing, these plant conditions then 
impact the interaction between different sections of the EM spectrum and the various magnitudes of 
crop water stress (Bellvert et al., 2014). This example illustrates why stomatal conductance and foliar 
temperature were significantly considered in NUS production. 

 

2.4.1.3.  Sensors and Platforms That Were Used in Remote Sensing NUS 
The dominance of drone-based remote sensing studies on NUS could be explained by the fact that most 
of these crop species are orphaned, neglected, and underutilised. In this regard, they are generally 
planted in smaller areas than mainstream crops, such as maize. On the other hand, very few freely 
accessible satellite-borne sensors offer finer spatial-resolution data suitable for capturing the variety of 
crops in fragmented smallholder croplands. Subsequently, the freely available datasets from moderate-
spatial-resolution sensors, such as Landsat and Sentinel 2 MSI, cannot capture the dynamics of crops 
in smallholder farms when compared with UAVs. Drones offer rapid, ultra-fine-spatial resolution data, 
often to a sub-metre resolution, in a cost-effective manner (Gray et al., 2018). 

Furthermore, the user determines the spatial and spectral resolution of the drone remotely sensed data, 
offering endless opportunities in crop phenotyping from the stand level to field scale. Sentinel-2 MSI 
was the most widely used satellite-borne sensor in mapping the spatial distribution, health, and 
productivity parameters of NUS crops. Sentinel 2 MSI has a minimum spatial resolution of 10 m and a 
spectral resolution that covers the red edge section of the electromagnetic spectrum, which is sensitive 
to crop health (Clevers and Gitelson, 2013). These attributes make Sentinel 2 MSI the second most 
suitable sensor among UAV-borne sensors in mapping NUS, often grown in small, fragmented fields. 
In terms of the drone sensors, our findings showed that the RGB and multispectral cameras (>three 
bands) were the most frequently used in the retrieved literature when compared with hyperspectral 
sensors (Figure 2-11). This could be explained by the exorbitant expenses associated with hyperspectral 
sensors to multispectral cameras. RGB and multispectral cameras generally cover the visible, including 
the red edge and the NIR, sections of the EM spectrum. This is usually in not more than six broader 
spectral band resolutions (i.e., MicaSense Altum) (Ndlovu et al., 2021). 
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Meanwhile, most hyperspectral sensors, such as the Cubert S185 hyperspectral sensors, cover a 
wavelength range between 450 and 950 nm. These are composed of 125 channels at a resolution of 8 
nm at 532 nm, ranging from visible to near-infrared (450–950 nm) with a sampling interval of 4 nm 
(Zheng et al., 2020). Furthermore, the RGB type of sensors offers models with less accuracy when 
compared with multispectral or hyperspectral images covering a wider spectral range (Nyman, 2018). 
Hyperspectral sensors have been widely proven to offer robust narrow, relatively contiguous bands, 
although multicollinearity issues often impact them. Despite their exorbitant prices, these bands are 
more sensitive to subtle crop variations compared with broadband sensors (Marshall and Thenkabail, 
2015, Thenkabail et al., 2013, Thenkabail et al., 2002). 

The findings of this study also showed that very limited studies utilised cameras that captured data in 
the red edge section of the EM spectrum. The multispectral sensors that captured the red edge section 
in the retrieved studies were the MicaSense series, and Red-edge MX utilised in two and three studies, 
respectively. The red edge section has been vastly proven to be sensitive to minute variations in plant 
attributes associated with health and productivity, such as the LAI, chlorophyll content, stomatal 
conductance, AGB, and nitrogen content (Xue and Su, 2017). For instance, the increased chlorophyll 
content, LAI, and biomass generally result in increased absorption in the red region, pushing the red 
edge to longer wavelengths (Mafuratidze, 2010). Considering this phenomenon, the red edge has 
become one of the most sought-after sections of the EM spectrum in crop monitoring (Zhang et al., 
2019b). In this regard, there is a need for more studies that assess the robustness of hyperspectral and 
red-edge sensors in mapping NUS attributes. This will improve the assessment and monitoring of the 
health elements of NUS if their productivity is optimised based on the information derived from 
remotely sensed data.  

The findings of this study also showed that the multirotor drones were the most widely used platforms 
in the retrieved literature compared with fixed-wing drones (Figure 2-12). This could be explained by 
the fact that, despite the endurance associated with fixed-wing drones, they often require take-off and 
landing space. However, these requirements are not always available in experimental sites, where most 
retrieved studies have been conducted (Zaludin and Harituddin, 2019). Multirotor drones are 
characterised by vertical take-off and landing (VTOL), which makes them more suitable for utilisation 
in research areas with limited take-off space (Zaludin and Harituddin, 2019). These drones are relatively 
cheaper than fixed-wing drones (Sibanda et al., 2021b). This could also explain the high utilisation 
frequency of DJI drones in the retrieved literature (Figure 2-12). The advantage of DJI drones is that 
some are associated with an automated image acquisition procedure, making it easy to fly them, as they 
require less expertise in drone piloting. According to Sibanda et al. (2021b), the DJI platforms are 
generally compatible with many types of sensors from other platforms, which could also explain their 
wide utilisation in studies on the remote sensing of crops. 

 

2.4.1.4. Performance of Vegetation Indices, Classification, and Estimation Algorithms 
This review’s findings also showed that vegetation indices (VIs), such as NDVI, NDRE, SR, GNDVI, 
CIgreen, and SAVI frequently mapped the spatial distribution of NUS and their health parameters. For 
instance, Li et al. (2020) deployed a quadcopter UAV to investigate its utility in crop identification 
from different land cover types based on VIs. The maximum likelihood classifier, in combination with 
optimal VIs, exhibited high classification accuracies in that study. This approach was accurate because 
VIs could partially overcome the influence of shadows and other noise in the background (Mutanga et 
al., 2023). A growing body of literature demonstrates the optimal performance of VIs (Suhairi et al., 
2020, Lati et al., Liu et al., 2021). Specifically, VIs are robust because they can suppress background 
effects compared with bands (Thenkabail et al., 2013). Furthermore, VIs derive their strength from two 
or more sections of the EM spectrum. For instance, Vis, such as NDVI, NDRE, SR, GNDVI, CIgreen, 
and CIred-edge, derive their strength from sections of the EMS (i.e., red edge, NIR, and SWIR) that are 
more sensitive to crop elements, such as the chlorophyll content, LAI, ABG, nitrogen concentration, 
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and stomatal conductance (Brewer et al., 2022). Moreover, a large body of literature has proven that 
red-edge-based VIs are more robust than conventional vegetation indices, such as NDVI and SR  
(Sharifi, 2020, Ramírez et al., 2021). NDVI tends to be insensitive to increases in chlorophyll, LAI, and 
biomass (Cabrera-Bosquet et al., 2011, Mutanga et al., 2023). As aforementioned, the red edge is highly 
associated with plant physiological traits, such as the leaf angle distribution, chlorophyll concentration, 
and LAI, which directly influence vegetation spectral reflectance. Subsequently, red edge-derived 
vegetation harnesses this robust sensitivity to variations in LAI biomass and chlorophyll content, among 
others (Filella and Penuelas, 1994, Guyot et al., 1992, Mutanga and Skidmore, 2004, Mutanga et al., 
2012, Mutanga et al., 2023) 

As was suggested in many studies, the combinations of sensitive spectral variables with robust 
algorithms produce models with relatively optimal accuracies (Brewer et al., 2022). The findings of 
this study showed that the machine learning algorithms that were utilised in conjunction with drone-
acquired remotely sensed data were primarily linear regressions (LR) (39%), followed by RF (28%), 
SVM (22%), and ANN (17%). Machine learning regression algorithms present a potential approach for 
generating adaptive, robust, and fast crop estimates. A growing body of literature demonstrates machine 
learning algorithms’ efficiency and optimal performance in estimating crop biophysical parameters 
(Brewer, 2021, Wu et al., 2022, Sapkota et al., 2020). The high frequency of using regression models, 
such as RF, LR, and SVM, can be credited to the fact that they are simple to implement using various 
platforms. This ranges from Microsoft Excel to complex programming platforms, such as R Statistical 
Software and the Google Earth Engine platform. Despite their high frequency in the retrieved literature 
of this current study, LR models are parametric algorithms associated with data normality assumptions. 
However, these assumptions are often challenging to attain due to high spatial varieties in crop fields. 
Furthermore, these models are susceptible to overfitting and outliers (Gu et al., 2016). 

 Subsequently, more efforts have been channelled towards machine learning algorithms, such as SVM 
and RF. These algorithms are non-parametric, robust, and less prone to outliers, as they are not 
extremely affected by the data frequency distributions (Gu et al., 2016). Specifically, RF has (i) 
hyperparameters that are easy to adjust, (ii) is robust to outliers, overfitting, and data dimensionality, 
(iii) low bias and moderate to minimal variance due to the averaged trees, (vi) works well both 
continuous and categorical variables, (v) has a capability of discerning the importance of predictor 
variables, and (iv) it is relatively resistant to multicollinearity when tree depths are greater (Singh et al., 
2022, Mutanga et al., 2012, Ehlers et al., 2022). This makes this algorithm suitable for mapping 
cropping attributes. Other than machine learning algorithms, numerous generic classification 
algorithms were utilised in the retrieved literature, such as maximum likelihood and minimum distance 
to mean classification algorithms (Zhang et al., 2018, Shirzadifar et al., 2020, Sengupta et al., 2022). 
Despite their optimal performance in the literature, these algorithms are less robust when compared 
with machine learning algorithms. For instance, maximum likelihood is also a traditional parametric 
algorithm that is often difficult to parametrise, despite the fact it is generally accessible through freely 
available GIS platforms. 

 

2.4.2. Challenges in Mapping the Spatial Distribution and Health of NUS Using UAVs 
Even though there is progress regarding the utility of drones in crop mapping and health quantification 
of NUS, several challenges impede their propagation, especially in Africa. Many African countries are 
battling to address various drone-related issues, such as privacy, public safety, and preventing the 
possession of malicious drones (Nguyen and Nguyen, 2021). Moreover, restrictive UAV or drone 
regulations across many developing regions, including Africa, hinder their utilisation. To utilise UAVs, 
users must seek permission from landowners and municipalities, and only operate in certain areas, 
among several other issues(Kemp et al., 2021). For example, the civil aviation authorities (CAAs) in 
many countries aim to prevent UAVs from entering the flight paths of manned aircraft. Moreover, 
CAAs are attempting to construct an inclusive system that accommodates UAVs into their respective 
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air navigation and surveillance systems (Grote et al., 2022) . To the best of our knowledge, only a few 
African countries, including Ghana, Kenya, South Africa, Rwanda, Zimbabwe, and Tanzania, have 
established complex legal requirements governing the use of UAVs in varied airspace practices. Some 
drone restrictions in South Africa (SA), for example, state that UAVs weighing more than 7 kg (15.4 
pounds) are not permitted to operate (Kemp et al., 2021). In this regard, the regulation on the mass of 
UAVs at taking off tends to indirectly restrict the areal extent and the size of the camera to be mounted 
for research purposes (Sibanda et al., 2021b). Specifically, due to the weight restrictions, many of the 
sensor types that are frequently used tend to be lightweight, small, and general consumer grades with 
limited spectral resolution (Sibanda et al., 2021b). Also. this could explain why more studies are based 
on the VIS (RGB) spectra than other sections of the electromagnetic spectrum. 

Furthermore, SACAA asserts that drone operators should maintain a continuous visual line of sight 
(VLOS) with their drones during flights. Moreover, remote-piloted aircraft (RPAs) are not permitted to 
fly beyond visual-line-of-sight in designated places (BVLOS) (Kemp et al., 2021). Sibanda et al. 
(2021b) stated that supporting regulations and the operationalisation of BVLOS drone technology 
applications will facilitate coverage of greater areas on a single mission. Covering a greater area in a 
single mission improves the cost-effectiveness of acquiring VHR imagery. Other restrictions include 
requiring drone operators to obtain an RPAS operator certificate (ROC) from the CAA before flying 
(Stopforth, 2017). UAV operators should obtain insurance to cover their liability in the case of 
committing physical or bodily harm to another individual while operating their drone (Stopforth, 2017). 
Aside from these regions, numerous African countries are still attempting to establish the necessary 
regulations that endorse UAV operations. As a result, these regulations are becoming increasingly 
complicated, while attaining RPAS is associated with high expenses. More notably, the cost of 
obtaining a drone pilot license is excessive, with estimates ranging from USD 1500 to USD 2000 in 
2021 (Sibanda et al., 2021b). Furthermore, the value of drone platforms, including sensors, is 
prohibitively expensive for several minority groups or scholars, making these technologies unattainable 
for research purposes in the vast bulk of Sub-Saharan African countries (Sibanda et al., 2021b). 

 

2.4.3. Research Gaps and Opportunities 
The following gaps were noted in assessing the utility of drone-based remotely sensed data in mapping 
the spatial distribution and health of NUS crops: 

• The observation of NUS crop health has garnered minimal research attention and interest from 
the scientific community. Further, few studies have sought to evaluate the utility of drone 
technology for characterizing crop dynamics, especially in the Global South. The limited 
research within this region means there are opportunities to innovate. 

• Although NUS crops reportedly resist abiotic stresses, such as drought and heat stress, most of 
this information is anecdotal and inconsistent (Food and Organisation, 2021). This incomplete 
body of knowledge around drought and heat stress makes applying and validating RS   
techniques challenging. Hence, there is a requirement to generate more empirical information 
on the ecophysiology and morphology of NUS. 

• Only a few research studies have sought to evaluate the effectiveness of robust ML algorithms 
in conjunction with VIs in predicting the spatial distribution and health of NUS crops. Further 
to this, few studies have attempted to assess and leverage the potential synergies between 
drone and satellite-borne datasets, especially considering the release of the freely accessible 
Planet Scope Sentinel 2 MSI and Landsat series. 

• The application of UAV-based technology for estimating NUS’ spatial extent and health has 
not attracted significant attention from the geospatial research community in practice. The 
spatial extent of NUS crops can be predicted at a granular scale using UAV-based modelling 
and classification. Such models will be useful for predicting crop yield, crop monitoring, 
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predicting soil quality, and modelling evapotranspiration, precipitation, drought, and pest 
outbreaks. 

• Modelling and predicting vegetation key variables, such as LAI, stomatal conductance, and 
AGB, are critical to understanding and quantifying NUS’ morphological and phenological 
processes in the face of climate change. 

• Optimal VIs, such as NDVI NDRE, and VARI, can aid smallholder farmers in analysing 
trends in plant health. Moreover, NDRE is useful in determining vegetative vigour late in the 
growing season. 

It is, therefore, essential to research the prospects of these remote sensing technologies in monitoring 
these crops to promote their inclusion as mainstream crops within the agriculture sector. 

 

2.4.4. Way Forward: Closing the Gaps in the Utilisation of Drone Technology in Mapping Spatial 
Distribution and Health Status of NUS Crops 
Scholarly attention needs to be paid to promoting the application of UAVs for assessing NUS crops’ 
spatial extent and health at the field scale. There is a need to increase and extend research efforts towards 
rainfed smallholder croplands in remotely sensing NUS. Hence, this will optimise their productivity 
while strengthening the livelihood and food security of marginalised subsistence farmers. UAVs are 
becoming increasingly common in agricultural research as relevant sources of high-temporal-resolution 
data for agricultural health monitoring, amongst other applications. This has been previously limited to 
a farm scale. UAVs provide immense opportunities by incorporating climate-smart and precision 
agriculture into smallholder farming. They deliver high-resolution imagery at user-defined temporal 
resolutions, which benefit crop health monitoring and independent decision-making. For example, the 
integration of multi-rotor drones, such as the DJI series, in conjunction with multispectral sensors, such 
as the Mica Sense RedEdgeMX Parrot Sequoia and MicaSense Altum cameras, has been demonstrated 
to deliver accurate models of crop health characteristics at the field scale. Additionally, the increasing 
adoption of cutting-edge narrow-band hyperspectral and LiDAR remote sensing technologies could 
provide the opportunity to assess diverse crop health parameters at high optical resolutions. This 
assessment would also allow for creating various optimal VIs. Hence, these are directly associated with 
NUS crop morphological and physiological characteristics, allowing for the quantification of their 
health status. Moreover, to improve research based on the application of UAVs to estimate NUS crop 
health, it is essential to identify and implement robust and reliable non-parametric ML algorithms. 
Algorithms that enhance prediction accuracies with fewer assumptions, such as the RF, seem to hold 
endless prospects. Using multi-fusion techniques based on the combination of ideal VIs and ML 
algorithms will achieve the best optimal accuracies. As a result, additional research is required to 
evaluate the utility of UAVs with distinct spectral characteristics for NUS. It would be valuable to 
research whether UAV sensors that measure spectral reflectance along the electromagnetic spectrum’s 
thermal, SWIR, and NIR sections enhance the prediction of NUS water stress at the farm scale. 
Therefore, near-real-time-temporal-resolution spatially explicit information on NUS spatial extent and 
health can certainly assist smallholder farmers. This will assist in detecting variations in crop 
morphology to optimise yields. Near-real-time fine-resolution NUS information could be used to draw 
up early warning systems for smallholder farmers to prevent any damage or reduction to crop yields. 

 

2.5. Limitations of This Study 
Many possible sources of information on the spatial extent and health of NUS were disregarded 
throughout our search approach. We primarily searched for English-language sources and peer-
reviewed articles included in Scopus, Web of Science, and Google Scholar. In conducting the literature 
review, some studies were inaccessible in full length and others were not written in English. This could 
have had a potentially negative effect on quantifying all the studies that focus on remote sensing the 
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spatial distribution and health status of NUS crops. More so, the exclusion of these studies has an impact 
on the spatial distribution of NUS studies. Since NUS crops research is highly under-represented and 
anecdotal, it was challenging to obtain research that focused on the health and spatial extent of NUS 
crops. Despite missed contributions, we believe that our findings are based on a sample that is adequate 
and diverse enough to offer meaningful insight and implications in the application of UAVs in the 
remote sensing of NUS crops in smallholder croplands. Another, limitation of the study was the fact 
that we limited our scope of research materials for the systematic review to only the Scopus, Web of 
Science, and Google Scholar databases. As such, we recommend that future work extend the sources to 
a larger number of databases. 

 

2.6. Conclusions 
The objective of this study was to systematically assess the literature on the progress, challenges, gaps, 
and opportunities in using drone-derived remotely sensed data to map the spatial distribution and health 
status of NUS. This study placed a special focus on classifying and measuring stomatal conductance in 
smallholder croplands in the Global South. From the reviewed literature, UAVs emerged as cutting-
edge technology with a high potential to provide spatially explicit, timely, and reliable data for assessing 
the health of NUS. However, there is a noticeable scarcity of studies that have attempted to map the 
spatial distribution and stomatal conductance, along with other health attributes, of NUS in comparison 
with mainstream crops in smallholder croplands in the Global South. Several factors contribute to this 
scarcity, including the limited popularity of NUS, the prohibitive cost of drones and pilot licenses, a 
shortage of personnel with the necessary skills, and stringent regulations governing drone procurement 
and operation, among others. While acknowledging the substantial ownership costs associated with 
drones, our study advocates for the communal ownership of UAVs among smallholder farmers, which 
can significantly reduce operational expenses. This approach offers promising opportunities to integrate 
climate-smart agriculture into local farming systems through enhanced monitoring and mapping of crop 
health. It will equip farmers and, through extension, workers with valuable information for making 
informed decisions in the field. Additionally, it will enhance stress detection, improve irrigation 
scheduling, and boost crop productivity on a farm scale. Furthermore, improving the productivity of 
NUS and other crops presents an opportunity to revive local food culture and food systems, while 
simultaneously empowering smallholder farmers, who are often the stewards of this agrobiodiverse 
resource system. We also advocate for the use of UAVs to engage younger generations in agriculture, 
a critical priority in Sub-Saharan Africa. By delivering high-quality imagery and automating data 
collection, processing, and analysis at a low cost, the application of UAVs in local food systems can 
serve as a pathway to optimise food production among disadvantaged smallholder farmers. 
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CHAPTER 3                                                                                                                       
ASSESSING THE POTENTIAL OF UAV ACQUIRED MULTISPECTRAL 

IMAGERY COMBINED WITH MACHINE LEARNING TECHNIQUES IN 

MAPPING THE SPATIAL DISTRIBUTION OF TARO AND SWEET POTATO IN 

SMALLER HOLDER FARMS. 

 

Abstract: Taro and Sweet potato are Neglected and under-utilised crop species (NUS) that often suffer 
from a lack of research and market preference, which hinders their development and utilisation. 
However, recent advances in remote sensing and unmanned aerial vehicle (UAV) high-throughput 
phenotyping technologies offer promising opportunities to contribute significantly to the research and 
mapping of NUS in smallholder farms. This study sought to compare the capability of gradient boosting 
trees (GTB), support vector machines (SVM) and random forest (RF) in detecting and mapping the 
field boundaries and spatial distribution of sweet potato and taro crops within smallholder croplands 
using UAV acquired remotely sensed data. A comparative assessment of the contribution of bands, 
vegetation indices and both datasets combined was conducted. Results showed that ensemble classifiers, 
RF and GTB, outperformed SVM exhibiting overall accuracies above 80%. Specifically, SVM yielded 
overall accuracies ranging from (42% -74%). The application of combined data (Bands &VIs) produced 
the best accuracies. The optical spectral bands, specifically B1 (blue), B4 (Red edge), and Excess green 
index (EGI) played a pivotal role in influencing the classification performance. GTB and RF exhibited 
superior capabilities in mapping fragmented smallholder farms and delivering more precise area 
estimates when compared to SVM. Hence, the data derived from mapping the spatial distribution of 
neglected and underutilised crops holds paramount importance for biodiversity conservation, climate 
resilience, food security, and sustainable agriculture. The results of this study could offer local 
communities and smallholder farmers invaluable insights on how to better manage resources, make 
decisions, and optimise productivity, sustainability, food and nutrition security. 

Keywords:  Random Forest, Gradient tree boost, unmanned aerial vehicle, smallholder fields. 

3.1.  Introduction  
Food security and sustainability are looming major global concerns due to population growth, climate 
change, and decreasing arable land (Vågsholm et al., 2020). The global population is predicted to rise 
to 9 billion by 2050, including 1.5 billion in SSA. In the year 2022, the African continent witnessed a 
notable surge in the number of malnourished individuals, which amounted to nearly 282 million, 
denoting a substantial escalation of 57 million people since the onset of the COVID-19 pandemic (FAO 
et al., 2023). Approximately 868 million people experienced moderate or severe food insecurity, 
highlighting the significant scale of the issue. Moreover, 78 percent of the African population were 
unable to afford a nutritionally adequate diet throughout the year 2021(FAO et al., 2023). As of 2023, 
progress toward achieving universal food and nutrition targets has been slow. Therefore, this amplifies 
the pressures on agricultural lands to meet the rising food demands that are already affected by the 
impact of climate change (Kumar et al., 2022). Smallholder farmers who supply most local food 
production are especially vulnerable as 80% of the crops they grow are rainfed (Fan and Rue, 2020). 
Therefore, it is crucial to identify and grow alternative drought-tolerant crops in smaller-holder farms 
to address nutrition issues (Mabhaudhi et al., 2017). Neglected and underutilised crops (NUS) like sweet 
potato and taro are stress-tolerant, nutrient-rich crops that can grow under adverse environmental 
conditions and are renowned to have a natural resistance and tolerance to pest, disease and drought 
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(Mabhaudhi et al., 2017). These NUS are also suitable for sustainable farming through adaptability, 
lower inputs, and diversification (El Bilali et al., 2023). 

The incorporation of NUS crops into both commercial and subsistence food systems has been difficult 
partly due to a lack of  knowledge on their spatial distribution and phenotypical attributes (Mabhaudhi 
et al., 2017). Furthermore, there are no clear criterion or spatially explicit techniques for assessing their 
spatial distribution and health within smallholder farms in developing countries. Therefore, it is 
imperative to develop accurate and time-effective quantitative spatial techniques for detecting and 
mapping their distribution. This information could support better resource management, decision 
making and ultimately increase productivity, sustainability, food and nutrition security through 
optimised production. 

Generally, traditional field surveys have commonly been used to measure NUS crop spatial extent, 
suitability, growth, and morphology. However, such methods are time-consuming and expensive, 
making them impractical for continuous and effective crop monitoring (Ndlovu et al., 2021). 
Throughout several decades, satellite-based earth observation technologies have demonstrated their 
effectiveness in discriminating and mapping the spatial distribution of crops to optimise production. 
According to Wang et al. (2022), Sentinel-2 multispectral instrument (MSI) data with machine learning, 
for example, can differentiate alfalfa (Medicago sativa L.) from other crop types with overall accuracies 
over 90%. Moreover, Sharifi (2020) effectively combined Sentinel-2 MSI bands and vegetation indices 
to achieve accurate crop nutrition mapping. Nonetheless, even with advancements in satellite remote 
sensing applications, the effectiveness of satellite data in identifying and delineating the precise scope 
of NUS at farm scale is constrained by the relatively coarse spatial and temporal resolutions of openly 
accessible satellite remotely sensed datasets (Ndlovu et al., 2021). Satellite borne datasets such as 
Sentinel-2 MSI and Landsat typically have coarser spatial resolutions which often masks out the fine-
scale variability within farms or individual plants. In recent years, the utilisation of unmanned aerial 
vehicles (UAVs) also known as drones have gain significant traction in the field of precision agriculture 
to remotely sense crops (Sun et al., 2021). UAVs equipped with advanced high-resolution sensors 
provide precise and timely data, which is well-suited for monitoring crops at the plot level (Ndlovu et 
al., 2021). They allow flexible altitude control, making them well-suited to assess the spatial distribution 
of crops at a farm scale. By flying at customised altitudes, UAVs can capture high-definition imagery 
enabling detailed analysis of minute crop formations at farm scale. Several studies have employed 
UAVs for proximal sensing in environmental applications (Everitt et al., 2007, Sankaran et al., 2018, 
Yang et al., 2012). For instance, Everitt et al. (2007) mapped the spatial distribution of wild taro using 
a Kodak color-infrared camera in combination with supervised image analysis techniques. This 
approach yieled kappa accuracies ranging from 83.3% to 100%. Although significant progress has been 
achieved in the utility of high-throughput phenotyping technologies for assessing crop distribution, very 
few studies have attempted to assess their accuracies in mapping and monitoring the spatial distribution 
of NUS crops, especially in typical smallholder croplands in the global south. It is suggested that the 
effective utilisation of high-resolution UAV data, in conjunction with robust classification algorithms, 
has the capability to accurately characterise the spatial distribution of NUS crops within smallholder 
fields. 

A variety of classification techniques have been proposed for mapping crop spatial distributions. These 
techniques leverage various data sources like remote sensing imagery and ancillary data to differentiate 
crop types at different spatial scales. Machine learning and deep learning algorithms such as support 
vector machines (SVM), artificial neural networks (ANN), Random forests (RF) and Naïve Bayes (NB) 
are widely used due to their ability to  accurately detect and quantify the spatial extent of crops (Sarker, 
2021). These algorithms can learn complex patterns and relationships from training data and classify 
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pixels or objects into different crop classes. For instance, a study by Mazarire et al. (2020) explored the 
efficacy of SVM and RF in classifying crops within heterogenous landscapes in South Africa. SVM 
demonstrated the highest performance, achieving an overall accuracy of 95% and a kappa accuracy of 
94%. Furthermore, Ayele and Tamiru (2020) designed a chickpea type classification model using ANN, 
SVM and decision tree (DT) algorithms. The experimental results demonstrated that the best algorithm 
was DT achieving 97.5% accuracy.  

A large body of research has demonstrated that VIs like Normalized difference vegetation index 
(NDVI), Soil adjusted vegetation index (SAVI) and Normalized difference red-edge index (NDRE) 
often improve classification accuracies. For instance, Asgari and Hasanlou (2023) created a Vis 
mapping approach to accurately identify specific crop types, such as rapeseed, utilising phenological 
and spectral metrics extracted from Sentinel-2 MSI images. Among the various Vis employed for crop 
mapping, the Atmospherically Resistant Vegetation Index (ARVI) yielded superior accuracies. The RF, 
KNN, and GB models utilising the ARVI index achieved overall accuracies of 95%, 90%, and 88%, 
respectively.VIs are known to overcome the influence of shadows and other background noise 
(Mutanga et al., 2023). Although this has been demonstrated extensively based on satellite borne data, 
there is a need to expand research efforts toward cutting-edge sensors with ultra-high resolution 
specifically, UAV imagery to achieve the precise mapping of NUS crops such as taro and sweet potato 
in smaller holder farms.  

Therefore, this study sought to comparatively assess the potential of advanced machine learning 
methods and UAV derived multispectral data in mapping the spatial distribution of taro and sweet potato 
amongst other crops in smaller holder farms of South Africa. To address this objective, the performance 
of Gradients Tree Boosting, Random Forest and Support Vector Machine were compared in mapping 
the spatial distribution of Sweet -potato and Taro in a smallholder cropland. Special attention was given 
to the classification model’s ability to capture field boundaries. Also, the relative contributions of bands, 
vegetation indices and both datasets combined were assessed.  

3.2. Methods and materials 
 

3.2.1. Study Area 
The research was conducted in Swayimane (29°31024” S and 30°41037” E), a small rural settlement 
located in UMshwathi Municipality, KwaZulu Natal Province. Swayimane experiences a sub-tropical 
climate whereby, summers are hot and humid and winters are relatively drier (Ndlovu et al., 2021). 
Mean temperatures ranges from 11.8 to 24 degrees Celsius (Ndlovu et al., 2021). Furthermore, rainfall 
is more common during the summer months. The region receives an average annual rainfall of around 
600 to 1100 millimetres (Ndlovu et al., 2021). Swayimane is recognised for its fertile clay loam soils 
and holds a prestigious position within the top 2% of high productive lands in South Africa (Ndlovu et 
al., 2021). As a result, the favourable environmental conditions in Swayimane support the cultivation 
of a diverse range of grain and legume crops. The prevalent crops cultivated in the study area includes 
sugarcane, taro, sweet potato, spinach, maize. The region is recognised for its smallholder maize farms 
which are maintained and harvested by the local community. The Swayimane community partakes in 
traditional farming practices which include manual labour and the use of livestock manure as fertiliser.  
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Figure 3-1: Location of the Swayimane study area, study site and smallholder crop field. 

 

Figure 3-2, presents a flowchart outlining the key stages of this study, which include image data 
collection, image pre-processing, extraction of spectral traits, and subsequent statistical analysis. 

 

Figure 3-2: Flowchart of main processing steps in this study.  
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3.2.2. Data collection 
Prior to capturing remotely sensed data, a field survey was conducted within the study area. A handheld 
Trimble Garmin GPS with an accuracy of ±1m was utilised to measure the location of different landuse 
land cover classes. Specifically, 8 classes were considered in this study. These were taro, sweet potato, 
natural vegetation, sugarcane, bare-land, buildup, maize growth stage one and maize growth stage two. 
A total of 310 points were collected in Google Earth Pro. The collected data was converted into a point 
map which was imported into Google Earth Engine for model training and validation.  
 
A DJI Matrice (M300) quadcopter fitted with a Micasense Altum imaging sensor was utilised to capture 
images spanning the smallholder fields in this study. The DJI Matrice is an advanced high precision 
quadcopter that was fitted with a high accuracy Global Navigation Satellite System receiver 
(GNSS)(KEGA, 2021). The DJI has a maximum flight time of 55 minutes and maximum control range 
up to 15 kilometers, providing a wide operational range. The drone has a 1P45 rating which means it is 
protected against solid particles such as dust and water (KEGA, 2021). The Micasense Altum camera 
captures data in five spectral bands: red, green, blue, Red-edge (RE) and near-infrared (NIR). 
Additionally, it also includes a radiometric thermal sensor that operates within the 8–14 nm wavelength 
range. The Altum camera incorporates several features to enhance its functionality. Firstly, it is 
equipped with a solar irradiance sensor called DLS 2, which allows for accurate radiometric calibration 
by measuring the incident light conditions during image capture (KEGA, 2021). Additionally, the 
camera has a built-in GPS system, which enables georeferencing of the captured images (KEGA, 2021). 
The camera's Ground Sample Distance (GSD) is 5.2 cm per pixel when operated at a height of 120 
meters above ground level (AGL) (KEGA, 2021). The multispectral bands of the camera have a sensor 
resolution of 3.2 cm per pixel, while the thermal band has a spatial resolution of 81 cm (KEGA, 2021). 
 
To formulate a UAV flight plan, a shapefile defining the study area was created using the Google Earth 
Pro application. This shapefile was then transferred to the DJI matrice handheld console device. The 
formulated flight plan facilitated an autonomous drone mission, allowing for seamless aerial coverage 
of the study field and its surrounding regions. This automated flight mission was conducted at a flight 
height of 120 meters above ground level (AGL), with an image overlap of 80%. Images of the 
radiometric calibration target (CRP) and a white balance card were captured before and after the flights. 
The captured imagery was then pre-processed using Pix4D Fields photogrammetry software. 
 

3.2.3. Data processing  
In this stage, 3576 images were stitched together and adjusted for radiometric accuracy using 
Pix4Dfields 1.8.0 software, San Francisco, CA, USA. The radiometric correction process involved 
utilising CRP images which are captured before and after flights to account for atmospheric conditions 
and variations in indicent light conditions during  image acquisition. This calibration process ensured 
accurate reflectance values in the image. After processing was completed an orthomosaic (high 
resolution aerial view) and digital eleveation model (DEM) GeoTIFF image was produced. 
Georeferencing of the orthomosaic was performed in ArcGIS 10.5 utilising ground reference points 
obtained from Google Earth Pro. This georeferencing stage yielded a root mean square error (RMSE) 
that is less than half the size of a pixel. The orthomosaic was aligned with the Universal Transverse 
Mercator (UTM zone 36S) projection. Thereafter, the drone orthomosaic of the smallholder crop field 
was imported into Google Earth Engine (GEE), a cloud-based platform for geospatial data analysis. 
Within GEE, the orthomosaic underwent classification using Gradient Tree Boost (GTB), Random 
Forest (RF), and Support Vector Machine (SVM) classifiers. These classifiers employ machine learning 
algorithms to classify pixels based on their spectral properties, enabling the identification and mapping 
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of various crops including sweet potato and taro. Three distinct datasets were used for this purpose 
within the study area. 

A total of eleven Vis, which have been previously documented in literature, were chosen and evaluated 
to effectively differentiate NUS species. The VIs was derived by utilising the reflectance data obtained 
from the Altum multispectral and thermal bands. These indices typically relied on the red, red-edge, 
and near-infrared (NIR) segments of the electromagnetic (EM) spectrum. Table 3-1 presents a 
compilation of VIs that were chosen for this study, taking into consideration their direct and indirect 
correlation with image classification and crop health attributes, such as the NDVI, the NDRE, OSAVI 
and NDRGI.  

 

Table 3-1: UAV-derived vegetation indices.  

 

3.2.4. Image Classification 
In the GEE platform three classification methods, that is Gradient tree boost, Support vector machine 
and Random Forest classifiers were implemented. These algorithms are renowned for their accuracy as 
they can effectively select spectral features for discriminating different cover classes (Judson et al., 
2008). The training dataset utilised for image classification was derived by means of a meticulous visual 
examination of the orthomosaic, which had been acquired on February 12, 2021.Eight major land cover 

Vegetation Index Abbrevi
ation 

Equation Reference 

Normalized difference 
vegetation index 

NDVI (NIR−RED)/(NIR+RED) Xue and Su 
(2017) 

Green normalized difference 
vegetation index 

GNDVI NIR−GREENNIR+GREEN Gitelson et al. 
(1996) 

Excess green index  EGI 2.5* (GREEN-RED)/(GREEN+RED+1) (Qiu et al., 
2020) 

Normalized difference red-edge 
index 

NDRE NIR−RED EDGENIR+RED EDGE (Fitzgerald et 
al., 2006) 

Excess green index EXG 2 * GREEN - RED – BLUE Woebbecke et 
al. (1995) 

Chlorophyll carotenoid 
index  

CCI (R - G) / (R + G) (Jäger et al., 
2022) 

Optimized soil adjusted 
vegetation index 

OSAVI NIR−REDNIR+RED+0.16 Xue and Su 
(2017) 

Enhanced vegetation index EVI (2.5 * (NIR+ RED) / (NIR + 6 * RED - 
7.5* BLUE +1) 

(Xing et al., 
2019) 

Normalised green, red 
difference index 

NGRDI (GREEN - RED) / (GREEN + RED) Meyer and Neto 
(2008) 

Simple ratio SRI NIR / RED Jordan (1969) 

Modified triangular vegetation 
index 1 

MTVI1 1.2 ((1.2 ∗ (NIR − GREEN)) − (2.5 ∗ 
(RED − GREEN)) 

(Xing et al., 
2019) 
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classes were determined, and training data was acquired by identifying pixels that corresponded to these 
classes as outlined in Table 3-2. The sampled data was randomly split into 70% training (n = 217) and 
30% validation (n = 93), for all classifiers. The training dataset was utilised for model development 
while the validation data was utilised to assess classification accuracy. An area computation was 
performed in GEE to estimate the number of pixels within each class, thereby determining the total 
areal extent for each landcover class. 

 

Table 3-2: Training and testing data used for Pixel based image classification. 

Class name Code Training (n) Testing (n) 

Taro T 28 12 

Sweet potato SP 28 12 

Natural Vegetation NV 21 9 

Sugarcane SU 28 12 

Bare land BL 21 9 

Built-up BU 21 9 

Maize growth stage 1 M1 35 15 

Maize growth stage 2 M2 35 15 

 
Random Forest (RF): RF is an ensemble machine learning method that incorporates bootstrap 
aggregation and binary recursive partitioning to grow multiple decision trees on randomly selected 
subsets of features and data. Groups of decision trees vote on the best class for each sample (Breiman, 
2001). The algorithm was optimised using its hyper parameters that is the number of features randomly 
selected at each node (mtry) and the number of total trees (ntree). Specifically, the ntree was set to 300, 
the maximum depth of each tree (max Nodes), minimum samples required to split nodes (minSamples), 
and the randomization seed was set to default in GEE. The bag fraction, set at 0.5, facilitates the 
introduction of randomness during the construction of the tree-building process. According to (Mutanga 
et al., 2023), Random Forest (RF) has several advantageous characteristics:  
 

a. RF offers easily adjustable hyperparameters. 
b. The training process for RF is efficient, resulting in quick model training. 
c.  RF exhibits robustness against outliers, overfitting, and high-dimensional data, making 

it suitable for various datasets. 
d. Due to the averaging of multiple trees, RF demonstrates low bias and moderate to 

minimal variance. 
e. RF is effective in handling both continuous and categorical variables. 
f. RF possesses the ability to assess the importance of predictor variables. 
g. RF shows a relative resistance to multicollinearity between predictor variables 

 
These factors make it well-suited for mapping crop distributions in this study area. In this study all 
spectral bands and VIs derived from the drone composite were used as predictor variables. 
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Support Vector Machine (SVM): Support vector machines (SVMs) were initially developed for binary 
classification but have also proven their efficacy in regression problems  (Zhao et al., 2020). For 
multiclass classification as in this study, SVMs uses a one-vs-all or one-vs-one approach with voting to 
determine the correct class. A radial basis function (RBF) kernel was used as it performed better than 
linear or polynomial kernels on this data. The two hyperparameters that were used to optimise SVM-
RBF were cost C and gamma γ. Higher C increases penalty for misclassifications, while higher γ 
decreases variance. SVM is relatively insensitive to noisy inputs, reducing estimation errors and 
improving robustness (Singla et al., 2020). It performs well on high-dimensional datasets and is robust 
to outliers, making it advantageous for many problems (Hsu et al., 2003).  Three parameters were tuned 
for the SVR model, namely the penalty parameter (C), precision parameter (ε), and kernel parameter 
(γ). Through this process, the SVR model achieved optimal performance with a C value of 10, ε value 
of 0.5, and the default γ value of 1 was maintained. 
 
Gradient tree boost (GTB): Gradient Boosting Machines (GBMs) are a family of powerful ensemble 
machine learning techniques that fall under the category of sequential models. Each model in the 
sequence learns from the mistakes of previous models to incrementally improve overall performance 
(Natekin and Knoll, 2013). Unlike random forests which averages predictions, GBMs use a gradient 
descent approach to minimise error at each stage. GBMs are robust due to their flexibility in customising 
loss functions during model optimisation. This has led to their widespread success in real-world 
applications compared to single models. They rely on three main components - a loss function, weak 
learner models like decision trees, and an additive model that combines predictions from each weak 
learner (Natekin and Knoll, 2013). Importantly, tree based GBM algorithms were designed specifically 
to handle large datasets very efficiently. They can run over 10 times faster than other popular algorithms 
on large data, making them highly scalable for different scenarios. The GTB classifier has several 
adjustable parameters that require configuration, including the number of trees, shrinkage, sampling 
rate, maximum nodes, and seed values.  The number of trees (nTree) was adjusted to 300. The maximum 
nodes, seeds, shrinkage and sampling parameters were set to default in GEE.  

3.2.5. Accuracy assessment  
An accuracy assessment was carried out on the multispectral UAV image, to assess the sensor's 
capability in effectively discriminate NUS crops at the plot level. Confusion matrices were generated 
to compute the overall accuracy (OA), kappa coefficient, F1 score, user and producer’s accuracies for 
RF, GTB and SVM classifiers. A confusion matrix is an overly process that compares the classified 
classes with the reference points and provides a count of the correct and incorrect classifications for 
each class. It helps quantify the classification accuracy and identify patterns of misclassification. The 
overall accuracy (OA) metric was utilised to assess the efficiency of the algorithms employed in this 
study (Gxokwe, 2022). The producer's accuracy (PA) was employed to determine the likelihood of 
correctly classifying the reference data on the map. The user's accuracy (UA) was employed to assess 
probability that a classified pixel accurately correlates to the corresponding category on ground 
(Gxokwe, 2022).The kappa statistic, which ranges from 0 to 1, is used to measure the agreement 
between the classified map and the reference data. Values greater than 0.80 indicate a high level of 
agreement. In contrast, values below 0.40 indicate a weak level of agreement, whereas scores within 
the range of 0.40 to 0.80 indicate a moderate level of agreement (Dondofema et al., 2023). The F1 score 
harmonises the weighted averages of precision and recall metrics, making it a commonly used score for 
validating the accuracy of the classification process (Pham et al., 2023). As the values of the metrics 
increase, the model's confidence in accurately assigning the predefined classes in the study also 
increases. Furthermore, line plots and Jeffries-Matusita (JM) distances were employed in GEE to assess 
the spectral separability between landcover classes. This analysis involved examining the distances 
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between class means and the distribution of values derived from those means (Gxokwe, 2022). JM 
criterion is a parametric measure that ranges from 0 to 2  (Gxokwe, 2022). A value approaching 2 
signifies a higher degree of spectral distinctiveness between two classes. 

 

3.3. Results  
 

3.3.1. Spectral reflectance curve 
The spectral reflectance curve analysis revealed distinct separability among the classes, as depicted in 
Figure 3-3. The spectral responses of most of the classes exhibited notable distinctions in the NIR and 
RE regions of the electromagnetic spectrum. The Blue and Red regions of the EM spectrum exhibited 
limited discriminatory potential in distinguishing between different landcover classes. Sweet potato and 
Taro exhibited pronounced spectral distinctiveness compared to other classes, particularly in the RE 
and NIR segments of the EM spectrum (717 to 842 nm). 

 

Figure 3-3: Spectral reflectance curve of all landcover classes 

 

3.3.2. Comparative classification of cropland using SVM, RF, GTB based on bands only. 
Land cover classification results using spectral bands as an independent dataset are shown in Table 3-
3. The findings reveal that the RF and GTB models exhibited superior accuracies when utilising the raw 
spectral band dataset. These models achieved exceptional results in terms of OA, kappa, and F1 scores, 
surpassing 80 percent using optimal bands such as B1, B4 and B5. Consequently, these results 
demonstrate a noteworthy level of concurrence between the predicted and actual land cover categories, 
as visually depicted in Table 3-3. Moreover, the RF and GTB models also attained superior producer 
accuracies for most land cover classes (>75%) (supplementary Figure S2-3). Sweet potato and taro 
exhibited notably higher user accuracies, reaching >56 percent, with the RF and GTB models. These 
outcomes are further supported by Figure 3-3, as the spectral reflectance of sweet potato and taro are 
more discernible particularly within the Red-edge and NIR segments of the electromagnetic spectrum. 
In contrast, the SVM classifier yielded lower accuracies, with an OA of 0.42, kappa statistic of 0.32, 
and an F1 score of 0.31. The SVM user and producer accuracies were comparatively lower, with values 
ranging from 25- 60 percent. 
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Table 3-3: Overall accuracies, kappa statistics and F1 scores for RF, GTB and SVM 

Analysis Stage Variables Accuracy unit  SVM RF GTB 

1 Bands only OA 0.42 0.86 0.83 

  Kappa 0.32 0.84 0.80 

  F1 0.31 0.84 0.80 

2 VI’s only OA 0.74 0.84 0.83 

  Kappa 0.70 0.81 0.80 

  F1 0.71 0.82 0.81 

3 Bands & VI’S  OA 0.71 0.86 0.88 

  Kappa 0.67 0.84 0.85 

  F1 0.66 0.80 0.84 

 

The separabilities between all classes in the single image were investigated using the JM distances in 
Table 3-4. Most of the classes exhibited notable disparities among their respective outputs. The findings 
indicated that observable bands such as B1 demonstrated lower JM distances, suggesting a high degree 
of overlap between the classes. This was particularly notable for taro, sweet potato, and maize growth 
stage two, which were often confused with bareland and natural vegetation. In contrast, B4 and B5 
exhibited higher separability (with JM distances ranging from 1.7 to 1.8) for classes such as taro, sweet 
potato, sugarcane, and maize growth stage one. This suggests that classification algorithms are likely 
to effectively distinguish these pairs of classes (supplementary tables S2-1 & S2-2). The results 
additionally showed that combining all auxiliary variables slightly decreased separability between 
sweet potato, bare land and the maize growth stages by 1-8% but increased separability between taro 
and natural vegetation. 

Table 3-4: Band 1 JM distances  

B1 Taro SP NV SU BL BU M1 M2 

Taro 0 0.469 0.532 0.457 0.615 1.016 0.814 0.3542 

SP 0.47 0 0.51 0.44 0.54 1.05 0.8 0.34 

NV 0.53 0.51 0 0.71 0.45 0.85 0.64 0.58 

SU 0.46 0.44 0.713 0.00 0.72 1.11 0.92 0.24 

BL 0.62 0.54 0.45 0.72 0 0.95 0.58 0.61 

BU 1.02 1.05 0.85 1.11 0.95 0 0.87 1.06 

M1 0.81 0.8 0.64 0.91 0.58 0.87 0 0.84 

M2 0.35 0.34 0.58 0.24 0.61 1.06 0.84 0 
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3.3.3. Comparative classification of croplands using SVM, RF, and GTB based vegetation 
indices only. 

The utilisation of VIs in combination with RF, SVM, and GTB models resulted in superior outcomes, 
as indicated in Table 3-3. This superiority is evident from the variable importance scores, where EGI, 
EXG and GNDVI were identified as the most optimal performing variables (supplementary Figure S2-
2). Notably, the SVM model exhibited a significant increase in the kappa statistic, rising from 0.32 to 
0.74, upon incorporating VIs (Table 3-3). Regarding RF’s performance, the inclusion of Vis led to a 
slight decrease of approximately 2% in the kappa statistic and accuracies. The GTB classifier 
demonstrated consistent high accuracy, equivalent to the band's dataset, with an overall accuracy (OA) 
of 0.83 and a kappa statistic of 0.80. There was a noticeable improvement in user accuracies for RF and 
GTB algorithms, with values ranging from 66% to 94% for the majority of classes. Similarly, SVM 
accuracies demonstrated an average increase of 10% to 26% across most classes. The combination of 
multiple bands such as Blue, Red-edge, and Near-Infrared contributed to the improved performance of 
vegetation indices. However, the highest overall accuracy was achieved when combining both spectral 
bands and VIs, indicating that their joint utilisation maximised the separability for this algorithm. 
 

3.3.4. Comparative performance of spectral variables 
The results indicate that the raw spectral bands underperformed compared to vegetation indices and the 
combined dataset across all models, as demonstrated by mean OA of 70 percent and a mean kappa 
statistic of 0.65 (Figure 3-4). This observation is further supported by the variable importance scores, 
whereby B2 and B4 ranked relatively lower (see supplementary Figure S2-1). Specifically, VIs 
outperformed the bands by 10 percent but yielded similar accuracies to the combined dataset (Table 3-
3). The performance of optimal bands such as EGI, NDRE, and GNDVI significantly contributed to the 
improved performance of machine learning algorithms. Furthermore, the combined dataset exhibited 
the highest performance across all models, with a mean OA of 0.82 and a kappa statistic of 0.79. This 
is evident by the close alignment between the OA and the kappa statistic, indicating a strong agreement 
between the two measures.  

 

Figure 3-4: Comparative classification performance of bands, vegetation indices and combined data 

 

3.3.5. Comparative classification performance of SVM, RF and GTB 
The RF and GTB models achieved the highest overall performance based on classification mean OA 
and kappa statistics (Figure 3-5). RF and GTB produced accuracies >80% and mean kappa statistic 
values ranging from 0.80 to 0.85, demonstrating very good agreement between predicted and actual 
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land cover classes (Table 3-3). Furthermore, mean F1 scores ranged between 0.82 and 0.81 for RF and 
GTB, respectively. Contrastingly, the SVM classifier performed worse in comparison with a mean OA 
of 0.62 and kappa statistic of 0.56. Of all models tested, GTB showed the greatest increase (4% 
difference) in performance across input data, with accuracies sharply rising from 83% for the initial 
dataset to 88% with the combined dataset (Table 3-3).  In comparison, RF displayed a smaller 
magnitude change in accuracy across datasets, decreasing slightly from bands-only to vegetation 
indices-only before increasing 2% with the combined dataset. The findings yielded by the GTB 
classifier illustrate that it can generate consistent results which are slightly better than those of RF. 
 

 

Figure 3-5: Comparative classification performance of Support vector machines (SVM), Random 
Forest (RF) and Gradient tree boosting algorithms (GTB) 

 
3.3.6. Final classification of the cropland using combined data 

The combination of spectral bands and VIs yielded the highest user's and producer's accuracies, ranging 
from 71.4% to 100%, for all classes, effectively representing the relationship between spectral data and 
land cover (Figure 3-6). The final RF classification, based on the combined data, achieved an OA of 
0.86 and a kappa statistic of 0.84 (Table 3-3), utilising B1, NDRE, and EGI as the most optimal 
classification variables (Figure 3-7). Similarly, the GTB model showcased superior performance, 
achieving an OA of 0.88 and kappa statistic of 0.85 (Table 3-3) when utilising the B1, B3, and B5 
variables. At the individual class level, RF and GTB most accurately mapped maize growth stage one 
and sugarcane (95-100% accuracy across datasets). Sweet potato, natural vegetation and built-up areas 
were most frequently misclassified (12.5-50% accuracy), suggesting weaker spectral representations of 
these classes. Specifically, maize had the highest classification accuracy when the RF and GTB models 
were used along with datasets two and three. SVM exhibited lower accuracies, with an OA of 0.71 and 
a kappa of 0.67 (Table 3-3). The SVM model experienced more misclassifications overall, struggling 
to effectively model the complex spectral-class relationships of the real-world environment (Figure 3-
6C). Overall, the final classification models suggested that GTB could slightly outperform the RF 
ensemble. 
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Figure 3-6 : user and producer accuracies of (a) RF, (b) GTB & (c) SVM in conjunction with dataset 3 

 

 

 

Figure 3-7: Variable importance scores of (a) RF and (b) GTB with dataset 3. 
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3.3.7. Spatial distribution of land cover types and their areal extents 
Figures 3-8, present the percentage of the total pixel area occupied by each class, as determined by the 
selected classification approaches. Visual analysis of the classification maps reveals differences in how 
accurately the algorithms represented the spatial distribution of crops (Figure 3-9). The maps generated 
by the RF and GTB models exhibited distinct and accurate boundaries between sweet potato, maize, 
and taro, effectively capturing the shape of the fields.  However, on the map classified using SVM, the 
depiction of crop boundaries was distorted. Field shapes were irregular and inaccurately represented. 
Pixel blocks were misclassified rather than capturing the fine-scale variability as RF and GTB achieved.  
Some crops like sweet potato appeared fragmented into separate small patches rather than compact field 
units. The transition zones between different crops appeared less clear, indicating a lack of precise 
delineation of adjacent fields by the SVM model. On the other hand, the RF and GTB models 
demonstrated a sharper and more distinct demarcation of fields located next to one another.  

 

 

 

Figure 3-8: pixel area per class of (a) RF, (b) GTB, (c) SVM with dataset 3. 
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Figure 3-9:  NUS crop distribution maps of (a) RF (b) GTB (c) SVM. 

 

 

3.4. Discussion 
 

3.4.1. Classification performance of raw spectral bands and vegetation indices in 
mapping the NUS in the smallholder cropland.  

The results of this study indicated that both individual bands and vegetation indices can effectively map 
the spatial distributions of NUS crop species (Table 3-3). However, there were some notable differences 
in their predictive performance. Upon examining the variable importance graphs, it became apparent 
that certain bands, specifically band 1 (Blue), band 4 (Red-edge), and band 5 (NIR), consistently yielded 
higher classification accuracies compared to other individual raw spectral bands depicted (Figure 3-7). 
This is supported by the spectral separability between classes as measured by JM distances. The bands 
produced higher JM distances ranging from 1.5 to 1.7 for some classes like taro, sweet-potato and maize 
growth stage two, indicating better spectral separability (Table 3-4). However, the contribution of 
vegetation indices to classification algorithms was more effective than bands. This also suggests the 
VIs were effective in differentiating between crop types that exhibited similar spectral characteristics 
within homogeneous fields. The vegetation indices that exhibit the highest importance scores in both 
Random Forest (RF) and Gradient Boosting (GTB) models were RGB-based indices EGI, EXG, and 
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NDGRI. Among the vegetation indices, EGI consistently demonstrated the highest predictive capacity 
across all crop types (Figure 3-7). 

It has been extensively demonstrated that VIs exhibit robustness in comparison to bands, as expected. 
Moreover, the utilisation of VIs led to a significant increase in both PA and UA results, surpassing the 
outcomes obtained in previous stages of analysis (analysis I). This improvement indicates an enhanced 
capacity of the dataset variables to distinguish specific classes from others, as depicted in Figure 3-6. 
The results of this study underscore the significance of integrating VIs in the process of mapping NUS 
crops within smallholder crop lands. The amalgamation of spectral bands and VIs contributed to an 
increase in OA, which can be attributed to the VIs' ability to mitigate the influence of soil background, 
sensor zenith angle, sun angle, and other atmospheric impurities (Zeng et al., 2022). Moreover, the 
incorporation of multiple spectral bands from different sections of the electromagnetic spectrum in 
computing vegetation indices enhances their resilience for image classification when compared to the 
influence of only one band from a single section of the EM spectrum. For example a study by 
Niederheiser et al. (2021) demonstrated that integrating different spectral and textural indices improved 
the accuracy of RF models in mapping vegetation cover. Asgari and Hasanlou (2023) also reported 
similar outcomes in their study, where they utilised Sentinel-2 MSI extracted vegetation indices to 
delineate various crop types, including rapeseed. The overall accuracy of RF, GTB, and k-nearest 
neighbours (KNN) models increased to 95%, 88%, and 90%, respectively, when employing the 
Atmospherically Resistant Vegetation Index (ARVI). 

Specifically, VIs such as  EGI and NDRE act as a robust proxy for leaf area, green biomass and general 
photosynthetic activity and all factors that influence crop spectral separability (Meyer and Neto, 2008). 
While other indices like EVI and NDVI incorporate additional bands and parameters, they did not 
substantially outperform NDRE, EXG, GNDVI for this application. These finding suggests that the 
NUS fields likely exhibited distinct spectral responses in the NIR, RE and Red bands, and the 
application of more complex adjustments provided limited additional predictive insight. Overall, both 
individual spectral bands and vegetation indices demonstrate their usefulness in mapping neglected 
crops through remote sensing techniques.  

 

3.4.2. The comparative performance of machine learning algorithms in mapping 
the spatial distribution of neglected and underutilised crops species (NUS). 

In evaluating the classification performance Support Vector machine (SVM), Random Forest (RF) and 
Gradient Tree Boost (GTB), in mapping the spatial distribution of NUS crop species in a smallholder 
cropland, results showed that RF and GTB achieved the highest classification accuracies based on all 
spectral variables. The optimal performance of RF can be attributed to its utilization of decision trees 
and the combination of their predictions, enabling accurate classifications (Sipper and Moore, 2021). 
The algorithm's ability to capture complex interactions and handle high-dimensional data contributed 
to its superior performance (Hornung and Boulesteix, 2022). 

Furthermore, GTB algorithm, in conjunction with combined data, exhibited superior capabilities in 
detecting and mapping field boundaries of sweet potato and taro amongst others. Specifically, this 
combination produced the highest accuracy of 88%, kappa statistic of 0.85, and F1 score of 0.84 
compared to the other models/datasets (Table 3-3). Moreover, the GTB classifier significantly 
demonstrated accuracy improvements from dataset 1 to dataset 3, outperforming the RF and SVM 
algorithms. GTB can identify subtle variations in spectral responses that may not be discernible using 
linear classifiers such as SVM (Ghimire et al., 2010). In a seminal study exploring land cover mapping 
with remote sensing data, Abdi (2020) found that the GTB algorithm outperformed the RF algorithm in 
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achieving more accurate results for mapping and detecting changes in land use and land cover types 
within a boreal (northern forest) landscape. GTB achieved higher overall and user accuracies, 
demonstrating a better predictive performance. 

While Ensemble classifiers, in general, outperformed SVM in overall performance, there was no 
substantial difference in performance among the ensemble methods themselves. The mapped 
distributions of land cover classes revealed comparable spatial coverages for taro, bareland and maize 
at different growth stages as classified by GTB and RF. RF and GTB have an ability to capture complex 
patterns while controlling overfitting (Thenkabail and Lyon, 2016). Therefore, RF and GTB were better 
able to learn the intricate spectral signatures of different classes, hence accurately discriminating NUS 
crops at plot level from the remote sensing data. In contrast, the SVM results demonstrated divergent 
representations, with an exacerbated misclassification of some classes. This increased misassignment 
was prominently visible in the north-eastern and south-western regions of the map, highlighting 
disproportionate error in those areas relative to the other algorithms (Figure 3-9). SVM is relatively 
prone to overfitting and it is sensitive to noisy inputs further exacerbating its weakness in crop mapping 
in smallholder farms (Singla et al., 2020). Furthermore, according to Mountrakis et al. (2011), SVM 
models rely on finding a maximal margin hyperplane which can be heavily influenced by outliers and 
noisy samples. The comparable performance of GTB and RF suggests that ensemble decision tree 
methods excel in capturing and delineating the intricate relationships between predictor variables and 
crop classes (Aguilar et al., 2018). By combining many individual decision trees, they can model 
nonlinear interactions that aid in the differentiation of spectrally similar crops such as NUS (Saarela 
and Jauhiainen, 2021). Similarly, in their study, Yulianto et al. (2023) compared the performance of 
various algorithms for predicting and mapping land degradation using remote sensing techniques. Their 
results demonstrated the superiority and effectiveness of GTB and RF, both in achieving accuracies 
surpassing 85%, in contrast to the less effective performance of SVM. The superior performance metrics 
imply that these algorithms have the potential to create more reliable land cover maps with limited 
misclassifications. 

Despite its ability to handle high-dimensional data and non-linear relationships, SVM might struggle to 
capture the complex patterns and interactions present in the spatial distribution of NUS. This indicates 
the crop classifications may not have been perfectly separable by simple hyperplanes in feature space 
(Gove and Faytong, 2012). SVM accuracies were slightly lower than RF and GTB accuracies, with a 
42 to 72% OA across all datasets (Table 3-3). SVM classifier produced the lowest accuracies and kappa 
coefficients for all datasets, confirming its strong assumptions of independence between features are 
inappropriate for this remote sensing task. Furthermore, classes such as taro, natural vegetation, and 
maize at growth stage two were frequently misclassified hence lower user accuracies < 80%.  

 

3.5. Conclusion 
The objective of this study was to comparatively assess the classification performance of Gradient Tree 
Boosting, Random Forest and Support Vector Machine in mapping the field boundaries and the spatial 
distribution of Sweet -potato and Taro in a smallholder cropland using remotely sensed multispectral 
data acquired via UAV. In addressing this objective, relative contributions of bands and vegetation 
indices was also assessed. Grounded on the findings of this study it can be concluded that. 

• GTB and RF could effectively discriminate the field boundaries of NUS and effectively map 
their spatial distribution in a smallholder cropland based on bands and indices derived from the 
Red-edge and the NIR amongst others. 
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• Specifically, the GTB algorithm, in conjunction with combined data, exhibited superior 
capabilities in detecting and mapping field boundaries of sweet potato and taro amongst other 
crops. 

• Overall, the contribution of bands in classifying a smallholder cropland with NUS among other 
crops was found to be less significant than that of vegetation indices. 

The precise identification and comprehension of distribution patterns of NUS crops play a pivotal role 
in enabling targeted interventions for conservation, cultivation, and utilisation. This, in turn, contributes 
significantly to enhancing food and nutrition security in Sub-Saharan Africa. In its entirety, this study 
adds to the effectiveness of advanced classification algorithms for mapping NUS in smallholder farming 
systems. The thematic maps depicting the distribution of NUS crops offer valuable insights for farm-
scale management, while national departments can benefit from the implementation of robust classifiers 
to develop accurate and dependable agricultural landcover maps. 
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CHAPTER 4                                                                                                                
EVALUATING UAV MULTISPECTRAL IMAGERY, MACHINE LEARNING, AND 

IMAGE ANALYSIS TECHNIQUES FOR MAPPING TARO AND SWEET POTATO 

IN A SMALLHOLDER CROPLAND IN SOUTHERN AFRICA. 

 

Abstract: Mapping the spatial distribution of neglected and under-utilised crop species (NUS) crops in 
smallholder fields can be challenging due to their complex and minute formations, making it difficult 
to distinguish them from other spectrally similar crop types. Object-based image analysis has gained 
considerable recognition as a prominent classification approach suitable for accurately delineating 
diminutive, fragmented crop fields in smallholder croplands. However, very few studies have attempted 
to assess the robustness of UAV remotely sensed data in conjunction with object-based image analysis. 
In this context, this study aimed to assess the comparative performance of object-based (OBIA) and 
pixel-based image analysis (PBIA) Gradient Tree Boosting (GTB) ensembles in mapping the spatial 
distribution of sweet potato and taro in a typical smallholder cropland of Southern Africa using UAV 
acquired multi-spectral remotely sensed data. Additionally, a comparative assessment was conducted 
to evaluate the relative contribution of individual bands, vegetation indices, and combined data. The 
findings showed that OBIA-GTB and PBIA-GTB achieved mean overall accuracies of 80,6% and 
84,6%, respectively, using the combined data. Conversely, the utilisation of individual spectral bands 
resulted in the least accurate classification outcomes. The PBIA-GTB approach was able to generate 
clear crop field-boundaries for sweet potato and taro among other crops. This demonstrates GTB's 
potential to improve NUS crop mapping accuracy in smallholder fields while reducing differences 
between OBIA and PBIA approaches. 

Key words: Gradient tree boost, unmanned aerial vehicle, neglected and under-utilised crop species, 
smallholder fields. 

 

4.1. Introduction  
Neglected and underutilised species (NUS) emerge as a potential solution to the global challenge of 
providing a growing population with healthy and nutritious food, while concurrently mitigating adverse 
environmental impacts and adapting to a changing climate (Mabhaudhi et al., 2017). NUS are plant 
varieties that have received very little in terms of research attention, development in the agricultural 
stage, and are not widely preferred in commercial markets (Mabhaudhi et al., 2017). These agricultural 
crops play a significant role in traditional or local food systems. NUS crops have demonstrated a 
remarkable ability to adapt to harsh conditions such as drought, low soil fertility, and irregular rainfall, 
surpassing major commercial crops in resilience (Mabhaudhi et al., 2017). Having evolved under stress, 
they are naturally resilient to abiotic stresses faced by small-scale farmers in developing countries 
(Mabhaudhi et al., 2017). They are also suitable for cultivation in marginal agricultural lands. Given 
the innate stress tolerance of NUS crop species, it is indicative that they have the potential to play a 
significant role as the impacts of climate change exacerbate local growing conditions. Their nutrient 
density also makes NUS crops an attractive supplement to promote food and nutrition security within 
vulnerable communities across diverse agro-ecologies. To facilitate the expansion of NUS crop 
cultivation into both subsistence and commercial markets, it is imperative to map their spatial 
distributions and land suitability. Timely and accurate delineation of NUS areas, along with production 
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statistics is essential to optimise their production and enhance market participation at both the farm and 
industry levels (Chimonyo et al., 2022). 
 
Traditional field surveys commonly employed for mapping NUS, are characterised by being time-
consuming, expensive, and lacking spatial explicitness. An alternative is offered through earth 
observation facilities and data, which provide frequently acquired, spatially continuous data at varying 
resolutions (Ndlovu et al., 2021). Coarser resolution sensors like MODIS and AVHRR are suitable for 
large-scale daily monitoring due to their high temporal resolution of near daily. For instance,  Zhang et 
al. (2022) utilised the MODIS multi-temporal enhanced vegetation index (EVI) in combination with 
SVM to accurately delineate maize cultivation across agricultural lands, achieving an impressive overall 
accuracy of 79%.  However, spatial resolutions ranging from 250m-1km are inadequate for accurately 
delineating boundaries and estimating the area of smallholder farms, as intercropping and non-uniform 
planting/harvesting practices further complicate the difficulties associated with mapping at such 
resolutions (Persello et al., 2019). UAV remote sensing systems provide improved spatial and spectral 
imaging for smallholders with valuable multi/hyperspectral capabilities for species discrimination. For 
instance, UAV bands with a resolution of 2 meters, particularly in the red-edge spectrum, has shown 
improved capability in accurately mapping smallholder farm details (Tang et al., 2022). Nonetheless, 
the widespread adoption of high-resolution sensors is restricted due to their high costs and 
computational requirements. 
 
For many years, pixel-based image analysis (PBIA) has emerged as the fundamental approach for image 
classification, particularly in third world nations where the availability of costly data and software is 
restricted. However, relying solely on spectral properties and neglecting other characteristics such as 
texture, shape, and size during the classification process can limit the reliability and precision of maps 
generated using PBIA as previous research has shown (Xiaoxia et al., 2005). In the last decade, OBIA 
has gained significant popularity among the geospatial research community. This is predominantly 
attributable to its capability to integrate spectral, spatial, textual, and contextual information, thereby 
resulting in enhanced precision in classification (Xiaoxia et al., 2005). While OBIA has demonstrated 
a slight advantage in mapping landscapes that are heterogeneous and fragmented, PBIA classifiers 
continue to be more commonly employed owing to their wider availability in both open-source and 
commercial software platforms, as opposed to OBIA classifiers which are primarily accessible through 
commercial means. Additionally, the difference in accuracy between the two methods is closely tied to 
the broad application of conventional PBIA classifiers like Maximum Likelihood. These classifiers 
have faced criticism for their inadequacies in dealing with imbalanced and small training datasets, 
leading to lower accuracies, as research has indicated (Xiaoxia et al., 2005). 
 
In recent times, researchers have turned to more resilient machine-learning ensemble classifiers such as 
Gradient Tree boost (GTB) and Random Forest (RF) for classification (Ouma et al., 2023, Bayas et al., 
2022). The efficacy of these classifiers has been proven to surpass that of the traditional probability-
based classifiers in terms of accuracy (Kumar et al. 2016) and other machine-learning algorithms. For 
instance, Abdi (2020) found that GTB outperforms RF in accurately mapping land use land cover 
change within a boreal landscape. Unlike random forests with average predictions, GBMs use a gradient 
descent approach to minimise error at each stage. GBMs are robust due to their flexibility in customising 
loss functions during model optimisation. This has led to their widespread success in real-world 
applications compared to single models. They rely on three main components - a loss function, weak 
learner models like decision trees, and an additive model that combines predictions from each weak 
learner (Natekin and Knoll, 2013). Importantly, tree based GBM algorithms were designed specifically 
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to handle large datasets very efficiently. They can run over 10 times faster than other popular algorithms 
on large data, making them highly scalable for different scenarios.  

Given the successful application of the Gradient Tree Boosting (GTB) classifier, this study aimed to 
leverage its capability in comparatively evaluating the performance of Pixel-Based Image Analysis 
(PBIA) and Object-Based Image Analysis (OBIA) for mapping NUS, sweet potato, and taro crop among 
other crops in a smallholder cropland in KwaZulu Natal, South Africa. To address this objective, the 
study assessed the relative influence of spectral bands, vegetation indices and the combination of both 
datasets. 

 

4.2. Methods and materials 
4.2.1. Study Area 
The research was conducted in the Swayimane region, located in KwaZulu-Natal, South Africa, at 
coordinates (29°31024” S and 30°41037” E). This area falls under the jurisdiction of the uMshwathi 
Local Municipality. Swayimane is a small town situated in the northeastern direction from 
Pietermaritzburg, covering an approximate area of 36 km2 (Brewer et al., 2022). The local community 
in Swayimane primarily engages in semi-subsistence farming on their individual plots, which plays a 
crucial role in ensuring food and nutrition security. The prevalent crop types cultivated in this region 
include sugarcane, sweet potato, taro, tomatoes and white and yellow maize (Brewer et al., 2022). The 
smallholder farmers engage in the manual process of sowing crop seeds and fertilising croplands by 
utilising livestock manure (Brewer et al., 2022). The management of smallholder fields is entirely 
manual, i.e., plots are hand-weeded and maintained using backpack herbicide sprayers. Crop yields are 
also harvested by hand. The agricultural activities and crop production in Swayimane benefit from the 
region's climatic conditions characterised by warm and wet summers, as well as cool and dry winters 
(Brewer et al., 2022). The average temperatures in this area typically range from 12 ◦C to 24 ◦C. The 
annual precipitation averages between 600 and 1200 mm, with the majority of rainfall occurring during 
the summer season (Brewer et al., 2022). Consequently, rainwater serves as the primary source of 
irrigation for croplands in this area.  

 

Figure 4-1 : Location of the Swayimane study area, study site and smallholder crop field 
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Figure 4-2: presents a flowchart that provides a concise overview of the key steps undertaken in this 
study, including image data collection and processing, spectral datasets utilised, and statistical analysis. 

 

4.2.2. Data collection 
Prior to remote data acquisition, a field survey was conducted within the study area. The coordinates 
for various land use/land cover classes were measured utilising a Trimble Garmin handheld GPS device 
with a positional accuracy of ±1 meter. Specifically, eight classes were examined as part of this study: 
taro, sweet potato, natural vegetation, sugarcane, bare land, built structures, maize at growth stage one, 
and maize at growth stage two. A total of three hundred and ten coordinate points were collected. These 
data were subsequently converted into a point map and imported into the Google Earth Engine (GEE) 
platform, where they were then leveraged for supervised classification of the processed remote sensing 
imagery. 

Aerial-based flights over smallholder farms were conducted using the DJI Matrice 300 (DJI M-300) 
platform, equipped with a MicaSense Altum imaging device and Downwelling Light Sensor 2 (DLS-
2). The rotary M-300 platform facilitates vertical take-off and landing (VTOL), via vertical hover 
technology. Key characteristics of the DJI M-300 platform includes a transmission range of 15 km, a 
maximum altitude of 7000 m, intelligent mapping around obstructions, advanced flight path planning 
and a locational position tracker (Brewer et al., 2022).The M-300 boasts an impressive maximum flight 
duration of 55 minutes (without payload) and remarkable operating velocity of 27 m/s, surpassing 
numerous drone platforms available in the market (Brewer et al., 2022). The MicaSense Altum camera 
is a highly sophisticated instrument that integrates the functionalities of multispectral and thermal 
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imaging. It encompasses five high-resolution channels, specifically blue, green, red, red-edge, and near-
infrared. Additionally, a long-wave infrared thermal camera was used to capture thermal information 
(Ndlovu et al., 2021). This high-resolution camera facilitates the synchronised acquisition of 
multispectral and thermal images through the utilisation of a global shutter mechanism that offers a 
rapid one-second capture rate for accurate and properly aligned imagery (Hutton et al., 2020). The 
multispectral bands offer 2064 × 1544 sensor resolution at a distance of 120 meters per band (3.2 
megapixels) and 5.2 cm ground sample distance at 120 meters flight altitude, suggesting this is optimal 
for acquiring high resolution crop images. Additionally, the camera possesses a field of view of 48° × 
37°, along with an 8 mm focal length (Brewer et al., 2022). 
 
The crop field boundaries were digitised using Google Earth Pro, converted into a shapefile and 
imported into the DJI M-300 smart console software. The shape-file was utilised within the console to 
create an autonomous flight plan that covers the desired study region.The flight path facilitated a hands-
free image collection over the delineated field and proximate regions by the UAV system. The UAV 
underwent calibration before each flight utilising the MicaSense Altum calibrated reflectance panel 
(CRP). During the calibration procedure, an image was captured directly over the CRP without any 
shading. This allowed for the assessment and recording of the lighting conditions specific to the flight 
date, time, and location. 
 
4.2.3. Data processing  
A total of 3576 aerial images were subjected to a stitching and radiometric calibration process utilising 
the software application Pix4Dfields version 1.8.0, developed by Pix4d Inc., San Francisco, USA. The 
radiometric calibration process involved all captured images, including both pre-flight and post-flight 
CRP images (Brewer et al., 2022). A white balance card, known as the radiometric calibration target 
(the CRP), was utilised to establish the reflectance properties across various wavelengths of the camera's 
electromagnetic spectrum (Brewer et al., 2022). During this procedure, the software effectively 
calibrated and modified the reflectance values of the images, considering the prevailing weather 
conditions at the time of image acquisition. The utility of the CRP also served as an absolute reference, 
enabling the comparison of data from multiple flights by obtaining absolute reflectance values (Brewer 
et al., 2022). Subsequently, a final orthomosaic and a DEM GeoTIFF were produced. The orthomosaic 
was georeferenced in ArcGIS 10.5 by utilising ground control points obtained from Google Earth Pro. 
The Universal Transverse Mercator (UTM zone 36S) projection was used to reference the images. The 
drone orthomosaic of the smallholder crop field was transferred to GEE, where the process of 
classification was performed utilising the Random Forest (RF), Gradient Tree Boost (GTB), and 
Support Vector Machine (SVM) classifiers. 

4.2.4. Vegetation Indices 
A single-date image was employed to generate eleven vegetation indices using the equations available 
in GEE (Table 4-1).  The selection and prioritisation of the near-infrared (NIR) and visible indices were 
based on their effectiveness in mapping NUS crops as documented in literature. The selection of the 
near-infrared (NIR) band was predicated upon its provision of valuable insights into both biomass and 
the vitality of vegetation (Xie et al., 2018).   
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Table 4-1: UAV-derived vegetation indices.  

 

 

 

4.2.5. Pixel based Classification.  
Pixel based classification is a technique used in remote sensing image analysis which assigns a pixel to 
a landcover class by referring to the spectral similarities. Each individual image pixel is classified by 
comparing the spectral information it contains, with the spectral signatures of the selected landcover  
categories, which are acquired from reference data (Tassi et al., 2021). Within the GEE platform, the 
gradient tree boost algorithm was leveraged in conjunction with the PBIA technique. The sampled data 
was randomly divided into 70% training (n = 217) and 30% validation (n = 93) (Table 4-2). The training 
subset was utilised for developing the predictive model, while the validation subset served to assess the 
accuracy of the model in an independent context. 

 

 

 

Vegetation Index Abbrevi
ation 

Equation Reference 

Normalized difference 
vegetation index 

NDVI (NIR−RED)/(NIR+RED) Xue and Su 
(2017) 

Green normalized difference 
vegetation index 

GNDVI NIR−GREENNIR+GREEN Gitelson et al. 
(1996) 

Excess green index  EGI 2.5* (GREEN-RED)/(GREEN+RED+1) (Qiu et al., 
2020) 

Normalized difference red-edge 
index 

NDRE NIR−RED EDGENIR+RED EDGE (Fitzgerald et 
al., 2006) 

Excess green index EXG 2 * GREEN - RED – BLUE Woebbecke et 
al. (1995) 

Chlorophyll carotenoid 
index  

CCI (R - G) / (R + G) (Jäger et al., 
2022) 

Optimized soil adjusted 
vegetation index 

OSAVI NIR−REDNIR+RED+0.16 Xue and Su 
(2017) 

Enhanced vegetation index EVI (2.5 * (NIR+ RED) / (NIR + 6 * RED - 
7.5* BLUE +1) 

(Xing et al., 
2019) 

Normalised green, red 
difference index 

NGRDI (GREEN - RED) / (GREEN + RED) Meyer and Neto 
(2008) 

Simple ratio SRI NIR / RED Jordan (1969) 

Modified triangular vegetation 
index 1 

MTVI1 1.2 ((1.2 ∗ (NIR − GREEN)) − (2.5 ∗ 
(RED − GREEN)) 

(Xing et al., 
2019) 
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Table 4-2:  Training and validation data used for PBIA classification. 

Class name Code Training (n) Testing (n) 

Taro T 28 12 

Sweet potato SP 28 12 

Natural Vegetation NV 21 9 

Sugarcane SU 28 12 

Bare land BL 21 9 

Built-up BU 21 9 

Maize growth stage 1 M1 35 15 

Maize growth stage 2 M2 35 15 

 

Gradient tree boost (GTB): Gradient Boosting Machines (GBMs) are a family of powerful ensemble 
machine learning techniques that fall under the category of sequential models. Each model in the 
sequence learns from the mistakes of previous models to incrementally improve overall performance 
(Natekin and Knoll, 2013). The integrated model combines gradient, boosting, and decision tree 
techniques to address classification problems and make accurate predictions for regression tasks (Ye et 
al., 2021). Boosting refers to the offline aggregation of multiple weak classifiers to create a powerful 
classifier, and gradient refers to the improvement in flexibility and convenience when the model 
optimises the loss function (Ye et al., 2021). To reduce correlation among decision trees, a new tree is 
developed based on a randomly selected subset of training data. The GTB classifier involves several 
adjustable parameters that require configuration, including the number of trees, shrinkage, sampling 
rate, maximum nodes, and seed values.  The number of trees (nTree) was adjusted to 300. The maximum 
nodes, seeds, shrinkage and sampling parameters were set to default in GEE.  

 

4.2.6. Object-Based Classification and segmentation  
For object-based classification, our initial step involved conducting image segmentation. The main 
objective of segmentation is to accurately extract and delineate the individual objects within an image. 
Google Earth Engine primarily supports G-means, K-means and Simple Non-Iterative Clustering 
(SNIC) for segmentation. The selection of the SNIC algorithm was based on its capability to be 
customised through user-defined parameters, as well as its exceptional performance in image 
segmentation tasks (Qu et al., 2021). It is non-recursive, ensures connectivity from the start, less 
memory intensive, and accuracy can be adjusted by configuring specific parameters (Gxokwe et al., 
2022). SNIC is a super pixel boundary and image segmentation technique that divides an image into 
small, clusters of connected pixels called ‘superpixels’ (Gxokwe et al., 2022). The image segmentation 
process using the SNIC algorithm begins by initialising centroid pixels on a regular grid within the 
image. Subsequently, the relationship between each pixel and the centroids is established by measuring 
its distance in a five-dimensional space, which is defined by colour and spatial coordinates (Gxokwe et 
al., 2022).  Uniformly sized ‘superpixels’ are developed by combining normalised spatial and colour 
distances using a distance calculation (Gxokwe et al., 2022). The selection of the candidate pixel is 
determined by identifying the shortest distance from the centroid (Gxokwe et al., 2022). The SNIC 
algorithm is optimised using four customisable parameters: connectivity, ‘neighbourhoodSize’, 
compactness and seeds. Initially, the seeds are generated using the 'seedGrid' technique, which 
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computes the spectral deviation and maximum distance between the mean value of the generated object 
and the source image. The parameters for compactness, connectivity, and neighbourhood size were set 
at 1, 4, and 128, respectively. Thereafter, the spectral attributes of all segmented objects within the study 
area were extracted, along with the average auxiliary feature values. A predictive model was developed 
by utilising the mean value within the object combined with the sample points. The SNIC algorithm 
was implemented using the provided source code ‘ee.Algorithms.Image.Segmantation.SNIC ’ in the 
GEE platform. In this research, the same features applied in PBIA were utilised for OBIA, thereby 
ensuring an equitable assessment between the two methods (Table 4-2). 
 
4.2.7. Accuracy assessment 
An accuracy assessment was used to assess the efficiency of GTB in conjunction with OBIA and PBIA 
techniques. Confusion matrices were generated to calculate the overall accuracy, kappa coefficient, 
user/producer accuracies, and F1 scores for both techniques. A confusion matrix is an overly process 
that compares the classified classes with the reference points and provides a count of the correct and 
incorrect classifications for each class (Tiwari, 2022). It helps quantify the classification accuracy and 
identify patterns of misclassification. The overall accuracy (OA) is a metric of algorithmic efficiency, 
calculated as the proportion of correctly assigned samples to the total number of samples used for testing 
(Gxokwe, 2022). The producer's accuracy measures the likelihood of accurately classifying the ground 
truth sample on the thematic map (Gxokwe, 2022). Conversely, the user's accuracy evaluates the 
probability that a classified pixel in the landcover classification map accurately represents the 
corresponding landcover type on ground (Gxokwe, 2022).According to Bhunia et al. (2021) accuracy 
values greater than 70% is considered to be acceptable. Furthermore, the kappa statistic values range 
from 0 to 1, wherein values surpassing 0.80 signify a high agreement between the classified map and 
the ground truth. Conversely, values below 0.40 denote inadequate agreement. Kappa scores that fall 
within the range of 0.40 to 0.80 indicate a moderate level of concordance with the reference data 
(Dondofema et al., 2023). The F1 score combines the weighted averages of precision and recall 
measures and serves as a standardised measure for evaluating the accuracy/precision of classification 
techniques (Pham et al., 2023). As the metrics' values increase, so does the model's confidence in 
accurately assigning the designated classes within the study.  

 

4.3. Results 
4.3.1. Comparison of spectral bands and indices using PBIA and OBIA methods.  

Upon reviewing the results presented in Table 4-3, it is apparent that dataset 1 (bands only) yielded the 
least accurate results compared to VIs and combined datasets. The evaluation of the OBIA-GTB model 
against datasets 2 and 3 observed a modest improvement in inter-rater reliability. Specifically, the kappa 
statistic was found to be approximately 3% higher with dataset 2, and approximately 6% higher when 
using dataset 3. The combined dataset exhibited superior performance for both models. However, the 
magnitude of change in accuracies between dataset 1 and dataset 3 is relatively smaller for the GTB-
OBIA model. The results consistently fall within a range of 79-81% for OA, 0.76-0.82 for kappa 
statistics, and 0.74-0.79 for F1 scores, signifying a relatively consistent performance across the 
evaluations (Table 4-3). In contrast, there is an appreciable variation of 5 percent observed when 
comparing dataset 1 to dataset 3 with the PBIA model. The overall accuracy increases significantly 
from 83% to 88% with the inclusion of the combined dataset. This observation implies that the 
integration of bands and indices has significantly enhanced the accuracies and improved the models' 
capability to differentiate between classes with comparable spectral signatures. 
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4.3.2. Performance of PBIA-GTB and OBIA-GTB methods in mapping NUS crops  
The GTB classifier demonstrated comparable results across the PBIA and OBIA classification 
approaches in terms of overall classification accuracy, kappa statistics and F1 scores, as seen in Table 
4-3 and Figure 4-3. The mean kappa coefficient values obtained from the GTB classifier demonstrated 
favourable scores of 0.816 and 0.79 for the PBIA and OBIA approaches, respectively. Although both 
PBIA and OBIA approaches yielded good classification results overall, a direct comparison reveals that 
the PBIA approach surpassed the standard OBIA technique alone by a margin of 2-6% in terms of 
accuracy (Table 4-3). The most significant variables contributing to the peak performance of PBIA-
GTB include B1, EGI and B4. The OBIA-GTB slightly underperformed in comparison to PBIA-GTB, 
with a mean accuracy of 80.6, kappa statistic of 0.79 and a F1 score of 0.77 (Table 4-3 & Figure 4-3). 
Hence, the PBIA-GTB combination can be considered a more optimal remote sensing classification 
framework based on these evaluation metrics. 

Table 4-3: PBIA-GTB and OBIA-GTB overall accuracies, kappa statistics and F1 scores 

Analysis Stage   Accuracies  PBIA-GTB OBIA-GTB 

1 Dataset 1(Bands 
only) 

OA 0.83 0.80 

  Kappa 0.80 0.76 

  F1  0.80 0.78 

2 Dataset 2 (VI’s 
only) 

OA 0.83 0.81 

  Kappa 0.80 0.79 

  F1  0.81 0.79 

3 Dataset 3 (Bands & 
VI’S) 

OA 0.88 0.81 

  Kappa 0.85 0.82 

  F1 0.84 0.74 

 

  
Figure 4-3: Mean accuracies (OA and Kappa) exhibited by PBIA-GTB and OBIA-GTB. 
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4.3.3. Comparative of all spectral datasets in classifying NUS among other crops in a 
smallholder cropland 
The results indicate that the raw spectral bands slightly underperformed when compared to VIs and the 
combined dataset across all models, as demonstrated by mean OA of 81,5 percent and a mean kappa 
statistic of 0,78 (Table 4-3). This observation is further supported by the variable importance scores, 
whereby B4 and B5 ranked relatively lower (supplementary figures S3-1 & S3-2). Specifically, VIs 
outperformed the bands by 1-2% but yielded similar accuracies to the combined dataset (Table 4-3). 
The performance of optimal bands such as NDVI, GNDVI and EGI significantly contributed to the 
improved performance of machine learning algorithms. Furthermore, the combined dataset exhibited 
the highest performance across all models, with a mean OA of 84.5 and a kappa statistic of 83.5.  When 
assessing Figure 4-4, it becomes apparent that the most optimal bands that contributed the most to the 
performance are B1, B3, and NDVI. In comparison, the bands in the combined dataset ranked lower 
compared to the indices. 
 

 
Figure 4-4: Mean accuracies (OA and Kappa) exhibited by PBIA-GTB and OBIA-GTB. 

 

4.3.4. Final comparative assessment of GTB pixel based (PBIA) and object-based image 
analysis (OBIA-GTB) classifications for NUS among other crops in a smallholder cropland 
using a combination of selected datasets. 
Utilising the combined datasets, both PBIA and OBIA classifications demonstrated relatively higher 
accuracies in the final results. PBIA had an OA of 0.88, kappa statistic of 0.85 and F1 score of 0.84 
based on B1, NDVI, NDRE, B3, and GNDVI as influential classification variables listed in order of 
importance (Figure 4-5). OBIA exhibited a relatively lower OA of 0.81 and a kappa of 0.82 based B1, 
B2, B5 and EGI as optimal classification variables also listed in order of importance. Although PBIA 
was relatively higher than OBIA, both image analysis techniques exhibited very high classification 
accuracies. 
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Figure  4-5: Variable importance scores of (a) PBIA-GTB, (b) OBIA-GTB with dataset 3 

 

Collectively, GTB showcased a strong performance across both classification platforms, with five 
classes achieving PA and UA rates exceeding 70% (Figure 4-6). PBIA demonstrated an enhanced user 
accuracy in delineating the distribution of NUS crops when compared to OBIA- GTB. PBIA-GTB with 
dataset 3 yielded the highest UAs cross all classes, ranging from 71.4% to 100%, underscoring the 
remarkable capability of GTB in effectively modelling intricate decisions. In contrast, the OBIA 
approach yielded lower UA, with results ranging from 33% to 100%. Individually, when using the 
OBIA approach, the classification of natural vegetation exhibited the lowest PA at 20% and UA at 33%. 
However, higher PA and UA accuracies were observed for, sweet potato, sugarcane, built up and bare 
land and taro, and maize growth stage one when employing the PBIA method (supplementary Figure 
S3-3 & S3-4). 

 

 

Figure 4-6: user, producer and F1 accuracies of (a) PBIA-GTB, (b) OBIA-GTB with dataset 3 

 

4.3.5.  Classification results using the most optimal dataset (Bands & vegetation indices). 
Figure 4-7 displays the thematic maps that were produced through the application of the GTB algorithm 
with both PBIA and OBIA techniques. Visual inspection of GTB at both classification platforms 

0
10
20
30
40
50
60
70
80
90

100

Ta
ro

Sw
ee

t p
ot

at
o

N
at

ur
al

 V
eg

et
at

io
n

Su
ga

rc
an

e
Ba

re
la

nd
Bu

ilt
up

M
ai

ze
 g

ro
w

th
 st

ag
e 

1
M

ai
ze

 g
ro

w
th

 st
ag

e 
2

Pe
rc

en
ta

ge

Class

GTB user

GTB
producer

F1

0
10
20
30
40
50
60
70
80
90

100

Ta
ro

Sw
ee

t p
ot

at
o

N
at

ur
al

 V
eg

et
at

io
n

Su
ga

rc
an

e
Ba

re
la

nd
Bu

ilt
up

M
ai

ze
 g

ro
w

th
 st

ag
e 

1
M

ai
ze

 g
ro

w
th

 st
ag

e 
2

Pe
rc

en
ta

ge

Class

GTB user

GTB
producer

F1

(a) (b) 

(a) (b) 

http://etd.uwc.ac.za/



 

73 
 

portrays similarities in terms of the NUS crops spatial coverage. Additionally, it is worth noting that 
traces of salt and pepper noise are present in the PBIA-GTB thematic map. Despite this noise, the map 
still effectively depicts the location of NUS crops, with the exception of taro, which is frequently 
misclassified towards the central section of the map. Moreover, the GTB-OBIA map often exhibits a 
higher incidence of misclassification when it comes to distinguishing between natural vegetation and 
maize growth stage two (Figure 4-7B). Table 4-4 and Figure 4-8, summarises the percentage areal 
extents derived from the thematic maps obtained through the classification using both PBIA and OBIA 
classification techniques. Based on Table 4-4, it is evident that there is a significant distinction in the 
areal extents between PBIA-GTB and OBIA-GTB (41 percent difference between all classes). It has 
been observed that OBIA tends to either underestimate or overestimate the extents of sugarcane, maize 
and sweet potato crops. In contrast, PBIA accurately depicts the distribution of landcover classes in 
relation to ground truth data. Significant differences in the areal extent coverage can be observed 
between classes, such as sugarcane and maize. This observation is further supported by the results of 
the PA and UA measures (Figure 4-6). Additionally, it has been observed that there is a smaller 
difference in the areal extents for classes such as taro, natural vegetation, built-up areas, and maize 
growth stage one (Table 4-4).  

 

 

Figure 4-7: NUS crop distribution maps of (a) PBIA-GTB (b) and OBIA-GTB with dataset 3 

 

 

    

Figure 4-8: Pixel area per class of (a) PBIA-GTB, (b) OBIA-GTB with dataset 3. 
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Table 4-4:  Areal extent map comparisons of PBIA-GTB and OBIA-GTB 

Class OBIA GTB % PBIA GTB% Percentage of change 

Taro 5,83 9,26 3,43 

Sweet Potato 15,08 4,21 10,87 

Natural Vegetation 22,52 25,24 2,72 

Sugarcane 10,29 2,52 7,76 

Bareland 10,49 14,82 4,33 

Builtup 14,63 14,89 0,25 

Maize growth  stage R1 7,90 6,21 1,68 

Maize growth stage R2 13,27 22,85 9,58 

Total 100 100 41 

 

 

4.4. Discussion 
 

4.4.1. Comparative performance of different spectral datasets in mapping NUS crops 
using PBIA and OBIA  
The findings of this research indicate that the utilisation of UAV multispectral data, combined with 
pixel-based image analysis, can successfully identify, and map the spatial distribution of NUS among 
other crops in a smallholder cropland. Raw spectral bands yielded the lowest accuracies of OA=81,5, 
K=0,78 and F1= 0.79 (Table 4-3). Furthermore, raw spectral bands seem to rank relatively lower 
across variable importance scores (Figure 4-4). However, the combination of raw spectral bands with 
vegetation indices produced the highest overall classification accuracies, exceeding 80% based on B1, 
NDVI, NDRE, B3, and GNDVI as influential classification variables listed in order of importance. The 
B1 (blue) wavelength is commonly absorbed by plant leaves during the process of photosynthesis and 
exhibits a notable sensitivity to changes in plant biochemistry. The increased absorption of chlorophyll 
results in decreased reflectance in the blue wavelengths. Consequently, this characteristic enables a 
clear differentiation between healthy and unhealthy vegetation. This attribute of the blue band proves 
valuable in accurately mapping NUS crop boundaries and distinguishing vegetation with similar 
spectral properties. 
 
The overall improvement in accuracy achieved by incorporating spectral bands and VIs can be 
attributed to the VIs' capability to mitigate the impacts of background soil effects, sensor zenith angle, 
sun angle, and other atmospheric influences (Liu et al., 2022a). This allows the combined use with 
spectral bands to increase performance. The findings align with prior research conducted by (Zeng et 
al., 2022), which reported the unique strength of incorporating VIs in distinguishing diverse land cover 
types. Furthermore, a recent study conducted by (Kazemi and Ghanbari Parmehr, 2023) showcased the 
potential of integrating UAV raw spectral bands with Vis for effectively classifying rice crop growth. 
Likewise, in another study conducted by (Wang et al., 2021), consistent results were obtained when 
employing a fusion of UAV spectral and textural data to estimate rice grain yield. 

Moreover, the results also indicated a significant difference between the spectral bands dataset and VIs 
dataset. With PBIA-GTB exhibiting a 5 percent magnitude in change and OBIA with a 2 percent in 
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change (Table 4-3). Using bands and indices combinations introduce additional features/dimensions to 
the data compared to bands alone. This expanded feature space often allows models to better 
discriminate classes or patterns. The extra features from the combined dataset, such as texture, shape, 
or contextual relationships between pixels/objects, likely helped the classifiers make more informed 
decisions and improved their ability to accurately classify the data. For example a study by Li et al. 
(2023) used high dimensional data in combination with deep learning models to map the distribution of 
crops. Among various deep learning models, the 3D-CNN (Three-Dimensional Convolutional Neural 
Network) that integrates spectral, spatial, and temporal data emerged as the most accurate approach for 
crop classification. The additional data appears to have improved the ability of both the PBIA-GTB and 
OBIA-GTB classifiers to differentiate between spectrally similar but spatially distinct land cover types.  
 
The findings of this study also demonstrated that there was no significant difference in the performance 
between bands and Vis (Figure 4-4). This situation could be attributed to the distinct characteristics of 
each vegetation index, the training data utilised, and the homogeneity of the agricultural settings. 
Interestingly, the classification accuracy achieved for all the investigated Vis in this study was not the 
highest, as reported by other authors in the literature (Zhang et al., 2020, Ustuner et al., 2014). This can 
also be attributed to the fact that vegetation indices, such as NDVI, predominantly rely on combinations 
of the preexisting spectral bands. Therefore, it is probable that they did not yield significantly novel or 
distinct information for distinguishing land cover classes beyond what was already attainable from the 
original spectral bands.  Although vegetation indices can enhance the detection of subtle discrepancies 
in vegetation reflectance characteristics, the presence of both pixel-based and object-based classifiers 
that can already utilise the contextual relationships among neighbouring pixels or objects might render 
the redundant vegetation index features less effective in significantly improving classification accuracy. 
The OBIA and PBIA approaches demonstrated the capability to successfully identify vegetation 
patterns by utilising the robust spectral bands.  

 

4.4.2. The performance of PBIA-GTB and OBIA-GTB classification in mapping NUS 
crops spatial distribution. 
Results of this study showed that PBIA produced relatively higher accuracies ranging from 83%-88% 
when compared to OBIA which had accuracies that ranged between 80% and 81% in mapping the 
distribution of NUS crops (Table 4-3).  This could be attributed to PBIA’s ability to fully leverage the 
rich spectral detail information contained in multispectral remote sensing imagery  in comparison to 
object-based classification techniques (Hao et al., 2015, Dorren et al., 2003).  For instance, Hao et al. 
(2015) evaluated the performance of two hybrid techniques, namely multiple voting (M-voting) and 
probabilistic fusion (P-fusion), for crop classification using NDVI temporal data at both pixel and object 
levels. The results demonstrated that OBIA did not enhance the classification performance in 
comparison to PBIA, particularly in homogenous regions. Therefore, higher PBIA classification 
accuracies may be attributed,  in part to the high dimensionality of pixel-level feature spaces in 
comparison to object features, as well as its capacity to detect fine-scale spectral changes between crop 
types  (Mantripragada et al., 2022). Moreover, PBIA handles mixed pixels within homogenous regions 
more effectively than OBIA, which assigns them to whole objects. The segmentation process in OBIAs 
seeks to identify homogenous image objects but may struggle to accurately represent the complicated 
surroundings and fragmentation of some agricultural fields in the typical smallholder croplands of 
Southern Africa characterised by inter cropping (Hossain and Chen, 2019).  

Furthermore, assessing Figure 4-7, it is evident that the PBIA classification was successfully able to 
distinguish minute variations (boundaries) between NUS and other crop types, as it incorporates spatial 

http://etd.uwc.ac.za/



 

76 
 

and textural information. On average, the PBIA classifiers exhibited superior user and producer 
accuracies in-comparison to the OBIA classifiers. Specifically, landcover classes such as sweet potato 
and maize growth stage one has higher producer accuracies ranging between 75-100% in comparison 
to OBIA with ranges between 33%-100% (Figure 4-6). However, the PBIA-GTB classifier gave a 
higher overall accuracy (OA:88 %) than the OBIA classifier (OA:86%) for the combined dataset (16 
variables). Furthermore, the PBIA classifier yielded a higher Kappa statistic estimate (k = 0.85) 
compared to the OBIA classifier (k = 0.84). The optimal performance of both PBIA and OBIA in this 
study can be assigned to the resilience of the GTB algorithm in discriminating the spectral signatures 
of smallholder crops. Additionally, the utilisation of UAV-acquired data with ultra-high spatial 
resolution further contributed to the optimal performance of the classifiers. The similarities in the areal 
extents between classes, such as natural vegetation, built-up areas, and maize growth stage one (as 
shown in Table 4-4), were also observed in both PBIA and OBIA, suggesting a strong overall spatial 
agreement between the two models. In a related study, Safari Khatouni et al. (2021)noted that the 
accuracy of a classification process is strongly influenced by the specific classifier employed. 
Therefore, this study proved that selecting GTB as the classifier positively influenced the overall 
accuracy for mapping the spatial distribution of NUS in smallholder fields, utilising UAV multispectral 
imagery. 

 

4.5. Conclusion 
The objective of this study was to evaluate the efficacy of object-based (OBIA) and pixel-based image 
analysis (PBIA) Gradient Tree Boosting (GTB) ensembles in mapping the spatial distribution of sweet 
potato and taro in a typical smallholder cropland in Southern Africa. This evaluation was carried out 
using multi-spectral remotely sensed data acquired through unmanned aerial vehicles (UAVs). 
Furthermore, a comparative examination was performed to determine the relative significance of 
individual bands, vegetation indices, and combined data in the mapping process. In light of the findings 
of this study, it can be inferred that both methods have a great potential in delineating NUS fields in 
smallholder croplands, especially in cases where different crops exhibit similar spectral characteristics.  

•  PBIA-GTB outperformed OBIA-GTB with a margin of 2-7 percent accuracy. However, it is 
worth noting that the the two methods did not perform significantly different. 

• There was no significant difference in the performance of spectral bands and VIs as separate 
datasets, but both datasets combined improved the classification accuracies.  

• A significant difference was observed between the performance of individual bands and the 
combined dataset. Bands & indices outperformed other datasets by 2-5percent.  

This approach holds potential for further expansion in mapping smallholder fields that cultivate NUS. 
This is particularly valuable as there is a growing demand for techniques that can successfully estimate 
yields and determine the areas dedicated to NUS crops. Overall, this study makes a substantial 
contribution to the application of robust classification algorithms in precisely delineating small-scale 
farming systems. The generated thematic maps, depicting the distribution of NUS crops, can prove 
valuable for farm-level management and decision-making.  Moreover, national agriculture departments 
can derive benefits from the adoption of robust classifiers to create dependable land-use/cover maps, 
facilitating effective planning and resource allocation.  
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CHAPTER 5                                                                                                                    
SYNTHESIS AND CONCLUSIONS 

 

5.1. Introduction 
Neglected and underutilised crop species (NUS) hold promise and potential in addressing the challenges 
associated with reduced agricultural productivity and achieving food and nutrition security, especially 
in smallholder croplands of developing countries. Climate change is driving a shift in agricultural 
production due to variations in precipitation and temperatures globally. These climatic fluctuations have 
knock-on effects on the yields of staple crops such as maize. However, NUS face limited research focus 
and reduced commercial demand, constricting their potential for advancement and utilisation. 
Additionally, accurately determining the location and spatial distribution of these crops is made more 
difficult by the nature of their cultivation pattern. The fragmented and diverse arrangement of 
agricultural fields presents difficulties in accurately mapping and distinguishing distinctive plant 
varieties within the cropland for the purpose of making well-informed decisions. The advancement of 
remote sensing technologies, particularly data derived from unmanned aerial vehicles (UAVs), provides 
a valuable opportunity to obtain spatially explicit and multi-temporal information on NUS (Chivasa et 
al., 2021, Zhang et al., 2019a, Sibanda et al., 2021a). Therefore, gaining insight into how NUS develops, 
and how widely distributed they are, could aid in understanding their health, productivity, and ability 
to withstand stress under evolving climate conditions. Understanding the spatial arrangement of these 
crop species is thus a crucial factor for guaranteeing food and nutritional security in South Africa. In 
line with this objective, this study aimed to assess the utility of UAV-based proximal remote sensing in 
mapping the spatial distribution of NUS, with a specific focus on sweet potato and taro, among other 
crops, in a smallholder cropland area. This overarching objective, was addressed through the three 
following objectives; (1) to conduct a systematic literature review on the spatial distribution and health 
of NUS crops in sub-Saharan Africa (2) to evaluate the performance of three robust classifiers in 
mapping the spatial distribution NUS crops utilising multispectral UAV data and, (3) to assess the 
performance of OBIA and PBIA techniques combined with a GTB classifier in mapping and delineating 
the spatial distribution of NUS crops. This chapter serves as a reflection on the research aims and 
objectives, summarising the key findings, conclusions, and recommendations for future studies.  

 

5.2. Highlights of the findings 
 

5.2.1. Reviewing the progress and challenges in mapping the spatial distribution of 
neglected and underutilised crops 
The first objective of this study was to conduct a systematic literature review on remote sensing (RS) 
the spatial distribution and health of NUS crops. The review aimed to assess the progress made, identify 
opportunities and challenges, and highlight any research gaps. To ensure a comprehensive analysis, a 
systematic review approach following the PRISMA framework was employed. A total of 171 peer-
reviewed articles were gathered from reputable databases, including Scopus, Google Scholar and Web 
of Science. The findings of this study revealed that most of the research focusing on NUS crops was 
conducted in the United States (18 articles) and China (17 articles). Nonetheless, some notable 
contributions from regions in the Global South, such as Southern Africa, were also identified. The 
attributes of NUS that received the most extensive research attention include leaf area index (LAI), crop 
yield, growth, above-ground biomass (AGB), and chlorophyll content. However, the exploration of 
stomatal conductance and the spatial distribution of NUS crops was limited, accounting for only 29% 
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of the reviewed studies. Furthermore, findings revealed that more studies utilised satellite-borne sensors 
(twenty-one studies), while eighteen studies used UAV-borne sensors in conjunction with advanced 
remote sensing techniques to map the spatial distribution and health of NUS crops. The slow progress 
in the application of UAV technology for mapping NUS especially in the global South can be as result 
of the exorbitant purchasing and operating costs and regulatory restrictions. It is for this reason that 
future research should prioritise the integration of ML techniques and high resolution acquired UAV 
datasets to accurately delineate and discriminate NUS crops as to optimise food production and security 
in the Global South. The findings of the literature review played a crucial role in shaping the subsequent 
application chapters guiding the selection of the most suitable sensors, vegetation indices, and 
algorithms for evaluating the utility of UAV-based proximal remote sensing in mapping the spatial 
distribution NUS crops, specifically sweet potato and taro in smallholder cropland areas. Therefore, the 
literature findings underscored the value of employing combined image spectral datasets in combination 
with cutting-edge machine learning and classification techniques for discriminating NUS crop species 
in smallholder farms.  

 

5.2.2. Comparing the performance of machine learning classifieds in mapping spatial 
distribution of NUS in smallholder fields using high resolution UAV imagery  
In comparing the performance of Gradient Boosting (GTB), Support Vector Machines (SVM) and 
Random Forest (RF) ML classifiers for mapping the spatial distribution of NUS within smallholder 
croplands utilising high resolution UAV imagery, crop distribution maps were generated using each 
classifier in-combination with three different datasets: 1) spectral bands, 2) vegetation indices (VIs), 
and 3) bands combined with VIs. Results of the study indicated that RF and GTB classifiers 
outperformed the SVM classifier, with high overall accuracy rates ranging between 80% - 90%. The 
ensemble models demonstrated a clear capability to differentiate field boundaries between taro, and 
sweet potato among other crops when compared to the SVM model. However, the GTB classifier 
exhibited a greater degree of variation and improvement across multiple datasets compared to the 
other models. In comparing the performance of different datasets, results showed that vegetation 
indices only and combined datasets outperformed the bands only dataset. Overall, the superior 
classification accuracies achieved by utilising sophisticated ML algorithms underscore the effectiveness 
of applying robust approaches to define areas within smallholder NUS fields. The precise delineation 
of field boundaries and spatial extents of smallholder fields is crucial for making well-informed 
decisions related to the management of irrigation systems, planting schedules and harvest plans. These 
findings offer valuable insight into application of advanced machine learning methods for delineating 
the NUS boundaries amongst other crops in complex and fragmented smallholder croplands. 
Considering that the findings of this study pointed out that GTB was the most effective algorithm for 
mapping the spatial distribution of NUS specifically sweet potato and taro among other crops in a 
smallholder cropland area, it was then used in the following chapter. 

 

5.2.3. To evaluate the performance of OBIA and PBIA classification techniques in 
mapping NUS crops spatial distribution in smallholder farms.  
In comparatively assessing the performance of Object-Based Image Analysis (OBIA) and Pixel-Based 
Image Analysis (PBIA) for mapping the spatial distribution of NUS among other crops in a smallholder 
cropland area, GTB was utilised in conjunction with 1) spectral bands, 2) vegetation indices (VIs), and 
3) bands combined with VIs. Results showed that the PBIA -GTB classification technique exhibited 
slightly higher classification accuracies in mapping NUS when compared to the performance of the 
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OBIA-GTB technique. The PBIA approach exhibited improved capability in distinguishing between 
the field boundaries of spectrally ambiguous NUS amongst other crop types in a fragmented smallholder 
cropland setting. Despite the relatively small margin of difference between PBIA and OBIA, the 
findings of this study suggested that pixel-based classification methods, leveraging ultrahigh spatial 
resolution and multi-spectral information, could be significantly robust in delivering superior 
classifications comparable to object-based segmentation techniques. The results provide meaningful 
insights into the selection of the most impactful remote sensing methods for detailed agricultural 
mapping within complex small-scale systems. This in turn, facilitates the planning and management of 
NUS crop production. These findings suggest that a pixel-based classifiers may perform comparably to 
object-based methods for detailed mapping of agriculture in smallholder systems, improving knowledge 
of NUS crop distributions to support management and food security goals.  

5.3. General Conclusion 
The overarching goal of this research study was to accurately map the spatial distribution and patterns 
of neglected and underutilised species (NUS) cultivation in a typically fragmented smallholder cropland 
of Southern Africa. The conclusions drawn from the findings indicate that; 

• Ensemble methods, specifically RF and GTB, exhibited superior performance compared to SVM 
in accurately mapping the precise locations of NUS crops.  

• The GTB classifier exhibited higher classification accuracies based on Band 1 (blue), Excess green 
vegetation (EXG) and Green Normalised Difference Vegetation Index (GNDVI) spectral variables.  

• Both OBIA and PBIA demonstrated high classification accuracies in mapping sweet potato and taro 
among other crops in smallholder croplands. However, it was observed that PBIA slightly 
outperformed OBIA in accurately delineating the crop field boundaries.  

• Combined data and vegetation indices exhibited the highest classification accuracies based on GTB 
and when combined with pixel and object-based image analysis techniques. 
 

Most notably, the study findings indicate that UAV-acquired multispectral remotely sensed data could 
optimally map the spatial patterns and distributions of NUS, amongst others, with an extremely high 
level of precision and accuracy. The utility of UAV remote sensing allows researchers to optimally 
detect and locate even minor occurrences of NUS crops across complex smallholder agricultural 
systems. The advanced mapping capabilities of UAV data could provide complementary and 
informative insights into crop conditions, including health status, growth patterns over time, and 
ultimate yields. Such information can significantly assist smallholder farmers in enhancing their 
management practices and optimising productivity. The utilisation of UAV-multispectral solutions to 
facilitate better management of NUS crop varieties in challenging cropland areas has the potential to 
enhance rural food security and livelihoods. This, in turn, contributes to the overarching goals of 
poverty reduction and hunger alleviation as outlined in South Africa's national sustainable 
development goals. 

 

5.4. Recommendations for future research 
The present study employed UAV-derived imagery and utilised image analysis techniques in 
combination with advanced ML classifiers to map the spatial distribution of NUS crops. Further studies 
are required to evaluate the application of multi-temporal image compositing and time-series analysis 
to detect seasonal patterns and discriminate NUS from other rotation crops. This could offer valuable 
insights into NUS' phenological characteristics and temporal dynamics, aiding in their effective 
monitoring and management. Future studies should consider incorporating spatial, texture, and 
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climatic features and spectral information to effectively delineate NUS crops in smallholder farm 
settings. This will enable a comprehensive evaluation and comparison of different approaches, 
going beyond the scope of this study that focused on a fair comparison between OBIA and PBIA 
using solely single-date spectral information. For example, integrating LiDAR and digital elevation 
data to map topographic and terrain features influencing NUS growth should be considered by 
future studies. There is also a need to consider the combination of UAVs acquired data with 
satellite-borne instruments like synthetic aperture radar (SAR), especially when upscaling the 
applications. SAR data could be invaluable because weather conditions do not significantly impact 
sensors. Optical and radar data could provide a more comprehensive and nuanced view of NUS across 
smallholder fields. 

Moreover, multi-fusion techniques that integrate diverse datasets are suggested to improve NUS crop 
mapping. This could include fusing optical, radar and other satellite datasets (e.g., DEM from LiDAR) 
using approaches like principal component analysis or inverse hyperbolic sine (IHS) transformation. 
This extracts complementary biophysical variables to enhance feature discrimination and map accuracy. 
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APPENDICES 

 

Chapter 2 Appendix 

Table S1: Drone acquired data VIs used in literature. 

UAV Data Vegetation indices References 

Normalized difference vegetation index (NDVI)  [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] 

Normalized difference red edge index (NDRE) [6], [8], [9], [11] 

Renormalized difference vegetation index (RDVI) [8], [11] 

Normalized difference water index (NDWI) [8]  

Maximum difference water index (MDWI) [8] 

Excess green index (EGI) [1], [4], [13] 

Enhanced vegetation index (EVI2) [2], [15] 

green difference vegetation index (GDVI) [10], [11], [14]  

Difference Vegetation Index [11] 

Green normalized difference vegetation index 
(GNDVI) 

[2], [9], [10], [11], [16], [14] 

Normalized Green red difference index (NGRDI)  [8] 

Simple ratio (SR)  [2], [10], [11], [14] 

Modified Simple Ratio Index (MSRI) [10], [11] 

Modified SAVI 2 [11] 

Soil-adjusted Vegetation Index (SAVI) [11] 

Optimized Soil-adjusted Vegetation Index (OSAVI) [15], [8] 

Green and Red ratio Vegetation Index (GRVI) [9] 

Red-Edge Simple Ratio (SRre)  [10] 

Normalized difference photosynthetic vigor ratio        [5] 

TCARI [8] 

Nutritional nitrogen index (NNI) [17] 

Crop water stress index [8] 

Chlorophyll Vegetation Index [11] 

Green Chlorophyll Index [11] 

Chlorophyll concentration index  [18] 

Chlorophyll reflectance red-edge index  [12] 

Modified Chlorophyll Absorption Index [11] 

Crop water stress index (CWSI). [19] 

Moisture stress index  [8] 

Photochemical reflectance index [8] 

canopy difference [19] 

B1/B2 [10] 

Green leaf index [13] 

Visible atmospherically resistant index [13] 
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Table S2: Satellite data acquired VI’s used in literature  
Satellite (Vegetation indices) References 

NDVI  [20], [21], [22], [23], [24], [25], [26], [27], 
[28], [29], [30], [31] 

DEV NDVI  [20] 

normalized difference red edge index  [21] 

enhanced vegetation index (EVI2) [30], [32], [33] 

Difference Vegetation Index  [24] 

green normalized difference vegetation index (GNDVI)  [25], [26], [31] 

simple ratio (SR)   [21] 

Ratio Vegetation Index (RVI)  [24] 

Soil-adjusted Vegetation Index (SAVI)  [23], [25], [26], [28] 

Vegetation Condition Index (VCI)  [20] 

Simple ratio red edge  [21] 

TCARI  [21] 

nutritional nitrogen index (NNI)  [17] 

Chlorophyll Vegetation Index  [21] 

Green Chlorophyll Index  [21] 

chlorophyll reflectance red-edge index   [21] 

Modified Chlorophyll Absorption Index  [21] 

Triangular vegetation index (TVI)  [21] 

modified triangular index 2  [21] 

Normalized Difference Water Index  [30] ,[31] 

 
 
Table S3: Drone platforms used in mapping specific NUS crop attributes other than stomatall 
conductance.  

Drone sensor type Crop Type Research domain Reference 

DJI Phantom 4 Pro, 
M600 Pro 

Palmer amaranth  Modelling, Phenology/growth, Monitoring, Regression and 
prediction 

[1] 

DJI Phantom 4 Pro Bambara groundnut Modelling, Production/crop yield, Phenology/growth, 
Regression and prediction 

[2] 

MikroKopter JR11X Sorghum & Amaranth  Modelling, Phenology/growth, Regression and prediction [3] 

DJI S1000 UAV, DJI 
Phantom 4 Pro 

Amaranthus Classification, Phenology/growth [34] 

DJI Phantom 4 Pro Cotton & Palmer 
amaranth 

Classification, Land suitability, Production/crop yield, 
Phenology/growth, 

[4] 

Quadcopter G-Q45 Ruzi grass & Millet Modelling, Production/crop yield, Phenology/growth, 
Regression and prediction 

[17] 

Hexacopter UAV, M600 
Pro 

Tumeric Modelling, Physiology, Phenology/growth, Regression and 
prediction 

[18] 

  Sorghum  Phenotyping, growth, production [35] 

DJI Phantom 4 Pro Bambara groundnut Modelling, Phenotyping/crop genetics, Physiology, 
Phenology/growth, Regression and prediction 

[36] 

DJI 100 Alfalfa Phenotyping/crop genetics, Phenology/growth [9] 

Parrot Bebop 2 Pro, Chickpea & Lentil Classification, Physiology and crop vigour, 
Phenology/growth 

[10] 
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Sensefly eBee RTK Red clover Land suitability, Modelling, Phenology/growth [14] 

DJI Phantom 4 Pro Legumes Modelling, Climate adaptation, Production/crop yield, 
Physiology, Phenology/growth. 

[11] 

Octocopter Dry bean Phenotyping/crop genetics, Production/crop yield, 
Phenology/growth 

[16] 

DJI Inspire 1 Sweet potato Phenotyping/crop genetics, Climate adaptation, 
Production/crop yield, Physiology, Phenology/growth 

[12] 

Cessna Taro Classification, Land suitability, Production/crop yield  [37] 

DJI S1000 UAV Sweet potato Modelling, Production/crop yield, Physiology, 
Phenology/growth 

 [38] 

Mavic Mini Chickpea Modelling, Climate adaptation, Physiology, 
Phenology/growth, Regression and prediction 

 [13] 

 

Table S4: Drone platforms used to map the spatial distribution of various NUS crops.  

Drone used in study Crop assessed 

Octocopter Dry bean [16] 
Hexacopter UAV Tumeric [18] 

Cessna Taro [37] 

Parrot Bebop 2 Pro Chickpea and Lentil [10] 

DJI Inspire 1 Sweet potato [12]  

DJI 100 Alfalfa (Medicago sativa L) [9] 

DJI S1000 UAV Amaranthus  [34], Sweet potato[38] 

DJI Phantom 4 Pro Palmer amaranth [1], Bamara groundut [2], Amaranthus  [34], Palmer amaranth (Amaranthus palmeri 
S. Watson) [4]  , Bamara groundut [7] Legume [11]. 

M600 Pro Palmer amaranth [1],  Tumeric [18] 

Mavic Mini Chickpea [13] 

quadcopter G-Q45 Ruzi grass and Millet [17] 

Sensefly eBee RTK Red clover [14] 

MikroKopter JR11X sorghum and amaranth [3] 

 

Table S5:  Satellite borne sensors used to assess NUS crops.  
Reference Satellite Sensor Crop type Research domain 

 [28] Landsat Thematic mapper  Chickpea, lentil, vetch Classification, Regression and 
prediction, Climate adaptation, 
Production/crop yield, 
Phenology/growth, Regression and 
prediction 

[22] Landsat 7 Sorghum Regression and prediction, Land 
suiitability, Climate adaptation, 
Physiology and crop vigour, Phenology 

[20] MODIS Teff, haricot beans, 
sweet potato (Ipomoea 
batatas) and taro 
(Colocasia esculenta). 

Land suiitability, Modelling, Climate 
adaptation, Production/crop yield,  
Phenology, Regression and prediction 

[33] MODIS C3 and C4 crops Regression and prediction, Land 
suiitability, Modelling, Climate 
adaptation, Production 

[17] Planet Ruzi grass & Millet Modelling, Production/crop yield, 
Phenology/growth, regression 

[17] Sentinel-2 Ruzi grass & Millet Modelling, Production/crop yield, 
Phenology/growth, regression 

[21] Sentinel-2 Cotton & Sugar beet Modelling, Production/crop yield, 
Physiology, Phenology/growth, 
regression 
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[23] Sentinel-2 Sorghum, alfalfa, Land suiitability, Modelling, Climate 
adaptation, Production/crop yield, 
Phenology, Regression and prediction 

 [39] Sentinel-2 Chickpea, faba bean, 
field pea, lentil, vetch 

Classification, land suitability, 
Phenology/growth 

[25] Sentinel-2 Sweet potato Phenotyping, Climate adaptation, 
Phenology/growth, Regression, and 
prediction 

[26] Sentinel-2 Sweet potato Classification, Regression and 
prediction, Climate adaptation, 
Production/crop yield, Phenology  

[27] Sentinel-2 Legumes  Modelling, Climate adaptation, 
Physiology, Phenology/growth, 
regression 

[30] Sentinel-2 Sorghum, Alfalfa, and 
dry beans 

Classification, land suitability, Climate 
adaptation,Phenology/growth 

 [29] Worldview 2 Sweet potato Classification, land suitability, Climate 
adaptation,Phenology/growth 

[24] LiDAR  Sorghum  Phenotyping/crop genetics, Phenology 

[40] LiDAR  Cassava Regression and 
prediction,Phenotyping/crop genetics,  
Physiology,  Phenology,  

[41] LiDAR  Sweet potato  Regression and prediction, Physiology,  
Phenology,  

[33] Global Ozone Monitoring 
Experiment-2 satellite 

C3 and C4 crops Regression and prediction, Land 
suitability, Modelling, Climate 
adaptation, Production 

[31] Landsat 8 Alfalfa Classification,, Land suitability, 
Production/crop yield, Climate 
adaptation, Phenology 

 

 

 

Table S6:  Satellites Datasets used  by different institution to assess various research domains of NUS. 
Satellite sensor articles and Institutions  

Author Article title Publication Area Crop Type Institutions  

[20] Assessing the spatio-temporal 
variability of NDVI and VCI as 
indices of crops productivity in 
Ethiopia: a remote sensing 
approach 

2021 Ethiopia Teff, haricot 
beans, sweet 
potato (Ipomoea 
batatas) and taro 
(Colocasia 
esculenta). 

Copperbelt University, Kitwe, Zambia; b 
Institute of Climate and Society,  
Mekelle University, Mekelle, Ethiopia. 
University of Nigeria, Nsukka, Enugu, Nigeria.  
Ghent University, Ghent, Belgium. 

[17] Nitrogen variability assessment of 
pasture fields under an integrated 
crop-livestock system using UAV, 
PlanetScope, and Sentinel-2 data 

2022 Brazil Ruzi grass & 
Millet 

Federal Institute of Education, Science and 
Technology of Alagoas, 57120-000 Satuba, 
Alagoas, Brazil.. 
University of Campinas, 13083-896 Campinas, 
Sao ˜ Paulo, Brazil. 

[21] Remotely sensed vegetation indices 
for crop nutrition mapping 

2020 Iran Cotton & Sugar 
beet 

 Shahid Rajaee Teacher Training University, 
Tehran, 
16785-136, Iran. E-mail: a_sharifi@sru.ac.ir 

[23] Optimized land use through 
integrated land suitability and gis 
approach in west el-minia 
governorate, upper Egypt 

2021 Egypt  Sorghum & 
alfalfa, 

Ain-Shams University, Cairo 11241, Egypt. 
National Authority for Remote Sensing and Space 
Sciences, Cairo 11769, Egypt;  
National Authority for Remote 
Sensing and Space Sciences (NARSS),  
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[22]  Water requirement and crop 
coefficients of sorghum in apodi 
plateau [Necessidade hídrica e 
coeficientes de cultivo do sorgo nas 
condições da chapada do apodi] 

2021 Brazil Sorghum Research developed at Empresa de Pesquisa 
Agropecuária do Rio Grande do Norte, Apodi, 
RN, Brazil 
Faculdade UNINASSAU, Caruaru, PE, Brazil  
Universidade Federal Rural do Semi-
Árido/Centro de Ciências Agrárias/Departamento 
de Ciências Agronômicas e Florestais, Mossoró, 
RN, Brazil 

[39] Needle in a haystack: Mapping rare 
and infrequent crops using satellite 
imagery and data balancing 
methods 

2019 Australia Chickpea, faba 
bean, field pea, 
lentil, vetch 

CSIRO Agriculture & Food, St Lucia, QLD 4067, 
Australia CSIRO Data61, Docklands, VIC 3008, 
Australia CSIRO Agriculture & Food, Floreat, 
WA 6014, Australia 

[24]  Crop 3D—a LiDAR based platform 
for 3D high-throughput crop 
phenotyping 

2018 China Sorghum  University of Chinese Academy of Sciences, 
Beijing China. 
Beijing Normal University, Beijing 100875, 
China. 

[33]  Improving the monitoring of crop 
productivity using spaceborne 
solar-induced fluorescence 

2016 USA C3 and C4 crops Stanford University, Stanford, CA 94305,USA 
Nanjing University, Nanjing 210023, China,  
German Research Center for Geosciences (GFZ), 
Telegrafenberg A17, 14473 Potsdam, Germany, 
National Aeronautics and Space Administration 
Goddard Space Flight Center, Greenbelt, MD 
20771, USA 

[25]  Use of remote sensing to 
characterize the phenological 
development and to predict sweet 
potato yield in two growing seasons 

2021 Brazil Sweet potato Sao ˜ Paulo State University. 
Federal University Lavras, Brazil. 
Taquaritinguense Institute of Higher Education, 
Brazil 

[26]  Predicting on multi-target 
regression for the yield of sweet 
potato by the market class of its 
roots upon vegetation indices 

2021 Brazil Sweet potato Sao ˜ Paulo State University. 

  [40] Prediction of aboveground biomass 
of three cassava (manihot 
esculenta) genotypes using a 
terrestrial laser scann 

 2021 Colombia Cassava Texas A&M University, College Station, TX, 
USA 
International Center for Tropical Agriculture, 
Santiago de Cali 6713, Colombia 

  [27] Application of Sentinel-2A data for 
pasture biomass monitoring using a 
physically based radiative transfer 
model 

 2018 England Legumes  University of Reading, Reading RG6 6UR, UK 

  [28] Biophysical and yield information 
for precision farming from near-
real-time and historical Landsat TM 
images 

 2003 Syria Chickpea, lentil, 
vetch 

Yale University, New Haven. 

  [41] Estimating Leaf Water Content 
through Low-Cost LiDAR 

 2022 Japan Sweet potato  Chiba University, 648, Matsudo, Matsudo-shi 
271-8510, Japan. 

  [29] Parcel-level mapping of crops in a 
smallholder agricultural area: A 
case of central China using single-
temporal VHSR imagery 

 2020 China Sweet potato, China University of Geosciences (CUG), Wuhan 
430074, PR China. 
University of Connecticut, Storrs, CT 06269, 
USA. 
Key Laboratory of Rule of Law Research, 
Ministry of Natural Resources, Wuhan 430074, 
PR China 

[31] Crop type detection using an object-
based classification method and 
multi-temporal Landsat satellite 
images,Paddy and Water 
Environment 

2022 Iran Alfalfa  Department of Water Resources Study 
and Research, Water Research Institute, Tehran, 
Iran 

  [30] Exploring machine learning 
algorithms for mapping crop types 
in a heterogeneous agriculture 
landscape using Sentinel-2 data. A 
case study of Free State Province, 
South Africa 

 2020 Soutth 
Africa  

Sorghum, 
Alfalfa and dry 
beans 

Geo-information Division, Institute for soil water 
and climate, Agricultural Research Council. 
University of Witwatersrand. 
Private Bag x3, Wits 2050, Johannesburg, South 
Africa. 
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Table S7:  Institutions that utilized UAV borne sensors to assess NUS crops. 
UAV articles and Institutions  

Author Article title Publication Area Crop Type Institutions  

[1] Seed rain potential in late-season 
weed escapes can be estimated 
using remote sensing 

2021 United States Palmer 
amaranth  

Texas A&M University, College 
Station, TX, USA; 

[2] The feasibility of using a low-
cost near-infrared, sensitive, 
consumer-grade digital camera 
mounted on a commercial UAV 
to assess Bambara groundnut 
yield 

2022 Malaysia Bamara 
groundut 

University of Nottingham 
Malaysia Campus, Semenyih, 
Malaysia. 
The University of Adelaide, Glen 
Osmond, Australia. 
Charles Darwin University,  
Casuarina, Australia. 
 University of Nottingham,  
Nottingham, UK. 

[3] Assessment of Weed 
Classification Using 
Hyperspectral Reflectance and 
Optimal Multispectral UAV 
Imagery 

2021 Australia sorghum and 
amaranth  

The University of Queensland, 
Gatton Campus, QLD 4343, 
Australia. 
University Putra Malaysia, 
Serdang 43400, Selangor, 
Malaysia 

[34] Field identification of weed 
species and glyphosate-resistant 
weeds using high resolution 
imagery in early growing season 

2020 USA Amaranth Shiraz University, Shiraz, Iran. 
North Dakota State University, 
Fargo, ND, USA. 
Montana State University, 
Bozeman, MT, USA. 
 Yazd University, Yazd, Iran 

[4] Mapping and Estimating Weeds 
in Cotton Using Unmanned 
Aerial Systems-Borne Imagery 

2020 United States Cotton, 
Palmer 
amaranth 
(Amaranthus 
palmeri S. 
Watson) 

Texas A&M University, College 
Station, TX 77843, USA. 

[17] Nitrogen variability assessment 
of pasture fields under an 
integrated crop-livestock system 
using UAV, PlanetScope, and 
Sentinel-2 data 

2022 Brazil Ruzi grass & 
Millet  

Federal Institute of Education, 
Science and Technology of 
Alagoas, 57120-000 Satuba, 
Alagoas, Brazil. 
University of Campinas, 13083-
896 Campinas, Sao ˜ Paulo, 
Brazil. 

[35] Corn and sorghum phenotyping 
using a fixed-wing UAV-based 
remote sensing system 

2016 United States  Sorghum   

[7] Use of Unmanned Aerial 
Vehicles (UAVs) Imagery in 
Phenotyping of Bambara 
Groundnut 

2020 Selangor Bambara 
groundnut 

Semenyih, Selangor, Malaysia. 
University of Nottingham 
Malaysia. 
University of Reading, Early 
Gate, Reading, UK 

[9] Phenomics-Assisted Selection 
for Herbage Accumulation in 
Alfalfa (Medicago sativa L.) 

2021 United States Alfalfa 
(Medicago 
sativa L) 

University of Florida, Gainesville, 
FL, United States. 
EMBRAPA-ACRE, Rio Branco, 
Brazil. 

[10] Drone RGB Images as a Reliable 
Information Source to 
Determine Legumes 
Establishment Success 

2021 Spain Chickpea & 
Lentil 

Universitat Politècnica de 
València. 
Instituto Madrileño de 
Investigación y Desarrollo Rural, 
Agrario y Alimentario (IMIDRA), 
Finca “El Encin”. 
Areaverde MG Projects SL. 
C/Oña, 43, 28933 Madrid, Spain. 

[14] The Application of an 
Unmanned Aerial System and 
Machine Learning Techniques 
for Red Clover-Grass Mixture 

2021 Estonia Red clover Estonian University of Life 
Sciences, Kreutzwaldi 5, 
EE-51006 Tartu, Estonia. 
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Yield Estimation under Variety 
Performance Trials 

University of Brighton, Lewes 
Road, Brighton BN2 4JG, UK. 
Agricultural Research Center, 4/6 
Teaduse St., 75501 Saku, Estonia.  
National Chung Hsing University, 
Taichung 402, Taiwan. 

[11] Prediction of Biomass and N 
Fixation of Legume-Grass 
Mixtures Using Sensor Fusion 

2021 Germany Legume Universität Kassel, Witzenhausen, 
Germany 

[16] High-throughput field 
phenotyping in dry bean using 
small unmanned aerial vehicle 
based multispectral imagery 

2018 United States Dry bean Washington State University, 
United States.  
 
University of Missouri, 211 
Agricultural Engineering 
Building, Columbia, MO, United 
States. 
USDA–ARS, Grain Legume 
Genetics and Physiology 
Research Unit, 24106 N. Bunn 
Rd., Prosser, WA, United States 

[12] Phenotyping of productivity and 
resilience in sweetpotato under 
water stress through UAV-based 
multispectral and thermal 
imagery in Mozambique 

2021 Mozambique Sweet potato International Potato Center (CIP), 
Lima, Peru 
Universidad Nacional Agraria La 
Molina (UNALM), Lima, Peru. 
International Potato Center (CIP), 
Maputo, Mozambique. 
International Potato Center (CIP), 
Nairobi, Kenya. 

  [37] Mapping wild taro with color-
infrared aerial photography and 
image processing 

 2007 United States  Taro USDA-ARS, Integrated Farming 
and Natural Resources Research 
Unit, 
2413 E. Highway 83, Weslaco. 

  [38] Estimation of ground surface and 
accuracy assessments of growth 
parameters for a sweet potato 
community in ridge cultition 

 2019 Japan Sweet potato The University of Tokyo, 
Graduate School of Agricultural 
and Life Sciences,1-1-1 Yayoi, 
Bunkyo, 
Tokyo 113-8657, Japan. 
National Institute for 
Environmental Studies, 16. 
Takasaki University of Health and 
Welfare, 54 Nakaorui-machi, 
Takasaki, 
Gunma 370-0033, Japan. 

  [13] Uav-Based Imaging for 
Prediction of Chickpea Crop 
Biophysical Parameters and 
Yield 

 2022 Israel Chickpea Newe Ya’ar Research Center, 
Agricultural Research 
Organization (ARO) - Volcani 
Center, Ramat Yishay 30095, 
Israel. 
The Hebrew University of 
Jerusalem, Rehovot 7610001, 
Israel.  
Field Crops and Natural 
Resources Department, 
Agricultural Research 
Organization (ARO) – Gilat 
Research Center, Gilat 8531100, 
Israel 

[42] Classifying Breadfruit Tree 
using Artificial Neural Networks 

2018 China Breadfruit Technological Institute of the 
Philippines, Manila Philippines. 
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Figure S1: Countries and various sensors  they used to assess NUS. 

 

Figure:S2 Countries which assessed various NUS crops. 
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Chapter 3 Appendix 

Table S2-1: Band 4 JM distances 
    

B4 
    

 
Taro SP NV SU BL BU M1 M2 

Taro 0 0.963 0.699 0.783 0.836 0.849 0.694 0.770 
SP 0.963 0 0.606 0.841 0.605 0.472 0.736 0.549 
NV 0.699 0.606 0 0.698 0.574 0.531 0.401 0.470 
SU 0.783 0.841 0.698 0 0.517 0.688 0.802 0.607 
BL 0.836 0.605 0.574 0.517 0 0.361 0.749 0.318 
BU 0.849 0.472 0.531 0.688 0.361 0 0.734 0.22 
M1 0.69 0.736 0.401 0.802 0.745 0.734 0 0.676 
M2 0.77 0.548 0.470 0.607 0.318 0.22 0.676 0 

 

Table S2-2: Band 5 JM distances 

    B5      
Taro SP NV SU BL BU M1 M2 

Taro 0 0.508 0.313 0.868 0.636 0.617 0.602 0.358 
SP 0.508 0 0.365 1.034 0.687 0.653 0.813 0.538 
NV 0.313 0.365 0 0.966 0.622 0.591 0.711 0.355 
SU 0.868 1.034 0.966 1.490 1.050 1.053 0.806 0.859 
BL 0.636 0.687 0.622 1.050 0 0.187 0.712 0.747 
BU 0.617 0.653 0.591 1.053 0.187 0 0.717 0.736 
M1 0.602 0.813 0.711 0.806 0.712 0.717 0 0.658 
M2 0.358 0.538 0.355 0.859 0.747 0.736 0.658 0 

 

Table S2-3: EXG index JM distances  
    

EXG 
    

 
Taro SP NV SU BL BU M1 M2 

    Taro  0 0.686 0.334 0.523 0.706 0.705 0.613 0.254 
SP 0.686 0 0.504 0.894 0.739 0.592 0.943 0.667 
NV 0.334 0.504 1.490 0.681 0.629 0.553 0.755 0.332 
SU 0.523 0.894 0.681 0 0.799 0.845 0.257 0.583 
BL 0.706 0.739 0.629 0.799 1.490 0.425 0.836 0.734 
BU 0.705 0.592 0.553 0.845 0.425 1.490 0.886 0.726 
M1 0.613 0.943 0.755 0.257 0.836 0.886 0 0.663 
M2 0.254 0.667 0.332 0.583 0.734 0.726 0.663 0 
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Figure S2-1: Variable importance scores of (a) RF and (b) GTB with dataset 1.  

 

 
Figure S2-2: Variable importance scores of (a) RF and (b) GTB with dataset 2. 
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Figure S2-3: user and producer accuracies of (a) RF, (b) GTB & (c) SVM in conjunction with 
dataset 1 

 
 

 

 

Figure S2-4: user and producer accuracies of (a) RF, (b) GTB & (c) SVM in conjunction with 
dataset 2.  
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Figure S2-5: areal extents per class of (a) RF, (b) GTB, (c) SVM with dataset 1 
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Figure S2-6: areal extents per class of (a) RF, (b) GTB, (c) SVM with dataset 2 

 

 

 

 

Figure S2-7: NUS crop distribution maps of (a) RF (b) GTB (c) SVM with dataset 1. 
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Figure S2-8: NUS crop distribution maps of (a) RF (b) GTB (c) SVM with dataset 2.. 
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Chapter 4 Appendix 

 

 

Figure S3-1: Variable importance scores of (a) PBIA-GTB, (b) OBIA-GTB with dataset 1. 

 

Figure S3-2: Variable importance scores of (a) PBIA-GTB, (b) OBIA-GTB with dataset 2. 

 

 

Figure S3-3: user and producer accuracies of (a) PBIA-GTB, (b) OBIA-GTB with dataset 1. 
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Figure S3-4: user and producer accuracies of (a) PBIA-GTB, (b) OBIA-GTB with dataset 2. 

 

  
 

 
 
Figure S3-5: Areal extents per class of (a) PBIA-GTB, (b) OBIA-GTB with dataset 1 
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Figure S3-6:Areal extents per class of (a) PBIA-GTB, (b) OBIA-GTB with dataset 2. 

 

 

 

Figure S3-7: NUS crop distribution maps of (a) PBIA-GTB (b) and OBIA-GTB with dataset 1. 

 

 

Figure S3-8:NUS crop distribution maps of (a) PBIA-GTB (b) and OBIA-GTB with dataset 2. 
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