
UNIVERSITY OF THE WESTERN CAPE

Semantic data access for relational

databases using an ontology

by

Yahlieel Jafta

A thesis submitted in fulfilment for the

degree of Master of Science

in the

Faculty of Natural Sciences

Department of Computer Science

Supervisor: Prof Louise Leenen

Co-supervisor: Prof Thomas Meyer

March 2024

http://etd.uwc.ac.za/

University Web Site URL Here (include http://www.uwc.ac.za)
2858132@myuwc.ac.za
Faculty Web Site URL Here (include http://https://www.uwc.ac.za/Faculties/NS/Pages/Home.aspx)
Department or School Web Site URL Here (include http://)

Declaration of Authorship

I,Yahlieel Jafta, declare that this thesis “Semantic data access for relational databases

using an ontology” is my own work, that it has not been submitted before for any degree

or assessment at any other university, and that all the sources I have used or quoted

have been indicated and acknowledged by means of complete references.

Signed:

Date:

i

27 March 2024

http://etd.uwc.ac.za/

Abstract

Data analysis-based decision-making is performed daily by domain experts. As data

grows in size and heterogeneity, accessing relevant data becomes challenging. In an

Ontology-based data access (OBDA) approach, ontologies are advocated as a suitable

formal tool to address complex data access. This technique falls within the Semantic

Web domain, combining a domain ontology with a data source by using a declarative

mapping specification to enable data access using a domain vocabulary. In this research,

we investigate this approach by: a) studying the theoretical background that enables

this technique; b) conducting a literature review on the existing open source tools that

implement OBDA; c) implementing OBDA on a “real-world” relational dataset using

an OBDA tool; and d) providing results and analysis of query answering. We selected

Ontop (https://ontop-vkg.org) among various OBDA tools to illustrate how this tech-

nique enhances the data usage of the GitHub community. Ontop is an open-source tool

applying OBDA in the domain of relational databases. We used the GHTorrent dataset,

a relational database, in combination with the SemanGit ontology for our implemen-

tation. We perform a set of queries to highlight a subset of the features of this data

access approach. The results from the queries look positive and can assist various use

cases related to GitHub data with a semantic approach and integrate data from plat-

forms integrating with GitHub directly or indirectly. The feature of querying in domain

vocabulary without the need to understand the underlying data and schema stands out

and provides benefits in practice. However, we observe the practical impediments in the

manual development of a domain ontology and creating a mapping specification, the

most complicated OBDA design-time task. Finally, we discuss the selected queries and

conclude with future research.

ii

http://etd.uwc.ac.za/

Acknowledgements

I want to extend my sincere gratitude to the following individuals and organizations for

their support and contributions to my MSc thesis in Computer Science:

I sincerely appreciate the guidance, expertise, and mentorship provided by my supervi-

sor, Louise Leenen, and co-supervisor, Thomas Meyer. Their insights and encourage-

ment were invaluable throughout this research.

I owe my family and friends a debt of gratitude for their support, patience, and under-

standing during the challenging journey of my MSc studies.

I am thankful for the resources the University of the Western Cape and the Computer

Science Department provided, which greatly facilitated my research.

This thesis would not have been possible without the collective efforts and support of

the individuals and organizations mentioned above. Thank you all for being an essential

part of my academic journey.

iii

http://etd.uwc.ac.za/

iv

Publication

• Title: Investigating Ontology-based data access with GitHub

Authors: Yahlieel Jafta, Louise Leenen, Thomas Meyer

Jafta, Y., Leenen, L., Meyer, T. (2023). Investigating Ontology-Based Data Access

with GitHub. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture

Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-

3-031-33455-9 38, pp. 644–660 [52]

http://etd.uwc.ac.za/

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Publication iv

List of Figures viii

Abbreviations x

1 Introduction 1

1.1 Problem Statement . 1

1.2 Research Question . 5

1.3 Research Objectives . 6

1.4 Methodology . 6

1.4.1 Problem identification and motivation 6

1.4.2 Objectives for a solution . 7

1.4.3 Design and development . 7

1.4.4 Evaluation . 7

1.4.5 Communication . 7

1.5 Thesis Structure and Outline . 8

2 Background 9

2.1 Semantic Web . 9

2.2 Conceptualization . 10

2.3 Ontology . 12

2.4 Description Logic . 14

2.5 OWL . 15

2.6 Connecting ontologies and databases . 20

2.6.1 SPARQL . 20

2.6.2 OBDA Framework . 23

2.6.3 Query answering . 24

2.6.4 Mapping . 25

v

http://etd.uwc.ac.za/

Contents vi

2.7 Conclusion . 26

3 Literature Review 27

3.1 Introduction . 27

3.2 Literature Review Methodology . 28

3.3 Use cases . 30

3.3.1 Manufacturing/Machine Diagnoses 30

3.3.2 Oil and Gas . 31

3.3.3 Biomedical . 31

3.3.4 Biology . 31

3.3.5 Healthcare . 31

3.3.6 Services . 32

3.3.7 Maritime . 32

3.3.8 Big Data . 32

3.4 Data sources, Ontologies and Mappings 33

3.4.1 Data sources . 33

3.4.2 Ontologies . 33

3.4.3 Mappings . 33

3.5 Optimization . 34

3.6 Evaluation and Results . 35

3.7 Discussion . 36

3.8 Conclusion . 36

4 Ontology-Based Data Access Tool, Dataset and Ontology 37

4.1 Introduction . 37

4.2 OBDA tool . 38

4.2.1 Ontop system . 39

4.2.2 Query representation . 40

4.2.3 SPARQL to SQL translation . 40

4.2.3.1 SPARQL to IQ . 43

4.2.3.2 IQ to SQL . 45

4.3 The GHTorrent Dataset . 45

4.3.1 GHTorrent Data Collection . 47

4.3.2 GHTorrent Limitations . 50

4.4 SemanGit Ontology . 51

4.4.1 SemanGit limitations . 53

4.4.2 SemanGit extensions . 53

4.4.2.1 Class definitions . 54

4.4.2.2 Property definitions . 55

4.5 Conclusion . 56

5 Implementation 57

5.1 Introduction . 57

5.2 Preliminaries . 57

5.3 Database setup . 58

5.4 Mapping GHTorrent to the SemanGit Ontology 58

5.4.1 Mapping assertions . 58

http://etd.uwc.ac.za/

Contents vii

Figure 5.1 mapping assertions 59

Figure 5.2 mapping assertions 60

Figure 5.3 mapping assertions 61

Figure 5.4 mapping assertions 62

Figure 5.5 mapping assertions 63

Figure 5.6 mapping assertions 64

Figure 5.7 mapping assertions 64

5.5 Querying GHTorrent with SPARQL . 66

5.6 Discussion . 76

5.7 Conclusion . 77

6 Conclusion 78

6.0.1 Research sub-question 1 . 79

6.0.2 Research sub-question 2 . 79

6.0.3 Research sub-question 3 . 80

6.0.4 Research sub-question 4 . 80

6.1 Future work . 81

6.2 Concluding Comments . 82

A Literature review summary 83

B Mapping specifications 106

C Ontology 113

Bibliography 117

http://etd.uwc.ac.za/

List of Figures

1.1 OBDA Architecture [117] . 4

2.1 A sample conceptualization of the GitHub domain with a user, commit,
and repository [117]. 11

2.2 RDF graph model based on table 2.1 . 22

3.1 Percentage of reviewed papers by year . 28

3.2 OBDA/OBDI generic structure . 29

3.3 Number of papers per domain . 30

4.1 GHTorrent MySQL Database Schema . 48

4.2 SemanGit Ontology summary (classes and properties) 52

5.1 User entity mapping . 59

5.2 Repository (Project) entity mapping . 61

5.3 Commit entity mapping . 61

5.4 Project commits mapping . 62

5.5 Pull Request entity mapping . 63

5.6 Pull Request commits mapping . 64

5.7 Pull Request event history mapping . 64

5.8 Merged Pull Requests mapping . 65

5.9 SPARQL query retrieving commits of authors from the “rails” GitHub
repository. 66

5.10 Angular and React repo commits by year 71

5.11 Angular and React top 10 contributors by commits 73

5.12 Angular commit author commits vs. pull requests 74

B.1 Commit map . 106

B.2 Commit Comment map . 106

B.3 Follow map . 107

B.4 Issue map . 107

B.5 Issue Label map . 107

B.6 Organization member map . 107

B.7 Programming language map . 108

B.8 Project map . 108

B.9 Project commit map . 108

B.10 Project label map . 108

B.11 Project programming language map . 109

B.12 Pull Request map . 109

viii

http://etd.uwc.ac.za/

List of Figures ix

B.13 Pull Request comment map . 109

B.14 Pull Request commit map . 109

B.15 Pull Request history map . 110

B.16 Pull Request merge map . 110

B.17 Pull Request user map . 110

B.18 Pull Request user map . 110

B.19 User map . 111

B.20 User commit map . 111

B.21 User programming languages map . 111

B.22 Repository milestone map . 111

B.23 Watcher map . 112

C.1 SemanGit Ontology summary (classes and properties) 114

C.2 SemanGit Ontology metrics . 115

C.3 Ontology visualisation using WebVOWL [74]. 116

http://etd.uwc.ac.za/

Abbreviations

ADNI Alzheimer Disease Neuroimaging Initiative

BSBM Berlin SPARQL Benchmark

CQs Conjunctive Queries

DBMS Database Management System

DL Description Logic

dbDist DISTINCT by the database engine

obdaDist DISTINCT by the OBDA engine

ETL Extract, Transform, and Load

F-Logic Feature-based Description Logic

HDF5 Hierarchical Data Format version 5

HDFS Hadoop Distributed File System

IQ Intermediate Query

IRIs Internationalized Resource Identifiers

KG Knowledge Graph

LLMs Large Language Models

MWS Materialised Window Signatures

OBDA Ontology-based Data Access

OBDI Ontology-based Data Integration

OWL Web Ontology Language

PR Pull Request

REST Representational state transfer

RDF Resource Description Framework

RDFS RDF Schema

RDMS Relational Database Management Systems

RDB2RDF Relational Databases to RDF

RML RDF Mapping Language

x

http://etd.uwc.ac.za/

Abbreviations xi

R2RML RDB to RDF Mapping Language

Scalable Semantic Analytics Stack SANSA

SemanGit Semantic Git

SPARQL SPARQL Protocol and RDF Query Language

SQO Semantic Query Optimization

SUS System Usability Scale

TDB Triple Database

Turtle Terse RDF Triple Language

VCS Version Control System

VKG The Virtual Knowledge Graph

W3C World Wide Web Consortium

WWW World Wide Web

http://etd.uwc.ac.za/

Chapter 1

Introduction

1.1 Problem Statement

Information retrieval is a critical process in organizations for extracting insights to

achieve strategic organizational objectives. In various domains, clients require access

to domain-specific services exported by systems [14]. Information has become the focal

point of society and a driver of innovation in analytics with the intent to obtain valu-

able insights to drive decision-making. Large enterprises today use several information

systems, each with its database to store input and functional data [42]. Domain experts

use data analysis to inform decision-making. However, gaining access to the required

data is becoming a challenge due to data access generally being performed by technical

experts who translate the requirements of domain experts into the necessary analytical

output, creating a bottleneck at scale [61]. While big data analytics plays a pivotal role

in the modern-day enterprise, data scientists required to produce the analytical output

spend significant time on the data preparation and integration phase [31].

Let us take the importance of data management in business into consideration. We

can deduce that the challenge of data collection and providing adequate access at a

reasonable cost is of utmost importance for businesses today [31]. Even though data

integration is a known problem in data management, the need to address the problem of

data access and integration in the climate of big data is increasing and poses a significant

challenge. Data access and integration pose some challenges. One of these challenges

is the complexity related to modeling data integration applications. Another challenge

is the need for more data integrity across various data sources, which can result in

inconsistent data or data redundancy. Processing and reasoning on queries become

more complex as a result of this. According to Gusenkov et al. [42], the problem of

data integration is closely related to the problem of developing intelligent search systems

1

http://etd.uwc.ac.za/

Chapter 1 Introduction 2

(intelligent data access), given that both these problems address the underlying factor of

providing users (i.e., data scientists, domain experts, application end-users or machines)

access to heterogeneous data.

The two main ways to handle access to heterogeneous data are procedural and declarative

[68].

• The procedural methodology takes a bottom-up approach by addressing the prob-

lem at the data source level. Generally, this includes specific software service

solutions. A few approaches apply the procedural methodology, such as federated

databases [102] and mediators [21]. Federated databases involve defining relation-

ships between various databases where mediators consist of modules at the client

level that convert the data from various sources into a suitable form. Both these

approaches are expensive to maintain. Whenever there is a change in the schema

or structure of the underlying data sources, the software that facilitates data access

must be updated.

• The declarative approach, also called a top-down approach, defines a global repre-

sentation or shared conceptualization valid for the domain of interest underlying

the data sources. This conceptualization links intentional domain terms to actual

data. These terms are then specified to access information [14].

The central theme of this thesis revolves around the declarative approach. To realize

such a solution, an approach known as Ontology-based data access (OBDA) is advo-

cated for; a technique that utilizes ontologies as a suitable formal tool for data access

[92]. An ontology is a formal specification of the concepts within a given domain and

the relationships between these concepts [39]. It is formalizing domain knowledge and

expressing the concepts in a shared vocabulary. This conceptualization can be used

to reason about domain concepts and perform inference, thus giving rise to interesting

applications and solutions such as data access [14] and data integration [42]. Given the

heterogeneity of data in “real-world” information systems, the formal specification of

domain knowledge plays a significant role in providing a unified representation of het-

erogeneous data. In the literature, this formalism of domain knowledge is advocated for

and applied in the space of problems around data integration and developing intelligent

search systems [42]. This thesis focuses on the latter; however, the literature considers

this a unified problem [42].

Given Codd’s relational algebra and the normalization theory [22], today, we see various

relational database management systems (RDMS) being used within the industry. In the

last decade, the database research community created the foundation for using columnar

http://etd.uwc.ac.za/

Chapter 1 Introduction 3

storage [1], allowing for efficient storage and processing of large data sets. As a result,

RDMS has seen considerable growth, especially the wide adoption of database systems

offered as cloud services [1]. In OBDA, the ontology expresses a shared conceptualization

of the domain of interest at a high level of abstraction independent from the data sources.

While an ontology is a good candidate for realizing this conceptualization, RDMS are

natural candidates for the management of the data layer given the maturity of RDMS.

Roughly every five years, a group of database researchers meet to do a self-assessment

of the database community and produce a report. In the most recent assessment, the

2019 Seattle Report on Database Research [1], they produced a set of challenges facing

the community and data scientists. We list a few relevant to the interest of this thesis.

• The researchers emphasize a clear trend toward heterogeneous computation, which

will have an impact on traditional data warehouse storage. The database commu-

nity is in transition to a data lake-oriented architecture for analytics. A data lake

is a central repository intended to store, process, and secure many semistructured

and unstructured data. Identifying joinable data with other relevant data sets

within a data lake remains challenging.

• Data integration and data wrangling is 80-90% of the challenge data scientists

face and remains an ongoing problem for decades. To address this problem, the re-

searchers recommend that the community focus on the end-to-end data-to-insights

pipeline [1], such as visualizing the answer to a user query.

• Understanding the context of data and the processes working on it, including

provenance. Data provenance refers to the traceability of data such that the source

can be determined, including all transformations, to enable evaluation of its quality

and authenticity [32]. For further details on data provenance, we refer the reader

to [10, 32]. A recent study [113] made some advancements in this area in the

context of ontologies.

The virtual knowledge graph (VKG) approach, referred to in the literature as OBDA,

has become a well-known view for accessing and integrating data sources [119]. In this

approach, the data sources are virtualized through mappings and an ontology, which is

presented as a unified knowledge graph (KG) that end-users can query using domain

vocabulary [119]. A knowledge graph is a knowledge base that represents a network

of real-world entities in a graph structure1. Given the rise of knowledge discovery ap-

plications, users are increasingly required to write complex database search requests to

retrieve information. OBDA provides end-users access to data in a form that does not

1https://www.ibm.com/cloud/learn/knowledge-graph

http://etd.uwc.ac.za/

Chapter 1 Introduction 4

require deep-level database-related technical skills and schema knowledge [42]. When the

data gets queried, the user query is translated over the ontology into SQL queries over

the database. This is depicted in figure 1.1. Domain experts can express information

needs in domain terms they are familiar with, without any background knowledge on

the way the data is structured at the source, and to receive answers that are understood

[59].

Figure 1.1: OBDA Architecture [117]

The mapping specification layer is responsible for binding the ontology and the data

sources. This is achieved by linking the classes and properties in the ontology to SQL

views over the data in the database. The ontology, combined with the mappings, exposes

a VKG, which can be queried using SPARQL, the standard query language in the

Semantic Web [12]. To distinguish KG’s from ontologies, we note the following. An

ontology describes the entity types and their relationships in the absence of data, whereas

a KG is instantiated once the ontology is populated with instance data. The ontology

provides the schema of the entities and relationships, and the KG contains the entity

data enriched by the ontology that provides the context.

This research investigates the approach of OBDA and applies an implementation to

a relational database populated with real-world data using a well-known OBDA tool.

The tool of choice is Ontop, a state-of-the-art open-source OBDA system released under

the Apache license that links relational databases with their applicable domain ontol-

ogy. The terms in an ontology are linked to the underlying data sources using a formal

mapping specification, which exposes the relational database as a virtual Resource De-

scription Framework (RDF) graph [12]. Such a virtual graph can then be queried via

SPARQL (SPARQL Protocol and RDF Query Language) by translating the SPARQL

queries into SQL queries over the relational database. In order to realize such an imple-

mentation, a data source and related domain ontology are required.

http://etd.uwc.ac.za/

Chapter 1 Introduction 5

GitHub is a popular software project hosting platform for version control and collabo-

ration using the Git [73] protocol. Git is an open-source tool developers use to manage

their source code in their local environment, while GitHub is an online service to which

developers who use Git can connect to synchronize local source code. GitHub provides

an extensive public REST API that enables researchers to retrieve both the commits to

the projects’ repositories and events generated through user actions on projects. Ana-

lysts are mining the data stored in GitHub’s event logs, attempting to understand how

the users interact with the application and collaborate on software projects.

To address the need for empirical software engineering studies in the scope of Github,

the GHTorrent [35] project was established. GHTorrent aims to create a scalable of-

fline mirror of GitHub’s event streams and persistent data and offer it to the research

community as a service. GHTorrent has used the GitHub REST API to gather data

from GitHub over several years, resulting in a better source for GitHub data due to

the request rate limitation on the REST API. The raw JSON responses returned from

the REST API are stored in MongoDB and MySQL databases. The MySQL database

is used for this research since it is a relational model. Furthermore, there exists an

RDF-linked dataset for GHTorrent called the SemanGit [66]. The SemanGit dataset

was systematically built by transforming the GHTorrent dataset into linked data, and

the SemanGit ontology was subsequently developed.

This research closely investigates the OBDA technique in the context of intellectual

search systems. This is executed with the following set of resources:

• GHTorrent (GitHub) dataset, MySQL database instance

• SemanGit ontology

• Using Ontop, a state-of-the-art VKG system to configure and link the ontology

and database.

1.2 Research Question

The main research question posed in this research is phrased as follows: “How effective

is OBDA with real-world data?”

This research question can be broken down into the following sub-questions:

1. How does OBDA scale in terms of performance and implementation on real-world

datasets?

http://etd.uwc.ac.za/

Chapter 1 Introduction 6

2. How do OBDA implementations compare in terms of successful results?

3. What are the current limitations of OBDA?

4. What improvements can be made?

1.3 Research Objectives

The following research objectives will be used to obtain answers to the research sub-

questions mentioned in the previous section, the answers to which will culminate in an

answer to the main research question posed in the previous section:

1. Investigate the theoretical background of the OBDA technique and document de-

sign/implementation decisions.

2. Conduct a literature review to investigate OBDA scalability.

3. Investigate tools implementing OBDA.

4. Implement OBDA on a real-world dataset using an OBDA tool and relational

database.

5. Provide results and analysis of query answering.

1.4 Methodology

This study applies the Design Science Research (DSR) methodology to evaluate OBDA

over real-world data, specifically relational databases. Research applying DSR has been

based on several process models [114]. The model we follow is based on the work by

Peffers et al. [90], a widely used model with over 10,000 citations. It consists of the

following components; “problem identification and motivation, objectives for a solution,

design and development, evaluation, and communication” [90].

The thesis is organized around these components as follows:

1.4.1 Problem identification and motivation

Given the importance of data management in industry and the continued rise of Big

Data, the need to address the problem of data access and integration is increasing and

poses a significant challenge. The primary focus of this thesis is to investigate the

http://etd.uwc.ac.za/

Chapter 1 Introduction 7

limitations and prospects of OBDA as a way of querying relational databases using

ontologies.

1.4.2 Objectives for a solution

The study begins with an in-depth exploration of the theoretical foundations of OBDA.

This involves understanding the underlying principles, techniques, and methodologies

related to mapping relational data to ontologies and developing query-answering sys-

tems based on these mappings. A comprehensive literature review is conducted to

analyze existing real-world implementations of OBDA. This review aims to identify the

strengths, weaknesses, and practical implications of various approaches taken in industry

and academia.

1.4.3 Design and development

Building upon the theoretical background and insights from the literature review, we

develop an implementation of OBDA on real-world data. In this step, we employ the

Ontop tool, a state-of-the-art technology in the OBDA domain, to establish a mapping

specification between the SemanGit ontology and the MySQL relational database in-

stance. This serves as the basis for the execution of experiments to perform OBDA

evaluation.

1.4.4 Evaluation

We conducted a series of experiments to evaluate the effectiveness and efficiency of the

developed artifact. Real-world data is used to simulate practical scenarios, and the ex-

perimental results are analyzed. This evaluation identifies the strengths and limitations

of the developed OBDA implementation. The reflection process allows for insights into

potential improvements and future research directions.

1.4.5 Communication

The knowledge gained from this study is shared with the academic community to con-

tribute to the progression of the OBDA field. This is achieved through the development

of an artifact and an associated publication [52]. The artifact, representing the culmina-

tion of theoretical, practical, and experiments, serves as a tangible contribution to the

http://etd.uwc.ac.za/

Chapter 1 Introduction 8

OBDA domain. The publication provides an account of the research, including problem

identification, conceptual foundations, development, and empirical findings.

1.5 Thesis Structure and Outline

The structure of the thesis is presented in the form of providing the theoretical founda-

tions of OBDA, followed by the investigative procedure and practical implementation.

Chapters 2–3 of the thesis provide the theoretical background on OBDA, semantic tech-

nologies, and the related work in the literature. These two chapters set the foundation

for understanding the theoretical landscape of OBDA and are used as the basis for the

implementation. This is continued by discussing the Ontop system, the selected GHTor-

rent dataset, and the SemanGit ontology in Chapter 4. In Chapter 5, we document the

implementation, including the mapping specification configuration, query answering,

and result analysis. Each chapter builds on the previous chapter, which outlines the

literature required to understand the OBDA paradigm and a real-world example in the

form of an implementation using real-world data.

Chapter 6 concludes the thesis by providing the answers to the sub-research questions,

thereby providing an answer to the main research question posed in the thesis. The

chapter closes with several directions for future work.

http://etd.uwc.ac.za/

Chapter 2

Background

This chapter discusses the background material on Ontology-Based Data Access (OBDA)

and what differentiates this approach from a theoretical perspective and in practice. The

chapter is structured as follows. We discuss the Semantic Web, the broader research field

that OBDA forms a part of, in section 2.1. We follow up by describing the theoretical

foundations for ontological conceptualizations, the core of this research, in sections 2.2

and 2.3. We discuss the languages employed to define ontologies in sections 2.4 and 2.5.

Finally, we conclude by discussing the steps taken to apply OBDA in practice.

2.1 Semantic Web

The Semantic Web is a diverse field of research introduced in 2001 by Tim Berners-Lee

as an extension to the current World Wide Web (WWW). As a component of Web 3.01,

it has been standardized by the World Wide Web Consortium (W3C). Web 3.0 is a

concept in the domain of the evolution of the WWW [96]. The evolution of the WWW

has gone through two iterations, namely Web 1.0 and Web 2.0.

Web 1.0 was a platform for publishing static, well-designed information in text and im-

ages without interaction between the information and the user. Web 2.0, the current

WWW, was an extension of Web 1.0, which increased cooperation between organiza-

tions, users, programmers, and service providers, allowing them to reuse and contribute

information. In the current climate of the WWW, which is overflowing with exabytes of

data, machines are still unable to automate harvesting all this information or carrying

out complex tasks with it [96].

1https://www.w3.org/standards/semanticweb/

9

http://etd.uwc.ac.za/

Chapter 2 Background 10

The vision of the Semantic Web is to bring structure and meaning to the content on web

pages, to enable an environment for automated processes, also referred to as “intelligent

software agents”, to roam the pages on the internet and execute highly sophisticated

tasks. Let us demonstrate this vision with a concrete example in the context of GitHub.

Example 2.1. Bob is a new intern starting at a software development company. Work-

ing on his first project, he starts pushing software changes for his first task to the orga-

nization’s repository associated with a GitHub milestone. GitHub milestones are used to

track the progress of commits on a GitHub project.

In this context, an intelligent agent “visiting” the web page of the organization’s repos-

itory will know the metadata on the web page, encoded as keywords (project name,

programming language) in the HTML markup as it is done today. Additionally, the

“agent” will also know that Bob is a new user on the team and can associate the task

with a project milestone whose deadline is on Friday.

An argument is made for semantics being the most crucial factor for advancing the Web

to its next phase [103]. The Semantic Web is an expansion of the present WWW, wherein

data is given unambiguous meaning [103], which is an enabler of task coordination

between people and machines [7]. Data integration is the foundation of the Semantic

Web [87]. Data that is “data about data” is transformed through the use of metadata

into meaningful information that can be located, evaluated, and delivered by software

agents [87]. The metadata are embedded into web pages, which enables software agents

to decipher the meaning of content on the web. Ontologies, a semantic technology, are a

fundamental building block of the Semantic Web [56] and are expected to be significant

in assisting automated processes in accessing information [48]. We discuss ontologies in

section 2.3.

2.2 Conceptualization

Knowledge representation in a formal declarative structure originates from conceptual-

izing the domain of interest. Based on Genesereth and Nilsson [30], this includes the

concepts over a domain of interest and the relations that link them. The universe of

discourse refers to the entities being discussed.

Based on example 2.1, in figure 2.1, we depict a sample conceptualization for the GitHub

domain.

http://etd.uwc.ac.za/

Chapter 2 Background 11

Figure 2.1: A sample conceptualization of the GitHub domain with a user, commit,
and repository [117].

By observing these relations defined here, we can see that they represent a specific

snapshot in time or a specific state of the “world” over the universe of discourse. How-

ever, a conceptualization deals with the underlying meaning of the concepts and not

a specific “world” state within the universe of discourse. For example, the meaning of

commit committed by in figure 2.1 is defined in the way a user interacts with a commit.

Thus, as proposed by Guarino [40], a conceptualization deals with the intensional rela-

tions of the concepts and not the extensional relations between the objects that reflect a

specific world of the universe. We now formalize what we refer to when we say “world”,

based on [41].

Definition 2.1. (World) In respect of a specific system S, we want to model a specific

world state, where S consists of the instances for the concepts that comprise the system.

A world consists of a set of ordered states corresponding to the progression of S over

time. Decoupling the time aspect from this, a world state conforms to a world [41].

Definition 2.2. A conceptualization is a triple C = (D, W, R) where,

• D is a set called the universe of discourse

• W is a set of possible worlds

• R is a set of conceptual relations in the domain <D, W>

http://etd.uwc.ac.za/

Chapter 2 Background 12

Example 2.2. We now define our example in 2.1 in this context.

• D = {56e5fced, bob@org.com, repo owner@org.com, project}

• W = {w1, w2, w3, ...}

• R = {Commit1, User1, Repository1, User1, commit committed by2,

commit belongs to repository2, has owner2}

To keep the example brief, we assume that the unary conceptual relations Commit1,

User1, Repository1 and User1 map to the same extensions in every possible world state.

We do not apply this assumption to the binary relations commit committed by2, com-

mit belongs to repository2 and has owner2

• for all worlds w in W: Commit1(w) = {..., 56e5fced, ...}

• for all worlds w in W: User1(w) = {..., bob@org.com, ..., repo owner@org.com,

...}

• for all worlds w in W: Repository1(w) = {..., project, ...}

• commit committed by2(w1) = {..., (56e5fced, bob@org.com), ...}

• commit committed by2(w2) = {..., (56e5fced, repo owner@org.com), ...}

• commit committed by2(w3) = ...

• commit belongs to repository2(w1) = {..., (56e5fced, project), ...}

• commit belongs to repository2(w2) = ...

2.3 Ontology

An ontology is an explicit specification of a domain conceptualization [39]. It is a formal

representation of knowledge by a set of concepts or terms within a domain and the

relations between them. It is the process of formalizing knowledge and expressing the

concepts and their relations in a given domain of interest, which, as a result, defines

a shared domain vocabulary that is interpretable by both people and machines [39].

We now discuss this explicit specification in line with the running example in 2.1 by

highlighting the theoretical foundations.

According to Guarino [41], ontologies are required to facilitate communication between

humans and machines and inter-machine and inter-human communication. Conse-

quently, ontologies present a sharable and reusable knowledge base, empowering the

http://etd.uwc.ac.za/

Chapter 2 Background 13

expansion of domain knowledge. This expansion of a knowledge base is achieved by

inferences made on the existing knowledge base. Inference is a tool to improve the qual-

ity of data by discovering new relationships and performing automated analyses on the

content of the data to extend the existing knowledge or identify any data inconsistencies.

Automated reasoning algorithms achieve this, a vital enabler of utilizing ontologies in

practice [45].

Motivations for using ontologies include:

• Knowledge analysis at the domain level.

• Establishing a shared vocabulary for a domain allows information to be shared

between people and machines.

• Integration of knowledge from various domains.

• Defining domain assumptions in an explicit manner, which simplifies maintenance

when assumptions change.

• Distinguishing domain knowledge from operational knowledge.

• Extending the knowledge base by revealing implicit domain knowledge via auto-

mated reasoning.

In human correspondence, a language describes elements of a particular conceptualiza-

tion. To express a GitHub commit(56e5fced) that was committed by user (bob@org.com),

we have to use a specific formal symbol (commit committed by) that represents a par-

ticular conceptual relation. In this context, Guarino [41] classifies this as the agent

committing to a conceptualization utilizing a specific language. To realize this as an

explicit specification, how the conceptual relations are interpreted according to the con-

ceptualization becomes the focal point. For example, how do we formally ensure that the

interpretation of the conceptual relation commit committed by is interpreted according

to the committed conceptualization? Once a specific conceptualization has been com-

mitted, we must ensure that each possible world state conforms to the intended con-

ceptualization. This is where ontologies emerge as an explicit specification of a domain

conceptualization. The conceptualization is explicitly defined in a constrained language,

intensionally utilizing suitable axioms [41]. These axioms are specified using a formal

language, enabling machine-readable conceptualization expressions.

http://etd.uwc.ac.za/

Chapter 2 Background 14

2.4 Description Logic

Researchers have proposed various ontology languages in the literature based on various

formalisms. One of the earlier formalisms is Frame-based languages such as Frame

Logic (F-Logic) and logic-based languages in view of First Order Logic (FO). F-Logic

combines the declarative style, concise syntax, and clearly defined semantics of logic-

based languages with the advantages of conceptual modeling that come from object-

oriented frame-based languages [3]. F-Logic relies on representing knowledge as frames

and their semantics being defined operationally, compared to logic-based languages, FO

and Description Logics (DLs), that apply the formal semantics of their underlying logic

[99]. Given the high expressive power of FO, it provides limited automated reasoning

capabilities in practice due to high computational cost. DLs, a fragment of FO, generally

do not suffer from this limitation and are mostly decidable [99].

DLs are a class of knowledge representation languages that can represent knowledge of

an application domain in a formal structure [5], such as an ontology. DLs make this

possible by providing the mechanics to represent the relationships between entities in a

given domain of interest. These entities are concepts, roles, and individuals. Concepts

or domain terms represent sets of individuals, roles represent binary relations between

the concepts, and individual names represent single individuals in the domain [65]. The

representation of the domain is expressed as a formal definition of the concept expressions

built from atomic concepts, for domain terms and the relationships between them as

atomic roles. In DLs, the atomic concepts are known as unary predicates and atomic

roles as binary predicates [5].

DLs generally distinguish domain knowledge into two parts, a terminological part and

an assertional part called the TBox and the ABox, respectively. The combination of

these parts is called a knowledge base (KB). The TBox represents knowledge about

the structure of the domain, such as an ontology or database schema, capturing a set

of universally quantified assertions expressing generic properties of domain concepts

and roles [26]. The ABox represents knowledge about concrete instances or individual

objects, such as a database instance.

Consider an example where an ontology for the GitHub domain application is developed

from a vocabulary of git protocols. Concepts such as user, repository, and project

can be captured. Respectively, these concepts represent the set of all users, repositories,

and projects. Roles such as hasOwner represent the relationship between projects and

users. This can also be defined as the TBox axioms describing the concepts and the

relationships between them.

http://etd.uwc.ac.za/

Chapter 2 Background 15

Example 2.3. Example of TBox axioms describing concepts and relationships in the

GitHub domain.

• project ⊑ Repository

• GithubProject ⊑ Repository ⊓ ∃hasowner.User

The first axiom, which says that all projects are repositories, is expressed by the

concept inclusion, saying that the concept Repository subsumes the concept Project.

One of the intriguing features of DLs is the capacity to construct a statement that links

concepts and roles. For example, a GitHub project, which is a repository, has an owner

that is a user establishing a relationship between repository and a role hasOwner.

The concept subsumption captures this relationship and conjunction in the second axiom

in example 2.3. In summary, example 2.3 briefly describes a GitHub project, describing

it as a Repository with an owner as a User. Furthermore, this description can be

supplemented with “general knowledge” and background knowledge from the domain of

interest. For example, a repository cannot be considered both private and public.

These descriptions are contained within the TBox. The ABox is the assertional part and

would represent the instances or individuals for the statements. ABox axioms capture

the knowledge about these instances, the concepts to which they belong, and how they

relate to each other [65]. For example:

Example 2.4. Jaff owns an open-source Github project called OpenCode Ontology.

The following ABox axioms describes the concept assertions contained in this descrip-

tion: User(Jaff), Project(OpenCode Ontology), asserting that Jaff is a user, OpenCode

Ontology is the project, and a role assertion hasOwner(OpenCode Ontology, Jaff) de-

scribing the relationship between the individual Jaff owning the project instance, Open-

Code Ontology.

An overview of the semantics of DLs can be found in the literature [5, 65].

2.5 OWL

Ontologies are defined by an ontology language that allows for writing formal conceptual-

izations of domain models [4]. For a language to achieve this, the following requirements

must be met; “a well-defined syntax, well-defined semantics, efficient reasoning support,

sufficient expressive power, and convenience of expression” [4].

http://etd.uwc.ac.za/

Chapter 2 Background 16

The Resource Description Framework (RDF) is a language for representing information

about resources on theWWW, with each resource being identified by a Uniform Resource

identifier [80]. RDF represents scenarios where information needs to be processed by

systems or applications. RDF allows the model of basic statements about resources as a

graph of nodes and arcs representing the resources and their properties and values [80].

RDF also provides an XML-based syntax (RDF/XML) for documenting and sharing

these graphs and allows the representation of some ontological knowledge. Models are

structured via typed hierarchies, subclass, and subproperty relationships, domain and

range restrictions, and instances of classes.

For instance, with example 2.1, we can utilize RDF Schema (RDFS), which describes

the vocabulary that is used in RDF descriptions [84], to model the following;

• define classes such as user, repository, github user, commit and cpython;

• express that cpython is an instance of repository

• declare that commit belongs to repository is a property relating the two classes

commit (domain) and repository (range);

• express that github user is org is a property, with github user as its domain

and boolean as its range.

However, to meet the requirements for an ontology language, a language that is richer

than RDFS is required. Features such as a local scope of properties, class disjointness,

cardinality restrictions, and special characteristics of properties [4] are required together

with practical, efficient reasoners and being sufficiently expressive to express large classes

of knowledge.

OWL was created to address the limitations of the RDFS. OWL distinguishes it from

RDF because it upholds a rich set of inferences [48]. With an initial long list of design

goals to satisfy various use cases and requirements, as outlined in [44], the expectations

for OWL meant that the expressiveness required was beyond what was provided by DLs,

such as coupling information with classes and properties [48].

Using OWL, we can apply a set of extensions to the RDF expressions, such as;

• state that user and repository are disjoint classes;

• declare that the class organization is defined exactly as those members of the class

github user that have “true” as a value for the github user is org property.

http://etd.uwc.ac.za/

Chapter 2 Background 17

The initial version of OWL, intended as an extension to RDFS, is, however, unable to

meet the requirement of the trade-off between expressive power and efficient reasoning.

This is due to the expressive primitives present in RDF, namely the “rdfs: Class (the

class of all classes) and rdf : Property (the class of all properties)” [4]. Computational

complexity increases drastically if the logic of OWL is extended with these primitives.

Fulfilling each one of the requirements required for OWL at once would have created a

formalism where specific reasoning problems are undecidable. This led to OWL being

decoupled into three components or sublanguages to address the requirements separately

while retaining upward compatibility with RDF and RDFS. In order of expressiveness,

the sublanguages are OWL Full, OWL DL, and OWL Lite. OWL Full is upward com-

patible with RDF and RDFS, supporting all the RDF and RDFS combinations [48].

OWL DL and OWL Lite are extensions that support limited combinations of RDF and

RDFS, such as not allowing classes to be used as individuals [48].

In existing work [15], the researchers investigated the data complexity of query answering

using DLs. This analysis concluded that the DL-Lite family is the set of logics allowing

for conjunctive query answering. The first set of DLs is custom-made for query answering

over large data sources. As part of the work completed in the European TONES [92]

project, the researchers employed an approach to provide relational database access

through ontologies by using a combination of features and extensions from a subset of

ontology languages from the DL-Lite family to achieve low computational complexity of

inference. The ontology language produced as an output of this work to facilitate data

access to RDMS was called DL-LiteA. DL-LiteA comprises features from two languages

in the DL-Lite family, namely DL-LiteF and DL-LiteR. DL-LiteF enables specifying the

main modeling components of conceptual models, and DL-LiteR incorporates the DL

fragment of RDFS. The DL-LiteA fragment extends DL-LiteR with functional properties;

however, to remain in LOGSPACE for query answering over large data sets it requires

restrictions on the interaction between properties used in different types of axioms 2.

Since 2009, there has been a second version of OWL due to the challenges faced in the

initial version, OWL 1. These challenges relate to the efficiency and scalability of the

reasoning process. OWL 2 [46] consists of different profiles, OWL 2 EL, OWL 2 QL,

OWL 2 RL, OWL 2 DL, and OWL 2 Full, which vary in their reasoning complexity.

The profiles OWL 2 EL, OWL 2 QL, and OWL 2 RL are fragments of OWL 2 that have

polynomial reasoning time [105]. The reasoning complexity of OWL 2 DL is undecidable

with a complexity of N2EXPTIME [105].

In the second version of OWL, the OWL 2 QL profile (based on the DL-Lite family of

DLs) was designed so that the query answering is performed in LOGSPACE in relation

2https://www.w3.org/TR/owl2-profiles/#OWL 2 QL

http://etd.uwc.ac.za/

Chapter 2 Background 18

to the size of the data source3. LOGSPACE, or Logarithmic Space, is a class of com-

putational complexity that includes decision problems that can be solved by a Turing

machine using a deterministic algorithm and a logarithmic amount of writable memory

space. The design was intended to query data in a relational database management

system (RDMS) through an ontology via a query rewriting component. Rewriting the

query into an SQL query processed by the RDBMS engine system without affecting the

underlying data. OWL 2 QL is the intersection of RDFS and OWL 2 DL, providing

features to express conceptual models, including UML and ER diagrams. We note that

we are using OWL 2 QL for our implementation of OBDA.

We now note the important features directly from the OWL 2 QL specification.

OWL 2 QL syntactic restrictions4

Subclass Expressions Superclass Expressions

a class a class

existential quantification (ObjectSomeVal-

uesFrom) where the class is limited to

owl:Thing

intersection (ObjectIntersectionOf)

existential quantification to a data range

(DataSomeValuesFrom)

existential quantification to a class (Object-

SomeValuesFrom)

existential quantification to a data range

(DataSomeValuesFrom)

OWL 2 QL supports the following axioms in line with the syntactic restrictions.

• subclass axioms (SubClassOf)

• class expression equivalence (EquivalentClasses)

• class expression disjointness (DisjointClasses)

• inverse object properties (InverseObjectProperties)

• property inclusion (SubObjectPropertyOf not involving property chains and Sub-

DataPropertyOf)

• property equivalence (EquivalentObjectProperties and EquivalentDataProperties)

• property domain (ObjectPropertyDomain and DataPropertyDomain)

• property range (ObjectPropertyRange and DataPropertyRange)

• disjoint properties (DisjointObjectProperties and DisjointDataProperties)

• symmetric properties (SymmetricObjectProperty)

http://etd.uwc.ac.za/

Chapter 2 Background 19

• reflexive properties (ReflexiveObjectProperty)

• irreflexive properties (IrreflexiveObjectProperty)

• asymmetric properties (AsymmetricObjectProperty)

• assertions other than individual equality assertions and negative property asser-

tions (DifferentIndividuals, ClassAssertion, ObjectPropertyAssertion, and Dat-

aPropertyAssertion)

The following concepts are not supported5.

• existential quantification to a class expression or a data range (ObjectSomeVal-

uesFrom and DataSomeValuesFrom) in the subclass position

• self-restriction (ObjectHasSelf)

• existential quantification to an individual or a literal (ObjectHasValue, DataHas-

Value)

• enumeration of individuals and literals (ObjectOneOf, DataOneOf)

• universal quantification to a class expression or a data range (ObjectAllValues-

From, DataAllValuesFrom)

• cardinality restrictions (ObjectMaxCardinality, ObjectMinCardinality, ObjectEx-

actCardinality, DataMaxCardinality, DataMinCardinality, DataExactCardinality)

• disjunction (ObjectUnionOf, DisjointUnion, and DataUnionOf)

• property inclusions (SubObjectPropertyOf) involving property chains

• functional and inverse-functional properties (FunctionalObjectProperty, Inverse-

FunctionalObjectProperty, and FunctionalDataProperty)

• transitive properties (TransitiveObjectProperty)

• keys (HasKey)

• individual equality assertions and negative property assertions

5https://www.w3.org/TR/owl2-profiles/#OWL 2 QL

http://etd.uwc.ac.za/

Chapter 2 Background 20

2.6 Connecting ontologies and databases

The approach of OBDA, also referred to as the Virtual Knowledge Graph (VKG), where

utilizing an ontology to facilitate access to information, can profitably benefit enterprise

data integration and the Semantic Web by enabling clients to rely on a domain vo-

cabulary to gain access to application and system services [92]. In this technique, the

ontology provides a semantic layer over the data layer, enabling a conceptual view of an

information system [92]. This conceptual view creates an abstraction of the information

system, hiding the details of the underlying data layer. Queries that would generally be

large and complex, such as cross-database queries, can be constructed at the ontology

level without the need to understand how each database schema is structured or how

the data is stored [57].

To realize such a system initially required an understanding of which fragments of OWL

1 (OWL 1 DL or OWL 1 Lite) are practical in real-world systems to produce ontologies

that are suitable for the real-world environment. As indicated in section 2.5, given

the sheer size of big data, none of the fragments (OWL 1 DL and OWL 1 Lite) was

suitable, given that both are coNP-hard in relation to data complexity. This resulted in

the development of the OWL 2 QL ontology language to enable query answering over

RDMS in real-world systems. To handle data access without materializing all assertions

that an ontology can derive, OWL QL 2 was selected as the ontology language and

identified as a suitable fragment of OWL that can achieve this. This means that data

is fetched as queries are posed instead of being stored in memory. By delegating the

processing of queries to the RDMS, the underlying Knowledge Graph (KG) remains

virtual and exposes up-to-date information at query time.

2.6.1 SPARQL

The virtualization of a Knowledge Graph (KG) enables the querying of data using

SPARQL, a W3C standard query language in the Semantic Web [12], by performing

a translation of the SPARQL queries into SQL queries over data sources. SPARQL is

a graph-matching query language with specifications that provides languages and pro-

tocols to query and manipulate RDF graphs6. It is fully integrated into the Semantic

Web and expects data to be structured as RDF graphs and resources to be identified by

Internationalized Resource Identifiers (IRIs) [27].

To support the heterogeneity of data on the WWW in various domains with different

vocabularies, the SPARQL specification consists of four different query forms: SELECT,

6https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

http://etd.uwc.ac.za/

Chapter 2 Background 21

CONSTRUCT, DESCRIBE, and ASK. The SELECT and CONSTRUCT query forms

are used where the domain vocabulary is known for the underlying data points. The

difference between these forms is the format of returned results. The SELECT form

delivers results in tabular XML format, but the CONSTRUCT form returns RDF data.

If the vocabulary is unknown, but the IRIs are known, then the DESCRIBE query form

is applicable. A DESCRIBE query returns an RDF graph describing the requested

resource. When the ability to answer a specific query is unknown, an ASK query form

is used. This query form returns “yes” or “no” depending on whether at least one answer

can be given by the data endpoint [27]. Furthermore, SPARQL supports queries whose

answers are not explicitly represented in the KG but which can be implicitly inferred

using automated reasoning [48].

As described in [27], a SPARQL query consists of five components: optional PRE-

FIX namespace declarations, a query result clause, optional FROM or FROM NAMED

clauses, a WHERE clause, and optional query modifiers.

• The optional PREFIX declarations are used to introduce shortened namespaces

for IRIs, similar to that of XML namespaces.

• The query result clause can take one of the four forms SELECT, CONSTRUCT,

DESCRIBE, and ASK.

• The optional FROM or FROM NAMED clauses defines the dataset being queried.

• The WHERE clause is specified in a triple pattern set to select the triples forming

the result.

Let us demonstrate a SPARQL SELECT query with an example based on a sample

GitHub User database table represented as a KG.

Table 2.1: Sample data from GitHub User table

id login city ...

1011 tosch Hiroshima ...

1042 jmettraux City of Johannesburg ...

User :1011 User:login "tosch ".

User :1011 User:city "Hiroshima ".

User :1042 User:login "jmettraux ".

User :1042 User:city "City of Johannesburg ".

Listing 2.1: Data assertions from table 2.1 in RDF triple format

http://etd.uwc.ac.za/

Chapter 2 Background 22

Table 2.1 represents a sample dataset from the GitHub User table. We show how this

table can be represented in the RDF format, using “triples” in listing 2.1. An RDF

triple, or semantic triple, consists of three components7:

• the subject, which is an RDF URI reference or a blank node

• the predicate, which is an RDF URI reference

• the object, which is an RDF URI reference, a literal or a blank node

Figure 2.2: RDF graph model based on table 2.1

A graph structure is formed when a set of triples are joined together, with the subjects

and objects as nodes and the predicates as edges. In figure 2.2, we show this data model

in a graph structure.

User is a class

GitHub:User a owl:Class.

login is a property

User:login a owl:Property.

User:login rdfs:domain GitHub:User.

User:login rdfs:range xsd:string.

city is a property

User:city a owl:Property.

User:city rdfs:domain GitHub:User.

7https://www.w3.org/TR/rdf-concepts/

http://etd.uwc.ac.za/

Chapter 2 Background 23

User:city rdfs:range xsd:string.

Instances

User :1011 a GitHub:User.

User :1042 a GitHub:User.

Properties

User :1011 User:login "tosch ".

User :1011 User:city "Hiroshima ".

User :1042 User:login "jmettraux ".

User :1042 User:city "City of Johannesburg ".

Listing 2.2: RDFS (RDF Schema) representation for table 2.1 schema

In this context, the triples represent the database table row data. However, we can also

model the table schema in RDFS as shown in listing 2.2. Here, the User table schema

and the data are defined in a single specification. Listing 2.2 defines the User class

and each property (login and city) it contains. The subject is explicitly defined as the

domain (User table), while the range indicates the data type.

select ?userLogin ?userCity

from graph:GitHub

where {

?user a GitHub:User.

?user User:login ?userLogin.

?user User:city ?userCity.

?userCity User:city ‘‘Hiroshima ’’.

}

Listing 2.3: SPARQL user query

Table 2.2: Listing 2.3 result

userLogin userCity

tosch Hiroshima

In listing 2.3, we show a SPARQL query, where each line in the query is a pattern to be

matched from the database. The query’s body is a collection of triples with variables

preceded by the “?” symbol through a SELECT operator. First, variables are assigned

values so that the query body triples match the KG’s triples. The query answer is

constructed by processing the assigned variable values. We only select the userLogin

and userCity variables in this case. The answer to this query can be seen in table 2.2.

2.6.2 OBDA Framework

The OBDA framework consists of an extensional instance, the data source, an inten-

sional schema, the ontology [116], and the link between the two consisting of a mapping

http://etd.uwc.ac.za/

Chapter 2 Background 24

specification.

Definition 2.3. Formally, the extensional instance is represented as the data source

D conforming to the data source schema S. The intensional schema is defined as the

OBDA specification P = (O, M, S) [116] where,

• O is an ontology

• M a mapping from S to O

• S the data source schema

An OBDA specification P is instantiated by a database D compliant with the schema

S. The pair (P, D) is an OBDA instance or an instance of a VKG. The RDF graph,

denoted M(D), is the set of triples produced by combining M and D. Thus, the exposed

virtual RDF graph, denoted GP,D, provides the semantics of an OBDA instance (P,

D) and comprises the triples derived from the triples in M(D) by applying the axioms

in O [117].

2.6.3 Query answering

The most fundamental reasoning task in the OBDA approach is query answering over

the KG [116]. Query answering is performed by utilizing SPARQL as a query language.

A SPARQL query q over the OBDA instance (P, D) essentially returns the answer to

q over the KG GP,D, inline with the standard SPARQL semantics [117]. The primary

method for query answering in this approach is query reformulation, which prevents

physical materialization of the KG GP,D. The SPARQL query q expressed over the

KG is reformulated into a SQL query Q that can be directly executed on D [117].

During the query reformulation process, the SPARQL query q is processed through a

set of transformations, which include rewriting the query q with respect to the ontology

O and unfolding it inline with the mapping M. The answers returned by the SQL query

Q, after execution on D, are returned and transformed into RDF terms based on the

mapping M.

In practice, a direct implementation of query rewriting and unfolding suffers from high

computational costs. Many optimizations have been developed to improve performance,

such as compiling the ontology and mappings offline during the bootstrap phase, utilizing

database constraints to simplify queries, or using a query cost estimation and selecting

the appropriate rewrite mechanisms. Optimization techniques vary between various

OBDA system implementations and are not discussed in detail here. We will discuss the

http://etd.uwc.ac.za/

Chapter 2 Background 25

relevant optimization performed on the selected OBDA tool for this research in Chapter

4.

2.6.4 Mapping

The mapping specification is the most complex component that is at the core of an

OBDA system. The mapping M connecting the ontology O to the database is respon-

sible for specifying how the ontology assertions are populated by the data from the

source D. It is considered the most complicated part of setting up an OBDA system as

it involves writing individual queries consistent with the ontology’s vocabulary for each

database table and column [12]. While the development and maintenance of ontologies

is a well-established topic with considerable research [107], the engineering of mapping

specifications is still an emerging technology. Given the complexity, as stated above,

mapping engineering is a tedious and demanding procedure. It requires deep knowledge

of both the domain of interest and how the underlying data sources are structured. Sev-

eral mapping engineering methodologies and tools have been proposed to address this

challenge. The authors in [117] group the contributions into two categories: mapping

bootstrappers and editors.

A mapping bootstrapper attempts to automate or semi-automate a mapping specifi-

cation for a relational data source. This is often based on the W3C direct mapping

(DM) standard8, which defines an RDF graph representation of the data in a relational

database. Following a predetermined set of rules, DM specifies how to generate the

appropriate RDF graph, mapping a table to a novel class, a column to a novel data

property, and a foreign key to a novel object property [117]. However, the generated

ontology and mappings are data source specific, whereas a domain ontology aims at

being usable across multiple data sources within a domain.

Mapping editors are either textual or graphical. Based on the W3C RDB2RDF Map-

ping Language (R2RML) (a W3C standard for mapping relational databases to RDF

data sets) or alternative syntax. These languages are widely used in ontology editors

like Protégé9 or text editors like Stardog Studio10. Although the text editors provide

an environment for mapping engineering, they do not support features such as syntax

highlighting and require deep-level knowledge about the underlying mapping language

[117]. In graphical editors, users define mappings using a user interface (UI); however,

this approach suffers from a lack of intuitive UI design and overloads the user (mapping

engineer) with information in the UI [117].

8https://www.w3.org/TR/rdb-direct-mapping/intro
9https://protege.stanford.edu/

10https://www.stardog.com/

http://etd.uwc.ac.za/

Chapter 2 Background 26

2.7 Conclusion

In this chapter, we discussed and highlighted the key theoretical background of OBDA.

We briefly discussed the Semantic Web, which encompasses this technique. We discussed

the concept of an ontology and the language employed to define it. Finally, we discussed

the steps to make this viable in a real-world setting, the challenges, and how ontologies

are employed to provide data access utilizing a mapping specification.

http://etd.uwc.ac.za/

Chapter 3

Literature Review

3.1 Introduction

Applications of knowledge graphs are gradually gaining momentum due to their agility

and flexibility to apply to various data models [18]. This flexibility enables the in-

tegration of heterogeneous sources and data schemas. Throughout recent years, much

attention has been on converting legacy data to RDF knowledge graphs. Given the broad

impact and implementations of relational database management systems (RDMS), nat-

urally, the focus shifted in this direction. The two main approaches for this were to

materialize all data within a given data source as RDF triples or on-the-fly data access

using a query language such as SPARQL and delegating the actual retrieval of the data

to the data source engine [82]. The latter is called the Virtual Knowledge Graph (VKG)

approach. After converting data into knowledge graphs, processing is done using domain

ontologies with automated reasoning capabilities. In this chapter, a review of past im-

plementations in the area of semantic data access using the knowledge graph approach

is carried out.

This chapter is organized as follows: Section 3.2 discusses the methodology used to

survey and review the literature, which defines the discussion framework used in all

subsequent sections; Section 3.3 describes the relevant use cases and data sets; Section

3.4 describes the objective in the various papers; Sections 3.5 – 3.7 describe the imple-

mentation approaches, systems, and ontologies used; Section 3.8 summarizes the results

obtained in various studies; and Section 3.9 then provides a discussion of the proce-

dures used, explicitly pointing out the challenges as reported in the papers. Finally, we

conclude in Section 3.10

27

http://etd.uwc.ac.za/

Chapter 3 Literature Review 28

3.2 Literature Review Methodology

This chapter reviews relevant literature to reveal the different implementation approaches

authors take to enable Ontology-based data access (OBDA) or Ontology-based data in-

tegration (OBDI) to various data sources. The review covers several aspects that relate

to the use case, objectives, challenges, and approaches used in various domains devised

in the literature for this purpose. The review focuses explicitly on implementations of

OBDA and OBDI on relational and heterogeneous data sources.

Google Scholar was used to collect papers from 2017 to 2023, with the following key-

words: (“Ontology-based data access” AND “relational databases” AND “data integra-

tion”) AND (“Ontology-based data access” AND “OBDA systems” AND “large-scale”)

AND (“Ontology-based data access” AND “scalability” AND “performance”). The re-

sults obtained for these queries were about 1213 in total, and of these, only papers

were selected with an implementation use case applying OBDA or OBDI. We excluded

workshop papers and removed duplicate papers. Even though this review focuses on re-

lational data sources and OBDA, the methods used to achieve this can be extended and

applied to other data sources and data processing approaches. Hence, the conclusions

and discussions of this chapter can be adapted to other approaches.

Figure 3.1: Percentage of reviewed papers by year

The total number of reviewed papers is 20, combining conferences and journal papers

published from 2017–2023. We note that we only looked at recent work while inves-

tigating the topic of OBDA in this context. We explored older papers before 2017 to

http://etd.uwc.ac.za/

Chapter 3 Literature Review 29

understand the domain, such as [11, 58, 92]. However, for this review, we only focused

from 2017 onwards to focus on more recent work in this area. Figure 3.1 shows the

reviewed studies annually.

Figure 3.2 shows the generic structure of OBDA or OBDI systems. This structure,

together with our interest in the scalability of such systems in practice, was used as

a guideline to construct a set of questions to categorize and analyze the 20 papers

systematically. The questions are as follows:

Figure 3.2: OBDA/OBDI generic structure

1. What are the real-world use cases and objectives of OBDA systems in various

domains?

2. What are the data sources and techniques used for ontology and mapping engi-

neering?

3. What are the query processing algorithms and optimization strategies employed

in OBDA implementations?

4. What scalability challenges arise when dealing with large ontologies and datasets?

5. What evaluation criteria are used to assess the performance of OBDA systems,

and what are their limitations and gaps?

6. What are the current challenges and open research questions in OBDA, and what

future research directions can address these challenges?

These questions provide the framework for the rest of this paper. Sections 3.3–3.8

address questions 1–7 in sequence. Section 3.8 discusses the findings in the previous

seven sections. Section 3.10 provides conclusions.

http://etd.uwc.ac.za/

Chapter 3 Literature Review 30

3.3 Use cases

This section provides a breakdown of use cases in the 20 studies reviewed, which we cate-

gorize by domain. The general use case of OBDA is for data access or integration across

heterogeneous data sources. We now discuss how this is applied in various domains.

Figure 3.3 provides a breakdown of the domains in the review.

Figure 3.3: Number of papers per domain

3.3.1 Manufacturing/Machine Diagnoses

The studies in the manufacturing domain focus on improving existing production by

utilizing OBDA to enhance data access and integration to improve manufacturing pro-

duction quality. The data used are heterogeneous and generated from manufacturing

processes and equipment, such as its configuration, location, and weariness. In environ-

ments where manufacturing equipment is integrated with IoT devices, OBDA is used

to aggregate and integrate data using background knowledge about factory equipment,

such as locations of sensors, structure, and characteristics of conveyors to manage energy

consumption and management of tools. Furthermore, OBDA is applied to solve existing

bottlenecks, such as accessing and integrating heterogeneous data. 30% of the papers in

this review are in the domain of manufacturing [53, 60–62, 91, 98].

http://etd.uwc.ac.za/

Chapter 3 Literature Review 31

3.3.2 Oil and Gas

We have one study in the Oil and Gas industry where exploratory geologists are expected

to locate new exploitable accumulations of oil or gas in specific locations by analyzing

data about these areas on time. Such data sources are frequently dispersed across

heterogeneous and self-evolving systems or have been changed over time to meet the

needs of the applications they support. The study aims to create a solution to the data

access problem at scale while keeping the constraints of OBDA in mind [59].

3.3.3 Biomedical

The biomedical domain consists of various disparate data sources, such as data from

various proteomics studies or patient health records dispersed in multiple databases and

document repositories. From the three studies we reviewed, the focus was on linking

multiple data sources to assist biologists in obtaining relevant knowledge from diverse

data sources to understand and explain biological processes of interest [86], as well as

assisting healthcare professionals who are unable to locate important information in a

fast and error-free manner [109, 112].

3.3.4 Biology

The biology domain contains a vast amount of data sources. The use case of OBDA

in this context is the integration and semantic enrichment of heterogeneous biological

databases. Furthermore, by linking multiple biological databases, researchers will be

able to jointly query (i.e., conjunctive queries) these databases using a single query

language [104].

3.3.5 Healthcare

The healthcare domain provides several use cases for OBDA. There is an emphasis on

establishing a knowledge base to enable decision-making and analysis in epidemic sci-

ence, focusing on spatio-temporal and social reasoning. Access to diverse rare disease

datasets and semantic-level data integration is critical for advancing research and safe-

guarding sensitive data. Furthermore, the incorporation of ontology reasoning skills into

medical information databases intends to facilitate data retrieval and querying of patient

records from disparate sources. Data integration, particularly through ontology-based

methodologies, is critical for retrieving diverse healthcare data more quickly and eas-

ily. The significance of semantic interoperability in post-genomic clinical trials involving

http://etd.uwc.ac.za/

Chapter 3 Literature Review 32

various universities is highlighted. Relational Databases to RDF (RDB2RDF) systems

provide real-time transformation of RDF datasets to maintain data freshness and pro-

vide an integrated view. 30% of the papers in this review are from the healthcare domain

[34, 43, 85, 93, 110, 120].

3.3.6 Services

Organizations in the Services domain focus more on understanding the value of exam-

ining how their business processes are carried out in the real world to drive continuous

improvement. Process mining is an approach that has gained traction to address this

and is highlighted in the paper [17] we reviewed in this domain. For more information

on process mining, we direct the user to [111]. In the paper we reviewed, OBDA is ap-

plied in this scenario where event logs generated from business processes are examined

and extracted from relational data sources. An ontology describes the logs and is used

within an OBDA system to extract enriched log information from the raw data.

3.3.7 Maritime

In the Maritime domain, data retrieval, integration, and reasoning with these data sets

are complex due to the variety of data in diverse sources, the heterogeneity of data

formats, and the volume of data [97]. In this context, the OBDA/OBDI approach sup-

ports using distributed knowledge bases, which use modular ontologies for data retrieval,

integration, and reasoning from diverse and heterogeneous data sources. Allowing for

delegating data retrieval, integration, and reasoning responsibilities [97].

3.3.8 Big Data

Since the advent of Big Data, heterogeneous data has become more prevalent. The pa-

per we reviewed in this domain focused on providing implementation details of applying

the OBDA paradigm to the NoSQL and Data Lake technology field. Cassandra, Mon-

goDB, Couchbase, and Neo4j are examples of non-relational or NoSQL databases. This

diversity contributes to one of the most significant Big Data challenges: variety. In the

paper reviewed, the authors give a detailed implementation of applying the OBDA to

the NoSQL and Data Lake domain [79].

http://etd.uwc.ac.za/

Chapter 3 Literature Review 33

3.4 Data sources, Ontologies and Mappings

This section summarizes the data sources, approaches to developing ontologies, and

mappings used in the 20 studies reviewed.

3.4.1 Data sources

The data sources in the review include relational and non-relational databases. Data

is stored in file formats such as Excel, CSV, and the Hierarchical Data Format version

5 (HDF5) file formats. Additional sources include real-time streaming sensor data and

distributed data. The data sources are based on real-world data, except the study in

[43], which includes a synthetic dataset. Different approaches to data management were

performed, such as the study in [53], which performs Extract, Transform, and Load

(ETL) to raw data and stores them within a database that is used in the OBDA system,

where other studies work with multiple data sources without moving or transforming

the data.

3.4.2 Ontologies

Approximately 75% of the studies document the manual development of ontologies as

part of the OBDA solution [17, 34, 53, 59–62, 85, 86, 91, 97, 98, 104, 109, 110, 120, 121].

Development includes workshops with domain experts and technical staff to define the

conceptual model and generally occurs over a lengthy period. 15% of the studies reused

existing ontologies [79, 93, 104, 112], and one study did not use a conceptual model and

opted for a solution that generates an RDF graph directly from the data sources [43].

3.4.3 Mappings

The RDF Mapping Language (RML) or RDB to RDF Mapping Language (R2RML) is

widely used to map the data sources to the conceptual model in the reviewed papers. A

few papers take a different approach, such as mapping to streaming data and supporting

real-time analytics [60, 61]. In [34], the authors developed a bespoke SQL generator that

uses database-specific mappings based on the structure of the database. The authors

in [43] utilized the mapping language from the D2RQ platform. The D2RQ System is

an implementation that allows virtual access to relational databases as read-only RDF

graphs1. Additionally, two studies used software-based solutions to map data to the

1http://d2rq.org/

http://etd.uwc.ac.za/

Chapter 3 Literature Review 34

relevant ontology using the Apache Jena open-source framework2. The study in [110]

implemented a software solution using the Jena API to create mappings from a set of

mapping rules based on a global schema of three different data sources. In [109], the

authors mapped the data to the ontology using a Java-based software tool and stored

the resultant RDF data in the Triple Database (TDB) triple store. TDB is a component

of Jena for RDF storage and query3.

3.5 Optimization

The query volume, the size, and complexity of the data sources, ontology, mappings, and

the stability and performance of the underlying system all impact scalability. Several

approaches are used in the literature to optimize the performance of OBDA implemen-

tations according to the domain and presented challenges.

Optimizations focus on query rewriting, unfolding, and execution, given that OBDA

query processing involves rewriting, unfolding, and query execution [59]. Query rewrit-

ing and unfolding often return duplicate results due to redundancy and inefficiency of

rewriting/unfolding. This is due to ontology classes or properties that can participate

in multiple mappings via multiple sub-classes [59].

In implementations where relational databases are used, the optimizations are applied

at the database level using constraints such as primary key and foreign key definitions

and strategic indexes to speed up query lookups. This is especially prevalent where

OBDA tools are used, such as Ontop4. We provide more details of Ontop in chapter 4

section 4.2.1. The database optimizations assist the query rewriting procedure based on

the mapping specifications as the constraints are used to generate the optimal queries,

such as avoiding self-joins.

Distributed computing is crucial in heterogeneous environments where data are in mul-

tiple sources. In these settings, optimizations involve optimizing storage and query

execution, as well as caching techniques. This includes running OBDA systems within

a cluster and utilizing the Hadoop Distributed File System (HDFS)5 and SPARK6 dis-

tributed analytics engine.

A direct comparison of these approaches across the literature is difficult since each

paper implementation is different, with varied requirements and operating environments.

2https://jena.apache.org/
3https://jena.apache.org/documentation/tdb/
4https://ontop-vkg.org/
5https://hadoop.apache.org/
6https://spark.apache.org/

http://etd.uwc.ac.za/

Chapter 3 Literature Review 35

However, analyses per domain and underlying system environment can be a research

topic. We did not explore this in the literature review.

We summarise the optimizations from the literature in table A.2.

3.6 Evaluation and Results

Based on the literature, we find three primary metrics to evaluate the OBDA/OBDI

system implementations. These are query efficiency, effectiveness, and usability of the

system. 50% of the papers we reviewed looked at the performance of the system by

measuring the run time of queries with relevance to the scale of the data [53, 59–62, 79,

86, 93, 98, 104]. 15% performed evaluations based on the effectiveness [97, 109, 110, 121]

and usability [62, 91, 112] respectively. The effectiveness is based on how well the

system solves the particular use cases, and usability evaluation was done by involving key

stakeholders in the evaluation phase. One paper focused on evaluating the effectiveness

of the mapping technique [43], and 15% did not mention any evaluation [17, 34, 85].

We note that the study in [62] evaluated both query performance and usability of the

system.

The reported results indicate satisfactory performance and motivate the potential of

OBDA and OBDI. Generally, query performance grows linearly with respect to the size

of the data. For large queries, query execution is slower but completed in a reason-

able time, given the context of practical use cases. Only one paper [97] reported on

the computational efficiency of reasoning over the data sources. The authors applied

reasoning to identify complex events while retrieving data from multiple sources. The

data retrieval process took place at various intervals within a distributed framework.

Although this process was the most demanding task during runtime for incoming data,

it did not compromise the system’s overall effectiveness. More information about this

approach is available in the same source [97].

Finally, we note that the environment, deployment configuration, and optimizations all

impact the results, and we did not do a comparative analysis given the difficulty of this

task. We summarise the evaluations and results from the literature in table A.3.

http://etd.uwc.ac.za/

Chapter 3 Literature Review 36

3.7 Discussion

The preceding sections demonstrate a notable, expanding literature on OBDA covering a

wide range of domains, data sources, and contexts. Based on the literature, from a top-

down view, the OBDA approach can be divided into the “materialized” and “virtual”

approaches. The materialized approach stores the underlying data as a knowledge graph

in RDF triple stores. In contrast, the virtual approach maintains the data in its original

location and relies on query translation techniques to query the data sources. Utilizing

tools that encapsulate OBDA is becoming more prevalent, given 50% of the papers

utilize tools such as Ontop, Squerall, and Optique.

The results indicate that delivering a practical application of OBDA requires a robust

implementation, given that the scalability is affected by the volume of queries, the com-

plexity and scope of the ontology, and the stability and performance of the underlying

system.

We are also interested in reasoning over data sources with this approach; however, this

was out of the scope of this review. We note that only one paper [97] reported on

reasoning over the data sources. We consider this as future work on how reasoning

challenges are addressed in practical settings.

We summarize the reviewed papers in appendix A.

3.8 Conclusion

In OBDA, using knowledge graphs to access heterogeneous data, 20 relevant papers

are reviewed by examining the use cases, the data sources, ontology(s) and mappings

used, optimization, evaluation, and finally, the results. Implementations of OBDA are

applied in different domains with varied objectives and different approaches based on

the environment. The OBDA studies considered have limited effectiveness in solving

the overall challenges of data access and integration at scale. The results from the

studies indicate query performance growing linearly as the data scales and requires

bespoke optimization solutions based on the domain, the use case, and the configuration

of computational infrastructure. This review aims to make researchers aware of the

performance of such systems in practice and the associated challenges.

http://etd.uwc.ac.za/

Chapter 4

Ontology-Based Data Access

Tool, Dataset and Ontology

4.1 Introduction

The purpose of a Virtual Knowledge Graph (VKG) query answering system, synony-

mous with an Ontology-Based Data Access (OBDA) system, is to provide access to

various data sources. In the context of this research, we focus on access to a relational

database by utilizing an ontology. The purpose of the ontology is to provide a domain

vocabulary familiar to users and to provide additional background domain knowledge to

the underlying data. Using a mapping specification, the ontology vocabulary’s terms are

associated with the specific data source. Consequently, an OBDA system has the follow-

ing components: a) queries describing the data requirements of users, b) an ontology,

c) a mapping specification, and d) the data sources [119]. In this chapter, we document

the components we selected for investigating and implementing OBDA, as well as the

OBDA tool, the dataset, and the ontology. We discuss the selected OBDA tool, Ontop1,

the GHTorrent2 dataset and the Semantic Git (SemanGit)3 ontology. The chapter is

structured accordingly. We describe each of these, outlining the development history

and why we opted for these. The implemented mapping specification and user queries

are discussed in Chapter 5, where we outline the implementation using the components

discussed in this chapter.

1https://ontop-vkg.org
2https://ghtorrent.org
3https://github.com/SemanGit/SemanGit/tree/master/Documentation/ontology

37

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 38

4.2 OBDA tool

In both academia and industry, more than a dozen Virtual Knowledge Graph (VKG)

query answering systems have been developed [117]. To select a suitable query-answering

system for our implementation, we looked at systems that are open-source with the

ability to perform ontological reasoning. In Xiao et al. [117], the authors reported on

the most important query-answering systems that are compliant with industrial stan-

dards and in terms of query performance. The report includes systems that are both

open-source and proprietary, irrespective of ontological reasoning capacity. The systems

include D2RQ 4, Mastro [13], Morph [94], Ontop [12], Oracle Spatial and Graph5, Star-

dog6 and Ultrawrap [101]. From this list of query answering systems, D2RQ, Morph

and Ontop are open-source.

D2RQ is a framework for accessing relational databases using virtual read-only RDF

graphs. It provides RDF-based access to relational database material without requiring

replication into an RDF store. The core feature is a declarative mapping language that

defines the relation between an ontology and a relational database. It has an engine

that integrates with the Jena Semantic Web toolkit to enable mappings to be used to

rewrite Jena API calls to SQL queries. We direct the user to http://d2rq.org/ for

further details.

Morph, formerly ODEMapster, is an OBDA system that transforms relational databases

into RDF (RDB2RDF). The Ontology Engineering Group developed it based on the

R2RML specification7. Morph optimizes SQL queries using techniques like self-join

removal and elimination. Real-world queries from various Spanish and EU projects

have tested Morph’s capabilities8. For more details on Morph, refer to [94].

We note that both D2RQ and Morph projects do not support ontology inference and

have not actively been maintained since January 2015 and June 2022 respectively. Given

the lack of inference support, we opted for the Ontop system as the tool of choice.

The D2RQ and Morph projects lack support for ontology inference and have not received

active maintenance since January 2015 and June 2022, respectively. Due to this absence

of inference support, we have chosen the Ontop system as our preferred tool.

4http://d2rq.org/
5https://www.oracle.com/database/technologies/spatialandgraph.html
6https://www.stardog.com/
7http://www.w3.org/TR/r2rml/
8https://github.com/oeg-upm/morph-rdb

http://etd.uwc.ac.za/

http://d2rq.org/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 39

4.2.1 Ontop system

Ontop is an open-source, Java-based OBDA system released under the Apache 2 license.

It has been developed at the Free University of Bozen-Bolzano and is commercially

supported by the company Ontopic [117]. By utilizing mappings to connect the terms

(classes and properties) in an ontology to the data sources, the Ontop system makes

relational databases accessible as virtual RDF graphs [12]. Ontop has undergone four

major releases since its inception in 2009 and is still actively maintained, establishing it

as the most mature and state-of-the-art OBDA open-source system [119].

The first major release, Ontop v1, was based on answering queries, specifically conjunc-

tive queries (CQs). The queries consist of conjunctions of unary and binary atoms for

class and property assertions [119]. OWL QL 2 was used as the ontology language and

identified as a suitable fragment of OWL that can be handled by VKG systems with-

out the need for materializing all assertions that can be derived from the ontology. In

this version, the mapping specification was based on a Datalog rewriting algorithm that

compiles a conjunctive query (CQ) and an OWL 2 QL ontology into a union of CQs.

Datalog is a declarative logic programming language that has been used in deductive

database work and various other data access-related applications [78]. At query time,

the algorithm translates CQs based on OWL 2 QL ontologies into SQL queries. When

the generated CQs are evaluated over the database, it yields the same results as the

CQ mediated by the OWL 2 QL ontology [119]. In the process of rewriting, “query

atoms can be replaced by their definitions from the mapping” [119]. This is also known

as query unfolding. To achieve efficient query performance, v1 relied upon Semantic

Query Optimization (SQO). SQO is the semantic analysis of SQL queries and the use of

database integrity constraints, such as primary and foreign keys, to reduce the size and

complexity of queries [12]. An interesting observation by the authors in [12] is that even

though rewriting and unfolding steps are considered distinct steps from a theoretical

point of view, they should be combined in practice. For example, a mapping can be

combined with the subclass and sub-property relations of the ontology, and the gener-

ated mapping specification (or T-mapping) can be constructed and optimized before any

query is processed, performing the expensive SQO only during the bootstrap process.

Subsequent versions of Ontop support the W3C recommendations for SPARQL and the

W3C RDB2RDF Mapping Language (R2RML) mappings. R2RML is a W3C standard

for mapping relational databases to RDF data sets. R2RML is widely used and part of a

collection of two standards to map the data of relational databases to RDF. To achieve

these recommendations, various challenges arose due to the Datalog implementation of

v1. To support the standardized mapping specification recommendations, the evolution

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 40

to a variant of relational algebra in place of the Datalog approach was initiated. Support-

ing non-monotonic (OPTIONAL, MINUS), cardinality (DISTINCT), and aggregation

(SUM, MIN, MAX, GROUP BY) features are difficult to model since SPARQL is based

on a rich algebra that is beyond the expressivity of CQs with Datalog. The challenges

are further described in [119]. As a consequence, a large portion of Ontop was rewritten

with Datalog being replaced with “a relational-algebra-type representation” [119]. The

Intermediate Query (IQ) language, an algebra-based data structure that unifies both

SPARQL and relational algebra, was the result of the rewrite and was released in 2019

as the third stable major release of Ontop, v3. In 2020, Ontop v4 was released follow-

ing compliance improvements and additional features that were added to v3. We now

discuss the core features in Ontop v4 based on the work of Xiao et al. [119], specifically

query representation, SPARQL to SQL translation, and query optimization.

4.2.2 Query representation

Ontop represents queries by encoding them in the IQ language [118]. The IQ language

provides a consistent representation from the mapping for both user SPARQL queries

and generated SQL queries. In the IQ language, RDF datasets are modeled following

the triples and a quaternary relation quad model in SPARQL, where a set of triples are

in the form (s-p-o) and a collection of these sets in a named graph g are represented as

quadruples in the form (s-p-o-g). Similarly, Ontop models this by using atomic expres-

sions in the form triple(s, p, o) and quad(s, p, o, g), where s,p,o, and g are constants

or variables. In relational algebra, these expressions would have to be constructed by

combining the SELECTION and PROJECTION operators. PROJECTION is used to

project (π), the required attributes of distinct data (tuples) from a relation. SELEC-

TION is used to select (σ), the required data (tuples) from a relation with optional

conditions, where π is used for variable names and σ to handle constants and variable

matching [119].

4.2.3 SPARQL to SQL translation

Regarding relational algebra expressions, the Ontop system uses a compact representa-

tion of queries to encode SPARQL queries. Based on [119], we highlight the features in

the Ontop system for query translation based on the following mapping syntax,

T1(x, y)⇝: b{x} : p y, T2(x, y)⇝: b{x} : q y

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 41

where T1 and T2 are database tables with x and y being the attributes or columns,

the first attribute for both tables being the primary key of type TEXT and the second

attribute non-nullable and of type TEXT and DECIMAL for T1 and T2 respectively.

Translating the mappings on the left side of the ⇝ into an IQ produces SQL queries in

the form of atomic expressions T1(x, y) and T2(x, y), where the variables x and y imply

the π operation in relational algebra. The right side represents the subject-predicate

object mappings for the properties :p and :q.

As noted in section 4.2.1, Ontop supports the R2RML mapping language. An R2RML

mapping consists of a set of rr :TriplesMap classes. The rr :TriplesMap class has

the following three properties: rr :logicalTable, rr :subjectMap, and, rr :predica-

teObjectMap. A rr :TriplesMap specifies a rule for translating each row of a logical

table (database table) to zero or more RDF triples9.

• rr :logicalTable defines the logical table (database table).

• rr :subjectMap defines the target class and the URI generation format.

• rr :predicateObjectMap defines the target property and the object generation

by means of the rr :objectMap, where the value of rr :objectMap is a rr

:constant, rr :column or rr :template.

In R2RML, IRIs, blank nodes, and literals are constructed using templates. Also referred

to as string templates, a template is a format string that can be used to construct

strings from various components, including referencing database column names. R2RML

templates are enclosed in curly braces10 and serve as placeholders to be replaced by

values from the database. In the case of IRI templates, safe separators11 are used to

support different values of parameters to populate a template placeholder. Literals are

mapped to a specific datatype called a “datatype-able” term map. However, if literals

need to be constructed from more than one column, in the case of a xsd:date type, then a

safe separator is used. For example, if a date value is spread across three integer columns

(day, month, and year), the “-” separator is considered safe. In IQ, non-constant RDF

terms such as namespace IRIs are not a formal part of the RDF data model and are

constructed using the binary function rdf with a TEXT lexical value and term type as

its arguments [119]. Based on the mapping syntax example, the subjects of both triples

are IRIs of the same template and are built using the same template function. In the

example, the IRI equates to :b1 when x = 1. Before being used as lexical values, database

values must be transformed into text. The DECIMAL attribute in T2 is mapped to the

9https://www.w3.org/TR/r2rml/#dfn-predicate-object-map
10https://www.w3.org/TR/r2rml/
11https://www.w3.org/TR/r2rml/#dfn-safe-separator

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 42

xsd:decimal type. The following is the resulting IQ representation of the mapping

assertions:

T1(x, y)⇝ triple(rdf : b{}(x), IRI) : p rdf(y, xsd : string)

T2(x, y)⇝ triple(rdf : b{}(x), IRI) : q rdf(d2t(y), xsd : decimal)

where before being used as lexical values, the database values must be converted into

text. Here, it is done by the unary function d2t() for the decimal value.

The translation of SPARQL into IQ necessitates the use of the majority of algebraic

operations [119]. We define the grammar of IQs next within the Ontop context and,

based on this, illustrate an example of a SPARQL query translation to SQL.

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 43

Definition 4.1. The following grammar describes IQs [119];

ϕ := P (t) | PROJx
τ ϕ | AGGx

τϕ | DISTINCTϕ | ORDERBYxϕ |
SLICEi,jϕ| FILTERβϕ | JOINβ(ϕ1, ..., ϕk) | LEFTJOINβ(ϕ1, ϕ2) |
UNION(ϕ1, ..., ϕk)

where,

• P is a relation name (triple, graph instance, or a database table name)

• t a tuple of terms

• x a tuple of variables

• τ a substitution

• i,j ∈ ∪ { 0,+∞ } are values for the offset and limit

• β a boolean term

Remark 4.2. Relations are sets of tuples in the standard relational model, which by

definition do not contain “duplicate” entries [38]. However, practical implementations of

relational database management systems (RDBMS) diverged from the “pure” relational

model by permitting duplicate tuples in query responses, making bags (multisets) the

predominant collection type in query processing rather than sets. This decision was

based on the performance costs related to duplicate elimination. Instead, duplicate

elimination is performed only if the user explicitly requests it via the SQL “DISTINCT”

keyword. In line with this, the algebraic operators above operate on bags of tuples and

are interpreted using bag semantics. For more background details on bag semantics, we

refer the interested reader to [38] and [88] in the OBDA context.

4.2.3.1 SPARQL to IQ

We illustrate query translation in the following example with the commit table and a

subset of the columns from the GHTorrent MySQL database instance. The following

tuples can be found in a commit:

Table 4.1: Commit table

id sha author id created at

1 ecf5851798cce783c59... 1 2012-06-01 20:33:21

2 f45f724213278770052... 1105 2012-06-23 03:39:30

3 adfcd8c15dccec3c040... 3 2012-07-23 07:47:16

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 44

For this example, the mapping assumes the following ontology properties: Data proper-

ties :commit sha and :commit created at maps to the “sha” and “created at” columns,

and the object property :commit author maps to “author id”. These properties con-

struct for each commit three triples to specify the hash key identifier, the author of

the commit, and the timestamp of when it was created. Based on this, the mapping

specification is as follows.

Commit(x, h, ,)⇝ triple(rdf(: c{}(x), IRI), : commit sha, rdf(h, xsd : string)),

Commit(x, , a,)⇝ triple(rdf(: c{}(x), IRI), : commit author, rdf(: a{}/{}(a), IRI)),

Commit(x, , , d)⇝ triple(rdf(: c{}(x), IRI), : commit created at, rdf(d, xsd : date))

We use the following SPARQL query to determine the number of commits made by each

author using these tuples.

SELECT ?author (COUNT (?c) AS ?cnt)

WHERE

{

?c a :commit

?c :commit_author ?author .

}

GROUP BY ?author

Listing 4.1: SPARQL author commit count query

We get the following IQ upon unfolding of the SPARQL query:

AGG?author
?cnt/SPARQL Count(c) JOIN

PROJ?author,?c
?author/rdf(:a{}/{}(a),IRI), ?c/rdf(:c{}(x1),IRI) Commit(x1, , a,)

After unfolding, the next step is lifting the projections (PROJ) and simplifying the

functional terms.

PROJ?author,?cnt
?author/rdf(:a{}(a1),IRI), ?cnt/rdf(i2t(n),xsd:integer) Commit(x1, , a,)

AGGa1
?n/Count(x1)

JOIN(Commit(x1, a1, ,)

The “ ” symbol is used in place of attributes/columns not projected.

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 45

4.2.3.2 IQ to SQL

The latest version of Ontop, v4, generally transforms database values into RDF terms by

applying top-level projection [119]. Given that Database Management System (DBMS)

vendors generally modify their SQL implementation to suit their needs, the ANSI/ISO

SQL standards are only lightly adhered to, making it challenging to generate SQL inter-

operable across DBMS vendors. Instead, the Ontop v4 model supported each SQL

dialect in a granular way, such that it supports the datatypes, conventions (attributes,

table identifiers), function semantics, clause restrictions, and data catalog structure.

Ontop is implemented in the Java programming language and contains Java factory

classes representing the various SQL dialects, where the dialect-specific implementations

are provided through dependency injection. Furthermore, Ontop supports user-defined

SQL via the queries in the mapping specification [119].

SELECT v1.‘author_id ’,␣COUNT (*)␣AS␣‘v0’

FROM ‘commit ’␣v1

WHERE␣v1.‘author_id ’ IS NOT NULL

GROUP BY v1.‘author_id ’

Listing 4.2: Generated SQL query for listing 4.2

4.3 The GHTorrent Dataset

The primary research question, as defined in section 1.2 of chapter 1, is based on the

effectiveness of the OBDA approach on real-world data. Using a real-world dataset to

investigate OBDA is a primary requirement for this research, along with ensuring it

contains a relational model to demonstrate OBDA in the context of RDBMS using the

Ontop system.

GitHub is a popular software repository hosting platform for version control and has

seen wide adoption in the last few years. It is based on the decentralized open-source

and version control tool Git [73]. Git, created by Linus Torvalds, began as a revision

management system for coordinating the development of the Linux kernel in 2005. Its

functionality, portability, efficacy, and third-party acceptance have progressed signifi-

cantly over time, making it the market leader in its domain [106]. Because Git manages

the revisions, pushing a revision to a remote repository or pulling a revision from a

remote repository into your local repository is seamless. However, as this scales, the

maintenance of a repository and its servers can be overwhelming. Maintenance includes

ensuring server connectivity, server security configuration, creating user accounts, and

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 46

providing user support. These tasks can be delegated to a third-party provider like

GitHub to handle these difficulties. Software development teams typically use Git on

their local machines to manage source code, while GitHub is an online service to which

developers connect and synchronize their local source code changes. Containing more

than 128 million open-source repositories as of February 202012, GitHub is one of the

most significant internet sources of software artifacts [54].

Even though GitHub has a close relationship with Git, it provides many additional

features specifically aimed at managing the online collaboration and social interactions of

projects. We note a few of the features relevant to the dataset and provide some context.

Pull Request, also referred to as a merge request, is a request to merge code or file

changes made on a separate clone or branch of the central repository into the base branch.

Watching; the watching feature allows users to subscribe to a particular repository and

receive notifications for activities performed. More information on available features is

available in the literature [24, 71, 72].

GitHub has over eighty-three million developers across more than four million organiza-

tions contributing to more than two-hundred million repositories1, making it a substan-

tial source for software repository data. Several well-known open-source projects have

chosen GitHub to host their code base. These include:

• TensorFlow13, a Google-developed open-source software library designed for nu-

merically intensive tasks and large-scale machine learning and deep learning sup-

port.

• Linux14, the open-source operating system created by Linus Torvalds.

• d315, a JavaScript library for using web standards to visualize data.

• Vue16, a progressive JavaScript framework for building web-based user interfaces

that can be adopted incrementally.

GitHub is a place where developers can demonstrate their skills to peers and potential

employers and the platform where social coding elements were first introduced [37].

GitHub presents a wealth of research opportunities [37]. In recent years, several works

have been published that focused on mining GitHub data to fulfill various research

objectives. These include [2, 23, 25, 33, 51, 55, 63, 95, 115], among others.

12https://towardsdatascience.com/githubs-path-to-128m-public-repositories-f6f656ab56b1
1https://github.com/about; Accessed: 2022-10-23

13https://github.com/tensorflow/tensorflow
14https://github.com/torvalds/linux
15https://github.com/d3/d3
16https://github.com/vuejs/core

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 47

The acquisition and curation of data from software repositories is a typical requirement

to support empirical studies on software engineering [35], and GitHub is an attractive

source for this as it provides access to its internal public data via a Representational

state transfer (REST) application programming interface (API)17 [36]. However, access

to the REST API is capped at a request limitation of 15,000 requests per hour. Given

this limitation, extracting large amounts of data to support research depending on this

data is a pretty cumbersome procedure. The GHTorrent project was created to grant

access to public data on GitHub. It aims to provide a platform for researchers and

developers to gather insights and analytics from vast amounts of open-source software

data. GHTorrent is an offline mirror of Github’s event streams and persistent data (for

public projects) made available to the research community as a service. It was curated

over several years and is still actively maintained.

4.3.1 GHTorrent Data Collection

The GHTorrent project has been mining data from GitHub since 2013 using a decen-

tralized data collection process to collect data from the GitHub REST API. Given the

challenges associated with the REST API request limit per user authentication token,

the creator [35] of GHTorrent developed the process from the ground up. Data mining

is performed in parallel using multiple access tokens. Collaboration between researchers

is made possible through this decentralisation. To avoid duplicate requests in this work-

flow, a caching strategy is implemented. GHTorrent uses a MongoDB database to cache

the results per entity, making it possible to query the raw data [35]. A mirroring al-

gorithm is implemented to resolve the data into the appropriate schema structure. A

recursive dependency resolution is the foundation of the mirroring algorithm, where for

each retrieved entity, a set of dependencies is defined to ensure a logical flow based

on the data schema figure 4.1 [35]. The result of this is a better source of structured

GitHub data. The raw JSON responses returned from the REST API are stored in a

MongoDB18 and MySQL19 database, respectively.

Figure 4.1 shows the MySQL database schema. This illustration is based on the MySQL

dump dated June 01, 2019. In total, there are more than 125486232 repositories available

in the data dump. In this research, we opted to work with the MySQL data instance

since it is a relational model.

A description of the tables in the MySQL relational model:

17https://docs.github.com/en/rest
18https://www.mongodb.com/
19https://www.mysql.com/

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 48

F
ig
u
r
e
4
.1
:
G
H
T
or
re
n
t
M
y
S
Q
L
D
at
ab

as
e
S
ch
em

a

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 49

• The user table contains data about GitHub users. There are two types of users,

USER and ORG, representing a user or organization, respectively. Personal data

(emails and real names) are excluded from the table in the data dump.

• organization members describes members (users) related to organizations.

• The projects table contains information about repositories.

• The project members table describes users with commit access to the repository.

• The project languages table describes the languages that are used in the repository.

• The commits table stores the unique commits.

• The commit parents table stores the parent commit(s) for each commit.

• The project commits table contains the commits belonging to the history of a

project.

• The commit comments table contains code review comments on commits.

• The followers table describes a follower to a user.

• The watchers table contains data about users that have starred (watched) a

project.

• The pull requests table contains information about the events where developers

are ready to begin merging their code with the main project repository.

• The pull request history table contains information about the events that occurred

in the lifetime of pull requests.

• The pull request commits table contains information about the commits associated

with pull requests.

• The pull request comments table contains code review comments on a commit

associated with pull requests.

• The issues table contains the issues associated with a repository.

• The issue events table contains the events associated with issues on a repository.

• The issue comments table contains discussion comments against pull requests or

issues.

• The repo labels table stores the labels to be assigned to an issue affecting a par-

ticular repository.

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 50

• The issue labels table stores the labels that have been assigned to an issue.

More details are available on the GHTorrent website 20.

4.3.2 GHTorrent Limitations

We now note the limitations concerning the dataset as reported in [35]:

• Entities that are added to the GitHub event stream are reported, but deletions

are not. GitHub does not report item Time stamps for the watchers/stars and

followers entities. As a workaround, when a follow/watch action is performed, the

timestamp of the event that is generated is used by GHTorrent.

• Issues and pull requests are associated on GitHub. When a pull request is created,

an associated issue is also created. As a result, pull request conversation comments

must constantly be retrieved from multiple sources, namely pull request comments

for code reviews and issue comments for pull requests.

• GHTorrent uses a Git user name resolution to connect a user table entry to a

commit table entry. Since Git allows users to set up custom user names as their

commit names, GitHub can report the same username across all entities. If the

commit user cannot be resolved, for example, because the commit user does not

belong to a GitHub user or the Git username is incorrectly configured, GHTorrent

will generate a fake user entry with as much information as possible.

• The tracking of pull request commits is not always accurate, as they can be merged

using external tools outside the GitHub environment.

• To open a bug in the GitHub bug tracker, all that is required is a textual descrip-

tion. Bug statuses are tracked by specific labels that are explicitly configured. This

means that bugs’ characteristics cannot be compared across projects similarly.

• As GitHub evolves, entity names are updated, and API endpoints get updated.

For example, the watchers entity has been renamed to stargazers. If any changes

affect the relational schema, subsequent data dumps will not be compatible with

the previous schema.

• Network-related errors during data curation might result in missing data. Known

instances of missing events include several days at the beginning of March 2012,

when an error in the event mirroring script went unnoticed, and from the middle

20https://ghtorrent.org/relational.html

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 51

of October 2012 to the middle of November 2012, when the data collection process

was adapted to the newly imposed requirement for authenticated API requests.

• The pull request history and issue events tables might contain duplicate records

due to the REST API returning slightly modified results when they are queried at

different time moments.

4.4 SemanGit Ontology

Utilizing an ontology that applies to the domain of the underlying data source is an

essential step in OBDA. By applying it on the domain level, an ontology can enrich in-

complete data with background domain knowledge via inferencing [117]. The GHTorrent

dataset falls within the domain of version control systems, specifically the Git Version

Control System (VCS). A VCS keeps track of changes made to a file or set of files over

time. Selected files can be restored to their previous state using this feature, promoting

easy recovery of files and errors [19]. As part of the investigative procedure to iden-

tify the dataset, we had to remember the ontology used. For this, we could develop

or reuse an existing ontology for the domain of interest. While investigating a suitable

dataset for the research, we found a novel RDF dataset based on the GHTorrent called

Semantic Git (SemanGit). Based on a Git ontology, SemanGit is the first collection of

linked data extracted from GitHub [66]. The SemanGit ontology has been identified

as suitable for this research as it was developed and used as the underlying ontology

for the RDF-linked dataset created from the GHTorrent dataset. As of April 2019, the

SemanGit RDF dataset has over 21 billion triples. More details on creating the RDF

dataset can be found in [66].

Remark 4.3. In the SemanGit project, data (in .csv file format) from monthly GHTorrent

data dumps are extracted, using a Java-based software middleware, into RDF triples and

stored within a graph database (triple store). In OBDA, the ontology is used directly

over the data source via a mapping specification, keeping the data in its original state.

Additionally, OBDA can integrate several data sources and should thus not be viewed

as a specific data source.

There are various Git providers, such as GitHub, GitLab, Bitbucket, and SourceForge,

to name a few. The SemanGit ontology was created with the Git protocol features as

a base and additional protocol features specific to the GitHub platform. This allows

the ontology to be extensible and support the unique features of specific Git providers.

Currently, the SemanGit ontology is only extended to support GitHub as it was built to

support the RDF format of the GHTorrent linked dataset. In order to accomplish this,

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 52

Figure 4.2: SemanGit Ontology summary (classes and properties)

the ontology makes a distinction between Git conventions and features that are specific

to each provider. For example, based on Git, the author of a commit is represented by a

“Name [email]” pair, whereas GitHub represents a commit author as a user containing

additional attributes such as location, country code, creation date [66]. As a result,

the ontology is hierarchical, with Git protocol features forming the base classes and

provider-specific extensions as classes that inherit from them. For example, the ontology

captures the Git convention user with a single data property user email as a base

class. The concept github user is a subclass of user with all the additional object and

data properties specific to GitHub. Any specific provider features not in the protocol

convention form a stand-alone class that does not inherit from a Git base class. In the

Semangit ontology, all the GitHub-specific classes and properties are denoted with the

“github ” prefix.

A summary of the ontology is depicted in figure C.1. The full SemanGit ontology is

available on GitHub21.

21https://github.com/SemanGit/SemanGit/blob/master/Documentation/ontology/

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 53

4.4.1 SemanGit limitations

The SemanGit ontology is considered to be a base ontology as it models the fundamental

Git protocols with extensions to support a set of GitHub social concepts. Two types

of classes can be distinguished in OWL, Primitive and Defined classes. Classes with

at least one set of necessary and sufficient requirements are defined classes; they have a

definition, and every individual who meets the definition belongs to the class. Primitive

classes lack any sets of necessary and sufficient requirements [47]. Let us illustrate this

within the context of the SemanGit ontology.

In the SemanGit ontology, github pull request is a subclass of pull request which says

that if something is a github pull request it is necessarily a pull request . According

to GitHub’s REST API, every pull request (github pull request) is also considered an

issue , but not all issues are considered pull requests. Given the ontology description, if

we consider an instance of a pull request , the knowledge captured is not sufficient to

determine that the pull request instance is a member of the class github pull request

and that it is an issue . We must alter the conditions to make this possible by extending

the necessary conditions to necessary AND sufficient conditions. This means that the

requirements for being a member of the class github pull request are not only necessary

but also sufficient to establish that any given instance that satisfies the conditions must

be a member of the class github pull request . Thus, the classes in the SemanGit

ontology are considered to be primitive. Furthermore, the ontology lacks inverse relations

and object property characteristics. Through the use of property characteristics, OWL

makes it possible to enrich the meaning of properties [47]. We now discuss and outline

the extensions made to enrich the ontology.

4.4.2 SemanGit extensions

The approach for extending the SemanGit ontology is based on the methodology defined

in “Ontology Development 101: A Guide to Creating Your First Ontology” by Noy et

al. [89]. It is an iterative development process that repeats continuously to enhance the

ontology. It consists of the following sub-processes [89]:

• Determine the domain and scope by defining a set of competency questions.

• Explore the reuse of existing ontologies.

• Listing key terms in the ontology.

• Create the classes and class hierarchy.

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 54

• Create the properties of classes.

• Create features for the defined properties.

• Create instances.

While newer methodologies for developing ontologies exist [57, 64], the approach we

employed sufficed for our needs as a foundational ontology already existed.

We renamed the classes and properties by removing the underscores and using Upper-

CamelCase for class names and lowerCamelCase for property names. We also focused

on enriching existing class and property definitions. Since we are reusing an existing on-

tology, the domain (Git protocols) and scope (GitHub) of the ontology are known, with

the fundamental concepts being defined. Considering this, we are only focusing on the

sub-processes related to the extension of class and property definitions. The instances

are defined in the underlying database instance.

4.4.2.1 Class definitions

The class extensions applied were minimal. We have converted the class descriptions of

GithubProject and GithubPullRequest to definitions.

• If something is an instance of a GithubProject then it is necessary that it is a

Repository and it is also necessary that it has exactly one owner that is a member

of the class User .

– GithubProject ⊑ Repository ⊓ ∃hasowner.User⊓
(= 1githubHasOwner.User)

• If something is an instance of a GithubPullRequest then it is necessary that it

is a PullRequest and it is also necessary that it has exactly 1 issue that is a

member of the class GithubIssue .

– GithubPullRequest ⊑ (PullRequest ⊓GithubIssue)⊓
∃githubPullRequestIssue.GithubIssue⊓
(= 1githubPullRequestIssue.GithubIssue)

• Furthermore, the User and Repository classes are disjoint from each other.

– User ⊑ ¬Repository

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 55

4.4.2.2 Property definitions

“Each object property may have a corresponding inverse property. If some property

links individual a to individual b, then its inverse property will link individual b to

individual a” [47]. The following inverse properties were added. We note that the

domain and range of each property was already defined.

• githubOwnerOf inverse of githubHasOwner

• hasAuthoredComment inverse of commentAuthor

• hasAuthoredCommit inverse of commitAuthor

• hasCommittedCommit inverse of commitedBy

• repositoryHasCommit inverse of belongsToRepository

We summarize the property characteristic updates in table 4.2.

Table 4.2: Property characteristics

Property Characteristics

commentAuthor Functional

commitAuthor Functional

commitBelongsTo repository Functional

commitCommittedBy Functional

commitHasParent Functional; Asymmetric; Irreflexive

githubForkedFrom Functional

githubHasOwner Functional

githubIssueEvent actor Functional

githubIssueEvent for Functional

githubIssueProject Functional

githubIssuePull request Functional

githubOwnerOf Inverse Functional

githubUserCity Functional

githubUserState Functional

hasAuthoredComment Inverse Functional

hasAuthoredCommit Inverse Functional

hasCommittedCommit Inverse Functional

pullRequestBaseProject Functional

pullRequestHeadProject Functional

pullRequestUser Functional

repositoryHasCommit Inverse Functional

http://etd.uwc.ac.za/

Chapter 4 Ontology-Based Data Access Tool, Dataset and Ontology 56

4.5 Conclusion

In this chapter, we discussed the Ontop OBDA system and the specific mechanics (the-

oretical and practical) it uses to represent SPARQL queries and transform them into

SQL queries using the IQ language. We illustrated this with sample data in the GitHub

context and discussed a query optimization approach implemented within Ontop. We

outlined the dataset (GHTorrent) by exploring the motivations for its existence, the

data collection process, and its limitations. We reviewed the ontology (SemanGit) used

to investigate the OBDA approach. We outlined a brief history of why the ontology was

created and the development and design decisions. Finally, we discussed the ontology’s

limitations and documented the extensions that were made to enrich the ontology class

and property definitions.

http://etd.uwc.ac.za/

Chapter 5

Implementation

5.1 Introduction

Implementing an Ontology-based Data Access (OBDA) system for a relational database

requires a set of components. These include a domain ontology, a relational database

instance, and a mapping specification linking these two. We used the Ontop1 OBDA tool

to facilitate the mapping between the SemanGit ontology and the GHTorrent MySQL

database instance (dated June 01, 2019). The SemanGit ontology is a result of establish-

ing a collection of linked data extracted from GitHub, using GHTorrent [66]. GHTorrent

is an offline mirror of GitHub’s event streams and persistent data for public repositories.

In this chapter, we document the creation of the mapping assertions using Ontop and

the query experiments. We highlight the data setup procedure, linking it to the ontology

and the issues we encountered. Finally, we outline the queries used in the experiments

and analyze them to explore the benefits of OBDA.

5.2 Preliminaries

We used a host computer with an AMD Ryzen 9 5900X 12-Core Processor running at

3.70 MHz using 16GB of RAM, running Windows 10 Pro version 21H2 for the query

experiments. The GHTorrent MySQL database instance was used and installed on a

Gigabyte GP-AG42TB AORUS 2TB M.2 2280 PCI-E 4.0 Solid State Drive. To create

and manage the mapping assertions for the ontology and database, we used the open

source Protégé ontology editor2. Protégé enables the management of mappings and

1https://ontop-vkg.org/
2https://protege.stanford.edu/

57

http://etd.uwc.ac.za/

Chapter 5 Implementation 58

querying from within the Protégé editor using the Ontop plugin3. We used version 5.5.0

of Protégé and version 4.1.1 of Ontop.

5.3 Database setup

The dataset was obtained from the GHTorrent downloads page4. The MySQL data

dump from June 2019 was downloaded and used as the dataset for the implementation.

During the data setup procedure, the type of storage component used impeded the

performance. Once we extracted and imported the data into a local MySQL instance

on the host machine, general read performance in the MySQL workbench was very slow

due to the size of the tables, even with the necessary indexes applied. To overcome this,

we upgraded the storage and dedicated the storage for the sole purpose of the database

without additional operating system programs and files.

5.4 Mapping GHTorrent to the SemanGit Ontology

A fundamental component of realizing an OBDA system is the mapping specification.

The mapping connecting the ontology to the database involves writing individual queries

that must be consistent with the vocabulary of the ontology for each database table and

column [12]. We now describe a set of mapping assertions created for connecting the

SemanGit ontology to the tables of interest in the GHTorrent MySql database instance.

5.4.1 Mapping assertions

A mapping assertion comprises three components: a unique mapping identifier, a target,

and a source. The target is a set of RDF triple patterns defined in the Terse RDF Triple

Language (Turtle)5 syntax that captures the data returned by the source, with the

source being a regular SQL query. Turtle is a format that enables the expression of an

RDF graph using a compact and intuitive text representation by utilizing abbreviations

for frequently used patterns and data types. It is a syntax for serializing RDF data into

a text-based format that machines and people can write and read. Turtle employs a

simple syntax based on the subject-predicate-object structure of RDF triples to provide

a compact representation of RDF data that may be used for transferring and storing

RDF data on the Web.

3https://protegewiki.stanford.edu/wiki/Ontop
4https://ghtorrent.org/downloads.html
5https://www.w3.org/TeamSubmission/turtle/

http://etd.uwc.ac.za/

Chapter 5 Implementation 59

The mapping assertions construct a part of the knowledge graph (KG) as defined in the

target part by populating the RDF triple pattern answer variables with the correspond-

ing answer in the result set of the source SQL query. The answer variables are enclosed

in braces “{” and “}”. We note that the order of the property mappings needs to match

the order of the columns returned from the source SQL.

Figure 5.1: User entity mapping

Figure 5.1 shows the mapping assertions for the User class and users database table.

The mappings (figure 5.1) maps the “:User/{id}” Internationalized Resource Identifier

(IRI) to the class “:User”. The “{id}” placeholder represents a unique identifier for each

user. The rest of the specification defines the user’s properties and maps them to specific

columns in the database users table.

Figure 5.1 mapping assertions

• We map the “:User/{id}” IRI to the class “:User”, where id is the primary key in

the users table.

• “:githubUserLogin” maps to the login column, with data type “xsd:string”.

• “:githubUserCompany” maps to the company column, with data type “xsd:string”.

• “:githubUserCreatedAt” maps to the created at column, with data type “xsd:dateTime”.

• “:githubUserFake” maps to the fake column, with data type “xsd:boolean”.

• “:githubUserDeleted” maps to the deleted column, with data type “xsd:boolean”.

• “:githubUserLng” maps to the long column, with data type “xsd:float”.

http://etd.uwc.ac.za/

Chapter 5 Implementation 60

• “:githubUserLat” maps to the lat column, with data type “xsd:float”.

• “:githubUserCountryCode” maps to the country code column, with data type

“xsd:string”.

• “:githubUserState” maps to the state column, with data type “dbo:State”.

• “:githubUserCity” maps to the city column, with data type “dbo:City”.

• “:githubUserLocation” maps to the location column, with data type “rdfs:string”.

• “:githubUserIsOrg” maps to the is organization column, with data type “xsd:boolean”.

Table 5.1: UserMap

Property / Class Column Data Type IRI
:User id :User :User/{id}
:githubUserLogin login xsd:string
:githubUserCompany company xsd:string
:githubUserCreatedAt created at xsd:dateTime
:githubUserFake fake xsd:boolean
:githubUserDeleted deleted xsd:boolean
:githubUserLng long xsd:float
:githubUserLat lat xsd:float
:githubUserCountryCode country code xsd:string
:githubUserState state dbo:State
:githubUserCity city dbo:City
:githubUserLocation location rdfs:string
:githubUserIsOrg is organization xsd:boolean

In figure 5.1, we define what an organization is considered to be, where an organization,

according to the dataset, is a user database entry with the “type” column populated

with the value “ORG”. The mapping specification defines one property for the user:

”:githubUserIsOrg”. This property is linked to the value “true” (of type “xsd:boolean”)

where the column type has the value “ORG” in the users table. The purpose of this

property is to indicate whether the user is an organization. This enables the KG to assert

whether a user is an organization based on the boolean value of the githubUserIsOrg

property.

Figure 5.2 mapping assertions

• We map the “:Repository/{id}” IRI to the class “:Repository”, where id is the

primary key in the projects table.

• “:repositoryUrl” maps to the url column, with data type “xsd:anyURI”.

• “:githubHasOwner” maps to the owner id column, which maps the :User/{owner id}
IRI to the class “:User”.

http://etd.uwc.ac.za/

Chapter 5 Implementation 61

Figure 5.2: Repository (Project) entity mapping

• “:githubProjectName” maps to the name column, with data type “xsd:string”.

• “:githubProjectDescription” maps to the description column, with data type “xsd:string”.

• “:repositoryCreatedAt” maps to the created at column, with data type “xsd:dateTime”.

• “:githubForkedFrom” maps to the forked from column, which maps the :Reposi-

tory/{forked from} IRI to the class “:Repository”.

• “:githubProjectDeleted” maps to the deleted column, with data type “xsd:boolean”.

Table 5.2: ProjectMap

Property / Class Column Data Type IRI
:Repository id :Repository :Repository/{id}
:repositoryUrl url xsd:anyURI
:githubHasOwner owner id :User :User/{owner id}
:githubProjectName name xsd:string
:githubProjectDescription description xsd:string
:repositoryCreatedAt created at xsd:dateTime
:githubForkedFrom forked from :Repository :Repository/{forked from}
:githubProjectDeleted deleted xsd:boolean

Figure 5.3: Commit entity mapping

Figure 5.3 mapping assertions

• We map the “:Commit/{id}” IRI to the class “:Commit”, where id is the primary

key in the commits table.

http://etd.uwc.ac.za/

Chapter 5 Implementation 62

• “:commitSha” maps to the sha column, with data type “xsd:string”.

• “:commitAuthor” maps to the author id column, which maps the :User/{author id}
IRI to the class “:User”.

• “:commitCommitedBy” maps to the committer id column, which maps the

:User/{committer id} IRI to the class “:User”.

• “:commitCreatedAt” maps to the created at column, with data type “xsd:dateTime”.

Table 5.3: CommitMap

Property / Class Column Data Type IRI
:Commit id :Commit :Commit/{id}
:commitSha sha xsd:string
:commitAuthor author id :User :User/{author id}
:commitCommitedBy committer id :User :User/{committer id}
:commitCreatedAt created at xsd:dateTime

Figure 5.4: Project commits mapping

In figure 5.4, we define the mapping assertions for the associative table linking commits

to a repository. An associative table is used for many-to-many relationships between two

tables. In this context, the project commits table represents the commits belonging

to the history of a project. Multiple projects can share the same commits if one is a

fork of the other6, where a fork is a copy of a repository.

Figure 5.4 mapping assertions We map the “:belongsToRepository” property

based on the domain and range (Commit - Repository) to the commit id and project id

columns, which maps a commit to its repository and a repository to its commits.

Table 5.4: ProjectCommit Map

Property Domain Range Columns IRI
:belongsToRepository Commit Repository commit id

project id :Commit/{commit id}
:Repository/{project id}

6https://ghtorrent.org/relational.html

http://etd.uwc.ac.za/

Chapter 5 Implementation 63

Figure 5.5: Pull Request entity mapping

Figure 5.5 mapping assertions

• We map the “:PullRequest/{id}” IRI to the class “:PullRequest”, where id is the

primary key in the pull requests table.

• “:pullRequestHeadProject” maps to the head repo id column, which maps the

:Repository/{head repo id} IRI to the class “:Repository”.

• “:pullRequestBaseProject” maps to the base repo id column, which maps the :Repos-

itory/{base repo id} IRI to the class “:Repository”.

• “:pullRequestHeadCommit” maps to the head commit id column, which maps the

:Commit/{head commit id} IRI to the class “:Commit”.

• “:pullRequestBaseCommit” maps to the base commit id column, which maps the

:Commit/{base commit id} IRI to the class “:Commit”.

• “:githubPullRequestId” maps to the pullreq id column, with data type “xsd:integer”.

• “:githubPullRequestIntraBranch” maps to the intra branch column, with data

type “xsd:boolean”.

Table 5.5: PullRequestMap

Property / Class Column Data Type IRI
:PullRequest id :PullRequest :PullRequest/{id}
:pullRequestHeadProject head repo id :Repository :Repository/{head repo id}
:pullRequestBaseProject base repo id :Repository :Repository/{base repo id}
:pullRequestHeadCommit head commit id:Commit :Commit/{head commit id}
:pullRequestBaseCommit base commit id :Commit :Commit/{base commit id}
:githubPullRequestId pullreq id xsd:integer
:githubPullRequestIntraBranch intra branch xsd:boolean

In figure 5.6, we define the mapping assertions for the associative table linking commits

to a pull request.

http://etd.uwc.ac.za/

Chapter 5 Implementation 64

Figure 5.6: Pull Request commits mapping

Figure 5.6 mapping assertions We map the “:pullRequestHasCommit” property

based on the domain and range (PullRequest - Commit) to the pull request id and

commit id columns, which maps a commit to its associated pull request.

Table 5.6: PullRequestCommitsMap

Property Domain Range Columns IRI
:pullRequestHasCommit PullRequest Commit pull request id

commit id :PullRequest/{pull request id}
:Commit/{commit id}

Figure 5.7: Pull Request event history mapping

In figure 5.7, we define the mapping assertions for the pull request history table. Since

this table stores the events in the lifetime of a pull request, we map it to the “:GithubPull-

RequestAction” class in the ontology. Each event is the result of an action on a pull

request, and thus, we associate the events with the GithubPullRequestAction class.

Figure 5.7 mapping assertions

• We map the “:GithubPullRequestAction/{id}” IRI to the class “:GithubPullRe-

questAction”, where id is the primary key in the pull request history table.

• “:githubPullRequestActionFor” maps to the pull request id column, which maps

the :PullRequest/{pull request id} IRI to the class “:pullRequest”.

• “:githubPullRequestActionCreatedAt” maps to the created at column, with data

type “xsd:dateTime”.

http://etd.uwc.ac.za/

Chapter 5 Implementation 65

• “:githubPullRequestActionType” maps to the action column, with data type “xsd:string”.

Table 5.7: PullRequestHistoryMap

Property / Class Column Data Type IRI
:GithubPullRequest-

Action id :GithubPullRequestAction :GithubPullRequestAction/
{id}

:githubPullRequest-

ActionFor pull request id :PullRequest :PullRequest/
{pull request id}

:githubPullRequest-

ActionCreatedAt created at xsd:dateTime
:githubPullRequest-

ActionType action xsd:string

Figure 5.8: Merged Pull Requests mapping

In figure 5.8, we define what is considered a “merged” pull request, where a merged

pull request according to the dataset is a pull request history database entry with the

“action” column populated with the value “merged”. The mapping specification defines

one property for the pull request, which is “:githubPullRequestMerged”. This property

is linked to the value of the column is merged (of type “xsd:boolean”), which is based on

the value of the action column in the pull request history table. The value “merged’

is the truth value in this case. The purpose of this property is to indicate whether a

pull request is merged. This enables the KG to assert whether a pull request is merged

based on the boolean value of the github pull request merged property.

Table 5.8: PullRequestMergedMap

Property / Class Column Data Type IRI
:githubPullRequestMerged is merged xsd:boolean :PullRequest/{pull request id}

Remark 5.1. We note that the subject of triples using the “a” predicate is the IRI of the

described resource. In RDF, resources are identified by IRIs, which are unique strings

http://etd.uwc.ac.za/

Chapter 5 Implementation 66

that identify the resource on the web. The subject of a triple using the “a” predicate

is the IRI of the described resource, and the object is the IRI of the class or type

the resource belongs to. The “a” predicate is a shorthand for the complete predicate

“rdf:type”7.

5.5 Querying GHTorrent with SPARQL

To investigate the value of OBDA, we perform query answering over the VKG using a

select set of queries. We investigate querying from the point of view of end-users trying

to extract some insights from the data using domain terms and analyze the produced

SQL queries. As shown in figure 5.9, we use the Protégé ontology editor in combination

with the Ontop plugin, which provides a graphical user interface for specifying SPARQL

queries and visualizing the query results.

Figure 5.9: SPARQL query retrieving commits of authors from the “rails” GitHub
repository.

We performed query answering over the generated virtual knowledge graph using a se-

lect set of SPARQL queries based on a user not being informed of specific data encoding

schemes and the schema structure of the data source. We look at the SQL query gener-

ation and showcase a sample analysis from a subset of the queries.

SELECT ?commit ?author

WHERE

{

?commit a :Commit .

?project a :Repository .

?commit :belongsToRepository ?project .

?commit :commitAuthor ?author .

?project :githubProjectName "cpython" .

7https://www.w3.org/TR/rdf11-primer/

http://etd.uwc.ac.za/

Chapter 5 Implementation 67

}

Listing 5.1: Github commits belonging to “cpython” repository

SELECT v5.‘author_id1m25 ‘ AS ‘author_id1m25 ‘, v5.‘commit_id1m5 ‘ AS

‘commit_id1m5 ‘

FROM (SELECT DISTINCT v2.‘author_id ‘ AS ‘author_id1m25 ‘,

v1.‘commit_id ‘ AS ‘commit_id1m5 ‘, v1.‘project_id ‘ AS ‘project_id1m5 ‘

FROM ‘project_commits ‘ v1, ‘commits ‘ v2, ‘projects ‘ v3

WHERE (

v2.‘author_id ‘ IS NOT NULL AND v1.‘commit_id ‘ = v2.‘id‘

AND v1.‘project_id ‘ = v3.‘id ‘ AND ’cpython ’ = v3.‘name ‘

)

) v5

Listing 5.2: SQL query example listing 5.1 is based on.

The first query, listing 5.1, is based on a SQL query example from the GHTorrent

website8, which we implement in SPARQL. This query selects all the commits for a

repository named “cpython”. The generated SQL query can be seen in listing 5.2. Here,

we are asking for all the commits and commit authors belonging to a repository named

“cpython”. We observe the generated SQL performing various joins on the relevant

table columns, which is very concrete compared to the abstract SPARQL query. In both

SPARQL and SQL queries, the input parameter is “cpython”, but knowledge of the

lookup procedure is not applicable in the case of SPARQL since it deals with a higher

level of abstraction.

SELECT *

WHERE

{

?organization a :User.

?organization :githubUserCountryCode "za".

?organization :githubUserIsOrg true.

}

Listing 5.3: Select GitHub organizations with country code “za”

SELECT v1.‘id‘ AS ‘id1m52 ‘

FROM ‘users ‘ v1

WHERE (

’ORG’ = v1.‘type ‘ AND ’za’ = v1.‘country_code ‘

)

Listing 5.4: Generated SQL for listing 5.3

In listing 5.3, we select the GitHub organizations with country code “za”. In refer-

ence to chapter 4.3, GitHub identifies organizations and users as a User entity with

8https://ghtorrent.org/relational.html

http://etd.uwc.ac.za/

Chapter 5 Implementation 68

a type column to distinguish whether an entity is an organization or a standard user.

To model this in the ontology, the SemanGit ontology contains a data property named

“github user is org” with a domain and range of “github user” and the “boolean” datatype

respectively. In figure 5.1, we show how this property is mapped to the database. Listing

5.4 shows the SQL query translated from the SPARQL query in listing 5.3. Here we

observe the inclusion of the generated ’ORG’ = v1.‘type‘ WHERE clause, which is a

result of the “UserMap” mapping specification in figure 5.1. In this query, we illustrate

the case of not needing to know how an organization is defined in the data source. Here

we observe, selecting the organization subset by using the “github user is org” prop-

erty in the SPARQL clause (where github user is org is true), unfolds in the ’ORG’ =

v1.‘type‘ SQL clause after query translation (listing 5.4).

SELECT *

WHERE

{

?com a :Commit .

?pr a :PullRequest .

?repo a :Repository .

?author a :User .

?com :belongsToRepository ?repo .

?com :commitAuthor ?author .

?author :githubUserCountryCode "za" .

?pr :pullRequestHasCommit ?com

}

Listing 5.5: Contributions (Pull Requests) of users with country code “za”

SELECT DISTINCT v2.‘author_id ‘ AS ‘author_id1m25 ‘,

v1.‘commit_id ‘ AS ‘commit_id1m5 ‘,

v1.‘project_id ‘ AS ‘project_id1m5 ‘,

v4.‘pull_request_id ‘ AS ‘pull_request_id1m14 ‘

FROM ‘project_commits ‘ v1, ‘commits ‘ v2,

‘users ‘ v3, ‘pull_request_commits ‘ v4

WHERE (

v1.‘commit_id ‘ = v2.‘id‘

AND v2.‘author_id ‘ = v3.‘id ‘

AND v1.‘commit_id ‘ = v4.‘commit_id ‘

AND ’za’ = v3.‘country_code ‘

)

Listing 5.6: Generated SQL for listing 5.5

In listing 5.5, we are asking for all the contributions made by South African users. Such

information can be valuable to parties interested in the open-source contributions of

software developers within a given region.

SELECT ?author (COUNT (? commit) AS ?commit_count)

http://etd.uwc.ac.za/

Chapter 5 Implementation 69

WHERE

{

?commit a :Commit .

?commit :commitAuthor ?author .

}

GROUP BY ?author

Listing 5.7: Number of commits per author

SELECT v1.‘author_id ‘ AS ‘author_id1m25 ‘, COUNT (*) AS ‘v0‘

FROM ‘commits ‘ v1

WHERE v1.‘author_id ‘ IS NOT NULL

GROUP BY v1.‘author_id ‘

Listing 5.8: Generated SQL for listing 5.7

In listing 5.7, we retrieve the number of commits per author from the commit table.

With this example, we illustrate query translation, which includes an aggregate function

with the commit table and a subset of the columns. The translated MySQL query can

be seen in listing 5.8.

SELECT DISTINCT ?member

WHERE {

VALUES ?project { repo :27601818 }

?member :githubUserFake false .

?pr :pullRequestBaseProject ?project .

?pr :githubPullRequestMerged true .

?pr :pullRequestUser ?member .

}

Listing 5.9: Select core team members of Vue js project based on Pull Request con-

tributions

SELECT DISTINCT v1.‘id‘ AS ‘id1m51 ‘ FROM ‘users ‘ v1,

‘pull_requests ‘ v2, ‘pull_request_history ‘ v3,

‘pull_request_history ‘ v4

WHERE (

(v1.‘fake ‘ = 0) AND v2.‘id ‘ = v3.‘pull_request_id ‘

AND v2.‘id ‘ = v4.‘pull_request_id ‘

AND v1.‘id ‘ = v4.‘actor_id ‘ AND 27601818 = v2.‘base_repo_id ‘

AND ’merged ’ = v3.‘action ‘

)

Listing 5.10: Generated SQL for listing 5.9

Listing 5.9 retrieves authentic users contributing to the popular GitHub repository Vue9

based on merges of a Pull Request (PR). Authentic users can own repositories and

9https://github.com/vuejs/vue

http://etd.uwc.ac.za/

Chapter 5 Implementation 70

perform actions such as managing issues, pull requests, and commits. Unauthentic users

only show up as commit authors or committers. The fake column is used to identify

these types of users in the user table. A PR is a request to merge code changes made

on a separate branch of the central repository into the base branch. The database table

“pull request history” stores all the actions associated with a PR, including the user

and type of action. We observe in the translated SQL query, listing 5.10, the lookup

into this table without explicitly defining it in the SPARQL query (listing 5.9). This is

a result of the mapping specification for the object property githubPullRequestMerged

(see figure 5.8), which is populated based on the “merged” action related to a pull

request that is stored in the “pull request history” table. The generated SQL query

contains two self-joins on the “pull request history” table. The Ontop system uses unique

constraints (primary key) for removing self-joins. In the mapping, we reference a non-

unique constraint column (pull request id) for the pull request history table. As a test,

we observed that the self-join was removed when using the primary key in the mapping.

We now highlight some additional queries related to repository contributions. We in-

vestigate two popular GitHub repositories, Angular and React. Angular, developed at

Google, is a web application development framework that uses Typescript/JavaScript

and other languages to create mobile and desktop web apps. React, a JavaScript library

for building user interfaces was developed at Meta (formerly known as Facebook).

SELECT ?repo_name ?year (COUNT (? commit) AS ?commits)

WHERE

{

?commit :belongsToRepository ?project .

?project :githubProjectName ?repo_name .

?commit :commitCreatedAt ?date .

FILTER (? project IN (repo :3905191 , repo :12159636))

}

GROUP BY ?repo_name (year(?date) AS ?year)

Listing 5.11: Number of commits per year for Angular and React repositories

SELECT v7.‘name1m39 ‘ AS ‘name1m39 ‘, v7.‘v2‘ AS ‘v2‘, COUNT (*) AS ‘v4‘

FROM (SELECT v5.‘name1m39 ‘ AS ‘name1m39 ‘,

EXTRACT(YEAR FROM v5.‘created_at1m32 ‘) AS ‘v2‘

FROM (SELECT DISTINCT v1.‘commit_id ‘ AS ‘commit_id1m5 ‘,

v3.‘created_at ‘ AS ‘created_at1m32 ‘, v2.‘name ‘ AS ‘name1m39 ‘,

v1.‘project_id ‘ AS ‘project_id1m5 ‘

FROM ‘project_commits ‘ v1, ‘projects ‘ v2, ‘commits ‘ v3

WHERE (

(v1.‘project_id ‘ = 3905191 OR v1.‘project_id ‘ = 12159636)

AND v1.‘project_id ‘ = v2.‘id ‘ AND v1.‘commit_id ‘ = v3.‘id ‘

)

) v5

http://etd.uwc.ac.za/

Chapter 5 Implementation 71

) v7

GROUP BY v7.‘name1m39 ‘, v7.‘v2 ‘

Listing 5.12: Generated SQL for listing 5.11

Figure 5.10: Angular and React repo commits by year

In listing 5.11, we select the commits for the Angular and React repositories. We group

the results by repository and year to see how the number of commits changed. To help

visualize this activity, we use a line plot on the results obtained. This can be seen in

figure 5.10.

SELECT *

WHERE {

{

SELECT ?project ?committer (COUNT (? commit) as ?commits)

WHERE {

?commit :belongsToRepository ?project .

?commit :commitAuthor ?committer .

?committer :githubUserFake false .

FILTER (? project IN (repo :3905191))

}

GROUP BY ?project ?committer

ORDER BY DESC(? commits)

LIMIT 10

http://etd.uwc.ac.za/

Chapter 5 Implementation 72

}

UNION

{

SELECT ?project ?committer (COUNT (? commit) as ?commits)

WHERE {

?commit :belongsToRepository ?project .

?commit :commitAuthor ?committer .

?committer :githubUserFake false .

FILTER (? project IN (repo :12159636))

}

GROUP BY ?project ?committer

ORDER BY DESC(? commits)

LIMIT 10

}

}

Listing 5.13: Select top 10 commit contributors for Angular and React repositories

SELECT v17.‘author_id1m7 ‘ AS ‘author_id1m7 ‘, v17.‘v6‘ AS ‘v6‘, v17.‘v8‘

AS ‘v8‘

FROM (SELECT v7.‘author_id1m7 ‘ AS ‘author_id1m7 ‘,

’http :// visualdataweb.org/semangit/repository /3905191 ’ AS ‘v6‘, v7.‘v8‘

AS ‘v8‘

FROM (SELECT v5.‘author_id1m7 ‘ AS ‘author_id1m7 ‘, COUNT (*) AS ‘v8‘

FROM (SELECT DISTINCT v2.‘author_id ‘ AS ‘author_id1m7 ‘,

v1.‘commit_id ‘ AS ‘commit_id1m5 ‘

FROM ‘project_commits ‘ v1, ‘commits ‘ v2, ‘users ‘ v3

WHERE (

(v3.‘fake ‘ = 0)

AND v1.‘commit_id ‘ = v2.‘id ‘

AND v2.‘author_id ‘ = v3.‘id ‘

AND 3905191 = v1.‘project_id ‘

)

) v5

GROUP BY v5.‘author_id1m7 ‘

ORDER BY COUNT (*) DESC

LIMIT 10) v7

UNION ALL

SELECT v15.‘author_id1m7 ‘ AS ‘author_id1m7 ‘,

’http :// visualdataweb.org/semangit/repository /12159636 ’ AS ‘v6‘, v15.‘v8‘

AS ‘v8‘

FROM (SELECT v13.‘author_id1m7 ‘ AS ‘author_id1m7 ‘, COUNT (*) AS ‘v8‘

FROM (SELECT DISTINCT v10.‘author_id ‘ AS ‘author_id1m7 ‘,

v9.‘commit_id ‘ AS ‘commit_id1m3 ‘

FROM ‘project_commits ‘ v9, ‘commits ‘ v10 , ‘users ‘ v11

WHERE (

(v11.‘fake ‘ = 0)

AND v9.‘commit_id ‘ = v10.‘id ‘

http://etd.uwc.ac.za/

Chapter 5 Implementation 73

AND v10.‘author_id ‘ = v11.‘id ‘

AND 12159636 = v9.‘project_id ‘)

) v13

GROUP BY v13.‘author_id1m7 ‘

ORDER BY COUNT (*) DESC

LIMIT 10) v15

) v17

Listing 5.14: Generated SQL for listing 5.11

Figure 5.11: Angular and React top 10 contributors by commits

In listing 5.13, we select the top 10 contributors (commit authors) for the Angular

and React repositories. We only select the authors (users) that are authentic, where

“:githubUserFake” is false. The results can be seen in figure 5.11.

SELECT ?author (COUNT(DISTINCT ?commit) as ?commits) (COUNT(DISTINCT ?pr)

AS ?prs)

WHERE {

BIND (repo :12159636 AS ?repo)

?commit :belongsToRepository ?repo .

?commit :commitAuthor ?author .

?pr :pullRequestBaseProject ?repo .

?pr :pullRequestUser ?author .

}

GROUP BY ?author

Listing 5.15: Select commit count and pull request count for Angular commit authors

http://etd.uwc.ac.za/

Chapter 5 Implementation 74

SELECT v6.‘author_id1m25 ‘ AS ‘author_id1m25 ‘, COUNT(DISTINCT(v6.‘id1m10 ‘))

AS ‘v3‘,

COUNT(DISTINCT(v6.‘commit_id1m5 ‘)) AS ‘v4 ‘

FROM (SELECT DISTINCT v2.‘author_id ‘ AS ‘author_id1m25 ‘,

v1.‘commit_id ‘ AS ‘commit_id1m5 ‘, v3.‘id‘ AS ‘id1m10 ‘

FROM ‘project_commits ‘ v1, ‘commits ‘ v2, ‘pull_requests ‘ v3,

‘pull_request_history ‘ v4

WHERE (

v1.‘commit_id ‘ = v2.‘id‘ AND v3.‘id‘ = v4.‘pull_request_id ‘

AND v2.‘author_id ‘ = v4.‘actor_id ‘ AND 12159636 = v1.‘project_id ‘

AND 12159636 = v3.‘base_repo_id ‘)

) v6

GROUP BY v6.‘author_id1m25 ‘

Listing 5.16: Generated SQL for listing 5.11

Figure 5.12: Angular commit author commits vs. pull requests

In listing 5.15, we select the number of commits and pull requests for the Angular

repository for comparison. The results can be seen in the plot figure 5.12.

SELECT ?author (COUNT(DISTINCT ?commit) as ?commits)

(COUNT(DISTINCT ?pr) AS ?prs)

WHERE {

BIND (repo :12159636 AS ?repo)

http://etd.uwc.ac.za/

Chapter 5 Implementation 75

?repo :repositoryHasCommit ?commit .

?author :hasAuthoredCommit ?commit .

?pr :pullRequestBaseProject ?repo .

?pr :pullRequestUser ?author .

}

GROUP BY ?author

Listing 5.17: Angular repository contributor commits and pull requests

SELECT v6.‘author_id1m7 ‘ AS ‘author_id1m7 ‘,

COUNT(DISTINCT(v6.‘id1m28 ‘)) AS ‘v3 ‘,

COUNT(DISTINCT(v6.‘commit_id1m5 ‘)) AS ‘v4 ‘

FROM (SELECT DISTINCT v2.‘author_id ‘ AS ‘author_id1m7 ‘,

v1.‘commit_id ‘ AS ‘commit_id1m5 ‘, v3.‘id‘ AS ‘id1m28 ‘

FROM ‘project_commits ‘ v1, ‘commits ‘ v2,

‘pull_requests ‘ v3, ‘pull_request_history ‘ v4

WHERE (

v1.‘commit_id ‘ = v2.‘id‘

AND v3.‘id ‘ = v4.‘pull_request_id ‘

AND v2.‘author_id ‘ = v4.‘actor_id ‘

AND 12159636 = v1.‘project_id ‘

AND 12159636 = v3.‘base_repo_id ‘

)

) v6

GROUP BY v6.‘author_id1m7 ‘

Listing 5.18: Generated SQL for listing 5.17

The query above, listing 5.17, retrieves all the contributors with their total number of

commits and pull requests. We expect to receive results for this query by reasoning

over the axioms in the ontology that declare inverse properties, even if we did not

include any explicit mapping assertions for the object properties repositoryHasCommit

and hasAuthoredCommit. We use the two axioms, that repositoryHasCommit is the

inverse property of belongsToRepository, and that hasAuthoredCommit is the inverse

property of commitAuthor, in this scenario.

We repeated each query ten times and took the mean average of the execution time.

We compared the execution within the Protégé SPARQL query editor against running

the generated SQL directly in the MySQL Command-line client. We did not notice

a significant difference in the execution times. Each query was executed against the

entire database by selecting “all results” in the Protégé SPARQL query editor. We

show the SPARQL query execution time in table 5.9. We note that the queries with no

data captured for execution time were not completed promptly, with exceptional long

running times. As a result, the run time was not captured. We captured no result

http://etd.uwc.ac.za/

Chapter 5 Implementation 76

Table 5.9: Query execution times

Query Execution Time (s) Number of triples

Listing 5.1 — 66951
Listing 5.3 9.515 859
Listing 5.5 — 780954
Listing 5.7 — —
Listing 5.9 0.2202 290
Listing 5.11 0.6877 13
Listing 5.13 775.7 20
Listing 5.15 678.5 1110
Listing 5.17 680.8 1110

for execution time and the number of triples for listing 5.7 due to timing out with an

out-of-memory exception.

5.6 Discussion

We performed a set of queries to highlight a subset of the features of the OBDA ap-

proach. During the execution of the experiments, the feature of querying in domain

vocabulary without the need to understand the underlying database data encoding and

schema as well as utilizing the ontology axioms during query executions does stand

out. The results look positive and can assist various use cases related to GitHub data

with a semantic approach. The ontology enables a more precise understanding of the

relationships between different data elements, allowing for intelligent data querying.

We observe two potential benefits for the GitHub community. Firstly, context-aware

queries enable users to express queries considering the relationships between entities,

eliminating the need to comprehend the database structure. Simplifying query formu-

lation allows users to concentrate on query semantics rather than database intricacies.

The ontology facilitates expressing queries in domain vocabulary, thereby improving the

ability to explore and analyze GitHub data. Secondly, OBDA enhances interoperability

between various information systems interacting with GitHub data. A standardized rep-

resentation of GitHub data enables the integration with information systems to ensure

data consistency during exchanges.

However, the practical impediments we observe are in the manual development of a

domain ontology and the creation/maintenance of a mapping specification which affects

scalability. Furthermore, the queries that required a lookup over a large subset of the

data did not yield results promptly and, in some cases, timed out (listings 5.1, 5.5 and

5.7). We discuss the challenges in chapter 6.

http://etd.uwc.ac.za/

Chapter 5 Implementation 77

5.7 Conclusion

This chapter reported on implementing OBDA using Ontop, the SemanGit ontology,

and the GHTorrent MySQL database instance. We documented the data setup pro-

cedure and mapping assertions and outlined a set of queries used in the experiments.

Finally, we discussed our observations and the impediments we encountered during the

experiments. We concluded that OBDA provides benefits in practice. However, it is

still an emerging technology and needs to mature more. Given that the development

and maintenance of an ontology and mapping specification require deep knowledge of

the domain and application of interest, it is an expensive endeavor, especially in a het-

erogeneous production environment that is highly scalable. Thus, the research remains

active in trying to solve these practical problems.

http://etd.uwc.ac.za/

Chapter 6

Conclusion

This research aimed to investigate the question, “How effective is ontology-based data

access (OBDA) with real-world data?” The context for this inquiry was the following:

We studied the background material on OBDA from a theoretical perspective. We

examined the semantic web, the broader subject this technique fits. We discussed the

concept of an ontology and the language used to define it. Finally, we covered the

methods needed to make this feasible in a real-world situation, the challenges, and how

ontologies are used to give data access via a mapping specification.

We performed a literature review based on a large set of research studies that implement

data access and data integration in semantic data access using the OBDA approach.

Twenty relevant studies in the domain of OBDA employing knowledge graphs to access

heterogeneous data were examined by reviewing the use cases, data sources, ontology(s)

and mappings employed, optimization, assessment, and ultimately the outcomes.

In addition, we reviewed existing tools that implement this approach and produced an

implementation of OBDA using an ontology from the “Git” domain, a GitHub dataset

(GHTorrent), and the Ontop OBDA tool. We reviewed the Ontop tool and the specific

mechanics (both theoretical and practical) it employs to encode SPARQL queries and

translate them into SQL queries. We demonstrated this with a GitHub dataset and pre-

sented a query optimization strategy developed within Ontop. We described the dataset

by investigating its purpose, data-gathering procedure, and constraints. We reviewed

the ontology that was utilized to study the OBDA technique. We provided a brief his-

tory of why the ontology was formed, its development, design decisions, constraints, and

the extensions made to the ontology. The data setup procedure, mapping assertions,

and a set of queries were described in the implementation. Finally, we examined the

findings from the experiments as well as the challenges we faced.

78

http://etd.uwc.ac.za/

Chapter 6 Conclusion 79

The main research question was divided into four sub-questions. We provide the key

findings obtained for each question as follows:

6.0.1 Research sub-question 1

“How does OBDA scale in terms of performance and implementation on

real-world datasets?”

In assessing the scalability of OBDA within this research, we performed a performance

assessment of our implementation. This evaluation generated quantitative metrics of-

fering insights into OBDA efficiency. Notable performance indicators included query

execution time, which depended on the volume of triples returned (refer to Table 5.9).

Queries were systematically diversified to simulate accessing various data subsets, reveal-

ing performance degradation for queries handling larger subsets. The observed variation

in query response times underscores scalability’s impact on the system’s overall perfor-

mance. Additionally, we analyzed memory usage to discern the system’s behavior under

substantial query workloads.

We note that the query volume, the ontology’s size and complexity, and the underlying

system’s stability and performance all impact scalability. While it is possible to scale

OBDA systems in a production environment, in contrast to traditional database sys-

tems, it is a complex endeavor that requires deep knowledge to develop and maintain

domain ontologies and mapping specifications that do not suffer semantic loss. On the

other hand, traditional relational database systems have lower complexity, are scalable,

and have defined best practices to achieve good performance in production, given the

level of maturity. Compared to existing large systems, OBDA currently falls short in

complexity, cost-effectiveness, and maturity. However, OBDA allows for a more de-

tailed understanding of the connections between diverse data sets. This allows for more

intelligent and accurate data queries. Thus, the trade-off between scalability and the

reasoning capacity of OBDA needs to be considered.

6.0.2 Research sub-question 2

“How do OBDA implementations compare in terms of successful results?”

The results reported in the literature from the review in chapter 3 indicate satisfactory

performance and motivate the potential of OBDA and OBDI. Generally, query perfor-

mance grows linearly with respect to the size of the data. For complex queries, query

execution is slower but completed in a reasonable time, given the context of practical

use cases. We note that the environment, deployment configuration, and optimizations

http://etd.uwc.ac.za/

Chapter 6 Conclusion 80

all impact the results, and we did not do a comparative analysis given the difficulty of

this task.

The results from our implementation in chapter 5 look positive and can assist various

use cases related to GitHub data with a semantic approach and integrate data from

platforms integrating with GitHub directly or indirectly. The ontology enables a more

precise understanding of the relationships between different data elements, allowing for

intelligent data querying. However, as the scale of the queries grows, we observe long

query run times that do not return results promptly. In some instances, we are running

out of memory.

6.0.3 Research sub-question 3

“What are the current limitations of OBDA?”

We observe practical impediments in the manual development of a domain ontology and

the creation of a mapping specification, which affects scalability. Even though ontologies

can be adapted to changing requirements and represent different levels of abstraction,

it still requires significant expertise to change the ontology and the mapping assertions

while maintaining scalability. Ontology maintenance is a well-known research topic

[28, 75] and involves managing changes to ensure consistency and relevance over time.

Maintenance can be triggered by changes in the domain or adapting to new use cases

and requirements and is predominantly manually performed. For more information,

we refer the reader to [28, 75, 83]. Furthermore, it is challenging to keep ontologies

and mappings up to date with changes in data sources while maintaining semantic

equivalence between the original data and associated ontologies in a specific domain

[76]. Also, we note that actualizing OBDA within the context of an information system

requires careful consideration for the implementation of a suitable user interface (UI)

to facilitate the SPARQL query construction from ontology vocabulary, where users of

such a system are querying from a client-facing UI and not writing SPARQL queries.

6.0.4 Research sub-question 4

“What improvements can be made?”

Given these challenges highlighted in this study, the research in this field is very active:

• (Semi-)Automating ontology development using an approach called Ontology Learn-

ing (OL), where machine learning techniques are applied to represent knowledge

http://etd.uwc.ac.za/

Chapter 6 Conclusion 81

from heterogeneous data sources. Recent work in this area includes various pro-

posals to apply OL in the scope of relational databases [6, 67, 70, 77], as well as a

survey of the recent methods and tools of the OL from relational databases [76].

• Additional approaches for automating mapping specifications between ontologies

and data sources using algorithmic techniques. In the work by Calvanese et al. [16],

the authors proposed an algorithm to automatically detect and map a relational

schema to ontology mapping patterns.

• Using distributed systems for data management [29].

• Applying caching techniques to store knowledge graphs in memory [81].

• SPARQL query scalability optimizations for large RDF data sets [50, 100, 108, 122].

A different approach would be to look at the field of Natural Language Processing to

assist in query formulation, such as querying knowledge graphs in natural language,

which integrates techniques from machine learning algorithms, specifically Large Lan-

guage Models (LLMs) and knowledge graphs. This is, however, out of the scope of this

research, and we refer the interested reader to [20, 49, 69].

We also mention Ontopic Studio1, a more recent no-code mapping editor to link databases

and data lakes with knowledge graphs. This tool enables the creation and editing of

knowledge graphs from relational databases utilizing a UI. We direct the reader to

https://ontopic.ai/en/ontopic-studio/ for further detail.

Based on the answers to the research sub-questions, we construct an answer to the

thesis’s primary research question, “How effective is OBDA with real-world data?”. We

conclude this thesis as follows: “The OBDA studies considered in this thesis have limited

effectiveness in solving the overall challenges of data access and integration at scale and

require bespoke solutions in various domains and environments. They are effective at

specific use cases but lack maturity from an implementation and maintenance point of

view. Finally, as databases are not static but change over time, the process of mapping

between ontologies and databases and the process of querying must take these temporal

features into consideration”.

6.1 Future work

There are opportunities for this work to be extended and applied for specific use cases

applicable to GitHub and OBDA. This includes publishing the extended ontology and

1https://ontopic.ai/en/

http://etd.uwc.ac.za/

https://ontopic.ai/en/ontopic-studio/

Chapter 6 Conclusion 82

making this work publicly available to the GitHub community via an interface and API

endpoint for further evaluation. Maintenance of the extended ontology will be ongoing

and can take several directions depending on the scope of use cases. Another considera-

tion is to harness the capabilities of LLMs to facilitate natural language understanding,

enabling querying and parsing in a natural language context. Moreover, this research

can contribute to the broader domain of artificial intelligence by aiding in knowledge

extraction from heterogeneous data.

6.2 Concluding Comments

This research illustrates the application of ontologies and knowledge graphs to solve

large-scale data integration and querying. Given that OBDA is still an emerging tech-

nique, the research demonstrates the importance of interacting with data using domain

vocabulary. However, the practical challenges provide several directions for future work.

Investigating the theoretical challenges associated with OBDA, such as scalability, ex-

pressiveness, and reasoning complexity, emerges as another crucial direction for advanc-

ing the field.

The artifacts of this research can be found at https://github.com/yahlieel/SemanGit,

which is a fork of the original SemanGit repository2 and includes the extended ontology

and mapping specification implemented.

2https://github.com/SemanGit/SemanGit

http://etd.uwc.ac.za/

https://github.com/yahlieel/SemanGit

Appendix A

Literature review summary

This appendix contains tables that summarizes the findings of the literature review.

83

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

84

No. Domain Use case Objective Ref

1 Manufacturing, Machine

Diagnoses

Analyses of product quality during manufacturing. Addressing the challenges of access to data gener-

ated during product manufacturing.

[53]

2 Manufacturing, Machine

Diagnoses

Enabling direct data access for engineers in a Big

Data environment.

Enable direct data access using a hybrid approach,

including classical OBDA, which supports archived

data, static relational data, and live streaming

data.

[61]

3 Oil and Gas Statoil data access is performed by geologists who

often pass the requirements for the data to techni-

cal experts. OBDA is applied to address the bot-

tleneck this creates at scale.

Develop a solution to address the data access prob-

lem at scale while considering the limitations of

OBDA at the time of the publication.

[59]

4 Biomedical A study of semantic proteomics data integration

linking four data sources.

The aim is to help biologists get relevant knowl-

edge from multiple data sources to understand and

explain the biological processes of interest.

[86]

5 Big Data Implementation of OBDA in the context of the Se-

mantic Data Lake.

To address the challenges of Query translation, fed-

erated query execution, and data silos, the Squerall

framework is implemented for querying data lakes.

[79]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

85

No. Domain Use case Objective Ref

6 Healthcare Computational epidemiology seeks to develop com-

putational methods to study the distribution and

determinants of health-related states or events (in-

cluding disease) and the application of this study

to the control of diseases and other health prob-

lems.

Develop a knowledge base that facilitates the de-

velopment of decision support and analytical envi-

ronments to support epidemic science.

[43]

7 Healthcare Access to multiple rare disease datasets is impor-

tant as it will lead to new research opportunities

and analysis over larger cohorts.

The application of semantic web technologies and

federated queries provides a novel infrastructure

that can readily incorporate additional registries,

thus providing access to harmonized data relating

to unprecedented numbers of patients with rare

diseases while meeting data privacy and security

concerns.

[85]

8 Healthcare Adding ontology reasoning capabilities to medical

information database access.

Allow for the storage of knowledge about the med-

ical field to make it possible to intuitively retrieve

data from a complex relational database.

[34]

9 Healthcare Automatic ontology-based data integration

method that can be effectively deployed and used

in healthcare.

The proposed system helps the doctor query the

patient records stored across various data sources

without knowing the query required to access

them.

[110]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

86

No. Domain Use case Objective Ref

10 Healthcare Extant cancer survival analyses have primarily fo-

cused on individual-level factors due to limited

data availability from a single source.

The authors proposed an ontology-based approach

to integrate heterogeneous datasets addressing key

data integration challenges and simultaneously

study as many cancer risk factors as possible.

[120]

11 Maritime Distributed knowledge bases make data retrieval,

integration, and reasoning with these data chal-

lenging.

Support the use of distributed knowledge bases for

retrieving, integrating, and reasoning with data

from disparate and heterogeneous. data sources.

[97]

12 Biology An ontology-based federated approach for data in-

tegration in the Biology domain.

Enable researchers to jointly query three heteroge-

neous databases using a common query language.

[104]

13 Biomedical Access to patient data has become a major bottle-

neck for healthcare professionals who struggle to

find the relevant information in a timely way and

without missing critical clinical information.

A novel hybrid semantic and text-based system

that Ahus commissioned to provide integrated ac-

cess to patient health records scattered in several

databases and document repositories.

[112]

14 Biomedical Public biomedical data distributed in large

databases worldwide are far from being “standard-

ized” to exploit the latest machine learning tech-

nologies to analyze data. This is the case of neu-

rodegenerative diseases and the Alzheimer’s Dis-

ease (AD) in whose context specialized data col-

lections such as the one by the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) is maintained.

The objective of this work is to build a compu-

tational ontology from the ADNI data collection

and to provide a means for populating the ontol-

ogy with the actual data in the ADNI. These two

components make it possible to query the ADNI

database semantically to support data extraction

more intuitively.

[109]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

87

No. Domain Use case Objective Ref

15 Manufacturing, Machine

Diagnoses

Streaming analytics that requires integration and

aggregation of heterogeneous and distributed

streaming and static data is a typical task in many

industrial scenarios, including the case of industrial

IoT where several pieces of industrial equipment

such as turbines in Siemens are integrated into an

IoT.

Extend OBDA to become analytics, source, and

cost-aware.

[60]

16 Manufacturing, Machine

Diagnoses

Semantic technologies can help address the chal-

lenges with authoring, reusing, and maintaining

signal processing rules.

The authors propose to extend the traditional

data-driven approach to diagnostics with an

OBDA layer and a new rule language to what they

call Semantic Rule-based Diagnostics.

[98]

17 Manufacturing, Machine

Diagnoses

The digitization of the industry requires infor-

mation models describing assets and information

sources of companies to enable the semantic inte-

gration and interoperable exchange of data.

The objective is to produce an information model

centered around machine data and describe all rele-

vant assets, key terms, and relations in a structured

way, using existing and newly developed RDF vo-

cabularies.

[91]

18 Healthcare Semantic interoperability is essential when carry-

ing out post-genomic clinical trials where several

institutions collaborate since researchers and de-

velopers need an integrated view and access to het-

erogeneous data sources.

The objective is to use RDB2RDF systems that

provide RDF datasets as a unified view.

[93]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

88

No. Domain Use case Objective Ref

19 Services Process mining aims at discovering, monitoring,

and improving business processes by extracting

knowledge from event logs.

Utilize a framework and methodology to extract

XES event logs from relational data sources.

[17]

20 Manufacturing, Machine

Diagnoses

Rule-based diagnostic systems to minimize the

maintenance cost and downtime of equipment

poses significant challenges in rule authoring,

reuse, and maintenance by engineers.

The authors propose an approach to address the

problems of Rule-based diagnostic systems by re-

lying on the OBDA approach.

[62]

Table A.1: Chapter 3 literature review summary.

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

89

No. Data sources Optimizations Ref

1 PostgreSQL database Manual construction of database constraints applied in Ontop to

support non-primary/foreign key constraints

[53]

2 Streaming data, Static data Parallelism were applied to live-stream operations by inter-query

parallelism, executing queries on distributed compute nodes.

[61]

3 Seven databases, Exploration and Production Data Store

(EPDS)

Query rewriting optimization, Query unfolding optimization.

Structural optimizations - Formulate query joins inside the unions

and special functions (such as URI construction) as high as possi-

ble in the query tree. Detect and remove inefficient joins between

sub-queries.

Semantic optimizations - Remove redundant unions and joins,

detect unsatisfiable or trivially satisfiable conditions, etc., using

database constraints.

[59]

4 UniProt Knowledgebase, String (Search Tool for the

Retrieval of Interacting Genes/Proteins), Protein Data

Bank, Pubmed

The IPDS is stored using HDFS. A caching strategy is applied

using SPARK..

[86]

5 Apache Cassandra, Mongo, Apache Parquet, CSV,

MySQL

The Squerall framework make use of the underlying implementa-

tions of SPARK and Presto.

[79]

6 Synthetic Population - Household, person, activity (Rela-

tional)

Contact network and output (File)

Experimental (Relational)

The study uses a combination of tuple-based and value-based

mapping using D2RQ.

[43]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

90

No. Data sources Optimizations Ref

7 CSV tabular data on the antineutrophil cytoplasmic an-

tibody (ANCA) - Associated Vasculitides (AAV) disease.

The Apache Jena Fuseki SPARQL server was used to store the

generated knowledge graph and enable federated querying.

[85]

8 Relational Database N/A [34]

9 Excel, SQL Server, MongoDB System implementation adhere to storage optimization principles. [110]

10 Patients’ demographic, tumor, treatment, and survival

information from the 1996–2010 data of Florida Cancer

Data System (FCDS) (Relational),

Census tract-level poverty information from the 2000 U.S.

census data (Relational),

1996-2010 county-level smoking rates from the Behavioral

Risk Factor Surveillance System (BRFSS) of the Centers

for Disease Control and Prevention (Relational)

N/A - Used the Ontop system [120]

11 Two PostgreSQL databases Parallelization [97]

12 Three data sources: UniProt (RDF), BGee (MySQL) and

OMA (HDF5)

N/A [104]

13 DIPS, Metavision and DIPS Archive N/A - Used the PreOptique (based on Optique) system. [112]

14 CSV tabular data N/A [109]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

91

No. Data sources Optimizations Ref

15 Static and Streaming Data Query optimizations on live streams:

In-memory indexing

Query optimizations on archived information:

Efficient storage of archived streams,

Elastic infrastructure that automatically distributes analytical

computations and data over a computational cloud.

[60]

16 PostgreSql database Developed a new Semantic Rule-based Diagnostic language to

serve the diagnostic tasks required.

[98]

17 Sensor Data, Manufacturing Execution System data Data sources are replicated and synchronized periodically. [91]

18 Relational database Optimization techniques to the query translation algorithm in-

clude:

Self-join elimination, Phantom triple pattern introduction

[93]

19 Relational database N/A - Used the Ontop system [17]

20 TeraData, MS SQL Server, SAP HANA, IBM Maximo Translation of semantic diagnostic programs into SQL queries

and then execution of generated queries.

[62]

Table A.2: Chapter 3 data sources and optimizations summary.

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

92

No. Evaluation Details Results Ref

1 Dataset 1 - 3.15GB

Dataset 2 - 31GB, Dataset 3 - 59GB

Query catalog of 13 queries.

Queries range from performing joins and applying filters,

to nested sub-queries and complex aggregation.

Used Ontop and Scalable Semantic Analytics Stack

(SANSA).

Ontop outperformed SANSA and supported more queries.

Most Queries (q1–q5, q6, q7, q12, and q13) execution times scale

sub-linearly, with most running in less than one second even over

the largest dataset DS3.

The evaluation showed that complex queries can be answered

with the OBDA approach within a reasonable timeframe.

[53]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

93

No. Evaluation Details Results Ref

2 Streaming and static data was used containing mea-

surements produced by 100,000 thermocouple sensors in-

stalled.

Two STARQL queries were adopted for evaluation:

Query 1: Calculates the Pearson correlation between two

live streams.

Query 2: Computes the Pearson correlation of a live

stream with a varying number of archived streams.

Applied Parallelism between live streams, and parallelism

between live and archived streams.

Query 1: Executed with varying numbers of concurrent queries

(1 to 1024) between different pairs of live streams, using a fixed

window size of 60 tuples on non-overlapping windows and 128

ExaStream worker nodes.

The system’s throughput increased linearly with query numbers,

peaking at 4,250,226 tuples/s when matching the available cores

(256), but more queries caused core sharing and reduced through-

put.

Query 2: Executed with varying numbers of available VM-

workers (1 to 16), using a fixed live-stream velocity of 1 tuple/min

and a fixed window size of 1 hour (60 tuples), comparing the cur-

rent live stream window against 100,000 archived ones.

Each node calculated the Pearson coefficient between its subset

of archived measurements and the live stream. Intra-query par-

allelism notably decreased processing time due to a surplus of

archived windows compared to available workers.

[61]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

94

No. Evaluation Details Results Ref

3 Query catalog of 73 queries. 73%, are either linear or

three-shaped conjunctive queries, the others contain ag-

gregate functions and negation.

The system was deployed across seven large and intri-

cate data sources: EPDS, Recall, CoreDB, GeoChemDB,

OpenWorks, Compass, and NPD FactPages.

The study aimed to measure performance gains from opti-

mizations, particularly focusing on eliminating duplicates

and employing OBDA Constraints. Queries were executed

with different DISTINCT strategies: no DISTINCT, DIS-

TINCT by the database engine (dbDist), and DISTINCT

by the OBDA engine (obdaDist).

In the noDist experiment, 17 out of 60 queries timed out. Of

the successful 43, execution times varied from less than 1s to 2m

to 6m, with an average of 36.5s and a median of 12.5s. The

maximum unfolding time was 187ms.

[59]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

95

No. Evaluation Details Results Ref

4 The study evaluates the performance of IPDS query pro-

cessing, focusing on query rewriting and execution. It ex-

amines the total response time of test queries across four

proteomics data sources. Seven queries involve search-

ing one protein with multiple fields, while five queries

involve searching multiple proteins simultaneously with

fixed fields.

The study analyzes query rewriting and execution performance

in IPDS, and the impact of caching.

Query rewriting times increase with more fields queried, ranging

from 1.035 to 6.417 seconds for 7 queries. For multiple queries,

rewriting time rises from 9.918 to 196.468 seconds for 5 to 100

queries.

Execution times for single searches vary from 29.115 to 154.47

seconds for 2 to 14 fields. For multiple searches, it ranges

from 1995.835 to 3673.239 seconds for 5 to 100 calls, showing

a quadratic increase.

Without caching, 100 query calls take 75223.095 seconds, while

with caching, it takes 3673.239 seconds.

[86]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

96

No. Evaluation Details Results Ref

5 Compares the performance of two query engines, Spark

and Presto. Evaluating accuracy as well as query perfor-

mance.

Datasets: Synthetic data generated at three scales (500K,

1.5M and 5M) based on the Berlin SPARQL Benchmark

(BSBM) [9].

Five SQL table dumps used from BSBM: Product, Pro-

ducer, Offer, Review, and Person.

Data is pre-processed to extract tuples and stored at three

different scales in Cassandra, MongoDB, Parquet, CSV

and MySQL.

Ten queries are used for evaluation 1.

Accuracy: Squerall results was 100% identical to MySQL.

MySQL timed out at the 1.5m data scale. Returned results (not

timing out) for Spark and Presto were identical.

Performance: In data scale 0.5M, query performance is superior

across all the queries, with an increase of up to 800%. In data

scale 1.5M and 5M, Presto-based is superior in all queries besides

Q1, with and increase of up to 1300%.

Presto-based Squerall performed significantly better than Spark-

based. Presto emphasizes ad hoc querying as a fundamental fea-

ture, while Spark only partially addresses this aspect [79].

[79]

1https://github.com/EIS-Bonn/Squerall

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

97

No. Evaluation Details Results Ref

6 Evaluated query execution to measure the strength of

mapping approaches over various types of RDF graphs.

Mapping approaches (value-based and tuple-based):

D2RQ with the Oracle database, D2RQ with Postgres

database, Jena TDB, and Virtuoso tools.

20 Queries:

10 queries collected by interviewing various epidemiolo-

gists.

Created a set of five benchmark queries based on BSBM

version 3.1 and five D2RQ benchmark queries.

For both virtual and materialized RDF graphs, value-based map-

ping outperforms tuple-based mapping, except for queries return-

ing large numbers of triples.

Virtuoso with tuple-based mapping shows better performance in

scenarios where queries yield large triple counts.

SPARQL queries containing regular expressions perform faster

with tuple-based mapping and the Oracle tool for virtual RDF

graphs.

For materialized graphs, value-based mapping is faster for regular

expression queries and provides similar performance for both Jena

TDB and Virtuoso tools.

Value-based mapping facilitates faster execution of queries in-

volving multiple data sources due to preserved relationships.

Queries reliant on a single data source show consistent execution

times regardless of mapping.

Tuple-based mapping’s neglect of primary and foreign key rela-

tionships leads to data duplication and slower performance in

complex queries.

Preservation of relationships in value-based mapping enhances

performance in complex queries.

[43]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

98

No. Evaluation Details Results Ref

7 The study applies OBDA in a federated setting to pro-

vide a novel infrastructure that can integrate various data

registries, while maintaining data privacy and security re-

quirements.

No performance evaluation was performed.

N/A [85]

8 The study documents the development and implementa-

tion of an OBDA for medical data access system.

No performance evaluation was performed.

N/A [34]

9 The study reports on the time it takes to generate schema

mappings, symptom generation and data retrieval across

three data sources, Excel, SQL and MongoDB.

The generation of schema and mapping for about 16,000 records

took about 15 seconds, whereas for the time taken for 7500

records is 6 seconds.

The symptom generation process took about 12 s for about 16,000

records. Whereas the time taken for 7500 records is 4 seconds.

The time taken to retrieve output from a set of 28,000 records

took about 6 seconds, whereas for the time taken for 14,000

records is 4 seconds.

There is a linear increase in query execution time along with the

increasing size of the dataset.

[110]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

99

No. Evaluation Details Results Ref

10 The study developed an Ontology for Cancer Research

Variables (OCRV) and created mapping axioms for data

integration across data sources.

Implemented a data pipeline using the Ontop platform

for querying, extracting, and transforming relational

database data for integrative analysis.

No performance evaluation was performed.

The following key integration challenges are addressed with the

solution:

Using a shared, controlled vocabulary to make data understand-

able to both human and computers.

Explicitly modeling the semantic relationships makes it possible

to compute and reason with the data.

Linking patients to contextual and environmental factors through

geographic variables.

Being able to document the data manipulation and integration

processes clearly in the ontologies.

[120]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

1
00

No. Evaluation Details Results Ref

11 Two data sources: Hermes and Aminess, both PostGIS/-

PostgreSQL.

Hermes provides dynamic data about vessels’ movement.

Aminess data source provides both static and dynamic

data.

Static data comprises positions of 452 ports, 48 restricted

regions, and details of 38,530 registered vessels.

Dynamic data includes critical points from AIS messages

and weather forecasts from May 1st, 2015, to Sept. 1st,

2015, totaling 2,745,776 records.

The system is configured to retrieve dynamic data at var-

ious update intervals. Each stage of the system has been

evaluated across different update periods, ranging from

120 to 10,800 seconds (3 hours).

Time required for system initialization and static data retrieval

remains constant regardless of the update period.

Retrieval time for dynamic data remains small compared to over-

all update time.

Distributed computation of dynamic data triples scales well with

low increase rate as update period increases.

Ontop OBDA demonstrates scalability, as the increase in dy-

namic data triples with update period has a lower impact on

retrieval time.

Distribution of computations to distinct workers contributes to

scalability.

Recognition of complex events becomes the most time-consuming

task for update periods exceeding 3960 seconds.

[97]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

1
01

No. Evaluation Details Results Ref

12 Data set consists of three Databases. UniProt RDF

KnowledgeBase, high-quality sequence and functional in-

formation on proteins.

OMA, a database of orthology inferences. Bgee, a

database of curated gene expression patterns in animals.

Evaluated performance with 12 federated queries that il-

lustrate real use cases requiring information across the

three databases.

Evaluated three queries against each dataset combination.

Average query run-time of up to 6 seconds for 9 out of 12 queries,

with less than half a second for three out of these. - Hold for

queries with higher complexity (number of triple patterns).

The longest run time is 349.18 seconds returning 2269 results

(triples), as a result of having to scan the entire search space in

the OMA database.

[104]

13 Evaluation was performed based on system usability.

Participants were requested to complete a questionnaire

after testing PreOptique.

The employed questionnaire has two sections: the first one

corresponds to the System Usability Scale (SUS) 2.

The study computed the SUS scores for the participants’ re-

sponses, obtaining 86.0 in average with a standard deviation of

10.7.

The study only tested the system with a copy of the production

databases for 10 patients. However, the authors conclude that it

should not entail scalability issues, since query complexity does

not change with the number of patients.

While the number of participants in the usability study is rela-

tively low, experts in the field report that only five participants

are needed on average to find 85% of usability problems in a

design.

[112]

2https://digital.gov/2014/08/29/system-usability-scale-improving-products-since-1986/

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

1
02

No. Evaluation Details Results Ref

14 The study define a computational ontology representing

a logic-based formal conceptual model of the Alzheimer

Disease Neuroimaging Initiative (ADNI) data collection.

Developed a detailed computational ontology for clinical multi-

modal datasets from the ADNI repository.

Implemented a mechanism to populate the ontology with ADNI

data.

Facilitates complex queries to ADNI files, enabling acquisition of

new diagnostic knowledge about Alzheimer’s disease.

[109]

15 Evaluated five queries against optimizations performed.

Query 1: Computes an equality join on the Wid and Time

attributes between two live-streams.

Query 2: Computes the Pearson correlation of a live

stream with a varying number of archived streams.

Queries 3 and 4: Variations of Query 2 but, computing

similarity based on either the average or the minimum

values within a window.

Query 5: Calculates the Pearson correlation between two

live streams.

Adaptive indexing optimisation - Query 1

Materialised Window Signatures (MWS) optimisation -

Query 2 - 5

The MWS optimisation reduces the time for the Pearson query by

8.18%. The join between the live stream and the large Measure-

ments relation, consuming 69.58% of the query time, is unavoid-

able. For the other two queries, the CPU overhead was reduced

of the query, and the optimiser further prunes this join from the

query plan as it is no longer necessary.

Parallelism between live and archived streams - Query 5:

Intra-query parallelism results in significant decrease of the time

required to perform the join operation.

Locality-sensitive hashing (LSH) optimisation - Query 5:

One can observe a significant decrease in the overall query execu-

tion time when we adopt the combination of the MWS and LSH

techniques for computing correlation between live and archived

streams.

[60]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

1
03

No. Evaluation Details Results Ref

16 Evaluation is based on how well the SQL translation ap-

proach scales.

Four manufacturing diagnosis tasks (queries) T1 to T4

was executed on each dataset.

Data consists of transaction data from 15 days of the con-

veyor’s run, which is scaled up to 40 conveyors.

Producing 10 datasets with 4 to 40 conveyors each.

1.3GB dataset: T1 - 3s, T2 - 10s, T3 - 24s, T4 - 30s

2.6GB dataset: T1 - 6s, T2 - 21s, T3 - 53s, T4 - 64s

3.9GB dataset: T1 - 10s, T2 - 31s, T3 - 80s, T4 - 101s

5.2GB dataset: T1 - 14s, T2 - 49s, T3 - 103s, T4 - 128s

6.5GB dataset: T1 - 18s, T2 - 57s, T3 - 136s, T4 - 170s

7.8GB dataset: T1 - 23s, T2 - 71s, T3 - 171s, T4 - 225s

9.1GB dataset: T1 - 29s, T2 - 83s, T3 - 205s, T4 - 274s

10.4GB dataset: T1 - 35s, T2 - 97s, T3 - 234s, T4 - 331s

11.7GB dataset: T1 - 39s, T2 - 108s, T3 - 248s, T4 - 367s

13GB dataset: T1 - 46s, T2 - 121s, T3 - 273s, T4 - 412s

The running time grows linearly with respect to the data size.

The most challenging query T4 was answered in 7 min (running

over 40 conveyors).

[98]

17 A questionnaire was designed and distributed to stake-

holders involved in the information modeling project to

gather anonymous feedback.

Stakeholder feedback varied on the information modeling project,

with some optimistic about semantic technologies, while others

remained skeptical. Expectations included enabling autonomous

systems and reducing interfaces.

Bottlenecks from stakeholders includes the lack of standardized

ontologies and available IT personnel. Consequently, the com-

pany is seeking IT personnel with semantic technology expertise.

[91]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

1
04

No. Evaluation Details Results Ref

18 Five selected queries was used for evaluation.

Comparing morph-RDB [94] with D2R [8], with regards to

the total time required for the execution of the SPARQL

queries.

The study assessed query performance in cold and warm

modes, with the former involving server restarts and cache

clearing before each query. Average execution times were

normalized against native queries. Notably, the evaluation

method applies only to morph-RDB and native queries

due to limitations with the D2R Server, which generates

multiple SQL queries and conducts in-memory joins.

The study found that morph-RDB outperformed D2R Server for

accessing relational data using SPARQL.

Query performance is good in general, with better results

achieved using morph-RDB. However, a subset of queries are

still time-consuming due to arithmetic operations in the SPARQL

query and its translation into SQL.

[93]

19 The study utilises a framework to extract event logs from

relational data sources.

No performance evaluation was performed.

N/A [17]

http://etd.uwc.ac.za/

A
p
p
en
d
ix

A
L
itera

tu
re

rev
iew

su
m
m
ary

1
05

No. Evaluation Details Results Ref

20 Evaluation is based on the efficiency of the SQL code gen-

erated by the OBDA component.

The data was collected from 29 sensors installed on trains,

along with relevant train information. Subsequently, the

data was scaled in both the number of sensors and time

dimensions.

The study evaluated four diagnostic tasks (queries) across

each scaled dataset.

The running time of queries grows linearly with respect to the

growth of the data.

The evaluation indicates that diagnostic engineers can reduce

their time spent by up to 66% by using ontologies. Consequently,

this semantic solution enables engineers to concentrate more on

analyzing diagnostic output rather than on the current tasks of

understanding and collecting data for creating data-driven diag-

nostic rules [62].

[62]

Table A.3: Chapter 3 literature review evaluation summary.

http://etd.uwc.ac.za/

Appendix B

Mapping specifications

This appendix lists the mapping specifications created for the implementation in chapter

5.

Figure B.1: Commit map

Figure B.2: Commit Comment map

106

http://etd.uwc.ac.za/

Appendix B Mapping specifications 107

Figure B.3: Follow map

Figure B.4: Issue map

Figure B.5: Issue Label map

Figure B.6: Organization member map

http://etd.uwc.ac.za/

Appendix B Mapping specifications 108

Figure B.7: Programming language map

Figure B.8: Project map

Figure B.9: Project commit map

Figure B.10: Project label map

http://etd.uwc.ac.za/

Appendix B Mapping specifications 109

Figure B.11: Project programming language map

Figure B.12: Pull Request map

Figure B.13: Pull Request comment map

Figure B.14: Pull Request commit map

http://etd.uwc.ac.za/

Appendix B Mapping specifications 110

Figure B.15: Pull Request history map

Figure B.16: Pull Request merge map

Figure B.17: Pull Request user map

Figure B.18: Pull Request user map

http://etd.uwc.ac.za/

Appendix B Mapping specifications 111

Figure B.19: User map

Figure B.20: User commit map

Figure B.21: User programming languages map

Figure B.22: Repository milestone map

http://etd.uwc.ac.za/

Appendix B Mapping specifications 112

Figure B.23: Watcher map

http://etd.uwc.ac.za/

Appendix C

Ontology

This appendix contains a summary of the extended SemanGit ontology described in

chapter 4.

113

http://etd.uwc.ac.za/

A
p
p
en
d
ix

C
O
n
to
log

y
1
14

Figure C.1: SemanGit Ontology summary (classes and properties)http://etd.uwc.ac.za/

Appendix C Ontology 115

Figure C.2: SemanGit Ontology metrics

http://etd.uwc.ac.za/

Appendix C Ontology 116

Figure C.3: Ontology visualisation using WebVOWL [74].

http://etd.uwc.ac.za/

Bibliography

[1] D. Abadi, A. Ailamaki, D. Andersen, P. Bailis, M. Balazinska, P. Bernstein,

P. Boncz, S. Chaudhuri, A. Cheung, A. Doan, L. Dong, M. J. Franklin,

J. Freire, A. Halevy, J. M. Hellerstein, S. Idreos, D. Kossmann, T. Kraska,

S. Krishnamurthy, V. Markl, S. Melnik, T. Milo, C. Mohan, T. Neumann,

B. Chin Ooi, F. Ozcan, J. Patel, A. Pavlo, R. Popa, R. Ramakrishnan,

C. Ré, M. Stonebraker, and D. Suciu, “The Seattle Report on Database

Research,” SIGMOD Rec., vol. 48, no. 4, p. 44–53, feb 2020. [Online]. Available:

https://doi.org/10.1145/3385658.3385668

[2] M. AlMarzouq, A. AlZaidan, and J. AlDallal, “Mining GitHub for research

and education: challenges and opportunities,” International Journal of Web

Information Systems, vol. 16, no. 4, pp. 451–473, Jan 2020. [Online]. Available:

https://doi.org/10.1108/IJWIS-03-2020-0016

[3] J. Angele, M. Kifer, and G. Lausen, “Ontologies in F-Logic,” in Handbook

on Ontologies, ser. International Handbooks on Information Systems, S. Staab

and R. Studer, Eds. Springer, June 2009, pp. 45–70. [Online]. Available:

https://ideas.repec.org/h/spr/ihichp/978-3-540-92673-3 2.html

[4] G. Antoniou and F. van Harmelen, Web Ontology Language: OWL. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2004, pp. 67–92. [Online]. Available:

https://doi.org/10.1007/978-3-540-24750-0 4

[5] F. Baader, I. Horrocks, C. Lutz, and U. Sattler, Introduction to description logic.

Cambridge University Press, 2017. [Online]. Available: https://doi.org/10.1017/

9781139025355

[6] B. Ben Mahria, I. Chaker, and A. Zahi, “A novel approach for learning

ontology from relational database: from the construction to the evaluation,”

Journal of Big Data, vol. 8, no. 1, p. 25, Jan 2021. [Online]. Available:

https://doi.org/10.1186/s40537-021-00412-2

117

http://etd.uwc.ac.za/

https://doi.org/10.1145/3385658.3385668
https://doi.org/10.1108/IJWIS-03-2020-0016
https://ideas.repec.org/h/spr/ihichp/978-3-540-92673-3_2.html
https://doi.org/10.1007/978-3-540-24750-0_4
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1186/s40537-021-00412-2

Bibliography 118

[7] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific amer-

ican, vol. 284, no. 5, pp. 34–43, 2001.

[8] C. Bizer and R. Cyganiak, “D2r server-publishing relational databases on the

semantic web,” in Poster at the 5th international semantic web conference, vol.

175, 2006.

[9] C. Bizer and A. Schultz, “The berlin sparql benchmark,” International Journal on

Semantic Web and Information Systems (IJSWIS), vol. 5, no. 2, pp. 1–24, 2009.

[10] P. Buneman, S. Khanna, and T. Wang-Chiew, “Why and where: A characteriza-

tion of data provenance,” in Database Theory — ICDT 2001, J. Van den Bussche

and V. Vianu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp.

316–330.

[11] J.-P. Calbimonte, O. Corcho, and A. J. Gray, “Enabling ontology-based access

to streaming data sources,” in The Semantic Web–ISWC 2010: 9th International

Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010,

Revised Selected Papers, Part I 9. Springer, 2010, pp. 96–111. [Online]. Available:

https://doi.org/10.1007/978-3-642-17746-0 7

[12] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk,

M. Rodriguez-Muro, and G. Xiao, “Ontop: Answering SPARQL queries over

relational databases,” Semantic Web, vol. 8, no. 3, pp. 471–487, 2017. [Online].

Available: https://doi.org/10.3233/SW-160217

[13] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-

Muro, R. Rosati, M. Ruzzi, and D. F. Savo, “The MASTRO system for

ontology-based data access,” Semantic Web, vol. 2, no. 1, pp. 43–53, 2011.

[Online]. Available: https://doi.org/10.3233/SW-2011-0029

[14] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati,

“Ontology-based Database Access.” in SEBD, 2007, pp. 324–331.

[15] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,

“Data complexity of query answering in description logics,” Artificial

Intelligence, vol. 195, pp. 335–360, 2013. [Online]. Available: https:

//doi.org/10.1016/j.artint.2012.10.003

[16] D. Calvanese, A. Gal, N. Haba, D. Lanti, M. Montali, A. Mosca, and

R. Shraga, “ADaMaP: Automatic Alignment of Relational Data Sources Using

Mapping Patterns,” in International Conference on Advanced Information

Systems Engineering, Springer. Springer International Publishing, 2021, pp.

193–209. [Online]. Available: https://doi.org/10.1007/978-3-030-79382-1 12

http://etd.uwc.ac.za/

https://doi.org/10.1007/978-3-642-17746-0_7
https://doi.org/10.3233/SW-160217
https://doi.org/10.3233/SW-2011-0029
https://doi.org/10.1016/j.artint.2012.10.003
https://doi.org/10.1016/j.artint.2012.10.003
https://doi.org/10.1007/978-3-030-79382-1_12

Bibliography 119

[17] D. Calvanese, T. E. Kalayci, M. Montali, and S. Tinella, “Ontology-Based

Data Access for Extracting Event Logs from Legacy Data: The onprom

Tool and Methodology,” in Business Information Systems: 20th International

Conference, BIS 2017, Poznan, Poland, June 28–30, 2017, Proceedings 20,

Springer. Springer International Publishing, 2017, pp. 220–236. [Online].

Available: https://doi.org/10.1007/978-3-319-59336-4 16

[18] D. Calvanese, D. Lanti, T. M. De Farias, A. Mosca, and G. Xiao, “Accessing

scientific data through knowledge graphs with Ontop,” Patterns, vol. 2, no. 10, p.

100346, 2021.

[19] S. Chacon and B. Straub, Pro git. Springer Nature, 2014. [Online]. Available:

https://doi.org/10.1007/978-1-4302-1834-0

[20] Y.-H. Chen, E. J.-L. Lu, and T.-A. Ou, “Intelligent SPARQL query generation for

natural language processing systems,” IEEE Access, vol. 9, pp. 158 638–158 650,

2021. [Online]. Available: https://doi.org/10.1109/ACCESS.2021.3130667

[21] S. Cluet, C. Delobel, J. Siméon, and K. Smaga, “Your mediators need

data conversion!” in Proceedings of the 1998 ACM SIGMOD international

conference on Management of data, 1998, pp. 177–188. [Online]. Available:

https://doi.org/10.1145/276305.276321

[22] E. F. Codd, “A relational model of data for large shared data banks,”

Communications of the ACM, vol. 13, no. 6, pp. 377–387, 1970. [Online].

Available: https://doi.org/10.1145/362384.362685

[23] J. Coelho, M. T. Valente, L. L. Silva, and E. Shihab, “Identifying unmaintained

projects in github,” in Proceedings of the 12th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, 2018, pp. 1–10.

[Online]. Available: https://doi.org/10.1145/3239235.3240501

[24] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “A Systematic Mapping Study of

Software Development With GitHub,” IEEE Access, vol. 5, pp. 7173–7192, 2017.

[Online]. Available: https://doi.org/10.1109/ACCESS.2017.2682323

[25] O. Dabic, E. Aghajani, and G. Bavota, “Sampling Projects in GitHub for

MSR Studies,” in 2021 IEEE/ACM 18th International Conference on Mining

Software Repositories (MSR). IEEE, 2021, pp. 560–564. [Online]. Available:

https://doi.org/10.1109/MSR52588.2021.00074

[26] G. De Giacomo and M. Lenzerini, “TBox and ABox reasoning in expressive

description logics.” KR, vol. 96, no. 316-327, p. 10, 1996. [Online]. Available:

https://api.semanticscholar.org/CorpusID:182613

http://etd.uwc.ac.za/

https://doi.org/10.1007/978-3-319-59336-4_16
https://doi.org/10.1007/978-1-4302-1834-0
https://doi.org/10.1109/ACCESS.2021.3130667
https://doi.org/10.1145/276305.276321
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/3239235.3240501
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1109/MSR52588.2021.00074
https://api.semanticscholar.org/CorpusID:182613

Bibliography 120

[27] E. Della Valle and S. Ceri, “Querying the semantic web: SPARQL,”

in Handbook of Semantic Web Technologies, 2011. [Online]. Available:

https://doi.org/10.1007/978-3-540-92913-0 8

[28] L. Di-Jorio, S. Bringay, C. Fiot, A. Laurent, and M. Teisseire, “Sequential patterns

for maintaining ontologies over time,” in On the Move to Meaningful Internet

Systems: OTM 2008, R. Meersman and Z. Tari, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2008, pp. 1385–1403.

[29] C. Franke, S. Morin, A. Chebotko, J. Abraham, and P. Brazier, “Distributed

semantic web data management in HBase and MySQL cluster,” in 2011 IEEE

4th International Conference on Cloud Computing. IEEE, 2011, pp. 105–112.

[Online]. Available: https://doi.org/10.1109/CLOUD.2011.19

[30] M. R. Genesereth and N. J. Nilsson, “CHAPTER 2 - Declarative Knowledge,” in

Logical Foundations of Artificial Intelligence, M. R. Genesereth and N. J. Nilsson,

Eds. San Francisco (CA): Morgan Kaufmann, 1987, pp. 9–44. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/B9780934613316500082

[31] G. D. Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati, “Using

Ontologies for Semantic Data Integration ,” in A Comprehensive Guide Through

the Italian Database Research Over the Last 25 Years. Springer, 2018, pp.

187–202. [Online]. Available: https://doi.org/10.1007/978-3-319-61893-7 11

[32] B. Glavic, “Big data provenance: Challenges and implications for benchmark-

ing,” in Specifying Big Data Benchmarks, T. Rabl, M. Poess, C. Baru, and H.-A.

Jacobsen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 72–80.

[33] M. Golzadeh, A. Decan, D. Legay, and T. Mens, “A ground-truth dataset and

classification model for detecting bots in GitHub issue and PR comments,”

Journal of Systems and Software, vol. 175, p. 110911, 2021. [Online]. Available:

https://doi.org/10.1016/j.jss.2021.110911

[34] H. Gorskis, L. Aleksejeva, and I. Polaka, “Ontology-Based System Development

for Medical Database Access,” in ENVIRONMENT. TECHNOLOGIES.

RESOURCES. Proceedings of the International Scientific and Practical

Conference, vol. 2, 2017, pp. 24–29. [Online]. Available: https://doi.org/10.

17770/etr2017vol2.2572

[35] G. Gousios, “The GHTorent dataset and tool suite,” in 2013 10th Working

Conference on Mining Software Repositories (MSR). IEEE, 2013, pp. 233–236.

[Online]. Available: https://doi.org/10.1109/MSR.2013.6624034

http://etd.uwc.ac.za/

https://doi.org/10.1007/978-3-540-92913-0_8
https://doi.org/10.1109/CLOUD.2011.19
https://www.sciencedirect.com/science/article/pii/B9780934613316500082
https://doi.org/10.1007/978-3-319-61893-7_11
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.17770/etr2017vol2.2572
https://doi.org/10.17770/etr2017vol2.2572
https://doi.org/10.1109/MSR.2013.6624034

Bibliography 121

[36] G. Gousios and D. Spinellis, “GHTorrent: GitHub’s data from a firehose,” in 2012

9th IEEE Working Conference on Mining Software Repositories (MSR). IEEE,

2012, pp. 12–21. [Online]. Available: https://doi.org/10.1109/MSR.2012.6224294

[37] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean GHTorrent:

GitHub data on demand,” in Proceedings of the 11th working conference

on mining software repositories, 2014, pp. 384–387. [Online]. Available:

https://doi.org/10.1145/2597073.2597126

[38] T. J. Green, Bag Semantics. Boston, MA: Springer US, 2009, pp. 201–206.

[Online]. Available: https://doi.org/10.1007/978-0-387-39940-9 979

[39] T. Gruber, “Ontology,” Encyclopedia of Database Systems, 2008. [Online].

Available: https://cir.nii.ac.jp/crid/1570009751340313600

[40] N. Guarino, Formal ontology in information systems: Proceedings of the first

international conference (FOIS’98), June 6-8, Trento, Italy. IOS press, 1998,

vol. 46. [Online]. Available: https://dl.acm.org/doi/10.5555/521669

[41] N. Guarino, D. Oberle, and S. Staab, “What is an ontology?” in Handbook on

ontologies, S. Staab and R. Studer, Eds. Springer Berlin Heidelberg, 2009, pp.

1–17. [Online]. Available: https://doi.org/10.1007/978-3-540-92673-3 0

[42] A. Gusenkov, N. Bukharaev, and E. Birialtsev, “On ontology based data

integration: problems and solutions,” vol. 1203, no. 1. IOP Publishing, apr

2019, p. 012059. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1203/

1/012059

[43] S. Hasan, E. A. Fox, K. Bisset, and M. V. Marathe, “EpiK: A Knowledge Base

for Epidemiological Modeling and Analytics of Infectious Diseases,” Journal of

Healthcare Informatics Research, vol. 1, no. 2, pp. 260–303, Dec 2017. [Online].

Available: https://doi.org/10.1007/s41666-017-0010-9

[44] J. Heflin, “OWL Web Ontology Language Use Cases and Requirements,”

W3C Recommendation, vol. 10, no. 10, pp. 1–12, 2004. [Online]. Available:

https://www.w3.org/TR/webont-req/

[45] S. Heymans, L. Ma, D. Anicic, Z. Ma, N. Steinmetz, Y. Pan, J. Mei, A. Fokoue,

A. Kalyanpur, A. Kershenbaum et al., “Ontology Reasoning with Large Data

Repositories,” in Ontology Management. Springer US, 2008, pp. 89–128. [Online].

Available: https://doi.org/10.1007/978-0-387-69900-4 4

[46] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, S. Rudolph et al., “OWL

2 Web Ontology Language Primer (Second Edition),” W3C recommendation,

2012. [Online]. Available: https://www.w3.org/TR/owl2-primer/

http://etd.uwc.ac.za/

https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1145/2597073.2597126
https://doi.org/10.1007/978-0-387-39940-9_979
https://cir.nii.ac.jp/crid/1570009751340313600
https://dl.acm.org/doi/10.5555/521669
https://doi.org/10.1007/978-3-540-92673-3_0
https://dx.doi.org/10.1088/1742-6596/1203/1/012059
https://dx.doi.org/10.1088/1742-6596/1203/1/012059
https://doi.org/10.1007/s41666-017-0010-9
https://www.w3.org/TR/webont-req/
https://doi.org/10.1007/978-0-387-69900-4_4
https://www.w3.org/TR/owl2-primer/

Bibliography 122

[47] M. Horridge, S. Jupp, G. Moulton, A. Rector, R. Stevens, and C. Wroe, “A prac-

tical guide to building “owl” ontologies using protégé 4 and co-ode tools edition1.

2,” The university of Manchester, vol. 107, 2009.

[48] I. Horrocks, P. F. Patel-Schneider, and F. Van Harmelen, “From SHIQ

and RDF to OWL: The making of a web ontology language,” Journal

of Web Semantics, vol. 1, no. 1, pp. 7–26, 2003. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1570826803000027

[49] N. Hu, Y. Wu, G. Qi, D. Min, J. Chen, J. Z. Pan, and Z. Ali, “An

empirical study of pre-trained language models in simple knowledge graph

question answering,” World Wide Web, pp. 1–32, May 2023. [Online]. Available:

https://doi.org/10.1007/s11280-023-01166-y

[50] J. Huang, D. J. Abadi, and K. Ren, “Scalable SPARQL querying of large RDF

graphs,” Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 1123–1134, aug

2011. [Online]. Available: https://doi.org/10.14778/3402707.3402747

[51] N. Imtiaz, J. Middleton, J. Chakraborty, N. Robson, G. Bai, and E. Murphy-Hill,

“Investigating the effects of gender bias on GitHub,” in 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE), ser. ICSE ’19. IEEE,

2019, pp. 700–711. [Online]. Available: https://doi.org/10.1109/ICSE.2019.00079

[52] Y. Jafta, L. Leenen, and T. Meyer, “Investigating Ontology-Based Data

Access with GitHub,” in The Semantic Web, C. Pesquita, E. Jimenez-Ruiz,

J. McCusker, D. Faria, M. Dragoni, A. Dimou, R. Troncy, and S. Hertling, Eds.

Cham: Springer Nature Switzerland, 2023, pp. 644–660. [Online]. Available:

https://doi.org/10.1007/978-3-031-33455-9 38

[53] E. G. Kalaycı, I. Grangel González, F. Lösch, G. Xiao, A. ul Mehdi,

E. Kharlamov, and D. Calvanese, “Semantic Integration of Bosch Manufacturing

Data Using Virtual Knowledge Graphs,” in The Semantic Web–ISWC 2020:

19th International Semantic Web Conference, Athens, Greece, November 2–6,

2020, Proceedings, Part II 19. Springer, 2020, pp. 464–481. [Online]. Available:

https://doi.org/10.1007/978-3-030-62466-8 29

[54] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and

D. Damian, “The promises and perils of mining GitHub,” in Proceedings of the

11th working conference on mining software repositories, ser. MSR 2014, 2014,

pp. 92–101. [Online]. Available: https://doi.org/10.1145/2597073.2597074

[55] R. Kallis, A. Di Sorbo, G. Canfora, and S. Panichella, “Predicting issue

types on GitHub,” Science of Computer Programming, vol. 205, p. 102598,

http://etd.uwc.ac.za/

https://www.sciencedirect.com/science/article/pii/S1570826803000027
https://doi.org/10.1007/s11280-023-01166-y
https://doi.org/10.14778/3402707.3402747
https://doi.org/10.1109/ICSE.2019.00079
https://doi.org/10.1007/978-3-031-33455-9_38
https://doi.org/10.1007/978-3-030-62466-8_29
https://doi.org/10.1145/2597073.2597074

Bibliography 123

2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0167642320302069

[56] Y.-B. Kang, S. Krishnaswamy, W. Sawangphol, L. Gao, and Y.-F. Li,

“Understanding and improving ontology reasoning efficiency through learning

and ranking,” Information Systems, vol. 87, p. 101412, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0306437917306476

[57] C. M. Keet, An introduction to ontology engineering. University of Cape Town,

2018.

[58] E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie, C. Pinkel,

M. Rezk, M. G. Skjæveland, E. Thorstensen, G. Xiao et al., “Ontology Based

Access to Exploration Data at Statoil,” in The Semantic Web-ISWC 2015: 14th

International Semantic Web Conference, Bethlehem, PA, USA, October 11-15,

2015, Proceedings, Part II 14. Springer International Publishing, 2015, pp.

93–112. [Online]. Available: https://doi.org/10.1007/978-3-319-25010-6 6

[59] E. Kharlamov, D. Hovland, M. G. Skjæveland, D. Bilidas, E. Jiménez-Ruiz,

G. Xiao, A. Soylu, D. Lanti, M. Rezk, D. Zheleznyakov et al., “Ontology Based

Data Access in Statoil,” Journal of Web Semantics, vol. 44, pp. 3–36, 2017,

Industry and In-use Applications of Semantic Technologies. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1570826817300276

[60] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Nikolaou, Ö. Özçep,

C. Svingos, D. Zheleznyakov, Y. Ioannidis, S. Lamparter et al., “An ontology-

mediated analytics-aware approach to support monitoring and diagnostics of

static and streaming data,” Journal of Web Semantics, vol. 56, pp. 30–55,

2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S1570826819300010

[61] E. Kharlamov, T. Mailis, G. Mehdi, C. Neuenstadt, Ö. Özçep, M. Roshchin,

N. Solomakhina, A. Soylu, C. Svingos, S. Brandt et al., “Semantic access

to streaming and static data at Siemens,” Journal of Web Semantics,

vol. 44, pp. 54–74, 2017, industry and In-use Applications of Semantic

Technologies. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S1570826817300124

[62] E. Kharlamov, O. Savković, M. Ringsquandl, G. Xiao, G. Mehdi, E. G.

Kalayc, W. Nutt, M. Roshchin, I. Horrocks, and T. Runkler, “Diagnostics

of Trains with Semantic Diagnostics Rules,” in Inductive Logic Programming:

http://etd.uwc.ac.za/

https://www.sciencedirect.com/science/article/pii/S0167642320302069
https://www.sciencedirect.com/science/article/pii/S0167642320302069
https://www.sciencedirect.com/science/article/pii/S0306437917306476
https://doi.org/10.1007/978-3-319-25010-6_6
https://www.sciencedirect.com/science/article/pii/S1570826817300276
https://www.sciencedirect.com/science/article/pii/S1570826819300010
https://www.sciencedirect.com/science/article/pii/S1570826819300010
https://www.sciencedirect.com/science/article/pii/S1570826817300124
https://www.sciencedirect.com/science/article/pii/S1570826817300124

Bibliography 124

28th International Conference, ILP 2018, Ferrara, Italy, September 2–

4, 2018, Proceedings 28. Springer, 2018, pp. 54–71. [Online]. Available:

https://doi.org/10.1007/978-3-319-99960-9 4

[63] T. Kinsman, M. Wessel, M. A. Gerosa, and C. Treude, “How do

software developers use GitHub Actions to automate their workflows?”

in 2021 IEEE/ACM 18th International Conference on Mining Software

Repositories (MSR). IEEE, 2021, pp. 420–431. [Online]. Available: https:

//doi.org/10.1109/MSR52588.2021.00054

[64] K. I. Kotis, G. A. Vouros, and D. Spiliotopoulos, “Ontology engineering method-

ologies for the evolution of living and reused ontologies: status, trends, findings

and recommendations,” The Knowledge Engineering Review, vol. 35, p. e4, 2020.

[65] M. Krötzsch, F. Simancik, and I. Horrocks, “A Description Logic Primer,”

arXiv preprint arXiv:1201.4089, vol. abs/1201.4089, 2012. [Online]. Available:

https://api.semanticscholar.org/CorpusID:1221862

[66] D. O. Kubitza, M. Böckmann, and D. Graux, “SemanGit: A Linked Dataset

from git,” in The Semantic Web – ISWC 2019. Springer, 2019, pp. 215–228.

[Online]. Available: https://doi.org/10.1007/978-3-030-30796-7 14

[67] B. Lakzaei and M. Shamsfard, “Ontology learning from relational databases,”

Information Sciences, vol. 577, pp. 280–297, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0020025521006654

[68] M. Lenzerini and C. Daraio, Challenges, Approaches and Solutions in Data

Integration for Research and Innovation. Cham: Springer International

Publishing, 2019, pp. 397–420. [Online]. Available: https://doi.org/10.1007/

978-3-030-02511-3 15

[69] S. Liang, K. Stockinger, T. M. de Farias, M. Anisimova, and M. Gil, “Querying

knowledge graphs in natural language,” Journal of big data, vol. 8, pp. 1–23,

2021. [Online]. Available: https://doi.org/10.1186/s40537-020-00383-w

[70] C.-h. Liao, Y.-f. Wu, and G.-h. King, “Research on Learning OWL Ontology

from Relational Database,” in Journal of Physics: Conference Series,

vol. 1176, no. 2. IOP Publishing, 2019, p. 022031. [Online]. Available:

https://dx.doi.org/10.1088/1742-6596/1176/2/022031

[71] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang, and S. Liu, “Exploring

the characteristics of issue-related behaviors in github using visualization

techniques,” IEEE Access, vol. 6, pp. 24 003–24 015, 2018. [Online]. Available:

https://doi.org/10.1109/ACCESS.2018.2810295

http://etd.uwc.ac.za/

https://doi.org/10.1007/978-3-319-99960-9_4
https://doi.org/10.1109/MSR52588.2021.00054
https://doi.org/10.1109/MSR52588.2021.00054
https://api.semanticscholar.org/CorpusID:1221862
https://doi.org/10.1007/978-3-030-30796-7_14
https://www.sciencedirect.com/science/article/pii/S0020025521006654
https://doi.org/10.1007/978-3-030-02511-3_15
https://doi.org/10.1007/978-3-030-02511-3_15
https://doi.org/10.1186/s40537-020-00383-w
https://dx.doi.org/10.1088/1742-6596/1176/2/022031
https://doi.org/10.1109/ACCESS.2018.2810295

Bibliography 125

[72] J. Liu, J. Li, and L. He, “A Comparative Study of the Effects of Pull

Request on GitHub Projects,” in 2016 IEEE 40th Annual Computer Software

and Applications Conference (COMPSAC), vol. 1. IEEE, 2016, pp. 313–322.

[Online]. Available: https://doi.org/10.1109/COMPSAC.2016.27

[73] J. Loeliger and M. McCullough, Version Control with Git: Powerful tools and

techniques for collaborative software development. ” O’Reilly Media, Inc.”, 2012.

[74] S. Lohmann, V. Link, E. Marbach, and S. Negru, “WebVOWL: Web-based visu-

alization of ontologies,” in Knowledge Engineering and Knowledge Management:

EKAW 2014 Satellite Events, VISUAL, EKM1, and ARCOE-Logic, Linköping,

Sweden, November 24-28, 2014. Revised Selected Papers. 19. Springer, 2015, pp.

154–158.

[75] M. Luczak-Rösch, “Towards agile ontology maintenance,” in The Semantic Web

- ISWC 2009, A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. May-

nard, E. Motta, and K. Thirunarayan, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009, pp. 965–972.

[76] C. Ma and B. Molnr, “Ontology learning from relational database: Opportunities

for semantic information integration,” Vietnam Journal of Computer Science,

vol. 9, no. 01, pp. 31–57, 2022. [Online]. Available: https://doi.org/10.1142/

S219688882150024X

[77] C. Ma and B. Molnár, “Use of ontology learning in information system

integration: a literature survey,” in Intelligent Information and Database

Systems: 12th Asian Conference, ACIIDS 2020, Phuket, Thailand, March

23–26, 2020, Proceedings 12. Springer, 2020, pp. 342–353. [Online]. Available:

https://api.semanticscholar.org/CorpusID:212564890

[78] M. Madsen and O. Lhoták, “Fixpoints for the masses: programming with

first-class Datalog constraints,” Proceedings of the ACM on Programming

Languages, vol. 4, no. OOPSLA, pp. 1–28, 2020. [Online]. Available:

https://doi.org/10.1145/3428193

[79] M. N. Mami, D. Graux, S. Scerri, H. Jabeen, S. Auer, and J. Lehmann,

“Squerall: Virtual Ontology-Based Access to Heterogeneous and Large

Data Sources,” in The Semantic Web–ISWC 2019: 18th International

Semantic Web Conference, Auckland, New Zealand, October 26–30, 2019,

Proceedings, Part II 18. Springer, 2019, pp. 229–245. [Online]. Available:

https://api.semanticscholar.org/CorpusID:204754566

http://etd.uwc.ac.za/

https://doi.org/10.1109/COMPSAC.2016.27
https://doi.org/10.1142/S219688882150024X
https://doi.org/10.1142/S219688882150024X
https://api.semanticscholar.org/CorpusID:212564890
https://doi.org/10.1145/3428193
https://api.semanticscholar.org/CorpusID:204754566

Bibliography 126

[80] F. Manola, E. Miller, B. McBride et al., “RDF primer,” W3C recommendation,

vol. 10, no. 1-107, p. 6, 2004. [Online]. Available: https://www.w3.org/TR/

rdf-primer/

[81] M. A. Mart́ınez-Prieto, M. Arias Gallego, and J. D. Fernández, “Exchange

and Consumption of Huge RDF Data,” in Extended Semantic Web Conference.

Springer Berlin Heidelberg, 2012, pp. 437–452. [Online]. Available: https:

//doi.org/10.1007/978-3-642-30284-8 36

[82] H. E. Massari, S. Mhammedi, N. Gherabi, and M. Nasri, “Virtual

OBDA Mechanism Ontop for Answering SPARQL Queries Over Couchbase,” in

International Conference on Advanced Technologies for Humanity. Springer, 2021,

pp. 193–205. [Online]. Available: https://doi.org/10.1007/978-3-030-94188-8 19

[83] N. Matentzoglu, D. Goutte-Gattat, S. Z. K. Tan, J. P. Balhoff, S. Carbon,

A. R. Caron, W. D. Duncan, J. E. Flack, M. Haendel, N. L. Harris, W. R.

Hogan, C. T. Hoyt, R. C. Jackson, H. Kim, H. Kir, M. Larralde, J. A.

McMurry, J. A. Overton, B. Peters, C. Pilgrim, R. Stefancsik, S. M. Robb,

S. Toro, N. A. Vasilevsky, R. Walls, C. J. Mungall, and D. Osumi-Sutherland,

“Ontology Development Kit: a toolkit for building, maintaining and standardizing

biomedical ontologies,” Database, vol. 2022, p. baac087, 10 2022. [Online].

Available: https://doi.org/10.1093/database/baac087

[84] B. McBride, “The resource description framework (RDF) and its vocabulary

description language RDFS,” in Handbook on ontologies. Springer Berlin

Heidelberg, 2004, pp. 51–65. [Online]. Available: https://doi.org/10.1007/

978-3-540-24750-0 3

[85] K. McGlinn, M. A. Rutherford, K. Gisslander, L. Hederman, M. A. Little,

and D. O’Sullivan, “FAIRVASC: A semantic web approach to rare disease

registry integration,” Computers in Biology and Medicine, vol. 145, p. 105313,

2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0010482522001056

[86] C. Messaoudi, R. Fissoune, and H. Badir, “IPDS: A semantic mediator-based

system using Spark for the integration of heterogeneous proteomics data sources,”

Concurrency and Computation: Practice and Experience, vol. 33, no. 1, p. e5814,

2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:219513264

[87] R. D. Morris, “Web 3.0: Implications for online learning,” 2011. [Online].

Available: https://doi.org/10.1007/s11528-011-0469-9

http://etd.uwc.ac.za/

https://www.w3.org/TR/rdf-primer/
https://www.w3.org/TR/rdf-primer/
https://doi.org/10.1007/978-3-642-30284-8_36
https://doi.org/10.1007/978-3-642-30284-8_36
https://doi.org/10.1007/978-3-030-94188-8_19
https://doi.org/10.1093/database/baac087
https://doi.org/10.1007/978-3-540-24750-0_3
https://doi.org/10.1007/978-3-540-24750-0_3
https://www.sciencedirect.com/science/article/pii/S0010482522001056
https://www.sciencedirect.com/science/article/pii/S0010482522001056
https://api.semanticscholar.org/CorpusID:219513264
https://doi.org/10.1007/s11528-011-0469-9

Bibliography 127

[88] C. Nikolaou, E. V. Kostylev, G. Konstantinidis, M. Kaminski, B. C.

Grau, and I. Horrocks, “The Bag Semantics of Ontology-Based Data

Access,” arXiv preprint arXiv:1705.07105, 2017. [Online]. Available: https:

//doi.org/10.48550/arXiv.1705.07105

[89] N. F. Noy, D. L. McGuinness et al., “Ontology development 101: A

guide to creating your first ontology,” 2001. [Online]. Available: https:

//api.semanticscholar.org/CorpusID:500106

[90] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A Design

Science Research Methodology for Information Systems Research,” Journal of

management information systems, vol. 24, no. 3, pp. 45–77, 2007. [Online].

Available: https://doi.org/10.2753/MIS0742-1222240302

[91] N. Petersen, L. Halilaj, I. Grangel-González, S. Lohmann, C. Lange, and

S. Auer, “Realizing an RDF-Based Information Model for a Manufacturing

Company – A Case Study,” in The Semantic Web–ISWC 2017: 16th

International Semantic Web Conference, Vienna, Austria, October 21-25, 2017,

Proceedings, Part II 16. Springer, 2017, pp. 350–366. [Online]. Available:

https://doi.org/10.1007/978-3-319-68204-4 31

[92] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and

R. Rosati, “Linking Data to Ontologies,” in Journal on data semantics

X. Springer, Berlin, Heidelberg, 2008, pp. 133–173. [Online]. Available:

https://doi.org/10.1007/978-3-540-77688-8 5

[93] F. Priyatna, R. Alonso-Calvo, S. Paraiso-Medina, and O. Corcho, “Querying

clinical data in HL7 RIM based relational model with morph-RDB,” Journal

of biomedical semantics, vol. 8, no. 1, pp. 1–12, 2017. [Online]. Available:

https://doi.org/10.1186/s13326-017-0155-8

[94] F. Priyatna, O. Corcho, and J. Sequeda, “Formalisation and experiences of

R2RML-based SPARQL to SQL query translation using Morph,” in Proceedings

of the 23rd international conference on World wide web, 2014, pp. 479–490.

[Online]. Available: https://doi.org/10.1145/2566486.2567981

[95] A. Rastogi, N. Nagappan, G. Gousios, and A. van der Hoek, “Relationship

between geographical location and evaluation of developer contributions in

github,” in Proceedings of the 12th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement, 2018, pp. 1–8. [Online].

Available: https://doi.org/10.1145/3239235.3240504

http://etd.uwc.ac.za/

https://doi.org/10.48550/arXiv.1705.07105
https://doi.org/10.48550/arXiv.1705.07105
https://api.semanticscholar.org/CorpusID:500106
https://api.semanticscholar.org/CorpusID:500106
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1007/978-3-319-68204-4_31
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1186/s13326-017-0155-8
https://doi.org/10.1145/2566486.2567981
https://doi.org/10.1145/3239235.3240504

Bibliography 128

[96] R. Rudman and R. Bruwer, “Defining web 3.0: opportunities and

challenges,” The Electronic Library, vol. 34, 2016. [Online]. Available:

https://doi.org/10.1108/EL-08-2014-0140

[97] G. Santipantakis, K. Kotis, and G. A. Vouros, “OBDAIR: Ontology-Based

Distributed framework for Accessing, Integrating and Reasoning with data in

disparate data sources,” Expert Systems with Applications, vol. 90, pp. 464–483,

2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0957417417305705

[98] O. Savković, E. Kharlamov, M. Ringsquandl, G. Xiao, G. Mehdi, E. G. Kalayc,

W. Nutt, and I. Horrocks, “Semantic diagnostics of smart factories,” in Semantic

Technology: 8th Joint International Conference, JIST 2018, Awaji, Japan,

November 26–28, 2018, Proceedings 8. Springer, 2018, pp. 277–294. [Online].

Available: https://doi.org/10.1007/978-3-030-04284-4 19

[99] T. Schneider and M. Šimkus, “Ontologies and Data Management: A Brief

Survey,” KI-Künstliche Intelligenz, vol. 34, no. 3, pp. 329–353, 2020. [Online].

Available: https://doi.org/10.1007/s13218-020-00686-3

[100] G. Sejdiu, D. Graux, I. Khan, I. Lytra, H. Jabeen, and J. Lehmann, “Towards a

Scalable Semantic-Based Distributed Approach for SPARQL Query Evaluation,”

in International Conference on Semantic Systems. Springer, Cham, 2019, pp.

295–309. [Online]. Available: https://doi.org/10.1007/978-3-030-33220-4 22

[101] J. F. Sequeda and D. P. Miranker, “Ultrawrap: SPARQL execution on relational

data,” Journal of Web Semantics, vol. 22, pp. 19–39, 2013. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1570826813000383

[102] A. P. Sheth and J. A. Larson, “Federated database systems for managing

distributed, heterogeneous, and autonomous databases,” ACM Computing

Surveys (CSUR), vol. 22, no. 3, pp. 183–236, 1990. [Online]. Available:

https://doi.org/10.1145/96602.96604

[103] A. P. Sheth and C. Ramakrishnan, “Semantic (Web) Technology in Action: On-

tology Driven Information Systems for Search, Integration, and Analysis,” IEEE

Data Engineering Bulletin, vol. 26, no. 4, p. 40, 2003.

[104] A. C. Sima, T. Mendes de Farias, E. Zbinden, M. Anisimova, M. Gil,

H. Stockinger, K. Stockinger, M. Robinson-Rechavi, and C. Dessimoz, “Enabling

semantic queries across federated bioinformatics databases,” Database, vol. 2019,

11 2019. [Online]. Available: https://doi.org/10.1093/database/baz106

http://etd.uwc.ac.za/

https://doi.org/10.1108/EL-08-2014-0140
https://www.sciencedirect.com/science/article/pii/S0957417417305705
https://www.sciencedirect.com/science/article/pii/S0957417417305705
https://doi.org/10.1007/978-3-030-04284-4_19
https://doi.org/10.1007/s13218-020-00686-3
https://doi.org/10.1007/978-3-030-33220-4_22
https://www.sciencedirect.com/science/article/pii/S1570826813000383
https://doi.org/10.1145/96602.96604
https://doi.org/10.1093/database/baz106

Bibliography 129

[105] G. Singh, S. Bhatia, and R. Mutharaju, “OWL2Bench: A Benchmark

for OWL 2 Reasoners,” in International semantic web conference. Springer

International Publishing, 2020, pp. 81–96. [Online]. Available: https:

//doi.org/10.1007/978-3-030-62466-8 6

[106] D. Spinellis, “Git,” IEEE software, vol. 29, no. 3, pp. 100–101, 2012. [Online].

Available: https://doi.org/10.1109/MS.2012.61

[107] S. Staab and R. Studer, Handbook on ontologies. Springer Science & Business

Media, 2010. [Online]. Available: https://doi.org/10.1007/978-3-540-92673-3

[108] C. Stadler, G. Sejdiu, D. Graux, and J. Lehmann, “Sparklify: A Scalable Software

Component for Efficient Evaluation of SPARQL Queries over Distributed RDF

Datasets,” in International Semantic Web Conference. Springer, 2019, pp.

293–308. [Online]. Available: https://doi.org/10.1007/978-3-030-30796-7 19

[109] F. Taglino, F. Cumbo, G. Antognoli, I. Arisi, M. D’Onofrio, F. Perazzoni,

R. Voyat, G. Fiscon, F. Conte, M. Canevelli et al., “An ontology-based approach

for modelling and querying Alzheimer’s disease data,” BMC Medical Informatics

and Decision Making, vol. 23, no. 1, pp. 1–15, 2023. [Online]. Available:

https://doi.org/10.1186/s12911-023-02211-6

[110] R. Thirumahal, G. Sudha Sadasivam, and P. Shruti, “Semantic Integration of

Heterogeneous Data Sources Using Ontology-Based Domain Knowledge Modeling

for Early Detection of COVID-19,” SN Computer Science, vol. 3, no. 6, p. 428,

2022. [Online]. Available: https://doi.org/10.1007/s42979-022-01298-4

[111] W. Van Der Aalst, Process mining: Data Science in Action. Springer

Berlin, Heidelberg, 2016, vol. 2. [Online]. Available: https://doi.org/10.1007/

978-3-662-49851-4

[112] G. Vega-Gorgojo, L. Slaughter, and M. Giese, “Seeing the whole picture:

integrated pre-surgery reports with PreOptique,” Journal of Biomedical

Semantics, vol. 10, pp. 1–15, 2019. [Online]. Available: https://doi.org/10.1186/

s13326-019-0197-1

[113] P. S. Vikas Trikha and S. Kothari, “Managing Data Provenance in the Semantic

Web,” INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH TECH-

NOLOGY (IJERT), vol. 8, no. 3, 2019.

[114] J. Vom Brocke, A. Hevner, and A. Maedche, “Introduction to Design Science

Research,” Design science research. Cases, pp. 1–13, 2020. [Online]. Available:

https://doi.org/10.1007/978-3-030-46781-4 1

http://etd.uwc.ac.za/

https://doi.org/10.1007/978-3-030-62466-8_6
https://doi.org/10.1007/978-3-030-62466-8_6
https://doi.org/10.1109/MS.2012.61
https://doi.org/10.1007/978-3-540-92673-3
https://doi.org/10.1007/978-3-030-30796-7_19
https://doi.org/10.1186/s12911-023-02211-6
https://doi.org/10.1007/s42979-022-01298-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1186/s13326-019-0197-1
https://doi.org/10.1186/s13326-019-0197-1
https://doi.org/10.1007/978-3-030-46781-4_1

Bibliography 130

[115] J. Wachs, M. Nitecki, W. Schueller, and A. Polleres, “The Geography of

Open Source Software: Evidence from GitHub,” Technological Forecasting

and Social Change, vol. 176, p. 121478, 2022. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0040162522000105

[116] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and

M. Zakharyaschev, “Ontology-based data access: A survey.” International Joint

Conferences on Artificial Intelligence, 7 2018, pp. 5511–5519. [Online]. Available:

https://doi.org/10.24963/ijcai.2018/777

[117] G. Xiao, L. Ding, B. Cogrel, and D. Calvanese, “Virtual knowledge graphs: An

overview of systems and use cases,” Data Intelligence, vol. 1, no. 3, pp. 201–223,

2019. [Online]. Available: https://doi.org/10.1162/dint a 00011

[118] G. Xiao, R. Kontchakov, B. Cogrel, D. Calvanese, and E. Botoeva,

“Efficient handling of SPARQL optional for OBDA,” in International Semantic

Web Conference. Springer, Cham, 2018, pp. 354–373. [Online]. Available:

https://doi.org/10.1007/978-3-030-00671-6 21

[119] G. Xiao, D. Lanti, R. Kontchakov, S. Komla-Ebri, E. Güzel-Kalaycı,

L. Ding, J. Corman, B. Cogrel, D. Calvanese, and E. Botoeva, “The

Virtual Knowledge Graph System Ontop,” in International Semantic Web

Conference. Springer, Cham, 2020, pp. 259–277. [Online]. Available: https:

//doi.org/10.1007/978-3-030-62466-8 17

[120] H. Zhang, Y. Guo, Q. Li, T. J. George, E. Shenkman, F. Modave, and

J. Bian, “An ontology-guided semantic data integration framework to support

integrative data analysis of cancer survival,” BMC medical informatics and

decision making, vol. 18, no. 2, pp. 129–147, 2018. [Online]. Available:

https://doi.org/10.1186/s12911-018-0636-4

[121] H. Zhang, Y. Guo, Q. Li, T. J. George, E. A. Shenkman, and J. Bian,

“Data Integration through Ontology-Based Data Access to Support Integrative

Data Analysis: A Case Study of Cancer Survival,” in 2017 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017, pp.

1300–1303. [Online]. Available: https://doi.org/10.1109/BIBM.2017.8217849

[122] X. Zhang, M. Zhang, P. Peng, J. Song, Z. Feng, and L. Zou, “A Scalable Sparse

Matrix-Based Join for SPARQL Query Processing,” in Database Systems for

Advanced Applications, G. Li, J. Yang, J. Gama, J. Natwichai, and Y. Tong, Eds.

Cham: Springer International Publishing, 2019, pp. 510–514. [Online]. Available:

https://doi.org/10.1007/978-3-030-18590-9 77

http://etd.uwc.ac.za/

https://www.sciencedirect.com/science/article/pii/S0040162522000105
https://www.sciencedirect.com/science/article/pii/S0040162522000105
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.1162/dint_a_00011
https://doi.org/10.1007/978-3-030-00671-6_21
https://doi.org/10.1007/978-3-030-62466-8_17
https://doi.org/10.1007/978-3-030-62466-8_17
https://doi.org/10.1186/s12911-018-0636-4
https://doi.org/10.1109/BIBM.2017.8217849
https://doi.org/10.1007/978-3-030-18590-9_77

	Declaration of Authorship
	Abstract
	Acknowledgements
	Publication
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Research Question
	1.3 Research Objectives
	1.4 Methodology
	1.4.1 Problem identification and motivation
	1.4.2 Objectives for a solution
	1.4.3 Design and development
	1.4.4 Evaluation
	1.4.5 Communication

	1.5 Thesis Structure and Outline

	2 Background
	2.1 Semantic Web
	2.2 Conceptualization
	2.3 Ontology
	2.4 Description Logic
	2.5 OWL
	2.6 Connecting ontologies and databases
	2.6.1 SPARQL
	2.6.2 OBDA Framework
	2.6.3 Query answering
	2.6.4 Mapping

	2.7 Conclusion

	3 Literature Review
	3.1 Introduction
	3.2 Literature Review Methodology
	3.3 Use cases
	3.3.1 Manufacturing/Machine Diagnoses
	3.3.2 Oil and Gas
	3.3.3 Biomedical
	3.3.4 Biology
	3.3.5 Healthcare
	3.3.6 Services
	3.3.7 Maritime
	3.3.8 Big Data

	3.4 Data sources, Ontologies and Mappings
	3.4.1 Data sources
	3.4.2 Ontologies
	3.4.3 Mappings

	3.5 Optimization
	3.6 Evaluation and Results
	3.7 Discussion
	3.8 Conclusion

	4 Ontology-Based Data Access Tool, Dataset and Ontology
	4.1 Introduction
	4.2 OBDA tool
	4.2.1 Ontop system
	4.2.2 Query representation
	4.2.3 SPARQL to SQL translation
	4.2.3.1 SPARQL to IQ
	4.2.3.2 IQ to SQL

	4.3 The GHTorrent Dataset
	4.3.1 GHTorrent Data Collection
	4.3.2 GHTorrent Limitations

	4.4 SemanGit Ontology
	4.4.1 SemanGit limitations
	4.4.2 SemanGit extensions
	4.4.2.1 Class definitions
	4.4.2.2 Property definitions

	4.5 Conclusion

	5 Implementation
	5.1 Introduction
	5.2 Preliminaries
	5.3 Database setup
	5.4 Mapping GHTorrent to the SemanGit Ontology
	5.4.1 Mapping assertions
	Figure 5.1 mapping assertions
	Figure 5.2 mapping assertions
	Figure 5.3 mapping assertions
	Figure 5.4 mapping assertions
	Figure 5.5 mapping assertions
	Figure 5.6 mapping assertions
	Figure 5.7 mapping assertions

	5.5 Querying GHTorrent with SPARQL
	5.6 Discussion
	5.7 Conclusion

	6 Conclusion
	6.0.1 Research sub-question 1
	6.0.2 Research sub-question 2
	6.0.3 Research sub-question 3
	6.0.4 Research sub-question 4

	6.1 Future work
	6.2 Concluding Comments

	A Literature review summary
	B Mapping specifications
	C Ontology
	Bibliography

