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Abstract 
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phthaldialdehyde, naphthalene-2,3-dicarboxaldehyde and dansyl chloride 

derivatives 
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Keywords: Fumonisins; fluorescence detector; ultraviolet detector; o-
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diode array detector.  

 

Fumonisins, carcinogenic mycotoxins produced by various Fusarium 

species, occur naturally in maize and maize-based food products. They are 

hazards for animal and human health as they cause cancer in rodents and have 

been associated with oesophageal cancer and neural tube defects in humans. 

The most abundant naturally occurring fumonisins analogues in maize are 
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fumonisin B1, B2 and B3 (FB1, FB2 and FB3). For analytical determination, they 

mostly require suitable extraction, clean-up and pre or post-column 

derivatization together with reversed-phase HPLC separation. o-

Phthaldialdehyde (OPA) had been adopted as the most widely used 

derivatization reagent for fumonisins as they lack useful chromophores or 

fluorophores. Alternative derivatization reagents, naphthalene-2,3-

dicarboxaldehyde (NDA) and dansyl chloride (DnS-Cl), were investigated in this 

study. The HPLC system used was equipped with diode array (DAD) and 

fluorescence detectors to determine UV detection as an alternative following 

derivatization with OPA, NDA and DnS-Cl. Optimization of the NDA derivatives 

with working standards resulted in limits of detection (LOD) of FB1, FB2 and FB3 

with FLD of 0.11 ng, 0.50 ng and 0.27 ng, respectively, and with DAD 13.8 ng, 

12.5 ng and 6.6 ng, respectively. Subsequently naturally contaminated maize 

samples, collected from subsistence farmers in the Eastern Cape, were cleaned-

up with strong anion exchange (SAX) solid phase extraction (SPE) cartridges. The 

coefficient of variation (CV) for FB1, FB2 and FB3 in maize samples (n=6) were 

2.6%, 1.8% and 5.3%, respectively, with FLD compared to 6.0%, 3.4% and 9.5%, 

respectively, with DAD. Subsequently the NDA derivatization was compared to 

the OPA derivatization, as well as an alternative sample clean-up with 

immunoaffinity column (IAC) by analyzing naturally contaminated maize samples 

(n = 15) ranging in total fumonisin (TFB = FB1 + FB2 + FB3) levels from 106 - 6000 

μg/kg. After IAC clean-up of extracted samples, the recoveries for NDA-FLD of 

FB1, FB2 and FB3 were 62%, 94% and 64%, respectively. NDA proved to be an 
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effective derivatization reagent for fumonisin in naturally contaminated maize 

samples following IAC clean-up, except for DAD at TFB levels below 1000 μg/kg. 

In contrast NDA derivatization following SAX clean-up produced results 

comparable to OPA only for levels below 1000 μg/kg. FLD and DAD produced 

comparable results irrespective of the clean-up method or the derivatization 

agent. The investigation of DnS-Cl as a derivatization reagent resulted in LOD for 

FB1, FB2 and FB3 of 4.3 ng, 3.9 ng and 2.1 ng, respectively, with FLD and 17.2 ng, 

15.6 ng, 15.6 ng, respectively, with DAD. Although sensitive and reproducible 

derivatives were formed with fumonisin working standards, matrix interferences 

from maize samples with DnS-Cl rendered this derivatization reagent unsuitable 

for fumonisin analysis in naturally contaminated maize. In conclusion this study 

has shown that UV detection can be utilized as an alternative to FLD for 

fumonisin analysis in naturally contaminated maize irrespective of the clean-up 

method or the derivatization agent.  
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1.1 Introduction   

Toxins are poisonous substances that are produced by living cells or organisms 

(Medical Dictionary). They are synthesised by plant species, animal or micro-

organisms and are generally harmful to a different organism. Mycotoxins are 

toxic secondary metabolites produced by fungi growing on a range of cereal and 

food matrixes and many are produced by plant pathogens (Turner et al., 2009). 

Since the discovery of aflatoxins in 1960, mycotoxins have been found to be 

responsible for a variety of human and animal diseases (Shephard, 2008). 

Fumonisins are carcinogenic mycotoxins produced by fungi of the Fusarium 

species, primarily by F. verticillioides and F. proliferatum and were first isolated 

by Gelderblom et al., 1988. They are an economically important group of 

mycotoxins that occur primarily in maize and maize-based products (Shephard et 

al., 1996).  

There are at least 28 chemical analogues of fumonisins, but the most important 

are the fumonisin B’s (FBs) which occur naturally in contaminated maize. The 

most important FBs are fumonisin B1 (FB1), fumonisin B2 (FB2) and fumonisin B3 

(FB3), with FB1 being the most prevalent (Rheeder et al., 2002). Fumonisins have 

been reported to show cancer promoting properties in rats (Gelderblom et al., 

1996). Fumonisins are not mutagenic (Gelderblom et al., 1991; Knasmuller et al., 

1997) nor genotoxic in primary rat hepatocytes (Norred et al., 1992) but FB1 is 

hepatocarcinogenic in male BD IX rats (Gelderblom et al., 2001) and B6C3F1 

female mice and nephrocarcinogenic in male Fischer 344 rats (Howard et al., 
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2001). Fumonisins are known to cause leukoencephalomalacia in horses and 

pulmonary edema syndrome in pigs (Howard et al., 2001; Marasas, 2001).  

Fumonisins have been associated with the high prevalence of human 

oesophageal cancer in areas like the former Transkei region in South Africa 

(Rheeder et al., 1992) and Santa Catarina State, Brazil (Van der Westhuizen et al., 

2003), where high levels of fumonisin contaminated foods are part of the normal 

diet (Rheeder et al., 1992; Sun et al., 2007; Wang et al., 2008). It has been 

suggested that fumonisins are a risk for inducing liver cancer in humans (Ueno et 

al., 1997). There has also been a proposed link between fumonisin exposure and 

neural tube defects in humans (Missmer et al., 2006; Hendricks, 1999; Marasas 

et al., 2004). 

 Based on information available at that time, the International Agency for 

Research on Cancer classified FB1 as a possible human carcinogen (group 2B) 

(IARC, 2002). The US Food and Drug Administration (FDA) have recommended 

that cautionary levels be put in place to reduce human exposure to fumonisins 

intended for human and animal consumption (FDA, 2001). In 2007, The European 

Commission (EC) regulated fumonisin exposure at various levels from 4000 µg 

fumonisins/kg for unprocessed maize, 1000 µg/kg for maize intended for direct 

human consumption and 200 µg fumonisins/kg for processed maize-based foods 

and baby foods (EC, 2007).  

Due to the problems and risks associated with fumonisin contamination of 

animal feed and human food, there is a growing need to develop reliable and 
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sensitive methods for the determination of fumonisins in maize and maize-based 

foods (Shephard, 1998).  Various different methods that have been reported for 

the analysis of fumonisins  include: thin-layer chromatography (TLC) (Gelderblom 

et al., 1988; Shephard and Sewram 2004), liquid chromatography-mass 

spectrometry (LC-MS) (Zollner et al., 2006), gas chromatography-mass 

spectrometry (GC-MS) (Plattner et al., 1990) and liquid chromatography with 

reversed-phase high performance liquid chromatography (RP-HPLC) being the 

most widely used current method for fumonisin determination (Shephard et al., 

1996). Samples are extracted either with aqueous methanol or acetonitrile and 

mostly cleaned-up on strong anion exchange (SAX) solid phase extraction (SPE) 

cartridges or immunoaffinity columns (Sydenham et al., 1996). Fumonisins lack a 

suitable chromophore that enables them to be detected by UV and consequently 

need to be derivatized prior to HPLC separation (Shephard, 1998). 

Different derivatization reagents have been reported for fumonisin analysis such 

as maleyl (Sydenham et al., 1990), fluorescamine (Ross et al., 1991), 4-fluoro-7-

nitrobenzofurazan (Scott and Lawrence 1992), but o-phthaldialdehyde (OPA) still 

remains the derivatization reagent of choice for most laboratories as it produces 

highly fluorescent derivatives readily separated by HPLC (Shephard, 1998). 

Detection of OPA fumonisin derivatives is mainly fluorescence-based at 

excitation wavelength of 335 nm and emission wavelength of 420 nm (Shephard 

1990). However, many laboratories requiring infrequent fumonisin analysis are 

equipped only with HPLC with an ultraviolet detector (UV) (Ndube et al., 2009).  
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1.2 Aims  and objectives 

Fumonisin analysis has been based almost exclusively on fluorescence detection 

(FLD) and liquid chromatography mass spectrometry (LC-MS). However, there 

has been a growing need to develop an analytical method for fumonisin analysis 

by laboratories requiring occasional fumonisin analysis and equipped only with a 

UV detector. Limited work has been done on the analysis of fumonisins by HPLC-

UV detection. Maleyl derivatives analysed by HPLC-UV gave detection limits of 10 

µg/g which is inappropriate for naturally contaminated maize samples 

(Sydenham et al., 1990) and fluorescent derivatives of 4-fluoro-7-

nitrobenzofurazan (NBDF) gave higher detection limits of 100 µg/g and also 

showed limited stability (Scott and Lawrence 1994). OPA, naphthalene-2,3-

dicarboxaldehyde (NDA) and dansyl chloride (DnS-Cl), the reagents studied here, 

have previously only been used as fluorogenic reagents.  

The aim of this work was to investigate the degree to which fumonisins present 

in maize can be determined by high-performance liquid chromatography (HPLC) 

with both FLD and UV detection of their OPA, NDA and DnS-Cl derivatives. The 

objective of the study was to determine the extent to which UV may be used as 

an alternative to FLD as well as the extent to which NDA or DnS-Cl may be 

employed as alternatives to the widely used OPA derivatization reagent. The 

specific objectives of this study were: 
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1. To investigate the scope to which fumonisins in maize could be determined 

by high-performance liquid chromatography (HPLC) with ultraviolet (UV) and 

fluorescence (FLD) detection. 

2. To optimize the derivatization of fumonisins with NDA and DnS-Cl.  

3. To determine and compare differences between FLD and DAD responses of 

the different derivatization reagents. 

4. To evaluate the applicability of the derivatization reagents for the analysis of 

naturally contaminated maize samples using different clean-up methods. 

1.3 Research approach 

Derivatization of fumonisins is necessary as they lack a suitable chromophore or 

fluorophore for ultraviolet and/or fluorescence detection. This is best achieved 

by pre-column rather than a post-column on-line approach, as pre-column 

derivatization requires less equipment and is much easier to handle. 

Consequently the initial step of the study was to identify suitable derivatization 

reagents which might offer a suitable system for UV detection. The well 

characterized method using OPA was investigated first, where after the reagents 

NDA and DnS-Cl were evaluated on a comparative basis. As these latter two 

reagents have found limited use in fumonisin analysis, the derivatization protocol 

and chromatographic separation were first optimized. RP-HPLC determination of 

fumonisins mostly follows SAX or IAC clean-up of a suitable extract. Both clean-

up methods were used in these studies to test which clean-up method works 
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best for each derivatization reagent. The HPLC system was equipped with both 

UV and fluorescence detectors connected in series, to determine the extent to 

which UV offers an alternative to fluorescence detection of fumonisins and to 

allow for direct comparison between the two detectors.  

1.4 Research structure 

The current chapter includes the introductory overview on the research theme, 

the aims and objectives, research approach and structure of the study. The 

succeeding chapters will be as follows: 

Chapter 2: Literature Review 

 The background, occurrence and impact of fumonisins will be 

presented. This is followed by an in-depth description of the analysis of 

fumonisins which includes extraction of maize samples, clean-up and 

derivatization. All the derivatization reagents relevant to the study are 

reviewed in detail including their mechanism or reactions to form 

derivatives. The review concludes with a literature survey of HPLC 

detection methods for fumonisins which are used in the study as well 

as a discussion of other detection methods.   

Chapter 3: Ultraviolet detection (UV) of fumonisin B analogues as o-

phthaldialdehyde derivatives 

Chapter 3 investigates the degree to which the fumonisin method of 

Sydenham et al., 1996 could be combined with UV detection of the FB-

OPA derivatives. The FLD and developed DAD method is applied to 
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naturally contaminated maize samples. Comparison of SAX with IAC 

and FLD and DAD concludes the chapter. 

Chapter 4:  Optimization of naphthalene-2,3-dicarboxaldehyde (NDA) derivatives 

for fumonisin derivatization and its applicability to fluorescence (FLD) 

and ultraviolet (UV) detection 

This chapter discusses the extent to which the optimized NDA 

derivatization method could be used for analysis of South African 

subsistence maize samples. It aims to provide stable fumonisin 

derivatives to allow for automated detection of fumonisins with HPLC. 

Chapter 5: An evaluation of dansyl chloride (DnS-Cl) for fumonisin derivatization 

analysed by HPLC with fluorescence (FLD) and ultraviolet (UV) 

detection  

Chapter 5 investigates the extent to which DnS-Cl can be used for 

fumonisin derivatization in maize samples. The method is optimized to 

obtain best conditions for pre-column derivatization and HPLC analysis 

of the derivatives.  

Chapter 6: Comparisons of methods, General Discussion, Recommendations and 

Conclusion 

The study is concluded with a concise discussion of the most significant 

points from all the preceding chapters. A comparison of the 

derivatization reagents are discussed and as well as how each method 
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has either advantages or not over the current. Finally, directions for 

future work are suggested.  
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2.1 Introduction  

2.1.1 Background to fumonisins 

Fumonisins are mycotoxins that are produced by several species of Fusarium 

mainly F. verticillioides and F. proliferatum (Marasas, 2001). Fumonisins are 

known to be an epidemiologically and economically important group of 

mycotoxins (Shephard, 2000). They were first isolated in 1988 from F. 

verticillioides strain MRC 826 at the Programme of Mycotoxin and Experimental 

Carcinogenesis (PROMEC) of the Medical Research Council for South Africa 

(MRC) by Gelderblom et al., 1988. The structure of fumonisins was determined in 

1988 in a collaborative study between the PROMEC Unit of the MRC and the 

Council for Scientific and Industrial Research (CSIR) in Pretoria (Marasas, 2001) 

and is based on a long eicosane hydrocarbon chain substituted with methyl, 

hydroxyl and amino groups. Fumonisins are diesters of propane-1,2,3-

tricarboxylic acid and 2-amino-12,16-dimethylpolyhydroxyeicosanes in which the 

C14 and C15 hydroxyl groups are esterified with the terminal carboxyl group of 

tricarballylic acid (Bezuidenhout et al., 1988; Figure 2.1). There are at least four 

closely related series of fumonisins viz., A, B, C and P that have been isolated 

(Rheeder et al., 2002). The fumonisin B has three analogues that occur most 

abundantly in naturally contaminated maize are termed FB1, FB2 and FB3 

(Shephard et al., 1996). FB1 is the most predominant of the fumonisins in the 

range of 70-80 %, followed by FB2 and FB3 which occur at between 15-25 % and 

3-8 % respectively (Rheeder et al., 2002).  
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Figure 2.1 Schematic diagram of the structures of Fumonisin B1 (FB1), 

Fumonisin B2 (FB2) and Fumonisin B3 (FB3) 

 [Published in: Shephard, 1998 J. Chromatogr. A 815: 31-39] 

2.1.2 Occurrence of fumonisins 

Mycotoxins are produced by one or more specific fungal species, with some 

species forming more than one mycotoxin (EMAN). FB1 is a secondary metabolite 

and therefore its occurrence is caused entirely by the existence of fungal 

contamination (Miller, 2001). Fumonisins are natural contaminants of cereal 

grains worldwide (Weidenborner, 2001) but have been found to occur 

predominately in maize and maize-based products (Shephard et al., 1996; Figure 

2.2). Fumonisin contamination has been reported in a variety of food 

commodities, which include sweet maize at low concentrations of 4-82 µg/kg 

(Trucksess et al., 1995) and maize beer samples at concentrations of 43-1329 
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µg/kg for total fumonisins (Shephard et al., 2005). Other commodities where 

evidence of fumonisin contamination occurs include wheat, rice and cereal-

based food (Shephard et al., 1996). FB2 has recently been reported to be present 

in red wine (Logrieco et al., 2010), black tea and medicinal plants (Martins et al., 

2001). One of highest fumonisin levels in maize intended for human 

consumption was reported by Rheeder et al., 1992 in the Transkei region, South 

Africa with a FB1 level of 117.5 mg/kg. Other areas of high contamination include 

Santa Catarina State, Brazil and Huainan and Fusui, China (Van der Westhuizen et 

al., 2003; Sun et al., 2007). The highest levels ever reported for animal feed (330 

mg/kg) were found in the US maize screening (Ross et al., 1991). 

 

Figure 2.2  Maize infected with fumonisin producing fungi, F. Verticillioides. 

[Picture obtained from WFO Marasas, PROMEC Unit] 
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Exposure assessment studies have been performed in the rural former Transkei 

region of South Africa. Human exposure in the region of Bizana, an area of 

relatively low oesophageal cancer, was found to be 3.43 ± 0.15 µg/kg body 

weight day-1 which was lower than in Centane, an area with high oesophageal 

cancer, which was reported to have a mean exposure of 8.67 ± 0.18 µg/kg body 

weight day-1. Both areas reported results higher than 2 µg/kg body weight day-1 

which is the provisional maximum tolerable daily intake set by the Joint FAO / 

WHO Expert Committee on Food Additives (Shephard et al., 2007).  

2.1.3 Impact of fumonisins 

Fusarium verticillioides MRC 826 culture material is highly hepatotoxic and 

cardiotoxic in rats (Kriek et al., 1981) and was later found to be 

hepatocarcinogenic in rats and to cause primary hepatocellular carcinoma and 

cholangiocarcinoma in rats (Marasas 1984). Fumonisins have been reported to 

cause equine leukoencephalomalacia (ELEM) in horses orally dosed with 

fumonisin B1 (Kellerman et al., 1990), and to cause porcine pulmonary edema 

(PPE) in pigs (Harrison et al., 1990). Laboratory studies have shown FB1 to be 

hepatocarcinogenic and nephrocarcinogenic in male rats and hepatocarcinogenic 

in female mice (Gelderblom et al., 1991; Howard et al., 2001). 

 The high rates of human esophageal cancer have been associated with high 

intake of maize contaminated with fumonisins (Rheeder et al. 1992).  Due to 

increased rates of neural tube defects (NTD) in populations along the Texas-

Mexico border (Hendricks et al., 1999; Marasas et al., 2004), and typical of areas 
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where maize forms part of the diet, an investigation was conducted to correlate 

NTD with the consumption of fumonisin contaminated maize by the mothers. 

The findings suggested that “fumonisin exposure increases NTD risk, 

proportionate to dose and up to the threshold level at which death may be more 

likely to occur” (Missmer et al., 2006). It has also been suggested that fumonisins 

are a risk factor for liver cancer in humans (Ueno et al., 1997; Marasas et al., 

2004). Further elaboration of the human health effects of fumonisins requires 

the availability of a suitable biomarker of exposure. The biochemical mechanism 

of action of fumonisins is disruption of de novo sphingolipd biosynthesis leading 

to an accumulation of sphinganine and an increase in the sphinganine : 

sphingosine ratio in cells and physiological fluids (Van der Westhuizen et al., 

2008; Silva et al., 2009 b). Attempts to use this as a biomarker in humans have 

been unsuccessful but recently a urinary FB1 biomarker has been validated in the 

population of the former Transkei (Van der Westhuizen et al., 2011). 

Economically, fumonisins impact directly on animal loss, health and veterinary 

care costs as well as regulatory and research costs which focus in order to 

determine the impact and severity of mycotoxin problems (Hussein et al., 2001; 

Wu, 2004; Shephard, 2000). A few countries worldwide have legislated maximum 

tolerated levels, including Bulgaria, Cuba, France, Iran and Switzerland (FAO, 

2003). The Joint FAO/WHO Expert Committee on Food Additives (JECFA) has 

recommended a provisional maximum tolerable daily intake (PMTDI) of 2 µg/kg 

body weight for FB1, FB2 and FB3 alone or in combination (Bolger et al., 2001). 

The US Food and Drug Administration (FDA) has guidance levels for fumonisins in 
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human food and animal feed and has recommended that levels be put in place to 

reduce the exposure of fumonisins in maize products intended for human and 

animal consumption (FDA, 2001a). The European Commission (EC) has regulated 

fumonisins at various levels from 4000 µg/kg for unprocessed maize to 200 µg/kg 

for baby foods (EC, 2007).  

Analytical methods for all fumonisin analogues in maize and maize-based foods 

generally rely on reversed-phase high-performance liquid chromatography (RP-

HPLC) separation after suitable extraction and clean-up. As fumonisins lack a 

useful chromophore or fluorophore for HPLC, detection is facilitated by suitable 

derivatization followed by sensitive fluorescence detection (Shephard et al., 

1996).  There are currently several methods used to measure the concentration 

of fumonisins in various matrixes (Shephard, 2008). One of the most commonly 

used methods for quantitative analysis in maize involves solid-phase extraction 

(SPE) of solvent extracts, followed by strong anion exchange (SAX) SPE and o-

phthaldiadehyde (OPA) derivatization prior to HPLC separation and 

quantification of fluorescent OPA-FB1, FB2 and FB3 derivatives (Shephard, 1998).  

2.2 Analysis of fumonisins 

2.2.1 Introduction 

The majority of analytical methods employed in the analysis of fumonisins 

include sampling and sub-sampling, appropriate extraction, clean-up and 

concentration and then derivatization prior to instrumental analysis (Shephard et 

al., 2011). Fumonisin analysis by HPLC requires sample clean-up in order to 
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remove matrix impurities and to then concentrate the fumonisin (Shephard, 

1998). There are different clean-up methods that could be used; these include 

SAX, immunoaffinity columns (IAC), QUeChERS (Quick, Easy, Cheap, Rugged and 

Safe) and C18 columns, and each clean-up has its own advantages (Bennett et al., 

1994; Visconti et al., 1996; Stockenström et al., 1994; Shephard et al., 2011; 

Zachariasova et al., 2010). 

2.2.2 Extraction of samples  

The fumonisin structure is quite polar  due to the four carboxylic acid groups and 

an amine group, which makes  them readily soluble in polar solvents (Wilkes et 

al., 1998) and hence amenable to extraction using polar solvents such as 

methanol : water, acetonitrile : water, methanol : acetonitrile : water and 

acetonitrile : sodium dihydrogen phosphate and by using different combinations 

and proportions followed by a clean-up step using SPE on a reversed phase C18 

column, SAX or IAC (Cortez-Rocha et al., 2003; Shephard, 2000) it is reasonable 

to anticipate a good clean product will result.  

Food matrixes are generally extracted either by acetonitrile : water (1:1, v/v) 

(Rice et al., 1995; Bennett et al., 1994) or methanol : water at 70-80 % methanol 

with optimum results being obtained when using methanol : water (3:1) 

(Shephard, 1998). Different extraction efficiencies have been reported when 

using either blending or homogenization. Increased efficiencies were reported by 

Sydenham et al., 1992 by using methanol : water (3:1) combined with 

homogenization between 1-5 minutes. In contrast, Bennett et al., 1994 later 
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obtained better extraction efficiencies with acetonitrile : water compared to 

methanol : water when shaking was employed for 30-60 minutes.  

The European Intercomparison Study showed that the use of higher 

solvent/sample ratios improved the recoveries of fumonisins (Visconti et al., 

1996). The extraction of highly contaminated samples is difficult compared to the 

extraction of spiked maize which can be attributed to matrix components in the 

sample (Bennet et al., 1994). The extraction of processed baby foods has been 

found to be particularly difficult. This could be caused by different factors such as 

matrix interference. Optimum results for extraction of cornmeal-based infant 

foods were achieved with 70 % methanol at pH 4 (Sewram et al., 2003).  

 Comparison of different extraction procedures showed that acetonitrile : water 

(1:1) gives higher recoveries than methanol : water (3+1, v/v) for all infant 

formulae even though phase separation during the extraction step with 

acetonitrile : water showed it to be an inappropriate mixture (De Girolamo et al., 

2001). Other approaches that have been reported for the improvement of 

extraction of fumonisins in maize include the use of extraction solvent mixtures 

at alkaline pH (Scott and Lawrence 1994), the use of EDTA as extraction solvent 

(Kim et al., 2002) and increasing  the  temperature  of the  solvent used 

(Lawrence et al., 2000). 
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2.2.3 Clean-up 

Fumonisin sample extracts are normally purified in order to remove unwanted 

and interfering matrix impurities and to facilitate the concentrate of the 

fumonisins (Shephard, 1998). The most widely applied purification methods (SAX 

and IAC column cartridges) will be investigated. 

2.2.3.1 Strong anion exchange clean-up (SAX) 

The anionic nature of fumonisins is the reason why SAX is the most widely used 

method for clean-up of maize samples (Maragos et al., 1996). Purification of 

maize samples with SAX is dependent on the pH or ionic strength of the sample 

(Shephard, 1998). For optimum recovery results, the pH of the sample extracts 

must be monitored at 5.8-6.2 with elution flow rate < 2.0 mL/min (Sydenham et 

al., 1992). SAX cartridges have been reported to provide superior purification 

over C18 clean-up (Visconti et al., 1996). 

2.2.3.2 Immunoaffinity column clean-up (IAC) 

IACs are composed of mycotoxin-specific antibodies bound to the sol-gel 

material and packed in small cartridges. The specificity of the antibody ensures a 

relatively clean final product (Kruger et al., 1999). Once bound to the antibody, 

the mycotoxin is eluted by denaturing the antibody using an organic solvent 

(Trebstein et al., 2008), usually methanol. For this reason, it is not generally 

recommended that IACs be used more than once. IAC provides much cleaner 

analyte eluates when compared to SPE clean-up although not completely 
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selective to the analyte (Kruger et al., 1999). These have been reported to be 

more robust for fumonisin analysis and are less likely to present matrix 

interferences compared to other SPE methods (De Girolamo et al., 2001). IAC 

clean-up is used mainly for mycotoxins from varying diverse matrices (Krska et 

al., 1998) including fumonisins in highly contaminated maize samples (Kim et al., 

2004). 

After extraction and clean-up, samples are often analyzed using different 

chromatographic methods varying from thin layer chromatography (TLC) to high-

performance liquid chromatography, which is the most widely used analytical 

method for the detection of fumonisins.  

2.2.4 Derivatization  

For sensitive detection of fumonisins by spectrometric methods, derivatization is 

required to form suitable derivatives that can be easily isolated, separated and 

detected (Shephard 1998). Since they lack a suitable chromophore or 

fluorophore they are derivaterized prior to HPLC injection using fluorogenic 

reagents like o-phthaldialdehyde (OPA), naphthalene-2,3-dicarboxaldehyde 

(NDA) or dansyl chloride (DnS-Cl), with OPA the most commonly used 

derivatization reagent as it yields highly fluorescent compounds that can be 

easily separated by HPLC (Shephard, 2000; Bennett and Richard 1994). 

 The analytical result of fumonisin analysis is greatly affected by the 

derivatization reagent used viz., fluorescamine formed two reaction products 

with fumonisins (Sydenham et al., 1990) and maleyl derivatives produced 
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detection limits of 10 µg/g with HPLC-UV which is unsuitable for naturally 

contaminated maize (Scott and Lawrence 1994). Other derivatization reagents 

that have been investigated for fumonisin analyses include 4-fluoro-7-

nitrobenzofuran (NBDF) (Scott and Lawrence 1992), 9-

fluorenylmethylchloroformate (FMOC) (Holcomb et al., 1995) and 6-amino-

quinolyl-N-hydroxysuccinimidylcarbamate (AccQ.Fluor) (Velazquez et al., 2000). 

The derivatization reagents that will be investigated in this study are OPA, NDA 

and DnS-Cl. 

2.2.4.1 O-phthaldialdehyde (OPA)   derivatization reagent 

                                                   

 Figure 2.3  Structure of o-phthaldialdehyde (OPA)    

 OPA is the most widely used derivatization reagent for pre-column 

derivatization of fumonisins in most laboratories (Shephard et al., 1996). 

Fumonisins react with OPA in the presence of a sulphur containing nucleophile, 

most usually 2-mercaptoethanol (ME) to form a highly fluorescent isoindole, the 

reaction occurring at the free amine moiety as illustrated by figure 2.4. 

The combination of OPA  with other nucleophiles like OPA/N-acetyl-L-cysteine 

OPA/ethanethiol and OPA/3-mercaptopropionic acid have been reported, but 
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were found to form either two reaction products or side reactions with aliphatic 

amines (Hanczko et al., 2004). Stroka et al., 2002 tested the percentage decay for 

2-mercaptoethanol (ME) compared with other nucleophiles and found that 94 % 

of ME decayed within 2 hours but nucleophiles like 2-thioglycerol showed no 

decay within the tested time. The disadvantage of using OPA is its instability at 

room temperature (Williams et al., 2004), even though the use of ME improves 

the stability of the derivative and thereby its fluorescence peak area and peak 

height (Stroka et al., 2002). However, OPA/ME is not stable enough as a 

derivative for overnight or auto-injection analysis (Williams et al., 2004). OPA 

derivatives have been reported to be stable for up to 4 minutes at room 

temperature after which they decrease by 5 % after 8 minutes and 52 % after 64 

minutes in their specific fluorescence response of the FB1 derivative. The time-

degradation of fumonisin derivatives can be overcome by standardizing the time 

(< 4 minutes) between the reagent addition and the HPLC injection (Shephard, 

1998). Despite its instability problems, the AOAC (Association of Official 

Analytical Chemists International) approved the OPA derivatization of fumonisins 

as an official method (Sydenham et al., 1996).  

Blank maize samples spiked with FB1, FB2 and FB3 standards at concentrations of 

100 to 8000 ng/g produce mean recoveries of between 75% and 85% for 

individual toxins and detection limits of 50 ng/g have been reported for OPA 

analysis (Sydenham et al., 1996). 
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Figure 2.4  Reaction mechanism for the formation of FB-OPA complex  

[Published in: Samapundo et al., 2006. J. Chromatog. B 1109: 312-

316] 
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2.2.4.2 Naphthalene-2,3-dicarboxaldehyde (NDA) derivatization reagent 

 

Figure 2.5  Structure of Naphthalene-2,3-dicarboxaldehyde (NDA) 

NDA is known to be a useful derivatization reagent for primary amines, amino 

acids and small peptides and is the second most widely used fluorogenic reagent 

for the detection of amines (Carlson et al., 1986). It was screened by De 

Montighy et al., (1987) using several nucleophiles like ME, HSO3
- and CN- with 

alanine as a primary amine. Under fluorescence spectroscopy, CN- was the most 

suitable reagent to form derivatives with both high fluorescence intensity and 

good chemical stability (De Montighy et al., 1987). The NDA/CN- reaction was 

then further tested with other primary amines, amino acids, peptides and 

proteins at room temperature to produce highly fluorescent and stable 2-

substituted 1-cyanobens [f] isoindole derivatives, which are often used to 

measure trace levels of biogenic amines in biological matrixes (Bennet et al., 

1994; Figure 2.6).  
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Figure 2.6  Reaction of NDA with FB1 to form 1-Cyanobenzisoindole (CBI) 

stable derivative 

[Published in: Bennett and Richard 1994 J. AOAC Int. 77: 501-506] 

 

The above reaction is for FB1; other fumonisin B analogues follow the same 

reaction sequence.  

Most analytical methods derivatizing fumonisins with NDA and other amines are 

based on the method by Ware et al., 1993 with minor modifications. Extraction 

methods used vary as per laboratory, sample type and instrument of analysis. 

For chromatographic separation, researchers have used similar conditions, viz., 

sodium borate pH 9, NDA dissolved in acetonitrile or methanol and the addition 

of cyanide to drive the reaction (Carlson et al., 1986; De Montigny et al., 1987). 

Chromatographic separation of NDA derivatives is generally achieved with 

acetonitrile : water : acetic acid (~ 66 : 38 : 1) mobile phase at 1 mL/min using 

isocratic elution (Bennett et al., 1994; Lino et al., 2007) and fluorescence 
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detection at an excitation wavelength of 420 nm and  emission wavelength of 

520 nm (Bennett et al., 1994; De Montigny et al., 1987). This thesis describes for 

the first time a comparison of NDA with other derivatization reagents using both 

diode array detection and fluorescence detection on South African maize 

samples for the most naturally abundant fumonisin B analogues (FB1, FB2 and 

FB3). 

When compared with other derivatization reagents, NDA gives comparable 

results and can be used as an alternative to OPA as it produces more stable and 

highly fluorescent derivatives of fumonisins (Ware et al., 1993). NDA is a stable 

derivatization reagent and it has been reported that after 24 hours the NDA 

fluorescent signal decreases to 86.4±5.9 % as compared to 63.2±4.8 % of OPA 

and to 82.8±7.1 % after 48 hours for NDA compared to 57.2±8.3 % for OPA (Cho 

et al., 2002). 

 Detection limits of 20 µg/kg for FB1 and 15 µg/kg for FB2 were reported by Silva 

et al., (2009 a) and 23.3 nmol/L and 34.4 nmol/L for amines (Lamba et al., 2008). 

Bennett et al., 2004 reported recoveries of 92-95 % for FB1 and FB2, respectively, 

at levels of 10 µg using SAX columns and 83-88 % for FB1 and FB2 at 10 µg levels 

using RP C18 columns, whereas Silva et al., (2009 a) reported recoveries of 79 % 

to 102 % for FB1 and FB2, respectively, at spiking levels of 150 µg/kg and 250 

µg/kg using LC -MS. 
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2.2.4.3 Dansyl Chloride (DnS-Cl) derivatization reagent 

                  

 

Figure 2.7  Structure of Dansyl Chloride (DnS-Cl)  

Dansyl chloride (DnS-Cl) (5-dimethylaminonaphthalene-1-sulfonyl chloride) is a 

fluorescent labelling reagent for primary, secondary and tertiary amines 

(Bartzatt, 2001). It was introduced in 1952 by G. Weber to prepare conjugated 

proteins (Blau et al., 1978). It is often used for the quantitation of polyamines in 

biological samples (Khuhawar et al., 2001) and in the presence of amino acids, 

dansyl chloride forms stable fluorescent sulfonamide adducts (Walker et al., 

1994) and in the presence of sodium carbonate it allows for the detection of 1 µg 

amounts of analyte (Bartzatt, 2001).  

Sodium carbonate (1 M) has sufficient ionic strength and high pH to enable the 

binding of DnS to tertiary amines where elimination of either alkyl or aryl 

substituents is possible (Bartzatt 2001). DnS-Cl derivatives are more stable than 

OPA and more suitable for detection at pico molar ranges (Minocha et al., 2004) 
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and are stable for over two hours (Dasko et al., 2006). It has been reported to be 

a good derivatization reagent for fumonisin analysis, but with the disadvantage 

of forming analytical interferences with maize samples (Scott et al., 1992; Arranz 

et al., 2004). The derivatization of amine components with DnS-Cl can produce 

intense overlapping HPLC peaks due the reaction of DnS-Cl with water to 

produce hydrolysis products (Kang et al., 2006). Sample clean-up with IAC has 

been used to eliminate interferences for determination of FB1 in beer samples 

(Dasko et al., 2006). Cleaner chromatograms are also obtained by reacting 

minimum stoichiometric amounts of DnS-Cl or adding triethylamine and 

tetrabutylammonium hydroxide to separate the hydrolysis peaks from the 

analyte peak (Kang et al., 2006). Environmental conditions like temperature 

(Dasko et al., 2006), reaction time, pH and concentration of DnS-Cl can affect the 

reaction yield (Kang et al., 2006). Hence DnS-Cl methods should be optimized as 

per laboratory and sample matrix. 

 Dansyl chloride derivatives can be measured using both ultraviolet and 

fluorescence detection with UV detection at 286 nm being the most sensitive 

(Minocha et al., 2004). Recoveries between 89.47-97 % have been reported for 

the separation of di- and polyamines as their dansyl derivatives using RP-HPLC 

and methanol : water or acetonitrile : water mobile phase (Marce et al., 1995). 

Recoveries of amines of 73.8 to 114 % in wine samples with detection limits of 

0.08 ng and quantization limit of 0.16 ng where reported by Loukou et al., 2003.  
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2.3 Detection of fumonisins 

2.3.1 Introduction 

There are various separation techniques used for fumonisin analysis which vary 

from chromatography, enzyme-linked immunoassay (ELISA) to electrophoresis 

methods. Alternative methods for the detection of fumonisin which are often 

used for confirmation of the presence of fumonisins include gas chromatography 

(GC), HPLC, liquid chromatography- mass spectrometry (LC-MS), and thin-layer 

chromatography (TLC) which provides faster analysis time for rapid screening of 

samples (Shephard 1998) with the ELISA and TLC often being relegated to  

screening methods. Fumonisins are polar molecules that are soluble in water and 

polar solvents are thus suited for analysis by RP-HPLC (Shephard, 1998). This 

study uses RP-HPLC for chromatographic separation of the fumonisin B 

analogues. 

2.3.2 Chromatographic methods 

2.3.2.1 High-performance liquid chromatographic  

A world-wide survey found that 90 % of the laboratories that reported results on 

fumonisin analysis used pre-column derivatization and quantification by HPLC 

(Shephard et al., 1996). Since fumonisins do not fluorescence or contain a UV 

absorbing chromophore, most HPLC methods measure fumonisins after 

derivatization of their free amino group (Shephard, 2000). Shephard et al., 1990 

reported for the first time on the quantitative, sensitive and simultaneous 
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detection of FB1 and FB2 in naturally contaminated maize samples using RP-HPLC. 

The method was based on MeOH : H2O extraction, SAX clean-up, fluorescence 

(FLD) detection of OPA derivatives. Collaborative studies using the method 

resulted in the AOAC International approving it an official method for fumonisin 

analysis in maize (Sydenham et al., 1996). HPLC-FLD detection of fumonisins is 

specific and sensitive with fluorescence detection often achieved at an excitation 

wavelength of 335 nm and emission wavelength of 440 nm (Shephard et al., 

1990). 

2.3.2.2 Gas Chromatography  

Sydenham et al., 1990 confirmed the presence of fumonisins in maize using GC. 

The method involved acid hydrolysis of the fumonisins to cleave the ester bond 

and the tricarballylic acid thus formed was confirmed by GC-MS. A direct method 

for fumonisin analysis involved the production of the fumonisin backbone 

(aminopolyol) by alkaline hydrolysis which was isolated on XAD-2 resin and then 

converted to the trimethylsilyl derivative for GC analysis (Plattner, 1990). 

Plattner et al., 1994 later reported that the accuracy and precision of the GC-MS 

method can be improved by adding deuterium-labelled FB1 as an internal 

standard to the sample extract prior to hydrolysis. Fumonisin analysis using GC 

requires multiple time consuming sample handling steps such as sample 

hydrolysis, clean-up and derivatization prior to analysis and so has found little 

application for fumonisin detection (Shephard, 1998). 
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2.3.2.3 Thin Layer Chromatography  

TLC provides a fast and reliable means of screening contaminated samples. The 

first method developed for fumonisins involved reversed-phase TLC on C18-

modified silica plates developed with methanol : water (3:1, v/v) as a solvent 

(Cawood et al., 1991). This method was later improved by the use of p-

anisaldehyde solutions or spraying with ninhydrin to visualize the fumonisins 

(Shephard, 2000). However, the detection limits of 0.5 mg/g which were 

obtained were not suitable for naturally contaminated maize (Sydenham et al., 

1990). When used with fluorescamine reagent spray under UV light, TLC gave 

better selectivity and sensitivity for fumonisin analysis in naturally contaminated 

maize samples (Rottinghaus et al., 1992). Improved detection limits were 

obtained with the use of SAX clean-up rather than reversed-phase C18 cartridges 

(Stockenström et al., 1994). TLC detection limits were further enhanced with IAC 

clean-up and scanning fluorodensitometry to 0.1 mg/kg in maize samples (Preis 

et al., 2000). A TLC method based on pre-derivatization before TLC separation 

was reported in a collaborative study for FB1 analysis in maize and gave recovery 

results of 74.5 % (Shephard et al., 2004). 

2.3.3 Immunological methods 

Immunological assays have been used to successfully detect mycotoxins since 

the late 1970s (Pestka et al., 1995). These methods rely on the immunological 

principle which is based on the interaction between an antigen (analytes of 

interest) and an isolated antibody raised against the antigen (Shephard, 2008). 
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These methods include enzyme-linked immunosorbent assays (ELISA) and 

immunoaffinity columns (IAC). ELISA has been validated for measuring total FB in 

maize at levels greater than 0.1 µg/g with acceptable precision (Bird et al., 2002). 

IAC have been developed with specific antibodies for different mycotoxins with 

recovery results averaging between 99.7 % for FB1 at fortification levels of 250 

µg/kg and 74.8 % for FB2 at fortification levels of 200 µg/kg (Lino et al., 2007). 

Immunoassays are still being used for screening commodities and food for 

fumonisins with new developments in antibodies and immunoassays reported 

(Shephard et al., 2011).  

2.3.4 Mass Spectrometry 

2.3.4.1 Liquid chromatography-mass spectrometry 

LC-MS is a combination of HPLC with MS and is a powerful technique for 

identification of fumonisin B analogues (Shephard, 1998). The use of LC-MS has 

enabled sensitive and specific fumonisin methods to be developed (Silva et al., 

2009 a). LC-MS/MS has recently been used for multi-mycotoxin screening of 87 

mouldy foods sampled from individual homes. The method involves acetonitrile : 

water : acetic acid extraction with LC-MS/MS-ESI (electrospray ionization) and 

HPLC-MS/MS detection (Sulyok et al., 2010). 

2.3.5 Recent developments in fumonisin detection 

The use of multi-mycotoxin analysis has drawn much attention within the 

toxicology industry with the use of sophisticated instruments such as UHPLC-
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MS/MS and LC-MS/MS-ESI. These have recently involved multi-component 

methods for the simultaneous detection of mycotoxins and pesticides (Romero-

Gonzalez et al., 2011; Sulyok et al., 2010). Ofitserova et al., 2005 provided a 

screening method for five families of toxins, a method suitable for screening 

beverages, grains and feeds. It involved chromatographic separation with 

MYCOTOXTM reversed-phase C18 column and post-column separation 

instrument, Pinnacle PCX (Pickering laboratories) (Ofitserova et al., 2005). A LC-

MS/MS method for multi-mycotoxin has recently been reported by Sulyok et al., 

2010. The method involves semi-quantitative screening of 87 mouldy samples. 

From the analysis results, 49 different fungal metabolites were identified, 

showing the usefulness of multi-mycotoxin analysis. Other rapid screening 

methods for mycotoxin analysis include fluorescence polarization immunoassay 

(FPIA) (Maragos, 2009), lateral flow devices (LFD; dipstick) and biosensors 

(Maragos and Busman 2010). 

2.4 Overview of literature review 

The fumonisin B analogues where first isolated in 1988 at the PROMEC Unit of 

the MRC and occur in maize and maize-based foods. They cause ELEM in horses, 

porcine pulmonary oedema in pigs, and are hepatotoxic and cardiotoxic in rats. 

They have been linked to the high incidence of esophageal cancer in the rural 

Transkei area of South Africa where maize is the stable diet. In 2002, the IARC 

evaluated the carcinogenic risk of FB1 to humans and classified it as a Group 2B 

carcinogen (as a possibly carcinogen to humans). The current status of existing 
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methods available for fumonisin analysis includes extraction, clean-up, 

derivatization and chromatographic separation. HPLC with fluorescence, MS or 

tandem MS are still the most used in laboratory-based methods. 

The method developed by Shephard et al., 1990 was approved by the AOAC 

International as an official method for fumonisin analysis in maize. Derivatization 

reagents that have been tested for fumonisin analysis include OPA, NDA and 

DnS-Cl which will be studied in this thesis. HPLC with fluorescence detection is 

the most widely used detection method. The thesis will investigate the 

applicability of UV as a possible detection method in HPLC alternative to 

fluorescence.  
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3.1 Introduction  

 Determination of fumonisins in maize is widely achieved using a validated 

method involving methanol : water extraction followed by strong anion 

exchange (SAX) clean-up and derivatization prior to separation by reversed-

phase high-performance liquid chromatography (RP-HPLC) with fluorescence 

detection (Sydenham et al. 1996). As fumonisins lack a useful chromophore or 

fluorophore, HPLC detection is achieved by suitable derivatization (Shephard et 

al., 1990). Although a number of fluorogenic derivatizing reagents have been 

investigated, OPA remains widely used for sensitive and specific analysis of 

fumonisins as it yields strongly fluorescent derivatives easily separated by HPLC 

(Shephard, 1998). 

On occasion, laboratories equipped with HPLC and ultraviolet (UV) detectors 

seek to undertake limited fumonisin determinations without the purchase of 

further instrumentation in the form of a fluorescence detector. The aim of the 

study reported in this chapter was to investigate the degree to which the 

fumonisins could be determined using UV detection of the fumonisin-OPA 

derivatives.  

3.2 Materials and Methods 

3.2.1 Chemicals 

All chemicals used were of analytical grade. Methanol, acetone, sodium 

hydrogen carbonate (NaHCO3), acetonitrile, o-phosphoric acid (H3PO4), 

potassium dihydrogen phosphate (KH2PO4), sodium hydroxide (NaOH), o-

 

 

 

 



60 

phthaldialdehyde (OPA), disodium tetraborate (Na2B4O7.10H2O), disodium 

hydrogen phosphate (Na2HPO4.2H2O), potassium chloride (KCl), sodium 

dihydrogen phosphate (NaH2PO4), hydrochloric acid (HCl), sodium chloride 

(NaCl), 2-mercaptoethanol  (ME) were purchased from Merck. Phosphate 

buffered saline (PBS) was prepared by dissolving 8.0 g sodium chloride, 1.2 g 

disodium hydrogen phosphate, 0.2 g potassium dihydrogen phosphate and 0.2 g 

potassium chloride in a litre distilled water. The pH was adjusted to 7. The OPA 

derivatization reagent was prepared by dissolving OPA (40 mg) in 1 mL methanol 

and adding 0.1 M sodium tetraborate (5 mL) solution, 2- mercaptoethanol (50 

µL) and vortexing after each solvent addition. The OPA derivatization reagent 

was used up to 7 days following preparation.  

3.2.2 Fumonisin Standards 

FB1, FB2 and FB3 standards were isolated at the PROMEC Unit according to the 

method of Cawood et al. (1991). The FB3 standard contains approximately 21 - 

42% epi-FB3 (Gelderblom et al., 2007). The fumonisin working standards were 

prepared by diluting a stock with concentration levels of 245 µg/mL, 200 µg/mL, 

270 µg/mL of FB1, FB2 and FB3, respectively, with acetonitrile : water (1:1, v/v) to 

obtain working standard with 55.13 µg/mL, 25.00 µg/mL and 13.25 µg/mL for 

FB1, FB2 and FB3, respectively.  
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3.2.3 Maize Samples 

Home-grown maize samples intended for human consumption were collected in 

the rural former Transkei area of the Eastern Cape Province following the 2006 

harvest and stored at a temperature (4°C) where fumonisins are stable. The well 

mixed samples were milled prior to analysis.  

3.2.4 Extraction using strong anion exchange (SAX) clean-up 

Maize samples were extracted using the method of Sydenham et al. (1996) with 

modifications. A milled maize sample (20 g) was extracted by blending in a 

homogenizer (Polytron PT 3100, Kinematica, Luzerne, Switzerland) homogenized 

for 3 min with methanol : water (3:1, v/v; 10 mL). It was then centrifuged at 4°C 

for 10 min at 500 x g. The supernatant was filtered using a MN 617 (185 mm) 

filter paper and the pH adjusted to 5.80-6.25 with 1 M NaOH or 1 M HCl. After 

centrifugation, an aliquot (10 mL) of the supernatant was cleaned-up using SAX 

cartridges (10 mL, 500 mg packing Bond-Elut, Varian, Harbor City, CA, USA), 

which were preconditioned with 5 mL methanol followed by another 5 mL 

methanol : water (3:1) (flow rate ≤ 2 mL / min, no air was forced through the 

column; the column was not allowed to dry through-out the entire clean-up 

process). The extracted sample (10 mL) was loaded on the SAX and washed with 

5 mL methanol : water (3:1) and 3 mL methanol. After washing with methanol, 

the fumonisins were eluted with acetic acid : methanol (1:99, v/v 10 mL) under 

gravity. The eluate was evaporated to dryness under nitrogen at < 60°C and 

stored at 4°C prior to analysis. 
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3.2.5 Extraction using immunoaffinity columns (IAC) clean-up 

Homogeneously mixed samples (20 g) were extracted with 50 mL of the 

extraction solvent (acetonitrile + methanol + distilled water, 25 + 25 + 50, v + v + 

v) by shaking on an orbital shaker for 20 min. The extraction solution was 

centrifuged for 10 min at 500 x g and the supernatant was filtered as described 

above to avoid the transfer of any solid material. The remaining solid material 

was re-extracted with an additional 50 mL of solvent in the same manner as 

described above. The filtered supernants was combined and a 10 mL aliquot was 

diluted with 40 mL Phosphate buffered saline (PBS) and the solution mixed well. 

3.2.6 IAC cleanup 

The PBS diluted extract (10 mL) was passed through the FumoniTest column 

(Watertown, MA, USA) at a flow rate of 1 to 2 drops per second and the eluate 

discarded. The column was washed with 10 mL PBS until air came through the 

column and the eluate discarded. The fumonisins were eluated with 2.5 mL of 

HPLC grade methanol, at a rate of 1 drop per second. The eluate was evaporated 

at 60°C using nitrogen gas and stored at 4°C prior to analysis. 

3.2.7 Derivatization  

Standards (25 µL) with concentrations of 55.25 µg/mL for FB1, 25.00 µg/mL and 

13.25 µg/mL for FB2 and FB3, respectively, were derivatized with 225 µL OPA 

reagent and 10 µL injected. The nitrogen dried samples were re-dissolved in 200 
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µL methanol and 25 µL was derivatized with OPA (75 µL), vortexed and 20 µL 

injected onto the HPLC exactly 2 min after mixing.  

3.3 Chromatography 

RP-HPLC was performed on an Agilent Technologies (Wildbronn, Germany) 1260 

Infinity pump, Rheodyne 7725i injector and a Phenomenex (Torrance, CA, USA) 

Luna C18 5 µm column (150 mm x 4.60 mm). The HPLC instrument was 

configured with an Agilent 470 (Waldbronn, Germany) 1100 series diode array 

detector (DAD) and an Agilent 1100 series fluorescence detector (FLD) connected 

in series. The sequence of the detectors was the DAD first followed by the FLD 

(to prevent overpressure, the fluorescence detector should always be the last 

module in the flow system). The mobile phase of methanol : 0.1 M sodium 

phosphate (77:23, adjusted to pH 3.35 with o-phosphoric acid) was pumped at 

an isocratic flow rate of 1 mL/min.  Data was collected and analyzed by Agilent 

ChemStation software and quantification achieved by comparison of peak areas 

with those of authentic fumonisin standards. 

3.4 Results and Discussion 

3.4.1 Peak resolution  

As reliability of data derived from a chromatographic analysis depends on the 

effective separation of the analytes of interest from one another and from 

additional matrix components, peak resolution was analysed. Complete 

resolution of the OPA derivatives was achieved with RP-HPLC C18 column and an 
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isocratic mobile phase of methanol : 0.1 M NaH2PO4 (77:23) in less than 20 

minutes. FB-OPA derivatives are generally monitored at excitation wavelengths 

335 nm and emission wavelengths 440 nm for fluorescence detection (Shephard, 

1998) which are wavelengths used in the study for FLD detection.  

These wavelengths were tested using fumonisin working standards employing 

the chromatographic conditions above. Based on the high sensitivity of the DAD 

at 335 nm it was selected as wavelength for DAD detection. An iso-absorbance 

plot (software programme which displays chromatographic details in 3D 

including retention time versus wavelength, from which optimum wavelength 

can be selected) was then used to confirm the wavelength selection for DAD.  

Injection of fumonisin working standards with concentrations of 55.25 µg/mL for 

FB1, 25.00 µg/mL and 13.25 µg/mL for FB2 and FB3 respectively resulted in an 

elution order of FB1, FB3 and then FB2. Retention times for FB1, FB2 and FB3 were 

4.6, 12.2 and 10.8 min (± 5 %), respectively, for both FLD and DAD (Figures 3.1 

and 3.2). Another fumonisin elutes just before FB3 and is only partially separated 

from it. This compound has been identified as an epimer of FB3 (epi-FB3) and is 

quantified as part of FB3 (Gelderblom et al., 2007). The two isomers have similar 

chemical properties and exhibit similar retention times when analysed on a 

reversed-phase HPLC column. To assume the two isomers have the same 

chromatographic response factors appears to be reasonable and allows accurate 

analysis to be performed.    
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To test for matrix interferences, reagent blanks were analysed and the resultant 

chromatogram overlaid with that of fumonisin standards. No interferences were 

observed and the background noise of both the blanks and standards were found 

to be insignificant for both detectors; therefore no form of baseline correction 

was necessary. Satisfactory resolution of the fumonisin analogues was achieved 

with analytes identified using their retention times. Chromatographic resolution 

of the peaks in the study compared well with previous studies (Shephard et al., 

1990).  
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Figure 3.1  Chromatogram of fumonisin working standard detected by FLD
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Figure 3.2 Chromatogram of fumonisin working standard detected by DAD
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3.4.2 Method precision 

Precision of the FB-OPA method was determined in terms of intra- and inter-day 

analysis. The intra-day precision (daily) was obtained by injecting three 

consecutive working standards and the inter-day precision (day-to-day) was 

measured over a period of five days. These parameters were determined to 

ensure both the repeatability and reproducibility of the standard preparation 

and derivatization is within acceptable variances (i.e. RSD values for intra-day ≤ 5 

%; inter-day ≤ 20 %). Based on the results of the intra-day analysis (Table 3.1), 

the method’s repeatability was good with RSD for the FLD ≤ 1 % and ≤ 3 % for 

DAD, indicating good precision for the OPA method. The method precision gives 

an estimation of the variability that can be expected when performing fumonisin 

analysis using OPA. 

Table 3.1  Intra-day precision of fumonisin working standards (n=3) using 

standard peak areas  

 FLD DAD 

 FB1 FB2 FB3 FB1 FB2 FB3 

Standard 1 35153 13924 11715 16.5 6.7 5.2 

Standard 2 35047 13909 11688 16.6 7.0 5.1 

Standard 3 35635 14073 11905 17.0 6.6 5.3 

Mean 35279 13968 11769 16.7 6.8 5.2 

Stdev 313 90 119 0.3 0.2 0.1 

RSD (%) 0.9 0.7 1.0 1.6 2.9 1.6 
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The intermediate precision of the method is reflected in the inter-day results 

(Table 3.2); the method shows acceptable precision with RSD values ≤ 13 % for 

both FLD and DAD which is suitable because inter-day RSD values should be ≤ 20 

%. The method is generally reproducible in terms of standard preparation, 

derivatization and injection. These results indicate the OPA method to be 

reproducible, precise and repeatable. Based on the intra- and inter-day precision 

results, OPA provides adequate precision for fumonisin analysis. 

Table 3.2 Inter-day precision of fumonisin working standards using standard 

peak areas, (n=18, 3 x std injected/day) 

 FLD DAD 

 FB1 FB2 FB3 FB1 FB2 FB3 

Day 1 30349 13563 10343 20.0 9.1 7.0 

 30433 13443 10229 20.2 8.2 5.6 

 31772 13855 10332 21.4 9.4 7.2 

Day 2 32164 13155 10854 20.7 8.8 6.2 

 32828 13507 10971 19.5 8.5 6.5 

 31717 13067 10771 19.9 8.3 5.9 

Day 3 24749 10134 8248 15.4 7.1 5.4 

 23923 9811 8044 15.7 8.0 5.5 

 23915 9814 8590 15.3 6.9 5.2 

Day 4 31630 14336 10964 16.5 6.7 5.2 

 32099 14028 10924 16.6 7.0 5.1 

 31745 14452 11175 17.0 6.6 5.3 

Day 5 35153 13924 11715 16.2 7.1 6.1 

 35047 13909 11688 16.5 6.9 5.6 

 35635 14073 11905 16.3 6.4 5.3 

Mean 30877 13005 10450 17.8 7.7 5.8 

Stdev 3808 1644 1224 2.1 1.0 0.7 

RSD (%) 12 13 12 12 13 11 
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3.4.3 Detection limits 

The limit of detection (LOD) and quantification (LOQ) were estimated from the 

signal-to-noise ratio. The LOQ was obtained at 10:1 signal-to-noise ratio and 3:1 

signal-to-noise ratio was used for the LOD. The FB1 analogue was more reliably 

detected with lower detection limits (Table 3.3) compared to FB2 and FB3. FLD is 

more sensitive than DAD, this is evident in the reduced detector noise (Figures 

3.1 and 3.2) and enhanced analyte signal of the FLD (1700 FU) compared to the 

DAD (0.8 mAU). The detection limits of the FLD are estimated to be 

approximately 20-times more sensitive than DAD when one considers the 

amount injected into the column. It is thus reasonable that based on the 

detection limits obtained; the method will be able to detect fumonisins at the 

concentration levels routinely encountered in contaminated maize with 

adequate accuracy and sensitivity. 

Table 3.3 Determination of the detection limits using the amount (ng) 

injected into the column 

  Amount (ng) injected into the HPLC column 

  FB1 FB2 FB3 

LOD (s:n=3) FLD 1.0 1.2 1.2 

 DAD 22 20 20 

LOQ (s:n=10) FLD 2.3 2.7 2.7 

 DAD 37 48 56 
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3.4.4 Recoveries  

Recoveries were determined by spiking maize samples with 400 µL fumonisin 

working standards containing 1103, 500 and 270 µg/kg FB1, FB2 and FB3, 

respectively. The analysis was repeated six times for each concentration level 

and the recoveries determined using IAC clean-up. Since the OPA method has 

been validated both in-house (Shephard et al., 1990) and internationally 

(Sydenham et al., 1996), SAX recoveries were confirmed on only two samples 

and gave recoveries of up to 75 % as previously obtained by Sydenham et al., 

1996. Consequently, further testing of SAX clean-up recoveries was found to be 

unnecessary.  

“True analytical blanks” for fumonisin analysis are difficult to find as fumonisins 

occur naturally in contaminated maize samples. In this regard, even good 

commercial maize can have low levels of fumonisins. Therefore, a sample with 

very low fumonisin levels was used as a blank and the fumonisin levels detected 

were accounted for in the calculation of the recoveries.  

The recoveries measured were lower than expected (Table 3.4) since IAC has 

been reported to produce results of between 70 – 95 % as previously reported by 

Visconti et al., 2001. Comparison of the FLD and DAD was acceptable for FB1; 

however for FB2 the recoveries were lower than expected for DAD. The 

recoveries obtained indicate that the method is acceptable for fumonisin analysis 

in naturally contaminated maize samples. 
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Table 3.4  Recoveries with IAC clean-up 

  

3.5 Method application  

The derivatization method was successfully applied to 15 maize samples using 

SAX and IAC clean-up. Tables 3.5 and 3.6 provide a comprehensive view of the 

total fumonisin (µg/kg) levels in the maize samples analyzed. In the study all the 

samples analyzed were contaminated with FB1, FB2 and FB3. IAC clean-up results 

were not comparable at levels below 500 µg/kg between the two detectors with 

DAD detecting only at levels above 140 µg/kg for total fumonisins. SAX clean-up 

provided comparable results at all levels analysed. The results obtained were 

consistent whether determined by SAX or IAC with both clean-up methods in 

 FLD DAD 

 
FB1 

(µg/kg) 
FB2 

(µg/kg) 
FB3 

(µg/kg) 
FB1 

(µg/kg) 
FB2 

(µg/kg) 
FB3 

(µg/kg) 

Blank 1 105 20 12 0 0 0 

Blank 2 73 18 8 0 0 0 

Mean 89 19 10 0 0 0 

Sample 1 963 242 154 727 233 104 

Sample 2 935 326 212 982 420 272 

Sample 3 783 277 180 796 294 173 

Sample 4 770 301 229 784 320 190 

Sample 5 807 305 287 919 362 252 

Sample 6 683 398 218 730 224 97 

Mean 824 308 213 823 309 181 

Stdev 106 52 46 105 75 73 

RSD (%) 13 17 21 13 24 40 

Spiked 1103 500 270 1103 500 270 

Recovery (%) 67 58 75 67 46 62 
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terms of comparison of the detectors (Figures 3.3 and 4.4) signifying that OPA is 

a robust derivatization reagent for fumonisin analysis in terms of clean-up. 

Table 3.5 Fumonisin levels (µg/kg) in naturally contaminated maize samples 

cleaned-up with SAX  

 FLD  DAD  

Sample FB1 FB2 FB3 Total FB1 FB2 FB3 Total 

1 70 21 16 106 102 *nd nd 102 

2 162 60 12 234 253 57 nd 310 

3 195 74 18 288 176 81 nd 257 

4 229 55 13 296 320 48 nd 368 

5 153 56 11 220 239 61 nd 300 

6 724 320 87 1132 948 331 nd 1279 

7 886 382 107 1375 1025 399 46 1470 

8 1829 1076 239 3144 2018 1195 21 3234 

9 1431 566 166 2163 1708 517 64 2289 

10 1717 614 206 2537 1924 669 212 2805 

11 1336 432 131 1900 1362 452 133 1948 

12 229 55 13 3120 2053 865 246 3164 

13 1083 377 118 1577 1316 410 86 1812 

14 3189 2086 812 6088 3417 2144 553 6114 

15 2368 1034 337 3740 2551 1280 612 4442 

 

*nd- Not detectable 
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Table 3.6 Fumonisin levels (µg/kg) in naturally contaminated maize 

samples cleaned-up with IAC 

 FLD DAD 

Sample FB1 FB2 FB3 Total FB1 FB2 FB3 Total 

1 74 22 7 103 *nd nd nd nd 

2 134 56 48 238 142 nd nd 142 

3 181 59 20 260 143 nd nd 143 

4 120 29 8 157 nd nd nd nd 

5 191 57 16 263 161 nd nd 161 

6 496 185 20 701 491 218 nd 709 

7 1132 405 86 1623 1199 391 nd 1590 

8 2424 1112 193 3730 2524 1174 106 3804 

9 1186 390 134 1711 1223 362 nd 1585 

10 1593 436 166 2196 1653 403 175 2231 

11 1294 306 111 1711 1377 311 nd 1688 

12 3313 1087 289 4689 3371 1154 190 4716 

13 1124 260 101 1485 1157 289 nd 1445 

14 3919 1032 376 5327 4003 951 291 5246 

15 2617 904 373 3894 2753 826 176 3756 

*nd- Not detectable 
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          Figure  3.3  Comparison of FLD and DAD using SAX celan-up, Total Fumonsins = FB1 + FB2 + FB3
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     Figure 3.4  Comparison of FLD and DAD using IAC celan-up, Total Fumonsins = FB1 + FB2 + FB3 
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3.6 Conclusion 

For chromatographic separation of the fumonisin analogues, OPA was found to 

be a very effective derivatization reagent providing comparable results for both 

FLD and DAD. During the study, the detectors were connected in series in order 

to allow for comparison of the detectors without any variations produced by 

repeat derivatization and injection. Although most sensitive fumonisin analysis 

has been done with the use of fluorescence detection, this work indicates that 

fumonisins in maize can be comparably determined by UV detection. 

Simultaneous detection with FLD and DAD shows the FLD to more sensitive then 

DAD. However, the two detectors can be used as alternatives to each other for 

maize samples above 500 µg/kg following IAC clean-up compared to SAX clean-

up which provided comparable results at all levels with both detectors. Based on 

the results obtained and the Official Analytical Chemists International (AOAC) 

adopting the OPA derivatization of fumonisins as the standard HPLC technique 

(Wilkes et al., 1998; Sydenham et al., 1996); the method will be used as the 

reference method in the other studies in the thesis.  
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CHAPTER 4 

Optimization of naphthalene-2,3-dicarboxaldehyde 

(NDA) derivatization reagent for fumonisin 

derivatization and its applicability to fluorescence 

(FLD) and ultraviolet (UV) detection 
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4.1 Introduction  

In chapter 2, reviews of the current methods used for naphthalene-2,3-

dicarboxaldehyde (NDA) derivatization of fumonisins were described. Most 

researchers report using similar reaction conditions viz., sodium borate buffer pH 

9, NDA dissolved in acetonitrile or methanol and chromatographic conditions, 

with HPLC and LC-MS being the most commonly used techniques (Ware et al., 

1993, Bennett et al., 1994, Silva et al., 2009). The reaction of NDA with the 

nucleophilic cyanide anion forms stable and highly fluorescent derivatives (Cho 

et al., 2002) and reacts with the primary amine moiety of fumonisin B1 to form 

an N-substituted 1-cynaobenz[f]isoindole derivative (Bennett and Richard, 1994).  

 Studies reported in this chapter are aimed at methodology development to 

optimize both NDA derivatization reaction and instrumentation conditions for 

determination of FB1, FB2 and FB3 in maize. Initial conditions used were based on 

the method by Scott and Lawrence (1992) with some modifications.  Thus the 

essential aims were to optimize NDA derivatization for fumonisin determination 

in naturally contaminated maize following strong anion exchange (SAX) or 

immunoaffinity column (IAC) clean-up, utilizing diode array detection (DAD) as a 

practical alternative to fluorescence detection (FLD).   
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4.2 Materials and Methods 

4.2.1 Chemicals 

All chemicals used were of analytical grade. Methanol, acetone, sodium 

hydrogen carbonate (NaHCO3), acetonitrile, o-phosphoric acid (H3PO4), 

potassium dihydrogen phosphate (KH2PO4), sodium hydroxide (NaOH), disodium 

tetraborate (Na2B4O7.10 H2O), disodium hydrogen phosphate (Na2HPO4.2H2O), 

potassium chloride (KCl), sodium dihydrogen phosphate (NaH2PO4), hydrochloric 

acid (HCl), sodium chloride (NaCl) were purchased from Merck. Napthalene-2,3-

dicarboxaldehyde (NDA) was purchased from Invitrogen (Molecular Probes). NDA 

was prepared by dissolving 4 mg NDA in 8 mL methanol. Phosphate buffered 

saline (PBS) was prepared by dissolving 8.0 g sodium chloride, 1.2 g disodium 

hydrogen phosphate, 0.2 g potassium dihydrogen phosphate and 0.2 g 

potassium chloride in a litre distilled water. The pH was adjusted to 7 with o-

phosphoric acid. 

4.2.2 Fumonisin Standards 

The standards were obtained and prepared as described in Section 3.2.2.  

4.2.3 Maize Samples 

Home-grown maize samples intended for human consumption were collected in 

the rural former Transkei area of the Eastern Cape Province following the 2006 

harvest and stored at a temperature (4°C) where fumonisins are stable. The well 

mixed samples were milled prior to analysis.  
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4.2.4 Extraction using strong anion exchange (SAX) clean-up 

Maize samples were extracted using the method of Sydenham et al. (1996) with 

modifications as described in Section 3.2.4.  

4.2.5 Extraction using immunoaffinity columns (IAC) clean-up 

Extraction of maize samples for IAC clean-up was performed as per 

manufacturer’s instructions with minor modifications as described in Section 

3.2.5. 

4.2.6 IAC cleanup 

IAC clean-up was performed as per manufacturer’s instructions with minor 

modifications as described in Section 3.2.6. 

4.2.7 Derivatization  

Standards: Working standard (20 µL) was used, 20 µL of borate buffer (0.1 M) 

was added followed by 20 µL potassium cyanide (65.13 mg/100 mL distilled 

water) and 40 µL NDA (4 mg/8 mL methanol). The solution was vortexed and 

heated at 60°C for 15 minutes, then cooled to 24°C under running tap water.  

Mobile phase (100 µL) was then used to dilute the solution and 20 µL injected 

into the HPLC system. 

Samples: The samples were reconstituted in 200 µL methanol and 100 µL of 

borate buffer (0.1 M) was added followed by 100 µL potassium cyanide (65.13 

g/100 mL distilled water) and 200 µL NDA (4 mg/8 mL methanol). The solution 
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was vortexed, heated at 60°C for 15 minutes and cooled to 24°C under running  

tap water. 500 µL mobile phase was then used to dilute the solution and 20 µL 

injected into the HPLC system.  

4.2.8 Recoveries 

The maize samples were spiked with fumonisin working standards (40 µL) 

directly onto the dry milled maize samples. Since maize without fumonisin was 

not available, the unspiked maize samples were analyzed for fumonisins and 

these unspiked levels were taken into account for the calculation of the 

recoveries. 

4.3 Chromatography 

RP-HPLC was performed on an Agilent Technologies (Wildbronn, Germany) 1260 

Infinity pump, Rheodyne 7725i injector and a Phenomenex (Torrance, CA, USA) 

Luna C18 5 µm column (150 mm x 4.60 mm) which was configured as described 

in Section 3.3. The mobile phase was prepared by combining methanol (780 mL) : 

0.1 M sodium phosphate (NaH2PO4) (220 mL), and the pH of the mixture was 

adjusted to pH 3.35 with o-phosphoric acid. The mobile phase was filtered using 

0.45 µm X 47mm filter paper with vacuum and pumped at 1 mL/min flow rate. 

Data was collected and analyzed by Agilent ChemStation software and 

quantification was achieved by comparison of peak areas with those of authentic 

fumonisin standards. 
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4.4 Results and Discussion 

4.4.1 Peak resolution  

Figures 4.1 and 4.2 are chromatograms obtained from a 10 µL injection of a 

fumonisin working standard derivatized with NDA at levels of 55.13 µg/mL, 25.00 

µg/mL and 13.25 µg/mL for FB1, FB2 and FB3 respectively using FLD and DAD 

detection. Analytical separation of the FB-NDA derivatives was performed using 

isocratic elution with methanol : NaH2PO4 (78:22) mobile phase at 1 mL/min flow 

rate. The NDA derivatives were separated with retention times for FB1, FB2 and 

FB3 at 6.31, 14.87 and 11.87 (±5 %) min respectively. An examination of the FLD 

and DAD chromatograms revealed that a number of other peaks (labelled A and 

B) in addition to the analyte peaks were present.  

A reagent blank was prepared to test the interference of these peaks; the 

resultant chromatogram obtained from the reagent blank was overlaid with that 

of the standard chromatogram. All the peaks except for analyte peaks were 

present in the reagent blank chromatogram. This led to the conclusion that the 

peaks are from the reagents and do not interfere with the quantification or 

resolution of the analytes. Furthermore, Lillard et al., 1998 also observed peak A 

as a reagent peak during separation of amine NDA derivatives and suggested  

that it was formed as a by product  of the benzoin condensation  (Roach et al., 

1987) or other side products (Kwakman et al., 1990) of NDA upon exposure to 

aqueous buffer conditions. Since the peak is present in completely independent 

experiments it was ruled out as a laboratory contaminant.   
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  Figure 4.1  Chromatogram of fumonisins working standard detected by FLD  
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Figure 4.2  Chromatogram of fumonisin working standard detected by DAD
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4.4.2 Method precision 

Reproducibility was determined by measuring the intra- and inter-day 

repeatability of the working standards. The intra-day was measured by injecting 

three working standards in one day and the inter-day was measured over a 

period of five days. The excellent intra-day (Table 4.1) results obtained for FLD 

and DAD demonstrates the precision of the derivatization method. Comparison 

of the results across the two detectors suggests that the FLD has better 

repeatabilities with RSD values ≤ 2 %. Inter-day (Table 4.2) results of both 

detectors are higher than their corresponding intra-day results. However the 

inter-day results are still acceptable with both detectors reporting RSD values ≤ 8 

% at n = 15 which is below the maximum standard value of 20 %.  

Table 4.1  Intra-day precision of fumonisin working standards (n=3) using 

reported as peak areas 

 FLD DAD 

 FB1 FB2 FB3 FB1 FB2 FB3 

Standard 1 99819 55625 34884 456 247 151 

Standard 2 99512 55075 35001 453 237 154 

Standard 3 101148 57079 35005 441 241 159 

Mean 100160 55926 34964 450 242 154 

Stdev 870 1035 69 8 5 4 

RSD (%) 0.9 1.9 0.2 1.8 2.1 2.7 
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The precision of the method is acceptable and demonstrates both the 

reproducibility and repeatability of the derivatization method to be satisfactory. 

Furthermore, it allows for the use of standard peak areas for quantitation during 

method optimization. The precision results are in accordance with the 

performance characteristics of FB1 and FB2 as regulated by the Commission 

Directive of the European Commission (EC, 2005). 

Table 4.2  Inter-day precision of fumonisin working standards (n=15) 

reported as peak areas 

 FLD DAD 

 FB1 FB2 FB3 FB1 FB2 FB3 

Day 1 114205 53905 32857 482 253 133 

 110123 52786 33105 486 253 140 

 108985 52055 32996 510 263 140 

Day 2 129982 61197 34623 495 239 140 

 126829 60671 34852 481 231 140 

 128419 60910 35430 479 228 138 

Day 3 127202 61118 31727 545 281 160 

 122601 58140 29928 547 285 160 

 132047 63281 35671 555 278 165 

Day 4 124543 63407 30718 505 278 136 

 130530 66972 31294 528 287 142 

 126289 64486 32361 550 267 155 

Day 5 109950 61791 33012 524 273 145 

 107691 59853 32758 545 297 140 

 110155 61122 31310 523 277 139 

Mean  120637 60113 32843 517 266 145 

Stdev 9211 4269 1717 28 21 10 

RSD (%) 8 7 5 5 8 8 
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4.4.3 Detection Limits 

The limit of detection (LOD) was calculated as the amount of analyte injected 

resulting in peak heights of three times the maximum noise height whereas the 

limit of quantification (LOQ) was calculated as the amount of analyte injected 

giving a peak height ten times the maximum noise peak height. The NDA 

detection limits indicate that the FLD is 10-times more sensitive than that of the 

DAD with fumonisin standards (Table 4.3) and 100-times more sensitive with 

naturally contaminated samples (Table 4.4). Although FB1 has the lowest LOD, it 

may be stated that the LODs of the FB2 and FB3 analogues are also satisfactory. 

Table 4.3 Amount (ng) injected into HPLC Column for standards 

  FB1 FB2 FB3 

LOD (s:n=3) FLD 0.11 0.50 0.27 

 DAD 13.78 12.5 6.63 

LOQ (s:n=10) FLD 11.03 25.00 13.25 

 DAD 55.13 25.00 27.00 

 
Table 4.4 Limits of detection (LOD) and quantification (LOQ) expressed as levels 

in sample (µg/kg) following IAC clean-up 

  FB1 FB2 FB3 

LOD (s:n=3) FLD 0.004 0.03 0.08 

 DAD 0.3 170 180 

LOQ (s:n=10) FLD 0.03 0.1 0.4 

 DAD 3 300 350 
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4.4.4 Stability of NDA derivatives  

Stability tests were performed by treating both standards and samples to the 

same environmental conditions over a period of three days. Initial experiments 

showed a monotonic decrease in response (approximately 10 %) over an 8 hour 

period when derivatized samples were left at room temperature. This was 

overcome by storing both standards and samples at - 22°C after derivatization. 

Improvement in both the repeatability and precision of the method (Table 4.4) 

was observed as the derivatives under these conditions remained stable after six 

consecutive injections (~ 120 min) of the same standard.  

NDA stability was further evaluated by storing derivatized standards and 

derivatized maize extracts at -22°C over three consecutive days. The FB-NDA 

responses (Figure 4.3 A) were stable for 24 hours; after which a decrease in 

detection (approximately 10 %) was observed in the FLD response. In contrast, 

the DAD response (Figure 4.3 B) on day 2 and 3 apparently increased 10 % over 

day 1. Previous reports described increases in FB-NDA response after 24 hours 

(Bennett et al., 1994, Lino et al., 2006). These results suggest that NDA 

derivatives are suitable for auto-injection or over-night analysis with working 

standards being injected between samples to allow for better quantification and 

to accommodate any derivative instability. 
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Table 4.5 Stability of FB-NDA standard after six consecutive injections (~ 120 min) 

 

 
 

Figure 4.3 Stability of FB-NDA derivatives (µg/kg) over period of three days 
(72 hours). Results calculated from mean (n=6) ± standard 
deviation. (A) Stability of FLD, (B) stability of DAD 

 FLD DAD 
 FB1 FB2 FB3 FB1 FB2 FB3 

Injection 1 63445 37292 9452 256 145 36 
Injection 2 70098 41288 10680 289 171 45 
Injection 3 67623 39935 10385 276 157 50 
Injection 4 66881 39354 10274 293 160 44 
Injection 5 63322 36994 9738 255 149 37 
Injection 6 64251 37651 9952 262 161 41 

Mean 65937 38752 10080 272 157 42 
Stdev 2718 1710 451 17 9 5 
RSD (%) 4 4 4 6 6 12 
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4.5 Robustness 

4.5.1 Optimization of mobile phase 

Different organic solvents used as HPLC mobile phase components were 

examined for their suitability to provide the shortest run time without 

compromising on the resolution of the closely eluting peaks (FB2 and FB3). Figure 

4.4 shows the effect change in mobile phase composition has on the retention 

times of the analytes. From the graphic representation, 77 % and 80 % methanol 

composition causes interferences between FB1 with peaks A and B, and FB3 with 

peak B. Selection of mobile phase was consequently influenced by the separation 

of peaks A and B from analyte peaks. 

 

Figure 4.4 Effect of methanol concentration on retention time and 

interference with reagent peaks 
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Most studies on NDA use acetonitrile as an organic solvent in their mobile phase 

because it provides significantly lower retention times and more sensitive results 

(Lino et al., 2007). Acetonitrile was found to be the best solvent since it provided 

an excellent baseline resolution coupled with short analysis time.  

The results suggested that the elution order of the FB-NDA derivatives is 

dependent on the type of mobile phase used as the relative retention of the 

analytes were altered with the use of acetonitrile. Methanol : 0.1 M NaH2PO4 

(78:22) mobile phase provides an elution order of FB1, FB3 and FB2. However in 

acetonitrile : water : acetic acid (65:35:1) as eluent, the elution order of FB2 with 

FB3 and FB3 with its isomer epi-FB3 was interchanged, a phenomenon which has 

not previously been reported. Finally, further method optimization allowed for 

the development of a methanol mixture as the HPLC mobile phase component of 

choice since it not only yielded comparable results to acetonitrile but is cheaper 

than acetonitrile which was unavailable during the period of the study. 

From the different proportions of methanol and 0.1 M NaH2PO4, the best 

separation of all the fumonisin B analogues within the shortest analysis time was 

obtained with mobile phase methanol : 0.1 M NaH2PO4 (78:22, pH 3.35). This was 

consequently selected as the mobile phase of choice for the chromatographic 

separation of NDA derivatives. 
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4.5.2 Optimization of wavelength  

FB-NDA derivatives are generally monitored at excitation wavelengths of 420 and 

246 nm and emission wavelengths of 500 and 418 nm (Bennett et al., 1994; De 

Montigny et al., 1987). These wavelengths were tested using fumonisin working 

standards. Based on the high sensitivity of the FLD at excitation 420 nm and 

emission 500 nm; these were selected as optimum wavelengths. The DAD 

absorption wavelengths (248 nm, 250 nm, 252 nm, 256 nm,) were examined and 

252 nm in our hands provided the best sensitivity (Figure 4.5). An iso-absorbance 

plot (software programme which displays chromatographic details in 3D 

including retention time versus wavelength, from which optimum wavelength 

can be selected) was then used to confirm the wavelength selection for DAD.  

 

Figure 4.5 Optimum wavelength selections for UV absorbance relative to 

peak area, results calculated from mean (n=3) 
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4.5.3 Reaction time  

Figures 4.6 A and B demonstrate the effect heating time has on standard peak 

areas. The results are based on five standards heated for 15 and 30 minutes at 

60°C. Both the FLD and DAD showed a decrease in standard area for FB1 and FB2 

when the reaction time was increased from 15 minutes to 30 minutes. FB3 was 

not affected by change in the reaction time as it remained constant during 

heating. Since FB1 and FB2 produced higher standard area when heated for 15 

minutes and the fumonisins B analogues are analysed simultaneously, the 

reaction time for the derivatization of the fumonisins with NDA was selected to 

be 15 minutes. 

 

Figure  4.6 Effect of reaction time on peak areas. Results reported as mean 
(n=5) ± standard deviation. (A) Comparison of FLD, (B) Comparison 
of DAD 
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4.5.4 Effect of reaction temperature 

To determine the effect of reaction temperature, experiments were performed 

at two different temperatures (24°C and 60°C) using fumonisin working 

standards. Temperature estimations were selected from literature (Lamba et al., 

2008; Scott and Lawrence 1992) with all experiments performed for 15 minutes. 

The FB-NDA derivatization reaction was found to be temperature dependent 

(Figures 4.7 and 4.8) as the responses increased with increase in temperature. 

Performing the experiments at room temperature (24°C) resulted in half the 

reaction efficiency compared to 60°C for both the FLD and DAD. Due to increase 

in standard peak area when the reaction was heated for 60°C and the improved 

RSD values, 60°C was selected as reaction temperature for NDA derivatization. 

 
 
 
Figure 4.7 Effect of reaction temperature on peak areas. Results reported as 

mean (n=5) ± standard deviation for FLD 
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Figure 4.8 Effect of reaction temperature on peak areas. Results reported as 
mean (n=5) ± standard deviation for DAD 

 

4.5.5  Optimization of buffer concentration 

Optimization of buffer concentration was done by performing experiments at 

three different buffer concentrations (0.05 M, 0.08 M and 0.1 M, all adjusted to 

pH 9.5). Based on the results of five standard injections at each concentration 

level, the use of different buffer concentrations affected the fluorescence 

response of the FB-NDA derivatives. Although no major difference in HPLC 

responses were observed between 0.05 M and 0.08 M buffers, a steep increase 

(approximately 10 % from the others) in standard area was observed with 0.1 M 

(Figure 4.9) with RSD values ≤ 3 % for all fumonisin analogues. The DAD response 

was not affected by changes in buffer concentration (Figure 4.10). Since the FLD 

and DAD are run simultaneously, it is convenient to use the same buffer for all 

their preparations. Given that 0.1 M provided optimum results for FLD and buffer 
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concentration change not influencing DAD response, 0.1 M was selected as the 

buffer concentration for fumonisin derivatization. 

 

 

Figure 4.9 Effect of buffer concentration on peak areas for mean (n=5)  

± standard deviation for FLD 

 

 

 

Figure 4.10 Effect of buffer concentration on peak areas for mean (n=5) 

 ± standard deviation for DAD 
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4.5.6 Effect of extractants 

To improve the extraction efficiencies, two different extraction solvents were 

tested for their efficiency to extract fumonisins from maize. Approaches in 

literature for improving the extraction of fumonisins from maize include the use 

of EDTA as an extraction solvent (Sydenham et al., 1995, Dombrink-Kurtman et 

al., 1999, Scott et al., 1996) whereas methanol : water (3:1) has been reported to 

provide increased extraction efficiencies compared to other solvent mixtures 

(Shephard, 1998).  

Methanol : 0.1 M EDTA (3:1, v/v) was tested as an extraction solvent for its 

efficiency for fumonisin extraction compared to the widely used methanol : 

water (3:1, v/v). Table 4.5 provides detailed results on the extraction 

experiments using both solvents. Results of the extraction with methanol : 0.1 M 

EDTA (3:1, v/v) as a solvent provided similar results to the methanol : water (3:1, 

v/v) extraction solvent.  Agreement between extraction solvents was excellent 

with the highest variation noted with methanol : water (3:1, v/v) as it produced 

RSD values varying from 7 – 10 % compared to the methanol : 0.1 M EDTA (3:1, 

v/v) with RSD values between 2 – 10 %. Use of methanol : 0.1 M EDTA (3:1, v/v)  

caused some difficulties as the 0.1 M EDTA precipitated out of solution when it 

was added to the methanol.  

Due to the precipitation of EDTA and it not providing any improvement in results 

when compared to methanol : water (3:1, v/v), the latter was chosen as the 
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extraction solvent for the study as used previously for fumonisin extraction 

(Shephard et al., 1990). 
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Table 4.6 Solvent extraction efficiency for NDA derivatization of maize samples (20 g / 100 mL) following SAX clean-up

 FLD DAD 

Solvent Extraction FB1 ( µg/g) FB2 ( µg/g) FB3 ( µg/g) FB1 ( µg/g) FB2 ( µg/g) FB3 ( µg/g) 

MeOH : H2O 
(3:1, v/v) 

       

 1 1197 547 191 974 534 197 
 2 1150 530 234 924 516 242 
 3 1120 526 206 886 534 237 
 4 1149 549 208 974 563 233 
 5 1144 512 224 842 511 236 
 6 980 437 210 841 421 252 
 Mean 1123 517 212 907 513 233 
 Stdev 74 41 15 61 49 19 
 RSD (%) 7 8 7 7 10 8 

MeOH : 0.1 M EDTA 
(3:1, v/v) 

       

 1 1240 551 188 1216 564 211 
 2 1321 571 201 1288 610 247 
 3 1261 544 201 1245 582 218 
 4 1314 560 213 1289 608 249 
 5 1315 557 216 1171 612 267 
 6 1285 567 215 1102 610 263 
 Mean 1290 558 205 1218 598 242 
 Stdev 33 10 11 73 20 23 
 RSD (%) 3 2 5 6 3 10 
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4.6 Recoveries 

  The accuracy of the optimized method was determined by measuring the 

percent recoveries of the method. This was achieved by spiking maize samples 

with 1103 µg/kg, 500 µg/kg and 270 µg/kg of FB1, FB2 and FB3 respectively. In 

order to optimize recoveries two different extraction solvents (methanol : water 

3:1 and methanol : 0.1M EDTA 3:1) were investigated, but little difference was 

seen between the two and hence methanol : water (3:1) as previously used for 

maize samples analysed by SAX clean-up was selected (Sydenham et al., 1996). 

The accuracy and repeatability of the method is generally within acceptable 

limits for both FLD and DAD following SAX clean-up (Table 4.6). In addition to SAX 

clean-up, a similar recovery experiment was performed using IAC clean-up. A 

good basis of comparison between the FLD and DAD methods was thus achieved, 

even though a decrease in NDA-FB1 recoveries was observed with DAD following 

IAC clean-up (Table 4.7). 

Initial recovery experiments were done by spiking directly on the eluate of the 

SAX cartridge to test the accuracy of the clean-up and derivatization method. The 

results obtained from those experiments were comparable to those of spiking 

directly on the maize sample. This signifies that little fumonisin is lost in the 

extraction process, clean-up stage and derivatization; indicating the accuracy and 

effectiveness of both sample preparation and derivatization for fumonisin 

analyses when using NDA derivatization. Recovery results of both SAX and IAC 

clean-up are acceptable according to the values established by the European 

 

 

 

 



104 

 

Commission which recommends recoveries of between 60 – 120 % for individual 

FB methods (EC, 2005). 

Table 4.7 Fumonisin recoveries (%) from maize samples cleaned-up with SAX  

 FLD DAD 

 
 FB1 
(ng/g) 

 FB2 
(ng/g) 

 FB3 

(ng/g) 
 FB1 

(ng/g) 
 FB2 

(ng/g) 
 FB3 

(ng/g) 

Blank 1 295 110 21 175 126 62 
Blank 2 341 126 36 203 149 91 

Mean 318 118 28 189 137 76 

Sample 1 1197 547 191 974 534 197 
Sample 2 1150 530 234 924 516 242 
Sample 3 1120 526 206 886 534 237 
Sample 4 1149 549 208 974 563 233 
Sample 5 1144 512 224 842 511 236 
Sample 6 980 437 210 841 421 252 

Mean  1123 517 212 907 513 233 
Stdev  74 41 15 61 49 19 
RSD (%) 7 8 7 7 10 8 
Spike  1103 500 270 1103 500 270 
Recoveries (%) 73 80 68 65 75 58 

 

Table 4.8  Fumonisin recoveries (%) from maize samples cleaned-up with IAC  

 FLD DAD 

 
 FB1 
(ng/g) 

 FB2 
(ng/g) 

 FB3 

(ng/g) 
 FB1 

(ng/g) 
 FB2 

(ng/g) 
 FB3 

(ng/g) 

Blank 1 113 67 12 406 703 nd 
Blank 2 156 91 18 143 657 173 

Mean 135 79 15 275 680 87 

Sample 1 835 415 177 834 912 214 
Sample 2 843 403 266 812 910 252 
Sample 3 803 942 144 716 1227 311 
Sample 4 793 749 161 646 1173 242 
Sample 5 789 402 135 684 881 258 
Sample 6 823 395 244 1100 844 245 

Mean 814 551 188 799 991 254 
Stdev 23 236 54 165 164 32 
RSD (%) 3 43 29 21 17 13 
spiked 1103 500 270 1103 500 270 
Recovery (%) 62 94 64 48 62 62 
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4.7 Method application 

To demonstrate the applicability of the optimized method, analysis was applied 

to 15 maize samples collected from the Eastern Cape Province former Transkei 

area, South Africa. The analysis of the samples was routinely carried out using 

SAX and IAC clean-up with simultaneous detection with HPLC-FLD and DAD. The 

same samples were used to allow for comparison between the two clean-up 

methods. Fumonisins were detected in all the samples with contamination levels 

varying from 93 µg/kg to 4120 µg/kg for total fumonisins.  

Comparison of FLD and DAD utilizing SAX clean-up was good with all samples 

comparable at all levels (Table 4.8; Figure 4.12). The IAC clean-up however 

showed poor comparison between the detectors as the results produced low 

levels at high fumonisin contamination and high levels at low fumonisin 

contamination with FLD, a trend that was reported by Chu et al., 1994 (Table 4.9, 

Figure 4.13). Nonetheless, above 1800 µg/kg, the FLD and DAD could compare 

after IAC clean-up.  
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Table 4.9 Comparison of HPLC-FLD and DAD following SAX clean-up (µg/kg) 

 FLD DAD 

Sample FB1 FB2 FB3 Total FB1 FB2 FB3 Total 

1 90 17 1 108 120 29 *nd 149 

2 166 55 10 231 184 64 25 273 

3 229 88 18 336 242 99 38 380 

4 271 76 20 367 165 116 47 328 

5 172 54 15 240 179 84 25 288 

6 733 250 48 1030 663 245 35 943 

7 442 176 20 638 370 184 nd 554 

8 1712 832 227 2771 1522 809 197 2528 

9 507 182 20 709 480 229 nd 709 

10 713 248 23 983 663 265 41 969 

11 1171 345 58 1575 997 326 129 1452 

12 2065 747 201 3014 1875 688 241 2804 

13 523 150 14 686 498 161 41 699 

14 1754 453 284 2492 1598 465 338 2402 

15 318 108 136 562 301 115 111 528 

*nd- Not detectable 
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Table 4.10 Comparison of HPLCFLD and DAD following IAC clean-up (µg/kg) 

 FLD DAD  

Sample FB1 FB2 FB3 Total FB1 FB2 FB3 Total 

1 59 22 12 93 325 442 *nd 766 

2 145 58 16 219 211 347 137 695 

3 156 59 10 225 343 387 nd 730 

4 148 43 11 202 194 310 nd 504 

5 173 53 21 248 403 383 nd 786 

6 503 257 25 785 627 802 nd 1429 

7 942 327 47 1316 1043 778 151 1972 

8 1961 928 127 3016 1944 1277 140 3361 

9 1370 370 80 1820 1467 737 243 2447 

10 1518 428 168 2115 1631 804 144 2579 

11 1133 297 59 1490 1204 690 183 2077 

12 2410 825 108 3343 2506 1171 153 3830 

13 1015 251 66 1332 1073 627 nd 1700 

14 2713 673 278 3664 2797 1073 249 4120 

15 1971 676 227 2874 2043 968 205 3215 

*nd- Not detectable 
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       Figure 4.11  Comparison of FLD and DAD following SAX clean-up, Total Fumonisins = FB1 + FB2 + FB3
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      Figure 4.12 Comparison of FLD and DAD following IAC clean-up, Total Fumonisins = FB1 + FB2 + FB3

 

 

 

 



110 

 

 

4.8 Conclusion  

Based on the chromatographic resolution of the fumonisin analogues in the 

naturally contaminated samples, the selected optimized conditions are suitable 

for NDA derivatization and the detection of fumonisins in maize. The reaction of 

fumonisins with NDA yielded FB-NDA derivatives which were found to be stable, 

sensitive and selective for both FLD and DAD methodologies. 

 The derivatization using NDA is fast with total retention time less than 15 

minutes. The analytical procedure supports using methanol : water (3:1) as 

extraction medium and purification using either SAX or IAC allows for 

simultaneous detection and quantification of FB1, FB2 and FB3. Aside from the 

difference in limits of detection, a comparative study of FLD and DAD for the 

analysis of fumonisins in maize demonstrated that the response achieved by 

both detectors is sensitive enough for the analysis of fumonisin in naturally 

contaminated samples. Both detectors would be appropriate for quantification 

purposes with the highest sensitivity achieved by FLD.  

 

Safety  

The cyanide anion is a highly lethal and toxic reagent and consequently it is 

necessary to observe and apply very strict and appropriate treatment conditions 

for the safe disposal of all waste materials containing the cyanide anion. 
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    CHAPTER 5 

An evaluation of dansyl chloride (DnS-Cl) for fumonisin 

derivatization analysed by HPLC with fluorescence (FLD) 

and ultraviolet (UV) detection 
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5.1 Introduction  

Dansyl chloride (DnS-Cl) reacts with both primary and secondary amino groups to 

provide stable derivatives. DnS-Cl derivatives are known to combine the unique 

feature of being both fluorescent and detectable in the UV region (Loukou et al., 

2003). The only HPLC determination of fumonisin (Dasko et al., 2006) utilizing 

DnS-Cl was FB1 in beer. In this chapter the extent to which DnS-Cl can be used for 

the derivatization of fumonisins in naturally contaminated maize samples was 

investigated.  

Initial conditions used were based on the method by Dasko et al., (2006) with 

modifications. The method was optimized to obtain optimum conditions 

following strong anion exchange (SAX) and immunoaffinity (IAC) clean-up, pre-

column derivatization and HPLC detection with diode array (DAD) and 

fluorescence detection (FLD).  Dansyl chloride reacts with amines by nucleophilic 

substitution and forms fluorescent dansyl derivatives (Legua et al., 1999) and 

produced both sensitive and reproducible results with the analysis of biogenic 

amines (Mo Dugo et al., 2006). 

5.2 Materials and Methods 

5.2.1 Chemicals 

All chemicals used were of analytical grade. Sodium carbonate (Na2CO3), sodium 

chloride (NaCl), o-phosphoric acid (H3PO4) and dansyl chloride (DnS-Cl) were 

purchased from Merck. DnS-Cl derivatizing solution was prepared by dissolving 
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100 mg DnS-Cl in 10 mL acetone. Phosphate buffered saline (PBS) was prepared 

as described in Section 3.2.1. 

5.2.2 Fumonisin Standards 

The standards were obtained and prepared as described in Section 3.2.2.  

5.2.3 Maize Samples 

Home-grown maize samples were collected as described in Section 3.2.3.  

5.2.4 Extraction using strong anion exchange (SAX) clean-up 

Extraction of maize samples for IAC clean-up was performed as per 

manufacturer’s instructions with minor modifications as described in Section 

3.2.4. 

5.2.5 Extraction using immunoaffinity columns (IAC) clean-up 

Extraction of maize samples for IAC clean-up was performed as per 

manufacturer’s instructions with minor modifications as described in Section 

3.2.5. 

5.2.6 Derivatization  

Standards: Working standard (20 µL) was added to DnS-Cl (20 µL, 100 mg/10 mL) 

followed by 20 µL NaHCO3 (2 M, saturated). The solution was vortexed and 

heated at 40°C for 10 minutes then cooled to 24°C under running tap water.  

H3PO4 (1 M, 20 µL) was added and 20 µL injected into the HPLC system. 
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Samples: Samples were reconstituted in 100 µL methanol and derivatized by 

adding 200 µL DnS-Cl (100 mg/10 mL) followed by 200 µL NaHCO3 (2 M, 

saturated), heated at 40°C for 10 minutes on a heating mantle, cooled to 24 °C 

and 200 µL H3PO4 (1 M) added and 20 µL injected into the HPLC system. 

5.3 Chromatography 

Reversed–phase high-performance liquid chromatography (RP-HPLC) was 

performed on an Agilent Technologies (Wildbronn, Germany) and configured as 

described in Section 3.3. The mobile phase was prepared by combining methanol 

(740 mL) : 0.1 M sodium phosphate (NaH2PO4) (260 mL), and the pH of the 

mixture was adjusted to pH 3.35 with o-phosphoric acid. The mobile phase was 

filtered using 0.45 µm X 47mm filter paper with vacuum and pumped at 1 

mL/min flow rate. Data were collected and analyzed by Agilent ChemStation 

software and quantification achieved by comparison of peak areas with those of 

authentic fumonisin standards. 

5.4 Results and Discussion  

5.4.1 Peak resolution 

A typical fumonisin B chromatogram was obtained when fumonisin working 

standard (containing 55.13 µg/kg of FB1, 25.00 µg/kg and 13.25 µg/kg of FB2 and 

FB3, respectively) was derivatized with DnS-Cl (Figures 5.1 and 5.2). 

Chromatographic resolution of the dansyl derivatives was obtained with an 

isocratic elution using MeOH : 0.1 M NaH2PO4 (74:26) mobile phase with well 
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resolved analyte peaks in less than 15 minutes and an elution order of FB1, FB3 

and FB2. Retention times of 4.98, 13.01 and 11.83 min (± 5 %) for FB1, FB2 and 

FB3, respectively, for both FLD and DAD were attained. 

The chromatogram of fumonisin derivatives showed additional peaks as was also 

seen for NDA. Interference of the peaks were examined by overlaying the 

chromatograms of reagent blank with working standards, the peaks (A and B) did 

not interfere with those of the FB analogues. Removal of the peaks proved 

difficult, with one of the additional peaks probably dansyl dimethylamine, the 

most abundant product of dansyl reactions (Seiler et al., 1978). Since they did 

not interfere with both the resolution and quantification of the analyte peaks, no 

further attempts were made to remove them and they were classified as reagent 

peaks.
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Figure 5.1  Chromatogram of combined fumonisins working standard detected by FLD 
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Figure 5.2   Chromatogram of combined fumonisins working standard detected by DAD 
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5.4.2 Method precision 

The repeatability and reproducibility of the method was determined by intra- 

and inter-day precision and reported as standard peak area and RSD in tables 5.1 

and 5.2, respectively. The inter-day precision was obtained by injecting three to 

four working standards a day. Results obtained by FLD were more reproducible 

(RSD ≤ 1 %) compared to results obtained with DAD (RSD ≤ 6 %) (Table 5.1).  

Table 5.1 Intra-day precision using peak areas of working standards (n=3) 

 FLD DAD 

 FB1 FB2 FB3 FB1 FB2 FB3 

Standard 1 56903 32119 26325 77.3 39.8 31.7 

Standard 2 56436 32527 26516 74.2 42.0 31.7 

Standard 3 57731 32754 26671 81.3 44.5 35.0 

Mean 57023 32467 26504 78 42 33 

Stdev 656 322 173 4 2 2 

RSD (%) 1.2 0.9 0.7 5 6 6 

 

Inter-day precision was obtained by analyzing three standards per day over a 

period of four days. Table 5.2 shows inter-day results for FLD and DAD. FLD 

performed better (RSD ≤ 12 %) compared to DAD (RSD ≤ 16 %). The results meet 
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the performance criteria for EU regulatory purposes (EC, 2005), which state that 

the repeatability RSD must be ≤ 20 % for fumonisin levels ≤ 100 µg/kg. 

Table 5.2 Inter-day precision using peak areas of working standards injected 

(n=12) 

 FLD DAD 

 FB1 FB2 FB3 FB1 FB2 FB3 

Day 1 56903 32119 26325 77.3 39.8 31.7 

 56436 32527 26516 74.2 42.0 31.7 

 57731 32754 26671 81.3 44.5 35.0 

Day 2 60929 28972 20177 104.0 60.3 33.5 

 60737 33117 21764 106.7 57.9 36.4 

 62663 32104 21315 111.0 56.1 34.5 

Day 3 62206 33186 26181 109.5 52.6 39.0 

 67248 34381 27639 122.5 51.0 42.6 

 63089 35943 28057 115.3 58.6 43.2 

Day 4 55809 32432 22626 96.1 59.9 49.1 

 53593 31948 21326 89.9 51.9 34.4 

 51576 30950 20733 87.3 53.7 34.2 

Mean 59077 32536 24111 97.9 52.4 37.1 

Stdev 4495 1699 3011 15.9 7.0 5.3 

RSD (%) 8 5 12 16 13 14 
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5.4.3 Detection Limits 

The detection limits reached with FLD were generally better than those obtained 

with DAD (Table 5.3). The LOD values were higher than expected in comparison 

to other studies (Loukou et al., 2003) with FB1 and FB3 determined with 

comparable sensitivity for both detectors. The values obtained are generally 

satisfactory for the analysis to be performed using the method. These results 

indicate that DnS-Cl derivatization reagent provides adequate sensitivity for 

fumonisin analysis.   

Table 5.3  Limits of detection (LOD) and quantitation (LOQ) in terms of 

amount injected (ng) onto HPLC column 

                          Amount (ng) injected into HPLC column 

  FB1 FB2 FB3 

LOD (s:n=3) FLD 4.3 3.9 2.1 

 DAD 17.2 15.6 16.6 

LOQ (s:n=10) FLD 8.6 6.9 8.3 

 DAD 34.5 62.5 33.1 
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5.5 Robustness 

5.5.1 Selection of derivatization solvent 

Standard solutions of DnS-Cl are prepared by dissolving the pure compound in 

either acetone (Dasko et al., 2006) or acetonitrile (Heimbecher et al., 1997). 

These solvents were tested in this study for their suitability as reaction solvents 

for the preparation of the dansyl reagent. The reactions of fumonisins with DnS-

Cl prepared in acetonitrile were problematic, producing little to no 

chromatographic peaks suggesting either an incomplete or no reaction between 

DnS-Cl (prepared in acetonitrile) with the fumonisins. Kang et al., 2006 reported 

that an increase in DnS-Cl volume in solution can directly increase the intensity 

of the derivative; therefore the volume of DnS-Cl in solution was increased from 

100 µL to 300 µL. This improved the reaction, but produced poor 

chromatographic resolution, reproducibilities and formed unstable derivatives. 

Analysis of six standards derivatized with DnS-Cl prepared in acetonitrile were 

scattered with no repeatability. Under the conditions employed, acetonitrile was 

found to be an inappropriate solvent for DnS-Cl preparation with very low FLD 

and DAD intensities.  

As acetonitrile was shown to be unsuitable, acetone as a reagent solvent was 

tested. The reaction of fumonisins with DnS-Cl (prepared in acetone) occurred 

spontaneously with satisfactory chromatographic resolution and reproducible 

peaks. DnS-Cl prepared in acetone reacted more intensely with the fumonisins 
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compared to acetonitrile (Figure 5.3). Consequently, DnS-Cl reagent for further 

use in the study was prepared in acetone. 

 
 

Figure 5.3  Comparison of acetonitrile and acetone as DnS-Cl reagent 
solvents. Results reported as mean (n=6) ± standard deviation. (A) 
Comparison of FLD, (B) Comparison of DAD 

 

5.5.2 Wavelength Selection  

Wavelength selection was determined by analyzing working standards at various 

wavelengths reported in literature (Molins-Legua et al., 1998; Dasko et al., 1996) 

for their suitability to provide optimum sensitivity and intensity. Optimum results 

were obtained at excitation wavelength 247 nm and emission wavelength 510 

nm for FLD (Table 5.4). For DAD, 230 nm provided highest sensitivity (Table 5.5). 

Iso-absorbance plots (software programme which displays chromatographic 

details in 3D including retention time versus wavelength, from which optimum 
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wavelength can be selected) were used to confirm the optimum wavelength for 

DAD.  

Table 5.4  Effect of wavelength on working standard peak areas for FLD 

 Ex 252 
Em510 

Ex 247 
Em 510 

Ex 360 
Em 510 

Ex 365 
Em 510 

FB1 38797 50132 6024 47196 

FB2 22190 28519 3627 2737 

FB3 15521 20486 2579 23299 

 

Table 5.5  Effect of wavelength on working standard peak areas for DAD 

 230 nm 254 nm 280 nm 335 nm 

FB1 76 67 6 25 

FB2 40 35 ND 14 

FB3 29 24 ND 9 

  

5.5.3 Reaction temperature selection 

Temperature experiments were performed at 24°C, 40°C and 60°C for 15 

minutes as these are the mostly used temperatures in literature (Smith et al., 

1985; Dasko et al., 1996). An increase in standard peak area was observed when 

the reaction was heated compared to when it was performed at room 

temperature (24°C). Heating the derivatives improved both the reaction yield 

and RSD values from 15 % to ≤ 2 % (Figure 5.4). Further increase in temperature 

to 60°C showed an insignificant increase in response for the FB2 and FB3 of the 

FLD. In contrast, the DAD showed a decrease in response between 40°C to 60°C 
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except for FB3; which showed a slight increase in response (Figure 5.5). Since, the 

FLD results showed increased standard area for FB1 and DAD showing increased 

results for FB1 and FB2 when experiments were performed at 40°C, this was 

selected as the optimum reaction temperature. 

 

Figure 5.4 Effect of reaction temperature on peak areas of FLD, results 
calculated on mean (n=5) ± standard deviation 

 

 
 

Figure 5.5  Effect of reaction temperature on peak areas of DAD, results 
calculated on mean (n=5) ± standard deviation 
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5.5.4 Reaction time selection 

Different reaction times (10 min, 15 min and 30 min) were tested, based on the 

peak areas no major difference in HPLC responses were observed between 15 

min and 30 min. Optimum reaction time was obtained at 10 minutes for FLD 

(Figure 5.6) with a slightly lower response for DAD at 10 min compared to other 

reaction times (Figure 5.7). To save on analysis time, 10 minutes was selected as 

the suitable reaction time for DnS-Cl derivatization of the FB analogues. 

 

 

Figure 5.6 Effect of reaction time at 40 °C on peak areas for FLD. Results 
reported as mean (n=5) ± standard deviation 
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Figure 5.7 Effect of reaction time at 40 °C on peak areas for DAD. Results 
reported as mean (n=5) ± standard deviation 

5.6 Recoveries 

Accuracy of the optimized method was examined by analyzing recoveries of 

fumonisins. Initial recoveries were determined by spiking directly on the dry 

milled maize at levels of 1103 µg/kg, 500 µg/kg and 270 µg/kg for FB1, FB2 and 

FB3, respectively, and performing clean-up with IAC. The recoveries obtained 

with FLD were poor ≤ 30 % (Table 5.6). Due to poor chromatography and the 

presence of larger FB2 peaks then FB1, the recoveries for DAD for this experiment 

could not be calculated. To improve on the results obtained, the derivatization 

procedure was tested for its ability to derivatize fumonisins in maize samples; 

this was done by spiking into the 10 mL samples eluated from the SAX prior to 

the drying step. Recovery results were again poor, with FLD achieving ± ≤ 40 % 

for the three FB analogues. Apparent recoveries as determined by DAD were 
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incongruous (10 % for FB1, 80 % for FB2 and 77 % for FB3), as compared to the 

FLD. 

Table 5.6 Determining the recovery of the maize extraction using IAC 

 FLD 
 FB1 (ng/g) FB2 (ng/g) FB3 (ng/g) 

Blank 1 57 0 0 
Blank 2 31 18 9 

Mean 44 9 4 

Sample 1 359 166 83 
Sample 2 316 156 84 
Sample 3 343 154 83 
Sample 4 346 156 78 
Sample 5 328 149 72 
Sample 6 279 148 69 

Mean 328 155 78 
Stdev 29 7 7 
RSD (%) 9 4 8 
Spike 1103 500 270 
Recoveries (%) 26 29 27 

 

Table 5.7 Determination of the recovery of the derivatization procedure 

 FLD DAD 
  FB1 

(ng/g) 
FB2 

(ng/g) 
FB3 

(ng/g) 
FB1 

(ng/g) 
FB2 

(ng/g) 
FB3 

(ng/g) 
Blank 1 101 31 6 421 742 0 
Blank 2 108 36 10 406 831 0 

Mean 104 33 8 413 787 0 

Sample 1 648 228 123 692 1433 222 
Sample 2 628 235 125 415 1146 264 
Sample 3 483 176 96 658 1150 181 
Sample 4 570 216 107 597 1158 164 
Sample 5 563 183 97 507 1040 199 
Sample 6 533 176 97 344 1194 214 

Mean 571 202 108 535 1187 207 
Stdev 61 27 13 138 131 35 
RSD (%) 11 13 12 26 11 17 
Spike 1103 500 270 1103 500 270 
Recoveries (%) 42 34 37 11 80 77 
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An evaluation of the peak purity for UV absorption was done on FB1. The results 

obtained from the peak purity test showed that all calculations were within the 

calculated threshold (Figure 5.8) and no impurities are present under the analyte 

peaks. The result thus far suggests that the current derivatization conditions 

used are not suitable for derivatization of naturally contaminated samples. 

 
 
Figure 5.8  Purity peak check results 
 

Figure 5.9 below illustrates the type of chromatogram obtained with DnS-Cl 

derivatives detected by DAD. Due to poor resolution of FB1 peak from the 
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additional peaks in the chromatogram (which could possibly be due to matrix 

interference) and FB2 providing higher results compared to FB1, DAD analysis of 

DnS-Cl derivatives was abandoned and the study was continued with only FLD. 

 

Figure 5.9  Chromatogram of naturally contaminated maize sample with DAD 

 

5.7 Optimization of recoveries using naturally contaminated samples 

The fluorescent products obtained by the reaction of fumonisins with DnS-Cl 

produced low recoveries. To improve on the recoveries obtained, optimization of 

the reaction was performed by spiking directly on the cleaned-up eluate to allow 

for both the recoveries and the derivatization process to be examined. The 

parameters analysed included temperature, time, volume of DnS-Cl and pH as 

they are known to affect the yield of DnS-Cl derivatives (Kang et al., 2006).  
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General conditions used: 

For optimization of the samples, the following conditions were used unless 

otherwise stated as per optimization parameter (i.e. during sample optimization, 

except for the parameter tested, everything was kept constant): 

Samples re-dissolved in 100 µL methanol, 200 µL DnS-Cl and 200 µL NaHCO3 

added, heated for 10 minutes at 40°C, cooled to 24°C under tap water and 200 

µL H3PO4 added and 20 µL injected into HPLC. 

5.7.1 Effect of reaction temperature and time 

Since both reaction temperature and time can affect the rate of derivative 

formation and hence HPLC response, optimization of these parameters was 

undertaken first. 

Temperature experiments were performed first; all experiments were performed 

for 10 minutes at two temperatures (40°C and 60°C). The maximum intensity was 

obtained at 60°C (Table 5.8). Reaction time experiments were therefore 

performed at 60°C. Slight differences in HPLC responses were observed between 

10 min and 30 min because 10 min provided shorter reaction time (Table 5.9) it 

was selected as reaction time. Therefore, heating at 60°C for 10 min was selected 

as optimum temperature and time for sample derivatization. However 

optimization of the reaction temperature and time did not improve recoveries. 
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Table 5.8 Effect of reaction temperature on maize derivatized for 15 
minutes with DnS-Cl 

 
 40°C 60°C 
 FB1 

(ng/g) 
FB2 

(ng/g) 
FB3 

(ng/g) 
FB1 

(ng/g) 
FB2 

(ng/g) 
FB3 

(ng/g) 

Blank 1 7 0 0 15 7 0 
Blank 2 8 0 0 11 4 0 

Mean 8 0 0 13 5 0 

Sample 1 147 48 24 218 64 41 
Sample 2 142 40 22 225 70 40 
Sample 3 144 37 20 132 39 22 
Sample 4 126 36 20 257 77 43 
Sample 5 140 40 21 234 70 40 
Sample 6 154 46 24 244 73 45 

Mean 142 41 22 218 65 38 
Stdev 9 5 2 45 14 8 
RSD (%) 6 12 8 20 21 21 
Spike 1103 500 270 1103 500 270 
Recoveries (%) 12 8 8 19 12 14 

 

Table 5.9 Effect of reaction time on maize derivatized at 60°C with DnS-Cl  

 10 min 15 min 30 min 
 FB1 

(ng/g) 
FB2 

(ng/g) 
FB3 

(ng/g) 
FB1 

(ng/g) 
FB2 

(ng/g) 
FB3 

(ng/g) 
FB1 

(ng/g) 
FB2 

(ng/g) 
FB3 

(ng/g) 

Blank 1 7 0 0 15 7 0 12 8 0 
Blank 2 13 9 0 11 4 0 15 9 0 

Mean 10 5 0 13 5 0 14 8 0 

Sample 1 435 189 101 218 64 41 418 153 82 
Sample 2 423 198 101 225 70 40 443 182 92 
Sample 3 457 192 96 132 39 22 431 176 88 
Sample 4 449 187 94 257 77 43 407 158 83 
Sample 5 410 170 88 234 70 40 409 173 88 
Sample 6 424 191 98 244 73 45 447 180 94 

Mean 433 188 96 218 65 38 426 170 88 
Stdev 18 10 5 45 14 8 17 12 5 
RSD (%) 4 5 5 20 21 21 4 7 5 
Spike 1103 500 270 1103 500 270 1103 500 270 
Recoveries (%)    38 37 36 19 12 14 37 32 33 
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5.7.2 Effect of DnS-Cl volume 

Given that excess DnS-Cl was already used in the study and that it can either 

compensate for side reactions (Seiler, 1971; Heimbecher et al., 1997) or increase 

the response on undesirable reagent compounds (Molions-Legua et al., 1998), 

the effect of DnS-Cl volume was examined. 

DnS-Cl volume in the derivatization reagent was investigated at 100 µL, 200 µL 

and 300 µL.  A sharp increase in response was obtained from 100 µL to 200 µL. 

However, a further increase in volume to 300 µL resulted in a decrease in 

response (Figure 5.10). This may be due to the decomposition of the derivatives 

from the excess DnS-Cl (Tapuhi et al., 1981). Since 200 µL provided optimum 

results it was selected for sample derivatization. Calculation of recoveries from 

the results showed no improvement in recoveries.  

 
 
Figure 5.10 Effect of reagent volume (DnS-Cl) on reaction yield, results 

reported on mean (n=6) ± standard deviation 
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5.7.3 Effect of pH 

Na2CO3 was selected as an alternative to NaHCO3 because it could provide both 

increased pH, which has been reported to increase the yield of DnS-Cl derivatives 

(Heimbecher et al., 1997) and provide the basic condition necessary for 

derivatization. Experiments to test the effect of buffer change and pH were 

carried out simultaneously (i.e. buffer change from NaHCO3 to Na2CO3 provided a 

pH change from 8.25 to pH 11.05). The chromatographic resolution of fumonisin 

working standards with the use of Na2CO3 was baseline with increased response 

for all 3 analogues. However, when the samples were derivatized poor resolution 

of the peaks was obtained with two chromatographic peaks formed at similar 

retention times to FB1 (Figure 5.11).  Although identification of the FB1 peak 

could be done by the use of retention times, integrating the double peak would 

be an inaccurate quantification of FB1. 

 
 
Figure 5.11 Naturally contaminated maize sample with DAD 

 

 

 

 



138 

 

The source of the double peak was further investigated by preparing working 

standards using Na2CO3. However, the original FB1 responses could not be 

reproduced since its area increased disproportionally to that of FB2 and FB3, 

suggesting some interference beneath the peak (Figure 5.12) e.g. non-separation 

from reagent peak A and B (Figures 5.1 and 5.2). 

Troubleshooting (i.e. detector settings, cleaning injector port and use of minimal 

injection volume (10 µL)) of the chromatographic system used indicated that it 

had no influence on the FB1 standard area and on the split sample peak. It was 

thus concluded that DnS-Cl is an inappropriate derivatization reagent for the 

analysis of fumonisins in maize.  

 

 
 

Figure 5.12 Fumonisin working standard derivatized with DnS-Cl and Na2CO3 

as buffer  
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5.8 Conclusion 

The effectiveness of pre-column derivatization of fumonisins with DnS-Cl, HPLC 

separation and subsequent application was evaluated. Different experimental 

conditions in order to improve method performance for fumonisin analysis were 

used with initial optimization experiments with working standards providing 

reproducible, repeatable and precise results. Application of the optimized 

method to naturally contaminated maize samples produced unreliable results for 

DAD, resulting in the discontinuation of the DAD analysis. Although baseline 

resolution of the peaks with maize samples was obtained with FLD, the poor 

recoveries could not be improved even after investing the influence of DnS-Cl 

concentration, pH, buffer, derivatization time and temperature. 

Generally, it seems that DnS-Cl derivatives are less desirable due to the presence 

of analytical interferences and suspiciously higher results of FB2 compared to FB1. 

Although all analytes could be identified with FLD with the use of retention 

times; the recovery results obtained suggests it to be unsuitable for the analysis 

of naturally contaminated maize samples due to either no reaction or incomplete 

reaction, and the formation of secondary peaks.  
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CHAPTER 6 

 

Comparisons of methods, General Discussion, 

Recommendations and Conclusion 
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6.1 Comparison of OPA and NDA  

 Validation of the methods for recovery and repeatability were applied to 15 

maize samples and are reported in Chapters 3 and 4. The same samples were 

used for both derivatization reagents.  From a single extraction, 2 aliquots of the 

centrifuged extract were independently cleaned-up on SAX, with one eluate 

being derivatized with OPA and the other with NDA. This allowed accurate 

comparison between the OPA (FLD and DAD) with NDA (FLD and DAD) by 

importantly, avoiding variation in the extraction step (Table 6.1).  

Although comparison between the detectors was good following SAX clean-up, 

the results from the two derivatives were comparable only up to 1000 µg/kg.   It 

was found that with concentrations above 1000 µg/kg, the comparison was 

frequently poor, with NDA being lower than 50% of the OPA (Figure 6.1). This 

would suggest that certain of the home-grown maize samples studied contained 

inhibitors to the complete NDA derivatization reaction of their SAX extracts. Due 

to these poor comparisons, the alternate IAC clean-up method was investigated, 

since it produces a cleaner extract for derivatization. 

 In a similar manner to the SAX experiment, single samples were extracted and 

duplicate clean-ups performed, one for OPA and one for NDA derivatization. For 

OPA, a good comparison was obtained between FLD and DAD, whereas for NDA, 

all results were higher with DAD, especially at levels below 1000 µg/kg. The 

reason for this trend was not apparent (Figure 6.2).  Comparison of OPA and NDA 

derivatives showed much improved results over the previous comparison of the 
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derivatives after SAX clean-up. In comparing the derivatives using the DAD 

response, again comparisons above 1000 µg/kg were superior to those below 

this level.  

The OPA results were consistent whether determined either after SAX or IAC 

clean-up, showing that OPA is a robust derivatization reagent for fumonisin 

analysis (Figure 6.3). For NDA derivatization (Figure 6.4), IAC clean-up produced 

much cleaner extracts, which resulted in improved comparison with OPA (Table 

6.1). Recent applications of NDA fumonisin analysis with FLD used IAC clean-up 

(Lino et al., 2006; Lino et al., 2007; Silva et al., 2009). An older method using C18 

RP-SPE of fumonisins from mouldy maize reported that compared to OPA, NDA 

gave higher values at lower contamination levels and lower values at higher 

contamination levels (Chu et al., 1994).  
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Table 6.1 Total fumonisin levels (FB1+FB2+FB3; µg/kg) in naturally contaminated 

maize cleaned-up with SAX and IAC, derivatized with OPA or NDA  

 

 

 

 

 

 

 

 

 FLD DAD 

 SAX IAC SAX IAC 

Sample OPA NDA OPA NDA OPA NDA OPA NDA 

1 106 108 103 93 102 149 *ND 766 

2 234 231 238 219 310 273 142 695 

3 288 336 260 225 257 380 143 730 

4 296 367 157 202 320 328 ND 504 

5 220 240 263 248 300 288 161 786 

6 1132 1030 701 785 1279 943 709 1429 

7 1375 638 1623 1316 1470 554 1590 1972 

8 3144 2771 3730 3016 3234 2528 3804 3361 

9 2163 709 1711 1820 2289 709 1585 2447 

10 2537 983 2196 2115 2805 969 2231 2579 

11 1900 1575 1711 1490 1948 1452 1688 2077 

12 3120 3014 4689 3343 3164 2804 4716 3830 

13 1577 686 1485 1332 1812 699 1445 1700 

14 6088 2492 5327 3664 6114 2402 5246 4120 

15 3740 562 3894 2874 4442 528 3756 3215 
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Figure 6.1 Comparison of OPA with NDA following SAX clean-up for FLD and DAD, 
Total Fumonisins = FB1 + FB2 + FB3 

 

 

Figure 6.2 Comparison of OPA and NDA following IAC clean-up for FLD and DAD, 
Total Fumonisins = FB1 + FB2 + FB3 
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Figure 6.3 Comparison of IAC and SAX with OPA derivatization for FLD and DAD, 
Total Fumonisins = FB1 + FB2 + FB3 

 

Figure 6.4 Comparison of IAC and SAX with NDA derivatization for FLD and DAD, 

 Total Fumonisins = FB1 + FB2 + FB3 

 

 

 

 



149 

 

6.2 General Discussion 

Chromatographic methods used to analyse fumonisins in maize were 

investigated with regard to: (1) derivatising reagent (OPA, NDA and DnS-Cl) (2) 

clean-up method (SAX and IAC) and (3) detection (FLD and DAD). Table 6.2 

provides a summary of the optimal conditions used for OPA, NDA and DnS-Cl 

derivatization of fumonisins in maize. 

Table 6.2 Chromatographic parameters for determination of fumonisins as 

OPA, NDA and DnS-Cl derivatives 

 OPA NDA DnS-Cl 

Column Luna 5 µm, 75 mm  

x 4.6 mm 

Luna 5 µm, 75 mm  

x 4.6 mm 

Luna 5 µm, 75 mm 

x 4.6 mm 

Mobile phase  MeOH:0.1 NaHPO4   

(77:23) 

MeOH:0.1 NaHPO4 

(78:22) 

MeOH:0.1 

NaHPO4 (76:24) 

Flow rate 1 mL/ min 1 mL/ min 1 mL/ min 

Injection volume  Standards – 10 µL 

Samples – 20 µL 

Standards – 10 µL 

Samples – 20 µL 

Standards – 10 µL 

Samples – 20 µL 

Buffer (s) 1M Na2B4O7
.10H2O 1M Na2B4O7

.10H2O 2M NaHCO3 

2M Na2CO3 

Temperature (s) 24 °C 60°C 60°C 

Reaction time 2 minutes 15 minutes 10 minutes 

DAD wavelength (s) 335 nm 252 nm 230 nm 

FLD wavelength (s) Excitation 335 nm 

Emission 440 nm 

Excitation 420 nm 

Emission 500 nm 

Excitation 247 nm 

Emission 510 nm 
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Internal validation of the methods was performed using characteristics such as 

precision, accuracy, specificity and application to naturally contaminated maize 

samples. The optimized analytical methods proved to be both selective and 

sensitive. This is evident in the ability of the methods to produce accurate 

measures of the analytes in the presence of unknown components and any other 

products that may be expected to be present in the sample matrix and with 

comparable fumonisins levels in a wide range of fumonisin contamination. This 

study emphasized that the use of appropriate fluorometric derivatization 

procedures is of considerable importance for accurate determination of 

fumonisins. The robustness of the procedure allowed us to identify some critical 

steps in the methods for fumonisin analysis in maize. In particular, the extraction 

of fumonisins from sample matrix, clean-up and derivatization reagent which 

were all demonstrated to be critical.  

The OPA method was found to be sensitive, reliable and reproducible for 

fumonisin analysis in maize. Although unstable, it has been found to be a suitable 

derivatization reagent (Shephard et al., 1996). Baseline chromatographic 

separation was obtained with retention times of the standard peak allowing 

identification of the analyte peaks. One of the objectives of this study was to 

determine the extent to which DAD could be used as an alternative to FLD for 

OPA derivatization. This was achieved by obtaining comparable results between 

the detectors, although FLD proved to be more sensitive with lower detection 

limits and significantly higher peak areas.  Good comparison between these two 

detectors was demonstrated with SAX and IAC clean-up.  
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The NDA method was optimized and validated. NDA provided comparable results 

to those of OPA and essentially confirming a previous study by Bennett and 

Richard 1994. It proved to be a suitable alternative for OPA, especially following 

IAC clean-up, and for laboratories requiring overnight analysis of fumonisins 

which, due to their high stability, provides an added advantage over OPA. NDA 

proved to be sensitive as well as sufficiently selective in the application of 

fumonisin analysis. 

Dansyl derivatives are mainly used for amino acid (De Jong et al., 1982; Kang et 

al., 2006) and biological amine analysis (Loukou et al., 2003; Proestos et al., 

2008). Only one study has utilized DnS-Cl for fumonisin derivatization in beer 

samples and was reported to form stable complexes with satisfactory 

chromatographic separations (Dasko et al., 2006). Scott and Lawrence, 1992 

derivatized fumonisins in maize and found it to form good derivatives.   However 

it also produced analytical interferences with the maize matrix.  

As a result of the investigations performed in this study, it was found that DnS-Cl 

could on the one hand form stable, sensitive and highly fluorescent derivatives 

with fumonisin standards. However, on the other hand, due to the low 

recoveries from maize it could not be used for the analysis of naturally 

contaminated maize samples as previously reported by Scott and Lawrence 

1992. This showed that the maize matrix caused analytical interferences with 

derivatives thereby suppressing the reaction between the fumonisin amino 

groups with the dansyl chloride reagent. Interferences with the maize were 
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mainly observed with DAD; therefore the DAD investigations were abandoned. 

However, DnS-Cl has some potential to be utilized with FLD. 

6.3 Recommendations 

 Although cyanide has been shown to be a suitable nucleophile for NDA 

derivatization, it is a highly toxic substance and hence an alternative would 

be much safer for the environment. Therefore, future research should 

focus on finding other suitable nucleophiles for NDA derivatization. 

 DnS-Cl is known to be a non-specific reagent as it reacts with amino groups 

of many compounds as well as hydroxyl groups of phenols and some 

alcohols (Smith et al., 1985). Reaction of fumonisins with DnS-Cl occurs at 

the more nucleophilic amino functional group, which is where fumonisin 

derivatization often occurs. Further studies should be conducted to 

address the issues surrounding the apparent matrix interference of DnS-Cl 

derivatives on fumonisin and investigate the mechanism between DnS-Cl 

with fumonisins as they are structurally suited for DnS-Cl reaction. 

6.4 Conclusion 

This study uniquely investigated three derivatization reagents systematically for 

fumonisin analysis in South African home-grown maize intended for human 

consumption with concurrent FLD and DAD detection and with two clean-up 

methods (SAX and IAC). 

 

 

 

 



153 

 

 This study shows that although FLD is more sensitive, UV detection can be used 

as a reliable alternative for fumonisin analysis of OPA derivatives. OPA and NDA 

have proven to be excellent fluorogenic reagents for accurate determination of 

fumonisins in naturally contaminated maize samples and can be used as 

alternatives to each other employing both SAX and IAC clean-up with either FLD 

or DAD. Even though DnS-Cl derivatization could not be applied to maize 

samples, the study can be the basis for investigating the use of DnS-Cl in other 

related matrixes. In conclusion this study has shown that UV detection can be 

utilized as an alternative to FLD for fumonisin analysis in naturally contaminated 

maize irrespective of the clean-up method or the derivatization agent.  
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