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ABSTRACT 
 
 

This study sought to identify and fit the appropriate extreme value distribution to 

flood data, using the method of maximum likelihood. To examine the uncertainty of 

the estimated parameters and evaluate the goodness of fit of the model identified. The 

study revealed that the three parameter Weibull and the generalised extreme value 

(GEV) distributions fit the data very well. Standard errors for the estimated 

parameters were calculated from the empirical information matrix. An upper limit to 

the flood levels followed from the fitted distribution. 
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Chapter 1 

Introduction 
 

1.1 Introduction 

 

Increases in rare events both natural and human in nature are being observed in recent 

years all over the world. An example of that is the flooding in Venezuela in 1999 due 

to extreme rainfall [Coles; 2001]. The increased interest in studying these extreme 

natural events is to mitigate their impact on humans and properties. Statistics which is 

a science of decision making based on data is one of the fields involved in studying 

extreme events. “Extreme value theory is that part of statistics concerned with the 

probabilistic and statistical questions related to these very low or very high values in a 

sequence of random variables and in stochastic processes” [Smith; 2004]. Extreme 

value theory has long been applied to the study of these rare events and has been 

proven to be reliable in fitting models to historical data. In particular, in hydrology the 

question of return periods of severe floods is always answered using extreme value 

distributions. The application of the extreme value theory has been used in diverse 

fields such as finance, environmental studies, economics and meteorology. In 

Namibia extreme value theory has been applied in the environmental fields of 

hydrology. This study, applies extreme value theory to the observed annual maximum 

flood height for the Zambezi River at Katima Mulilo.     

 

1.2 Problem statement  

 

Namibia is a semi arid country with more than half of its land as a desert, and the 

other being a wet area, prone to floods that can be either negative or positive for the 

north eastern parts of the country. Flooding is viewed as negative as it always destroys 

maize crops cultivated in the fertile flood plains. The positive aspect of flooding is 

that with more water it means more fish will be caught after the flood and fish is an 

important part of the diet for the people living in the Caprivi region.  The Zambezi 

River is one of the largest perennial rivers in Southern Africa and serves as a natural 

border between Namibia and Zambia. The origin of this river is located in Zambia and 

its catchments can be found in both Zambia and Angola. This river is characterized by 
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seasonal floods due to rainfall in the upper catchments and its drainage area covers 

much of eastern Caprivi therefore making the area prone to seasonal floods that 

always damage crops and properties in the region.   

 

The aim of this research project is to estimate parameters for the distribution of annual 

maximum flood levels for the Zambezi River at Katima Mulilo. The estimation of 

parameters will be done by using the maximum likelihood method. The study aims to 

explore data of the Zambezi’s annual maximum flood heights at Katima Mulilo by 

means of fitting the Gumbel, Weibull and the generalized extreme value distributions 

and evaluating their goodness of fit. Extreme value theory can be a tool that can be 

used to study the distribution of droughts (or minimum flood level) which is the 

opposite to studying the maximum flood heights. Therefore extreme value theory can 

be one of the tools that can be constantly utilised in order to improve planning for the 

alleviation of problems due to both the abundance and scarcity of water. The 

understanding of the form of the distribution of the observed flood water level can 

lead to better estimation and forecasting of future flood levels of the Zambezi River. 

 

1.3 Importance and benefits 

 

The results obtained in this study will be very useful for policy-makers in the fields of 

hydrology and water management, especially with respect to the estimated 

distribution function of annual maximum floods for the Zambezi River. The study can 

serve as a bench mark for comparison with similar studies based on other models not 

covered in this analysis. The study will also lay the foundation for future research on 

the subject and can be expanded as more data becomes available.    

 

1.4 Research objectives 

 
1. The study aims to contribute to knowledge about the underlying distribution of 

observed floods for the Zambezi River. 

2. Use statistical techniques such as extreme value theory and model selection to fit 

the data of annual maximum flood water level for the Zambezi River. The 

following distributions will be considered: Gumbel, Weibull and the generalized 

extreme value distribution (GEV). 



  12 

3. Estimate parameters for the model by method of maximum likelihood (ML) and 

evaluate the goodness of fit of the models and standard errors of the estimated 

parameters. 

4. The study aims to lay a foundation for future research on maximum flood water 

levels for the Zambezi River at Katima Mulilo. 

 

1.5 Research design and analysis 

 

Firstly, the general concepts of extreme value theory will be discussed. Secondly, the 

quantitative analysis of data will be carried out. The time series data on water levels 

for the Zambezi River was collected from the Ministry of Agriculture and Water and 

Rural Development’s department of Hydrology. The Matlab software and a Microsoft 

excel spreadsheet was used for data analysis.  

 

1.6 Data 

 

For the purposes of this study, annual maximum flood water levels covering the time 

period from 1965 to 2003 will be investigated. This is an uninterrupted thirty-nine 

year period. For the observed data set to be assumed independent and identically 

distributed (iid), the block maxima method will be used [Smith;1984]. The block 

maxima method provides for samples to be taken from blocks of one year and 

assumed to be iid. Further discussion of block maxima is given in Chapter 2. The 

Zambezi River records contain some missing data for the entire period of observation 

[1935-2003], hence the choice to start from 1965.  

 

1.7 Limitations  

 

In this research project only the block maximum method of extreme value analysis 

could be explored. In a more comprehensive thesis or mini-thesis additional analyses 

could be explored. The sample size of 39 measurements of annual maximum flood 

levels also limited the type of conclusions that could be drawn from this study. The 

non-inclusion of covariates in the study also limited the optimal use of other 

information for a better understanding of the effects of other external factors on 

flooding over the Zambezi River at Katima Mulilo. 
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Chapter 2 

Literature Review 
 

2.1 Introduction 

 

This chapter starts by defining concepts used in this research project. It also discusses 

in short the theories related to the fitting of extreme value distributions and the 

underlying assumptions for modelling these distributions. Understanding of the 

concepts discussed in this chapter is imperative in the appreciation of the whole 

document and the steps used in this study. 

 

2.2 Definition of concepts 

 

2.2.1 Extreme value theory (EVT) [Kotz S. et al.; 1985:608]  

The brief historical development of extreme value is given in the encyclopedia edited 

by Kotz, S. et al. states that the basic theory of extreme value was first developed by 

Fréchet  in 1927 and by Fisher & Tippet in 1928 but was formalized by Gnedenko in 

1943.  

 

Suppose there exists an independent and identically distributed (iid) sequence of 

random variables ,......, 21 XX  whose cumulative distribution function (CDF) is: 

}Pr{)( xXxF i <=
      

also  )..,,.........max( 1 nn XXM =  which is the thn   sample maximum of the process 

and  nM  has a CDF:    n
n xFxM )]([}Pr{ =≤ ……………….(i) 

Equation (i) states that for any fixed x for which ,1)( <xF we have 0}Pr{ →≤ xM n as 

∞→n  which is not useful. However sequences of constants nn ba   , exist such that  

 

)()]([Pr xHbxaHx
a

bM n
nn

n

nn →+=
�
�
�

�
�
�

≤
−

 

is independent of n. According to extreme value theory H(x) must be one of the three 

possible forms of distributions. The importance of this result is that irrespective of 
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what the original distribution F is, the asymptotic distribution of  )(nX  is any of the 

three forms of the extreme value distribution. This theory is analogous to the 

asymptotic normality of sample means, invariant with respect to the underlying 

population.  

 

In their simplest forms the three types of the extreme value distribution are: 
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where equation (1) corresponds to the Gumbel distribution, (2) is called the Fréchet  

distribution and (3) is the Weibull distribution. 

 

2.2.2 Generalized extreme value distribution (GEV) [Smith; 2004:8] 

 

The three types of the extreme value distribution mentioned above have been 

combined by Von Mises and Jenkinson into a single distribution: 

��

�
�

�

��

�
�

�

�
	



�
�

 −+−=
β

δ
λβ

1

1exp)(
x

xF ,  where λ is the location parameter, δ  is the scale 

parameter and β  is the shape parameter. When the limit β  = 0 the GEV corresponds 

to the Gumbel distribution, β < 0 corresponds to the Fréchet distribution and β > 0 

corresponds to the Weibull distribution and has finite upper limit.  
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2.3 Overview of extreme value theory 

 

The following literature review on the applications of extreme value theory gives a 

summary of the use of extreme value theory by researchers around the world. The 

usefulness of this theory is in studying data that seem to contain outliers that are real 

observed values that may normally be removed from the set as they appear to distort 

the results. Extreme value theory is currently applied in at least two forms, the oldest 

form of block maxima and the recent method of peaks over threshold method (POT). 

The difference between these two methods lies in that the block maxima depends on 

grouping the series of observed data into blocks according to time. In this case it can 

be a day or month but the natural, and often used, block in hydrology is a year. A 

single maximum value represents a series of observed values for analysis. The peak 

over threshold method relies on first setting a level such that all measurements above 

the earmarked threshold will constitute the sample to be studied. Both methods have 

their pros and cons. One of the advantages of block maxima is that the chosen sample 

values can be assumed to be independent. The advantage of the POT method is that 

more efficient use of available information is made as more cases will be included in 

the sample. The disadvantage of the block maxima method is that it restricts the scope 

of inferences that can be made from such a study, as the only inference that can be 

made relates to the variation between blocks only and nothing can be said about the 

variations within the blocks. This is especially of concern when dealing with 

environmental phenomena which are mostly affected by differences due to 

seasonality. The POT method’s disadvantages are due to the subjectivity in choosing a 

threshold level. This can result in two different conclusions on the same observed data 

depending on the level chosen. 

 

This research project is based on the block maxima principle, because this method has 

a more meaningful explanation in hydrological practice, where the annual maximum 

flood level can be assumed to be from an independent and identical distribution. 

Though this cannot be fully justified, models based on this method are more close to 

the definition that extreme value distributions has been designed to follow [Kotz, et 

al.; 1985]. The interest is in studying the year to year variation in the flood levels 

measured at Katima Mulilo. The distribution will be fitted based on past data on flood 

water levels. The unknown distribution can be fitted based on past data using the 
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method of maximum likelihood estimation. Though there are many factors that 

influence flooding, the fitted model does not claim to cover all, as this is just an 

idealized way to study some natural random event such as maximum flood levels. 

 

The question of fitting distributions to flood water levels by hydrologists arises from 

the need to find such distributions which could be used as tools in decision making. 

Suppose the mean flood level for the past six years was 45 meters, the question that 

might be asked by the hydrologist is: what is the expected next flood level?  Fitting of 

distributions could help to answer such a question. The following quote from Pericchi 

and Rodriguez-Itube summarizes the reasons for the interest in applying extreme 

value theory in engineering practice. “The concern of civil engineers lies in the largest 

or the smallest values which a design variable may take during a certain length of 

time” [Pericchi & Rodriguez-Itube; 1985]. The work of the hydrologist of fitting 

distributions forms part of planning in some engineering designs such as the building 

of dams, bridges and flood protection walls. Fitting of extreme value distributions is 

an exercise that according to Pericchi and Rodriguez-Itube has a number of 

uncertainties which seems to be ignored in practice. The uncertainties as outlined by 

Pericchi and Rodriguez-Itube are: 

1. Natural uncertainty, the uncertainty in the random process that is generating the 

occurrence of the extreme event.  

2. Parameter uncertainty, the uncertainty related to the estimation of parameters of 

the model of the stochastic process due to limited data.  

3. Model uncertainty, the lack of certainty that a particular probabilistic model of 

the stochastic process is true.  

 

The first of the three issues cannot be reduced in practice, but the last two can be 

reduced by judicious choice of methods of parameter estimation and the family of 

distributions to which the data are believed to belong to. The method of maximum 

likelihood parameter estimation is one of the methods where uncertainty in the 

estimated parameters of the distribution can be quantified. The method of comparing 

the fitted distribution to the expected quantiles based on the observed data also gives 

an indication as to how uncertain the model is in modelling the event of interest, 

based on historic data.                  
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Research studies on the application of extreme value theory in the environmental 

fields in Namibia exists, but studies conducted in other countries will also be used. In 

the book edited by Finkenstad and Rootzen, Smith writes “extreme value theory is 

concerned with the probabilistic and statistical questions related to very high and very 

low values in sequences of random variables and in stochastic processes” [Smith; 

2004:2]. The application of extreme value theory therefore could be of benefit to the 

private sector engineers, financial institutions and government agencies in Namibia 

tasked with planning and designing infrastructure and management systems in the 

country. Observed random extreme events such as the occurrence of extreme floods, 

heavy rainfall, the value-at-risk (VaR) of stocks, are examples which can be modelled 

well by extreme value distributions with relevant results for Namibia.  

 

A report appeared in the Namibian newspaper of 19 January 2004, about flooding in 

one of the suburbs in Windhoek due to heavy rainfall which caused much damage to 

property and endangered people’s lives. The story highlights one example where 

authorities and engineers were caught off guard with regards to planning for rare 

events such as these. The concerned suburb which was flooded is known to be built in 

a low lying area near a riverbed and the developers for this housing project seem to 

have built without regards to the possibility that the houses built were below the flood 

level. This oversight cost the developers a lot of money. This situation went by 

without any mention of calculating the chances of the flood being predicted based on 

the analysis of historical rainfall figures of the area.     

 

The hydrological flood study relating to Namibia is a regional study, which combines 

annual maximum flood data from different sites according to proximity or spatial 

measures [Mkhandi & Kachroo; 1996, Ware & Lad; 2003]. One of the perceived 

advantages of these regionalized studies is that the combining of data from many sites 

help to increase the sample size. The problem of small samples in hydrology is due to 

the changing nature of physical processes. An extreme event today might no longer be 

as extreme if a more extreme event takes place the next day, leading to a need to 

change all past inferences. The disadvantage of regional studies is that the more 

heterogeneous a region is, the less reliable the estimate derived by such methods. On 

the other hand these studies have more appeal in practice due to scarcity of data, due 

to the low availability of recording stations for sites of interest. Estimates based on 
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regional studies can be used for un-gauged sites by simple transformation of the 

regional parameters to estimate parameters for the location of interest.  

 

The study where the fitting of models to the distributions of floods in Namibia is that 

of Mkhandi and Kachroo [1996]. This study recommended a Pearson-three model 

with probability weighted moments and the Log-Pearson (gamma three) model with 

method of moment parameter estimation to be used. The study of Mkhandi and 

Kachroo used moment based estimation methods which are considered unreliable due 

to poor sampling properties of the second and higher order sample moments [Ware 

and Lad; 2003].  

 

This study will use the maximum likelihood method to estimate parameters, as this 

method meets the property of efficiency and consistency [Kotz; 1985:611]. Extreme 

value theory is being applied extensively in the hydrology field in other parts of the 

world and hence the need to start exploring its use in Namibia as well.             
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Chapter 3 
 

Model estimation 
    
3.1 Introduction  
 
This chapter will outline the steps followed in model estimation by the maximum 

likelihood (ML) method. The maximum likelihood method is discussed further in 

Section 3.3. In practice everyone analyzing time series data should construct time 

plots. Time plots are important tools used for checking obvious patterns in the data. 

For example, Figure 3.1 is a plot of the annual maximum flood water levels recorded 

at Katima Mulilo, a town in north-eastern Namibia, over the period from 1965 to 

2003. The plot does not show any pronounced systematic changes or patterns over the 

period recorded. From such data it might be possible to obtain an estimate of the 

maximum flood level that is likely to happen at Katima Mulilo over the next 10 or 

100 years. In order to answer these questions one needs to fit a probability distribution 

to the observed data for the particular river. The next section starts with the initial step 

in fitting probability distributions which entails identifying a probability model that 

fits the observed data. 

 

   

 
 
 

Figure 3.1 Annual maximum flood levels at Katima Mulilo, Namibia. 
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3.2 Model diagnostics 
 
One of the methods advocated by the literature on extreme value theory for model 

identification is that of using the Gumbel QQ (Quantile-Quantile) plots. This standard 

method is a useful way of choosing among the three types of extreme value 

distributions. The method works as follows: let )( jX  be the set of ordered 

observations. Plotting  )( jX  against –log [-log (j-0.5/n)], it is expected that the 

resulting graph will be a straight line if the Gumbel distribution is a good fit. If the 

plot shows a downward curvature then the Weibull distribution will be a better fit for 

the data, otherwise if the curvature is upward then the data follows the Fretchet 

distribution [Smith; 1984:445]. 

 

The motivation for the plot is now discussed for the Gumbel distribution. Suppose we 

have a sample of ordered values )()2()1( ,..........,, nXXX  from some distribution. The 

standard Gumbel Cumulative Distribution Function (CDF) is defined as [Smith; 

1984:438], 

 

  
∞<<∞−−−= xxxH      )},exp(exp{)(

  

Taking the logarithm on both sides of the above expression, 

 

 

Taking the negative on both sides, 

        ( ) ( )xxH explog =−  

Taking the logarithm again, 

 

( ) xxH −=− ]loglog[  

Multiplying by negative on both sides, 

( ) xxH =−− ]loglog[  

 

Using the estimator      
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Quantities given by the left hand side of this equation are referred to as “Reduced 

values”. When the ordered values )( jx  are plotted against the reduced values the 

resulting graph is expected to be a straight line if the data follows the Gumbel 

distribution. Similar transformations of the standard CDFs for the Weibull distribution 

are done and plotted for visual inspection. Figure 3.2 shows the QQ plot for the 

Zambezi annual maximum flood water levels at Katima Mulilo. From the plot it is 

evident that the Gumbel distribution is not a good fit for the Zambezi flood height 

data as the resulting QQ plots shows a downward curvature, which suggests a Weibull 

distribution. The only good fit for the Zambezi annual maximum flood water level is 

the Weibull distribution as the QQ plot is approximately linear over most of its 

domain as shown in Figure 3.3. This suggests fitting the Weibull distribution to the 

data.   

 
 
 
Figure 3.2 Gumbel QQ plot for the Zambezi annual maximum flood water level 

at Katima Mulilo  
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Figure 3.3 Weibull QQ plot for the Zambezi annual maximum flood water level 

at Katima Mulilo  
 
 
 
 
 
3.3 Maximum likelihood estimation with observed information matrix 

 

Once it is known which of the three distributions is a good representation of our 

observed data, the task of estimation of the parameters for the probability distribution 

follows. This section will show the steps involved in using the method of maximum 

likelihood (ML). The method of maximum likelihood is one of the types of estimation 

methods for unknown parameters, when fitting a model to observed data. The method 

is preferable due to its adaptability to model change [Coles; 2001:3]. Though there is 

software, it is essential to convince oneself as to how the software is able to find the 

solution and this involves understanding the programme doing the computation, and 

verifying that the output is indeed appropriate. The following are the steps taken 

before using the computer software Matlab in finding the ML estimate. 
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3.3.1 Weibull maximum likelihood estimation 

 

The three parameter Weibull CDF is given by [Castillo; 2004:201]; 

 

])(exp[)( β

δ
λ x

xF
−−= ………………… (iii)  

where 0≥λ , 0>δ  and β  are the position, scale and shape parameters respectively. 

 

The Weibull PDF is defined as follows after taking the derivative of the CDF function 

given above; 
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In the present case the unit of time is one year and sx  represents the annual maximum 

value for each of the n years. The corresponding negative log likelihood is: 
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where ,λ≤x  ,0>δ  0>β . 

 

Equation (v) is the one used to solve for the unknown parameters, by using Matlab 

script files to minimize this non linear function. See Appendix F for the Weibull script 

file. The script file works by first specifying the function given in equation (v) above 

and then using the Matlab’s built in function called “fminsearch” to minimize xL . The 

use of the negative log likelihood is dictated by the availability of the minimization 

facility “fminsearch”: standard Matlab does not have a maximization routine. 

 

One of the advantages of likelihood-based estimation  is that the method facilitates the 

calculation of the standard errors of the estimated parameters.  [Smith; 2004:17]. The 

standard errors are a measure of precision and can be derived from the observed 

information matrix. The information matrix is an n ×  n matrix derived by taking the 
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second partial derivatives of the log likelihood function with respect to the parameters 

estimated. The true information matrix is approximated by the empirical information 

matrix. This is accomplished by replacing expected values of random variables by 

sample values. The first partial derivatives of equation (v) are: 
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The second partial derivatives from equation (v) follow; 
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The variance-covariance matrix is a symmetric matrix from the equations above, 
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where the inverse of OI  is the observed information matrix. The square roots of the 

diagonal elements form the standard errors for estimated parameters. The Matlab 

script file for calculating  the empirical information matrix as given in Appendix F. 

Similar steps are followed in fitting the GEV and Gumbel distributions shown in 

Section 3.3.2 and 3.3.3. 

 
 
 
 3.3.2 GEV maximum likelihood estimation 
 
Figure 3.2 indicates that the data are probably best fitted by a Weibull distribution. 

This can be verified by first fitting a GEV distribution, which encompasses all three 

extreme value distribution families, to the data. 

The CDF for the GEV is given [Smith; 2004:16] by: 
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The PDF of the GEV follows after taking the derivative of CDF above, 
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The negative log likelihood for the GEV distribution is 
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Equation (vii) is the function that needs to be maximized with respect to the 

parameters ( )   ,    , βδλ . It is quite complicated to work out the first and second 

partial derivatives of the log likelihood for the GEV. The results as given in Castillo  

et al. (2004) are therefore simply quoted in Appendix A. 

 

 

 
3.3.3 Gumbel maximum likelihood estimation 
 
For completeness, results for the Gumbel distribution are also repeated. 

The CDF for the two parameter maximal Gumbel distribution is [Castillo; 2004:16]: 

 

.    ,expexp ∞<<∞−�
�

�
�
�

�
��
	



��
�


�
	



�
�

 −−−= x
x

Gx δ
λ

 

 
The PDF is, 
  

�
�

	




�
�

�


−��

	



��
�


�
	



�
�

 −−=
�
	



�
�

 −−
δ

λ

δ
λ

δ

x

e
x

xg expexp
1

)( ………….……… (vii). 

 
The negative log likelihood follows, 
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The variance-covariance matrix is, 
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In the case of the Gumbel distribution equation (viii) is to be minimized. The inverse 

of gI    is the empirical information matrix. The square roots of the diagonals entries 

of   1−
gI  are approximate standard errors for the estimated parameters. 

 
3.4 Matlab results 

 

The results found when using Matlab script files for minimizing the negative log 

likelihood functions with respect to unknown parameters in equations (v), (vii) and 

(viii) are shown in Table 3.1. The table shows the parameter estimates together with 

the estimated standard errors in parentheses. Since the GEV is a re-parametrisation of 

the three standard distributionsal form (Gumbel, Frechet and Weibull), transformed 

GEV parameters suitable for comparison with the estimated Weibull parameters are 

also given. The agreement is, as could be expected, excellent. The steps used to 

calculate the standard errors of the transformed GEV parameters are given in 

Appendix A. 

 

Once the results for the parameters are found, there is still a need for confirming 

which one of the three distributions does the observed flood water levels for the 

Zambezi at Katima Mulilo fit. This can be done by observing the sign of the shape 

parameter for the GEV distribution or by using the hypothesis testing method of 

likelihood ratio testing.  

 

Table 3.1 shows that the estimate for GEV’s shape parameter beta is greater than zero, 

indicating that our data set can be modelled well by the Weibull distribution. This 

confirms the result found earlier from the QQ plots, that the Weibull is a better fit for 
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the Zambezi data. The Weibull distribution is known to have a finite upper limit 

[Castillo; 2004]. The value of lambda for the Weibull distribution in Table 3.1 is the 

estimated upper limit for the maximum flood that can be reached in any year for the 

Zambezi River flood level. The values for the parameter estimates in Table 3.1 are 

given as point estimates. Table 3.2 provides 95% confidence intervals for the 

parameter estimates given in Table 3.1.  

 
 
Table 3.1 Matlab results of parameter estimates and standard errors obtained    

from fitting the Zambezi flood level data using the ML method 
 
 
PARAMETER 
DISTRIBUTION 

LAMBDA DELTA BETA 

GEV 
STD error 

37.6373 
(0.2662) 

1.5659 
(0.1952) 

0.4418 
(0.0686) 

Weibull 
STD error 

41.1819 
(0.4956) 

3.5446 
(0.6267) 

2.2636 
(0.5302) 

Transformed 
GEV parameters 
STD error 

41.1817 
 
(0.2399) 

3.5444 
 
(0.3813) 

2.2635 
 
(0.3512) 

Gumbel 
STD error 

37.2851 
(0.3985) 

1.4820 
(0.2752) 

- 

 
 
The formula for computing the approximate confidence intervals is, 

    STDerrorz *
2
αφ±

∧
, where   )  ,   ,(

∧∧∧∧
= βδλφ . 

 

The example of the GEV 95% confidence interval for lambda based on the formula 

above is: 

 

Lower limit = 37.6373-1.96*0.2662=37.116 

Upper limit = 37.6373+1.96*0.2662=38.159 

 

Therefore the 95% CI for lambda is (37.116, 38.159). 

 

The results in Table 3.2 below show that the confidence intervals for the GEV are 

narrower than the ones for Weibull distribution. This is due to the difference in the 
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standard errors which are smaller for the GEV than for the Weibull distribution. The 

confidence interval for beta of the GEV distribution does not include zero which is an 

indication that the data fits the Weibull distribution. 

 

To confirm the adequacy of the fitted model for the observed flood over the Zambezi 

we use residual plots, i.e order statistics against the expected values �
	



�
�

−

n
i

F
^

1 . Figure 

3.4 shows the residual plot based on the Weibull distribution. The residual plot, based 

on the estimated parameters, is close to linear, with a single outlier at the lowest flood 

level. This confirms that the statistical model is satisfactory.  

 
Table 3.2 95% confidence intervals for the parameter estimates 
 
PARAMETER 
DISTRIBUTION 
 

LAMBDA DELTA BETA 

GEV (37.116,  38.159) (1.183,  1.948)  (0.307,  0.576)  

Weibull (40.211,  42.153) (2.316,  4.773) (1.224,  3.303)  

Transformed 
GEV parameter 

(40.711,  41.652) (1.951,  4.292) (1.575,  2.952) 

Gumbel (26.504,  38.066) (0.9426,  2.0214) - 
 
 

 
Figure 3.4 Residual plot for the Zambezi River flood water level based on the 

Weibull distribution 
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3.5 Likelihood ratio testing  

 

Likelihood ratio testing is a hypothesis testing technique which can be used to assess 

the suitability of one of the three types of extreme value distribution. This test is based 

on comparing the likelihoods evaluated at parameter estimates for the distributions 

being tested. 

 

0: =βoH   The observed data follows the Gumbel distribution; 

0:1 >βH   The observed data follows the Weibull distribution; 

 

Test statistics: D=2{74.29-69.25} =10.08 

where the values 74.29 and 69.25 are the negative log-likelihoods associated with the 

Gumbel and Weibull distributions respectively. 

Since D> 635.6)01.0(2
1 =χ , the null hypothesis is rejected at the 1% level of 

significance, therefore the Weibull distribution is preferred.  
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Chapter 4 
 

Summary of results and conclusion 
 
 
4.1 Introduction 

This last chapter attempts to suggest some policy measures to strengthen Namibia’s 

preparedness for extreme events in the light of empirical evidence. The 

recommendations are based on the findings in the previous chapter. 

 

4.2 Measures to adopt on extreme value distribution modeling 

The results in Chapter 3 indicated that the distribution of annual maximum flood 

measurements for the Zambezi River follows the Weibull distribution. The result of 

fitting the residual plot indicates that the three parameter Weibull distribution makes a 

reasonable fit. Though the Weibull distribution does not fit very well at the lowest 

point it remains a good fit at the upper levels. The difference between the QQ plot of 

the data (Figure 3.3) and the residual plot (Figure 3.4) is due to the number of 

parameters being fitted: the QQ plot is based on two parameters while the residual is 

based on the three estimated parameters. Therefore there is a need to review the 

statistical models targeted at modelling of extreme flood over the Zambezi River at 

Katima Mulilo to be compared with the following results to see if they are still 

appropriate. It is vital to compare these results as the methodology has improved. It is 

observed that the flood level possible for the Zambezi River at Katima Mulilo can be 

as high as 42.153 meters. Although, no flood as high as this has been observed so far 

for the Zambezi River,  this does not exclude the chances of it happening hence the 

need to be prepared for such a high level of inundation of water. The ability of 

existing structures able to withstand such levels should be verified.    

 
4.3 Conclusion  

This paper set out to fit extreme value distributions to the observed flood water level 

data over the Zambezi at Katima Mulilo in Namibia. A comparison of the method 

used in this project to those being currently used in modelling the Zambezi River 

flood distributions is needed. Methods that include covariates such as the amount of 

rainfall received in the upper catchments, and other factors that seem to influence the 

distribution of flood water levels on the Zambezi River, is advocated.  
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Appendices 
 
Appendix A 
 
Step for calculation of the standard errors of the transformed GEV parameter 

estimates in Table 3.1 

 
Newton’s approximation formula is given as 
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Decoding by *λ , *δ  and *β  the GEV parameters, the transformed parameters are 
given by 

1. *

*
*

β
δλλ +=        2. *

*

β
δδ =      3.    *

1
β

β =  

 
 
 
For example, applying the approximation formula above to the function in number 

two: 
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Similar steps were followed for the functions in 1 and 3 above.  
 
Parameter estimates from the GEV and the empirical information matrix  are used to 
complete the calculations. 
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Appendix B 
 
Elements of the Fisher information matrix of the GEV distribution, from Castillo 
et al. (2004). 
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Appendix C 
 
Database of maximum flood water level of the Zambezi River at Katima Mulilo: 
Namibia, 1965-20031.  
 
Year Flood level 
 (Meters) 
 
1965 37.78 
1966 39.67 
1967 38.6 
1968 39.69 
1969 40.79 
1970 39.55 
1971 38.32 
1972 37.04 
1973 36.03 
1974 37.87 
1975 39.77 
1976 39.75 
1977 38.07 
1978 40.39 
1979 39.97 
1980 38.38 
1981 38.72 
1982 36.43 
1983 35.68 
1984 37.05 
1985 37.11 
1986 38.27 
1987 37.59 
1988 38.12 
1989 38.93 
1990 35.37 
1991 37.69 
1992 35.02 
1993 39.06 
1994 37.35 
1995 36.54 
1996 35.07 
1997 36.52 
1998 38.9 
1999 38.67 
2000 38.97 
2001 38.93 
2002 36.78 
2003 39.24 

                                                 
1 Source: Republic of Namibia: Ministry of Agriculture, Water and Rural Development, Dept of Water 
Affairs, Hydrology Division.  
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Appendix D 
 
Matlab script files used to minimize the negative log likelihood function with 

respect to unknown parameters of the Gumbel distribution, and for calculation 

of the observed information matrix. 

 
 
function gnll=gevlikeG(params1,x) 
n=numel(x); 
glambda=params1(1); 
gsigma=params1(2); 
if glambda<0|gsigma<0 
    gnll=1.0e20; 
else 
z=(x-glambda)./gsigma; 
gnll=n*log(gsigma)+sum(exp(-z))+sum(z); 
end 
 
function paramEs1=gevmleG(x,params1) 
[paramEs1,fval]=fminsearch(@gevlikeG,params1,[],x) 
 
function guminfomatrix(x,paramEs1) 
n=numel(x); 
lambda=paramEs1(1,1); 
sigma=paramEs1(1,2); 
z=(x-lambda)./sigma; 
z2=(x-lambda)./(sigma*sigma); 
z1=(x-lambda)./(sigma*sigma*sigma); 
gd2ld2lam=-sum(exp(-z))*(1./(sigma*sigma)); 
gd2ldlamsig=-sum(exp(-z).*z1-exp(-z)*(1./sigma*sigma))-(n./(sigma*sigma)); 
gd2ld2sig=(n./(sigma*sigma))-(sum((exp(-z)).*(z1.*z1)-2*exp(-z).*z1))-2*sum(z1); 
guI=[gd2ld2lam gd2ldlamsig;gd2ldlamsig gd2ld2sig] 
guinI=inv(guI) 
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Appendix E 
 
Two Matlab script files for minimizing the negative log likelihood function with 

respect to the unknown parameters of the generalized extreme value (GEV) 

distribution. The third script file is used to calculate the observed information 

matrix. 
 
function gnll=gevlike1(params,x) 
n=numel(x); 
glambda=params(1); 
gsigma=params(2); 
gk=params(3); 
if gk <0|glambda<0|gsigma<0|max(x)>(gsigma./gk)+glambda  
    gnll=1.0e20; 
else 
z=(x-glambda)./gsigma; 
     z1=(1./gk)*log(1-gk*(z)); 
       gnll=n*log(gsigma)-(1-gk)*sum(z1)+sum(exp(z1)); 
end 
 
function paramEs=gevmle(x,params) 
[paramEs,fval]=fminsearch(@gevlike1,params,[],x) 
 
function gevinfomatrix(x,paramEs) 
gsigma=paramEs(1,2); 
gk=paramEs(1,3); 
y=psi(x); 
p=((1-gk)^2)*gamma(1-2*gk); 
q=(gamma(2-gk))*((psi(1-gk))-((1-gk)/gk)); 
y1=-psi(1); 
n=numel(x); 
m11=(n/(gsigma*gsigma))*p; 
m22=(n/(gsigma*gsigma*gk*gk))*(1-2*(gamma(2-gk))+p); 
m33=(n/(gk*gk))*((pi^2/6)+(1-y1-(1/gk))^2+(2*q/gk)+(p/(gk*gk))); 
m12=(n/(gsigma*gsigma*gk))*(p-(gamma(2-gk))); 
m13=(-n/(gsigma*gk))*(q+(p/gk)); 
m23=(n/(gsigma*gk*gk))*(1-y1-((1-(gamma(2-gk)))/gk)-q-(p/gk)); 
gI=[m11 m12 m13;m12 m22 m23;m13 m23 m33] 
ginI=inv(gI) 
Stderror=sqrt(diag(ginI))' 
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Appendix F 
 
Matlab script files for minimizing the negative Weibull log likelihood function 

and for calculating the observed information matrix. 

 

function nll=weiblike2(pars,x) 
n=numel(x); 
lambda=pars(1); 
sigma=pars(2); 
beta=pars(3); 
  
if sigma<0|beta<0|max(x)>lambda 
    nll=1.0e20; 
else 
    z=(lambda-x); 
            z1=(z./sigma).^beta; 
   nll=-n*log(beta)+(n*beta*log(sigma))-((beta-1)*sum(log(z)))+sum(z1); 
  
end 
  
function pares=wmle(x,pars) 
[pares,value]=fminsearch(@weiblike2,pars,[],x) 
  
function weibinfomatrix(x,pares) 
n=numel(x); 
lambda=pares(1,1); 
sigma=pares(1,2); 
beta=pares(1,3); 
z=lambda-x; 
z1=z./sigma; 
z2=z1.^beta; 
z3=z1.^(beta-1); 
z4=z./(sigma*sigma); 
z5=z1.^(beta-2); 
z6=z./(sigma*sigma*sigma); 
dldlam=(beta-1)*sum(z.^-2)-sum(z3*beta./sigma); 
dldbet=(n./beta)+n.*log(sigma)+sum(z)-sum(z2.*log(z1)); 
dldsig=-(n*beta./sigma)+sum((beta*z3.*z)./sigma*sigma); 
d2ld2lam=((beta-1)*sum(z.^-2))+sum((z5.*(beta*beta-beta))./(sigma*sigma)); 
d2ld2bet=(n/(beta*beta))+sum(z2.*(log(z1).*log(z1))); 
d2ld2sig=-((n*beta)./(sigma*sigma))+sum(((beta*beta-beta).*z5.*z4.*z4)+(2*beta.*z3.*z6)); 
d2ldlambet=-sum(1./z)+sum(((beta.*z3.*log(z1))./sigma)+(z3./sigma)); 
d2ldlamsig=-sum((((beta*beta-
beta).*z.*z5)./(sigma*sigma*sigma))+((beta.*z3)./(sigma*sigma))); 
d2ldbetsig=(n./sigma)-sum((z4.*z3)+(beta.*z4.*z3.*log(z1))); 
I=[d2ld2lam d2ldlamsig d2ldlambet;d2ldlamsig d2ld2sig d2ldbetsig;d2ldlambet d2ldbetsig 
d2ld2bet]  
I1=inv(I) 
stderror=sqrt(diag(I1))' 
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