
THE DEVELOPMENT AND APPLICATION OF 
INFORMATICS-BASED SYSTEMS FOR THE ANALYSIS 

OF THE HUMAN TRANSCRIPTOME 

JANET KELSO 

Thesis presented in fulfilment of the requirements for the Degree 

of Doctor Philosophiae at the South African National 

Bioinformatics Institute, Department of Biochemistry, Faculty of 

Natural Sciences, University of the Western Cape 

April 2003 

Advisor:  Prof. Winston Hide 



 ii

Abstract 

Despite the fact that the sequence of the human genome is now complete it has 

become clear that the elucidation of the transcriptome is more complicated than 

previously expected. There is mounting evidence for unexpected and previously 

underestimated phenomena such as alternative splicing in the transcriptome. As a 

result, the identification of novel transcripts arising from the genome continues. 

Furthermore, as the volume of transcript data grows it is becoming increasingly 

difficult to integrate expression information which is from different sources, is stored 

in disparate locations, and is described using differing terminologies. Determining the 

function of translated transcripts also remains a complex task. Information about the 

expression profile – the location and timing of transcript expression – provides 

evidence that can be used in understanding the role of the expressed transcript in the 

organ or tissue under study, or in developmental pathways or disease phenotype 

observed. 

In this dissertation I present novel computational approaches with direct biological 

applications to two distinct but increasingly important areas of research in gene 

expression research. The first addresses detection and characterisation of alternatively 

spliced transcripts. The second is the construction of an hierarchical controlled 

vocabulary for gene expression data and the annotation of expression libraries with 

controlled terms from the hierarchies. In the final chapter the biological questions that 

can be approached, and the discoveries that can be made using these systems are 

illustrated with a view to demonstrating how the application of informatics can both 

enable and accelerate biological insight into the human transcriptome. 
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Preface 

The production of complete genomic sequence for various organisms has accelerated 

rapidly in recent years. In large part these sequencing efforts have been driven by the 

need to identify and characterise their complete gene complement. While genomes 

contain a number of sequence elements, it is the expressed component which promises 

to provide insight into organism function, development and disease. While the 

genome is the total DNA complement of an organism, the transcriptome is that part of 

the genome which is transcribed into mRNA – the expressed genome. The translated 

products of mRNA give rise to the proteome. The relationship between proteome and 

transcriptome is poorly understood, and will only become clearer as more proteomic 

data become available. 

Genome sequencing presents one route to gene discovery. In the case of prokaryotes 

this has proved relatively successful as genes are in close proximity (1 gene per kb), 

and are uninterrupted by introns. However, gene identification is significantly more 

complex in eukaryotes in which gene density is low (1 gene per 100kb), and where 

the coding sequence is interrupted by introns. In mammals between 1% and 2% of the 

genome is thought to be made up of coding sequence (Lander et al., 2001; Venter et 

al., 2001), and this low gene density makes gene finding relatively complex. The 

entire genome is present in each nucleated cell of the organism but only a fraction of 

the genes are expressed in each cell type, with significant variation in the number of 

transcripts of each gene present.  Unique spatio-temporal patterns of gene expression 

allow the genome to provide the complexity required for life.  
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Prior to the advent of genome sequencing, the importance of characterising the 

transcriptome led to the development of various approaches to determine the identity, 

sequence, expression levels and expression patterns of genes. As enabling 

technologies have developed and improved there has been a progression from low 

throughput to high throughput data production and interpretation. Large-scale gene 

expression analysis provides a global view of gene function through the identification 

and quantification of gene expression products. In addition to its role in the 

identification and functional classification of gene products the large-scale 

investigation of gene expression is providing insight into the process of development, 

physiological response and disease in a way which is not possible using a gene-by-

gene approach. The potential for significant and useful discoveries means that gene 

expression studies are at the very forefront of genomics research. 

Advances in the technologies for monitoring gene expression and the large-scale 

production of gene expression data has resulted in significant informatics challenges, 

including those of data tracking, capture, analysis, visualisation, integration, mining 

and storage.  

An overview of the sequence-based approaches which are commonly used for 

characterising and quantifying gene expression data, including methods of generation, 

the relevant databases used for storage, and the computational approaches to mining 

of gene expression data are discussed in chapter 1. 

In chapters 2 and 3 I present two novel informatics-based approaches to addressing 

some of the challenges that continue to face those interested in large-scale gene 

expression analysis.  
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Chapter 2 addresses the detection and characterisation of alternative splicing, The 

recent recognition that alternative splicing may contribute more significantly to the 

diversity of the expressed gene complement than previously estimated led to the 

development of a novel computational approach to the detection of exon skipping, the 

most common form of alternative splicing. Chapter 2 describes this approach and its 

application to the first published human genome sequence – that of chromosome 22. 

Closely tied to the quantification and characterisation of transcripts discussed in 

Chapters 1 and 2 is the ability to make biologically important functional inferences 

about identified transcripts based on the location and timing of their expression. For 

example, identifying differences in the location and/or timing of expression of 

alternatively spliced transcripts from the same gene is likely to be of biological or 

pharmaceutical relevance. Chapter 3 presents the development and application of 

controlled vocabularies for describing the biological source of materials used in gene 

expression experiments. These controlled vocabularies define a common terminology 

for sharing information about the gene expression knowledge domain, and define the 

relevant concepts and relationships between these concepts. The implementation of 

controlled vocabularies enables both humans and machines to share and reuse the 

domain knowledge which has been captured through the input of specialist curators. 

They also promote the rapid and accurate mining of the transcript databases. In 

summary, Chapter 4 demonstrates how the approaches taken in Chapters 2 and 3 can 

be applied to the preliminary identification of differentially expressed alternative 

spliceforms. Results obtained for an analysis of the differential expression of 

alternative transcripts in cancer and normal tissues are presented. 
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Chapter 1 

Characterising and Quantifying Gene Expression 

Numerous technologies are used to investigate gene expression. These techniques 

have varying applications, depending on whether they are high or low throughput, and 

on whether they provide gene-identification or gene-expression-level information. In 

this section, we discuss the strengths and weaknesses of these techniques, with 

particular focus on the informatics required to perform high-throughput analysis. 

The primary objectives of gene expression analysis are two-fold:  

• To identify the expressed gene complement (transcript characterisation); 

• To quantify the expression level of these transcripts (transcript 

quantification). 

Experimental methods for characterisation and quantification of the transcriptome can 

be broadly divided into sequence- and hybridisation-based techniques. Sequence-

based methods include those that identify transcripts expressed in a given state (e.g., 

generating ESTs, full-length mRNAs), and those that quantify the level of expression 

of the transcripts (e.g., SAGE). Hybridisation-based methods may be low-throughput 

(e.g., in situ hybridisation, Northern blots), or high-throughput (e.g., 

cDNA/oligonucleotide arrays), but are limited to the analysis of previously identified 

transcripts.  
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Overview: Sequence-based approaches to gene identification 

and expression level quantification 

Sequence-based approaches achieve the identification and/or quantification of 

expressed genes by sequencing either tag-level representations of transcripts 

(transcript fragments), or entire transcripts from starting materials of interest. The 

advent of high-throughput sequencing technologies has accelerated the generation of 

transcript sequence data, providing large amounts of transcript data for expression 

mining. 

Gene expression is dynamic – differing between cells, tissues, developmental stages, 

physiological responses and disease states. While capturing the gene expression 

profiles in every possible state is not feasible using sequence-based methods, this 

approach can provide a “snapshot” of the gene expression in the substrate of interest, 

and as such provide valuable insight into the transcriptome of the substrate. 

Sequence-based methods include techniques for both transcript identification and 

transcript quantification.  

Techniques used in transcript identification: 

• Expressed Sequence Tag (EST) sequencing 

• Full-length mRNA sequencing 

Gene identification via complete or partial transcript capture has been a significant 

contributor to the early understanding of the transcribed eukaryotic genome (Boguski 

and Schuler, 1995; Schuler et al., 1996). EST sequencing is often used in pilot gene 

identification projects as it can identify the more commonly expressed genes in a 
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system. However, only an exhaustive comparison between a completed genome and a 

very high coverage transcriptome can provide insight into the full complement of 

genes within a genome (Saha et al., 2002). The identification of transcripts using a 

sequencing approach is complicated by the wide variation in transcript abundance. 

Even in normalised cDNA libraries highly abundant transcripts tend to obscure rare 

transcripts making them difficult to capture and sequence. The time and expense 

involved in sequencing sufficiently large numbers of ESTs and / or mRNAs makes 

these approaches generally unsuitable for transcript quantification.  

Techniques used in transcript quantification: 

• Serial analysis of gene expression (SAGE) 

• Massively Parallel Signature Sequencing (MPSS) 

The quantification of expressed transcripts can be achieved through the sequencing 

and enumeration of short sequence tags that are uniquely associated with a gene.  

While the results of the SAGE and MPSS approaches are similar, the method and 

depth of analysis differ significantly. The SAGE method generates 14 base pair tags 

that are concatenated and sequenced using a traditional DNA sequencing approach. 

Approximately 50 000 tags are generally produced per SAGE library largely due to 

cost and convenience constraints. (Velculescu et al., 1995; Velculescu et al., 2000). 

Using the more recent MPSS technology sequence tags of 20bp in length are cloned 

onto microbeads and sequenced in parallel to yield a measure of transcript abundance 

(Brenner et al., 2000). Using the MPSS approach in excess of 1 000 000 tags can be 

produced simultaneously. As a result of this increased tag production, and in contrast 
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to the traditional SAGE approach, MPSS allows those genes expressed at levels of 

lower than 20 copies per cell to be detected and accurately quantified. 

1.1 Transcript identification using ESTs 

Expressed sequence tags (ESTs) are partial fragments of expressed genes generated 

by single-pass sequencing from the 5’ and 3’ ends of a cDNA clone (Wolfsberg and 

Landsman, 1997) (Boguski et al., 1993; Lennon et al., 1996) (Figure 1). The large-

scale sequencing of cDNA clones has proved to be a rapid and valuable route to gene 

discovery . Many groups are contributing thousands of ESTs representing numerous 

organisms and expression states to public databases. The data deposited in EST 

databases is generally unorganised, sparsely annotated, redundant and of poor quality. 

Using various approaches EST data can be organised and mined in such as way as to 

produce valuable information about gene expression. 
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Figure 1. Construction of a cDNA library and EST production. mRNA is isolated and 
converted to double stranded cDNA which is ligated into a vector and 
cloned. Techniques vary and the full-length cDNA may, or may not, be 
ligated into the vector. Sequencing of the clone insert from either the 
3’-end or 5’end using standard primers results in the production of 3’ 
and 5’ ESTs which may or may not overlap, depending on the lengths 
of the sequences.  

Extract mRNA from tissue of choice 
and purify poly-A mRNA using a 
oligo-dT column 

Reverse transcribe to make 
cDNA and synthesize 
complementary strand 

Clone each cDNA into a vector. 

Sequence from 5’ and 3’ end of each 
clone insert to generate 5’ and 3’ EST 
for each clone 
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3’ EST 
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1.1.1 cDNA library construction and EST sequencing 

The production of ESTs requires the construction of a cDNA library that is 

representative of the transcriptome of the tissue or cell type of interest. Many of the 

libraries used for the generation of ESTs randomly sample the transcriptome of the 

material from which they were generated. In these libraries the relative abundance of 

clones derived from a unique mRNA is representative of the expression levels of that 

mRNA in the starting material. The advantage of these “non-normalised” libraries is 

that transcript quantification and comparison is possible. The disadvantage is that 

clones containing more rare transcripts are likely to be poorly represented or 

completely absent from the library. The rapid and cost-effective identification of 

novel sequences depends to a large extent on the cDNA libraries that are used. In a 

typical cell a small number of unique mRNAs make up more than 50-65% of the total 

mRNA mass. Random sequencing efforts aimed at novel gene identification are 

therefore confounded by the identification of redundant copies of genes of the 

prevalent and intermediate classes. Bonaldo et al. introduced normalisation and 

subtraction as two approaches to cDNA library construction that facilitate gene 

discovery by increasing the representation of less abundant transcripts, therefore 

accelerating the identification of novel genes and reducing the costs of sequencing 

redundant clones (Bonaldo et al., 1996).  

Normalisation utilises the fact that rare cDNAs reanneal less rapidly than common 

transcripts, and that the single-stranded fraction of the cDNA therefore becomes 

progressively normalised as the reaction progresses. Subtraction involves the 

hybridization of a single-stranded cDNA library (the "tracer") with a collection of 

PCR–amplified cDNAs to be eliminated (the "driver"). Double-stranded molecules 
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are then removed from the sample by hybridisation to hydroyapatite, resulting in the 

creation of a single-stranded, "subtracted" library.  

The construction of a cDNA library (Figure 1) begins with total RNA extraction from 

the tissue, developmental stage or pathological state of interest. Poly-adenylated 

(poly-(A)) RNA is isolated by passing the total RNA thorough a solid-phase matrix to 

which a complementary-polynucleotide is bound. The poly-adenylated mRNA binds 

selectively to the matrix and is later eluted. This isolated mRNA is converted to 

double-stranded mRNA/cDNA hybrid using reverse transcriptase, following which 

the RNA strand is selectively degraded leaving single-stranded cDNA which is used 

as a template to produce the complementary strand. The double-stranded cDNA can 

then be cloned into a vector. The time taken before the reverse transcriptase 

dissociates from the cDNA strand determines the length of the clone insert, and 

therefore what fraction of the mRNA is represented by the clone insert. Insert lengths 

therefore vary and may represent the entire mRNA or just a small part of the full-

length sequence. Techniques which stabilise the reverse transcriptase, resulting in the 

production of clones with longer inserts, thereby providing increased coverage of the 

mRNA, have been developed (Carninci et al., 1998; Carninci and Hayashizaki, 1999; 

Carninci et al., 2001). The set of clones produced from the total RNA pool represents 

the clone library. Usually several hundred to several thousand clones are isolated at 

random from the cDNA library. 

Clones undergo single-pass sequencing from one or both ends of the clone insert 

using vector-based primers to produce 3’ and/or 5’ sequences of varying length and 

quality. 3' tag sequencing dominated early EST studies because of the unique nature 

of the 3' untranslated regions (UTR) of genes, and because the poly-(A) tail of the 
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cDNA insert could be used for priming in sequencing reactions. Subsequent studies 

have been extended to generate 5' ESTs, producing pairs of sequence reads sharing 

the same parent clone. EST sequences are usually between 300-500 readable bases in 

length and 3’ and 5’ sequence reads may overlap with one another depending on the 

length of the insert. Since a full-length transcript may be several thousand bases in 

length ESTs are short sample tags which represent the source mRNA, enabling rapid 

transcript identification at the expense of sequence length and quality. 

A limitation of the commonly used end-sequencing approach is that the central 

regions of long transcripts are not well-represented in the EST databases. The 

ORESTES (Open Reading Frame ESTs) project (Camargo et al., 2001) has 

undertaken the generation of cDNA libraries from the central, coding regions of 

transcripts using a randomly-primed RT-PCR-based approach. The addition of more 

than 700 000 ORESTES to the public databases has significantly increased the 

representation of the central protein coding regions of transcripts as well as further 

increasing the detection of novel transcripts. 

1.1.2 EST quality  

EST sequence data is considered to be of low quality. Only single-pass sequence 

reads are generally generated for each clone with no attention to the quality of these 

sequences. Compression and basecalling errors, which may result in frameshifts, 

occur approximately once every 100bp. Other errors present in EST data include lane 

tracking errors common when using slab-gel sequencing, internal priming and clone 

end reversal which are documented on the Washington University website at 

http://genome.wustl.edu/est/esthmpg.html. Further, the ligation of unrelated cDNAs 

results in the presence of chimeric clone inserts, and the presence of contaminating 



 9

sequence including genomic, vector, mitochondrial and ribosomal DNA, and cDNA 

from unrelated species are all common. 

1.1.3 EST clustering and transcript reconstruction 

ESTs offer a rapid and inexpensive route to gene discovery, reveal expression and 

regulation information and are instrumental in the detection of alternative splicing 

events. Unfortunately the short, unprocessed, error-prone nature of EST data means 

that full advantage cannot be taken of this valuable sequence information. However, 

the sheer volume of EST data generated by large-scale EST sequencing projects 

(Figure 2) means that a significant improvement in reliability can be gained by taking 

advantage of EST redundancy to reduce error and increase the length of represented 

transcripts (Jongeneel, 2000). EST clustering projects pre-process, cluster and post-

process EST data to yield higher quality transcript information. An aim of these 

projects is the construction of gene indices, non-redundant catalogues where all 

available transcripts are partitioned into clusters such that transcripts are placed in the 

same cluster if they represent the same gene or gene isoform. Gene indices facilitate 

gene expression studies and novel transcript detection. Some groups also perform 

transcript reconstruction by using assembled clusters to build a consensus sequence 

that provides a longer and more accurate representation of the transcript represented 

by the cluster. 
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dbEST Summary by Organism
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2%

2%

2%
1%

22%
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Arabidopsis thaliana (thale cress)

Other organisms (398 species)

 

Figure 2. Representation of organism transcriptomes in dbEST. The May 2002 release of dbEST contains more than 11.5 million ESTs from 
409 organisms. Human ESTs predominate, making up 38% of the data, with mouse ESTs making up 22% of the data. 
Organisms well-represented in dbEST are generally those which are well-studied model organisms. 
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1.1.3.1 What is an EST cluster? 

An EST cluster is a collected set of ESTs which represent the same gene or gene 

isoform. Membership of the cluster is based on sequence similarity. Ideally each 

cluster should represent only one gene, and all ESTs from the same gene should be in 

a single cluster. 

1.1.3.2 Overview of EST clustering 

The grouping of transcripts based on sequence similarity forms the basis of EST 

clustering. Initially sequence identity is used to determine cluster membership. In 

addition ESTs that are annotated as having been sequenced from opposite ends of the 

same clone can be grouped together on the basis that they are from the same clone 

insert and therefore from the same gene. This shared annotation information provides 

a secondary (though less reliable) method of clustering.  

A generalised clustering system is organised around the rapid initial grouping of 

sequences sharing significant similarity, followed by the accurate alignment of 

sequences within each cluster. Clustering can be performed with or without the 

generation of consensus sequences. The value of a consensus sequence is that it can 

be used as a single representative of the cluster as a whole. 

1.1.3.2.1 Loose and stringent clustering 

Depending on the aim of the clustering process either loose or stringent clustering 

algorithms can be implemented. Stringent clustering systems tend to sacrifice 

consensus length in favour of sequence fidelity, and result in lower coverage of 

expressed genes and the inclusion of fewer transcript isoforms. Loose clustering 

systems result in greater coverage of expressed genes and the inclusion various 
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trancript isoforms at the cost of the possible inclusion of paralogs and lower fidelity 

data. Stringent clustering is performed by systems such as TIGR_ASSEMBLER and 

looser clustering is implemented in Unigene and STACK_PACK.  Individual 

clustering systems include various pre- and post- processing steps in order to manage 

the shortcomings of each of these approaches. 

1.1.3.2.2 Supervised and unsupervised clustering 

The aim of clustering is that each cluster should represent only one gene, and all ESTs 

from the same gene should be in a single cluster. In the absence of full-length 

mRNAs, or genomic sequence ESTs are clustered based on sequence similarity and 

clone of origin. This “unsupervised” clustering may result in ESTs representing the 

same gene being split into separate clusters if they do not share significant sequence 

identity. Available full-length sequence such as mRNA, or genomic sequence can be 

used as a scaffold upon which to cluster ESTs. The increased length, and therefore 

representation, provided by these scaffolds allows ESTs which may not have been 

clustered based on sequence similarity to be placed in the same cluster based on their 

identity to a common scaffold. The use of such scaffolds as the basis for clustering is 

known as “supervised” clustering. 

1.1.3.3 Steps in EST clustering 

Though specific implementations vary widely EST clustering generally proceeds 

through certain basic steps. (Figure 3) 
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Figure 3. Steps in EST Clustering.  EST clustering is performed by a number of groups each using different approaches. A generalised 
approach to EST clustering involves pre-processing to remove contaminants, clustering based on sequence similarity, 
alignment and consensus generation. The output of EST clustering is a set of groups (clusters) of ESTs where each cluster 
ideally represents a single gene. Many systems produce alignments and consensus sequences for each cluster. The 
consensus sequence is a single sequence which represents the member sequences of the cluster. Singletons are also 
produced, singletons are ESTs which share no similarity with any other sequence in the dataset and which may represent 
single genes. Some systems may identify potential alternative isoforms. 

Pre-processing 

Clustering 

ESTs are masked with common vectors and repeats. 

Assembly 

Initial clustering based on sequence similarity. 

Alignment 
Processing 

Alignment of ESTs in each cluster. A consensus may be 
produced at this stage. 

Cluster joining Clusters sharing members from a 
common original clone may be joined if 
sufficient reliable clone information is 
available 

Output Potential outputs include: 
� Clusters 
� Singletons 
� Alignments 
� Consensus sequences
� Alternative isoforms 

Alignments checked for errors and potential 
alternative splicing. Consensus sequence may be 
generated at this stage. 
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1.1.3.3.1 Pre-processing  

Membership of an EST cluster is primarily determined by shared sequence similarity 

between cluster members. Sequence quality is of overriding importance in assigning 

ESTs to the correct clusters. Pre-processing in the form of masking, trimming and 

filtering is used to optimise sequence quality prior to clustering. 

1.1.3.3.1.1 Masking 

A common problem in EST clustering is the presence of contaminating sequence 

elements. ESTs generated from distinct genes but which share these contaminating 

sequence elements will be clustered together despite the fact that they represent 

distinct transcripts. It is therefore essential that these elements be removed by masking 

prior to clustering. Common contaminating sequence elements include: 

a) Repeats 

Repetitive elements are common features of EST data. These include the ubiquitous 

ALU, SINE and LINE elements common to human genes. Repeat databases such as 

RepBase (http://www.girinst.org/) are a valuable resource that can be used for 

masking of the input EST data.  

b) Low Complexity Sequence 

Low complexity sequence (microsatellite repeats such as (CA)n and poly-A tracts) 

may cause problems for clustering – particularly when sequence similarity based on 

sequence alignment is used for assigning cluster membership. Those clustering 

algorithms that use word-based cluster assignment approaches can be modified to 

assign low weight to these low complexity words. 
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The most effective method for removing contaminant sequence is to compare each 

sequence in the input dataset against a database of repeats, vectors and other sources 

of potential contamination. Fast, accurate algorithms such as XBLAST (NCBI) and 

cross_match, which implements the Smith-Waterman-Gotoh algorithm, have both 

been used successfully with cross_match providing greater flexibility and sensitivity 

than XBLAST. In cases where a direct identity is found with a sequence in the repeat 

or vector database a “mask residue” is inserted into the read (Figure 4). The resulting 

strings of NNNs or XXXs will be ignored by most clustering algorithms. 

RepeatMasker (http://ftp.genome.washington.edu/RM/RepeatMasker.html) is a 

program that screens DNA sequences for repeats and (optionally) low complexity 

DNA sequences. RepeatMasker invokes cross_match to perform the masking using 

various repeat databases, and provides a complete report on the repeats present in the 

input data as well as a modified input file in which the annotated repeats have been 

replaced with either Xs or Ns. While masked sequence is essential for accurate 

clustering it is important to revert to using the raw, unmasked sequence in the 

assembly step. The elements such as repeats and low-complexity regions which are 

removed during pre-processing are valuable in ensuring accurate sequence assembly. 
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In cases where sequence contamination is not detected prior to clustering sequences 

sharing a common contaminant should be placed into a single cluster. There is no 

automated method for detecting contaminated clusters, however, if a cluster 

containing an unusually large number of sequences is detected this should be carefully 

analysed for the presence of unmasked contaminants. Once contaminants have been 

identified and removed the cluster can be broken down into its individual sequence 

components and re-processed. 
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Raw unmasked EST 
>Seq 1 
CTTGGATCCTCTAGAGCGGCCGCCCTTTTTTTTTTTTTTTTTGGTATAGCCCTGGCTGTC 
CTGGAACTCACTTTGTAGACCAGGCTGGCCTCGAACTCAGAAATCCGCCTGCCTCTGCCT 
CCCAAGTGCTGGGATTAAAGGCATGCACCACCACGGCCGTTTTGGAAGCATTTTCTTTTT 
TCTTTTGTTTTTTTGTTTTTCAAATCTTTGTATTTTATTGTGAAAAATATTTGATGTGAG 
AAGCATTTTCTTAACTGGGGTTCTTGCCTCTCAAAGGATTCTAGCCCATGCCAAATTAAC 
ATAAAGTTAGATAGAACACTGATTAAAAAGATGCTCACTCTGAAAAACAATGTCCATCAT 
TTCCTTCAAAGCTGTAAGGCTTTCTCACAGGTACGTATCTTGACCCTGTGTGTGTGTGCG 
CGCGCGTGCACCCCACAAAAAAAATACACGTCATTTTTCTTCATTTCTCTCAGCCTGTTA 
TTTTTCAAGATGGACAGACTCGCTTTGTGGTCTAGCTGGTCCAAAATTCACTCTGTTGCT 
CATACTGGCTNTTTTGATTCTCAA 

Masked EST 
>Seq1A 
CTTGGATCCTCTAGAGCGGCCGCCCXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXTTTTGGAAGCATTTTCTTTTTTCTTTTGTTTTTTTGTTTTT 
CAAATCTTTGTATTTTATTGTGAAAAATXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXCTGATTAAAAAGATGCTCACTCTGAAAAACAA 
TGTCCATCATTTCCTTCAAAGCTGTAAGGCTTTCTCACAGGTACGTATCT 
TGACCCTGTGTGTGTGTGCGCGCGCGTGCACCCCACAAAAAAAATACACG 
TCATTTTTCTTCATTTCTCTCAGCCTGTTATTTTTCAAGATGGACAGACT 
CGCTTTGTGGTCTAGCTGGTCCAAAATTCACTCTGTTGCTCATACTGGCT 
NTTTTGATTCTCAA 

Figure 4. An EST before and after masking for vectors and common repeats. 
Common vectors and repeat sequences in the raw EST data are 
identified by comparison to a file containing common vectors and 
repeats. A string of X’s is inserted to replace the contaminating 
sequence before clustering is begun. 
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1.1.3.3.1.2 Filtering 

The pre-processing of data for clustering may also include a sequence length and 

quality assessment step. Using chromatogram data sequence quality cut-off values can 

be imposed with only sequences above a certain quality threshold being submitted for 

clustering. PHRED (http://www.phrap.org/phrap.docs/phred.html), software which 

uses sequencer-produced tracefiles to perform basecalling and the assignment of 

quality values to each base, can be used to filter the EST sequence data for sequence 

above a given quality threshold. Raw tracefiles for a large number of EST sequences 

are available via FTP from the Washington University Genome Sequencing Center 

(http://genome.wustl.edu/). Extremely short sequences can also be discarded at this 

stage. 

1.1.3.3.1.3 Trimming 

Before EST sequences are deposited in public databases the vector sequence is 

generally trimmed from the ends of the sequence read. However, even short vector 

fragments can cause spurious clustering and must be removed. The VecBase database 

(ftp://ncbi.nlm.nih.gov/blast/db/vector.Z) is a valuable source of common vector 

sequence which can be used for masking. If a custom vector has been used for cloning 

the sequence of this vector should be used for masking the input data. 

1.1.3.3.2 Clustering 

Briefly, sequences are grouped using a fast measure of sequence identity, and ESTs 

sharing significant sequence similarity are placed in a single cluster. This cluster 

assignment is then subject to further verification. 
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1.1.3.3.2.1 EST clustering and assembly tools.   

Tools for clustering and assembly vary in their aims and approaches as outlined 

below.  

a) Using Common Homology Based Tools. The well-known tools for sequence 

comparison (Smith-Waterman, BLAST and FASTA) are designed for homology 

searching, the purpose of which is to detect and quantitate the similarity (distance) 

between any two sequences. Although not developed specifically for clustering these 

packages are generally widely available, and the default parameters can be modified 

to enable clustering. Since the distance measure used in EST clustering is reduced to a 

binary it is only necessary to detect near or perfect matches. For this reason it is 

possible to select for speed over sensitivity in the initial pairwise comparison. The 

complexity of an EST clustering task is dependant on the number of ESTs in the input 

dataset. Datasets of a few hundred to a few thousand ESTs can be clustered efficiently 

using standard tools for multiple sequence alignment and assembly. However, these 

approaches are untenable for larger projects. Obtaining even a binary distance 

between potentially millions of ESTs is far from trivial – even using modern 

supercomputers. 

b) Purpose-built Alignment Based Clustering Methods. A number of dedicated 

alignment-based clustering algorithms have been developed, though few have been 

implemented for large-scale clustering. For single seed clusters a dynamic-build based 

strategy which uses iterative BLAST searches to build clusters from single ‘seed’ 

ESTs is feasible. This method is not generally implemented for large-scale database 

building.  A second example of purpose-built alignment-based clustering software is 

the JESAM package used at EBI to build the alignments and clusters for the 
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EuroGeneIndices (Parsons and Rodriguez-Tome, 2000). JESAM first finds and stores 

the alignment between sequences, following which clusters are built using these 

alignments. Since these two steps are separate, different algorithms can be 

implemented for the clustering step. Alignment-based tools are often intolerant of 

sequencing error. 

c) Non-Alignment Based Clustering Methods. Word-based agglomerative 

algorithms and pre-indexing methods fall into this category. Agglomerative clustering 

means that each EST starts out in a unique cluster, and that the final clustering is 

generated through a series of merges. Merges are made using transitive closure rules 

whereby any two sequences with a given level of similarity will be placed into a 

single cluster. Hence, dissimilar sequences A and B will be placed in a single cluster 

if they both share similarity to sequence C. Word-based (rather than alignment-based) 

similarity is used. Clusters are merged when two sequences share word identity and 

multiplicity above a set threshold within a specified window size. Non-alignment 

based methods, while more tolerant of sequencing error than alignment-based 

methods, tend to capture gene variants and contaminating sequence (Burke et al., 

1999). These artefacts can be identified by post-processing of the clusters using 

assembly and analysis tools. 

1.1.3.3.3 Assembly 

Assembly may be a part of the clustering step, or may be performed later by specialist 

assembly software such as PHRAP or CAP3. A consensus sequence may be derived 

directly from the assembly. 
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Commonly used sequence assemblers include PHRAP (Green, 1996) 

TIGR_Assembler and CAP3. PHRAP and CAP3 have been reported to be more 

tolerant of sequence error, and are therefore more suited to EST assembly. CAP3 has 

been demonstrated to produce fewer assemblies per gene and may produce a higher 

quality consensus sequence. 

1.1.3.3.4 Alignment processing 

Aligned clusters, particularly those generated as part of a loose clustering strategy, 

should be processed to detect errors and alternative splice forms. Consensus 

sequences may be generated as a part of this step, or may be accepted directly from 

the assembly. 

1.1.3.3.5 Cluster joining 

Clusters or cluster consensi can be further grouped using annotation information. 

Clone-linking utilises the fact that 3’ and 5’ reads from the same clone share a clone 

id. It should be noted that linking based on clone annotation is entirely dependent on 

the accuracy of clone annotation in the EST database and is therefore subject to error. 

1.1.3.4 Overview of gene indices produced by clustering ESTs 

A number of gene indices have been produced using publically available EST data. 

These aim to reduce the redundancy present, and thereby enhance the information 

which can be gleaned from EST data. The TIGR and UniGene databases have focused 

on reconstruction of the gene complement of genomes and their technological 

developments have been directed towards achieving that goal. The STACK database 

has focussed on the detection and visualisation of transcript variation in the context of 

tissue, developmental stage and pathological states.  
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1.1.3.4.1 Unigene 

Unigene, based at the National Centre for Biotechnology Information (NCBI), is one 

of the earliest and most enduring efforts for the automatic production of gene indices 

from Genbank sequences. Each Unigene cluster contains mRNA and EST sequences 

which represent a unique gene. Additional information such as the identity of the 

gene, chromosomal map location, and tissue types in which the gene is expressed 

(from SAGE and EST data) is also provided. NCBI does not generate contigs and/ or 

consensus sequences for Unigene clusters. The HumanInfoBase  

(http://www.mips.biochem.mpg.de/proj/human/) database at MIPS provides 

assembled, annotated Unigene clusters. 

Unigene databases are available for 11 organisms (at time of writing): human (Homo 

sapiens), mouse (Mus musculus), rat (Rattus norvegicus), zebrafish (Danio rerio), 

Cow (Bos taurus), Clawed frog (Xenopus laevis), Arabidopsis (Arabidopsis thaliana), 

wheat (Triticum aestivum), rice (Oryza sativa), barley (Hordeum vulgare) and maize 

(Zea mays). Databases are updated weekly with new ESTs, and bimonthly with newly 

characterised sequences. All Unigene databases are available for download from: 

ftp://ncbi.nlm.nih.gov/repository/UniGene/ 

Unigene clusters can be searched by gene name, Unigene cluster ID, chromosomal 

location, cDNA library, accession number, and text terms. Sequence-based searches 

against Unigene human, rat and mouse databases are available from the Swiss 

Institute of Bioinformatics at: http://www.ch.embnet.org/ 

Unigene has been used for the selection of unique transcripts for the construction of a 

cDNA microarray for the large-scale analysis of gene expression, and as the 

candidates for the production of a human gene map. 
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For information on the construction of Unigene see 

http://www.ncbi.nlm.nih.gov/UniGene/build.html  

1.1.3.4.2 TIGR gene indices 

The Institute for Genome Research (TIGR) produces gene indices for more than 40 

organisms including various animal, plant, protist and fungal species (Quackenbush et 

al., 2000; Quackenbush et al., 2001). The TIGR indices incorporate both ESTs 

sequenced at TIGR, ESTs from dbEST and mRNAs from Genbank. Each TIGR 

cluster contains a fasta formatted consensus sequence with a unique accession as well 

as additional information including details of the assembly, tissues in which the gene 

is expressed and putative gene identification. Related databases generated by TIGR 

provide additional information about TIGR TCs. The Genomic Maps database 

provides genomic mapping for a subset of organisms for which TCs are available. The 

TIGR Orthologous Gene Alignment database (TOGA) (Lee et al., 2002) provides 

information about orthologous sequences between TCs for the organisms for which 

TIGR Gene Indices have been generated. 

Each TIGR cluster is represented by a Tentative Consensus sequence (TC, or THC in 

the case of Tentative Human Consensi). The TIGR databases are freely available to 

researchers at non-profit organisations at http://www.tigr.org/tdb/tgi.shtml. The TIGR 

Human Gene Index (HGI) is produced annually. The frequency of new releases varies 

between species, and depends on the accumulation of new transcripts. The TIGR gene 

indices can be searched by nucleotide or protein sequence, EST, transcript or 

consensus identifiers, tissue, cDNA library name or library identifier, gene product 

name, functional classification according to Gene Ontology (GO) terms (Ashburner et 

al., 2000).  Various publications on the TIGR Gene indices are available. 
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1.1.3.4.3 STACK 

The STACK human gene index is generated by clustering EST and mRNA data, and 

offers human transcript consensus sequences that reflect gene expression forms and 

alternate expression variants within 15 tissue-based and one disease category (Miller 

et al., 1999; Christoffels et al., 2001). This organisation of transcript by expression 

site presents the opportunity to explore transcript expression in specific tissues or 

subsets such as disease related sequences. 

Each STACK cluster contains alignments, consensus sequences and assembly 

information, and is dynamically linked to the UniGene database. Web-based software 

allows for the visualisation of clusters and alignments, and highlights transcript 

variation. STACK database releases are made available with varying frequency – on 

average twice a year. STACKdb and the stackPACK toolset used to generate STACK 

are freely available to academic groups and can be downloaded from 

http://www.sanbi.ac.za/CODES. Sequence-based searching of STACKdb is available 

at http://juju.egenetics.com/stackpack/webblast.html.  

STACKdb has been used to support the detection of a novel retinal-specific gene 

responsible for retinitis pigmentosa. The STACKpack toolset has been used in the 

production of various gene indices and for the survey of genes in the malarial genome. 

1.1.3.5 Gene indices incorporating genome data 

1.1.3.5.1 Ensembl 

The Ensembl database at EBI (http://www.ensembl.org/) provides an automatic 

annotation of a number of completed genomes including human, mouse, fly, and fugu. 

The system combines automated gene predictions with external data derived from 
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both experimental and computational sources to provide an integrated source of gene, 

transcript and protein sequence data, as well as functional information. An open SQL 

database and a query interface, Ensembl Mart, provide users with the ability to access 

all the available information and to perform biologically useful queries of the stored 

data. 

1.1.3.5.2 RefSeq 

The RefSeq project at NCBI aims to produce a single set of curated reference 

sequences for each genomic region, transcript and protein (Pruitt et al., 2000). 

http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html. RefSeq provides a stable and 

non-redundant set of reference sequences for gene characterisation, including 

expression studies, mutation analysis and the detection of polymorphisms.  

RefSeq is made up of three primary projects: (i) curated RefSeq 

(http://www.ncbi.nlm.nih.gov/LocusLink/build.html), (ii) genome annotation 

(http://www.ncbi.nlm.nih.gov/genome/guide/build.html) and (iii) complete genomes, 

each of which are generated using different methods. 

1.1.3.5.3 AllGenes 

AllGenes (http://www.allgenes.org/) provides access to an integrated database of 

known and predicted genes in mouse and human . The major strength of AllGenes is 

its structured approach to the integration of ESTs, genomic sequence, expression 

information and, functional annotation. A relational database and controlled 

vocabulary provides users with the ability to perform useful biological queries in a 

uniform manner.  
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1.1.4 Finding coding regions using EST data 

The detection of novel proteins using EST data is complicated by the fact that 

searching EST databases with commonly used six-frame translation using software 

such as tBLASTn yields largely sequences which have no coding region, or which are 

in the incorrect reading frame, or the incorrect strand. 

The short length and poor sequence quality of ESTs means that finding the open 

reading frame (ORF) is not generally feasible.  

Successful approaches to the detection of the coding sequence (CDS) in EST data 

have been in two major areas: 

• Detection of similarities to known protein sequences or sequence motifs. 

This method requires that there is similarity to known proteins or protein 

motifs. This restricts this method to the identification of sequences with 

similarity to previously identified proteins. 

• Detection of statistical biases in the CDS nucleotide sequence associated 

with codon frequency usage. This approach assumes no similarity to 

known proteins, but requires modification for each species to which it is 

applied to account for differences in the codon usage. This method has 

been applied in the program ESTScan (Iseli et al., 1999) 

(http://www.ch.embnet.org/software/ESTScan.html) which is able to 

detect and correct sequence errors resulting in frameshifts within the CDS. 
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1.1.5 Expressed sequence tag databases 

1.1.5.1 dbEST 

dbEST, distributed by NCBI, and the EST divisions of Genbank and EMBL, are EST 

repositories which contain sequence and annotation information for publically 

available EST data. More than 10 million ESTs representing in excess of 375 

organisms have been deposited in dbEST since its inception. This EST data is 

available by anonymous ftp from ftp://ncbi.nlm.nih.gov/genbank/. Individual 

sequences and small batches can be obtained using Entrez 

(http://www.ncbi.nlm.nih.gov/entrez/). 

The EST highly redundant data in these databases are not clustered or assembled, and 

may or may not be grouped by species of origin. Unrestricted homology searches 

against dbEST will therefore commonly return numerous sequences which represent 

the same gene as the query, paralogous genes, and sequences from related species. 

Both NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) and SIB 

(http://www.ch.embnet.org/software/aBLAST.html) offer the ability to search subsets 

of dbEST restricted by species, with NCBI offering human, mouse and “other” 

divisions, and SIB offering the ability to select one or more from a large number of 

divisions including plants, prokaryotes, fungi, invertebrates, zebrafish, human, mouse 

and rat.  

Searching clustered EST collections such as Unigene will result a more concise report 

than searching dbEST. Homology searching against clustered databases which 

provide contigs and consensus sequences for each cluster is very rapid, though the 

accuracy of the contig production and consensus sequence generation may affect the 
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quality of the matches obtained. TIGR, SANBI and MIPS offer BLAST searching of 

their gene indices; TIGR Gene indices, STACK and HIB on their respective websites. 

1.2 Transcript identification using full-length mRNAs 

Despite the abundance of EST data, the production of full-length cDNA libraries and 

transcripts remains an important priority in the elucidation of complete transcriptomes 

as the best evidence for an expressed gene is a fully sequenced transcript. The 

complete transcriptome cannot accurately be deduced from the genome sequence 

alone, owing to the complexities of transcription and transcript processing. While the 

capture of expressed transcripts from a large number of expression states remains 

impractical, the availability of full-length sequences provides coverage of the entire 

length of the transcript; something which is not available from EST data. Coverage 

across the length of the gene provides valuable information about exon usage and the 

position of exon-intron boundaries which, in turn, contributes to an increase in the 

accuracy with which transcripts can be mapped to the genome sequence. Full-length 

transcripts can be used as scaffolds/organisers of EST data – improving the accuracy 

of EST clustering, and providing further information about the occurrence of 

alternative splicing. Complete sequence can also be used more efficiently than ESTs 

for the prediction of protein structure and function and the isolation of the cognate 

protein. 

Both the libraries of clones containing full-length cDNA inserts, and sequences of the 

full-length cDNAs are important components of a full-length resource. The 

availability of full-length clones in an organised public collection is a critical resource 

for ongoing genetic research. 



 29

For 90% of gene predictions, the true 5’-end of the coding sequence is not correctly 

annotated. For this reason the amplification of ORFs based on these predictions does 

not provide a reliable transcript of the full-length protein-coding gene. Full-length 

cDNA cloning and sequencing therefore remains the method of choice in the 

identification of full transcripts. However, this approach will not capture all 

transcripts, but is specific to the site, cell type, developmental stage and 

treatment/pathology of the material from which the library was prepared. Full length 

sequencing of mRNAs can be interpreted as sequencing of the complete protein 

coding sequence, or sequencing of the mRNA from cap site through to final 

polyadenylation site. The latter is the preferred definition. 

Ideally the production of full-length sequence for all transcripts would represent the 

transcriptome, however, the routine production of full-length transcript sequences for 

all possible transcript isoforms in every tissue, developmental stage, and 

environmentally affected condition – and every combination of these factors is not a 

feasible undertaking.  

1.2.1 Full-length cDNA library production and sequencing 

Until relatively recently technologies for the large-scale production of stable full-

length cDNA libraries did not exist or were not feasible given the time and cost 

involved. A number of recent advances, including the use of stable enzymes and non 

PCR-based techniques, have allowed for the production and selection of long insert 

cDNA libraries. Additionally, the advances in sequencing technologies during the 

progress of the Human Genome Project have increased the capability for the high-

throughput production of sequence data while simultaneously reducing the associated 

costs. There are various limitations in the production of full-length cDNA libraries. 
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The preparation of full-length cDNAs is simpler for shorter mRNAs, while longer 

transcripts are more difficult to clone and propagate. This leads to a bias in the insert 

size in full-length cDNA libraries. In order to identify rare genes – particularly where 

these transcripts are longer than average – it is necessary to develop techniques which 

overcome limitations on insert size and clone propagation. 

1.2.2 Full-length mRNA databases 

1.2.2.1 Human Full-Length cDNA Annotation Invitational (H-Inv) 

A number of groups have been involved in the production of full-length human 

cDNAs. To co-ordinate these efforts and thus provide a highly annotated, unified set 

of high quality human transcripts the Japanese Biological Information Research 

Centre and the DNA Database of Japan initiated the establishment of a core 

transcriptome database; the Human Full-Length cDNA Annotation Invitational 

project is an international collaboration to produce a unique set of high quality full-

length cDNA clones by automatic annotation and human curation under unified 

criteria. The H-Invitational Database (H-InvDB) provides annotation of biological, 

structural, functional and evolutionary information for each transcript.  

The cDNAs included in H-InvDB were obtained from eight groups involved in the 

production of full-length human cDNAs. 



 31

1.  Full-Length Human cDNA Sequencing Project by NEDO 

2.  Full Length cDNA by Institute of Medical Science, University of Tokyo 

3.  Hunt: Human Novel Transcripts by Helix Research Institute, Inc. 

4.  HUGE: Human Unidentified Gene-Encoded Large Proteins by Kazusa DNA 

Research Institute 

5.  NEDO Database at Kazusa DNA Research Institute 

6.  Mammalian Gene Collection (MGC) by NCI/NIH 

Initiated in 1999 as a collaborative effort between various institutes of the NIH, the 

Mammalian Gene Collection project aims to provide a catalogue of full-length 

mammalian genes (Strausberg et al., 1999). The project has focussed initially on the 

production of full-length cDNAs for human and mouse, and will later extend to 

include other mammals. Clones produced by the project are prepared from high 

quality mRNA extracted from cell lines or tissues. Clones are made available through 

the IMAGE Consortium, while 3’ and 5’ ESTs are generated and released to public 

databases. An ongoing informatics challenge is the selection of clones likely to 

represent full-length transcripts. In the initial phases of the project clones with inserts 

of up to 3 to 4kb were sequenced using techniques such as shotgun sequencing, 

primer walking, and concatenation. Sequence data is generated to the same standards 

as those specified by the Human Genome Project – finished sequence is therefore 

99.99% accurate. Annotation of the sequence data is also performed. 

The goals of the project include the development and improvement of supporting 

technologies, including: (i) improving the preparation of full-length cDNA libraries 
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from small quantities of starting material, (ii) identification of rare transcripts, long 

transcripts, or transcripts with complex structures (iii) algorithms and software for 

identifying clones containing uncharacterised full-length inserts; and (iv) techniques 

for faster, less expensive sequence production. 

As of January 2002 a non-redundant set of more than 20 000 putative full-length 

human and mouse clones have been identified and full sequences for 9000 human and 

4000 mouse clones have been produced. 75% of the selected clones contain full-

length ORFs. 

Clone library lists, clone lists and insert sequences in fasta format are available for 

download from http://mgc.nci.nih.gov/. Sequenced clones can be searched using 

BLAST at the same site. Additionally, the genes represented by MGC clones can be 

searched by gene name or keyword at the website. 

7.  German Human cDNA Project by DKFZ 

The German cDNA Consortium is the largest European full-length cDNA generation 

and sequencing project. A major objective is the functional characterisation of the 

full-length cDNAs identified by the project. The sequences produced by the project 

undergo comprehensive manual and automated annotation and curation and data is 

available for homology searching at http://mips2.gsf.de/proj/cDNA/blast_search.html 

Clones produced by the project are freely available for research from 

(http://www.rzpd.de), or by request to: clone@rzpd.de  

8.  Human cDNAs produced by Chinese National Human Genome Center (CHGC) 
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1.2.2.2 RIKEN Mouse Gene Encyclopedia Project   

The RIKEN Mouse Gene Encyclopedia Project aims to identify and sequence all full-

length transcripts for the mouse genome (Kawai et al., 2001). In addition information 

regarding expression locations, chromosomal mapping and annotation are collected 

and presented at http://genome.rtc.riken.go.jp/ 

A key feature of the project has been the development of technologies for the 

generation of full-length cDNA libraries and for high-throughput template preparation 

and sequencing. Developments in informatics for data management and annotation 

have been undertaken and provide the project with the ability to do real-time 

clustering of the 3’ ends of 5’-end validated clones in order to provide a continually 

updated, non-redundant encyclopedia. 

A full-length cDNA microarray constructed from a set of clones representing 19 000 

full-length cDNAs has been prepared and used to examine developmental and 

metabolic pathways in 49 tissues.  

In 2000 experts in biology and bioinformatics gathered for the Functional Annotation 

of Mouse (FANTOM) meeting, the aim of which was to collaboratively annotate 

approximately 21 000 full-length sequences generated by the RIKEN group. All 

published RIKEN sequence data including 3’ ESTs, 5’ ESTs and full-length 

sequences are available from the public DNA databases 

(http://genome.gsc.riken.go.jp/homology/about.html#release).  Homology searching 

against this RIKEN Mouse Gene Encyclopedia data is possible from the RIKEN 

BLAST website at http://genome.gsc.riken.go.jp/homology/blast.html. In addition the 
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full-length mouse encyclopedia sequences, annotation data, and predicted amino acid 

sequences for the FANTOM dataset are available for download from the RIKEN 

website at: http://genome.gsc.riken.go.jp/resource.html#archive. The approximately 

21 000 full-length clones are available from RIKEN upon request.  

1.3 Transcript quantification using SAGE 

The use of sequence-based methods for the quantification of gene expression is more 

recent than their use in transcript identification, but has proved a rapid and valuable 

method to determine the distribution of transcripts in a sample of interest. 

Serial Analysis of Gene Expression (SAGE) was developed in 1995 to take advantage 

of high-throughput sequencing technologies for the rapid identification and 

quantification of expressed gene transcripts (Velculescu et al., 1995; Velculescu et al., 

2000). The advantage of SAGE over other methods of gene expression analysis is that 

it requires no prior knowledge about the identity of the genes of interest, and it 

provides quantitative expression information for the transcriptome under study. While 

sequencing ESTs from non-normalised cDNA libraries can also provide quantitative 

expression information the cost of obtaining a depth of sequencing comparable to 

SAGE is prohibitive. Consequently SAGE is generally a more cost-effective method 

for detecting low-abundance transcripts.  

The SAGE technique has numerous applications including the identification of 

disease-related genes, the elucidation of developmental and disease pathways, and the 

analysis of treatments on cell lines or tissues. 
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1.3.1 Description of the SAGE method 

The SAGE technique does not in fact measure the expression of a gene, but quantifies 

a “tag” which represents a gene transcript. 

SAGE tags are nucleotide sequences of defined length directly adjacent to the 3’-most 

restriction enzyme site for a specified restriction enzyme. Original SAGE tags were 

9bp in length, but more recent protocols generate 10 to 14 bp tags. NlaIII is the most 

commonly employed restriction enzyme though other 4-bp cutters may be used.  

The generation of SAGE tags involves the conversion of extracted mRNA to cDNA 

followed by the digestion of the cDNA using a 4bp cutter enzyme (usually NlaIII). 

Digested cDNA is divided into two pools and different linker/adaptor sequences are 

ligated to the cDNAs in each pool. Each linker contains the docking site for a second 

restriction enzyme (BsmF1). The second restriction enzyme is then used to cleave the 

cDNA molecule a short distance (~20bp) downstream, resulting in short tags 

consisting of the linker sequence and about 20bp of the adjacent cDNA. Ligation of 

tags from the two pools results in the production of ditags which are PCR amplified. 

The linkers are then cleaved off before the ditags are concatenated. Concatamers 

containing 25 or more ditags are ligated into sequencing vectors before being cloned 

and sequenced. 

The data produced by SAGE is a list of tags and the count value for each, thus 

representing the expression level of each tag (and therefore its corresponding gene) in 

the sample. 
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1.3.2 Disadvantages 

While SAGE provides a rapid and inexpensive means of quantifying gene expression 

levels there is the potential for error in the assignment of tags to genes and in the 

absolute quantification of transcripts. A 10bp tag is not necessarily a specific or 

unique representation of a transcript. Instances in which one tag can be assigned to 

more than one gene (ambiguous tag to gene assignment), and in which one gene has 

more than one tag (non-specific tag to gene assignment due to alternative 

polyadenylation or polymorphism) can and do occur. This is compounded by the fact 

that even acceptable levels of sequencing error can have a significant effect on a short 

tag. 

There are therefore two major issues to be addressed: 

1. Ensuring that the tags and tag counts are a valid representation of the genes and 

their expression levels. 

Sequencing error has the greatest impact on the validity of the tags and their counts. A 

sequencing error of 1% per base translates to a 10% chance of one or more errors 

occurring in a 10bp tag. The results of this sequencing error could be to: 

a. Decrease the count for that tag by one 

b. Increase the count of another unrelated tag by one 

c. Establish counts for a tag that does not represent any gene 

In cases where the tag count is high, decreasing it by one has relatively little effect. 

However, tag counts of 1 need to be treated with suspicion – and are routinely 

discarded from any analysis, as their accuracy cannot be easily verified. 
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2. Providing accurate tag to gene mapping 

The valid and useful assignment of tags to genes is made difficult by the ambiguous 

and non-specific nature of tag to gene mapping and compounded by sequencing error. 

Tags are derived from transcribed sequences usually from incompletely characterised 

transcriptomes. The set from which tags can be derived is therefore incomplete. The 

specificity and unambiguity of the tag to gene mapping can therefore not be 

confirmed. A sequencing error rate of 1% per base means that one or more errors may 

occur in the average 10bp tag, compounding the unspecific and ambiguous tag to gene 

mapping. Electronic quantification of the non-specific and ambiguous tag to gene 

mappings can be estimated by extracting SAGE tags from well-characterised, low-

error mRNA sequences in public databases and matching these to defined gene units.  

Using EST data for SAGE tag extraction and quantification is complicated by the 

sequencing error present in ESTs. EST tag to gene assignments can be corrected for 

the estimated 10% of tags likely to be due to error. This correction is accomplished by 

removing 10% of the most rarely occurring tags for a particular gene, and removing 

10% of the most rarely occurring genes for a particular tag. Of course, this method 

may remove evidence for rare, naturally occurring transcripts. 

1.3.3 SAGE databases and tools 

SAGE tags and counts for various libraries are available for online query through the 

SAGEmap website at NCBI http://www.ncbi.nlm.nih.gov/SAGE/. Using this site 

researchers are able to retrieve SAGE data by tag, sequence, gene and by library. User 

are also able to perform SAGE-based differential expression analyses for any pair of 
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libraries for which SAGE tags have been generated, or to compare the relative 

expression levels of selected SAGE tags in two libraries. 

Integration of SAGE tags with genomic information is made possible using the 

MapViewer display tool also available from the NCBI SAGE website. Using this tool 

the genomic position of individual SAGE tags can be viewed and total tag counts and 

tag distributions obtained. 

1.3.4 CGAP SAGE libraries 

The Cancer Genome Anatomy Project (CGAP) has invested in producing SAGE 

libraries for human colon and brain tissues. Differential expression between cancer 

and normal samples can be performed using xProfiler at the NCBI SAGE site 

mentioned above. 

1.3.5 SAGEtag to UniGene mapping 

The mapping of SAGE tags to UniGene is an automated process which results in the 

assignment of a UniGene cluster identifier to each SAGE tag via the following steps: 

1. Extraction of human sequences from Genbank 

2. Assignment of a SAGE tag to each sequence 

a. Assessment of orientation based on poly-adenylation signal (aTTAAA 

or AATAA), polyA-tail and sequence annotation  

b. Extraction of a 10bp tag 3’-adjacent to the 3’-most NlaIII site (CATG) 

3. Assignment of a UniGene identifier to each human sequence with a SAGE tag 
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Both “reliable” and “full” Tag to gene assignments for all Genbank transcripts and for 

UniGene clusters have been constructed and are publically available from the 

SAGEmap ftp site. The reliable mappings are corrected for EST sequencing error 

whereas the full mappings are not. 

1.4 Limitations 

It is important to note that the methods discussed in this chapter deal with identifying 

and quantifying expressed genes using transcript data, and that there is not necessarily 

a direct correlation between the expression level of transcripts and the production of 

their corresponding protein. Complex transcriptional and post-transcriptional 

regulation of gene expression operate in a broad range of eukaryotes. Post-

transcriptional mechanisms such as mRNA degradation (Bevilacqua et al., 2003) and 

post-transcriptional gene silencing (Cogoni and Macino, 2000; Pickford and Cogoni, 

2003) have been described, and will determine the relationship between the transcript 

and protein complements of a cell. The experimental approaches described in this 

chapter deal with direct measurement of transcript abundance and will therefore not 

accurately reflect the ultimate identity and levels of protein expression.  
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Appendix I 

Further Reading Resources 

1. ESTs 

Using EST data 
Jongeneel, C. V. 2000. Searching the expressed sequence tag (EST) databases: 

panning for genes. Brief.Bioinform. 76-92. 

Common errors and contaminants in EST data  
Aaronson, J. S., Eckman, B., Blevins, R. A., Borkowski, J. A., Myerson, J., Imran, S., 

and Elliston, K. O. 1996. Toward the development of a gene index to the human 

genome: an assessment of the nature of high-throughput EST sequence data. Genome 

Res. 829-845. 

NCBI’s VecScreen website: http://www.ncbi.nlm.nih.gov/VecScreen/contam.html 

The Open Reading Frame ESTs (ORESTES) Project:  
Dias Neto, E., Garcia-Correa, R., Verjovski-Almeida, S., Briones, M. R., Nagai, M. 

A., da, Silva W., Jr., Zago, M. A., Bordin, S., Costa, F. F., Goldman, G. H., Carvalho, 

A. F., Matsukuma, A., Baia, G. S., Simpson, D. H., Brunstein, A., de Oliveira, P. S., 

Bucher, P., Jongeneel, C. V., O'Hare, M. J., Soares, F., Brentani, R. R., Reis, L. F., de 

Souza, S. J., and Simpson, A. J. 2000. Shotgun sequencing of the human 

transcriptome with ORF expressed sequence tags. Proc.Natl.Acad.Sci.U.S.A. 3491-

3496. 

The public EST database: dbEST 
Boguski, M. S., Lowe, T. M., and Tolstoshev, C. M. 1993. dbEST--database for 

"expressed sequence tags". Nat.Genet. 332-333. 
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2. cDNA library construction 

Making normalised cDNA libraries 
Bonaldo, M. F., Lennon, G., and Soares, M. B. 1996. Normalization and subtraction: 

two approaches to facilitate gene discovery. Genome Res. 791-806. 

Construction of full-length cDNA libraries 
Carninci, P., Kvam, C., Kitamura, A., Ohsumi, T., Okazaki, Y., Itoh, M., Kamiya, M., 

Shibata, K., Sasaki, N., Izawa, M., Muramatsu, M., Hayashizaki, Y., and Schneider, 

C. 1996. High-efficiency full-length cDNA cloning by biotinylated CAP trapper. 

Genomics. 327-336 

Carninci, P., Westover, A., Nishiyama, Y., Ohsumi, T., Itoh, M., Nagaoka, S., Sasaki, 

N., Okazaki, Y., Muramatsu, M., Schneider, C., and Hayashizaki, Y. 1997. High 

efficiency selection of full-length cDNA by improved biotinylated cap trapper. DNA 

Res. 61-66. 

Carninci, P., Nishiyama, Y., Westover, A., Itoh, M., Nagaoka, S., Sasaki, N., Okazaki, 

Y., Muramatsu, M., and Hayashizaki, Y. 1998. Thermostabilization and 

thermoactivation of thermolabile enzymes by trehalose and its application for the 

synthesis of full length cDNA. Proc.Natl.Acad.Sci.U.S.A. 520-524 

Carninci, P. and Hayashizaki, Y. 1999. High-efficiency full-length cDNA cloning. 

Methods Enzymol. 19-44 

Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K., Itoh, M., Konno, H., 

Okazaki, Y., Muramatsu, M., and Hayashizaki, Y. 2000. Normalization and 

subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for 

rapid discovery of new genes. Genome Res. 1617-1630. 
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High-throughput template preparation and sequencing 
Shibata, K., Itoh, M., Aizawa, K., Nagaoka, S., Sasaki, N., Carninci, P., Konno, H., 

Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M., Sumi, N., Ishii, Y., 

Nakamura, S., Hazama, M., Nishine, T., Harada, A., Yamamoto, R., Matsumoto, H., 

Sakaguchi, S., Ikegami, T., Kashiwagi, K., Fujiwake, S., Inoue, K., and Togawa, Y. 

2000. RIKEN integrated sequence analysis (RISA) system--384-format sequencing 

pipeline with 384 multicapillary sequencer. Genome Res. 1757-1771 

3. Constructing gene indices 

TIGR Human Gene Index 
Quackenbush, J., Liang, F., Holt, I., Pertea, G., and Upton, J. 2000. The TIGR gene 

indices: reconstruction and representation of expressed gene sequences. Nucleic Acids 

Res. 141-145. 

Unigene 
Boguski, M. S. and Schuler, G. D. 1995. ESTablishing a human transcript map. 

Nat.Genet. 369-371. 

STACKPACK 
Miller, R. T., Christoffels, A. G., Gopalakrishnan, C., Burke, J., Ptitsyn, A. A., 

Broveak, T. R., and Hide, W. A. 1999. A comprehensive approach to clustering of 

expressed human gene sequence: the sequence tag alignment and consensus 

knowledge base. Genome Res. 1143-1155. 

EuroGeneIndices 
Parsons, J. D. and Rodriguez-Tome, P. 2000. JESAM: CORBA software components 

to create and publish EST alignments and clusters. Bioinformatics. 313-325. 
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HumanInfoBase 
Geier, B., Kastenmuller, G., Fellenberg, M., Mewes, H. W., and Morgenstern, B. 

2001. The HIB database of annotated UniGene clusters. Bioinformatics. 571-572. 

4. Sequence assembly software 

Review of sequence assembly 
Liang, F., Holt, I., Pertea, G., Karamycheva, S., Salzberg, S. L., and Quackenbush, J. 

2000. An optimized protocol for analysis of EST sequences. Nucleic Acids Res. 3657-

3665. 

PHRAP  
Green, P. 1996. PHRAP. 

http://www.genome.washington.edu/uwgc/analysistools/phrap.htm 

phg@u.washington.edu. 

CAP3  
Huang, X. and Madan, A. 1999. CAP3: A DNA sequence assembly program. Genome 

Res. 868-877. 

5. SAGE 

SAGE technique and applications  
Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. 1995. Serial analysis 

of gene expression. Science. 484-487. 
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Appendix II 

Useful Links 

1. Raw EST resources 

Raw EST data: dbEST http://www.ncbi.nlm.nih.gov/dbEST/ 
Download all sequences ftp://ncbi.nlm.nih.gov/genbank/ 
Download individual sequences and small batches  http://www.ncbi.nlm.nih.gov/entrez/ 
BLAST searchable dbEST http://www.ncbi.nlm.nih.gov/BLAST/
 http://www.ch.embnet.org/software/aBLAST.html 

EST Tracefile archives 
Washington University Traces Viewer http://genome.wustl.edu/est/est_search/nci_viewer.html 
NCBI Trace Archive http://www.ncbi.nlm.nih.gov/Traces/ 

General information about ESTs 
Washington University Genome Sequence Center  http://genome.wustl.edu/est/ 

2. Sequence processing resources 

Sequence contamination masking resources 

Repeat and vector databases 
Repbase, a database of common repeats  http://www.girinst.org/ 
Vecbase, a database of common vectors ftp://ncbi.nlm.nih.gov/blast/db/vector.Z 

Tools for performing masking 
XBLAST http://bioweb.pasteur.fr/docs/man/man/xblast.1.html 
RepeatMasker http://ftp.genome.washington.edu/RM/RepeatMasker.html 

Sequence quality assessment resources 
PHRED website http://www.phrap.org/phrap.docs/phred.html 

3. Gene indices 

Unigene 
Unigene build information http://www.ncbi.nlm.nih.gov/UniGene/build.html  
Download Unigene ftp://ncbi.nlm.nih.gov/repository/UniGene/ 
BLAST searchable Unigene http://www.ch.embnet.org/ 

TIGR 
TIGR information and download http://www.tigr.org/tdb/tgi.shtml 
BLAST searchable TIGR Gene Indices http://tigrblast.tigr.org/tgi/ 

STACK 
STACK information and download http://www.sanbi.ac.za/Dbases.html 
BLAST searchable STACKdb http://juju.egenetics.com/stackpack/webblast.html 
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Annotated Unigene Clusters: 
The HumanInfobase (HIB) http://www.mips.biochem.mpg.de/proj/human/ 

4. Gene indices incorporating genome data 

RefSeq http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html 
AllGenes http://www.allgenes.org/ 

5. Detecting open reading frames in ESTs 

ESTScan http://www.ch.embnet.org/software/ESTScan.html 
FrameFinder http://www.hgmp.mrc.ac.uk/~gslater/estateman/framefinder.html 

6. Full-length mRNA databases 

Mammalian Gene Collection (MGC) http://mgc.nci.nih.gov/ 

RIKEN http://genome.rtc.riken.go.jp/ 
Download sequences http://genome.gsc.riken.go.jp/resource.html#archive 
BLAST search sequences:  http://genome.gsc.riken.go.jp/homology/blast.html 
Browse annotated sequences: http://genome.gsc.riken.go.jp/homology/about.html#release 

German cDNA Consortium  http://mips2.gsf.de/proj/cDNA/ 
Homology searching http://mips2.gsf.de/proj/cDNA/blast_search.html. 
Clone ordering http://www.rzpd.de 

7. SAGE 

NCBI SAGEmap website http://www.ncbi.nlm.nih.gov/SAGE/ 
Download tag to gene mappings for Genbank and Unigene ftp://ftp.ncbi.nih.gov/pub/sage/ 
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Chapter 2 

The Contribution of Exon-Skipping Events on 

Chromosome 22 to Protein Coding Diversity 

2.1 Abstract 

Completion of the human genome sequence provides evidence for a gene count with 

lower bound 30,000–40,000. Significant protein complexity may derive in part from 

multiple transcript isoforms. Recent EST based studies have revealed that alternate 

transcription, including alternative splicing, polyadenylation and transcription start 

sites, occurs within at least 30–40% of human genes. Transcript form surveys have yet 

to integrate the genomic context, expression, frequency, and contribution to protein 

diversity of isoform variation. We determine here the degree to which protein coding 

diversity may be influenced by alternate expression of transcripts by exhaustive 

manual confirmation of genome sequence annotation, and comparison to available 

transcript data to accurately associate skipped exon isoforms with genomic sequence. 

Relative expression levels of transcripts are estimated from EST database 

representation. The rigorous in silico method accurately identifies exon skipping using 

verified genome sequence. 545 genes have been studied in this first hand-curated 

assessment of exon skipping on chromosome 22. Combining manual assessment with 

software screening of exon boundaries provides a highly accurate and internally 

consistent indication of skipping frequency. 57 of 62 exon skipping events occur in 

the protein coding regions of 52 genes. A single gene, (FBXO7) expresses an exon 

repetition. 59% of highly represented multi-exon genes are likely to express exon-
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skipped isoforms in ratios that vary from 1:1 to 1:>100. The proportion of all 

transcripts corresponding to multi-exon genes that exhibit an exon skip is estimated to 

be 5%. 

2.2 Introduction 

Gene expression products can have variable forms, characterized by alternate start 

sites of transcription and polyadenylation (Gautheret et al., 1998), exon skipping and 

alternate donor and acceptor sites at exon boundaries(Mironov et al., 1999a; Mironov 

et al., 1999b; Brett et al., 2000; Croft et al., 2000).  Exon skipping in transcript 

isoforms is the most frequent event altering the protein coding sequence of genes, 

(Lander et al., 2001) (http://industry.ebi.ac.uk/~thanaraj/gene.html). Surveys of the 

incidence of alternative splicing, including exon skipping, have been performed 

(Andreadis et al., 1987; Iida, 1997; Valentine, 1998; Thanaraj, 1999), and a growing 

number of anecdotal observations confirm the utilization of exon-skipped transcripts 

in developmental (Dufour et al., 1998; Lim et al., 1999; Lambert de Rouvroit et al., 

1999; Unsworth et al., 1999; Kawahara et al., 2000) tissue-specific (Zacharias et al., 

1995), and disease-specific (Jiang and Wu, 1999; Mercatante and Kole, 2000; Strehler 

and Zacharias, 2001) states. 

Several approaches have successfully used hybridization experiments both in silico 

(Wolfsberg and Landsman, 1997; Gautheret et al., 1998; Thanaraj, 1999; Mironov et 

al., 1999b; Brett et al., 2000; Croft et al., 2000; Beaudoing et al., 2000; Schweighoffer 

et al., 2000; Lander et al., 2001) and in vitro (Schweighoffer et al., 2000; Strehler and 

Zacharias, 2001) to assess alternate transcript diversity. Nevertheless there exist 

difficulties with interpretation of the results that include (1) the existence of gene 

families, paralogs, gene copies and pseudogenes that have similar DNA sequences, 
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providing false positive hybridization; (2) the existence of orphan genes that are 

located in the complementary strand of intronic or flanking regions (Mironov et al., 

1999a); (3) insufficient representation of expressed sequence data in public EST 

databases to identify all transcript isoforms.  

We have taken an exhaustive approach to the detection of exon skipping from 

carefully annotated, protein-confirmed genes in order to maximize the accurate 

assessment of the degree of isoform diversity. 

2.3 Results 

In order to develop an unambiguous assessment of the degree to which exon skipping 

contributes to expressed transcript isoform diversity, and to assess the impact on 

protein coding of exon skipping events within coding regions of transcripts from 

known genomic loci, we have compared ESTs to 545 annotated genes on 

chromosome 22. Although no standard measure of relative spliceform frequencies for 

human genes exists, coverage of exon boundaries by ESTs provides a measure of the 

diversity of isoforms for a particular gene.  The incidence of captured ESTs spanning 

exon junctions may also provide a reasonable, though uncomprehensive, view of 

transcript diversity and expression. Detection of transcripts displaying exon skipping 

was performed using novel software, j_explorer, which reduced the complexity of the 

gene sequences to a set of possible splice junctions which were used to search public 

EST databases to identify ESTs spanning the annotated exon-exon junctions. The 

software employs standard data format (EMBL sequence format) and visualization 

tools (ARTEMIS (Rutherford et al., 2000)) in the analysis 

(www.sanbi.ac.za/exon_skipping/). Removal of single and double exon genes reduced 

the set to 347 multi–exon genes (Table 1), of which 10 were previously annotated in 
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literature or public databases as having experimentally confirmed exon skips 

(Table 2). Exon skipping events were recorded when all original junctions involved in 

the skipping event, including flanking exons, were confirmed by EST sequences.  All 

ESTs supporting exon skipping events were subsequently confirmed to be 

unambiguous transcripts of the corresponding gene and not products of paralogous 

genes, pseudogenes, or related members of an extended gene family by BLAST 

searches against the non-redundant (nr) database at NCBI.  Highly specific 

identification of exon skipping and exon repetition events has resulted.  

Sensitivity was assessed using the 10 genes with experimentally confirmed exon 

skipping. J_explorer accurately identified the previously reported skipped exons in 4 

of the genes (NF2, ADSL, CLTCL and GGT1). Novel isoforms were detected in 

EWSR1, PLA2G6 and GGT1 (Table 2), while previously described exon skipping 

events in 4 genes (CACNA1I, BZRP, MTMR3, SEP3) were not detected because 

ESTs mapping to these exon junctions were not available in the public EST databases. 

The approach has a zero false positive rate, as confirmed by available mRNA and 

genomic data, and provides a solid basis for the development of models of transcript 

diversity that can be generated from a single gene. 

We have discovered 62 exon skipping events in 52 genes (Table 2); 57 of the 62 

(92%) exon-skipping events occur within the protein coding region. The remainder 

occur in either the 3'(1/62) or 5' (4/62) UTR. In 31/62 (50%) of cases the reading 

frame is maintained but regions are deleted. In 18/62 cases (29%) the introduction of a 

skip destroys the reading frame resulting in a frame shift. Proteins for the remaining 

8/62 (13%) could not be reconstructed. In 5 cases an alternative stop codon is used, 

while in 4 cases there is an alternative start codon introduced.  
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Gene transcripts were scanned for exon repetition using similarity searching of 

repeated exon constructs against public EST data. A single tandem repetition of exon 

2 of the F-box protein (NM_012179) was detected with high identity to EST 

AA569698. Exon repetition has previously been reported in a number of eukaryotes 

(De Lange et al., 1983; Boylan et al., 1990; Frantz et al., 1999). 

Ratios of transcript isoforms are difficult to resolve using only EST data, however 

using the relative capture frequency of skipped exons as a measure provides an 

indication of the incidence of more commonly occurring isoforms (4 or more ESTs 

confirm the isoform with exon skipping in: CLTCL1, ADSL GGT1, GSTT1, 

HMG2L1, MFNG, dJ222E13.1) as compared to rarer isoforms. In 47/62 (76%) cases, 

the reference isoform, constructed from the genomic EMBL entry, is more frequently 

represented than a skipped exon isoform (Table 2).  

The degree to which the level of gene expression, and hence database representation, 

affects the probability of finding a skipped transcript was assessed using the number 

of EST exon-exon junction captures per gene as a relative measure of transcript 

representation. Three categories comprising equal gene numbers were selected: low 

capture, which corresponds to less than 14 EST matches per gene, medium capture, 

those from 14 to 50 EST matches per gene, and high capture, those with 50 or more 

EST matches per gene (Table 3). 44 genes had no matches to ESTs. We found that 

over 60% of genes that demonstrate exon skipping have large numbers of ESTs 

matching to them. Although no relationship between degree of gene expression and 

extent of skipping can be determined from this study, the degree to which exon 

junctions are represented in transcripts reveals that highly represented genes 

demonstrate skipping more frequently. 10 of the 17 (58.8%) most highly represented 
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multi-exon genes show exon skipping and of these, 3 (18%) express more than one 

isoform (Table 2, www.sanbi.ac.za/exon_skipping). 

2.4 Discussion 

Our approach precisely identifies exon skipping when EST transcript data that spans 

exon boundaries is available. A possible limitation is that the detection of exon 

skipping using j_explorer is sensitive to the gene structure provided as input. 

Selection of the mRNA used to determine the gene structure will affect whether a skip 

can be detected. The number of ESTs that cover an exon-exon boundary determines 

the likelihood of discovering an exon skip, but capture of exon skipping events are 

dependent on the ratio of low abundance to high abundance isoforms of transcripts 

from the gene. The depth of transcript representation in EST databases, level of 

expression, and number and length of exons all contribute to the complexity of 

estimation of the number of genes which may have exon-skipped expressed 

transcripts. Estimation of the genome-wide extent of exon skipping is supported here 

by 52 of 347 multi-exon genes (~15%). This conservative estimate reflects the fact 

that only 68% of exon-exon junctions have EST coverage, and that this coverage is 

skewed towards over-representation of the 3’ untranslated regions. In contrast, 58.8% 

of multi-exon, highly EST-represented genes present exon skipping. More sensitive 

transcript capture techniques may discover exon skipping to be far more widespread 

than the previous estimates of 10 to ~20% (Croft et al., 2000) (Mironov et al., 1999a) 

(http://industry.ebi.ac.uk/~thanaraj/gene.html) which have been based on EST 

frequency-independent measures. Expression studies will clarify the relationship 

between level of expression and degree of exon skipping in transcripts. The diversity 

of skipped exon transcript forms is likely to contribute significantly to the diversity of 
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protein products encoded by the genome, especially since the ratio of skipped 

isoforms of transcripts appears to vary widely, which is likely to have significant 

functional impact on the proteins for which they code. At least 50% of exon skips that 

we have detected result in in-frame deletions in the predicted protein products. In 29% 

of cases exon skipping results in a disruption of the reading frame which may change 

or disrupt the function of the protein product. Functional roles for these protein 

isoforms remain to be explored experimentally. 

2.5 Methods 

J-explorer (available for download from http://www.sanbi.ac.za/exon_skipping) was 

used to assemble exon-constructs from mRNA-annotated genomic sequences 

produced by the Human Chromosome 22 Sequencing Group at the Sanger Centre 

(Chr22.genes.dna file at 

http://www.sanger.ac.uk/HGP/Chr22/cwa_archive/Nature_02-12-

1999/Chr22Genes.tar.gz). Using a 50bp tag from the 3’ terminus of the preceding 

exon and a 50bp tag from the 5’ terminus of all downstream exons a set of all 

consecutive and non-consecutive exon-exon junctions for each gene was created. 

Each junction was submitted for similarity searching against dbEST (human) using 

BLAST 2.0 (Altschul et al., 1990). By combining junctions in a consecutive (ie: exon 

1 - exon 2 junction) and non-consecutive (ie: exon 1 – exon 3 junction) manner the 

incidence of exon skipping was assessed. A skipping event is reported when an EST is 

detected which does not contain the exon(s) in question, but does contain an 

uninterrupted tag made up of 50bp from each of the flanking exons. In cases where a 

flanking exon was less than 50bp in length j_explorer uses the entire short exon in 

building the construct. Exon repetition was investigated by creating splice junctions 
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composed of the concatenation of the 3’ and 5’ 50bp splice junctions of the same 

exon.  ESTs showing significant (P<1e-40) homology to an exon junction were 

extracted and aligned to the corresponding genomic sequence using sim4 (Florea et 

al., 1998). In order to exclude the possibility that ESTs confirming exon skipping 

events were the products of paralogous genes or members of gene families all ESTs 

identifying exon skipping were confirmed to be unique to a single target gene from 

Chromosome 22. Both interchromosomal and intrachromosomal specificity of the 

transcripts was confirmed using BLAST with a cut-off score of 1e-30. sim4 was 

employed where ambiguous matches were encountered. The resulting  ‘unambiguous 

transcripts’, can therefore be unambiguously assigned to the correct gene of origin. 

The effect of these transcripts on the reading frame of the protein for which they code 

was assessed for frameshifts and in-frame deletions. The estimate that there exist zero 

false positives was arrived at by manual analysis of all cases of possible 

misalignments. During this process no false instances of reported exon skips were 

found. False positives could occur in genes with tandemly repeated exon structure, 

j_explorer provides an additional method for confirming that ESTs confirming the 

skip are not homologous to the reference gene structure. The identity and genomic 

location of each of the ESTs was converted into EMBL format and added as 

annotation to the relevant EMBL sequence file. Sequences were then analysed using 

ARTEMIS (Rutherford et al., 2000) and are presented together with supplemental 

information, annotated EMBL entries and links to ENSEMBL genes and transcripts at 

http://www.sanbi.ac.za/exon_skipping. All exon structure annotations for the genes 

used (both confirmed and predicted) were confirmed to be correct. In order to prevent 

the detection of skips as a result of incorrectly annotated exon boundaries we required 

that an EST spanning consecutive (or linear) exon boundaries was present in addition 
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to the EST/s confirming the skip. All linear junctions which could not be confirmed 

by ESTs resulted in that junction being excluded from further analysis. To address 

data consistency, we confirmed that in EMBL release 64 (GenBank 119) and 65 

(GenBank 121) about 68% of splice junctions are covered with an EST. This figure 

does not vary significantly between the two releases.  
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Table 1: Selection and Exon Structure of Genes for Study. 

Number of multiple-exon genes selected for study  347 

Number of exons  3240 

Number of exon junctions  2893 

Mean exon length  254 bp 

Minimum exon length observed  8 bp 

Maximum exon length observed  7660 bp 

Maximum number of exons observed in one gene  54 

We selected 347 multiple-exon genes of a total 545 genes present on 

chromosome 22 for study. Those removed included 134 single-exon 

genes and 64 double-exon genes that could not be assessed for exon 

skipping. 
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Table 2: Identification of Chromosome 22 genes with unambiguous transcripts of exon-skipped 
isoforms. 

 Locus name Skipped 

exon(s) 

Effect 

of exon 

skip 

No. ESTs 

confirming 

exon skip 

Average no. 

ESTs  

confirming 

reference 

isoform 

Database annotation 

J_explorer identified an experimentally confirmed isoform  

CLTCL1‡ 29 C+ 6 4.0 Clathrin heavy polypeptide-like 1 

ADSL‡ * 12 3’ 11 63.0 Adenylosuccinate lyase 

NF2‡ 
2-3  C f/s 1 5.7 

Neurofibromatosis 2 (bilateral acoustic 

neuroma) 

J_explorer identified an experimentally confirmed isoform and a novel isoform  

 

GGT1‡ 
7 

3  

C f/s 

5’ 

2 

4 

- 

- 

Gamma-glutamyltransferase 1 

J_explorer identified a novel isoform and not the experimentally confirmed isoform 

 PLA2G6‡ 3 +5 C f/s 2 1.5 Phospholipase A2 group VI 

 EWS‡ * 6 C+ 1 48.0 Ewing sarcoma breakpoint region 1 

Novel exon skipping events identified by J_explorer 

 

ATP6E * 

2 

5-7 

C+ 

C+3’t 

1 

1 

73.5 

38.0 

ATPase H+ transporting lysosomal (vacuolar 

proton pump) 31kD 

 MIL1 3 C+ 2 13.0 Homo sapiens MIL1 protein 
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 UFD1L * 2-3 C+3’t 1 21.7 Ubiquitin fusion-degradation 1 like 

 TR 13 C+ 1 6.0 Thioredoxin reductase beta 

 

ARVCF 19 
C+ 

1 1.5 
Armadillo repeat gene deletes in 

velocardiofacial syndrome 

 AC005500.4 2-3 C+ 1 5.4 Zinc finger protein 

 

PIK4CA * 36-42 
C f/s 

1 5.6 
Phosphatidylinositol 4-kinase catalytic alpha 

polypeptide 

 BCR 20 C f/s 1 5.5 Active BCR-related gene 

 AP000350.2 5 C+ 2 1.0 Similar to glucose transporters SW:P22732 

 

GSTT1 

2 

2-3  

3-4 

C f/s 

C f/s 

C+ 

4 

1 

1 

7.5 

8.0 

9.3 

Glutathione S-transferase theta 1 

 

AC004997.1† 
5 

5-6 

C N/A 

C+ 

1 

1 

4.0 

4.0 

GATS protein 

 SEC14L2 10 C f/s 2 4.5 SEC14 (S. cerevisiae)-like 2 

 SMTN† 14-15 C N/A 1 5.7 Smoothelin 

 

dJ858B16.1 27 
C+ 3’t 

1 2.3 
Homo sapiens mRNA for KIAA0542 protein 

complete cds. 

 

AC005004.1 22-23 
C+ 

2 1.7 
Homo sapiens mRNA for KIAA0645 protein 

complete cds 

 HMG2L1 2 5’ 4 

1

1.5 High-mobility group protein 2-like 1 
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5 

2 + 5 

5’ 

5’ 

1 

1 

4.0 

4.6 

 CE132D12.1 6 C f/s 1 21.5 Similar to RAS-related protein RAB-5A (HS) 

 

MFNG† * 
7 

2 

C f/s 

C+ 

5 

1 

46.0 

16.0 

Manic fringe (Drosophila) homolog 

 

LGALS1 * 3 
C f/s 

5 >100.0 
Lectin galactoside-binding soluble 1 (galectin 

1) 

 

GCAT 2-3 + 5 
C N/A 

1 2.8 
Glycine C-acetyltransferase (2-amino-3-

ketobutyrate-CoA ligase 

 

dJ1014D13.1 * 12 
C+  

1 >100.0 
Weakly similar to casein kinase I homologue 

HRR25  

 GTPBP1 2 C+  5’t 8 17.0 GTP binding protein 1 

 dJ508I15.1 2 C + 5’t 1 8.0 Novel human gene mapping to chromosome 22 

 dJ508I15.4 3 C N/A 1 1.5 Homo sapiens mRNA for KIAA0668 protein 

 RPL3† * 8 C+ 7 >100.0 Ribosomal protein L3 

 

dJ1042K10.2 2 
C+ 5’t 

1 10.5 
Similar to C.elegans predicted protein with 

probable rabGAP domains and src homology 

 

SLC25A17 

2-4 

3-4 

C f/s 

C+ 

1 

2 

9.0 

9.0 

Solute carrier family 25 (mitochondrial carrier- 

peroxisomal membrane protein 34kD) member 

17 

 ST13 * 8 
C f/s 

1 17.5 
Suppression of tumorigenicity 13 (Hsp70-

interacting protein) 
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RBX1 * 

2 

3-4 

C f/s 

C+ 3’t 

3 

1 

50.5 

92.0 

Ring-box 1 

 PMM1 4 C f/s 1 24.5 Phosphomannomutase 1 

 TCF20 (AR1)† 3 C N/A 1 5.0 Transcription factor 20 (AR1) 

 dJ222E13.3† 7 
C f/s 

2 12.0 
Weak match to Arabidopsis RNA and export 

factor binding protein 

 dJ222E13.1 8-9 
C f/s 

5 2.0 
Novel protein with some similarity to 

Drosophila KRAKEN 

 bK1191B2.3† 3 
C+ 

4 2.0 
Weakly similar to dJ1118 COA-ACYL carrier 

protein transacylase  

 dJ796I17.2 * 3 C+ 1 27.0 CGI-51 

 NPAP60L 4 C N/A 1 11.5 Nuclear pore-associated protein 60L 

 dJ355C18.1 9 
C+ 

1 1.5 
Matches KIAA0027 gene with weak similarity 

to GTPase activating protein 

 ECGF1 5 
C N/A 

1 3.0 
Endothelial cell growth factor 1 (platelet-

derived) 

 GTSE1 (B99) 8 
C f/s 

1 13.5 
Homo sapiens G-2 and S-phase expressed 1 

(GTSE1),  

 
dJ1163J1.4† 3 

 

C+ 
1 1.0 

Novel protein similar to C. elegans B0035.16 

and bacterial tRNA (5-Methylaminomethyl-2-

thiouridylate)-Methyltransferases 
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 DGCR2 2-3 C+ 1 2.3 DiGeorge syndrome critical region gene 2 

 AC007050.6 2 
C N/A 

1 11.0 
Homo sapiens mRNA- from clone 

DKFZp434G1017 

 UBE2L3 * 2 C+ 5’t 1 71.0 Ubiquitin-conjugating enzyme E2L3 

 
DJ756G23.3  5 

C+ 

1 2.0 

Similar to Tr:Q24191 Drosophila 

TRANSCRIPTIONAL REPRESSOR 

PROTEIN 

 bK212A2.1 2 C+ 3’t 1 - TNF-inducible protein CG12-1 mRNA 

 G22P1 * 3 C+ 1 >100.0 Thyroid autoantigen 70kD (Ku antigen) 

We tested 347 multiple-exon genes on Chromosome 22 for exon-skipping events using J_explorer and EST 

sequences from GenBank 119. Genes in which novel exon skipping events have been identified are ordered 

according to their relative physical organization along chromosome 22. Genes are identified using the HUGO name 

if one exists. In the absence of a HUGO identifier, the accession number of the sequence or the Sanger Centre clone 

name is used. Exon numbering is based on the exon structure of the original EMBL entries obtained from the 

Sanger Centre. ESTs confirming a skip were required to span both the 3’ and 5’ flanks of the skipped exon. To 

calculate the average number of ESTs confirming the reference isoform, the exon flanking ESTs in the reference 

isoform were totalled and the sum divided by corresponding averaged number of junctions. In cases where the 

reference isoform was not represented in the public EST databases, the sequence was confirmed using a 

corresponding experimentally-determined mRNA. Skip location and context is denoted as follows: (C) skip occurs 

in protein coding region; (+) ORF remains unchanged; (3’) skip occurs in 3’ UTR; (5’) skip occurs in 5’ UTR; (f/s) 

frameshift is introduced by skip; (5’t) alternative start codon is used; (3’t) alternative stop codon is used; (N/A) not 

possible to reconstruct a protein; (†) genes (eight entries total) with an already-annotated exon skip in EMBL 

entries; (‡) (six entries total) with experimentally-confirmed notation: 2–4 indicates that exons 2, 3 and 4 skipped 

exons; 2–3 +5 indicates that exons 2, 3 and 5 are skipped. Experimentally confirmed skipping events in the genes 

CACNA1I, BZRP, MTMR3, and SEP3 had no EST matches and are not included. 
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Table 3. Capture of exon skipping relative to expression representation. 

Number (n) of ESTs matching 

exon junctions per gene (interval) 

Number of 

genes  

Number of genes with skips 

detected by j_explorer 

0<n<14 101 (33%) 4 (8%) 

14≤n<50 101 (33%) 16 (31%) 

n≥50 101 (33%) 32 (61%) 

Total 303 52 
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Chapter 3 

eVOC: A Controlled Vocabulary for Unifying 

Gene Expression Data 

3.1 Abstract 

Expression data contribute significantly to the biological value of the sequenced 

human genome, providing extensive information about gene structure and the pattern 

of gene expression. The EST databases have been a central repository for increasing 

amounts of expression data since 1991. Together with SAGE libraries and microarray 

experiment information these provide a broad and rich view of the transcriptome. 

However, it is difficult to query data generated by these diverse experimental 

approaches, and even more difficult to perform large-scale mining of expression data. 

Not only is it stored in disparate locations using different platforms and with different 

conceptual organisation, but there is also frequent ambiguity in the meaning of basic 

terms used to describe the biological source of the material used for the experiment. 

Untangling semantic differences between the data provided by different resources is 

therefore largely reliant on the skill and domain knowledge of a human user. We have 

developed a system which associates sample reagents such as labelled target cDNAs 

for microarray experiments, or cDNA libraries and their associated transcripts or 

genes with controlled terms in a set of hierarchical vocabularies. We present eVOC - 

four orthogonal controlled vocabularies to describe domains of human gene 

expression data including Anatomical System, Cell Type, Pathology and 

Developmental Stage. We have manually translated the inconsistent terminology used 
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to describe the library source into controlled terms in the four orthogonal ontologies, 

and have curated and annotated 7016 cDNA libraries represented in dbEST, as well as 

104 SAGE libraries, with expression information. We provide this as an integrated, 

public resource that allows the linking of transcripts and libraries with expression 

terms. Downstream applications include the analysis of tissue expression profiles and 

specificity, gene expression levels, and the comparison of expression between species. 

Both the vocabularies and the vocabulary-annotated libraries can be retrieved from 

http://www.sanbi.ac.za/evoc/ and are applied within Ensembl 

(http://www.ensembl.org/Homo_sapiens/martview) to provide a standard for linking 

expression phenotype information with the genome sequence. Several groups are 

working to provide shared development of this resource such that it is of maximum 

use in unifying transcript expression information. 

3.2 Introduction 

Mining of large volumes of transcriptome data is currently frustrated by an inability to 

relate sequence and descriptive information. In part this is due to the absence of a 

common structured vocabulary to describe the source of the biological sample 

materials.  

Recent years have seen a growing trend towards the adoption of ontologies for the 

management of biological knowledge. In Computer Science an ontology is defined as 

an “explicit formal specification of how to represent the objects, concepts and other 

entities that are assumed to exist in some area of interest, and the relationships that 

hold among them” (The Free Online Dictionary of Computing 

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=ontology). 
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Biological ontologies aim to overcome the semantic heterogeneity commonly 

encountered in molecular biology databases, and to provide a common terminology 

for the description of a focussed aspect of biology. One such resource, TAMBIS 

(Stevens et al., 2000), implements ontologies for both bioinformatics tasks and 

molecular biology to provide users with transparent access to multiple heterogeneous 

bioinformatics resources. The Gene Ontology Consortium (GO) - the group largely 

responsible for raising the profile of ontologies in biology - provides a set of generic 

ontologies for the description of core biological functions (Ashburner et al., 2000). 

Extensive functional conservation of proteins across the eukaryotes means that a 

common set of terms can be applied to the description of genes and gene products in 

order to provide information on the roles of orthologous proteins in novel organisms. 

The GO ontologies provide terms describing three aspects of biological function: 

biological process, molecular function and cellular compartment. These can be 

applied independently, and it is recognised that the relationship between a gene 

product and the ontologies is one to many – as proteins may function in several 

processes, or carry out a multitude of molecular functions in alternate cellular 

locations. Other biological ontologies include the EcoCyc ontology (Karp et al., 

2002b) which represents important metabolic and signal-transduction events in E.coli, 

and the MetaCyc (Karp et al., 2002a) and KEGG (Kanehisa et al., 2002) ontologies 

which describe aspects of the relationships between the chemical reactants, catalysts, 

substrates and products. Numerous other ontologies representing a wide array of 

biological phenomena exist or are under development. 

Although several ontologies for the formal description of sample materials exist or are 

under development  (Table 1), these are not suitable for querying gene expression 

data. For example; clinical ontologies including anatomical, pathological and 
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developmental stage-specific concepts have been available for some time (ICD-9-CM, 

SNOMED, GALEN, MeSH) but these have not been widely adopted for describing 

human gene expression profiles. A major reason why clinical ontologies are not 

widely used for describing gene expression is that they are extremely detailed and 

often tangled (Rector et al., 2001), with distinct concepts with varying relationship 

types mixed together, making them unwieldy and difficult to adopt for general use. 

An example is the mixing of anatomical and pathological terms in ICD-9-CM eg: 

“benign neoplasm of the stomach”. The complexity of the concepts represented by 

these ontologies makes them unsuitable for the computational interrogation of gene 

expression data to determine simple and complex expression profiles. 

Implementing multiple ontologies with simple concepts in orthogonal domains 

provides a preferable solution as it enables users to produce logical ontology cross-

products. Cross-products are hybrid ontologies which can be constructed through the 

combination of simple ontologies. For example: the ICD-9-CM term mentioned above 

could have been constructed through the combination of terms from an anatomical 

and a pathological ontology by producing the cross-product of the terms “stomach” 

and “neoplasm | benign” from the respective ontologies.  

Ideally, ontologies for gene expression should reflect a level of detail appropriate to 

the data being classified and the level at which queries are likely to be performed, 

while simultaneously providing sufficient flexibility to enable regular updating 

without needing to significantly restructure the hierarchies.  

For the extensive description of gene expression and to provide maximum flexibility 

in querying we have developed eVOC - four orthogonal ontologies which aim to 

provide an appropriately detailed set of terms for describing the sample source of 
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cDNA and SAGE libraries and labelled target cDNAs for microarray experiments. 

We have taken a data-driven approach to determining the level of granularity 

required.  

We have annotated all publicly available human cDNA and SAGE libraries as 

extensively as possible. This is achieved by the assignment of terms from each of the 

four ontologies to the libraries. Initial assignment of terms to libraries was performed 

computationally, with curators who are domain experts performing assessment of 

annotation quality and further manual assignment. Where information was lacking in 

the library record the original submitters were contacted where possible to provide 

more extensive information. 

The most widely used ontology for keywording human SAGE and EST libraries is the 

CGAP/UniLib vocabulary (ftp://ftp.ncbi.nih.gov/pub/bioannot/info/keys) currently 

used by the NCI to categorise libraries for CGAP 

(http://www.ncbi.nlm.nih.gov/CGAP/).  

CGAP provides a single integrated hierarchy of keywords which includes terms from 

multiple classification domains (including tissues, developmental stage, library 

preparation and chemical agents among others). There are many different 

relationships between parent and child terms in different sections of the hierarchy. 

eVOC, by contrast, provides completely orthogonal ontologies covering four distinct 

domains. There is a single implied type of relationship between the terms within each 

of the eVOC ontologies. 

The structure of the CGAP ontology enables rapid keyword searching, whereas the 

eVOC data structure, by incorporating the rigorous separation of classification terms 

into orthogonal domains and the formalisation of relationships between terms, allows 
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for a degree of computer reasoning to be applied. This facilitates a wide range of 

query types. For example, a comparison of eVOC and UniLib querying shows clearly 

that both eVOC and UniLib allow querying for multiple terms combined with “AND” 

(the intersection set), and yield comparable results in terms of the libraries returned. 

However, UniLib is unable to support more complex queries incorporating “OR” and 

“NOT” which are possible with eVOC. eVOC therefore provides users with greater 

flexibility as more complex biological queries can be formulated. While this may be a 

simple implementation issue, it is one which directly affects the user interaction with 

the data. 

A major distinction between CGAP and eVOC is that the CGAP hierarchy is cancer-

specific by design. The terms included are therefore those of interest in cancer 

whereas eVOC is designed for more general application. Specifically, CGAP lacks the 

comprehensive pathology terminology which is necessary for a broadly applicable 

human expression ontology. 

3.3 Methods and discussion 

The design and creation of the expression ontologies is distinct from the annotation of 

cDNA and SAGE libraries using each of the ontologies. These processes will be 

discussed separately. 

3.3.1 Development of a data structure for expression ontologies 

The expression ontologies have been developed in four orthogonal (mutually 

exclusive) knowledge domains including Anatomical System, Cell Type, 

Developmental Stage and Pathology (Appendix I). Anatomical System and Cell Type 

describe where a gene is expressed, Developmental Stage describes the timing of gene 
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expression during development, and Pathology describes the disease state in which 

the gene is expressed. These four ontologies were found to represent the vast majority 

of the expression data currently under classification. The addition of further 

ontologies may be appropriate in the future. 

The expression ontologies are independent pure hierarchies (or trees). In a pure 

hierarchy, each node has only one parent but may have multiple children. Each node 

is associated with a specific concept in the knowledge domain represented by the 

hierarchy through the association of each node with one or more synonymous terms. 

For example, the terms “nasal” and “nose” are synonyms attached to a single node in 

the anatomy ontology. 

In these pure hierarchies there is only a single type of relationship between the nodes 

in each hierarchy, although the nature of the relationship is not explicitly defined. For 

each ontology, the nature of the expression domain imposes an implicit type on the 

relationship between the nodes. For instance, in the “Anatomical System” ontology, 

the relationships are of the “part-of” type. In the “Cell Type” and “Pathology” 

ontologies, they are of the “subclass” type, and in the “Developmental Stage” 

ontology, the relationships are of the “is-a” variety. 

Pure hierarchies have a number of advantages over the more complex data structures 

often used to represent ontologies (Rector et al., 2001). They are easy to maintain and 

expand and they can be visualised easily. Moreover, it is possible to construct a 

simple yet extremely powerful and flexible mechanism to query data across multiple 

hierarchies. 

In cases where terms appear to have more than one parent, two options are available; 

migration to a directed acyclic graph (DAG), or untangling of the hierarchy to yield a 
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pure hierarchy (Figure 1). In order to handle multi-parent terms and different parent-

child relationships the GO project (Gene Ontology Consortium, 2001) has 

implemented a DAG structure.  During the development of the eVOC ontologies, and 

based on the available cDNA and SAGE libraries, we have found that where it 

appears that there is a need to represent multiple relationship types in one hierarchy it 

is possible to untangle the hierarchy further by splitting it into separate hierarchies 

with more narrowly defined relationship types. 

The disadvantage of maintaining untangled orthogonal ontologies is that the volume 

of work involved in curation increases linearly with the number of hierarchies. It is 

therefore necessary to strike a balance between keeping the number of ontologies 

manageable, and representing relationships in as fine-grained a fashion as possible. 

The sort of queries the ontologies are required to accommodate dictates where this 

balance is found. In other words, the ontology design should be data-driven. 

Each of the terms in the ontologies has a numeric identifier which uniquely identifies 

the term and which can be used as an unambiguous database cross-reference. 

Definitions of each of the terms are to be provided as part of the ongoing 

development. The source of each definition will be made available, along with the 

definition. 

3.3.1.1 Development of the four expression ontologies 

The four expression ontologies (Figure 2) currently implemented are: 

3.3.1.1.1 Anatomical System ontology 

The Anatomical System ontology provides a controlled vocabulary for the description 

of the anatomical system or organ in which a gene is expressed. It is based on the 
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controlled vocabulary used in the Computational Biology and Informatics 

Laboratory’s (CBIL) databases (www.cbil.upenn.edu/anatomy.php3) but with 

modifications including the removal of all references to tissue type, cell type or 

developmental stage. Organisation of the Anatomical System hierarchies is currently 

systems-based. Examples of broad Anatomical Systems are “digestive system” or 

“nervous system”, with more specific anatomical terms within these systems being 

“pancreatic islets” or “retina”. Future developments to eVOC will include the creation 

of an Anatomical Site ontology that extends the current Anatomical System ontology 

by dividing anatomical parts according to their spatial position, rather than according 

to the system to which they belong. This is of particular value in describing libraries 

from spatially distinct anatomical sites containing multi-system anatomical sites. For 

example “head” is a distinct anatomical site, but includes both nervous and circulatory 

systems. The Anatomical System ontology contains 372 terms. 

3.3.1.1.2 Cell Type ontology 

The Cell Type ontology provides a fine-grained description of where a gene is 

expressed. It is a listing of human cell types extracted from Gray’s Anatomy (Gray et 

al., 1995). The Cell Type ontology includes 153 different cell types. 

Since various cell types are represented across many anatomical systems, cell types 

could have been included in the Anatomical Site ontology, with cell type terms having 

multiple parents. Instead we have separated the Anatomical System and Cell Type 

ontologies in order to maintain pure trees. This separation provides users with greater 

flexibility, as they can query on specific cell types, regardless of the anatomical 

location, and can also perform combined queries across Cell Type and Anatomical 

System terms to yield results for a cell type in a specified location.  
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3.3.1.1.3 Developmental Stage ontology 

The Developmental Stage ontology provides an ordered timeline of human 

development for the description of gene expression in temporal space. Examples of 

terms in the current hierarchy include “embryo” and “adult”. Embryogenesis is further 

divided into the standard Carnegie stages 

(www.ana.ed.ac.uk/anatomy/database/humat/) which define the first two months of 

human development. Each of the major stages of development is further divided into 

appropriate weekly and yearly categories (Supplementary Table 1c). The 

Developmental Stage ontology contains 132 distinct terms. 

3.3.1.1.4 Pathology ontology 

The Pathology ontology is loosely based on the World Health Organisation’s ICD-9-

CM (www.mcis.duke.edu/standards/termcode/icd9/1tabular.html). ICD-9-CM is 

designed for the classification of morbidity and mortality information for statistical 

purposes and for the indexing of hospital records by disease and surgical operations. 

We have implemented a modified version of the first two levels of this hierarchy, and 

have incorporated terms that are widely used in sample description, but which are not 

present in ICD-9-CM e.g. Wilm’s tumor. We have also removed terms that refer to 

systems, organs, tissues and cell types as these are already included in the Anatomical 

System and Cell Type ontologies. The Pathology ontology contains 141 terms. 

3.3.1.2 Species-specific considerations 

The broad domains covered by eVOC’s four orthogonal hierarchies are sufficiently 

generic to be applicable to a wide and diverse variety of eukaryotic organisms. 

However, given that each organism has unique tissue organisation, development and 

disease processes, organism-specific ontologies are appropriate for expression data. 
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For instance, an extensive mouse-specific expression ontology, the Mouse Anatomical 

Dictionary, has been collaboratively developed by the Jackson Laboratories and the 

Edinburgh Mouse Atlas project 

(http://www.informatics.jax.org/searches/anatdict_form.shtml). 

There is significant value in being able to identify and relate “equivalent” tissues in 

different species, and to compare gene expression patterns in these tissues. While it is 

not clear that it will always be possible to identify these equivalent tissues in the 

model organisms, the production of species-specific ontologies to form the basis of 

these comparisons is the first step. To facilitate interoperability between species-

specific ontologies these need to be in a compatible, accessible format (Bard and 

Winter, 2001). The eVOC human expression ontologies are provided in a format 

which promotes easy adoption and which will facilitate the interrogation of cross-

species ontologies from different sources.  

3.3.1.3 Curation of the eVOC ontologies 

We maintain a central, versioned database of eVOC ontologies which are updated, 

modified and released publicly, by domain-experts on an ongoing basis. The curators 

have the ability to add or delete terms and synonyms and to make changes to the 

hierarchies.  

Groups that choose to modify the ontologies for their own purposes are encouraged to 

contribute their modifications and corrections to the curators for inclusion. A mailing 

list: evoc@sanbi.ac.za has been established for this purpose.  
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3.3.2 Annotation of cDNA and SAGE libraries using eVOC 

The ontologies presented here are independent of the expression data that they are 

used to annotate. We have already annotated publicly available cDNA and SAGE 

libraries using these expression ontologies, Supplementary Tables 1a-d (available 

from http://www.sanbi.ac.za/evoc/) provide statistics for the number of libraries and 

ESTs annotated with specific terms in each of the ontologies. Figure 3 provides an 

example of the annotation of cDNA libraries in a subsection of the Pathology 

ontology. The eVOC ontologies are also highly appropriate for the annotation of 

labelled target cDNAs for microarray experiments. 

cDNA and SAGE libraries are collections of the transcribed sequences expressed in 

the biological sample material from which the library is prepared. Information about 

the source of the sample is stored with the library information. The amount and 

quality of the source information provided varies depending on the source of the 

library. Libraries submitted to public databases are described using highly inconsistent 

terminology. Here curators have manually translated the unstructured terms used in 

the library records into standardised terms selected from the four ontology domains, 

and have applied these to each of the libraries. Ideally an ontology-based form would 

guide submitters in selecting appropriate terms for the description of their libraries. 

This would reduce the curation required and facilitate querying of the public 

databases in a manner not currently possible. 

Each of the cDNA and SAGE libraries was assigned computationally to the most 

specific possible terms in each of the four ontologies. Manual curation and annotation 

of the computational assignments was then performed. Libraries are annotated with 

terms in each of the four hierarchies if sufficient information is available in each of 
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the ontology domains. Annotation of a library in one ontology is completely 

independent of annotation in another ontology. Each annotation is transferred from 

the library information provided by the original submitter. While the curators exercise 

domain expertise in assigning libraries to specific terms within each hierarchy, they 

derive no new information. This process is therefore largely objective. Evidence for 

annotations is primarily based on the original submission record for both cDNA and 

SAGE libraries. 

In most instances annotation of data from existing databases is performed following 

the development of ontologies. Appropriate terms are assigned to data points on the 

basis of information already present in the database. This “post-facto” approach 

results in an often-imperfect mapping between data and terms as much of the sample 

information is not provided in the original submission and is therefore lost. The 

Ontologies Working Group of the MGED Consortium is providing ontologies which 

supply standardised terms for the annotation of microarray experiments. These will be 

offered as resources for meeting the guidelines laid down by MIAME. The MIAME 

guidelines specify the minimum information required about a microarray experiment 

in order to interpret, analyse and verify microarray data. The MIAME specification 

lists a broad range of information about a microarray experiment (called MIAME 

'concepts') that should be captured. One such concept is that of the Biomaterial – the 

biological material from which the nucleic acids were extracted for subsequent 

labelling and hybridisation. eVOC is appropriate for use in the description of aspects 

of the Experimental Sample, or BioSource used on the array, when the source is 

human tissue. The philosophy of MGED is to provide a number of ontologies and 

allow the user to select the most appropriate ontology for their application. The eVOC 

ontologies are being offered as choices for describing the MIAME BioSource 
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properties. A challenge is ensuring that the depth of the terms provided by the eVOC 

ontologies is sufficiently detailed to cover the requirements of microarray 

experiments, while remaining of a size and complexity that is appropriate for human 

browsing and use. In addition there may in future exist a need for further ontologies 

addressing aspects of sample treatment and preparation. The implementation of a 

similar ontology-based data entry system for the public nucleotide databases would be 

of immense value for the submission of cDNA and SAGE library information. 

The clone libraries annotated here are generated from biological sample materials 

representing specific expression states (e.g.: infant lung). These libraries represent 

collections of each of the transcripts expressed in the original sample. The transcripts 

expressed in the original biological sample can therefore be sequenced as ESTs from 

the clone library. By mapping the clone libraries to a set of controlled terms (the 

ontologies) all the ESTs from each clone library can be transitively linked to these 

same standardised terms in the relevant ontology via their association with their 

parent clone library. In the case of ESTs we maintain a database for the bi-directional 

accession to clone library lookup which in turn allows us to link vocabulary terms 

directly to ESTs (Figure 4).  

We have annotated 7016 human cDNA and 104 human SAGE libraries with the 

eVOC expression ontologies. These represent all the human cDNA and SAGE 

libraries that were publicly available in April 2002. The amount of information 

provided for each library varies widely. In some cases extensive information about the 

anatomical system, developmental stage and pathological state of the sample source is 

provided, while in other cases only a subset of this information is provided. The 

majority of the cDNA libraries (94.8%) have the information required for 
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classification in the Anatomical System ontology and most have information required 

for annotation with Pathology (82.7%) and Developmental Stage (89.9%) terms 

(Table 2). Where libraries were unable to be annotated this was because the library 

information provided by submitters did not capture the relevant information. As a 

result of the fact that cDNA and SAGE libraries are largely derived from whole 

organs and tissues rather than from individual cell types the majority of the libraries 

(94.2%) could not be annotated using the Cell Type ontology. 

3.3.3 Using the ontologies 

3.3.3.1 Querying 

Untangled hierarchies allow for the implementation of a very simple query schema. A 

query for a particular term returns the node with which that term is associated, as well 

as all the nodes in the entire subtree (branch) rooted at that node. For instance, a query 

for the term “neoplasia” returns a particular node in the Pathology ontology, as well as 

all of its children, recursively. The next step in building a useful querying system lies 

in utilising the mappings from nodes to public databases (for example, cDNA 

libraries). In this way, a query for a particular term is translated first to a node, then 

expanded to a set of nodes, and then translated to a set of cDNA libraries. The set of 

libraries includes all the libraries associated with all the nodes in the branch rooted at 

the node which was originally associated with this node. 

This simplistic query methodology can be the basis of an enormously powerful query 

infrastructure if the ability to perform basic set algebra (union and intersection) 

operations on the returned sets of cDNA libraries is used.  
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Consider, for instance, the query “liver AND neoplasia” (Figure 5). A query on 

“liver” resolves to a node in the Anatomical System ontology, which in turn results in 

a set of cDNA libraries (all the libraries associated with the “liver” node and all its 

subnodes). Similarly, a query on “neoplasia” returns the set of cDNA libraries 

associated with a subtree of the Pathology ontology. The combined query – “liver 

AND neoplasia” – returns the intersection of these two sets of cDNA libraries. In 

other words, it will return only libraries which were constructed from neoplastic liver 

samples. 

3.3.3.2 Example applications 

The ontologies and the associated annotated cDNA and SAGE libraries have a wide 

array of applications. 

Through simply curating dbEST using the eVOC ontologies users are provided with 

the ability to perform queries based on location, state and timing of expression on 

human ESTs or cDNA libraries. Querying using terms from any combination of the 

ontologies, both libraries and transcripts can be selected from the database based on 

their expression patterns. Moreover, the differential expression of genes or gene 

isoforms based on EST data can be determined swiftly and accurately by providing a 

list of EST accessions and analysing the distribution of terms attached to each EST. 

Laboratory based applications of eVOC include the selection of clone libraries 

relevant to laboratory research projects; for example: a simple query which returns the 

total number of publicly available retinal cDNA libraries yields 22 results (Figure 6). 

To select suitable libraries for the comparison of gene expression in adult and fetal 

retina further refined queries can be used to show that 7 libraries are derived from 



 78

adult retina, 3 are derived from fetal retina, and that 12 libraries do not have 

information about the developmental stage from which the retinal issue was isolated. 

Similarly the number of cDNA libraries available for pancreatic tissue yields 31 

results. To determine how many of these are pancreatic islet libraries a second query 

is performed and yields a total of 10 pancreatic islet libraries which have source 

descriptions as diverse as "Human insulinoma" and “"HR85 islet". 

Additionally, the ability to identify cDNA and SAGE libraries from similar 

expression states provides access to an increased resource for data-mining, and allows 

users to identify and analyse genes which are differentially expressed both in their 

expression location and their expression level. We have used the system to identify 

neoplastic and normal cDNA libraries, and have identified differential gene 

expression and alternative splicing in these expression states.  

To illustrate the power of expression ontologies in determining the tissue-specificity 

of alternatively spliced transcripts we have analysed the data produced by Xu et al. 

(Xu et al., 2002) who performed a genome-wide detection of alternatively spliced 

transcripts and identified those which show tissue-specificity. To determine the tissue-

specificity of the spliceforms Xu et al. classified 4271 (~60%) of the publicly 

available cDNA libraries according to a flat list of 46 human tissue classes. This 

classification was used to determine the tissue distribution of alternatively spliced 

transcripts, identifying 667 tissue-specific alternative spliceforms. Since in the eVOC 

system cDNA libraries are classified according to a more detailed hierarchical 

vocabulary and because the classification is according to four orthogonal ontologies it 

is possible to extend the information already derived regarding the tissue-specific 

isoforms identified by Xu et al..  
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We submitted the isoform-specific EST lists provided for a subset of the genes 

identified by Xu et al. as having tissue-specific isoforms to eVOC in order to 

determine the expression profile of each isoform according to each of the four eVOC 

ontologies: Anatomical System, Cell Type, Developmental Stage and Pathology 

(Table 3). We were able to duplicate the tissue-specificity results described previously 

by comparing the expression profiles of each isoform delivered by eVOC with the 

published tissue-specificity. Additionally we were able to derive more information 

about the Pathology and Developmental Stage specificity of these isoforms. For 

example: IRP3 was described by Xu et al. as having a brain-specific isoform. 

Additional information provided by the Developmental Stage ontology in eVOC 

showed that this isoform has only been observed in the infant brain. 

By implementing a set of orthogonal, hierarchical controlled vocabularies eVOC 

provides a detailed and flexible system for the detection of expression-state-specific 

spliceforms. eVOC can be used to identify not only tissue-specific spliceforms, but 

also splicing which is specific to certain developmental stages, cell types and 

pathological states, or any combination of these states. 

3.3.3.3 Future applications 

The eVOC ontologies have been implemented as part of a candidate disease gene 

profiling tool which uses expression information in conjunction with other evidence to 

prioritise disease gene candidates within specified regions of the genome (manuscript 

in preparation). 
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3.3.4 Availability and interfaces (editing and graphical browsing) 

eVOC is provided under a BSD-style licence and is available for download free of 

charge from http://www.sanbi.ac.za/evoc/ and can be used and modified without 

restriction. From the website users are also able to download the annotated datasets, 

join the Expression Vocabulary Consortium and sign-up to use the eVOC mailing list. 

Although genomic information is not directly integrated into eVOC, users have the 

ability to integrate the expression information within eVOC with human genome 

information through the transitive mapping of ESTs (generated from the clone 

libraries which are mapped to eVOC) to the genome. This functionality is being 

provided through the integration of eVOC with the EnsemblMart data mining 

resource which is part of the Ensembl Project at EBI.  The eVOC ontologies will be 

available in the January 2003 release of the EnsemblMart database 

(http://www.ensembl.org/Homo_sapiens/martview). EnsemblMart is a data retrieval 

tool which provides users with the ability to build queries of the biological data 

(including genome sequence and annotation data) present in the Ensembl genome 

database. Since ESTs have been mapped to the genome by Ensembl, eVOC terms can 

be linked transitively (via their parent clone library which is mapped to the eVOC 

ontologies) to the genomic sequence. As a result users will be able to perform 

expression-based queries in the context of genomic data and will be able to extract 

transcripts and genes based on the location, state and timing of their expression.  

A graphical interface for querying eVOC has been developed by Electric Genetics 

(Figure 3) and is available from info@egenetics.com. This interface provides users 

with the ability to view the ontologies, browse the hierarchical trees and to perform 

set operations on the annotated cDNA library data. Using this interface it is possible 
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to obtain the list of cDNA libraries or ESTs returned by a query, or to provide a list of 

libraries or EST accessions and obtain the associated expression profile. The interface 

will be extended to include curation facilities, simplifying the users ability to modify 

the existing eVOC ontologies or create de novo ontologies of their own. In addition 

Electric Genetics has developed an API which provides the ability to develop custom 

software to interface eVOC with external data repositories, and to perform complex 

ontological queries on that data. 

3.4 Summary 

We have presented here a set of ontologies for the description of gene expression data, 

and have provided a database of the mappings between these ontologies and public 

cDNA and SAGE libraries. These have been applied successfully in retrieving 

expression information about ESTs from public databases, selecting clone libraries 

from particular expression states and in the detection of expression state-specific 

alternative spliceforms.  

The simple orthogonal ontologies are flexible and extensible, making them applicable 

to real data and allowing them to be both machine and human-readable. The 

ontologies are under continual development; existing ontologies are extended and 

altered, appropriate new ontologies are added, and the annotation of expression 

libraries is regularly updated. Both the ontologies and the annotated expression 

libraries are publicly available and able to be freely adopted, modified and integrated 

for both novel and existing applications. The wide number of potential applications 

makes eVOC a valuable resource for the biologist.  
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Table 1. Existing ontologies which are relevant to human expression data. 

 Website Scope 

CBIL http://www.cbil.upenn.edu/anatomy.php3 Adult anatomy 

Cytomer http://www.biobase.de/pages/products/cytomer.html Human developmental 
anatomy 

HUMAT http://www.ana.ed.ac.uk/anatomy/database/humat/ Human developmental 
anatomy 

EPOdb http://www.cbil.upenn.edu/EpoDB/release/version_2.2/co
ntrolled.vocab.html 

Human anatomy, 
developmental stage, cell 
type,  

GeneX http://www.ncgr.org/genex/ Human gene expression 

MeSH http://www.nlm.nih.gov/mesh/meshhome.html Clinical ontology 

UMLS http://www.nlm.nih.gov/research/umls/umlsmain.html Clinical ontology 

GALEN http://www.opengalen.org/ Clinical ontology 

SNOMED http://www.snomed.org/main.html Clinical ontology 

ICD-9-CM http://www.cdc.gov/nchs/about/otheract/icd9/abticd9.htm Clinical ontology 
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Table 2. Total number of annotated cDNA and SAGE libraries in each ontology. 
Most libraries can be annotated with Anatomical System terms as 
these are generally present in the library record. Less information is 
available for Cell Type and Developmental Stages as these are not 
consistently captured during the capture of library information. 

 Total Libraries Annotated Libraries Not Annotated 

Anatomical System 7120 6752 5.2% 

Cell type 7120 410 94.2% 

Developmental Stage 7120 5891 17.3% 

Pathology 7120 6401 10.1% 
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Table 3.  eVOC extends the expression information that can be obtained from 
other sources. IRP3, described by Xu et al. as having a brain-specific 
isoform, was shown to be infant brain specific by combining 
information gathered from the eVOC ontologies. The ESTs for each 
isoform were submitted to eVOC and the associated terms in each of 
the four ontologies were examined to identify expression state 
specificity. Five of the six ESTs from distinct cDNA libraries were 
found to support the brain-specificity reported by Xu et al. Further, 
using eVOC four of the six libraries had been annotated with 
developmental stage information and this was used to confirm that 
isoform 1 of IRP3 is only observed in infant libraries. 

Gene 
Name 

 Isoform 1 Isoform 2 

 Xu et al. eVOC Xu et al. eVOC 

5 nervous >brain 

1 respiratory >lung 

2 urogenital >genital >female 
>uterus 

1 urogenital >genital >female 
>placenta 

1 haematological >blood 

IRP3 Brain-specific 

4 infant 

No specificity

3 adult 

WNK1 Kidney-
specific 

7 urinary >kidney No specificity 2 urogenital >genital  male 
>penis 
1 alimentary >pancreas 
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Figure 1. Untangling a tangled ontology (modified from (Kemp and Gray, 2002)) 
A complex mixed ontology can be simplified by creating simpler 
ontologies representing distinct domains. 

Tangled Ontology 

Body SubstancePerson 

System 

Man Woman Doctor Patient Steroid Hormone Neurotransmitter
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doctor 
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doctor

Organic Ion 

Testosterone
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Untangled Ontology 

Entities Roles Value Types 

Person Body Substance 

Steroid Organic Ion 

Testosterone Glutamate 

Clinical 
Role 

Physiological 
Role 

PatientDoctor Neurotransmitter Hormone 

Sex Age
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Figure 2.  A screenshot of the 4 ontologies. Anatomical System, Developmental 
Stage, Pathology and Cell Type hierarchies are displayed with indications 
where the tree can be expanded. 
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Figure 3.  A screenshot of the Pathology ontology with the term “squamous cell 
carcinoma” selected. Selection of a term displays the libraries which 
are annotated with that term (squamous cell carcinoma in this case) in 
the lower window. Using this GUI (developed by Electric Genetics), 
users can view the ontologies, browse the hierarchical trees and 
perform set operations on the annotated cDNA library data. The user 
is able to obtain the list of cDNA libraries or ESTs returned by a query, 
or provide a list of libraries or EST accessions and obtain the 
associated expression profile.
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Figure 4.  The four expression ontologies are used to annotate cDNA clone 
libraries. ESTs can be transitively associated with ontology terms via 
their association with a unique clone library. Clone libraries are 
generated from biological sample materials representing specific 
expression states (e.g.: human foreskin fibroblasts). All the 
genes/transcripts expressed in the original biological sample are 
captured in the clone library and can be sequenced as ESTs from the 
library. By mapping the clone libraries to a set of controlled terms (the 
ontologies) all the ESTs from each clone library can be transitively 
linked to these same standardised terms in the relevant ontology via 
their association with their parent clone library. 

Ontologies Clone Libraries ESTs 

U30152 
U30154 
U30159 
U30162 
U30163 
U30164 
U58979 

Human TNF-treated 
BG9 fibroblasts 
(ID:1260) 

Homo sapiens 
foreskin fibroblast 
(ID:1620) 

Anatomical System 
 foreskin 

Pathology 
 Not classified 

Developmental 
Stage 
 Not classified 

Cell Type 
 fibroblast 
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Figure 5.  Schematic of query system. Libraries are attached to terms which are 
nodes in the ontology trees. Boolean queries such as “liver AND 
neoplasia” are translated into set operations on the libraries below 
the nodes matching the query terms.  The result is a list of libraries 
which meet the criteria set by the query. 

 liver 

neoplasia 

Anatomical System 
Ontology Pathology Ontology 

Query “liver AND neoplasia” 
Result: Intersection of libraries mapped to 
liver and to neoplasia 

Clone libraries in 
dbEST 
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<Library: [432] "Human retina cDNA Tsp509I-cleaved 
sublibrary"> 

  

<Library: [433] "Human retina cDNA randomly primed 
sublibrary"> 

  

<Library: [690] "Retina II">   
<Library: [420] "Human fovea cDNA">   
<Library: [671] "Retina I">   
<Library: [302] "Soares retina N2b4HR">   
<Library: [303] "Soares retina N2b5HR">   
<Library: [552] "Stratagene fetal retina 937202">   
<Library: [2729] "Uni-ZAP XR">   
<Library: [77] "Stratagene human foetal retina">   
<Library: [839] "Retinal pigment epithelium 0041 cell line">   
<Library: [267] "Subtracted human retina">   
<Library: [22] "Subtracted human retinal pigment epithelium 
(RPE)"> 

  

<Library: [7006] "Y79AA1">   
<Library: [1123] "Human retina cell line ARPE-19">   
<Library: [7269] "NIH_MGC_43">   
<Library: [1638] "subtracted retina cDNA library">   
<Library: [1639] "subtracted RPE cDNA library">   
<Library: [5606] "NIH_MGC_67">   
<Library: [8630] "Human Retinal Pigment Epithelium 
cDNA"> 

  

<Library: [631] "Human retina (D.Swanson)">   
<Library: [5374] "NIH_MGC_16">   
   

 

Figure 6 Sample query to determine suitable libraries for laboratory research 
project on differential gene expression between adult and fetal retina.  
(A) The query:  “retina” results in a list of the 22 libraries associated 
with the term “retina” in the Anatomical System ontology.  (B) Further 
refining the query to:  “retina & adult” results in a list of the 7 libraries 
associated with the terms “retina” in the Anatomical System ontology 
and also with the term “adult” in the Developmental Stage ontology.   
(C) A list of the 3 libraries which represent fetal retina can be obtained 
using the query: “retina & fetus”. 

 

B 

C 

A 
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Appendix I The eVOC Ontologies 

The Anatomical System Ontology 

developmental   
 notochord  
 ectoderm  
  neuroectoderm 
 endoderm  
 mesoderm  
  mesenchyma 
multisystem   
 head and neck  
 thorax  
 abdomen  
 pelvis  
 perineum  
 upper limb  
 lower limb  
 pooled tissues  
 whole body  
cardiovascular {vascular}   
 heart  
  atrium 
  ventricle 
  endocardium 
  myocardium 
  pericardium 
  cardiac valve 
  cardiac conducting system 
 artery  
  aorta 
  arterial intima 
  arterial media 
  arterial adventitia 
 vein {venae}  
  venous intima 
  venous media 
  venous adventitia 
 capillary  
respiratory   
 nose  
 sinus  
 larynx  
 trachea  
 bronchus  
 lung  
  small cell lung {small cell} 
 alveolus  
 pleura  
haematological {hematopoietic}   
 bone marrow  
 blood   
  peripheral blood leukocyte {PBL; peripheral blood leucocyte}  
lymphoreticular {lymphoid tissue}    
 lymph   
 lymph node   
  germinal center {germinal centre}  
 tonsil   
  lingual tonsil  
  pharyngeal tonsil  
 spleen   
alimentary {digestive}    
 oral cavity   
  tongue  
  salivary gland  
   parotid gland 
   submandibular gland {submaxillary gland} 
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   sublingual gland 
  tooth  
  gum {gingiva}  
 pharynx   
  nasopharynx  
  oropharynx  
  hypopharynx  
 oesophagus {esophagus}   
 stomach   
 intestine {gut}   
  small intestine  
   duodenum 
   jejunum 
   ileum 
  vermiform appendix  
  large intestine  
   colorectal  
    colon 
    rectum 
   anus  
 mesentery    
 omentum    
  greater omentum   
  lesser omentum   
 peritoneum {peritonaeum}    
 liver and biliary system    
  liver   
  gall bladder {gallbladder}   
  bile duct   
 pancreas    
  exocrine pancreas   
urogenital {genitourinary}     
 Urinary    
  kidney   
  ureter   
  bladder   
  urethra   
 Genital    
  male genitals   
   testis  
   epididymis  
   prostate  
   vas deferens  
   penis  
    glans 
    foreskin 
  female genitals   
   ovary  
   uterine tube  
   uterus {womb}  
    cervix 
    endometrium 
   vagina  
   vulva  
   placenta  
   trophoblast  
   chorion  
   amnion  
   amniotic fluid  
   breast  
    mammary gland 
   milk  
endocrine     
 endocrine pancreas    
  islets of Langerhans {pancreatic islet} 
 pineal gland {pineal}  
 pituitary gland {pituitary}  
 thyroid  
 parathyroid {parathyroid gland}  
 adrenal gland {adrenal}  
  adrenal cortex 
  adrenal medulla 
 thymus {thymus gland}  
musculoskeletal   
 bone  
 cartilage  
 joint  
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  synovium 
  ligament 
  meniscus 
 muscle  
  skeletal 
  smooth 
 tendon  
 fascia  
dermal   
 skin {cuticle}  
  epidermis 
  dermis 
 appendages  
  hair follicle 
  hair 
  nail bed 
  nail 
  sweat gland 
  sebaceous gland 
nervous      
 central nervous system {CNS}     
  brain    
   cerebrum {hemisphere}   
    cerebral cortex {white matter; grey matter}  
     frontal lobe {frontal cortex} 
     parietal lobe {parietal cortex} 
     temporal lobe {temporal cortex} 
     occipital lobe {occipital cortex} 
     visual 
     insula 
     olfactory bulb 
     anterior olfactory nucleus 
     lateral olfactory stria 
     medial olfactory stria 
     olfactory tubercle 
     primary olfactory cortex 
     secondary olfactory cortex 
     hippocampus 
     parahippocampal gyrus 
    basal nuclei  
     amygdaloid nucleus 
     central amygdaloid nucleus 
     medial amygdaloid nucleus 
     cortical amygdaloid nucleus 
     claustrum 
     corpus striatum 
     caudate nucleus 
     lentiform nucleus 
     putamen 
     globus pallidus 
   diencephalon   
    thalamus  
     anterior thalamic nuclei 
     anterior dorsal thalamic nucleus 
     anterior medial thalamic nucleus 
     anterior ventral thalamic nucleus 
     medial thalamic nuclei 
     medial dorsal thalamic nucleus 
     parafascicular thalamic nucleus 
     submedial thalamic nucleus 
     paracentral thalamic nucleus 
     central lateral thalamic nucleus 
     ventral thalamic nuclei 
     ventral anterior thalamic nucleus 
     ventral intermediate thalamic nucleus 
     ventral posterior thalamic nucleus 
     lateral thalamic nuclei 
     lateral dorsal thalamic nucleus 
     lateral posterior thalamic nucleus 
     pulvinar 
     reticular thalamic nucleus 
     centromedian thalamic nucleus 
     limiting thalamic nucleus 
    metathalamus  
     medial geniculate nucleus 
     lateral geniculate nucleus 
    epithalamus  



 95

     pineal body 
     habenular nucleus 
    subthalamus  
     subthalamic nucleus 
    hypothalamus  
     preoptic nucleus 
     supraoptic nucleus 
     suprachiasmatic nucleus 
     paraventricular nucleus 
     infundibular nucleus 
     anterior nucleus 
     dorsomedial nucleus 
     ventromedial nucleus 
     lateral nucleus 
     posterior nucleus 
     premamillary nucleus 
     tuberomamillary nucleus 
     medial mamillary nucleus 
     lateral mamillary nucleus 
     lateral tuberal nucleus 
   brain stem   
    midbrain  
     crus cerebri  
     colliculi  
      superior colliculi 
      inferior colliculi 
     substantia nigra  
     red nucleus  
     periaqueductal grey matter  
     oculomotor nucleus  
     trochlear nucleus  
     mesencephalic trigeminal nucleus  
    pons   
     vestibular nuclei  
      medial 
      lateral 
      superior vestibular nuclei 
      inferior vestibular nuclei 
      interstitial 
     cochlear nuclei  
      dorsal 
      ventral 
     superior olivary nucleus  
     trapezoid nucleus  
     nucleus of the lateral lemniscus  
     abducent nucleus  
     facial nucleus  
     salivatory nuclei  
      superior salivatory nuclei 
      inferior salivatory nuclei 
     trigeminal nucleus  
      nucleus of the spinal tract 
      motor 
      principal sensory 
    medulla oblongata   
     olivary nuclei  
      inferior olivary nuclei 
      medial accessory 
      dorsal accessory 
     nucleus gracilis  
     nucleus cuneatus  
     supraspinal nucleus  
     spinal nucleus of the accessory nerve  
     nucleus of the spinal tract of the trigeminal
  
     accessory cuneate nucleus  
     nucleus of the hypoglossal nerve  
     dorsal vagal nucleus  
     nucleus of the tractus solitarius  
     nucleus parasolitarius  
     arcuate nuclei  
     nucleus intercalatus 
     nucleus ambiguus 
   cerebellum   
    cerebellum cortex  
     anterior lobe of the cerebellum 
     middle lobe of the cerebellum 
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     flocculonodular lobe 
     vermis 
    cerebellum nuclei  
     dentate nucleus 
     nucleus emboliformis 
     nucleus globosus 
     nucleus fastigii 
   tract   
    corpus callosum  
    olfactory  
   ventricular system  
    lateral ventricle 
    third ventricle 
    cerebral aqueduct 
    fourth ventricle 
   cerebrospinal fluid  
   meninges  
    dura mater 
    arachnoid 
    pia mater 
  spinal cord   
   dorsal column  
   substantia gelatinosa  
   nucleus proprius  
   nucleus thoracicus  
   visceral column  
   lateral column 
   intermediolateral column 
   intermediomedial column 
   sacral parasympathetic nucleus 
   ventral column 
   retrodorsolateral column 
   dorsomedial column 
   dorsolateral column 
   phrenic nucleus 
   ventrolateral column 
   ventromedial column 
   accessory nucleus 
   lumbosacral nucleus 
 peripheral nervous system {PNS}   
  visual apparatus {eye}  
   globe 
   eyelid 
   lacrimal gland 
   conjunctiva 
   cornea 
   sclera 
   lens 
   vitreous humor 
   iris 
   ciliary body 
   choroid 
   retina 
   optic nerve 
   trabecular meshwork 
  auditory apparatus  
   external ear 
   auricle 
   external acoustic meatus 
   middle ear 
   tympanum 
   auditory tube 
   auditory ossicle 
   internal ear 
   utricle 
   saccule 
   semicircular canal 
   cochlea 
   spiral organ of Corti 
  olfactory apparatus  
  peripheral nerve {nerve}  
  ganglion  
   spinal ganglion {dorsal root ganglion} 
  sympathetic chain  
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The Pathology Ontology 

congenital anomalies    
genetic disorders    
 Charcot-Marie-Tooth disease   
 Denys-drash   
 Down's syndrome {Down syndrome}   
 Huntington's disease   
 Wiskott-Aldrich syndrome   
 fragile X syndrome   
infectious disorders    
 viral   
  AIDS  
  cytomegalovirus {CMV}  
  Epstein-Barr virus {EBV}  
  hepatitis  
   hepatitis A virus {HAV} 
   hepatitis B virus {HBV} 
   hepatitis C virus {HCV} 
  poliomyelitis  
 bacterial   
  botulism  
  staphyloccocus  
  streptoccocus  
  syphilis  
  tuberculosis  
 fungal   
  candidiasis  
 parasitic   
  helminthiasis  
  pediculosis  
inflammatory disorders    
 arteritis   
 arthritis   
 autoimmune disorders   
  Crohn's disease  
  ulcerative colitis  
  alopecia areata {patchy baldness}  
  lupus  
   discoid lupus 
   systemic lupus erythematosus {systemic lupus} 
  multiple sclerosis {MS}  
  rheumatoid arthritis  
 encephalitis   
neoplasia {leukoplakia}    
 tumour {tumor; neoplasm}   
  benign tumour  
   adenoma 
   angioma 
   carcinoid 
   fibroma  
   fibrothecoma  
   glioma  
   haemangioma  
   insulinoma  
   leiomyoma {fibroid}  
   lipoma  
   lymphangioma  
   meningioma  
   phaeochromocytoma {pheochromocytoma}  
   Schwannoma  
   teratoma  
  malignant tumour {cancer}   
   astrocytoma  
   carcinoma  
    carcinoma in situ 
    adenocarcinoma  
    choriocarcinoma  
    papillary serous carcinoma  
    teratocarcinoma  
   chorioepithelioma   
   erythremia   
   glioblastoma   
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   histiocytoma   
    fibrous histiocytoma  
   hypernephroma   
   leukaemia {leukemia}   
    lymphoblastic  
    lymphocytic  
     B-cell 
     T-cell 
    promyelocytic  
    erythroleukaemia {erythroleukemia; polycythemia rubra; 
Vasquez disease}  
    lymphosarcoma cell  
    megakaryocytic  
    myeloid {myelogenous; nonlymphocytic}  
     monocytic 
   lymphoma   
    Hodgkin's  
    non-Hodgkin's  
     Burkitt's 
   medulloblastoma   
   melanoma   
   myeloma   
   neuroblastoma   
   oligodendroglioma   
   retinoblastoma   
   sarcoma   
    liposarcoma 
    fibrosarcoma 
    gliosarcoma 
    osteosarcoma 
    Ewing's {peripheral neuroectodermal tumor; PNET} 
    Kaposi's 
    leiomyosarcoma 
    lymphosarcoma 
    reticulosarcoma 
    rhabdomyosarcoma 
   seminoma  
   Wilms  
metabolic disorders     
 Cushing's disease    
 diabetes insipidus    
 diabetes mellitus    
  type I {juvenile; insulin-dependent} 
  type II {type 2; NIDDM; noninsulin-dependent; adult-onset} 
 Grave's disease  
degenerative disorders   
 atherosclerosis  
 osteoarthritis  
 encephalopathy  
  Alzheimer's disease 
  Creutzfeldt-Jakob disease 
other disorders   
 aneurysm  
 systemic sclerosis  
 cirrhosis  
 dystrophies  
  facioscapulohumeral {FSHD} 
 growth disorders  
  atrophy  
  hypertrophy  
  hyperplasia  
   psoriasis 
   goitre {bocio tumor} 
  dysplasia  
 malignant hyperthermia   
 mental disorders   
  schizophrenia  
  affective disorders  
   bipolar disease 
   depression 
normal    
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The Cell Type Ontology 

alpha cell  
acidophil cell  
acinar cell  
adipoblast  
adipocyte {fat cell}  
 brown 
 white 
amacrine cell  
beta cell  
capsular cell  
cementocyte  
chief cell  
chondroblast  
chondrocyte  
chromaffin cell  
chromophobic cell  
Claudius' cell {Claudius cell}   
corticotroph   
delta cell   
dendritic cell   
 follicular dendritic cell  
 Langerhans cell  
enterochromaffin cell {enteroendocrine cell; Kulchitsky cell; argentaffin cell} 
  
ependymocyte {ependymal cell}   
epithelium   
 basal cell  
 squamous  
  endothelium {endothelial cell} 
 transitional  
erythroblast   
erythrocyte {red blood cell}   
fibroblast   
fibrocyte   
follicular cell   
germ cell   
 oocyte  
  primary oocyte 
  secondary oocyte 
 spermatid  
 spermatocyte  
  primary spermatocyte 
  secondary spermatocyte 
 gamete  
  ovum 
  spermatozoon {spermatozoid; spermatozoa; sperm cell} 
germinal epithelium   
giant cell   
glial cell {neuroglia}   
 astroblast 
 astrocyte 
 oligodendroblast 
 oligodendrocyte 
glioblast  
goblet cell  
gonadotroph  
granulosa cell  
haemocytoblast  
hair cell  
Hensen cell  
hepatoblast  
hepatocyte  
hyalocyte  
interstitial cell {Leydig cell}  
juxtaglomerular cell  
keratinocyte   
keratocyte {prickle cell}   
lemmal cell   
leukocyte {leucocyte; white blood cell}   
 granulocyte {polymorphonuclear leukocyte; polymorphonuclear leucocyte}  
  basophil 
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  eosinophil 
  neutrophil 
 lymphoblast  
  B-lymphoblast 
  T-lymphoblast {T lymphoblast} 
 lymphocyte  
  B-lymphocyte {B lymphocyte; B-cell; B cell} 
  T-lymphocyte {T lymphocyte; T-cell; T cell} 
  natural killer cell {NK cell} 
 macrophage  
  alveolar macrophage 
  foam cell 
  histiocyte {tissue macrophage} 
  Kupffer cell 
luteal cell   
lymphocytic stem cell   
lymphoid cell   
lymphoid stem cell   
macroglial cell   
mammotroph   
mast cell   
medulloblast   
megakaryoblast   
megakaryocyte   
melanoblast   
melanocyte   
Merkel cell  
mesangial cell  
mesothelium  
metamyelocyte  
monoblast  
monocyte  
mucous neck cell  
Müller cell  
muscle cell {muscle}  
 cardiac muscle {heart muscle} 
 smooth muscle 
 striated muscle {skeletal muscle} 
myelocyte  
myeloid cell  
myeloid stem cell  
myoblast  
myoepithelial cell 
myofibrobast 
neuroblast 
neuroepithelium 
neuron 
normoblast 
odontoblast 
osteoblast 
osteoclast 
osteocyte 
oxyntic cell {parietal cell} 
Paneth cell 
parafollicular cell 
paraluteal cell 
parietal cell 
peptic cell 
pericyte 
phaeochromocyte 
phalangeal cell {Deiters' cell} 
pinealocyte 
pituicyte 
plasma cell 
platelet 
podocyte 
prickle cell 
proerythroblast 
promonocyte 
promyeloblast 
promyelocyte 
pronormoblast 
Purkinje cell 
reticulocyte 
retinal pigment epithelium {pigmented retinal epithelium} 
retinoblast 
Schwann cell 
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Sertoli cell 
somatotroph 
stem cell 
sustentacular cell 
teloglial cell 
zymogenic cell 
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The Developmental Stage Ontology 

embryo  
 4 cells 
 8 cells 
 16 cells 
 3 weeks {3 wk} 
 4 weeks {4 wk} 
 6 weeks {6 wk} 
 7 weeks {7 wk} 
 8 weeks {8 wk} 
fetus {foetus}  
 9 weeks {9 wk} 
 10 weeks {10 wk} 
 12 weeks {12 wk} 
 13 weeks {13 wk} 
 14 weeks {14 wk} 
 16 weeks {16 wk} 
 17 weeks {17 wk}  
 18 weeks {18 wk}  
 19 weeks {19 wk}  
 20 weeks {20 wk}  
 22 weeks {22 wk}  
 23 weeks {23 wk}  
 24 weeks {24 wk}  
 26 weeks {26 wk}  
 28 weeks {28 wk}  
 32 weeks {32 wk}  
infant {newborn; neonate}   
 0 year  
 1 year {1 yr; age 1}  
child   
 toddler  
  2 years {2 year; 2 yr; age 2} 
  3 years {3 year; 3 yr; age 3} 
 4 years {4 year; 4 yr; age 4}  
 5 years {5 year; 5 yr; age 5}  
 6 years {6 year; 6 yr; age 6}  
 7 years {7 year; 7 yr; age 7}  
 8 years {8 year; 8 yr; age 8}  
 9 years {9 year; 9 yr; age 9}  
 10 years {10 year; 10 yr; age 10}  
 11 years {11 year; 11 yr; age 11}  
 12 years {12 year; 12 yr; age 12}  
adolescent {teenager; teens}   
 13 years {13 year; 13 yr; age 13}  
 14 years {14 year; 14 yr; age 14}  
 15 years {15 year; 15 yr; age 15}  
 16 years {16 year; 16 yr; age 16}  
 17 years {17 year; 17 yr; age 17}  
adult  
 18 years {18 year; 18 yr; age 18} 
 19 years {19 year; 19 yr; age 19} 
 20 years {20 year; 20 yr; age 20} 
 21 years {21 year; 21 yr; age 21} 
 22 years {22 year; 22 yr; age 22} 
 23 years {23 year; 23 yr; age 23} 
 24 years {24 year; 24 yr; age 24} 
 25 years {25 year; 25 yr; age 25} 
 26 years {26 year; 26 yr; age 26} 
 27 years {27 year; 27 yr; age 27} 
 28 years {28 year; 28 yr; age 28} 
 29 years {29 year; 29 yr; age 29} 
 30 years {30 year; 30 yr; age 30} 
 31 years {31 year; 31 yr; age 31} 
 32 years {32 year; 32 yr; age 32} 
 33 years {33 year; 33 yr; age 33} 
 34 years {34 year; 34 yr; age 34} 
 35 years {35 year; 35 yr; age 35} 
 36 years {36 year; 36 yr; age 36} 
 37 years {37 year; 37 yr; age 37} 
 38 years {38 year; 38 yr; age 38} 
 39 years {39 year; 39 yr; age 39} 



 103

 40 years {40 year; 40 yr; age 40} 
 41 years {41 year; 41 yr; age 41} 
 42 years {42 year; 42 yr; age 42} 
 43 years {43 year; 43 yr; age 43} 
 44 years {44 year; 44 yr; age 44} 
 45 years {45 year; 45 yr; age 45} 
 46 years {46 year; 46 yr; age 46} 
 47 years {47 year; 47 yr; age 47} 
 48 years {48 year; 48 yr; age 48} 
 49 years {49 year; 49 yr; age 49} 
 50 years {50 year; 50 yr; age 50} 
 51 years {51 year; 51 yr; age 51} 
 52 years {52 year; 52 yr; age 52} 
 53 years {53 year; 53 yr; age 53} 
 54 years {54 year; 54 yr; age 54} 
 55 years {55 year; 55 yr; age 55} 
 56 years {56 year; 56 yr; age 56} 
 57 years {57 year; 57 yr; age 57} 
 58 years {58 year; 58 yr; age 58} 
 59 years {59 year; 59 yr; age 59} 
 60 years {60 year; 60 yr; age 60} 
 61 years {61 year; 61 yr; age 61} 
 62 years {62 year; 62 yr; age 62} 
 63 years {63 year; 63 yr; age 63} 
 64 years {64 year; 64 yr; age 64} 
 65 years {65 year; 65 yr; age 65}  
 66 years {66 year; 66 yr; age 66}  
 67 years {67 year; 67 yr; age 67}  
 68 years {68 year; 68 yr; age 68}  
 69 years {69 year; 69 yr; age 69}  
 elderly {geriatric}  
  70 years {70 year; 70 yr; age 70} 
  71 years {71 year; 71 yr; age 71} 
  72 years {72 year; 72 yr; age 72} 
  73 years {73 year; 73 yr; age 73} 
  74 years {74 year; 74 yr; age 74} 
  75 years {75 year; 75 yr; age 75} 
  76 years {76 year; 76 yr; age 76} 
  77 years {77 year; 77 yr; age 77} 
  78 years {78 year; 78 yr; age 78} 
  79 years {79 year; 79 yr; age 79} 
  80 years {80 year; 80 yr; age 80} 
  81 years {81 year; 81 yr; age 81} 
  82 years {82 year; 82 yr; age 82} 
  83 years {83 year; 83 yr; age 83} 
  84 years {84 year; 84 yr; age 84} 
  85 years {85 year; 85 yr; age 85} 
  86 years {86 year; 86 yr; age 86} 
  87 years {87 year; 87 yr; age 87} 
  88 years {88 year; 88 yr; age 88} 
  89 years {89 year; 89 yr; age 89} 
  90 years {90 year; 90 yr; age 90} 
  91 years {91 year; 91 yr; age 91} 
  92 years {92 year; 92 yr; age 92} 
  93 years {93 year; 93 yr; age 93} 
  94 years {94 year; 94 yr; age 94} 
  95 years {95 year; 95 yr; age 95} 
  96 years {96 year; 96 yr; age 96} 
  97 years {97 year; 97 yr; age 97} 
  98 years {98 year; 98 yr; age 98} 
  99 years {99 year; 99 yr; age 99} 
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Chapter 4 

The Application of Ontologies to the Identification of 

Alternatively Spliced Transcripts with Unique or 

Restricted Expression 

Two novel informatics approaches to the detection of variant transcripts, and to the 

classification of when and where transcripts are expressed have already been 

presented. In this final chapter a preliminary study combining these techniques is 

provided. Specifically, I present preliminary results for the application of these 

approaches to the identification of differentially expressed transcript isoforms.  

As described in Chapter 3, eVOC can be used to identify the conditions under which 

expressed human transcripts have been detected. The identification of when and 

where a transcript is expressed provides potentially valuable functional information. 

Transcripts which show expression which is specific or restricted to particular tissues, 

diseases or developmental stages (expression states) are of particular interest as these 

are frequently regarded as having important functional roles in that particular state.  

The recent suggestion that regulated alternative splicing may play a role in increasing 

the functional genetic repertoire of an organism (Kriventseva et al., 2003), (Brett et 

al., 2002) has led to an increased interest in investigating the extent and impact of 

alternative splicing on the production of functionally distinct proteins. Several 

alternatively spliced isoforms have already been demonstrated to show specificity to 

particular tissues, diseases and developmental stages. Besides their application as 

potential therapeutic targets, transcripts which show specificity in their expression can 
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be used as markers of developmental progression (Mouchel et al., 2003), (Patel et al.) 

or of disease diagnosis, prognosis and progression (Caballero et al., 2001). 

As described in Chapter 2, large-scale mining of expressed sequence tags (ESTs) and 

comparison with available human genome sequence has allowed the detection of 

variations in the exon composition of the mature transcripts of genes. The occurrence 

of exon skipping, the most common form of alternative splicing, has been linked to 

various disease phenotypes, including cancer (Caballero et al., 2001), (Kwabi-Addo et 

al., 2001). Alternative splicing may play a major role in tumourigenesis, and cancer-

specific transcript isoforms could prove to be useful diagnostic markers or therapeutic 

targets. However, it remains difficult to link alternatively spliced transcripts with 

specific expression states. Despite large amounts of available expression data, 

biological discovery is currently hampered by the variable quality, non-standardised 

annotation terms and dispersed nature of this information. Using eVOC, a controlled 

vocabulary, which partitions expression information extracted from cDNA library 

annotation into four categories: anatomical site, cell type, developmental stage and 

pathological state we have attempted to determine the specificity of the expression 

state of both skip and constitutive transcript isoforms.  

I present here the development of two complementary systems which can be 

integrated to detect alternatively spliced transcripts and link these with specific 

expression states. The first system detects exon skipping using genomic sequence and 

ESTs, while the second determines the expression of the spliced and constitutive 

isoforms according to the four eVOC expression categories. An example 

implementation of this integrated approach - the detection and characterisation of 

alternatively spliced transcripts which are unique to cancer - is described. We have 
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successfully detected and characterised 323 exon skipping events in 241 genes. 

Preliminary computational results indicate that in three of these genes the constitutive 

isoforms are uniquely associated with normal tissues, and the exon-skipped transcripts 

are uniquely associated with cancer tissues. 
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Identification and characterisation of exon skipped transcripts 

specifically expressed in cancer tissues 

4.1 Aim 

In this study we applied the previously described j_explorer and eVOC tools to EST 

data in order to identify genes that produce cancer-specific alternative spliceforms. 

4.2 Background 

In excess of 2 million ESTs from human tumours and corresponding normal tissues 

have been deposited in public transcript databases, largely as the result of the work of 

two major consortia – the Cancer Genome Anatomy Project (CGAP) and the Open 

Reading Frame ESTs (ORESTES) projects. These ESTs provide significant insight 

into the cancer transcriptome (Strausberg et al., 2002), (Camargo et al., 2001) offering 

evidence for 25,000 genes, of which about 3,000 are only represented by EST data. 

Less than 1% of the known cancer-related genes do not have corresponding ESTs, 

indicating that the representation of genes associated with commonly studied tumors 

is high (Camargo, personal communication). The careful recording of the biological 

source of all the ESTs that have been produced by these sequencing projects enables 

detailed analysis of where the genes they represent are expressed in the human body.  

The incidence of alternative splicing of human genes has been estimated to be 

between 30% and 60% (Modrek and Lee, 2002). Exon skipping, the most common 

form of alternative splicing (Mironov et al., 1999a), produces distinct transcript 

isoforms, and may result in the generation of protein products with distinct functions. 

Splice variants associated with the induction of cell death, regulation of cellular 
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proliferation and differentiation, cell signaling, and angiogenesis are present in a 

variety of cancers (Mercatante and Kole, 2000). These alternatively spliced isoforms 

associated specifically with cancer have the potential to be useful as prognostic or 

diagnostic markers. Cancer-specific, functionally distinct proteins produced by 

alternative splicing can be used as targets for novel therapeutic treatments targeted at 

cancerous cells. Modification of spliceform ratios using antisense oligonucleotides 

also shows promise in restoring the normal phenotype (Mercatante et al., 2001). 

In order to identify these potential targets the genetics community requires tools 

which link emerging genome sequence information and expression data with disease 

phenotype. Successful mining of expression information can be facilitated by the use 

of a standardised nomenclature. This nomenclature should capture and present 

available data in an appropriate manner in order to allow for the extraction of 

expression profiles relevant to disease phenotypes.  The system we have developed 

integrates transcript information and genomic sequence for the identification of 

alternatively spliced cancer genes, and incorporates a controlled vocabulary for the 

description of the expression state of alternatively spliced candidates.  

4.3 Methods and results 

4.3.0.1 Data sources 

The analysis presented here is based on data from four major sources: a set of cancer-

related genes, an early assembly of the human genome, human ESTs from EMBL, 

and human cDNA libraries mapped to the eVOC controlled vocabularies.  A non-

redundant set of 1011 cancer-related genes was manually selected by expert curators 

based on querying GenBank (http://www.ncbi.nlm.nih.gov/GenBank/index.html), 

GeneCards (http://bioinfo.weizmann.ac.il/cards/index.html) and the Harvard 
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University (http://sbweb.med.harvard.edu/sgc/gene_list.htm). The gene list, available 

at http://madhatter.fmrp.usp.br/jamborestes/, represents an incomplete yet 

representative set of the well-characterised genes implicated in human cancers, and 

includes well-characterised genes such as BRCA1, RB1 and TP53.  Human genomic 

contigs for the April 2001 “Golden Path”, an early “pre-finished” assembly produced 

by the University of California, Santa Cruz, were downloaded from 

ftp://genome.cse.ucsc.edu/goldenPath/. Human ESTs were obtained from the human 

EST division of EMBL 67 to which additional open reading frame ESTs (ORESTES) 

generated by the Brazilian Human Cancer Genone Sequencing Project (Camargo et 

al., 2001) were added. The eVOC controlled vocabularies used were those for the 

August 2001 version which was based on the EST division of EMBL 70 with 

additional ORESTES cDNA libraries added. 

4.3.0.2 Mapping cDNAs to the genome 

The most accurate approach to identifying alternative splicing is based on alignment 

of full-length cDNAs to their cognate genomic sequence as this provides information 

about the transcripts produced. In the absence of significant numbers of full-length 

cDNAs from a broad range of tissues, developmental stages and pathologies, ESTs 

have been widely used to identify and characterise alternative splicing (Kan et al., 

2002), (Xu et al., 2002), (Hide et al., 2001), (Modrek et al., 2001), (Kan et al., 2001), 

(Kan et al., 2000).  

In order to identify alternative splicing using transcribed sequences it was necessary 

to determine the complete gene structure of each of the selected cancer genes. The 

human genome sequence was first masked for repeats and low complexity regions 

using RepeatMasker (Smit, 
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1999)(http://ftp.genome.washington.edu/RM/RepeatMasker.html). To increase 

accuracy and reduce the time required, the representative cDNA selected for each of 

the 1011 cancer-related genes was then mapped to the Golden Path assembly in three 

stages (Figure 1). In the initial step cDNAs were assigned to the correct chromosome 

using ePCR against genemap99, txmap and genethon markers. cDNAs which could be 

assigned to more than one marker, and different cDNAs which mapped to the same 

marker were removed. Subsequently, MegaBLAST (Zhang et al., 2000) was used to 

identify the genomic contig to which each cDNA, including those not mapped using 

ePCR, could be mapped. In total 944 genes could be unambiguously assigned to a 

chromosome using this method. The remaining 67 genes could not be assigned to any 

chromosome with any confidence and were excluded from further analysis. 

In the final stage of processing SPIDEY (Wheelan et al., 2001) was used to obtain a 

spliced alignment of each transcript against the identified genomic contig. The 

alignment was required to have a coverage of 97% and at least 98% identity. Using 

these criteria exon-intron structures for all 944 genes were determined. 845 genes 

were found to consist of three or more exons, while 99 genes consisted of either a 

single or double exon (Table 1).  

An EMBL formatted sequence record containing the sequence of the genomic contig 

and with the exon positions annotated was produced for each gene. Transcripts that 

could not be mapped accurately to the genome, and those composed of fewer than 

three exons were excluded from further analysis. 

4.3.0.3 Identification of exon skipping 

Alternative splicing leads to transcript variability and may play a significant role in 

the development (Stoilov et al., 2002), progression (Assimakopoulos et al., 2002), 
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prognosis, diagnosis and treatment (Mercatante et al., 2001) (Mercatante and Kole, 

2000) of human cancers. 

J-explorer (Hide et al., 2001) was used to assemble exon-constructs from the mRNA-

annotated genomic sequences. A set of all consecutive and non-consecutive exon-

exon junctions for each of the mapped cancer genes was created, and each junction 

was submitted for similarity searching against EMBL 67 (human EST division with 

extra ORESTES added) using BLAST 2.0 (Altschul et al., 1990). A skipping event 

was recorded when an EST which did not contain the exon(s) in question, but did 

contain an uninterrupted tag made up of 50bp from each of the flanking exons. ESTs 

showing significant (P<1e-40) homology to an exon junction were extracted, aligned to 

the corresponding genomic sequence using SPIDEY and manually inspected. In order 

to exclude the possibility that ESTs confirming exon skipping events were the 

products of paralogous genes or members of gene families all ESTs identifying exon 

skipping were confirmed to be unique to a single target gene, Both interchromosomal 

and intrachromosomal specificity of the transcripts was confirmed using BLAST with 

a cut-off score of 1e-30. In order to prevent the detection of skips as a result of 

incorrectly annotated exon boundaries we required that for every instance of an EST-

predicted exon skipping event, at least one EST spanning the consecutive (or linear) 

exon boundaries was also present. All consecutive junctions which could not be 

confirmed by ESTs resulted in that junction being excluded from further analysis.  

This approach precisely identifies exon skipping when EST transcript data that spans 

exon boundaries is available. A potential limitation of j_explorer is that it is reliant on 

the quality of the gene structure presented for skipping analysis. Since the mRNAs 

used to determine the exon-intron boundaries were potentially non-canonical isoforms 
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the estimate of exon skipping presented here is a conservative one. The depth of 

transcript representation in the EST databases, and the level of transcript expression 

both influence the likelihood of discovering an exon skip. The cancer gene set was 

found to be relatively well represented in the combined CGAP and ORESTES EST 

datasets, with each gene being represented by an average of 107 ESTs. 97% of the 

genes in the list have at least one corresponding CGAP or ORESTES transcript, while 

only 18 of the genes were found to have no EST coverage at all. Additionally, the 

ratio of low abundance to high abundance transcript isoforms also influences the 

detection of exon skipping.  

In the 845 genes examined a total of 323 exon skipping events were detected in 241 

genes (Table 2). This figure of 29% agrees well with previously published estimates 

of the overall incidence of exon skipping in human genes based on EST data 

(Mironov et al., 1999a), but is lower than the figure of 59% obtained for a small set of 

highly expressed genes in the chromosome 22 analysis (Hide et al., 2001). This is as a 

result of the requirement that both the consecutive flanking junctions be represented 

in the EST data before a non-consecutive junction covered by one or more transcripts 

was accepted as accurate. 

4.3.0.4 Identification and analysis of candidate cancer-specific isoforms 

The production of in excess of 100 000 ORESTES for both normal and cancer 

pathologies in each of seven major organs (brain, head and neck, colon, lung, breast, 

uterus and kidney) provides a deep survey of the transcripts expressed in these states. 

The capture of both the anatomical system and pathological information, and its 

association with the sequence data through eVOC, provides an opportunity to mine 

for transcripts specific to restricted expression states. Transcripts which show 
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restricted or unique expression are potentially valuable markers or therapeutic targets 

for human cancer.  

In order to determine whether the isoforms of the genes demonstrating alternative 

splicing also show distinct expression patterns (where one isoform is unique to cancer 

while the other is uniquely seen in normal tissues) we first identified ESTs which 

uniquely identify the respective isoforms (“isoform-specific ESTs”). These isoform 

specific ESTs were then classified with respect to their pathological state of origin 

using the eVOC ontologies. When the isoform-specific ESTs were enriched in cancer 

libraries by more than three fold compared to normal libraries, the corresponding 

isoforms were defined as being cancer-specific. As this was a preliminary 

investigation no further statistical analysis was performed. 

In three of the genes identified as showing exon skipping, the alternatively spliced 

isoforms were only detected in cDNA libraries derived from cancer tissues, while the 

constitutive isoforms were found only in normal cDNA libraries (Table 3), suggesting 

that the splice variants may be tumour-specific and could be potential markers or 

therapeutic targets. Since there was generally more sequence data available for 

cancer-derived tissues than for normal tissues, and because both normal and cancer 

samples are often highly heterogeneous, containing a mixture of different cell types, 

the identified candidates were submitted for verification using experimental methods.  

In all three genes the skipped exon was within the protein-coding region. Analysis of 

the potential effect of the skip on the predicted protein product showed that in all three 

cases the reading frame remained unaltered. An investigation of the protein motifs 

which may be impacted showed that in the case of PTPN13 the skipping of exon 26 

results in the complete removal of the PDZ domain which is involved in intracellular 
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signalling (Ponting et al., 1997) and may play a role in modulating cell death (Li et 

al., 2002). There are no known functional motifs affected by the exon skipping in 

CD53 and GOLGA4. 

The genes involved, CD53, PTPN13 and GOLGA4 were prioritised for verification in 

the laboratory of the Ludwig Institute for Cancer Research, São Paulo, Brazil. 

GOLGA4 was subsequently excluded from testing as sufficiently unique primers to 

the skipped exon could not be designed. The skipping of central, coding exons in 

CD53 (NM_00560) and PTPN13 (NM_006264) was tested using a strategy that 

enhanced the amplification of the transcript isoform containing the skipped exon. 

Using an RT-PCR primer that spanned the novel splice site formed, it was possible, in 

each case, to detect the alternative transcript in both normal and tumor derived 

samples. Thus, although carefully documented alternative splicing events can almost 

always be readily validated, tumor specific alternative splicing may be rare. The 

imbalance between normal and tumor derived transcript sequences in the EST 

databases is likely to lead to many apparently tumor specific transcripts being false 

positives.   

4.4 Discussion and opportunities 

Mining large collections of expression data, such as EST collections, provides 

valuable and extensive information about the incidence and extent of transcript 

variation as well as about the location and timing of gene expression. The EST 

databases capture a broad, yet incomplete and uneven representation of the total 

human transcriptome.  
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A number of studies have used the quantification of ESTs to identify genes which 

show expression which is unique or restricted to specific tissues or diseases including 

colon cancer genes (Brett et al., 2001) or genes which are differentially expressed 

between cancer and normal tissues (Schmitt et al., 1999), but few have taken into 

account the extent of alternative splicing, or have tried to systematically describe 

differential expression of alternatively spliced transcripts arising from a single gene.  

As a result there is still relatively little known about how the specific expression of 

alternatively spliced transcripts is regulated, and relatively few large-scale efforts 

have been carried out to identify large numbers of isoforms showing tissue specific 

expression patterns. 

We have performed a stringent, large-scale analysis of a set of genes implicated in 

human cancer. Results indicate that while alternative splicing can be readily detected, 

the unique differential expression of transcript isoforms is rare.  

Answering questions about the fraction of alternative splicing which shows tissue or 

disease specificity, and at what level it is most appropriate to analyse this specificity 

(ie: whether the spliceforms are associated with whole systems, organs, tissues, or 

cells) will rely on methods of large-scale expression analyses such as those possible 

using microarray technologies. A promising approach is that taken by Shoemaker et 

al. (Shoemaker et al., 2001) who have used ‘exon’ or ‘tiling’ arrays to identify full-

length spliceforms on chromosome 22. Using this technology it appears that it will be 

possible to perform large-scale identification of both transcript variants, and their 

disease or tissue-specific expression profiles simultaneously.  

It is hoped that such analyses will provide some insight into the mechanisms 

controlling the production of state-specific alternative transcripts, and will lead to an 
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increased ability to predict computationally the transcripts and expression patterns of 

genes implicated in disease. 
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Figure 1. Experimental workflow: The exon-intron structure of the genes was 
determined by mapping the cDNAs to genomic contigs using 
progressively more refined techniques. Single and double exon genes 
were removed from further analysis, and multi-exon genes were 
submitted to j_explorer for the detection of exon skipping. The 
expression of transcripts from genes showing exon skipping was 
assessed using eVOC and transcripts from the same gene showing 
diferential expression were prioritised for experimental verification. 
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Table 1 Processing of cancer-related genes selected for alternative splicing 
analysis. 

Total number of cancer-related genes 1011 

Genes mapped to Golden Path assembly 944 

Genes not mapped to Golden Path assembly 67 

Number of Multi-exon genes 845 

Number of single and double exon genes 99 

Table 2 Exon structure and exon skipping information for the 845 cancer-
related genes determined using j_explorer. 

Number of multiple exon genes 845 

Number of exons  10770 

Total number of consecutive junctions 9925 

Mean exon length 207 bp 

Maximum number of exons in one gene 71 

Number of genes with exon skipping 241 (29%) 

Number of skipping events 323 

Number of ESTs covering consecutive junction 16.14 

Number of ESTs covering non-consecutive junction 3.20 

Average number of exon junctions per multi-exon gene 11.75 

Probability that a multi-exon mRNA has at least one non-consecutive junction 0.07 (7%) 
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Table 3 Three genes were found to show exon skipped transcripts in cDNA 
libraries prepared from cancer tissues, while the constitutive product 
was only observed in libraries prepared from normal tissues. 
Translation and motif analysis provided information about the 
potential effect of the skip on the protein product. 

Gene Accession Function Splice 
Variant 

Protein 
Modification

PTPN13 NM_006264 Intracellular signalling, 
amino acid 
dephosphorylation, 
hydrolase 

Exon 26 
skipped 

Reading frame 
remains intact 
PDZ domain 
removed  

CD53 NM_00560 Signal transduction Exon 7 skipped Reading frame 
remains intact. 
Prenyl group 
removed 

GOLGA4 U41740 Vesicle-mediated 
transport 

Exon 7 skipped Reading frame 
remains intact 
No known motif 
affected 
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Conclusions 

I have presented a summary of the commonly used techniques for quantifying and 

characterising gene expression and have added to this the development and 

implementation of novel informatics-based approaches to transcript analysis. Through 

the application of informatics approaches to understanding gene expression I have 

provided novel methods to identify and characterise transcript variation, and have 

gained insight into the identity, structure, and expression patterns of expressed 

transcripts.  

In the first instance I have applied a computational approach to the detection and 

characterisation of alternatively spliced transcripts. Through the development of a 

novel software tool and the use of publicly available genome and transcript data I 

have shown that at least 15% of human genes demonstrate exon skipping. 

Additionally, I have show that exon skipping can be detected in at least 58% of the 

genes which are well represented by transcript data. This has demonstrated that the 

detection of alternative splicing is heavily dependent on the coverage of genes by 

available transcript data. This finding underlines the need for ongoing transcript 

sequencing – particularly from those tissues and expression states that are under-

represented in current transcript databases. Increased, directed transcript sequencing is 

likely to provide the data required to refine these current estimates of the extent of 

alternative splicing, and are likely to result in the discovery that this phenomenon is 

more widespread than has been estimated to date. 

Furthermore, I have shown that 92% of exon-skipping events occur within the protein 

coding region of the gene and that 50% of cases the reading frame is maintained. 
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While this is not definitive evidence that these spliceforms are functional, it suggests 

that these transcripts potentially encode proteins and these may have distinct functions 

from those produced by the constitutive product. While the in vitro validation and 

functional analysis of these candidates would have to be performed on a case-by-case 

basis, the computational approach taken here provides qualitative and quantitative 

predictions of alternative splicing which are valuable in selecting targets for further 

experimental validation and characterisation. It is expected that such informatics 

approaches, when combined with evidence from in vitro experiments will ultimately 

lead to the elucidation of the mechanisms that regulate alternative splicing and will 

result in the ability to perform predictive assessment of alternative splicing and the 

expected biological impact. 

Additionally, through the construction of four ontologies of appropriate granularity 

for describing the source of the biological materials used in gene expression 

experiments I have provided a novel means to integrate expression data from diverse 

experimental approaches, including EST, SAGE and microarray experiments, based 

on transcript expression information.  

The incorporation of eVOC into the Ensembl DataMart has provided the ability to 

integrate both the phenotype and sequence information from these expression 

experiments with genomic sequence and annotation information including functional 

information obtained from the gene ontologies. For the first time it is now possible to 

perform genome-wide queries integrating genomic information with transcript 

expression and functional information.  

The application of these ontologies to the annotation of 7016 cDNA and 104 SAGE 

libraries has already provided the ability to cross-query data from these sources in 
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order to characterise and quantify the transcripts identified using these approaches. 

The incorporation of microarray data will increase the utility of the system by 

providing large-scale information on expression levels and transcript variants which 

may not have been captured previously. Additionally, by taking advantage of the 

hierarchical structure of the ontologies the question of specific and/or differential 

expression of transcripts can be addressed at various levels. For example, genes 

expressed in a single organ or even a single cell can be identified. 

Through the combined application of the approaches described for the detection of 

exon skipping and for the description of gene expression patterns using controlled 

vocabularies, I have shown that it is possible to mine the EST datasets for transcript 

isoforms which are differentially expressed in cancer and normal tissues. In the three 

identified candidates laboratory verification was able to confirm the alternative 

splicing events, but showed that the spliceforms were not unique to distinct 

pathologies. However, the approach described in Chapter 4 is generic enough that it 

can be applied to a variety of datasets, and it is expected that such studies will provide 

powerful insights into transcripts showing restricted expression and into the regulation 

of such expression, given sufficiently large amounts of data. 
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