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ABSTRACT 

Nano-devices are the next step in the application of nanomaterials in modern technology. 

One area of research that is receiving an increased amount of attention globally is the 

fabrication of new nano-devices for applications in hydrogen energy technologies. The 

current work focuses on the synthesis and characterization of nano-devices with potential 

application in alkaline electrolysis and secondary polymer lithium ion batteries. 

Previous work with Nickel micro-wires demonstrated the potential to use these 

nanomaterials as electrodes in alkaline electrolysis. Carbon nanotubes have been shown 

to posse excellent electrochemical properties. A new direction in research is explored by 

combining nickel micro-wires with CNT, a new consolidated composite carbon 

nanocomposite can be realized and the characterization of such a novel composite was 

the focus of this thesis. 

Novel composite carbon nanomaterials were synthesized using an electrochemical 

template technique and a hydrocarbon pyrolysis step. The first step involved the 

deposition of nickel within the pores of ion track etched Polyethylene terephthalate (PET) 

membrane; with pore diameters of 1μ, 0.4μ and 0.2 μ. Electrochemical deposition of 

nickel was carried out galvanostatically in a nickel hard bath between 35-40°C, and using 

a deposition current density of 75 mAcm2. Carbon nanotubes were then deposited 

directly onto the surface of the nickel micro-wires via a chemical vapour deposition 

(CVD) technique using liquid petroleum gas (LPG) as the carbon source. CVD was done 

at a temperature of 800°C and the deposition time was 5 minutes. 

The morphology and structural studies of these novel composite nanomaterials were 

studied by scanning electron microscopy (SEM), transmission electron microscopy 
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(TEM) and X-ray diffraction (XRD). Electrochemical investigations were done using 

Cyclic Voltammetry (CV), Chronoamperometry (CA) and Electrochemical Impedance 

Spectroscopy (EIS).  

After removal of the template, before CNT CVD growth, SEM images revealed free 

standing arrays of nickel micro-wires, and after CNT growth via CVD the SEM 

micrographs showed that the morphology of the Ni micro-wires was moderately altered 

by the CVD process. From the XRD results it was shown that the crystallinity of the Ni 

micro-wires was persevered after the CVD process. The XRD of the nickel micro-wires 

with CNT grown directly on the surface revealed the characteristic CNT peak at 2θ = 

24.60. 

Cyclic Voltammetry (CV) was performed on the consolidated composite nanomaterial in 

an alkaline solution. The CV revealed that the novel composite carbon nanomaterial was 

the most active for hydrogen evolution when compared to unmodified Ni micro-wires 

and a flat nickel electrode. This was attributed to the increase in electrochemical 

accessible surface area. 

Electrochemical impedance spectroscopy (EIS) showed that the novel composite carbon 

nanomaterial had a much higher capacitance than the nickel micro-wires, a flat nickel 

electrode, a flat nickel substrate modified with CNT, and a graphite electrode. When a 

similar comparison was done using a commercially available anode for lithium ion 

battery applications, the novel consolidated composite carbon nanomaterial had double 

the capacitance of the commercial anode.   

The consolidated composite carbon nanomaterial was modified by depositing Pt on to the 

surface of the CNT via electroless deposition. The presence of Pt was determined by 
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Energy dispersive spectrometry and the electrocatalytic activity of the Pt modified 

consolidated composite carbon nanomaterial was significantly improved. 

The work presented in this thesis provides a new and unique direction in the synthesis 

and application of novel consolidated carbon nanomaterials through true synergistic 

effect between nickel micro-wires and CNT. The exploration of the characteristics of the 

system and the ability to functionalize the CNT with different moieties allows for a wide 

range of application in energy conversion devices. 
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Chapter 1: Introduction 

 
 Nanotechnology is considered to be the technology of the future; it is perhaps 

today’s most advanced manufacturing technology, because it reaches the theoretical limit 

of accuracy which is the size of a molecule or atom. Nanotechnology deals with materials 

and systems having the following key properties. [1]. 

• They have at least one dimension of about 1 – 100 nm 

• They are designed through processes that exhibit fundamental control over the 

physical and chemical attributes of molecular scale structures 

• They can be combined to form large structures 

 

Nanomaterials are materials that are expected to exhibit novel and significant 

improved physical, chemical and other properties for manifestation of new phenomena 

and processes which, owing to the nanoscale dimensions, are not observed at the 

macroscopic level. There are basically four focal research areas in nanomaterials. The 

first is the synthesis of nanomaterials via different techniques, the second, the study of the 

properties and structure of nanomaterials, the third, the development of new methods of 

obtaining nanomaterials and the fourth is where the nanomaterials are used as the basis 

for consolidated structures i.e. nano-composites or isolated forms for various purposes 

such as nano devices. [2]. 
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Nanomaterials can be made of carbon, ceramics, chemical precursors, ferrites, 

metals, minerals, polymers, semi-conductors and silica or silicates. Nanotechnology 

products are devices that utilize nanostructures. There are many types of nanomaterials 

and nanotechnology products. A material that has generated a sustainable amount of 

interest in nanotechnology is carbon, due to the fact that it occurs in many different 

forms.   Fullerenes or buckyballs are carbon (C60) molecules with a cage-like structure of 

60 or more atoms. Nanotubes are cylindrically-shaped Fullerene molecules or strings of 

stacked C60 carbon molecules.  

 

A new direction in synthesis, characterization and application of nanomaterials is 

consolidated nanomaterials. This is a new form of nanomaterial or nano device. 

Consolidated nanomaterials are synthesized by utilizing various techniques to obtain the 

nanomaterial or nano device. Consolidated nanomaterials are basically synthesized by 

merging two or more nanostructured materials together. In this study the consolidated 

nanomaterial was synthesized by combining Ni micro-wires and carbon nanotubes.   

Consolidated nanomaterials consist of a matrix and a dispersed second phase. This 

second phase may alter the consolidated nanomaterials electrical, thermal or magnetic 

properties; enhance its wear or erosion resistance; or serve as a strengthening or 

stiffening agent. Consequently the surface of consolidated nanomaterials can be tailored 

to specific requirements by selecting a suitable template and secondary phase. 

Consolidated nanomaterials have advantages over nanoparticles due to the fact that, when 

one studies the properties of nanoparticles you have to make the nanoparticle in some 

form of secondary phase, these are inks, pastes or pellets. Consolidated nanomaterials can 
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be studied directly due to the fact that the material is in a solid form. In this study 

consolidated nanomaterials were synthesized by depositing nickel within the pores of a 

porous template to form nickel wires (matrix) and then modifying their surface by 

deposition of carbon nanotubes (second phase) on the nickel wire arrays. The large 

interest in consolidated nanomaterials results from their numerous potential application in 

various areas such as materials and biomedical science, electronics, optics, magnetism, 

energy storage and electrochemistry. 

 

Nanotubes belong to a promising group of nanostructured materials. Although other 

nanotubes based on boron nitride and molybdenum have been reported [3], currently 

carbon nanotubes are by far the most studied group. Carbon nanotubes are one of the 

most commonly used building blocks of nanotechnology with one hundred times the 

tensile strength of steel, a thermal conductivity better than all but the purest diamond and 

electrical conductivity similar to copper, but with the ability to carry much higher current, 

therefore they seem to be very interesting class of material [4].  

 

The main objectives of this study are to synthesize consolidated composite carbon 

nanomaterial and to look at its physical and electrochemical properties.  
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Nanowire synthesis in pores of a polymeric template can be accomplished using 

electroless or electrochemical means. Chemical deposition methods have the advantage 

of filling or partially filling i.e. nanowires or nanotubes with pre-determined amounts by 

varying the deposition time. [5, 6]. With electrochemical deposition, the pores are 

continuously filled with control over the length of the resulting wire being achieved by 

varying the time of the applied potential [5, 6, 7]. However, it is the variation of the wire 

diameter which ultimately leads to the change and control of the resulting nano-wire or 

micro-wire properties. By synthesizing the nickel wires, the wires can then be used 

directly as a catalyst for carbon nanotube synthesis.          

 

Carbon nanotubes have excellent electrical, mechanical and thermal properties. 

[8, 9]. The unique arrangement of the carbon atoms, allows for the modification of the 

outer wall of the nanotube with specific chemical functionalities that may or may not 

alter the general properties of the nanotube. [10]. By combining metal micro-wires and 

carbon nanotubes a new composite material can be realized which may have properties 

that differ from the individual components. In this study the synthesis of Ni wires within 

the pores of nuclear track-etched membrane is presented. The Ni wires were modified by 

CVD growth of carbon nanotubes and extensively characterized.  
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Research area 

The main research areas of the investigation were: Investigation of the synthesis 

of the consolidated composite carbon nanomaterials, its characterization and study of the 

physico-chemical properties influencing its electro-activity. 

 

Research frame work and design 

 

Assumptions on which this study is based are given as follows:  

 Carbon nanotubes exhibit unusual strength, excellent mechanical, electrical, 

thermal and magnetic properties. 

 Nickel wires exhibit enhanced electrocatalytic activities compared to the 

corresponding bulk materials.  

  Nickel is an excellent catalyst for the synthesis of carbon nanotubes via chemical 

vapour deposition. 

 

The consolidated carbon nanomaterial will be characterized to determine its physico- 

chemical properties using a range of characterization techniques. The consolidated 

carbon nanomaterial was investigated on the basis of its electrocatalytic activities and 

capacitances. 
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Range or Scope of the investigation 

In this study the following research areas will be investigated 

 The synthesis of novel consolidated carbon nanomaterial via template synthesis 

of nickel micro-wires and CVD growth of carbon nanotubes. 

 Electrochemical deposition of nickel wires in porous track-etched membranes. 

 Pyrolysis of (Liquid Petroleum Gas) LPG via chemical vapour deposition on 

nickel wires. 

 The structural characterization of the consolidated composite carbon 

nanomaterial. 

 The electrochemical characterization of the consolidated carbon nanomaterial. 
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Investigation outline 

Chapter 2: Literature Review: Synthesis of novel consolidated composite carbon 

material. 

 The literature review focuses on the discussion of carbon nanotubes, their 

structure, synthesis and application. This is then followed by a discussion 

of template synthesis of nickel wires. This chapter is then concluded by 

the application of novel consolidated carbon nanomaterial in a number of 

fields. 

Chapter 3: Materials and Method 

Chapter 3 fundamentally serves as a continuation of the literature review, 

but with more emphasis placed on the characterization techniques 

employed in the study.  It also gives and outline of the different materials 

that were used in the study. 

Chapter 4: Results and Discussion 

Chapter 4 gives insight into the synthesis of novel consolidated composite 

carbon materials. It first starts with the synthesis of the nickel wires via 

template synthesis and then the deposition of carbon nanotubes directly 

onto the surface of the nickel wires via chemical vapour deposition.  This 

is then followed by the morphological study of the material by scanning 

electron microscopy, transmission electron microscopy and X – ray 

diffraction. Electrochemical characterization of the consolidated 

composite material was studied via cyclic voltammetry, 
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chronoamperometry and electrochemical-impedance spectroscopy are also 

elaborated on.       

Chapter 5: Conclusion and Recommendations  

The study is concluded with a concise discussion of the objectives 

achieved pertaining to the study of novel consolidated carbon material. 

Recommendations are made, anomalies noted, and the greater relevance 

and implications of the study are discussed
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Chapter 2: Literature review 
 

2. New forms of nanostructured carbon materials 
 

There are a number of different forms of carbon materials which include graphite, 

diamond and the more recently discovered Fullerenes and carbon nanotubes. All these 

forms of carbon have different properties. The most interesting form of carbon which 

most researchers are interested in at present are carbon nanotubes, due to their unique 

properties.  

2.1.1. Fullerenes - Carbon allotropes with closed shell arrangement 
 

The chemical element Carbon was only known to exist in two forms - diamond 

and graphite until 1985 when Kroto and co-workers discovered an entirely new form of 

carbon, which became known as C60 or the Fullerene molecule. The discovery of 

Fullerenes lead to the finding of carbon nanotubes. Fullerenes are large, closed-cage 

carbon clusters and have a number of unique properties that were not found in any other 

compound before. Fullerenes were discovered in 1985 by Kroto and Smalley [11]; they 

found strange results in mass spectra of evaporated carbon samples. Before the synthesis 

of the smaller Fullerenes C60 and C70, it was generally accepted that these large 

spherical molecules were unstable. However D.A. Bochvar and co-workers [12] had 

calculated that C60 in the gas phase was stable and had a relatively large band gap. 

Therefore with the discovery of Fullerenes and with their stability in the gas phase proven 

the search for other Fullerenes commenced.         
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2.1.2. Carbon Nanotubes – Carbon with graphene sheets arranged to 

form tubes.  

In 1991 Iijima and co-workers [13] discovered carbon nanotubes. Carbon nanotubes 

have been investigated by many researchers all over the world. Their large length (up to 

several microns) and small diameter (a few nanometers) results in large aspect ratio. 

Carbon nanotubes can be seen as the nearly one dimensional form of Fullerene. Therefore 

carbon nanotubes are expected to have interesting electronic, mechanical and molecular 

properties.   

 

Many exotic structures of Fullerenes exist: regular spheres, cones, tubes and also 

more complicated and strange shapes. In what follows we describe some of the most 

important and better-known structures. There are basically two forms of carbon 

nanotubes:  multi-walled nanotubes (MWNT) and single-walled nanotubes (SWNT).  

 

Carbon nanotubes are built from sp2 carbon units and consist of honeycomb lattices 

of seamless structure. They are tubular having a diameter of a few nanometers but a 

length of many microns. 

 

 SWNTs are made of single seamlessly rolled graphite sheet with a typical 

diameter of about 1.4 nm which is similar to a buckyball (C60). [14]. SWNTs have a 

number of different structures which include armchair, zigzag or chiral shapes, and all 

depend on how the graphene walls of the nanotubes are rolled together see Figure 2.1. 
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Figure 2.1: Some SWNTs with different chiralities. The difference in structure is easily 

seen at the open end of the tubes a) armchair structure b) zigzag structure and c) chiral 

structure.  

 

The different shapes of the carbon nanotubes are distinguished by their unit cells which 

are determined by the chiral vector see Figure 2.2 where â1 and â2 are unit vectors in the 

two-dimensional hexagonal lattice and n and m are integers. Another important parameter 

is the chiral angle, which is the angle between Ch and â. 

 

Figure 2.2: Schematic diagram showing how a hexagonal sheet of graphite is‘rolled’ to 

form a carbon nanotube. [15]. 
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When n = m and the chiral angle is 30 degrees the shape is known as an armchair type. 

When m or n are zero and the chiral angle is equal to zero the nanotubes shape is known 

as zigzag. Chiral nanotubes occur when the chiral angle is between 0 degrees and 30 

degrees. [15]. 

 

MWNTs can be considered as a collection of concentric SWNTs with different 

diameters see Figure 2.3. In a MWNT, the diameter usually ranges between 2 – 25 nm 

and the distance between the sheets is about 0.34 nm. [16, 17]. 

 

 

 

 

Figure 2.3:  Graphene sheets rolled up into concentric cylinders form MWNTs 
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2.2. Physico-chemical synthesis methods of Carbon Nanotubes   

Carbon nanotubes are generally produced by three main techniques namely, 

electric-arc discharge, laser ablation and chemical vapour deposition. 

2.2.1. Synthesis of Carbon Nanotubes by electric-arc discharge 
 

The arc-discharge method [18, 19] is one by which carbon nanotubes were first 

produced. This is the most widely used process for producing carbon nanotubes, and is 

also used in producing Fullerenes. It is based on an electric arc-discharge generated 

between two graphite electrodes (rods) under an inert atmosphere of helium (He) or 

argon (Ar) gas. [16, 20]. A high temperature occurs between the two electrodes during 

the process which then allows the sublimation of carbon nanotubes. Two kind of 

synthesis can be performed in the arc: evaporation of pure graphite or co-evaporation of 

graphite and metal. [21]. It has been shown [22] that the addition of small amounts of 

transition metal powders, like cobalt, nickel and iron, to the electrodes favours the growth 

of single walled nanotubes. The metal serves as a catalyst, preventing the growing tubular 

structures from wrapping around and closing into smaller Fullerene cage. [22]. The arc-

discharge evaporation of pure graphite rods has been carried out not only in gases like 

helium (He) or argon (Ar) but also in methane (CH4). [23]. It was found that methane is 

an excellent gas for the synthesis of MWCNTs. This is due to the thermal decomposition 

of methane producing hydrogen (2CH4         C2H2 + 3H2) which is and exothermic 

reaction that achieves higher temperature and activity compared to inert gases such as He 

or Ar. [24]. The high activity is due to the formation of H2 gas from the thermal 

decomposition of methane which is not observed when using inert gases.   The main 

drawback of the electric-arc discharge method is the purification of carbon nanotubes. 
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Removal of non-nanotube carbon and metal catalyst materials is more expensive than 

production itself. [25]. 

2.2.2. Laser Ablation as a production method for Carbon Nanotubes 
 

Laser ablation is the process of removing materials from a solid or occasionally 

liquid surface by irradiating it with a laser beam. At low laser flux, the material is heated 

by the absorbed laser energy and evaporates or sublimes. Usually, laser ablation refers to 

removing materials with a pulsed laser, but it is possible to ablate material with a 

continous wave laser beam if the laser intensity is high enough. 

The laser ablation method had been originally used as a source of metal clusters and 

ultrafine particles. [26, 27]. It was then later developed for Fullerene and carbon nanotube 

production. The carbon nanotube method was developed by Richard Smalley and Co-

workers at Rice University, who at that time of the discovery of carbon nanotubes, were 

blasting metals with the laser to produce various metal molecules. When they heard of 

the discovery, they substituted the metals with graphite to create multi-walled carbon 

nanotubes. [28]. Later that year the same team used a composite of graphite and metal 

catalyst particles (cobalt and nickel) to synthesize single-walled nanotubes. [29]. 

The basic principle of this method is as follows: In laser ablation carbon is vaporized 

from the surface of a solid disk of graphite into a high density helium or argon flow, 

using a focused pulsed laser. A graphite target is placed in a quartz tube mounted in a 

temperature controlled furnace. The temperature is then increased to 1200 0C. The tube is 

then filled with a flowing inert gas and a scanning laser beam is focused on the target. 

Laser vaporization produces carbon species, which are swept by the flowing gas from the 
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high temperature zone and then deposited on a conical water cooled-copper collector. 

[16, 18]. 

2.2.3. Chemical Vapour Deposition of Carbon Nanotubes by 

Hydrocarbon Pyrolysis 

The first two methods, arc-discharge and laser ablation, have the drawback that 

they do not allow the location and alignment of the synthesized carbon nanotubes to be 

controlled. This can be avoided by the chemical vapour deposition (CVD) method. CVD 

is a popular method for producing CNTs in which a hydrocarbon vapour is thermally 

decomposed in the presence of a metal catalyst. The method is also known as thermal or 

catalytic CVD to distinguish it from the many other kinds of CVD used for various 

purposes. Compared with arc-discharge and laser ablation, CVD is a simple and 

economic technique for synthesizing CNTs at low temperature and ambient pressure. 

CVD is a versatile technique in that it harnesses a variety of hydrocarbons in any state 

(solid, liquid and gas), enables the use of various substrates and allows CNT growth in a 

variety of forms, such as powders, thin or thick films, aligned or entangled, straight or 

coiled or even a desired architecture of nanotubes at predefined sites on a patterned 

substrate. [30]. In fact, CVD has been used for producing carbon filaments and fibers 

since 1959. [31, 32, 33]. The CVD process involves passing a hydrocarbon vapour 

through a tube furnace in which a catalyst material is present at sufficiently high 

temperature to decompose the hydrocarbon. CNTs grow over the catalyst and are 

collected upon cooling the system to room temperature. CNTs have been successfully 

synthesized also using organometallic catalyst precursors. [34]. The three main 
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parameters for CNT growth in CVD are type of hydrocarbon, type of catalyst and growth 

temperature. 

In this research chemical vapour deposition was chosen as the preferred method 

for the synthesis of carbon nanotubes. There are a number of different reasons why CVD 

was chosen.  

Carbon nanotubes produced by arc-discharge are normally long and straight, with 

good crystallinity, but are difficult to purify because they contain carbon particles and 

even amorphous carbon. Carbon nanotubes made from Laser ablation are primarily 

SWNTs with good diameter control and few defects, but it is a cost intensive technique 

because it requires expensive lasers and high power requirements.   

The Chemical Vapour Deposition method has drawn a lot of interest recently, an 

important advantage being that the diameter of the nanotubes can be easily controlled and 

adjusted through the pore shape and size when using suitable templates. Another 

advantage of CVD is that it is very easy to ‘scale up’ the method making it favourable for 

commercial production. 

 

LPG Pyrolysis: In the chemical vapour deposition method the synthesis of 

carbon nanotubes occurs by using gaseous carbon-containing source gas. These source 

gases are typically pure C2H2 or a CH4:H2 mixture, which decompose under conditions 

that promote carbon nanotube growth. In the group at the South African Institute for 

Advanced Materials Chemistry (SAIAMC) LPG is chosen as the carbon source for 

carbon nanotube synthesis. [35]. The simplicity and versatility of the CVD technique 

developed at the institute for this purpose does not require complicated vacuum 

http://etd.uwc.ac.za/



Chapter 2: Literature Review 
  
 

 17

equipment and high-power equipment for initiating or maintaining an electric arc or a 

laser source. The carbon source used by the institute is liquid petroleum gas (LPG), and 

one of the advantages of the developed method is that it does not need hydrogen to pre-

treat the catalysts or control the growth of the carbon nanotubes. LPG has already been 

employed to grow carbon nanotubes [36,37]; however in previous studies the use of 

different substrates or catalysts was not examined. In the SAIAMC, carbon nanotubes 

have been successfully synthesized on various substrates such Co foil, Ni foil and Ni 

porous membranes by CVD and by using LPG as the carbon source see Figure 2.4. 

 

 

Figure 2.4: SEM micrographs of CNT grown on Co foil (A), Ni foil (B), and Ni- porous 

membranes (C).  Deposition temperature 800 0C, LPG flow rate 0.35L/min, total 

deposition time 30 min. 
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From the above results CVD and LPG pyrolysis was chosen for the synthesis of carbon 

nanotubes on the surface of the Ni micro-wires arrays.  

 

Temperature: The growth, structure and yield of carbon nanotubes are strongly 

effected by the temperature in chemical vapour deposition. Carbon nanotubes are usually 

formed between 650 0C and 1000 0C with different structures and yields. 

It has been reported [38] that carbon nanotubes produced at 650 0C have similar 

morphology to those grown at 700 0C and 750 0C, but with smaller diameter and lower 

yield. Therefore as the temperature increases the yield and the diameter increase. At 800 

0C the carbon nanotubes are not uniform in diameter and start to show rough surfaces and 

curved shapes. At temperatures above 900 0C the yield of carbon nanotubes is low. 

Carbon nanotubes produced at high temperatures (e.g. at 1000 0C) are not pure nanotubes 

but a mixture of nanotubes and carbon particles. Therefore the appropriate temperature 

range to prepare carbon nanotubes by the chemical vapour deposition method is between 

750 and 850 0C, where one usually obtains pure carbon nanotubes with large yields. [38, 

39 ] 

 

 

 

 

  

 

http://etd.uwc.ac.za/



Chapter 2: Literature Review 
  
 

 19

 

Table 2 1: Summary of the production methods for carbon nanotubes  

 

Method Arc -Discharge Chemical Vapour 
Deposition 

Laser Ablation 

Pioneers Ebbesen and Ajayan, 
NEC Japan 1992. 

Endo Shinshu 
University Nagano 
Japan. 

Smalley, Rice 1995. 

How Connect two graphite 
rods to a power supply, 
place them a few 
millimeters apart and 
turn switch. At 100 
amps carbon vaporizes 
and forms a hot plasma.  

Place substrate in oven, 
heat to 6000C and 
slowly add a carbon-
bearing gas such as 
methane. As the gas 
decomposes it frees up 
carbon atoms, which 
recombine in the form 
of NT’s. 

Blast graphite with 
intense laser pulses, use 
the laser pulses rather 
than electricity to 
generate carbon gas 
from which the NT’s 
form, try various 
conditions until hit on 
one that produces 
prodigious amounts of 
SWNTs.  

Typical Yield 30 to 90% 20 to 100% Up to 70% 
SWNT Short tubes with 

diameters of 0.6-1.4nm. 
Long tubes with 
diameters range from 
0.6-4nm. 

Long bundles of tubes 
(5-20microns), with 
individual diameters 
from 1-2nm. 

MWNT Short tubes with inner 
diameter of 1-3nm and 
outer diameter of 
approximately 10nm. 

Long tubes with 
diameter ranging from 
10-240nm. 

Not very much interest 
in this technique, as it is 
too expensive. But 
MWNT synthesis is 
possible. 

Pros Can easily produce 
SWNTs & MWNTs. 
SWNTs have few 
structural defects; 
MWNTs without 
catalyst, not too 
expensive, open air 
synthesis possible. 

Easiest to scale up to 
industrial production; 
long length, simple 
process, SWNT 
diameter controllable, 
quite pure. 

Primarily SWNTs, with 
good diameter control 
and few defects. The 
reaction product is quite 
pure. 

Cons Tubes tend to be short 
with random sizes and 
direction often needs a 
lot of purification. 

NT’s are usually 
MWNTs and often 
riddled with defects. 

Costly technique, 
because it requires 
expensive lasers 7 & 
high power 
requirements.  
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2.3. The Role of catalysts in Carbon Nanotube growth 
 

The synthesis of carbon nanotubes can be divided into two main categories: these are 

the non-catalytic and the catalytic methods.  

• The non-catalytic category includes laser ablation and the electric arc discharge 

methods where graphite is used as the carbon source.  

• The catalytic category includes the chemical vapour deposition method; transition 

metals such as nickel, cobalt and iron are used as pure metal catalysts for carbon 

nanotube growth. [40].  

 

Transition metals such as nickel, iron and cobalt are the only three transition 

metals that can be used as pure metals.[41, 42, 43]. A number of reports have appeared in 

the literature regarding carbon nanotube synthesis where nickel, iron and cobalt were 

used either separately or in different methods or together as a composite catalyst. [44]. 

Transition metal catalysts such as nickel, iron and cobalt strongly influence nanotube 

diameter, growth rate, morphology and microstructure. [45]. The ability of these 

transition metals to form ordered carbon is thought to be related to a combination of 

factors. These include their catalytic activity for the decomposition of volatile carbon 

compounds, the fact that they form metastable carbides, and that carbon is able to diffuse 

through and over the metals extremely rapidly. [46, 47].  
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It was reported [45] that nanotubes grown from Ni have the largest diameter, the 

highest growth rate and the best alignment. They also exhibit reasonably good 

graphitized tubular microstructure. Nanotubes catalyzed by Co have the smallest 

diameter and lowest growth rate. Fe and Co both produce carbon nanotubes that have a 

thinner wall compared to Ni catalyzed nanotubes. Carbon nanotubes grown from Ni and 

Fe are relatively free of amorphous carbon, but those from Co are covered with 

amorphous carbon and carbon particles.  

 

Since carbon nanotubes were observed, there has been extensive research on their 

synthesis using arc discharge, laser ablation, pyrolysis and plasma or thermal chemical 

vapour deposition methods. Among these methods chemical vapour deposition has many 

advantages of carbon nanotubes synthesis with high yield, high purity, selective growth 

and vertical alignment. However the growth temperature of thermal CVD is normally as 

high as 650-1000 0C. 

 

However a co-catalyst can be used to decrease the growth temperature of carbon 

nanotubes and also change the morphology of the carbon nanotubes. The two most 

promising co – catalysts are platinum (Pt) and palladium (Pd).  

It has been reported [40] that Pd co-catalyst decreases the growth temperature of 

carbon nanotubes to 500 0C, and Pt co-catalyst to 550 0C. Pd co-catalyst causes the 

carbon nanotubes to have a bamboo-like structure, while Pt co-catalyst causes the carbon 

nanotubes to have a whiskers-like structure. [40]. 
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2.4. Nanocomposite Materials 

 Composite nanomaterials can be considered as a kind of new material, which 

exhibits exotic physical and chemical properties different from the bulk material because 

of the size effect and the combination of various materials. An increasing interest has 

been focused on composite nanomaterials in science in technology in the field of 

chemical power sources. Nickel nanomaterials are widely used as electrode active 

materials in secondary batteries. [48]. Literature have reported that the addition of various 

nanomaterials such as carbon, polymers and various other metals to Bulk our nano-scale 

nickel to form a composite can alter the properties of the material. It was shown that the 

addition of nanosized carbon to the conventional Ni electrode greatly increase the 

specific capacity.[49,50 ].     

2.4.1. Consolidated Composite Carbon Materials 
 

The recent emphasis on solving material issues associated with fuel cells, 

supercapacitors and other emerging technologies for storage and conversion of energy is 

leading to a greater interest in high-surface area materials and nano composites such as 

consolidated composite materials. Nanoscale forms of carbon such as nanotubes and 

nanofibers are looking very promising because in addition to providing high surface area, 

excellent thermal stability and good electrical conductivity, they can also be combined 

with nanoparticles and other materials to form composite structures with customized 

electrical and chemical properties. 

There is a growing demand for electronic devices that require high power density 

and long life cycle. It was illustrated by Robert. J. Hamers and co-workers [51] that 

composite based carbon nanotubes or nanofibers are particularly interesting for 
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applications such as electrocatalysis, electrodes and fuel cells because of the carbon 

nanotubes or nanofibers arrangement that exposes edge-plane graphite along the side- 

walls, leading to increased electrical and chemical activity. Their work also demonstrates 

a method for producing nanostructured metal electrodes by functionalizing carbon 

nanotubes or nanofibers with metal particles.   

Although carbon nanotubes or nanofibers provide a high-surface area substrate, 

Robert. J. Hamers and co-workers [48] have demonstrated a method for fabricating 

complex nanoscale structures that exhibit 10 times higher electrically accessible surface 

area than that of a nanofiber template, and 100 times higher than a planar surface. The 

high electrically accessible surface area is due to the metal particles attached to the 

nanotubes or nanofibers. By using a similar process for other metal electrodes it is 

suggested that this procedure may be useful for preparing a wide range of nanostructured 

metallic nanocomposites with novel electrical, catalytic and electrocatalytic properties. 

 Their work supports our novel concept to synthesize consolidated composite 

carbon materials. As explained in chapter 1 the consolidated composite carbon material 

will be synthesized by using a template technique to develop the nickel micro-wire 

catalyst and chemical vapour deposition to deposit the carbon nanotubes directly onto the 

catalyst. 

2.5. Modern technologies in the preparation of consolidated nano- 

structured transition metals  

Nano-structured transition metals have been shown to exhibit novel and 

significant improved physical, mechanical and chemical properties due to their nano scale 

dimensions when compared to their bulk structures. There are various ways to synthesize 
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nano-structured transition metals: synthesis in powder form to form nanopowders or by 

template synthesis to form nano or microwires. 

2.5.1. Synthesis and consolidation of metal nanopowders 
 

There are basically four main directions of research and development in the field 

of nanoparticles. The first is that of obtaining nanoparticles by means of plasma 

chemistry, mechano-synthesis, electrical explosion of wires, low temperature reduction 

and sol-gel technology. The second direction is that of research on the properties and 

structure of nanoparticles and development of methods for characterizing and stabilizing 

them. The third direction is the development of new methods of obtaining nanoparticles 

(e.g. radiation-chemical synthesis, self-propagation high temperature synthesis). A large 

amount of research is performed on the formation of nanoparticles in polymer and 

inorganic matrices. The fourth direction is when the nanopowders are used as the basis 

for consolidated nanomaterials for various purposes as well as in an isolated form. 

There has been a noticeable expansion in research in consolidated nanomaterials in areas 

such as catalytic, optical and biological properties of nanoparticles. [52]. 

Nanocrystalline and nanophase materials generally referred to as nanostructured 

materials, have many potential magnetic, electronic and structural applications. One of 

the main problems facing nano-science research is the economic reduction of 

nanopowders which is being pursued by a variety of techniques in order to meet the 

increasing demand for nanopowders 
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Table 2.2: Various techniques for synthesizing nanopowders 

 
No. Nanopowder Synthesis 

Method 
 

Metal/Ceramic 
nanopowder 
synthesis 

Process Disadvantage 

1 Ball milling/ Mechanical 
Attrition: Powder particles 
subjected to severe mechanical 
deformation, with strain rates as 
high as 104/sec.  

Fe, Co, Ni, NiAl, 
TiAl and FeSn 

Powder contamination due to 
WC or steel balls. Low 
production rates, 1-5g/hr, 
depending on material and size 
of milling. 

2 Laser Ablation: High energy 
focused laser beam, forms a 
plasma zone resulting in ultrafine 
particles. 

AIN, MnO2, 
TiO2, Ti 
 

Low production rate, 0.0lg/hr 
and high-energy consumption, is 
highly uneconomical. 
 

3 Vapour Condensation: similar to 
physical vapor deposition (PVD), 
the difference being the use of a 
liquid nitrogen column to let the 
vaporized materials condense, 
instead of a substrate for 
deposition. 
 

Fe, MgO, Cu, 
TiO2 

Low production rates, (l-5 g/hr) 
difficult to control particle size 
and particle size distribution. 
 

4 Sputtering: a DC or RF sputter 
source is used for vaporizing the 
material, instead of laser as in 
laser ablation. 
 

Al, Cu, Mn A broad particle size distribution 
is obtained, 
only 6-8%, of sputtered material, 
is reported to be < 100nm. (<4-S 
g/h) 
 
 

5 Chemical Precipitation: involves 
mixing of two or more chemical 
‘precursors’, and/or a catalyst, to 
form a ‘gel’. The gel is dried 
under pre-determined 
temperatures, and further reduced 
under H2, to form nanopowders.  
 

SiC, BaTiO3, W-
Cu, MO-Cu  

Production rates are close to l0-
50 gm/day, agglomeration of 
powders and oxidation, from use 
of liquid chemical precursors are 
major disadvantages.  
 

6 Induction Plasma: RF generator, 
coupled to copper coils, ionizes 
plasma gas. Temperatures, as 
high as l0.0000C, are achieved. 
Material fed into plasma zone, 
vaporizes and recondenses as 
nanoparticles on the chamber 
walls. 

Fe, AIN, Cu and 
metallic borides, 
nitrides and 
carbides.  

High-energy consumption, 
uneconomical, electric field has 
to be converted to magnetic, 
which ionizes the gases. 
Efficiency is generally 50% or 
less. 
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 2.5.2. Transition metal nano or microwires and tubes synthesized 

using template techniques  

Nearly any solid matter can in principle be synthesized within nanoporous templates 

provided a suitable chemical pathway can be developed. [53, 54]. However there are 

same asspects that need to be considered. 

• Does the deposited material wet the pores? 

• Will the deposition reaction proceed too fast resulting in pore blockage at the 

membrane surface before tubule/fiber growth can occur within the pores? 

• Will the host membrane be stable (i.e. thermally and chemically) with respect to 

the reaction conditions.   

 

By depositing metals into the nanopores, nanowires with a diameter 

predetermined by the diameter of the nanopores are fabricated. There are essentially 

several representative chemical strategies to carry template synthesis within the alumina 

and polymeric template membranes [51]. See Figure 5 below. 
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Figure 2.5: Principal diagram of metal deposition into etched ion-track polymer 

membrane. 

A schematic representation of the process flow for synthesizing regular arrays of 

oriented nanotubes on a substrate by catalyst patterning and CVD is shown in Figure 2.6. 

The pattern was created on a hydrophilic substrate, such as glass, by the standard 

photolithography method, using a printed polymer foil as the photomask. To provide a 

better electric conduct, the hydrophilic substrates were metallized by thermal evaporation 

and photoresist lift-off. Aligned nanotubes were obtained previously by using CVD over 

catalysts embedded in mesoporous silica and over laser-patterned catalysts [55, 56]. 

 

Ion Irradiation of polymer foils 

Metal deposition in the etched pores 

Deposition of thin conductive layer 

Chemical etching of latent ion tracks 

Dissolution of organic foil 
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Figure 2.6: Schematic process flow for the synthesis of regular arrays of oriented 

nanotubes on a substrate by catalyst patterning and chemical vapour deposition (CVD). 

 

 

 

photoresist 

substrate

exposition (hγ/electrons) 

development, evaporation of catalyst 

lift-off 

CVD growth 
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Electrochemical deposition: This is one of the most widely used methods to fill 

conducting materials into nanopores to form continuous nanowires with large aspect 

ratios. One of the great advantages of the electrodeposition method is its ability to create 

highly conductive nanowires. This is because electrodeposition relies on electron transfer, 

which is fastest along the highest conductive path. Another important advantage of the 

electrodeposition method is the ability to control the aspect ratio of the metal nanowires 

by monitoring the total amount of passed charge. This is important for many applications 

where, for example, the optical properties of nanowires are critically dependant on the 

aspect ratio. [57].  

 

Electrodeposition of a material within the pores of the matrix is preceded by 

coating one face of the template with a metal film and using this metal as a cathode for 

electroplating. This method has been used to prepare a variety of metal nanowires 

including copper, platinum, gold, silver and nickel in both track-etched and alumina 

templates. The length of these nanowires can be controlled by varying the amount of 

metal deposited. By depositing a small amount of metal, short wires can be obtained; 

alternatively by depositing large quantities of metal, long needle-like wires can be 

prepared. [58]. 

 

Electroless deposition: In electrochemical deposition the electrodes required for 

the reduction of metal ions are supplied by an external current. In electroless deposition 

the electrons required for reduction are supplied by the catalytic or electrocatalytic  
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oxidation of a reducing agent. Electroless deposition involves the use of a chemical agent 

to plate a material from the surrounding phase onto a template surface. [50]. Electroless 

deposition differs from electrochemical deposition in that the surface to be coated need 

not be electrochemically conductive. 

In electroless deposition the material deposition in the pores starts at the pore 

wall. Therefore after short deposition times, a hollow tubule is obtained within each pore, 

whereas long deposition times result in solid nanowires. Unlike the electrochemical 

deposition method where the length of the metal nanowires can be controlled at will, 

electroless deposition yields structures that run the complete thickness of the template. 

[59]. 

 Chemical polymerization: Different conductive polymers can be synthesized by 

the polymerization of the corresponding monomer to yield tubular nanostructures. [60, 

61]. Chemical polymerization is a process that can be accomplished by simply immersing 

the membrane into a solution containing the desired monomer and a polymerization 

reagent. The polymer preferentially nucleates and grows on the pore walls, resulting in 

tubules at short deposition times and fibers at long deposition times. 

 

Sol – gel: Synthesis within the pores of templates can be conducted to create both 

tubules and fibers of a variety of materials. [62]. Sol-gel deposition is a process that 

typically involves preparation of a solution of a precursor molecule to obtain firstly a 

suspension of colloid particles (the sol) and then secondly a gel composed of aggregated 

sol particles which is thermally treated to yield the desired nanostructure within the pores 

of the template. 
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2.6. Porous Templates used to synthesize transition metal nano or 

microwires 

In template synthesis of nanostructures, the chemical stability and mechanical 

properties of the template as well as the diameter, uniformity and the density of the pores 

are important characteristics to consider. There are a number of different templates that 

have been used for nanowire synthesis; these include anodic alumina, nano-channel glass, 

ion track-etched polymers and mica films. The frequently used templates for nanowire 

synthesis are anodic alumina and track-etched membranes. 

2.6.1. Porous Alumina templates 
 

Porous anodic alumina templates are produced by anodizing pure Al films in 

various acids. [63]. Under carefully selected anodization conditions the resulting film 

possesses a regular hexagonal array of parallel and nearly cylindrical channels. The 

organization of the pore structure in an anodic alumina template involves two coupled 

processes. Firstly a pore formation with uniform diameter and secondly pore ordering. 

The pores form with uniform diameters because a balance exits between the electric-

field-enhanced diffusion which determines the growth rate of the alumina and the 

dissolution of the alumina into the acid electrolyte. The pores are believed to self – order 

because of mechanical stress at the aluminum-alumina interface due to expansion during 

anodization. The stress produces a repulsive force between the pores, causing them to 

arrange into a hexagonal lattice. [64]. 
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2.6.2. Track-etched membrane templates 
 

Track-etched membranes have been widely used recently as templates for the 

synthesis of micro and nanostructures. Track-etched membrane production follows a two 

step process. The first is the formation of latent tracks by heavy ion irradiation which is 

followed by the subsequent enlargement of tracks to pores by chemical etching. Variation 

of the irradiation and etching conditions enables the production of suitable membranes 

with pores of different geometries, sizes and aspect ratio. 

 

There are two basic methods of producing latent tracks in the polymer films to be 

transformed into porous membranes. [65]. 

The first method is based on irradiation with fragments from fission of heavy nuclei such 

as californium (Cf) or uranium (U). Exposing uranium to a neutron flux, a nuclear reactor 

initiates the fission of 235U. Typical energy loss of the fission fragments is about 

10keV/nm. The second method is based on the use of ion beams from accelerators. [66]. 

The intensity of the beam should be at least 1011 s-1 to be competitive in the track 

membrane industry. Modern accelerators provide beams of higher intensities. The 

energies of the accelerated ions are a few MeV per nucleon. The beams can be pulsing or 

continuous. To irradiate large areas a scanning beam is normally used. 
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Figure 2.7: SEM image of the surface of a track- etched membrane. 

 

Track-etched membranes have advantages over conventional membranes because 

of their precisely determined structure. However, many large scale applications are 

insensitive to such a brilliant property. Track membranes occupy a niche in biological, 

medical, analytical and scientific applications. These types of membranes are 

indispensable for manipulations with small particles of living and other matter. [67]. 

 

Track-etched membranes seem to be the best porous material for providing 

controllable transport of solutes. Further progress in track-etched membrane technology 

can be connected with the creation of membranes having particular properties for a 

particular use. For example membranes that do not adsorb proteins, membranes with 

various functional groups on the surface etc, might be developed and introduced into 

industry.  
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2.7. Nickel impregnation into polymer templates via electrochemical 

deposition  

Nickel plating is similar to other electroplating processes that employ soluble 

metal anodes. It requires the passage of direct current between two electrodes that are 

immersed in a conductive aqueous solution of nickel salts. It is the electrolytic deposition 

of a layer of nickel on a substrate. The process involves the dissolution of one electrode 

(the anode) and the deposition of metallic nickel on the other electrode (the cathode). 

[68]. Direct current is applied between the anode (positive) and the cathode (negative). 

Conductivity between the electrodes is provided by an aqueous solution of salts. When 

nickel salts are dissolved in water, the nickel is present in a solution as divalent, 

positively charged ions (Ni2+). When current flows, divalent nickel ions absorb with two 

electrons (2e-) and are converted to metallic nickel (Ni 0) at the cathode. 

 

 The reverse occurs at the anode where metallic nickel dissolves to form divalent 

ions. The electrochemical reaction which takes place is: 

02 2 NieNi ↔+ −+ . 

Because the nickel ions discharged at the cathode are replenished by the nickel ions 

formed at the anode, the nickel plating process can be operated for long periods of time 

without interruption.  

 

Nickel electroplating basically consists of an electrolyte that contains nickel 

sulphate, ammonium chloride and boric acid. Nickel sulphate is the principle source of 

nickel ions, ammonium chloride improves the anode dissolution and increases the 
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solution conductivity, while boric acid helps to produce smoother, more ductile deposits. 

[57]. Anionic anti-pitting or wetting agents are required to reduce the pitting due to the 

clinging of hydrogen bubbles to the products being plated. 

2.8. Novel applications of carbon nanotubes in power generation 

devices 

Carbon nanotubes have generated an interest amongst scientists and engineers since 

its discovery by Iijima in 1991 [13] that surpasses almost any material known to man. 

Carbon nanotubes have been found to possess a wide variety of extremely remarkable 

properties, most notably high electrical and thermal conductivity, mechanical strength 

and catalytic surface area. These properties imbue carbon nanotubes with tremendous 

potential for a variety of power generation and storage devices. 

2.8.1. Carbon application in electrode preparation for fuel cells 
 

The major motivation for the use of carbon nanotubes in PEM fuel cells is due to 

the fact that it has the potential for significant enhancement of electrical conductivity and 

metal support. [69]. The incorporation of carbon nanotubes in PEM fuel cells allows for 

enhanced oxidation of H2(g), electron transport from the anode to the cathode and 

reduction  of  O2(g). [70]. The current technology uses platinum supported carbon 

powder-based electrodes to promote these processes; recent work has shown the potential 

for platinum supported MWNTs as a viable material. [71].  
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2.8.2. Carbon electrodes for acid batteries and Li-ion batteries 
 

Carbon nanotubes used in Li+ batteries are an appropriate choice since the anodes 

are conventionally constructed from graphite. The addition of carbon nanotubes has 

shown to improve the batteries capacity due to its higher electrical conductivity and 

specific surface area compared to graphite. [72]. The nanosized pore structures of CNTs 

may provide hosting sites for storing large amounts of Li+, good chemical stability, high 

mechanical strength and elastic modulus that could make it possible for CNT electrodes 

to have a long life cycle and high electrical conductivity. [73].  

2.8.3. Carbon Nanotubes as possible material in polymeric solar cells 
 

Single wall carbon nanotubes have recently been incorporated into poly(3-

octylthiophene) (P3OT) to promote exciton dissociation and improve electron transport in 

polymeric solar cells. [58]. In the photovoltaic community, conducting polymers like 

P3OT have attracted significant attention since they produce excitons (quantum 

mechanical particles consisting of bound electron-hole pairs) upon optical absorption. 

[74]. The use of SWNTs in these polymers is an appropriate dopant choice since the 

electron affinity is higher for SWNTs compared to P3OT and electron transport is typical 

of a ballistic conductor.  
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2.8.4. Carbon Nanomaterials for hydrogen storage 
 
 Reported for the first time by Dillon et al [75], was the excellent hydrogen 

properties of single walled carbon nanotubes. Its nanosized hollow core or 

interlayer/intertube space may provide holding sites for hydrogen molecules/atoms.  

Tremendous interest has been aroused in hydrogen storage in CNTs since they were first 

reported in 1997. Unfortunately because of significantly diverse results reported and lack 

of clarity concerning the mechanism, the future of hydrogen storage in CNTs remains 

obscure.   

2.9. Conclusion of literature review and scope of investigation: 
 

The literature review shows that one of the challenges faced in modern 

nanotechnology is the preparation of finely dispersed powders, metals, compounds and 

superfine grained materials, intended for various areas of science and engineering. 

Consolidated composite materials have attracted fundamental and applied interest. The 

chemical vapour deposition method, based on the pyrolysis of carbon source gas, is 

currently actively used for the synthesis of consolidated composite carbon materials. This 

method allows for the fabrication of carbon nanotubes directly onto various supports, 

such as powders, films and nano and micro-wires. 

A catalyst is required for the synthesis of carbon nanotubes via chemical vapour 

deposition. At present it is known that transition metals are the best catalysts for carbon 

nanotube synthesis (as explained early in the literature review). In this investigation Ni 

micro-wire arrays were chosen as the catalyst, for carbon nanotubes which were 

synthesized via template synthesis. Template synthesis is based on the use of ultraporous 

polymeric and inorganic templates, and is currently actively used for synthesizing 
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consolidated materials. This method allows for the fabrication ensembles of nano or 

microstructured tubes and wires. The structure of these materials is an exact replica of the 

template matrix. By combining the Ni micro-wire arrays and the carbon nanotubes one 

would expect a new form of composite material, with properties that would differ from 

the bulk materials and individual components.   

    

The fundamental purpose of this research is to synthesize consolidated composite 

carbon materials using scientifically proven technology. Carbon nanotubes were selected 

as one of the ideal materials. The reason for this is because nanoscale forms of carbon 

such as nanotubes and nanofibres are intriguing as, in addition to providing high surface 

areas, excellent thermal stability and good electrical conductivity, they can be combined 

with metal particles and other materials to form composite structures with tailored 

electrical and chemical properties. 

 

The objectives of this study were as follows: 

• To determine the optimal conditions for homogeneous growth and, in addition, 

to identify the deposition parameters, namely overpotential, temperature and 

electrolyte solution, required for the growth of nickel micro-wire catalyst. 

Track-etched membranes with various pore diameters (i.e. 1µ, 0.4µ and 0.2µ) 

were used as templates.  

• To determine the optimal conditions for synthesis of carbon nanotubes directly 

onto the surface of nickel micro-wire arrays using LPG pyrolysis and chemical 
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vapour deposition. To determine the deposition parameters, namely time of 

deposition, temperature and flow rate of LPG gas. 

• To investigate the influence of carbon nanotubes on the surface of the Ni micro-

wire arrays. To study the structural parameters and properties of the composite 

material by SEM and TEM analysis. 

• To investigate the electrochemical and physico-chemical properties of the 

consolidated composite carbon materials. The electrochemical methods used for 

analysis will be cyclic voltammetry (CV), chronoamperometry (CA) and 

electrochemical impedance spectroscopy (EIS) 

• To determine the thermal stability of the consolidated composite carbon 

material. The thermal stability will be analyzed by thermo-gravimetric analysis 

(TGA). 

• To investigate the crystallinity of the synthesized consolidated composite 

carbon material by the XRD technique and to determine the influence of the 

carbon nanotubes on the crystallinity of the nickel micro-wire arrays. 

• To investigate the capacitance of the consolidated composite carbon materials 

via electrochemical impedance spectroscopy (EIS) and its comparison with 

various carbon based materials.  
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Chapter 3: Materials and Methods 

In this chapter the methodology and materials that were used to synthesize the 

novel consolidated Ni micro-wire structured catalyst will be presented, as well as the 

consolidated composite carbon material which was prepared via chemical vapour 

deposition. The synthesis of the novel consolidated Ni micro-wire arrays was undertaken 

via template synthesis. Electrochemical deposition was used to synthesize the stable 

nickel structures inside the pores of track-etched membranes to form nickel wires.  

3.1. Template synthesis technique for Ni micro-wires using track-

etched templates 

The template that was used to synthesize the Ni micro structured catalyst was a 

porous track-etched membrane, properties of which are shown in Table 3.1 below.  

Table 3.1: Properties of track-etched membranes 

Supplier  Joint Institute of Nuclear Research Russia 

Polymer Polyethylene terephthalate (PET) 

membrane 

Pore diameters 1µ, 0.4µ, 0.2µ 

Thickness of template 23µ 

Porosity  1µ = 15%, 0.4µ = 12%, 0.2µ = 10% 

 

A brief illustration of how the novel consolidated Ni micro-wire arrays were synthesized 

is shown below.  
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         a) Porous track-etched membrane 

 

      

        b) Deposition of conductive layer by sputter coating 

 

     

         c) Electrochemical deposition of nickel into the membrane 

 

 

    

        d) Removal of template by dissolution   
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3.2. Magnetron sputtering of conductive layer on track-etched 

membranes  

 Good adhesion between the polymer foil and the metal layer was found to be 

essential to prevent the electrolyte from slipping between the conductive layer and the 

polymer surface during electrodeposition of the wires. A suitable thickness of the 

platinum (Pt) layer had to be chosen. If the layer is too thin it will not conduct and it will 

not be possible to clad it with nickel. If the layer is too thick, stress will be induced on the 

surface of the polymer and the platinum layer will separate.  

A conductive layer of platinum, of a thickness estimated to be 100 nm was 

deposited on one side of the track-etched membrane using a magnetron sputter coater see 

table 3.3.  

Table 3.2: Conditions for the deposition of Pt conductive layer on Track – etch 
membranes.  

Sputter Coater  Bal-Tec Mac 240 Sputter Coater 

Target Platinum (Pt) 

Pressure 8 x 10 -5 mbar 

Current 60 mA 

Time 300 seconds 

Gas Argon (Ar) 
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3.3 Method used for the deposition of Ni micro-wire arrays in porous     

materials 

 Electrochemical deposition is a technique that is commonly used for depositing 

coatings, but it can also be used to fabricate both metallic and semiconducting micro / 

nanowires. In this study nickel was electrochemically deposited into the pores of porous 

track-etched membranes to form nickel micro-wires. 

 Electrodeposition of a material within the pores of a matrix is preceded by coating 

one face of the template with a metal layer and using this metal layer as a cathode for 

electroplating. In electrodeposition the pores are continuously filled beginning from the 

pore bottoms. Therefore the length of the structures can be controlled by varying the 

amount of the material deposited. Both metal and conductive polymers can be 

synthesized using the electrodeposition method. [76]. 

 In this study, electrodeposition of nickel within the pores of the track-etched 

membranes was accomplished by coating one side of the membrane with a platinum (Pt) 

layer which was used as a cathode for electroplating. The membrane was then placed in 

an electrochemical cell (see figure 3.1) so that the deposited surface faces the anode; the 

electrochemical cell employed in this study consisted of two electrodes, a working 

electrode or cathode and a counter electrode or anode. 
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Figure 3.1: Schematic view of the experimental setup used to perform electrochemical 

deposition of nickel in track-etched membranes. 

 

The nickel electrodeposition was carried out by the steady-state galvanostatic 

technique using a nickel plating bath. The electroplating solution used in this 

investigation was prepared using de-ionized water (Millipore, 18.2 MΩ-cm). The 

measurements were performed in a 500 cm3 cell with the anode and cathode electrodes 5 

cm apart. The electrolyte that was employed in the electrochemical cell was a nickel 

sulphate solution shown in Table 3.2. 
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Table 3.3: Composition of Ni plating bath 

 
Components 

 
Nickel plating bath 

 
NiSO4.7H2O 

 
180g/dm3 

 
NH4Cl 

 
25g/dm3 

 
H3BO3 

 
30g/dm3 

 
pH 

 
5.6 – 5.9 

 
Bath temperature 

 
35 – 40 0C 

Current Density for deposition inside  

template 

0.70 A/dm2 

Current Density for Support of template 1.50 A/dm2 

 
Anode 

 
Nickel (geometrical area of 3 x 10cm2) 

 

The electrochemical deposition was carried out galvanostatically at temperatures 

between 35 to 40 0C in an open cell. The deposition of the nickel within the pores of the 

membrane was done by applying two different current densities 0.70 Acm-2 for 10 

minutes to deposit Ni within the pores of the template. The template was then covered 

with a layer of candle wax to prevent over-growing of the Ni wires. This was done by 

melting a candle and then pouring the candle wax directly on the surface of the track-etch 

membrane were the Ni micro-wire growth was initiated, the candle wax was then allowed 

to dry to form a solid wax layer on the surface of the membrane.  The current density was 

then increased to 1.40 Acm-2 for 30 minutes, to increase the support and to prevent the 

structure from becoming brittle. The membrane was then etched to remove the organic 

layer. Etching was done in a 6M KOH + 10% ethanol (C2H5OH) solution for 24 hours. 
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Under these conditions the resulting nickel micro-wire arrays were polycrystalline and 

homogeneously covering the pore entrances. 

3.4. Conditions affecting the structure and the properties of Ni micro-

wire arrays 

The selection of the electrolyte and the related deposition conditions are of 

primary importance. Numerous studies have shown that mechanical properties of the 

nickel coatings depend strongly on the deposition parameters and the bath conditions. 

[77]. The electrolyte used in electrodeposition should be free from impurities; this is due 

to the fact that electrode reactions can be extremely sensitive to impurities in the solution. 

Therefore the salts should be of the highest available purity or recrystallized and the 

solvents should be carefully purified. There are a number of conditions that influence the 

characteristics of electrodeposited metal wires; they are namely, current density, 

concentration of electrolyte, temperature and pH. 

 At low current densities the discharge of the ions happens at a slow rate, allowing 

for ample crystal nuclei growth time. The deposit obtained under these conditions 

exhibits a coarse crystalline structure. As the current density increases, the rate of 

discharge of the ions also increases. The resulting deposit consists of smaller crystals. 

Therefore, the increase in current, within certain limits, yields deposits that are finer 

grained. But there is a definite limit to this improvement, because at very high current 

densities the crystals tend to grow out from the cathode towards regions where the 

solution is more concentrated, therefore creating overgrowth within the membrane. 

Increasing the concentration of the electrolyte can largely offset this effect. 
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 There are two factors that counter one another if one increases the temperature in 

electrodeposition. Firstly, it promotes the diffusion of ions to the cathode, thereby 

preventing impoverishment, which leads to roughness of the deposit. Secondly, it 

increases the rate of growth of the crystal nuclei, so that the deposit will have a tendency 

to be coarse. When operating at moderate temperatures, such as those generally applied 

to electroplate nickel, the first of the above mentioned effects predominates, thus the 

deposits are improved. But at high temperatures the quality of the deposit deteriorates. 

 The pH of the solution influences the discharge of hydrogen ions, thus causing the 

solution in the cathode layer to become alkaline and precipitate hydroxides or basic salts. 

Significant amounts of these compounds will make the resulting deposit exhibit a fine 

grain structure, but it will be dark in colour or spongy/powdery in character. 

Conditions for the growth of the Ni micro-wire catalyst are described in Table 3.2. 

3.5. Synthesis of carbon nanotubes via Chemical Vapour Deposition 

(CVD) using LPG pyrolysis 

 Chemical vapour deposition involves the dissociation and chemical reaction of 

gaseous reactants in an activated (heat, light or plasma) environment, followed by the 

formation of a stable solid product. The deposition involves homogeneous gas phase 

reactions, which occur in the gas phase, and heterogeneous chemical reactions which 

occur in the vicinity of a heated surface leading to the formation of powders or films. 

[78]. 

 In this study chemical vapour deposition was used to synthesize carbon nanotubes 

directly onto the nickel micro-wires to form consolidated composite carbon material. To 

synthesis carbon nanotubes through CVD one needs a catalytic substrate. These are 
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usually transition metals (Fe, Ni, Co) or an alloy of the three metals. Also required is a 

carbon source; previous studies have shown that the pyrolysis of hydrocarbons over 

metals can result in the formation of carbon nanotubes. [79]. Figure 3.2 illustrates the 

setup that was employed to synthesize carbon nanotubes in this study. 
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Figure 3.2: Schematic view of the experimental setup used to perform chemical vapour 

deposition.  

Parameters employed for Carbon Nanotube synthesis via chemical vapour deposition 

(CVD). 

              Flushing gas:       Nitrogen gas (UHP) supplied by Afrox 

             Carbon source:                 Liquid Petroleum Gas (LPG) supplied by Afrox 

                     Temperatures:              650, 700, 750, 800, 850, 9000C 

                     Flushing gas flow rate:            20 L/min 

                     Carbon source flow rate:        20 L/min 
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                     Times of deposition:             2, 5, 10, 15, 20 minutes 

 

 In this study nickel micro-wires were used as the catalytic substrate and liquid 

petroleum gas (LPG) was used as the hydrocarbon source. To grow CNTs on the nickel 

micro-wires, the sample was secured in a stainless steel frame to prevent the sample from 

deforming under the CVD conditions used; this was then loaded into a quartz tube 

located inside a horizontal tube furnace. Once appropriately sealed, the system was 

flushed with nitrogen and then heated to 800 0C under nitrogen. After the temperature 

had stabilized the nitrogen flow was terminated and liquid petroleum gas was introduced 

into the system for 5 minutes. Samples were cooled to ambient temperature under 

nitrogen. The consolidated composite carbon material was then removed from the 

furnace. The optimal condition for carbon nanotube synthesis was found to be at 800 0C 

and time of deposition 5 minutes.  

3.6. Morphological and structural analysis of Ni micro-wires and 

consolidated composite carbon material 

 The morphological and structural analysis of novel consolidated composite 

carbon material was systematically investigated by scanning electron microscope (SEM), 

transmission electron microscope (TEM) and X-ray diffraction (XRD). The information 

obtained from these surface techniques are discussed in Chapter 4. 

3.6.1. Scanning Electron microscopy (SEM) 

 Scanning electron microscopy (SEM) is a versatile imaging technique capable of 

producing three-dimensional images of material surfaces. SEM is one of the most 
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frequently used instruments in material research today because of the combination of 

high magnification, large depth of focus, greater resolution and ease of sample 

observation. 

The basic operation in SEM entails the interaction of an accelerated highly mono-

energetic electron beam, originating from the cathode filament, with the atoms at the 

sample surface. The electron beam is focused into a fine probe which is rastered over the 

sample. The scattered electrons are collected by a detector, modulated and amplified to 

produce an exact reconstruction of the sample surface and particle profile. [80]. 

A prerequisite for effective viewing is that the surface of the samples should be 

electrically conductive. During operation electrons are deposited onto the sample. These 

electrons must be conducted away to earth thus conductive materials such as metals and 

carbon can be placed directly into the SEM whereas non-metallic samples have to be 

coated with a gold metal layer to be observed. 

For SEM/EDS (energy dispersive spectroscopy) measurement, Hitachi x-650 microscope 

and a Noran Voyager 300EDAX (energy dispersive analysis of x-rays) in the Department 

of Physics was employed at the University of the Western Cape. The microscope beam 

energy can be varied over the range from 5 – 40KeV, with a maximum resolution of 

10nm. The EDAX analyzer is equipped with window range, allowing light elements 

analysis from carbon upwards. 

Parameters for SEM analysis are given as follows: 

                                        Working distance (mm):  15 

       Accelerating gun filament:    Tungsten    

    Filament Current (µA):   75 – 80 
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                                        Accelerating voltage (KeV):  25 

3.6.2. Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) probes the internal structure of solids 

and provides access to micro-structural details. In consolidated composite carbon 

materials characterization studies, TEM is almost exclusively used in the investigation of 

the consolidated composite shape and distribution of the metal particles. TEM was 

utilized to determine if the carbon nanotubes were deposited on the Ni micro-wire arrays 

and to observe if any Ni particles were attached to the carbon nanotubes during the CVD 

process. 

In TEM operation, a narrow electron beam originating from a tungsten filament is 

concentrated onto an ultra-thin sample surface using a series of magnetic lenses. The 

electrons interact with sample atoms while penetrating the thin sample structure leading 

to the transmittance of electrons and the production of secondary electrons. Secondary 

electrons pass through an aperture to produce an image on a fluorescent screen. For the 

consolidated composite carbon material, Ni particles appear as dark areas and low atomic 

weight elements such as carbon appear as light areas in the resultant micrographs due to 

differences in electron transmittance with increasing atom weight. [81, 82]. 

TEM samples were prepared by scraping the composite carbon material from the 

template using a scalpel. A spatula tip of the composite carbon material was dispersed in 

5 ml methanol solution, followed by sonication of the suspension. One drop of the 

suspension was deposited on a carbon/formvar film-coated copper grid. The methanol 

was allowed to evaporate at room temperature. Samples were mounted in a sample holder 
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which was introduced directly into the shaft of the microscope (LEO EM 912 and Hitachi 

H – 800 EM).  

Experimental parameters are given below: 

    Accelerating voltage (kV): 175 

    Current (µA):   20 

    Condenser aperture:  1 

    Objective aperture:  3 

    Exposure time (seconds):  3  

3.6.3. XRD analysis of crystallinity of the Ni micro-wires and the 

consolidated composite carbon material 

 X-ray diffraction (XRD) is one of the most important non-destructive tools to 

analyze all kinds of matter, ranging from thin films and fluids to powder and crystals. 

XRD is an indispensable method for material characterization. XRD is a powerful tool in 

the study of crystallinity and atomic structure of materials and forms and integral part of 

a comprehensive characterization study of the consolidated composite carbon material. It 

is used extensively in the determination of the Brava’s lattice types and unit cell 

dimensions. For the purpose of this study XRD was used in the investigation of the 

crystallinity of the structure. 

 In XRD, crystalline solids are bombarded with a collimated x-ray beam which 

causes crystal plane atoms, serving as diffraction gratings, to diffract x-rays in numerous 

angles. Each set of crystal planes (hkl) with inter-plane spacing (dhkl) can give rise to 

diffraction at only one angle. The diffraction angle is defined from Bragg’s law 
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(nλ=2dsinθ), where the intensities of the diffracted x-ray are measured and plotted against 

corresponding Bragg angles (2θ) to produce a diffractogram.    

The intensities of the diffraction peaks are proportional to the densities of the 

abundance of the corresponding crystal facets in the material lattice. Diffractograms are 

unique for different materials and can therefore qualitatively be used in material 

identification. 

In the XRD analysis, the samples were mounted on a glass sample holder and the 

surface was flattened to allow maximum x-ray exposure. Experimental parameters for the 

XRD analysis are given as follows: 

X-ray Diffractometer:     Bruker multipurpose powder diffractometer (D8 Advance) 

Tube:           Copper 

Detector:          Sodium Iodide  

Monochromator:              Graphite  

Generator operation:       40kV and 40mA  

Electron intensity (KV):   40  

X-ray source:          CuKα1 (λ = 1.5406Ǻ)  

Scan range (2θ):          Scan rate (0/min): 0.05 

3.7. Thermogravimetric Analysis (TGA) 

 Thermogravimetric analysis (TGA) is an analytical technique used to determine a 

materials thermal stability and its fraction of volatile components by monitoring the 

weight change that occurs as a specimen is heated. In this investigation the thermal 
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stability of the consolidated composite carbon material was studied using thermal 

analysis. 

Thermal characterization of the consolidated composite carbon material was 

conducted using thermogravimetric analysis (TGA). TGA involves the continuous 

weighing of solids, using a thermo-balance, while they are heated at a constant rate. 

Samples are generally heated in inert environments and undergo increases in kinetic 

motion resulting in physical and chemical changes which result in the thermal 

decomposition of solids to form products that are detectable. The output signal is a 

thermogram which is a plot of weight loss, or change in weight, as a function of 

increasing temperature. Weight loss or change in weight may be credited to thermal 

events such as phase transition, melting, volatilization, thermal decomposition, 

sublimation, oxidation or dehydration.     

 In terms of the consolidated composite carbon material, structural defects and 

porosity have pronounced influences on thermal behaviour.  In addition, the morphology 

of nanomaterials leads to thermal behaviour that deviates from the bulk materials. 

Typical thermograms for carbonaceous solids have three distinct regions. Firstly, the 

evaporation of surface moisture; secondly, the evaporation of volatile adsorbed molecules 

from micro or nanopores, and lastly the thermal decomposition of the carbon matrix. [83, 

84]. 

 TGA was conducted using a simultaneous thermal analyzer (Rheometric 

Scientific STA 1500) in an air atmosphere. Samples were ramped from ambient to 850 0C 

at a 5 0C / min heating rate.     
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3.8. Electrochemical Characterization techniques of Ni micro-wires 

and the consolidated composite material 

Electrochemical methods cover a wide range of analytical techniques. The 

fundamental signal measured is electric in nature, either current (Faradaic) or voltage 

(potentiometric), resulting from redox reaction. In this study three electrochemical 

techniques were used. These were cyclic voltammetry (CV), electrochemical impedance 

spectroscopy (EIS) and chronoamperometry (CA). 

3.8.1. Cyclic Voltammetry (CV): 

Cyclic voltammetry (CV) can be used in the study of electrode surface reaction, 

the behaviour of electrochemically-active species, and to investigate the quality of the 

electrocatalyst. CV is a widely used technique for acquiring information about an 

electrochemical reaction due to the fact that it provides information on the 

thermodynamics of redox processes and the kinetics of heterogeneous electron-transfer 

reactions.   

CV entails cycling a potential applied to an electrode immersed in an electrolyte 

solution, containing an analytic species, through a defined potential range and measuring 

the resultant current. [85].  The measured current is a result of electron flow through the 

electrochemical circuit and is due to diffusional mass transfer of electroactive species as 

migration and convection are minimized. The applied potential is swept back and forth 

between two designated potentials at a constant current, by a potentiostat.   

Typically a three-electrode system consisting of a working electrode, a reference 

electrode and a counter electrode is used. The working electrode is the electrode of 
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interest at which a potential is applied. An essential feature of a working electrode is that 

the electrode should not react chemically with the solvent or solution components.  

The counter electrode completes the circuit and is usually Pt wire, graphite or 

glass carbon. [86]. The purpose of the counter electrode is to supply the current required 

by the working electrode without limiting the measured response of the cell. [87]. 

The reference electrode experiences zero current and has a known standard 

potential against which all other potentials are measured. The role of the reference 

electrode is to provide a fixed potential which does not vary during the experiments. 

In this investigation, CV was used to study the electrochemical activity of the Ni-

micro arrays and the Ni-micro arrays modified by carbon nanotubes. CV experiments on 

the Ni-micro arrays and the Ni-micro arrays modified by carbon nanotubes were 

conducted at room temperature.  

Cyclic Voltammetry experimental parameters are given as follows: 

Voltammetric assembly: Metrohm 

Potentiostat:    Eco-Chemie Autolab PGSTAT 

Working Electrode:  Ni micro – wires / Ni micro wires modified by CNTs 

Reference Electrode:  Ag/AgCl  

Counter electrode:   Platinum wire  

Electrolyte:    0.1M KOH. 

Sweep rate:    50mV/s 

Potential range:   0.6V to -1.4V. 
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3.8.2. Chronoamperometry (CA): 

It is an electrochemical technique in which the potential of the working electrode 

is stepped and the resulting current occurring at the electrode (caused by the potential 

step) is monitored as a function of time. Because the experiment is diffusion controlled, 

after a certain time almost all molecules that are able to reach the electrode are reduced 

(oxidized). The analysis of CA data is based on the Cottrel equation. The equation 

defines the current-time dependence for linear diffusion control. 

 

    

 

Where i is the current, n number of electrons, F is the Faradays constant, A area of the 

electrode, D diffusion coefficient, C* concentration and t time. This equation can be used 

to calculate the surface area of an electrode or the concentration of analyte in solution. 

In this study Chronoamperometry (CA) was used to look at the hydrogen 

evolution reaction that takes place at the electrode surface. CA experiments were carried 

out at room temperature using a two electrode system. CA experimental parameters are as 

follows: 

Potentiostat:   Eco-Chemie Autolab PGSTAT 

Working electrode:  Ni micro – wires / Ni micro wires modified by CNTs 

            Counter electrode:  Platinum Cage 

Potentials:   1.4V to 2.0V 

Time:    300 seconds at each potential 

Electrolyte:   1M KOH 

 

2/12/1

*2/1

t
CnFADi

π
=
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3.8.3. Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is a powerful technique for the 

characterization of electrochemical systems. The electronic properties of a system can be 

defined in terms of its ability to store and transfer charge (i.e. its capacitance and 

conductance).  EIS is used to determine double-layer capacitance, and characterization of 

electrode processes and complex interfaces.The use of EIS records the response of the 

system to a small applied perturbation (i.e. AC signal), over a pre-determined frequency 

range. The technique is non-destructive and is particularly sensitive to small changes in 

the system.  

In this study EIS was used to determine the double-layer capacitance and 

subsequently calculate the surface roughness factor of the composite carbon material. The 

double-layer capacitance CdL obtained from impedance measurements was calculated 

using the equation below. 

"2
1
fZ

C
π
−

=  

 
 Capacitance is formed when two conducting plates are separated by a non- 

conducting media, called the dielectric. The value of the capacitance depends on the size 

of the plates, the distance between the plates and the properties of the dielectric. The 

relationship is as follows: 

⎟
⎠
⎞

⎜
⎝
⎛=

d
AC roεε  

Where; C = capacitance [F] 
 A = electrode surface area [m2] 
 d  = electrode distance [m] 
 εo = 8.854 x 10 -12 [F/m] 

εr = relative dielectric constant 
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The electrochemical impedance measurements were performed using methods adapted 

from Shervedani et al. [88]. Electrochemical Impedance spectra were recorded using an 

A.C. signal of 1 mV, over a 10 mHz-100 kHz frequency range. These measurements 

were carried out using an AUTOLAB PGSTAT30 (FRA) instrument, and a 6 M KOH 

solution. 

http://etd.uwc.ac.za/



Chapter 4: Results and Discussion 
  
 

 60

Chapter 4:  Results and Discussion 

The synthesis of the consolidated composite carbon material is a complex process 

which involves two steps. Firstly, the synthesis of Nickel micro-wire arrays via 

electrochemical deposition and secondly, the deposition of carbon nanotubes via 

chemical vapour deposition. In this chapter an in-depth study of the consolidated 

composite carbon material will be discussed which includes the synthesis method and 

characterization of the material. 

4.1. Development of consolidated Ni micro-wire catalyst using 

template synthesis technique 

 The synthesis of the Ni micro-wire arrays was performed by template synthesis. 

The template that was used was nuclear track-etched polyethylene terephthalate (PET) 

membrane. Nickel was deposited in the pores of the membrane. Due to the nature of the 

PET membrane (organic in nature) the membrane had to be made conductive by 

deposition of a metal layer on one side of the membrane in this case was platinum (Pt). 

The conductive layer was estimated 100 nm thick. 

 The 100 nm layer of Pt provides an electroactive surface for the growth of the Ni 

micro-wires in the pores of the PET template. The method used to deposit the Pt ‘backing 

layer’ on the surface of the PET membrane is critical. If the backing layer does not 

sufficiently adhere to the PET template, then during the actual micro-wire growth step the 

PET template may simply separate from the backing layer and thus no micro-wire 

formation will be observed. The backing layer protocol used produced a platinum layer 
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that adhered to the membrane well enough to effect the growth of the Ni micro-wires 

without the PET template separating. 

 Nickel micro-wire arrays were fabricated inside the pores of microporous 

polyethylene terephthalate (PET) membranes. The experimental method for the 

deposition of Ni wires is described in Chapter 3. Three different types of PET membranes 

were obtained from the Joint Institute of Nuclear Research Russia with pore diameters of 

1µ, 0.4µ and 0.2µ.  

 During electrodeposition of nickel wires the initiation and growth rate (current 

density) of the wires is important; it could determine whether the wires become solid or 

tubular. [89]. It can also influence the electrical contact resistance. 

 During the nickel electrodeposition process, the potential as a function of time 

was recorded. A typical current-time dependence at a constant potential maintained on 

the cell is shown in Figure 4.1 below. 
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Figure 4.1: A typical current-vs.-time curve for electrodeposition of nickel wires in 

polyethylene terephthalate (PET) templates. The applied potential was 0.7V using Ni 

hard bath. 

Four different zones can be distinguished. At stage I there is an initial current 

increase of the process; this is due to the electrical charge of the double layer and the 

diffusion layer. [90, 91]. The current decreases later as a result of metal ion depletion in 

the pores or the formation of the diffusion layer. At stage II the current remains nearly 

constant during the growth of the nickel wires in the pores. At stage III the current 

increases as soon as the wires reach the surface, causing covering of the template with 

nickel. At stage IV the process continues with the growth of macroscopic nickel over the 
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whole template. The electrodeposition of nickel can be stopped during stages II and III, 

to obtain only wires or wires with caps respectively.   

4.2. Morphological study of Nickel micro wire arrays 

 Scanning electron microscopy (SEM) was used to study the morphology of the Ni 

micro-wire arrays. The nickel was deposited into the pores of the PET membrane by 

using a ‘Nickel hard bath’ (as described in Chapter 3).  The geometry of the wires 

depends on the irradiation and etching conditions of the PET template as well as the 

electrolyte. Therefore the surface smoothness of the Ni micro-wire arrays depends on 

several factors such as the quality of the polymer and the etching process. Previous 

studies have shown [92] that the use of different nickel baths have an effect on the Ni 

wire morphology, there are various baths that can be used such as Ni watts bath, Ni 

mirror bath and the Ni hard bath. In this study the Ni hard bath was used as the 

electrolyte for the deposition of Ni to form Ni micro-wires, due to the fact that the mirror 

bath and watts bath take considerably longer to fill the pores of the PET membrane when 

compared to the hard bath. The quality of the Ni micro-wires indicates that the geometry 

of the wires directly reflects that of the pores of the PET template during 

electrodepsoition (shown in Figure 4.2). This clearly emphasizes the quality of the 

polymer and etching conditions. Typical SEM images of the PET template and Ni micro-

wires arrays are shown below in Figure 4.2.   

 

 

 

 

http://etd.uwc.ac.za/



Chapter 4: Results and Discussion 
  
 

 64

 
 
 
 
 
 
                                                                     
 
 

 
 

Figure 4.2: SEM template images (A) 1µ PET, (B) 0.4µ PET and (C) 0.2µ PET. SEM 

image in (D) Ni micro-wires grown in a 1µ PET template, image (E) Ni micro-wires 

grown in 0.4µ PET template and image (F) Ni micro-wires grown in 0.2µ PET templates. 

A B C 

A B C D E F 
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 The SEM examination of the samples revealed straight cylindrical structures with 

diameters larger than the pore size of the template, a distribution of the structures similar 

to that of the original template, and the length shorter than the membrane thickness. (See 

Table 4.1 below) 

  

Table 4.1: Thickness and length of the Ni micro-wire arrays.  

PET template pore 

diameters 

Diameter of Ni micro - 

wires 

Length of Ni micro - wires 

1µ 1.14µ 12.2µ 

0.4µ 0.53µ 12.1µ 

0.2µ 0.31µ 11.8µ 

  

 The Ni wires exhibit a larger diameter than that of the diameter of the pores of the 

PET template. The PET template is a polymer and unlike metal oxide templates, such as 

alumina the polymer can be stretched by the growth of the metal wires in the pores and 

thus the increase in the nickel wire diameter is expected. 

 The SEM images revealed that the wires are in general free standing structures, 

however, in a very few of the regions examined there were some wires that had slightly 

bent over and were lying against other free standing wires (shown in Figure 4.3). If the 

wires in the arrays bend and come into contact with adjacent wires or a wire, this can 

potentially reduce the electro-active surface area of the system. From the SEM 

examination on the structures there were no significant bends or breaks observed within 

the Ni micro-wire arrays. 
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Figure 4.3:  SEM image (A) is of Ni micro – wires grown in 0.2µ PET template, image 

(B) is of Ni micro – wires grown also in 0.2µ PET template but at a higher magnification. 

The surface of the array was purposefully scratched with a pair of tweezers to obtain a 

side view. 

4.3. Carbon Nanotube deposition on the surface of Ni micro-wire 

catalysts by LPG pyrolysis 

 Carbon nanotubes were deposited on the surface of the Ni micro-wire arrays by 

chemical vapour deposition (CVD). The CVD set up consists of a furnace using a heating 

coil to transfer energy to the gaseous carbon molecules, liquid petroleum gas (LPG) as 

the carbon source and Nitrogen gas (N2) to flush the system, the method employed is 

described in Chapter 3. The synthesis of carbon nanotubes in this current approach using 

the CVD method is based on the fact that the hydrocarbon source decomposes to carbon.  

A B
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This is then followed by the carbon dissolving into the metal catalyst, saturating 

the metal catalyst and finally precipitating to form carbon nanotube structures. [93, 94]. 

How fast this process occurs is a function of the crystalline structure of the metal catalyst. 

To synthesize carbon nanotubes via chemical vapour deposition a catalyst is 

required which is usually one of the transition metals such as Ni, Fe and Co. Therefore, 

due to the fact that the micro-wire arrays are Ni in nature it’s quite natural to use the 

micro-wire array as a catalyst for carbon nanotubes synthesis. By using the Ni micro- 

wires as a catalyst, the carbon nanotubes will grow directly on the surface of the wires. 

Carbon nanotubes were deposited on the Ni micro-wires using deposition times of 2, 5, 

10, 15 and 20 minutes, and it was shown that the deposition time of 5 minutes was the 

best time for deposition of carbon nanotubes on the Ni micro-wires. Above 5 minutes the 

Ni micro-wire catalyst is consumed in the CVD process. It was observed that after 20 

minutes the entire template was destroyed. 

SEM images of the samples after chemical vapour deposition see Figure 4.4, 

clearly illustrate the presence of an extensive mat of carbon nanotubes on the nickel 

micro-wire arrays and random distribution of isolated carbon nanotube islets on the 

surface of flat nickel. From these results it can be seen that Ni micro-wire is a superior 

catalyst to flat nickel for carbon nanotube synthesis. From the SEM images, the carbon 

nanotubes grow preferably from the nickel micro-wires and not the nickel support. SEM 

examination of the backing layer (reverse side with no nickel micro-wires) showed 

mainly amorphous carbon structures and no carbon nanotube growth. This result 

highlights the importance of the nickel micro-wires in the distribution and growth of 

carbon nanotubes.  
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Figure 4.4: SEM images of CNT mat produced after CVD synthesis, on top of Ni micro – 

wire arrays, (A) on 1µ template, (B) on 0.4µ template, (C) on 0.2µ template. (D) SEM 

image of Flat nickel with carbon nanotubes grown on it. After pyrolysis of LPG for 5 

minutes at temperature of 800 0C.  

 
 From an in-depth look into the growth of the carbon nanotubes on the nickel 

micro-wires, it can be clearly observed from the SEM images in Figure 4.5 that the 

CNTs 

CNTs 

CNTs 

CNTs 
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nanotube growth starts from between the nickel micro-wires and then starts to move up to 

the surface of the wires to form a mat over the nickel micro-wires. Based on current 

mechanisms for the growth of CNT in a CVD set-up [95], the length of the carbon 

nanotubes can be indicative of where the growth of CNT initiated. From the SEM images 

below one can observe that the longer nanotubes are attached at the bottom of the Ni 

micro-wires and the shorter nanotubes are found on top of the Ni micro-wires. Therefore 

it can be concluded that the nanotube growth initiated at the bottom end of the micro-wire 

array, and other CNT initiated later at the top ends.  

 

 

Figure 4.5: SEM image in (A) is of the Ni micro – wires + carbon nanotubes on a 0.2µ 

PET template. The surface of the array was purposefully scratch with a pair of tweeze to 

obtain a side view. Image (B) is a high magnification of the lower part of the Ni micro – 

wires + carbon nanotube arrays on a 0.2µ PET template. 

 

A B
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 The images in Figure 4.5 clearly illustrate that the nanotubes directly attach to the 

nickel micro-wires and grow between the arrays of micro-wires as well as on top. The 

SEM images show that the Ni wires and the carbon nanotubes are bonded together.  

Therefore the consolidated composite carbon material was expected to have very 

interesting properties. 

TEM was performed on the consolidated composite carbon material to observe 

the more detailed morphology of the carbon nanotubes. From Figure 4.6 below it can be 

clearly observed that multi-walled carbon nanotubes were synthesized. This is evident 

from the fact that the walls of the nanotubes are relatively thick. From the images one can 

clearly observe that some of the end caps of the tubes are open.  If one looks at Figure 

4.6: (B) below, it clearly shows that nickel particle attached to the carbon nanotubes 

during the synthesis method. 

 

 

 

 

 

 

 

 

Figure 4.6: Image (A) TEM image of carbon nanotubes with open end caps, Image (B) 

TEM image of carbon nanotubes with Ni particles attached. 

A BA B
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The addition of carbon nanotubes to the nickel micro-wires to form the 

consolidated composite carbon material has a two fold function. The functions include 

the increase of the surface area of the arrays and to provide a dynamic surface that can be 

easily modified with any chemical group of interest. Such functionalities can include 

metal nanoparticles, polymers or any bio-active group. Thus the carbon nanotube 

expands the practical use of the nickel arrays in electrochemical device application.  

4.4. Study of the crystalline nature of the consolidated composite 

carbon material 

 The crystallinity of the consolidated composite carbon material was determined 

using XRD. The XRD analysis of the structures is shown in Figure 4.7. The XRD 

analysis on the structures corroborated the initial assessment of EDS analysis by 

conclusively showing that the cylindrical structures were crystalline nickel with no nickel 

oxide peaks. 

 The X-ray diffraction patterns of the nickel micro-wires clearly show the 

characteristic reflections expected for nickel with face centered cubic (FCC) structure.  

[96, 97].   
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Figure 4.7: The XRD spectrums presented in image (A) were obtained from the 0.2µm Ni 

micro - wires before CVD growth of CNT (lower spectrum) and the Ni micro – wires with 

CNT after CVD are shown in the upper spectrum. The XRD on the other Ni micro – wire 

sample (0.4 and 1.0 µm) and Ni micro –wire + CNT samples displayed similar 

spectrums.  Image (B) is the Ni foil with micro – wires before (lower spectrum) and after 

(upper spectrum) CVD growth of CNT. 
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Common to all Nickel micro-wire structures were 5 peaks, the Ni (111) at 2 θ = 

44.500, Ni (200) at 2 θ = 51.880, Ni (220) at 2 θ = 76.500, Ni (311) at 2 θ = 92.960 and Ni 

(222) at 2 θ = 98.64. On the flat nickel substrate the same peaks were identified, however, 

when the nickel micro-wires were compared to the flat nickel substrate there was a 

notable difference in the peak intensities of the Ni (111). With the nickel micro-wires the 

dominant peak is the Ni (111), whereas on the flat Ni the dominant peak is Ni (200). This 

difference is attributed to the change from bulk nickel structure to a micro-crystalline 

structure. 

 XRD analysis on the samples after CVD revealed a peak at 2 θ = 24.60, identified 

as C (002) which is characteristic for ordered or crystalline graphite in a curved 

configuration such as nanotubes or nanofibers. It is interesting to note that the nickel peak 

intensity of the Ni (111) face is still the most dominant peak after CVD on the nickel 

micro-wires and that the Ni (200) is still dominant on the flat Ni and thus the nickel 

micro-wires are preserved through the CVD process. This is shown in the SEM image of 

Figure 4.5 B where it can be observed that the Ni micro-wires are still present after 

carbon nanotube growth via the CVD process.  

4.5. Thermal stability of the consolidated composite carbon material 

 TGA and DSC are thermal analysis techniques utilized to measure the weight loss 

and heat flow as a function of temperature and time. The combination of both techniques 

can give valuable information on phase transitions and decomposition temperatures as 

well as heat capacity for physical and chemical changes to the sample. From the 

thermograms of the consolidated composite carbon material the TGA curve shows three 

main zones and the DSC curve shows one main peak, shown in Figure 4.8. 
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Thermogravimetric analysis was conducted, under air flow, from ambient to 850 0C, to 

study the thermal stability of the consolidated composite carbon material. 

Zone (I) in the TGA curve is the stable state, in this zone the composite carbon 

material is relatively stable, and there is not a huge weight change, until it reaches the 

next zone. Zone (II) occurs due to the oxidation of carbon nanotubes, and a weight 

change is observed. This zone ranges at 520 0C to 660 0C. After zone (II) all the carbon 

nanotubes are removed from the surface due to oxidation and only nickel is left. In zone 

(III) the nickel starts to react with the air to form nickel oxide, which causes an increase 

in the weight.  

The DSG revealed one peak for all the samples; this is an exothermic peak that is 

caused due to the oxidation of the carbon nanotubes. 
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Figure 4.8: TGA and DSC curves of the consolidated composite carbon material, (A) is 

of a 1µ Ni micro – wires + CNTs , (B) is of a 0.4µ Ni micro – wires + CNTs, (C) is of a 

0.2µ Ni micro – wires + CNTs and (D) is of 1µ Ni micro – wire arrays 

 
The thermograms of the consolidated composite carbon material revealed that the 

composite material is relatively stable until about 520 0C. This is due to the fact that 

above 520 0C carbon nanotubes start to oxidize. This was evident in all the samples; the 

template pore diameters did not have a great effect on the thermal stability of the 

composite material.   

A B

C D
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The TGA thermogram of the Ni micro-wire arrays showed and increase in weight 

due to nickel oxide formation, which was expected because the experiment was run in air. 

The TGA of the flat Ni showed no phase changes on the sample, only nickel oxide 

formation occurred. 

From the thermograms of the consolidated composite material one can determine 

the amount of nanotubes that were deposited on the surface of the nickel wires. This is 

shown in Figure 4.9.  

 

 

Figure 4 9: Mass change of different consolidated composite carbon material  

 The above figure illustrates that approximately only 10% of the sample is carbon 

nanotubes and 90% of the sample is nickel. This is due to the fact that during the CVD 

process the time of deposition of nanotubes was only 5 minutes.  
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4.6. Electrochemical characterization of the consolidated composite 

carbon material 

In this study the PET membrane is easily removed after growth of the micro-wires 

by simply dissolving the template in KOH solution. Besides easy removal, the PET 

template can be obtained commercially (or prepared) with different porosities. Different 

porosities can result in different surface coverage or micro-wire density in the resulting 

micro-wire array and as a result varying surface area. 

 For example, a 1.0 cm x 1.0 cm nickel plate will have a surface area of 1.0 cm 2; 

whereas an array made using a 20µm thick PET template with pores having a diameter of 

200 nm and a porosity of 1 x 10 6/cm2 has a surface area of approximately 1.13 cm2 (the 

surface area of the flat plate plus the surface area of the micro – wires). Increasing the 

porosity by an order of magnitude increases the surface area accordingly, and thus a 

porosity of 1 x 107/cm2 has a theoretical surface area of 2.3 cm2 and theoretical values of 

13.6 cm2 and 126 cm2 for porosities of 1 x 108/cm2 and 1 x 109/cm2 respectively. Thus 

from this simple treatment of the surface area effect of an array of micro-wires has on flat 

surface, it does suggest that arrays may be suited for electrochemical application. The 

platinum backing layer provides a very good electrical contact to the nickel wires and the 

nickel wires plus carbon nanotubes. Thus the nickel wires or the composite can be easily 

addressed in any electrochemical system of choice. 

  

A principle focus of modern research in eletrocatalysis is to discover electrode 

materials that exhibit excellent electrochemical stability and show interesting activity 

towards typical electrochemical reactions. [98]. It is also desirable that these materials be 
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inexpensive, abundantly available, etc. Electrocatalytic hydrogen and oxygen evolution 

on various electrode materials and from various electrolyte solutions, are two of the most 

frequently studied electrode reactions. The reason for this is both theoretical and 

practical, since the two gases represent major products or by-products of several 

industrial electrocatalytic processes.  

 The hydrogen electrode reaction 222 HeH ↔+ −+  is a heterogeneous catalysis 

where an electrode material acts as a catalyst. [99]. A three-electrode, cylindrical 

electrochemical cell was used with Ni micro – wires / Ni micro-wires plus CNTs as a 

working electrode, platinum as a counter electrode and Ag/AgCl as a reference electrode. 

The geometric surface area of the working electrode and the counter electrode were 0.126 

and 3.35 cm2 respectively. The electrochemical behaviour was studied by applying a 

potential sweep rate of 10mV/s at room temperature.    

 The Cyclic Voltammetry (CV) experiments can be divided into seven separate 

electrodes that can be classified into one of three different categories; these are, a flat Ni 

substrate electrode, the Ni micro-wire (1.0, 0.4, or 0.2µm micro-wires) based electrodes 

and the CNT plus Ni micro-wire composite (CNT grown on the 1.0, 0.4, or 0.2µm micro 

– wires) electrodes. 
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Figure 4 10: CV on the flat Ni substrate (a), the Ni micro – wires (b) and the Ni micro – 

wires + CNT composite (C).  

 

 All cyclic voltammograms show only one anodic peak and similary only one 

reduction peak in the range of potential from -1.4V to 0.6V vs. Ag/AgCl. The anodic 

peak appears for the electrochemical formation of Ni(OH)2, which takes place in the 

region between -0.75V and -0.60V. The oxidation of Ni(OH)2 to NiOOH takes place at a 

different potential, in the oxygen evolution reaction (OER) part of the voltamogram 

therefore its not observed. In the cathodic sweep, the reduction of NiOOH to Ni(OH)2 

occurs at a potential between -0.25V and -0.15V, while reduction from Ni(OH)2  to Ni is 

not observed because of the hydrogen evolution reaction (HER). [100,101] 
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A general trend was seen between the flat Ni substrate, the Ni micro-wires and the 

CNT plus Ni micro-wire composite electrodes, shown in Figure 4.10. The anodic peak 

current density (jPA) increased in the following order: Flat Ni substrate electrode ≤ Ni 

micro-wire electrode ≤ CNTs plus Ni micro-wire electrode. This increase in the jPA may 

be indicative of the higher electrocatalytic activity of the Ni micro-wire electrodes 

towards the anodic surface reaction compared to the flat Ni electrode.  

 In addition the anodic peak potential (EPA) shifts to a more cathodic potential (-

0.75 V vs. Ag/AgCl) when using the Ni micro-wire electrodes, compared to the more 

anodic EPA of the flat Ni electrode (-0.63 V vs. Ag/AgCl). The higher activity in the 

cathodic peak (EPC = -0.26 V vs. Ag/AgCl) and the more elaborate current tailing (higher 

peak current density at the maximum cathodic potential of 1.10 V vs. Ag/AgCl) of the Ni 

micro-wire based electrodes and the CNT plus Ni micro-wire composite electrodes is also 

indicative of higher electrocatalytic activity of these electrodes towards the hydrogen 

evolution reaction, when compared to that of the flat Ni electrode. [102, 103,  104]. 

4.7. Chronoamperometry (CA) of the consolidated composite carbon 

material  

In this investigation water electrolysis was carried out in a 1M KOH aqueous 

solution at room temperature. The experiment was conducted in a standard two-electrode 

system. The working electrode was the sample and the counter-electrode was a platinum 

cage.  The experiment was conducted by applying a constant potential to the working 

electrode and monitoring the current density over a specific time until it remained 

constant; this was done for a period of 5 minutes at each potential. 
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The efficiency of hydrogen production by water electrolysis was qualitatively 

evaluated and compared with the current density value at a certain voltage. Since the 

amount of hydrogen gas is proportional to the electric current, the current density value 

becomes a good index to represent the electric power necessary to produce a certain mass 

flux of hydrogen when compared amongst data of the same voltage.  

It can be seen from Figure 4.11 below that there is an increase in current density 

due to the hydrogen evolution reaction on the Ni secondary structures plus CNTs 

composite when compared to the Ni micro-wires and that of flat Ni. This may be due to 

the fact that the surface areas of the electrodes are different and therefore they give rise to 

different current densities. 
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Figure 4.11: Activity of the different electrodes for hydrogen production. 
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 Maximum electrocatalytic activity was observed on the Ni micro-wire plus CNT 

composite. This is most likely due to the larger electrochemical surface area caused by 

the growth of the CNT on the surface of the Ni micro-wires. During CVD growth of 

CNT, the catalyst used, such as Ni in this case, can be found on the tips of the CNT 

[105], and the metal particle can be encapsulated or partially exposed and thus available 

for any electrochemical process.  

4.8. Electrochemical impedance spectroscopy of the consolidated 

composite carbon material 

A key factor controlling the practical utilization of high surface-area electrodes is 

the extent to which the surface area is electrochemically accessible.  The double-layer 

capacitance (CdL) of the consolidated composite carbon material was determined using 

electrochemical impedance spectroscopy (EIS). EIS measured the real (Z’) and imaginary 

(Z’’) parts of the complex impedance of the open circuit potential in a 6 M KOH 

solution. The double-layer capacitance was then extracted as a function of frequency (f) 

using the equation below. 

"2
1
fZ

C
π
−

=                                (1) 

The double-layer capacitance CdL, obtained from the impedance measurements, was 

calculated using equation 1, and typical Nyquist plots along with the capacitance is 

presented in Figures 4.12 and 4.13. 
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Figure 4.12: Typical Nyquist plots on the Ni micro – wires (large circle in image), and 

the Ni micro – wires + CNT composite (smaller circle in image) 
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Figure 4.13: The difference in capacitance between the flat Ni substrate, the 1µ, 0.4µ 

and 0.2µ Ni micro – wires, the flat Ni substrate with CVD deposited CNT, the  1µ, 0.4µ 

and 0.2µ Ni micro – wires with CVD deposited CNT.  
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 The CdL increases from 0.078 on the Ni plate to 0.282, 0.318 and 0.576 mF on the 

1.0 µm, 0.4 µm and 0.2 µm Ni micro – wire arrays. This slight increase in the CdL can be 

attributed to the increase in surface area of the micro-wire arrays. The greatest increase in  

CdL is observed after the CVD growth of CNTs on the Ni micro-wires, where the CdL is 

8.062, 7.267 and 8.916 mF on the 1.0 µm, 0.4 µm and 0.2 µm Ni micro-wires plus CNT 

composite electrodes. It is interesting to note that the growth of CNT on the Ni plate 

(with no micro-wires) resulted in an increase in CdL comparable to that seen on the Ni 

micro-wires (0.505 mF). This result highlights the importance of the synergistic effect of 

the Ni micro-wires and the CNT in the composite. 

 The surface area of the consolidated composite carbon material was then 

determined by using the equation 2 below.  Capacitance is formed when two conducting 

plates are separated by a non- conducting media, called the dielectric. The value of the 

capacitance depends on the size of the plates, the distance between the plates and the 

properties of the dielectric. The relationship is as follows. 

  ⎟
⎠
⎞

⎜
⎝
⎛=

d
AC roεε                                          (2) 

Where; C = capacitance [F] 

 A  = electrode surface area [m2] 

 d  = electrode distance [m] 

 εo = 8.854 x 10 -12 [F/m] 

εr = relative dielectric constant 

The conducting plates were two Ni plates with surface area of 1.2 cm2, the dielectric was 

6 M KOH solution and the distance between the plates was 2 cm.   
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If measuring different samples with surface area A1 and A2 in the same electrolyte 

and experimental set-up, εo, εr and d will be constant. 

Hence,    
2

1

2

1

C
C

A
A

=       (3) 

 

By measuring the capacitance of the different samples and comparing it to the 

area and capacitance of a Ni plate, we can thus calculate the surface area of the sample by 

using equation 3. The surface area of the flat Ni was calculated to be 12.33 cm2 and the 

capacitance 6.24 x 10-5 F. The surface area of the Ni micro-wires and the Ni micro-wires 

plus CNT composite, is shown in Figure 4.14.  
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Figure 4.14: Comparison of the surface area of the Ni micro – wires and the Ni micro – 

wires + CNT composite. 
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The above figure illustrates that the addition of carbon nanotubes to the Ni micro-

wires not only increases the capacitance but also increases the surface area of the 

material. From Figure 4.14 it can be observed that the Ni micro-wires plus CNT 

composite, has a surface area 10 times higher than that of the Ni micro-wire arrays. 

From the CV results, the higher activity in the hydrogen evolution reaction is only 

seen in the composite arrays of Ni micro-wires plus CNT and not in the Ni plate plus 

CNT electrode, thus higher activity in the hydrogen evolution reaction can be attributed 

to the increase in the CdL and surface area. 

4.9. Comparison of the capacitance of consolidated composite 

carbon material against various carbon based materials  

In recent years there has been a great increase in research for alternative material 

that can be used as anode material in lithium ion batteries. Presently carbon material such 

as graphite is used as anode material in lithium ion batteries. Most carbonaceous 

materials can react reversibly with lithium to some extent. Therefore they can be used as 

negative electrodes in lithium batteries. Research on anode material for lithium ion 

batteries is focused on searching for carbon alternatives with large capacities and better 

cycling performance. 

The capacitance of various materials was measured in this study that may, 

possibly be used as anode material in lithium ion batteries. These included graphite 

plates, carbon cloth, Ni micro-wires, Ni micro-wires plus CNT composite and a 

commercial anode obtained from China (which consists of carbon anode materials on a 

copper foil support).  
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From Figure 4.15 it can be seen that the capacitance of the Ni micro-wires plus 

CNT composite is the largest when compared to the commercial anode, graphite plates, 

carbon cloth, Ni plates, Ni plates plus CNT and Ni micro-wires.  From Figure 4.15 it is 

clearly seen that the consolidated composite carbon material has a higher capacitance 

than that of the commercial anode. This could be attributed due to the composite carbon 

materials high specific surface area, excellent electronic semi-conductivity and 

conductivity of the carbon nanotubes. 
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Figure 4.15: Comparison of the capacitance of various materials that can possibly be 

used as anode materials for lithium ion batteries.   
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4.10. Modification of the consolidated composite carbon material 
 
 Water electrolysis has gained importance in recent years because of its promise of 

economic production without adverse environmental impact. For water electrolysis to 

become more competitive and an efficient process, energy loss has to be minimized and 

equipment cost lowered. From a technological standpoint, the cost of electrolytic 

hydrogen is directly dependant on the voltage used to operate an electrolyzer at 

significant current densities. The operational voltage depends on the overpotentials for 

cathodic and anodic reactions and on the internal resistance of the cell. Due to the high 

cost and stability consideration, very few materials can even be considered for use as 

anodes and cathodes in practical electrolytic cells. 

 Two properties play an important role in selecting catalytically active materials 

for hydrogen evolution. These are the actual electrocatalytic effect of the material and its 

long-term stability. Materials for alkaline water electrolysis were reviewed by various 

authors [106, 107] who reported on the properties of platinum materials as viable cathode 

material for hydrogen evolution. Although platinum is an expensive metal, but due to its 

electrocatalytic effect on the formation of hydrogen at the cathode, it is the most widely 

used metal for electrolysis in industry. 

 In this study, an attempt was made to enhance the electrochemical activity of the 

consolidated composite carbon material for hydrogen production. This was done by 

modifying it with Pt group metals.  
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4.11. The influence of Pt deposits on the consolidated composite 

carbon material and on the hydrogen evolution reaction 

Platinum is a versatile but expensive catalyst or material. [108]. Pt is one of the 

best electrocatalysts for hydrogen production. Pt was deposited on the consolidated 

composite carbon material by electroless deposition. The electrolyte that was used for Pt 

deposition consisted of a solution containing 1 mM of chloroplatinic acid (H2PtCl6) and 

0.1 M HCl made up to 1 liter. The deposition of Pt on the consolidated composite carbon 

material was done by using a sacrificial electrode. This was performed by using  1.2 cm2 

of the consolidated composite electrode and clipping it to a 2 cm2 stainless steel mesh 

using a steel paper clip. The deposition of Pt was performed at room temperature by 

placing the consolidated composite electrode in a beaker containing 50 ml of the 

electrolyte. The time of deposition was 30 minutes. 

Platinum distribution on the consolidated composite material was determined by 

SEM. From the SEM analysis (see figure 4.16) it can observe that platinum was 

deposited on the composite material. It can be seen that the platinum was deposited on 

the carbon nanotubes as particles. This deposition of Pt on the nanotubes is expected due 

to their unique structure that allows particles to attach to their surface. 
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Figure 4.16: SEM image of consolidated composite after modification with platinum in a 

chloroplatinic acid solution to enhance catalytic activity. 

  

Energy dispersive spectrometry (EDS) was further used in order to determine the 

chemical composition of the modified composite structure and to investigate the 

distribution of the elements on the electrode surface. The atomic percentage Pt on the 

consolidated composite is shown in Figure 4.17. The EDS data correspond to bulk 

particles and may differ from the surface values due to segregation. The EDS analysis of 

the sample resulted in a composition of 46.65 % Ni, 31.33 % C and 22.02 % Pt. This was 

recorded over an average of 10 samples. Literature shows that EDAX is a good 

qualitative and quantitative method for determining the composition of materials. [109]. 
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 Figure 4.17: EDS plot of the consolidated composite carbon material modified in 

chloroplatinic acid solution.  

 

The cathodic behaviour of the platinized consolidated composite carbon material 

was investigated using chronoamperometry to determine the current density of the 

modified composite electrode (see figure 4.18). A two-electrode system was employed as 

explained in Chapter 3.  
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Figure 4.18: Current-potential curves of the hydrogen evolution reaction of the nickel 

micro – wires, consolidated composite carbon material and the consolidated composite 

carbon material modified with platinum. 

 Nickel micro – wires modified with carbon nanotubes and Platinum (Pt) showed a 

higher activity for hydrogen production when compared to the Ni micro – wires and the 

Ni micro – wires plus CNTs.  

 The current densities obtained from the structures modified with Pt particles are 

higher than that of the unmodified structures (as shown in Figure 4.11). From Figure 

4.18 it can be seen that enhancement of the cathodic activity of nickel for electrolytic 

hydrogen evolution has been demonstrated by the formation of Pt particles on the surface 

http://etd.uwc.ac.za/



Chapter 4: Results and Discussion 
  
 

 93

of the Ni micro-wires plus carbon nanotubes. Thus, the result clearly indicates that the 

catalytic activity for hydrogen evolution can be enhanced by modifying with platinum 

particles.    

Table 4.2: Summary of current densities of nickel micro-wires ‘before’ and ‘after’ 

modifcation with carbon nanotubes or platinum at 25 0C. 

Materials                               Temperature       Activated            Current density [A/cm2] 

                                                  0C                     with                    (at 2.0 V)     (at 1.7V) 

 

Flat Nickel                              25 0C                    -                         0.021             0.006 

Ni micro – wires 1µm            25 0C                     -                        0.058              0.017 

Ni micro – wires 0.4µm         25 0C                     -                        0.085              0.029 

 

Ni micro – wires 1µm            25 0C                   CNTs                  0.101             0.031 

Ni micro – wires 0.4µm         25 0C                   CNTs                  0.109             0.035 

 

Ni micro – wires 1µm            25 0C                   CNTs + Pt          0.146              0.051 

Ni micro – wires 0.4µm         25 0C                   CNTs + Pt          0.177              0.061 
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4.12. Conclusions of results and discussion 

The purpose of this research was to synthesize consolidated composite carbon nano-

materials, by using Ni micro-wires as a catalyst and substrate, and to observe what affect 

the Ni micro-wires had on the synthesis of carbon nanotubes. From the fabricated 

consolidated composite carbon material the structure and the study of its properties, the 

following general conclusions can be made: 

• Crystalline nickel micro-wires were produced by electrochemical deposition using 

a nickel hard bath by applying an applied potential of 0.7 V and a deposition time 

of 15 minutes, in PET etched ion - track membranes. 

• The nickel micro-wires were successfully applied as a catalyst and substrate for 

the synthesis of carbon nanotubes, and to produce consolidated composite carbon 

nanomaterial.  

• From the results obtained during SEM analysis, it was shown that carbon 

nanotubes grow preferably on the Ni micro-wire arrays as opposed to the Flat Ni 

surface. In addition, examination of the samples by SEM revealed that the Ni 

micro-wires physical morphology was moderatly altered by the CVD process.  It 

was shown that the nanotubes are attached to the Ni micro-wires and an extensive 

mat of CNT is present on the surface of the Ni micro-wires. This phenomenon is 

extremely interesting because it shows that the two materials are attached to each 

other and one would, therefore expect very interesting properties which would be 

different to that of the individual components.    
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• From the TEM results it was observed that Ni nano-particles are present on the 

nanotube surface, and some of the CNT end caps are open which would result in 

greater electrochemical activity. 

• Cyclic voltammetry experiments on the consolidated composite carbon 

nanomaterial and the Ni micro-wires determined that these electrodes had a 

higher electrocatalytic activity towards the hydrogen evolution reaction when 

compared to flat nickel; this increase is attributed to the increase in surface area 

resulting from the addition of CNTs to the Ni micro-wires and due to the presence 

of Ni nano-particles attached to the nanotubes after CVD. 

• From electrochemical impedance spectroscopy measurements it was determined 

that the increase in the electrochemically active surface area of the composite 

array by a factor of 10 was due to the synergistic effect of carbon nanotubes and 

Ni micro – wires. 

• The consolidated composite carbon material was successfully modified with 

platinum, and the presence of platinum on the surface of the nano-composite 

material improved the electrocatalytic properties in the HER. 

• The results obtained during this research can be used not only in electrochemistry 

but in a wide range of research fields. From an evaluation of the results, further 

research is needed to better understand the structure and electrochemical 

behaviour. 
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Chapter 5: Overall Conclusions and Future Research Directions 
 

In the previous chapter the research results were discussed. In this the final 

chapter of this thesis, the discussion focuses on the main conclusions, recommendations 

and proposals for future research. 

Consolidated composite carbon materials are a unique approach to synthesis of 

new materials with exceptional properties that can be used in a wide range of possible 

commercial and technological applications, including nano-devices, uses in analytical 

sciences (chemistry and biology), electronics and optics.  

The consolidated composite material was synthesized using a novel approach 

specifically the combination of template synthesis and chemical vapour deposition. The 

template method is a simple and powerful process for the synthesis of the Ni micro-wire, 

which served as a catalyst and substrate, for the synthesis of carbon nanotubes. The 

electrodeposition method is capable of producing high quality micro and nanowires with 

desirable features. It was demonstrated that well defined arrays of nickel microstructures 

can be prepared using electrochemical deposition.  

Chemical vapour deposition is a simple and highly favoured technique that is 

employed to synthesize carbon nanotubes, due to the fact that it produces relatively large 

yields with good purity, very adaptable, and is a method that can be scaled up relatively 

easily. Chemical vapour deposition via LPG pyrolysis was used to synthesis carbon 

nanotubes directly onto the surface of the nickel micro-wire arrays. The chemical vapour 

deposition methodology used to deposit carbon nanotubes onto the Ni micro-wires did 

not alter the crystallinity of the Ni micro-wires which was revealed by the XRD analysis. 
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The SEM images showed that the morphology of the Ni micro-wires where moderately 

altered after the CVD process. 

In this study the feasibility of using the consolidated composite material as a 

cathode for the hydrogen evolution reaction in alkaline solution was studied. 

Electrocatalytic processes on consolidated composite electrodes, as surveyed using 

electrochemical techniques, almost invariably commence and terminate at reasonably 

well-defined potentials within the region 0.6V to -1.4V. The consolidated composite 

material showed higher current density values for the HER in alkaline solution when 

compared to Ni micro-wire arrays and flat Ni respectively (0.109 A/cm2, 0.085 A/cm2, 

0.021 A/cm2). This increase in current density was attributed to the increase in surface 

area from the flat Ni substrate to the Ni micro-wires to the Ni micro-wires plus CNTs 

shown by the EIS results. In addition, the TEM results showed that the end caps of the 

nanotubes are open, which would further increase the electrochemically active surface 

area of the CNT. TEM also revealed the presence of Ni nanoparticles attached to the 

nanotubes, another factor that can produce the increased activity observed. 

Electrochemical impedance spectroscopy (EIS) revealed very interesting results; 

it showed that the consolidated composite material has a relatively high capacitance, and 

this increase in capacitance was only notable for the consolidated composite material. 

The capacitance of the consolidated composite carbon material was compared to a 

commercial anode for a Li ion battery; it was found that the composite material had a 

higher capacitance almost double than that of the commercial anode. The increase in 

capacitance is attributed to the synergistic affect between the Ni micro-wires and the 

carbon nanotubes, due to the carbon nanotubes excellent electrochemical properties.  
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Deposition of Pt particles from a suitable combination of H2Cl6Pt solution on the 

consolidated composite carbon material produced electrodes with catalytic properties for 

hydrogen production. The hydrogen evolution reaction from Pt modified consolidated 

composite carbon materials showed that the electrocatalytic activity of these electrodes 

was significantly improved. The enhanced HER electrocatalytic activity observed on 

these electrodes was attributed to their chemical composition. Energy dispersive 

spectrometry was used to determine the chemical composition of the modified structure 

and to investigate the distribution of the elements on the electrode surface. The spectra 

showed characteristic peaks for Ni, C and Pt. 

The synthesis of this novel consolidated composite carbon material has shown 

that it can be used in various areas in science and technology. From the preliminary 

investigations in alkaline solutions, the high current density for HER, suggests they can 

be used as possible cathode electrodes for hydrogen production. Also due to their high 

capacitance the material can be possibly used as anodes for Li-ion batteries. 

5.1. Future work and recommendation 

Based on the analysis and conclusions of this study, a number of suggestions regarding 

priorities for future research directions and areas of investigation are listed: 

 

1. The template method is a useful approach for preparing nanomaterials. From this 

fundamental point of view it would be interesting to produce nanostuctures with 

smaller diameters (less than 100 nm) in order to explore more thoroughly the 

effects of size on the synthesis of the consolidated composite carbon material. 
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2. Investigate the synthesis of carbon nanotubes on the Ni wire arrays using different 

source gases such as methane and ethylene and observe what effect they have on 

the structure and properties of the composite material. 

3. Investigate different catalysts, to observe what effect a) nanowires made up of 

alloys, b) nanowires made up of separate metal columns and c) doping Ni wires 

with different metal catalysts have on CNT diameter, and/or morphology control.  

4. For cathode materials for HER, improving catalytic performance may be achieved 

by modifying the CNT surface with various combinations of transition metals 

such Pt-Pd, Zr-Pt and Ti-Pt. For anode materials for Li-ion batteries similar 

studies can be undertaken by modifying the surface with MoO2 and MnO2. 

5. Different applications of the consolidated nanomaterials could be identified by 

modifying the CNT with various other materials such as metals, alloys and 

polymers. 
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