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ABSTRACT

The groups we consider in this study belong to the class X0 of all �nitely gener-

ated groups with �nite commutator subgroups. We shall eventually narrow down to

the groups of the form T owZ
n for some n 2 N and some �nite abelian group T . For

a X0-group H, we study the non-cancellation set, �(H), which is de�ned to be the

set of all isomorphism classes of groups K such that H�Z �= K�Z. For X0-groups

H, on �(H) there is an abelian group structure [38], de�ned in terms of embeddings

of K into H, for groups K of which the isomorphism classes belong to �(H). If

H is a nilpotent X0-group, then the group �(H) is the same as the Hilton-Mislin

(see [10]) genus group G(H) of H. A number of calculations of such Hilton-Mislin

genus groups can be found in the literature, and in particular there is a very nice

calculation in article [11] of Hilton and Scevenels. The main aim of this thesis is

to compute non-cancellation (or genus) groups of special types of X0-groups such

as mentioned above. The groups in question can in fact be considered to be direct

products of metacyclic groups, very much as in [11]. We shall make extensive use of

the methods developed in [30] and employ computer algebra packages to compute

determinants of endomorphisms of �nite groups.
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CHAPTER 1

INTRODUCTION

In this work we shall be studying the non-cancellation sets �(G), where G is in

the family of groups which are �nitely generated with �nite commutator subgroups,

denoted by X0. In particular, we focus on groups in X0 of the form T ow K, called

semi-direct products. The non-cancellation set �(G) is the set of all isomorphism

classes [H] of groups H such that H � Z �= G� Z.

In Chapters 1 to 7 we give an exposition of the known theory, giving our own

proofs and examples in several cases. (See, for instance, proofs of 3.7, 3.10, results

in Chapter 4, 5.19, 6.19, and 7.3 etc.) Our major original contribution is in Chapter

8, where we �nd a condition to compute the non-cancellation group �(H), where

H = G(n1;u)�G(n2;u) = (Zn1 � Zn2)ow Z
2. First we sketch the broader context

in which our theme (i.e. non-cancellation sets �(G) for G 2 X0) is located.

There is a very close relationship between the notion of non-cancellation sets

and the notion of genus sets. In this introduction we include a brief discussion on

localization and the genus set, and show how these are related.

Let P be a set of primes and let P 0 be the set of natural numbers which are

relatively prime to the elements of P . A group G is said to be P -local if for each

n 2 P 0, the function g 7! gn of G into itself is a bijection (see [36, 1.1]). Let

h : G ! H be a group homomorphism. Then h is said to be P -injective if, for
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each g 2 Ker h, g is of �nite order n for some n 2 P 0. If, for every x 2 H, there

exists an integer n 2 P 0 such that xn 2 h(G), then h is said to be P -surjective. The

homomorphism h is said to be P -bijective if it is both P -injective and P -surjective

(see [36, 1.1]). Let N be a nilpotent group and let NP be a P -local group which

admits a P -isomorphism N ! NP . (This homomorphism is called a P -localizing

homomorphism.) Then a P -localization of a nilpotent group N is a homomorphism

�P : N ! NP , where NP is as above, with the universal property that, given

any homomorphism � : N ! M , with M a P -local group, there exists a unique

homomorphism �P : NP !M such that �P � �P = � (see [22], [23], [36]). If P = fg,

i.e. empty, then P -localization is also referred to as rationalization.

The theory of P -localization is discussed by Baumslag [2]. Later Ribenboim in

[26] developed the construction of a P -localization. In this introduction we seek to

observe the relationship between the genus and non-cancellation. For any group G,

F(G) is the set of all isomorphism classes of �nite quotient groups of G. The Pickel

genus, for a �nitely generated nilpotent group N , is the set of all isomorphism classes

of �nitely generated nilpotent groups M such that M0
�= N0 (i.e. the groups have

isomorphic rationalizations) and F(M) = F(N). In [21] Mislin de�ned a di�erent

version of genus of a �nitely generated nilpotent group N . The Mislin genus G(N)

is the set of all isomorphism classes of �nitely generated nilpotent groups M such

that, for each prime p, Mp
�= Np (i.e. M and N have isomorphic p-localizations),

where N is a nilpotent group (see [21]).

Pickel in [25] proved that the Pickel genus is �nite, so we are able to deduce that

the Mislin genus is always �nite. The Mislin genus and Pickel genus coincide for

�nitely generated nilpotent groups having �nite commutator subgroups. War�eld
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in [32] provides us with the result that, for any nilpotent X0-group M , the Mislin

genus G(M) and the non-cancellation set �(M) coincide, i.e. G(M) = �(M).

In [10] Hilton and Mislin de�ne an abelian group structure on the genus set G(N)

of a �nitely generated nilpotent group N with �nite commutator subgroup. Witbooi

in [36] makes the observation that, when localizing non-nilpotent groups, the kernel

of the localizing homomorphism may be bigger than what is required. Hence we

can generalize the idea of the genus to non-nilpotent groups G 2 X0 by considering

non-cancellation rather than localizations. Thus we shall not consider localization

and genus for the purposes of this work. The following papers may be consulted for

further reading on the notion of genus: War�eld [32], Hilton and Mislin [10], Hilton

and Schuck [11], and Hilton and Scevenels [12].

Hilton and Mislin de�ne a group structure on the genus G(N) for a nilpotent

group N in X0. In [38] Witbooi generalizes the Hilton-Mislin genus group. In his

generalization he is inspired by the theorem of War�eld in [32, 3.6], which states

that �(N) = G(N) for a nilpotent group N in X0. He then de�nes a group structure

on the non-cancellation set �(G) for a group G which is not necessarily nilpotent.

He utilizes the notion of Nielsen equivalence classes (see [39, 2]) of abelian group

presentations to impose an action of an abelian group on the set �(G). He also makes

use of the indices of the subgroups of G and a certain function Z�n=�1 ! �(G)

to achieve his goal. Casacuberta and Hilton [4] calculated the group �(Hk) for

H = ha; b j an = 1; bab�1 = aui, but for n a prime and H nilpotent. Hilton and

Schuck [11] dealt with a general nilpotent case. Fransman and Witbooi [6] and

Scevenels and Witbooi [30] treated the case where n is a prime power and H is

not necessarily nilpotent. Witbooi [41] eventually calculated �(Hk) for all possible
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values of n; u and k. Witbooi further develops results on induced morphisms such

as �(G) ! �(G �H), �(H) ! �(Hk), �(G) ! �(G=F ) and �(H) ! �(Hk=F ) in

[38] and [40].

In Chapter 2 we discuss a number of elementary results that are used directly or

indirectly in this chapter and the subsequent chapters. Our emphasis in Chapter 2

will however be on �nitely generated abelian groups. We include de�nitions of the

order of an element, a generating subset, a �nitely generated group, automorphism,

torsion group, torsion-free group, direct products, characteristic subgroup, and free

abelian group. We discuss in detail the properties of direct products since the thesis

is on direct factor cancellation, and since we use these properties to understand the

construction of semi-direct products in Chapter 5. We prove that a direct product

H �K is abelian if and only if both the groups H and K are abelian. Since every

cyclic group is abelian, we show that if H and K are cyclic with relatively prime

orders then H�K is cyclic. We then show that the direct product G1�G2�� � ��Gn

of n groups is cyclic on conditions similar to the case of a direct product H � K.

The other results on direct products that we include are meant for the construction

of semidirect products in Chapter 5. Immediately after de�ning free abelian groups,

we give some basic properties of these groups that are relevant to this work. We �rst

note that when an abelian group F is free on a subsetX, then the functionX ! F is

injective, and that F is generated by X. In the construction of direct products and

semidirect products we note some similarities with the properties of free abelian

groups. Other important properties are: every abelian group is a homomorphic

image of a free abelian group; a subgroup H of a free abelian group F on X is also

free on a subset Y with jY j � jXj; and when F1 and F2 are free abelian on X1 and
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X2, respectively, we show that F1 and F2 are isomorphic if and only if the respective

cardinalities jX1j and jX2j are equal. For a �nitely generated abelian group G with

torsion subgroup TG, we show that the quotient group G=TG is torsion-free, and

we also prove that every �nitely generated torsion-free abelian group is free, and

hence the quotient group G=TG is free. We look at some fundamental theorems

of �nite abelian and �nitely generated abelian groups. Similarly to free abelian

groups, we show that a �nite abelian group can be written as a direct product of its

cyclic subgroups. The basis theorem for �nite abelian groups ensures this fact. The

fundamental theorem of �nite abelian groups states that every �nite abelian group

has a unique decomposition into its primary cyclic subgroups. We conclude this

chapter with �nitely generated abelian groups. The corresponding basis theorem

for these groups states that every �nitely generated abelian group is a direct sum

of cyclic subgroups. The fundamental theorem of �nitely generated abelian groups

states that every �nitely generated abelian group can be written uniquely as the

direct product of its primary and in�nite cyclic subgroups. These fundamental

theorems, we note, are similar to some combination of the properties of the free

abelian groups. This is no surprise since one of those properties states that every

abelian group is a homomorphic image of a free abelian group.

Chapter 3 deals with the epimorphisms from a free abelian group onto a �nite

group. In particular, we study the epimorphisms from the free abelian group Zk

onto a �nite abelian group A, and we denote the set of these epimorphisms by

Ek(A), k 2 N. We note that this set Ek(A) is non-empty if and only if the rank

(see De�nition 3.1) of A is less than or equal to k. We pay particular attention

to the �nite abelian group Zn. Given any homomorphism f : Zk ! Z
k
n we obtain
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an endomorphism fJ : Zkn ! Z
k
n such that f = fJ � �, where � : Zk ! Z

k
n is the

obvious epimorphism. We discuss the determinant of an endomorphism of a �nite

abelian group, and give an example to illustrate how to compute such a determinant.

There is also a proposition whose proof demonstrates how these determinants are

useful. For a �nite abelian group A of rank k 2 N we de�ne a = (a1; a2; :::; ak)

to be a good k-tuple of elements of A (see [30]) in terms of the di, where di is the

order of haii. In conclusion, we de�ne a homomorphism f(a;n) = fn : Zk ! A, with

a = (a1; a2; :::; ak), in terms of a basis of Zk. We then show that this homomorphism

fn is an epimorphism if n is relatively prime to d, where d is the order of ak.

In Chapter 4 we continue with the work started in the preceding chapter, in that

we study further the epimorphisms fn : Z
k ! A of free abelian groups Zk onto �nite

abelian groups A. In addition to these epimorphisms we introduce the notion of a

Nielsen equivalence relation, which is de�ned as follows: the epimorphisms f and g

are said to be Nielsen equivalent if and only if there is an automorphism � 2 Aut(Zk)

such that f = g � �. We show that Nielsen equivalence is an equivalence relation.

For any other epimorphism g0 2 Ek(A) equivalent to f , we say that g0 is an element

of the equivalence class [f ] of f . As in the previous chapter, we denote the set of

all equivalence classes of the epimorphisms from the free abelian group Zk onto a

�nite abelian group A by E�

k (A). We note how these epimorphisms in Ek(A) can

induce bijections between equivalence classes. We prove that, for an epimorphism

f 2 Ek(A), f � fn, where fn is as de�ned in Chapter 3. When we let A be a

�nite abelian group, a = (a1; a2; :::; ak) a good ordered k-tuple elements of A, and

d the order of ak, we then prove the following result: there exists an epimorphism

� : A! Z
k
d such that post-composition with � is a bijection �� : E

�

k (A)! E�

k (Z
k
d).
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We prove that fn � fm if and only if there exist u 2 Z
� and r 2 Z such that

m = un + rd. We prove also that the function which sends an integer n to fn

induces a bijection between the group of units Z�d=�1 and the set of equivalence

classes E�

k (A).

In Chapter 5 we continue with the work commenced in Chapter 2 on direct

products. Recall that we are particularly interested in split extensions of a �nite

group by a free abelian group. The semidirect product involves group actions, so

we de�ne the notion of a group action and list some of its basic properties, such

as the isotropy subgroup. We de�ne split extensions and semidirect products. We

further observe ways of de�ning split extensions in terms of the Second Isomorphism

theorem and exact sequences. We de�ne an operation that further distinguishes

direct products and semidirect products. We also de�ne semidirect products GowH

in terms of the action w : H ! G, where H is a free abelian group and G is a �nite

group. The group G(A;u1; :::; uk) = Aow Z
k where w : Zk ! Aut(A) is an action,

and w(z1; � � � ; zk) acts on A as follows: a 7! (uz11 � � �u
zk
k )a. We also prove the

following: G(d;u) �= G(d; v) if and only if u � v mod d or uv � 1 mod d; and

T ov Z
k+1 �= (T ow Z

k)� Z, where v : Zk+1 ! Aut(T ) is an action.

In Chapter 6 we continue with the discussion on �nitely generated groups. Our

emphasis in this chapter is on �nitely generated groups having �nite commutator

subgroups. We also introduce the notion of non-cancellation sets. We �rst de�ne

the commutator subgroup G0 of a �nitely generated group G. This commutator

subgroup G0 will be signi�cant throughout this study, in particular we require that

G0 be �nite. Consequently, we de�ne the class X0 as the class of all �nitely generated

groups having �nite commutator subgroups. More importantly, for a group G in X0,
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we de�ne the set �(G) as the set of all isomorphism classes [H] of groups H such that

H � Z �= G� Z. We mention brie
y what we mean by the centre, centralizer, and

normalizer of a group. We introduce a natural number n(G) = n1n2n3, where n1 is

the exponent of the torsion subgroup TG, n2 is the exponent of the group Aut(TG)

and n3 is the exponent of the torsion subgroup of the centre of G. We show that,

for a �nitely generated abelian group G, TG is a �nite normal subgroup of G. We

include some properties of a X0-group G, viz: if H � G then H 2 X0; if F is normal

in G, then G=F 2 X0; if L is a group such that L � Z �= G � Z, then L 2 X0; if

H 2 X0, then G � H 2 X0. Eventually we prove that a group G is a X0-group if

and only if G is a split extension group of a �nite group by a �nite rank free abelian

group. We also note that there is a subgroup H of an in�nite X0-group G such that

the index jG : Hj is �nite. We include results which tell us when a X0-group H is

an element of �(G). We also discuss the trivial cases of the set �(G).

The main focus of Chapter 7 is to de�ne a group structure on �(G), where G 2

X0, the set of all isomorphism classes [H] of groups H 2 X0 such that H�Z �= G�Z.

In Chapter 6 we de�ne �(G) with the group G being an element of the class X0 of all

�nitely generated groups having �nite commutator subgroups. We are particularly

interested in the groups G 2 X0, where G = TowZ
k, T is a �nite group, Zk is a �nite

rank free abelian group, and w : Zk ! Aut(T ) is an action of the group Zk onto

the automorphism group of T . This subclass of X0 is denoted by K. In de�ning

the group structure on �(T ow Z
k) we employ the function � : Z�d=�1 ! �(G),

where we replace w by fn and n(G) by d, the order of ak. We also utilize the

Nielsen equivalence relation as in Chapter 4, the indices of subgroups of G and

the embeddings � : G ! L such that L � Z �= G � Z. The �nite group T is the
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torsion subgroup of G and is considered to be abelian. We use the notion of the

Nielsen equivalence relation to show that when the �nite indices of the subgroups

H and K of G = T ow Z
k are such that jG : Hj � �jG : Kj mod d then H and

K are isomorphic. In this case both indices are relatively prime to d. We prove

that the function � : Z�d=�1 ! �(G) is an epimorphism and also show that there

is a transitive action of Z�d= � 1 on the set �(G). This action equips �(G) with a

group structure. The challenge now is to compute �(G). For a start we may want

to �nd conditions where the group epimorphism � is an isomorphism. Recall that

a homomorphism is a monomorphism if and only if its kernel is trivial (see [28]).

This then compels us to investigate the description of the elements of the kernel of

�. We eventually found that for s 2 Z and d the multiplicative order of u modulo

n in G(n;u), that the residue class s modulo d is an element of Ker � if and only

if s satis�es certain conditions in terms of determinants of the endomorphisms of

Im(w). Also for n = n1n2 and di = ordni u, we show that whenever s � 1 mod d1

and s � �1 mod d2 then s 2 Ker �. A more general result for n = n1n2:::nl is also

given.

In Chapter 8 we calculate �(H) = �(G(n1;u)�G(n2;u)) where H = G(n1;u)�

G(n2;u) = Zn1�Zn2owZ
2 for a special case gcd(n1; n2) = 1, where w : Z2 ! Aut(T )

is an action of Z2 on T = Zn1 �Zn2 . We recall that the normalizer of A = Im(w) 2

Aut(T ) is de�ned as N = NAut(T )(A) = f� 2 Aut(T ) j ����1 2 A for all � 2 Ag.

For � 2 NAut(T )(A), the function �� : A! A de�ned by �� : � 7! ����1 is an inner

automorphism of A. The centralizer of A in Aut(T ) is de�ned as C = CAut(T )(A) =

f� 2 Aut(T ) j �� = �� for all � 2 Ag. We de�ne the NC-property as follows: Let

T be a �nite abelian group and let A be a subgroup of Aut (T ). The pair (T;A) is
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said to be an NC-pair or to have the NC-property if the following condition holds:

NAut(T )(A) = CAut(T )(A):

Equivalently, if for every � 2 NAut(T )(A) the inner automorphism �� of A de�ned

by the rule �� : a 7! �a��1 is the identity automorphism of A. We show how in the

presence of the NC-property, it is easy to calculate �(H) for H as mentioned above.
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CHAPTER 2

BASICS OF FINITELY GENERATED ABELIAN GROUPS

This chapter lays a foundation for the work in the forthcoming chapters. We

shall be dealing with the non-cancellation sets of split extensions of a �nite abelian

group by a �nite rank free abelian group. We thus pay particular attention to

�nite abelian groups and free abelian groups. Since the investigation is about the

cancellation of Z as a direct factor in the isomorphism G � Z �= H � Z, we also

spend some time dealing with basic results on direct products.

De�nition 2.1: [28, 2.27] Let G be a group and X � G.

(a) The intersection of all subgroups of G which contain X is called the subgroup of

G generated by X and is denoted by hXi.

(b) A group G is said to be �nitely generated if it has a generating subset which is

�nite, and

(c) G is said to be cyclic if G = hxi for some x 2 G.

Remark 2.2: [15] [34] Let G be a group and let g be any element of G.

(a) The smallest r 2 N which is such that gr = e where e is the identity element of

G is said to be an order of g. If no such r exists, we say that g is of in�nite order.

The exponent of a group G is the least common multiple (if it exists) of the orders

of the elements of G.
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(b) If g has in�nite order, then hgi is an in�nite cyclic group. If g has order n, then

hgi has n elements.

(c) A cyclic group is abelian.

(d) A subgroup of a cyclic group is cyclic.

(e) A primary cyclic group is a cyclic group of prime power order.

De�nition 2.3: [27, p.25] Let G be a group. An automorphism of G is an isomor-

phism from G to G. The set of all automorphisms of G is denoted by Aut(G).

Remark 2.4: [15, 8.11] The set of automorphisms of a group G is itself a group

under the composition of maps.

In this study we are particularly concerned with the non-cancellation sets of

split extensions (see Chapter 5). Let us �rst recall some basics of direct products

as the construction of split extensions and semidirect products is a modi�cation

of the direct products. We know that the cartesian product of the set X and the

set Y is another set X � Y , which is the set of all the ordered pairs (x; y) with

x 2 X and y 2 Y . When X and Y are �nite sets then X � Y is a �nite set and

jX � Y j = jXj:jY j. Now, for any groups H and K, the set H � K acquires the

structure of a group when we de�ne multiplication as (h; k)(h0; k0) = (hh0; kk0) for

all h; h0 2 H and k; k0 2 K. From the above de�nition of multiplication the group

axiom of closure is satis�ed. The associativity follows since for h; h1; h2 2 H and

k; k1; k2 2 K; (h; k)[(h1; k1)(h2; k2)] = (hh1h2; kk1k2) = [(h; k)(h1; k1)](h2; k2). Now,

(1; 1)(h; k) = (h; k) = (h; k)(1; 1), therefore (1; 1) is the identity element of H �K.

The inverse of H �K is (h�1; k�1) since (h; k)(h�1; k�1) = (1; 1) = (h�1; k�1)(h; k).
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De�nition 2.5: [28, 2.31] For any groups H and K, the group H �K is called the

direct product of H and K.

Remark 2.6: [28, 2.10] (i) If � : G ! H is an injective homomorphism then

G �= �(G), and for every subgroup K of G, K �= �(K).

(ii) G can be embedded in H if and only if G is isomorphic to a subgroup of H.

Proposition 2.7: [28, Exercise 26] If � : G ! H is a homomorphism and G is

abelian then Im(�) is abelian.

Proof: Let � be a homomorphism, and G be abelian. Then for any g1; g2 2

G; g1g2 = g2g1. Now, by assumption we have �(g1g2) = �(g1)�(g2). Then �(g1)�(g2) =

�(g1g2) = �(g2g1) = �(g2)�(g1). �

In [28, 3.38] we have that if one of the subgroups H and K of a group G is normal

then HK = fhk j h 2 H and k 2 Kg is also a subgroup of G. If both subgroups

are normal in G then HK E G, that is HK is also a normal subgroup of G.

Remark 2.8: [28, 8.2] The groups H and K are normal subgroups of G such that

G = HK and H \K = 1 if and only if G �= H �K.

Lemma 2.9: [28, 2.33] The group H�K has subgroups H�1 = f(h; 1) j h 2 Hg �=

H and 1 �K = f(1; k) j k 2 Kg �= K. Every element of H �K is expressible as

the product of elements of H � 1 and 1�K. Furthermore, every element of H � 1

commutes with every element of 1�K and (H � 1) \ (1�K) = 1.
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Proof: Let � : H ! H � K be de�ned by � : h 7! (h; 1) for all h 2 H. Then

for h1; h2 2 H, �(h1h2) = (h1h2; 1) = (h1; 1)(h2; 1) = �(h1)�(h2). Also for �(h1) =

�(h2), then (h1; 1) = (h2; 1) which means h1 = h2, therefore � is a monomorphism.

This implies that H �= �(H) = H � 1 (see Remark 2.6) and so H � 1 � H � K.

Similarly, K �= 1�K � H �K.

For every h 2 H and k 2 K, (h; 1)(1; k) = (h; k) = (1; k)(h; 1) and (H�1)\(1�K) =

f(1; 1)g = 1. �

Remark 2.10: [28, 75, 76] (a) H �K is abelian if and only if H and K are both

abelian.

(b) If H �= J and K �= L then (H �K) �= (J � L).

Lemma 2.11: [28, 2.34] Suppose that G has subgroups H and K such that every

element of G is expressible as a product hk with h 2 H and k 2 K, every element

of H commutes with every element of K and H \K = 1. Then G �= H �K.

Proof: Every element g 2 G is uniquely expressible as a product of an element

of H and an element of K. For suppose that g = hk = h0k0 with h; h0 2 H and

k; k0 2 K. Then (h0)�1h = k0k�1 2 H \ K = 1, and so we must have h = h0 and

k0 = k. Therefore we may de�ne a map

� : G! H �K

by

� : hk ! (h; k)

for all h 2 H and k 2 K. By the uniqueness property we discussed above, � is

well-de�ned. It also follows that � is injective, and surjectivity is clear. Therefore

� is in fact a bijective map.
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Next we show that � is a homomorphism and thus an isomorphism. Now consider

h1; h2 2 H and k1; k2 2 K and let g1 = h1k1 and g2 = h2k2. Now by hypothesis we

have that k1h2 = h2k1. Then �(g1g2) = �(h1k1h2k2) = �(h1h2k1k2) = (h1h2; k1k2) =

�(h1k1)�(h2k2) = �(g1)�(g2) as required. That is we have shown that G �= H �K

according to the given hypothesis. �

We can, as expected, extend the de�nition of direct products of two groups to

the direct product of any �nite number of groups. Let n be a natural number, and

let G1; G2; :::; Gn be any n groups (not necessarily distinct). Then G1�G2� :::�Gn

is the set of all ordered n-tuples (g1; g2; :::; gn) with gi 2 Gi for i = 1; :::; n. This set,

as in De�nition 2.5 above, is given the structure of a group called the direct product

of G1; G2; :::; Gn by de�ning multiplication of n-tuples component wise.

Proposition 2.12: [15, 13.1] If G and H are both cyclic �nite groups and their

orders have no common divisor greater than 1, then G�H is cyclic.

Proof: Suppose that G has order n and G = hxi; and also that H has order m

and H = hyi. Now if (x; y) 2 G � H has order k, then (x; y)k = 1 = (xk; yk). It

follows that n divides k since xk = 1 and also that m divides k since yk = 1. Since n

and m are relatively prime, it follows that the sets of prime divisors of n and m are

disjoint. It follows from this, after writing each of n and m as a product of prime

powers, that nm divides k. However, (x; y)nm = (xnm; ynm) = 1, and so k divides

nm. Thus k = nm is the order of (x; y). From the �rst part of the proof of Lemma

2.11 it follows that jG�Hj = nm. Thus G�H = h(x; y)i. �

By induction we can prove the following more general result.
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Corollary 2.13: [15] Let n1; n2; :::; ns be any sequence of integers each of which is

greater than 1, such that the greatest common divisor of any pair ni; nj is 1. Let Gi

be a cyclic group of order ni; 1 � i � s. Then the group G1�G2� :::�Gs is cyclic

of order n1n2:::ns.

Lemma 2.14: [28, 3.11] Suppose that G = H �K. De�ne maps �1 : G ! H and

�2 : G ! K by �1 : (h; k) 7! h and �2 : (h; k) 7! k for all (h; k) 2 G. Then �1 and

�2 are surjective homomorphisms, called the projections of G onto H and onto K

respectively. Ker �1 = 1�K and Ker �2 = H � 1.

De�nition 2.15: [28] Let H be a subgroup of a group G, H � G. Let � 2 Aut(G).

If �(h) 2 H for every h 2 H and � 2 Aut(G), then H is Aut(G)-invariant, and H

is called a characteristic subgroup of G, denoted by H char G.

Notation 2.16 [28, 8.3] Let H and K be subgroups of G with one subgroup normal

so that HK � G and HK = KH. Moreover if H and K are both normal subgroups

of G then HK E G. It then follows that if G1; G2; :::; Gn are normal subgroups

of G then the product G1G2:::Gn does not depend on the ordering of factors. The

notation
Qn

i=1Gi is sometimes used for this product, and thus
Qn

i=1Gi E G. We

sometimes denote the direct product of groups G1; G2; :::; Gn by Dr
Qn

i=1Gi instead

of G1 �G2 � :::�Gn.

We now de�ne a free abelian group and look at some of its basic properties.

De�nition 2.17: [27, 2.1] An abelian group F which contains a set X;X � F , is

said to be free abelian on X, if for every abelian group G and function f : X ! G,

24

 

 

 

 



there is a unique extension to a homomorphism of F into G such that the following

diagram commutes:

X
i //

f   B
BB

BB
BB

B F

f 0~~}}
}}
}}
}}

G:

The set X is called a basis of F , and the cardinality of X, jXj, is called the rank of

F .

Most of the following properties are discussed in detail in [27].

Remark 2.18: (cf. [27]) (a) Let F1 and F2 be free abelian groups on sets X1 and

X2 respectively. F1 �= F2 if and only if jX1j = jX2j.

(b) The function i : X ! F is injective.

(c) IfX is a non-empty set, there exists an abelian group F and a function � : X ! F

such that F is free abelian on X and F = hIm(�)i.

(d) If F is a free abelian group on a subset X, then F is generated by X. ([29, 11.5])

(e) If F is a free abelian group on a subset X, then F is the direct product of the

in�nite cyclic subgroups hxi; x 2 X. [27]

Proposition 2.19: [27] Let G be an abelian group and X a subset of G. Assume

that for each nonzero element g of G, there exists a unique subset fx1; x2; � � � ; xsg

of s distinct elements of X and a sequence l1; l2; � � � ; ls of nonzero integers such that

g = l1x1 + l2x2 + � � �+ lsxs. Then G is free abelian on X.
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Proposition 2.20: [27] [29] Every abelian group is a homomorphic image of a free

abelian group.

In order to deal with non-cancellation later on, we require a thorough understanding

of the structure of �nite abelian groups. Thus we list some important structural

results.

Theorem 2.21: [15, 14.11] The Fundamental Theorem of Finite Abelian Groups:

Every �nite abelian group G has a unique decomposition in the form

Cn1 � Cn2 � :::� Cnr

where Cni is a primary cyclic group (see Remark 2.2) and n1n2:::nr = jGj.

Theorem 2.22: [29, 9.27] Fundamental Theorem of Finitely Generated Abelian

Groups: Every �nitely generated abelian group G is a direct sum of primary and

in�nite cyclic groups, and the number of summands of each kind depends only on

G.

Using Corollary 2.13, from Theorem 2.21 we can derive the following (well-known)

decomposition theorem for abelian groups.

Theorem 2.23: Given any nontrivial �nite abelian group G of rank k, there exists

a unique sequence n1; n2; � � � ; nk of integers such that:

(i) G �= Cn1 � Cn2 � Cn3 � � � � � Cnk ,

(ii) ni+1jni for each 1 � i � k � 1.

(The numbers n1; n2; � � � ; nk are called the invariant factors of G.)

Proof: By Theorem 2.21 we can write G in the form:
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G �=
Q

p2D[Cn1(p) � Cn2(p) � � � � � Cnk(p)];

where D is the set of all prime divisors of jGj, each ni(p) is a power of p (it may be

p0 = 1) and n1(p) � n2(p) � � � � � nk(p). Now for each i, we let ni =
Q

p2D ni(p). �

Proposition 2.24: [18] Let G be a �nitely generated abelian group and let TG be

the subset consisting of all elements of �nite order in G. Then TG is a �nite normal

subgroup of G, TG E G, and the quotient G=TG is free.

Proof: Let G be a �nitely generated abelian group. Let TG be the set of all

elements of �nite order in G. Let g1; g2 2 G be elements of TG with �nite orders

m and n respectively. Let l be the lowest common multiple of m and n, then

l(g1 � g2) = lg1 � lg2 = 0. This implies that g1 � g2 are of �nite orders dividing l.

Therefore TG � G. Since G is abelian then every subgroup of G is normal in G (see

[28, 3.5]), thus TG E G. Now TG is �nite since a �nitely generated torsion abelian

group is �nite [27].

Next, we show that the quotient group G=TG is torsion-free. Let x be an element of

G=TG such that mx = 0 for some integer m 6= 0. Then for any representative x of

x in G, we have mx 2 TG and hence qmx = 0 for q 2 Z and q 6= 0. Then x 2 TG,

so x = 0 and this implies G=TG is torsion-free. Consequently, G=TG is free since it

is a �nitely generated torsion-free abelian group. �
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CHAPTER 3

PRESENTATIONS OF FINITE ABELIAN GROUPS

The main results of this chapter are based on the work in [30] where the authors

dealt with the presentations of modules over a principal ideal domain. In this study

we deal with these presentations for a special case where the commutative ring R

is taken as the ring of integers Z and the Z-modules are �nite abelian groups. In

this chapter we thus study the epimorphisms from a free abelian group Zk onto a

�nite abelian group, say A with cardinality k. Many authors de�ne presentations in

terms of generators and relators, see for instance [16] and [27] for more details. From

Proposition 2.20, we have that every abelian group is a homomorphic image of a free

abelian group. A free presentation of an abelian group G is an epimorphism from a

free abelian group F , � : F ! G. If R = Ker(�), then R � F and F=R �= G by the

First Isomorphism Theorem. Thus for our purposes we shall consider presentations

in terms of these epimorphisms just mentioned. We also include some work on the

concept of the determinants of endomorphisms as these determinants shall prove

useful in proving some fundamental results later in this thesis. We supply alternative

proofs for Lemmas 3.7 and 3.10.

De�nition 3.1: [38] Let A be a non-trivial �nite abelian group. The Pr�ufer rank

of A is the least of the cardinalities of generating subsets of A. For brevity we shall

refer to it as the rank of a �nitely generated abelian group.
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Notation 3.2: 1. For k a positive integer, the set of all epimorphisms from the free

abelian group Zk onto the �nite abelian group A will be denoted by Ek(A).

2. For a �nite abelian group A, let d be the lowest common multiple of the orders

of the invariant factors of A.

Remark 3.3: The set Ek(A) is non-empty if and only if A can be generated as an

abelian group by some �nite subset of cardinality less than or equal to k. For if the

rank of A is greater than k, then there is no epimorphism Z
k ! A.

Item 3.4: The determinant of an endomorphism: Consider the ring of integers

Z. Let d and k be positive integers. Let f be an endomorphism of Zk and g be an

automorphism of Zk. The determinant of f is an element of Z, denoted by det f ,

and the determinant of g is a unit of Z. Similarly, let f 0 be an endomorphism of

Z
k
d and g

0 be an automorphism of Zkd, where Zd is a ring of integers modulo d. The

determinant of f 0 is an element of Zd and the determinant of g0 is a unit of Zd. (See

also the discussion in [31, 1.10]).

For any �nite nontrivial abelian group A, let d be the smallest order of the invariant

factors. Let � : A ! A be de�ne by a 7! da. Then the image J of � is a fully

invariant subgroup of A (i.e. for any endomorphism h of A, we have h(J) � J). Let

� : A! A=J be the canonical epimorphism. Then A=J �= Z
k
d for some k 2 N. Now

given any h 2 End(A), there exists a unique hJ 2 End(A=J) such that ��h = hJ ��.

The determinant of h is now de�ned as the element det hJ 2 Zd.

We now give an example to illustrate how to compute the determinant of an endo-

morphism.
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Example 3.5: Let an endomorphism h : Z12 � Z6 ! Z12 � Z6 be de�ned by

h : (x; y) 7! (2x; x+ y) where x is the reduction of x modulo 6.

To compute the determinant of h, det(h), we form the following diagram

Z12 � Z6
h //

�

��

Z12 � Z6

�

��
Z6 � Z6 h1

// Z6 � Z6

so that there exists a unique endomorphism h1, de�ned as

h1 : Z6 � Z6 ! Z6 � Z6

h1 : (x; y) 7! (2x; x+ y).

Then we obtain the matrixM of h1 with respect to the basis f(1; 0); (0; 1)g as follows

h1(1; 0) = (2; 1) and h1(0; 1) = (0; 1)

M =

2
4 2 1

0 1

3
5 :

Therefore det(h) = det(h1) = det(M) = 2 2 Z6. �

Proposition 3.6: [38, 3.1] Let B be any non-trivial �nite abelian additive group of

rank k, and let d be as in Notation 3.2. For some positive integer k, suppose that

we have epimorphisms g; h 2 Ek(B) and an endomorphism � : Zk ! Z
k such that

g = h � �. The cokernel of �, coker (�), is a �nite group and jcoker(�)j is relatively

prime to d. (The cokernel of a group homomorphism l : G ! H of abelian groups

is the quotient group H=l(G).)
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Proof: Let B = hb1i � ::: � hbki. There exists an epimorphism � : B ! Z
k
d. For

elements (x1; :::; xk) of Z
k, the reduction modulo d of coordinates yields a homomor-

phism � : Zk �! Z
k
d de�ned by � : (x1; :::; xk) 7�! (x1; :::; xk). This homomorphism

is such that there exist homomorphisms g0 and h0 making the following diagram

commutative, where g0 : Zkd ! Z
k
d is de�ned by g0 : (x1; :::; xk) 7! (x1; :::; xk) and the

homomorphism h0 is de�ned in a similar way.

Z
k

�

��

��g

  @
@@

@@
@@

@

� //
Z
k

��h

~~~~
~~
~~
~~

�

��

Z
k
d

Z
k
d

g0

??�������

�
// Zkd

h0

__???????

Since g0 and h0 are epimorphisms and Zkd is �nite, then g
0 and h0 are isomorphisms.

Let � = (h0)�1 � g0. Then � is an isomorphism. Then the determinant of �, det �,

is a unit of the �nite abelian group Zd. Now, since det � is the residue class of the

integer det �, then det � is relatively prime to d. Finally, the absolute value of det

�, jdet�j, is exactly equal to jcoker�j. �

Note that in the lemma below we use the notation as in Item 3.4.

Lemma 3.7: [30, 2.1] Let k be a positive integer. Suppose that f; h 2 Hom(Zk;Zkd),

and suppose that � 2 Hom(Zkd;Z
k
d) such that � � h = f � � for some automorphism

� of Zk. Then there exists u 2 Z� such that

det(�)det(hJ) = u det(fJ) in Zd.

Proof: By the de�nition of �, we have the following commutative diagram:
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Z
k

h
��

� //
Z
k

f

��

Z
k
d �

// Zkd;

that is � � h = f � �. The units of group Z are Z� = f1;�1g, and since � is an

automorphism, � 2 Aut(Zk), it has determinant �1, that is det(�) = �1. Since the

diagram is commutative and the elements of Zkd are elements of Zk reduced modulo

d, then det(�) = n, where n is a unit of the �nite abelian group Zd.

Given f and h, there are morphisms fJ : Zkd ! Z
k
d and hJ : Zkd ! Z

k
d for which we

have the following commutative square:

Z
k
d

hJ
��

�0 // Zkd

fJ
��

Z
k
d �

// Zkd

The assertion of the lemma now follows by multiplicativity of determinants. �

De�nition 3.8: [30, 2.2] Let A be a �nite abelian group. Let a = (a1; :::; ak) be

an ordered k-tuple of elements of A , k a positive integer. For each ai, let di be an

element of Z such that the subgroup hdii of Z is the annihilator of the cyclic abelian

group haii � A . Then a is said to be good if the following conditions are satis�ed.

1. There exists an integer m, 1 � m � k, such that hAi = ha1i � ::: � hami and ai

= 0 if and only if m < i � k.

2. di is a multiple of di+1 for every i < k.
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De�nition 3.9: [30, 2.3] Let A be a �nite abelian group. Let a = (a1; :::; ak)

be a good ordered k-tuple of elements of A. Then for every n 2 Z we de�ne

f(a;n) : Z
k ! A to be the unique function such that

f(a;n)(ei) =

8<
:

ai if i < k

nak if i = k

where e1; :::; ek is the standard basis of Zk. In most cases we shall suppress the

k-tuple a, writing fn instead of f(a;n).

Lemma 3.10: [30, 2.4] Let A be a �nite abelian group and a = (a1; :::; ak) be a good

ordered k-tuple of elements of A. Let dk 2 Z such that hdki is the annihilator of

haki (That is dk is the order of ak). If n is relatively prime to dk, then fn is an

epimorphism.

Proof: Let fn : Zk ! A be as in De�nition 3.9. The homomorphism property

follows from freeness of Z on fei : i = 1; � � � ; kg.

By the way fn is de�ned, every element of A has a preimage written f�1(ei) 2 Z
k

for i � k except when (n; dk) 6= 1. If (n; dk) > 1 then the conditions of De�nition

3.9 may not be satis�ed, that is, we may have an element af in a = (a1; :::; ak) which

does not have a preimage in Zk. Therefore fn is an epimorphism if (n; dk) = 1. �
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CHAPTER 4

THE NIELSEN EQUIVALENCE RELATION

This chapter is a continuation of the work commenced in Chapter 3. We intro-

duce the Nielsen equivalence relation, which we de�ne in 4.1. This concept will play

a crucial role when we discuss the phenomenon of non-cancellation sets in Chapters

6 and 7. We de�ne the Nielsen equivalence relation on the sets Ek(A) as in Notation

3.2 and prove a number of results, such as: for f 2 Ek(A) then f � fn (n 2 Z and

fn as in De�nition 3.9 and Lemma 3.10). We also observe how these epimorphisms

induce bijections between equivalence classes. We provided the proofs in this chap-

ter, except for Proposition 4.2 which is simply quoted. Furthermore we conclude

with an interesting observation, Remark 4.8.

De�nition 4.1: [38] [39] Suppose f; g are epimorphisms, f; g 2 Ek(A) (see Notation

3.2). Then f and g are said to be Nielsen equivalent, f � g, if and only if there is

an automorphism � : Zk ! Z
k such that f = g � �.

We now show that Nielsen equivalence is an equivalence relation.

1. For f 2 Ek(A); f = f � 1, that is f � f , which means that � is re
exive.

2. For f; g 2 Ek(A), f � g implies that f = g � �, then g = f � ��1 = f �  

( 2 Aut(Zk)), that is g � f , which means � is symmetric.

3. For f; g; h 2 Ek(A), if f � g and g � h then f = g � � and g = h � � so that

f = (h � �) � � = h � (� � �) = h � � (�; � 2 Aut(Zk)), which implies that f � h,

that is � is transitive.
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Therefore Nielsen equivalence is an equivalence relation.

At this point we quote, without proof, a theorem on counting Nielsen equivalence

classes of presentations of a �nite group.

Proposition 4.2 [33, Corollary 3.3] Let A be a �nite abelian group of rank k. Let

�(A) denote the number of Nielsen equivalence classes of epimorphisms Zk ! A,

and let d be the greatest common divisor of the invariant factors of A. Then

�(A) =

8<
:

�(d)
2

if d > 2

1 if d � 2:

Notation 4.3: [39] The set of Nielsen equivalence classes of the elements of the set

Ek(A) is denoted by E�

k (A) and the class of the epimorphism f 2 Ek(A) is denoted

by [f ].

Lemma 4.4: [30, 2.4] Let A be a �nite abelian group and (a1; :::; ak) be a good

ordered k-tuple of elements of A. Let d be the order of ak. Then every member of

Ek(A) is equivalent to some fn for an n which is relatively prime to d.

Proof: Since the determinant of an automorphism of Zk must be �1, it follows

that if n and m are relatively to d, then fn � fm only if n � �m mod d. By

Proposition 4.2, it follows that the functions fn (for (n; d) = 1) represent all the

Nielsen equivalence classes. �

Lemma 4.5: [30, 2.5] Let A be a �nite abelian group and let (a1; :::; ak) be a good

ordered k-tuple of elements of A. Let d be as in Notation 3.2. There exists an

epimorphism � : A! Z
k
d such that post-composition with � is a bijection
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�� : E
�

k (A)! E�

k (Z
k
d).

Proof: Similar to Lemma 4.4, the proof follows by consideration of the determinants

of automorphisms of Zk, together with Proposition 4.2. �

Let us give explicit representatives for E�

k (A).

Lemma 4.6: [30, 2.6] Let A be a �nite abelian group and let (a1; :::; ak) be a good

ordered k-tuple elements of A. Let d 2 N be the order of ak. For integers n and

m which are relatively prime to d, we have that fn � fm if and only if there exists

u 2 Z� and r 2 Z such that m = un+ rd.

Proof: Let A �= Z
k
d, where d is as in Notation 3.2. Suppose fn � fm, then there

exists � 2 Aut(Zk) such that fn = fm � � by De�nition 4.1.

Z
k

fn
��

� //
Z
k

fm
��

Z
k
d �=1

// Zkd

Let u 2 Z� = f1;�1g and let J = hdi and so rd 2 J and det(fm)J = m; det(fn)J =

n. Then by Lemma 3.7, we have

det(�) det(fm)J = u det(fn)J , (where u is the modulo d residue class.)

Therefore m = u n.

Therefore m = un+ rd, for some r 2 Z.

The converse follows similarly as in Lemma 4.4. �
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The results of this section can now be consolidated in the following theorem.

Theorem 4.7: [30, 2.7] Let A be a �nite abelian group. Let (a1; :::; ak) be a good

ordered k-tuple of elements of A. Let d be as in Notation 3.2. The function which

sends an element n 2 Z to fn induces a bijection Z�d=� 1 �= E�

k (A).

We conclude this section with the following observation and example.

Remark 4.8 Consider an abelian group A = ha1i � ha2i.

For any endomorphism h with det(h) = �1, the results of this section implies that

f1�h � f . Let us consider a special case and verify the existence of an automorphism

� to replace h, i.e. an isomorphism � : Z2 ! Z
2 such that f1 � � = f1 � h. Let us

consider the case d = 11 with both a1 and a2 having order equal to 11. Take h to

be the following matrix:

h =

2
4 6 �3

3 6

3
5 :

Then det(h) = 45 = 1 + 4 � 11. The matrix � will have to be of the form

� =

2
4 6 + 11a �3 + 11b

3 + 11c 6 + 11d

3
5 :

A MAPLE computation gives

a = �1; b = 6; c = 0; d = �4.

�
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CHAPTER 5

SEMI-DIRECT PRODUCTS AND SPLIT EXTENSIONS

Chapter 5 is about the construction of semi-direct products. We observe a direct

connection between semi-direct product groups and split extension groups. Another

important concept in this work is that of group action and its properties [28]. We

conclude this chapter with recent results from [35] and [37]. We supply an alternative

proof to Proposition 5.19 as well as some modi�cations to the proof of Theorem 5.20.

De�nition 5.1: [28] (a) We say that the group G acts (on the right) on a non-

empty set X if there is a function X � G ! X de�ned by (x; g) 7! xg for every

x 2 X and g 2 G, satisfying the following properties

x1G = x for every x 2 X;

x(gh) = (xg)h for every x 2 X and for every g; h 2 G.

(b) The orbit of x, is the set fxg : g 2 Gg � X.

(c) If the group G acts on the set X, then the action is said to be transitive if it

has just one orbit.

(d) If the group G acts on the set X, then for any x 2 X, the isotropy subgroup or

stabilizer of x is the subgroup StabG(x) = fg 2 G : xg = xg of G.

(e) Conjugation produces an action of a group on itself. The respective orbits are the

sets fgxg�1 j g 2 Gg and the isotropy subgroup becomes the set fg 2 Gj gxg�1 = xg.
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Now we discuss the construction of semidirect products and also observe the

connection with the split extensions.

De�nition 5.2: [28] Let T and Q be groups. Then we say that the group Q acts on

the group T if there is a unique element tq 2 T for each q 2 Q and for each t 2 T ,

such that for every t; t1; t2 2 T and q; q1; q2 2 Q:

t1 = t,

(tq1)q2 = tq1q2 , and

(t1t2)
q = tq1t

q
2.

Theorem 5.3: [28] [29] Let T and Q be groups. Let Q act on T . Then the map

wq : T ! T de�ned by wq : t 7! tq, for every q 2 Q, is an automorphism of T .

Now the function w : Q! Aut(T ) de�ned by w : q 7! wq is a homomorphism. The

homomorphism w is itself referred to as the action (of Q on T ).

De�nition 5.4: [28] Let T and Q be groups. The set T ow Q of all ordered pairs

(t; q), t 2 T and q 2 Q, with the binary operation (t; q)(t1; q1) = (ttq1; qq1) is a

semi-direct product of T by Q. Here tq1 means wq(t1).

Remark 5.5: [29, 7.9] We use the binary operation in De�nition 5.4 to show that

the semi-direct product G = T ow Q, with w : Q! Aut(T ) an action, is a group .

Let T and Q be groups. We �rst show that the multiplication is associative. Take

t; t1; t2 2 T and q; q1; q2 2 Q. Then we have (t; q)[(t1; q1)(t2; q2)] = (t; q)(t1t
q1
2 ; q1q2) =

[t(t1t
q1
2 )

q; qq1q2] = (ttq1t
qq1
2 ; qq1q2)
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and [(t; q)(t1; q1)](t2; q2) = [ttq1; qq1](t2; q2) = (ttq1t
qq1
2 ; qq1q2). And this shows that

multiplication is associative.

Take (1; 1) 2 TowQ, then (1; 1)(t; q) = (t1; 1:q) = (t; q) and (t; q)(1; 1) = (t:1q; q:1) =

(t; q); this then means (1; 1) is an identity element of G = T ow Q.

And the inverse of (t; q) is ((tq
�1

)�1; q�1) because (t; q)((tq
�1

)�1; q�1) = (t:t�1; 1) =

(1; 1) and ((tq
�1

)�1; q�1)(t; q) = ((tq
�1

)�1:tq
�1

; 1) = (t�q
�1

:tq
�1

; 1) = (1; 1).

Therefore, G = T ow H is a group.

De�nition 5.6: [34] If Q and T are subgroups of a group G such that

(i) T E G,

(ii) TQ = G, and

(iii) T \Q = 1,

then we say that G is an internal semi-direct product of T by Q.

Then the binary operation in De�nition 5.4 becomes (t; q)(t1; q1) = (ttq1; qq1) =

(tqt1q
�1; qq1).

Remark 5.7: [29] Suppose G = T ow Q is an internal semi-direct product. Then

every element g of G can be written uniquely as g = tq where t 2 T and q 2 Q.

Proposition 5.8: [28] A group G �= T ow Q where w is an action w : Q! Aut(T )

of Q on T if and only if T and Q are subgroups of G such that G = TQ, T E G

and T \Q = 1.

Proof: See [28, 9.13] and [29]. �
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For the purposes of this thesis we are interested in the semi-direct products of

a �nite abelian group by a �nite rank free abelian group (Free Abelian groups are

discussed in Chapter 2). Hence we de�ne the following class:

De�nition 5.9: [38] [30] The class K is the class of all groups of the form T ow Z
k,

for some k 2 N and some �nite group T .

In 5.14 and 5.15 we shall see why the semi-direct products are also called the

split extenions.

Remark 5.10: [15] [27] There is a very close relationship between semi-direct prod-

ucts and split extensions of groups. We give a brief account of how this relationship

is developed. Let G be the semi-direct product of T by H, then by the Second

Isomorphism Theorem we have

G=T = TH=T �= H=H \ T = H=f1g �= H.

In this case G is called an extension of T by H, which we now formally de�ne as

follows.

De�nition 5.11: [15, 20.1] [27, 11.1] A group G is an extension of T by H if G has

a normal subgroup T such that the quotient group G=T is isomorphic to H.

The notion of a group extension can also be explained in terms of exact sequences.

De�nition 5.12: [24] [34] The following sequence of group homomorphisms is said

to be an exact sequence at B if Im(�) = Ker(�).
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A
� // B

� // C

The sequence above is said to be a short exact sequence at B if Im(�) = Ker(�)

and � is a monomorphism with � an epimorphism.

In simpler terms, by a group extension it is meant how a group can be constructed

from a normal subgroup and its quotient group. By a group extension of T by H is

meant a short exact sequence of groups and homomorphisms,

T
� // G

� // H

with Im(�) = Ker(�) = K say, and � a monomorphism and � an epimorphism. Now

for K �= T and G=K �= H, then G is called an extension of T by H.

Remark 5.13: [27] We make use of the following example to show that the extension

of T by H always exists [27]. For an example, we form a semi-direct product

G = TowH corresponding to a homomorphism w : H ! Aut(T ). For t 2 T; h 2 H,

de�ne �(t) = (t; 1) and �(t; h) = h. Then

T
� // G

� // H

is an extension of T by H.
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De�nition 5.14: [27, p.304] A group extension

T
� // G

� // H

is said to be a split extension if there exists a transversal function � : H ! G such

that � � � is the identity map.

Remark 5.15: [27] Next we show, using this example, that every split extension is

a semi-direct product extension. Now, suppose that

T
� // G

� // H

splits via a homomorphism � : H ! G. Write X = G�� so that for x 2 G then

x�� 2 X. Now, since � � � = �� = 1, we have (x���x)� = x��x� = 1 so that

x���x 2 Ker(�) = M , M a normal subgroup (by The First Isomophism Theorem)

of G. Then G = XM , and moreover, X \ M = 1 since x�� 2 M implies that

1 = (x�� )� = x�. Hence G = M o X �= T o H (see Remark 2.10 and De�nition

5.6), and this proves our assertion that every split extension is a semi-direct product

extension.

Remark 5.16: Let G be a �nitely generated abelian group and TG be the subgroup

of elements of �nite order in G. Then TG E G by Proposition 2.24 and G=TG is

torsion-free and free also by Proposition 2.24. Also we have that TG \G=TG = f1g

and G = TG:G=TG. Then by De�nition 5.6, G is a split extension of TG by G=TG.

Notation 5.17: [35] (a) Let A be a �nite abelian group and u1; u2; :::; uk be a

�nite sequence of integers all of which are relatively prime to the exponent of A (see
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Remark 2.2). The group G(A;u1; :::; uk) = A ow Z
k where w : Zk ! Aut(A) is an

action, and w(z1; � � � ; zk) acts on A as follows: a 7! (uz11 � � �u
zk
k )a. A short-hand

notation of G(Zd;u1; :::; uk) is G(d;u1; :::; uk). The subgroup of Z�d generated by the

residue classes of the integers u1; :::; uk will be denoted by R(d;u1; :::; uk).

(b) For n; u 2 N with gcd(n; u) = 1, by G(n;u) we denote the group H = Zn ow Z

where w : Z! Aut(Zn) is the action such that w(r) : t 7! urt.

Proposition 5.18: [37, 3.1] Let d be the exponent of a �nite abelian group A.

Let u1; u2 2 Z be relatively prime to d. Then G(d;u1) �= G(d;u2) if and only if

u1 � u2 mod d or u1u2 � 1 mod d.

Proposition 5.19: [35, 0.3] Let us consider the group Zd and let fu1; :::; ukg

be a set of integers which are relatively prime to the positive integer d. Then

G(d;u1; :::; uk; 1) �= G(d;u1; :::; uk)� Z.

Proof: We adopt the Notation in 5.17. Now G = G(d;u1; :::; uk) = Zd ow Z
k with

w : Zk ! Aut(Zd) an action; and similarly H = G(d;u1; :::; uk; 1) = Zd ov Z
k+1

with v : Zk+1 ! Aut(Zd) also an action. This implies that the images w(Zk)

and v(Zk+1) coincide. By [35, 3.4] there exists an automorphism � 2 Aut(Zk+1)

such that w = v � � since w is generated by fewer than k + 1 elements. This

implies that v � w by De�nition 4.1. Let K = Zd ov1 Z
k+1 with the respective

action v1 : Zk+1 ! Aut(Zd). Clearly v1 � v. Now suppose that H �= K. Then

the respective torsion subgroups TH and TK are isomorphic and the torsion-free

subgroups Zk+1 are also isomorphic by [28, 8.24]. But TG = TK and Zk � Z �= Z
k+1

and also w � v1 (see below De�nition 4.1). ThusH �= G�Z since�= is an equivalence

relation by [28, Exercise 20]. Therefore G(d;u1; :::; uk; 1) �= G(d;u1; :::; uk)� Z. �
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Theorem 5.20: [35, 4.1] Let T be a �nite abelian group. Let w : Zk ! Aut(T ) and

v : Zk+1 ! Aut(T ) be homomorphisms such that their images w(Zk) and v(Zk+1)

coincide. Then T ov Z
k+1 �= (T ow Z

k)� Z.

Proof: Let q : Zk+1 ! Z
k be any projection map. Let w1 : Z

k+1 ! Aut(T ) be the

homomorphism such that w1 = w�q. Let H be the common image of w and v. Then

H is a �nite abelian group, because Im(v) and Im(w) are abelian, (see Proposition

2.7). Also H = w1(Z
k+1). Clearly v and w1 belong to Ek+1(Aut(T )) since T is �nite

abelian, and hence they are Nielsen equivalent. Thus there exists an automorphism

h : Zk+1 ! Z
k+1 such that w1 = v � h (see De�nition 4.1). Let G0 = T ov Z

k+1

and G1 = T ow1
Z
k+1. Then we obtain an isomorphism G1 ! G0 by taking an

identity map on the torsion subgroups and the map h on the torsion-free quotients.

To reach the desired conclusion we make use of the following result: Let u1; u2; :::; uk

be a sequence of integers all of which are relatively prime to a positive integer d (see

Notation 5.17), then G(d;u1; :::; uk; 1) �= G(d;u1; :::; uk)�Z by Proposition 5.19. By

the de�nition of H above and since q(Zk+1) = Z
k, w1(Z

k+1) = w(Zk). This implies

G1
�= (TowZ

k)�Z by Proposition 5.19. Then it follows, since w1 � v and G0
�= G1,

that v(Zk+1) = w(Zk) and T ov Z
k+1 �= (T ow Z

k)� Z. �
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CHAPTER 6

NON-CANCELLATION OF SPLIT EXTENSION GROUPS

In this chapter we de�ne what we mean by a non-cancellation set. We discuss the

non-cancellation phenomenon for �nitely generated groups with �nite commutator

subgroups. We choose these particular groups because a group structure on the non-

cancellation set is de�ned for �nitely generated groups whose commutator subgroups

are �nite. Our main results therefore are on the non-cancellation phenomenon of

split extension groups. The main results are from Witbooi's papers [35], [37], [38]

and [39]. We present a minor modi�cation of the proof of Theorem 6.18, giving a

little more detail than in the original source. We also supplied Example 6.19.

De�nition 6.1: [15, Ex. 7.5] (a) Let G be a group. Then the centre of G, denoted

by Z(G), is the set of all elements z which commute with every element g of G.

Z(G) = fz 2 G j zg = gz 8 g 2 Gg

[15, 10.24] (b) Let H be any subgroup of a group G. The centralizer of H in G is

denoted by CG(H) and is de�ned as follows:

CG(H) = fg 2 G j gh = hg for all h 2 Hg

(We note that for any H � G, Z(G) � CG(H) � G.)

[28, 3.55] (c) Let H � G. The normalizer of H in G is
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NG(H) = fg 2 G j g�1Hg = Hg:

We recall the de�nition of a commutator subgroup and some of its basic prop-

erties.

De�nition 6.2: [28, 3.46] The commutator of an ordered pair g1; g2 of elements of

a group G is the element [g1; g2] = g�11 g�12 g1g2 2 G.

Remark 6.3: [28, 3.47] If g1; g2 2 G then [g1; g2]
�1 = [g2; g1] and [g1; g2] = 1 if and

only if g1 and g2 commute.

De�nition 6.4: [28, 3.48] Let H;K � G. Let [H;K] = h[h; k] j h 2 H; k 2 Ki,

a subgroup of G. The commutator subgroup or the derived group of G, denoted by

[G;G] or G0, is the subgroup generated by all commutators of G, that is

[G;G] = G0 = h[g1; g2] j g1; g2 2 Gi.

Example 6.5: [15] A group G is abelian if and only if G0 = 1.

Proof: If G is abelian then for every g1; g2 2 G, we have g1g2 = g2g1. It then follows

by Remark 6.3 and De�nition 6.4 that G0 = 1.

Conversely, if G0 = h[g1; g2] j g1; g2 2 Gi = 1, then [g1; g2] = 1 and by Remark 6.3,

G is abelian. �

Notation 6.6: [38, Section 1] By X0 we shall mean the class of all �nitely generated

groups having �nite commutator subgroups.
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Another important concept in this work is that of indices. Hence we state and

prove the following results.

De�nition 6.7: Recall that if H is a subgroup of G, then the index of H in G is

the number of cosets of H in G, and is denoted by jG : Hj.

Lemma 6.8: [15, 5.13] Let H and K be subgroups of a �nite group G with H a

subgroup of K. Then jG : Hj = jG : KjjK : Hj.

Proof: jG : Hj = jGj=jHj = (jGj=jKj)(jKj=jHj) = jG : KjjK : Hj �

Proposition 6.9: [38, 2.5] Let G be any in�nite X0-group, and let m be any natural

number. Then there is a subgroup H of G such that jG : Hj = m.

Proof: Let M be any subgroup of the free abelian group G=TG such that jG=TG :

M j = m. Let � : G ! G=TG be the canonical epimorphism. Then the subgroup

��1(M) of G has index m in G. �

Proposition 6.10: [38] [27] If G is a X0-group, then TG, the subset of all elements

of �nite order in G, is a �nite normal subgroup of G.

Remark 6.11: TG is called the torsion radical of G.

Remark 6.12: (a) [38, 2] If H is any subgroup of a X0-group G, then H is a

X0-group.

(b) [6, 2] If G 2 X0 and F is a normal subgroup of G, then G=F 2 X0.
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(c) [38, 2] If G and H are X0-groups, then G �H is also a X0-group. For the ring

of integers Z, G� Z is a X0-group.

(d) [38, 2] If G 2 X0 and H is a group such that H � Z �= G � Z, then H is a

X0-group.

(e) [38, 2] A group G is a X0-group if and only if G is an extension of a �nite group

by a �nite rank free abelian group. (Extensions are discussed in Chapter 5)

The proofs of 6.12 may be found in [8].

De�nition 6.13: [38, 1] The set of all the isomorphism classes [H] of groups H

such that H � Z �= G� Z is called a non-cancellation set and is denoted by �(G).

Notation 6.14: [39] For a positive integer k, consider the �nite rank free abelian

group Zk, and let T be a �nite abelian group. The class K(k) is the class of all

groups G which are semi-direct products of the form G = T ow Z
k. By K we

mean the union of the classes of K(k) (These groups are dealt with in Chapter 5).

The homomorphism w : Zk ! Aut(T ) is an action of Zk on T . The subgroup

Im(w) = w(Zk) of Aut(T ) can be seen to be an abelian group by Proposition 2.7.

The conclusion of Remark 6.12(e) is that split extensions of the form T owZ
k for

T �nite (which are also called semi-direct products) are X0-groups. In other words

the K-groups are also X0-groups. We point out this fact because from now on we

shall discuss the properties and the group structure of the non-cancellation set of

groups G in K.
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Notation 6.15: Henceforth we shall often work with a �nite abelian group T and

an action w : Zk ! Aut(T ) on T for some k 2 N. We assume that d is the order

of ak for some good k-tuple (a1; a2; � � � ; ak) of Im(w). The group T ow Z
k will be

denoted by G.

Proposition 6.16: [39, 2.2] Let G = T ow Z
k be as in Notation 6.15 and let

H = T ov Z
k for some action v. Then H is isomorphic to G if and only if the

following condition holds. There exist automorphisms h0 : T ! T and h1 : Z
k ! Z

k

such that the following identity holds for every t 2 T and every z 2 Zk,

[h0 � w(z)](t) = [v(h1(z))](h0(t)).

Proof: See [37, 2.2].

In particular then we have the following.

Corollary 6.17: [39, 2.3] Consider a �nite abelian group T and let G and H be

groups, given as G = T ow Z
k and H = T ov Z

k respectively. If H �= G, then the

subgroups Im(v) and Im(w) of Aut(T ) are conjugate in Aut(T ).

Theorem 6.18: [39, 2.4] Let T be a �nite abelian group, and G = T ow Z
k and

H = T ov Z
k be K-groups. Then H �Z �= G�Z if and only if the subgroups Im(v)

and Im(w) are conjugate in Aut(T ).

Proof: Let w; v : Zk ! Aut(T ) be actions of Zk on T . By Corollary 6.17, we have

that H � Z �= G� Z implies that Im(v) and Im(w) are conjugate in Aut(T ).
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Conversely, suppose there exists h 2 Aut(T ) such that h(Im(v))h�1 = Im(w).

By Theorem 5.20, there is an epimorphism w1 : Z
k+1 ! Im(w) such that

G � Z = T ow1
Z
k+1. Similarly, there is an epimorphism v1 : Zk+1 ! Im(v)

such that H � Z = T ov1 Z
k+1. Let � : Im(w) ! Im(v) be the isomorphism

de�ned by � : � 7! h�h�1. We then apply the notion of the Nielsen equivalence

on epimorphisms (� � w1) : Zk+1 ! Im(v) and v1 : Zk+1 ! Im(v). Recall that

v : Zk ! Aut(T ) and hence the rank(Im(v)) � k by Notation 6.14. Now we know

that every member of Ek+1(Im(v)) is equivalent to fn : Zk+1 ! Im(v) by Lemma

4.4; and since the rank of Im(v) is less than k + 1, then (� � w1) and v1 are Nielsen

equivalent. Therefore there exists � 2 Aut(Zk+1) such that by Proposition 6.16,

since hv1(�(Z
k+1))h�1 = hv1(Z

k+1)h�1 = w1(Z
k+1), the automorphisms � and h

constitute an isomorphism G� Z! H � Z. �

We are now ready to present an example of non-cancellation.

Example 6.19: Let H = G(49; 3) and let L = G(49;�2). The order of 3 in Z�49 is

42, and �2 � 35 mod 49. By Theorem 6.18 it follows that H�Z �= L�Z. However,

by Proposition 5.18, H is not isomorphic to L since �2 is not congruent to 3 or �3

modulo 49. �.

The above example demonstrates that H � Z �= G � Z does not imply that

H is isomorphic to G. This set �(G) of a group G measures the extent to which

the in�nite cyclic group Z cannot be cancelled as a common direct factor given

an isomorphism H � Z �= G � Z. However, there are cases when the cancellation

can be performed; such as when G is a �nite group. A few other instances where
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cancellation is permissible are described in the literature. We mention some such

cases below.

Theorem 6.20: [7, Theorem 5] Let G be any X0-group and B any �nite group. If

H is any group such that G�B �= H �B then G �= H.

Theorem 6.21: [8, Theorem 2.11] If G is a �nite group and H is any group then

H � Z �= G� Z if and only if H �= G.

Another theorem that allows us to cancel the in�nite cyclic group Z, under

certain conditions, is the following theorem which is due to Hirshon.

Proposition 6.22: [14] If G and H are groups such that H �Z �= G�Z�Z, then

H �= G� Z.

Theorem 6.23: [35, 4.2] Let G = T ow Z
k be a group which is the semidirect

product, with T a �nite group and w : Zk ! Aut(T ) an action and k > 1. If the

image w(Zk) of w in Aut(T ) can be generated by a subset of fewer than k elements,

then �(G) is trivial.

Proof: Let H be any group such that H � Z �= G � Z. We need to show that

H �= G. Let fa1; a2; :::; ak�1g be a generating subset for w(Zk); and for the free

abelian group Zk�1, let fe1; e2; :::; ek�1g be the standard Z-basis (see De�nition 2.17).

Let v : Zk�1 ! w(Zk) be the homomorphism de�ned by v : ei 7! ai. Then v(Z
k�1) =

w(Zk). Thus, by Theorem 5.20, we have G �= G0 � Z, where G0 = T ov Z
k�1. But

then H �Z �= G�Z �= G0�Z�Z. Thus H �= G0�Z �= G by Proposition 6.22. �
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CHAPTER 7

GROUP STRUCTURE OF THE NON-CANCELLATION SET OF A

SPLIT EXTENSION GROUP

In this chapter we continue with the non-cancellation set �(G) for G 2 X0, as

introduced in Chapter 6, as the set of all isomorphism classes [H] of the groups

H 2 X0 such that H � Z �= G � Z. The emphasis in this chapter will be on the

discussion of a group structure on the non-cancellation set of a K-group, i.e. a

split extension of a �nite group T by a �nite rank free abelian group Zk which is

a subclass of the class X0 (see De�nitions 5.4, 5.9 and 5.14 and Remark 6.12). In

de�ning the group structure on �(G) we shall also make use of the notions of an

action, exact sequences and indices of embeddings. The main discussions are based

on the papers [30], [35], [38], [39] and [41]. We supplied the proofs of Theorem 7.3

and Proposition 7.5. The proof of Proposition 7.6 is an adaptation of [39, Theorem

2.6].

In [38] it is shown how to impose a group structure on �(G) for a X0-group G,

in terms of the indices of embeddings of groups in �(G). In particular, there will

eventually be an epimorphism

� : Z�n(G) ! �(G); (�)

with n(G) as de�ned in [38].
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In [39] it is shown that if G is of the form T ow Z
k for some �nite group T , then

instead of the epimorphism (*) above, one can replace n(G) by a smaller integer d,

where d is the greatest common divisor of the orders of the invariant factors of the

abelian group Im(w) � Aut(T ). In this chapter we shall give a detailed derivation

of the group structure on �(G) for groups belonging to the class K.

Notation 7.1: 1. We continue with the notation as in Notation 6.15.

2. Consider the function fn as in De�nition 3.9 (and here we let A = Im(w), for w

as in Notation 6.15). For each integer n relatively prime to d, let G(n) = T ofn Z
k

be a split extension group.

3. Hk denotes the direct product of k copies of a group H.

Proposition 7.2: [30, 3.2] Let T be a �nite abelian group. Consider two epimor-

phisms u; v : Zk ! Aut(T ). Then T ou Z
k �= T ov Z

k if and only if there exists an

automorphism � of T such that �v(z)��1 = w(z) for each z 2 Zk.

Theorem 7.3: (cf [39, Theorem 2.5]) Let G be as in Notation 6.15. Let H and K

be subgroups of G such that the indices jG : Hj; jG : Kj are �nite and relatively

prime to d and such that H � Z �= G� Z �= K � Z. If jG : Hj � �jG : Kj mod d

then H �= K.

Proof: By assumption H and K are groups of the form H �= T o�Z
k and K �= T o�

Z
k for some �; � 2 Ek(Im(w)). By Lemma 4.4 and since jG : Hj � �jG : Kj mod d,

� and � are equivalent to fn : Z
k ! Im(w) and hence � and � are Nielsen equivalent.

Then there exists an automorphism � 2 Aut(Zk) such that � = � � � by De�nition
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4.1. Therefore, by Proposition 6.16 the function T o� Z
k ! T o� Z

k de�ned by

(t; z) 7! (t; �(z)) is an isomorphism. �

Remark 7.4: [38, 6.1] [19, 6.8] Suppose that we have groups A;B; and C together

with a homomorphism � : A! C and a surjective (group) homomorphism 
 : A!

B. If � : B ! C is a function (between sets) such that � � 
 = �, then � is a

homomorphism. If, moreover, � is surjective, then � is also surjective.

In the paper [30] and later in the paper [38] it is shown how the noncancellation

set �(G) of a X0-group is described in terms of mutual embeddings of G and H for

di�erent groups H for which H � Z �= G � Z. In fact it turns out that whenever

H � Z �= G� Z, then H is isomorphic to some subgroup of G. In what follows we

make this more explicit, and eventually we describe the group structure on �(G) in

terms of the indices of the relevant subgroups of �(G).

Let us consider the function � : Z�d= � 1 ! �(G) de�ned by �(x) = [Hx] where

Hx is any subgroup of G of index x having the property that Hx�Z �= G�Z. Such

a group Hx does exist (one can take G(x) for instance). We further assume that

G 2 K is in�nite since for a �nite group K, �(K) is trivial (see Theorem 6.21). We

shall show that this function � is �rstly well-de�ned and secondly � is a surjection.

In our proof in 7.6 we consider a function � : X ! �(G) de�ned by � : x 7! [Hx]

where X is the set of all the integers which are relatively prime to d.
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Proposition 7.5: Let X = fx 2 Z j (x; d) = 1g and G 2 K. The function

� : X ! �(G) de�ned by �(x) = [Hx] and jG : Hxj = x, is a well-de�ned surjection.

Proof: Let us de�ne � : X ! �(G) by �(x) = [Hx] where Hx is a subgroup of G

with jG : Hxj = x and [Hx] is the isomorphism class of the group Hx. Let us �rst

show that � : X ! �(G) is well-de�ned. Let y 2 X such that jG : Hyj = y. Now if

x � y mod d then [Hx] �= [Hy] which means � is well-de�ned by Theorem 7.3. For

every [Hx] 2 �(G) there is a corresponding x 2 X, which means � is surjective. �

Proposition 7.6: [38, 5.2] Let G be as in Notation 6.15. The function

� : Z�d=� 1! �(G)

is a surjection.

Proof: We �rst show that the function � : Z�d= � 1 ! �(G) de�ned by the rule

�(x) = [Hx] is well-de�ned, where x 2 Z
�

d= � 1 and [Hx] is an isomorphism class of

the group Hx which is such that Hx�Z �= G�Z, and jG : Hxj = x, that is (x; d) = 1.

Now if y 2 Z�d= � 1, and (y; d) = 1 with jG : Hyj = y, suppose x � y mod d then

[Hx] �= [Hy] by Theorem 7.3. Therefore � is well-de�ned.

For surjectivity of �, we consider the following. Let X = fx 2 Z j (x; d) = 1g. Now

consider the well-de�ned surjection � : X ! �(G) in Proposition 7.5. This function

� factorizes through the reduction modulo d-homomorphism � : X ! Z
�

d=�1, which

is moreover a surjection, that is there exists a function � : Z�d= � 1 ! �(G) such

that � = � � �. �

We now deal with the derivation of the group structure of the non-cancellation
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set �(G) where G 2 K. For X0-groups in general the derivation may be found in

[38].

Proposition 7.7: [30, 3.4] There is a transitive action of the group Z�d=� 1 on the

set �(G(1)), given by u:G(n) = G(un), for integers n and u that are relatively prime

to d.

It is important to note that for the action described in Proposition 7.7, any two

elements of �(G) have the same isotropy subgroup due to transitivity and Z�d= � 1

being abelian. Therefore we can deduce the following Theorem.

Theorem 7.8: [39, 2.6] Let us consider the split extension G = G(1). The transitive

action of Z�d= � 1 on �(G) furnishes the non-cancellation set �(G) with a group

structure.

For a nilpotent group G this group structure is the same as the Hilton-Mislin

group structure de�ned on the genus set (see [36]).

Theorem 7.9: [39, 2.7] Let G = T ow Z
k where T is a �nite group and w : Zk !

Aut(T ) is an action of Zk on T . Suppose that the Pr�ufer rank of Im(w) is k. Let

m 2 Z and let d be greatest common divisor of the orders of the invariant factors of

Im(w) and suppose that (m; d) = 1. The following conditions are equivalent.

(a) m 2 Ker [Z�d ! �(G)]

(b) There exists an automorphism � 2 Aut(T ) such that for the inner automorphism

� : v 7! �v��1 of G, we have �(Im(w)) = Im(w) and for the automorphism
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� : Im(w)! Im(w) induced by � , we have det(�) = �m �1 2 Z�d.

We include some results on induced morphisms of non-cancellation groups. The

following Lemma is used to prove Proposition 7.12.

Lemma 7.10: [28, 3.15] If H E G and K a characteristic subgroup of H, then

K E G.

Theorem 7.11: [38, 6.2] Let G and H be any X0-groups, and suppose that G is

in�nite. Then the function � : �(G) ! �(G �H) de�ned by � : [K] 7! [K �H] is

a well-de�ned epimorphism of groups.

In [40, 4.1], Witbooi proves a result that when G 2 X0 and F is a �nite group

then the epimorphism � : �(G)! �(G� F ) is injective.

Theorem 7.12: [40, 2.1] Let F be a characteristic subgroup of the torsion subgroup

of the in�nite X0-group G. There is a well-de�ned surjective group homomorphism

� : �(G)! �(G=F ) such that �([K]) = [K=F ].

In [13] Hilton and Witbooi provide another variation of the above result where

they deal with the morphisms of the Mislin Genus.

Remark 7.13: Earlier we introduced the K-group H = G(d;u) = ha; b j ad =

1; bab�1 = aui, and H = Zd of Z with f : Z ! Aut(Zd) an action of Z on
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Zd. Let us brie
y discuss the properties of Hk related to H. The group Hk can

also be considered to be the group Zkd ow Z
k, where w : Zk ! Aut(Zkd) is an

action. In 7.6 we showed that Z�d=�1! �(G) is an epimorphism, and consequently

the function � : Z�d= � 1 ! �(Hk) is an epimorphism. Also from 7.11 we can

conclude that �(H) ! �(Hk) is an epimorphism, and the consequence of 7.12 is

that �(Hk)! �(Hk=F ) is an epimorphism, where for the latter, F is a characteristic

subgroup of the torsion radical of Hk.
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CHAPTER 8

COMPUTING �(G(n1;u)�G(n2;u)) IN A SPECIAL CASE

In this, the �nal chapter of this thesis, we identify conditions under which the

epimorphism � : Z�d=� 1! �(H) mentioned in Proposition 7.6 is a monomorphism,

where H is de�ned as in Notation 8.1. Our result is a contribution towards the

general problem of computing the non-cancellation group of a group which is a

split extension of a �nite abelian group by a �nite rank free abelian group as per

De�nitions 5.4, 5.9 and 5.14.

Notation 8.1: 1. Let k be any natural number and let S = f1; 2; 3; :::; kg. Fix two

�nite sequences of elements of N, n1; n2; :::; nk and u1; u2; :::; uk such that for each

i 2 S, ui is relatively prime to ni. Let Hi = G(ni; ui) (see Notation 5.17), and let

H = H1 �H2 � ::: �Hk = Dr
Q

i2S Hi (see Notation 2.16). Then H is a X0-group

(by Remark 6.12) with the torsion subgroup TH = Dr
Q

i2S Zni . Then H is a split

extension group H = TH ow Z
k for some action w : Zk ! Aut(TH) (see De�nitions

5.2 and 5.4, and Theorem 5.3).

Let A = Im(w) � Aut(TH). There is an obvious direct decomposition for the

abelian group A, as A = Dr
Q

i2Shwii where for each i 2 S, wi is the automorphism

of
Q

i2S Zni de�ned by (x1; x2; :::; xk) 7! (y1; y2; :::; yk) where for each t 2 S we have

yt =

8<
:

xt if t 6= i

uixi if t = i:
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2. Let N = NAut(TH)(A) = f� 2 Aut(TH) : ���
�1 2 A for all � 2 Ag. That is to

say, N is the normalizer of A in Aut(TH) (see De�nition 6.1). The centralizer of A

in Aut(TH) is C = CAut(TH)(A) = f� 2 Aut(TH) : �� = �� for all � 2 Ag. Now,

given any � 2 N , let �� : A! A be the function de�ned by �� : � ! ����1. Then

�� is an automorphism of A.

3. For each i 2 S let di be the multiplicative order of ui modulo ni and let d be the

greatest common divisor of the numbers di. (Refer to De�nitions 3.8 and 3.9; and

also refer to the paragraph above Proposition 3.3 in [30].)

4. For any group G, Inn G denotes the group of all inner automorphisms of G.

5. By ordnu we mean the multiplicative order of u modulo n.

De�nition 8.2: [42] The NC Property : Let T be a �nite abelian group and let A

be a subgroup of Aut(T ). The pair (T;A) is said to be an NC-pair or to have the

NC-property if the following condition holds:

NAut(T )(A) = CAut(T )(A):

Equivalently, if for every � 2 NAut(T )(A) the inner automorphism �� of A de�ned by

the rule �� : a 7! �a��1 is the identity automorphism of A.

Theorem 8.3: [42] Let the groups T and H be as in Notation 8.1, that is T =

Dr
Q

i2S Zni and H = Dr
Q

i2S G(ni; ui) = T ow Z
k where w : Zk ! Aut(T ) is the

corresponding action of Zk on T . Let d be as in Notation 8.1.

If (T; Im(w)) is an NC-pair then �(H) �= Z
�

d=� 1.
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Proof: Let H = T owZ
k and d be as in Notation 8.1. In Proposition 7.6 it is shown

that the function � : Z�d=�1! �(H) is an epimorphism. In Theorem 7.9 the kernel

of � is described in terms of determinants of certain automorphisms of Im(w).

Let s 2 Ker(�). We have that (T; Im(w)) is an NC-pair. This implies that for

� 2 NAut(T )(Im(w)) the inner automorphism �� : a 7! �a��1 is the identity automor-

phism of Im(w) by De�nition 8.2. Therefore by Theorem 7.9 det(��) = �s �1 = 1.

This implies that Ker(�) = 1. Then by [28, 3.10] � is moreover injective, and thus

�(H) �= Z
�

d=� 1. �

Lemma 8.4: Let the groups T and H be as in Notation 8.1, that is T = Dr
Q

i2S Zni

and H = Dr
Q

i2S G(ni; ui) = T ow Z
k where w : Zk ! Aut(T ) is the corresponding

action of Zk on T . If the gcd(ni; nj) = 1, whenever i 6= j, then

NAut(T )(Im(w)) = CAut(T )(Im(w)).

Proof: Since the numbers ni are pairwise relatively prime, then by Corollary 2.13

the group T = Dr
Q

i2S Zni is also a �nite cyclic group. This implies that Aut(T )

is abelian by [28, 4.38]. Then Inn(Aut(T )) the subgroup of all inner automorphisms

of Aut(T ) is trivial. Thus NAut(T )(Im(w)) = CAut(T )(Im(w)) by De�nition 8.2. �

Corollary 8.5: Let the groups T and H be as in Notation 8.1, that is T =

Dr
Q

i2S Zni and H = Dr
Q

i2S G(ni; ui) = T ow Z
k where w : Zk ! Aut(T )

is the corresponding action of Zk on T . If the gcd(ni; nj) = 1 whenever i 6= j such

that NAut(T )(Im(w)) = CAut(T )(Im(w)) then �(H) �= Z
�

d=� 1.

Proof: Since gcd(ni; nj) = 1 for i 6= j, then rank(Im(w)) � k. But if rank(Im(w)) <

k then �(G) is trivial by Theorem 6.23. The condition gcd(ni; nj) = 1 also implies
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that (T; Im(w)) is an NC-pair by Lemma 8.4. The result follows by Theorem 8.3.

�

Example 8.6: Let k = 2 in Notation 8.1. We want to compute the non-cancellation

group �(H) for H = G(n1;u) � G(n2;u) for the case n1 = 32:412, n2 = 612 and

u = 7. Note that (ni; u) = 1 and (n1; n2) = 1 and therefore Lemma 8.4 applies.

Note that hd1; d2i = hdi (see section 15 in [5]), where d = gcd(d1; d2).

A MAPLE computation yields:

d1 = 4920 = 23:3:5:41,

d2 = 3660 = 22:3:5:61,

therefore d = 22:3:5 = 60.

Thus �(G(n1; u)) �= Z
�

4920=� 1,

�(G(n2; u)) �= Z
�

3660=� 1, and

�(G) �= Z
�

60=� 1.

The orders of these groups are, respectively:

1
2
�(4920) = 1

2
(4:2:4:40) = 640,

1
2
�(3660) = 1

2
(2:2:4:60) = 480, and

1
2
�(60) = 1

2
(2:2:4) = 8.

We note the induced epimorphisms

�(G(ni; u))! �(H).
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The group H can be written as

H = f1; 7; 11; 13; 17; 19; 23; 29g,

being a quotient of Z�60. The group H has no elements of order 8, but the order of

7 is 4. Thus we can write

H = f1; 7; 11; 17g � f1; 29g �= Z4 � Z2.

�
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