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ABSTRACT 
 

In this century most major medical advances have resulted in part from research on 

animals and non-human primates such as the African green monkey and therefore 

often serve as a critical link between basic research and human clinical application. 

Due to its close evolutionary relationship to humans, the African green monkey is 

known to be an excellent and most sought after models for studies of human 

cardiovascular disease (CVD). While the human genome project and some others 

related to model organisms are very well advanced or even complete, little sequence 

information has been acquired for the African green monkey. Given the importance of 

this species in biomedical research generally and CVD specifically, and the 

fundamental significance of sequence data, it is critical that this paucity of genome 

information concerning this specific animal model be addressed in order to better 

define the molecular basis and to further understand the mechanism of cholesterol 

metabolism in this species which will also contribute immensely to primatology.  

 

There is a growing interest in the role of genetic polymorphisms in predicting 

susceptibility to disease and responsiveness to drug interventions. Since plasma lipid 

abnormalities are risk factors for coronary atherosclerosis, determination of these 

plasma lipid concentrations, especially for genes involved in lipid transport and 

metabolism may be influenced by genetic variations. In this study, the African green 

monkey was used as a model to evaluate the effect of niacin on plasma lipids and 

reverse cholesterol transport by examine gene expression and the influence of several 

polymorphisms found in genes that are involved in cholesterol metabolism in humans. 
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A survey of genetic variation spanning ten prioritised “candidate” genes was 

conducted, all of which are known to produce proteins that play key roles in the 

reverse cholesterol pathway (RCT), and in the homeostatic regulation of blood lipid 

profiles related to cardiovascular health and disease.  

 

Reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate 

mRNA expression of those “candidate” genes. Twenty two coincident single-

nucleotide polymorphisms (cSNPs), reported to play a vital role in RCT, were 

genotyped within these genes. This study’s findings implicate a subset of six of the 

twenty two genetic variants, spanning five “candidate” genes. To assess possible 

involvement of these prioritised “candidate” genes and their polymorphisms, 

biochemical analyses of known risk factors of coronary artery disease such as HDL-C 

and LDL-C were conducted. Eight healthy African green monkeys were entered in 

this study of which four were treated with niacin at an escalating dosage. Their mean 

lipid-lowering response following drug therapy was analysed, compared to those with 

the same genotype in a control group.  

 

Niacin treatment was associated with a considerable reduction in LDL-Cholesterol, 

up-regulation of HDL synthesis, and increase of apo A-1 levels.  Gene expression had 

minimal effect on niacin treatment, except CYP7A1 which was down-regulated at the 

same time when considerable change in HDL-C, LDL-C and apoA-1 levels was 

observed. The presence of CYP7A1:Asn233Ser polymorphism may have played a 

critical role in metabolising niacin and influencing the up-regulation of HDL-C 

synthesis in the African green monkey. Although cholesterol lowering alone may 

explain the anti-atherosclerotic effect of niacin on HDL-C, in this study, gene 
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expression data also shed some light in supporting the hypothesis that genetic variants 

may influence the expression of genes involved in RCT, which may also have played 

a role in the anti-atherosclerotic effect of the drug.  
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Chapter 1 

 

THE AFRICAN GREEN MONKEY (CHLOROCEBUS AETHIOPS): 

AN APPROPRIATE MODEL FOR ATHEROSCLEROSIS 
 

 

 

1.1      INTRODUCTION 

There are a number of approaches, in terms of basic systems, for studying and/or 

modelling the metabolic syndrome in order to improve our understanding of this 

condition. Using human subjects appear intuitively to be the most obvious choice but 

they have considerable limitations.  This is due to the difficulty in controlling 

variables such as environment and diet, and by the slowness of lesion development. 

Other complicating factors arise from the area of ethics, considering the type of 

interventions typically required to study the pathophysiology and treatment of this 

condition.  In vitro systems are another option in research, and often used as an 

alternative to animal models but they cannot mimic the complex interactions of 

various tissues involved in lipid metabolism and transport (Moghadasian et al., 2001). 

Therefore, animal models offer the best opportunities to study the metabolic 

syndrome including aetiology, pathophysiology and treatment. Variables can be well 

controlled, extensive biochemical, biomechanical and pathophysiological assays can 

be performed, and the necessary experimental interventions can be carried out. This 

way cause-and-effect association can be built.  

 

Animal research has already provided much information about many aspects of 

human biology in health and disease, and has determined the potential benefit of 

many therapeutic interventions. To date, many animal species and models are 
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described in the research literature, however, choosing the appropriate model to 

answer a particular research question can be challenging. 

 

Among the models of dyslipidemia and atherosclerosis, a number of wild-type, 

naturally defective, and genetically modified animals have been utilised. Due to the 

complexity as well as species specificity of lipid and lipoprotein metabolism, all these 

models come with their own limitations. Rodents have been extensively utilized in 

atherosclerosis studies since they are easy to handle and can be genetically 

manipulated. However, atherosclerosis is not a spontaneous disease for them and has 

to be induced because, unlike primates, they have high levels of high density 

lipoprotein (HDL) which plays a protective role through the process of reverse 

cholesterol transport (RCT) (Table 1.1). Rodents lack cholesteryl ester transfer protein 

(CETP) which plays a vital role in RCT by mediating the transfer of lipids between 

lipoproteins (Moghadasian et al., 2001). 
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Table 1.1: Advantages and disadvantages of certain animal species in atherosclerosis 

                  research (Moghadasian et al., 2001) 

 

Animals Advantages Disadvantages 
Mice Well-defined genetically, easily bred, short 

generation time, inbred availability, easy 

handling and housing, availability of several 

transgenic lines 

Highly resistant to atherogenesis, high HDL, no 

CETP, difficulties in frequent blood sampling and 

dissection of medium/ small-size vessels 

Rabbits Naturally LDL-receptor deficient strain, 

naturally  hypertriglyceridemic strain, good 

size, easy to keep and handle, known to many 

investigators, good response to dietary 

cholesterol, availability of transgenic lines 

Lesion locations less similar to those in humans, 

very high plasma cholesterol needed to induce 

atherosclerosis, hepatic lipase deficient, no 

spontaneous atherosclerosis, cholesterol storage 

syndrome on cholesterol feeding 

Pigeons Atherosclerosis susceptible strains, location, 

histology and progress of lesions similar  to 

humans, low cost and easy to handling, 

sufficient size, good response to dietary 

cholesterol, short generation time, relatively 

long life span 

Nonmammalian, lack of apo E, B48, and 

chylomicron formation, viral infection seen 

associated with atherosclerosis, considerable 

changes in lipoprotein metabolism during egg-

laying 

Nonhuman 

primates 

The closest species to humans, some species 

respond well to dietary cholesterol, spontaneous 

early stage atherosclerosis in some species 

Variations in site of lesions, expensive and 

difficult to house and handle, limitations in 

availability, ethical concerns 

Swine Some physiological/anatomical similarities to 

humans, spontaneous atherosclerosis 

particularly in abdominal aorta, availability of 

miniature pigs, natural lipoprotein mutant 

strains 

Require high cholesterol diet (4-5% w/w), less-

known to investigators, very low baseline 

cholesterol level, difficulties in care and high 

maintenance cost 

Dogs Some physiological/anatomical similarities to 

humans, well-characterised lipoprotein profile 

Atherosclerosis-resistant species, high HDL, 

expensive, poor response to dietary cholesterol, 

ethical concerns 

 

 

Amongst the mammals used in the laboratory, Old World nonhuman primates are the 

closest living relatives of humans, both in evolutionary and genetic terms. Although 

Old World monkeys are separated evolutionarily from humans by more than 20 

million years (Bullock et al., 1975), they have a close resemblance to man, and share 

many characteristics (Harris, 1970). Asian Macaca species such as rhesus monkeys 

and cynomolgus monkeys have been used extensively to study experimentally 

induced atherosclerosis (Moghadasian et al., 2001). In general, their responsiveness to 

dietary cholesterol is much exaggerated compared to humans (Pronczuk et al., 1991; 

Shamekh et al., 2011).  

 

Amongst the African primates, a subspecies of the African green monkey, also known 

as the vervet monkey, has been recognised as a good model for the study of diet-
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induced atherosclerosis (Bullock et al., 1975). The distribution and morphology of 

induced atherosclerotic lesions in this species is similar to those in humans, as is the 

degree of responsiveness to dietary cholesterol (Moghadasian et al., 2001).  

 

Due to the close evolutionary relationship between humans and nonhuman primates, 

many basic features of genetics, development, physiology, and metabolism are shared 

(Shamekh et al., 2011). These various similarities at the levels of whole-body 

physiology and metabolism, organ function, cell structure, and even gene organization 

make nonhuman primates such as the African green monkey excellent, and most 

sought after models for studies of human cardiovascular disease (CVD) (Moghadasian 

et al., 2001). Relative scarcity and high cost are the two most important factors that 

prevent many researchers from having access to species of this order.  However, 

notwithstanding their closeness to humans, validity for their use as models still has to 

be demonstrated in the different primates when there is a gap in background 

information, or in the case of using a species not previously applied.  Spontaneous 

development of certain diseases and conditions (i.e. atherosclerosis), with similarities 

in the underlying pathophysiology and subsequent markers, as well as sharing of 

genes and gene expression is the most important validation.  Extensive analysis of 

genome structure and function in this animal model could make immediate and 

significant contributions to the understanding of CVD. Therefore, a primate model of 

a human disease, such as atherosclerosis, is critical to the long-term success of 

biomedical research. 

 

While the human genome project and some others related to model organisms are 

very well advanced or even complete, little sequence information has been acquired 
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for the African green monkey. Given the importance of this species in biomedical 

research generally and CVD specifically, and the fundamental significance of 

sequence data, it is critical that this paucity of genome information concerning this 

specific animal model be addressed. 

 

Studies using animal models of atherosclerosis can help clarify the contribution(s) of 

the factors that alter both concentrations and compositions of plasma lipoproteins in 

atherogenesis. One of these is CETP, which modifies lipid composition in lipoprotein 

particles, and may play a role in atherogenicity (Quinet et al., 1991). In recent years; 

there has been an explosion in the number of in vivo and genetic studies that have 

largely been carried out using rodent models. As mentioned above,  these represent 

the most common animal model for research in coronary heart disease (CHD), 

however, there are several physiological and developmental differences between 

rodents and humans reflective of their relatively ancient evolutionary divergence 

(approximately 65 to 75 million years ago) as compared to nonhuman primates 

(approximately 25 million years ago) (Moghadasian et al., 2001). Therefore, this 

study, sought to systematically examine the genetic basis of HDL-C of one of the 

African nonhuman primate, the vervet monkey, in order to better define the molecular 

genetics of this animal model, and to further understand the mechanism of cholesterol 

metabolism in this species. One of the principle goals was to identify genes 

influencing cardiovascular disease-related phenotypes during therapeutic intervention. 

An important preliminary step in meeting this goal was the identification of a genetic 

contribution to the variation observed in these phenotypes. Data generated in this 

study will enrich accumulating knowledge of the factors influencing CHD in 

primatology, and, importantly, will identify susceptibility genes of relevance to the 
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African green (vervet) monkey, thereby obviating the need to extrapolate data 

generated in humans and other primates such as chimpanzees and rhesus monkeys. 

 

The study applied a number of original approaches to identify candidate susceptibility 

genes in a nonhuman primate model without available genome sequence data. 

Furthermore, the application of bioinformatics with molecular techniques such as 

real-time PCR represented a state of the art approach to use orthologous human 

reference sequence to identify for the first time in the African green monkey specific 

lipid metabolism candidate genes and coincident SNPs corresponding to ancestral 

polymorphisms present in both humans and nonhuman primates, and preserved in 

both lineages. 

 

1.1.1 Use of the African green monkey as an animal model of atherosclerosis 

The African green monkey (Chlorocebus aethiops) which is indigenous to Southern 

Africa is considered to be a most appropriate model for human physiology and for the 

study of cholesterol metabolism (Suckling et al., 1993). Over the past three decades, 

this species also been used in the area ophthalmology, virology and cardiovascular 

disease, amongst others (Suckling et al., 1993).   

 

African green monkeys develop diet-induced atherosclerotic lesions which are 

topographically and morphologically similar to those of humans (Fincham et al., 

1987). Intravascular metabolism of cholesterol appears to be also similar, with the 

presence of an active cholesteryl ester transfer system (Nichols et al., 1965). Humans 

have a well-characterized lecithin:cholesterol acyltransferase (LCAT) enzyme and the 

LCAT levels in the African green monkeys are similar and sensitive to dietary 
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perturbations (Carroll et al., 1981). Like humans, African green monkeys express only 

apolipoprotein B 100 (apoB 100) in the liver (Fernandez et al., 2008). A high 

cholesterol diet leads to the reduction in hepatic LDL receptor mRNA and 

downregulation of cholesterol 7-alpha-hydroxylase (CYP7A) activity (Fernandez et 

al., 2008). To date numerous researchers have studied the relation between dietary fat 

saturation and HDL levels in an attempt to understand the relation between diet and 

CHD. In spite of the comprehensive nature of the studies on cholesterol metabolism in 

this species, much remains to be learned. Furthermore, not much information is 

available on the genetics of the African green monkey. Therefore, the present study 

has been planned to define the molecular basis of lipoprotein metabolism of this 

species. This approach relies on the identification of genetic variants, which influence 

risk factors for the development of atherosclerosis. 

 

The Primate Unit of the Medical Research Council has extensive experience using the 

African green monkey in atherosclerosis research. In order to produce high 

concentrations of LDL and associated atherosclerosis, this group has formulated a diet 

entirely which requires 3 to 4 years of feeding to induce advanced lesions with 

features of human atherosclerosis (Fincham et al., 1998). Since this diet does not 

modulate HDL, it is not useful when investigating this lipoprotein and lipid 

modulating compounds such as CETP inhibitors. Moreover, the African green 

monkey shows a satisfactory response with HDL-C increases to a variety of reference 

compounds used at this unit with inhibition of cholesterol biosynthesis by lowering 

LDL-C by more than 40%. This demonstrates that the African green monkey 

expresses lipoprotein (a) (Lp(a)) unlike rodents (Fincham et al., 1987; Benadé et al., 

1997). 
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The focus of atherosclerosis research is constantly evolving with early studies 

investigating the morphology, physiology and pathogenesis, and recent studies being 

more directed at the molecular and cellular mechanisms, as well as the preventive 

strategies. Numerous studies in humans, animals, and in vitro, are addressing the 

importance of RCT and cholesterol efflux in atherogenesis. It is very possible that 

augmentation of RCT and cholesterol efflux could be therapeutically useful. Potential 

major strategies include accelerating RCT and cholesterol efflux, which can be 

activated by increasing HDL and apolipoprotein A-I (apoA-I) levels, or by stimulating 

phospholipid transfer protein (PLTP) or CETP. Cholesterol efflux can be enhanced by 

facilitating pathways including ATP-binding membrane cassette transport protein A1 

(ABCA1), scavenger receptor B1 (SR-B1), caveolin and sterol 27-hydroxylase 

(Cyp27A1) (Ohashi et al., 2005). However, uncertainties remain about the impact of 

RCT and cholesterol efflux on cardiovascular disease. Further exploration of 

modifiers of RCT and cholesterol efflux is warranted. Gaining insight into the entire 

picture of RCT and cholesterol efflux may enable us to develop more effective 

therapies for atherosclerosis in the future. Since HDL-based therapies have recently 

become the focus of attention, the African green monkey was used in this study to 

determine the effect of niacin on lipid metabolism at genetic level by the expression 

profile of the selected candidate genes of the RCT pathway. 

 

1.1.2 Taxonomy and habitat  

The African green monkey is a member of the subfamily Cercopithecidea, which 

includes the baboon and other Old World monkeys. Taxonomically they belong to the 

genus Chlorocebus. They are widely distributed throughout much of sub-Saharan 

Africa and inhibit diverse habitats, including semiarid Savannah, woodlands and 
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rainforest (Eley, 1992). In the wild, the African green monkeys are able to exploit 

patchily distributed plants and feed on fruits, leaves, insects, eggs, seafood, grasses, 

and seeds (Eley, 1989). Typically free-ranging, African green monkeys live in multi-

male, multi-female groups of between 6 and 60 individuals per troop with a linear 

dominance hierarchy among the males and a matriarchial kin group relationship 

among the females (Eley, 1989). Each troop is led by an alpha male and reproduction 

is characterized by promiscuity, by either the alpha or subordinate mating with more 

than one female, just as females mate with more than one male. Therefore, inbreeding 

is a well-defined genetic consequence of this social system with an increase of 

homozygosity in the whole genome of this species (Charpentier et al., 2007).  This 

situation would invariably be compounded in captivity due to small gene pools. 

 

 

 

1.2 GENERAL BACKGROUND ON REVERSE CHOLESTEROL 

TRANSPORT AND CHOLESTEROL EFFLUX  

Despite considerable progress in the development of new therapies to control 

atherosclerosis and its complications, coronary heart disease (CHD) remains the 

number one cause of death in the world. Atherosclerotic coronary artery disease 

(CAD) constitutes a major public health burden in developed and developing 

countries and by 2020 is predicted to be the single greatest cause of death worldwide 

(Murray et al., 1997). Although the sustained epidemic of HIV/AIDS causes more 

deaths in South Africa, the prevalence of CAD and other metabolic syndrome 

diseases such as type 2 diabetes is increasing dramatically and already account for 

more than a third of deaths in the population (Akinboboye et al., 2003; Sliwa et al., 

2008 and Imoisili et al., 2009). Consistent with data from other parts of Africa 

suggesting a broadening pattern of cardiovascular disease involving a component of 
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greater burden imposed by atherosclerotic disease, it is essential that effective 

strategies for prevention or treatment are identified. 

 

Preventing atherosclerosis holds the key to reduce the burden of cardiovascular 

disease, and a detailed understanding of the pathophysiology of atherosclerosis will 

facilitate the design of innovative therapeutic strategies for the management of 

dyslipidaemia and the prevention of morbid cardiovascular events. 

 

Over the last few decades, our understanding of the basic mechanisms involved in 

atherosclerosis has progressed significantly. Cardiovascular disease (CVD) risk is 

influenced by several well-established risk factors, such as body mass index (BMI), 

an indicator of overweight and obesity, blood lipids, diabetes, and blood pressure 

(Morabia et al., 2003). These are intermediate phenotypes, having their own genetic 

and environmental determinants, including diet, nutrition, hormones, smoking, 

alcohol intake and physical activity (Bernstein et al., 2002). Studies in humans and 

mice indicate that both the type and quantity of blood-borne lipids are predictive of 

cardiovascular health or disease and that a relatively large number of proteins are 

involved directly and indirectly in the transport, maintenance and elimination of blood 

lipids, including high and low density lipoprotein cholesterol (HDL-C and LDL-C, 

respectively) (Fielding et al., 1995; Rader et al., 2000; Tall et al., 2000 and Glomset et 

al., 1973). Therefore, regulation of cholesterol levels is a complicated process, 

involving cholesterol uptake, biosynthesis, transport, metabolism, and secretion.  

 

Since the pioneering work of John Gofman in the 1950s, our understanding of relative 

contributions of individual lipoproteins to overall
 
cardiovascular risk has grown 
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substantially (Kapur et al., 2008) and modern medical therapy has resulted in a nearly 

70% decrease in coronary heart disease (CHD)-related deaths (Choi et al., 2006).  

Preclinical research has gained further insight into the nature of HDL-C metabolism, 

specifically regarding the ability of HDL-C to promote reverse cholesterol transport 

(RCT).  

 

RCT is a pathway that transports cholesterol from extrahepatic cells and tissues to the 

liver and intestine for excretion. By reducing the accumulation of cholesterol in the 

wall of arteries, RCT may prevent development of atherosclerosis. Cholesterol efflux, 

which is part of RCT, is a major process by which macrophages within the vessel wall 

secrete cholesterol outside cells (Khera et al.,2011). Other important factors include 

high-density lipoprotein (HDL), a subfraction of human plasma lipoproteins with 

apolipoprotein A-I (apoA-I.) as its principal apolipoprotein (Ohashi et al., 2005).  

 

1.3 ROLE OF LIPIDS AND LIPOPROTEINS IN CHD 

1.3.1  Lipid profile and CHD 

Disorders in lipid (e.g., cholesterol and triglycerides) and lipoprotein metabolism are 

major established independent risk factors in the development and progression of 

atherosclerotic CHD (Laakso et al., 1993; Vergeer et al., 2010). Lipid-carrying 

proteins, termed as lipoproteins, are classified as 3 major classes, including very low 

density lipoprotein (VLDL), low density lipoprotein (LDL), and high density 

lipoprotein (HDL). VLDL carries mainly triglycerides, and cholesterol is carried 

mainly in LDL, and to a lesser extent in HDL particles. HDLs transport cholesterol 

from peripheral tissues to the liver for excretion and recycling. Several 

epidemiological studies have clearly shown that plasma cholesterol, triglycerides, and 
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LDL are positively correlated to the development of atherosclerotic CHD, whereas 

HDL is negatively correlated to CHD (Kanel et al., 1981; Brewer, 2011). Due to this 

differential correlation to CHD, LDL-cholesterol (LDL-C) is generally termed as “bad 

cholesterol” and HDL-cholesterol (HDL-C) as “good cholesterol”.  

 

1.3.2 Mechanistic role of lipoproteins in the pathogenesis of CHD 

The classical view of atherosclerosis has changed considerably during the past 

decade. The original understanding of atherosclerosis processes include: a) the lipid-

laden material builds up on the surface of a passive artery wall, b) the lipid build up or 

deposit (plaque) grows and eventually closes off an affected artery, c) the obstructed 

arteries limit blood supply to the target tissues, and d) the subsequent loss of viability 

of the blood-starved tissue (Laakso et al., 1993). These events result in several 

atherosclerotic cardiovascular disease complications including myocardial infarction 

such as, stroke and angina. Understanding the dynamic nature of vascular wall cells 

(versus previous notion as a passive carrier of blood) changed this original view 

considerably, and recent studies suggest that the changes in arterial wall cell 

interaction with blood components would lead to the initiation and progression of 

atherosclerosis. The current concepts suggest that the atherosclerotic vascular disease 

is characterized by: vascular endothelial activation and dysfunction, accumulation of 

fat-laden deposits within the arteries, monocyte-endothelial interaction and infiltration 

of monocytes, transformation of monocytes into lipid-laden foam cells, smooth 

muscle cell hypercellularity and intimal migration, dysregulated deposition and 

degradation of extracellular matrix proteins, and plaque rupture (Brewer, 2011).  
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The anti-atherogenic properties of HDL-C have been mainly attributed to the ability 

of apoprotein A-I containing HDL particles to initiate cholesterol efflux and facilitate 

the removal of excess cholesterol from peripheral tissues such as arteries and its 

delivery to the liver for removal through reverse cholesterol transport pathway 

(Kashyap, 1998; Khera et al., 2011). This highlighted the beneficial effects of HDL-C 

on atherosclerotic processes. The beneficial modulation of HDL particles by 

pharmacologic agents would therefore be of considerable importance in retarding or 

reversing atherosclerosis and CHD. 

 

1.4 OVERVIEW OF RCT AND CHOLESTEROL EFFLUX 

The sequence of events in RCT is described in Figure 1.1. ApoA-1 is first produced 

mainly by the liver, and released into the plasma. Circulating apoA-1 interacts with 

serum phospholipids and forms nascent discoidal HDL (ndHDL). Once the ndHDL is 

generated, it triggers cholesterol efflux in the macrophages and fibroblasts in the 

subendothelial space. Externalised cholesterol is absorbed by ndHDL, and 

subsequently is esterified by lecithin:cholesterol acyltransferase (LCAT). HDL 

particles are enriched with cholesteryl ester and become larger, resulting in HDL3 and 

HDL2. Phospholipid transfer protein (PLTP) is involved in this process by fusing two 

HDL3 into one HDL2 molecule. If HDL molecules are enriched with triglyceride, 

they are processed by the enzyme hepatic lipase (HL) and become smaller and denser. 

Cholesterol ester transfer protein (CETP) facilitates the equimolar exchange of 

cholesteryl esters from HDL for triglycerides in apoB100-containing lipoproteins. 

These cholesteryl esters are then delivered back to the liver via low-density-

lipoprotein receptor (LDL-R), converted to bile salts, and eliminated through the 

gastrointestinal tract (Ohashi et al., 2005).  
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Figure 1.1: Reverse cholesterol transport pathway. Major constituents of RCT include 

acceptors such as high-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I), and 

enzymes such as lecithin:cholesterol acyltransferase (LCAT), phospholipid transfer protein 

(PLTP), hepatic lipase (HL) and cholesterol ester transfer protein (CETP), which regulate 

cholesterol transport. Eventually, cholesterols in the HDL are delivered to the liver via 

scavenger receptor B1 (SR-B1), converted to bile salts and eliminated through the 

gastrointestinal tract. Cholesteryl esters (CE) could also be delivered to the liver via the low-

density-lipoprotein receptor (LDLR). ndHDL, nascent discoidal high-density lipoprotein 

(Ohashi et al., 2005). 

 

 

As acceptors such as apoA-1 and HDL approach macrophages in subintimal space, 

intracellular cholesterol can be released outside the cells for excretion, a process 

termed cholesterol efflux of macrophages (Figure 1.1). In this pathway, ATP-binding 

membrane cassette transport protein A1 (ABCA1) plays a major role in translocating 

cholesterol into the extracellular space (Oram et al., 2000). In addition to ABCA1, 

ABCG1, another member of the ABC transporter superfamily, is capable of mediating 

the active efflux of cholesterol and phospholipids mainly to lipid-rich acceptor 

particles in macrophages through the action of ABCA1 (Hu et al., 2010). This implies 

 

 

 

 



  15 

a potential synergistic relationship between ABCA1 and ABCG1 in peripheral 

cholesterol export, where ABCA1 lipidates lipid-poor/free apoA-1 to generate nascent 

or preβ-HDL. These particles in turn serve as substrates for ABCG1-mediated 

cholesterol export (Gelissen et al., 2006; de Beer et al., 2011). It is not known whether 

ABCA1 and ABCG1 function dependently or independently in the process of 

macrophage cholesterol efflux and RCT in vivo. Together, ABCA1 and ABCG1 

account for the major portion of the net cholesterol efflux from cholesterol-loaded 

macrophages to plasma lipoproteins in vivo (Tall et al., 2008). Four other factors are 

also known to be involved in this pathway. Scavenger receptor B1 (SR-B1) can 

induce cholesterol efflux by enabling HDL to bind to cells and recognise lipids within 

cholesterol-rich domains in the plasma membrane (William et al., 1999; de la Llera-

Moya et al., 1999 and Hu et al., 2010). Caveolins have the capacity to bind 

cholesterol, and can transport cholesterol from the endoplasmic reticulum to the 

plasma membrane (Smart et al., 1996). Sterol 27-hydroxylase (CYP27A1) is also 

known as a contributor to cholesterol efflux (Escher et al., 2003). In addition to these 

pathways, cholesterol efflux can also occur via passive diffusion, in which cholesterol 

is desorbed down to the concentration gradient onto acceptor molecules (Kawano et 

al., 1993). Thus, RCT and cholesterol efflux constitute an efficient pathway by which 

excess cholesterol can be removed out of the body. Although extensive studies have 

been performed, RCT is a complicated process and its regulation mechanisms are 

largely unknown. Several key factors described above are involved in the RCT and 

cholesterol efflux, but the inter-relationship among these factors is not clear. 

 

Experiments with transgenic animals suggest that disruption of one or more steps in 

RCT results in accelerated atherosclerosis, whereas overexpression of pivotal proteins 
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in RCT, such as apoA-1, PLTP, LCAT and SR-B1, exerts atheroprotective effects 

(von Eckardstein et al., 2000). The important lesson from these experimental 

approaches is that disruption of RCT and resulting atherosclerosis may occur in the 

presence of either decreased or increased HDL-C levels, depending on which step of 

RCT is dysfunctional. 

 

 

1.4.1 Cholesterol efflux 

A variety of evidence shows that RCT and cholesterol efflux play a major role in 

preventing atherosclerosis in humans. In fact, congenital impairment in genes 

involved in cholesterol efflux may augment atherosclerosis in some patients. On the 

other hand, acceleration of RCT and cholesterol efflux by increasing HDL or apoA-I 

levels may result in amelioration of atherosclerosis, suggesting a potential therapeutic 

tool for human atherosclerosis (Ohashi et al., 2005; Khera et al., 2011). 

 

1.4.2 HDL levels and atherosclerosis 

Several studies have shown that low levels of HDL2 and HDL3 are associated with 

increased progression of atherosclerosis and risk of cardiovascular disease (Miller et 

al., 1981; Sweetnam et al., 1994 and Ruotolo et al., 1998). Since HDL and apoA-1 are 

major receptors of cholesterol in the cholesterol efflux, increasing HDL levels may 

increase cholesterol efflux and RCT, contributing to reduced cardiovascular disease 

risks. Many attempts have been made to enhance HDL levels as anti-atherogenic 

therapy (Gordon et al., 1989 and Castelli et al., 1992). The prevention of 

cardiovascular disease is critically dependent on lipid-lowering, including 3-

hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors 

(statins), cholesterol absorption inhibitors, bile acid resins, fibrates, and nicotinic acid 
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(nicin).  Although these drugs are generally well tolerated, severe adverse effects can 

occur in a minority of patients. Significant progress has been made in the 

identification of common DNA sequence variations in genes influencing the 

pharmacokinetics and pharmacodynamics of most of these drugs and in disease-

modifying genes relevant for coronary heart disease (CHD) (Schmitz et al., 2006). 

 

Currently available lipid-modifying drug have generally modest effects on HDL-C 

levels. Statins are first-line drug therapy for treatment of elevated LDL-C as well as 

for most high-risk patients with low HDL-C, but raise HDL-C by only 5-10% (Yim et 

al., 2003). Fibrates, agonists of peroxisome proliferator-activated receptor (PPAR)-α, 

lower triglyceride levels very effectively and raise HDL-C by 5 -20% (Yim et al., 

2003). Nicotinic acid (niacin) is the most effective HDL-raising drug currently 

available, with increases of up to 35% (Ohashi et al., 2005). Gemfibrozil therapy 

significantly reduced cardiovascular disease, with a modest increase in HDL levels 

(Frick et al., 1987). Niacin also lowers triglyceride levels, reduces LDL levels, and 

modestly lowers lipoprotein A [Lp(a)] levels (Canner et al., 1986 and Guyton et al., 

2000). Several clinical trials have found niacin to be effective, alone or in 

combination with other drugs, in preventing coronary events, slowing atherosclerotic 

disease progression, and promoting lesion regression (Brown et al., 2001). 

 

 

 

 

 

 

 

 

 

 



  18 

1.5 HDL AND REVERSE CHOLESTEROL TRANSPORT 

1.5.1 Mechanisms 

Reverse cholesterol transport describes the transfer of cholesterol
 
from nonhepatic 

cells to the liver (von Eckardstein et al., 2000; 2001).  Lipid-free apo A-I or
 
lipid-poor 

pre–ß-HDL particles produced in the
 
intestine or liver or shed during lipolysis of 

triglyceride-rich
 
lipoproteins (TGRL) initiate efflux of phospholipids and cholesterol

 

from cell membranes in a process facilitated by phospholipid transfer protein (PLTP). 

Cholesterol
 
in these nascent discoidal HDL particles is then esterified

 
by lecithin-

cholesterol acyltransferase (LCAT). Cholesteryl
 
esters readily move to the core of 

HDL particles, producing
 
a steady gradient of free cholesterol and enabling HDL to 

accept
 
cholesterol from various donors. The reciprocal exchange of

 
cholesteryl ester 

for triglycerides mediated by CETP moves the
 
bulk of the cholesteryl esters to 

lipoprotein remnant particles,
 
which are subsequently cleared by the liver. At the same 

time,
 
HDL becomes enriched with triglycerides, which are substrates

 
for hepatic 

lipase (HL). The concerted action of CETP-mediated cholesteryl ester
 
transfer and 

HL-mediated hydrolysis of triglycerides and phospholipids
 
helps to form the smaller 

HDL particles that are the preferred
 
binding partners for scavenger receptor type B1 

(SR-B1), the
 
major HDL receptor on hepatocytes. The binding of HDL with SR-B1

 

mediates the selective uptake of cholesteryl esters that have
 
not undergone CETP-

mediated transfer to apo B–containing
 
particles (intermediate-density lipoprotein and 

low-density
 
lipoprotein [LDL]). Lipid-free apolipoproteins or lipid-poor

 
pre–ß-HDL 

are formed in reactions catalyzed
 
by PLTP, CETP, and HL. Thus, as shown in Figure 

1.2, reverse
 
cholesterol transport can be envisioned as a cycle in which

 
acceptors of 

cellular cholesterol (ie, apo A-I, pre–ß-HDL)
 
are perpetually regenerated to undertake 

their function of inducing
 
cholesterol efflux (Assmann et al., 2004). 
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Figure 1.2: Pathways involved in the generation and conversion of HDL. ABC1 indicates 

adenosine triphosphate-binding cassette transporter 1; apo A-I, apolipoprotein A-I; apo E, 

apolipoprotein E; CE, cholesteryl ester; CETP, cholesteryl ester transfer protein; HDL, high-

density lipoprotein; HL, hepatic lipase; IDL, intermediate-density lipoprotein; LCAT, 

lecithin-cholesterol acyltransferase; LDL, low-density lipoprotein; LDL-R, low-density 

lipoprotein receptor; LDL-RRP, low-density lipoprotein receptor-related protein; Lyso PC, 

lysophosphatidylcholine; PC, phosphatidylcholine; PGN, proteoglycans; PL, phospholipids; 

PLTP, phospholipid transfer protein; SR-B1, scavenger receptor B1; UC, unesterified 

cholesterol; and VLDL, very-low-density lipoprotein. Adapted from Toth PP (Curr 

Atheroscler Rep. 2003;5:386–393). 

 

 

 

1.6 THERAPIES DIRECTED AT THE PROMOTION OF 

CHOLESTEROL EFFLUX AND RCT 

The concept that the promotion of macrophage RCT could prevent progression or 

even induce regression of atherosclerosis is remarkably attractive. Data in animals 

suggest that atherosclerosis regression can be achieved through HDL-based 

interventions. A major area in HDL-based therapeutics involves the exploitation of 

the information to develop pharmacological approaches to enhance components of the 

RCT pathway. The actual mechanism by which HDL protects against atherosclerosis 
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is likely multifactorial and not yet fully elucidated; however, there are several 

proposed major atheroprotective mechanisms of HDL. An important concept is that 

simply raising HDL-C levels may not necessarily be the optimal target for the 

development of new therapies targeted toward HDL (Duffy et al., 2006). Some new 

therapeutic approaches are targeted toward promoting RCT, even if they do not rise 

HDL-C levels per se (Duffy et al., 2006). It could be that the function of HDL is more 

important than its concentration and those therapies that improve HDL “function,” 

even if they do not increase HDL-C levels, may have important antiatherogenic and 

vascular protective effects (Navab et al., 2004). 

 

1.6.1 Drug targets 

A combination of genetic variations and environmental differences defines unique 

human characteristics, including individual responsiveness to drugs or susceptibilities 

to common diseases. Among several types of genetic variation, single-nucleotide 

polymorphisms (SNPs) are the most abundant throughout the genome. SNPs have 

lately received much attention in biomedical fields, because some of them can 

influence the quality and/or the quantity of particular gene products and thereby serve 

as markers of individual risk for adverse drug reactions or susceptibility to complex 

diseases (Ganji et al., 2003). 

 

Proteins that transport drugs in the body play roles in absorption, distribution, and 

excretion of drugs. Hence, genetic variations in genes encoding transporters may 

cause individual differences in drug absorption, elimination and cellular uptake, 

thereby affecting drug response and toxicity (Iida et al., 2003). 
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1.6.1.1 Niacin as a lipid-regulating agent and its effect on atherosclerotic CHD 

The use of niacin as a pharmacological agent has been reported as early as 1955 

(Carlson, 2005), and currently it is a widely used agent in the treatment of 

dyslipidemia (Kamanna et al., 2008). In pharmacologic doses of 1-3 g/day, niacin 

reduces concentrations of total plasma cholesterol, apolipoprotein (apo) B, 

triglyceride, VLDL, LDL, and Lp(a), and increases HDL levels (Carlson, 2005). 

Niacin is the most potent available lipid-regulating agent to increase HDL levels. 

Because of these diverse effects on the lipid profile, niacin is considered as a broad-

spectrum lipid-regulating agent. Several clinical trials (secondary prevention and 

angiographic studies) indicate that the treatment with niacin significantly reduces total 

mortality, coronary events, and retards the progression and induces regression of 

coronary atherosclerosis (Carlson, 2005). Although the use of niacin has in the past 

been associated with adverse effects (e.g., flushing and hepatic toxicity), recent 

studies utilizing newer formulations of niacin have shown a significant reduction in 

flushing with minimal to no hepatic toxicity, and comparable effects on plasma lipid 

profiles (Carlson, 2005; Kang et al., 2011). These newer formulations of niacin 

referred to as “niacin extended-release” have considerably renewed interest in the use 

of niacin as a broad-spectrum lipid-regulating agent and particularly for raising HDL. 

 

1.6.1.2  Role of niacin in HDL metabolism 

HDLs are a complex class of lipoproteins with hydrophobic core of cholesterol esters 

and triglycerides, and an outer hydrophilic layer of apolipoproteins, phospholipids and 

unesterified cholesterol. Apo AI and apo AII are the major proteins of HDL, 

accounting for approximately 70% and 20% of protein mass respectively (Yim et al., 

2003). The liver and intestines are the major organs for synthesis and secretion of 
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HDL and its components. The plasma levels of HDL and its components are finely 

regulated by various synthetic and catabolic processes (Yim et al., 2003). Although 

niacin has long been used specifically to raise HDL, only recently studies are 

beginning to address the cellular mechanisms of action of niacin on HDL metabolism 

(Yim et al., 2003).  

 

There are mainly two mechanisms by which niacin influences plasma lipids and the 

secretion of apo B bearing lipoproteins including VLDL particles in the liver. One 

mechanistic strategy to decrease elevated levels of lipids (e.g., triglycerides) in blood 

may be the inhibition of lipolysis in adipose tissue (Figure 1.3). Niacin, through 

hormone-sensitive lipase-mediated events, inhibits fatty acid mobilization from 

adipose tissue. Inhibition of fatty acid (FA) release from adipose tissue results in 

decreased availability of fatty acids for triglyceride (TG) synthesis (Ganji et al., 

2003). Niacin-mediated inhibition of TG synthesis may decrease the lipidation of apo 

B and translocation through endoplasmic reticular (ER) membrane leading to 

increased intracellular apo B degradation. Increased hepatocyte apo B degradation by 

niacin would decrease the number of VLDL and their catabolic product, LDL 

particles, which explains the lower apo B and LDL concentrations observed clinically 

after niacin treatment (Ganji et al., 2003 and Kamanna et al., 2008). In-vitro studies in 

hepatocytes suggest that niacin inhibits the putative “HDL catabolism receptor” 

involving removal of HDL-apoA-I, but not the SR-BI receptor that mediates selective 

HDL-cholesterol ester removal (Ganji et al., 2003). These mechanisms of decreased 

HDL-apoA-I catabolism by niacin would increase HDL half-life and its concentration 

thereby augmenting cholesterol efflux and reverse cholesterol transport (RCT), and 

other HDL-related vascular beneficial effects. Increased residence time would also 
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allow HDL size to increase (HDL2 > HDL3) from peripheral tissue cholesterol 

uptake. Taken together, niacin, through these collaborative intracellular metabolic 

processes, favourably modulates LDL and HDL levels resulting in decreased 

atherosclerotic coronary artery disease (Ganji et al., 2003 and Kamanna et al., 2008). 

 

 

       

Figure 1.3: Overview of current concepts on mechanism of action of niacin on lipid and 

lipoprotein Metabolism (Kamanna et al., 2008). 

 

 

1.7 GENE ACTIVITIES IN RCT AND CHOLESTEROL EFFLUX 

There is interest in the role of genetic polymorphisms predicting susceptibility to 

disease and responsiveness to dietary and drug interventions. Small-scale studies have 

investigated the effects of polymorphisms on physiological or biological factors and 

have provided useful information on possible mechanistic links between variation at 

the gene level and risk factors for cardiovascular disease (CVD). 
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Plasma measures of lipid metabolism are well-established risk factors of CAD, the 

leading cause of death worldwide (Klos et al., 2006). Increased risk of CAD has been 

associated with elevated TG, TC, and LDL-C, and decreased HDL-C (Austin et al., 

1998; Castelli et al., 1992, Gordon et al, 1989 and Davignon et al., 1996). CAD has 

also been associated with low plasma apoA-I and high apoB (Brunzell et al., 1984). 

These lipids and apolipoproteins are regulated by complex metabolic and cellular 

processes, which, in turn, are influenced by both genetic and environmental factors 

(Sing et al., 2003).  

 

The hypothesis that high-density lipoprotein cholesterol (HDL-C) is protective 

towards atherosclerosis was first proposed by Barr et al. (1951). The protective action 

of HDL may reflect the role of HDL particles in the reverse cholesterol transport 

(RCT) pathway. Indeed, HDL particles are involved in the uptake of cholesterol from 

peripheral tissues and its transport back to the liver for excretion. The molecular 

regulation of HDL metabolism and RCT is complex. RCT is the process by which 

cholesterol is effluxed from peripheral tissues onto acceptor particles, primarily HDL, 

in the plasma for uptake by the liver. HDLs consist of cholesterol, phospholipids, 

triglycerides, and apolipoproteins (Tall, 1990). Lipid-poor apoA-I promotes efflux of 

cholesterol and phospholipids through interaction with ABCA1. The enzyme LCAT 

converts unesterified cholesterol to cholesteryl ester (CE) within the HDL particle. 

HDL CE is subsequently returned to the liver by 3 distinct pathways. In the first 

pathway, the SR-B1 mediates selective uptake of HDL cholesteryl esters by the liver. 

In the second pathway, CETP transfers cholesteryl ester from HDL to apoB-

containing lipoproteins in exchange for triglycerides. Finally, there is a pathway that 

leads to uptake of holo-HDL particles and degradation of HDL-associated proteins 
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such as apoA-I. In part, this pathway may involve the formation of large HDL, 

enriched with apoE (Tall et al., 2000). 

 

RCT involves numerous lipid transfer proteins, enzymes, apolipoproteins, and 

membrane-bound receptors (Fielding et al., 1995; Khera et al., 2011). The genes 

encoding these proteins, as well as genes encoding proteins that regulate their 

transcription, are candidates for influencing variation in plasma levels of apoA-I, 

apoB, HDL-C, LDL-C, TC, and TG. Based on a model RCT pathway (von 

Eckardstein et al., 2001; Ren et al., 2006), to date, a set of 54 genes involved in RCT 

for evaluating the impact of genetic variation on variation in plasma lipid and 

lipoporotein levels have been  identified  by Klos et al., (2006). CETP, lipoprotein 

lipase (LPL), HL and apolipoprotein E (apoE) are key players in the metabolism of 

the major plasma lipoproteins and are potential candidates for the plasma modulation 

of LDL particle size. Disturbances in these systems are integral components of life-

threatening diseases. Enhancement of cholesterol efflux and RCT is considered an 

important target for anti-atherosclerotic drug therapy (von Eckardstein et al., 2000).  

 

CETP mediates the transfer of hydrophobic lipids between VLDL, LDL and HDL. 

Genetic CETP deficiency is associated with markedly elevated concentrations of HDL 

cholesterol and a polydisperse LDL size distribution pattern (Yamashita et al., 2000). 

The first common functional polymorphism in the CETP gene promoter (-629C/A) 

was described by Dachet et al., 2000. The CETP-629C/A polymorphism is in strong 

linkage disequilibrium with the extensively studied TaqIB polymorphism, recently 

reported to be associated with decreased CHD risk (B2 allele) (Ordovas et al., 2000). 
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LPL hydrolyses triglycerides of chylomicrons and VLDL and mediates the cellular 

binding and uptake of lipoproteins. The LPL 447X allele has been associated with a 

beneficial lipid profile and a lower risk of CHD in most studies. HL plays a pivotal 

role in the metabolism of LDL and HDL. Four common polymorphisms in the HL 

promoter are in complete linkage disequilibrium. Recently, the -514T allele was also 

shown to decrease the transcriptional activity of the HL gene in vitro (Deeb et al., 

2000).The common polymorphism in the apoE gene (e2/e3/e4) has been extensively 

studied, and the apoE e4 allele has been reported to be associated with decreased LDL 

particle size, and increased risk of CHD (Wilson et al., 1996).  

 

ABCA1 is a member of the ATP-binding cassette transporter family, which plays a 

most important role in apoA-I-mediated cholesterol efflux from peripheral cells, the 

first step in reverse cholesterol transport (Yamakawa-Kobayashi et al., 2004). ABCA1 

has been identified to be a transporter that effluxes excess cellular cholesterol to 

poorly lipidated apoA-1, thus playing a pivotal role in the reverse cholesterol 

transport process (Brewer et al., 2004). Regulation of ABCA1 transporter gene 

expression plays a key role in determining intracellular cholesterol levels (Brewer et 

al., 2004), therefore, ABCA1 is an attractive candidate gene for the modulation of 

plasma HDL cholesterol concentration (Wang et al., 2000). Common variants of this 

gene may be a genetic factor for atherosclerosis (Kyriakou et al., 2005). 

 

 

1.7.1  Effects of mutations and intervention on HDL metabolism 

 

There is interest in the role of genetic polymorphisms in predicting the susceptibility 

to disease and responsiveness to dietary and drug interventions (Vergani et al., 2006). 

Small-scale studies have looked at the effects of polymorphisms on physiological or 
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biochemical factors and have provided useful information on possible mechanistic 

links between variation at the gene level and risk factors for cardiovascular disease 

(CVD) (Freeman et al., 2003). For the purpose of this study, 10 “candidate” genes 

known to be involved in RCT and HDL metabolism were identified and investigated 

in the African green monkey. Each gene is described below.  

 

Since the African green monkey is closely related to humans, coincident single 

nucleotide polymorphisms (cSNPs) occurring at the same locus in both humans and 

other nonhuman primates were prioritised for this study (Table 1.2). In the absence of 

the African green monkey genome sequence, the rhesus macaque (Macaca mulatta) 

genome was used for comparison with the humans. Since rhesus macaque and African 

green monkey belong to the same family (Cercopithecidae) and are closely related; an 

assumption was made that both species are likely to share the same cSNPs. Shared 

ancestral polymorphisms are polymorphic sites that originated in the ancestral species 

and have survived genetic drift in both the human and other species. The molecular 

mechanism underlying this variation remains unknown. Hodgkinson et al. (2009) 

discovered that a surprising number of human polymorphic sites are also polymorphic 

in nonhuman primates. These cSNPs not only occur significantly more frequently 

than expected under independence but also cannot be easily explained by natural 

selection (Hodgkinson et al. 2009; Hodgkinson and Eyre-Walker 2010). 
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Table 1.2: List of prioritised coincident SNPs  

  
 

 
  

Genes SNPs Human Rhesus  Baboon 

CETP I405V X X X 

  Ala373Pro X X X 

ABCA1 Ile883Met X X X 

  E1172D X X X 

  V771M X X X 

  V825I X X X 

  R219K X X X 

LCAT Ser232Thr X X X 

  LCATu3 X X X 

SR-B1 A350A X X X 

  G2S X X X 

apoA-1 MspI X X X 

  G-75A X X X 

apoB T71I X X X 

  4311S X X X 

apoCI HpaI X X X 

apoCII Lue96Arg X X X 

  62 A>C X X X 

apoE Cys112Arg X X X 

  Arg158Cys X X X 

CYP7A1 Asn233Ser X X X 

  A-278C X X X 

 

 

 

1.7.1.1   Cholesteryl ester transfer protein  

CETP modifies the lipid composition of the plasma by transferring triglycerides and 

cholesterol esters between lipoproteins, thereby decreasing plasma HDL-C 

concentrations and increasing the proportion of lipids present in the atherogenic LDL-

C and VLDL fractions. Increased risk for atherosclerosis with increased CETP 

activity has been shown in CETP transgenic mouse models, and there is inconclusive 

evidence of a similar risk in humans. (Carlquist et al., 2003).  

 

Coincident SNPs  
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It has long
 
been theorized that the atheroprotective effect of HDL is primarily

 
due to 

its role in RCT. RCT is a complex pathway, involving transport proteins,
 
modifying 

enzymes, and cell surface receptors. One of the enzymes
 
with a key role in RCT is 

CETP, which promotes the exchange of cholesteryl esters from
 
HDL to the apoB-

containing lipoproteins, thus, providing an
 
avenue for the uptake of cholesteryl esters 

by hepatic receptors (Bruce et al., 1998). Several common mutations, or
 

polymorphisms, have been identified in the CETP gene (Figure 1.4). Polymorphisms
 

identified in the coding sequence of the CETP gene include A373P, I405V, and 

R451G. Two of these variants, Ala373Pro
 
and R451G, are associated with increased 

CETP activity and
 
reduced HDL-C levels, whereas the I405V variant is associated

 

with reduced CETP mass and increased HDL-C levels (Bruce et al., 1998). Among
 

the most widely studied CETP variants is TaqIB, a silent base
 
change affecting the 

277th nucleotide in the first intron of
 
the CETP gene (Boekholdt et al., 2004).  

 

In this study, the
 
more common I405V polymorphism was selected since it is 

associated with vascular disease. In the homozygous form for the rarest allele (V/V 

genotype) the I405V polymorphism is associated with a reduction in CETP activity, 

and with changes in the levels of HDL-C and the composition of HDL and LDL 

(Okumura et al., 2002, Barzilai et al., 2003, Boekholdt et al., 2004 and Brousseau et 

al., 2004).  

 

CETP deficiency in man is associated with raised HDL-C up to 5 mmol/l (Jukema et 

al., 2004). Several pharmaceutical companies have developed CETP inhibitors, such 

as torcetrapib and JTT-705 (Brousseau et al., 2004). Administration of a high-dose 
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torcetrapib and JIT-705 to humans decreased CETP activity significantly and 

increased HDL-C by 34 to 106% (Jukema et al., 2004).  

 

 

 

 
Figure 1.4: Structure of the CETP gene and the locations of SNPs tested (Bansal et al., 2002). 

 

 

 

1.7.1.2    ATP binding cassette transporter Al  

ABCA1 is a member of the ATP-binding cassette transporter family, which plays a 

most important role in apoAI-mediated cholesterol efflux from peripheral cells, the 

first step in RCT (Yamakawa-Kobayashi et al., 2004). ABCA1 has been identified to 

be a transporter that effluxes excess cellular cholesterol to poorly lapidated apoA-1, 

thus playing a pivotal role in the reverse cholesterol transport process (Brewer et al., 

2004). Regulation of ABCA1 transporter gene expression plays a key role in 

determining intracellular cholesterol levels (Brewer et al., 2004), therefore, ABCA1 is 

an attractive candidate gene for the determination of plasma HDL cholesterol 
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concentration (Wang et al., 2000). Common variants of this gene may be a genetic 

factor for atherosclerosis (Kyriakou et al., 2005). 

 

Twelve SNPs were identified in coding regions of the gene, six of which resulted in 

amino acid substitutions (Frikke-Schmidt et al., 2004). R219K, V771M, V825I, 

I883M, E1172D, and R1587K all substitute similar amino acids. R219K and R1587K 

are located in the two major extracellular loops of the ABCA1 protein, important for 

the interaction with apoA-I and for cholesterol efflux. V771M, V825I, I883M, and 

E1172D are located in the middle part of the protein corresponding to the fifth and 

sixth transmembrane α-helix, the seventh hydrophobic segment (H7), and the first 

regulatory segment (R1), respectively (Figure 1.5). The amino acid residues affected 

by these six non-synonymous SNPs are situated in highly conserved (V771, V825, 

E1172, R1587) or less-conserved (R219, I883) areas of ABCA1, and are either 

completely conserved between species (V771, E1172) or vary between 2 (R219, 

V825, R1587) or more (I883) similar amino acids (Figure 1.5). All six non-

synonymous SNPs are common and have been reported previously (Frikke-Schmidt et 

al., 2004). In this study, five SNPs of ABCA1 were chosen based on their function 

and location within the gene (R219K, E1172D, V771M, V825I and I883M). 

 

Complete ABCA1 deficiency is known as Tangier's disease. This condition leads to 

premature atherosclerosis, because compromised cholesterol efflux from peripheral 

cells to apoA-I results in the accumulation of cholesteryl esters in peripheral tissue 

(Jukema et al., 2004). Since upregulation of ABCA1 in animals has produced positive 

effects by reducing the risk of CAD (Zwart et al., 2002), several pharmaceutical 

companies are working on the development of ABCA1 agonists. However, negative 
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outcomes on lesion development associated with the effect of ABCA1 have also 

reported (Joyce et al., 2002; Van Eck et al., 2006).  

 

 
 

Figure 1.5: Topological model of ABCA1 (Frikke-Schmidt et al., 2004). 

 

 

1.7.1.3     Apolipoprotein A-1 

ApoA-I is the major protein constituent of HDL particles and plays a central role in 

lipid metabolism and CHD risk (Segrest et al., 2000 and Stein et al., 1999). Several 

epidemiological studies have reported that HDL-C and apoA-I are inversely related to 

the incidence and severity of CAD and can independently predict the risk of CAD 

(Stampfer et al., 1991; van der Steeg et al., 2008). Complete apoA-I deficiency results 

in low or absent HDL and is associated with premature atherosclerosis (Funke et al., 

1997). Partial deficiencies decrease HDL and increase the risk for CAD. ApoA-I 

promotes cholesterol efflux from tissues to the liver for excretion. Its anti-atherogenic 

effects are based on its acceptor function for ABCAl-mediated free cholesterol efflux 

from the peripheral cell. It is a cofactor for LCAT which is responsible for the 
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formation of most plasma cholesteryl esters (Fielding et al., 1995). ApoA-1 is 

therefore an important component of reverse cholesterol transport. 

 

The gene for apoA-I is known to be in a cluster with apoC-III and apoA-IV on 

chromosome 11 (Karathanasis, 1985) and several studies have reported an association 

between DNA polymorphisms of this gene cluster and differences in the levels of 

HDL-C and apoA-I in CAD patients and healthy individuals (Ordovas et al., 1991). A 

common G-to-A transition located 75 base pairs (bp) upstream from the transcription 

start site of the apoA-I gene has been described and studied extensively (Pagani et al., 

1990). This substitution destroys an Msp I cutting site and can be easily detected with 

the polymerase chain reaction (PCR). In three independent studies, the A allele has 

been associated with higher levels of both HDL-C and apoA-I (Pagani et al., 1990). It 

has been reported that individuals carrying the A allele show higher concentrations of 

apoA-I and HDL cholesterol than those with the G/G wild type (Pagani et al., 1990). 

In this study, we attempt to identify the role of two polymorphisms (this one included) 

in the African green monkey by modulating HDL metabolism with niacin. 

 

It is interesting to note that niacin extended-release treatment significantly improves 

apoA-1 levels and lowers the number of atherogenic LDL particles, VLDL and 

chylomicron particles (Insull et al., 2010). 

 

A topic of growing interest is the apoA-IMilano mutation (Franceschini et al., 1980). 

Carriers of this mutation have very low HDL-C levels, but surprisingly exhibit a 

decreased risk of CAD.  Its positive effects regarding atherosclerosis and the fact that 

apoA-I has a long elimination half-life make it a promising candidate for therapeutic 
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applications (Jukema et al., 2004). The apoA-IMilano gene possesses structural 

differences that impart a loss in lipid-binding capacity and accelerated catabolism, 

which is the mechanism underlying a more efficient uptake and removal of tissue 

lipids (Futterman et al., 2005). The identification of a naturally occurring variant of 

apoA-I (the apoA-IM) led to the finding that this HDL/apolipoprotein variant was 

antiatherogenic. Its effect is associated with a rapid increase in cholesterol efflux–

promoting capacity, mobilization of free cholesterol from tissues, and reduction of 

lipid and macrophage content within the vascular plaque (Futterman et al., 2005). 

 

 

1.7.1.4    Lecithin-cholesterol acyltransferase 

LCAT is one of the key enzymes controlling cholesterol homeostasis and transport 

and has a pivotal role in HDL-C maturation and remodeling (Asztalos et al., 2007). 

LCAT synthesizes the majority of cholesteryl esters in plasma by transferring a fatty 

acid from lecithin (phosphatidyl choline) to the 3-hydroxyl group of cholesterol. 

Although it accentuates RCT from plasma to liver and induces cholesterol 

degradation, the debate about LCAT’s role in RCT and protection against 

atherosclerosis is ongoing (Brown et al., 2010). In the absence of LCAT, RCT can 

still continue. The main factors that maintain the cholesterol homeostasis within 

macrophages are preβ HDL and ABCA1 transporter. Free cholesterol can also be 

taken up via SR-BI in the liver (Rader, 2009). Although patients with LCAT 

deficiency do not show progressive atherosclerosis, a decrease in LCAT activity is 

associated with an increase in carotid artery intima media thickness (Hovingh et al., 

2005). Increased LCAT activity is thought to be atheroprotective, but there are a 

limited number of studies, and the measurement of LCAT activity is still not 

 

 

 

 



  35 

standardized. Additional data on LCAT’s genetic and enzymatic properties should 

help to understand the role of LCAT in normal HDL-C function.  

 

Mutations in the LCAT gene can cause complete LCAT deficiency, also known as 

familial LCAT deficiency or a strong decrease in LCAT activity known as Fish-eye 

disease (Jukema et al., 2004). Both conditions are rare, and characterised by extensive 

corneal opacity and very low HDL-C. Although HDL-C is low in these patients, 

premature atherosclerosis is not a prominent characteristic in these conditions. Animal 

studies show that the expression rate of LCAT affects sensitivity to atherosclerosis. 

As the LCAT gene is a relatively small gene, gene therapy might be possible in 

future, but clinical applications still have to be developed (Seguret-Mace et al., 1996). 

 

1.7.1.5    Scavenger receptor class B type I 

SR-B1 is a cell surface glycoprotein that plays an integral part in cholesterol 

homeostasis (Connelly et al., 2004). Identified at first as a HDL receptor, SR-B1 is 

primarily expressed in organs that require free cholesterol, such as the liver and 

steroidogenic tissues. The receptor binds with the highest affinity to HDL; however, it 

also binds less efficiently with apoB-containing lipoproteins (Calvo et al., 1997). 

Upon binding to the lipoprotein particles, SR-B1 delivers cholesterol into the cells via 

a selective uptake process. Thereafter, the cholesterol-depleted lipoproteins are 

recycled back into the circulation. Additionally, SR-B1 stimulates cholesterol efflux 

out of the cell thereby promoting the clearance of cholesterol from the periphery as 

well as the secretion of biliary cholesterol (Connelly et al., 2004). By regulating the 

bidirectional flux of cholesterol between lipoproteins and cells, SR-B1 is a key 

regulator in reverse cholesterol transport.  
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The influence of SR-B1 on plasma HDL concentrations has been demonstrated in 

mouse models where hepatic overexpression of the receptor resulted in lower HDL-

cholesterol, lower apoA-I, and increased biliary cholesterol (Ji et al., 1999). These 

changes are a manifestation of the hindered hepatic uptake of cholesterol ester from 

HDL. Overexpression of SR-BI in mice causes increased HDL-C excretion in bile, 

resulting in a decrease in HDL-C and atherosclerosis (Silver et al., 2001). SR-BI 

knockout mice are characterised by raised plasma HDL levels and an increased 

progression of atherosclerosis (Rigotti et al., 1997). This observation suggests that 

uninhibited reverse transport of cholesterol might be of greater importance than 

elevating HDL-C per se! In addition to selective cholesterol uptake, there is evidence 

of SR-B1 involvement in metabolism of apoB-containing lipoproteins. Through the 

regulation of plasma cholesterol, SR-B1 appears to be protective against the 

development of atherosclerotic lesions in animal models (Kozarsky et al., 1997).  

 

In humans, investigations of sequence variants or polymorphisms in the SR-B1 gene 

have shed light on the influence of this receptor on plasma lipid concentrations. The 

SR-B1 gene has been mapped to human 12q24.31 and encodes a 509 amino acid 

protein (Van Eck et al., 2005). Three common single nucleotide polymorphisms 

(SNP) in exon 1 (p.Gly2Ser), exon 8 (c.1119C>T), and intron 5 (c.795+54C>T) have 

been associated with lipid parameters in epidemiological studies (Morabia et al., 

2003). The c.1119C>T polymorphism also known as A350A was also identified in 

this study and has been associated with higher HDL-C and lower LDL-C 

concentrations, particularly in men (Morabia et al., 2003). In light of prior reports of 

the effect of c.1119C>T on fasted lipid concentration, it was hypothesized that this 
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polymorphism would be associated with an anti-atherogenic profile. This study 

investigated the association between c.1119C>T and niacin drug therapy response.  

 

Currently, human deficiencies of SR-BI have not been described. Epidemiological 

studies have shown that SR-BI variants are associated with HDL-C and LDL-C 

concentrations. There seems to be a connection to triglycerides and obesity as well 

(Osgood et al., 2003).  

 

1.7.1.6    Cholesterol 7-alpha-hydroxylase  

CYP7A1 catalyzes the first reaction in the cholesterol catabolic pathway in the liver 

(Nakamoto et al., 2006). This pathway converts cholesterol to bile acids, which is the 

primary mechanism for the removal of cholesterol from the body. The CYP7A1 

catalytic reaction is the rate-limiting step and the major site for regulating homeostasis 

of cholesterol and bile acids. The gene encoding CYP7A1 was mapped to 

chromosome 8q11 (Cohen et al., 1992). The CYP7A1 gene spans about 10 kb and 

contains 6 exons, 5 introns, one 5'-UTR, and one 3'-UTR (Nakamoto et al., 2006).  

 

In mice and rats the synthesis of bile acids through this pathway is under feed-forward 

regulation by cholesterol via a transcriptional mechanism involving the nuclear 

receptor known as the liver x receptor a (LXRa; NR1H3) (Agellon, et al., 2002). 

LXRa normally binds to a direct repeat of the hexameric hormone response element 

separated by four nucleotides as a heterodimer with retinoid x receptor (RXR; 

NR2B1) and is activated by oxysterols (Gbaguidi et al., 2004). The human and 

nonhuman primate CYP7A1 gene, unlike the rat and murine Cyp7a1 genes, is not 
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stimulated by oxysterols because the CYP7A1 gene promoter does not interact with 

RXR:LXRa (Gbaguidi et al., 2004). 

 

Genetic variations in the CYP7A1 gene associated to disorders of cholesterol and bile 

acid metabolism have been studied extensively in different laboratories, and have 

been associated with metabolic disorders of cholesterol and bile acids, including 

hypercholesterolemia, hypertriglyceridemia, arteriosclerosis, and gallstone disease 

(Nakamoto et al., 2006). The information has indicated that genetic variations in the 

CYP7A1 gene have high impact on human cholesterol metabolic regulation and 

human health. 

 

1.7.1.7    Apolipoprotein C-II  

ApoC-II is a 79-amino acid residue protein that has a crucial role in lipoprotein 

metabolism as a cofactor for lipoprotein lipase (LPL), which catalyzes the lipolysis of 

triglycerides in plasma chylomicrons and VLDL (Chen et al., 2007). ApoC-II is 

synthesized primarily by the liver. The apoC-II gene has been mapped on 

chromosome 19 in a gene cluster containing the apoE/C-I/C-I’/C-IV/C-II gene and 

spans 45 kb of chromosomal region (Chen et al., 2007). The 0.55-kb intergenic region 

between apoC-II and apoC-IV genes is a strong cell type-specific promoter (Vorgia et 

al., 1998). The exact function of apoC-IV is unknown, although it appears to play a 

role in lipid metabolism. Overall, the association of lipid related traits with variants in 

the apoE/C1/C4/C2 gene cluster has been fairly inconsistent, with the exception of the 

apoE gene variants. Such inconsistency is possibly related to the close linkage of 

these genes on chromosome 19q (Chen et al., 2007).  
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In this study, two single nucleotide polymorphisms were identified and investigated to 

determine if they have any influence in the regulation and function of the reverse 

cholesterol transport pathway in the presence of niacin therapy. The distribution of 

apoC-II on plasma lipoprotein is known to continually change between high density 

lipoproteins and triglyceride-rich lipoproteins as a result of the secretion, metabolic 

conversion, and catabolism of plasma lipoprotein (Fojo et al., 1984). 

 

1.7.1.8    Apolipoprotein C-I  

ApoC-I is a constituent of triglyceride-rich lipoproteins and high density lipoproteins 

the importance of which in plasma lipoprotein metabolism is increasingly evident (Xu 

et al., 1999). The apoC-I gene lies in a gene cluster containing apoE and apoC-II on 

chromosome 19 (Gao et al., 2002). Its function is to displace apoE from triglycerides-

rich emulsions and lipoproteins (Xu et al., 1999). ApoC-I decreases binging of VLDL, 

a model of poor-lipolysis lipoprotein remnants, to a remnant receptor, the low density 

lipoprotein receptor-related protein (LRP) (Xu et al., 1999). The presence of the Hpa I 

in the ApoC-I promoter has a significant effect on apoC-I transcription. This 

polymorphism has been associated with lipoprotein metabolism disorder (Gao et al., 

2002).  Based on this information, this particular polymorphism was genotyped in the 

African Green monkey in this study to assess if it might have any involvement in 

niacin therapy response. 

 

1.7.1.9    Apolipoprotein B 

ApoB is an essential structural protein component of LDL and VLDL particles, which 

act as transporters for triglyceride and cholesterol between the liver and peripheral 

tissues and plays an important role in the maintenance of cholesterol homeostasis in 
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all mammals (Chan et al. 2000). Owing to the importance of lipoproteins in lipid 

metabolism, even small changes in the structure or function of the protein may have a 

large impact on plasma lipid levels, and thereby on the risk of CVD (Bentzen et al., 

2002). ApoB circulates in two distinct forms (apoB100 and apoB48), encoded by a 

single gene composed of 29 exons localized on chromosome 2 (Kane, 1983). 

 

Polymorphisms in apoB may associate with increased or decreased levels of 

apolipoprotein B and LDL-C (Humphries, 1988). Several polymorphisms in the apoB 

gene have been described (Humphries, 1988), some of which have an effect on the 

levels of cholesterol and triglyceride. The most frequently investigated are T2488T 

(XbaI), E4154K (EcoRI), R3611Q (MspI), N4311S and an insertion/deletion in the 

signal peptide (AA12ins/del) (Figure 1.6). Various studies have shown an association 

between some of these polymorphisms and lipid or lipoprotein levels (Hansen et al., 

1993; Moreel et al., 1992; Xu et al., 1990).  In this study, two apoB polymorphisms 

(T71I and N4311S) were investigated. T71I and N4311S are known to be associated
 

with lower plasma levels of LDL cholesterol. These sequence
 
variants most likely 

lower LDL cholesterol levels by either
 

interfering with lipidation of nascent 

apolipoprotein B by reducing the production of LDL from VLDL or accelerating LDL 

clearance by the
 
LDL receptor (Benn et al., 2008).  
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Figure 1.6: Location of the 10 SNPs relative to the amino acid sequence and the structural 

and functional domains of apolipoprotein B. T71I located in domains crucial for lipidation of 

the nascent apolipoprotein B; N4311S in domain known to or suspected of regulating binding 

to the LDL receptor (Benn et al., 2008). 

 

 

1.7.1.10     Apolipoprotein E 

ApoE is an exchangeable protein that plays an important role in lipid metabolism, 

especially in the removal of atherogenic remnants of triglyceride-rich lipoproteins 

(Hixson et al., 1990). The human apoE gene spans 3.7 kb including four exons and is 

located on chromosome 19 (Hixson et al., 1990).Three common alleles of apoE 

encoding isoforms e2, e3 and e4 have been identified (Hixson et al., 1990). The 

isoforms are characterized by the presence of amino acid Cys (apoe2 and apoe3) or 

Arg (apoe4) at position 112 of the mature apoE polypeptide chain and Cys (apoe2) or 

Arg (apoe3 and apoe4) at position 158 (Koch et al., 2002). Apoe3 is the most 

common of these isoforms, and is distinguished by cysteine at position 112 (112cys) 

and arginine at position 158 (158arg) in the receptor-binding region of apoE (Koch et 

al., 2002). The presence of apoE allele e4 is known to be associated with the 
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pathogenesis of peripheral and coronary artery disease and the e2 allele is known to 

be protective from atherosclerosis. 

 

The variability of amino acids 112 and 158 is based on SNPs present at nucleotide 

position 334 and 472, respectively, of the apoE gene (Koch et al., 2002).  The SNPs 

are known as 334T/C and 472C/T and both were investigated in this study.  

 

1.8 RESEARCH OBJECTIVES 

The broad focus of this study was to determine the effect of an HDL cholesterol-

raising agent, niacin, on the lipid metabolism or RCT pathway by genetic strategies in 

case-control studies in African green monkeys, since no data are available in this area 

for this species.   

 

The choice of this RCT system is also informed by the fact that currently, there is a 

focus on HDL-based therapies to further reduce atherothrombotic vascular diseases. 

Even though the African green monkey has already provided invaluable insight in 

cardiovascular disease studies, and has been pivotal in defining the cellular events in 

the initiation and development of lesions in atherosclerosis research, the underlying 

molecular dynamics have not been fully explored in this species. The main objective 

of this project was to make an original contribution to primatology by defining the 

molecular genetics of the African green monkey in relation to CHD. This is the first 

study of a controlled pharmacological intervention linked to genetic determinants of 

lipid metabolism in the African green monkey. 
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At present, there is very little data in GenBank for nonhuman primates, and almost 

none for the African green monkey. As discussed above, nonhuman primates 

including the African green monkey are closely related to humans both in 

evolutionary and genetic terms. Therefore, shared ancestral polymorphisms known as 

coincident SNPs (cSNPs) were prioritized for this study, since they are polymorphic 

sites that originated in the ancestral species and have survived genetic drift in both 

species. 

 

The specific objectives of the study included the following: 

 To use an integrated combination of clinical, molecular biological and 

bioinformatics strategies to identify orthologous human candidate genes for 

lipid metabolism in African green monkeys:   

1. To choose candidate genes which have been reported in literature to be 

linked to lipid metabolism in humans. 

2. To choose (cSNPs) within recognized candidate genes. 

 To assess the levels of HDL-C, LDL-C, TC, TG and lipoproteins after lipid-

modulating niacin administration. 

 To determine the effect of niacin on lipid metabolism at the genetic level by 

the expression profile of the selected candidate genes  

 To assess the possible involvement of these genes in cholesterol metabolism 

pathway or reverse cholesterol transport pathway in case:control studies in a 

colony of African green monkeys after administration of niacin. 
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1.8.1 Hypothesis 

The genetic mechanisms and dynamics that control reverse cholesterol transport in the 

African green monkeys (AGM) are similar to those found in other nonhuman primates 

and humans, and make the AGM therefore a useful model for human cardiovascular 

disease.   

 

1.9 OVERVIEW 

The layout of this dissertation contains an introduction, experimental procedures, 

results, discussion and conclusion in the next two chapters to follow. The final chapter 

consists of a general discussion and conclusion to sum-up the findings. Additional 

information on experimental design and data acquisition is included in the Appendix 

section. 
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Chapter 2 

 

EFFECTS OF SHORT-TERM TREATMENT WITH NIACIN AS 

MONOTHERAPY ON PLASMA LIPOPROTEIN IN A 

NONHUMAN PRIMATE MODEL OF ATHEROSCLEROSIS 
 

 

 
 

2.3 INTRODUCTION 

 

In this century many major medical advances have resulted in part from research on 

animals including nonhuman primates such as the African green monkey 

(Chlorocebus aethiops).  These, therefore, often serve as a critical link between basic 

research and human clinical application (Suckling et al., 1993). In this context, the 

establishment of suitable animal models has proven to be invaluable for the study of 

human cardiovascular disease.  

 

The African green monkey has been an excellent model for the study of cholesterol 

metabolism (Weight et al., 1988 and Suckling et al., 1993). Since elevated dietary 

cholesterol levels induce atherosclerosis in this primate (Bullock et al., 1975), and 

many aspects of dietary cholesterol metabolism have been investigated. In spite of the 

comprehensive nature of these studies, much of the molecular basis remains to be 

understood and defined in this species. 

 

In this first study, the effects of niacin (Sigma) were investigated in the African green 

monkey to evaluate the effect of this compound on plasma lipids and reverse 

cholesterol transport pathway. This is in preparation for the second study which is 

investigating the genetic dynamics as a result of this intervention. Since the objective 

of this first part, was to increase HDL-C level through therapeutic intervention; niacin 
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was selected since it is known to be the most potent HDL cholesterol-raising agent 

currently used (Rader 2003; Muller et al., 2007; Kamanna et al., 2008).  

 

Slow-release niacin favourably affects all lipids and lipoproteins (Mckenney, 2004). 

Niacin also enhances the transcription of peroxisome proliferator-activated receptor γ 

(PPARγ) and ATP binding cassette transporter A1 (ABCA1), the latter is a key 

transporter for cellular cholesterol into apolipoprotein A-1 containing HDL particles 

(Rubic et al., 2004). These effects of niacin cause a decrease in LDL and TG, and an 

increase in HDL, which are changes that have demonstrated to reduce the 

complications of atherosclerotic disease.  High-density lipoprotein (HDL)-based 

therapies have recently become the focus of attention (Shah et al., 2005) which is 

shifting from just lowering of the lipid ‘concentrations’ to an emphasis on vascular 

biology, pharmacogenetics and a greater understanding of the importance of HDL 

cholesterol.  

 

A reduced level of HDL-C is an important cardiovascular risk factor (Gordon et al., 

1989). Moreover, HDLs exert various potentially antiatherogenic properties. As a 

consequence, therapeutic modifications of HDL-C levels have attracted considerable 

interest. Drugs increasing HDL-C are sought for antiatherogenic therapies, and drugs 

decreasing HDL-C are suspected to increase cardiovascular risk (von Eckardstein et 

al., 2001). 

 

HDL is involved in RCT and an important antiatherogenic function of HDL, namely, 

the HDL-mediated efflux of cholesterol from non-hepatic cells and its subsequent 

delivery to the liver and steroidogenic organs (von Eckardstein et al., 2001). 
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Enhancements of cholesterol efflux and of RCT are considered important targets for 

antiatherosclerotic drug therapy. Levels and composition of HDL subclasses in 

plasma are regulated by many factors, including apolipoproteins, lipolytic enzymes, 

lipid transfer proteins, receptors, and cellular transporters (von Eckardstein et al., 

2001). These factors have become important targets in the development of effective 

strategies to prevent vascular/atherosclerotic disease. 

 

Via its RCT mechanism, HDL holds the promise of not only halting progression of 

atherosclerosis but also including a true regression of atherosclerotic lesions. A 

number of agents are available that increase HDL cholesterol levels. Statins are the 

most potent LDL cholesterol-lowering agents and produce modest increases in HDL 

cholesterol, although their effects vary. Niacin is the most potent HDL cholesterol-

raising agent currently used and slow-release niacins have reduced the side effects and 

have made this class of drugs more tolerable (Rader, 2003). Other agents that modify 

HDL cholesterol include fibrates, glitazones, omega-3 fatty acids and estrogen. The 

precise mechanisms through which these classes of agents increase HDL cholesterol 

levels generally are not well defined.  

 

2.4 MATERIALS AND METHODS 

The study was approved by the Ethics Committee of the MRC (REF 11/07). The 

project was carried out in the Primate Unit of the Technology and Innovation 

Directorate, MRC, Parow Valley. Selected subjects were healthy adult female 

monkeys with normal plasma HDL.  All individuals were housed singly during the 

study but had regular access to exercise cages and environmental enrichment. All 

individuals were identified with numbers in ink tattoo. 
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2.2.1 Management of animals and environment 

The African green monkeys used in this study were bred and maintained in the 

Primate Unit of the MRC under identical housing conditions according to the South 

African National Standard for the Care and Use of Animals for Scientific Purposes 

(The SANS 10386:2008).  The closed indoor environment was maintained at a 

temperature of 24 – 26ºC, 45% humidity, 15 – 20 air changes/hour and a photoperiod 

of 12h. 

 

The monkeys received a diet of pre-cooked maize meal mixed with a vitamin and 

mineral concentrate, egg powder, bean flour and sunflower oil in the morning. The 

diet was further supplemented with vitamin C and vitamin D3 and each monkey 

received 66g (dry weight) of the diet per day. The diet was mixed with water to make 

a very stiff porridge that can be formed into balls which the monkeys can grasp and 

handle. At lunch the monkeys received fruit (apples, oranges, mandarins) and in the 

evening maize meal without the vitamins but containing milled seeds. The diet 

supplies 2412 kJ/day (range of recommendations for primates is 1380 - 2510), 12% 

energy from protein, 20% energy from fat and 75% energy from carbohydrates. Water 

was available ad lib via an automatic watering device. 

 

2.2.2 Formulations and administration of compounds 

Niacin was supplied in a powder form. An exact amount of niacin based on each 

animal’s body weight was weighed and mixed in a 30g portion of maintenance diet.   
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2.2.3 Selection criteria and treatment 

Selection of animals included in this study was based on genotyping of selected 

cSNPs. Genotypes were obtained from 25 monkeys using polymerase
 
chain reaction 

amplification of genomic DNA and sequencing. However, due to the small gene pool 

of the MRC Primate colony genotype variations were not obtained. Eight healthy 

adult females were therefore selected for this study. The subjects were divided into 2 

groups as indicated in Table 2.1. Four females were assigned to a treatment and the 

other four to a control (placebo) group. The control group received maintenance diet 

throughout the study. The treatment group received an exact amount of niacin based 

on each animal’s body weight which was mixed into a 30 g portion of food (Table 

2.2). The compound was administered once per day at escalating doses for three 

consecutive periods of two weeks, starting at 35 mg/kg. Based upon the effects on 

total cholesterol, HDL-cholesterol and triglycerides as well as clinical examination, 

the dose could be increased to 75 then to 100 mg/kg for the next two-week periods of 

treatment, or maintained at 35 or 75 mg/kg (Table 2.2). Each treated animal received 

niacin daily throughout the treatment period of four months, which was followed by 

two weeks of washout. 

 

 

Table 2.1: Group selection and treatment allocation 
 

Group Treatment Doses mg/kg n Treatment time 

1 Control - 4                     7:00 am 

2 Niacin 

35mg/kg.d 

75mg/kg.d 

100mg/kg.d 

4                     7:00 am 
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Table 2.2:  Treatments to determine efficacy 

Treatment 
Identification 

no. of monkey 

Bodyweight (kg) 

at first baseline 
Total dose (mg) 

Frequency of 

treatment 

 

Group 1 

Control 

 

 

108 

243 

215 

97 

3.55 

3.84 

3.68 

3.50 

N/A 
once/day at  

7H00 am  

 

Group 2 

Niacin 

35mg/kg, 70mg/kg, 

100mg/kg 

 

795 

322 

339 

77 

 

 

3.56 

3.02 

3.29 

3.30 

 

124.6, 249.2, 356 

105.7, 211.4, 302 

115.2, 230.3, 329 

115.5, 231, 330 

once/day at  

7H00 am  

 

 

2.5.4 Duration of treatment 

The study started on 21/01/08 and was completed on 23/06/08.  The duration of the 

treatment was four months with a 4-week washout period (Table 2.3).   

 

 

Table 2.3:  Treatment periods     

Period Weeks Dates 

Baseline -1 and -2 21.01.08 – 04.02.08 

Treatment 1-16 04.02.08– 26.05.08 

Washout 17-20 27.05.08 – 23.06.08 

 

 

2.2.5 Blood sampling 

All blood was obtained via femoral venipuncture after Ketamine anaesthesia at 

5mg/kg bodyweight four hours after compound administration.  Blood was collected 

in EDTA-containing tubes after overnight fasting according to the schedule provided 

in Table 2.4. On each day of sampling, overnight-fasted monkeys received the total 

dose of the compound in small food balls and blood was taken 4 hours after 

compound administration. The rest of the food was given after the blood collection. 
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For plasma isolation, blood was collected in EDTA-containing tubes. Plasma was 

isolated at 4°C (1400 x g, 10 minutes) and maintained at -80°C for biochemical 

analysis. Additionally, for gene expression analysis in chapter 3, more blood was 

collected in PAXgene Blood RNA Tubes (BRT) and stored at room temperature for 2 

hours before being stored at -80°C.  

 

Table 2.4:  Blood sampling schedule and analyses  

Sampling  Day Time of treatment Volume Analysis 
Baseline 1 -14 4h post-dose 2ml TC, HDL, LDL, 

Trigs, Apo A 

Week 2 

(treatment)  

Day 14 4h post-dose 2ml TC, HDL, LDL, 

Trigs, Apo A 

Week 4 

(treatment) 

Day 28 4h post-dose 2ml TC, HDL, LDL, 

Trigs, Apo A 

Week 6 

(treatment) 

Day 42 4h post-dose 2ml TC, HDL, LDL, 

Trigs, Apo A 

Week 8 

(treatment) 

Day 54 4h post-dose 2ml TC, HDL, LDL, 

Trigs, Apo A 

Week 10 

(treatment) 

Day 68 4h post-dose 4ml TC, HDL, LDL, 

Trigs, Apo A 

Week 12 

(treatment) 

Day 82 4h post-dose 2ml TC, HDL, LDL, 

Trigs, Apo A 

Week 14 

(treatment) 

Day 96 4h post-dose 2ml TC, HDL, LDL, 

Trigs, Apo A 

Week 16 

(treatment) 

Day 110 4h post-dose 2ml TC, HDL, LDL, 

Trigs, Apo A 

Week 18 Day 124 Washout 2ml TC, HDL, LDL, 

Trigs, Apo A 

 

 

2.2.6 Observations 

 

2.2.6.1  Clinical examination 
 

Each animal was observed once a day, at approximately the same time twice/week for 

the recording of clinical signs . Niacin is known to cause severe side effects, therefore 

special monitoring was considered for this study. Food intake was measured daily. 
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2.2.6.2  Body weights 

The body weight of each animal was recorded at each blood sampling. 

 

2.2.6.3  Clinical observations   

Clinical observations were recorded twice/week according to three categories 

(Appendix I): 

 Physical:  condition of coat, faeces and urine; discharge from eyes, ears, nose 

genitals or rectum; any other symptoms or lesions. 

 Behaviour:  alert, fearful, aggressive, confused, depressed, vocalization. 

 Motor function and activity:  posture, coordination, locomotion and activity 

level. 

 

2.2.7 Biochemical analysis 

Biochemical analysis of known risk factors of coronary artery disease such as HDL-C 

and LDL-C were conducted for each time point of the two weeks interval throughout 

the study. Levels of HDL-C, LDL-C, TC, TG and apoA-1 were measured at baseline 

and after every two weeks for four months up to the washout period.  Biochemical 

analysis was conducted by PathCare on SYNCHRON LX Systems Manual, 2000 

(Appendix I).  

 

2.2.8 Statistical Analysis 

The lipid profile data presented are the mean ± SEM. The primary end point of the 

study was a reduction in the LDL-Cholesterol concentration, and an increase in HDL-

Cholesterol between the baseline and the end of the treatment phase. Multiple 

comparison analysis was used to determine statistical significance at each time point. 

ANOVA was used to compare baseline levels and changes from baseline between the 
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niacin and control groups. Statistical significance was calculated by using the Student 

t test, and a value of P < 0.05 was considered significant. Under the assumption of an 

α of 5%, 8 African green monkeys were required to show a 39% reduction in LDL-

Cholesterol  and 30% increase in HDL-Cholesterol with a power of 80%. 

 

2.6  RESULTS  

Baseline characteristics of the eight African green monkeys enrolled in this study 

are listed in Table 2.2. All four treated monkeys received a maximum dose of 100 

mg/kg.  

 

2.3.2 Efficacy 

2.3.2.1 Total Cholesterol 

Total plasma cholesterol increased by 31% from week 4 when the dosage was 

increased from 70 mg/kg to 100 mg/kg and decreased by 18% from week 10 to week 

16, while the control decreased by 9% from week 4 to week 16. Differences between 

the two groups were statistically significant at week 8 (p = 0.01) and week 10 (p = 

0.02) (Figure 2.1). The level of total cholesterol in the control group remained 

relatively constant throughout the study as compared to the experimental group, 

which increased during treatment, declined from week 10 and returned back to 

baseline after washout period (Figure 2.1). 

 

2.3.1.2 HDL-Cholesterol 

HDL increased in Group 1 (niacin) from baseline to week 6 by 122% and declined 

thereafter by 28% to the cessation of treatment with the greatest decrease of 37% from 

week 16 to the end of washout period in week 20. The HDL remained higher than that 
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of the control Group 2 which only increased by 30% from baseline to the end of the 

study. Differences between the two groups were statistically significant at week 6 (p = 

0.02) and week 8 (p = 0.01) (Figure 2.2).  The level of HDL-C in the control group 

remained relatively constant throughout the study as compared to the experimental 

group, which increased during treatment and returned back to baseline after the 

washout period at week 16 (Figure 2.2). The strongest increase in HDL-C occurred 

early during treatment from baseline (2.18 ± 0.92 mmol/L) to week 6 (4.85 ± 0.82 

mmol/L). Niacin appeared to have increased HDL-C, but did not sustain the same 

effect after week 6 when the dose was maintained at 100 mg/kg and this lead to a 

decline in HDL-C synthesis (Figure 2.2).  
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Figure 2.1: Total plasma cholesterol. Treatment schedule was as follows: The treatment group received niacin at 35 mg/kg/d (week 2 to week 

3), 70 mg/kg/d (week 4 to week 5), 100 mg/kg/d (week 6 to end of week 16). The control group received the vehicle during the entire study 

period. Differences between the two groups were statistically significant at week 8 (p = 0.01) and week 10 (p = 0.02).
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Figure 2.2: HDL-Cholesterol. The treatment schedule was as follows: Treatment group received niacin at 35 mg/kg/d (week 2 to week 3), 70 

mg/kg/d (week 4 to week 5), 100 mg/kg/d (week 6 to end of week 16). The control group received the vehicle during the entire study period.  

Differences between the two groups were statistically significant at week 6 (p = 0.02) and week 8 (p = 0.01).

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Baseline Week 2 Week 4 Week 6 Week 8 Week 10 Week 12 Week 14 Week 16 Week 18 Week 20

niacin control

35 mg/kg 70 mg/kg 100 mg/kg up to  
week 16 

p = 0.02 p = 0.01 Washout 

m
m

o
l/

L 

 

 

 

 



  57 

 

2.3.1.3 LDL-Cholesterol 

LDL decreased in Group 1 (niacin) from baseline to the end of the treatment in week 

16 by 39% and in the control Group 2, by 17%. It remained higher than in Group 1 

throughout (Figure 2.3). Differences between the two groups were statistically 

significant at week 6 (p = 0.04) (Figure 2.3). The strongest decline in LDL-C occurred  

early during treatment from baseline (2.55 ± 0.55 mmol/L) to week 4 (1.28 ± 0.46 

mmol/L) by 53%. The level of LDL-C, increased thereafter to 2.35 ± 0.52 at week 10 

and to 1.58 ± 0.33 at the end of treatment (Figure 2.3).  

 

2.3.1.4 Triglycerides 

In Group 1, Triglycerides decreased by 32% from baseline to week 6, increased by 

298% to week 10, and then decreased again by 56% to the end of treatment in week 

16. Overall, Triglycerides increased by 20% from baseline to the cessation of 

treatment in Group 1 (niacin). The control displayed a similar pattern with 

Triglycerides decreasing by 30% from baseline to week 6, increased by 120% to week 

8, then declined by 54% to week 16 towards the end of treatment. Triglycerides 

decreased by 26% in the control group overall (Figure 2.4). Statistically significant 

differences were not observed between the two groups.  
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Figure 2.3: LDL-Cholesterol. Treatment schedule was as follows: The treatment group received niacin at 35 mg/kg/d (week 2 to week 3), 70 

mg/kg/d (week 4 to week 5), 100 mg/kg/d (week 6 to end of week 16). The control group received the vehicle during the entire study period.  

Differences between the two groups were statistically significant at week 4 (p = 0.04).  
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Figure 2.4: Triglycerides. Treatment schedule was as follows: The treatment group received niacin at 35 mg/kg/d (week 2 to week 3), 70 

mg/kg/d (week 4 to week 5), 100 mg/kg/d (week 6 to end of week 16). The control group received the vehicle during the entire study period.    
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2.3.1.5 ApoA-I 

ApoA-I increased in groups, 1 and 2 from baseline to the end of treatment in week 16 

by 26% and 30% respectively. It remained higher in the treated than the control group 

throughout the treatment period (Figure 2.5). Differences between the two groups 

were statistically significant at week 4 (p = 0.01), week 8 (p = 0.00), week 10 (p = 

0.01), week 12 (p = 0.01) and week 14 (p = 0.00) (Figure 2.5). The level of apoA-1 in 

the control group remained relatively constant throughout the study as compared to 

the experimental group, which increased during treatment phase (Figure 2.5). The 

strongest increase in apoA-I occurred early during treatment from baseline (1.99 ± 

0.37 gl/L) to week 14 (3.10 ± 0.27 gl/L) by 50%, but declined from week 14, two 

weeks before the washout. Niacin appeared to have increased apoA-I, however the 

same effect was not sustained throughout the treatment period (Figure 2.5). 

 

2.3.1.6 Bodyweight  

There were no treatment related changes (Figure 2.6). 
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Figure 2.5: ApoA-1. Treatment schedule was as follows: The treatment group received niacin at 35 mg/kg/d (week 2 to week 3), 70 mg/kg/d 

(week 4 to week 5), 100 mg/kg/d (week 6 to end of week 16). The control group received the vehicle during the entire study period.  Differences 

between the two groups were statistically significant at week 4 (p = 0.01), week 8 (p < 0.001), week 10 (p = 0.01), week 12 (p = 0.01) and week 

14 (p < 0.001).
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Figure 2.6: Bodyweight. Treatment schedule was as follows: The treatment group received niacin at 35 mg/kg/d (week 2 to week 3), 70 mg/kg/d 

(week 4 to week 5), 100 mg/kg/d (week 6 to end of week 16). The control group received the vehicle during the entire study period. 
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2.3.1.7 Summary 

The level of total cholesterol, HDL-C, LDL-C and apoA-I in the control group (Figure 

2.7A) remained relatively constant throughout the study as compared to the 

experimental group (Figure 2.7B), which changed during niacin treatment. Before the 

washout period, HDL-C, LDL-C and apoA-I concentrations in the treated group were 

3.61 ± 0.20, 1.84 ± 0.22 mmol/L and 2.66. ± 0.21 gl/L, respectively (Table 2.5). 

HDL-C and apoA-I levels increased whereas LDL-C decreased during the treatment 

period (P < 0.05 for all) (Figure 2.8). Mean of all values were calculated and 

statistically significant differences between treated and control groups were obtained 

except for triglycerides (Table 2.5, Figure 2.8). 

 

Table 2.5: Total Cholesterol, HDL-C, LDL-C, apoA-I and triglyceride concentrations 

at the end of treatment 

 

  Control Niacin P-value 

T Chol (mmol/L; mean ± SEM) 5.24 ± 0.74 6.28 ± 0.26 0.001 

HDL-C(mmol/L; mean ± SEM) 2.36 ± 0.77 3.61 ± 0.20 0.001 

LDL-C(mmol/L; mean ± SEM) 2.39 ± 0.41 1.84 ± 0.22 0.003 

Trig(mmol/L; mean ± SEM) 0.92 ± 0.42  0.89 ± 0.27 0.850 

apoA-I(gl/L; mean ± SEM) 2.04 ± 0.41 2.66 ± 0.21 0.001 
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Figure 2.7: Levels of TC, HDL-C, LDL-C, TG and apoA-1 throughout the 4 months study period. A: Control group, B: Experimental group. 

The treatment schedule was as follows: The treatment group received niacin at 35 mg/kg/d (week 2 to week 3), 70 mg/kg/d (week 4 to week 5), 

100 mg/kg/d (week 6 to end of week 16). The control group received the vehicle during the entire study period.    
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Figure 2.8: Levels of TC, HDL-C, LDL-C, TG and apoA-1 between control and experimental groups during the treatment period. Niacin 

treatment was associated with reduction in LDL-C, up-regulation of HDL-C synthesis and increase of apoA-1 levels. Data were expressed as 

mean of all values. 
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2.3.1.8 Food intake 

2.3.1.8.1 Treated food bolus  

Group 1 consumed on average 1.5% less than the controls (Figure 2.9). Fluctuations 

in food consumption were of higher magnitudes in Group 1 when compared to the 

controls (Figure 2.10).  

 

2.3.1.8.2 Bulk food 

The total average consumption of the bulk food bolus was similar for the controls and 

the treated individuals (Figure 2.11), and fluctuations were minimal (Figure 2.12). 

 

2.3.1.9 Other clinical observations 

No sign indicative of unwell-being or distress could be observed throughout the study. 

No symptoms as defined in our observation logs (Appendix I) could be observed.  

Motor function and behaviour were normal. 
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          Figure 2.9: Total average treated food consumption. 

 

 

         

                Figure 2.10: Fluctuations in the consumption of treated food. 
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Figure 2.11: Total average consumption of bulk food.               Figure 2.12: Fluctuations in the consumption of bulk food. 
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2.4 DISCUSSION 

In this study, the efficacy of a low dose of niacin was evaluated in the African green 

monkey over a period of four months. High-density lipoprotein (HDL) cholesterol 

increased significantly from the beginning of treatment to week 6 and the LDL 

cholesterol ratio decreased significantly during the same period of treatment. The 

concentration of HDL-C peaked at week 6, and increased at this stage by about 122% 

from its own baseline and the control group, although this was not sustained at this 

level during the remainder of the treatment period.  However, differences of between 

42 and 55% from baselines and controls were maintained for 12 weeks (between 

weeks 4 and 16) of the treatment.  Considering that a HDL-C increase of 37% would 

be considered clinically significant in the treatment of dyslipidaemia, the niacin 

treatment was therefore effected satisfactory changes to further investigate the 

underlying genetic mechanisms.     

 

Niacin treatment was associated with a reduction in LDL-C, up-regulation of HDL-C 

synthesis and increase of apoA-I levels when compared to the control group, and 

statistically significant differences were observed between the two groups illustrated 

in Figure 2.8. Even though this high level of HDL-C was not sustained throughout the 

entire intervention period, it remained higher than in the control group until the end of 

the treatment period. Considerable changes in HDL-C, LDL-C and apoA-I 

concentrations were observed specifically in week 6 of treatment and this may suggest 

a change that may be taking place at a cellular level to modify or reduce the effect of 

niacin when administered at a dose higher than 70 mg/kg in the African green 

monkey. Further investigation is required at a molecular level to assess and identify 
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genetic determinants that may be involved in regulating this process, particularly at 

this point.  

 

Significant changes in triglycerides were not observed since similar patterns were 

obtained for both treated and control groups. 

 

CONCLUSION 

For the purpose of this study, niacin was validated for use as a tool to effect changes 

in lipid metabolism in preparation for investigating the genetic dynamics of the 

African green monkey during therapeutic intervention. Results obtained from this 

study showed that niacin treatment was associated with a reduction in LDL-

Cholesterol and a less significant decline in triglycerides. Niacin up-regulated HDL 

synthesis and also increase apoA-1 levels in the African green monkeys.  

 

Although niacin treatment has been associated with several side effects in humans, the 

treatment in this study was free of any observable side effects and no sign indicative 

of unwell-being or distress could be seen throughout Motor function and behaviour 

were also normal.  
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Chapter 3 

 

EFFECTS OF GENETIC VARIATIONS ON HDL METABOLISM 

AND REVERSE CHOLESTEROL TRANSPORT PATHWAY IN A 

NONHUMAN PRIMATE MODEL OF ATHEROSCLEROSIS 
 

 

 

3.1 INTRODUCTION 

 

Cardiac and vascular complications are complex multifactorial pathologies, in which 

both genetic and environmental factors are implicated, thus making them very 

difficult to prevent. The use of animal models of cardiovascular disease has 

contributed to increase our knowledge and provided an important insight into the 

genetic basis of human cardiovascular diseases. This has led to new approaches 

focused to improve the diagnosis and the treatment of these pathologies.  

 

The availability of genetically modified mouse strains has enabled the elucidation of 

new pathways involved in the development of cardiovascular disease (Vilahur et al., 

2011). However, although their usefulness in uncovering specific gene functions is 

overwhelming, their utility to extrapolate the findings to human disease or as 

preclinical models to prove validity pharmacologic agents is less appealing. 

Furthermore, it has been questioned whether these models are reliable, since 

compensating mechanisms and redundancies may affect their atherothrombotic 

phenotype (Moghadasian et al., 2001). In contrast, the development and 

implementation of animal models of atherosclerosis and thrombosis, has provided 

valuable tools for the discovery of a number of compounds that, in fact, are now 

successfully being used for the treatment and prevention of the atherothrombotic 

diseases (Vilahur et al., 2011).  
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Rats, rabbits, dogs, pigs, and monkeys are well-established animal models of 

atherosclerosis. Because of similarities between human and nonhuman primates 

(Moghadasian et al., 2001), nonhuman primate animal models are believed to be 

better suited to investigate human cardiovascular pathology. In 1965 Malinov and 

Maruffo published studies performed using the monkey as animal model to evaluate 

aortic atherosclerosis (Vilahur et al., 2011) and familial LDL receptor deficiency with 

atherosclerosis has been reported in rhesus monkey (Kusum et al., 1993).  

 

In addition to shared physiological properties, nonhuman primates and humans 

possess similar genes of lipid metabolism with similar linkage relationships (Hixson 

et al.,1990). Nonhuman primate models with mutations affecting various aspects of 

lipid metabolism have been valuable in the study of the genetic and biochemical basis 

of similar disorders in human (Vilahur et al., 2011). However, the objective of most 

animal studies is not to duplicate precisely genetic variations that occur in humans, 

but rather to understand better the biochemical mechanisms and types of 

polymorphisms that underlie heritable variations of lipoproteins. Thus, animal models 

provide a means for defining in detail the molecular mechanisms involved in lipid 

transport (Reue et al., 1990).  

 

Most research in the field of lipid metabolism is motivated by a desire to understand 

normal lipid transport in the body and the consequences of abnormalities related to 

several human diseases, most commonly atherosclerosis (Reue et al., 1990). There are 

more than 54 genes that code for proteins that directly control lipid metabolism, 10 

apolipoproteins that control lipoprotein synthesis, four processing proteins (LPL, HL, 

LCAT and CETP) and there are at least three receptors (LDL, chylomicron and scavenger 
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receptors) (Klos et al., 2006). Since 1982, the genes for all of these proteins have been 

isolated, sequenced and mapped in the human genome (Reue et al., 1990). The exact role 

of those genes and their proteins in lipid metabolism and lipid transport can only be 

inferred by physiological studies that perturb the human or animal and affect the level or 

function of each. To determine their role more precisely, primary genetic alterations must 

exist that affect the amount or quality of these proteins (Klos et al., 2006). 

 

The application of molecular genetics to inherited cardiovascular disorders has been very 

successful, especially in the field of single gene disorders. Low levels of HDL-C are a 

major independent risk factor for atherosclerotic cardiovascular disease and events; and 

the high prevalence of heart disease is related primarily to CAD.  Genetics is known to 

account for more than 50% of the risk of CAD (Roberts et al., 2007). Genetic screening 

and early prevention in individuals identified as being at increased risk could 

dramatically reduce the prevalence of atherosclerotic cardiovascular disease and events, 

thus necessitating the identification of genes predisposing to these diseases.  

 

Although existing drugs have modest effects on HDL-C levels, this area remains a major 

unmet medical need in cardiovascular medicine (Duffy et al., 2006). HDL metabolism is 

exceedingly complex and the protective ability of HDL may relate to the flux of 

cholesterol through the RCT pathway and to other aspects of HDL functionality.  

 

As with most areas of human biology, studies of human cardiovascular diseases have 

been enriched and complemented by investigations of animal models. There are, of cause, 

differences between species that must be considered such as quantitative differences, 

different biochemical pathways, and different developmental pathways. However, certain 

 

 

 

 



74 

 

pathological processes, such as atherosclerosis, may occur at similar absolute rates in two 

species instead of being related to the life span (Reue et al., 1990). Among the nonhuman 

primates, the African green monkey has been validated to be an excellent animal model 

for the study of atherosclerosis; and it is pathophysiologically and genetically similar to 

humans (Moghadasian et al., 2001). This similarity makes the African green monkey 

particularly useful as an animal model for therapeutic intervention of cardiovascular 

diseases. 

 

In spite of the comprehensive nature of the studies on cholesterol metabolism in this 

species, few data are available on the African green monkey’s genetics. To date, there 

is little sequence information on the GenBank database for the African green monkey. 

Given the importance of this animal model in lipid metabolism research and the 

fundamental significance of sequence data, it is critical that this information gap be 

addressed. 

The recent focus on HDL-based therapies, presented an opportunity to study the 

protective action of HDL, its role in the reverse cholesterol transport (RCT) pathway 

and the expression profile of genes regulating HDL metabolism in the African green 

monkey. Results obtained from this study will be used as a reference for human 

studies. Cross-species amplification and genotyping were used to identify SNPs in 

closely related nonhuman primate species, the African green monkey and humans. 

Cross-species amplification uses known polymorphisms identified in one species to 

find potential polymorphic sites in closely related species known as coincident SNPs 

(cSNPs) (Hodgkinson et al., 2009; Laurent, 2009 and Malhi et al., 2011). A SNP is a 

polymorphism that occurs within a species and only needs to be present in 1% of a 

population (Houghton et al., 2006) while a cSNP is defined as a polymorphism that 
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occurs at the same locus in multiple species (Laurent, 2009). Coincident SNPs are 

either due to identity by descent (IBD) or identity by state (IBS) (Malhi et al., 2011). 

For cSNPs that result from IBD, balancing selection near genes may maintain 

polymorphism in different species. Likewise, cSNPs due to independent mutations 

would result in IBS and might be expected to occur near CpG dinucleotides and CpG 

islands at the 5’ end of genes (Lloyd et al., 2005 and Hodgkinson et al., 2009). 

 

In this study, SNP genotyping assays developed for humans were used to identify 

cSNPs in African green monkeys. First, a literature search was conducted to look for 

previously identified genes and polymorphisms involved in lipid metabolism. These 

genes were selected for further analyses based upon literature evidence. Those which 

have been previously implicated in lipid metabolism, and which are the key players in 

lipid metabolism were selected for further analysis, and were screened for cSNPs 

previously associated with lipid level changes according to the literature. After careful 

selection of the genes and prioritized cSNPs, 25 African green monkeys were 

genotyped and gene expression protocols were standardised. Genotyping protocols 

including PCR and sequencing were developed and mRNA expression profiles were 

determined using Real-time PCR in both case and control subjects.  

 

The possible involvement of these prioritized candidate genes and their 

polymorphisms in cardiovascular disease were assessed by relating them to 

biochemical factors such as HDL-C and LDL-C, determined in the first study (chapter 

2). Drug response (niacin) was correlated to gene expression or single-nucleotide 

polymorphisms, which is discussed in detail in chapter 4.  
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3.4    MATERIALS AND METHODS 

3.2.1 Identification of candidate genes, sequence variants/polymorphisms and 

genotyping 

Genes were located within the previously published CAD-linked loci by bioinformatic 

searches of public domain databases, containing annotated genes (NCBI GENBANK), 

as well as by applying gene prediction programs (ENSEMBL). Previously reported 

polymorphisms in the prioritized candidate genes were retrieved electronically 

(NCBI.NIH.NLM.GOV/LOCUSLINK). Potentially new sequence variants were 

sought by comparing multiple database sequence deposits, and/or by polymerase 

chain reaction (PCR) and sequencing of specific regions with particular functional 

significance (thereby increasing the chance of identifying functionally significant 

polymorphisms). Genotyping protocols were developed, thereafter, the possible 

involvement of the prioritized candidate susceptibility genes were assessed by 

analyzing the allelic and genotypic distribution of their polymorphisms in the treated 

and control groups. 

 

Selection of candidate genes was based on their role in the reverse cholesterol 

transport process. RCT involves numerous lipid transfer proteins, enzymes, 

apolipoproteins,
 
and membrane-bound receptors (Fielding et al., 1995). The genes 

encoding these proteins,
 
as well as genes encoding proteins that regulate their 

transcription,
 
are candidates for influencing variation in plasma levels of

 
apoA-I, 

apoB, HDL-C, LDL-C, TC, and TG. Based on a model RCT
 

pathway (von 

Eckardstein et al., 2001), 10 genes involved in RCT were selected for this study
 
for 

evaluating the impact of genetic variation on variation
 
in plasma lipid and lipoprotein 

levels after drug therapy response (Table 3.1). 

 

 

 

 



77 

 

 

Table 3.1: Selected candidate genes for RCT 

Gene Symbol Map position 
1. ATP-binding membrane cassette transport protein A ABCA1 9q31.1 

2. Apolipoprotein A-1 apoA-1 11q23.3 

3. Apolipoprotein B apoB 2p24 

4. Apolipoprotein C-I apoC-I 19q13.2 

5. Apolipoprotein C-II apoC-II 19q13.2 

6. Apolipoprotein E apoE 19q13.2 

7. Cholesteryl ester transfer protein CETP  16q13 

8. Cholesterol 7 alpha-hydroxylase CYP7A1 8q11-q12 

9. Lecithin-cholesterol acyltransferase LCAT 16q22.1 

10. Scavenger receptor class B  member 1 SR-B1 12q24.31 

 

 

Coincident SNPs were identified from the
 
NCBI dbSNP database in the 10 selected 

candidate genes (Table 3.1). Twenty two cSNPs
 
were selected for genotyping (Table 

3.2). Prioritisation of these cSNPs was based on their function and location within 

their respective candidate gene and their associated with vascular disease.  
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Table 3.2: Genotyping for cSNPS in the following genes: CETP. ABCA1, CYP7A1,                              

apoA-1, apoB, apoE, SR-B1, LCAT, apoC-I and apoC-II (Lloyd et al., 2005; 

Malhi et al., 2011) 

 

GENES cSNPs Position 
1. CETP 

 

1.     CETPu2/I405V (rs5882) 

2.     Ala373Pro/CETPu1(rs5880) 

Exon 14 (A/G) 

Exon 12 (C/G) 

 

2. ABCA1 

 

3.     A3044G, Ile883Met (rs4149313) 

4.     G3911C, E1172D (Glu/Asp) (rs33918808)  

5.     G2706A, V771M (rs2066718) 

6.     G2868A, V825I (rs4149312) 

7.     R219K (Lys) (rs2230806) 

Exon 18 (T/C) H7 

Exon 24 (C/G) R1 

Exon 16 (G/A) 5th trm 

Exon 17 (G/A) 6th trm 

Exon 7 (C/T) Ex N-term loop 

3. CYP7A1 

 

8.     A-278C (rs3808607) 

9.     Asn233Ser (rs8192874) 

Promoter (T/G) 

Exon 3 (C/T) 

4. apoE 

 

  

10.   Cys112Arg (rs429358) – E4 

        = (334T/C - 472C/T) 

 

11.   Arg158Cys (rs7412) – E2 

        = (334T/C - 472C/T) 

 

Exon 3 (T/C) 

 

 

Exon 3 (C/T) 

 

5. apoA-1 

 

12.   Msp1;C+83T (rs5069) 

13.   G-75A (rs670) 

5’UTR (G/A) 

Promoter (G/A) 

6. apoB 14.   T71I (rs1367117 or rs17246849) 

15. 4311S (rs1042034 or rs17240958) 

Exon 4 (C/T) 

Exon 29 (T/C) 

 

7. LCAT 16. Ser232Thr (rs4986970) 

17. LCATu3 (rs5923) 

Exon 5 (T/A) 

Exon 6 (C/T) 

8. apoC-I 18.   HpaI Promoter (T/A) 

9. apoC-II 19.   Leu96Arg (rs5167) 

20.   -62 A>C (rs2288911) 

Promoter (T/G) 

Promoter (A/C) 

10. SR-B1 21.   A350A (rs5888) 

22.   G2S (rs4238001) 

Exon 8 (C/T) 

Exon 1 (G/A) 

 

 

Genotypes were obtained from 25 monkeys (Table 3.3) and genotyping was 

performed using polymerase
 
chain reaction amplification of genomic DNA and 

sequencing. Due to the small gene pool of the MRC Primate colony, same inbreeding 

occurred resulting in genetic similarity. Genotype variations were therefore not 

expected, and results obtained for each cSNP were of the same genotype (Table 3.4).  

 

Since genotype variations between case and control subjects were not obtained, four 

wild caught monkeys from a different animal unit in Potchefstroom University were 

included in the study. However, similar results were obtained with no genotypic 

variations. Therefore, eight monkeys (4 controls/group 1 and 4 case subjects/group 2) 
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were selected out of the original 25 MRC genotyped monkeys for the intervention 

study discussed in chapter 2 (Table 2.2). 

 

 

Table 3.3: Selected individuals for genotyping  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4: Genotyping results obtained from 25 African green monkeys  

 

SNPs Genotypes Allele frequency 
1. CETP:I405V  G/G Minor 

2. CETP:Ala373Pro G/G Major 

3. ABCA1:Ile883Met G/G Minor 

4. ABCA1:E1172D  G/G Minor 

5. ABCA1:V771M  G/G Major 

6. ABCA1:V825I  T/T Minor 

7.ABCA1: R219K C/C Major 

8. CYP7A1:A-278C  T/T Major 

9. CYP7A1:Asn233Ser  G/G Minor 

10. apoE:Cys112Arg – E4 

 = (334T/C - 472C/T) 

C/C Minor 

11. apoE:Arg158Cys– E2 

 = (334T/C - 472C/T) 

T/T Minor 

12. apoA-1:Msp1;C+83T  T/T Minor 

13. apoA-1:G-75A A/A Minor 

14.apoB:T71I  T/T Minor 

15. apoB:4311S C/C Major 

16.LCAT:Ser232Thr  T/T Minor 

17.LCAT:LCATu3  C/C Minor 

18.apoC-I: HpaI T/T Minor 

19. apoC-II:Leu96Arg G/G Minor 

20. apoC-II:-62 A>C C/C Major 

21. SR-B1:A350A  T/T Minor 

22. SR-B1:G2S  A/A Minor 

 

 

 

 

 

Monkey ID Weight (Kg) Monkey ID Weight (Kg) 

77 3.92 243 4.04 

81 4.04 250 3.16 

97 4.59 283 3.09 

101 4.34 298 3.84 

108 3.78 310 3.80 

136 4.24 322 3.24 

140 4.04 339 4.02 

168 3.10 795 3.82 

181 3.96 1088 6.22 

186 4.12 1080 4.66 

215 3.61 1075 5.12 

234 3.92 1109 6.52 

240 3.52   
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3.4.1.1 Standard PCRs for genotyping 

In order to amplify target DNA, 0.2 ml thin walled tubes were used in a GeneAmp 

PCR system 2700 (Applied Biosystem) or Eppendorf Mastercycler gradient 

thermocycler equipped with a heated lid. Unless otherwise stated, the standard 25 μl-

PCR reaction contained the following reagents: 2x PCR Mater Mix (Promega), DNA 

template (50 ng), 0.5 μl of the upstream and downstream primers were made up to 25 

μl with Nuclease-Free water (Table 3.5). 

 

Thermocycling conditions: 95 ºC for 5 min followed by 30 cycles of  95 ºC for 30 sec, 

X ºC for 30 sec and 72 ºC for 1 min; then an extension period of 5 min at 72 ºC (Table 

3.6). X denotes the relevant annealing temperature which was chosen 5 ºC below the 

assumed primer melting temperatures calculated using the following formula (Tm= 

[no. of GC] x 4 + [no. of AT] x 2 ºC. The oligonucleotides used in this study are listed 

in Appendix II, Table A9(1). References with regard to which experiments the 

primers were implemented is included in the text. A DNA Sequencer (Applied 

Biosystems ABI3730xl DNA analyser) was used to obtained genotyping results.  

 

Table 3.5: PCR reaction used for genotyping 

Reagent (Promega) Volume (μl) Final Concentration 

PCR Master Mix, 2X 12.5 1X 

Forward primer, 10μM 1.25 0.5 μM 

Reverse primer, 10μM 1.25 0.5 μM 

DNA template 1 50 ng 

Nuclease-Free Water to 25 N.A 
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Table 3.6: PCR program used for genotyping 

Step Temp (ºC) Time Cycles 

Denaturation 95 5 min 1 

Denaturation 

Annealing 

Extension 

95 

Primer dependent 

72 

30 sec 

30 sec 

1 min 

 

30 

Extension 72 5 min  

 

 

3.4.2 Gene Expression analysis 

Quantitative real-time PCR (qRT-PCR) is one of the most sensitive and commonly 

used techniques to study gene expression. In this study SYBR
® 

Green gene expression 

assays from Applied Biosystems were used. SYBR Green bonded to double-stranded 

DNA, and upon excitation emitted light. Thus, as a PCR product accumulated, 

fluorescence increased.  

 

SYBR Green is the most economical choice for real-time PCR product detection. 

Since the dye bonded to double-stranded DNA, there was no need to design a probe 

for any particular target to be analyzed. However, detection by SYBR Green required 

extensive optimization. Since the dye could not distinguish between specific and non-

specific product accumulated during PCR, follow up assays were needed to validate 

results. 

 

3.4.2.1 Isolation and quantification of mRNA cDNA synthesis 

The PAXgene Blood RNA Kit (PreAnalytiX, Qiagen) was used to isolate and purify 

intracellular RNA from whole blood collected in the PAXgene Blood Tube (BRT) 

from eight monkey subjects (4 cases and 4 controls) during the 10 intervention study 
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time points (Chapter 2). BRT contained a reagent that protected RNA molecules from 

degradation by RNases and minimised ex vivo changes in gene expression. BRT were 

intended for the collection of whole blood and stabilisation of cellular RNA for up to 

5 days at 2-8 ºC or up to 24 months at -20 ºC or -70 ºC. The procedure was simple and 

purification began with a centrifugation step to pellet nucleic acids in the BRT. The 

pellet was washed and resuspended, followed by RNA purification as per manual 

instructions. 

 

The resuspended pellet was incubated in optimised buffer together with proteinase K 

to bring about protein digestion. An additional centrifugation through the PAXgene 

Shreder spin column was carried out to homogenise the cell lysate and remove 

residual cell debris, and the supernatant of the flow-through fraction was transferred 

to a fresh microcentrifuge tube. Ethanol was added to adjust binding conditions, and 

the lysate was applied to a PAXgene RNA spin column. During a brief centrifugation, 

RNA was selectively bonded to the PAXgene silica membrane as contaminants pass 

through. Remaining contaminants were removed in several efficient wash steps. 

Between the first and second wash steps, the membrane was treated with DNase I 

(TURBO DNA-free Kit, AEC Amersham)) to remove trace amounts of bound DNA. 

After the wash steps, RNA was eluted in elution buffer and heat-denatured. RNA 

yields from 2.5 ml whole blood were ≥ 3 μg for ≥95% of samples processed. Since 

yields were donor-dependent, individual yields varied. RNA purities were checked 

using OD260/OD280 ratio and by confirming integrity using Agilent 2100 bioanalyzer 

(Agilent technologies, Germany). 
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3.2.2.1.1 RNA quantification and purity 

Nucleic acids (RNA and DNA) absorb at 260 nm (A260), while proteins and other 

contaminants absorb at 280 nm (A280). Thus, the ratio of 260 nm to 280 nm is used to 

assess the purity of a sample. A ratio of two is generally accepted as pure for RNA. 

The ratio of A260 to A230 is used as a secondary measure of purity, and indicates 

contaminants that absorb at or near 230 nm.  

 

RNA concentration and purity was determined by measuring the absorbance at A260, 

A280 and A230 in a Nanodrop 1000 spectrophotometer. The spectrophotometer was 

initialised by pipetting 2 l distilled water onto the pedestal of the spectrophotometer, 

and blanked with 2 l RNase free water. Thereafter, 2 l sample was pipetted onto the 

pedestal and the absorbance determined. Each sample was read in triplicate. 

 

3.2.2.1.2 Analysis of RNA integrity  

In eukaryotes, total RNA is comprised of approximately 80% rRNA, whereas only 1 

to 3 % is comprised of mRNA. Traditionally, it is assumed that rRNA quality reflects 

mRNA quality. Thus, mRNA quality is assessed by visualising the 18S or 28S rRNA 

peaks; a 28S:18S rRNA ratio of 2 indicative of intact RNA.  

 

RNA integrity was determined with the Agilent 2100 bioanalyser (Agilent 

technologies, Germany) in conjunction with the RNA 6000 Nano-kit as recommended 

by the manufacturer. The Agilent 2100 bioanalyzer is an improved analytical tool for 

total RNA analysis, and offers a number of advantages over agarose gel 

electrophoresis, the traditional method of assessing RNA quality. The bioanalyser 

uses a combination of microfluidics, capillary electrophoresis, and fluorescence to 
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evaluate both RNA concentration and integrity. The software assigns an RNA 

integrity number (RIN) to the RNA sample. The RIN is a numerical assessment of the 

integrity of the RNA sample, taking into account the entire electrophoretic pattern of 

the RNA sample (28S:18S ratio) and the presence or absence of degradation products. 

The RIN ranges from one to 10, with 10 representing high quality RNA. An 

electrophoregram representative of an intact RNA sample is illustrated in Figure 3.1.  

 

 

  

 

 

 

 

 

 

 

 

To perform the assay, the RNA 6000 Nano-kit and filtered dye were removed from 

4°C
 
and allowed to equilibrate to room temperature for at least 30 minutes.  The gel-

dye mix was prepared by adding 1 µl of dye to 65 µl of filtered gel, mixed by  

RNA Nano 

marker 

 

Figure 3.1: An electrophoretogram of an intact RNA sample.  Distinct 18S and 28S rRNA bands are 

noted. The marker peak is a control included in the RNA 6000 Nano-kit to correctly align 

electrophoretograms. Smaller peaks present after the marker may represent 5S and 5.8D subunits, tRNAs 

and small RNA fragments about 100 bp. 
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vortexing for 10 seconds and then centrifuged at 12 000 g for ten minutes. A RNA 

600 Nano chip was placed in the priming station and the well marked dark G was 

filled with 9 µl of gel-dye mix and primed by depressing the syringe in the chip 

priming station for 30 seconds. Thereafter, the two wells marked light G were filled 

with 9 µl of gel-dye mix. Five microlitres of RNA 6000 Nano marker was added to 

the 12 sample and one ladder well. The RNA ladder and samples (50 to 500 ng/l) 

were denatured by placing them at 70°C for two minutes. After brief centrifugation, 1 

µl of RNA ladder or RNA sample was pipetted into their respective wells. The chip 

was vortexed at 2400 g for one minute and then placed in the chamber of the Agilent 

Bioanalyser which had been decontaminated with RNaseZap and RNase-free water. 

For decontamination, an electrode cleaner chip containing 350 µl of RNaseZap 

solution was placed in the bioanalyser for one minute. Thereafter, another electrode 

cleaner chip, containing 350 µl of RNase-free water was placed in the bioanalyser for 

10 seconds, removed and the electrodes allowed to air dry for a further 10 seconds. 

After selecting the (RNA Eukaryote total RNA Nano series II) programme on the 

2100 Agilent Expert software the assay was run. 

 

3.2.2.1.3 DNase treatment  

RNA samples were DNase treated to remove contaminating genomic DNA from RNA 

preparations. For this the TURBO DNase kit was utilized as recommended by the 

manufacturers. Briefly, 5 µl of 10x DNase buffer and 1.5 µl of DNase was added to 

20 µg of RNA and RNase-free water in a total reaction volume of 50 µl. Samples 

were mixed and incubated at 37°C for 30 minutes, after which another 1.5 µl of 

DNase was added and incubated at 37°C for a further 30 minutes. The reaction was 

stopped by adding 10 µl DNase inactivation reagent and mixed by placing tubes on an 
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orbital shaker for two minutes. Thereafter, the tubes were centrifuged at 10 000 g for 

1.5 minutes and the supernatant transferred to a new tube. RNA concentrations were 

determined using a Nanodrop 1000 spectrophotometer.  

 

3.4.2.2 Reverse Transcription: cDNA synthesis  

Total RNA was reverse transcribed into cDNA using the High-Capacity cDNA kit 

according to the manufacturer’s instructions. One microgram DNase treated RNA 

sample was added to 10 l RNase-free water and placed on ice. A reaction mix 

consisting of reaction buffer, dNTPs, random primers, RNase-inhibitor (5000 

units/ml), reverse transcriptase and nuclease-free water was prepared into two 

separate tubes labelled RT plus and RT minus. The RT minus reaction mix tube 

(negative control) contained the same reaction mix as the RT plus tube, but with the 

reverse transcription enzyme replaced by water (Table 3.7). After adding the RT plus 

and RT minus mix components, the prepared reaction mixes were mixed by pipettting 

and the tubes centrifuged briefly. 

 

Table 3.7: Reaction components for the reverse transcription reaction 

 

Component 

Volume (µl) 

Plus RT Minus RT 

1 g DNase-treated RNA in RNase-free water 10 10 

10 x RT buffer 2 2 

25 x dNTP mix 0.8 0.8 

10 x random primers 2 2 

RNase inhibitor 1 1 

Nuclease-free water 3.2 4.2 

Reverse Transcriptase 1 0 

Total volume 20 20 
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Ten microlitres of plus or minus RT reaction mixes were added to 0.2 ml tubes 

containing RNA samples. The tube contents were mixed, briefly centrifuged and 

placed in a 2720 thermal cycler. Reactions were incubated at 25°C for 10 minutes, 

37°C for 120 minutes, and 85°C for five seconds to inactivate the reverse transcriptase 

enzyme. Samples were stored at -20°C until gene expression analysis. The RT minus 

tube (negative control) was used to calculate the amount of genomic DNA 

contamination.  

 

3.2.2.1.3 Quantitative Real-time PCR to assess genomic DNA contamination 

To assess the extent of genomic DNA contamination in RNA samples, cDNA 

generated from plus and minus reverse transcription reactions were amplified with 

exon spanning primers that would amplify both mRNA and genomic DNA. A reaction 

mix consisting of 12.5 l SYBR Green mix, 1 l of 10 M ActB Forward Primer (400 

nM), 1 l of 10 M ActB Reverse Primer (400 nM) and H2O to a final volume of 24 

µl was prepared. The reaction mix was scaled up according to the number of test 

samples. The reaction mix is indicated in Table 3.8.  

 

Twenty four microlitres of reaction mix was aliquoted into the PCR plate, followed by 

1 µl (50 ng) of undiluted cDNA (plus or minus RT reactions). The plate was sealed 

with adhesive film, mixed on a plate shaker for ten minutes and then briefly 

centrifuged at 3 000 g. The PCR reactions were conducted on the ABI 7500 Sequence 

Detection System Instrument (Applied Biosystems) using the Absolute Quantification 

(AQ) Software (SDS V1.4). Universal cycling conditions; 50ºC for two minutes and 

95ºC for ten minutes, followed by 40 cycles of 95ºC for 15 seconds and 60ºC for one 

minute were used. A dissociation curve was added for secondary product detection. 
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Data was acquired during the extension step (60°C for one minute). After the run, 

default settings for the threshold cycle (Ct) and baseline were used and Ct values were 

exported to Microsoft Excel for analysis.  

 

Table 3.8: Reaction mix for quantification of genomic DNA contamination 

 

Component Volume (l) Final Concentration 

2x master mix 
12.5 

 
1X 

ActB Forward primer (10 µM) 
1 

 
400 nM 

ActB Reverse Primer (10 µM) 1 400 nM 

Water 9.5 - 

cDNA 1 50 ng 

Final volume 25 - 

 

 

3.4.2.3 Primers design 

Twelve QuantiTect Primer Assays (Qiagen) (Table 3.9) were used instead of designed 

primers since they enable fast and affordable RNA analysis, and eliminate tedious 

primer design and assay optimization steps. These assays are derived from gene 

sequences contained in the NCBI Reference Sequence database 

(www.ncbi.nlm.nih.gov/RefSeq). They are bioinformatically validated, and they 

detect RNA only, provided that no pseudogenes with high cDNA similarity exist or 

that the transcript is not derived from a single-exon gene.  

 

Each 10 X QuantiTect Primer Assay contains a mix of forward and reverse primers 

for a specific target and supplied lyophilized. To reconstitute a tube of 10x QuantiTect 

Primer Assay a 1.1 ml TE, pH 8.0 was added and mixed by vortexing 4–6 times 

before being frozen at -20ºC. 
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Table 3.9: QuantiTech Primer Assay (Qiagen) used in the study 

 

QuantiTech Primer Assay Assay ID 
Cholesteryl ester transfer protein, plasma (CETP) QT00015344 

ATP-binding cassette, sub-family A (ABC1), member 1 (ABCA1 ) QT00064869 

Cytochrome P450, family 7, subfamily A, polypeptide 1 (CYP7A1)  QT00001085 

Apolipoprotein A-I (APOA-1) QT00015841 

Apolipoprotein B (APOB)  QT00020139 

Apolipoprotein C-II (APOC-II) QT00013020 

Apolipoprotein E (APOE) QT00087297 

Scavenger receptor class B, member 1 (SCARB1)  

other names: SR-BI QT00033488 

Lecithin-cholesterol acyltransferase (LCAT)  QT00049336 

Apolipoprotein C-I (APOC-1) QT00018501 

Phosphoglycerate kinase 2 (PGK2) QT00219023 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) QT01192646 

 

 

3.4.2.4 Generating a Standard Curve 

A standard curve was prepared from Total Rat Liver RNA (Ambion) to test the 

monkey gene expression assays. The reaction mix was scaled up according to the 

number of samples to be analysed. Nine microlitres of the reaction mix was aliquoted 

into a well of the PCR plate, followed by 1 µl of a 10-fold dilution series of the 

standard curve or test samples cDNA. A no-template control (NTC) using water 

instead of cDNA was used as a negative control in all PCR reactions. All samples 

were analysed in duplicate. PCR plates were covered with adhesive film and briefly 

centrifuged. Thereafter, plates were placed in a shaker for 10 minutes and briefly 

centrifuged at 3 000 g. The PCR reactions were conducted on the ABI 7500 Sequence 

Detection System Instrument (Applied Biosystems) using universal cycling conditions 

as described before. Data generated on the ABI 7500 Instrument was analysed with 

the ABI Standard Quantification (AQ) software (SDS V1.4) using a Ct of 0.1 and a 

baseline of between 3 and 15 cycles. SYBR
®
 Green

 
gene expression assays, 

QuantiTech Primer Assay (Qiagen) of Phosphoglycerate kinase 2 (PGK2) and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Table 3.9) were used as 
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endogenous controls to normalize mRNA levels in test samples. Data was normalised 

to the average of the two endogenous controls.  

 

To generate the standard (or calibration) curve, the threshold cycle for the standard 

curve reactions was plotted against the fold dilution of the template cDNA on a semi-

logarithmic (base 10) plot. The fit to a straight line including the slope and the 

correlation factor (R
2

) was determined. The efficiency and slope obtained for each 

standard curve was between -3.3 and -3.8. 

 

 

3.4.2.5 Real-time Quantitative RT-PCR 

To determine the yield of the cDNA from the reverse transcription of mRNA, 

quantitative PCR was used to test various input amounts of RNA for the cDNA yield 

of different gene targets.  

 

PCR was performed using Power SYBR Green PCR Master Mix kit (Applied 

Biosystems), 7500 Real-Time PCR System SDS software (Applied Biosystems), 

optical 96-well plates and optical adhesive covers (Applied Biosystems). The cycling 

parameters for all genes were the following: hot-start 95 ºC, 15 minutes, 45 cycles of 

(denaturation 94 ºC, 15 seconds; annealing 56 ºC, 30 seconds; elongation 72 ºC, 30 

seconds);final elongation 72 ºC, 5 minutes; melting curve 65-95 ºC.  

 

A 10 μl reaction mixture was prepared in 96-well reaction plates according to Table 

3.10. cDNA template(≤5 ng/reaction) was added to the wells containing the reaction 

mixture. The real-time cycler was then programmed as described above and results 
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were analysed with the 7500 Real-Time PCR System SDS software (Applied 

Biosystems). 

 

Table 3.10: Reaction setup for RT-PCR 

 

 

 

 

 

3.4.3 Statistical analysis 

 

Results are presented as means ± SD or as means ± SEM. The association of HDL-C 

with gene expression was assessed with the use of Pearson’s correlation coefficients.  

Student t-tests (unpaired) were used to assess the effect of pharmacologic intervention 

(niacin therapy) on gene expression. These changes were compared between the 

experimental and the control group. All reported p-values are two-tailed, with a p-

value < 0.05 indicating statistical significance. Analyses were performed with the use 

of Minitab software, version 16.2. 

 

 

3.3 RESULTS 

3.3.1 Sequence variants/polymorphisms identification and genotyping 

In this chapter an integrated combination of molecular biological and bioinformatic 

strategies was used to identify reciprocal candidate genes for lipid metabolism in 

African green monkeys. Literature search was conducted to look for previously 

reported genes and polymorphisms which are key players in lipid metabolism in 

humans. Ten genes (CETP. ABCA1, CYP7A1, apoA-1, apoB, apoE, SR-B1, LCAT, 

apoC-I and apoC-II) were chosen for this study based on their role in the reverse 

PCR reaction 1X (μL) 
2X SYBR Green Mix 5 

10X Primer assay 1 

cDNA 0.8 

Water 3.2 

Final volume 10 
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cholesterol transport process and twenty two cSNPs (reported to play a vital role in 

RCT) were selected from these genes and genotyped in African green monkeys (Table 

3.2). Selection of cSNPs was also prioritized based on their known associated with 

vascular disease and their function and location within the gene of interest. 

 

 

Since animal selection for this study was based on results obtained from genotyping, 

AxyPrep whole blood genomic DNA kit (Axygene Biosc.) was used to isolate DNA 

from twenty five monkeys. Oligonucleotide primer sets were synthesized and PCR 

conditions were optimized for all cSNPs (Table 3.6 and Appendix II, Table A9). DNA 

was amplified and PCR products were sequenced. Genotype variations were not 

observed due to small gene pool of the MRC Primate colony. Similar results were also 

obtained from four other wild-caught monkeys acquired from Potchefstroom 

University. Eight monkeys from the MRC colony were then selected and entered in 

this study for further analysis. Four monkeys were treated with niacin at an escalating 

dosage (35, 70 and 100 mg/kg) and the other four were chosen as controls. Their 

mean lipid-lowering response following drug therapy was analysed, compared to 

those with the same genotype in a placebo (control) group in chapter 2.  

 

Out of the twenty two cSNPs genotyped in Table 3.2, six cSNPs were identified 

(Table 3.11). All six cSNPs identified (I405V, I883M, Asn233Ser, cL96R, -62A>C 

and A350A) have a significant influential role to play in the regulation of reverse 

cholesterol transport and lipid-lowering drug therapy in both humans and nonhuman 

primates (Quinet et al., 1991; Lloyd et al., 2005; Isaacs et al., 2007; Nakamoto et al., 

2006 and Malhi et al., 2011). 
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Table 3.11: cSNPs identified in the African green monkeys 

 

Gene cSNP Accession 

number 

Chr Exon Nucleotide 

change 

Amino acid 

change 

Polarity 

CETP I405V rs5882 16 14 A/G I/V Nonpolar-nonpolar 

ABCA1 Ile883Met rs4149313 9 18 A/G I/M Nonpolar-nonpolar 

CYP7A1 Asn233Ser rs8192874 8 3 A/G N/S Polar-polar 

apoC-II Leu96Arg 

-62A>C 

rs5167  

rs2288911 

19 3 

Promoter 

T/G L/R Nonpolar-polar 

SR-B1 A350A rs5888 12 8 C/T A/A Nonpolar 

 
 

3.3.2 Gene expression analysis  

3.3.2.1 RNA concentrations and purity  

One of the main objectives of this study was to assess the influence of genetic 

variation on drug response (niacin) by correlating gene expression or single-

nucleotide polymorphisms with a drug’s efficacy and also to determine the possible 

involvement of these genes in cholesterol metabolism pathway or reverse cholesterol 

transport pathway, particularly those identified with cSNPs in our animal model, the 

African green monkeys.  

 

Gene expression protocols were standardised and mRNA expression profiles were 

determined using Real-time PCR in both case and control subjects. mRNA was 

extracted using PAXgene Blood RNA Kit (PreAnalytiX, Qiagen) for all the time 

points of intervention study described in chapter 2. To remove contaminating 

genomic DNA, 20 µg of RNA was DNase treated with the TurboDNase kit as 

described in section 3.2.2.1.3. To assess whether genomic DNA was efficiently 

removed by DNase treatment, reverse transcription reactions containing (plus RT) or 

without (minus RT) the reverse transcription enzyme were subjected to quantitative 

real-time PCR. Taq polymerase, the enzyme responsible for the polymerase chain 

reaction (PCR), will only amplify double stranded DNA, thus RNA must be reverse 
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transcribed before being used as a template in PCR. Amplification in minus RT 

reactions represents genomic DNA contamination. A Ct difference of more than 10 

cycles between the plus and minus RT reactions indicate negligible genomic DNA 

contamination. cDNA prepared from rat liver RNA (Ambion) was included as a 

positive control, while water was used as a negative control.  

 

RNA integrity was confirmed using Agilent 2100 bioanalyzer (Figure 3.2). Amount 

and purity of RNA (Table 3.12) were evaluated by Nanodrop 1000 spectrophotometer 

(Thermo Scientific). cDNA was synthesised with High-Capacity cDNA Reverse 

Trancsription Kit (Applied Biosystems) in accordance with the manufacturer’s 

recommendations. A standard curve was created and real-time PCR was performed in 

duplicate for all 10 prioritised genes. As illustrated in Table 3.13, DNase treatment 

significantly reduced genomic DNA contamination. 

 

 

Table 3.12: Yield of DNase I treated RNA samples (ng/ul) 
 

 

 

 

 

 

 

 

Monkey 
ID 04.02.08 18.02.08 03.03.08 17.03.08 31.03.08 14.04.08 29.04.08 12.05.08 26.05.08 09.06.08 

795 4584.8 2369.6 1092.8 3420.0 3084.0 2932.8 4080.0 2100.0 3076.0 5682.4 

322 3488.8 3488.8 4797.6 2684.8 3134.4 10871. 7004.0 9062.4 6411.2 14789 

339 2466.4 5070.4 4315.2 3580.8 3809.6 7660.8 5742.4 7264.8 4269.6 9602.4 

77 7472.8 100.00 5728.8 5701.6 5150.4 9766.4 5681.6 9198.4 6628.0 5392.8 

108 2959.2 5962.4 2753.6 4968.8 4800.8 4647.2 1756.0 1656.0 4786.4 884.80 

243 2880.0 3421.6 5064.0 8033.6 6002.4 1548.0 6260.8 5671.2 6308.0 4130.4 

215 13573 8520.0 8347.2 5515.2 8554.4 3676.0 5508.0 5206.4 2224.0 5919.2 

97 5144.8 3956.0 3629.6 5383.2 4352.8 3771.2 1906.4 6796.8 5907.2 2786.4 
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Table 3.13: Quantitative Real Time PCR analysis of DNase treated RNA 

 

Sample 

Ct
#
 Ct

$
 

Ct 
diff† 

Ct
#
 Ct

$
 

Ct diff† 
(minus 

RT) (plus RT) 
(minus 

RT) (plus RT) 

Time point: 1 (04.02.08) Time point: 6 (14.04.08) 

795 35.16 16.51 21.65 37.21 20.86 16.35 

322 35.46 16.82 18.64 37.21 16.35 20.86 

339 35.19 17.55 17.64 37.26 15.95 21.31 

77 34.53 17 17.53 36.44 16.12 20.31 

108 36.5 18.03 18.47 36.15 16.65 19.5 

243 35.78 16.51 19.27 36.96 16.18 20.78 

215 35.24 17.71 17.53 34.88 18.43 18.43 

97 35.7 18.14 17.56 36.06 16.78 19.28 

Time point: 2 (02.18.08) Time point: 7 (29.04.08) 

795 35.86 18.54 17.32 37.68 18.25 19.43 

322 36.63 18.59 18.03 37.68 18.25 19.42 

339 37.69 17.95 19.74 39.82 16.51 23.31 

77 36.88 19.35 17.52 38.42 17.16 21.26 

108 36.48 17.33 19.15 39.1 21.85 17.25 

243 36.4 18.58 17.81 34.83 18.17 16.65 

215 36.35 17.6 18.75 36.26 15.92 18.09 

97 37.7 17.92 1977 36.48 18.09 20.56 

Time point: 3 (03.03.08) Time point: 8 (12.05.08) 

795 35.18 16.45 18.73 39.06 18.42 20.63 

322 35.18 18.73 16.45 39.96 19.6 20.36 

339 37.39 16.93 20.46 36.15 17.25 18.89 

77 37.07 17.21 19.86 33.91 17.58 16.32 

108 36.02 19.08 16.94 36.25 18.95 17..29 

243 35.41 17.67 17.74 34.32 17.76 16.55 

215 35.78 19.26 19.26 33.99 17.53 16.46 

97 35.68 17.71 17.96 35.24 18.39 16.84 

Time point: 4 (17.03.08) Time point: 9 (26.05.08) 

795 35.01 17.99 17.02 35.51 17.05 18.45 

322 35.01 17.02 17.99 37.43 17.22 20.21 

339 36.15 16.65 19.5 37.12 17.47 19.64 

77 34.37 16.95 17.41 37.29 17.74 19.55 

108 36.18 19.59 16.59 36.88 19.35 17.52 

243 35.23 16.97 18.26 38.28 17.16 21.11 

215 34.2 16.35 16.35 37.71 17.9 19.81 

97 37.06 16.8 20.26 >40 17.24 >23 

Time point: 5 (31.03.08) Time point: 10 (09.06.08) 

795 35.9 16.99 18.91 39.96 19.6 20.36 

322 37.38 16.95 20.43 39 20.45 18.55 

339 34.17 16.41 17.76 >40 19.79 >23 

77 38.59 16.73 21.86 36.88 19.35 17.52 

108 35.57 17.04 18.53 36.25 18.95 17.29 

243 37.29 17.74 17.33 19.15 21.03 >23 

215 35.26 17.13 18.12 36.35 17.6 19.31 

97 35.3 17.51 17.78 35.17 18.19 16.98 
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Figure 3.2: mRNA agilent analysis. Results were the same for all 10 time points.
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3.5.2.2 PCR efficiency  

The slope of a standard curve is used to evaluate the performance of real time PCR 

reactions and to determine PCR efficiency. Optimal PCR efficiency is indicated by a 

slope of -3.3. Slopes between -3.1 and -3.6 are acceptable. The slope and R
2
 (correlation 

co-efficient) values obtained for the SYBR
®
 Green gene expression assays used in this 

study was calculated using a rat cDNA standard curve (Table 3.14). The slopes for all 

the genes investigated were within the acceptable range.  

 

Table 3.14: Slope and R
2 

values of the genes investigated in the study 

 

Gene Slope R
2
 

Cholesteryl ester transfer protein, plasma (CETP) -3.1 0.99 

ATP-binding cassette, sub-family A (ABC1), member 1 (ABCA1 ) -3.2 0.99 

Cytochrome P450, family 7, subfamily A, polypeptide 1 (CYP7A1)  -3.4 0.99 

Apolipoprotein A-I (APOA-1) -3.3 0.99 

Apolipoprotein B (APOB)  -3.1 0.97 

Apolipoprotein C-II (APOC-II) -3.1 0.99 

Apolipoprotein E (APOE) -3.3 0.99 

Scavenger receptor class B, member 1 (SCARB1)  

other names: SR-BI -3.3 0.99 

Lecithin-cholesterol acyltransferase (LCAT)  -3.3 0.98 

Apolipoprotein C-I (APOC-1) -3.2 0.99 

Phosphoglycerate kinase 2 (PGK2) -3.1 0.97 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) -3.2 0.97 
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3.3.2.3 The effect of niacin treatment on gene expression 

 

The effects of niacin treatment on the expression of the ten prioritized reverse 

cholesterol transport genes (CETP. ABCA1, CYP7A1, apoA-1, apoB, apoE, SR-B1, 

LCAT, apoC-I and apoC-II) were determined using quantitative real time PCR (qRT-

PCR). The expression of the reference genes PGK2 and GAPDH was used to normalize 

mRNA levels.  

 

The treatment of niacin affected the expression of genes differently at each time point 

and this is illustrated in Figures 3.3 to 3.12. Gene expression differences that were 

statistically significant were only observed in four genes (CETP with p = 0.04 at time 

point 14.04.08, CYP7A1 with p = 0.04 at baseline and time point 17.03.08, SR-B1 with 

p = 0.03 at washout (09.06.08) and apoC1 with p = 0.04 at time point 14.04.08).  Up-

regulation of the level of mRNA in the treated group compared to the controls was only 

seen in SR-B1 from the time point when niacin treatment was maintained at 100 mg/kg, 

however statistically significant differences were not obtained throughout the treatment 

phase (Figure 3.6). mRNA expression level of CETP, ABCA1, LCAT, apoC-I, 

CYP7A1 and apoE in the treated group compared to the controls were decreased with 

increased dosage of niacin leading to a downregulation (Figures 3.3, 3.4, 3.5, 3.7and 

3.12). ApoB mRNA was only expressed at a very low level in both experimental and 

control groups after two months of intervention treatment with niacin (Figure 3.8). 

ApoA-1 and apoC-II were poorly expressed in both experimental and control groups 

throughout the study (Figure 3.9 and 3.10). 

 

During the intervention phase of this study (described in chapter 2), levels of total 

cholesterol, HDL-C, LDL-C, triglycerides and apoA-1 were determined at different time 
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points from baseline to the end of the washout period. The effect of niacin treatment was 

also determined at genetic level by the expression profile of the selected candidate genes 

at these time points as mentioned above. A considerable change in the concentrations of 

HDL-C, LDL-C and apoA-1 was observed at week 6 (time point 17.03.08).  A change in 

gene expression of CYP7A1 mRNA was also observed at this time point with a statistical 

significant difference of p-value 0.04 (Figure 3.13).  

 

Since the levels of HDL-C are significant determinant of cholesterol efflux capacity a 

correlation analysis was conducted to determine the relationship between the levels of 

HDL-C and mRNA expression of the 10 selected RCT candidate genes. HDL-C 

concentrations showed a strong inverse correlation with CETP, SR-B1, apoA-1, apoB, 

CYP7A1, apoC-I and apo C-II concentrations (r = -0.14, -0.27, -0.01, -0.95, -0.30, -0.69, 

-0.33; p < 0.001) and a positive correlation with ABCA1, LCAT and apoE concentrations 

(r = 0.48, 0.16, 0.56; p < 0.001) (Appendix II, Table A10). 
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Figure 3.3: The effect of niacin treatment on mRNA expression of CETP in the African green monkey.  The experimental group received niacin 

at an escalating dose (35 to 100 mg/kg) while the control group received a maintenance diet throughout the study period of four months. 

Messenger RNA levels were determined by quantitative real time PCR for all 10 sampling points of the study period from baseline (04.02.08) to 

washout (09.06.08). CETP expression decreased when niacin treatment was maintained at a higher dosage and increased again after the washout 

period. Data were expressed as mean ± SD and mRNA expression. A p-value of 0.04 was calculated at time point 14.04.08 when the treatment 

of niacin was maintained at 100 mg/kg. P-values for other time points were greater than 0.05, therefore no difference indicated between the 

groups. 
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Figure 3.4: The effect of niacin treatment on mRNA expression of ABCA1 in the African green monkey.  The experimental group received 

niacin at an escalating dose (35 to 100 mg/kg) while the control group received a maintenance diet throughout the study period of four months. 

Messenger RNA levels were determined by quantitative real time PCR for all 10 sampling points of the study period from baseline (04.02.08) to 

washout (09.06.08). ABCA1 expression of the experimental group decreased with increased dosage of niacin treatment as compared to the 

control group. Data were expressed as mean ± SD and mRNA expression in a.u. (arbitrary units). P-values for all time points were greater than 

0.05, therefore no difference between the groups. 
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Figure 3.5: The effect of niacin treatment on mRNA expression LCAT in the African green monkey.  The experimental group received niacin at 

an escalating dose (35 to 100 mg/kg) while the control group received a maintenance diet throughout the study period of four months. Messenger 

RNA levels were determined by quantitative real time PCR for all 10 sampling points of the study period from baseline (04.02.08) to washout 

(09.06.08). LCAT expression decreased from the time niacin was administered at 70 mg/kg (03.03.08) until the end of treatment (26.05.08). 

Data were expressed as mean ± SD and mRNA expression in a.u. (arbitrary units). P-values for all time points were greater than 0.05, therefore 

no difference indicated between the groups. 
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Figure 3.6: The effect of niacin treatment on mRNA expression of SR-B1 in the African green monkey.  The experimental group received 

niacin at an escalating dose (35 to 100 mg/kg) while the control group received a maintenance diet throughout the study period of four months. 

Messenger RNA levels were determined by quantitative real time PCR for all 10 sampling points of the study period from baseline (04.02.08) to 

washout (09.06.08). SR-B1 expression of the experimental group increased as compared to the controls from the time niacin was maintained at 

100 mg/kg (14.04.08). Data were expressed as mean ± SD and mRNA expression in a.u. (arbitrary units). A p-value of 0.03 was calculated at 

washout. P-values for other time points were greater than 0.05, therefore no difference indicated between the groups. 
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Figure 3.7: The effect of niacin treatment on mRNA expression apoC-1 in the African green monkey.  The experimental group received niacin 

at an escalating dose (35 to 100 mg/kg) while the control group received a maintenance diet throughout the study period of four months. 

Messenger RNA levels were determined by quantitative real time PCR for all 10 sampling points of study period from baseline (04.02.08) to 

washout (09.06.08). ApoC-1 expression of both experimental and control groups decreased after the 5
th

 time point (31.03.08). Reduced 

expression of apoC-1 was observed in the experimental group as compared to the controls, and a p-value of 0.04 was calculated at time point 

14.04.08 when the treatment of niacin was maintained at 100 mg/kg. P-values for other time points were greater than 0.05, therefore no 

difference indicated between the groups. Data were expressed as mean ± SD and mRNA expression in a.u. (arbitrary units).  
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Figure 3.8: The effect of niacin treatment on mRNA expression apoB in the African green monkey.  The experimental group received niacin at 

an escalating dose (35 to 100 mg/kg) while the control group received a maintenance diet throughout the study period of four months. Messenger 

RNA levels were determined by quantitative real time PCR for all 10 sampling points of the study period from baseline (04.02.08) to washout 

(09.06.08). The expression of apoB for both experimental and control groups was very low and only observed from time point 14.04.08. Data 

were expressed as mean ± SD and mRNA expression in a.u. (arbitrary units). P-values for all time points were greater than 0.05, therefore no 

difference indicated between the groups. 
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Figure 3.9: The effect of niacin treatment on mRNA expression of apoC-II in the African green monkey.  The experimental group received   

niacin at an escalating dose (35 to 100 mg/kg) while the control group received a maintenance diet throughout the study period of four months. 

Messenger RNA levels were determined by quantitative real time PCR for all 10 sampling points of the study period from baseline (04.02.08) to 

washout (09.06.08). The apoC-II expression of both experimental and control groups was weak and only observed in some of the time points. 

Data were expressed as mean ± SD and mRNA expression in a.u. (arbitrary units). P-values for all time points were greater than 0.05, therefore 

no difference indicated between the groups. 
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Figure 3.10: The effect of niacin treatment on mRNA expression of apoA-1 in the African green monkey.  The experimental group received 

niacin at an escalating dose (35 to 100 mg/kg) while the control group received a maintenance diet throughout the study period of four months. 

Messenger RNA levels were determined by quantitative real time PCR for all 10 sampling points of the study period from baseline (04.02.08) to 

washout (09.06.08). ApoA-1 was weakly expressed in both experimental and control groups throughout the study period. Data were expressed as 

mean ± SD and mRNA expression in a.u. (arbitrary units). P-values for all time points were greater than 0.05, therefore no difference indicated 

between the groups. 
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Figure 3.11: The effect of niacin treatment on mRNA expression of CYP7A1 in the African green monkey.  The experimental group received 

niacin at an escalating dose (35 to 100 mg/kg) while the control group received a maintenance diet throughout the study period of four months. 

Messenger RNA levels were determined by quantitative real time PCR for all 10 sampling points of the study period from baseline (04.02.08) to 

washout (09.06.08). A decline in CYP7A1 expression was observed in the experimental group from baseline to washout period. P-values of 0.04 

were calculated at baseline (04.02.08) and at time point 17.03.08. P-values for the other time points were greater than 0.05, therefore no 

difference were indicated between the groups. Data were expressed as mean ± SD and mRNA expression in a.u. (arbitrary units).  

 

0

2

4

6

8

10

12

04.02.08 18.02.08 03.03.08 17.03.08 31.03.08 14.04.08 29.04.08 12.05.08 26.05.08 09.06.08

control niacin

C
YP

7
A

1
 m

R
N

A
 e

xp
re

ss
io

n
 (

a.
u

.)
 p = 0.04 

p = 0.04 

  

 

 

 

 



109 

 

  

Figure 3.12: The effect of niacin treatment on mRNA expression of apoE in the African green monkey.  The experimental group received niacin 

at an escalating dose (35 to 100 mg/kg) while the control group received a maintenance diet throughout the study period of four months. 

Messenger RNA levels were determined by quantitative real time PCR for all 10 sampling points of the study period from baseline (04.02.08) to 

washout (09.06.08). ApoE expression of experimental group decreased after the 5
th

 time point (31.03.08) when niacin treatment was maintained 

at 100 mg/kg. P-values for all time points were greater than 0.05, therefore no difference indicated between the groups. Data were expressed as 

mean ± SD and mRNA expression in a.u. (arbitrary units).  
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Figure 3.13: The effect of niacin treatment on Total Cholesterol, HDL-C, LDL-C, Triglycerides, and apoA-1 in the African green monkey. Overall, 

niacin treatment decreased LDL-C by 39%, increased HDL-C by 37% and apoA-I by 26%. Considerable changes in the concentrations of HDL-C, 

LDL-C, apoA-1 and a significant decline of CYP7A1 mRNA expression were observed at time point 17.03.08. 
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3.4 DISCUSSION 

This study has shown for the first time that the African green monkey share six cSNPs 

(I405V, I883M, Asn233Ser, cL96R, -62A>C and A350A) with humans (Table 3.11).  

These cSNPs are known to have a significant influential role in the regulation of 

reverse cholesterol transport and lipid-lowering drug therapy.   

 

To genetically and phenotypically characterise the African green monkey, 22 cSNPs 

found at the same position in both humans and nonhuman primates were prioritised 

and blasted against a dataset of human and monkey SNPs. Six out of the 22 genotyped 

cSNPs were identified. Since genotype variations between case and control subjects 

were not obtained in this study, four wild caught monkeys from Potchefstroom 

University were included. However, no genotypic variations were obtained with these 

individuals, presumably due to the small gene pool. Therefore, inbreeding is a well-

defined genetic consequence with an increase of homozygosity in the whole genome 

of this species (Charpentier et al., 2007). Based on this information and the fact that 

MRC wild caught monkeys used as controls originated from the same area than the 

monkeys from Potchefstroom, associating the effect of niacin with the individual 

genotypes could not be achieved.  

 

Exploring the genetic basis of HDL-C, a well-studied endophenotype for 

cardiovascular disease (CVD), has several attractive features as a target for genetic 

analysis. Since the prevention of CVD is critically dependent on lipid-lowering 

therapy, in this study six cSNPs in five “candidate genes” associated with HDL-C 

levels, lipid-lowering drugs response and known to regulate RCT were identified and 

subsequently genotyped in niacin treated cases and controls of the African green 
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monkey. The rationale for using the African green monkey in this study was based on 

the knowledge that this animal model shares a common ancestor with humans, is 

known to develop atherosclerosis in a fashion similar to humans with respect to 

morphology and cytology (Fernandez et al., 2008), and is well suited and established 

as translational model for drug testing (Ebeling et al., 2011). Niacin therapy response 

was evaluated in healthy monkeys since this model has shown response to HDL-C 

increases with other reference lipid-lowering compounds such as statin (Yin et al., 

2011).  

 

In the last few years there has been growing evidence of the influence of genetic 

variation/polymorphisms in the determination of plasma lipid concentrations, 

especially for genes involved in lipid transport and metabolism. More recently, there 

is a growing interest in the role of these genetic polymorphisms in predicting 

susceptibility to disease and responsiveness to drug interventions. Plasma lipid 

abnormalities are risk factors for coronary atherosclerosis and determination of these 

plasma lipid concentrations may be influenced by genetic variations.  

 

This study presented several challenges. Firstly, spontaneous or induced primate 

models of low plasma HDL are not available.  This is unlike LDL, which can be 

easily modulated by diet.  Secondly, the availability of African green monkeys for 

research is limited and maintenance is expensive hence the relatively small sample 

size in the intervention study. Thirdly the reference sequence of the African green 

monkey is currently unavailable and fourthly, the MRC Primate colony utilized for 

this study is captive-bred and genetically very similar. Identification of genotypes 

linked with a particular SNP was therefore not possible due to the small gene pool of 
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the colony. Additionally, invasive techniques such as liver biopsies would have been 

required for gene expression analysis of genes involved in lipid metabolism and RCT 

pathway.  

 

CETP 

The relationship of I405V polymorphism in CETP gene expression with plasma 

CETP level, HDL-C and RCT was investigated in this study. It was shown that 

carriers of 405V allele have increased HDL-C concentration. Niacin treatment 

appeared to have decreased CETP mRNA expression as compared to the control 

mRNA expression profile. However, a statistically significant difference between the 

experimental and control group was only observed at one time point (14.04.08) with a 

p-value of 0.04 (Figure 3.3). The lack of statistically significant differences in other 

time points could be attributed to the fact that this might be a conservative 

modification of CETP at residue 405 from an isoleucine to a valine and this might not 

be a direct cause for the alteration in CETP activity and HDL-C values. Therefore, the 

amino acid change may not have altered the specific activity values of CETP, but its 

presence may have influenced the effect of lipid-lowering treatment. A negative 

correlation coefficient of -0.14 with a p < 0.001 was obtained between the level of 

HDL-C and the mRNA expression profile of CETP (Appendix II, Table A10).  

 

It is apparent that a change in the up-regulation of HDL-C by the niacin treatment was 

accompanied by down-regulation of CETP gene expression especially at time point 

14.04.08 when it was statistically significant (p=0.04). These findings suggest that 

CETP I405V polymorphism could modify the effect of niacin on TG reduction and 

HDL-C elevation at that particular time point. This observation could support the 
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hypothesis (Brousseau, 2004) that V405 alleles are associated with reduced CETP 

activity and increased HDL-C levels, however, based on this current study, it cannot 

be concluded up to  what extent physiological variation of CETP could influence RCT 

pathway, particularly in the African green monkey. 

 

Several studies have reported that carriers of 405V allele have increased HDL-C 

concentration (Lewis et al., 2005). The I405V polymorphism is located in exon 14 of 

the CETP gene and is caused by A to G transition in position 20206. It is 

characterized by alteration in the primary structure of the protein having either an 

isoleucine or a valine at codon 405. VV genotype of this polymorphism has been 

associated with lower plasma CETP concentration, higher HDL-C concentration and 

elevation of the risk for CHD (Isaacs et al., 2007 and Okumura et al., 2002). Since 

plasma CETP plays a key role in RCT, the presence of I405V polymorphism may 

therefore alter the susceptibility to atherosclerosis and may have an influential role to 

play in the effect of niacin therapy to the African green monkeys.  

 

CETP has both pro- and anti-atherogenic effects (Shah, 2007). If CETP is totally 

absent the lipoprotein profile is atherogenic (Berard et al., 2003 and Tall et al., 1999) 

though some studies found that low CETP activity correlated with an anti-atherogenic 

state (Barter, 2001). VV genotype of I405V polymorphism is reported with low 

CETP, high cholesterol and elevation of the risk for CHD (Isaacs et al., 2007).  
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ABCA1 

 

A cSNP analysis of the ABCA1 gene provided evidence here that common genetic 

variations within ABCA1 are associated with altered plasma lipid levels and risk of 

CAD in the vervet monkey. Five cSNPs (I883M, E1172D, V771M, R219K and 

V825I) known to influence plasma lipid levels and CAD were genotyped and only 

one cSNP (Ile883Met) was identified. Clee et al., (2001) have shown that I883M is a 

common variant that is possibly associated with an increased risk of coronary artery 

disease (CAD) in the homozygous state. I883M is located in the middle part of the 

protein corresponding to the seventh hydrophobic segment (H7) (Frikke-Schmidt et 

al., 2004). Because this variant is associated with little functional effect, it might 

demarcate the border of the region in which structural alterations significantly impair 

ATP-binding cassette function. Kyriakou et al., 2007 have reported that I883M has an 

effect on the activity of ABCA1 in facilitating cholesterol efflux. They observed a 

trend towards an increased rate of apoAI-mediated cholesterol efflux in cells 

expressing the 883M variant compared with cells expressing the wild-type (883I).)  

 

Results obtained in mRNA expression of ABCA1 in the African green monkey may 

have shed some light on the involvement of I883M in RCT regulation, and may play 

any significant role in influencing ABCA1 activity to niacin therapy in this species. 

During the experimental intervention the levels of ABCA1 mRNA expression of the 

experimental group appeared to have been down-regulated  as compared to the control 

group (Figure 3.4) along with increased level of HDL-C and apoA-1 (Figures 2.2 and 

2.5). However, statistically significant differences between the two groups were not 

observed. A negative correlation coefficient was obtained between the level of HDL-

C and the mRNA expression profile (r = -0.17, p < 0.001).  Since I883M is known to 
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increase the risk of CAD, its presence which did not show any relevant statistical 

significance, did not appear to have influenced the effect of ABCA activity in 

facilitating cholesterol efflux with niacin up-regulating HDL-C synthesis in the 

African green monkey.  

 

SR-B1 

A polymorphism in exon 8 of the SR-B1 gene (c.1119C.T) was identified in the 

African green monkey for the first time. This polymorphism is also known as A350A 

and SR-B1 is best known for its role in facilitating the uptake of cholesteryl esters 

from high-density lipoproteins in the liver. This process drives the movement of 

cholesterol from peripheral tissues towards the liver for excretion. This movement of 

cholesterol is known as reverse cholesterol transport and is a protective mechanism 

against the development of atherosclerosis. The identification of a polymorphism in 

the SR-B1 of the African green monkey has possibly shed some light in evaluating the 

influence of SR-B1 in niacin therapy within this species. SR-B1 A350A is known to 

have gender-specific and age-related effects on cholesterol transport (Morabia et al., 

2004). The common T variant of exon 8 (A350A) has been reported to be 

significantly associated with having an atherogenic versus non-atherogenic lipid 

profile, with significantly opposite gender-specific clinical effects, atheroprotective 

HDL-C-wise in men and atherogenic LDL-C-wise in women (Morabia et al., 2004). 

Although this polymorphism is a synonymous mutation, it is likely to be a marker for 

another functional mutation. 

 

In light of prior reports of the effect of this polymorphism on fasted lipid 

concentration (Morabia et al., 2003), It can be speculated that that this polymorphism 
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is associated with an anti-athrogenic profile in the African green monkey. Considering 

that in this study the association between SR-B1 and niacin therapy response was 

investigated through gene expression profiles, results obtained have indeed reflected 

the possibility of this influence that SR-B1 A350A can have on RCT and HDL-C 

synthesis. Since this polymorphism is known to have gender-specific effects on 

cholesterol transport, female monkeys were used for this study, and biochemistry 

analysis demonstrated elevated levels of HDL-C and apoA-1 with reduced levels of 

LDL-C and triglycerides. SR-B1 mRNA expression levels of the experimental group 

appeared to have been up-regulated when compared with the control group, especially 

at time points when niacin treatment was maintained at a higher dose of 100 mg/kg. 

However, statistically significant differences were not observed for all time points 

except at the washout period (p= 0.03) (Figure 3.6).  

 

SR-B1 is known to play a crucial role in RCT pathway by mediating selective uptake 

of HDL cholesteryl esters by the liver. According to Morabia et al., (2003), the 

presence of SR-B1 A350A will only favour the atherogenic effect on females, which 

is contradictory to our findings. A negative correlation coefficient of -0.27 (p < 0.001) 

was obtained between the level of HDL-C and the mRNA expression profile of SR-

B1 (Appendix II, Table A10). When a negative correlation coefficient is obtained, a 

decline in one variable is accompanied by an increase of another variable; therefore, 

in this case the presence of SR-B1 A350A did not seem to have any effect on niacin 

therapy response since HDL-C synthesis was up-regulated and is atheroprotective 

towards the female African green monkey (Figure 3.6).  
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CYP7A1 

The CYP7A1 gene was screened for polymorphisms in the African green monkey. An 

average of two cSNPs (Asn233Ser and A-278C) was genotyped and a C/T SNP in 

exon 3, causing an amino acid change at Asn233Ser was identified. The association of 

this polymorphism to plasma lipid levels and risk to atherosclerosis has possibly 

contributed to the understanding of the mechanisms driving RCT and niacin response 

in the African green monkey model. In gene expression analysis, the level of CYP7A1 

mRNA expression appeared to have been down-regulated during niacin treatment 

intervention (Figure 3.11). It was interesting to note statistically significant 

differences between the experimental and the control group (p = 0.04) at week 6 (time 

point 17.03.04) where a considerable change in the concentrations of HDL-C, LDL-C 

and apoA-1were observed. (Figure 3.11 and Figure 3.13). It is obvious that niacin 

treatment had an effect on the expression level of CYP7A1 mRNA, especially at this 

time point when compared to the baseline which was also statistically significant with 

a p-value of 0.04. CYP7A1 mRNA of the experimental group was highly expressed at 

baseline as compared to the control group, however, the expression pattern was 

reversed and down-regulated at week 6 (time point 17.03.08) when niacin was 

maintained at 100 mg/kg. The expression remained low from this time point to the 

end of treatment. A correlation coefficient of -0.30 was obtained between HDL-C 

levels and mRNA expression profile of CYP7A1 (Appendix 11, Table A10). Since 

Asn233Ser polymorphism has been associated with variations in plasma LDL-

cholesterol concentrations and is known to be involved in drug metabolism, it may 

play an integral role in metabolising niacin and influencing the up-regulation of HDL-

C synthesis.   
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CYP7A1 catalyses the first reaction in the cholesterol catabolic pathway in liver. This 

pathway converts cholesterol to bile acids, which is the primary mechanism for the 

removal of cholesterol from the body. The CYP7A1 catalytic reaction is the rate-

limiting step and the major site for regulating homeostasis of cholesterol and bile 

acids. The gene encoding CYP7A1 was mapped to chromosome 8q11 and it spans 

about 10 kb and contains 6 exons (Nakamotoet al., 2006). Genetic variations in the 

CYP7A1 gene associated to disorders of cholesterol and bile acid metabolism have 

been studied extensively (Nakamoto et al., 2006). Asn233Ser of the CYP7A1 gene 

has been associated with variations in plasma LDL-cholesterol concentrations and is 

known to be involved in drug metabolism (Nakamoto et al., 2006).  

 

apoC-II 

Out of the six polymorphisms identified in this study, CETP I405V, ABCA1 I883M, 

SR-B1 A350A and CYP7A1 Asn233Ser have been discussed. The remaining two 

polymorphisms identified are located in the apoC-II gene which has been mapped on 

chromosome 19 in a gene cluster containing the apoE/C-I/C-I’/C-IV/C-II gene (Chen 

et al., 2007). It was interesting to note that the difference between mRNA expression 

of the control and experimental group was not statistically significant and the 

expression profile was minimal throughout the intervention phase of the study (Figure 

3.9).  It is obvious that both polymorphisms did not have any impact on niacin 

therapy. According to literature, the end result of apoC-II is increased levels of LDL-

C due to its influence on LPL (Vorgia et al., 1998; Chen et al., 2007), however in this 

study, the LDL-C levels remained low, and therefore, the low expression of apoC-II 

had no influence on this process. 
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The exact function of apoC-IV is unknown, although it appears to play a role in lipid 

metabolism. ApoC-II is synthesized primarily by the liver and is a 79 amino acid 

residue protein that plays a pivotal role in lipid metabolism as an activator for the 

lipoprotein lipase (LPL), and leads to increased levels of LDL-C (Chen et al., 2007). 

ApoC-II Leu96Arg has been associated with triglyceride concentrations in women.  

 

LCAT, apoC-I, apoA-1, apoE and apoB 

LCAT, apoC-I, apoA-1, apoE and apoB were investigated through the intervention 

phase of this study. These genes are known to play a key role in the RCT pathway and 

have been implicated in lipid metabolism (Tall, 1990). SNPs/polymorphisms which 

are known to influence the function and regulation of these genes, and which have 

also been reported to have an influential role in drug response, were selected and 

genotyped (Appendix II, Table A9), however, none of these SNPs were identified in 

the African green monkey.  

 

Gene expression analysis was conducted to evaluate if any of these genes had a direct 

impact on niacin response and RCT pathway. LCAT was expressed throughout the 

intervention phase of the study; however, no statistically significant differences were 

obtained even though the expression profile appeared to have decreased from the time 

niacin was maintained at a higher dose of 100 mg/kg (Figure 3.5). Although LCAT 

accentuates reverse cholesterol transport (RCT) from plasma to liver and induces 

cholesterol degradation, LCAT’s role in RCT and protection against atherosclerosis is 

the subject of on-going research (Brown et al., 2010). In the absence of LCAT, RCT 

can still continue (Brown et al., 2010). In this study, LCAT did not play a significant 

role in either niacin therapy or on the RCT pathway.  
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To attempt the evaluation of independent effects of apoC-I on RCT and niacin 

response, HpaI SNP was genotyped; however, it was not identified in our animal 

model. Gene expression analysis revealed less expression of apoC-I in the 

experimental group as compared to the controls, and a statistical significant difference 

with a p-value 0.04 was only observed at the 6
th

 time point (14.04.08) when treatment 

of niacin was maintained at 100 mg/kg (Figure 3.7). apoC-I is a constituent of 

triglyceride-rich lipoprotein, and high density lipoproteins whose importance in 

plasma lipoprotein metabolism is increasingly evident (Xu et al., 1999). Its function is 

to displace apoE from triglycerides-rich emulsions and lipoproteins (Gao et al., 2002). 

The fact that apoC-I mRNA expression appeared to have been down-regulated in 

experimental groups as compared to the control group, especially with statistically 

significant difference at time point 14.04.08, highlighted the fact that apoC-I might 

have carried out its function by displacing apoE which was also evident by its poor 

gene expression profile in Figure 3.12. 

 

ApoE is known to be an exchangeable protein that plays an important role in lipid 

metabolism, especially in the removal of atherogenic remnants of triglyceride-rich 

lipoproteins (Hixson et al., 1990). The presence of apoE allele e4 is known to be 

associated with the pathogenesis of peripheral and coronary artery disease and the e2 

allele is known to be protective from atherosclerosis. Both polymorphisms were 

genotyped, but not identified in the African green monkey. Due to its poor expression 

profile and the fact that it was not statistically significant, it is therefore clear that 

apoE had no effect on niacin response in the African green monkey (Figure 3.12). 
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Both apoA-1 and apoB are known to play an essential role in the RCT pathway. SNPs 

from apoA-1 (Msp1 and G75A) and apoB (T71I and 4311S) known to be involved in 

lipid metabolism and drug response were genotyped but were not identified in the 

African green monkey in this study. Gene expression analysis of both genes was very 

poor and statistically insignificant with apoB only expressed half way through the 

intervention study when niacin treatment was maintained at its highest dosage (Figure 

3.8 and Figure 3.10). Since apoB is a protein component of LDL particles and is 

known to be cleared from plasma mainly by binding to LDL receptors and subsequent 

internalization and degradation in the liver, it’s expression at the beginning of the 

intervention study would not have been expected, and our findings are in agreement 

with that, albeit not statistically significant. Due to niacin therapy, LDL-C level was 

reduced as indicated in chapter 2; apoB expression was expected to be less and was 

only observed towards washout period at the end of the study. Considering the fact 

that only a small sample size of healthy monkeys instead of diseased monkeys were 

used in this study, data generated would have been more significant if an access to a 

larger sample size was possible with baseline values depicting a diseased state.   

       

3.5 CONCLUSION 

This study suggests that a cascade of genes and the potential effect of polymorphisms 

located in these genes may be responsible for the regulation and function of RCT 

pathway and drug treatment response in the African green monkey 

. Considering that only six out of 22 cSNPs involved in human and rhesus RCT were 

identified in the African green monkey, it is possible that the outcome of this study 

may be due to yet to be identified genetic variation or those that are not present in 

multi-species but species specific to the African green monkey. Results may therefore 
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be associated with the experiment rather than possible genetic heterogeneity between 

treatment and control groups.  

 

Niacin treatment showed an effect on the expression level of CYP7A1 mRNA when a 

considerable change in the concentrations of HDL-C, LDL-C and apoA-1 were 

observed. This change may have been influenced by the presence of 

CYP7A1:Asn233Ser polymorphism which may have been involved in metabolising 

niacin and influencing the up-regulation of HDL-C synthesis in this animal model.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 

 

Chapter 4 

 

GENERAL DISCUSSION AND CONCLUSIONS 
 

 

 

4.3 DISCUSSION 

 

Lipid metabolism is a dynamic process that involves multiple pathways with both 

intracellular, and extracellular regulation and modulation. While the cross-talk and 

interactions among these pathways are essential to maintain lipid homeostasis, 

dysregulation of each pathway can contribute substantially to the development of 

cardiovascular diseases such as dyslipidemia and atherosclerosis. 

 

Low levels of HDL-C are a major independent risk factor for atherosclerotic 

cardiovascular disease and events. Epidemiological and interventional studies have 

clearly established the critical role of lipoprotein metabolism in atherosclerotic 

disease, in which risk increases with plasma levels of LDL-cholesterol and is 

inversely proportional to HDL-cholesterol (Duffy et al., 2006). The success of LDL-

cholesterol-lowering therapy has stimulated increased interest in HDL-cholesterol-

directed approaches, and several HDL-cholesterol-elevating drugs are currently 

available or under development (Carlson, 2005). Some of the most widely used HDL-

cholesterol-elevating drugs include statins (∼5–10% increase), fibrates (peroxisome 

proliferator-activated receptor α (PPARα) agonists; ∼5–20% increase), and nicotinic 

acid or niacin (∼15–35% increase) (Ohashi et al., 2005). Although existing drugs 

have modest effects on HDL-C levels, this area remains a major unmet medical need 

in cardiovascular medicine.  
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HDL metabolism is exceedingly complex, and the protective ability of HDL may 

relate to the flux of cholesterol through the RCT pathway, and to other aspects of 

HDL functionality. The actual mechanism by which HDL protects against 

atherosclerosis is likely multifactorial and not yet fully elucidated; however, there are 

several proposed major atheroprotective mechanisms of HDL. The most popular has 

been that HDL promotes and facilitates the process of reverse cholesterol transport 

(RCT), whereby excess macrophage cholesterol is effluxed to HDL and ultimately 

returned to the liver for excretion in the bile and feces (Duffy, 2006). However, 

several additional properties of HDL have been described over the last decade, 

including inhibition of LDL oxidation, inhibition of endothelial inflammation, 

promotion of endothelial nitric oxide production, promotion of prostacyclin 

bioavailability, and inhibition of platelet aggregation and coagulation (Khera et al., 

2011). The in vivo relevance of these mechanisms remains uncertain, but in concept 

many of these functions of HDL could contribute to reduction in atherosclerosis, 

increased vascular protection, and reductions in clinical events. 

 

It has been shown in both humans and nonhuman primates that low levels of HDL-C 

are an important and prevalent risk factor in the development of cardiovascular 

disease. Over the last decade, cholesterol-lowering therapy has been considered to be 

the central approach in the prevention of cardiovascular disease. Currently, niacin is 

considered to be the most potent available pharmacological agent for increasing HDL 

cholesterol. The mechanism by which niacin raises HDL-C levels is the topic of 

continued investigation. In vivo studies in humans suggest that the catabolic rate of 

apoA-I is slowed by niacin therapy (Carlson, 2005). Studies in hepatocytes in vitro 

have shown reduced uptake of HDL apoA-I after niacin treatment (Kamanna et al., 
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2008). The paradigm has been that in addition to indirect effects on HDL metabolism 

through reduction in triglycerides, niacin acts on an unknown pathway in the liver to 

slow HDL and apoA-I catabolism. The recent discovery of a niacin receptor, a G 

protein–coupled receptor known as HM74A (also known as GPR109A) (Shen et al., 

2009), has fueled tremendous new interest in the mechanisms of niacin action and the 

development of new compounds that act on this receptor. Intriguingly, activated 

macrophages express the niacin receptor, and niacin treatment of macrophages 

upregulates ABCA1 expression (Shen et al., 2009).  

 

Given the apparent similarities in lipoprotein cholesterol metabolism between human 

beings and nonhuman primates, niacin therapy may have the same effects on HDL 

metabolism of nonhuman primates. Nonhuman primates that have consumed an 

atherogenic diet for several years develop lesions that are comparable to those found 

in human beings. Amongst the nonhuman primates, the African green monkey has 

been recognised as a good model for the study of diet-induced atherosclerosis 

(Moghadasian et al., 2001). However, notwithstanding their closeness to humans, 

validity for their use as models for lipid-lowering drug interventions still has to be 

demonstrated. It is noteworthy that the Primate Unit of the Medical Research Council 

has already utilised the African green monkey in lipid-lowering research, with lipid 

modulating compounds such as CETP inhibitors.  A specific diet was not needed to 

induce the disease and the model responded with HDL-C increases. Besides, the diets 

that induce dyslipidaemia can only modulate LDL not HDL.  

 

The African green monkey is the most commonly used Old World primate in 

biomedical research, but, in many areas, the least well defined. In order to utilise this 
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species fully, there is a need to understand and define as much of its biology as 

possible. However, there is currently very little sequence data available for this 

species in the GenBank and in order to conduct genetic studies on the African green 

monkey, the need exists to rely on available human and rhesus macaque sequence. To 

further characterise the African green monkey as an animal model for atherosclerosis, 

human ortholog genes known to be linked to lipid metabolism were sequence and 

genotype in a case:control colony of the African green monkey. Since African green 

monkeys are closely related to humans both in evolutionary and genetic terms, shared 

ancestral polymorphisms (cSNPs) were prioritized and assessed if they had any effect 

on niacin treatment. It is a fact that SNPs, by their very nature, are uncommon and 

need only to be present in 1% of a population; and it is also known that most SNPs are 

not shared among species with the prime exceptions among primates being those that 

occur at CpG sites. Since these sites are frequently methylated, they are much more 

prone to de novo mutation and hence independent occurrence. 

 

The main objective of this study was therefore to make an original contribution to 

primatology by defining the molecular genetics of the African green monkey in 

relation to CHD. Data on the controlled pharmacological intervention linked to 

genetic determinants of lipid metabolism in the African green monkey are provided 

here for the first time. Since the African green monkey is closely related to humans 

both in evolutionary and genetic terms, shared ancestral polymorphisms known as 

coincident SNPs (cSNPs) were prioritized for this study. Furthermore, the application 

of bioinformatics with molecular techniques such as real-time PCR were used along 

with orthologous human reference sequence to identify for the first time in the African 

green monkey specific lipid metabolism candidate genes and cSNPs corresponding to 
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ancestral polymorphisms present in both humans and nonhuman primates, and 

preserved in both lineages.  

 

Results obtained from this study reflect the careful selection of biologically relevant 

candidate genes, and the effective conditioning of their putative effects upon known 

risk factors. The case-control design based on normolipidaemic African green 

monkeys is a critical element of the study and merits several comments. 

 

A literature search was conducted to look for previously reported genes and 

polymorphisms involved in lipid metabolism in humans. Ten “candidate genes” 

(CETP, ABCA1, CYP7A1, apoA-1, apoB, apoE, SR-B1, LCAT, apoCI and apoCII) 

were chosen based on their role in the reverse cholesterol transport process. Twenty 

two Single nucleotide polymorphisms (SNPs) were identified and subsequently 

genotyped in niacin treated cases and controls of the African green monkey.  

 

As a first step towards elucidating the effect of niacin on HDL-C, the possible 

involvement of these prioritised candidate genes and their polymorphisms were 

assessed biochemically by analysing known risk factors of coronary artery disease 

such as HDL-C and LDL-C, and also by analysing gene expression.  Eight healthy 

monkeys were selected and entered in this study. Four monkeys were treated with 

niacin at an escalating dosage (35, 70 and 100 mg/kg) and the other 4 were chosen as 

controls. Levels of HDL-C, LDL-C, TC, TG and apoA-1 were then measured at 

baseline and after every two weeks for four months up to a washout period.  Niacin 

treatment was associated with a considerable reduction in LDL-Cholesterol and a less 
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significant decline in Triglycerides. Niacin was associated with up-regulation of HDL 

synthesis, and associated increased apoA-1 levels.  

 

Out of the twenty two cSNPs genotyped, six were identified in the African green 

monkeys (I405V, I883M, Asn233Ser, cL96R, -62A>C and A350A). All six cSNPs 

are known to have a significant influential role in the regulation of reverse cholesterol 

transport and lipid-lowering drug therapy.   

 

Niacin consumption was associated with increased plasma HDL-C and apoA-1 as 

well as decreased plasma LDL-C and triglycerides (Figure 2.8). Gene expression 

analysis was correlated with biochemistry results by the association between a 

combination of cSNPs identified in the prioritized candidate genes, and plasma lipid 

levels in the African green monkey.  Niacin appeared to have minimal effect if any on 

gene expression of SRB1, CETP, ABCA1, LCAT, apoC-I, and apoC-II within the 

context of specific cSNPs identified. However, an interesting observation was made 

of CYP7A1 mRNA expression, especially at time point 17.03.08 (week 6) when a 

considerable change in the concentrations of HDL-C, LDL-C and apoA-1 were 

observed. It is apparent that niacin treatment had an effect on the expression level of 

CYP7A1 mRNA, especially at this time point when compared to the baseline. This 

change may have been influenced by the presence of CYP7A1:Asn233Ser 

polymorphism which may have been involved in metabolising niacin and influencing 

the up-regulation of HDL-C synthesis in this animal model.   
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This study provides for the first time data on a controlled pharmacological 

intervention linked to genetic determinants of lipid metabolism in the African green 

monkey model. 

  

However, there are also several limitations: 

1. The genome of the African green monkey has not yet been sequenced; 

therefore there is no available reference sequence. This limitation has made 

primer design of “candidate” genes used in this study more challenging. 

However, available reference sequences from human and rhesus monkeys 

were adopted and used as the template for primer design and for 

bioinformatics analysis. The rationale for this was the fact that nonhuman 

primates are closely related to humans, both in evolutionary and genetic terms.  

The human reference was used for the bulk of the genome colinearity and gene 

content analysis. The information was then projected to the rhesus to obtain a 

nucleotide level read out that is even closer to the African green monkey 

genomic sequence since they belong to the same family group, the Old World 

monkey.  

2. The African green monkeys of the MRC Primate Unit are genetically very 

similar. Since genotype variations were not expected, results obtained from 

genotyping SNPs were the same for both control and experimental groups. 

Identification of genotypes linked with a particular SNP was therefore not 

possible. To address this, four wild caught monkeys from a different animal 

centre (Potchefstroom) were included in the study. However, results obtained 

from these wild caught monkeys were similar to those obtained from the MRC 
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captive-bred monkey colony. Based on this information, associating the effect 

of niacin with the individual genotypes could not be achieved. 

3. Niacin therapy response was evaluated only on healthy monkeys since dietary 

interventions only modulate LDL.  There is no known primate model of 

spontaneously low HLD.  To induce advanced lesions atherosclerotic lesions 

in this animal model would have taken 3 to 4 years of feeding and atherogenic 

diet, and invasive techniques such as liver biopsies would have been required 

for gene expression analysis.  Since liver is the driving engine for cholesterol 

efflux and RCT pathway, a much more higher and positive gene expression 

would have been achieved if liver tissue was used instead of blood cells which 

were convenient for this study.  

4. Niacin is known to cause side effects when taken in high doses, due to ethical 

considerations and abiding to the National Guidelines for the Care and Use of 

Animals for Scientific Purposes escalation dose higher than 100 mg/kg was 

not recommended for this study.  

5. Relative scarcity in terms of availability for research, and high cost of the 

African green monkey are two factors that make a larger sample size difficult, 

therefore only eight monkeys were available for this study, hence poor gene 

expression profile were obtained and statistical significant values were 

difficult to achieve.  

 

However, several advantages were also identified: 

1. There was no need to induce disease or use a disease model. Ethically, this is 

considered as a refinement and promotes the concept of the ‘three Rs’ 
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(replacement, reduction and refinement) according to the National Guidelines 

for the Care and Use of Animals for Scientific Purposes.   

2. Due to the close evolutionary relationship between humans and the African 

green monkey, results obtained from this study can be extrapolated to humans, 

and this could make a contribution to the understanding of cardiovascular 

diseases.  

3. The study applies a number of original approaches to identifying candidate 

susceptibility genes for lipid metabolism. Furthermore, it is the first time that 

many genetic aspects have been defined in the African green monkey; 

therefore, this study does not only focus on human diseases, but animal 

diseases as well.  

4. The results have contributed to defining the molecular genetics of the African 

green monkey especially in the light that its genome sequence has not yet been 

mapped. 

 

Pharmacological therapy development through genetic studies has had a significant 

impact in clinical medicine. Pharmacogenetics and genetic testing have provided the 

experimental basis that has shown that the variability in a drug response is a function 

of an individual’s genetic makeup. Genetic polymorphisms can influence the response 

to medication through a number of mechanisms (Schmitz et al., 2003). It is 

noteworthy that this study provided further impetus for the development of niacin 

(nicotinic acid) in pharmacogenetic processes. However, it must be acknowledged 

that a large scale SNP discovery initiative should be undertaken for the African green 

monkey in order to have enough information to validate this species as a good model 

in pharmacogenomic studies. 
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Low HDL cholesterol levels are the most common lipid abnormality in patients with 

CAD, and are the primary lipid disorder in half of this population. Raising HDL levels 

has been difficult, and statins only moderately affect HDL, raising levels by 

approximately 5% to 10% (Schmitz et al., 2003). Niacin has a long-standing history 

as an effective lipid-altering therapeutic agent with well-established clinical benefits 

(Kamanna et al., 2008). In addition to its beneficial effects on standard lipoprotein 

levels, niacin has shown further benefits in patients with coronary artery disease by 

significantly increasing HDL and LDL particle size (Tavintharan et al., 2001). 

 

Niacin favourably alters all major lipid subfractions at pharmacologic doses. Alone or 

in combination, it promotes regression of coronary artery disease, decreases coronary 

events, stroke, and total mortality (Kamanna et al., 2008). Major recent progress in 

niacin is in four areas. Firstly, recent data indicate that it increases HDL and lowers 

triglycerides and LDL by mechanisms different from statins, fibrates, and bile-

sequestrants, providing a rationale for combination therapy to achieve synergistic 

effects for complete lipid goal achievement (Schmitz et al., 2003). Secondly, new data 

on an extended-release preparation of niacin taken once nightly indicates that it is as 

effective, and has greater tolerability than immediate-release niacin (Tavintharan et 

al., 2001). Thirdly, preliminary data with single tablet formulation extended-release 

niacin and an HMG CoA reductase inhibitor (lovastatin) shows it to be safe and very 

effective, especially for raising HDL. Finally, emerging evidence indicates that niacin 

can be used effectively and safely in patients with type 2 diabetes mellitus, who often 

have low HDL levels (Ganji et al., 2003). 

 

The focus of lipid-altering therapies has been largely on their abilities to lower LDL-C 

and triglyceride levels and raise HDL-C levels. This study demonstrates that in 
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addition to these effects, genetic determinants of lipid transport and metabolism may 

also provide additional significant benefit in nonhuman primates such as the African 

green monkey. Treatment with 100 mg/kg of niacin produced improvements in HDL-

C, and apoA-1 concentrations, and additionally resulted in significant reduction of 

39% in LDL-C. Even though most of the time points were not statistically significant, 

following just 18 weeks of treatment, niacin appeared to have upregulated SR-B1 

gene expression and downregulated the expression level of the other nine important 

genes involved in driving RCT pathway and lipid metabolism. Thus, niacin treatment 

at such low dose (100 mg/kg) appeared to cause different effects on lipoproteins, 

beyond the conventionally measured responses observed in serum lipid. It will be 

important to clarify whether this response is specific to blood cell gene expression or 

seen more generally in various tissues and in the liver in vivo, because it could suggest 

that regulation of these genes by niacin is tissue-dependent. It would have also been 

interesting to observe if a larger sample size and a higher dosage of niacin treatment 

would have had a better effect with significant statistical values, however due to side 

effects that may be caused by niacin when taken in high doses, escalation higher than 

100 mg/kg was not recommended. 

 

There is ample evidence in human studies that niacin acutely or chronically alters 

gene expression and cellular signalling in various tissues and cells. The underlying 

mechanism may involve signalling through the niacin-receptor, but there is substantial 

evidence that in vivo effects on gene expression may be mediated indirectly by 

changes in circulating lipid or hormone levels induced by niacin treatment (Kang et 

al., 2011). Future studies are warranted to elucidate these mechanisms, which would 
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contribute not only to the full understanding of niacin effects in human and nonhuman 

primates, but also to the discovery of novel pathways for gene regulation by lipids. 

 

The data obtained from this study indicated that niacin increased the accumulation of 

apoA-I, however, niacin did not affect the de novo synthesis of apoA-I and the mRNA 

expression of apoA-I, suggesting that niacin has no effect on apoA-I synthetic 

processes. Therefore it was hypothesized that niacin may influence the removal or 

reuptake of HDL by hepatocytes and this is supported by the findings of Zhang et al., 

2008. Niacin may have selectively inhibited the uptake of HDL-apoA-I but not HDL-

cholesterol esters. These findings suggest that niacin may increase the capacity of 

retained apoA-I to augment cholesterol efflux and reverse cholesterol transport 

pathway. Based on these data it was suggested that niacin inhibits the removal of 

HDL-apoA-I at the level of yet unidentified putative pathways, but not SR-B1-

mediated events, which is selective to HDL-cholesterol esters.  

 

 

The apoB content of the lipid profile can also differ substantially in response to 

interventions, because this measurement provides an estimate of atherogenic (non-

HDL) particle number (Ganji et al., 2003). ApoB is present at a fixed ratio of one 

molecule per particle, and does not exchange between particles as the other 

apolipoproteins do. In addition, therapies that result in lowering apoB levels can 

translate into lower risk of cardiovascular disease (Ganji et al., 2003). In this study, 

apoB expression was suppressed and only observed towards the end of the treatment 

phase. It is speculated that niacin-mediated inhibition of TG synthesis may have 

decreased the lipidation of apoB and translocation through endoplasmic reticular (ER) 

membrane which may have led to increased intracellular apoB degradation. Increased 
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hepatocyte apoB degradation by niacin would then decrease the number of VLDL and 

their catabolic products, LDL particles, which explains the lower apoB and LDL 

concentrations observed clinically after niacin treatment in the African green monkey. 

In 1999 Jin and colleagues also reported similar findings of niacin to have shown to 

accelerate intracellular apoB degradation by inhibiting TG synthesis in human HepG2 

cells (Kang et al., 2011); however, this matter has been extensively discussed in 

literature and is still being debated. 

 

 

4.4 CONCLUSION 

 

The purpose of this study was not to add new knowledge to lipidology, genetics or the 

mechanism of action of niacin, but to produce new insights into medical primatology 

by defining the African green monkey biology aspects that have not been studied 

before. The main objective of the study was to investigate the influence of genetic 

variation in a therapeutic intervention using niacin as a lipid-lowering drug in the 

African green monkey. Niacin was only used as a tool to effect changes in lipid 

metabolism, not as an object of the research. 

 

The following objectives were achieved: 

1. Ten “candidate genes” linked to lipid metabolism were identified and screened 

for coincident single-nucleotide polymorphisms (cSNPs) known to be 

involved in reverse cholesterol transport pathway, six of which were identified 

for the first time in the African green monkey. 

2. A four months pharmacological intervention study using niacin as the drug-

lowering agent was conducted. Niacin successfully increased plasma HDL and 

over a period of 12 weeks during the treatment phase. 
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3. The expression profile of the selected “candidate” genes.  

 

 

A combined use of biochemistry and molecular biology offered the basis for 

systematic dissection of the effects of niacin treatment in a nonhuman primate model 

closely related to humans. The characterisation of individual polymorphisms 

implicated in lipid metabolism is challenging, but essential for optimising the 

regulation and function of the RCT pathway.  It is noteworthy that linkage 

disequilibrium may exist between genes involved in RCT; therefore the influence of 

one cSNP on the effect of drug therapy may be inter-depended within different genes 

in the African green monkey as it is in humans.  

 

The results in this study showed that niacin treatment is associated with considerable 

reduction in LDL-C and up-regulation of HDL synthesis. Niacin treatment influenced 

the expression of genes involved in RCT pathway and the genetic variation in these 

genes could further modify the anti-atherosclerotic effect of niacin in the African 

green monkey. However, the findings of this study based on the biochemical and 

expression differences would be more attributed to the treatment, and not the presence 

of response modifying cSNPs (at the loci tested, as well as at other untested loci), 

especially due to the genetic identical nature of this colony. 
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APPENDIX I: BIOCHEMISTRY ANALYSIS 
 

 

 

1. Analyses performed at PathCare Pathology Laboratories  

 

1.1 Plasma cholesterol:     

 

CHOL reagent is used to measure cholesterol concentration by a timed-endpoint 

method. In the reaction, cholesterol esterase (CE) hydrolyzes cholesterol esters to free 

cholesterol and fatty acids. Free cholesterol is oxidized to cholestene-3-one and 

hydrogen peroxide by cholesterol oxidase (CO). Peroxidase catalyzes the reaction of 

hydrogen peroxide with 4-aminoantipyrine (4-AAP) and phenol to produce a coloured 

quinoneimine product (SYNCHRON LX Systems Manual, 2000). 

 

 

1.2 HDL-cholesterol: 

       

Two point calibration colorimetric end point. SYNCHRON Systems HDL Cholesterol 

(HDLD) Reagent, when used in conjunction with SYNCHRON Systems Lipid 

calibrator, is intended for the quantitative determination of HDL cholesterol in the 

high density lipoprotein (HDL) fraction of serum or plasma on SYNCHRON systems 

(SYNCHRON LX Systems Manual, 2000). 

 

1.3 Triglycerides:   

  

Triglycerides GPO reagent is used to measure the triglycerides concentration by a 

timed endpoint method. 
 T

riglycerides in the sample are hydrolyzed to glycerol and 

free fatty acids by the action of lipase. A sequence of three coupled enzymatic steps 

using glycerol kinase (GK), glycerophosphate oxidase (GPO), and horseradish 
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peroxidase (HPO) causes the oxidative coupling of 3,5-dichloro-2-

hydroxybenzenesulfonic acid (DHBS) with 4-aminoantipyrine to form a red 

quinoneimine dye (SYNCHRON LX Systems Manual, 2000). 

 

1.4 LDL-cholesterol:    

     
The liquid, ready-to-use SYNCHRON® Systems Direct LDL Cholesterol reagent is a 

homogeneous assay that eliminates off-line pretreatment and centrifugation steps. The 

method depends on the properties of a unique detergent, which solubilizes only the 

non-LDL lipoprotein particles and releases cholesterol to react with cholesterol 

esterase and cholesterol oxidase to produce a non-color forming product. A second 

detergent solubilizes the remaining LDL particles and a chromogenic coupler allows 

for colour formation (SYNCHRON LX Systems Manual, 2000).
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2. FIGURES AND RAW DATA TABLES 

 

Table A1: Total cholesterol (mmol/L), values during treatment phase highlighted: means (yellow), SD (green)  

      and P-value (pink)  

 
Treatment No. 04.02.08 18.02.08 03.03.08 17.03.08 31.03.08 14.04.08 29.04.08 12.05.08 26.05.08 09.06.08 23.06.08 

Group 1 795 8.00 6.80 6.70 7.50 7.80 8.30 8.10 6.60 7.00 6.70 4.20 

Niacin 322 4.50 4.80 5.6 8.10 7.30 7.30 7.00 6.30 5.40 3.80 3.20 

 339 4.50 5.20 5.2 5.20 5.70 7.10 5.70 7.40 5.90 4.70 4.80 

 77 4.70 4.90 4.5 6.30 7.90 6.00 6.50 4.90 5.20 4.40 6.00 

 Mean 5.43 5.43 5.50 6.78 7.18 7.18 5.66 6.30 5.88 4.90 4.55 

 SD 1.72 0.93 0.92 1.29 1.02 0.94 1.00 1.04 0.81 1.26 1.17 

Group 2 108 4.70 6.30 6.0 5.4 5.1 5.20 5.60 4.90 4.60 4.80 4.80 

Control 243 6.00 6.90 7.2 7.4 5.9 6.20 6.30 5.50 5.50 5.40 5.50 

 215 5.20 5.00 4.7 5.5 4.7 5.40 5.60 5.70 5.70 5.80 5.10 

 97 3.70 3.90 4.0 4.0 4.1 4.00 4.20 4.00 4.40 4.30 3.70 

 Mean 4.90 5.53 5.48 5.58 4.95 5.20 5.43 5.03 5.05 5.08 4.78 

 SD 0.96 1.34 1.42 1.40 0.75 0.91 0.88 0.76 0.65 0.66 0.77 

p-value  0.62 0.91 0.98 0.25 0.01 0.02 0.08 0.10 0.16 0.82 0.76 

 

 

Table A2: HDL-cholesterol (mmol/L), values during treatment phase highlighted: means (yellow), SD (green)  

      and P-value (pink)  

 
Treatment No. 04.02.08 18.02.08 03.03.08 17.03.08 31.03.08 14.04.08 29.04.08 12.05.08 26.05.08 09.06.08 23.06.08 

Group 1 795 3.50 3.10 3.60 5.00 5.40 5.00 5.10 3.80 4.20 3.10 2.00 

Niacin 322 1.80 2.70 3.3 4.70 4.60 4.10 3.90 3.40 3.30 1.90 1.50 

 339 2.00 2.80 2.7 3.40 3.60 4.00 3.30 4.30 3.60 2.50 2.40 

 77 1.40 2.10 2.2 3.50 3.50 2.70 3.20 2.50 2.80 1.80 3.20 

 Mean 2.18 2.90 3.45 4.85 4.28 3.95 3.88 3.50 3.48 2.33 2.28 

 SD 0.92 0.42 0.62 0.82 0.90 0.95 0.87 0.76 0.59 0.60 0.72 

Group 2 108 1.00 1.60 1.60 1.40 1.70 1.60 1.80 1.80 1.90 1.80 1.50 

Control 243 2.80 3.00 3.10 3.50 2.80 3.50 3.70 3.00 3.00 3.00 3.00 

 215 2.70 2.40 2.20 2.40 2.20 2.50 2.60 3.00 3.20 3.40 2.90 

 97 1.60 2.00 2.00 2.00 2.10 2.20 2.30 2.20 2.40 2.30 2.00 

 Mean 2.03 2.25 2.23 2.33 2.20 2.45 2.60 2.50 2.63 2.63 2.35 

 SD 0.87 0.60 0.63 0.88 0.45 0.79 0.80 0.60 0.59 0.71 0.72 

p-value  0.82 0.29 0.15 0.02 0.01 0.05 0.08 0.09 0.09 0.54 0.89 
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Table A3: LDL-cholesterol (mmol/L), values during treatment phase highlighted: means (yellow), SD (green)  

      and P-value (pink)  

 
Treatment No. 04.02.08 18.02.08 03.03.08 17.03.08 31.03.08 14.04.08 29.04.08 12.05.08 26.05.08 09.06.08 23.06.08 

Group 1 795 3.1 2.00 1.60 1.40 1.00 1.80 1.50 1.40 1.20 2.10 1.90 

Niacin 322 2.10 1.40 0.60 1.60 1.10 2.50 2.10 1.80 1.60 1.50 1.30 

 339 2.10 1.70 1.50 0.90 1.60 2.10 1.00 2.20 1.50 1.90 1.80 

 77 3.00 2.20 1.40 2.00 3.70 3.00 2.70 1.80 2.00 2.40 2.20 

 Mean 2.58 1.83 1.28 1.48 1.85 2.35 1.83 1.80 1.58 1.98 1.80 

 SD 0.55 0.35 0.46 0.46 1.26 0.52 0.74 0.33 0.33 0.38 0.37 

Group 2 108 3.60 4.20 3.70 3.60 3.10 3.20 3.40 2.70 2.60 3.00 3.00 

Control 243 2.80 3.00 3.20 3.00 2.50 2.50 2.20 2.10 2.00 1.90 2.00 

 215 2.00 2.30 1.90 2.50 2.10 2.60 2.50 2.30 2.10 2.30 1.80 

 97 1.40 1.20 1.30 1.40 1.40 1.40 1.40 1.30 1.40 1.50 1.20 

 Mean 2.45 2.68 2.53 2.63 2.28 2.43 2.38 2.10 2.03 2.18 2.00 

 SD 0.96 1.26 1.11 0.93 0.71 0.75 0.83 0.59 0.49 0.64 0.75 

p-value  0.41 0.14 0.05 0.04 0.29 0.44 0.17 0.21 0.09 0.31 0.31 

 

 

Table A4: triglycerides (mmol/L), values during treatment phase highlighted: means (yellow), SD (green)  

      and P-value (pink)  

 
Treatment No. 04.02.08 18.02.08 03.03.08 17.03.08 31.03.08 14.04.08 29.04.08 12.05.08 26.05.08 09.06.08 23.06.08 

Group 1 795 0.8 0.59 0.56 0.41 0.91 1.9 1.33 0.46 0.54 1.09 0.79 

Niacin 322 0.42 0.71 0.42 0.53 0.69 2.04 0.44 0.97 0.81 0.63 1.94 

 339 0.33 0.37 0.19 0.40 0.31 0.87 0.65 0.48 0.42 0.26 0.43 

 77 1.22 0.92 1.51 0.92 2.21 2.66 1.75 1.87 1.56 0.74 0.92 

 Mean 0.69 0.65 0.49 0.47 1.03 1.87 1.04 0.95 0.83 0.68 1.02 

 SD 0.40 0.23 0.58 0.24 0.82 0.74 0.61 0.66 0.51 0.34 0.65 

Group 2 108 0.41 0.78 0.61 0.36 0.87 1.72 0.36 1.24 0.57 0.63 0.44 

Control 243 0.37 0.96 0.90 0.80 1.58 0.60 0.36 0.66 0.82 0.54 0.39 

 215 1.21 1.77 0.76 0.64 1.85 1.13 0.81 0.56 0.69 0.62 0.95 

 97 1.69 1.19 0.7 0.75 1.56 0.79 1.34 1.08 0.64 0.88 1.24 

 Mean 0.92 1.18 0.74 0.64 1.47 1.06 0.72 0.89 0.68 0.67 0.76 

 SD 0.64 0.43 0.12 0.20 0.42 0.49 0.47 0.33 0.11 0.15 0.41 

p-value  0.57 0.09 0.82 0.66 0.40 0.13 0.43 0.88 0.60 0.95 0.52 
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Table A5: apoA-1 (gl/L), values during treatment phase highlighted: means (yellow), SD (green) and P-value (pink)  

 
Treatment No. 04.02.08 18.02.08 03.03.08 17.03.08 31.03.08 14.04.08 29.04.08 12.05.08 26.05.08 09.06.08 23.06.08 

Group 1 795 2.6 2.69 2.65 2.20 3.24 3.18 3.61 3.32 1.60 3.20 2.93 

Niacin 322 1.80 2.41 2.63 2.36 3.07 3.14 2.96 3.00 2.68 2.01 1.74 

 339 1.78 2.14 2.28 1.93 2.51 3.05 2.87 3.32 3.09 2.35 2.19 

 77 1.73 2.12 2.36 2.49 3.27 2.66 2.84 2.77 2.65 2.05 2.00 

 Mean 1.99 2.34 2.64 2.28 3.02 2.64 3.07 3.10 2.51 2.40 2.22 

 SD 0.37 0.27 0.19 0.24 0.35 0.24 0.36 0.27 0.64 0.55 0.51 

Group 2 108 1.14 1.77 1.63 1.25 1.62 1.61 1.74 1.8 1.91 1.75 1.62 

Control 243 2.02 2.49 2.22 2.22 2.29 2.55 2.53 2.52 2.58 2.5 2.46 

 215 2.09 1.95 1.84 1.59 1.92 2.17 2.13 2.42 2.42 2.51 2.14 

 97 1.92 2.17 2.01 1.66 2.14 2.14 2.3 2.28 2.36 2.32 2.12 

 Mean 1.79 2.10 1.93 1.68 1.99 2.12 2.18 2.26 2.32 2.27 2.09 

 SD 0.44 0.31 0.25 0.40 0.29 0.39 0.33 0.32 0.29 0.36 0.35 

p-value  0.56 0.28 0.01 0.06 0.00 0.01 0.01 0.00 0.62 0.70 0.69 

 

 

Table A6: Bodyweight (Kg) 

 
Treatment No. 04.02.08 18.02.08 03.03.08 17.03.08 31.03.08 14.04.08 29.04.08 12.05.08 26.05.08 09.06.08 23.06.08 

Group 1 795 3.56 3.38 3.30 3.20 3.17 3.12 3.18 3.28 3.29 3.38 3.62 

Niacin 322 3.02 3.04 2.96 2.90 2.94 2.96 2.88 2.92 3.04 3.12 3.25 

 339 3.29 3.35 3.28 3.20 3.05 3.12 2.90 3.10 3.33 3.40 3.42 

 77 3.30 3.37 3.28 3.17 3.26 3.28 3.46 3.40 3.53 3.50 3.71 

 Mean 3.29 3.29 3.21 3.12 3.11 3.12 3.11 3.18 3.30 3.35 3.50 

 SD 0.22 0.16 0.16 0.15 0.14 0.13 0.27 0.21 0.20 0.16 0.21 

Group 2 108 3.55 3.75 3.75 3.72 3.78 3.7 3.78 3.81 3.76 3.84 3.76 

Control 243 3.84 3.93 3.93 3.9 3.90 3.84 3.9 3.95 4.0 4.00 4.05 

 215 3.68 3.66 3.66 3.58 3.63 3.52 3.58 3.6 3.64 3.58 3.6 

 97 3.50 3.55 3.62 3.54 3.74 3.7 3.82 3.4 3.9 4.02 4.06 

 Mean 3.64 3.72 3.74 3.69 3.76 3.69 3.77 3.69 3.83 3.86 3.87 

 SD 0.15 0.16 0.14 0.16 0.11 0.13 0.14 0.24 0.16 0.20 0.23 

p-value  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.05 
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3. LOG SHEET SAMPLE 

 
Check list: behaviour 

 
0 = absent, not observed, not displayed   + = weak, poor, minimal 

 

++ = normal, average, moderate  +++ = excessive, strong 
 

Date Exp. 

No. 

Monkey 

No. 

alert fearful aggressive confused depressed vocalization 

         

         

         

         

         

 
 
Check list: motor function and activity 

 
0 = absent, not observed, not displayed   + = weak, poor, minimal 

 

++ = normal, average, moderate  +++ = excessive, strong 
 

Date Exp. 

No. 

Monkey 

No. 

posture coordination locomotion active Use of exercise cage 

        

        

        

        

        

 
 

Check list: physical 

 
0 = absent, not observed, not displayed      + = weak, poor, minimal 

 

++ = normal, average, moderate     +++ = excessive, strong, copious 

 

disc. = discoloured  d = discharge        s = soft  w = watery 
 

 

Date Exp. No. Monkey 

No. 

coat feces urine eyes nose ears genitals rectal 
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APPENDIX II: MOLECULAR BIOLOGY 
 

 
 1. PURIFICATION OF GENOMIC DNA FROM WHOLE BLOOD 

 
AxyPrep Blood Genomic DNA Miniprep Kit was used to extract DNA from whole 

blood of the African green monkeys. This method is based on the efficient release of 

genomic DNA from anti-coagulated whole blood by a special cell lysis and 

heme/protein precipitation buffer (Buffer AP1) coupled with the selective adsorption 

of the genomic DNA to a special AxyPrep column. The purified genomic DNA is 

eluted in a low-salt Tris buffer containing 0.5 mM EDTA, which enhances DNA 

solubility and helps to protect the high molecular weight DNA against subsequent 

nuclease degradation. Blood genomic DNA is directly isolated from the white blood 

cell (WBC) component of whole blood, without the need to remove the red blood 

cells (RBCs) in advance. 

 

The procedure was performed according to the manufacturer’s instructions. For 

maintaining the integrity and reactivity of the genomic DNA, particularly in PCR, the 

purified genomic DNA was eluted and stored in low-salt Tris buffer containing 0.5-1 

mM EDTA. 

 

2. SPECTROPHOTOMETRIC QUANTIFICATION OF NUCLEIC ACIDS  
 (Maniatis, 1989) 

 

DNA quantification was performed at the wavelengths of 260 nm and 280 nm. The 

reading at 260nm allows calculation of the concentration of nucleic acid in the 

sample, where an OD of 1 corresponds to approximately 50u g/mL for double-

stranded DNA. The ratio between the readings at 260nm and 280 nm (OD260/OD280) 
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provides an estimate of the purity of the nucleic acid, with pure preparations of DNA 

giving OD260/OD280 values of 1.8. Accurate quantification of the amount of nucleic 

acid is only possible if there is no protein or phenol contamination of the sample.   

 

 

3. SEQUENCING REACTIONS 

Sequencing was performed using the ABI PRISM Big Dye Terminator Cycle 

Sequencing Ready Reaction Kit (Perkin-Elmer).  Approximately 200 ng DNA was 

used per reaction, and half shots were used (Table A7) 

 

Table A7:   Sequencing reactions, as described in the Perkin-Elmer ABI PRISM 

Big Dye Terminator Cycle Sequencing Ready Reaction Kit manual 

(1998). 

Reagent Quantity 

Terminator Ready Reaction mix (dye terminators, dUTP
*
, dCTP, dATP, 

dITP
**

, AmpliTaq DNA polymerase, rTth pyrophoshatase, magnesium 

chloride, buffer) 

8 L 

DNA template 100 - 200 ng 

-21 M13 Primer (forward)  1.6 pmol 

dddH2O x 

Total volume 10 L 

 

*
 dITP is used in place of dGTP to minimise band compressions 

**
 dUTP is used in place of dTTP as it results in a better T patterns because dUTP 

improves     incorporation of T terminators. 

The reagents were vortexed then spun briefly before the PCR sequencing reaction was 

started (Table A8). 
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Table A8: Sequencing reaction using a Hybaid PCR Sprint Thermal Cycler 

 Temperature Time 

Denaturing 96
o
C 10 seconds 

Annealing 50
o
C 5 seconds 

Extension 60
o
C 4 minutes 

Repeat this sequence for 25 cycles, then store at 4
o
C before purification  

 

 

4. ELECTROPHORESIS 

4.1 AGAROSE GEL ELECTROPHORESIS 

Agarose gels were made by dissolving the appropriate amount of agarose in 1X TBE 

buffer (12.1 g Tris, 0.37 g EDTA and 5.14 g Boric acid made up to 1L and adjusted to 

pH 8.4 with 1 M HCl) for 0.8 - 1.5 % gels, depending on the fragment size loaded 

onto the gel.  Genomic DNA was run on 0.8% gels, whereas 1.5% gels were used 

with fragment sizes of 190 bp and 550 bp. The agarose gels were electrophoresed in 

TBE buffer at a voltage range between 80 - 120 V for approximately 1 hour.  Samples 

were loaded into the wells with 10% tracking dye.  0.5 g/mL ethidium bromide 

added to the gels to allow visualisation of DNA when it was placed on a UV 

transilluminator, which caused any DNA bound to ethidium bromide to fluoresce.    

 

Tracking Dye III (Maniatis et al, 1993) 

0.25% bromophenol blue 

0.25% xylene cyanol FF 

30% glycerol in ddH2O 

Store at 4
o
C 
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Markers 

A 100bp DNA Ladder from Promega was used. This Ladder is ready for 5´ end-

labeling with radioisotopes using T4 Polynucleotide Kinase, allowing visualization by 

autoradiography. A Blue/Orange Loading Dye, 6X, was provided. 
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5. DNA SEQUENCES 

 

 

Table A9(1): Oligonucleotide sequences of SNPs 

  

Gene SNP Id Forward 5’ Reverse 3’ Position Allele 

1/2 

Temp 

(ºC) 
ABCA1 Ile883Met GAGAAGAGCCACCC 

TGGTTCCAACCAGA 

AGAGGAT 

AAGGCAGGAGACA 

TCGCTT 

Exon 18 (H7) 

 

T/C 54 

 E1172D   GAGCAGTTCTGATGC 

TGGCCTGGGCAGCGA 

CCACGA 

TCTGCACCTCTCCTC 

CTCTG 

Exon 24  

(R1 )  

C/G 51 

 V771M  CAAGTGAGTGCTTGG 

GATTG 

TGCTTTTATTCAGGG 

ACTCCA 

 

Exon 16  

(5th trm) 

G/A 55 

  V825I  CCCATGCACTGCAGA 

GATTC 

GCAAATTCAAATTTC 

TCCAGG 

Exon 17 

 (6th trm) 

G/A 46 

  R219K GTATTTTTGCAAGGCT 

ACCAGTTACATTTGACAA 

GATTGGCTTCAGGAT 

GTCCATGTTGGAA                                                     

Exon 7 (Ex  

N-term  loop) 

C/T 54 

CETP I405V  

 

CTCACCATGGGCATTT 

GATTGCAGAGCAGCTC 

CGACTCC 

AATGGGAAGCTCTGT 

CAGCCTCGGCCACCC

AG 

Exon 14  

 

A/G 56 

 Ala373Pro CACAGCAAATTTGGTT 

TCTCTCC 

CCCAGTCTATCCAAG 

ACTAC 

Exon 12   C/G 54 

CYP7A1 Asn233Ser  TCAGTTCTGAGATGCT 

TTCCC 

AGTCTTTCCAGCCCTG 

GTAG 

Exon 3 C/T 54 

 A-278C  AGTCCACAGGTATCAG 

AAGTG 

CCCCAGGTCCGAATG

TTAAG 

Promoter T/G 53 

apoE Cys112Arg 

(E4) 

TAAGCTTGGCACGGCT 

GTCCAAGGACCCGGCT 

GGGCGCGGACAT 

AGAGAATTCGCCCCG

GCCTGGTACACCGCTT

CGCGGATGGCGCTGA 

Exon 3 T/C 52 

 Arg158Cys 

(E2) 

CCCGGCTGGGCGCGGA 

CAT 

CGCTTCGCGGATGGC

GCTGA 

Exon 3 C/T 52 

apoA-1 Msp1  ACTCTTAAGTT 

CCACATTGCCAGGAC 

CTCTGTGCCCTTCTC 

CTCAC 

5’UTR G/A 56 

 G-75A  

 

AGGGACAGAGCTGATCC 

TTGAACTCTTAAG 

TTAGGGGACACCTAG

CCCTCAGGAAGAGCA 

Promoter G/A 51 

apoB T71I AATGCTCTGCTACCCTG 

AAT 

AACACACAAGTTCAT

ACCTC 

Exon 4 C/T 55 

 4311S CTGGCTTGCTAACCTCTCT

G 

GAGAAGCTTCCTGAA

GCTCG 

Exon 29 T/C 52 

LCAT Ser232Thr CTCATTGGCCACAGCCTC GGTGAGACCAAGCTG

ATCCT 

Exon 5 T/A 53 

 LCATu3 TATGAGGATGGTGATGAC 

ACGGT 

TTTGCTACCGTAAGCCC

TG 
Exon 6 C/T 50 

apoC-I HpaI ATCGATCACGACCCTCTC GCTACATTCTGAGTG

GGGGA 

Promoter T/A 51 

apoC-II Leu96Arg CTATGACGACCACCTGAGGG TGTCCCTGTCTGGATCC

TTC 
Promoter T/G 53 

 -62 A>C GAGAAGGTTCCCTGTGACGT 

GACCTT 
CAAAGATCGATAAAGCA Promoter A/C 52 

SR-B1 A350A TCCTTGTCTGATGTCCCCT

C 

TAAGGAACTTTGGTG

GCTCG 

Exon 8 C/T 51 

 G2S CCTCACCCACCTTAAGGA

CC 

CCTGTGTCGTCTCTGT

CGC 

Exon 1 G/A 49 
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SD = 

 

Table A9(2): The pattern of coincident SNPs (Hodgkinson et al., 2009) 

 

  SNP  
  Old World Monkey        

    C/T G/A C/A G/T C/G A/T 

Human C/T 3 840 11 181 98 197 73 

  G/A 14 3 708 95 171 189 101 

  C/A 226 107 291 3 48 27 

  G/T 114 254 0 304 48 16 

  C/G 190 194 46 51 217 3 

  A/T 81 89 33 19 0 532 

 

 

6. STATISTICAL ANALYSIS 

6.1 Standard deviation 

Statistical computations were performed using Computer software.  The data 

pertaining to anthropometric measurements were subjected to the mean value 

analysis. 

   .   ΣX   . 

        n 

Where X = Arithmetic Mean 

 ΣX = Arithmetic Mean 

 n = Total number of variables 

To find out the degree of dispersion of recorded data around the mean, standard 

 

      Σ(    ∑ X-X)
2       

.
 

                 n  
 

Where SD    =   Standard deviation 

            X-X  =  Deviation of value from the mean  

            n       =  Total number of observations in the sample. 

 

X 

 √ 
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√ 

 

t = 

√ 

 

S = 

6.2 Student ‘t’ test 

Two –tailed Student ‘t’ test was performed to find the difference in the mean values of 

control and experimental groups of the African green monkeys. 

 

   .       X1-X2        . 

              S    1/n1+1/n2 

 

 

   .     Si2n1 + S2n2     . 
    n1+n2-2 
 

 

Where X1  =  Mean of first sample with standard deviation S1. 

X2  =  Mean of Second Sample with standard deviation S2 

   S  =  Combined standard deviation 

 The level of significance and noted from ‘t’ table against the degree of 

freedom (df). 

  df = n1+n2-2 

 

6.3 The Pearson correlation coefficient  

The Pearson correlation measures the correlation or strength of linear dependence 

between two variables X and Y. 

It returns values between +1 and −1 inclusive. 

 1 implies that Y increases as X increases.  

 0 implies that there is no linear correlation between the variables.  

 −1 implies that Y decreases as X increases.  
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r = 

√ 

 

 

A correlation coefficient ‘r’ is an index that measures the strength of a relationship 

between the two variables in a given set of data.  It was used to find the correlation 

between HDL-C and expression profiles of selected lipid metabolism genes.  The 

values of the correlation coefficient lie between +1 and -1 for complete positive and 

negative correlation. Complete correlation describes a situation where all readings lie 

on a straight line having either positive or negative slope.  Correlation coefficient near 

‘zero’ represents situation where there is no particular tendency for two sets of data to 

cover linearly. 

 

Correlation coefficient ‘r’ is given by the following formula: 

.           [(ΣXY)] – [{(ΣX) (ΣY)}/n]            . 

[{(ΣX
2
) – (ΣX)

2
}/N] [{(ΣY

2
) – (ΣY)

2
}/N] 

 

where  r  =  Correlation coefficient. 

ΣXY  =  Sum of cross-products of variables ‘X’ and ‘Y’ for ‘n’  subjects.  

        ΣX  =  Sum of individual values of ‘X’ of ‘n’ subjects. 

        ΣY  =  Sum of individual values of ‘Y’ and ‘n’ subjects 

X and Y =  Mean values of variables ‘X’ and ‘Y’ 

          N  =  Number of pairs of observations 

 

A significant correlation was tested by applying ‘t’ test. 

 

      t= r       (n-2) / (l-r) 

 

The value was checked at degree of freedom (df = n-2). 
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Table A10: Correlation coefficient between HDL-C and gene expression profiles  

             

                    during niacin treatment intervention study  

 

 

 
 

* r = (a value between -1 and +1), 

 

 

 

 

 

 

 

 

 

 

 

Time point HDL-C CETP ABCA1 LCAT SR-B1 APOA-1 APOE APOC1 APOB CYP7A1 APOC11

04.02.08 2.18 1.21 0.36 0.45 0.71 0.80 0.31 1.05 0.00 4.57 0.93

18.02.08 2.90 1.80 0.96 1.00 0.82 0.52 3.93 0.76 0.00 1.33 3.28

03.03.08 3.45 1.18 2.35 0.25 0.73 1.22 1.95 0.55 0.00 1.64 0.05

17.03.08 4.85 1.22 1.03 0.86 0.77 0.00 5.65 0.57 0.00 0.54 0.40

31.03.08 4.28 2.60 1.51 0.80 0.68 0.12 5.62 0.48 0.00 0.95 0.04

14.04.08 3.95 0.79 0.79 0.79 1.83 3.34 6.51 0.45 0.64 3.36 0.00

29.04.08 3.88 0.92 0.62 1.56 1.62 1.78 0.94 0.65 0.45 2.88 0.00

12.05.08 3.50 0.86 0.52 0.53 1.34 0.04 1.04 1.00 0.56 2.29 0.00

26.05.08 3.48 0.69 0.58 0.55 0.87 2.58 0.60 1.29 0.63 1.55 0.26

09.06.08 2.33 2.19 2.77 1.03 2.67 1.34 2.69 1.34 2.67 0.43 0.00

p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 0.49 p < 0.001 p < 0.001 0.03 1.45

correlation coefficient (r) -0.14 -0.17 0.16 -0.27 -0.01 0.56 -0.69 -0.95 -0.30 -0.33
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7. GENE EXPRESSION DATA 

 

 

Table: A11: CETP mRNA expression (a.u) 

 

 
 

 

 

 

 

Table: A12: ABCA1 mRNA expression (a.u) 

 

 
 

CETP Baseline: 04.02.08 Week 2: 18.02.08 Week 4: 03.03.08 Week 6: 17.03.08 Week 8: 31.03.08 Week 10: 14.04.08 Week 12: 29.04.08 Week 14: 12.05.08 Week 16: 26.05.08 Week 18: 09.06.08

control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin

0.01 0.03 0.01 0.03 0.00 0.00 0.03 0.00 0.01 0.02 0.01 0.01 0.05 0.03 0.01 0.00 0.00 0.01 0.00 0.03

0.01 0.03 0.00 0.03 0.01 0.01 0.00 0.02 0.01 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.01 0.02 0.00 0.00

0.03 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.03 0.01 0.02 0.02 0.00 0.01 0.00

0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.02 0.01 0.05 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.03 0.00 0.04

mean 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.02

sd 0.01 0.02 0.01 0.02 0.00 0.02 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02

p-value 0.77 0.43 0.76 0.78 0.37 0.04 0.84 0.33 0.41 0.29

ABCA1 Baseline: 04.02.08 Week 2: 18.02.08 Week 4: 03.03.08 Week 6: 17.03.08 Week 8: 31.03.08 Week 10: 14.04.08 Week 12: 29.04.08 Week 14: 12.05.08 Week 16: 26.05.08 Week 18: 09.06.08

control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin

0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.02 0.01 0.00 0.01 0.00 0.01

0.03 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.01

0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.00

0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.02 0.00 0.01 0.01 0.01 0.02

mean 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

sd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01

p-value 0.21 0.92 0.36 0.94 0.39 0.62 0.48 0.16 0.20 0.97
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Table: A13: LCAT mRNA expression (a.u) 

 

 
 

 

 

 

 

 

Table: A14: SRB1 mRNA expression (a.u) 

 

 
 

 

 

LCAT Baseline: 04.02.08 Week 2: 18.02.08 Week 4: 03.03.08 Week 6: 17.03.08 Week 8: 31.03.08 Week 10: 14.04.08 Week 12: 29.04.08 Week 14: 12.05.08 Week 16: 26.05.08 Week 18: 09.06.08

control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin

0.00 1.25 0.26 0.83 0.65 0.58 0.39 1.00 0.56 0.93 0.24 0.58 0.06 0.33 0.24 0.24 0.28 0.11 0.00 1.18

1.12 0.38 0.69 1.24 0.25 0.15 0.51 0.35 0.29 0.54 0.10 0.21 0.08 0.23 0.31 0.00 0.43 0.31 0.29 0.30

0.36 0.00 0.47 0.25 0.66 0.33 0.43 0.22 0.54 0.37 0.20 0.20 0.24 0.29 0.28 0.21 0.16 0.10 0.40 0.40

1.85 0.28 0.91 0.00 2.69 0.00 1.28 0.66 1.29 0.30 1.02 0.25 0.24 0.13 0.87 0.45 0.62 0.30 0.89 0.28

mean 0.83 0.48 0.58 0.58 1.06 0.26 0.65 0.56 0.67 0.53 0.39 0.31 0.16 0.24 0.42 0.23 0.37 0.20 0.53 0.54

sd 0.83 0.54 0.28 0.56 1.10 0.25 0.42 0.35 0.43 0.28 0.42 0.18 0.10 0.09 0.30 0.19 0.20 0.12 0.32 0.43

p-value 0.50 1.00 0.24 0.75 0.62 0.73 0.23 0.31 0.20 0.62

SRB1 Baseline: 04.02.08 Week 2: 18.02.08 Week 4: 03.03.08 Week 6: 17.03.08 Week 8: 31.03.08 Week 10: 14.04.08 Week 12: 29.04.08 Week 14: 12.05.08 Week 16: 26.05.08 Week 18: 09.06.08

control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin

0.03 0.16 0.08 0.10 0.12 0.08 0.05 0.08 0.10 0.11 0.02 0.03 0.04 0.15 0.03 0.04 0.03 0.06 0.00 0.26

0.18 0.07 0.06 0.08 0.07 0.05 0.09 0.04 0.07 0.05 0.02 0.06 0.08 0.10 0.08 0.17 0.06 0.05 0.04 0.18

0.11 0.00 0.07 0.06 0.09 0.06 0.05 0.03 0.10 0.06 0.04 0.08 0.07 0.10 0.06 0.08 0.03 0.04 0.08 0.18

0.12 0.09 0.08 0.00 0.09 0.08 0.07 0.05 0.14 0.05 0.04 0.06 0.06 0.06 0.10 0.06 0.07 0.03 0.08 0.09

mean 0.11 0.08 0.07 0.06 0.09 0.07 0.07 0.05 0.10 0.07 0.03 0.06 0.06 0.10 0.07 0.09 0.05 0.04 0.12 0.07

sd 0.06 0.06 0.01 0.04 0.02 0.01 0.02 0.02 0.03 0.03 0.01 0.02 0.02 0.04 0.06 0.03 0.02 0.01 0.02 0.07

p-value 0.51 0.58 0.08 0.35 0.16 0.08 0.13 0.52 1.00 0.03
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Table: A15: apoCI mRNA expression (a.u) 

 

 
 

 

 

 

 

Table: A16: apoB mRNA expression (a.u) 

 

 
 

 

 

 

 

apoCI Baseline: 04.02.08 Week 2: 18.02.08 Week 4: 03.03.08 Week 6: 17.03.08 Week 8: 31.03.08 Week 10: 14.04.08 Week 12: 29.04.08 Week 14: 12.05.08 Week 16: 26.05.08 Week 18: 09.06.08

control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin

3E-04 3E-04 2E-04 7E-04 5E-04 0E+00 7E-04 4E-04 4E-04 5E-04 7E-05 4E-05 2E-04 4E-04 0E+00 0E+00 0E+00 7E-05 0E+00 0E+00

2E-03 2E-04 1E-03 4E-04 5E-04 3E-04 1E-04 3E-04 3E-04 4E-04 8E-05 2E-05 5E-05 5E-04 0E+00 0E+00 2E-05 0E+00 4E-03 2E-03

2E-04 2E-03 2E-04 4E-04 3E-04 4E-04 6E-04 3E-04 2E-04 2E-04 1E-04 4E-05 5E-05 8E-05 2E-05 2E-05 1E-04 0E+00 6E-05 2E-03

4E-04 3E-04 5E-04 0E+00 9E-04 2E-04 3E-04 0E+00 2E-03 2E-04 6E-05 4E-05 1E-03 0E+00 0E+00 0E+00 9E-05 0E+00 2E-04 1E-03

mean 8E-04 8E-04 5E-04 4E-04 5E-04 3E-04 4E-04 2E-04 7E-04 3E-04 8E-05 4E-05 4E-04 2E-04 2E-05 2E-05 6E-05 7E-05 1E-03 2E-03

sd 4E-04 3E-04 5E-04 7E-04 9E-04 0E+00 3E-04 4E-04 2E-03 5E-04 6E-05 4E-05 1E-03 4E-04 0E+00 0E+00 9E-05 7E-05 2E-04 0E+00

p-value 0.96 0.68 0.08 0.32 0.44 0.04 0.68 1.00 0.29 0.76

apoB Baseline: 04.02.08 Week 2: 18.02.08 Week 4: 03.03.08 Week 6: 17.03.08 Week 8: 31.03.08 Week 10: 14.04.08 Week 12: 29.04.08 Week 14: 12.05.08 Week 16: 26.05.08 Week 18: 09.06.08

control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin

9E-05 3E-04 7E-04 0E+00 7E-04 2E-03 2E-04 3E-04 1E-02 1E-02

7E-04 1E-04 3E-04 6E-04 8E-04 0E+00 3E-04 2E-04 5E-04 1E-02

2E-04 2E-04 2E-04 5E-04 4E-04 4E-04 1E-03 4E-04 6E-04 2E-02

4E-04 3E-04 2E-03 4E-04 2E-03 3E-04 4E-04 2E-04 0E+00 7E-03

mean 3E-04 2E-04 8E-04 4E-04 1E-03 5E-04 5E-04 3E-04 5E-03 1E-02

sd 4E-04 3E-04 2E-03 0E+00 2E-03 2E-03 4E-04 3E-04 6E-04 1E-02

p-value 0.42 0.38 0.39 0.43 0.06
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Table: A17: apoCII mRNA expression (a.u) 

 

 
 

 

 

 

 

Table: A18: apoAI mRNA expression (a.u) 

 

 
 

 

 

apoCII Baseline: 04.02.08 Week 2: 18.02.08 Week 4: 03.03.08 Week 6: 17.03.08 Week 8: 31.03.08 Week 10: 14.04.08 Week 12: 29.04.08 Week 14: 12.05.08 Week 16: 26.05.08 Week 18: 09.06.08

control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin

2E-05 5E-04 7E-05 2E-03 1E-03 0E+00 2E-05 0E+00 0E+00 3E-05 2E-04 0E+00 0E+00 1E-03 0E+00 0E+00 0E+00 5E-05 0E+00 0E+00

9E-04 2E-05 4E-05 0E+00 3E-05 2E-05 1E-04 0E+00 5E-04 0E+00 1E-04 0E+00 0E+00 0E+00 0E+00 0E+00 1E-04 0E+00 0E+00 0E+00

5E-05 1E-03 0E+00 0E+00 7E-04 0E+00 0E+00 1E-04 4E-05 0E+00 2E-05 0E+00 0E+00 0E+00 0E+00 0E+00 3E-04 0E+00 0E+00 0E+00

9E-05 0E+00 0E+00 0E+00 0E+00 4E-05 9E-04 1E-04 2E-03 6E-04 0E+00 0E+00 0E+00 6E-04 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00

mean 3E-04 2E-04 5E-05 2E-03 6E-04 3E-05 3E-04 1E-04 8E-04 3E-05 1E-04 0E+00 0E+00 1E-03 0E+00 0E+00 0E+00 5E-05 0E+00 0E+00

sd 9E-05 5E-04 0E+00 2E-03 0E+00 0E+00 9E-04 0E+00 3E-05 2E-03 0E+00 0E+00 0E+00 1E-03 0E+00 0E+00 0E+00 5E-05 0E+00 0E+00

p-value 0.63 0.42 0.20 0.43 0.41 0.15 0.23 0.28

apoAI Baseline: 04.02.08 Week 2: 18.02.08 Week 4: 03.03.08 Week 6: 17.03.08 Week 8: 31.03.08 Week 10: 14.04.08 Week 12: 29.04.08 Week 14: 12.05.08 Week 16: 26.05.08 Week 18: 09.06.08

control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin

1E-05 8E-06 0E+00 8E-05 3E-05 2E-04 0E+00 0E+00 0E+00 0E+00 0E+00 8E-07 7E-06 0E+00 0E+00 0E+00 0E+00 0E+00 1E-03 0E+00

6E-05 6E-05 1E-04 3E-05 0E+00 3E-05 1E-05 0E+00 0E+00 0E+00 2E-06 6E-06 9E-07 2E-05 3E-05 4E-06 1E-05 5E-04 0E+00 2E-03

0E+00 0E+00 0E+00 0E+00 2E-05 1E-05 0E+00 0E+00 4E-04 2E-05 3E-05 1E-04 2E-04 0E+00 1E-04 0E+00 0E+00 2E-06 2E-04 3E-04

4E-05 3E-05 0E+00 0E+00 8E-05 1E-05 2E-05 0E+00 0E+00 3E-05 2E-04 0E+00 0E+00 0E+00 4E-06 2E-05 0E+00 2E-06 0E+00 0E+00

mean 4E-05 3E-05 1E-04 6E-05 4E-05 5E-05 1E-05 2E-04 0E+00 2E-05 2E-05 5E-05 6E-05 1E-04 0E+00 2E-06 7E-06 2E-04 6E-04 9E-04

sd 3E-05 3E-05 0E+00 4E-05 4E-05 7E-05 0E+00 0E+00 2E-04 2E-07 2E-05 8E-05 9E-05 1E-04 5E-05 3E-06 7E-06 3E-04 6E-04 1E-03

p-value 0.77 0.97 0.64 0.23 0.45 0.81 0.43 0.31 0.40 0.63
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Table: A19: CYP7A1 mRNA expression (a.u) 

 

 
 

 

 

Table: A20: apoE mRNA expression (a.u) 

 

 

CYP7A1 Baseline: 04.02.08 Week 2: 18.02.08 Week 4: 03.03.08 Week 6: 17.03.08 Week 8: 31.03.08 Week 10: 14.04.08 Week 12: 29.04.08 Week 14: 12.05.08 Week 16: 26.05.08 Week 18: 09.06.08

control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin

0.00 10.34 0.04 0.50 4.34 0.00 14.74 0.11 5.42 0.74 0.00 0.01 0.00 0.00 0.00 0.42 0.00 0.15 1.30 0.23

4.85 7.35 0.38 3.90 0.30 0.19 10.02 6.58 0.00 0.29 0.00 0.05 0.00 0.29 0.04 0.00 0.11 2.53 1.70 0.62

0.00 3.00 0.27 0.43 3.58 0.30 6.09 0.44 0.04 0.12 0.00 0.13 0.00 0.00 0.00 0.03 0.00 0.00 0.15 0.00

1.95 6.08 0.00 0.00 0.00 12.95 4.84 0.00 0.00 5.76 0.00 2.60 0.00 1.51 0.01 0.00 0.00 0.00 0.00 0.00

mean 1.70 6.69 0.17 1.61 2.05 3.36 4.42 2.38 1.82 1.73 0.00 0.70 0.00 0.90 0.02 0.42 0.06 0.90 1.00 0.43

sd 0.95 1.52 0.00 0.50 0.00 0.00 0.84 0.11 0.00 0.74 0.00 0.01 0.00 0.42 0.00 0.00 0.00 0.01 0.00 0.23

p-value 0.04 0.34 0.72 0.04 0.86 0.35 0.30 0.40 0.38 0.27

apoE Baseline: 04.02.08 Week 2: 18.02.08 Week 4: 03.03.08 Week 6: 17.03.08 Week 8: 31.03.08 Week 10: 14.04.08 Week 12: 29.04.08 Week 14: 12.05.08 Week 16: 26.05.08 Week 18: 09.06.08

control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin control niacin

6E-05 1E-04 1E-04 1E-03 2E-04 1E-03 9E-04 1E-03 2E-04 3E-04 1E-04 2E-04 1E-04 5E-05 5E-04 6E-04 7E-05 3E-05 0E+00 4E-03

1E-03 2E-04 2E-04 1E-03 2E-04 1E-04 3E-03 0E+00 7E-04 7E-05 2E-04 2E-04 8E-05 4E-05 3E-04 0E+00 9E-05 2E-04 4E-03 0E+00

9E-05 0E+00 9E-05 2E-04 1E-04 9E-05 1E-04 9E-04 1E-04 1E-04 9E-05 2E-04 5E-05 4E-05 1E-04 5E-04 3E-04 1E-04 3E-04 9E-03

1E-04 1E-04 3E-04 0E+00 3E-04 2E-04 1E-03 2E-03 4E-04 1E-04 5E-05 4E-04 2E-04 8E-05 7E-04 1E-04 2E-04 1E-04 2E-04 3E-03

mean 3E-04 1E-04 2E-04 8E-04 2E-04 4E-04 2E-04 9E-04 2E-04 1E-03 5E-05 3E-04 1E-04 1E-04 4E-04 4E-04 2E-04 1E-04 2E-03 4E-03

sd 6E-04 2E-04 3E-04 1E-03 3E-04 1E-03 1E-04 1E-03 4E-04 9E-04 8E-05 2E-04 2E-04 1E-04 7E-04 6E-04 2E-04 3E-05 2E-04 4E-03

p-value 0.43 0.24 0.49 0.58 0.24 0.06 0.14 0.67 0.35 0.23
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8. STANDARD CURVES 

 

 

 
 

Figure A1: GAPDH Standard curve 

 

 

 

 

 

 
 

Figure A2: PGK2 Standard curve 
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Figure A3: CETP Standard curve 

 

 

 

 

 

 

 
 

Figure A4: ABCA1 Standard curve
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Figure A5: LCAT Standard curve  

 

 

 

 

 

 

 

 
 

Figure A6: SRB1 Standard curve  
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Figure A7: apoA-1 Standard curve  

 

 

 

 

 

 

 
 

Figure A8: apoE Standard curve  
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Figure A9: apoC1 Standard curve  

 

 

 

 

 

 

 
 

Figure A10: apoB Standard curve  
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Figure A11: CYP7A1 Standard curve  

 

 

 

 

 

 

 
 

Figure A12: apoC11 Standard curve  
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9. MATERIALS AND SUPPLIERS 

 

 

Acetic Acid Glacial          ACE Chemicals 

Agarose       Whitehead Scientific 

Anaket-V       Norpharm 

AxyPrep Blood Genomic DNA Miniprep Kit  Axygen Biosciences 

BenchTop 100bp DNA Ladder    Promega 

Boric acid       Merck 

Bromophenol blue       ACE Chemicals 

EDTA        BDH 

EDTA blood collection tubes     Pathcare 

Ethanol       BDH 

High-Capacity cDNA Reverse Transcription Kit  Applied Biosystems 

Hydrochloric acid       BDH 

Hypodermic needles (21 and 23G)    Norpharm 

NaOH        Merck   

Nicotinic acid (nicin)      Sigma 

Paxgene Blood collection tubes    Qiagen 

Paxgene Blood RNA Kit     Qiagen 

PCR Master mix      Promega 

Power SYBR Green PCR Master Mix   Applied Biosystems 

RNase Inhibitor      Applied Biosystems 

Sodium Hydroxide Pellets      ACE Chemicals 

 

Tris-base       Promega 

Turbo Dnase treat      AEC Amersham 
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Quanti Tech Primer Assays     Qiagen  

Wizard SV Gel and PCR Clean-Up System   Promega 

Xylene cyanol FF      Sigma 
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