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Abstract 

 

Due to an increasing demand for energy, alternative renewable energy sources are investigated 

globally.   However fossil fuels are still one of the main energy sources. The combustion of these 

fuels produces by-products such as SOx, NOx and CO2, which have detrimental effects on the 

environment and human health. Therefore, effective methods are needed to minimize the 

pollution and affects that these by-products cause. Catalysts are commonly employed to convert 

these by-products to less harmful and/or resalable products.  Ceria and ceria based materials are 

good candidates for the removal and conversion of SOx and NOx. Ceria and ceria related 

materials are most effective as catalysts when they are in the nano-form with good crystallinity 

and nanoparticles that are uniform.   

 

The growth of nanoparticles is preceded by a nucleation process which can occur by solid-state 

restructuring of a gel or precipitation from a saturated solution. The precipitation method was 

selected to synthesize Ceria nanoparticles. Synthesis conditions such as temperature, solution 

type and ageing time and their effect on the physical and chemical forms of the Ceria particles 

were investigated. The morphology and structural properties were investigated using Scanning 

Electron Microscopy, X-ray diffraction and Transmission Electron Microscopy. X-ray 

Photoelectron Spectroscopy was used to investigate the chemical properties. It was found that 

low temperatures, low base volume and a solvent with a small dielectric constant favor the 

formation of small crystallites with a relatively large concentration of defects. These defects are 

desirable since they enhance the catalytic activity of ceria.  
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Chapter 1: General Overview 

1.1. Introduction 

Air pollutants include sulphur dioxide (SO2), nitrogen oxides (NOx) and particulates such as 

smoke, ash and dust. These substances are toxic to human health and the environment when 

present in high concentrations.   SO2 reacts with water to form HSO3
-
 and SO3

-
 which are then 

oxidized by O2 (metal ion catalysts required), H2O or O3 to form sulphuric acid. Thus, SO2 

produce acid rain when it reacts with water in the atmosphere and it has detrimental effects to 

vegetation and corrodes buildings and monuments. Acid rain causes the lakes and streams to 

acidify and damages agricultural crops as well as tree foliage. SO2 is released in the atmosphere 

by the combustion of fuels in factories, houses, transportation and power plants. Coal fired 

power plants are responsible for most of the SO2 emissions [1.1]. For example, by the year 1998 

it was found that the US coal fired power plants emit approximately 75% of the 50 billion 

pounds of sulphur oxides released annually in the US [1.2]. As the world energy demand is 

increasing and so does the emission of SO2, governments are continuously tightening the 

regulations to limit the production of SO2 and the emission of sulphur containing compounds. 

1.2. Flue Gas Desulphurization Technologies 

Coal fired power plants produce flue gases that are rich in SO2, NOx, and particulates such as 

smoke and ash. Various flue gas desulphurization (FGD) technologies are employed for the 

removal of SO2. They are accomplished by scrubbing and can be classified either as once-

through and re-generable, depending on how the sorbent is treated after it has absorbed the SO2 

[1.1,1.3 -1.5]. The SO2 is permanently bound to the sorbent in once -through FGD and therefore, 

it is disposed as waste or utilized as a by-product such as gypsum [1.3]. In re-generable FGD 

technologies, the sorbent is regenerated and SO2 is released during regeneration [1.1, 1.3].  The 

SO2 obtained can be further processed to products such as H2SO4, liquid SO2 or elemental 

sulphur [1.1, 1.3].  Both once-through and re-generable FGD technologies can be classified as 

either being wet or dry as shown in Figure 1.1[1.1, 1.3].  
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Figure 1.1: Schematic depicting the various FGD processes [1.3]. 

 

1.2.2. Once-Through FGD technologies 

Once-through dry FGD technologies employ a solid dry sorbent (e.g. limestone) that is injected 

into the furnace or flue gas duct [1.1, 1.5]. The flue gas is continuously in contact with sorbent 

and produces a dry waste product [1.1]. The efficiency of SO2 removal using dry FGD 

technologies is smaller than that of wet FGD technologies [1.5].   

In wet once- through FGD processes, the SO2 containing flue gas is in contact with alkaline 

slurry in an absorber. This slurry usually consists of finely ground lime or limestone particles and 

the absorber application is usually the counter current vertically orientated spray tower. The SO2 

dissolves in the slurry which is then pumped into a reaction tank. In the reaction tank, there is 

enough time for the finely founded lime or limestone particles to dissolve and react completely 

with the dissolved SO2. This reaction depletes the alkalinity of the slurry and produce 

sulphite/sulphate crystals. A fresh feed of slurry is pumped in the tank to maintain the alkalinity 

and the slurry gets recycled into the absorber. The products from the reaction tank constitute the 

waste and are pumped into waste-handling equipment [1.6].    
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On industrial scale, most of the FGD technologies employed for SO2 removal are once- through 

wet technologies since they provide higher SO2 removal efficiencies [1.7]. These scrubbing 

systems are based on limestone or sodium carbonate for FGD [1.8]. However these processes 

generate large amount of solid waste (sulphated lime or limestone sorbents) which is an 

environmental concern and there is a continuously increasing land cost associated with the waste 

disposal [1.5, 1.8, 1.9]. The high capital cost is also unattractive when low initial investments are 

required [1.7]. Hence, alternative technologies for the removal of SO2 are researched with 

regenerative FGD processes being a promising alternative technology [1.8]. The solid waste 

production and disposal problems associated with conventional FGD technologies can be 

reduced or even eliminated when regenerable sorbent technologies are employed [1.5, 1.9].  

 

 

1.3. Regenerable FGD technologies 

 

In regenerable FGD systems an off-gas stream, which is a fraction of the flue gas stream, is 

produced by the regenerator [1.9]. This off- gas stream is rich in SO2 and poor in oxygen and can 

be further treated to obtain a sellable product. The SO2 can be converted to elemental sulphur, 

sulphuric acid or liquid SO2 [1.8, 1.9].  Elemental sulphur can be obtained by using a single-

stage catalytic converter, thus eliminating the multi-stage Claus process. This solves some of the 

waste and disposal problems since elemental sulphur is innocuous and constitutes only a third of 

the volume of the equivalent CaSO4 byproduct obtained when conventional non-regenerable 

FGD technologies are employed [1.5, 1.9]. 

 

Various reductants have been employed to reduce SO2 to elemental sulphur; they include carbon 

monoxide, hydrogen, methane, syngas and carbon [1.8-1.10].  Methane has attracted much 

attention for the reduction of SO2 due to its abundance and low cost [1.8, 1.10]. The overall 

reaction of methane gas and SO2 gas is: 

                                          2SO2 + CH4 → CO2 + 2H2O + 2[S]                                     (1.1) 
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where [S] represents the various elemental sulphur forms (e.g. S2, S6, S8). Various side reactions 

can occur forming various intermediate products and by-products such as H2, H2S, COS, CS2, 

and CO. The high refractory nature of methane causes difficulties in the reduction of SO2 [1.9]. 

Carbon monoxide was extensively studied for the reduction of SO2 to elemental sulphur [1.9].  

Direct reduction of SO2 to elemental sulphur by carbon monoxide under dry condition is known 

and the overall reactions in the process are presented in equations 1.2 – 1.4 [1.8-1.12].   

                              SO2 + 2CO→2CO2 + 
 

 
                                                               (1.2) 

                               CO +  
 

 
  → COS                                                                        (1.3) 

                                             2COS + SO2 → 2CO2 + 
 

 
                                                      (1.4) 

where   ranges between 2 and 8 ; the most common  elemental sulphur forms which are S2, S6 

and S8. High temperatures favor the formation of S2 through equation 1.2 which can react further 

with carbon monoxide to yield the carbonyl sulphide as shown in equation 1.3. Carbonyl 

sulphide compounds are more toxic than SO2 and it is thus undesirable to have COS. The 

carbonyl sulphide can act as a reductant and can reduce SO2 to elemental sulphur as presented in 

equation 1.4 [1.9, 1.10, 1.12].  If there is water vapor present, the following reactions can also 

occur, which will decrease the efficiency of SO2 reduction [1.12]: 

 

                                         CO + H2O → H2 + CO2                                                  (1.5) 

                                         COS + H2O → H2S + CO2                                                            (1.6) 

                                         H2 + [S] → H2S                                                        (1.7) 

                                           
 

 
   + 2H2O → 2H2S + SO2                                                   (1.8) 

Various types of catalyst have been studied for the reduction of SO2 by CO. These include 

alumina- supported transition metals and oxides; Cu, Fe, Ni, Pd, Ag, etc [1.10, 1.12].  However, 

the employment of these catalysts results in a high yield of COS and water poisoning effect of 

catalysts are also of major concern [1.10, 1.12]. Studies [1.9, 1.10] indicate that the perovskite-
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type mixed oxides (class of ABO3-type) shows high selectivity of elemental sulphur over COS; 

however, the perovskite crystal structure is lost after a short reaction time. These studies 

indicated that oxygen vacancy and mobility plays an important role for in the reduction of SO2 

by CO [1.5, 1.9]. Ceria also known as cerium dioxide (CeO2) and ceria based materials show 

promising prospects as a catalyst for SO2 reduction to elemental sulphur by CO [1.8.-1.10].  

1.4. Aims and Objectives 

The attractiveness of ceria as a catalyst in reduction-oxidation reactions is due to its high oxygen 

storage capacity (OSC), oxygen reducibility and hence Ce
4+

/Ce
3+ 

redox couple, oxygen mobility 

as well as its large amount of defect sites such as anionic oxygen  vacancies [1.9, 1.13]. An 

enhancement of the catalytic properties of ceria occurs when ceria is produced as nanoparticles.  

Both the physical and chemical properties that give ceria the ability to be used for catalytic 

applications are strongly influenced and dependent on the microstructure such as morphology, 

size and specific areas of the ceria material [1.14, 1.15]. Hence, the interest in synthesizing nano-

ceria with enhanced properties such as high surface area, high concentration of oxygen defects 

and good OSC. Since the future goal is to mass produce these nano-particulates for the 

application of SO2 reduction in power plants etc., a synthesis method that is low in cost, simple 

and easy to scale-up are desired. The precipitation technique meets these criteria [1.16]. 

Therefore, this study focuses on the synthesis of ceria using the precipitation technique and its 

optimization thereof. The aim is to obtain the optimum conditions for the synthesis of ceria with 

the following properties: 

 Ceria nanoparticles with size in the range 2 nm to 10 nm  

 Low levels of agglomeration of the nanoparticles 

 High surface area 

 High levels of defects 

 High oxygen reducibility and ease of Ce
4+

/Ce
3+

 redox cycle 

 Good OSC  
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1.5. Thesis Outline 

Chapter 2 is a literature review on the science of cerium oxide, such as its crystallographic 

structure, electronic band and vacancy formation.  Possible applications, especially focusing on 

the application of ceria in catalysis, more specifically in FGD type of systems are also discussed. 

A brief review of possible synthesis techniques is also included.  

 

Chapter 3 discusses the experimental method employed as well as the analytical techniques used.  

 

Chapter 4 outlines and discusses the results obtained in this study; they include those related to 

the morphology as obtained from scanning electron microscopy (SEM); to the crystallographic 

structure obtained as obtained from X-ray diffraction (XRD) and oxidation states of cerium 

cations as obtained from X-ray photoelectron spectroscopy (XPS).  

 

Chapter 5 gives recommendations on future work.   
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Chapter 2: Literature Review: Ceria 

2.1. Cerium 

Cerium (Ce) forms part of the group of fifteen lanthanide elements. It is the 25
th

 most abundant 

element and the most abundant rare earth element, constituting 0.0046 weight percent (64 ppm) 

of the Earth‟s crust [2.1, 2.2]. Amongst the 30 isotopes of cerium, only three are stable: 
136

Ce, 

138
Ce, 

140
Ce. The latter isotope is the most abundant isotope at 88.5% [2.2]. Cerium is a 

malleable iron-gray lustrous metal that oxides readily in air [2.3]. The electronic configuration of 

cerium is [Xe] 4f
2
6s

2
 and it has two naturally occurring oxidation states Ce(III) and Ce(IV). 

Cerium reacts with oxygen to form Ce2O3 and CeO2 [2.2]. The sesquioxide Ce2O3 contains 

solely Ce(III) and are unstable in oxidizing conditions such as air  [2.4, 2.5].  Ce2O3 has a 

hexagonal lattice with lattice parameters: a= 3.88 Ǻ and c= 6.06 Ǻ [2.2, 2.6].  Oxygen atoms are 

arranged in a close-packed cubic structure and cerium atoms are arranged in octahedral voids 

such that two layers are filled and one is empty [2.2]. Ce2O3 can be oxidized to stoichiometric 

cerium dioxide CeO2 under strong net oxidizing conditions [2.7].  This oxide of cerium is of 

interest in this study; hence further discussions will focus on CeO2.  

 

2.2. Material Properties 

2.2.1. Crystal Structure and Phases of ceria 

Pure stoichiometric CeO2 has a fluorite crystal structure (CaF2) with space group Fm3m that 

consists of a face-centered cubic (f.c.c.) unit cell over the temperature range from room 

temperature to its melting point [2.2, 2.8, 2.9]. The f.c.c. unit cell consists of cations and anions 
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that occupy the octahedral interstitial sites [2.8]. Each cerium cation (Ce
4+)

 is coordinated by 

eight nearest-neighbor oxygen anions (O
2-

). Four nearest neighbor cerium cations coordinate 

each of these oxygen anions in turn [2.8 – 2.10]. The positions of the cerium and oxygen atoms 

are at the 4a0,0,0 and 8c
 

 
 

 

 
 

 

 
 sites respectively in a cubic fluorite structure whose schematic is 

given in Figure 2.1 [2.11, 2.12]. The lattice parameter a, of the unit cell is 5.4110  0.0005 Å 

[2.2, 2.13, 2.14].  

 

Figure 2.1: The cubic fluorite structure of ceria.(a)-[2.11], (b) –[2.12].  

The structure of CeO2 can also be viewed as a cubic array of oxygen anions, with cerium cations 

in a body centre position in alternate cubes as shown in Figure 2.2
 
[2.3]. It can be seen from 

Figure 2.2 that there are planes of cubes which contains no cerium cations. These vacancies are 

known as octahedral holes and are vacant in defect-free ceria. It is formed between three atoms 

in one layer and three atoms adjacent layers above or below as shown in Figure 2.3a [2.3]. There 

is another “hole” which forms between three atoms in one layer and an adjacent atom in an 

adjacent layer as shown in Figure 2.3b  [2.3]. This hole is referred to as a tetrahedral hole and 

oxide ions reside in these holes [2.3]. 
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Figure 2.2: Crystal structure of ceria showing vacant “cube” planes [2.3]. 

            

                        (a)                                       (b)  

Figure 2.3: Illustration of Octahedral and tetrahedral holes; (a) Octahedral hole formed between 

the three atoms in one layer and three atoms adjacent layers above or below and (b) Tetrahedral 

hole formed between three atoms in one layer and an adjacent atom in another layer  [2.3]. 
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Table 2.1: A summary of the physical properties of ceria [2.8, 2.15- 2.20]. 

Property Value (unit) 

Lattice parameter 5.411 Å 

Molar Mass 172.12 g. mol
-1

 

Density 7.22 g. cm-1 

Melting Point Ca. 2750 K 

Boiling Point Ca. 3773 K 

Specific heat 460 J kg
-
1 K

-1
 

Thermal conductivity 12 W m
-1

 K
-1

 

Refractive index 

Ca. 2.1 visible 

Ca. 2.2 infrared 

Relative dielectric constant (0.5-50 MHz) 11 

Young‟s modulus Ca.         N m
-2

 

Poison‟s ratio Ca. 0.3 

Hardness 5-6 

Electronic conductivity (25 )           S cm
-1

 

Ionic conductivity (100  , in air) 

(600  , in air) 

(600  , in H2) 

          S cm
-1

 

          S cm
-1

 

          S cm
-1

 

Formation energy (25  , 1 atm) -1025.379 kJ mol
-1

 

Magnetic susceptibility (χmol)         cm
3
 mol

-1
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Under a reducing atmosphere with low oxygen partial pressures (PO2
) and elevated temperatures 

(e.g. < 10
-15

 atm O2 at 800 
0
C),  ceria forms nonstoichiometric oxides of general composition 

CeO2-δ (0   0.5) which leads to mixed ionic electronic conductivity [2.2, 2.8, 2.15, 2.21]. The 

integrity of the face-centered anion packing remains intact up to a reduction temperature of 

900K, even under extreme conditions where the oxygen matrix is dramatically changed [2.21].  

These reduced oxides are accompanied by defects which make ceria a candidate for many 

applications.   

2.2.2. Imperfections in Ceria 

In an ideal crystalline solid, atoms are arranged in a regular symmetrical structure which is 

periodic [2.22].  This crystal structure can be obtained by the combination of a basis and infinite 

space lattice. This space lattice can be broken down to unit cells, where the entire crystalline 

structure can be built from the combination of these identical cells. However, in nature there are 

no perfect crystal structures; disorder is always present. Disorder in crystal structures occurs 

when atoms are displaced from their lattice positions. The symmetry of the perfect periodic 

crystal lattice is broken. The disorder is also known as imperfections or defects. The types of 

defect are categorized with respect to their geometrical shape and include: point defects, line 

defects and surface defects [2.23].  Point defects dominate in ceria. Point defects include some 

that are shown in Figure 2.4 [2.24]:
 

a) Vacancies: lattice positions that are unoccupied (vacant) due to a missing atom. 

Formation is stimulated by thermal vibrations.  

b) Substitutionals: When an impurity is present within the crystal.  

c) Interstitials: positions within the lattice are occupied where there are usually no atoms.  
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d) Anti-sites: when atoms of different type exchange positions in the crystal.  

 

Figure 2.4: Schematic illustration of a vacancy and interstistial in a two-dimensional hexagonal 

lattice [2.24]. 

We will use the Kröger-Vink notation to describe the creation and annihilation of defects in 

crystal structures throughout this thesis. The lattice position and electrical charge are noted   
  

[2.3] where;  

   indicates the species such as atoms (e.g. Ce, O, Si,  etc.), vacancies as V, electrons as e 

or holes as H.  

     indicates the lattice site position of the species, e.g. if Ce occupies a O lattice site, Ce 

replaces M and O becomes the subscript   in the conventional Kröger-Vink notation.   

   indicates the electric charge of the species   at the given lattice site   that it occupies. 

Null charge is indicated by „ ‟ or nothing is written down. A single positive charge is 

indicated by „ ‟, and a double positive charge is represented by  „  ‟. A single negative 

charge is represented by „'‟ and a double negative charge by „''‟.  
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Table 2.2 lists some examples of the Kröger-Vink notations and the corresponding description.   

Table 2.2. : Examples of defects, expressed in the Kröger-Vink notation.  

Defect Discription 

    
  Neutral cerium atom on  a neutral cerium site 

  
  Neutral oxygen atom on an oxygen lattice site 

  
   Doubly negative charged oxygen vacancies 

    
  Ce

3+
 atom on a Ce

4+
 lattice site 

   
     Quadruple positively charged cerium vacancies 

   
     Quadruple negatively charged interstitial 

cerium 

e  An electron 

 

There are various types of point defects that can occur in bulk ceria, depending on the ambient 

temperature of the ceria sample and the partial pressure of oxygen. The most important of these 

point defects includes: cerium antisites CeO, oxygen vacancies VO, cerium interstitials Cei, 

impurities in the lattice of ceria DO and interstitial impurities Di [2.14].  
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Figure 2.5: Schematic of possible point defects in ceria [2.14]. 

These defects can be categorized into two types: Intrinsic and Extrinsic defects [2.3, 2.24].  

Intrinsic defects are associated with the thermal disorder while extrinsic defects are a result of 

impurities/dopant ions that are present in the lattice structure.  

Intrinsic defects 

Intrinsic defects are vacancies introduced due to thermal vibrations. An increase in temperature 

causes the numbers of atoms that have sufficient energy to vibrate off their lattice positions. This 

raises the entropy and internal energy of the system.  These defects exist in a finite concentration 

due to the decrease in free energy caused by the increase in thermal energy, and hence, 

increasing entropy. Three possible thermally generated intrinsic defects can occur and forms part 

of the two common types of defects: Frenkel and Schottky disorder. Frenkel disorder is a result 

of an atom that is displaced from its lattice site to an interstitial site, forming a defect pair made 

of vacancy - interstitial. Schottky defect occurs when vacancies are created in the lattice in a 

stoichiometric ratio such that cation and anion vacancies occur simultaneously thus the electro-
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neutrality is conserved at thermal equilibrium. Equation 2.1-2.3 presents these types of defects 

that can occur in CeO2: 

              CeCe + 2  
       

       
    + CeO2                       (2.1) 

                 
      

      
                    (2.2) 

                   
       

      +     
                    (2.3) 

where equation 2.2 represents a Schottky defect and equations 2.2 and 2.3 are Frenkel anion and 

cation defects respectively. The notation is explained in Table 2.2. The anion Frenkel disorder is 

the most likely intrinsic disorder to occur in ceria due to the low energy per defect [2.3]. 

Extrinsic Defects 

Extrinsic defects are either foreign atoms in the crystal lattice or exchange reactions with the 

gaseous phases of the environment [2.3, 2.14]. Unintentional foreign atoms are called impurities. 

An interstitial solute
 
is formed when the foreign solute sits on an interstitial site whereas a 

substitutional solute occupies a lattice site. This defect becomes important when ceria are 

intentionally doped with higher or lower valence cations. When ceria is doped with oxides of 

metals with lower valencies , e.g. Gd2O3 where Gd has valency 3, excess anion (oxide) vacancies 

are introduced in the ceria crystal structure and the reaction can be written as [2.3]:  

            Gd2O3 + 2    
  + 4  

  → 2    
  +   

    + 3  
  + 2CeO2        (2.4) 

 

Reactions of ceria with the gaseous environment introduce defects that result from the reduction 

or oxidation of the lattice. These defects include oxygen vacancies which occur when ceria is 

reduced.   
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2.2.3. Redox properties of Ceria 

The use of ceria in catalysis is mainly due to its red-ox properties and can be understood from its 

oxygen storage capacity (OSC). The OSC of ceria refers to the amount of oxygen that can be 

stored and then subsequently released from ceria during a controlled reduction-oxidation cycle 

[2.25]. The process consists in ceria losing oxygen through the oxidation of a molecule and can 

reduce a molecule by the uptake of oxygen [2.26]. Under an oxygen deficient environment, 

nonstoichiometric oxides of ceria of general composition CeO2-δ (0   0.5) is formed. The 

formation of these nonstoichimetric oxides of ceria is accompanied by the formation of oxygen 

vacancies and this reaction can be written as [2.2, 2.21]: 

    CeO2         
 

 
                                      (2.5) 

This is a reversible reaction with the forward reaction characterizing reduction of ceria under a 

reducing environment [2.2, 2.8, 2.21]. 

Equation 2.6 describes the reduction of ceria by hydrogen using the Kruger- Vink notation [2.3]: 

 

                                                
  + 2    

  + H2 (gas) →    
   +  2   

  + H2O (gas)            (2.6) 

 

Results obtained from Temperature programmed reduction (TPR) studies [2.21, 2.27], using 

hydrogen  as a reducing gas, have concluded that the reduction takes place in two temperature 

regimes corresponding to the two peaks observed in the TPR spectra of ceria a shown in Figure 

2.6. These two peaks lie in the regions: (1)573-873 K (Tmax ≈ 790 K) and (2) 973-1273 K (Tmax ≈ 

1100 K) [2.21]. Trovarelli presented similar results and it is accepted that these two peaks 

represent the reduction of CeO2 to Ce2O3 [2.7]. The first reduction region corresponds to the 

 

 

 

 



Chapter 2: Literature Review: Ceria 

 

 

19 
 

removal of the surface capping oxygen of CeO2 and the second region is attributed to the bulk 

reduction of CeO2 [2.7, 2.21]. The reduction of the surface sites occurs first and after the 

depletion of the surface sites, bulk reduction starts.  Surface oxygen ions are much more mobile 

which facilitates in the reduction of lattice oxygen. The bulk oxygen is continuously transported 

to the surface through a hoping process where it can be reduced [2.21]. 

 

 

Figure 2.6: TPR spectrum of 3 CeO2 samples with different surface areas: (a) 1.5 m
2
/g, (b) 30 

m
2
/g and (c) 130 m

2
/g [2.21].   

A kinetic model for ceria reduction was developed from the data provided from TPR studies and 

can be summarized as follows and are schematically depicted in Figure 2.7 [2.7, 2.21, 2.28]: 

1. Dissociation of chemisorbed hydrogen to form hydroxyl groups 

2. Formation of anionic vacancies and reduction of neighboring cations (Ce
4+

) 

3. Desorption of water by recombination of hydrogen and hydroxyl groups 

4. Diffusion of surface anionic vacancies into the bulk material. 
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Figure 2.7: Ceria reduction model [2.21, 2.29]. 

The majority of the oxygen vacancies are situated on the surface of the material since the 

reduction of ceria is relatively facile [2.2, 2.30] and the vacancy formation reaction can be 

written using Kroger-Vink notation as [2.8, 2.26]:  

                                                OO
   O

..       
 

 
                                                        (2.7) 

 

where  OO
 

,   O
..   and   are oxide ions in the lattice, the doubly charged oxygen vacancies, and the 

electrons in the conduction band which is formed from the Ce 4f energy states, respectively 

[2.8].    

When oxygen vacancies are formed in the lattice, two electrons will remain that can be localized 

in the conduction band or several Ce
δ+ 

cations or they are localized on Ce
4+

 ions that neighbors 

the vacancy sites [2.2, 2.8, 2.31].  It is generally accepted that these electrons that are left behind 

when the oxygen ion leaves the lattice during reduction are localized on two neighboring Ce
4+
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ions, such that the Ce
4+

 ions are reduced from the +4 state to the +3 state giving rise to two Ce
3+

 

ions as shown in Figure 2.8 [2.8, 2.14, 2.21, 2.26, 2.31 – 2.34]. 

 

Figure 2.8: Schematic illustrating the oxygen vacancy formation and electrons localizing in the 

4f band of the Ce
4+

 cations.  

The valence band of ceria is formed by the oxygen 2p states and the conduction band is formed 

by the empty cerium 5d states [2.14].  In pure ceria, the cerium 4f band is empty and lies inside 

the O2p–Ce5d band gap [2.14, 2.33].  The two electrons that are left behind get trapped at two 

cerium sites and the electrons occupy split-off states (Ce4f Full) of the initially empty Ce4f band, 

forming two Ce
3+

 ions [2.14, 2.33, 2.34]. This transition in oxidation states is easily made and 

can be ascribed to the similarity in energy of the 4f and 5d electronic states and the low energy 

barrier to the electron density distribution between these states [2.8, 2.35].  The localized 

electrons can be described as polarons which are localized at these electrons and mobile by a 

polaron -hoping process which is thermally activated [2.14, 2.33, 2. 36].   

Thus, the reduced ceria containing oxygen vacancies can be written in the Kroger-Vink notaion 

[2.3, 2.14, 2.30]: 

 

 

 

 



  

22 
 

                           
       

   O
..       

  
 

 
                                   (2.8) 

Oxygen vacancies /oxygen diffuse through the material via vacancy hoping and the ease of 

formation of these vacancies and their mobility [2.36] is some of the properties that make ceria a 

good candidate for the applications of reduction-oxidation catalyst [2.30]. 

 

2.3. Applications of Ceria 

Ceria find applications in many areas of;  UV blockers and filters [2.35, 2.38, 2.39]
 
, additive to 

glass to protect light sensitive material [2.35], glass polishing material [2.40], as a protective 

coating against corrosion of metals and alloys [2.41, 2.42] , high temperature oxidation resistant 

coating [2.43], additives in ceramics [2.44], solid electrolytes [2.45],solar cells [2.46] ,  in 

medicine it is used as an oxidative stress preventer in living cells [2.25], offers spinal cord 

neuroprotection [2.47]
, 

as a oxygen ion conductor in solid oxide fuel cells [2.48-2.50]
 
, 

generation of hydrogen gas through the splitting of water [2.51], the removal of H2S [2.52] and 

catalyst [2.53].This is due to its unique properties; UV absorbing ability [2.35, 2.37],  high 

thermal stability [2.37, 2.54], high hardness [2.55], chemical reactivity [2.5, 2.55], facile 

electrical conductivity and diffusivity  [2.56], high refractive index [2.56], oxygen transport 

ability as well as storing and quick change between oxidation Ce
4+

 and Ce
3+

 [2.56]. These 

properties can be grouped in three “fundamental” characteristics of ceria [2.3]: 

 Redox chemistry- Ce
4+

/Ce
3+

redox cycles 

 Its high affinity for oxygen 

 The electronic structure related absorption/excitation energy bands.  
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Ceria is attractive in various catalytic applications as depicted in Figure 2.9 [2.57, 2.58]. Ceria is 

employed in various areas of catalysis such as: three-way catalyst (TWC)
 
for automobile exhaust 

gas emission control, removal of S   and N    from fluid catalytic cracking (FCC)  flue gasses, 

promote the water gas shift reaction and thus its commonly used in the catalytic production and 

purification of hydrogen and it is also used as electrocatalyst over fuel cells. [2.21, 2.26, 2.35, 

2.57-2.61] The role of ceria in TWC, for example, is to convert automobile exhaust pollutants 

such as hydrocarbons, carbon monoxide, and nitrogen oxides, to products such as carbon 

dioxide, water and nitrogen [2.21]. 

 

Figure 2.9 : Number of publications published in 1997 that are related to ceria and ceria related 

materials in various areas of catalysis: (1) Three-Way Catalyst (TWC), (2) flue gas treatment, (3) 

oxidation, (4) diesel exhaust treatment, (7) hydrogenation, (8) 0ther catalytic application  [2.58]. 
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As can be seen from Figure 2.9, a tremendous amount of interest has been shown for the use of 

ceria in flue gas treatment.
 

2.3.1. Ceria as a catalyst in the reduction of SO2  

The interaction of SO2 with metals can be understood by looking at the molecular orbitals of 

SO2. The lowest unoocupied molecular orbital (LUMO) of SO2 is an S-O antibonding orbital 

which interacts poorly with the occupied states of the metal centers since these occupied states 

are to stable for interaction and electron density transferring into the LUMO of SO2 is not 

achieved [2.62]. Hence, it is difficult to dissociate the molecule on an oxide surface [2.62]. An 

occupied metal state needs to be created above the valence band of the metal oxide to achieve 

dissociation of SO2. These occupied metal states can be achieved by the introduction of oxygen 

vacancies or structural defects on the surface of the metal oxide.  

Ceria has attracted interest since the cerium cations can easily (see page 21) undergo the 

Ce
4+
─Ce

3+
 transition, thus creating an occupied metal state (Ce4f Full), during oxygen vacancy 

creation making the oxide active for SO2 dissociation [2.14, 2.33, 2.34, 2.62]. The oxygen 

vacancy creation in the dissociation of SO2 is accomplished by passing CO along with the SO2 

over the ceria catalyst surface. This is a red-ox reaction and proceeds via a step-wise removal of 

oxygen mediated by vacancies and follows the Mars-van Krevelen mechanism [2.40, 2.61, 2.62]: 

 The CO molecule accepts an oxygen atom from the ceria surface, thus leaving a 

vacancy at the surface.  

 This vacancy is mobile and migrates across the material via a vacancy hoping 

mechanism [2.30, 2.36] until it eventually accepts an oxygen atom from the SO2 

molecule, this annihilating the vacancy.  
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 The SO that is left is mobile on the surface and will find another oxygen vacancy 

to donate its oxygen, or a neighboring (to the first vacancy) vacancy is formed 

through migration of vacancies and accepts the oxygen of SO.  

A red-ox mechanism was proposed for these processes [2.62]: 

                          cat-O + CO → cat- [] + CO2                      (2.9) 

                           cat-[] + SO2 → cat-O + SO                                        (2.10) 

and 

                          cat-[] + SO → cat-O + S                                               (2.11) 

where cat-O denotes ceria or ceria relate compounds and cat-[] denotes the ceria/ceria related 

compounds with an oxygen vacancy present. The reduction of SO2 to elemental sulphur by 

carbon monoxide over ceria catalyst can be described by the following overall reactions [2.61, 

2.63]: 

                        SO2 + 2CO→2CO2 + 
 

 
                               (2.12) 

                        CO +  
 

 
  → COS                              (2.13) 

                              2COS + SO2 → 2CO2 + 
 

 
                                    (2.14) 

where   ranges between 2-8 (the different elemental sulphur forms which are usually S2, S6 and 

S8). High temperatures favors the formation of S2 through equation 2.12 which can react further 

with carbon monoxide to yield the toxic compound (more toxic then SO2) carbonyl sulphide as 

shown in equation 2.13.  Due to its toxicity, it is undesirable to have COS.  The carbonyl 
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sulphide can act as a reductant and can reduce SO2 to elemental sulphur as presented in equation 

2.14 [2.61, 2.63]. The reaction of ceria is mostly facile, and reactions and can be summarized 

through a schematic diagram as shown in Figure 2.10 [2.26].  

 

Figure 2.10: Schematic depicting the catalytic cycle of the reduction of SO2 to elemental sulphur 

S with the oxidation of CO to CO2 [adapted from 2.26]. 

The catalytic activity of ceria nano-structures was found to be higher than that of its bulk 

counterpart [2.64, 2.65].  Nano-materials display phenomena different to their bulk counterpart. 

Effects of quantum confinement on the electronic properties of oxide nanoparticles and the 

structural defects (e.g.  O
.. ) that are typically introduced in nano-partciles due to size effects, 

favor the dissociation of SO2.  

2.4. Nano Ceria-Materials 

2.4.1. Properties that can change in ceria nano-particles  

Many properties of ceria nanoparticles change compared to the bulk form. Raman shifting, 

broadening modes and asymmetry of the peaks [2.12, 2.66-2.68], ultraviolet blue and red shifts 

[2.67, 2.69, 2.70], increase in electronic conductivity and lattice expansion [2.15, 2.71, 2.72- 

2.73] are some of these properties. The lattice parameter is highlighted amongst these properties 

due to its indirect effect on the redox properties of ceria. 

 S 

SO2 
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Nano ceria display lattice relaxation (increase in lattice parameters) which is size depended. As 

the particle size decreases the lattice parameter increases [2.71, 2.72, 2.73]. Many authors have 

suggested that the lattice relaxation of nano ceria observed for particle sizes smaller than 20 nm. 

Tsunekwa et al. has observed ≈ 3.5 % change in the lattice parameter within the size range of 2- 

8 nm ceria particles [2.71, 2.75, 2.76]. It was suggested that the nonstoichiometery of ceria can 

be regarded as a solid solution of Ce2O3 in CeO2 and the lattice expansion as the size of the ceria 

nanoparticles decreases was attributed to the reduction of Ce
4+

 to Ce
3+

 since the radius of Ce
3+

 is 

larger than that of Ce
4+

 [2.11, 2.15, 2.71, 2.74-2.78 ]. Similar results were found by Zhang et al. 

also observed a lattice expansion (0.45%) for ceria with particle sizes in the range of 3-12 nm 

[2.71, 2.79].  Zhou et al also observed an increase in the lattice parameter of ceria but attributed 

it to the formation of oxygen vacancies with associated Ce
3+

 [2.99]. However, it was also argued 

by Parker et al.  that the cubic phases of ceria are stable down to 4.8 nm and exhibit no other 

phases which contradicts the results of Tsunekwa et al. and Zhou et al. which both argued that 

the lattice expansion is associated with some phase change either brought about Ce
4+

 reduction 

of oxygen vacancy formation [2.71, 2.80].  It is now accepted that the lattice relaxation is 

attributed to the valence change of Ce
4+ 

ions and the associated oxygen vacancies which leads to 

the structural changes from CeO2 to Ce2O3 which can be regarded as a solid solution in the CeO2 

matrix [2.15, 2.71].  

2.4.2. Synthesis Methods used for producing ceria nano-particles 

Nano-materials can be synthesized by two main approaches called top down and bottom up. In 

the top down approach, a massive solid is divided into smaller portions whereas in the bottom up 

approach, nano- materials are synthesized from the molecular scale. The two approaches can be 
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subcategorized into three broad categories: solid (top down), liquid and vapor methods (bottom 

up) [2.81].  This classification is based on the phases of the reagents used. Mechanical milling 

[2.82], pyrolysis, metal-organic vapor deposition (MOCVD) and electro-deposition are common 

solid phase methods. Liquid phase methods include forced hydrolysis, hydrothermal, 

solvothermal, reverse micelles, sonchemical, sol-gel techniques, chemical precipitation and 

homogeneous precipitation etc…Vapor phase methods are the methods in which a reactant in the 

vapor phase reacts with reactants in any of the other three phases: vapor condensation, vapor-

vapor reaction, vapor-solid reaction and vapor-liquid reaction [2.81]. Gas-liquid co-precipitation 

is an example of a vapor phase method used the preparation of ceria nano-particles [2.83]. These 

preparation methods have been exploited for the controlled synthesis of ceria based nano-

particles with desired properties such as composition morphology and tunable surfaces [2.9]. 

 

The top down approach frequently has the disadvantage of high temperatures methods which are 

complicated and the yield of the nano-materials is small for the high production cost [2.84]. The 

bottom up approach is preferred due to relatively low temperature synthesis and minimal cost. 

Figure 2.11 gives a visual outline of the vapor and liquid phase methods [2.84, 2.85]. Vapor 

phase methods can produce uniform, pure reproducible nano-particles. These methods require 

careful initial set up of the experimental parameters whereas liquid phase methods are easy to 

scale-up and handle. Liquid phase methods also have the advantage of low cost, low operating 

temperatures, cheap precursors and provide precise control of chemical composition and due to 

the simplicity the process can easily be industrialized [2.84, 2.81]. A liquid phase method was 

chosen for this project to fabricate the ceria nano-particles, hence only liquid phase methods will 

be further discussed.  
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Figure 2.11 : Schematic diagram presenting the vapor phase and liquid phase bottom-up 

synthesis method for the fabrication of nano-particles. The letters s, l and g stands for the solid, 

liquid and gas phases respectively [2.84, 2.85].   

 

2.4.2.1. Liquid phase methods 

Most of the solution based methods have advantages of being low in cost, simple apparatus and 

easy to control for desired results. The precursors in the chemical methods (liquid phase 

methods) are highly reactive which allows a lowering of the sintering temperature and/or time, 

which gives these methods an advantage over other conventional techniques [2.87]. Amongst 

others, precipitation, hydrothermal, alcothermal and solvothermal synthesis are important 

strategies which have been developed to provide highly quality ultrafine ceria based powders of 
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desired structures and properties. Inorganic salts containing cerium (III and/or IV) are common 

precursors.  

Solvothermal synthesis  

Defined “as any homogeneous or heterogeneous reaction in the presence of a liquid medium 

and/or mineralizer above room temperatures at pressures >1 bar in closed systems” [2.87]. This 

method employs a solvent at elevated temperatures (usually ranging between 373 K and 1273K) 

and pressures (typically between 1 atm and 10 000 atm) [2.88]. If the solvent is water the process 

is known as hydrothermal and the name alcothermal is used if alcohol is the solvent [2.87, 

2.88].This method is extensively used to produce both pure and doped ceria [2.89]. Particle sizes 

can be controlled by the addition of a surfactant.  

 

Precipitation 

The chemical precipitation method has the advantages of being a low cost, simple and easily 

scaled-up process; hence it has attracted the most extensive attentions [2.73]. Zhou et al. 

synthesized CeO2 nanoparticles with sizes in the range of 4 nm using the precipitation method 

[2.89]. CeO2 nanoparticles of 7- 9 nm was obtained by Uekawa et al. using this method [2.90].  

This procedure typically employs a precursor salt (e.g. Ce(NO3)3•6H2O, CeCl3•6H2O and 

(NH4)2Ce(NO3)6) [2.91] 
 
and a ligand such as ammonia [2.92, 2.93]. The ligand supplies large 

amount of hydroxide ions [2.28]
 
when added to the precursor metal cations that are in solution 

[2.92].  When the solubility limit is exceeded an insoluble salt is precipitated [2.93]. The addition 

of the precipitating ligand such as ammonia is to force hydrolysis by increasing the pH [2.28]. 

For example, when Ce(NO3)3•6H2O salt is used as a precursor the following reactions occurs:  

                    
                         (2.15) 
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                                                       (2.16) 

                                                                        (2.17) 

                                                                                 (2.18) 

                                
      

            (2.19) 

                
      

                       (2.20)    

 

 When the Ce(NO3)3•6H2O solute is added to a solution (usually water or an alcohol or a 

combination of the two,  but for this example it is assumed that distilled water is the solvent, 

since if it was an alcohol the coordination complexes would be different to those given in 

reaction 2.19), dissolution of the ionic compound occurs and the solute is dissociated into 

charged ions [2.94] , one of which is Ce
3+

 (equation 2.15) [2.28]. When aqueous  ammonia is 

added to the solution, protonation of NH3 molecules occurs as seen in equation 2.16 and the 

solvated cations reacts with the OH
-
 ions [2.28]. The cerium cations (Ce

3+
) react with the 

hydroxyl ions to form Ce(OH)3 which precipitates out (equation 2.17) due to the basic conditions 

and the high solubility S (S=[Ce
3+

][OH
-1

]
3
/KSp ) that is due to the extremely low solubility 

product constant of Ce(OH)3 ( KSp= 6.3   10
-24

 at 25  ) [2.28, 2.94, 2.95]. The Ce
4+

 oxidation 

state is much more stable than the Ce
3+

 state and for alkaline solutions this is even much more 

pronounced since Ce
3+

 is a Lewis base whereas Ce
4+

 is a Lewis acid and basic solution favors 

Ce
4+

 compared to Ce
3+

 [2.95, 2.96]. Thus due to the alkalinity of the environment, Ce
3+

 is 

oxidized to Ce
4+

 under an oxygen atmosphere as shown in equation 2.18 [2.28, 2.91, 2.94, 2.95]. 

This is followed by the hydrolysis of Ce
4+

 whereby complexes are formed with water molecules 
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and hydroxyl ions to give                  
      

 , where        is the coordination 

number of Ce
4+

. This reaction is shown in equation 2.19 [2.28, 2.91, 2.95, 2.97]. These 

complexes are subsequently deprotonated by the polar water molecules in the aqueous solution 

and cerium oxide is formed (equation 2.20) [2.91, 2.95, 2.97, 2.98]. The rate of this reaction 

(equation 2.20) is important in determination of the final size of the particles [2.28, 2.99]. It can 

be accelerated by the increasing the temperature or pressure [2.97]. However, the properties of 

the final CeO2 product are determined by the nucleation of the initial precipitate Ce(OH)3 [2.94]. 

 

There are several step involved in the formation of CeO2, however the initial nucleation 

formation of the Ce(OH)3 precipitant determines future growth and the properties of the final 

product of CeO2 [2.94]. This can be understood by looking at the nucleation and growth 

processes which dominate the formation of crystal structures.  

2.4.3. Nucleation and growth 

The growth of nanoparticles is preceded by a nucleation process which can occur by solid-state 

restructuring of the gel or precipitate from a saturated solution and are governed by 

thermodynamic parameters which are related to the particle size.   

2.4.3.1. Nucleation 

The nucleation process can be described by the classical nucleation theory which was developed 

by Volmer and Weber in 1926  and further developed by  Becker and Doring in 1935 [2.100]. 

Assuming spherical particles, the Gibbs free energy of the nucleation is given by [2.101]: 

ΔG=Δ        
 

 
                    (2.21) 
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where ΔG is the Gibbs free energy, Δ   is the volume free energy (the volume chemical 

potential),      is the chemical potential (surface energy) of  the new surface and   is the surface 

energy per unit area (interfacial energy).     is the Gibbs free energy per unit volume  of the 

solid phase which can be expressed using one of the forms of the Gibbs-Thomson relation 

[2.101]: 

             
   

  
   

  

  
  

   

  
                          (2.22) 

where    is the volume per atom and S is the saturation defined as 

          S=
     

  
                                               (2.23) 

if      , the solution is supersaturated and nucleation and growth occurs, i.e. the solubility 

product is much higher than the solubility constant (Ksp) and the supersaturation value (  

           

   
 or   

            

   
 if Ce

3+
 and Ce

4+
 salt are used respectively) is large [2.89].  It has 

been reported that a value much greater than unity favors the formation of a great number of 

primary nuclei [2.94].  

 

The equilibrium condition requires     , while when     , the solution is unsaturated and 

the probability of growth occurring is small.  

The formed nuclei grow bigger and bigger until the radius exceeds a critical size (rc). If the size 

of the nucleus is less than this critical radius, it will remain in as part of the solution and the total 

free energy will be reduced. When the nucleus has a radius r = rc, 
   

  
  , the critical radius cen 

be expressed as:  
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             rc =  
  

   
                                                                                   (2.24) 

The energy barrier that a nucleation process must overcome is given by: 

                
  

    

       
                                (2.25) 

The rate of nucleation per unit volume per unit time,  ,  is governed by the Arrhenius rate 

equation and it is proportional to the number of growth species per unit volume(  ), the 

probability P and the successful jump frequency of growth species Γ [2.94]: 

        Γ    
     

    
 

  
   

   
 

   
 
                              (2.26) 

As seen from equation 2.26, the nucleation rate is dependent on the concentration of the solute. 

The behavior of the solute concentration as a function of time is depicted in Figure 2.12. No 

nucleation occurs above the equilibrium solubility as the concentration increases. The onset of 

nucleation occurs when the value of supersaturation is above the solubility. This value 

corresponds to the energy barrier     
  . There is a reduction in the volume Gibbs free energy due 

to a decrease in the concentration of the growth species after initial nucleation. When the 

concentration is further decreased to a certain value, no further nuclei will be formed. This value 

of the concentration correspond the critical energy.  However, further growth of the nuclei will 

continue until the concentration of the growth species reach the equilibrium solubility [2.102]. 
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Figure 2.12: Schematic illustration of the nucleation and growth process [2.102].  

 

2.4.4.2. Growth of nuclei 

After the formation of the nuclei, further growth of the nanoparticles occurs which is a multi-step 

process and can be summarized as follows [2.102]: 

i. Growth species are generated, 

ii. the growth species diffuse from the bulk to the growth surface, 

iii. the growth species are then adsorbed onto the growth surface, 

iv. the growth species are incorporated onto the solid surface which causes the surface to 

grow.  
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Ostwald Ripening 

Ostwald ripening is the processes in which larger nanoparticles grows at the expense of smaller 

particles [2.101]. This is due to the thermodynamics since larger crystals are more energetically 

favored over smaller crystals. The saturation- solubility condition is maintained through the 

establishment of a dynamic equilibrium in solution between the rates of dissolution and 

precipitation of the dispersed phase [2.101]. Smaller grains will dissolve faster and larger 

particles grow much slower [2.103].  

The above nucleation and growth processes starts with the onset of  an initial precipitate, 

Ce(OH)3 or Ce(OH)4 which form complexes coordinated with OH and H2O and/or alcohol  when 

Ce
3+

 salt and Ce
4+

 salt are used respectively. This precipitant is strongly dependent on the 

supersaturation (S) which can be achieved by means of temperature lowering, solvent 

evaporation, pH change etc. [2.94]. 

 

2.4.4.3. Parameters that influence nucleation and growth 

Solvent 

When an ionic compound (solute) is dissolved in a solvent, the compound is ionvated from the 

associated state to dissociated charged ions. From the electrostatic model it is known that when a 

solute precipitates from a supersaturated solution, the chemical potentials of the two phases 

(liquid and solid) are in equilibrium and are equal:  [2.94, 2.104]  

 

                       
           

                                           (2.27) 

where the subscripts “l” and “s” denoted the liquid and solid phase respectively,   is the standard 

chemical potential ,C denotes the concentration of the solute and     can be taken as unity for a 
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pure solute (    ), T denotes the temperature in Kelvin and k is Boltzmann‟s constant.  Energy 

is required to separate the charged ions from the original solid. The energy is associated with the 

change in the chemical potential and the Coulomb interaction is the main contributor: [2.94, 

2.105]  

                        
      

              
                                                  (2.28) 

where    is the permittivity in vacuum and   is the dielectric constant of the solution, T is the 

Kelvin temperature, k is the Boltzmann‟s constant, r+ and r- denotes the radii of the positively 

(  ) and negatively charged (  ) ions respectively and e is the elementary charge of the electron 

(1.602   10
-19

 C).  The dielectric constant of the solvent is the measure of its ability to decrease 

the attraction between oppositely charged ions and is defined by the free energy for the 

coulombic interaction between two charges [2.96]. Equations 2.27 and 2.28 can be combined to 

yield a relationship between the concentration of a saturated solution in equilibrium and the 

dielectric constant and can be expressed as [2.88, 2.96]: 

                    
      

              
                                 (2.29) 

 

It is seen from equation 2.29 that the solubility (  ) of the solute is proportional to the dielectric 

constant of the solution. A larger solubility is obtained when the dielectric constant of the 

solution is higher [2.94, 2.106]. The relationship between the nuclei radius r and the 

supersaturation S can be expressed using the Gibbs Thomson- relation (also the Kelvin equation 

since they are used interchangeably) [2.92, 2.94, 2.101, 2.106]: 

 

                         
 

  
      

   

    
                                           (2.30) 
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where   
 

  
, with C being the solute concentration. The weight of the solute is denoted by   

and   is the density of the solid. Equations 2.29 and 2.30 can be combined to give: 

                    
   

    
     

      

              
                                  (2.31) 

 

Thus the radius of the nuclei is proportional to the solubility of the solute. The dielectric constant 

of the solution affects the nucleation rate as well as the radius of the nucleus as seen from 

equation (2.31). Hence the crystallite size can be controlled by using different solvents [2.106]. 

This agrees with the findings of Zhang et al [2.107] that showed that the morphology and size of 

ceria nanoparticles are greatly affected by the type of solvent used.  

 

Temperature 

As can be seen from equation 2.31 the growth rate and the supersatursation are dependent on the 

temperature. The morphology of the final product is greatly affected by the temperature [2.108]. 

Low temperature favors the formation of small crystallites since the growth is less than the 

nucleation rate [2.109]. At higher temperatures the growth is accelerated due to the acceleration 

of hydroxylation of the metal ions (Ce
3+

 or Ce
4+

 dependent on the precursor salt) and the 

deprotanation process [2.110]. This was experimentally observed by Xu et al [2.11] and Hiranao 

et al. [2.12] whose work has shown that the ceria crystallite size increased with hydrothermal 

treatment temperature.   

Time 

A short reaction time also favors the nuclei formation rate over crystal growth rate, hence smaller 

particles are obtained for short reaction times [2.109]. Ageing time (i.e. time that precipitated 
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solid remains in the mother liquor) also influences the crystallinity. Jalilpor et al. have found that 

the size and morphology of the ceria nanoparticles are influenced by ageing time:  an increase in 

ageing time led to larger crystallite sizes and smaller particles that are weakly agglomerated for 

ceria synthesized at longer ageing time [2.113].   
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Chapter 3: Experimental 

 

3.1. Method 

 

3.1.1. Introduction 

An effective method of synthesizing ceria nanoparticles is one that meets the following demands 

[3.1]:
  

 Simple process 

 Low in cost 

 Be able to operate continuously 

 Offers high yield 

The precipitation technique has attracted the most extensive attention due to meeting these 

demands [3.2].  In addition it is an environmental friendly technique. In this procedure a cerium 

containing precursor salt whichis dissolved and subsequently treated with a ligand such as urea 

or ammonia solution. The ligand introduces a large concentration of OH
- 
into the solution which 

simultaneously precipitates all the metal cation components in the solution [3.3]. The precursors 

salts typically employed are Ce(NO3)3•6H2O, CeCl3•6H2O and (NH4)2Ce(NO3)6 [3.4].
 
However, 

as shown in section 2.4.5 of this study, when cerious (Ce
3+

) salt are used, an additional step of 

oxidation to Ce
4+

 is required prior to the formation of CeO2 [3.4, 3.5]. The reaction is therefore 

slower, leaving enough time for the initial particles to grow [3.5]. When Ce
4+

 salt is used as a 

precursor, no additional oxidation step is required and smaller particles are obtained compared to 

Ce
3+

 precursors [3.6]. The defect concentration (such as oxygen vacancies) in CeO2 nano 

particles obtained when Ce
4+

 salt is used is large and an increase in the microstrain is observed 

[3.6]. It has been observed that the reducibility of CeO2 is also much easier when Ce
4+

 salt is 

used as a precursor [3.6]. Hence in this study a Ce
4+ 

precursor salt was used, namely 

(NH4)2Ce(NO3)6.  
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3.1.2 Experimental Procedure 

A precipitation technique adopted from Pearman et al. [3.7] was employed for the synthesis of 

CeO2. This was done by thermal hydrolysis.  Ammonium hydroxide solution, 0.50 ml, (NH4OH, 

Sigma-Aldrich; 28-30%) was added all at once to a 50 ml of boiling solution of 0.2 M 

ammonium cerium nitrate ((NH4)2Ce(NO3)6, Sigma-Aldrich; 99,99%) in absolute ethanol 

(Sigma-Aldrich; 200 proof for molecular biology) under continuous stirring of 300rpm. After 

addition, the hot plate was switched off, and the solution was allowed to cool under constant 

stirring. The precipitate was then centrifuged at a rate of 3500 rpm, washed five times in 5 ml 

ethanol and then dried for 18 hours at 65  under vacuum.   

 

The formation of ceria is governed by the following reactions: 

Ce
4+

 + mOH-+ nC2H5OH → [Ce(OH)m(C2H5OH)n]
4-m

       (3.1a) 

[Ce(OH)m(C2H5OH)n]
4-m

 + H2O + OH- → CeO2-δ∙mH2O∙nC2H5OH      (3.1b) 

where m+n equal to the coordination number of the cerium ion.  

Conditions such as salt concentration, solution pH, nature of the coexisting anion, the reaction 

temperature and pressure etc. , influence the hydrolysis process. Therefore, parameters such base 

volume added, reaction temperature, solvent type, salt concentration and aging time (time the 

precipitant spends in the mother liquor) was investigated. Since the future goal is to produce 

CeO2 nanoparticles at optimum parameters in large quantities for the application of SO2 

reduction, a sample was prepared that was scaled up five times (i.e. five times the amount of 

each of the reactants were used) using the exact procedure outlined above. Table 3.1summarizes 

the experimental parameters employed.  The volume used for the solvents was 50 ml for each of 

the experiments respectively.  
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Table 3.1: A summary of the experimental parameters employed during the investigation of 

parameter effect on CeO2 formation.  

 

Parameter 

Investigated 

Solvent 

(50 ml) 

                  

(g) 

Temperature 

(   

VBase 

(ml) 

Time 

(hrs) 

Temperature EtOH 0.5482 

30 

0.5 2 
40 

80 

100 

Volume of 

NH4OH 
EtOH 0.5482 80 

0.75 

2 
2 

Ageing Time EtOH 0.5482 80 0.5 
19 

40 

Solvent 
MeOH 

0.5482 80 0.5 2 
H2O 
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3.2 Analytical Techniques 

3.2.1 Introduction  

Various techniques were employed in this study of CeO2 nanoparticles. Table 3.2 provides the 

different characterization techniques and the information that they provide.  

 

Table 3.2: Analytical techniques used in the study of CeO2. 

Technique Information 

X-ray Diffraction (XRD) Crystallinity, phase formation 

X-ray Photon Spectroscopy (XPS) 
Elemental composition and chemical or 

electronic state of each element in the surface 

Scanning Electron Microscopy (SEM) Surface Morphology 

Energy Dispersive Spectroscopy (EDS) Elemental Composition 

Transmission Electron Microscopy (TEM) Structural properties 

 

 

3.2.2 X-Ray Diffraction 

 

3.2.2.1 Introduction 

X-rays are electromagnetic radiation with wavelength in the dimensions of Angstroms, hence 

they are highly energetic radiation. Due to its small wavelength, which lies in the same order of 

interatomic spacings of the crystal,   it is able to probe the periodic nature of crystal structures. 

X-rays are scattered in all directions when interacting with the electron clouds of the atoms in the 

3-dimensional crystal. They can combine and interact constructively or destructively. When they 

interfere constructively, they produce a pattern, known as diffraction pattern and is said that 

these X-rays diffracted. This is known as X-ray diffraction and provides information of the 
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crystalline quality, phase of the material and the dominant crystallographic planes of the 

material.  

3.2.2.2 Crystallography 

The spatial arrangement of atoms can be mapped onto a three dimensional mathematical point 

lattice as shown in Figure 3.1.  The point lattice is an array of points in space which are arranged 

such that it has identical surroundings and forms cells that are identical.  

  

Figure 3.1: Schematic illustrating the point lattice with its unit cell [3.8]. 

The cell in the right of Figure 3.1 is called a unit cell whose size and shape can be described by 

three translation vectors        and   , known as the crystallographic axes of the cell [3.9]. The 

crystallographic axes can also be expressed in terms of their length (     ) and the angles 

between them        .  The lengths and angles of the crystallographic axes are known as the 

lattice parameters of the unit cell. By choosing special values of the lattice parameters, various 

unit cells can be produced. Hence, various kinds of point lattices as well.  There are fourteen 

different point lattices possible, known as Bravais lattices, which can be formed by choosing 

special sets of values for             . These Bravais lattices are summarised in Table 3.3 

below. 

 

 

 

 

 

 

 



Chapter 3: Experimental 

 

 

53 
 

 

Table 3.3: Fourteen Bravais Lattices and their description [3.8].  

 

Any position of a point in a Bravais lattice can be described by a vector    that passes through the 

origin of the unit cell and the point and can be expressed by the integral multiple of the 

translational vectors: 

                   (3.2) 

where u, v and w are integers marking the coordinates of a point. The vector expressed in 

Equation (3.2) is typically given in a more compact form as [u  v  w].  If the value of either u,v or 

w are negative, it is presented by a bar on top of the number, e.g.    ,       and       

will be written as           in the compact form. This is shown in Figure 3.2. 
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Figure 3.2: Indices of directions for a unit cell [3.8]. 

The values of u v w  are always converted to a set of smallest integers by doing multiplication or 

division operations using a common factor, e.g. 
 

 

 

 

 

 
 and [3 1 1]are the same direction/position. 

Directions related by symmetry, called directions of form, are presented by the indices of one of 

the direction and denoted <u v w>. For example, the four body diagonals of a cube [1 1 1], 

[1     ] ,[      ] and [       ] are presented by  <1 1 1>.  

 

A crystallographic lattice plane is a plane that contains a minimum of three non-collinear lattice 

points [3.8, 3.10]. The Miller indices are used to describe the orientation of a plane. The Miller 

indices can be defined as the reciprocals of the fractional intercepts which the plane makes with 

the crystallographic axes [3.8, 3.9]. A set of planes in a cubic system represented by Miller 

indices (     ) makes a fractional intercepts of 
 

 
 

 

 
 

 

 
 with the unit cell with axial lengths     . 
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There are, however, a set of parallel equidistant planes which have (   ) as Miller indices. These 

planes are called planes of form and are denoted by        .  The interplanner spacing between 

the set         of planes in a cubic system is given by: 

  
 

         
       (3.3) 

where   is the lattice parameter of the unit cell.  

 

3.2.2.3 Diffraction by Bragg’s Law 

The crystal structure, which consists of a regular array of atoms, will scatter an incident X-ray 

beam. A stack of crystallographic planes (   ) , each with a series of equally spaced atoms in a 

regular array, will scatter an incident  X-ray beam. Consider a monochromatic beam of parallel 

x-rays O and O’ with wavelength   , incident on the planes         with interplanar spacing   at 

an angle   with the planes as shown in Figure 3.3 below. These incident rays will be scattered in 

all direction by atoms in the planes. The scattered rays P and P’ will be completely in phase and 

reinforce each other (constructive interference of waves) if their path difference is an integer 

number n of wavelengths: 

                              (3.4) 

where    and    are the path difference between the two rays.  

The above relation is known as the Bragg‟s law and it is that condition that must be met for 

diffraction. Equation 3.4 is usually written as: 

                   (3.5) 
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Figure 3.3: Conditions that satisfies Braggs Law [3.9] 

 

3.2.2.4 Atomic and Structure factor 

As mentioned above, when X-rays are incident on a crystal structure it will be scattered by the 

atoms in the lattice. The scattering occurs through the interaction of the electromagnetic wave 

with the electron clouds surrounding the atoms. Thus, scattering of the incident X-ray wave 

depends on the distribution of electrons around the nucleus of the atom. The efficiency of an 

atom to scatter X-rays in a certain direction is described by a quantity known as the atomic 

scattering (form) factor and is defined by [3.8]: 
 

                                             
amplitude of the wave scattered by the atom

amplitude of the wave scattered by one electron
                                   (3.6) 

And the scattered wave, scattered by an atom in and     plane with coordinates      can be 

expressed by the complex exponential form: 

                                                                                                                        (3.7) 

When a unit cell is considered, the scattering is no longer dependent on the distribution of 

electrons around the nucleus of the atoms only, but also on the arrangements of the atoms in the 

unit cell. Consider scattering originating from a unit cell containing   atoms with fractional 
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coordinates and atomic scattering factors  ,   ,   , …,  , the resultant wave scattered by all the 

atoms in the     plane in the unit cell is called the structure factor and given by: 

                                              F                         
                                                     (3.8) 

where the summation extends over all the   atoms of the unit cell.  The structure factor, being a 

complex number, expresses both the amplitude and the phase of the resultant wave.  The 

amplitude of the resultant scattered wave is given by the absolute value of the structure factor: 

 F  and is defined as: 

                                            F  
amplitude of the wave scattered by all the atoms of the unit call

amplitude of the wave scattered by one electron
                     (3.9) 

The intensity ( ) of the beam diffracted by all the atoms in the unit cell is proportional to the 

square of the amplitude:      F   .  

 

3.2.2.5 Instrumentation 

An X-ray diffractometer shown in Figure 3.4 is used to perform XRD and consists of the 

following three basic parts: 

1. An X-ray source (indicated by the labels S and T in Figure 3.4) 

2. Diffractometer carriage 

3. An X-ray detector (G and E) 

A monochromatic source of X-rays originating from S, strikes a specimen at position C in the 

centre of the circle. The X-rays are diffracted by the specimen and forms a convergent diffracted 

beam. This beam focuses at the slit F before it enters the detector at G. The detector is supported 

on a carriage E which can rotate about the axis O with angular position 2θ. The supports H and E 

are permanently locked in a position detected at θ-2θ relationship. The Kβ radiation as well as the 

background is filtered using a filter which is positioned in the path of the diffracted beam.   
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Figure 3.5: Schematic of X-ray diffractometer [3.8].  

 

3.2.2.6 XRD study of CeO2 

The XRD technique is used to obtain structural information of the CeO2. It is known that CeO2 

has a fluorite crystal structure (CaF2) with space group Fm3m that consists of a face-centered 

cubic (f.c.c.) unit cell. The f.c.c. unit cell consists of cations and anions that occupy the 

octahedral interstitial sites [3.11]. Each cerium cation (Ce
4+)

 is coordinated by eight nearest-

neighbor oxygen anions(O
2-

). This structure has four cerium atoms at the positions: 
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The structure factor can be calculated as follows: 

F                                                      

                                              
 
 

 
 
 

 
 
 

         
 
 

 
  
 

 
 
 

         
 
 

 
 
 

 
  
 

         
 
 

 
  
 

 
  
 

  
 

                                                 
  
 

 
 
 

 
 
 

         
  
 

 
  
 

 
 
 

         
  
 

 
 
 

 
  
 

         
  
 

 
  
 

 
  
 

  
 

From the above expression, it is seen the structure factor is zero (i.e. F     ) when  ,   and   

are mixed (odd and even values). In this case, the sum of the exponentials amounts to -1. If the 

values of  ,   and   are unmixed (either all even or all odd), then the sum of the exponentials are 

equal to 1 and the structure factor is nonzero. Hence the intensity of the diffracted beam will be 

zero for mixed values of  ,   and   and nonzero when   ,   and   is unmixed.  Thus, the planes in 

the crystal structure of CeO2 that will diffract intensely and will be observed in the XRD 

spectrum are the (111), (200), (220), (311), (222),(400), (331), (420), (422)….etc. planes. This is 

depicted in the XRD spectrum shown in Figure 3.5 and corresponding values of the Bragg angles 

are summarized in Table 3.4. These angles were calculated using Equations 3.4 and 3.5 since the 

lattice parameter is known to be 0.5411 nm. 

 

Figure 3.5: X-ray diffraction spectrum of CeO2. 
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Table 3.4: Bragg angles of crystallographic planes of CeO2 that reflect intensely.  

Plane Diffracting 

Bragg Angle 

(2θ) 

degrees 

(111) 28.6 

(200) 33.1 

(220) 47.5 

(311) 56.4 

(222) 59.1 

(400) 69.5 

(331) 76.8 

(420) 79.1 

(422) 88.5 

 

The measurements were carriesd out with a with a D8 ADVANCE diffractometer from 

BRUKER using an X-ray tube with copper K-alpha radiation operated at 40 kV 

and 40 mA and a position sensitive detector, Vantec 1, which enables fast 

data acquisition time. The measurement range was between 15
o
 and 95

o
 in 2 theta with a step 

size of 0.096
o
. The measurement time was 1 second per step.  
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3.2.2.7 Data Interpretation 

Line Profile analysis (LPA) is commonly used to measure average crystallite size and local strain 

due to lattice defects. These methods include the Warren –Averabach method, Williamson Hall 

(WH) method and the Scherrer formula (SF) [3.12]. The latter two methods were used in this 

study.  Information on the peak width, expressed as the full width at half maximum or as an 

integral breadth was used in the calculations. To obtain these values a profile has to be fitted to 

the spectrum. Analytical peak profile functions includes amongst many, Gaussian, Lorentzian 

and Gaussian-Lorentsian line profiles. The XRD spectra were deconvoluted using PeakFit v4.12.   

 

The XRD peaks, i.e. the (111) and (200) peaks, broadens and overlaps when nanoparticles of 

ceria are considered. This broadening is a result of size and strain effects. As the size decreases 

the peaks starts broadening. In addition to this, there is inherent instrumental broadening that 

result from the X-ray beam. The X-rays used to probe the crystallographic structure is a 

combination of Cu Kα1 and Cu Kα2 X-ray wavelengths. At higher Bragg angles the profile of the 

of Cu Kα1 and Cu Kα2 X-ray wavelengths becomes separated but still overlaps and this leads to 

an increase in instrumental broadening. These effects are generally insignificant compared to the 

broadening due to the size effects in nanoparticles. For these reasons, calculations on the XRD 

spectra will be done at higher Bragg angles. In literature, the (111) peaks are usually selected to 

perform calculations to obtain the crystallite size. However, following the above reasoning the 

(311) peak were used since the systematic error decreases as the Bragg angle increases. [3.8].   

Scherrer Formula 

The Scherrer formula is used to estimate the particle size of very small crystals, that is, the 

crystallite sizes. The crystallite size is expressed as [3.8]: 

                                                                 
    

     
                                                             (3.10) 

where   the average crystal size in nm,   is is the wavelength of the incident X-ray in nm and   

is the Bragg angle which is given by the peak position in 2 theta divided by two and has units of 

radiance.    
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Williamson-Hall Method 

XRD broadening of the peaks is associated with strain and size effects [3.13]. The smaller the 

crystallites are, the broader the peak is. The Williamson-Hall equation separates the effects of 

size and strain present in nanocrystals and can be expressed by the following equation [3.13-

3.15]:  

                                              
    

     
 

         

     
                 (3.11) 

where        is the full width at half maximum of the XRD peak and    is the difference of the 

interplanar spacing     A plot of       versus 4     yields the crystal size from the intercept 

value and the strain from the slope.   

 

Defect Concentration 

The increase in the lattice parameter is associated with the decrease in the crystal size which 

introduce oxygen vacancy defects as found by Tsunekawa et al. and others [3.16, 3.17]. To 

maintain charge balance Ce
3+

 ions are present. It is these defects (oxygen vacancies and Ce
3+

 

ions) that cause the lattice to expand when the crystallites are small. Zhou and Huebner 

formulated an equation to calculate the total oxygen vacancy concentration [3.14]: 

                                  
       

 
           Ce    Ce   

 

 
     

  O                    (3.12) 

where  Ce   and  Ce   are the radii of Ce
3+

 and Ce
4+

 ions respectively,    O 
 is the radius of a 

oxygen vacancy,   O   is the ionic radius of O
2-

,    is the lattice parameter of the bulk CeO2 

(  =0.5411 nm) and    is the new lattice parameter of the synthesized CeO2 nano- structures. 

The parameter   is equal to the ratio Ce
3+

/Ce
4+

 which is the ratio of the number of Ce
3+

 and Ce
4+

 

ions in the lattice structure of CeO2. This parameter   is related to the oxygen vacancy 

concentration through the following relation: 

                                                            
 

 
                                                                (3.13) 

The coordination numbers of both Ce
3+

 and Ce
4+

 are eight where each Ce
3+

 and Ce
4+

 ions are 

surrounded by eight O
2-

 ions,  hence the oxygen vacancy concentration is given by  
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                                                                                                               (3.14) 

Taking the sizes of the ions as  Ce          nm,  Ce          nm,     
       nm and 

 O         nm [3.15, 3.16], the parameter   and the oxygen vacancy concentrations can be 

calculated using Equation 3.12 together with the lattice parameters for each sample synthesized. 

 

3.2.3 X-Ray Photon Spectroscopy  

 

3.2.3.1 Introductory Overview 

X-ray photon spectroscopy (XPS) falls under a class of electron spectroscopy techniques. It is 

concerned with the energy of emitted electrons from the near surface of the sample using soft X-

rays [3.18].   

In the experiment, the sample is placed in a vacuum chamber and then gets radiated with X-ray 

photons. The irradiated atoms will emit electrons known as photoelectrons after the photons have 

transferred all its energy to the core-level electrons. The photoelectrons from atoms near the 

surface have a higher probability to escape into the vacuum chamber then the ones emitted from 

atoms deeper into the sample. Hence it is only near-surface electrons that are detected; which 

makes XPS a surface technique. The electrons detected get sorted according their respective 

energiesand counted. The photoelectrons have energies that are related to the atomic and 

molecular environment from which they were emitted [3.19]. Figure 3.6 shows the components 

found in an XPS system [3.3].  
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Figure 3.6: Schematic of an XPS system [3.3] 

XPS is commonly used to measure [3.3]: 

 Elemental composition of the surface with a maximum depth of  around 10nm 

 Surface contamination 

 The chemical or electronic state of each element on the surface 

 

3.2.3.2 Atomic Structure 

An atom consists of a positively charged nucleus consisting of protons and neutrons. Negatively 

charged electrons orbits around the nucleus, but will however, never plunge inside the nucleus. 

That means, the electrons does not radiate energy as it makes these circular orbits as otherwise 

predicted by classical electrodynamics. These electrons only have certain stable orbits at certain 

discrete distances from the nucleus. These stable orbits are associated with the allowed discrete 

energies the electrons otherwise referred to energy shells/levels. Figure 3.7 shows a schematic 

representation of the atom and the orbiting electrons. Electrons may gain or lose energy by an 

amount that allows a transition from one orbit to another. This can be achieved by absorbing or 

radiating electromagnetic radiation.     
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Figure 3.7: Schematic representation of an atom.  

 

The energy state of electrons in the atoms can be described by quantum numbers  ,  ,   and  , 

which have the following meaning [3.19]: 

   is the principal quantum number and specifies the energy shell/level of an atom 

   is the azimuthal quantum number which is also known as the angular momentum 

quantum number or orbital quantum number. It describes the subshell. This quantum 

number has values;                  . Chemists assign letters, called orbitals, to these 

values, these numbers correspond to s, p, d, f, …respectively. These orbitals are indicated 

in Table 3.5 below.  

   is the spin quantum number, which is an intrinsic property of the electrons.  

   is the spin-orbit coupling;      .  

These quantum numbers are used to characterize the energy state of photoelectrons (electronic 

state) in XPS 
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Table 3.5: Nomenclature of XPS [3.20].  

    Orbital   XPS notation 

1 0 S ½      
 

2 0 S ½      
 

2 1 P ½      
 

2 1 P 3/2      
 

3 0 S ½      
 

3 1 P ½      
 

3 1 P 3/2      
 

3 2 D 3/2      
 

3 2 D 5/2      
 

etc.    etc. 

 

 

3.2.3.3 Principles 

When a photon impinges on an atom, one of three processes can occur (1) the photon can pass 

through the atom without interacting with the atom, (2) Compton scattering can occur whereby 

the photon has partial energy loss due to scattering from an atomic orbital and (3) the photon can 

lose all its energy by transfer it to the orbital electron, and if the energy is large enough, electron 

emission from the atom will occur [3.20]. It is this last process, known as photoemission that 

XPS is concerned with.  

 

3.2.3.4 Photoelectric effect 

The photoelectric effect (discovered by Einstein) is the basic working principles of XPS. It is 

described in terms of the postulates discussed in the following lines. When the photon transfers 

all its energy to the electron, no ejection will occur, regardless of the illumination intensity, 

unless the energy of the photon is much greater or equal to a threshold energy known as the work 
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function. This threshold energy level is characteristic to the element. The energy of the photon is 

greater or equal to that of the threshold energy, the number of electrons emitted, known as 

photoelectrons, is proportional to the intensity of the illumination, i.e. the more photons 

impinging on the sample with sufficient energy, the more number of photoelectrons ejected. This 

is illustrated in Figure 3.8. 

In a XPS spectrum, the binding energy    is plotted against the photon energy;    is given by 

[3.19, 3.20]:   

                                                                                                                                   (3.15) 

where    is the photon energy of the incident X-ray photons,    is the kinetic energy of the 

emitted electron as measured by the spectrometer and   is the work function of the 

spectrometer. Figure 3.9 displays the emission process.  

 

Figure 3.8: Schematic depicting the relation between X-ray photons and photoelectrons on the 

surface layer of a sample [3.3].  
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Figure 3.9: Emission process of photoelectron via X-ray photon [3.3]. 

The binding energy of electrons in the atom at the surface of the metal is a measure of how 

tightly the electron is bound.  Since electrons occupy discrete energies in an atom, the detected 

photoelectrons provide chemical information of the atoms. The quantities on the right hand side 

of Equation 3.15 can all be measured, thus, calculating the binding energy is all that remains.  

 

3.2.3.5 Experimental  

X-Ray photoelectron spectroscopy has been used to determine the oxidation states of the ions 

namely that of cerium, present in the as prepared CeO2 powders. The XPS spectra was measured 

using a Physical Electronics CPS PHI 54000 spectrometer with un- monochromated Al – X-ray 

source (1486.6 eV) operating at 300 W and 15 kV. Detail spectra were recorded with pass energy 

of 35 eV in 0.1 eV steps and dwell time 500 ms. The spectrometer was calibrated using a copper 

standard and Cu 2p3/2 peak at 932.64 eV. The base pressure in the working chamber was less 

than 1 x 10
-9

 Torr. The electron takeoff angle was 45 with respect to the sample surface. No 

charge compensation was used in the experiments and the correction for static charging was 

performed by assigning a value of 284.5 eV to the C 1s peak of adventious carbon. 
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3.2.3.6 Analysis 

An XPS spectrum is a plot of the number of electrons detected versus the binding energy of the 

photoelectrons detected as shown in Figure 3.10.  Since the spectrum is measured as a function 

of the kinetic energies of the photoelectrons, the binding energy scale is often in the negative 

direction of the abscissa because the kinetic energy increases in the opposite direction of the 

binding energy. The characteristics peaks is due to the photoelectrons emitted from the core- 

levels that escaped without energy loss, and those that underwent elastic scattering and suffered 

energy loss contribute to the background of the spectrum [3.20].  

 

       

Figure 3.10: Measured XPS spectrum of CeO2 [3.21]. 

The amount of an element within the area (volume) of the sample irradiated with X-rays is 

directly proportional to the intensity of the characteristic peaks [3.3]. This is also true for the 

percentage of an oxidation state an element is in.  The XPS Ce3d line is conventionally used to 

determine the electronic state of cerium in CeO2 [3.22, 3.23]. The Ce3d spectrum is complex as 

it contain up to ten peaks (five peaks for each of the spin-orbit split 5/2;  3/2 components). Six of 

these peaks are associated with Ce
4+

 oxidation state of cerium and the other four with the Ce
3+
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oxidation state (only present if ceria is partially reduced) [3.24, 3.25]. These peaks arise from the 

multi-electric processes both in the Ce
4+

 and Ce
3+

 states [3.26]. The initial state of Ce
4+

 is  

3d
10

4f
1
 and Ce

3+ 
is 3d

10
4f

1
. Strong hybridization of the oxygen 2p valence band with the Ce 4f 

orbital occurs resulting multiple 4f configurations [3.27-3.29]  The Ce
4+

 ions have doublets for 

the Ce(IV) 4f
0
, 4f

1
 and 4f

2
 configurations and the Ce

3+
 ions have doublets for the Ce(III) 4f

1
 and 

4f
2
 configurations. The final states after the creation of core holes can be described using the 

Burroughs notation: two of the spin-orbital multiplets corresponding to the 3d3/2 and 3d5/2 

contributions were labelled u and v respectively. The states u, v, u'' , v'' results from a mixture of 

Ce3d
9
O2p

5
Ce4f

1
 and Ce3d

9
O2p

4
Ce4f

2 
final states of Ce

4+
. States u''' and v''' results from the 

Ce3d
9
O2p

6
Ce4f

0
 final states of Ce

4+
. The two doublet pairs u

0
/v

0
 and v'/u' corresponds to a 

mixture Ce3d
9
O2p

5
Ce4f

2
 and Ce3d

9
O2p

6
Ce4f

1 
final states of Ce

3+
 [3.24]. Table 3.6 shows these 

final states with the corresponding binding energies. Hence, the Ce
4+

 and Ce
3+

 peaks in the 3d 

spectrum overlaps as shown in Figure 3.11. 

Table 3.6: Binding energies spin-orbit multiplets [3.28].  

Ion 
 

3d5/2/3d3/2 

Binding Energy 

(eV) 
Final state 

Ce
4+

 
v/u 882.6/901.1 Ce 3d

9
4f

2
 O 2p

4 
v''/u'' 888.8/907.5 Ce 3d

9
4f

1
 O 2p

5 
v'''/u''' 898.1 /916.9 Ce 3d

9
4f

0
 O 2p

6 

Ce
3+

 v
0
/u

0
 880.5/  898.8 Ce 3d

9
4f

2
 O 2p

5 
v'/u' 884.9/  904.1 Ce 3d

9
4f

1
 O 2p

6 
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Figure 3.11: Deconvoluted Ce3d XPS spectrum of CeO2 [3.24]. 

There are a number of methods to deconvolute this spectrum as outlined by Skála et al. [3.22].  

A nonlinear least-squares method was used in this case to fit Gausian-Lorentzian type curves to 

the spectrum. Before this was performed, the spectrum was shifted in the binding energy by a 

factor to compensate for charging as demonstrated in Figure 3.12. This was done such that the 

peaks coincide with that of Tabaza et al [3. 28]. A Shirley-type background subtraction was then 

performed on the 3d spectrum, followed by the peak fitting procedure using the XPS peak 4.1 

software packages.  
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Figure 3.12: Measured and shifted XPS Ce3d spectrum of CeO2 nanoparticles synthesized at 

40 . This spectra was obtained from actual measurements done in this study.  

The relative atomic concentrations of the Ce
3+

 and Ce
4+

 ions can be calculated using the 

following equation [3.30]: 

      
 

    

           
                (3.16) 

where       is the total intensity by area (integrated peak area) of either the Ce
4+

 or Ce
3+ 

component in the Ce 3d spectrum.  There is much debate around the significance of the 

concentration values of Ce
3+

 in CeO2 obtained through this method, since the X-ray irradiation 

may induce the reduction in ceria [3.25, 3.30, 3.31].  

From Figure 3.13, it is seen that no significant change in the intensity and behavior of the 

spectrum occurred after irradiating the CeO2 sample with X-rays for 75 minutes.  Only minor 

shifting in the binding energy occurred which can be assigned to charging effects. Thus, the 
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sample was quite stable under the X-ray beam. Since measurements were made immediately 

after the equipment was ready to make measurements, there were not so much time lag and 

therefore the time the sample was exposed to the X-ray beam was minimal and much led than 75 

minutes. Therefore, the results obtained from XPS in this study can be taken with significance.  

 

 

Figure 3.13: XPS Ce3d spectrum of CeO2 measured before and after irradiating CeO2 sample 

with X-rays for 75 minutes. This spectra was obtained from actual measurements done in this 

study.  
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3.2.4. The Scanning Electron Microscopy 

3.2.4.1. Introduction  

Scanning Electron Microscopy (SEM) is often used to analyze the topography, morphology and 

composition of nanostructures. Figure 3.14 shows a schematic diagram of a SEM. This is 

achieved by scanning a beam of electrons across the specimen surface through the use of 

scanning coils. The electron beam interacts with the specimen producing a series of signals 

which are collected, amplified and converted to a monitor [3.10].  Information on the specimen 

topography and morphology is related to the contrast in the final image. 

 

3.2.4.2 The Scanning Electron Microscope 

The electron-gun produces electrons through thermionic emission from a cathode or a field 

emitter. A field emitter produces a brighter beam due to the extremely high flux of electrons 

from an extremely small source. Lanthanum hexaboride (LaB6) or filaments are commonly used 

as cathodes due to their low work function.  

The electrons emitted from the filament are the accelerated rapidly towards the anode, thus 

producing a beam of high energy (i.e. a few hundred to 100 000 eV) electrons. Electrons are 

emitted through a small aperture situated at the centre of the microscope column.  The emerging 

beam is then focused into a smaller diameter size by two condenser lenses situated below the 

electron gun as shown in Figure 3.14. The beam intensity is determined by the condenser lenses 

and the accelerating voltage [3.32].  

As the beam passes through the column, it is further aligned and focused by the apertures and 

coils until it reaches the final objective lens. This lens further focuses the beam by demagnifying 

it into a small spot on the specimen surface. In addition to focusing the beam, the final objective 

lens also controls the intensity of the beam upon striking the specimen, thereby determining the 

brightness of the image.  
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Figure 3.14: Schematic representation of the SEM components [3.32]. 

 

3.2.4.3 Resolution 

The resolution can be defined as the smallest distance at which two objects can be viewed as two 

distinct entities. It is an important factor in microscopy, as the apparatus resolution determines 

the limit to which two objects in the specimen can be resolved. The resolution is given by the 

Abbes‟s equation [3.32, 3.33]: 
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             (3.17) 

where    is the resolution (good resolution implies   is small) 

     is the wavelength of the energy source 

    is the index of refraction of the medium through which the energy source travels 

   is the aperture angle as illustrated in Figure 3.15 

From the above expression, it is seen that the resolution can be improved by; (1) increasing the 

aperture size, (2) increasing the accelerating voltage, which will result in a smaller wavelength of 

the beam and (3) lowering the working distance 

 

3.2.4.4 Working Distance and Depth of Field 

The working distance is the distance between the final lens and the specimen surface. The depth 

of field (DOF) is the extent of the zone on a specimen which appears acceptably in focus [3.33]. 

The depth of field is influenced by the working distance (WD), i.e. the distance between the final 

lens and the specimen surface. If the WD is decreased, the aperture angle increases (aperture 

solid angle α increases) and as a result the DOF decreases. An increase in the WD causes the 

aperture angle to decrease. As a result, the DOF increases with a lower resolution as shown in 

Figure 3.15 below.   
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Figure 3.15: Schematic illustrating the relationship between working distance and depth of field 

[3.33] 

 

3.2.4.5 Electron Beam-Specimen Interaction Signals 

The interaction of the primary beam (electron beam) with the specimen creates a volume, known 

as the interaction volume, within the specimen in which electrons are scattered. This interaction 

volume is shown in Figure 3.16. The scattering can be divided into elastic scattering and inelastic 

scattering. These scattering events create signals such as Auger electrons, secondary electrons, 

backscattered electrons, X-rays, heat and light forms (cathodoluminescence) [3.33]. These 

signals can be detected by SEM and provides information such as surface morphology and the 

elemental composition of the specimen. The various types of signals are shown in Figure 3.17.  
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Figure 3.16: Schematic illustrating the interaction volume and the origins of the different signals 

[3.10]. 

 

Figure 3.17: Schematic illustrating the generation of different signals when the primary electron 

interacts with a specimen [3.10].  
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Secondary electrons are mostly responsible for surface image formation and are typically used in 

modern SEM since they offer great resolution. Electrons that were scattered inelastically and 

have energy of less than 50 eV is deemed secondary electrons. These electrons are emitted 

outward from the specimen surface in all directions. Due to their low energy, they are easily 

absorbed by adjacent atoms in the specimen and it is only those secondary electrons that were 

created near the surface of the specimen that are able to escape and be detected. Once these 

electrons escaped they are captured by a secondary electron detector which is surrounded by 

positively charged Faraday cup. Their energies get converted into photons by a scintillator. A 

photocathode and photomultiplier amplifies the photons into an electronic signal, which are used 

to control the brightness of the image such that the contrast of the sample surface can be 

adjusted.       

 

3.2.4.6 Energy Dispersive Spectroscopy (EDS) 

The atom was discussed in section 3.2.3.2. To serve as a reminder, Figure 3.18 depicts the atom. 

The electron shells can be labeled K,L, M.., corresponding to the principle quantum numbers, 

 =1,2,3.  When an electron gets excited, e.g. from the K shell, the atom is in an excited state and 

returns to its ground state when an electron from the outer shell (e.g. L or M) fills the vacancy 

left behind by the excited electron. To conserve energy, a photon is emitted in the X-ray 

wavelength. The X-rays emitted are described by using a certain nomenclature, for example; 

when an electron from the K shell is exited and an electron from an L shell fills the vacancy, a 

X-ray termed Kα is released, whereas if an M shell electron fills the vacancy in the K shell, an Kβ 

X-ray is emitted.  
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Figure 3.18: Schematic illustration of the atom with different energy levels [3.33].  

Since the energy levels of an atom are discrete, and characteristic to an element, X-rays 

generated from these processes are known as characteristic X-rays and are used to identify 

atoms/elements in a specimen. Energy Dispersive Spectroscopy (EDS) exploits these phenomena 

by separating the X-rays generated by the electron beam-specimen interaction into their energies. 

This is achieved by using a semiconductor detector. A semiconductor crystal is excited by 

absorbing a given amount of energy when an X-ray strikes it. This absorbed energy gets 

converted into an electronic signal which is emitted, further amplified, converted to a digital 

form and then fed to a multi-channel analyzer (MCA) where it gets sorted and counted. It count s 

the number of X-rays at each energy level that strikes the crystal and plot the information as 

shown in Figure 3.19.  

 

Figure 3.19: Measured EDS spectrum of CeO2. This spectra was obtained from actual 

measurements done in this study. 
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3.2.4.7 Experimental: Sample preparation and analysis 

When the primary beam interacts with a non-conducting specimen, a negative charge builds up 

on the specimen surface.  This is known as „‟charging‟‟. It causes the primary electron beam and 

some secondary electrons to deviate from their normal paths, periodic bursts of secondary 

electrons and an increase in the emission of secondary electrons resulting from cracks and 

defects within the specimen.  The result of charging is a degraded final image.   

The CeO2 powders were mounted on adhesive carbon tape that was on a stub. Since CeO2 are 

prone to charging, the sample was covered with an electrically conductive coating, namely 

gold/palladium.  Samples were made electrically conductive by coating them with thin layers of 

gold-palladium (Au-Pd) for 30 seconds using a Quorum Q150T sputter coater. The coating 

facilitates the dissipation of the charge, thereby preventing charging. 

.  
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Chapter 4: Results and Discussion 

 

4.1. Effect of Temperature 

Synthesis temperature plays a crucial role on the morphology and the crystallite size of the final 

product of CeO2 as found by Xu et al and others [4.1, 4.2]. Cerium dioxide nanopowders were 

synthesized at various solution temperatures as outlined in section 3.12. Four samples were 

prepared at 100 , 80 , 40  and 30  respectively. The physical and chemical properties were 

investigated and these results are discussed below.  

 

4.1.1. Crystallography studies 

The XRD spectrum of the ceria nanoparticles synthesized at different temperatures are shown in 

Figure 4.1. One sample was measured per temperature. There is significant amount of peak 

broadening as the temperature decreases. As the temperature decreases, the peaks become 

broader and significant amount of overlapping occurs between the peaks. This is evident for the 

(311) and (222) peaks as well as the (331) and (420) peaks for samples synthesized at 80  and 

below. This is an indication that the size of the crystals decreases. An increase in the overlap 

between the 111 and 200 peaks are further observed when the processed temperature was 

decreased. The (420) peak is observed to decrease with the decrease of the temperature.  A 

similar trend is observed for the (111) peak. This is an indication of finer grains.  
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Figure 4.1: XRD spectrum of Ceria nanoparticles synthesized at: (a) 100 , (b) 80 , (c) 40  

and (d) 30  .  

All the XRD spectrums were deconvoluted using Gaussian-Lorentzian line shapes in 

PeakFitv4.12 as shown in Figure 4.2.  The peaks could be indexed to the cubic fluorite structure 

indicating the successful formation of ceria nanoparticles. No additional peaks are present which 

indicates that only pure ceria was formed.   
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Figure 4.2: Deconvoluted XRD spectrum of CeO2 nanoparticles synthesized at: (a) 100 , (b) 

80 , (c) 40  and (d) 30 .  

XRD broadening of the peaks are associated with strain and size effects. The smaller the 

crystallites are, the broader is the peak. The Williamson-Hall equation (equation 3.11) separates 

the effects of size and strain present in nanocrystals. This was used to create plots of       

versus 4     , where the intercept value yields the crystal size and the slope and the strain. 
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Figure 4.3: Williamson-Hall plots of CeO2 powders synthesized at different temperatures. One 

sample was measured per temperature. 

The Williamson –Hall plots of all the CeO2 powders shows the absence of any slope. That is, the 

data points do not lie on a straight line.  Following the work of Zhou and Huebner , we can 

conclude no internal strain is present in the samples and the line broadening can be attributed to 

size effects [4.3] . The average crystal size D can be calculated using the Scherrer equation 

(equation 3.10). Since the systematic error decreases as the Bragg angle increases, the (311) peak 

were selected and used to perform calculations to obtain the average crystal size [4.4, 4.5].  

These results are listed in Table 4.1. It should be noted that the crystal sizes calculated from the 

Sherrer equation is not a physical representation of the actual crystal sizes since this method of  

calculation assume monodispersed spherical  crystallites. Hence, the crystal sizes obtained from 

XRD should serve as an indicator of the evolution of crystal size with temperature. The 
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interplanar spacing d was calculated using the Bragg‟s Law (equation 3.5) and the lattice 

parameter was obtained using equation 3.3.   

Table 4.1: Summary of the interplanar spacing of the (311) planes, average crystallite size and 

lattice parameter of CeO2 powders synthesized at different temperatures.  

Temperature 

  

Peak Position 

2  

(Degrees) 

Crystal Size 

D 

(nm) 

Inter-planar 

Spacing 

d 

(nm) 

Lattice Parameter 

a 

(nm) 

30 56.0980 1.83 0.1640 0.5437 

40 56.1339 1.98 0.1638 0.5434 

80 56.1343 3.09 0.1638 0.5434 

100 56.2534 5.57 0.1635 0.5423 

 

From Table 4.1 it is seen that the average particle crystallite size increases with temperature.  An 

increase in temperature leads to less surface energy, and the atoms can thus arrange themselves 

in specific coordinates due to an increase in relaxation time [4.6]. The average crystallite size is 

plotted as a function of temperature in Figure 4.4 and displays exponential growth behavior.  

This agrees with work done by Saitzek et al [4.7] and others in literature [4.1, 4.8], where it was 

found that the crystallite size increases with temperature. A similar trend is seen in the lattice 

parameter; the lattice parameter decreases as the temperature increase as depicted in Figure 4.4.  
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Figure 4.4: Plots depicting the variation of: (a) crystallite size with temperature, (b) lattice 

parameter with temperature and (c) lattice parameter as a function of the crystal size of CeO2 

nanopowders.  

The observed increase in the lattice parameter with decreasing size of the CeO2 crystallites can 

be associated with oxygen vacancies defects which are introduced when the crystal size 

decreases as shown in Figure 4.4(c). To maintain charge balance Ce
3+

 ions are formed. It is these 

defects (oxygen vacancies and Ce
3+

 ions) that cause the lattice to expand when the crystallites are 

small since the Ce
3+

 ions has a larger radius than Ce
4+

 ions. Similar results were found by 

Tuneska et al and others [4.9-4.11].   Using equations 3.12-3.14, the total oxygen vacancy 

concentration was calculated.  

 

 

 

 

 



Chapter 4: Results and Discussion 

 

 

91 
 

Table 4.2: Relative Ce
3+ 

concentration and oxygen vacancy concentration induced through lattice 

expansion as a result of grain size reduction.  

Temperature 

( ) 
  

    

     
 

         

(cm
-3

) 

30                  

40                  

80                  

100                   

 

As can be seen from the above results, the lattice expansion results from varying defect 

concentration present in the lattice. The defect concentration decrease as the temperature 

increases, since the lattice displays less relaxation at elevated temperatures.  

 

4.1.2. Morphology 

SEM was used to characterize the morphology of the powders. SEM micrographs in Figure 4.5 

indicate that all the synthesized CeO2 powders agglomerate in a cauliflower- like structure. The 

secondary particles formed are smaller at lower temperatures.   

 

 

(a) 
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(b) (a) 

(d) (c) 

(f) (e) 
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Figure 4.6: SEM micrographs of CeO2 synthesized at different temperatures: (a, b) 100  , (c, d) 

80  , (e, f) 40   and (g. h) 30  .  

The particle sizes were measured from the SEM micrographs using the ImageJ software package.  

Histograms (Figure 4.4) were constructed and the average particles sizes were calculated using a 

sample space of 100 particles.  The average particle sizes obtained is summarized in Table 4.3.  

 

(g) (h) 
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Figure 4.4: Histograms displaying the particles size distribution obtained of SEM micrographs of 

CeO2 synthesized at: (a) 30 , (b) 40 , (c) 80  and (d) 100 . 

 

Table 4.3: Average particles size of CeO2 nanopowders synthesized at different temperatures. 

Results were calculated from SEM micrographs. 

Temperature 

( ) 

Particles Size (SEM) 

(nm) 

Standard Deviation 

(nm) 

30 45.5 18.7 

40 31.5 10.6 

80 37.5 11.5 

100 72.4 20.9 

 

The particle size decreases as the temperature decreases as shown in Table 4.3. Chen et al [4.10] 

and Zhang et al. [4.12] also found that the particles sizes are smaller for particles grown at lower 

temperatures.  However at 30   the trend is broken. Fine particles agglomerate and form clusters 

through the Van der Waals forces or hydrogen bonds.  

4.1.3. XPS 

X-Ray photoelectron spectroscopy has been used to determine the oxidation states of the ions 

namely that of cerium, present in the as prepared CeO2 powders.  

 

A full XPS spectrum was recorded in the range 0 to 1000 eV. In addition, XPS spectra in the 

ranges of O1s, Ce3d, Cu1s and C1s were also recorded . The measured full XPS spectra are 

shown in Figure 4.8 and of the Ce3d are shown in Figure 4.9.  
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Figure 4.8:  XPS spectra of CeO2 synthesised at (a) 80   and (b) 40  . 

As can be seen from the full XPS spectra of the two powders, only oxygen, cerium copper and 

carbon are present. The carbon results from the adhesive carbon tape that was used to mount the 

sample.  Hence, this gives a further indication that the sample is pure.  

A nonlinear least-squares method was used to fit Gausian-Lorentzian type curves to the Ce3d 

spectrum. Before this was performed, the spectrum was shifted in the binding energy by a factor 

to compensate for charging as demonstrated in Figure 4.9. This was done such that the peaks 

coincide with that of Tabza et al [4.15].  A Shirley-type background subtraction was then 

performed on the Ce3d spectrum, followed by the peak fitting procedure using the XPS peak 4.1 

software package.  The results are shown in Figures 4.10 and 4.11.  The relative atomic 

concentrations of Ce
4+

 were calculated using equation 3.16. The results are summarised in Table 

4.4.  
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Figure 4.9: Measured and shifted  XPS Ce3d spectra of CeO2 synthesised at (a) 80   and (b) 40 

 .  

 

Figure 4.10: Deconvoluted Ce3d XPS spectrum of CeO2 nanopowders synthesized at 40  . 

 

 

 

 



Chapter 4: Results and Discussion 

 

 

97 
 

 

Figure 4.11: Deconvoluted Ce3d XPS spectrum of CeO2 nanopowders synthesized at 80  . 

 

Table 4.4:  Deconvoluted Ce3d XPS peak parameters and percentage of Ce
3+

 and Ce
4+

 ions in the 

specimens prepared at 40   and 80   respectively.  

 

Ion 

 

3d5/2/3d3/2 

Peak 

Position 

(eV) 

Peak 

Separation 

(eV) Final state 

 

%Area 

40   80   40   80   40   80   

Ce
4+

 

v/u 882.7/901.1 882.7/901.2 18.4 18.5 Ce 3d
9
4f

2
 O 2p

4 

77.9 

 

83.3 

 

v''/u'' 889/907.5 888.9/907.4 18.5 18.5 Ce 3d
9
4f

1
 O 2p

5 

v'''/u''' 898.2/916.8 898.2 /916.9 18.6 18.7 Ce 3d
9
4f

0
 O 2p

6 

Ce
3+

 
v

0
/u

0
 880.2/898.7 879.7/ 898.8 18.5 19.1 Ce 3d

9
4f

2
 O 2p

5 
22.1 16.7 

v'/u' 885.3/904.1 885.7/ 904.1 18.8 18.4 Ce 3d
9
4f

1
 O 2p

6 

 

From the above results, it is seen that the smaller crystals with the larger lattice parameter 

synthesized at 40 , have a greater concentration of Ce
3+

 defects as expected. The relative 

concentration of Ce
3+

 to Ce
4+ 

is 38.6% and 26.5% for the samples synthesised at 40  and 80  

respectively. The Ce
3+

 concentration obtained using XPS is much greater than that obtained by 
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XRD data (Table 4.3). The spin-orbit splitting is 18.6   0.15 eV and 18.6   0.28 eV for the  

40  and 80  respectively. These values lie in the range of that obtained by Hwang et al. [4.16].  

 

4.2 Base Volume 

The pH of the reaction medium plays a crucial role in the formation of CeO2 crystals [4.17, 4.18] 

. It has a great effect on the nature and crystallinity of the CeO2 nanoparticles [4.17]. The pH of 

the reactant solution increases as the amount of NH4OH base added increases. The effect of 

volume of the base added to force hydrolysis on the formation of CeO2 nanoparticles was 

investigated. This was achieved by following the synthesis method outlined in section 3.1.2; 

however, three different volumes of the base were added in three different reactions. The three 

samples were synthesized at 80  using 0.5 ml, 0.75 ml and 2 ml NH4OH respectively. The 

obtained samples were investigated using XRD, SEM and XPS. The results and discussion of 

these techniques are presented below.   

 

4.2.1. Crystallography 

The XRD spectrum of the CeO2 nanopowders synthesized using different volumes of NH4OH 

are shown in Figure 4.12. One sample per volume was measured. An increase in crystallinity is 

observed as the NH4OH volume increases. The peaks are broader for lower volumes of NH4OH 

and significant amount of overlap are observed between the (311) and (222) peaks as well as the 

(331) and (420) peaks. This is in contrast to CeO2 powders synthesized using 2ml NH4OH, 

where all the peaks are resolved.   
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Figure 4.12: XRD spectrum of Ceria nanoparticles synthesized using different volumes of 

NH4OH : (a) 2ml NH4OH, (b) 0.75 ml NH4OH and  (c) 0.5 ml NH4OH. 

The spectrum was deconvoluted and peaks were fitted using Gaussian-Lorentzian line profiles as 

shown in Figure 4.13. The crystallite size and lattice parameters were calculated using (311) 

peak parameters together with the Sherrer equation and Bragg law respectively. These results are 

summarized in Table 4.5 below. Since only one sample per volume investigated was measured, 

there are no statistics provided. 
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Figure 4.13: Deconvoluted XRD spectra of CeO2 nanopowders synthesized using: (a) 2ml 

NH4OH, (b) 0.75 ml NH4OH and (c) 0.5 ml NH4OH. 

 

 

 

 

 

 

 

 

 



Chapter 4: Results and Discussion 

 

 

101 
 

Table 4.5: Summary of the inter-planar spacing of the (311) planes, average crystallite size and 

lattice parameter of CeO2 synthesized using different volumes of NH4OH.  

Volume of 

NH4OH 

ml 

Peak Position 

2  

(Degrees) 

Crystal Size 

D 

(nm) 

Inter-planar 

Spacing 

d 

(nm) 

Lattice 

Parameter 

a 

(nm) 

0.5 56.1343 3.10 0.1638 0.5434 

0.75 56.2440 1.98 0.1635 0.5424 

2 56.1374 6.40 0.1638 0.5433 

 

 

The precipitation chemical reaction is governed by the following equations discussed in section 

3.1.2:  

Ce
4+

 + mOH-+ nC2H5OH → [Ce(OH)m(C2H5OH)n]
4-m

       (4.1a) 

[Ce(OH)m(C2H5OH)n]
4-m

 + H2O + OH- → CeO2-δ∙mH2O∙nC2H5OH    (4.1b) 

 

where m+n equal to the coordination number of the cerium ion.  

Considering only the coordination with the OH
-
 groups: 

            Ce
4+

 + 4OH- → Ce(OH)4↓     (4.1c) 

The Ce(OH)4 precipitate is basic and therefore, increasing the concentration of OH
-
 leads to a 

decrease in the solubility of Ce(OH)4 and increasing [H
+
] leads to an increase in the solubility of 

Ce(OH)4. According to some previous studies (section 2.4.4.2 on pages 35-36), when the [OH
-
] 

increase, Ostwald ripening proceeds to a very small extend and the size of the grains increases 

only slightly [4.19]. However, this was not observed in the above data; the calculated average 

crystallite size increases as the NH4OH volume increases. The lattice parameter relaxes as the 

volume of NH4OH decreases as depicted in Figure 4. 14. The increase in crystallite size as the 
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amount of OH
-
 added increased can be ascribed to the increase in the water created which caused 

acceleration in the grain growth via the dissolution and precipitation mechanism. Similar results 

were found by Zhan et al. [4.20].  

 

Figure 4.14:  Plots depicting the variation of: (a) crystallite size with base volume, (b) lattice 

parameter with base volume and (c) lattice parameter as a function of the crystal size of CeO2 

nanopowders.  

 

William-Hall plots (Figure 4.15) reveal that there are no strains present (absence of the slope).  

The lattice relaxation is induced due to an increase in the concentration of Ce
3+

 defects and 

oxygen vacancies. The Ce
3+

 ions has a larger radius then the Ce
4+ 

ions, hence lattice expansion 
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occurs. Equations 3.12- 3.14 were used to calculate the relative Ce
3+

 concentration and oxygen 

vacancy concentration and are tabulated in Table 4.6.   

 

 

Figure 4.15: Williamson Hall Plots of CeO2 using (a) 2ml NH4OH and (b) 0.75ml NH4OH. 

Table 4.6: Relative Ce
3+ 

concentration and oxygen vacancy concentration that causes lattice 

relaxation. The data for the 0.5 ml was obtained from section 4.1.1.    

Volume of NH4OH 

ml 
  

    

     
 

         

(cm
-3

) 

0.5                  

0.75                  

2                  

 

 

 

 

 

 

 

 

 



  

104 
 

4.2.2. Morphology Study  

SEM micrographs in Figure 4.16 displays the images of the ceria powders synthesized using 

different volumes of NH4OH.   

 

 

Figure 4.16: SEM micrographs of CeO2 synthesized using (a, b) 0.5 ml NH4OH (c, d) 0.75 ml 

NH4OH and (e, f) 2 ml NH4OH.  

(b) 

(d) (c) 

(b) (a) 

(e) (f) 
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From Figure 4.16, it is observed that the particles are similar in structure. All three specimens 

exhibit a cauliflower type morphology. The only observed differences are the particle sizes 

which were evaluated using the ImageJ software package. The results are summarized in Table 

4.7.  

Table 4.7: Particles sizes of CeO2 synthesized using different volumes of NH4OH.   

Volume of NH4OH 

ml 

Particles Size (SEM) 

(nm) 

Standard Deviation  

(nm) 

0.5 37.5 12.3 

0.75 60.0 16.7 

2 67.7 8.6 

 

The sizes of the particles increased with the amount of NH4OH added to the solution. This can be 

as a result of the increase in the water that is adsorbed on the grain surfaces resulting in 

agglomeration of grains due to the Van der Waals forces or hydrogen bonds.  

 

4.2.3 XPS 

The amount Ce
3+

 ions in the samples were quantified with XPS. The results are shown in Figure 

4.19. The measured spectra were shifted to coincide with the u''' of Tabaza et al. [4.15] 

(f) (e) 
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Figure 4.19: Full XPS spectra for samples prepared using (a) 0.75 ml NH4OH and (b) 2 ml 

NH4OH, as well as Ce3d XPS spectra for samples prepared using (c) 0.75 ml NH4OH and (d) 2 

ml NH4OH.  
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Figure 4.20: Deconvoluted Ce3d XPS spectrum of CeO2 nanoparticles synthesized using 2ml of 

NH4OH.   

 

Figure 4.21: Deconvoluted Ce3d XPS spectrum of CeO2 nanoparticles synthesized using 0.75ml 

of NH4OH.   
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Table 4.8: Deconvoluted Ce3d XPS peak parameters and percentage of Ce
3+

 and Ce
4+

 ions in the 

sample prepared using 0.75 ml and 2ml NH4OH respectively.  

 

Ion 

 

3d5/2/3d3/2 

Peak 

Position 

(eV) 

Peak 

Separation 

(eV) 

 
Final state 

 

%Area 

0.75ml 2ml 0.75ml 2ml 0.75ml 2ml 

Ce
4+

 

v/u 882.7/901.1 882.7/901.2 18.5 18.5 Ce 3d
9
4f

2
 O 2p

4 

72.2 

 

79.0 

 

v''/u'' 888.9/907.4 888.9/907.3 18.5 18.5 Ce 3d
9
4f

1
 O 2p

5 

v'''/u''' 898.2/916.8 898.2 /916.9 18.6 18.7 Ce 3d
9
4f

0
 O 2p

6 

Ce
3+

 
v

0
/u

0
 880.5/898.7 880.5/  898.8 18.2 18.3 Ce 3d

9
4f

2
 O 2p

5 
27.8 21.0 

v'/u' 885.1/904.1 885.5/  904.1 19.0 18.6 Ce 3d
9
4f

1
 O 2p

6 

 

As expected, the concentrations of the Ce
3+

 defects are dependent on the size of crystals. The 

larger crystals of 6.38 nm obtained using 2ml NH4OH has a Ce
3+

 concentration of 21% 

compared to the 27.8% Ce
3+

 in the 1.98 nm sample obtained using 0.75 ml NH4OH.  

 

4.3 Ageing Time Dependence 

Time plays a crucial role in the formation of ceria nanoparticles. A short reaction time favors the 

nuclei formation rate over crystal growth rate, hence smaller particles are obtained for short 

reaction times [4.21]. Ageing time (i.e. time that the precipitated solid remains in the mother 

liquor) also influences the crystallinity as found by Jalilpor et al [4.22]. The effects of ageing 

time in the final product of CeO2 were investigated as follows: 

CeO2 was synthesized using the co-precipitation method as outlined in Section 3.1.2. After the 

addition of NH4OH, the solution the precipitated solution was left to age under constant stirring. 

The ageing was allowed for 2 hours, 19 hours and 40 hours respectively, before the solution was 

centrifuged and washed with absolute ethanol and left to dry overnight at 65 . The final product 

was studied using X-ray diffraction, SEM and XPS. The results are discussed below.  
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4.3.1. Crystallography 

The XRD spectrum measured for CeO2 synthesized at different ageing times are shown in Figure 

4.22 below. The (311) and (222) as well as the (311) and (422) peaks overlap with each other in 

the particles aged for 19 hours. The (400) peak is also less pronounced in this sample. The 

overlapping peaks were deconvoluted as shown in Figure 4.23.  

 

Figure 4.22: XRD spectra of CeO2 nanoparticles aged for: (a) 2 hours, (b) 19 hours and (c) 40 

hours.  

A shift to lower angles are observed for the (311), (331) and (422) peaks. The crystallite size, 

interplanar spacing‟s and lattice parameters were calculated as before and the obtained results are 

tabulated in Table 4.9.    
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Figure 4.23.: Deconvoluted XRD spectra of CeO2 nanoparticles aged for: (a) 2 hours, (b) 19 

hours and (c) 40 hours. 

 

Table 4.9:  Summary of the interplanar spacing of the (311) planes, average crystallite size and 

lattice parameter of CeO2 synthesized under different ageing times.  

 

Time 

(hrs) 

 

Peak Position 

2  

(Degrees) 

 

Crystal Size 

D 

(nm) 

 

Inter-planar 

Spacing 

d 

(nm) 

 

Lattice 

Parameter 

a 

(nm) 

2 56.1343 3.10 0.164 0.5434 

19 56.244 4.50 0.164 0.5432 

40 56.1374 4.98 0.164 0.5431 

 

The average crystallite size increases with ageing time as found by Jalipor et al. [4.22]. This 

trend is shown in Figure 4.24(a).  A power law was fitted to these data points. There is no 
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internal strain observed from the Williamson Hall plots shown in Figure 4.25. Hence, the lattice 

relaxation observed (Figure 4.24(b)) is due to size effects which introduce oxygen vacancies and 

accompanying Ce
3+

 ions in the lattice structure. The relative concentrations of these defects were 

calculated using equations 4.2 and 4.4 and the results are summarized in Table 4.10.  

Figure 4.24:  Plots depicting the variation of: (a) crystallite size with ageing time and (b) lattice 

parameter with ageing time.   

 

 

Figure 4.25: Williamson-Hall Plots of CeO2 synthesized and aged at (a) 19hours and (b) 40hours. 
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Table 4.10: Relative Ce
3+ 

concentration and oxygen vacancy concentration induced through 

lattice expansion as a result of grain size reduction.  

 

Time 

(hrs) 

  
    

     
 

         

(cm
-3

) 

2                  

19                  

40                  

 

The relative concentrations of the Ce
3+

 can be compared to the results obtained from XPS. The 

XPS spectra display the signatures of carbon, oxygen and cerium and have not shown any sign of 

contamination. Figure 4.26  display the measured Ce3d XPS spectra for the sample prepared and 

aged for 40 hours.   

 

 

Figure 4. 26: Deconvoluted Ce3d XPS spectrum of CeO2 nanopowders prepared and aged for 40 

hours.  

 

 

 

 



Chapter 4: Results and Discussion 

 

 

113 
 

Table 4.11: Deconvoluted Ce3d XPS peak parameters and percentage of Ce
3+

 and Ce
4+

 ions in 

the sample aged for 19 and 40 hours.   

 

Ion 

 

3d5/2/3d3/2 

Peak 

Position 

(eV) 

Peak 

Separation 

(eV) 

 

Final state 

 

%Area 

19 hr 40 hr 19 hr 40 hr 19 hr 40 hr 

Ce
4+

 

v/u 882.7/901.1 882.7/901.2 18.5 18.5 Ce 3d
9
4f

2
 O 2p

4 

84.8 

 

89.1 

 

v''/u'' 888.9/907.4 888.9/907.3 18.5 18.5 Ce 3d
9
4f

1
 O 2p

5 

v'''/u''' 898.2/916.8 898.2 /916.9 18.6 18.7 Ce 3d
9
4f

0
 O 2p

6 

Ce
3+

 
v

0
/u

0
 880.5/898.7 880.5/  898.8 18.2 18.3 Ce 3d

9
4f

2
 O 2p

5 
15.2 10.9 

v'/u' 885.1/904.1 885.5/  904.1 19.0 18.6 Ce 3d
9
4f

1
 O 2p

6 

 

 

4.4.2. Morphology Study 

The morphology of the particles was probed with SEM as shown in Figure 4.27 below. The SEM 

micrographs show that the particles become smaller with increasing ageing time. This is 

reflected in Table 4.12.  The particles are more weakly agglomerated and are more homogeneous 

in size as reflected from the standard deviation of the average particle size. These results agree 

with that found by Jalipor et al [4.22]. 
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Figure 4.27: SEM micrographs of CeO2 synthesized and aged for (a, b) 19 hours and (c, d) 40 

hours.  

Table 4.13:  Particles sizes of CeO2 synthesized and aged for different times. 

 

Time 

(hrs) 

 

Average Particles Size (SEM) 

(nm) 

 

Standard Deviation 

(nm) 

2 37.5 8.3 

19 34.3 12.1 

40 31.5 10.7 

 

 

(b) (a) 

(d) (c) 
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4.4 Solvent Type Dependence 

Solvents plays a crucial role in the formation of CeO2 nanoparticles as was found by Zhang et al 

and others: the morphology and size of nanoparticles were greatly affected by the type of solvent 

used [4.23]. This can be understood as follows:  

Given equation 2.31 in section 2.4.4.3 [4.24]:  

      
   

    
     

      

              
             (2.31) 

where the weight of the solute is denoted by   ,   is the density of the solid,   is the 

nuclei/particle radius,   is the interfacial energy between solute and solution phases. The 

permittivity in vacuum is denoted by    ,    is the dielectric constant of the solution, T is the 

Kelvin temperature, k is the Boltzmann‟s constant, r+ and r- denotes the radii of the positively 

(  ) and negatively charged (  ) ions respectively and e is the elementary charge of the electron 

(1.602   10
-19

 C). 

From the above relation, it is seen that the solubility is larger as the dielectric constant increases. 

The dielectric constant of the solution affects the nucleation rate as well as the radius of the 

nuclei. Therefore, the crystallite sizes can be controlled by using different types of solvents. 

Three types of solvents were investigated: ethanol, methanol and distilled water. This was 

achieved by following the experimental procedure outlined in section 3.1.2, where the solvents 

used was ethanol, methanol and water respectively. The results and discussion of this study 

follows below.  

 

4.4.1. Crystallography 

The XRD spectrum measured for CeO2 synthesized using different solvents at 80  are shown in 

Figure 4.28 below. The (311) and (222) as well as the (311) and (422) peaks overlap with each 

other in the particles aged for 19 hours. The (400) peak is also less pronounced in this sample.  
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Figure 4.28: XRD spectra of CeO2 nanopowders synthesized using the following solvents 

respectively: (a) H2O, (b) MeOH and (c) EtOH.  

 

There is significant amount of peak broadening in the sample prepared using Methanol as a 

solvent. This implies that the crystallinity of the sample is poor and the crystallite sizes are small. 

This is generally ascribed to instrumental, strain and size effects. However, there was no slope 

found in the Williamson-Hall plots for all the samples shown in Figure 4.29. Since the 

instrumental broadening is negligible compared to the size effects, the broadening is due to size 

effects.  The XRD spectrums were deconvoluted and the average crystallite sizes were calculated 

using the Sherrer equation and the lattice parameters using equation 3.3. These values are given 

in Table 4.14.  
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Figure 4.29: Williamson-Hall plots of CeO2 synthesized using (a) H2O and (b) MeOH as solvents 

respectively.  

 

Table 4.14: Summary of the inter-planar spacing of the (311) planes, average crystallite size and 

lattice parameter of CeO2 synthesized using different solvents.  

Solvent  Peak Position 

2  

(Degrees) 

Crystal Size 

D 

(nm) 

Inter-planar 

Spacing 

d 

(nm) 

Lattice 

Parameter 

a 

(nm) 

EtOH 56.1343 3.10 0.164 0.5434 

MeOH 55.9326 2.48 0.163 0.5452 

H2O 56.3211 

 

2.28 0.163 0.5417 

 

According to 2.31, the average crystalline size is proportional to the dielectric constant as seen in 

equation 2.35. Oh et al. [4.25] found that the crystalline size is strongly dependent on the 

dielectric constant and increase as the dielectric constant increases. Similar results were obtained 

by Chen et al [4.24]. However this was not observed in this study (see Table 4.14). The dielectric 

constant decreases as: H2O (80.4) > MeOH (33.0) > EtOH (25.3). It was found that the particle 

size decreases as the dielectric constant increases.   

 

 

 

 



  

118 
 

The measured EDS spectra indicate that there are no impurities present in the samples as shown 

in Figure 4.30. However, no conclusion on the purity of the samples can be formed since other 

techniques were not used to further demonstrate the purity of the samples.   A reason for the 

inconsistency might be a problem using the XRD data for particle size measurement as 

mentioned in section 3.2.2.7. This is due to the deviation from the spherical shape of the 

crystallites as seen in Figure 4.31 below.  For this reason the transmission electron microscope 

was employed for particle size analysis.  

 

Figure 4.30: EDS spectra of CeO2 prepared in distilled water. This serves as a representation of 

the purity for all the samples, since similar results were obtained.  
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4.5.2. Transmission Electron Microscopy Studies 

The samples were further analyzed using the Transmission Electron Microscope (TEM). The 

theory of the transmission electron microscope is discussed elsewhere [4.26]. This was achieved 

by dissolving small amounts of the sample in absolute ethanol.  The diffraction patterns in Figure 

4.31 b and d were indexed and further confirms that the crystal structure is fcc. 

                             

                            

 

Figure 4.31: Transmission Electron Microscope bright field images and diffraction patterns of 

CeO2 nanopowders prepared using: (a, b) H2O as a solvent and (c, d) MeOH as a solvent.  
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The particle sizes were measured using the ImageJ software package and the results are tabulated 

in Table 4.15.  

Table 4.15:  Crystalline sizes of CeO2 synthesized using different solvents.  

 

Solvent 

 

Dielectric constant 

   

 

Average Crystallite Size 

(TEM) 

(nm) 

 

Standard Deviation 

(nm) 

H2O 80.4 7.00 1.79 

MeOH 33.0 2.65 0.440 

 

The crystallite sizes obtained from TEM is different compared to that obtained from XRD. TEM 

shows that the crystallite size is 7 nm and 2.65 nm for H2O and MeOH respectively compared to 

sizes 2.28 nm and 2.48 nm for H2O and MeOH respectively as obtained from XRD. The results 

obtained for the crystallite size using TEM is more reliable than that produced by XRD 

measurements since the TEM provides a direct measurement of the crystallite size and no 

additional errors are introduced as in the case of XRD where peak and instrumental broadening 

produces errors. From the results obtained from the TEM it is found that the crystallite size 

increases as the dielectric constant increase as obtained by Oh et al [4.26] and Chang et al. 

[4.24].   

 

4.4.3. Morphology Study 

The effect that the solvent types, and hence dielectric constant, have on the morphology of the 

particles was investigated using the SEM. Figure 4.32 gives the SEM micrographs obtained.  

From the SEM micrographs it is observed that in both samples spherical cluster together.  

Similar results are observed when ethanol is used as seen in Figure 4.6. The particles in the 

specimen Table 4.16 provides as summary of the average particle sizes obtained for the different 

solvents used. This was measured using the SEM micrographs and the ImageJ software package.  

 

 

 

 



Chapter 4: Results and Discussion 

 

 

121 
 

 

   

  

Figure 4.32: SEM micrographs of CeO2 synthesized using (a, b) MeOH and (c, d) H2O 

respectively.  

 

Table 4.16:  Particles sizes of CeO2 synthesized using different solvents 

Solvent 
Dielectric constant 

  

Average Particles Size 

(SEM) (nm) 

Standard Deviation 

(nm) 

H2O 80.4 53.3 11.4 

MeOH 33.0 33.5 8.9 

EtOH 25.3 31.5 10.7 

(b) (a) 

(c) (d) 
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The particle size increases with increasing dielectric constant as observed by Oh et al. [4.25].  

Thus, both the crystallite size and particle morphology can be greatly influenced by changing the 

solvent type due to the difference in their dielectric constant.  

 

4.6.3 Conclusion 

This study showed that parameters such as temperature, ageing time, the amount of base volume 

added and the solvent type have an impact on both the crystal size and morphology of the CeO2 

nanopowders. All the particles synthesized exhibit spherical morphology that coalesces in a 

“cauliflower” type morphology.  

The average crystallite size of the particles depends on the temperature, i.e. as the temperature 

increases, the crystal size increases. Aging time was found to also have an impact on the crystal 

size. As the aging time increases the crystal size increases. The dielectric constant of the solvent 

used was found to have an impact on the crystal size. The crystal size increased as the dielectric 

constant increased.  

 The lattice expansion observed across all samples was found to be a size effect. As the particle 

sizes decreases oxygen vacancies gets introduced. The electrons left behind get localized on the 

Ce
4+

 ions giving rise to Ce3
+
 ions. The Ce

3+
 ions have a larger radius than the Ce

4+
 ions, thereby 

causing the lattice to expand.  

Thus, the precipitation method is an inexpensive method to obtain ceria nanoparticles. To obtain 

particles with a high surface area in the  size range of 2 nm to 10 nm and a high concentration of 

defects as well as good oxygen storage capacity the following conditions must be met: 

 synthesis must take place at relatively low temperatures, around 40 degrees, 

  minimum base (reducing agent)  added , 0.5 ml NH4OH is ideal 

 short reaction times, 2 hours was ideal 

 Use a solvent with a small dielectric constant, ethanol was ideal in this study 
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Chapter 5: Future work 

It is known that doping CeO2 with lower valency (e.g. 3+) metals will increase the concentration 

of Ce
3+

 defects. Therefore powders have to be doped and the effect has to be studied.  

BET analysis has to be performed to obtain the surface area of the ceria nanoparticles.  In 

addition, to examine the Oxygen storage capacity of the samples, temperature programmed 

reduction has to be done.  Since the aim is to upscale the production of these powders, it is 

recommended that studies need to be done around the up-scaling of the product and the effects it 

will have on the size, morphology and catalytic capabilities of these powders.  

 

 

 

 


	Title page
	Abstract
	Content
	Chapter one: General overview
	Chapter two: Literature review: Ceria
	Chapter three: Experimental
	Chapter four: Results and discussion
	Chapter five: Future work

