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ABSTRACT
Efficient numerical methods to solve some reaction-diffusion problems arising in

biology

by

Owolabi Kolade Matthew

PhD thesis, Department of Mathematics and Applied Mathematics, Faculty of

Natural Sciences, University of the Western Cape

In this thesis, we solve some time-dependent partial differential equations, and systems

of such equations, that governs reaction-diffusion models in biology. we design and

implement some novel exponential time differencing schemes to integrate stiff systems

of ordinary differential equations which arise from semi-discretization of the associated

partial differential equations. We split the semi-linear PDE(s) into a linear, which

contains the highly stiff part of the problem, and a nonlinear part, that is expected to

vary more slowly than the linear part. Then we introduce higher-order finite difference

approximations for the spatial discretization. Resulting systems of stiff ODEs are then

solved by using exponential time differencing methods. We present stability properties

of these methods along with extensive numerical simulations for a number of different

reaction-diffusion models, including single and multi-species models. When the dif-

fusivity is small many of the models considered in this work are found to exhibit a

form of localized spatiotemporal patterns. Such patterns are correctly captured by our

proposed numerical schemes. Hence, the schemes that we have designed in this thesis

are dynamically consistent. Finally, in many cases, we have compared our results with

those obtained by other researchers.

November 2013.
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Chapter 1

General introduction

The field of mathematical biology has become very large with some specialized areas

and disciplines like biofluid mechanics, theoretical ecology and so on. So, it is unrealistic

and totally inappropriate to think that a single thesis work would cover the whole areas,

for this reason, we are restricted in this work to some time dependent partial differential

equations that are found largely in application areas of mathematical biology.

In development, for instance, it is true that researchers are still a long way from

being able to reliably simulate some biological models due to the theory that abound

their formulations which still seems to be poorly understood. We are motivated in this

thesis to explore numerically some of the time-dependent reaction-diffusions problems

in attempt to address some of the points and queries that naturally arise.

We are thus involved in simulating frameworks on which we can hang our under-

standing. The model equations, the mathematical analysis and the numerical simula-

tions that follow serve to reveal both quantitatively and qualitatively the consequences

of the logical patterns.

Clearly, as more data (variables that are seen as the central players) emerge from

the biological system, the models become more sophisticated and the mathematics in-

creasingly challenging. The aim of this thesis is far beyond deriving the mathematical

models, though we intend to present the general review of the method of derivation

of reaction-diffusion equations. Our goal is to seek for an accurate numerical meth-

ods that would capture the essence of various interactions and provide a more fully

1
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understanding of such models.

1.1 Reaction-diffusion systems in nature

Reaction-diffusion equations are regarded as an important class of partial differen-

tial equations (PDEs) for which the independent variables are time, t, and space, x.

Reaction-diffusion systems are further classify as mathematical models which explains

how the concentration of one or more substances or species of organisms, distributed in

space changes under the influence of two processes termed reaction and the diffusion.

This type of system has a wide application areas, examples are mostly found in biology,

geology, physics and ecology.

Mathematically, reaction-diffusion system take the form of semi-linear parabolic

differential equations presented in the form

∂ut = D∇2u + F (u), (1.1.1)

where u(x, t) is the concentration or density of a substance, or simply the vector of

dependent variables, D is the diagonal matrix of diffusion coefficients, and F (stands

for all the local reactions), is a nonlinear vector-valued function of u (called the reac-

tion terms) and ∇2 is the laplacian operator. The solution of this class of equation

has displayed a wide range of behaviours, such as the formation of travelling waves,

self-organised patterns like sports and stripes, replicating patterns and many other dis-

sipative structures. Many of these models are very complex and therefore cannot be

solved analytically. To this end, numerical solution of some of these problems will be

presented later in this work.
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1.2 A quick tour to reaction-diffusion problems and

their derivation

Reaction-diffusion systems are used as models in population dynamics, genetics, epi-

demiology, nerve conduction and combustion theory as well as chemical reactions.

Often, these systems are coupled systems of parabolic partial differential equations

that are largely encountered in various fields of science, engineering and technology.

From ecological point of view, u is regarded as population densities, F (u) represents

the effect of predator-prey interactions (relationships), competition or in the form of

symbiosis association that describes the mutual benefit and co-existence between two

organisms.

The diffusion terms may represent molecular diffusion or some random movement

of individuals in a population. For applications of such equations to chemical reactor,

see [9, 23, 47]. Applications to biological systems may be in the areas of modeling of

infectious diseases such as HIV, cholera, etc, pattern formation on growing domains,

mammalian coat [139], single and multi-species waves pursuit and evasions in predator-

prey models [120, 137, 146, 181, 190], model for epidermal wound [140] and population

dynamics [23, 102] among many others.

This thesis is primarily concerned with the mathematical reaction-diffusion models,

we shall outline the derivation of the reaction-diffusion equation of a single-specie

system in one spatial dimension from the basic principles. Assume u(x, t)dx is an

equivalence of number of individuals located in the interval (x, x + dx) at time t.

Following the discussions in [23, 102], we can write the rate of change of the number

of individuals in a given interval of space as

∂

∂t
[u(x, t)∆x] = growth rate (x, x+∆x)+rate of entry (x)−rate of departure (x+∆x),
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where ∆x is the spatial interval. Written in mathematical terms, this gives

∂u

∂t
∆x = f(x, t)∆x + J(x, t)− J(x + ∆x, t), (1.2.1)

where f(x, t) is the growth rate of the population per unit length and J(x, t) is the

positive flux of individuals to the left and right at position x and time t. Dividing

both sides of (1.2.1) by ∆x, we obtain

∂u

∂t
= f(x, t)−

(
J(x + ∆x, t)− J(x, t)

∆x

)
. (1.2.2)

Taking the limit as ∆x tends to zero, we get

∂u

∂t
= f(x, t)− ∂J

∂x
, (1.2.3)

which is the conservation law for the density of individuals. Specifically, the flux J

plays the role of the heat flux in heat transport, or a concentration flux for a chemical

reactor, and so on.

Above can be generalized into higher spatial dimensions. Consider Ω to be some,

more or less arbitrary region in space with boundary δΩ, and let organisms move into

and out of this region in any direction, that is,

Change of u in Ω=flux through + change due to birth, death.

In mathematical terms, this means that

d

dt

∫

Ω

udV =

∫

Ω

fdV −
∫

δΩ

J.dS, (1.2.4)

where f comes from the application of the law of mass action to the reactions taking

place (describes birth and death), dV denotes integration over space Rn and dS denotes

surface integration in Rn−1 and J is a flux vector [23]. With the aid of divergence

theorem, we convert the third integral in (1.2.4) into a volume integral,

∫

δΩ

J.dS =

∫

Ω

∇.J.dV, (1.2.5)
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which, along with (1.2.4) yields

∫

Ω

(
∂u

∂t
− f +∇.J

)
dV = 0. (1.2.6)

Since the above integral is zero for arbitrary Ω, we have

∂u

∂t
= f −∇.J. (1.2.7)

If u is only a function of (x, t) and f is f(u), we have

one-dimensional:
∂u

∂t
= fu(x, t)− ∂J

∂x
, (1.2.8)

two-dimensional:
∂u

∂t
= fu(x, y, t)−∇.J, (1.2.9)

and three-dimensional:
∂u

∂t
= fu(x, y, z, t)−∇.J, (1.2.10)

models.

In deriving these models, some reasonable assumptions have been made by different

researchers (see [23, 50, 139]). Often, such reaction-diffusion equations are used to

describe the spread of populations in space. In biology, most of these equations are

typical time-dependent reaction-diffusion equations where reasonable choices are made

for the growth rate f(u), which depends on the independent variables, space and time.

We present some of the cases here:

1. No births/death, only flux:

f(u) = 0, (1.2.11)

2. Exponential growth:

f(u) = τu, (1.2.12)

for τ = constant (the growth rate).
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3. Logistic growth:

f(u) = τu
(
1− u

K

)
, (1.2.13)

adding a carrying capacity K as limitation of growth.

4. Logistic growth with parameters variation in space:

f(u) = τ(x)u(x, t)

[
1− u(x, t)

K(x)

]
. (1.2.14)

5. Hutchinson-Wright equation:

f(u) = τu(x, t)

[
1− u(x, t− τ)

K

]
. (1.2.15)

6. Allee effect:

f(u) = τu

(
u

K0

− 1

) (
1− u

K

)
, (1.2.16)

where K0 is the initial carrying capacity. The basis of this model approach is still the

logistic growth, but if the population is too low, it will also die out (extinction). In

this circumstance, such phenomena may appear due to the necessity to find a mate

for reproduction, or to defend the group against predators. This actually leads to the

additional factor (u/K0−1), known as the reaction term. It is paramount to investigate

the impact of flux, this is achieved by considering the advection or convection, random

motion or diffusion and density-dependent diffusion. Below we briefly describe each of

these cases.

Advection or convection:

The advection equation can be derived from the continuity equation, which states that

the rate of change for a scalar quantity in a differential control volume is given by

flow and diffusion into and out of that part of the system along with any generation

or consumption inside the control volume [23]. One can imagine organisms that move
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horizontally (advection) or vertically (convection) with velocity v = v(x), so that

J = JA = v(x)u(x, t). (1.2.17)

Thus, we can write equation (1.2.8) in the form

∂u

∂t
+

∂

∂x
[v(x)u] = f(u). (1.2.18)

For two and three dimensions, we respectively have

JA = v(x, y)u(x, y, t) and JA = v(x, y, z)u(x, y, z, t), (1.2.19)

which, in general compactly written after simplifying for organism that moves with a

constant velocity in the form
∂u

∂t
+ v

∂u

∂x
= f(u), (1.2.20)

for one space dimension,

∂u

∂t
+ v.∇ = f(u), v.∇ = v(x, y), (1.2.21)

for two space dimensions, and

∂u

∂t
+ v.∇ = f(u), v.∇ = v(x, y, z), (1.2.22)

for the three space dimensions.

Random motion or diffusion:

Diffusion is one of several transport phenomena that occur in nature. A distinguishing

feature of diffusion is that it results in mixing or mass transport, without requiring

bulk motion [23, 139]. Thus, diffusion should not be confused with convection, or

advection, which are other transport mechanisms that utilize bulk motion to move

particles from one place to another. Literarily, diffusion means ’spread out’. Biological
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species are often reminiscent of chemical species. Many chemical species move down a

density gradient, from high to low concentration regions. The flux in these species is

proportional to the negative concentration gradient of density.

There are two ways to introduce the notion of diffusion: either a phenomenological

approach starting with Fick’s laws of diffusion and their mathematical consequences, or

a physical and atomistic one, by considering the random walk of the diffusing particles.

Relating this description to the classical approach, namely, Fickian diffusion, this says

that the flux, J , of material, which can be cells, amount of chemical, number of animals

and so on, is proportional to the gradient of the concentration of the material [139].

That is in one dimension

J ∝ −∂u

∂x
⇒ JD = −D

∂u

∂x
, (1.2.23)

where u(x, t) is the concentration or population density of the species and D is its

diffusivity. The minus sign simply indicates that diffusion transports matter from a

high to low concentration. The movement of u(x, t) is called the flux of the population

density, which is a vector. The high to low principle now means that, the flux always

points to the most rapid decreasing direction of u(x, t), which is the negative gradient

of u(x, t).

Using (1.2.23) along with (1.2.8), we obtain

∂u

∂t
= D

∂2u

∂x2
+ f(u), (1.2.24)

where D is the proportionality constant or diffusion coefficient, f(u) is the reaction

term that could take any of the six cases discussed above. The diffusive flux can also

be written as

JD = −D∇u. (1.2.25)

Hence, we have the general balance equation in the form

∂u

∂t
= D∇2u + f(u), (1.2.26)
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where ∇2u, is the Laplacian operator defined as

∇2u =
∂2u

∂x2
+

∂2u

∂y2

and

∇2u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

in two and three dimensions respectively.

Some of the examples of diffusion equations in the literature are

(a) The diffusion or heat equation

∂u

∂t
= D

∂2u

∂x2
, (1.2.27)

it has no reaction term f(u) and simple Fickian diffusion [139].

(b) The simple linear model
∂u

∂t
= τu + D

∂2u

∂x2
, (1.2.28)

called the KISS (Kierstead, Slobodkin and Skellam ) model. This equation has

been used to describe the outbreak of red tide [97].

(c) The simple nonlinear model with logistic growth and simple Fickian diffusion,

∂u

∂t
= τu

(
1− u

K

)
+ D

∂2u

∂x2
, (1.2.29)

popularly known as the Fisher-Kolmogoroff equation after Fisher [51] who pro-

posed the one-dimensional version as a model for spread of an advantageous

gene in a population and Kolmogorov et al. [100] who studied the equation in

depth and obtained some basic analytical results. Equation (1.2.29) gives a typ-

ical example of a scalar reaction-diffusion equation with a simple traveling wave

solution. This is one of the main equations we study in detail later in this work.
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(d) The bistable nonlinear model

∂u

∂t
= u(1− u)(u− a) + D

∂2u

∂x2
, (1.2.30)

is called the Nagumo equation [141] which is related to the FitHugh-Nagumo

model for nerve action potential.

Density-dependent diffusion:

There are situations where the diffusivity D is not a constant but depends instead on

the density of the organisms. It is also possible for diffusion of one species to affect

the rate of production of another, so in the cause of solving this type of problem

the diffusion matrix D cannot be treated as diagonal [102]. A natural extension to

incorporate density-dependent diffusion is thus, in one-dimensional situation, where

we write the diffusive flux as

JD = −D0u
m ∂u

∂x
, (1.2.31)

where D(u) = D0u
m, stands for the density of the organisms, with D0 and m positive

constants. This along with (1.2.8) leads to

∂u

∂t
= D0

∂

∂x

(
um ∂u

∂x

)
+ f(u). (1.2.32)

To generalize this, let us describe here a situation where functions f(u) have two zeros,

say one at u = 0 and the other at u = 1. Specifically, we consider f(u) = kuα(1− uβ),

where α and β are positive constants. Parameters k and D0 can be eliminated by

suitably rescaling t and x so that we have a general form

∂u

∂t
= uα(1− uβ) +

∂

∂x

[
um ∂u

∂x

]
, (1.2.33)

where α, β and m are positive parameters. Writing out the diffusion terms in full we

get
∂u

∂t
= uα(1− uβ) + mum−1

(
∂u

∂x

)2

+ um ∂2u

∂x2
(1.2.34)
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which shows that the nonlinear diffusion can be thought as contributing an equivalent

convection with velocity −mum−1∂u/∂x.

1.3 Nonlinear reaction-diffusion model

We present briefly here some information on the local dynamics of the reaction-diffusion

equation (1.2.29). This idea enhances conditions on the parameters necessary for the

solutions to have biologically meaningful equilibria as well as a perfect guide for the

choice of parameters in the numerical simulations. We consider in this section the

solutions of the popular Fisher equation (1.2.29) that contains logistic growth and

simple Fickian diffusion for both steady states and the travelling wave solutions.

Steady state solution:

In one-dimension, we write equation (1.2.29) in the form

ut = Duxx + τu
[
1− u

κ

]
, 0 ≤ x ≤ L,

u(0, t) = u(L, t) = 0,

u(x, 0) = u0(x),





(1.3.1)

where τ , κ and D remain the growth rate, the carrying capacity and the diffusion

coefficient respectively. We shall investigate the numerical study of dynamics of the

solution of (1.3.1) with a view in the context of biology, that is the main reason for

setting out the domain here to include just only the positive half plane, that is u > 0,

actually corresponds to biologically meaningful solutions. For simplicity, the three

parameters r, κ and D can be eliminated by rescaling the dependent and independent

variables, this can be achieved by setting the parameters as û ≡ u/τ, t̂ ≡ τt, x̂ ≡
√

τ/Dx. After dropping the hats and without loss of generality especially in the

context of biology, we only rescale the density as u ≡ u/κ but leave both space and
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time alone. So, the system take the form

ut = Duxx + τu(1− u), 0 ≤ x ≤ L,

u(0, t) = u(L, t) = 0,

u(x, 0) = u0(x).





(1.3.2)

System (1.3.2) is steady if it is independent of time.

τu(1− u) + Du′′ = 0,

u(0) = 0, u(L) = 0.



 (1.3.3)

We sought solutions around equation (1.3.3) that are equilibrium in time for which

u(x) ≥ 0. The case u = 0 is the trivial case that satisfy the system for all values of L.

For the nontrivial state, with a new variable v = du/dx, we reduce equation (1.3.3) to

a system of first order ordinary differential equations

u′ = v, v′ = − τ

D
u(1− u), (1.3.4)

with Dirichlet boundary conditions u(0) = 0, u(L) = 0, v(0) = 0, v(L) = 0. It

is noticeable that this system of ODEs has two phase-plane equilibria at say, Q1 =

(0, 0), Q2 = (1, 0). This system has purely imaginary eigenvalues λa,b = ±i
√

τ
D
. So,

Q1 is the center - for the linear system. Again, linearization about Q2 yields

Df(1, 0) =


 0 1

τ
D

0


 , (1.3.5)

with λa,b = ± τ
D
. Hence, Q2 is called a saddle point. Since (1,0) is a saddle for the

linearization, it is also regarded as a saddle for the original nonlinear system.
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Figure 1.3.1: Time series solution of equation (1.3.4): (a) obtained at t = 50 and (b)
obtained at t = 200. Plot (c) represents the logistic population growth (1.2.13): at
t = 1, τ = 0.9, K = 2. Plot (d) is the phase plane limit circle obtained at t = 400,
with ratio τ

D
= 1.

Traveling wave solution:

To discuss the traveling wave like solutions for reaction-diffusion models, we consider

the famous Fisher equation of the form

ut = Duxx + βu(1− u), (1.3.6)

where β, κ and D are all positive parameters. The travelling wave solutions of this

equation have been studied extensively, see for example, [50], Britton [23], Kot [102] and

Murray [136, 139, 140]. The discovery, investigation and analysis of traveling waves

of (1.3.6) was earlier reported by Luther [117] in 1906 for the modeling of chemical

reaction. In his work, he obtained the waves speed in terms of the parameters associated

with the reactions he was studying. The first explicit analytic form of a cline solution
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for the Fisher equation were obtained by Albowitz and Zeppetella in making use of the

painleve analysis [2]. The work of Murray [139] has shown that the analytical form of

(1.3.6) is the same as that found by Kolmogoroff et al. [100] and Fisher [51].

To discuss some of these aspects briefly here, we rescale the variables in (1.3.6) by

applying û ≡ u/K, t̂ ≡ βt, x̂ ≡
√

β/Dx. This, after dropping the hats, gives

ut = uxx + u(1− u). (1.3.7)

We had previously considered the steady-state solutions but in the context of biology,

we need to study the spread of population dynamics, it is obvious that we can not keep

a particular species say an animal in a particular spot or position without exhibiting a

kind of movement. The best way to tackle this is by introducing another new variable,

say ξ = x − ct [102, 119, 139]. We equally consider the positive movement since it is

unrealistic to have negative speed, the moving wave is let to be u(x, t) = u(x − ct) =

u(ξ), then u(x, t) is a traveling wave, and it moves at constant speed c in the positive

x−direction. Obviously, if x − ct is constant, so also is u. This also implies that

the coordinate of the system moves with speed c. Our interest is to determine the

wave-speed c. The dependent variable ξ is called sometimes the wave variable. To be

physically realistic [139], u(ξ) has to be bounded for all ξ and nonnegative with the

quantities with which we are concerned, such as chemicals and populations.

With this information in place, it is convenient to reduce the partial differential

equation (1.3.7) to an equivalent system of ordinary differential equations

∂u

∂t
=

∂u

∂ξ

∂ξ

∂t
= −cu′, (1.3.8)

∂u

∂x
=

∂u

∂ξ

∂ξ

∂x
= u′, (1.3.9)

so that equation (1.3.7) reduces to u′′ + cu′ + u(1− u) = 0, which we can write further
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to give a first order system of equations

u′ = v,

v′ = −cv − u(1− u). (1.3.10)

The pair of equation (1.3.10) possess two equilibria at (1, 0) and (0, 0), so that

lim
ξ→−∞

(u, v) → (1, 0) and lim
ξ→+∞

(u, v) → (0, 0).

Next, we need to find the heteroclinic connection between the two equilibria points.

First, we start with the determination of the nature of the two phase-plane equilibria.

At point (1, 0), the Jacobian becomes

J =


 0 1

−1 + 2u −c




(1,0)

=


0 1

1 −c


 , (1.3.11)

whose characteristic equation is λ2 + cλ− 1 = 0. Obviously, the equilibrium here is a

saddle point for c > 0. The stable and unstable saddle eigenvectors that are compatible

with the heteroclinic connection can also be determined at this point. At the origin, the

equilibrium points satisfy the characteristics equation λ2 + cλ + 1 = 0, whose solutions

yield

λ1,2 = − c

2
±
√

c2 − 4

2
, (1.3.12)

which implies by following the Routh-Hurwitz criterion [88] which gives the necessary

and sufficient conditions for the roots of the characteristic equation (1.3.12) to be

asymptotically stable at the origin. We can see that the origin is a stable focus for

0 < c < 2, all orbits close to the origin in this range oscillate to mean that finding a

nonnegative heteroclinic connection between the points (1, 0) and (0, 0) is becoming

impossible. For c ≥ 2, the origin is no longer a stable focus, it is now a stable node

and a nonnegative heteroclinic connection may be possible. Therefore, c ≥ 2 is the

necessary condition of a traveling wave.
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Figure 1.3.2: Time series solutions and phase plane trajectory of (1.3.10).

1.4 Literature review

Mathematical modeling of real-life problems usually results into a reaction-diffusion

equations which naturally exist in the form of differential equations. Reaction-diffusion

and a wide variety of physical phenomena involving functions of several variables, such

as the propagation of heat or sound, fluid flow, elasticity, electrostatics and electrody-

namics, exist in the form of partial differential equations (PDEs). Reaction-diffusion

equations are regarded as a special class of parabolic time-dependent partial differential

equations.

Nonlinear phenomena occurs in various fields of science and engineering. In fact,

in biology and medicine there is a wide spectrum of examples which exhibit collective

behavior, such as formation of patterns and clustering. This may happen at any scale,

from the cellular scale of embryonic tissue formation, wound healing or tumor growth,

and vasculogenesis, the microscopic scale of life cycles of bacteria or social amoebae,

to the larger scale of animal grouping, indeed animals may form swarms, characterized
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by a cohesive but unorganized aggregation (such as midges), or schools with a cohesive

and synchronized organization (for example, in fish schooling, individuals are oriented

so that distances are uniform), or shoals (for instance, fish) and flocks (as in birds) in

which animals are gathered together for social aims, in a synchronized or asynchronized

way, or herds, congregation, and so on [137]. Much attention has been devoted recently

to the search for better and more efficient way of determining a solution, approximate

or exact, analytical or numerical, to nonlinear models.

The major way of solving the class of these equations is through discretization.

A well-known approach to solve time-dependent partial diifferential equation, whose

solutions vary both in time and space, is the method of lines [10, 174, 183, 186].

Application of this method requires to first construct a semi-discrete approximation

to the problem by setting up a regular grid in space, this is achieved by discretising

the spatial independent variables with boundary constraints. Hence, a couple system

of ordinary differential equations are generated in time, which is associated with the

initial value. Once that is done, we numerically approximate the solutions to the

original time-dependent partial differential equation by marching forward in time on

this grid. Conveniently, we can now apply any existing, and generally well established,

time-stepping numerical methods such as the implicit-explicit (IMEX) schemes, Runge-

Kutta methods or exponential time differencing (ETD) schemes among many others.

In this work, for the spatial discretisation, we are primarily concerned with the

use of higher-order finite difference method. The finite difference methods have gained

its dominance in the various fields of computational science since its inception as the

major method of choice back to 1960s. Other methods such as finite element and

boundary element methods enjoyed recent popularity, finite difference methods are

still well utilized for a wide array of computational engineering and science problems.

Readers are referred to [52, 53] and the references therein, where schematic illustration

of how to generate the weights of higher order centered and one-side finite differences

formulas for approximating derivatives up to fourth-order equi-spaced grids with order

of accuracy up to eighth can be found. In all, the discrete approximation to the

derivatives will be converted into Toeplitz matrices. Our time integration approach
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uses mostly the ETD schemes, other time-stepping methods include but not limited to

the fourth-order Runge-Kutta (RK4) method and the family of IMEX schemes.

Numerous time stepping methods have been designed to integrate the dynamical

systems arising from spatially discretized time-dependent partial differential equations,

reference shall be made to those that are of practical use in this thesis. One example is

the family of Implicit-Explicit (IMEX) schemes. These schemes have been rediscovered

several times in various forms and under various names [10, 11, 30, 66, 86, 112, 167] have

been often used, especially in conjunction with spectral methods [186, 187]. This type

of schemes are specifically designed to suite the semi-linear problems. In particular the

reaction-diffusion problems which can be split into linear and nonlinear parts. IMEX

schemes consist of using an explicit multi-step formula, for example, the second order

Adams-Bashforth formula, to advance the nonlinear part which varies slowly than the

linear part, and an implicit scheme, for instance, the second order Adams-Moulton

formula, to advance the linear part which contain the stiffest part of the dynamics of

the problem.

Other kinds of formulations also exist, for development based on Runge-Kutta

rather than Adams-Bashforth formulae. It is worth mentioning among the most recent

implicit-explicit Runge-Kutta schemes developed, for instance, Ascher et al. [11] devel-

oped a family of L-stable two-, three-stages diagonally implicit Runge-Kutta (DIRK)

and four-stage, third-order combination schemes whose constructions were based on

implicit-explicit Runge-Kutta methods for integration of convection-diffusion equa-

tion. In another development, Kennedy and Carpenter [95] construct a family of

higher-order, L-stable explicit and singly diagonally implicit Runge-Kutta using IMEX

schemes for addressing one-dimensional convection-diffusion-reaction equations. More

recently, Koto [103] constructs IMEX Runge-Kutta schemes for reaction-diffusion equa-

tions with an established convergence and stability. An explicit Runge-Kutta (ERK)

method is used to solve the non-stiff part and a diagonally implicit Runge-Kutta

(DIRK) method is employed to solve the stiff part of the problem to overcome the

severe stability restriction inherent in the explicit method.

Another family of time stepping method is the well known Runge-Kutta methods.
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In Butcher [28, 29], the centenary history of Runge-Kutta methods contains an appre-

ciation of the early work of Runge [165], Heun [71], Kutta [106], and Nyström [143]

and a survey of some significant developments of these methods over the last hundred

years was presented. Runge-Kutta methods have been adapted to the solution of more

general problem classes each of which has been the subject of specialized research in

recent years. In addition to the use of Runge-Kutta methods in their traditional role of

differential equation solvers, related types of initial value problems have been found to

be amenable to solution by Runge-Kutta methods suitably adapted to the more general

problem class. Examples of these wider classes of problems are PDE’s, Volterra integral

equations, delay differential equations, differential-algebraic equations and stochastic

differential equations.

The method of integrating factor is a technique by which both sides of a differential

equation is multiplied by some integrating factor and then make some relevant changes.

This approach is peculiar to the theory of ordinary differential equations. The change

of variable idea permits us to solve the linear part exactly, and then use a numerical

scheme of our interest to solve the transformed nonlinear equation. This technique

has been used for partial differential equations by Kassam and Trefethen [92], Cox and

Matthews [36], Trefethen [187], Berland and Skaflestad [16].

Recently, there has been a great deal of interest in the construction of exponential

integrators. Even though the theory of numerical methods for time integration is

well established for a general class of problems, recently due to improvements in the

efficient computation of the exponential function, exponential integrators for the time

integration of semi-linear problems have emerged as a viable alternative. The history

and emergence of exponential integrator as reported in [128] could be traced to the

first paper to construct what are now known as exponential integrators [33].

Down the memory lane, in 1998 the term "Exponential Integrators" was proposed

by Hochbruck et al. [74]. As a result of their work one of the first efficient implemen-

tations of an Exponential Integrator was developed. The code uses Rosenbrock-type

methods, adaptive time stepping and Krylov sub-sampling for the exponential func-

tions. A completely different class of methods, the so called RKMK methods, were
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developed in [132] in which the equation is transformed in such a way that it evolves

on a Lie algebra. He used the affine action on the algebra to construct integrators that

solve semi-linear problems. These methods lead to the Generalized Integration Factor

(GIF) methods introduced by Krogstad [104].

The major focus of this thesis is the use of Exponential Time Differencing (ETD)

schemes to solve some reaction-diffusion equations arising from biology. Numerical

experiments were performed on certain stiff PDEs in [92] using the IF, ETD, linearly

implicit methods and splitting methods. It was concluded that the ETD methods con-

sistently outperformed all other methods. This class of schemes is especially suited

to semi-linear problems which can be split into the linear and nonlinear parts. These

schemes have been rediscovered several times in various forms and under various names,

for instance, [31, 33, 74, 83, 104, 142]. A given example is the exact linear part (ELP)

schemes that were derived by Beylkin et al. [18] for arbitrary order. In [18], a vari-

ety of explicit and implicit exponential integrators based on multi-step methods are

constructed. Although the methods are derived for arbitrary systems of ODEs they

give special attention to those arising from the discretization of advection-diffusion

equations. They give the coefficients of the method based on the third order Adams-

Bashforth formula, the coefficients of the method based on the fourth order Adams-

bashforth formula are implicit in the presentations [18, 36], explicitly stated in [128].

These third and fourth order methods are selected as classical examples of multi-step

based exponential integrators termed ETDAB3 and ETDAB4 in [66]. It was noted in

[12] that the authors did not give explicit formulas for the method’s coefficients.

The most and first comprehensive treatment, and in particular the exponential

time differencing fourth order formula was derived in the paper by Cox and Matthews

[36] where the explicit derivation of the explicit ELP methods for arbitrary order s,

with explicit formulas for the methods’ coefficients is presented and referred to these

methods as the Exponential Time Differencing (ETD) schemes. Cox and Matthews

argued that ETD schemes outperforms IMEX schemes because they treat transient

solutions (where the linear term dominates) better, and also outperform integrating

factor schemes because they treat non-transient solutions (where the nonlinear term
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dominates) better. In addition, the authors of [36] further developed some explicit time

differencing Runge-Kutta (ETDRK) schemes of order up to four.

The coefficients of the ETD methods are the exponential and related functions of the

linear operators. These coefficients can be evaluated once before the integration begins

if a constant time step is used throughout the integration. The convergence analysis

for the explicit s-step exponential schemes was carried out in [16, 31, 128] for solving

semi-linear equations. The analysis showed that the schemes achieve order of accuracy

s, for appropriate starting values at the nth and previous time steps. In addition, the

authors of [74, 75, 76] analyzed the convergence behavior of the explicit exponential

Runge-Kutta methods for integrating semi-linear parabolic problems. They gave a new

derivation of the classical order conditions and showed convergence for these methods

up to order four. It is our aim in this thesis to numerically explore one, two, and three

systems of reaction-diffusion models in one-dimension. Other relevant works pertain-

ing to individual problems discussed in different chapters are reviewed in respective

chapters.

1.5 Outline of the thesis

The rest of this thesis is organized as follows.

In Chapter 2, we present in detail, the algorithmic formulation of the fourth-order

exponential time differencing Runge-Kutta and that of Adams-type which we denoted

for brevity as ETDRK4 and ETDADAMS schemes, respectively, by following the ap-

proach introduced in [36, 92]. We in addition, examine the stability analysis of these

schemes. This chapter marks the beginning of our numerical experiments on real ap-

plication problems.

Chapter 3 marks the beginning of our study of systems of time-dependent reaction-

diffusion equations which allow for much more complex behaviour than a scalar reaction-

diffusion equation that describe pulse splitting processes and self-replicating patterns.

Some ecological species dynamics involving the predator-prey, competitive, and

mutualism models are considered in chapter 4. The results of the numerical experiments
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presented grant a deep understanding to what each of the models stand for.

In Chapter 5, we demonstrate the use of higher order methods to solve some time-

dependent system of reaction-diffusion problems. We extend in this chapter, the com-

patibility of fourth-order finite difference scheme (in space) coupled with fourth-order

time-stepping methods; such as IMEXLM4, IMEXPC4, IMEXRK4 and ETDRK4 (in

time); for direct integration of reaction-diffusion equations. Some interesting numerical

anomaly phenomenons associated with steady state solutions of the examples chosen

from the literature are well presented to address points and queries that may occur.

Our findings have lead to the understanding of pattern formation such as spiral waves

and patchy structures as well as some spatiotemporal dynamical structures.

The links between the Fisher and Burgers equations are demonstrated through some

numerical experiments by considering a class of Burgers-Fishers equation in Chapter

6. In this chapter, we mainly use the first and second order methods among the fami-

lies of implicit-explicit linear multi-step (IMEXLM1,2) and implicit-explicit predictor-

corrector (IMEXPC1,2) schemes. Note that these family of methods are restricted

from having an order higher than two if A-stability is required.

Finally, in Chapter 7, the most important ideas presented in this thesis are high-

lighted with the biological relevance of our results. Furthermore, we list a number of

possible extensions to this work.

Before we move on to the rest of the thesis, it is worth mentioning here that simu-

lation results presented in this work are performed by using MATLAB.

 

 

 

 



Chapter 2

Numerical simulation of some scalar

reaction-diffusion models in one and

two dimensions

In this chapter, we consider the numerical simulations of nonlinear form of the KISS

model in one and two-dimensions. We employ the popular fourth-order exponential

time differencing Runge-Kutta (ETDRK4) schemes proposed by Cox and Matthew

[36], that was modified by Kassam and Trefethen [92], for the time integration of

spatially discretized partial differential equations. We demonstrate the supremacy

of ETDRK4 over the existing exponential time differencing integrators that are of

standard approaches and provide timings and error comparison. Numerical results

obtained in this chapter have granted further insight to the question ’What is the

minimal size of the spatial domain so that the population persists?’ posed by Kierstead

and Slobodkin [97], with a conclusive remark that the population size increases with

the size of the domain. In attempt to examine the biological wave phenomena of the

solutions, we present the numerical results in both one- and two-dimensional space,

which have interesting ecological implications. Initial data and parameter values were

chosen to correspond to some existing patterns.

23
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2.1 Introduction

Reaction-diffusion models are mathematical equations that describe the way the con-

centration of substances is being distributed in space, under the influence of two im-

portant terms or processes called the reaction and diffusion. The reaction term deals

with the way two or more substances are transformed into each other, and the diffusion

term which is responsible for the substances to spread out in space. Most reaction-

diffusion systems exist in form of semi-linear parabolic partial differential equations

which interact mainly in a nonlinear manner. They are widely encountered in various

fields of science and engineering, in particular, the application areas of mathematical

biology and ecology. Reaction-diffusion equations can be written in the general form

∂tu = D∇2u + N(u), (2.1.1)

where u(x, t) is termed the concentration of a substance or the density of a particular

specie, D is the diffusion coefficients, and the term N(u) accounts for the local reactions

which either exists in linear or nonlinear forms, and ∇2 denotes the laplace operator

in one-dimensional space.

The solution of reaction-diffusion equations has over decades generated a lot of

attentions and displayed a wide range of behaviours such as the wave-like phenomena

as well as other self-organized patterns like stripes, hexagons or more intricate structure

like dissipative solitons. If the reaction term vanishes, then the equation represents a

pure diffusion or heat equation. The study of nonlinear reaction-diffusion equation of

the form
∂u

∂t
= D∇2u + f(u), (2.1.2)

has a long-standing history in mathematical modeling of propagation phenomena that

mostly occurs in distributed dissipative dynamics. Most realistic physical problems

such as Allen-Chan, Burgers, Cahn-Hilliard, Fisher-KPP, Nagumo, Gray-Scott (or cu-

bic autocatalytic), Kierstead, Slobodkin and Skellam (KISS), Kuramoto-Sivashinsky

and host of others, naturally exist in form of higher-order partial differential equa-

tions. In [80], PDEs of the class (2.1.2) have shown to provide a natural framework
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for investigating the influence of patch size and geometry on the population dynamics

of organisms living within an habitat. Many researchers have used equations of the

form (2.1.2) in different forms especially in relation to three applications that model

the behaviour of biological systems in a spatial setting. The three major and popu-

lar applications of reaction-diffusion models relate to critical patch size [97], spread of

advantageous genes [51], and pattern formation [189]. For instance, if the reaction or

interaction term f(u) is replaced by κu(1−u), where κ and D are positive parameters

regarded as the carrying capacity and diffusion respectively in the context of biology,

then (2.1.2) becomes the classic simplest case of a nonlinear reaction-diffusion equation

popularly referred to as Fisher equation [51] with history dated back to 1937, which

has since becomes one of the most well-studied reaction-diffusion models in population

biology to describe the spread of an advantageous allele.

In this work, numerical solution of an exponential growth model of the form (2.1.2),

where the reaction term f(u) is given as τuα, so that equation (2.1.2) becomes

∂u

∂t
= D∇2u + τuα, (2.1.3)

where the diffusion coefficient D, the growth rate τ and the critical exponent constant

α, are all positive parameters. This equation is the critical patch model popularly

known as the KISS model named after Skellam [181] and Kierstead and Slobodkin

[97] which was originally developed to describe the spread of red tide outbreaks. Red

tide is a name given to the discolored waters caused by the aggregation or blooming

of microscopic organisms. A model for growth and spread of a population is used to

determine the minimal size of the spatial domain needed for population to survive and

this minimal size is referred to as the critical patch size [7].

In the classical paper [97], the critical patch size was determined for a simple

reaction-diffusion equation with exponential growth, their model was applied to study

phytoplankton plants living in the ocean. Determination of patch size of one-dimensional

form of (2.1.3) have been considered [7, 97, 102, 137, 145] on the spatial domain [0, l]

via separation of variables method. In one-dimension with the choice α = 1, we have
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the KISS model
∂u

∂t
= D

∂2u

∂x2
+ τu, 0 ≤ x ≤ l, t > 0, (2.1.4)

subject to initial and homogeneous Dirichlet boundary conditions

u(x, 0) = u0(x), 0 ≤ x ≤ l, (2.1.5)

u(0, t) = u(l, t) = 0, t > 0, (2.1.6)

where D > 0 and τ > 0. The solution is given as

u(x, t) =
∞∑

n=1

an sin
(nπx

l

)
exp

[
τ − n2π2

l2

]
t, (2.1.7)

with

an =
2

l

∫ L

0

u0(x) sin
(nπx

l

)
dx. (2.1.8)

By examining the solution reveals the condition that supports population growth and

extinction. For instance, if

l < π

√
D

τ
,

then u(x, t) will approach zero as time progresses, while if

l > π

√
D

τ
,

u(x, t) will increase indefinitely with time, thus leading to the bloom of the plankton.

In attempt to have a better understanding of how the solution of the reaction-

diffusion equation (2.1.3) behaves, we let τ = 0. Hence, equation (2.1.3) reduces to

diffusion equation. We can now find the solution of the general initial value problem

of solving (2.1.3) in spatial variable x, subject to

u(x, 0) = u0(x), for − l ≤ x ≤ l, (2.1.9)

with the aid of the Fourier transforms, as

 

 

 

 



CHAPTER 2. NUMERICAL SIMULATION OF SOME SCALAR
REACTION-DIFFUSION MODELS IN ONE AND TWO DIMENSIONS 27

u(x, t) =
1√

4πDt

∫ l

−l

u0(X) exp

{
(x−X)2

4Dt

}
dX. (2.1.10)

On using the initial condition as the localized source of the spread of species population,

u0(x) = δ(x), then, (2.1.10) becomes

u(x, t) =
e−x2/4Dt

√
4πDt

. (2.1.11)

As time increases the solution spreads out, having a typical width of O(
√

4πDt) and

a maximum height of 1/
√

4πDt. It is also noticeable that the diffusion transports the

species within the interval of integration [−l, l], since u(x, t) > 0 for all x when t > 0.

For |x| À 1 and t ¿ 1, the corresponding species concentration are very small. If

u0(x) = G(−x), then the solution takes the form

u(x, t) =
1√
π

∫ l

x/
√

4Dt

e−ξ2

dξ. (2.1.12)

Despite the considerable progress made so far in the field of population dynamics,

there are still many open problems. In particular, the numerical exploration of (2.1.3)

for α > 1 has received little or no attention when the domain of interaction is considered

wide enough to contain the population spread. Put together all these findings, we are

motivated to seek for an appropriate and efficient numerical solution of (2.1.3) in one

and two dimensional space which we consider on an infinite domain truncated at some

large, but finite value of l.

The rest of this chapter is organized as follows. In Section 2.2, we discuss numerical

methods where finite difference and spectral methods are considered for spatial discreti-

sation. Construction of an exponential time differencing schemes are also considered.

In Section 2.3, we examined the stability analysis of the numerical methods. Numer-

ical results of KISS model in one and two dimensions, Fisher equation and Nagumo

equation are presented in Section 2.4. The chapter ends with summary and discussions

in Section 2.5.
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2.2 Numerical methods

We discuss briefly the spatial discretisation methods used in this thesis. The method

of lines (MoL) [173, 174] is an important technique that is widely used for solving

partial differential equations (PDEs) in which all but one dimension is discretized.

The MoL provides standard, general-purpose methods and software, developed for the

numerical integration of ODEs, to be used. The method of lines most often refers

to the construction or analysis of numerical methods for PDEs that proceeds by first

discretizing the spatial derivatives only and leaving the time variable continuous. This

leads to a system of ordinary differential equations to which a numerical method for

initial value ordinary equations can be applied.

Virtually, most realistic mathematical biology models such as, Fisher, Gray-Scott

and Auto-catalysis equations exist in nonlinear form. They do not have closed form

solutions, thus numerical methods have an important role to play in examining the

behaviour of their solutions. Many researchers have used finite-difference technique as

a way of approximating the reaction-diffusion equations (see for example, [72, 131]).

However there are comparatively few studies [126, 149, 162] that give stability and

convergence results. Recently, Garvie [57, 59] presented two stable finite difference

methods for the numerical solution of predator-prey interaction that was previously

studied by Garvie and Trenchea [58].

When a time-dependent partial differential equation is discretized in space especially

with either a finite difference or spectral approximations, it results to system of coupled

ordinary differential equations in time, the resulting ODEs coming from the notion of

method of lines (MoL) is stiff, such a system requires the use of higher-order approx-

imation scheme in both space and time since naturally some of these time-dependent

problems are found of combining lower-order nonlinear terms with higher-order linear

terms. In one-dimension, we consider the semi-linear partial differential equation
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∂u
∂t

= D ∂2u
∂x2 + τuα, −l ≤ x ≤ l, t > 0,

u(x, 0) = u0(x), −l ≤ x ≤ l,

u(0, t) = u(l, t) = 0, t > 0,





(2.2.1)

with D > 0, τ > 0 and α > 0. We discretize in space with step-size h = x/(N − 1) and

approximate the second-order spatial derivative by the fourth order central difference

operator. We then obtain a system of nonlinear ordinary differential equations

dui,j

dt
= D

[−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

12h2

]
+ τ(ui,j)

α, (2.2.2)

with u = [u1, u2, . . . , ul]
T , for 1 ≤ i, j ≤ l.

Now, the two-dimensional form of system (2.1.3) can be written as

∂u
∂t

= D
(

∂2u
∂x2 + ∂2u

∂y2

)
+ τuα, (x, y) ∈ Ω = (l1 ≤ x, y ≤ l2), t > 0,

u(x, y, 0) = u0(x, y), l1 ≤ x, y ≤ l2,

u(0, t) = u(l2, t) = 0, t > 0,





(2.2.3)

now, we discretize the spatial domain by mesh (xi, yj) = (l1 + i×hx, l1 + j×hy) where

hx = (l2− l1)/(Nx +1), hy = (l2− l1)/(Ny +1) and 0 ≤ i ≤ Nx +1 and 0 ≤ j ≤ Ny +1.

Using fourth order central difference discretization on the linear term, we obtain a

system of nonlinear ODEs of the form

dui,j

dt
=

D

12

[−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

h2
x

]
+

D

12

[−ui,j+2 + 16ui,j+1 − 30ui,j + 16ui,j−1 − ui,j−2

h2
y

]
+ τ(ui,j)

α, (2.2.4)
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where

u =




u1,1 u1,2 . . . u1,Ny u1,Ny+1

u2,1 u2,2 . . . u2,Ny u2,Ny+1

...
...

...
...

...

uNx,1 uNx,2 . . . uNx,Ny uNx,Ny+1




Nx×(Ny+1

). (2.2.5)

Spatial discretisation of equation (2.1.3) can also be done using Fourier spectral

method with periodic boundary conditions [37, 83, 92, 187]. We adapt the Fourier

spectral method from [187] and applied it to (2.1.3). Leaving all the time stepping in

Fourier space gives the following system of ordinary differential equations

ût = −Dk2û + τ̂(u)α, (2.2.6)

so that the linear term of (2.1.3) now becomes a diagonal matrix. Systems (2.2.2),

(2.2.4) and (2.2.6) will now be integrated using a time integration method as explained

in the following section.

Exponential time differencing (ETD) schemes:

Numerous time discretization methods that are designed to handle stiff systems have

been developed in the past. Among which are split-step (SS) methods which seems

to have originated in the late 1950s, see for example, Barrinovskii and Godunov [14].

It was later discussed in revised forms by Ruth [166], Sanz-Serna and Calvo [169] and

Schatzman [172]. Another example is the family of methods called implicit-explicit

schemes (IMEX) whose usage is based on using the explicit method to advance the

nonlinear part of the problem and the implicit scheme for the linear part, a notable

example is the fourth-order Adams (Bashforth-Moulton) method (AB4BD4) discussed

in Kassam and Trefethen [92] or called SBDF4 in Ascher et al. [10]. Other time-

stepping methods include the integrating factor the sliders and finally, the exponential

time-differencing (ETD) schemes.

The ETD schemes are time integration methods that can be effectively combined

with spatial approximations to provide accurate smooth solutions for stiff or highly
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oscillatory semi-linear PDEs. The work reported here gives the derivation of the explicit

ETD schemes for arbitrary order following the approach used in [37, 83, 92], and present

the explicit fourth-order (ETD) versions of these schemes constructed by Cox and

Matthews [36]. In this thesis, our major focus shall be on the fourth-order exponential

time-differencing Runge-Kutta (ETDRK4) scheme. This class of schemes is especially

suited to semi-linear problems which can be split into a linear part, which is highly

stiff and a nonlinear part, that we expect to vary more slowly than the linear part.

These schemes have been rediscovered several times in various forms and under various

names, see for example, [36, 37, 92, 155] to mention a few.

Construction of general ETD schemes:

We begin our formulation by considering the semi-linear partial differential equations

(PDEs) of the form

∂u(x, t)

∂t
= f(u(x, t)) = DLu(x, t) + N(u(x, t), t), (2.2.7)

where x and t denote the spatial coordinate and time respectively. L is the linear

operator that contains higher-order spatial derivatives and N typifies the nonlinear

operators with spatial derivatives lower than the linear term [92]. Clearly from equation

(2.2.7), semi-linear PDEs can be split into a linear part, which contains the stiffest part

of the dynamics of the problem, and a nonlinear (non-stiff or mildly stiff) part, which

varies more slowly than the linear part. Once we discretize the spatial part of PDE

(2.2.7) by adopting the method of lines procedure discussed in the previous chapter,

the resulting system of ODEs obtained in time takes the form

du(t)

dt
= Lu(t) + N(u(t), t). (2.2.8)

Generally, for semi-linear problems, the difficult part (stiff or oscillatory nature) of

the differential equation is in the linear part of the problem. By treating the linear part

of the problem exactly, using the exponential and related functions, the remaining part
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of the integrator can be explicit. The tradeoff here is that the exponential and related

functions are computed, rather than using an implicit integrator. When a constant

step-size is used throughout the integration, the exponential and related functions

can be evaluated before the integration begins, given that storing such information

is feasible [36, 92]. These functions can be a significant overhead depending on the

dimensionality of the differential equation and the structure of the matrix L. Therefore,

exponential integrators are likely to be most competitive when the matrix L is diagonal

or cheaply diagonalizable. We require that the nonlinear term N be handled explicitly,

since fully implicit methods have been demonstrated [36] to be too costly for large-scale

PDE simulations.

To derive the time discretization methods, for simplicity and by following mostly

both the notation and the approach used in [36, 46], we consider the model ODE

du(t)

dt
= Lu(t) + N(u(t), t), (2.2.9)

where L is classified as the stiffness parameter considered to be large, negative and real,

or large and imaginary, or complex with large, negative real part and N(u(t), t) stands

for nonlinear and forcing term. The derivation of the s-step ETD schemes is taken

from [12, 18, 36, 128, 142]), we begin by multiplying (2.2.9) through by the integrating

factor e−Lt, then integrating the equation over a single time step from t = tn and

t = tn+1 = tn + ∆t to give

u(tn+1) = u(tn)eL∆t + eL∆t

∫ ∆t

0

e−LτN(u(tn + τ), tn + τ)dτ. (2.2.10)

Various ETD schemes come from the approximations to the integral in (2.2.10). This

formula is regarded as the exact [36], and the next step is to derive approximations to

the integral. The issue of an unwanted fast time scale in the solution is well circum-

vented in this procedure and the schemes can be generalized to arbitrary order.

On applying the Newton backward difference formula [12, 25], using information

about N(u(t), t) at the nth and previous time steps, the polynomial approximation to
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N(u(tn + τ), tn + τ) is given in the form

N(u(tn + τ), tn + τ) ≈ Gn(tn + τ) =
s−1∑
j=0

(−1)j

(−τ/∆t

j

)
∇jGn(tn), (2.2.11)

where ∇ is the backward difference operator defined as

∇jGn(tn) =

j∑

k=0

(−1)k

(
j

k

)
Gn−k(tn−k),

≈
j∑

k=0

(−1)k

(
j

k

)
N(u(tn−k), tn−k), (2.2.12)

and

j!

(−Φ

j

)
= (−Φ− 1) · · · (Φ− j + 1), for j = 1, . . . , s− 1,

where

Φ = τ/∆t.

If we substitute the approximation (2.2.11) into integrand (2.2.10), bear in mind

that (0!
(−Φ

0

)
= 1), we have

u(tn+1)− u(tn)eL∆t ≈ ∆t

s−1∑
j=0

(−1)j

∫ 1

0

eL∆t(1−Φ)

(−Φ

j

)
dΦ∇jGn(tn). (2.2.13)

At this point, by following the work reported in [12, 36], we are pleased to indicate the

integral in (2.2.13) by

gj = (−1)j

∫ 1

0

eL∆t(1−Φ)dΦ, (2.2.14)

by bringing in the generating function, we can calculate the gj. For z ∈ R, |z| < 1,

thus, this is easily accomplished by introducing the generating function defined by

Γ(z) =
∞∑

j=0

gjz
j, (2.2.15)

which is readily found to be
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Γ(z) =

∫ 1

0

eL∆t(1−Φ)

∞∑
j=0

(−Φ

j

)
(−z)jdΦ,

=

∫ 1

0

eL∆t(1−Φ)(1− z)−ΦdΦ,

=
eL∆t(1− z − e−L∆t)

(1− z)(L∆t + log(1− z))
. (2.2.16)

Next, we rearrange (2.2.16) in the form

(L∆t + log(1− z))Γ(z) = eL∆t − 1

1− z
,

and then find the expansion in powers of z

(
L∆t− z − z2

2
− z3

3
− · · ·

)
(g0 + g1z + g2z

2 + · · · ) = eL − 1− z − z2 − z2 − · · · ,

for j ≥ 0, we can obtain a recurrence relation for gj in such a way that

L∆tg0 = eL∆t − 1, (2.2.17)

L∆tgj+1 + 1 = gj +
1

2
gj−1 +

1

3
gj−2 + · · ·+ 1

j + 1
g0 =

j∑

k=0

1

j + 1− k
gk.

On substituting equations (2.2.12) and (2.2.14) into (2.2.13), the general ETD schemes

[12, 36] of order s is given as explicit generating formula of the form

un+1 = une
L∆t + ∆t

s−1∑
j=0

gj

j∑

k=0

(−1)k

(
j

k

)
Nn−k, (2.2.18)

where un and N are the respective numerical approximation to u(tn) and N(u(tn), tn).

Exponential time differencing Adams (ETDADAMS4) scheme:

By setting s = 4 in formula (2.2.18), we obtain the fourth-order exponential time

differencing method of Adams-type [12, 18, 31, 36, 130]. We denote this scheme for
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brevity as ETDADAMS4:

un+1 = une
L∆t + (Θ1Nn −Θ2Nn−1 + Θ3Nn−2 −Θ4Nn−3)/(6L

4∆t3), (2.2.19)

where

Θ1 = (6L3∆t3 + 11L2∆t2 + 12L∆t + 6)eL∆t − 24L3∆t3 − 26L2∆t2 − 18L∆t− 6,

Θ2 = (18L2∆t2 + 30L∆t + 18)eL∆t − 36L3∆t3 − 57L2∆t2 − 48L∆t− 18,

Θ3 = (6L2∆t2 + 24L∆t + 18)eL∆t − 24L3∆t3 − 42L2∆t2 − 42L∆t− 18,

Θ4 = (2L2∆t2 + 6L∆t + 6)eL∆t − 6L3∆t3 − 11L2∆t2 − 12L∆t− 6.

It is noticeable that the ETDADAMS4 will reduce to the corresponding order of the

Adams-Bashforth method as L → 0.

Exponential time differencing Runge-Kutta (ETDRK4) scheme:

The description and formulation of ETD schemes described earlier are based on multi-

step idea. Hence, their usage requiring s previous evaluations of the nonlinear term

N(u(t), t) which makes them inconvenient to use because of their requirement of start-

ing values. This problem actually prone Cox and Matthew [36] to look for a way to

circumvent this particular challenge, they suggested that this problem can be avoided

with the use of Runge-Kutta methods that are already available with all the informa-

tion required to start the integration. In addition, they also have the advantages of

smaller error constants and larger stability regions than multi-step methods. It would

therefore be of good interest to design ETD schemes that are based on Runge-Kutta’s

approach.

Direct extension of the standard fourth-order Runge-Kutta method with further

introduction of some parameters based on the formulation of the methods in [36, 55],

gives birth to the well-known Cox and Matthews [36] fourth-order exponential time
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differencing Runge-Kutta scheme, which we denoted in this thesis as ETDRK4:

un+1 = uneL∆t + Nn[−4− L∆t + eL∆t(4− 3L∆t + L2∆t2)]

+2(N(an, tn + ∆t/2) + N(bn, tn + ∆t/2))[2 + L∆t + eL∆t(−2 + L∆t)]

+N(cn, tn + ∆t)[−4− 3L∆t− L2∆t2 + eL∆t(4− L∆t)]/L3∆t2, (2.2.20)

where

an = une
L∆t/2 + (eL∆t/2 − I)Nn/L,

bn = une
L∆t/2 + (eL∆t/2 − I)N(an, tn + ∆t/2)/L,

cn = une
L∆t/2 + (eL∆t/2 − I)(2N(bn, tn + ∆t/2)−Nn)/L.

The terms an and bn approximate the values of u at tn + ∆t/2 while the term cn

approximates the value of u at tn + ∆. The formula (2.2.20) is the quadrature formula

for (2.2.10) derived from quadratic interpolation through the points tn, tn + ∆t/2 and

tn + ∆t, when an average value of N is used at an and bn.

The major computational task in the implementation of the exponential time dif-

ferencing methods could be the need of fast and stable evaluations of exponential and

related ϕ−functions [184]

ϕ(z) =
1

(j − 1)!

∫ 1

0

e(1−θ)zθj−1dθ, j ≥ 0, (2.2.21)

that is, functions of the form (ez − 1)/z. The computation of these functions depend

significantly on the structure and the range of the eigenvalues of their linear operators

and the dimensionality of the semi-discretized PDE. Krylov method was introduced in

[73, 168] to compute the ϕ−functions. Years later, authors in [92] used the Cauchy

integral representation on a circle for the stable computation of the ϕ−functions. Our

evaluation of the exponential and the related ϕ−matrix functions follow the idea of
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[175]. The ϕ−functions can be computed explicitly by using a recursive formula

ϕ0(z) = ez,

ϕj(z) =
ϕj−1(z)−ϕj−1(0)

z
, j ≥ 1.



 (2.2.22)

Another way of computing the functions ϕj is to use the Taylor series representation.

Thus, for the complex numbers z, we have

ϕj(z) =
∞∑

k=j

1

k!
zk−j, (2.2.23)

it is known that the computation of these functions in their explicit or Taylor series

form suffers from computational inaccuracy for the matrices whose eigenvalues are

equal to or approaching zero. In order to circumvent the numerical difficulties posed

in the computation of (2.2.22) and (2.2.23), a different method of attack for evaluating

the function was suggested in [92]. The main idea is to approximate the matrices and

scalars functions by means of contour integrals in the complex plane

ϕj(z) =
1

2πi

∫

Γ

ϕj(s)

(s− z)
ds

=
1

M

M∑

`=j

ϕj(z + eiθ`), for θ` =
2π`

M
. (2.2.24)

If the size of the matrix L is large, it is more advantageous to compute the product of

the functions ϕj(z) and the vectors b rather than to compute ϕj(z) explicitly. We have

ϕj(A)b =
1

2πi

∫

Γ

ϕj(s)(sI− L)−1bds ≈
n∑

`=1

c`(s`I− L)−1b, (2.2.25)

where s` and c` represent the poles and the residues respectively. The sum in (2.2.25)

is evaluated by solving at most n shifted linear systems. For the computation of the

poles and the residues, see Carathéodory-Fejér method [175, 184] for details.
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2.3 Analysis of the numerical methods

In mathematics, stability theory addresses the stability of solutions of differential equa-

tions and of trajectories of dynamical systems under small perturbations of initial con-

ditions. A crucial question in the step-by-step solution of such problems is whether

the method will behave stably or not. Here we use the term stability to designate that

any numerical errors, introduced at some stage of the calculations, are propagated in

a mild fashion, that is, they do not blow up in the subsequent steps of the method.

Widely accepted tools to assess the stability a priori, in the numerical solution

of partial differential equations, include Fourier transformation and the corresponding

famous Von Neumann condition for stability [183]. Further tools of recognized merit for

assessing stability, in the solution of ordinary differential equations, comprise so-called

stability regions in the complex plane. Since the mid sixties these stability regions have

been studied extensively; numerous papers have appeared dealing with the shape and

various peculiarities of these regions.

However, the above tools are based on the behaviour that the numerical method

would have when applied to quite simple test problems. Accordingly, in the case of

partial differential equations Fourier transformation provides a straightforward and

reliable stability criterion primarily only for certain numerical methods applied to pure

initial value problems in linear differential equations with constant coefficients. In many

cases of practical interest, Fourier transformation is not relevant to analysing stability:

e.g. for pseudo-spectral methods [186] applied to initial-boundary value problems,

for finite difference or finite element methods related to highly irregular grids, and

for methods applied to equations with strongly varying coefficients. Similarly, in the

case of ordinary differential equations, stability regions are primarily relevant only to

numerical methods when applied to the scalar linear model equation

du(t)

dt
= λu(t) for t ≥ 0,

with given complex constant λ.

Generally speaking, the stability analysis of time discretization methods is valid for
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a linear autonomous system of ordinary differential equations, linearized about a fixed

point. This analysis only provides an indication to how stable a numerical method is. It

cannot be applied directly to solutions of nonlinear time-dependent partial differential

equations with large amplitude since convergence and stability are solution-dependent

matters.

The stability approach was developed in [18, 36, 46] for the analysis of (composite)

schemes that use different methods for both linear and nonlinear parts of the equation

of the form (2.2.8), to compute the boundaries of the stability regions for a general test

problem. Stability of the family of explicit and implicit exact linear part (EPL) schemes

have been reported in [18] with a view that the schemes have shown significantly better

stability properties. Also, various stability regions of some ETD methods have been

analyzed in [12, 36, 104].

Owing to the general idea as suggested and used in [12, 18, 36, 46, 83], we investigate

the stability of the ETD schemes by linearizing the nonlinear autonomous ODEs

du(t)

dt
= Lu(t) + N(u(t)), (2.3.1)

with N(u(t)) the nonlinear part, we suppose that there exist a fixed point u0 in such

that Lu0 + N(u0) = 0. Linearizing about this fixed point, we obtain

du(t)

dt
= Lu(t) + λu(t), (2.3.2)

where u(t) is now the perturbation of u0 and λ = N′(u0) is a diagonal or a block

diagonal matrix containing the eigenvalue of N. In attempt to keep the fixed point

u0 stable, we require that Re(L + λ) < 0, for all λ. It is naturally important for a

numerical method to satisfy this property with respect to capturing as much as the

dynamics of the system is possible. The stability region is four-dimension if both L

and λ are complex [12], otherwise the stability region is two-dimensional if both L and

λ are purely imaginary or purely real, or if λ is complex and L is fixed and real, see

[18, 36] for details.
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Stability of ETDADAMS4 scheme:

When applying ETDADAMS4 (2.2.19) to the linearized problem (2.3.2), a polynomial

equation of the order-four in r is obtained in the form

u4r
4 + u3r

3 + u2r
2 + u1r + u0 = 0, (2.3.3)

where

u4 = 6y4,

u3 = −6y6ey + [(−6y3 − 11y2 − 12y − 6)ey + 24y3 + 26y2 − 18y + 6]x,

u2 = [(18y2 + 30y + 12)ey − 36y3 − 57y2 − 48y − 18]x,

u1 = [(−9y2 − 24y − 18)ey + 24y3 + 42y2 + 42y + 18]x,

u0 = [(2y2 + 6y + 6)ey − 6y3 − 11y2 − 12y − 6]x.

In the real (x, y) plane, the right-hand boundary for ETDADAMS4 scheme corre-

sponds to substituting r = 1 in equations (2.3.3) is the line x + y = 0. For r = −1, the

left-hand boundaries for (2.3.3) is given by the curve

x = − 3y4(ey + 1)

(3y3 + 20y2 + 36y + 24)ey − 45y3 − 68y2 − 60y − 24
, (2.3.4)
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Figure 2.3.1: Stability regions of the ETDADAMS4 scheme (2.2.19) in (a) the complex
x plane and (b) the real (x, y) plane.
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Figure 2.3.2: Stable and unstable regions of the ETDADAMS4 scheme in the real
(x, y) plane at y = ±1.

Stability of ETDRK4 scheme:

The application of ETDRK4 method (2.2.20) to (2.3.2) leads to a recurrence relation

r =
un+1

un

= L0 + L1x + L2x
2 + L3x

3 + L4x
4, (2.3.5)

where

L0 = ey,

L1 = − 4

y3
+

8ey/2

y3
− 8e3y/2

y3
+

4e2y

y3
− 1

y2
+

4ey/2

y2
− 6ey

y2
+

4e3y/2

y2
− e2y

y2
,

L2 = − 8

y4
+

16ey/2

y4
− 16e3y/2

y4
+

8e2y

y4
− 5

y3
+

12ey/2

y3
− 10ey

y3
+

4e3y/2

y3

−e2y

y3
− 1

y2
+

4ey/2

y2
− ey/2

y2
,

L3 =
4

y5
− 16ey/2

y5
+

16ey

y5
+

8e3y/2

y5
− 20e2y

y5
+

8e5y/2

y5
+

2

y4
− 10ey/2

y4

+
16ey

y4
− 12e3y/2

y4
+

6e2y

y4
− 2e5y/2

y4
− 2ey/2

y3
+

4ey

y3
− 2e3y/2

y3
,

L4 =
8

y6
− 24ey/2

y6
+

16ey

y6
+

16e3y/2

y6
− 24e2y

y6
+

8e5y/2

y6
+

6

y5
− 18ey/2

y5

+
20ey

y5
− 12e3y/2

y5
+

6e2y

y5
− 2e5y/2

y5
+

4

y4
− 6ey/2

y4
+

6ey

y4
− 2e3y/2

y4
,

with x = λh, y = Lh (since the problem we are considering is in one dimension). It is

noticeable that the computation of L1, L2, L3 and L4 suffers from computational in-
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stability for values of y equal to or approaching zero. For that reason, their asymptotic

expansions are sought. This leads to

L1 = 1 + y + y2

2
+ y3

6
+ 13y4

320
+ 7y5

960
+O(y6),

L2 = 1
2

+ y
2

+ y2

4
+ 247y3

2880
+ 131y4

5760
+ 479y5

96768
+O(y6),

L3 = 1
6

+ y
6

+ 61y2

720
+ y3

36
+ 1441y4

241920
+ 67y5

120960
+O(y6),

L4 = 1
24

+ y
32

+ 7y2

640
+ 19y3

11520
+ 25y4

64512
+ 311y5

860160
+O(y6).





(2.3.6)

We can define the amplification factor for ETDRK4, r(x, y) for y > 0. If y = 0, the

amplification factor becomes 1− x + x2

2
− x6

6
+ x4

24
. At this point, we can see that the

stability curve of ETDRK4 at y = 0 coincides with that of corresponding fourth-order

Runge-Kutta method. Using (2.3.5) and (2.3.6), we see that

lim
y→0

r(x, y) = 1− x +
x2

2
− x6

6
+

x4

24
.

Also, limx,y→0 ∂yr(x, y) = −1, limx,y→0 ∂xr(x, y) = −1, and the absolute value of the

amplification factor is given as |r(x, y)| ≤ 1. The boundary of the stability region

is determined by setting r = eiθ, for θ ∈ [0, 2π]. We plot the stability region in the

complex x-plane, see Figure 2.3.3, where the horizontal and vertical axes represent

the real and imaginary parts of x, respectively. Convincingly, we can deduce from

Figure 2.3.3 that the stability of ETDRK4 method grows larger as y → −∞. The

curve (a) indicates the case y = 0, it is convincing that the stability region of the

ETDRK4 scheme coincides with that of the corresponding order of the fourth-order

Runge-Kutta (RK4) method, and (b) shows the curve of ETDRK4 at some negative

values of y = −15,−10,−5, from outer to the inner curves. The inner curve is the

stability region obtained when y = 0.

Our major goal in this thesis is to use ETDRK4 scheme as our time-stepping

method, but for the purpose of comparisons, higher-order time stepping schemes such

as exponential time differencing multi-step (ETDM4, ETDM5, ETDM6), implicit-

explicit linear multi-step (IMEXLM1,2,4), implicit-explicit predictor-corrector (IM-

EXPC1,2,4), implicit-explicit Runge-Kutta (IMEXRK4), and the classical fourth-order
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Figure 2.3.3: Boundary of stability regions in the complex x plane for the ETDRK4
scheme (2.2.20).

Runge-Kutta (RK4) methods are considered.

2.4 Numerical results

To examine the efficiency and accuracy of our approach for ETD methods, we consider

the numerical simulations of system (2.1.3) in one and two dimensions. We further

justify the supremacy of ETDRK4 in comparison with the existing standard schemes

of higher-orders by reporting the relative infinity and root mean square norm errors of

the solution defined by

||L||∞ =
max1≤j≤N |ej − cj|

max1≤j≤N |ej| , (2.4.1)

and

||L2|| =
√∑n

j=1(ej − cj)2

∑n
j=1(ej)2

, (2.4.2)

respectively, where ej and cj are the exact and computed values of the solution u at

point j, and n is the number of interior points. As test examples, we consider the

following problems.

One-dimensional KISS model:

In one-dimension, we consider the KISS model of [97, 181].
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∂u
∂t

= D ∂2u
∂x2 + τuα, −l ≤ x ≤ l, t > 0,

u(x, 0) = sin(2πx), −l ≤ x ≤ l,

u(0, t) = u(l, t) = 0, t > 0,





(2.4.3)

where u(x, t) is the density of the organisms at spatial domain x and time t, τ and α

are both positive parameters, and D is the diffusion coefficient that measures the rate

of dispersal. The particular choice of boundary conditions indicates that the organisms

cannot boom or live beyond the domain. This assumption is taken to ensure that the

experiment is not influenced by any external factor. Results are presented in figures

2.4.1 and 2.4.2.

The successive profile in Figure (a) is obtained at T = 0.01 to 0.05 in the step 0.005.

Panel (b) and the contour plots (d) are obtained for [0, 20], T = 0.05. Surface plot (c)

is obtained at T = 0.05, in the interval [−2, 2]. Panels (e) is obtained at T = 0.1 in the

interval [0, 1] whereas (f) is obtained at final time T = 0.05 on domain [−1, 1]. The

results presented here have shown various patterns that could evolved when the patch

size of KISS model is varied in spatial domain. For all simulations, we took N = 200.

The plots in Figure 2.4.2 indicate the results from initial time (t0) to final time T

showing the density profiles u(x, t) versus position x on a closed interval −l ≤ x ≤ l

for the choice of the growth rate τ = 0.5 and critical exponent α = 2. The successive

profile in (a) is obtained at T = 0.01 with D = 0.5 on [−1, 1]; (b) large D = 2, T = 0.05

on [0, 3]; (c) D = 0.1, T = 0.01 on [0, 1]; (d) is obtained on [−4, 4], T = 0.02 for large

diffusion coefficient D = 1.5; (e) is obtained on the spatial domain [0, 5] with T = 0.1

and D = 0.05. Contour plot (f) is obtained with parameter values D = 0.2, T = 0.1

on domain of size [0, 4]. The results presented here have equally revealed some of the

dispersal-driven patterns that arise as a result of diffusion. For all simulations, we took

N = 200.
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Figure 2.4.1: Numerical solutions of one-dimensional KISS model (2.4.3): Time
dependent density profiles u(x, t) versus position x on interval −l ≤ x ≤ l for D = τ =
α = 1.

Two-dimensional KISS model:

Our major aim in this section is to examine the behavior of system (2.1.3) numerically

in two-dimensional space, that is, when the Laplacian operator ∇2 ≡ ∂2/∂x2 +∂2/∂y2.

One-dimensional form of KISS equations are relatively simple to undertake using

method of lines coupled with spatial adaptive schemes. In-fact, solutions of the form

(2.1.3) have been sought theoretically [7, 102, 145]. Unfortunately, in two space di-
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Figure 2.4.2: Diffusion-driven spatial pattern in one-dimensional KISS model (2.4.3)
as it changes with both spatial domain x with varying time t.

mensions, numerical solutions of KISS model (2.2.3) still requires some attention, since

simulations based upon the more conventional ideas become more time consuming. We

therefore consider its two-dimensional case:

∂u
∂t

= D
(

∂2u
∂x2 + ∂2u

∂y2

)
+ τuα, (x, y) ∈ Ω = (l1 ≤ x, y ≤ l2, ), t > 0,

u(x, y, 0) = u0(x, y), l1 ≤ x, y ≤ l2,

u(0, t) = u(l2, t) = 0, t > 0,





(2.4.4)

where u(x, y, t) is the density of organisms at spatial coordinates x, y and time t. D > 0

remains the diffusion coefficient, while τ > 0 and α ≥ 1 are the respective growth rate

and critical exponent.

The initial data and parameter values were carefully chosen to make the figures

(2.4.3), (2.4.4) and (2.4.5) replicate some of the existing patterns. In all cases, the
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space step h was kept equal to l, that is, hx = hy = l in the spatial domain −l ≤ x, y ≤
l. It is clear from the result presented in Figure 2.4.6, that ETDRK4 has the best

convergence when compared to other exponential time differencing schemes, such as

ETDM4, ETDM5, ETDM6 and ETDADAMS4 methods. In Table 2.4.1, we illustrate

the tradeoff between the computational [CPU (s)] time and the accuracy as time step

k is refined for each of the methods.

Figure 2.4.3: Solutions of two-dimensional KISS model (2.4.4) on different spatial
domain.

In Figure 2.4.3, the initial data is u0(x, y) = sinc(
√

(x/π)2 + (y/π)2). Other pa-

rameter values are D = 1, τ = 0.01, T = 0.5 and α = 2 for (a) l = 10 and (b) l = 20.

Plots (c) T = 1.2, l = 10 and (d) T = 2, l = 20 are obtained with the initial data

u0(x, y) = cos(x) cos(y) exp(−
√

x2 + y2/4).
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Table 2.4.1: Error norm L2 at some selected time steps for solving KISS equation
(2.4.3). Parameter values are T = 1, D = 0.5, τ = 0.5 and α = 2 on interval [-1,1] for
N = 200. We present CPU times for each of the schemes to check competitiveness of
the methods.

Method Time step (k) L2-error CPU time (in seconds)

ETDM4

1/32 0.2150 1.5086
1/64 0.0301 1.5467
1/256 3.3910e-004 1.7189
1/1024 3.4784e-006 3.8817

ETDM5

1/32 0.2170 1.9896
1/64 0.0195 2.0277
1/256 1.7793e-005 2.3538
1/1024 1.7923e-006 4.6010

ETDM6

1/32 0.0664 2.0405
1/64 8.5299e-004 2.0515
1/256 4.2840e-004 2.2500
1/1024 1.8248e-007 8.2387

ETDADAMS4

1/32 0.0050 1.485
1/64 0.0029 1.5511
1/256 1.3334e-004 1.8339
1/1024 2.3963e-006 4.4020

ETDRK4

1/32 7.2013e-004 1.1146
1/64 5.0921e-005 1.0236
1/256 3.5038e-007 1.3198
1/1024 4.4086e-009 3.8726
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Figure 2.4.4: Solutions of two-dimensional KISS model (2.4.4) on different spatial
domain. The initial data is u0(x, y) = exp(1/10)(cos x + sin y). Other parameters are
T = 0.05 D = 1, τ = 0.01 and α = 2 on (a) l = 8 and (b) l = 14.

Figure 2.4.5: Solutions of two-dimensional KISS model (2.4.4) on different spatial
domain. The initial data is u0(x, y) = sin(

√
(x/π)2 + (y/π)2). Other parameters are

D = 1, τ = 0.01 and α = 2 on (a) l = 10, T = 1; (b) l = 20, T = 0.05; (c) l = 40,
T = 0.05, and (d) l = 80, T = 0.05.

Fisher’s equation with simple population density:

Our first example evolves a simple population density u(x, t) on setting D = τ = κ = 1

in (2.4.13) (see also, [4], [37]):

ut = uxx + u(1− u), | x |< L (2.4.5)
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Figure 2.4.6: Performance of ETDRK4, ETDM4, ETDM5, ETDM6 and ET-
DADAMS4 methods for solving the KISS equation (2.4.3) with parameter values T = 1,
D = 0.5, τ = 0.5 and α = 2 on interval [-1,1] for N = 200.

on the domain of interval −∞ ≤ L ≤ ∞, using a periodic boundary conditions with

the initial condition

u(x, 0) =
1

2 cosh δx
(2.4.6)

that has exponential decay exp(−δ | x |) as | x |→ ∞. The solution to (2.4.5) depends

on the initial data, u0(x). Kolmogorov et al. [100] proved that if u0(x) is monotonic and

continuous with u0(x) = 1 for x < a and u0(x) = 0 for x > b, where −∞ < a < b < ∞,

the solution evolves into a traveling wave with the speed c = 2 for δ > 1 and c = δ+1/δ

if otherwise.

Analysis of traveling wave solutions of (2.4.5) could be traced back to [100], where

it was shown that the solutions that are functions of x − ct exists for c ≥ 2, and that

the traveling wave with minimum speed 2 possesses the long time limit for any initial

conditions satisfying

u(x, t) = ξ(x± ct) ≡ ξ(ω),

where ξ is increasing

lim
ω→−∞

ξ(ω) = 1, lim
ω→∞

ξ(ω) = 0.

This implies that, the solution switches between two equilibrium positions u = 0 and
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u = 1. The travelling wave solution of Fisher’s equation is given as

ξ(ω) =
(
1 + ce

±ω√
6

)−2

, (2.4.7)

for all c > 0.
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Figure 2.4.7: Monotonically increasing (a) and decreasing (b) travelling wave solutions
of Fisher-KPP equation that switches between two equilibrium points 0 and 1 on
−∞ < x < ∞.
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Figure 2.4.8: Fisher’s equation (2.4.5): solution is obtained on interval −L ≤ x ≤ L,
for L = 150; simulation runs for N = 250. Parameter values: Panels (a) at δ = 1/8,
T = 12 and surface plot (b) is obtained at T = 40 when δ = 1, notice the variation at
the peaks of (a) and (b).
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Figure 2.4.9: Fisher’s equation (2.4.5): Panels (a) and (b) show the profiles of u(x, t)
at unit time intervals T = 1(1)12 for δ = 1/8 and δ = 8 respectively. Surface plot C
is obtained at parameter values δ = 1/8 with final time T = 1. D is the solution at
T = 10 for δ = 1/8. We took N = 200.

Fisher’s population dynamics problem:

We consider the Fisher population dynamic problem [4] with three kinds of local waves

ut(x, t) = βuxx(x, t) + φu
(
1− u

k

)
,−L ≤ x ≤ L, t > 0 (2.4.8)

lim
|x|→L

u(x, t) = 0. (2.4.9)

The first one is

g1(x) = sech2(7x) (2.4.10)

with a sharp peak in the middle, and the second one is

g2(x) =
exp[7(x + 1)], x < −1,

exp[−7(x− 1)], x > 1,



 , (2.4.11)
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Figure 2.4.10: Plots of u(x, t) for the first kind in problem (2.4.8) on −L ≤ x ≤ L.

with sinusoidal (smooth peak pattern), where φ > 0 is the growth rate and κ > 0

is the carrying capacity. If u is small, the linear growth term φu results in rapid

population growth, but as u become large, the competing term −φu/κ slow down the

growth rate. For large time T , the population experience an equilibrium growth, that

is, φ = κ. Also, we consider a situation where the reaction term u(1−u) is small which

allows diffusion to gain dominance effect over the reaction. Clearly we can see that the

peak in the second kind gets flatter quickly, this is achieved by introducing the third

condition

g3(x) =

exp[7(x + 1)], x < −1,

sech2(7x), −1 ≤ x ≤ 1,

exp[−7(x− 1)], x > 1,





, (2.4.12)

for further details, the readers are referred to [4].

In Figure 2.4.10, the parameter values used are: (a) N = 100, T = 0.5 L = 4,

β = 0.1, φ = k = 1; (b) N = 150, T = 0.05, L = 10, β = 0.5, φ = k = 1; mesh
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solutions (c) is obtained at T = 1, L = 4, β = 0.6, φ = k = 1, and (d) is obtained with

T = 10, L = 4, β = 0.9 N = 200, φ = 1 and k = 2.
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Figure 2.4.11: Various behavioural patterns of traveling waves emanating as a result
of the perturbation of the second (2.4.11) and third (2.4.12) kinds of waves for problem
(2.4.8).

The space L is adjusted in Figure 2.4.11 to ensure that there is enough space for
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waves to propagate. The solutions of problem (2.4.8) exhibit various interesting diverse

chaotic and periodic population oscillations arising from the three kinds of local waves

considered. We have seen the local waves (2.4.10) with sharp peak in (2.4.10). The

results of second (2.4.11) and the third (2.4.12) kinds local waves are presented in

Figure 2.4.11, ranging from the sharp peak contour to the flat roof contour as a result

of diffusion effects in the interval of space L. Readers are to take note of the difference

in shape at the peaks as well as amplitudes of these solutions.

Fisher’s equation with a specific logistic term:

Various choices of the reaction terms lead to different models, for instance, the choice

N(u) = u(1 − u) yields Fisher’s equation that was originally used to describe the

spreading of biological populations. The Fisher-Kolmogorov, Petrovskii, and Piscounov

(KPP) equation is one of the simplest examples of a nonlinear reaction-diffusion equa-

tion. The equation dates to two independent publications in [100], they began with

an equation in two-dimension with general reaction term, the report of their work laid

the foundation for rigorous analytical study of the reaction-diffusion models. Fisher’s

equation is one-dimensional and had a specific logistic reaction term:

ut = Duxx + τu
[
1− u

κ

]
. (2.4.13)

Fisher proposed this equation as a model of diffusion of species in a one-dimensional

habitat; D is the diffusion constant, τ is the growth rate of the species, and κ is the

carrying capacity. Conveniently, we can re-scale the variables in (2.4.13), so that

û ≡ u

τ
, t̂ ≡ τt, x̂ ≡

√
τ

D
x, (2.4.14)

and therefore equation (2.4.13) implies

ût = ûxx + û(1− û). (2.4.15)
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After dropping the hats, equation (2.4.15) becomes

ut = uξξ + ηuξ + u(1− u) (2.4.16)

in terms of ξ = γ − ηt. The perturbation effect to a traveling wave solution can be

observed by introducing

u(ξ, t) = uγ(ξ) + δ(ξ, t),

where δ(ξ, t) denotes the small perturbation. Following the idea in [20] with a view of

determining wether δ grows (if it grows, the solution is unstable) or decay (if it grows,

the solution is linearly stable) as t increases, we discuss the linear partial differential

of equation

δt = δξξ + ηδξ + (Φ)δ, (2.4.17)

for Φ = 1 − 2uη(ξ), with a leading order for |δ| ¿ 1 is solved, subject to the initial

condition

δ(ξ, t = 0) = δt=0(ξ),

and δt=0 → 0 as ξ → ±∞. By introducing another variable, say σ(ξ, t), through

δ(ξ, t) = e−λξσ(ξ, t),

which in terms of σ, equation (2.4.17) now becomes

σt = σξξ +
(√

η2 − 4
)

σξ − 2uη(ξ)σ, (2.4.18)

subject to

σ(ξ, 0)− σ0(ξ) = eλξσ0(y).

Equation (2.4.18) models an advective-diffusive process with a term −2uη(ξ)σ, that

typifies the consumption of σ, see [23, 102, 139] for details. Further analysis of equation

(2.4.18) is beyond the scope of this thesis, we shall rather focus our attentions on

reaction-diffusion problems.
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Since 1937, equation (2.4.15) has been widely used to study flame propagation

and nuclear reactors as well as population dynamics and genetics. Many researchers

have studied this model. For instance, Al-Khaled [4] examined equation (2.4.15) with

the aid of sinc collocation method where it was established that initial disturbance

can propagate with a constant limiting speed when time becomes sufficiently large.

Abdullaev [1] studies the stability of symmetric traveling waves in the Cauchy problem

for more general case than equation (2.4.15). In [114], this problem was studied by

using a perturbation method to find an approximate solution through expansion of the

terms in power series.

Using the theory of finite difference approximations and Richardson’s extrapolation,

equation (2.4.13) can be approximated as

(
∂u

∂t

)

i,j

= D

[−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

12h2

]
+ τui,j

[
1− ui,j

K

]
,

(2.4.19)

and u = [u1, u2, . . . , ul]
T , for 1 ≤ i, j ≤ l. u0 = u(x, 0) and ul = u(x, l) are the

given boundary conditions. The system (2.4.19) will now be integrated using a time

integration method as explained in the previous section.

The performance of our approach in this chapter is further tested on some reaction-

diffusion problems in one-dimension. To show the efficiency of the present method, we

report the relative errors defined by

Relative Error =
max |ūj − uj|

max |ū| , (2.4.20)

where ūj and uj are the exact and numerical values of u at point j in the collocation

interval of points

{x1 = a, . . . , xi = a + (i− 1)h, . . . , xN = b}, for h =
|b− a|
N − 1

. (2.4.21)

We investigate here numerically the varying effects of the diffusion coefficient D,
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growth rate τ and carrying capacity κ in (2.4.13).

ut = Duxx + τu
[
1− u

κ

]
, (2.4.22)

subject to initial condition (2.4.6) for various parameter value of D, τ and K. This

equation was earlier introduced by Fisher [51] as a model for the spread of an advan-

tageous allele. It has also been used as an ecological model to describe the spread of a

population enjoying logistic growth and simple Fickian diffusion.

In Figure 2.4.12, numerical results for problem 2.4.22 are presented at different

parameter values. For Panel (a), parameter values are D = 1, τ = κ = 1 at time t = 1,

we noticed a slight change in the amplitude of the computed value in (b), as a result

of diffusive effect when D = 10. A steady plot in (c) is obtained for D = 1, t = 1 when

τ = 1, 2, . . . , 5. In (d), t = 1, D = 5 and κ = 1 for τ = 0, 1, 2, 3 from inner to the

outer curve, the effect of diffusion dominates over the effect of reaction, so the peak

goes down rapidly and gets flatter. Plot (e) is obtained with parameter values t = 1,

D = 2, τ = 1 for κ = 2, 5. In a similar way, we got panel (f) with τ = 1, D = 4,

κ = 2, 5, 7, 9 at t = 5. For plot (g), D = 0.01, τ = 5, κ = 1 at t = 0.001, and (h) is

obtained with κ = 10, D = 2, τ = 50 for t = 10, are the sharp and flat surface plots

showing the evolution from some initial perturbation to steady types.

Density dependent Nagumo equation:

Finally, we consider the density dependent diffusion Nagumo equation

ut = Duxx + f(u), x ∈ R , t ∈ [0, T ) T > 0, (2.4.23)

where t is time in the spatial coordinate, D is the diffusion coefficient, and f is the

nonlinear reaction term considered as

f(u) = αu− βu3, (2.4.24)
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Figure 2.4.12: Numerical solutions of equation (2.4.13) for different parameters values
of diffusion coefficient D, carrying capacity κ, growth rate τ and time t for initial
condition (2.4.6) with δ = 1/8.

subject to initial condition

u(x, 0) = 3 exp
(−20(x + 4)2

)
+ 2.05 exp

(−10(x− 4)2
)

+ exp
(−20(x)2

)
. (2.4.25)
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The boundary conditions are taken as

(
∂u

∂x

)

x=0

=

(
∂u

∂x

)

x=l

= 0. (2.4.26)

Equation (2.4.23) has many applications in real life. It is used to describe the model

for the spread of genetic traits, and also for the propagation of nerve pulses in a nerve

axon [121, 141, 156, 203].

Clearly, when D = 0, it is not difficult to see that the equilibrium points are at

u1 = 0, u2 = +
√

α
β
and u3 = −

√
α
β
, β 6= 0 . Moreover, equation (2.4.23) has infinitely

many stable waves lying in
(
−

√
α
β
,
√

α
β

)
.

The linearized form of density dependent Nagumo equation was solved in [156]

with assumptions that D = α = β = 1. In the present context, equation (2.4.23) is

solved to investigate the varying effects of these parameter values. Panels (a)-(h), have

revealed the steady structures (types in Turing patterns) [32, 137, 171]. At D = α = 1,

β = 0.1, 0.2, 0.4, 0.5, 0.8, we obtain (a) for t = 1. Effect of α is shown in (b) with

parameter values α = 1, 4, 8, β = 0.05, D = 1, t = 1. Cases (a)-(d) are similar in

pattern obtained with different parameters. Solutions of plots (e), (f) and (h) blew up

into three points that oscillate in phase to form steady structures. Parameter values

are: t = 0.1, D = 0.01, β = 0.5, α = 0.1 for (c). Figure 2.4.13 (d) corresponds in

a unique way (at equilibrium point ū = 0) to Figure 2.4.12 (g). Notice the different

scales on their vertical axes. Plot (g) is obtained at β = α = 10, D = 0.01, at time

step t = 10. At time step t = 0.5, α = 8, β = 0.5 and D = 0.8, surface plot (h) is

produced.

Table 2.4.2: Maximum relative error for Fisher’s equation (2.4.5) at various step-sizes
for δ = 1/8, final time T = 1, N = 250 and x ∈ [−150, 150].
Time step ETDM4 ETDADAMS4 ETDM5 ETDM6 ETDRK4

1 0.4649 0.4649 0.6386 0.7654 5.1659e-004
1/2 0.1257 0.1257 0.2469 0.3616 3.0577e-005
1/4 9.5006e-005 2.8320e-005 4.2117e-006 0.0630 2.2117e-006
1/8 1.5550e-005 8.9104e-006 1.0327e-005 3.1063e-006 1.4920e-007
1/16 1.7100e-006 1.4519e-006 1.5496e-006 2.9810e-007 9.6955e-009
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Figure 2.4.13: Numerical solutions of Nagumo equation (2.4.23) for different param-
eter values of D, α, β and time t.

The numerical experiments as indicated in Table 2.4.2 and Figure 2.4.14 are enough

to grant sweeping statements that the ETDRK4 method is better than its competitors

when used in conjunction with finite difference schemes. This assertion is evident in

the results presented. It is worth noting that at k = 1/4, all other schemes including
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Figure 2.4.14: The top and lower panels show the relative errors as a function of
time-step k for various higher-order time stepping methods for Fisher equation (2.4.5).
The parameter values are: δ = 1/8, T=1, N = 250 and x ∈ [−150, 150]

the fifth-order ETDM5 and sixth-order ETDM6 methods were both experienced a kind

of shock, whereas, ETDRK4 provides a smooth, accurate and stable result in the same

region even with large step size as shown in Table 2.4.2.
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2.5 Summary and discussions

Exponential time differencing methods are time-stepping formulas that separate the

linear term involving Lu(x, t), which is solved exactly by a matrix exponential, from

the nonlinear term N(u(x, t), t). We have justified the assertion made by Kassam and

Trefethen [92] on the efficiency and suitability of ETDRK4 schemes in conjunction

with spatial discretisation methods by comparing it with exponential time differencing

method (ETDADAMS4) of Adams type and exponential time differencing multi-step

(ETDM4, ETDM5, ETDM6) methods, all are of the higher orders. This approach was

first tested with the reaction-diffusion equation, a nonlinear form of KISS model that

was named after Kierstead and Slobodkin [97] and Skellam [181], which was originally

developed to investigate the size of nutrient patches needed to sustain phytoplankton

blooms. We carried out numerical simulations in both one- and two-dimensional space

on spatial domain x ∈ [−l, l], that are chosen large enough to support the boom. Our

numerical results revealed that the population size increases if the domain size l also

increased. Some initial data and parameter values are chosen to mimic some existing

patterns.

We have also studied both Fisher and Nagumo equations in ecological context to

examine the rate of diffusivity, logistic growth and speed selection process. We believe

also that the work done in this chapter could grant an insight to the understand-

ing of pattern formation in one-dimensional reaction-diffusion systems. In comparison

with other existing numerical methods that solve Fisher’s equation, our approach com-

pared favourably well for all the examples taken from the literature and the references

therein. The ETDRK4 method demonstrates its superiority over some of the existing

ETD counterparts as seen in Table 2.4.2 and Figure 2.4.14. The most amazing factor

is the fact that it is much more accurate than fifth and sixth order ETD schemes.

Biologically, the result presented in this chapter for the cases considered are interesting

and seen as means of displaying the complexities that nonlinearity has introduced into

the simplest equations of population biology, this assertion is evident in the displayed

figures. Numerical simulations of all the examples considered are carried out on an
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adjustable space scale defined by L with a view to ensure that there is sufficient space

for waves to propagate.

In the next chapter, we shall extend our approach to solve systems of reaction-

diffusion problems.

 

 

 

 



Chapter 3

Numerical solution of systems of

reaction-diffusion models

In this chapter, numerical simulations of coupled one-dimensional Gray-Scott model for

pulse splitting process, self-replicating patterns and unsteady oscillatory fronts associ-

ated with autocatalytic reaction-diffusion equations as well as homoclinic stripe pat-

terns, self replicating pulse and other chaotic dynamics in Gierer-Meinhardt equations

[45] are investigated. Our major approach is to use the exponential time differencing

schemes of Cox and Matthews [36], which was later presented as a result of instability

in a modified form by Krogstad [104], to solve stiff semi-linear problems. The semi-

linear problems under consideration in this context are split into linear, which harbors

the stiffest part of the dynamical system and nonlinear part that varies slowly than

the linear part. For the spatial discretization, we employ higher-order symmetric fi-

nite difference scheme and solve the resulting system of ODEs with higher-order ETD

methods. We refer readers to chapter two for the derivation and stability of ETD

schemes. Numerical examples are given to illustrate the accuracy and implementation

of the methods, results and error comparisons with other standard schemes are well

presented.
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3.1 Introduction

In the last decades, efficient and accurate simulation of reaction-diffusion systems has

attracted the attention of many researchers in various fields, especially in science and

engineering. Their interest was based on a number of phenomena ranging from the

formation of spatial and temporal patterns in Turing systems [150, 171, 189], travelling

waves in Fisher’s equation [4, 51], nonlinear and spiral waves [144, 190].

In 1952, the British mathematician Alan Turing [189] first introduced a simple

reaction-diffusion system describing chemical reaction and diffusion to account for mor-

phogenesis, i.e. the development of patterns in biological systems. In paper [189], Tur-

ing employed linear analysis idea to find the threshold for the instability of spatially

homogeneous equilibrium solutions of general two-system reaction-diffusion models.

Turing in his work proved that a chemical state can attain a stable state against some

perturbations in the absence of diffusion, and it may become unstable to perturbations

in the presence of diffusion. Diffusion-driven instability or Turing instability is mostly

initiated by arbitrary random deviations of the equilibrium state and results in equi-

librium spatially periodic variations in the chemical concentration, that is, chemical

patterns.

The choice of parameters determine that the system will evolve, e.g., towards stripes

of a fixed width instead of spots, but the random initial conditions together with the

effects of the boundaries and the domain geometry determine the exact positions and

the alignment of the stripes (the phase) [139]. This idea becomes evident by considering

the fact that all tigers have stripes, but the stripe pattern is not exactly similar in all

individual tigers.

Experiments on Turing patterns were first seen in the late 1990s. In addition to

experiments, previous studies of Turing systems have employed analytical mathemati-

cal tools and numerical computer simulations in studies of different models exhibiting

Turing instability. Apart from physicists, also mathematical biologists have been inter-

ested in the Turing systems, which have been shown to be able to at least qualitatively

imitate many biological patterns such as the stripes of a zebra or spots of a chee-
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tah [43, 44, 139, 140] and even more irregular patterns such as those on leopards and

giraffes, not to talk about the patterns on exotic fish, butterflies or beetles.

In 1993, Pearson [150] observed that for parameter values far from the Turing in-

stability regime, the Gray-Scott model in a two-dimensional spatial domain can exhibit

a rich variety of spatio-temporal patterns including, stationary spots, traveling spots,

spot self-replication, spot-annihilation, growing stripes, labyrinthian patterns , stripe

filaments, and spatial-temporal chaos, etc. The common feature in all of these patterns

is that each consists of two distinct states of solutions: some localized regions where the

chemical concentrations are very large, and a background ambient spatially homoge-

neous state. As time evolves, the localized regions of elevated chemical concentrations

can remain stable, or develop very complicated structures through drifting, splitting,

breaking, etc., driven by intricate and unknown mechanisms that depend on the range

of parameters in the reaction-diffusion model.

Self-replicating patterns have been observed numerically in a reaction diffusion sys-

tem [198] as well as in laboratories [111]. A prototypical model is the irreversible

Gray-Scott (GS) model that exhibits a variety of new patterns including spots that

self replicate and develop into a variety of asymptotic states in two dimensions [150]

as well as pulses that self replicate in one dimension [159]. Several interesting ana-

lytical works have also appeared: for instance, formulation of single-spot solution to

the Gray-Scott model and its stability has been done by Reynolds et al. [160] with

the aid of formal matched asymptotic analysis, which is closely related to the splitting

phenomenon; a tedious analysis regarding the existence and stability of steady single

pulse as well as nonexistence of traveling pulses has been studied by [42, 43]. Their

works are highly suggestive, there are lot to be understood about the mechanism that

drives the replication dynamics itself.

A detailed mathematical study of these localized structures could have significant

applications in controlling chemical reactions for certain purposes, and in understand-

ing and classifying patterns in biological systems. One example is the self-organized

formation of either labyrinths, spots, or stripe patterns. Very complicated patterns

were described in a paper by pearson [150], for a parabolic system called the Gray-
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Scott system developed in 1980s at the university of Leeds by P. Gray and S. K.

Scott. Since then the model has been an important benchmark for the description

autocatalytic reaction as an isothermal system with chemical feedback in a continuous

flow stirred tank reactor. The initial GS model describes the two irreversible chemical

reactions

U + 2V → 3V,

V → P,





where U and V are the reacting chemicals and P is an inert product (see [42, 62, 63, 64]).

Since V appears on both side of (3.1.1), it acts as catalyst for its own production.

In biological context, we could also describe model equation (3.1.1) as predator-prey

model to illustrate the predominance of one specie over the other. In GS model, it was

assumed that the chemical U is in contact with a reservoir and chemical V is removed

from the system at constant rate F . Using the law of mass action, the resulting pair

of coupled reaction-diffusion equations in dimensionless units is

∂u
∂t

= Du∇2u− uv2 + F (1− u),

∂v
∂t

= Dv∇2v − uv2 − (F + k)v,



 (3.1.1)

where Du and Dv are the respective diffusion coefficients in u and v components, F

is the dimensionless flow rate and k is decay constant of the activator, V . Gray-Scott

equations (3.1.1) have been studied in one- and two-dimensions, for example, pulse

splitting was observed in one-dimension [42, 159], when (Du, Dv) = (1, 0), u = u(x, t)

and v = v(x, t), (x ∈ R and ∇2 ≡ ∂2/∂x2). By contrast, original study in two-

dimensions, [37, 134, 135] involved fixed diffusion coefficients where the diffusion ratio

is taken as 2, that is, Du = 2 × 10−5 and Dv = 10−5, u = u(x, y, t) and v = v(x, y, t),

(x, y ∈ R2 and ∇2 ≡ ∂2/∂x2 + ∂2/∂y2), with F and k being the control parameters.

This system of Turing pattern has a stable steady state with respect to homogeneous

temporal oscillations which becomes unstable towards state-periodic perturbations of

the diffusion. We further investigate the equilibria and stability of system (3.1.1) by
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setting the diffusion terms to zero, it reduces to system of ordinary differential equations

ut = −uv2 + F (1− u) = 0,

vt = +uv2 − (F + k)v = 0,



 (3.1.2)

this implies that

−uv2 + F (1− u) = 0,

uv2 − (F + k)v = 0,



 (3.1.3)

which on addition, yields

v =
F

F + k
(1− u). (3.1.4)

Further substitution and simplification arrives to

(
u2 − u + Fψ2

)
(1− u) = 0, ψ =

F + k

F
. (3.1.5)

The linear analysis shows the existence of a trivial homogeneous steady state red stage

uR = 1 and vR = 0, that occurs as a result of continuous supply of stable substrate

for the pair of (F, k). Clearly, the roots of cubic equation (3.1.5) are the equilibrium

solutions. For u0 = 1, it follows from (3.1.4) that v0 = 0. The remaining two steady

states are obtained from u2 − u + Fψ2 as

ua,b = 1
2

(
1±

√
1− 4ψ2F

)
,

va,b = 1
2ψ

(
1±

√
1− 4ψ2F

)
,



 (3.1.6)

the trivial solution (u0, v0) = (1, 0) exists for any value of pair (F, k), but the other

two steady states exist only when the discriminant 1 − 4ψ2 ≥ 0, this implies that

(F + k)2 ≤ F
4
. The saddle node-bifurcation point in the (F, k) parameter space in

Turing structures that describe when the stable equilibrium state of the system becomes
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unstable (stability to instability) occurs when

(F + k)2 = F
4
,

4F 2 + (8k − 1)F + 4k2 = 0,



 (3.1.7)

following the way, we obtain

Fa,b =
−(8k − 1)±√1− 16k

8
. (3.1.8)

We analyse further the stability of the above system by letting uη and vη be the steady-

state solutions of (3.1.1), on perturbation [163], we set u = uη + δû and v = vη + δv̂,

and neglect the second order term to yield

∂û
∂t

= Du∇2û− (v2
η + F )û− 2uηvηv̂ + O(δ)

∂û
∂t

= Du∇2û− (F + k − 2uηvη)v̂ + v2û + O(δ).



 (3.1.9)

The point (1,0) is always stable, the stability of the other two rest-points are given

by setting û = uαηλt−ikx and v̂ = vαηλt−ikx, (uα and vα are the amplitudes of the

perturbation, k is the wave number in the direction of x), to yield the eigenvalues of

the following matrix

M =


Duk

2 + v2
η + F + λ −2uηvη

v2
η Dvk

2 + F + k − 2uηvη + λ


 = 0. (3.1.10)

The negative eigenvalues for the trivial steady state when uη = 1 and vη = 0 are

λ1 = Duk
2−F , λ2 = Dvk

2−F − k, further indicates the stability of the system for all

values of parameters pair (F,k). The system undergoes Hopf bifurcation when

FH =
1

2

[√
k − 2k −

√
(2k −

√
k)2 − 4k2

]
. (3.1.11)

The point at which the saddle-node and the Hopf bifurcation intersect is known as

Bogdanov-Takens (BT-point), see Figure 3.1.1. The Hopf line lies and intersect the

steady state bifurcation line at (0,0) and the turning (BT)-point (1/16, 1/16) in the
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Figure 3.1.1: Bifurcation curves showing the saddle-node (solid line) and the Hopf
bifurcation curve (dotted line). The area enclosed to the left and right of the bifurcation
curves described the stable and unstable regions.

parameter space (F, k). Readers are referred to ([37, 42, 133]), for further analysis.

The rest of this chapter is structured as follows. In Section 3.2, we discuss the

model problems. A brief account of the numerical method is presented in Section

3.3. Section 3.4 accounts for the numerical results of Gray-Scott, autocatalytic and

Gierer-Meinhardt models. Finally, we summarize in Section 3.5.

3.2 Model problems

We arrived at the coupled reaction-diffusion equations considered in this report by

setting F = A and F + 1 = B, then equation (3.1.1) discussed above becomes

∂u
∂t

= Du∇2u− uv2 + A(1− u),

∂v
∂t

= Dv∇2v − uv2 −Bv,



 (3.2.1)

where u = u(x, t) and v = v(x, t) remain the concentrations of the two chemical

species the inhibitor u and the activator v. The operator ∇2 ≡ ∂2/∂x2 in one space

dimension is the Laplacian operator with respect to x ∈ R, the terms Du and Dv
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are the diffusivities. The parameter A describes the rate at which the inhibitor u is

fed from the reservoir into the reactor, and B is the overall rate of decay of v due

to draining. Equation (3.2.1) was proposed by [62, 63] and has since been studied in

various forms [37, 42, 43].

In order to study the pair of coupled reaction-diffusion equations in (3.2.1) for

pulse dynamics and self replicating patterns, we need to analyze its steady state, that

is when the system is independent of time and also the stationary solution which is

also independent of the spatial variable x, this could only be achieved by letting

∂u

∂t
=

∂v

∂t
= uxx = vxx = 0.

Hence, equation (3.2.1) reduces to

0 = −uv2 + A(1− u),

0 = uv2 −Bv,



 (3.2.2)

following the analysis discussed in section 1, it is not difficult to see that the point

(u, v) = (1, 0) is the solution of equations in (3.2.2), keeping in mind that 4B2 < A

and that

uα,β =
1

2

[
1±

√
1− 4B2

A

]
, (3.2.3)

vα,β =
A

2B

[
1±

√
1− 4B2

A

]
, (3.2.4)

as the remaining two steady states solution.

To determine the stability of the stationary states, we need to consider first the

model equation (3.2.1) without the diffusion terms. So, setting the diffusion terms to

zero, we have

∂u
∂t

= −uv2 + A(1− u),

∂v
∂t

= uv2 −Bv.



 (3.2.5)
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Conveniently, we present the Jacobian in the form

Df(u, v) =


−v2 − A −2uv

v2 2uv −B


 . (3.2.6)

Thus, we have

Df(1, 0) =


−A 0

0 −B


 , (3.2.7)

for the stationary state (u, v) = (1, 0). The presence of the two negative eigenvalues

is an indication that the model equation is stable, though without diffusion. We also

study here the rescaled version of A = εa, B = ε
α
3 b by following the analysis discussed

in [42, 43] closely for single pulse and spatially periodic stationary patterns.

3.3 Numerical method

Attempt to find an accurate and efficient simulation of equation of the form (3.1.1),

is handled in two ways. Since the coupled partial differential system (3.1.1) contains

both linear and nonlinear parts, we introduce a sixth-order finite difference scheme for

the spatial approximations. Finite difference approximation technique is a numerical

procedure which solves a partial differential equation (PDE) [173] of the form (3.1.1)

by discretizing the spatial physical domain into a discrete finite difference grid, and

then approximating the individual exact partial derivatives in the PDE by algebraic

finite difference approximations (FDAs), substituting the FDAs into the PDE to obtain

an algebraic finite difference equation (FDE), and solving the resulting algebraic finite

difference equations for the dependent variable.

Spatial approximations of the individual derivatives appearing in the partial dif-

ferential equations (3.2.1), must be represented, this task is achieved through Taylor

series expansions. Suppose we have a function u(x), which is assumed to be continu-

ous and differentiable over the range of interest. We assumed at this point that the

value u(x0) and all the derivatives at x = x0 are known. In this part, following our

description above, we will show how to discretize system (3.2.1) and transform it into
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a matrix problem. It is clear that the state variable x in (3.2.1) is unbounded, we need

to first truncate the infinite x−domain R to a finite domain [xmin, xmax]. Once the

spatial domain is truncated, we consider a computational grid defined by

xj : xi = xmin + i∆x, i = 1, 2, . . . , n, ∆x =
xmax − xmin

n + 1
.

We then approximate the spatial derivatives in (3.2.1) by the sixth-order central differ-

ence scheme where ui(t) and vi(t) are denoted by u(xi, t) and v(xi, t) respectively, for

i = 1, 2, . . . , n. Therefore, (3.2.1) results to system of ODEs in time which is an n× n

Toeplitz matrix with entries

dui

dt
= [2ui−3,t − 27ui−2,t + 270ui−1,t − 490ui,t + 270ui+1,t − 27ui+2,t

+2ui + 3, t]/[180h2]− ui,t(vi,t)
2 + A(1− ui,t),

dvi

dt
= [2vi−3,t − 27vi−2,t + 270vi−1,t − 490vi,t + 270vi+1,t − 27vi+2,t

+2vi+3,t]/[180h2]ui,t(vi,t)
2 + Bvi,t,





(3.3.1)

for i = 1, 2, . . . , n and ui,t = [u1,t, u2,t, . . . , un,t]
T . Now, equation (3.3.1) is ready to be

advanced with a time differentiation methods as discussed in chapter two. We can see

that the nonlinear part now becomes a function of u(t) and v(t), so the need for the

improvement of ETDRK4 (2.2.20) [92, 104], is required to make it suitable for system

of coupled equations. We present the new fourth-order ETDRK4 scheme as

un+1 = uneLh + h[4ϕ2(Lh)− 3ϕ1(Lh) + ϕ0(Lh)]N(un, vn, tn)

+2h[ϕ1(Lh)− 2ϕ2(Lh)]N(an, tn + h/2)

+2h[ϕ1(Lh)− 2ϕ2(Lh)]N(bn, tn + h/2)

+h[ϕ2(Lh)− 2ϕ1(Lh)]N(cn, tn + h), (3.3.2)
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where

an = uneLh/2 + (Lh/2)ϕ0(Lh/2)N(un, vn, tn),

bn = uneLh/2 + (Lh/2)[ϕ0(Lh/2)− 2ϕ1(Lh/2)]N(un, vn, tn)

+hϕ1(Lh/2)N(an, tn + h/2),

cn = uneLh + h[(ϕ0(Lh)− 2ϕ1(Lh)]N(un, vn, tn) + 2hϕ1(Lh)N(cn, tn + h).

(3.3.3)

The stability analysis of the ETDRK4 method has been discussed in Chapter 1.

3.4 Numerical results

In this section, we test the approach we discussed above on some reaction-diffusion

problems in one-dimension.

Gray-Scott equation:

We study in this context the popular Gray-Scott equation in one-dimension. For ex-

ample, the pulse splitting process that was observed in [37, 42, 43]. Pulse splitting or

shedding is an interesting phenomenon that has widely generated a lot of attentions in

the current field of research. It illustrates a meaningful interaction between two chem-

ical species u and v in a gel reactor, such interaction is govern by a pair of coupled

reaction-diffusion equations

∂u
∂t

= Du∇2u− uv2 + A(1− u),

∂v
∂t

= Dv∇2v + uv2 −Bv,



 (3.4.1)

with initial conditions

u(x, t = 0) = 1− 1
2
sin100 (π(x− L)/2L)

v(x, t = 0) = 1
4
sin100 (π(x− L)/2L) ,



 (3.4.2)
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where Du = 1 = Dv, are the diffusion parameters of the two chemical species v and u

called activator and inhibitor in [63], with assumptions that the diffusivities are equal

and nearly equal (Du = 1, Dv = ε). The variables u = u(x, t) and v = v(x, t) denote

the concentrations of the inhibitor U and the activator V , ∇2 denotes the Laplacian

with respect to x ∈ R, the parameters A and B are small, usually ¿ 1. The boundary

conditions are of Dirichlet type

u(x = 0, t) = u(x = 1, t) = 1, v(x = 0, t) = v(x = 1, t) = 0, (3.4.3)

it was observed that even when Neumann conditions were used, noticeable enough,

the inner solutions were not influenced. In Figure 3.4.1 (a) and (b), the parameter

values are: A=0.02, B=0.079, ε=0.01 for both u and v. Plot (c) is obtained with

A=0.021, B=0.069, ε=0.01; (d) A=0.022, B=0.059, ε=0.01. In (e) and (f), we re-scale

parameters A = εa, B = εα/3b, α = 1 in the interval of length L = ±50 with a = 9,

b = 0.4, ε = 0.01.

In Figure 3.4.2, the rescaled parameters values are: A = aε and B = ε1/3b when

(a) a = 2, b = 0.4, ε = 0.01, L = 20. (b) a = 3, b = 0.4, ε = 0.01, L = 20. (c) a = 4,

b = 0.4, ε = 0.01, L = 20. (d) a = 4, b = 0.4, ε = 0.01, L = 30. Panels (e) and (f) are

obtained at A = 0.021, B = 0.069, L = 50. Also, we obtained the pair (g) and (h) at

A = 0.02, B = 0.0863, L = 50. Notice the difference between figures 3.4.1 and 3.4.2.

All the simulations presented have been repeated several times on intervals of differ-

ent lengths, we show simulations on large intervals since enlarging the intervals have no

influence on the behaviour of the dynamic system (3.4.1), regardless of the boundary

conditions. We equally used three parameters in (3.4.1), where A and B are re-scaled

into A = εa and B = εα/3b, with the choice α = 1, magnitude of B is measured by α.

Parameter B was studied in [42], as B = bδ2α/3 which we as well considered. Since the

best values of a are known to have contained in the interval 2 ≤ a ≤ 9, conveniently,

we have the choice of varying ε ∈ [0.003, 0.01] for self-replicating pulse patterns.

Numerical simulation of (3.4.1) have revealed some chaotic and periodic behaviour

patterns that evolve from the interaction of two species u and v in a domain defined
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Figure 3.4.1: Surface plots of u(x, t) and v(x, t), propagation of pulses and shedding
phenomena are observed in the numerical simulation of (3.4.1) at t = 2000.

as L. The results presented in Figure 3.4.4 are obtained with parameter values a = 9,

b = 0.4, A = εa, B = εα/3b, α = 1 defined in the interval [0, L] for (a) t = 1000,

ε = 0.001, N = 100, L=300; (b) t = 100, ε = 0.01, N = 230, L=400; (c) t = 100,

ε = 0.01, N = 190, L=400; (d) t = 100, ε = 0.01, N = 160, L=400; (e) t = 100,

ε = 0.01, N = 250, L=400; (f) t = 1000, ε = 0.001, N = 250, L=400; (g) t = 1000,

ε = 0.001, N = 200, L=400; (h) t = 1000, ε = 0.001, N = 200. Oscillatory and more

pronounced type are seen in (d), (e) and (f).
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Figure 3.4.2: Propagation of pulses and shedding phenomena of problem (3.4.1) at
re-scaled values for A = εa and B = ε1/3b.

Clearly, numerical simulation of system (3.4.1) have generated series of self-replicating

pulses as shown in Figure 3.4.5, it is noticeable in panels (a)-(f) that the resulting

pulses obtained from the concentrations of u and v are repelling each other. A periodic

and stationary self-replicating patterns is obtained in Figure 3.4.5 (a)-(d) for the two
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Figure 3.4.3: Plots (a)-(d) showing self-replicating patterns and pulse splitting pro-
cedures in (3.4.1) for the species u and v.

chemical species. Panels (e) and (f) show the result of unstable seven and three-pulse

solutions. The amplitude of v is large when compared to u. The stable one- two- and

three-pulse solutions is shown in Figure 3.4.3, we plot the results of a simulation with

a = 9, b = 0.4 and ε = 0.01 with assumptions that A = εa and B = εα/3b, α = 1 with

period L = ±10, L = ±15 and L = ±20 respectively.

In each of the panels in Figure 3.4.5, the amplitudes of u remain small when com-

pared to v in the regions in which the self-replicating process takes place. Panel (a)

stable multiple pulse solution with concentrations v (black) and u (dotted-line) at

t = 1000, ε = 0.001, N = 300 and period L = 400. Panels (b) the eleven-pulse solu-

tion, ε = 0.01, t = 100 for N = 140, L = 400 and (c) is a stable eight-pulse solution

obtained at ε = 0.001, t = 1000, L = 400 and N = 100. (d) is also a nine-pulse solution

that is stable with parameters ε = 0.001, t = 1000, L = 300 with N = 100. Panels

(e) and (f) are unstable seven-and three-pulse solutions obtained when period L = 100
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Figure 3.4.4: Spatially periodic stationary solutions of (3.4.1) observed basically in
the positive quadrant. Numerical simulations are obtained with A = εa, B = ε1/αb;
where a = 9, b = 0.4 and α = 1.

at a rescaled values A = 0.021, B = 0.069, t = 1000 and a = 2, b = 0.4, ε = 0.001,

t = 500 respectively. It was further observed that stationary splitting occurs but, v

does not become exponentially small and u remains small in that region, see [42, 43]
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for details.
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Figure 3.4.5: The dynamic of multiple pulse-splitting process, spatially periodic
stationary states of (3.4.1) obtained with a = 9, b = 0.4, A = εa, B = εα/3b, α = 1.

Autocatalytic equation:

Our interest here is on the oscillatory fronts dynamics of some particular autocatalytic

reaction-diffusion equations which have some similarities with systems used in combus-

tion theory. Specific example here is a non-dimensional coupled system of autocatalytic
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reaction equations involving two diffusing chemical species in one spatial dimension

∂u
∂t

= ∂2u
∂x2 + vf(u),

∂v
∂t

= ε ∂2v
∂x2 − vf(u),



 (3.4.4)

with

f(u) =
{

um, u≥0
0, u<0 , (3.4.5)

and ε is given as the inverse of the Lewis number (that is, the ratio of diffusion rates).

As mentioned in [125] and later suggested by Balmforth et al. [15], the advancing fronts

of the autocatalysis, u(x, t), lose its stability and begin to eat into reactant, v(x, t). It

was opined in their numerical results that reaction terms are of the form ±um, where

m is regarded as the largest possible orders for u(x, t) and v(x, t) respectively. The

simulations of equations (3.4.4) is sought for ε > 0, in the range 0 < ε < 1 with m ≥ 2.

Moving coordinate frame, ξ = x − ct, is introduced in [15] to compute steadily

propagating fronts equilibria by setting u(x, t) = U(ξ) and v(x, t) = V (ξ) in (3.4.4)
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Figure 3.4.6: Front solutions showing amplitudes of u and v at ε = 0.1. In panels
(a) and (b): The solid curves show U(ξ) = U(x − ct) and the dotted curves show
V (ξ) = V (x− ct) at different time.

In Figure 3.4.6 (a), we consider the only case where the travelling speed c > 0,

for ξ = x − ct as ξ → ∞ since it is unrealistic to have a negative speed. At the

neighborhood of the origin, where ξ is very close to zero (ξ → 0), both U(x− ct) and

V (x − ct) repelled one another as shown in panel (b) of figure 3.4.6, the two turnings

fronts are at equilibrium. An unstable eigenfunction for ε = 0.1 and m = 9 is shown
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in Figure 3.4.7.

−50 −40 −30 −20 −10 0 10 20 30 40
0

0.5

1

1.5
(a)

ξ=x−ct

ξ(
u,

v)

 

 

v

u

−50 −40 −30 −20 −10 0 10 20 30 40

−60

−40

−20

0

20

40

60

80

(b)

ξ=x−ct

ξ(
u,

v)

v

u

Figure 3.4.7: Contour plots showing an unstable eigenfunction of the perturbation
ξ(u, v) for ε = 0.1, m = 9 and the eigenvalue λ = (0.01, 0.2).

When eigenvalue is becoming large say, λ ≥ 0.1, the system becomes very unstable,

clearly the travelling fronts behaviour is chaotic. We further our study by following

conditions initiated in [15, 37]:

u(x, t = 0) = 1
2
(1 + tanh(10(10− | x |))) ,

v(x, t = 0) = 1− 1
4
(1 + tanh(10(10− | x |))) .



 (3.4.6)

Equation (3.4.4) is solved on an infinite domain that was used for the construction of

the travelling fonts. This is achieved by applying conditions, u(x, t) → 1, v(x, t) → 0,

as x → −∞ and u(x, t) → 0, v(x, t) → 1, as x → ∞, we replace the infinite domain

by a long finite domain and impose the left- and right-hand boundary conditions at

x = ±L. We present numerical simulations of equations (3.4.4), subject to initial

conditions (3.4.6) for the reaction order, m ≥ 2 and ε < 1.

A close observation of the results obtained in Figure 3.4.8: (a) and (b) have granted

a deep understanding to the behaviours of the chemical species whenever ε and m are

slightly altered in the domain of length L. This assertion is evident in panels (c) and

(d) at parameter values m = 9, ε = 0 while panels (a), (b), (e) and (f) are obtained

with parameter values ε = 0.1, m = 9 on different domain sizes. Clearly, (u(x, t))

enjoys complete dominance over (v(x, t)) throughout the entire localized domain. The
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Figure 3.4.8: Results for the autocatalytic model (3.4.4) with ε = 0.1, m = 9 at
t = 500 in panels (a, b) and m = 9, ε = 0 at time t = 100 in panels (c) and (d) for the
chemical species u and v. Panels (e) and (f) represent respective surface plots that
illustrate the extent at which autocatalytic specie u(x, t) eats into the reactant v(x, t).
The parameters chosen here are ε = 0.1, m = 9 at time t=100.

catalyst and reactant mentioned here could be interpreted to the standard of predator-

prey system which was developed to give detail understanding of the mechanism of

Turing instability.
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Figure 3.4.9: Contour plots (3.4.4) indicating the spatial behavior of the travelling
fronts of the two species. The parameter values are: For panels (a) and (b): ε = 0.5,
m = 9, L = 50. Panel (c) and (d): ε = 0.01, m = 9, L = 150; for (e): ε = 0.1, m = 9,
L = 100, and for (f): ε = 0.2, m = 9, L = 100.

Gierer-Meinhardt equations:

We finally consider here the Gierer-Meinhardt reaction kinetics that represents a phe-

nomenological model as suggested by Gierer and Meinhardt [60], the term containing

the reaction kinetics are stated in such a way that one of the two (chemicals) species

named activator, activates the production of the other specie called the inhibitor which,
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Figure 3.4.10: Panels (a) and (b): Show typical result of autocatalytic model (3.4.4),
at t = 100, ε = 0 and m = 7.649. In (c, d), clearly, the rate at which u(x, t) gains
dominance over v(x, t) has been reduced for choosing the parameters m = 13, ε = 0.5.
Panels (c) and (d) describe how u eats into v for m = 9, ε = 0.001.

in turn, slows down the production rate of the activator on the bounded spatial one-

dimensional space ±L. Activator-inhibitor systems have been studied extensively in

the mathematical theory of biological pattern formation [123, 124]. Among them is

the Gierer-Meinhardt system that falls within the frame work of a theory proposed by

Turing [189], and since has been the object of extensive mathematical treatment in the
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Figure 3.4.11: Plots indicating the behavioural patterns of the two species u and v in
equation (3.4.4) during the process of their interactions in space. Different parameter
values of m > 0 and ε > 0 are used in a specified domain −L ≤ x ≤ L.

past few decades.

∂u
∂t

= du∇u + f(u, v),

∂v
∂t

= dv∇v + g(u, v),



 (3.4.7)

where du and dv are diffusion constants of activator and inhibitor of the chemicals u and

v respectively, ∇ is the laplace operator with u, v : R × R → R, and 0 < du, dv ¿ 1.

The nonlinear reaction terms f, g : R2 → R are assumed and expected to satisfy

f(û, v̂)=g(û, v̂)=0 for certain (û, v̂) , such that trivial background state (u, v) ≡ f(û, v̂)
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is stable.

We first investigate the homoclinic stripe patterns in one-dimensional Gierer-Meinhardt

equation
ε2ut = uxx − ε2µu + uα1vβ1 ,

vt = ε2vxx − v + uα2vβ2 ,



 (3.4.8)

where −L ≤ x ≤ L for some fixed L. The boundary conditions are taken as

u(x = −L, t) = u(x = L, t) = 0, (3.4.9)

with analogous relation for the chemical specie v. The initial conditions (3.4.2), are

taken with some parameter perturbations. Letting u = u(x, t) and v = v(x, t) denote

the concentrations of the two species u and v, the special case α1 = 0, α2 = −1, β1 = 2

and β2 = 2.
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Figure 3.4.12: Results for Gierer-Meinhardt equation (3.4.8) at various parameter
values.

The results presented here in Figure 3.4.12 establish the existence of homoclinic
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stripe patterns in (3.4.8) where we vary the half domain length L. This decision

is taken to replicate some figures in literature. Notably, the simulations differ as the

boundary conditions here at ±L are periodic and eventually a steady spatially periodic

state emerges. Parameter values are: (a) α1 = 0, α2 = −1, β1 = β2 = 2, ε2 = 0.05,

µ = 56, L = 10, T = 10; (b) α1 = 0, α2 = −1, β1 = β2 = 2, ε2 = 0.01, µ = 56,

L = 10, T = 10; (c) parameter values are the same as in (b); (d) α1 = 0, α2 = −1,

β1 = β2 = 2, ε2 = 0.01, µ = 56, L = 1, T = 0.5; (e) α1 = −1, α2 = 0, β1 = β2 = 2,

ε2 = 0.01, µ = 56, L = 10, T = 1; (f) α1 = −1, α2 = 0, β1 = β2 = 2, ε2 = 0.001, µ = 1,

L = 10, T = 10; (g) α1 = 0, α2 = −1, β1 = β2 = 2, ε2 = 0.05, µ = 56, L = 10, T = 1;

(h) α1 = 0, α2 = −1, β1 = β2 = 2, ε2 = 20, µ = 56, L = 20, T = 20 and panel (i) at

α1 = 0, α2 = −1, β1 = β2 = 2, ε2 = 0.05, µ = 56, L = 10, T = 2.

We further the experiment with four important cases taken across literature:

Case I: We consider, a non-dimensionalized form of equation (3.4.7) given by

∂u
∂t

= du∇2
u + τ

[
α− βu + u2

v(1+κu2)

]
,

∂v
∂t

= dv∇2
v + τ(u2 − v),



 (3.4.10)

where u(x, t) describes the concentration of the activator, v(x, t) the inhibitor

concentration, t is the time and ∇2 remains the laplace operator defined in one-

dimension. Parameters α, β, τ , du and dv are all positive and κ determines the

rate of concentration. From the biological point of view, the term u2

v(1+κu2)
is

described to imply the autocatalysis in u with saturation at high concentration

values of u, and inhibition of u through the production of v, meaning that u is

produced at a constant rate τα and is degraded linearly at rate τβ.

Figure 3.4.13 shows the interactions between species u and v for case I of the

Gierer-Meinhardt kinetics (3.4.10). The parameters used are: (a) α = 0.35,

β = 0.065, κ = 2, τ = 0.1, du = dv = 0.1; (b) α = 0.035, β = 0.065, κ = 2,

τ = 0.01, du = dv = 0.01; (c) α = 0.35, β = 0.065, κ = 1, τ = 0.1, du = dv = 0.01;

(d) α = 0.035, β = 0.065, κ = 8, τ = 0.1, du = dv = 0.1; (e) and (f) α = 0.035,

β = 0.065, κ = 2, τ = 0.1, du = dv = 1.
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Figure 3.4.13: Concentration profiles for Case I of the Gierer-Meinhardt reaction
kinetics (3.4.10) describing the interaction between the activator u(x, t) and inhibitor
v(x, t).

Case II: We consider, in another form the Gierer-Meinhardt system

ut = ε2uxx − u + up

vq ∈ Ω,

vt = Dvxx − v + um

vs ∈ Ω,



 (3.4.11)
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where the exponents (p, q,m, s) satisfy the conditions

p > 1, q > 0, m > 1, s ≥ 0,
qm

(p− 1)(1 + s)
> 1, (3.4.12)

ε and D are also positive parameters defined in Ω = R2. Problem (3.4.11) have

been shown to exhibit single or multiple bump solutions in one-two dimensions

[40, 45].

The parameters used in Figure 3.4.14 for the case II of the Gierer-Meinhardt

(3.4.11) are: (a) (p, q,m, s) = (2, 1, 2, 0), T = 5, ε = 0.02, D = 0.1; (b)

(p, q,m, s) = (2, 1, 2, 1), T = 2, ε = 0.01, D = 0.01; (c) (p, q, m, s) = (2, 1, 2, 0),

T = 5, ε = 0.01, D = 0.1; (d) (p, q,m, s) = (2, 1, 2, 1), T = 1, ε = 0.01, D = 1; (e)

(p, q,m, s) = (2, 1, 2, 2), T = 0.5, ε = 0.01, D = 0.1; (f) (p, q, m, s) = (2, 1, 2, 0),

T = 1, ε = 0.01, D = 0.1 on the interval ±L and N = 200. Note the variation in

amplitudes with respect to space and final time T.

Case III: We consider the classical Gierer-Meinhardt equation

ut = uxx − αu + δv2

vt = εvxx − v + v2

u
,



 (3.4.13)

in which α > 0 is the main bifurcation parameter and δ > 0 is most often scaled

to 1. The model in case III differs from the one earlier considered in case II in

the sense of some parameters.

In Figure 3.4.15, the parameters used are: (a) solution of u with α = 0.2, δ = 0.1,

ε = 0.002 final time T = 5 on L = ±10; (b) α = 0.2, δ = 0.1, ε = 0.002 final time

T = 10 on L = ±5; (c) α = 0.2, δ = 2, ε = 0.002 final time T = 5 on L = ±4;

(d) α = 0.2, δ = 0.1, ε = 0.002 final time T = 2 on L = ±5; (e) is the solution of

v obtained with the same parameters as in (a); (f) solution of u with the same

parameters as in (d); (g) α = 0.02, δ = 2, ε = 0.002 final time T = 5 on L = ±1;

(h) α = 0.2, δ = 0.01, ε = 0.002 final time T = 1 on L = ±10 and (i) parameters

are same as in (h) except that the final time is T = 5.
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Figure 3.4.14: Concentration profiles for Case II of the Gierer-Meinhardt (3.4.11)
reaction kinetics describing the interaction between the activator u(x, t) and inhibitor
v(x, t).

Case IV: Here, study the Gierer-Meinhardt equation (3.4.13) for slowly nonlinearized ver-

sion, we scale u and v as well as x and ε in the form

u → u

ε
, v → v

ε
, x → √

εx, ε → ε2, (3.4.14)
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Figure 3.4.15: Solution for Case III of the Gierer-Meinhardt equation (3.4.13) indi-
cating reaction kinetics between two competing species with concentrations u(x, t) as
the activator and v(x, t) that stands for the inhibitor.

to obtain
ε2ut = uxx − ε2αu + δv2,

vt = εvxx − v + v2

u
,



 (3.4.15)

which is in normal form of (3.4.13). We present the slowly nonlinearized form by

adding a very simple term to its slow u−equation in (3.4.15) to yield

ε2ut = uxx − ε2(αu− βud) + δv2,

vt = εvxx − v + v2

u
,



 (3.4.16)

with parameters β ≥ 0, d > 1, ε > 0 and δ ∈ R. Readers are referred to [110, 195]

for further analysis.

The parameters used for case IV of the Gierer-Meinhardt equation (3.4.16) are:

(a) u at α = 90.6, β = 30, δ = 5, d = 5, ε = 1, L = 10 and T = 0.01; (b)

α = 90.6, β = 30, δ = 5, d = 5, ε = 1, L = 0.5ε−1 and T = 10; (c) α = 90.6,
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Figure 3.4.16: Solution of Gierer-Meinhardt equation (3.4.16) for Case IV that
describes the effect of slowly and mild nonlinear term introduced to the reaction kinet-
ics between two competing chemicals with concentrations u(x, t) as the activator and
v(x, t) that stands for the inhibitor.

β = 60, δ = 5, d = 5, ε = 1, L = 0.5ε−1 and T = 10; (d) solution showing the

concentration of both species in phase with parameters α = 90.6, β = 30, δ = 5,

d = 5, ε = 1, L = 0.5ε−1 and T = 10; (e) plot of u at α = 90.6, β = 30, δ = 5,

d = 5, ε = 5, L = 0.1 and T = 20; (f) plot u, v(x, t) at x ∈ [−ε−1, ε−1] α = 90.6,

δ = 2, ε = 200, β = 5, d = 5 final time T = 20 on L = 0.01; (g) ring-like solution

of u, v(x, t) at x ∈ [−10ε−1, 10ε−1] α = 90.6, δ = 2, ε = 200, β = 5, d = 5

final time T = 10 on L = 0.01; (h) surface plot using the same parameters as

in (g); (i) the dynamics of the maximum of the u-pulse as a function of time in

a simulation, traces of some long standing stripes are noticeable with α = 90.6,

β = 5, δ = 2, d = 5, ε = 10 on interval L = 10ε−1 at final time T = 10.

We solve the problems with higher order finite difference discretization in space

and ETDRK4 as a time-stepping method. Variations in accuracy depend on the na-
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ture of the particular problem solved due to some complexities in the behavior of the

equations, most of these problems exhibit chaotic solutions. The convergence of the

three methods (ETDRK4, ABM4 and RK4) are examined by considering the Gray-

Scott, Autocatalysis and Gierer-Meinhardt equations. Since analytical solutions for

these equations are not available, we design a reference solution which we referred to

as our exact solution (Ûj) by using an extremely fine discretization (say, ∆t = 1/2000),

a much finer than that used for the actual computation. Error measure estimate in the

component U is defined as

Relative Error =
max |Ûj − Uj|

max |Ûj|
, 0 ≤ j ≤ N,

where Uj is the actual solution at point j. Hence, numerical observation has clearly

indicated in Table 3.4.1 demonstrates the supremacy of ETDRK4 over its fourth-order

counterparts such as ABM4 and the RK4 methods. The scheme ETDRK4 works

perfectly with any step-size whereas both ABM4 and RK4 failed at t > 1/128, their

functionality requires a small time-step. The dash signs are the points where ABM4

and RK4 produced no result.

Table 3.4.1: Absolute relative error for autocatalysis equation (3.4.4) for parameter
values ε = 0.1, m = 9, final time T = 1, L = 50, N = 100.

Time-step ABM4 RK4 ETDRK4
1/2 - - 1.2922
1/4 - - 0.8684
1/8 - - 0.0334
1/16 - - 5.7513e-05
1/32 - - 1.4296e-06
1/64 - - 7.8257e-08
1/128 8.0242e-02 8.0151e-02 4.6683e-09
1/256 3.9167e-02 3.9120e-02 2.8693e-10
1/512 1.7114e-02 1.7093e-02 1.8426e-11
1/1024 5.6812e-03 5.6742e-03 1.3454e-12

The results obtained in Table 3.4.1 and Figure 3.4.17 have shown that the ETDRK4

method provides a better accuracy over the ABM4 and RK4 methods. Hence to ascer-

tain further justification of our approach, we sought for some exponential multi-step
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Figure 3.4.17: (a) Results for Gray-Scott (3.4.1), autocatalytic (3.4.4) and Gierer-
Meinhardt (3.4.11) equations obtained by ETDRK4 scheme at T = 2 (b) Compara-
tive results for autocatalytic equation (3.4.4) obtained by ETDRK4, ABM4 and RK4
schemes at T = 1.

schemes of order-four (ETDM4), order-five (ETDM5) and order-six (ETDM6) with

fourth-order Adams type (ETDADAMS4). For the purpose of comparison, it would

go far beyond the scope of this article to introduce the family exponential multi-step

methods, fourth-order Adams-Bashforth-Moulton (ABM4) and the classical Runge-

Kutta method of order four (RK4) in details. Instead, we have decided to pick some

of the typical but rather distinctive members of the huge family of exponential time

differencing methods.
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Figure 3.4.18: Comparative results for Gray-Scott equation (3.4.1) obtained by ET-
DRK4, ETDM4, ETDM5, ETDM6 and ETDADAMS4 schemes at T = 2, L = 50,
A = 9ε, B = 2ε1/3, ε = 0.001, N = 200, x ∈ [0, 100].
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Figure 3.4.19: Comparative results for Gierer-Meinhardt equation (3.4.11) obtained
by ETDRK4, ETDM4, ETDM5, ETDM6 and ETDADAMS4 schemes at T = 1, D = 1,
ε = 0.01, p = 2, q = 1, m = 2, s = 1 and N = 250 for x ∈ [−1, 1].

3.5 Summary and discussions

In this chapter, we considered equations that lead to some interesting phenomena, such

as, pattern formation far from equilibrium, pulse splitting and shedding processes, re-

actions and competitions in excitable mediums, nonlinear waves and spatiotemporal

chaos. We have equal urge to study numerically in this thesis, the simulations of one-

dimensional Gray-Scott-like models (Gray-Scott, Autocatalysis and Gierer-Meinhardt

equations) to unveil pulse splitting process and self-replicating patterns in such dy-

namical systems. We attain this feet by combining the fourth-order exponential time

differencing Runge-Kutta method (in time) with higher-order finite difference scheme

(in space), we obtain a good result with accuracy of over 10−12. It is also clear from the

numerical analysis of the result presented here that the parameters A and B determine

which physical process are more dominant as the system evolves. The two chemical

species u and v are studied in this paper for different diffusivities in the limit when the

ratio of diffusion rates ε < 1.

Our results have sparked renewed interest in reaction-diffusion models for biological

pattern formation and, in particular, the roles that domain growth and diffusion coeffi-

cient played in the mechanisms of pattern formation. A particular feature of reaction-

diffusion patterns on increasing or extending domains is the tendency for stripe-like
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patterns to double in the number of stripes each time the domain doubles in length or

the system is slightly perturbed. This appears to be a general result for a wide variety

of reaction-diffusion models with different reaction kinetics. Findings in this paper have

also revealed that some patterns generated are synonymous to the features found in the

river course, in particular, the lower course. The landmark results presented in Table

3.4.1 and figures 3.4.17, 3.4.18 and 3.4.19, grant a further justification on the issue

of applicability and accuracy of ETDRK4 method when applied to reaction-diffusion

problems.

In the next chapter, we shall extend our method of solution to some ecological

problems consisting of two and three species interactions.

 

 

 

 



Chapter 4

Numerical simulations of

reaction-diffusion models in ecology

Using local analysis theory applied to ecological modeling in this chapter, we study four

important ecological systems describing the prey-predator dynamics [59], interaction

between competitive species [7], mutualism [151], and a three species competition model

of May and Leonard [120]. Accuracy of the two competing exponential time differencing

(ETD) Runge-Kutta and Adams-type methods that are of order-four, are used as the

major time stepping methods. We justify the supremacy of these two schemes when

applied to the mentioned dynamical systems and compared with other existing multi-

step exponential integrators of orders four, five and six.

4.1 Introduction

In this chapter, we consider the numerical study of reaction-diffusion systems in-

volving two or more species. We address the interaction between two species in

terms of predator-prey systems and the biological system displaying the formation

of chaotic spatiotemporal patterns arising from a community of three competitive

species [7, 57, 59, 102, 139, 140, 151, 153, 190, 199]. The most popular and well-known

predator-prey model is named after the two scientists, Alfred Lotka (1880-1949) and

Vito Volterra (1860-1940). The duo earlier combined to study and apply the model to

99
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address the interacting population systems called predator-prey. Our numerical study

in this chapter shall be based mainly to reflect the types of interactions which we de-

scribe as predation (a process where one specie of organisms called predator depends

solely on the other called the prey, for survival. In other words, if the growth rate of one

population is decreased and the other is increased the populations are in a predator-prey

situation), competition (a situation whereby two or more different species of organisms

compete for the available resources, definitely we expect the growth rate of each popu-

lation to decrease) and lastly, the mutualism or symbiosis (organisms coexist without

affecting each other, hence, species growth rate is increased).

A large amount of research has been devoted to the study of population dynamics

and ecological interactions over the past few decades, such study includes the predator-

prey system that describes the situation in which the existence of the specie called the

predator depends solely on the other specie called the prey. The predator-prey system

has received a tremendous attraction over years but represented mainly in terms of

ordinary differential equations, which modelled the spatial distribution of species. The

Dynamics of the Lotka-Volterra predator-prey model are quite interesting, unfortu-

nately, this model is structurally unstable since a small perturbation of the equations

often results to a drastic change in the dynamical system. For this reason, the presence

of diffusion mechanism however changes the behavior of the whole model to coupled

partial differential equations which we termed as reaction-diffusion system. With the

introduction of diffusion, its analysis remain tactical [193, 194], hence, numerical sim-

ulations are sought.

Predator-prey systems have been studied by many researchers in various forms, for

instance, in bacteria ecology, computer simulations of complex spatiotemporal patterns

[13, 57, 129] of Bacillus subtilis based on stochastic models [93] and deterministic

models [127], Allee effect of patchy invasion on predator-prey dynamics [5, 8, 17, 41,

67, 153]. The diffusive predator-prey system have been studied extensively by [57,

80, 118, 122, 129, 137, 152, 190]. Wang et al. [193] investigate the spatial pattern

formation of a predator-prey system with prey-dependent functional response of Ivlev

type and reaction-diffusion. Analysis of predator-prey systems showing the Holling
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type II functional response is examined in Garvie and Trenchea [59].

Another type of inter-species interaction is given by competition. Competitive

species models or community models further describe a situation where consumers

share some resources that can affect their rate of production. Many ecologist, however,

put greater weight on competition which was thought to have played a predominant

role over the years in structuring ecological communities. There is a classical model of

competition model due to Lotka [115, 116] and Volterra [191, 192].

The Lotka-Volterra competition model is an interference model where two species

are assumed to diminish each other’s per capita growth rate by direct interference. It

is assumed here that each species has a different population of different sizes that grow

logistically in absence of each other and that each has a per capita growth rate that

decreased linearly with the population size with their own intrinsic growth rate and

carrying capacity [151]. Mathematically, the simplest and instructive case is described

by a system of just two coupled-reaction diffusion equations. The system of two com-

peting species has won a lot of attentions, and has been almost completely investigated.

We however considered in addition in this chapter a general case of n competing species

that is less studied and still poorly understood for case n > 2. Among few handful

work done when n > 2 include [151, 171, 190].

In mutualistic systems, organisms are found to evolve together. The existence of

one has no negative effect on the other, each is part of the other’s environment, so

as they adapt to their environment, they make use of each other in such a way that

both organisms are benefited. Mutualism has rarely gained the attention of predation

and competition. Further classification of mutualism is beyond the scope of this the-

sis. However, interested readers are referred to [89, 102] for thorough review of the

natural history of mutualism. Community invasion models have an issue of significant

importance in the contemporary study of biological and ecological systems which have

drawn the attention of both theorists and ecologists since the foundation work of Holt

[81]. In [56, 70, 199] details and full understanding of competition models are given to

study the effects of alien species invasion on native ecosystem. Some of the evolution

processes here are characterized owing to the fact that certain moments of time they
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experience a sudden change of state.

Despite the considerable achievement recorded in the field of population dynamics

modeling the interaction of a multi-species community, so many challenging problems

are still open to better estimate ecological importance of the results, an extension has to

be granted for the case of a multi-species community which has received little attention

in the literature. We therefore consider in this chapter as well, the model of a dynamic

consisting of three competitive species. We equally demonstrate numerically for a class

of biological system that lead to the evolution of travelling waves and formation of

chaotic spatiotemporal patterns [151, 154, 171, 199].

The structure of rest of this chapter is as follows. In Section 4.2, we describe the

model problems of spatiotemporal dynamics of multiple species. A brief description

of the numerical method is considered in Section 4.3. Numerical results for each of

the problems are presented in Section 4.4 to justify the performances of the methods.

Finally, we summarize our conclusion in Section 4.5.

4.2 Model problems

Owing to a widely accepted approach, we describe the spatiotemporal dynamics of

a system of n interacting biological [78, 102, 137, 154, 171] species by the following

equations

∂ui(τ)

∂t
= Di∆ui(τ) + fi(u1, . . . , un), x ∈ R, t ∈ [0, T ], T > 0, (4.2.1)

the corresponding initial conditions are given by the functions

ui(τ, 0) = ui0(τ), i = 1, 2, . . . , n, (4.2.2)

with an assumption that there is no external input imposed from the outside. Since the

initial densities of the above systems are nonnegative, hence, the boundary conditions

can be taken as (
∂ui

∂t

)

x=0

=

(
∂ui

∂t

)

x=l

(4.2.3)
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where ui is considered as the density of the ith species, ∆ is the usual Laplacian

operator, R is a subset of (−∞,∞), τ = (U, V, W ) stands for the position in space, fi,

for i = 1, . . . , n represent the local kinetics or reaction term of the system that depends

on quite number of parameters in the context of biology, such as the growth and death

rates of the various species, Positive parameter Di is the diffusion coefficient describing

the spread and mixing strength of the species within a give spatial domain and t is the

time.

Analysis of the system (4.2.1) still remain tactical, we apply the stability analysis

to (4.2.1) with absence of diffusion. We need to examine under what conditions the

system (4.2.1) obeys Turing instability. This could only be achieved by taken an

assumption that the right hand side of (4.2.1) is zero and that equations (4.2.1) and

(4.2.2) together with the boundary conditions (4.2.3) admit a solution, say steady state

ui = ûi for ûi > 0, i = 1, . . . , n, that is spatially and temporarily uniform. The solution

ui = ûi is said to be Turing unstable if it is locally stable as a solution of the system

(4.2.1) without diffusion term Di, therefore

dui(t)

dt
= fi(ui), i = 1, . . . , n. (4.2.4)

At steady state, we expect all the eigenvalue to have a negative real parts at the

neighbourhood of ûi. If we let ui(t)− ûi = µ(t), we have

dµi(t)

dt
= ai,j = A, i, j = 1, . . . , n, (4.2.5)

where

ai,j =
∂fi(ûi)

∂uj

, (4.2.6)

are the elements of the Jacobi matrix at steady state with associated eigenvalues λi for

i = 1, . . . , n defined by the equation det(A− λI) = 0, I is the identity matrix. Further

analysis of our kinetic systems shall be determined on individual basis henceforth.
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Two-species predator-prey system:

It is clear from our introduction that predator-prey models are much more similar in

description to both parasite and parasitoid models. Here, the predator does not live on

the host unlike the cases of mutualism and competitive species models. Setting n = 2,

i = 1, 2 in (4.2.1), we have dynamics of one dimensional two-species prey-predator

reaction-diffusion system which takes the form

∂U
∂T

= D1
∂2U
∂X2 + F (U, V ),

∂V
∂T

= D2
∂2V
∂X2 + G(U, V ),



 (4.2.7)

where U and V are the respective densities of the prey and predator, F (U, V ), G(U, v)

are also their respective reaction terms at position X and time T , D1 and D2 are

diffusion constants for the prey and predator.

We consider as an example here the reaction-diffusion system (4.2.7) by choosing

the appropriate parameters in line with the general form (Holmes et al. [80], Murray

[137, 138] and Sherratt [180]), so F (U, V ) and G(U, V ) are specified to have

∂U
∂T

= D1
∂2U
∂X2 + U

[
α

(
1− U

K

)− γV
U+δ

]
,

∂V
∂T

= D2
∂2V
∂X2 + V

[
β

(
1− hV

U

)]
,



 (4.2.8)

where D1, D2, α, β, γ, δ h and K are positive parameters. U(X,T ) and V (X, T ) remain

the population densities of prey and predator. The term αU(1− U/K) represents the

logistic growth, α is the intrinsic growth rate, and K the carrying capacity. The term

γV is the per capital prey reduction due to consumption by the predator, β describes

the intensity of predation.

Since analysis of (4.2.8) still remains tactical with the presence of diffusion, we then

nondimensionalize by re-scaling with variables

u(t) =
U(T )

K
, v(t) =

hV (T )

K
, t = αT, µ =

γ

hα
, ψ =

β

α
, φ =

δ

K
, D =

D2

D1

(4.2.9)

then on substitution, system (4.2.8) becomes
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∂u
∂t

= ∂2u
∂x2 + u(1− u)− µu

u+φ
v = f(u, v),

∂v
∂t

= D ∂2v
∂x2 + ψv − ψv2

u
= g(u, v).



 (4.2.10)

To study Turing instability, we have to analyze the stability criteria of the non-diffusive

system. The spatial model (4.2.10) has the corresponding non-diffusion model

du
dt

= u(1− u)− µu
u+φ

v = f(u, v),

dv
dt

= ψv − ψv2

u
= g(u, v).



 (4.2.11)

The three parameters µ, ψ and φ are now in dimensionless form and that they are

strictly positive. There are other choices for the change of variables to put the system

in dimensionless form, but we made a good choice that suit our purposes since the

dimensionless groupings used here give relative measures of the effect of dimensional

parameters. For instance, ϕ now becomes the ratio of the linear growth rate of the

predator to that of the prey, for ψ < 1. Based on the fact established in [139], naturally

we expect the prey to reproduce faster than the predator otherwise the system will go

into extinction.

At equilibrium, we have

f(û, v̂) = g(û, v̂) = 0

since the steady state populations û and v̂ are solutions of du/dt = dv/dt = 0, so that

û(1− û)− µû
û+φ

v̂ = 0

ψv̂ − ψv̂2

û
= 0.



 (4.2.12)

Naturally, for the dynamical system under consideration to be biologically meaning-

ful, u ≥ 0, v ≥ 0 for all time. Clearly, equation (4.2.10) has three positive steady states

(û, v̂), the two trivial states or saddle points are at point (0, 0) which describes complete

extinction of both prey and predator and point (1, 0), which shows that the predator is

absent leading to unbounded logistic growth of the prey species. The stationary point

(û, v̂) corresponding to the existence of prey and predator bearing in mind that the
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Figure 4.2.1: (a) Bifurcation diagram for µ > 0 and φ > 0, for φ =
√

µ2 + 4µ+µ−1.
(b) Phase plane trajectory for prey-predator system (4.2.10) for parameter value µ =
1.025, φ = 0.3 and ψ = 0.05

parameters must be strictly restricted to the positive quadrants, we have

v̂ = û,
(1− µ− φ) + [(1− µ− φ)2 + 4φ]

1/2

2
, (4.2.13)

the stability of the steady or equilibrium states are the singular points in the phase

plane of (4.2.10). We let

A =


û

[
µû

(û+φ)2
− 1

]
−µû
û+φ

ψ −ψ


 . (4.2.14)

where A is regarded as the community matrix with eigenvalues given by

| A− λI |= 0 ⇒ λ2 − (trA)λ + detA = 0, (4.2.15)

for stability, we require that Re(λ) < 0. The necessary and sufficient conditions for

linear stability become

trA < 0 ⇒ û

[
µû− (û + φ)2

(û + φ)2

]
< ψ

detA > 0 ⇒ (û + φ)2 + µ(û + φ)− µû

(û + φ)2
> 0. (4.2.16)
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On substituting û in equation (4.2.13) provides the stability conditions in terms of the

positive parameters µ, ψ and φ.
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Figure 4.2.2: Typical phase trajectories for (b) the unrealistic prey-predator system
(4.2.8). Plots (a), (c), (d) are the various periodic behaviour of the prey u and predator
v populations. Parameter values: µ = 0.8, ψ = 2, φ = 0.4, which give a steady state
at û = 1.5, v̂ = 0.1 for (a) at t = 100, (b) t=8000, (c) t=500 and (d) t=8000.

Figures 4.2.2 and 4.2.3 represent the unrealistic and realistic population dynamics

of a prey-predator systems. The system with a kinetics of first type as described in

Garvie [57] is quite unrealistic due to the choices of parameters used in transform-

ing the system into a dimensionless form. This shortcoming actually motivate us to

choose some appropriate parameters since it is always helpful to write the system in

nondimensional form. Nondimensionalisation plays an important role when carefully

considered because it reduces the number of parameters by grouping them in a more

meaningful manner, this is obvious when relations in (4.2.9) relates equations (4.2.7)

and (4.2.8) without loosing our focus in biological context. In Figure 4.2.2, we expect

to see that the prey produces more faster than the predator but the case here is oth-
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erwise. So, the system described in Figure 4.2.2 is totally unrealistic as its prone to

danger of extinction of the prey species that would in turn results to total break down

of the ecosystem since all the predators will die out in absence of food.
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Figure 4.2.3: Typical phase trajectories for (b), (f)and (h) for the realistic prey-
predator system (4.2.8). Plots (a), (c), (d), (e) and (g) are the various periodic be-
haviour of the prey u and predator v populations. Parameter values: µ = 1.5, ψ = 0.08,
φ = 0.01, which give a steady state at û = 1.5, v̂ = 0.1 for (a) at t = 400, (b) t=7000,
(c) t=1500 and (d) t=8000. By taking û = v̂ = 0.35, µ = 1, ψ = 0.05, φ = 0.2, we
obtain (e) for t = 100, (f) for t = 1000 and (g) for t = 300. For (h), µ = 1.025, t = 8000
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Two and three-species competitive system:

Competition model describes a situation in which two or three species compete for

the same insufficient resources like food, territory or in some way inhibit their rate of

growth. For simplicity and following the approach we used above, we consider here a

two-species Lotka-Volterra competition model

∂U
∂T

= δ1
∂2U
∂X2 + α1U

(
1− U

K1
− β1

V
K1

)
,

∂V
∂T

= δ1
∂2V
∂X2 + α2V

(
1− V

K2
− β2

U
K2

)
,



 (4.2.17)

with species U and V having logistic growth at the absence of the other. The param-

eters α1 and α2 represent their linear birth rates, β1 and β2 measure the competitive

effect of V on U and vice versa , δ1 and δ2 stand for the diffusion coefficients of species

U and V . K1 and K2 are their respective carrying capacities.

Again, we nondimensionalize (4.2.17) by introducing a set of dimensionless variables

u(t) =
U(T )

K1

, v(t) =
V (T )

K2

, t = α1T, µ =
α2

α1

, φ = β2
K2

K1

, ψ = β1
K1

K2

, δ =
δ2

δ1

.

(4.2.18)

As suggested by Medvinsky et al. [122] and Garvie [57], that the local stability analysis

will always grant a deep understanding that will provide important information on the

choice of parameters for numerical integration, we henceforth continue with the local

stability analysis with absence of diffusion for simplicity. Hence, using (4.2.18) in

(4.2.17), we obtain

∂u
∂t

= ∂2u
∂x2 + (u− u2 − φuv) = f(u, v),

∂v
∂t

= δ ∂2u
∂x2 + µ(v − v2 − ψuv) = g(u, v).



 (4.2.19)

For Turing instability, we consider the case of spatially homogeneous solutions, in which

the spatial model (4.2.19) is equivalent to
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du
dt

= (u− u2 − φuv) = f(u, v),

dv
dt

= µ(v − v2 − ψuv) = g(u, v).



 (4.2.20)

Here, we regard the steady states and phase plane singularities, û and v̂ as the solutions

of f(u, v) = g(u, v) = 0 with the possibilities of four positive equilibrium states,

(û, v̂) = (0, 0), (û, v̂) = (1, 0), (û, v̂) = (0, 1),

(û, v̂ =
(

1−φ
1−φψ

, 1−ψ
1−φψ

)
,



 (4.2.21)

the first three states are trivial and the last is non-trivial. The state (0, 0) corresponds

to total extinction of the two species population, the second (1, 0) typifies the existence

and extinction of species u and v respectively and the third trivial state (0, 1) indicate

that only species v exist. We can see clearly that non of the three trivial states could

give a meaningful interpretation about the competition model, therefore we need to

explore further the non-trivial equilibrium state (û, v̂). The points (0,0), (1,0) and (0,1)

are all unstable. (0,0) is an unstable node, (1,0) and (0,1) are saddle point equilibria.

From (4.2.20), for f = g = 0, we have that (u−u2−φuv) = 0, it follows that either

u = 0 or 1− u− φv = 0 and also from the second equation, µ(v − v2 − ψuv) = 0, this

implies, µv = 0 and 1− v − ψu = 0. On differentiating (4.2.20) partially with respect

to (u, v) at steady states (û, v̂), we assume that this equilibrium point is asymptotically

stable, with all of the eigenvalues of the Jacobian or community matrix

A =


1− 2u− φv −φu

−µψv µ(1− 2v − ψu)




(û,v̂)

. (4.2.22)

In Figure 4.2.4, the populations converge on the intersection of the isoclines regard-

less of the initial population densities. The intersection point of the two lines gives the

positive steady state as in (a) where the point (1.4, 1.4) corresponds to ( 1
φ
, 1

ψ
). The

locations of the isoclines in (b) dictate that species u out-competes species v , the point
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Figure 4.2.4: A graph depicting stable equilibrium between two competing species of
system (4.2.20).

( 1
φ
, 1

ψ
) corresponds to the value (1.6, 0.6) of species u and v respectively.

The point (0, 0), is unstable since the eigenvalues λ can be written in the form

|A− λI| =
∣∣∣∣∣∣

1− λ 0

0 µ− λ

∣∣∣∣∣∣
= 0,

which implies that λ1,2=(1, µ). At (1, 0), community matrix A becomes

|A− λI| =
∣∣∣∣∣∣

1− λ −φ

0 µ(1− ψ)− λ

∣∣∣∣∣∣
= 0,

which means λ1,2=(−1, µ(1−ψ)), so we can say that the steady state (û, v̂) = (1, 0) is

stable if ψ > 1 and unstable if otherwise. In the same manner, the steady states (0, 1)

has the eigenvalues λ when substituted to the community matrix A, we have

|A− λI| =
∣∣∣∣∣∣

(1− φ)− λ 0

µφ −µ− λ

∣∣∣∣∣∣
= 0,

therefore, λ1,2 = (−µ, (1 − φ)). This means that the steady (û, v̂) = (0, 1) is stable if

φ > 1 and unstable if φ < 1.
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On substituting the fourth steady state into the main community matrix, we have

|A−λI| =
∣∣∣∣∣∣

[
1− 2

(
1−φ

1−φψ

)
− φ

(
1−ψ
1−φψ

)]
− λ −φ 1−φ

1−φψ

−µ 1−ψ
1−φψ

−µ
[
1− 2

(
1−ψ
1−φψ

)
− ψ

(
1−φ

1−φψ

)]
− λ

∣∣∣∣∣∣
= 0.

Further simplification leads to

λ1 = ξ +
√

D(φ, µ, ψ)/χ,

λ2 = ξ −
√

D(φ, µ, ψ)/χ, (4.2.23)

where ξ = (φ−1)+µ(ψ−1), D(φ, µ, ψ) = [(φ−1)+µ(φ−1)]2−4µ(1−φψ)(φ−1)(φ−1)

and χ = 2(1− φψ).

The good thing is that all the four steady states exist in the positive quadrant which

make the whole process meaningful in the biological and ecological contexts. Clearly,

the stability of the steady state depends on the size of the positive parameters µ, φ

and ψ subject to various cases such as; (φ > 1, ψ > 1), (φ > 1, ψ < 1), (φ < 1, ψ > 1)

or (φ < 1, ψ < 1). A biological interpretation of Figure 4.2.4(b) suggests that because

the carrying capacity of species u is so high, this species is not limited by this resource

to the extent to which species v seems to be. Maybe species u can use other resources

not utilized by species v, so on loosing some of this resources to species v, it has little

or no effect.

Stable coexistence occurs when the isoclines are arranged as in 4.2.4(a) for K1 <

K2/ψ and K2 < K1/φ. Clearly, on rearranging, we can see that ψ < K2/K1 and

φ < K1/K2, and these competition coefficients must be made as small as possible

relative to the ratio of its carrying capacity to that of other species. This conditions

must hold for both species simultaneously, and this is possible only if the carrying

capacities of the two species are similar in such a way that their ratio is close to one

regardless of which is the numerator. As the resources declined, the two species shown

in Figure 4.2.5 compete for the limited resources, this is mostly evident in (b).
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Figure 4.2.5: A decline population density associated with the competitive system
(4.2.19). Parameter values: (a) û = v̂ = 1, µ = 0.5, φ = 0.5, ψ = 0.5 at t = 5 and
(b) û = v̂ = 1, µ = 0.5, φ = 0.15, ψ = 0.15 at t = 40. Other parameters are as in (b)
except at v̂ = 0.8, t = 40 for (c) and t = 20000 for (d).

The three species system of consideration is of the form

∂Ui

∂T
= δi

∂2Ui

∂X2
+ ξiUi

(
1−

n∑
j=1

αijUj

)
, T > 0. (4.2.24)

This is in line with three-species Lotka-Volterra competition model where ξi > 0, i =

1, 2, 3 give the intrinsic growth rates of the species for the case n = 3, i, j = 1, 2, 3.

Ui > 0 gives the density of each of the species population at corresponding time t for

position X ∈ R in space [120]. The term αij > 0 for i, j = 1, 2, 3 describes both intra-

species competition for i = j and inter-species competition for i 6= j. The intensity of

spatial mixing due to self-motion is given by the term δi > 0, for i = 1, 2, 3.

Three-species competition model displays more interesting and diverse phenomena

than two-species competition. It is possible for one- or two-species extinction, or global
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stability of a positive three-species equilibrium. The analogous behavioural solutions

of this type of system have been shown in periodic form [79, 201] and also in the form

of heteroclinic orbit as indicated in [120]. In [7], it was suggested that the competitive

outcome depends solely on the relationship between pairwise interactions.
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Figure 4.2.6: Phase plane trajectory that represents a nontransitive interactions
between three-species in the May-Leonard competition model. The ui−uj phase plane
for i 6= j, indicates that species ui eliminates uj and that, there are no two-species
positive equilibria. The solutions tend to equilibrium at points ui = 1 and uj = 0.

Thus, for three competitors, n = 3, i, j = 1, 2, 3; we have

∂U1

∂t
= δ1

∂2U1

∂X2 + ξ1U1(1− α11U1 − α12U2 − α13U3),

∂U2

∂t
= δ2

∂2U2

∂X2 + ξ2U2(1− α21U1 − α22U2 − α23U3),

∂U3

∂t
= δ3

∂2U3

∂X2 + ξ3U3(1− α31U1 − α32U2 − α33U3).





(4.2.25)

Following the approach used for the analysis of two-species model, here, we shall

qualitatively describe the spatiotemporal dynamics of a community consisting of three

competitive species. Equation (4.2.25) has so many parameters that could make local

its analysis to be more cumbersome, hence, following the steps described earlier, we

rescale the system (4.2.25) by letting

ξ1 = ξ2 = ξ3 = ξ = α11 = α22 = α33 = 1,

ζ1 = δ2
δ1

, ζ2 = δ3
δ1

t = ξt, x =
√

ξ1
δ1

X,

u = α11U1, v = α22U2, w = α33U3,

α = α12 = α23 = α31, β = α13 = α21 = α32,





(4.2.26)
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and obtain

∂u
∂t

= ∂2u
∂x2 + u(1− u− αv − βw),

∂v
∂t

= ζ1
∂2v
∂x2 + v(1− βu− v − αw),

∂w
∂t

= ζ2
∂2w
∂x2 + w(1− αu− βv − w),





(4.2.27)

which has been reduced to only 4 dimensionless parameters α and β. We can see

that nondimensionalisation reduces the number of parameters here from 9 to 4. The

ODE system corresponding to (4.2.28) is sometimes called the May Leonard model

[120] and has been used in many studies to fit both ecological and biological data. By

turing instability analysis, we only consider the equivalent non-diffusive system, hence,

(4.2.28) is further reduced to

du
dt

= u(1− u− αv − βw) = f(u, v, w),

dv
dt

= v(1− βu− v − αw) = g(u, v, w),

dw
dt

= w(1− αu− βv − w) = h(u, v, w),





(4.2.28)

where 0 < α < 1, β > 1, u > 0, v > 0 and w > 0. The equilibrium or steady state

populations û, v̂ and ŵ are solutions of

du

dt
= 0,

dv

dt
= 0,

dw

dt
= 0,

in such that

f(û, v̂, ŵ) = 0, g(û, v̂, ŵ) = 0, h(û, v̂, ŵ) = 0

which, from the last equations implies that

û− û2 − αv̂v̂ − βûŵ = 0,

v̂ − βûv̂ − v̂2 − αv̂ŵ = 0,

ŵ − αûŵ − βv̂ŵ − ŵ2 = 0.





(4.2.29)

It is obvious that system (4.2.29) possesses five stationary states that are located in
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the positive quadrant, they are points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1)/(1+

α + β). The point (0, 0, 0) is called unstable node, it corresponds to the trivial state

that indicates the total extinction of the three-species population. The points (1, 0, 0),

(0, 1, 0), (0, 0, 1) are the three semi-trivial states where only one species exist while

the other two dies out, they are in fact the saddle points. The trivial steady-state

correspond to the point (1, 1, 1)/(1 + α + β) whose community matrix is given as

D =




∂f
∂u

∂f
∂v

∂f
∂w

∂g
∂u

∂g
∂v

∂g
∂w

∂h
∂u

∂h
∂v

∂h
∂w




(û,v̂,ŵ)

=




1− 2u− βv − αw −αv −βw

−βu 1− βu− 2v − αw −αv

−αw −βw 1− αu− βv − 2w




(û,v̂,ŵ)

.(4.2.30)

We can see that the eigenvalues (λ1, λ2, λ3) of community matrix D at the origin are

all positive, i.e, when (û, v̂, ŵ) = (0, 0, 0), then the diagonal of (4.2.30) gives (λ1 = λ2 =

λ3) = 1, hence the trivial state is unstable. Again, we also consider the semi-trivial

case of the single-species equilibria, the eigenvalues of the community matrix are given

as λ1 = −1, λ2 = 1− β and λ3 = 1− α, so, the semi-trivial state is also unstable since

aα < 1. We finally evaluate the community matrix at non-trivial steady state, i.e. at

(û, v̂, ŵ) =
(1, 1, 1)

(1 + α + β)
.

It is known [7, 120, 151] that the three species equilibrium is stable if and only if all

the eigenvalues of the community matrix

M =
(
−(1 + α + β)−1

)



1 α β

β 1 α

α β 1




(û,v̂,ŵ)

(4.2.31)
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have positive real parts. The eigenvalues of M are given by

λ1 = 1 + α + β,

λ2 = 1− (α + β)

2
+ i(α− β)

(√
3

2

)
,

λ3 = 1− (α + β)

2
− i(α− β)

(√
3

2

)
.

The three-species positive equilibrium is conditionally stable if α + β < 2 for α > 0

and β > 0.
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Figure 4.2.7: Typical phase trajectory limit circle solutions (a), (d)and (f) for the
May-Leonard three-species competition system (4.2.28). Plots (a), (c), (e), (g) and (h)
show some of the local chaotic behaviours of the three competing species u, v and w
population densities.

In Figure 4.2.8, three important cases are considered for positive equilibrium (û, v̂, ŵ)

are the locally asymptotically stable for α + β < 2, neutrally stable for α + β = 2 and
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the unstable case when α + β > 2. Take note of variation in their amplitudes.

0 50 100
0.2

0.3

0.4

0.5

time

sp
ec

ie
s 

de
ns

ity

 

 

u
v
w

0 50 100 150
0.25

0.3

0.35

0.4

0.45

time

sp
ec

ie
s 

u 
de

ns
ity

0 50 100 150
0.25

0.3

0.35

0.4

0.45

time

sp
ec

ie
s 

v 
de

ns
ity

0 50 100 150

0.35

0.4

0.45

0.5

time

sp
ec

ie
 w

 d
en

si
ty

(a)

0 50 100 150 200
0

0.5

1

1.5

time

sp
ec

ie
s 

de
ns

ity

 

 
u
v
w

0 100 200 300
0

0.5

1

1.5

time

sp
ec

ie
s 

u 
de

ns
ity

0 100 200 300
0

0.2

0.4

0.6

0.8

time

sp
ec

ie
s 

v 
de

ns
ity

0 100 200 300
0

0.2

0.4

0.6

0.8

1

time

sp
ec

ie
 w

 d
en

si
ty

(b)

Figure 4.2.8: Plots describing individual (chaotic) behaviours in the May-Leonard
three-species competition system (4.2.28).

Two-species mutualism system:

This is a type of association in theoretical ecology in which the existence of one species

has no negative influence on the other. This type of model receives little attention and

has not been studied as others even though its importance is comparable to that of
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prey-predator and competition models. We shall analyze briefly the two-species model

∂U
∂T

= σ1
∂2U
∂X2 + F (U, V ),

∂V
∂T

= σ2
∂2V
∂X2 + G(U, V ),



 (4.2.32)

where

F (U, V ) = α1U

(
1− U

K1

+ β1
V

K1

)
and G(U, V ) = α2V

(
1− V

K2

+ β2
U

K2

)

are the nonlinear reaction terms for the two species U and V respectively, σ1, σ2, α1,

α2, β1, β2, K1 and K2 are all positive parameters. This system has a similar look with

equation (4.2.17), with exception that the β′s are treated positive in the present case.

We then nondimensionalize using the same parameters

u(t) =
U(T )

K1

, v(t) =
V (T )

K2

, t = α1T, µ =
α2

α1

, φ = β2
K2

K1

, ψ = β1
K1

K2

, σ =
σ2

σ1

.

(4.2.33)

which on substitution to (4.2.32) yields

∂u
∂t

= ∂2u
∂x2 + (u− u2 + φuv) = f(u, v),

∂v
∂t

= σ ∂2u
∂x2 + µ(v − v2 + ψuv) = g(u, v).



 (4.2.34)

Again, by following analysis of turing instability, we analyze the stability criteria of

the non-diffusive system. We present the corresponding non-diffusion model as

du
dt

= (u− u2 + φuv) = f(u, v),

dv
dt

= µ(v − v2 + ψuv) = g(u, v).



 (4.2.35)

It is not difficult to see that the steady states (û, v̂) are

(û, v̂) = (0, 0), (û, v̂) = (1, 0), (û, v̂) = (0, 1),

(û, v̂) =
(

1+φ
1−φψ

, 1+ψ
1−φψ

)
.



 (4.2.36)
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We also assume that the steady state is asymptotically stable, with all of the eigenvalues

of the community matrix being negative.
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Figure 4.2.9: Phase trajectories of the two-species mutualism model (4.2.35) with
limited carrying capacities. (a) With φψ > 1, the system experience an unbounded
growth as u → ∞ and v → ∞. (b) With φψ < 1, all trajectories tend to a positive
steady state P with û > 1 and v̂ > 1.

B =




∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v




(û,v̂)

=


1− 2u− φv −φu

−µψv µ(1− 2v − ψu)




(û,v̂)

. (4.2.37)

Repeating the process of calculating the community matrix denoted by B, we can

easily show that the points (0, 0), (1, 0) and (0, 1) are all unstable, the point (0, 0) is

unstable node while (1, 0) and (0, 1) are the saddle point equilibria. Evaluation of the

eigenvalues of the community matrix B for the fourth steady state for 1 − φψ > 0

(located in the positive quadrant) is an indication of stable equilibrium.

4.3 Numerical method

Nonlinear time dependent reaction-diffusion problems (for example, prey-predator,

competitive and mutualism systems) often arise in the field of computational biology

and intrigue lots of researchers in computational implementation and to solve numer-

ically, the systems of partial differential equations of the general form (4.2.1), where

x and t denote the time and spatial coordinate respectively. We discretize in space
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Figure 4.2.10: Phase plane trajectory for mutualism system (4.2.35). (a) Linear
behaviour of species u and v . Each species experienced an unbounded population
growth since the existence of one has no effect on the other and their relationship is
linear as in (b). Parameter values are; u0 = v0 = 1, µ = 1/2, φ = ψ = 0.15 at t = 5.

as usual with stepsize h = T/(N − 1) and approximate the spatial derivative by the

fourth-order central difference formula to obtain a system of ordinary differential equa-

tions (ODEs). The resulting stiff ODEs are then solved with the various time-stepping

integrators proposed in earlier chapters.

4.4 Numerical results

In order to justify the suitability of the accuracy of ETDADAMS4 and ETDRK4

schemes. We carried out numerical experiments on the four major problems discussed

and analyzed in Section 2, that is, the prey-predator system (4.2.10), competitive

system (4.2.20), the mutualism or symbiosis system (4.2.34) and finally the three species

system (4.2.28). The performance of ETDRK4 and ETDADAMS4 are investigated and

compared with the family of exponential time differencing multi-steps schemes of order

four, five and six which we denoted in this thesis as ETDM4, ETDM5 and ETDM6

respectively. The maximum absolute errors of the solution is calculated as discussed

in earlier chapters

It is obvious from the results presented in figures 4.4.1 and 4.4.2 that the ETDRK4

has a better convergence as compared to other exponential time differencing methods

for each of the problems considered in this chapter. Due to the similarity and the
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Figure 4.4.1: Absolute errors obtained by the computational methods ETDRK4,
ETDADAMS4, ETDM4, ETDM5 and ETDM6 at various time steps, Panel (a): when
applied to the prey-predator system (4.2.10) at parameter values t = 1, µ = 0.1,
ψ = 0.08, φ = 0.01, δ = 0.01, N = 200 and x ∈ [−5, 5]. Panel (b): when applied to the
competitive system (4.2.20) with t = 1, µ = 0.5, ψ = 0.15, φ = 0.15, δ = 0.5, N = 200
and x ∈ [−5, 5].

choices of parameters used in the simulations of the competitive and the mutualism

systems, one observes that the schemes behave in almost similar manner. The difference

can only be seen in the amplitudes of figures 4.4.1 (b) and 4.4.2 (a). ETDADAMS4

competes very well with ETDRK4 when applied to the competitive system (4.2.20) as

shown in Figure 4.4.1 (b). In all, the ETDRK4 out-shines all other schemes used.

4.5 Summary and discussions

In this chapter, we studied the dynamic complexities of the ecological models consisting

of prey-predator, competitive, mutualism and competing three species dynamics are

firstly studied by considering their local stability analysis in the absence of diffusion,
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Figure 4.4.2: Absolute errors obtained by the computational methods ETDRK4,
ETDADAMS4, ETDM4, ETDM5 and ETDM6 at various time steps. Panel (a): when
applied to the mutualism system (4.2.34) at parameter values t = 1, µ = 0.5, ψ = 0.5,
φ = 0.5, δ = 0.1, N = 200 and x ∈ [−1, 1]. Panel (b): when applied to the competing
three species system (4.2.28) with t = 1, α = 0.1 β = 0.5, ζ1 = 0.05, ζ2 = 0.015,
N = 200 and x ∈ [0, 1].

and secondly by the numerical approach with the presence of diffusion. We discretize

the problems in space using the fourth-order central finite difference scheme and inte-

grate the resulting ODEs with the aid of exponential time differencing schemes based

on the Runge-Kutta and multi-step methods of Adams-type. We compared the results

obtained with both ETDADAMS4 and ETDRK4 for each of the dynamics, with their

exponential fourth, fifth and sixth-orders counterparts denoted as ETDM4, ETDM5

and ETDM6 respectively. We can see the efficiency and accuracy of ETDRK4 (as

compared to other methods) in figures 4.4.1 and 4.4.2. We observe that ETDRK4 is a

very reliable numerical method and is computationally promising when applied to the

reaction-diffusion problems.

In the next chapter, we are introducing the family of fourth-order IMEX schemes
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to solve three systems of reaction-diffusion problems.
 

 

 

 



Chapter 5

Higher-order numerical methods for

time-dependent reaction-diffusion

equations

This chapter demonstrates the use of higher order methods to solve some time-dependent

stiff PDEs modelling reaction-diffusion phenomena. In the past, the most popular nu-

merical methods for solving system of reaction-diffusion equations was based on the

combination of low order finite difference method with low order time-stepping method.

We extend in this report the compatibility of fourth-order finite difference scheme

(in space) coupled with fourth-order time-stepping methods such as IMEXLM4, IM-

EXPC4, IMEXRK4 and ETDRK4 (in time), for direct integration of reaction-diffusion

equations in one space dimension. Some interesting numerical anomaly phenomenons

associated with steady state solutions of the examples chosen from the literature are

well presented to address the naturally arise points and queries. Our findings have lead

to the understanding of pattern formation such as spiral waves and patchy structures

as well as some spatio-temporal dynamical structures.
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5.1 Introduction

Over the last few years, numerical approximations of many time-dependent reaction-

diffusion problems which occur largely in form of higher-order partial differential equa-

tions (PDEs) are addressed mainly by lower-order methods in time as a result of stiff-

ness adhere to such a system. In recent times, many researchers have developed various

higher-order methods to counter this challenge, among which are the implicit-explicit

(IMEX), [10, 11, 38, 86, 112, 167]), methods and exponential time-differencing ( ETD,

[36, 37, 92]) methods. Other competing methods include the split step (SS, [169]), in-

tegrating factor (IF, [36, 187]) and sliders (SL, [52]) and implicit Runge-Kutta (IMRK,

[30, 66]) methods among many others.

Naturally, majority of time-dependent equations such as Allen-Cahn, Brussela-

tor, Burgers, Burger’s-Fisher, Cahn-Hilliard, Fisher-Kolmogorov-Petrovsky-Piscounov

(Fisher-KPP), Fitzhugh-Nagumo, Gray-Scott (GS), Kuramoto-Sivashinsky (KS), Robert-

son, Schnakenberg and Schrödinger equations exist in form of PDEs that combine

lower- and higher-orders for their linear and nonlinear terms respectively. The efficient

and accurate simulation of these type of equations become the major challenge be-

cause of the stiff diffusion term coupled with the nonlinear reaction term. We consider

a general one dimensional reaction-diffusion equation of the form

ut = δ4u + N(u(x, t)), (x, t) ∈ [0, T ]× [0,∞),

u(x, 0) = u0(x), u(0, t) = α(t), u(T, t) = β(t),

u = ui, i = 1, 2, 3,





(5.1.1)

where 4u = ∂2u/∂x2, t and x denote the time and spatial coordinates respectively,

u0(x), α(t) and β(t) are the given initial and boundary conditions, δ > 0 is the diffusion

coefficient and N represents the (lower-order) nonlinear reaction operator that account

for the reaction.

We discretize in space with step-size h = T/N and approximate the second-order

 

 

 

 



CHAPTER 5. HIGHER-ORDER NUMERICAL METHODS FOR
TIME-DEPENDENT REACTION-DIFFUSION EQUATIONS 127

spatial derivative by the fourth-order central difference operator

∂2u

∂x2
=
−ui−2,j + 16ui−1,j − 30ui,j + 16ui+1,j − ui+2,j

12h2
,

where ui,j is defined as the numerical approximation to u(xi, tj). Extension is given to

v(xi, tj) and w(xi, tj). Spatial discretization of (5.1.1) using a well-known approach,

called method of lines, in the numerical solution of evolutionary problems of PDEs in

space leads to a large system of nonlinear ODEs in time, compactly written in the form

ut = δLu + N(u, t), u(0) = u0(t), (5.1.2)

where

L =




l0 l1 l2 . . . . . .

l−1 l0 l1
. . . ...

l−2 l−1 l0
. . . l2

... . . . . . . . . . l1

. . . . . . l−2 l−1 l0




(N−1)×(N−1)

, (5.1.3)

and u = [u1, u2, . . . , un]T. The operator L is the linear pentadiagonal matrix operator

that represents a stiff part of the equation and N is the nonlinear operator that stands

for a non-stiff or mildly stiff part, and δ À 0 is a matrix of diffusion coefficients. The

function u = eikx+λtξ is a solution of (5.1.2) if (N − k2D− λI)ξ = 0. Thus N must be

strongly stable in order for the equilibrium to be asymptotically stable for all δ À 0.

The rest of this chapter is organized as follows. A review of linear stability analysis

is briefly discussed in Section 5.2. In Section 5.3, we introduced a fourth-order family

of IMEX methods. Numerical results are presented in Section 5.4 to demonstrate the

efficiency of the methods. We test the methods discussed in Section 5.3 with some

numerical examples based on multi-species competitive community models, and finally

summarize our findings in Section 5.5.
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5.2 Qualitative analysis of model problems

We describe briefly in this section the behaviour of a coupled system of n interacting

species, where n ≥ 1 around the steady state through stability principle. Let us rewrite

the evolution equation (5.1.2) for the case when n = 1, that is, the case of only one

variable system.
dU

dt
= f(U) (5.2.1)

where f(U) is the term containing both the linear and nonlinear part of (5.1.2) after

we have scaled the diffusion coefficient, δ = 1. Equation (5.2.1) satisfies a steady state

condition if
dUs

dt
= f(Us) = 0. (5.2.2)

With slight perturbation, say u, we have U = Us + u, subscript s stands for steady

state. Putting together all these facts, we obtain

dU

dt
=

dUs

dt
+

du

dt
=

du

dt
= f(U), (5.2.3)

we proceed further by linearizing the non-linear function f(U) by neglecting the higher

order terms to have

f(U) = f(Us) +

(
df

dU

)

s

u +

(
d2f

dU2

)

s

u2 + · · · =
(

df

dU

)

s

u. (5.2.4)

The equation for the evolution of the perturbation of u, by using (5.2.1) becomes

du

dt
= f(U) =

(
df

dU s
u

)
, (5.2.5)

from (5.2.5), after further simplification, it implies that

u = ûeλt, (5.2.6)

where λ = (df/dU)s and û = u(0). The parameter λ here typifies whether system

(5.1.2) is steady or unstable, if λ > 0, u will increase and the system will leave its
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steady state. On the other hand, if λ < 0, it follows that all the eigenvalues of L have

negative real part, the perturbation will damp in such a way that the system is steady.

Consequently, for the two-variable system (n = 2), we follow closely the steps above

and describe the coupled equations as:

dU
dt

= f(U, V ),

dV
dt

= g(U, V ),



 (5.2.7)

with associated steady state Us, Vs that satisfies dUs/dt = f(Us, Vs) and dVs/dt =

g(Us, Vs), we as usual obtain U = Us + u and V = Vs + v after a little perturbation

with u ¿ Us and v ¿ Vs respectively to obtain

f(U, V ) = f(Us, Vs) +
(

df
dU

)
s
u +

(
df
dV

)
s
v + · · · ( df

dU

)
s
u +

(
df
dV

)
s
v,

g(U, V ) = g(Us, Vs) +
(

dg
dU

)
s
u +

(
dg
dV

)
s
v + · · · ( dg

dU

)
s
u +

(
dg
dV

)
s
v,



 (5.2.8)

after dropping the higher order terms involved. From left hand side of (5.2.8), let the

associated Jacobian matrix for the steady state Us, Vs be

J =


p11 p12

p21 p22


 . (5.2.9)

Using the facts in (5.2.8), and by definition, dUs/dt = 0 and dVs/dt = 0, we obtain the

system of equations

du
dt

= p11u + p12v,

dv
dt

= p21u + p22v,



 (5.2.10)

whose solution can be written as u = ûeλt and v = v̂eλt. We obtain a non-trivial

solution on substituting for u and v in (5.2.10), if the determinant


p11 − λ p12

p21 p22 − λ


 = 0, (5.2.11)
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which implies that

λ2 − (p11 + p22)λ + (p11p22 − p12p21) = 0. (5.2.12)

On replacing p11 + p22 = ξ and p11p22 − p12p21 = ϕ, we obtain the roots of (5.2.12) as

λ1,2 =
−ξ ±

√
ξ2 − 4ϕ

2
, (5.2.13)

if ϕ is positive, the quantity under the square root is either smaller than ξ2, or it

is negative. If ϕ is negative, the solutions are complex with real part −ξ, which is

negative. Otherwise, the roots must be smaller in absolute value than ξ, so that the

two eigenvalues must still be negative, in this regard, we can say that the steady state

is stable since the real parts of both eigenvalues is negative.

Finally, we can write the solution of the system (5.2.10) as u(t) = û1e
λt + û2e

−λt

and v(t) = v̂1e
λt + v̂2e

−λt. If λ± < 0, the perturbation will decrease with respect to

time and the steady state is stable. If λ± > 0, the perturbation is increased with time

and the steady state is unstable, and finally, if λ+ > 0 and λ− < 0, perturbation in

this regard is either increases or decreases and the steady state becomes unstable.

The two competing species systems described above is comparatively simple and

has been the major focus of study in the past few decades. However, a general case

of n competing species has received little attention and is still poorly examined with

just few paper considering spatiotemporal dynamics of a competing system with case

n > 2. Among the few work that has been reported are the combined efforts in

[151, 154, 171]. It was pointed out in [190] that the phase space for the system of

three-species may contain not only the equilibrium points but also the limit cycles, and

apart from monotonous travelling fronts that interlink different equilibrium (steady)

states of the system, there could also be an oscillating fronts showing the effects of the

dynamical stabilization of an unstable equilibrium and spatiotemporal chaos.

We conclude with the analysis given above for the case n > 2, for system involving

n variables where the characteristic equation is of degree n. This type of equation is

expected to have n distinct roots whose eigenvalues form the Jacobian matrix of size
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N × N . The system at this point is stable if there is no eigenvalue λj, j = 1, . . . , n

has positive real part. For the sake of brevity, readers are referred to [119] for detail

information on analysis of competition in a multi-species system.

5.3 Numerical methods

Generally, differential equations are solved by integration, but unfortunately, for many

practical applications encountered in science and engineering, most systems of differ-

ential equations cannot be integrated to give an accurate analytical (exact) solution,

but rather need to be solved numerically. Development of accurate numerical meth-

ods for integration of large scale time-dependent reaction-diffusion partial differential

equations that are used to model physical problems have been the subject of activ-

ity since last decade. Numerical solutions of such equations are computationally de-

manding due to the need to achieve high accuracy in order to circumvent numerical

instabilities and stiffness in such models [11, 49, 103, 147, 182, 190]. Our subject in

this chapter is to consider the fourth-order time-stepping methods such as implicit-

explicit linear multi-step (IMEXLM), implicit-explicit predictor-corrector (IMEXPC),

implicit-explicit Runge-Kutta (IMEXRK), and exponential time-differencing Runge-

Kutta (ETDRK) methods with fourth-order finite difference schemes to discretize in

space. We shall briefly discuss each of these methods.

Implicit-explicit linear multi-step (IMEXLM) methods:

Implicit-explicit schemes whose constructions were based on the general linear multi-

step methods

1

k
un+1 +

1

k

s−1∑
j=0

ajun−j =
s−1∑
j=0

bjN(un−j) +
s−1∑

j=−1

cjL(un−j), c−1 6= 0, (5.3.1)

have widely been used by many researchers [11, 38, 112, 167], as one of the methods

proposed some years ago to integrate the dynamical systems arising as a result of

spatially discretized time-dependent partial differential equations of the form (5.1.1)
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that consists of linear L(u) and nonlinear N(u) parts. Recently, Hundsdorfer and

Ruuth [86], develop some higher-order implicit-explicit linear multi-step methods to

examine both monotonicity and boundedness properties for the linear test problems

for advection, diffusion and reactions. The main idea of IMEXmethods is to use explicit

multi-step scheme to tackle the nonlinear part and an implicit method to advance the

linear part of (5.1.2). We shall focus our attention on fourth-order schemes. Ascher

et al. [10] develop a general fourth-order, four-step IMEX scheme based on linear

multi-step methods (5.3.1), for use in convection-diffusion equation. We refer here to

the scheme as IMEXLM4, the formula for this scheme requires the use of only one

evaluation of the nonlinear term per time step. The method IMEXLM4 when applied

to (5.1.2) is defined as follows

un+1 =

(
25

12
I− kL

)−1

[4un − 3un−1 +
4

3
un−2 − 1

4
un−3 +

4kN(un)− 6kN(un−1) + 4kN(un−2)− kN(un−3)], (5.3.2)

where I is the identity matrix, L andN form the linear and nonlinear part of (5.1.2), this

scheme has been considered in a Navier-Stokes context in [91]. Derivations, stability

properties and starting values used in the computation of (5.3.2) are taken from Ascher

et al. [10].

Implicit-explicit predictor-corrector (IMEXPC) methods:

This is another family of linear multi-step methods that adopt IMEX schemes, the most

popular among these are the explicit Adam-Bashforth and implicit Adams-Moulton

methods that have been used in various forms by different authors [10, 11, 36, 86, 92]

in the literature. A simple way to find u
(0)
n+1 is to make use explicit method. Thus, a

predictor formula (explicit multi-step formula) is used to obtain a first estimate of the

next value of the dependent variable and the corrector formula is applied iteratively

until convergence is reached. This approached was earlier introduced by Ascher et

al. [10] in a different fashion for time-dependent PDEs. The third- and fourth-order

IMEXPC schemes that we use to perform the time integration in this chapter are taken
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PC(3,3) [112] and STVBDF4 [66] which we re-write when applied to (5.1.2) as

predictor:

ūn+1 =

[(
1

2
γ2 + γ +

1

3
+ η

)
I−

(
γ2 + γ

2
+ c

)
kL

]−1

{[(
3

2
γ2 + 2γ − 1

2
+ η

)
I +

(
1− γ2 − 3c +

23

12
η

)
kL

]
un

+

[(−3

2
γ2 − γ + 1

)
I +

(
γ2 − γ

2
+ 3c− 4

3
η

)]
un−1

+

[(
1

2
γ2 − 1

6

)
I +

(
5

12
η − c

)
kL

]
un−2

+

(
γ2 + 3γ

2
+ 1 +

23

12
η

)
kN(un)

−
(

γ2 + 2γ +
4

3
η

)
kN(un−1) +

(
γ2 + γ

2
+

5

12
η

)
kN(un−2)

}
, (5.3.3)

corrector:

un+1 =

[(
1

2
γ2 + γ +

1

3
+ η

)
I−

(
γ2 + γ

2
+ c

)
kL

]−1

{[(
3

2
γ2 + 2γ − 1

2
+ η

)
I +

(
1− γ2 − 3c +

23

12
η

)
kL

]
un

+

[(−3

2
γ2 − γ + 1

)
I +

(
γ2 − γ

2
+ 3c− 4

3
η

)]
un−1

+

[(
1

2
γ2 − 1

6

)
I +

(
5

12
η − c

)
kL

]
un−2

+

(
γ2 + γ

2
+ c

)
kN(ūn+1)

+

(
1− γ2 − 3c +

23

12
η

)
kN(un)

+

(
γ2 − γ

2
+ 3c− 4

3
η

)
kN(un−1) +

(
5

12
η − c

)
kN(un−2)

}
, (5.3.4)

where (γ, η, c) are treated as free parameters that enable us to generate a family of third-

order IMEX predictor-corrector schemes and N(u) is N(u, t). The rest of starting values

for the IMEX predictor-corrector methods (5.3.3) and (5.3.4) used in the computational
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experiments can be found in [112]).

The fourth-order IMEX predictor-corrector methods [66] are defined here in con-

formity with (5.1.2) as

predictor:

ūn+1 =

(
I− 4207

8192
kL

)−1

{(
21531

8192
un − 22753

8192
un−1 +

12245

8192
un−2 − 2831

8192

)

+L

(
−3567

8192
un +

697

24576
un−1 +

4315

24576
un−2 − 41

384
un−3

)

+k

[
13261

8192
N(un)− 75029

24576
N(un−1) +

54799

24576
N(un−2)

−15245

24576
N(un−3)

]}
, (5.3.5)

corrector:

un+1 = (25I− 12kL)−1 [48un − 36un−1 + 16un−2 − 3un−3 + 12kN(ūn+1)] , (5.3.6)

where I is the identity matrix, L is the linear part and N stands for the nonlinear part

of (5.1.2).

Implicit-explicit Runge-Kutta (IMEXRK) methods:

Fourth-order implicit-explicit Runge-Kutta (IMEXRK4) schemes belong to the family

of linear multi-step methods that have been used by various authors in different forms.

The main idea of IMEX methods is to use explicit scheme to advance the nonlinear

part and an implicit method to advance the linear part to circumvent some of the dif-

ficulties posed on solving nonlinear systems of the form (5.1.2). Recently, Ascher et al.

[11] developed a family of L-stable two-,three-stages diagonally implicit Runge-Kutta

(DIRK) and four-stage, third-order combination schemes whose constructions were

based on implicit-explicit Runge-Kutta methods for integration of convection-diffusion

equation. In another development, Kennedy and Carpenter [95] constructed a family of
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higher-order, L-stable explicit and singly diagonally implicit Runge-Kutta using IMEX

schemes for addressing one-dimensional convection-diffusion-reaction equations. More

recently, Koto [103] constructed IMEX Runge-Kutta schemes for reaction-diffusion

equations with an established convergence and stability. An explicit Runge-Kutta

(ERK) method is used to solve the non-stiff partN(u) and a diagonally implicit Runge-

Kutta (DIRK) method is engaged to attack the stiff part L(u) of problem (5.1.2) to

circumvent the issue of stability restriction inherent in the explicit method. The linearly

implicit and explicit Runge-Kutta methods [26, 27, 30] are specified by the Butcher

tableaux:

Table 5.3.1: Butcher s−stage implicit-explicit Runge-Kutta tableau.
c1 0 0
c2 0 η â21 0
c3 0 a32 η â31 â32 0
...

...
... . . . . . . ...

... . . . . . .
cs+1 0 as+1,2 · · · as+1,s η âs+1,1 âs+1,2 · · · âs+1,s 0

0 b2 · · · bs η b̂1 b̂2 · · · b̂s b̂s+1

Therefore, from (5.1.2),

u1 = un,

ui = un + h
(∑k

j=2 ak,jLuj +
∑k−1

j=1 âk,jN(uj, tn + hcj)
)

, 2 ≤ k ≤ s + 1,

un+1 = un + h
(∑s+1

k=2 bkLuk +
∑s+1

k=1 b̂kN(uk, tn + hck)
)

,




(5.3.7)

as tn tends to tn+1 = tn+h, where h is the step size, L is computed as a toeplitz

matrix of size N − 1×N − 1.

Stability of linear multi-step methods

We follow the concept of Lax-stability [157, 158, 185] for method of lines (MoL) based

on linear multi-step time integration methods to give an overview of the stability prop-

erties of various IMEX schemes (IMEXLM4, IMEXPC4 and IMEXRK4) discussed

above. An s−step linear multi-step method (5.3.1) to the semi-discretization of an
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Table 5.3.2: Fourth-order implicit (Table(6.5) of [69]) and explicit (Equation (14) of
[30]) Runge-Kutta Methods.

0 0 0

0 1
4

1
4

1
4

0

0 1
2

1
4

3
4

−1
4

1 0

0 17
50

− 1
25

1
4

11
20

−13
100

43
75

8
75

0

0 371
1360

− 137
2720

15
544

1
4

1
2

−6
85

42
85

179
1360

−15
272

0

0 25
24

−49
48

125
16

−85
12

1
4

1 0 79
24

−5
8

25
2

−85
6

0

0 25
24

−49
48

125
16

−85
12

1
4

0 25
24

−49
48

125
16

−85
12

1
4

autonomous linear evolution equation

ut = Lu, u(x, 0) = u0(x), t ∈ [0, T ], (5.3.8)

where L is regarded as a linear operator that is independent of time, and u is a vector or

scalar function of t and of one or more variables x, and on approximating (5.3.8) with

respect to the space variables by the central fourth order finite difference, as discussed

above, on a discrete grid, we obtained a system of ODEs

ηt = Lη, η(0) = ηκ, (5.3.9)

where η(t) is a vector of dimension (say, N) and L remains the matrix operator, and the

subscript κ is an arbitrary positive real parameter. The semidiscretization of (5.3.8)

can be written in the form

s∑
j=0

αjη
n+j − k

s∑
j=0

βjLηn+j = 0, (5.3.10)
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which is governed by the first and second characteristic polynomials

ρ(z) =
s∑

j=0

αjz
j, σ(z) =

s∑
j=0

βjz
j, for 0 ≤ j ≤ s− 1,

where αs = +1, and that the sum of α0 and β0 are not both zero, that is, |α0 +β0| 6= 0.

Hence, the stability region S of the linear multi-step method is the set of numbers

ν ∈ C for which all roots z of the stability polynomial πν(z) = ρ(z) − νσ(z) satisfy

|zi| ≤ 1. For further details on this topic, readers are referred to [11, 30, 69].

For the fourth-order exponential time differencing Runge-kutta method, we present

the extension of this scheme to suite the solution of three system of equations, (e.g.,

(5.4.1)) in the following way:

un+1 = une
Lh + h[4ϕ2(Lh)− 3ϕ1(Lh) + ϕ0(Lh)]N(un, vn, wn, tn)

+2h[ϕ1(Lh)− 2ϕ2(Lh)]N(an, tn + h/2)

+2h[ϕ1(Lh)− 2ϕ2(Lh)]N(bn, tn + h/2)

+h[ϕ2(Lh)− 2ϕ1(Lh)]N(cn, tn + h), (5.3.11)

and

an = uneLh/2 + (Lh/2)ϕ0(Lh/2)N(un, vn, wn, tn)

bn = uneLh/2 + (Lh/2)[ϕ0(Lh/2)− 2ϕ1(Lh/2)]N(un, vn, wn, tn)

+hϕ1(Lh/2)N(an, tn + h/2),

cn = uneLh + h[(ϕ0(Lh)− 2ϕ1(Lh)]N(un, vn, wn, tn) + 2hϕ1(Lh)N(cn, tn + h),

where I is the N ×N identity matrix, L and N are the linear and nonlinear operators

as previously defined.
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5.4 Numerical results

In this section, we present some numerical results using the time-stepping methods

discussed above We choose a range of one-dimensional examples to study the dynam-

ics of an ecological model consisting of three competing species with impulsive control

strategy. The solution of the system under consideration are numerically obtained with

some initial conditions that are biologically feasible in the range of chosen parametric

values. The three reaction-diffusion problems considered are still of current and re-

curring interest. To justify the efficiency and applicability of the present method, we

report the relative errors as defined in (2.4.20).

Nonlinear stiff reaction-diffusion system:

Spatiotemporal dynamics of a community of three competitive species [182] is described

qualitatively by the following equations

ut = φuxx − λ1uv − uw,

vt = ϕvxx − λ2uv,

wt = ψwxx − λ3uv − uw, x ∈ (0, 1),





(5.4.1)

with mixed Dirichlet and Neumann boundary conditions

u = α > 0, vx = 0, wx = 0, x = 0,

ux = 0, v = β > 0, wx = 0, x = 1,



 (5.4.2)

where u(x, t), v(x, t), w(x, t), represent the densities of species A, B, C, respectively at

time t for position x in space. Coefficients λ1, λ2, λ3 give the intrinsic growth rate

of the species. Diffusion coefficients φ, ϕ and ψ describe the intensity of the spatial

mixing due to self-motion of species. The particular system discussed here mimics the

chemical process

A + B λ−→C, A + C µ−→D, (5.4.3)
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discussed in ([68, 176, 182]), where a reasonable hypotheses for the concentrations to

be non-negative was made. We follow closely by taking our initial conditions to be

u(x, t = 0) = 27.3x4 − 67x3 + 53.7x2 − 15.6x + 1.6,

v(x, t = 0) = 9x4 − 13.77x3 + 5.5x2,

w(x, t = 0) = 0.





(5.4.4)

In this example, we have considered a more general situation in which the species A

and B are allowed to coexist everywhere in the given domain for 0 < β < α < 1. It was

opined in [182], that due to the fast nature of the interaction between A and B, diffusion

and slower reaction are expected to be negligible on comparison with intermediate C

that was rapidly created until either of A or B is completely depleted.
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Figure 5.4.1: Geometric decay of the three species described in problem (5.4.1).
Solution is obtained at t = 20 for parameter values φ = ϕ = ψ = 0, λ1 = 0.1, λ2 = 0.5,
λ3 = 0.5 with initial size 1.5, 0.6, 1.3 for u, v and w respectively.

Figure 5.4.2 shows the solution explaining the coexistence of the two species u and

v in the domain Ω = (0, 1), B is used up on interaction with A to produce C that do

not coexist initially, see Figure 5.4.3. The simulation is performed here at different

intervals within the domain under consideration. In Figure 5.4.3, the diffusivity ratio

ε = 0.001 at t = 0.00007 in the interval 0 ≤ x ≤ 1, for (a). Panels (b) and (c) on

0 ≤ x ≤ 1 at t = 0 = 009 and t = 2 respectively for ε = 1 , in panels (d)-(f), simulations
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Figure 5.4.2: Surface plot of the solutions of (5.4.1) at t = 0.00007, for the case when
the diffusion coefficients are treated to be equal and taken as ε = 0.001.

are done with ε = 1, at t = 0.00007, 0.009, 1.086 on 0 ≤ x ≤ 0.2.

Finally, we obtain a steady-state solution for the reaction rate q, when the value

of λ = 0.5 is fixed. This assertion was demonstrated in Figure 5.4.5, panels (a)-(c).

Clearly, the solutions as t ≥ 0, k > 0 has no influence on time, hence, a steady state is

observed.

Results in Figure 5.4.5 (a)-(c) demonstrate the steady-state solution of the reaction

rate q = eλuv, λ = 0.5, when changes in time t ≥ 0 has no impact on the solutions

obtained. Plots (d)-(f) show the overlapping phenomena in the reaction rate q = λuv.

Note the different scales on the vertical axes.

The result of the numerical experiment in Figure 5.4.6 shown that the ETDRK4

method provides more stable and reliable result with an accuracy of 10−13 when com-

pared to the family of IMEX methods of the same orders. IMEXLM4 has accuracy of

10−7 followed by IMEXRK4 with 10−6 and IMEXPC4 with 10−5 at t = 1/1024.

Robertson’s problem:

We present here the three-specie system which coincides at some parameter values with

Robertson example [74, 161], (a reaction-diffusion equation with stiff chemistry), a one

dimensional reaction-diffusion equations that describes an interaction between three
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Figure 5.4.3: Surface plot of the solutions as a result of coexistence of species A
and B to produce C at different time steps: (a) t = 0.00007, ε = 0.001, x ∈ [0, 1],
(b) t = 0.009, ε = 1, x ∈ [0, 1], (c) t = 2, ε = 1, x ∈ [0, 1], (d) t = 0.00007, ε = 1,
x ∈ [0, 0.2], (e) t = 0.009, ε = 1, x ∈ [0, 0.2] and (f) t = 1.086, ε = 1, x ∈ [0, 0.2],
in (5.4.1), where ε is defined as diffusivity ratio and k = 500, the number of solutions
attained between tinitial and tfinal.

species

ut = αuxx − τ1u + τ2vw,

vt = βvxx + τ3u− τ4vw − τ5v
2,

wt = γwxx + τ6v
2,





(5.4.5)
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Figure 5.4.4: Plot of the reaction rate eq, q = λuv in the interval 0 ≤ x ≤ 1, k = 5,
at different time steps: (a) t = 0.00007, λ = 10−3, (b) t = 0.009, λ = 0.5, (c) t = 0.015,
λ = 0.5, (d) t = 0.02, λ = 0.5 in problem (5.4.1), when the diffusion coefficients
φ = ϕ = ψ = 1.

in ω = (0, 1), for 0 < t ≤ 1 subject to boundary conditions

u(0, t) = u(1, t) = 1, v(0, t) = v(1, t) = w(0, t) = w(1, t) = 0, (5.4.6)

and initial values

u(x, t) = uini(x), v(x, t) = vini(x), w(x, t) = wini(x), t = 0. (5.4.7)

The patterning process of this type of system is greatly influenced by the choices of

initial values uini(x), vini(x), wini(x) that are chosen to satisfy the boundary conditions

in the domain Ω. Due to the irrational and uneven behavior of this model, it has

posed a lot of challenges to adequately present the numerical results arising from this

particular system. The simulations for the time-dependent problem were carried out
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Figure 5.4.5: Plot of the reaction rate q at different time steps in the interval 0 ≤
x ≤ 1 for (5.4.1). Panels (a) t = 1, k = 1, λ = 0.5 (b) t = 50, k = 300, λ = 0.5
and (c) t = 100, k = 500, λ = 0.5. Panels (d) t = 0.00007, k = 5, λ = 103, (e)
t = 0.009, k = 5, λ = 0.5, and contour plot (f) t = 0.00007, k = 500, λ = 103.

with three distinct initial conditions of increasing complexity with varying diffusion

coefficients.

Case (a):

u(x, 0) = 1 + sin(2πx), v(x, 0) = 0, w(x, 0) = 0. (5.4.8)

The first condition we consider here has been previously considered in [74] for
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Figure 5.4.6: Comparative relative errors of ETDRK and various IMEX methods
when applied to (5.4.1).

the performance evaluation of the numerical methods therein, we let the diffusion

coefficients α = β = γ = 2.10−2.

It is noticeable that u-species has the highest amplitude in Figure 5.4.8 (a)-(e).

Panels (a)-(c) are the concentration profiles for species u, v and w respectively at

t=0.01. It is also apparent from the plots (d) and (e) that the amplitude of u is

much higher than the other two, obviously in (e), the species v and w overlapped

completely in the domain at t = 0.1.

Case (b): We present the second initial conditions as:

u(x, 0) = 0.53x + 0.47 sin(−1.5πx),

v(x, 0) = 1 + sin(2πx),

w(x, 0) = 0.





(5.4.9)

We present in Figure (5.4.9) the behaviors of the interaction of the three species

subject to the second case initial conditions. Species u and v interact in a pattern-like
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Figure 5.4.7: Local phase planes (a)-(d) for equation (5.4.5), showing spatial dis-
tribution of the species at parameter values α = β = γ = 0, for t = 0.8, u0 = 2,
v0 = w0 = 0.8, τ1 = τ3 = 2, τ2 = τ4 = 0.8 and τ5 = τ6 = 0.1.

form that is well distinguished from w. Panels (a), (b), (c) and (e) are obtained by

setting v(x, 0) = w(x, 0) = 0 in the domain at t = 0.001. It is clear from the contour

plots in (e) that the concentration in u has been neutralized (reduced) by both v and

w, this implies that the concentration of species u has been used up in (d) as a result

of diffusion.

In figure 5.4.9, Panel (e) shows how the species u diffuses (spread) almost completely

in the domain for problem (5.4.5). Concentration profiles in phase for the three species

for case II taken at v(x, 0) = w(x, 0) = 0 are displayed in (a), (b) and (c) showing

irregular oscillations with different types of traveling fronts propagating from the place

of simultaneous introduction of the three species. Panel (d) is the contour plots for

the species u, v and w. Notice the scales on the vertical axes for different amplitudes

in the panels. Parameter values are: t = 0.01, k = 1000, α = β = γ = 2.10−2,

τ1 = τ3 = 4.10−2, τ2 = τ4 = 104, τ5 = τ6 = 3.107.
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Figure 5.4.8: Concentration profiles of (5.4.5), obtained at τ1 = τ3 = 4.10−2, τ2 =
τ4 = 104, τ5 = τ6 = 3.107, α = β = γ = 1 for the three species for case I initial
condition at t = 0.01, N = 200, k = 1000 for panels (a)-(c). Panels (d) and (e) are
obtained at time steps t=0.05 and t=0.1 respectively.

Further perturbation of the initial conditions in case II results to the three species

to oscillate in phase, the concentration profiles indicating a steady structure has been

established in Figure 5.4.7. The three species indicated in Figure 5.4.10 also oscillate

in phase.

Stiff reaction-diffusion problem with spatiotemporal behaviour:

Finally, the following class of singularly perturbed reaction-diffusion equations was

considered in [171] to illustrate spatio-temporal structures of three interacting species:

ut = αuxx + δ11u + δ12v + δ13w + τ1 − ε1u,

vt = βvxx + δ21u + δ22v + δ23w + τ2 − ε2v,

wt = γwxx + δ31u + δ32v + δ33w + τ3 − ε3w,





(5.4.10)
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Figure 5.4.9: Concentration profiles in phase for the three species in case II of problem
(5.4.5).

where 0 ≤ x ≤ l for some fixed l with boundary conditions taken as

u(0, t) = u(1, t) = 1, v(0, t) = v(1, t) = w(0, t) = w(1, t) = 0, (5.4.11)

the non-negative initial concentrations are taken in form of some small perturbations

as

u(x, 0) = us(x), v(x, 0) = vs(x), w(x, 0) = ws(x), (5.4.12)
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Figure 5.4.10: Various density profiles of equation (5.4.5) for the three species taken
with N = 250 when a steady pattern has been obtained in the domain as a result
of dynamic evolution from some initial perturbation. The parameters values are: (a)
τ1 = τ3 = 0.01, τ2 = τ4 = 0.15, τ5 = τ6 = 0.3, α = β = γ = 0.05, at t = 1; (b), (c) and
(d) τ1 = τ3 = 4.10−2, τ2 = τ4 = 104, τ5 = τ6 = 3.107, α = β = γ = 2.10−2 at t = 5.10−4.

where subscript s accounts for the steady state. If the initial conditions (5.4.12), do

not correspond to the steady state (u0 6= us, v0 6= vs, w0 6= ws), we expect that the

system will evolve until it reaches a steady state.

This is a system of equations with widely varying diffusion coefficients. The initial

and boundary conditions are mismatched, which produces spurious oscillations in most

computational algorithms. In this case, α, β, γ > 0 are the diffusion coefficients and

ε1, ε2, ε3 > 0 are the respective decay rates of the species,

0 ≤ δij(u + v + w) ≤ l, (5.4.13)

for each i, j = 1, 2, 3, account for the control parameter of each species growth in the

chosen domain of length l.
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Figure 5.4.11: Plots showing the spatial distribution of (a) species u, (b) species
v and (c) species w obtained at t = 3000 for parameters α = 0.0, β = 0.0, γ = 0.0,
δ11 = 0.01, δ12 = 0.02, δ13 = −0.01, δ21 − 0.1, δ22 = 0.0, δ23 = 0.0, δ31 = 0.1, δ32 =
0.0, δ33 = 0.01, τ1 = 0.05, τ2 = −0.15, τ3 = −0.15,ε1 = 0.03, ε2 = 0.06, ε3 = 0.02 with
initial size u0 = v0 = w0 = 1. The local phase plane of model (5.4.10) is shown in
plates (d)-(f). The parameter values are the same as above.

The behaviour of the species in problem (5.4.10) are well explored in figures 5.4.12

and 5.4.13. These simulations was performed for 0 < t < 1000 in the interval of length

l = 40, 100, 200, .... It is apparent from Figure 5.4.12 that the amplitudes of oscillations

of the three species vary with time and the length of the computational domain. In
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Figure 5.4.12: Density profiles for the three species, modelled through (5.4.10), taken
at t = 30, 60, 210 for plots (a), (b) and (c) respectively. Panel (d) is showing the
oscillation of v concentration at t = 180. Parameter values are: α = 0.005, β =
0.1, γ = 0.1, δ11 = 0.08, δ12 = −0.08, δ13 = −0.01, δ21 = −0.1, δ22 = 0.0, δ23 = 0.0, δ31 =
0.1, δ32 = 0.0, δ33 = 0.01, τ1 = 0.05, τ2 = −0.15, τ3 = −0.25,ε1 = 0.03, ε2 = 0.06, ε3 =
0.02.

panels (a), (b) and (c), all the three components oscillate in phase but in (a), species

u (red) possess higher amplitude of oscillation between t = 30 and t = 53, at t < 30,

species v and w oscillate in opposite phase. Clearly from panel (b), as time increased

from t = 53 to t = 77, species w enjoyed high amplitude dominance forcing species u to

oscillates in opposite phase. The three species oscillate within themselves as t ≥ 180,

with structures overlapped. Oscillatory amplitude of v is shown in Figure 5.4.12 (d)

at t = 180 and the computational domain of length l = 40. It was observed that

species v never attains high amplitude at any time t in the domain but maintains an

intermediate position between the remaining two species.

Figure 5.4.13 presents various surface plot patterns obtained as a result of the

dynamical evolution from some small initial perturbations of (5.4.12) up to a steady
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Figure 5.4.13: Plots showing the dynamical evolution of the three species in (5.4.10),
obtained as a result of some small initial perturbations of (5.4.12) to obtain a steady
(periodic) state. The parameter values here are same to those used for Figure 5.4.12
but notice the scales on the vertical axes for different amplitudes in the surface plot
panels.

structures. Obviously, it can be deduced that the patterning process is greatly influ-

enced by choices of the bounds in (5.4.13) and the length of the computational domain,

result of Figure 5.4.14 is a proof to this assertion, we have been able to obtain steady

and non-oscillatory profiles for the three species.

Panels (a), (b) in Figure 5.4.14 are the space-time and surface plots indicating

when the concentrations of the three species oscillate in phase. As a result of further

perturbation of the initial conditions (5.4.12) and the diffusion coefficients, the dynamic

evolution of system (5.4.10) is stable and free of oscillations in panels (c) and (d). Notice

also the scales on the vertical axes for different amplitudes in the panels.
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Figure 5.4.14: Concentration profiles for the three species model (5.4.10) taken at (a)
t = 80 (b) t = 100 (c) t = 100 and (d) t = 100. Parameter values are: α = 0.007, β =
0.001, γ = 0.2, δ11 = 0.01, δ12 = 0.02, δ13 = −0.01, δ21 − 0.1, δ22 = 0.0, δ23 = 0.0, δ31 =
0.1, δ32 = 0.0, δ33 = 0.01, τ1 = 0.05, τ2 = −0.15, τ3 = −0.15,ε1 = 0.03, ε2 = 0.06, ε3 =
0.02.

5.5 Summary and discussions

In this chapter, we have considered some systems of reaction-diffusion equations that

explains the competition involving the interaction of three species in line with Turing’s

theory of pattern formation (spatiotemporal structures). Anomaly behaviour of the

three examples considered in this chapter have further shown that chaos and hyper-

chaos can occur in systems of autonomous ordinary differential equations (ODE’s) with

at least three variables and two quadratic nonlinearities. These amazing structures

occur due to proper selection of model parameters and suitable initial conditions. We

further demonstrates in this work the compatibility of finite difference with higher order

time stepping methods such as ETDRK4, IMEXLM4, IMEXRK4 and IMEXPC4. The

result of the computational experiment obtained in Figure 5.4.6 demonstrates that
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there is a wide difference between the fourth-order exponential time differencing Runge-

Kutta on combination with fourth-order finite difference scheme in terms of supremacy

over the family of fourth orders implicit-explicit methods used in this chapter. Finally

in the next chapter, we shall further extends our numerical approach to solve some

time-stepping stiff higher-order PDEs that are of parabolic types.

 

 

 

 



Chapter 6

Further exploration of higher order

numerical methods for other classes of

reaction-diffusion problems

In this chapter, we propose some more challenging numerical methods that can be

tested for a class of reaction-diffusion models. Our method of solution connects two

classic mathematical ideas since the semi-linear partial differential equations (PDEs)

we are considering can be split into a linear, which contains the stiffest part of the

problem, and a nonlinear part, that is expected to vary more slowly than the linear part.

For simulation tests, we choose periodic boundary conditions and apply fourth-order

central finite difference approximation for the spatial discretization. We first employ

the first and second order family of implicit-explicit (IMEX) schemes and compare

their performances. Later, we use the family of exponential time differencing (ETD)

schemes as discussed in earlier chapters to integrate in time. The problems considered

in this chapter are the higher order time-dependent Burgers-Fisher, Burgers, Fisher,

Kortewege-de Vries, Allen-Cahn and Kuramoto-Sivashinski equations, all in a bounded

one-dimensional domain. Numerical simulations of these time-dependent nonlinear

PDEs revealed some of the spatiotemporal behavioural patterns. The result of error

comparison with other more standard exponential time differencing (ETD) approaches

show that the ETDRK4 method is efficient, accurate and more reliable.
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6.1 Introduction

Nonlinear time-dependent parabolic partial differential equations (PDEs) (Allen-Cahn,

Burgers, Burgers-Fisher, Korteweg-de Vries (KDV), Fisher-KPP, Navier-Stokes and

Scrödinger) are often applied in various fields of science and engineering such as chemi-

cal kinetics, fluid mechanics, celestial mechanics, control theory, plasma physics, trans-

verse motion and other areas of applied mathematics to mention a few. In this chapter,

we are concerned with the numerical behavior of solutions of Burgers-Fisher, Burgers

and Fisher-KPP equations.

We are motivated with the desire to use implicit-explicit schemes to explore the

anomaly behavior of the generalized Burgers-Fisher equation (cf. [61, 90, 99]).

∂u

∂t
= ν

∂2u

∂x2
− αuδ ∂u

∂x
+ βu(1− uδ), x ∈ Ω, 0 ≤ t ≤ T, (6.1.1)

with initial condition

u(x, 0) = φ(x), x ∈ Ω, (6.1.2)

and the boundary conditions

u(0, t) = ga(t), 0 ≤ t ≤ T (6.1.3)

and

u(l, t) = gb(t), 0 ≤ t ≤ T. (6.1.4)

where t and x are the time and spatial coordinate respectively, φ(x), ga(t) and gb(t) are

the specified initial and boundary conditions, α, β and δ are the varying parameters

in the bounded domain Ω and ν is a nonnegative parameter describing the viscosity,

in mathematical context [10, 11] it is seen as the coefficient that controls the diffusion.

Numerical solution of equation (6.1.1) has been the subject of activity in the current

field of scientific research, many researchers have used different methods to integrate

Burgers-Fisher equation, among which is the spectral domain decomposition method

of Golbabai and Javidi [61], where fourth order Runge-Kutta method is used in time
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coupled with spectral collocation method using Chebyshev polynomial for the spatial

derivatives. Chen et al. [34] proposed the use of an exponential function (Exp-function)

method with the aid of symbolic computational system in a view to obtain a gener-

alized traveling wave solutions of a Burgers-Fisher equation with variable coefficients,

in a similar manner, Xu and Xian [197] used the approach of Exp-function method for

finding simultaneously exact solutions expressed by various exponential functions to

nonlinear evolution equations. Kaya and El-Sayed [94] introduced a numerical simula-

tion and explicit solutions of the generalized form of Burgers-Fisher equation.

A well-known Burgers equation is obtained when β = 0, α = δ = 1 in equation

(6.1.1) to yield
∂u

∂t
= ν

∂2u

∂x2
− u

∂u

∂x
, x ∈ Ω, t > 0, (6.1.5)

which was introduced in the twenties as a model of turbulence by Burgers [24] and

solved explicitly by Hopf [82] and Cole [35] in terms of the initial condition u(x, t = 0),

has led to a total understanding of the behavior properties of individual solutions in the

inviscid limit when ν → 0 . In fluids and gases, equation (6.1.5) can be interpreted as

modeling the effect of viscosity, and so Burgers equation represents a simplified version

of the equations of viscous flow.

By Hopf-Cole transformation in the limit ν → 0, the Burgers equation (6.1.5)

becomes the inviscid Burgers equation which is standard diffusion equation

∂u

∂t
+ u

∂u

∂x
= 0, x ∈ Ω, t > 0, (6.1.6)

and also a prototype equation for which the solution can develop discontinuities (shock

waves). We can also express (6.1.1) in terms of heat conduction equation when the

parameter values α = β = 0, to yield

∂u

∂t
− ν

∂2u

∂x2
= 0, x ∈ Ω, t > 0, (6.1.7)

where ν is taken as diffusion coefficient.

In addition, setting α = 0 and δ = 1, it is obvious that equation (6.1.1) reduces to

 

 

 

 



CHAPTER 6. FURTHER EXPLORATION OF HIGHER ORDER NUMERICAL
METHODS FOR OTHER CLASSES OF REACTION-DIFFUSION PROBLEMS157

a reaction-diffusion equation with quadratic kinematics

∂u

∂t
= ν

∂2u

∂x2
+ βu(1− u), x ∈ Ω, t > 0, (6.1.8)

called Fisher-KPP (Kolmogorov, Petrovskii, and Piskunov) equation, ν > 0 is regarded

as diffusion coefficient. The Fisher equation (6.4.6) is regarded as the simplest model

of spatial dynamics in which competitive interactions between individuals occur local

medium. This type of reaction-diffusion equation has a long standing history in math-

ematical modeling describing the propagation of phenomena in dissipative dynamical

models.

Equation (6.4.6) was earlier proposed by Fisher (1937) as a model applied to study

population dynamics, with u representing the density of an advantageous gene, and

the traveling wave solutions representing the spread of this gene in space. It also has

a wide important applications areas such as flame propagation, branching Brownian

motion processes, logistic population growth, autocatalytic chemical reactions and nu-

clear reactor theory. It universally agreed that nonlinear reaction-diffusion equations

play some important roles in various fields of physics, chemistry, biology and ecology

where developmental process appears in the form of a traveling wave of chemical con-

centration. Subsequent applications of Fisher equation have been varied and extended

to many research areas. For instance, in ecology for modeling waves of an invading

population, Holmes [80], wound healing models by Sherratt and Murray [179] with

solutions representing healing waves of cells in the skin.

The details qualitative analysis in the phase plane and traveling wave solutions of

equation (6.4.6) have been examined. Feng [49] investigates the behavior of a gener-

alized form of Fisher equation with a view of obtaining a class of traveling solitary

wave solutions. Sherratt [178] examines the traveling waves in Fisher equation us-

ing a transition from an initial data, Brazhnik and Tyson [22] examined the traveling

wave solutions of (6.4.6) in two spatial dimensions. Finding the numerical solutions

of nonlinear models is a difficult and has since become the major challenge of many

researchers, several analytical methods have been sought to obtain the wave solutions
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for pure dispersive nonlinear systems in one spatial dimension: the sinc collocation

method [4] and pseudospectral method of solution [147] among others.

The chapter is organized into some sections. In Section 6.2, we briefly discuss

the qualitative analysis of the Burgers-Fisher equation. In Section 6.3 we present the

numerical methods and their formulations in both space and time. Numerical results

based on some existing problems are well studied in Section 6.4. We give summary of

the main outcomes in Section 6.5.

6.2 Qualitative analysis of model problems

We describe briefly in this section the qualitative behavior analysis of nonlinear equa-

tion (6.1.1) by considering some of the important evolution equations (Burgers and

Fisher) that arise from it for simplicity. We have shown in section one that Burgers

Fisher equation turns to Burgers equation

ut = νuxx − uux, (6.2.1)

(6.1.5) when β = 0, α = δ = 1. Since equation (6.2.1) is first order in t, it means that

their solutions can be predicted uniquely by their initial values. We assume that,

u(x, 0) = ψ(x), (6.2.2)

here, the boundary effects are ignored. The easiest explicit solutions are the traveling

waves, for which u(x, t) = µ(ξ) = µ(x − ct), for ξ = x − ct, stands for a fixed profile

moving towards the right with a constant speed c. With the application of chain rule,

ut = −cµ′(ξ), ux = µ′(ξ), uxx = µ′′(ξ). (6.2.3)

Putting these expressions into (6.2.1), we obtain a nonlinear second order ordinary

differential equation

−cµ′ + µµ′ = νµ′′. (6.2.4)
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On integration of both sides with respect to ξ, we have

νµ′ = k − cµ +
1

2
µ2, (6.2.5)

where k is a constant, the quadratic polynomial on the right hand side is expected to

have two roots which requires k < 1
2
c2. We can also find the linear analysis of (6.1.5)

by ignoring the second term which invariably yields inviscid Burgers equation (6.1.6).

ut = αuux, α > 0, (6.2.6)

whose general solution is of the form

u(x, t) = ζ(x− αut), (6.2.7)

with ζ being an arbitrary function. We demonstrate further here that the wave profile

undergoes deformation when t is increased. By taking a close look at the method of

analysis adopted in [19], we differentiate (6.2.7) once with respect to x

ux(x, t) = (1− ζux(x, t)t)ζξ, ξ = x− αut, (6.2.8)

which we simplify further to have

u(x, t) =
ζξ

1 + tαζξ

. (6.2.9)

Equation (6.2.9) describes the slope of the u−profile at x, t in terms of the initial

profile at ξ for ξ = x, when t = 0. If the value of ζξ is negative, then ux(x, t) is

infinite at t = −1/αζξ which implies that the solution ceases to be single valued in the

neighborhood of x0 = ξ0 +αTζ(ξ0), ξ0 is the point at which −1/αζξ attains a minimum

value. We can as well investigate the changes in the slope of at ξ = ξ0 whenever t > T .

Assuming

t = T + τ =

(−1

αζξ

)

min

+ τ, τ ¿ 1 (6.2.10)
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we have

ux(X0(t), T + τ) =

(
ζξ

1 + tαζξ

)

ξ=ξ0,t=T+c

, (6.2.11)

X0(t) is the position of ξ at any time t. We therefore obtain

ux(X0(t), T + τ) =
1

ζτ
. (6.2.12)

As a result, we obtain ux(X0(T − 0), T − 0) = −∞ and ux(X0(T + 0), T + 0) = +∞,

this shows that as t increases, the wave profile undergoes a progressive deformation.
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Figure 6.2.1: Solution of (6.1.1), with ν = 0.0015, α = β = 0, t = 0.2(0.2)1.8,
N = 200 and x ∈ [−10, 10].

The medium described by (6.4.6) is often referred to as a bistable medium because

it has two homogeneous stationary states, at u = 0 and u = 1. For convenience, we

rewrite (6.4.6) in the form

ut = uxx + u(1− u), (6.2.13)

the traveling wave solution can be written in the form u(x, t) = u(ξ = x− ct), c is the

propagating wave speed , we have ordinary differential equation

−cuξ = uξξ + u(1− u) (6.2.14)

where u(ξ) > 0 and bounded with the boundary conditions for the traveling wave

solution u(ξ → −∞) → 1 and u(ξ → ∞) → 0, which are respectively stable and

unstable. Since (6.2.13) is invariant if x → −x, and the value of c is either positive or
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negative, specifically, we assume c ≥ 0. This suggest that we should look for traveling

wave solutions to (6.2.13) for which 0 ≤ u(x, 0) ≤ 1 since u(x, 0) < 0 has no physical

meaning. The speed of the waves has to be sought as solution for the eigenvalue

problem (6.2.14) subject to conditions [23, 139]

lim
ω→−∞

u(ξ) = 1, lim
ω→∞

u(ξ) = 0.

We let u(ξ) be U(ξ) in the phase plane (U, V ), where

U ′ = V, V ′ = −cV − U(1− U), (6.2.15)

which results to the solutions of the phase plane trajectories

dV

dU
=
−cV − U(1− U)

V
. (6.2.16)

This equation has steady states at the two singular points, say, ξ1 = (0, 0) and ξ2 =

(1, 0) for (U, V ). The eigenvalues λ for the singular points are given as

ξ1 : λ± = − c

2
±
√

c2 − 4

2
, ξ2 : λ± = − c

2
±
√

c2 + 4

2
, (6.2.17)

if c2 > 4, c ≥ cmin = 2, just as earlier pointed out by Fisher that (6.2.13) has an infinite

number of traveling wave solutions for which 0 ≤ u(x, 0) ≤ 1, we see from (6.2.17) that

the origin is a stable node, the case u(x, 0) = 1 for x < a, and u(x, 0) = 0 for x > b,

results to a unique solution that evolves into a travelling monotonic wave solution with

c = cmin. If c2 < 4 it is stable spiral that oscillates in the neighborhood of the origin.

It has been shown by Mckean [121] that any traveling wave speed with c > 2 is stable,

for instance, Ablowitz and Zeppetella [2] present an explicit form of a traveling wave

solution for (6.2.13) as

u(x, t) =

(
1 + exp

(
ξ√
6

))−2

, (6.2.18)

with a speed c = 5/
√

6. Readers are referred to [2, 21, 22, 121, 139] for further

analysis.
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Figure 6.2.2: Traveling wave solution for equation (6.2.13).

Other important time-dependent problems we are considering in this chapter in-

clude the general third-order KdV equation with periodic boundary conditions,

ut + uux + βuxxx = 0, x ∈ [−π, π], (6.2.19)

and the fourth-order Kuramoto-Sivashinsky equation.

ut = −uux − uxx − uxxxx, x ∈ [0, L], (6.2.20)

details of these models shall be discuss later in this chapter.

6.3 Numerical method

The method of solution of nonlinear PDEs of the form (6.1.1) are also in two parts, we

first apply fourth-order central difference scheme to discretize the spatial derivatives

in (6.1.1), and then use implicit-explicit (IMEX) schemes for the numerical integration

of systems of ordinary differential equations arising from the spatial discretization

of partial differential equations of parabolic type. We shall briefly discuss the steps

involved.
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Higher order spatial discretization:

The spatial discretization for all the equations studied is this chapter is done using

fourth-order central finite different schemes whose derivations are based on Taylors

series expansion techniques for the first and second derivatives in (6.1.1). Many

researchers have used finite difference methods in various forms (see for example,

[59, 103, 112, 126, 131, 149]).

The fourth-order central finite difference approximations used for the first, second,

third and fourth order partial derivatives in this chapter are:

∂u

∂x
≈ ui−2,j − 8ui−1,j + 8ui+1,j − ui+2,j

12h
, (6.3.1)

∂2u

∂x2
≈ −ui−2,j + 16ui−1,j − 30ui,j + 16ui+1,j − ui+2,j

12h2
. (6.3.2)

∂3u

∂x3
≈ ui−3,j − 8ui−2,j + 13ui−1,j − 13ui+1,j + 8ui+2,j − ui+3,j

8h3
, (6.3.3)

∂4u

∂x4
≈ −ui−3,j + 12ui−2,j − 39ui−1,j + 56ui,j − 39ui+1,j + 12ui+2,j − ui+3,j

6h4
. (6.3.4)

As usual, we shall write the general Burgers-Fisher equation(6.1.1) in the form

ut = νLu + F (u, t), (6.3.5)

where ν is the viscosity or simply diffusion coefficient term in mathematical context,

L and F represent the linear and nonlinear operators respectively. When discretize in

space, the result is a large system of ordinary differential equations (ODEs) of the form

ut = νLu + F(u, t), (6.3.6)
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where

L1 =
1

12h




0 8 −1 . . . 0 0 0

−8 0 8 . . . 0 0 0

1 −8 0 . . . 0 0 0

...
...

... . . . ...
...

...

0 0 0 . . . 0 8 −1

0 0 0 . . . −8 0 8

0 0 0 . . . 1 −8 0




(N−1)×(N−1)

(6.3.7)

L2 =
1

12h2




30 16 −1 . . . 0 0 0

16 30 16 . . . 0 0 0

−1 16 30 . . . 0 0 0

...
...

... . . . ...
...

...

0 0 0 . . . 30 16 −1

0 0 0 . . . 16 30 16

0 0 0 . . . −1 16 30




(N−1)×(N−1)

(6.3.8)

L1,L2 ∈ L, it shows that the resulting differentiation matrix representing the second

derivative in (6.3.5) is a pentadiagonal type which we compute as toeplitz matrix. Ex-

periments have shown that solving a linear system is nearly always less computationally

expensive than solving a nonlinear system of the form (6.3.6) since it contains F that

represents a non-stiff or mildly stiff part and L is a stiff term requiring implicit integra-

tion, so it is reasonable to propose a method that will reduce the time step constraint

as imposed by the linear term, this task is achieved by the use implicit-explict (IMEX)

methods that consist of using explicit multi-step formula to advance the nonlinear part

of equation (6.3.6) and an implicit scheme to integrate the linear part (for thorough
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discussion see [10, 66]).

Implicit-explicit (IMEX) schemes for discretization in time:

We want to discuss briefly here the implicit-explicit schemes for computing approxi-

mate solutions to large system of ordinary differential equations (6.3.6) arise from the

spatial discretization by central finite difference of the time-dependent partial differen-

tial equations (6.3.5). The first- and second-order schemes to be considered are derived

from general linear multi-step IMEX schemes [10] written in the form

1

k
un+1 +

1

k

s−1∑
j=0

αjun−j =
s−1∑
j=0

βjF(un−j, tn−j) + ν
s−1∑

j=−1

γjL(un−j), γ−1 6= 0, (6.3.9)

where ν is a nonnegative parameter referred earlier as viscosity or the diffusion coeffi-

cient term, k is the constant discretization step-size, and un is the numerical approx-

imation at tn = kn. Given an extension to the various schemes in [10, 103, 112], the

first-order IMEX scheme is presented as

un+1 = (I− νkL)−1[un + kF(un, tn)], (6.3.10)

is named in this chapter as (IMEXLM1), this scheme applies backward differentiation

formula to the linear part L to estimate the nonlinear part F at time step n + 1. The

second-order IMEX scheme which we called (IMEXLM2), applies Crank-Nicolson to

stiff part which we treated implicitly and second-order Adams-Bashforth to the non-

stiff part for which an explicit method is proposed.

un+1 =

(
I− νkL

2

)−1 [(
I +

νkL

2

)
un +

3k

2
F(un, tn)− k

2
F(un−1, tn−1)

]
, (6.3.11)

where I is the identity matrix of size (N − 1)× (N − 1).

In a similar way, first- and second-order IMEX predictor corrector schemes are

equally considered by applying s−step IMEX scheme [112] to (6.3.6) yields,
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one-step methods (IMEXPC1):

ūn+1 = (I− νkL)−1 [(I + (1− να)kL)un + kF(un, tn)] , (6.3.12)

as predictor, and

un+1 = (I− νkL)−1 [(I + (1− να)kL)un + k((1− α)F(un, tn) + αF(un+1, tn+1))] ,

(6.3.13)

as the corrector.

Two-step methods (IMEXPC2):

ūn+2 =

[(
α +

1

2

)
I−

(
α +

νβ

2

)
kL

]−1

([2αI + (1− α− νβ) kL]un+1+

[(
1

2
− α

)
I +

νβkL

2

]
un +

(α + 1)kF(un+1, tn+1)− αkF(un, tn)) , (6.3.14)

as predictor, and

un+2 = [

(
α +

1

2

)
I−

(
α +

νβ

2

)
kL]−1 ([2αI + (1− α− νβ)kL]un+1+

[(
1

2
− α

)
I +

νβkL

2

]
un +

(
α +

β

2

)
kF(ūn+2, tn+2) +

(1− α− β)kF(un+1, tn+1) +
α

2
kF(un, tn)

)
, (6.3.15)

as corrector. The choices of free parameters (0 ≤ α, β ≤ 1) in the schemes (6.3.12 -

6.3.15) allow us to generate varieties of methods.

Stability analysis of IMEX schemes:

For notational convenience, we write our Burger-Fisher equation (6.1.1) in the form

ut = νLu + F (u, t), (6.3.16)
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where Lu = uxx, the linear term and F (u, t) = αuδ ∂u
∂x

+ βu(1 − uδ), is classified as

nonlinear term. Also, α, β, δ and ν are positive constants, subject to periodic boundary

conditions. On applying the general IMEX sheme (6.3.9) to a test equation

χ′ = Aχ + iBχ (6.3.17)

yields

1

k
χn+1 +

1

k

s−1∑
j=0

αjχn−j =
s−1∑
j=0

βjB(χn−j, tn−j) + ν
s−1∑

j=−1

γjA(χn−j), γ−1 6= 0. (6.3.18)

The solution of difference equation (6.3.18) can be written in the form

χn+1 = %1τ
n
1 + %2τ

n
2 + · · ·+ %sτ

n
s

where τj, for j = 1, 2, . . . , s is the jth root of the characteristic equation given by

Γ(z) = (1− γ−1Ak)zs +
s−1∑
j=0

(αj − βjiBk − γjAk)zs−j−1 (6.3.19)

and %j is a constant for which τj is simple. Stability holds for |τj| ≤ 1. For instance,

considering the first-order scheme IMEXLM1, when equation (6.3.17) is applied, the

general IMEX schemes (6.3.9) yields

χn+1 = ξ(A,B)χn,

where

ξ(A,B) =
1 + kA(1− γ) + ikB

1− kγA
.

Thus, the stability region of (A,B) is such that |ξ(A, B)| ≤ 1.

In a similar manner, we can also obtain the conditions for IMEXPC methods by

using the scalar test equation (6.3.16) [54, 112]. That is, to analyze the stability of the
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IMEXPC schemes, we linearize the autonomous ODE

u′(t) = νu(t) + F (u(t), t), (6.3.20)

about a fixed point u0, so that νu0 + F (u0) = 0. We obtain

u′(t) = νu(t) + λu(t), (6.3.21)

where u(t) is the perturbation to u0 and λ = F ′(u0) is a diagonal or block matrix

containing the eigenvalues of F .

In our computation, transformation [112] is taken for (6.3.9), to obtain the following

predictor

ūn+s = [(αsI− νβkL)]−1

s−1∑
j=0

(−αjun+j + νkβjLun+j + kγjF(un+j, tn+j)), (6.3.22)

and the corrector

un+s = [(αsI−νβkL)]−1

s−1∑
j=0

(−αjun+j+νkβjLun+j+kβjF(un+j, tn+j))+kβsF(un+j, tn+j),

(6.3.23)

schemes. Since matrix L in (6.3.6) owns negative real eigenvalues, we are permitted to

set λ < 0, letting also λ = kλ and ν = kν, and substitute them for the test equation

(6.3.21) in the schemes (6.3.22) and (6.3.23) to give

un+s = [(αs−λβs)]
−1

s−1∑
j=0

[
−αj + λβj + νβj +

νβs

αs − λβs

(−αj + λβj + νγj)

]
un+j, β 6= 0.

(6.3.24)

Using Von Neumann stability analysis idea, we can now determine the stability region

of (6.3.24) by the characteristic equation

(αs − λβs)ξ
j =

s−1∑
j=0

[
−αj + λβj + νβj +

νβs

αs − λβs

(−αj + λβj + νγj)

]
ξj. (6.3.25)
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The IMEXPC scheme (6.3.12)-(6.3.13) is stable if no root of the characteristic

equation (6.3.25) has modulus greater than one and if every root with modulus one is

simple (that is, if all the roots of (6.3.25) lie in or on the unit circle).

So, the first-order IMEXPC schemes is stable if

∣∣∣∣
1 + λ + ν − λ2γ2 − (λ(λ + 2)− ν2)γ

λ2γ2 − 2λγ + 1

∣∣∣∣ ≤ 1.

Based on the roots condition in (6.3.25), we can easily verify that

ξ =
1 + λ + ν − λ2γ2 − (λ(λ + 2)− ν2)γ

λ2γ2 − 2λγ + 1
,

hence, ξ ≤ 1. This process can be repeated for the higher order IMEXPC schemes

depending on the choices of the parameters.
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Figure 6.3.1: Stability regions of (a) IMEXLM1 (6.3.10) and (b) IMEXPC1 (6.3.12)-
(6.3.13).

6.4 Numerical results

Effectiveness and accuracy of the methods discussed above are demonstrated with

some numerical examples. In our computation, we measure the accuracy in terms of

the maximum absolute relative error defined by

absolute relative error =
max1≤j≤N |uj − ūj|

max1≤j≤N |uj| , (6.4.1)
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where uj and ūj are the exact and computed values of solution u, and N is the number

of interior points defined on the collocation interval

{x1 = a, . . . , xi = a + (i− 1)h, . . . , xN = b}, h =
|b− a|
N − 1

. (6.4.2)

Burgers-Fisher equation:

In Figure 6.4.1, we present numerical result of Burgers-Fisher equation (6.1.1) subject

to initial and boundary conditions

φ(x) = u(x, 0) =
{

1
2

+ 1
2
tanh

(
−αδ

2(δ+1)
x
)}1/δ

,

u(0, t) =
{

1
2

+ 1
2
tanh

[
−αδ

2(δ+1)

(
−

(
α

δ+1
+ β(δ+1)

α

)
t
)]}1/δ

, t ≥ 0,

u(l, t) =
{

1
2

+ 1
2
tanh

[
−αδ

2(δ+1)

(
1−

(
α

δ+1
+ β(δ+1)

α

)
t
)]}1/δ

, t ≥ 0,





(6.4.3)

with exact solution

u(x, t) =

{
1

2
+

1

2
tanh

[ −αδ

2(δ + 1)

(
x−

(
α

δ + 1
+

β(δ + 1)

α

)
t

)]}1/δ

, t ≥ 0, (6.4.4)

for various parameter values of δ, α and β.

Burgers equation:

We present the numerical solution of Burgers equation

∂u

∂t
= ν

∂2u

∂x2
− βu

∂u

∂x
, x ∈ Ω, t > 0, (6.4.5)

for various initial conditions u(x, 0) = φ(x), x ∈ Ω, 0.001 ≤ ν ≤ 1, β > 0.

Fisher equation:

In Figure (6.4.7), we present the numerical results of well-known Fisher’s equation

∂u

∂t
= ν

∂2u

∂x2
+ βu(1− u), x ∈ Ω, t > 0, (6.4.6)
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Figure 6.4.1: Numerical solution for Burgers-Fisher equation (6.1.1) at different
parameter values for N = 200 with time-step k = 0.0001, (a) α = 1, β = 1, δ = 1, ν = 1,
t = 0.1, 0.2, ..., 0.9, (b) surface plot at time t = 0.9, α = 1, β = 1, δ = 1, ν = 1. Panel
(c) is obtained at t = 0.6, β = 5, 7, 9, 11, ν = 1, α = 2 and δ = 2. Surface plot (d)
shows solution at time t = 0.6, β = 11, δ = 2, ν = 1 and α = 2.
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Figure 6.4.2: Performance of IMEXLM1, IMEXLM2, IMEXPC1 and IMEXPC2 when
applied to solve Burger’s-Fisher equation (6.1.1) at parameter values ν = 0.5, α = 2,
β = 5, δ = 2, t = 1, and N = 250 for x ∈ [−50, 50].

subject to periodic boundary conditions in the interval −L ≤ x ≤ L and some initial

conditions

u(x, 0) = φ(x), (6.4.7)
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Figure 6.4.3: Numerical solution of Burgers equation (6.4.5) at different parameter
values and for u(x, 0) = sin(32πx).
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Figure 6.4.4: Numerical solution of Burgers equation (6.4.5) for different parameter
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Figure 6.4.5: Solution of inviscid Burgers equation (6.1.6) for different parameter
values and different initial conditions.
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Figure 6.4.6: Performance of IMEXLM1, IMEXLM2, IMEXPC1 and IMEXPC2
when applied to solve Burgers equation (6.4.5). Other parameter values are ν = 0.001,
β = 0.2, t = 1, and N = 200 for x ∈ [−20, 20].
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Figure 6.4.7: Numerical solution of Fisher’s equation (6.4.6) for various initial con-
ditions.

In Figure 6.4.7, we present the solution of Fisher equation (6.4.6). The parameter

values are: (a) φ(x) = [1 + 5/6 exp (6x/
√

6)]−2, t = 2, 4, 6, 8 and L = 150; (b) φ(x) =

[1 + exp (x/
√

6)]−2, t = 2, 4, 6, 8 and L = 150; (c) φ(x) = 1/cosh δx, δ = 0.125,

t = 1, 2, 3, 4, and L = 150; (d) φ(x) = sin πx, t = 0.04, 0.08 and L = 1; (e) φ(x) =
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5 tanh πx, t = 0.04, 0.08 and L = 50; (f) φ(x) = tanh x, t = 0.04, 0.08 and L =

150; (g) φ(x) = 1/1 + (x + 2.75)−2, t = 1, 3, 5 and L = 150; (h) φ(x) = sin πx,

t = 0.04, 0.08, 0.16 and L = 5.
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Figure 6.4.8: Performance of IMEXLM1, IMEXLM2, IMEXPC1 and IMEXPC2
when applied to solve Fisher’s equation (6.4.6) for parameter values ν = 0.5, β = 0.15,
t = 1, and N = 250 for x ∈ [−5, 5].

Korteweg-de Vries equation:

The Korteweg-de Vries (KdV) equation has a long standing history dating back to

1895, when Korteweg and his associate, de Vries developed an important equation

known as KdV [101]. The equation was used to describe the theory of water waves

in shallow channels. KdV equation is a nonlinear equation that exhibits special so-

lutions referred to as solitons, it is the simplest model of the dispersive waves which

under certain simplifying conditions covers cases of surface waves of long wavelength

in liquids, plasma waves [87], lattice waves, weakly nonlinear magneto-hydrodynamic

waves, acoustic waves in an inharmonic crystal [200] and ion-acoustic waves [148, 164].

KdV equation in modified form incorporates both convection and diffusion properties

in fluid mechanics to illustrate shock waves [196]. The wide applicability of KdV equa-

tions is the main reason why over many years, they have attracted so much attentions

in various fields of mathematics, physics and engineering.

We investigate the general third-order KdV equation with periodic boundary con-

ditions,

ut + uux + βuxxx = 0, x ∈ [−π, π], (6.4.8)
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for the dispersive waves in one and two and three soliton solutions. β is nonnegative

diffusion coefficient. By neglecting the reaction term in (6.4.8), we have the linearized

form of the KdV equation

ut + βuxxx = 0, (6.4.9)

for which the dispersion relation takes the form ω = −βγ3 (say, a function of γ). Since

ω′′(γ) 6= 0, it implies that the wave is dispersive.

By using the following transformation,

x → β
1
3
x, u → −6β

1
3
u, t → t.

Equation (6.4.8) becomes

ut − 6uux + uxxx = 0. (6.4.10)

Next, we sought for solution of (6.4.8) that is transported in the general form

u(x, t) = φ(x− ct),

where c is the wave speed. On substituting in (6.4.20), we have

−cφ = −φ′′′ + 6φφ′,

which on integration yields

−cφ = −φ′′ + 3φ2 +
1

2
A.

On multiplying through by 2φ′ and then integrate to give

φ′2 = 2φ3 + cφ2 + Aφ + B,

where A and B are the constants of integration. We assumed that the initial condition

u(x, 0) = u0(x) is to be bounded and continuously differentiable, we want a solution

for which u, ux, uxx → 0 as x →∞. Under these boundary conditions the solitary wave
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solution of (6.4.10)is

u(x, t) = φ(x− ct) = − c

2
sech2

(√
c

2
(x− ct) + C

)
, (6.4.11)

where C is constant. Readers are referred to [19] for further analysis.

We subject (6.4.8) to initial conditions

u(x, 0) =
c

2
sech

(√
c

2
(x + 8)

)2

, (6.4.12)

and

u(x, 0) = Btanh(ν(x + 1)), (6.4.13)

for one soliton solutions.
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Figure 6.4.9: One soliton solution for KdV equation (6.4.8), using initial condition
(6.4.12) and with N = 200, x ∈ [−15, 5]. The parameter values used are: (a) t =
0.0005, c = 20 and β = 1, (b) t = 0.005, c = 5 and β = 0.05.
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Figure 6.4.10: One soliton solution for KdV equation (6.4.8) using initial condition
(6.4.13), for β = 1,B = 20 and with parameter values (a) t = 0.00005, ν = 0.1, (b)
t = 0.01, ..., 0.05, ν = 0.9 and (c) t = 0.005, ν = 0.05.
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Likewise, we consider initial conditions

u(x, 0) = 3A2sech

(
A(x + 2)

2

)2

+ 3B2sech

(
B(x + 1)

2

)2

(6.4.14)

and

u(x, 0) = 2sech(x)2 + 0.5sech(0.5(x− 4π))2, (6.4.15)

for two soliton solutions.
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Figure 6.4.11: Two soliton solutions for KdV equation (6.4.8), for t = 0.0001, A = 25,
B = 16 and β = 1, and using initial condition (6.4.14).
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Figure 6.4.12: Two soliton solutions for KdV equation (6.4.8) using initial condition
(6.4.15), for β = 1.

The variability in the positions of the smaller soliton along the space interval [-10

10] is shown in Figure 6.4.12.

We finally conclude based on the results obtained in figures 6.4.9-6.4.13 above, that

soliton travelling from x = −∞ to x = ∞ except that they differ in phase. In case of

two solitons, a double wave solution which breaks into two solitons as t → −∞ and as

t →∞. According to KdV equation, the effect of nonlinear interaction between them
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Figure 6.4.13: Solitons travelling from x = −∞ to x = ∞ with different phase for
KdV equation (6.4.8).

simply displaces their relative position. This is much evident in Figure 6.4.14 (b) that

represents interaction of two disparate solitons with different velocities and amplitudes

starting from t = −∞, the bigger following the smaller. The actual interaction takes

place mainly from t = −10 to t = 10. We can see clearly that at first the bigger soliton

begins to swallow the smaller one, at t = 0 they both combine to form a single double

wave, then the bigger soliton emerges out leaving the smaller soliton behind. As t is

increased say, t = 0.62, both appear as separate solitions.

For the three solitons, we consider the initial condition

u(x, 0) = 3 exp(−20(x + 4)2) + exp(−20(x + 1)2) + 2.05 exp(−10(x− 4)2). (6.4.16)

Numerical solutions are represented for 0 ≤ t ≤ 3.5 in Figure 6.4.15.
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Figure 6.4.14: Interaction of (a) one and (b) two solitons for KdV equation (6.4.8).
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Figure 6.4.15: Three solitons solutions for KdV equation (6.4.8): (a) t=0.005, (b)
t=0.0001.

Allen-Cahn (bistable) equation:

Allen-Cahn equation was earlier introduced in the combined work of Allen and Cahn

[6] to give a description of the motion of anti-phase boundaries in crystalline solids

and other phase transition problems. Allen-Cahn equation have been widely studied

in various forms for many complex and rigorous moving interface problems in applica-

tion areas of materials science and fluid dynamics via a phase-field technique (see for

example, [84, 113]. Various numerical methods have been used to solve Allen-Cahn

equation [3, 48, 85, 177, 202].

We consider Allen-Cahn equation

ut = δuxx + u− u3, x ∈ [−l, l], (6.4.17)
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subject to initial conditions

u(x, 0) =
1

100

[
53x + 47 sin

(−3πx

2

)]
, x ∈ [−l, l],

(6.4.18)

with constant dirichlet boundary conditions,

u(−l, t) = −1, u(l, t) = 1, (6.4.19)

where δ is a positive parameter value. This equation has three steady states, u = −1

and u = 1 are stable, u = 0 is unstable. The states u = ±1 are attracting, meaning

that any solution will converge either to −1 or 1 and makes the region −1 ≤ x ≤ 1

invariant. The solutions tend to exhibit flat areas close to the values separated by

interfaces that may amalgamate or vanish on a long time scale, this phenomenon is

referred to as metastability [187].

Compared to the Fisher equation, the bistability equation uses an improvement of

the logistic growth term u(1− u); for instance, if the population density u(x, t) is too

low, it could lead to an extinction by lack of encounters between individuals, this is

termed Allee effect [23, 102, 139, 140].

At first, in Figure 6.4.16 the solution displays sinusoidal-like pattern but sometimes,

the periodic oscillation becomes less strong, dampens and then turns flat, which we

referred to as a steady state profile.

Kuramoto-Sivashinsky equation:

The Kuramoto-Sivashinsky (KS) [187], equation in one space dimension is given by

ut = −uux − uxx − uxxxx, x ∈ [0, L], (6.4.20)

where L is periodic with initial condition

u(x, 0) = cos
( x

16

)(
1 + sin

( x

16

))
. (6.4.21)
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Figure 6.4.16: Time evolution for the Allen-Cahn equations (6.4.17)-(6.4.19), for
ω = 16, 0 ≤ t ≤ 100, the x-axis runs from x = −1 to x = 1 with diffusion coefficient
in the range [0.001,0.01].

The three terms on the right hand side of (6.4.20), correspond in a unique way to

nonlinear advection term that acts as medium of transfer of energy from low to high

wave numbers , energy input at large scales that posses the destabilizing effect and

dissipation at small scales with stabilizing effect respectively. The KS equation dates

back to mid-1970s, it was first derived by Kuramoto in the study of reaction-diffusion

and later considered in higher space dimensions by Sivashinsky to model small thermal

diffusive instabilities in laminar flame fronts. The KS equation arises primarily in the

description of stability of flame fronts and solidification problems in reaction-diffusion
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Figure 6.4.17: Performance of ETDRK4, ETDM4, ETDM5, ETDM6 and ET-
DADAMS4 methods for solving the Allen-Cahn equation with N = 200, δ = 0.5
and T = 1 on [-1,1].

systems, it was described as one of the simplest and most interesting nonlinear PDEs

whose behaviour exhibit spatiotemporally chaotic solutions. Numerical solution of KS

equation has generated a lot of attentions [92, 96] because of the fourth-order term

present in it.

In this context, we present only the numerical study of KS equation (6.4.20), to

display various chaotic structures and pattern formations subject to the periodic bound-

ary condition with initial data L. Readers are referred to [39, 65, 105, 109], for further

analytical study, structure, stability and bifurcation characteristics.

Figure 6.4.18: A typical spatiotemporally chaotic structure of the solution of the
Kuramoto-Sivashinsky equation (6.4.20) emerging from smooth initial data on interval
of length L = 32π.
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Figure 6.4.19: Time evolution of the Kuramoto-Sivashinsky equation (6.4.20) at some
initial conditions for L = 32π.

The plots in Figure 6.4.19 demonstrate how each initial data evolves into a much

more complicated structure.

6.5 Summary and discussions

In this chapter, four implicit-explicit (IMEXLM1, IMEXLM2, IMEXPC1, IMEXPC2)

schemes have been used for the time integration in conjunction with fourth-order cen-
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tral finite difference in space for the numerical exploration of various features and

patterns in the solution of the popular Burgers-Fisher equation. In figures 6.4.2, 6.4.6

and 6.4.8, we illustrate the tradeoff between the time step and the accuracy, with a

gold-standard run (computed with IMEXLM1, IMEXLM2, IMEXPC1, IMEXPC2 and

∆t = 10−4 ), the absolute relative errors are displayed as a function of the time step.

One observes that the convergence of the schemes is mostly influenced by the choice of

the parameters because it is very difficult to say decide which scheme has the best con-

vergence, for instance, IMEXPC2 appears best for Burgers-Fisher equation, IMEXPC1

takes the lead for the Burgers equation while IMEXLM2 shines for the Fisher equation.

All the codes run faster under two seconds. Another benefit of our approach is that

the schemes used here, with some modifications, can be extended to solve nonlinear

reaction-diffusion equations.

Later, we considered the use of higher-order exponential time differencing schemes

for the numerical solution of nonlinear time-dependent stiff PDE problems such as the

korteweg de Vries (KdV) equation, Allen-Cahn equation and the Kuramoto-Sivashinsky

(KS) equation. Comparing with the existing exponential time differencing (ETD)

schemes, such as the multi-step methods of orders 4,5,6, discussed in the previous

chapter, we can deduce from the results obtained in Figure 6.4.17 that ETDRK4 pro-

vides a better accuracy over its higher-order time-stepping counterparts. Compatibility

and accuracy of our approach are justified via numerical experiments.

 

 

 

 



Chapter 7

Concluding remarks and scope for

future research

The main aim of this thesis was to design, analyze and implement several high order

time stepping methods to solve various reaction-diffusion problems through a careful

examination of these methods for stability, accuracy and practicability when applied

to very complex reaction-diffusion systems.

We explored the use of higher-order finite difference approximations in space in

conjunction with ETD schemes in time to provide an accurate and reliable numer-

ical results. The derivation of the explicit exponential time differencing (ETD) of

Adams-type, denoted as ETDADAMS4, and those of Runge-Kutta type, abbreviated

as ETDRK4 are both of order four. These schemes are used as our time-stepping

methods for the numerical integration of large system of ODEs arising from the space

discretization method. Stability properties of these methods were illustrated through

several figures where we plotted the boundaries of the stability regions in two dimen-

sions for negative and purely real values of the stiffness parameters in the test problems.

Our findings revealed that these methods possess different features in terms of stability.

For instance, as the order of ETDRK schemes increases, their stability regions are also

increased. One may note that even though the lower order ETD schemes are not used

in this work but we carried out their stability analysis for us to have full comparative

understanding of their behaviours.
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We have also discussed the stability properties of ETDADAMS4 in both complex

and real planes. In case of complex plane, the ETDADAMS4 has the largest stability

region in which the lower order counterparts are enclosed. This is in contrast to the

stability regions in the real (x, y) plane as the stability regions of ETDADAMS4 scheme

is reduced as the order of the method is increased.

We have provided further justification to the assertion made by Kassam and Tre-

fethen [92] on the efficiency and suitability of ETDRK4 schemes in conjunction with

spatial discretisation methods by comparing it with exponential time differencing method

(ETDADAMS4) of Adams type and exponential time differencing multi-step (ETDM4,

ETDM5, ETDM6) methods. This approach was tested by considering the nonlinear

form of reaction-diffusion equations. Regarding accuracy and computational (CPU)

time in the solving such nonlinear equations, we found that the ETDRK4 method

is the best among above mentioned methods. This method maintains good stability

properties and produces high accuracy with reasonable computational effort.

In the same manner, further numerical simulations of the scalar type of reaction-

diffusion problems are also considered. We have studied the Fisher equation (to ex-

amine the rate of diffusivity, logistic growth and speed selection process) and the den-

sity dependent Nagumo equation. We believe also that the work done in Chapter 2

could grant an insight to the understanding of pattern formation in scalar reaction-

diffusion systems. In comparison with other existing numerical methods that solve

Fisher equation, our approach compared favourably. The ETDRK4 method demon-

strates its superiority over of the existing ETD schemes used in terms of accuracy and

convergence. The most amazing factor is the fact that the ETDRK4 is found to be

much more accurate than fifth and sixth order ETD multi-step schemes. Biologically,

the result presented in this chapter are found interesting and seen as means of display-

ing the complexities that nonlinearity has introduced into the simplest equations of

population biology.

In Chapter 3, we considered two-system of reaction-diffusion equations. This type

of equations could yield some interesting phenomena, such as, pattern formation far

from equilibrium, pulse splitting and shedding, reactions and competitions in excitable
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systems, nonlinear waves and spatiotemporal chaos. Our results have sparked renewed

interest in reaction-diffusion models for biological pattern formation and, in particular,

the roles that domain growth and diffusion coefficient played in the pattern formation

mechanism.

The dynamic complexities of some other reaction-diffusion models consisting of

prey-predator systems, competitive systems, and mutualism systems are studied in

Chapter 4. Both the cases, with and without diffusions, are well discussed in this

chapter.

In Chapter 5, some stiff systems of reaction-diffusion equations that explains the

competition involving the interaction of three species in line with Turing’s theory of

pattern formation are solved. Anomaly behaviour of the three examples considered

have further shown that chaos and hyper-chaos can occur in systems of autonomous

ordinary differential equations with at least three variables and two quadratic nonlin-

earities. These amazing structures occur due to proper selection of model parameters

and suitable initial conditions.

We further demonstrated the compatibility of high accuracy finite difference dis-

cretizations with higher-order time stepping IMEX methods. We are not surprised

with the ill-performance of the IMEX schemes. Despite their simplicity and frequent

usage, they are restricted from having an order higher than two if A-stability (which

indicates the property that physically decaying solutions are numerically damped for

any choice of time-step) is required. Such schemes are then extended to solve a number

of nonlinear problems in Chapter 6.

In summary, the methods developed and implemented in this thesis gave us very

robust results.

As far as the scope for future research is concerned, we are currently exploring

the following:

• Firstly, we aim to develop a robust time-discretization methods that can enhance

numerical studies of higher-order problems with linear and nonlinear stiff terms

present in other complex models in mathematical biology.
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• We are also extending our numerical methods to solve some reaction-diffusion

models covering a diverse range of physical phenomena.

• Proposed numerical methods in this thesis can also be extended to solve reaction-

diffusion problems in two-dimensional space.

• It should be noted that we have used higher order finite difference approximations

for spatial discretizations in this thesis. To this end, we are currently working

on the use of spectral methods for spatial discretization in conjunction with the

exponential time-differencing integrators as well as, spectral discretizations for

both time and space discretizations.
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