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ABSTRACT

Clay diagenesis phenomenon and their effects on some petrophysical properties of

lower   cretaceous   silliciclastic   sandstones,   offshore   Orange   basin   have   been

established.  Previous  studies  on  Orange  basin  revealed  that  chlorite  and  quartz

cements have significantly compromised the reservoir quality in this basin but it is

expected that the reservoirs shows better improvement basinward, an analogy of this

is displayed by tertiary sandstones deposit, offshore Angola.   The main goal of this

thesis is to perform reservoir quality  evaluation by  intergrating geological,

geochemical and geophysical tools to substantiate the effects of clay  minerals

distribution and its subsequent diagenesis on the  intrinsic  properties (porosity,

permeability  and saturation) of reservoir intervals encountered within three wells in

block 3A (deeper waters), offshore Orange basin.

Five lithofacies were identified based on detailed core  description from wells KF-1,

KH-1 and AU-1 in this block. The  facies were grouped based on colour and grain

sizes, they are named : A1 (shale), A2 (sandstone), A3 (siltstone), A4 (dark coloured

sandstone)  and A5 (conglomerates).Depositional environment is predominantly

marine,  specifically, marine  delta  front  detached bars  and deepwater  turbiditic

sandstone deposit. Geophysical wire line logs of gamma ray, resistivity  logs combo

and porosity logs were interpreted, parameters and properties such as VCL, porosity,

permeability  and saturation were estimated from these logs and the values obtained

were compared with values from conventional core  analysis data, the values agreed

well with each other. Detailed petrographic studies (SEM, XRD and thinsection) plus

geochemical  studies  (CEC,  EDS,  pH,  Ec)  were  carried  out  on  twenty  two  core

samples to establish if these clay minerals and other cements have pervasive effects

on the reservoir quality or otherwise.

The reservoir within KF-1 well is thin and has an extreme low permeability  value

averaging 0.01 md, core porosity of 10 %, sonic log derived porosity of 14.6 % and

average gas and water saturation of 18 % and 82% respectively (Simandoux model)

.AU-1 well reservoir is 6.5 metres thick with estimated values of 10 % for porosity,

permeability of 0.015md, VCL of 32 % and water saturation value of 65 %. KH-1

well has reservoir thickness of  about 9 m while  water saturation estimated from

Simandoux saturation model is 50 %. Porosity is low with an average of 8.9 %, VCL

 

 

 

 



iii

of 30 % also extreme low permeability  value of 0.09 md. There were consistent

presence of kaolinite, montmorillonite and quartz cement within the reservoirs of the

three  wells from observations made  from SEM, SEM analysis also revealed the

presence of chlorite at a deeper depth, chlorite might have been formed from kaolinite

due to the presence of Mg and Fe as observed from EDS plus an alkaline pore fluids

as interpreted from the porewater pH. SEM also revealed the presence of illite in KH-

1 well which is not present in the other two wells (AU-1 and KF-1).

XRD confirms the presence of these minerals as observed from SEM interpretation

and specifically the presence of illite in KH-1,  it however does not indicate the

presence of chlorite. Other cements such as albite, siderite, calcite and halite were also

detected from the XRD .Thin section analysis reveals the presence of glauconite in

KF-1 well and KH-1 well, this observation implies marine environment influence in

the reservoirs, this is further justified by the detection of halite from XRD. The pH of

porewaters in all wells range from slightly acidic nature to predominant alkaline pore

fluids, specifically from 6.78 - 9.5 while CEC ranges between  27 - 64.5 meq/100g for

AU-1 well, 5 - 6.6 meq/100g for KF-1 well, and 7.3 - 80.5 meq/100g for KH-1 well.

These values implies the dominance of mixed clay minerals of K-S and S-I layers

coupled with the occurrence of chlorite and illite which were formed at a later stage of

the paragenetic sequence. Clay minerals occurred as pore coating and pore filling in

the reservoirs while the presence  of  montmorillonite, quartz cements and calcite

cements  indicates  that  there  have  not  been  great  improvements  on  the  reservoir

quality in deeper waters.

It  was  deduced  that  pervasive  cementation  of  quartz,  calcite,  montmorillonite,

chlorite and illite cements exerted a major effect on the porosity and permeability of

lower Cretaceous sandstones in block 3A, Orange basin. Judging by this study, the

peculiar Orange basin reservoir quality problems persist and ultra deep waters may be

further explored for reservoirs with better quality.

Keywords: Clay minerals, Diagenesis, Petrophysical properties, Cretaceous sandstones and

Orange basin.
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1.1   Introduction 

The Orange basin is situated at the South western continental margin of South Africa and covers 

an estimated area of 130,000 km
2
 (Gerrard and Smith, 1982).The basin has been in the spot light 

recently due to its seeming potential to host significant accumulations of hydrocarbons, and 

because the successful exploration and discovery of economic accumulations of hydrocarbons in 

this basin hold huge implications for the growth and development of the South African economy. 

The basin is often regarded as an underexplored basin (PASA Brochure, 2003), therefore there is 

a need to continuously search for and expose detailed geological constraints which are limiting 

the economic viability of the basin.  

This study is centred on assessing how distribution and diagenesis of clays affect the basic 

petrophysical properties (porosity, permeability and saturation) of the lower Cretaceous 

sandstones encountered within the basin. The importance of examining the effects of clay 

diagenesis in Block 3A (deeper waters), offshore Orange basin arose from previous work by 

Jikelo (2000) and Adekola (2010) who observed that lower Cretaceous sandstones in the Orange 

basin have consistently shown low porosity and permeability due to quartz and clay cements, 

despite being siliciclastic , however Jikelo (op.cit) suggested the situation would improve 

basinward (deeper waters) where the depositional environment is more favourable for the 

formation of rock units with better quality, an analogy of which is displayed by Tertiary channel 

deposit, offshore Angola. In view of this, it is assumed that these defects (poor porosity and 

permeability) could be either pervasive or show significant improvement as a result of post 

depositional alterations of clay minerals in deeper waters, hence, the justification of this study. It 

should be noted that the continous appraisal and development of any hydrocarbon field is often 

based on the values calculated from petrophysical properties. 

 

 

 

 

 

 

 

 



 2 

Clays are regarded as phyllosilicate minerals which are formed on the surface (alterites, soils and 

sediments) or in some subsurface conditions (diagenesis and hydrothermal) (Bjorkum and 

Nadeau, 1998). Despite substantial scientific research reports, accurate determination of the 

petrophysical effects of clay minerals on reservoir quality has been challenging because clay 

minerals and other sedimentary materials can exist in sandstone reservoirs as a detrital shale 

component in the form of shale laminae, structural clast and dispersed shale matrix and can also 

be present as authigenic clays in sandstones (Bjorkum and Nadeau , op.cit). 

Different authigenic clay minerals that have been identified include pore filling kaolinite, pore 

lining chlorite, pore bridging illite and a swelling smectite (Ellis and Singer, 2007). The 

petrophysical and hydraulic properties of sandstones could be affected by the intrinsic properties 

of these clay minerals while the pore geometry can also be associated with the occurrence and 

spatial distribution of clays and clay minerals (Wilson and Pittman, 1977). Worthington (2008), 

used a petrophysical model to characterize the effects of clay mineralogy on sandstones; the 

model explains that porosity logs (sonic, density and neutron logs) must be corrected for clay 

mineral effects before porosity can be evaluated.  

Wilson (1977) , highlighted the importance of diagenesis in petroleum exploration and proposed 

a diagenetic trap as another type of trap in petroleum exploration. In the Brazillian Espirito 

Santos basin, distribution of clays and its diagenetic effects exert a major influence in promoting 

the development of very heterogeneous, complex and irregularly-connected pore systems which 

strongly impact oil recovery from the clastic pre- salt reservoirs, (De Ros et al, 2009). The 

control of diagenesis on the petrophysical properties of reservoirs is crucial for the construction 

of a model for characterization and prediction of reservoir quality during exploration and 

production. 
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Figure 1.0: Thesis Framework 
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 4 

 

1.2 Aims and Objectives of study 

The aim of this study is to assess the effects and influence of clay diagenesis on reservoir quality 

of lower Cretaceous sandstones, offshore Orange basin. The assessment will be done by 

examining, integrating and interpreting results from core descriptions, wire line logs, 

geochemical analyses and petrographic studies to understand clay diagenetic constraints on basic 

petrophysical properties of reservoir zones identified from cores and gamma ray logs in three 

wells. The petrophysical property values (porosity, permeability, saturation) would be estimated 

from computed petrophysical interpretation (CPI) of geophysical wireline logs using Industry 

acceptable mathematical formulas suitable for calculating appropriate parameters. Various 

diagenetic clay minerals and their significant effects will be clearly defined and a diagenetic 

model will be constructed to illustrate timing of formation and differential distribution of clay 

minerals in the three wells under study. 

The objectives of this study amongst many includes; 

 To understand the linkage between clay diagenesis, depositional environments and 

petrophysical characteristics of the sandstone reservoirs. 

 Use this linkage to understand the importance of clay effects on the reservoir quality of 

the sandstones units. 

 To provide, based on analyses carried out, the most qualitative reservoir zones that could 

be charged by hydrocarbon migration. 

 1.3 Scope of Work; 

           The scope of this study is outlined below; 

 Delineation and lithological description of reservoir intervals. 

 Estimation   of basic petrophysical parameters to appraise the reservoir quality. 

 Assessment of distribution of clays and their diagenesis to understand the constraints 

they place on reservoir quality. 
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 Cation exchange capacity and EDS (Energy Dispersive Spectrometry) analysis of 

delineated reservoirs to know the exchangeable cations and basic elemental 

composition of the reservoirs respectively. 

 Analysis of interstitial pore waters of the reservoir sands to know the influence of Ec 

and Ph on clay diagenesis. 

 Interpretation of pore systems by identifying clay minerals lining, filling or bridging 

the reservoir pores through thin section and Scanning Electron Microscopy (SEM). 

 Construction of a diagenetic model to show the distribution of clay minerals in the 

three wells under study. 

 X-ray diffraction (XRD) analysis for phase quantification of clay minerals. 

 1.4 Study Area 

The Orange basin, offshore South West Africa is located within the passive continental margin 

of the South Atlantic between 31
0
 and 35

0
 S. It was developed within a divergent plate  setting in 

response to extensional tectonics of the lithosphere that is  related to the divergence of the South 

American and African plates in the late Jurassic; this was followed by seafloor spreading and 

opening of the South Atlantic Ocean in the Early Cretaceous around 136 Ma (Macdonald et al., 

2003, Reeves and  de Witt, 2000, Brown et al.,1996).The wells under study fall within block 

3A,offshore Orange basin, the exploration rights are held by a joint arrangement of PASA, Sasol 

and BHP Billiton. The focus of the study is centred on reservoir zones encountered in three wells 

which include AU-1, K-F1 and KH-1, their respective location is listed in Table 1.0 
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Table 1.0:  Names and Locations of wells studied 

Wells Total Depth    

(m) . 

 

Bottom hole 

temperature (
o
C) 

Kelly Bushing 

to Sea level (m) 

 

Coordinates 

AU-1 3427 116.7
 

25m Latitude 31
0
 

38
’
, 50.140” S 

 

Longitude 16
0 

30, 23. 306
” 
E 

 

KH-1 4268 140
 

25m Latitude 31
o 

02
’
, 20.96

’’ 
S 

 

Longitude 15
0 

55’,23.98’’ E 

 

KF-1 3800 120
 

22m Latitude 31
0 

16
’’ 

28,92
’’
S 

 

Longitude 16 

00, 36,70
”
 E 
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Figure 1.1 Western, eastern and southern offshore zones of South Africa 

(Petroleum Agency SA brochure 2003) 
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                      Table 1.1:  List of Samples and Wells studied. 

AU-1 well Sample 

Depth(m) 

KF-1 well Sample 

Depth(m) 

 KH-1 well Sample 

Depth(m) 

2684.05 3006.25 3066 

2684.67 3007.07 3067 

2685.39 3007.6 3068.09 

2685.84 3008.13 3068.92 

2686.51   3069.9 

2687.8   3070.89 

2688.38   3072 

2690.33   3074.42 

    3082.25 
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Figure 1.2: Location Map Of block 3A offshore Orange basin, (Petroleum Agency Report, 2008) 
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Figure 1.3 Locality map of wells in Block 3A, Offshore, West Coast Orange Basin. (Modified 

from Geological well report of three wells studied). (PASA Brochure, 2008). 
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1.5 Previous work on Orange basin 

There have been relatively few published articles on the Orange basin which discuss the geology, 

petroleum systems and the structural features. There is an increasing need for industry 

professionals and academics alike to continually expand their research aims and scope to delimit 

factors of economic viability and increase the prospects of hydrocarbon recovery in this basin. 

Paton et al.,(2007) investigated petroleum systems of the Orange basin using an integrated 

approach to model the natural gas seepages observed on the seafloor. Observation reveals natural 

gas seepage at the continental shelf was due to temporal and spatial variations in post rift 

overburden deposition. The main period of hydrocarbon generation occurred in the late 

Cretaceous, this was followed by a period of erosion at the end of the Cretaceous, deposition was 

altered during the breakup of the shelf which allowed more sediments  to prograde into the deep 

basin. The model also explains hydrocarbon generation, -migration and -accumulation as well as 

the relationship between gas leakage and thermogenic gas migration.  

The source rocks identified in the Orange basin include the late Hauterivian- synrift source rock, 

Barremian to early Aptian source rock units and the source rock unit associated with the global 

Cenomanian-Turonian anoxic events (Barton et al., 1993). Campher (2009) modelled the 

maturity of the three source rock units in the Orange basin, and observed that the three source 

rock units can be linked to the three phases of development of the Orange basin (Pre rift, Synrift 

and Post rift). The Barremian-Aptian source rock units indicate the source rock unit is over-

mature   and currently   producing gas with potentials for oil in the deeper part of the basin. The 

model also indicates that the younger Cenomanian- Turonian source rock is not over-mature and 

is presently in the oil window as inferred from the lower values gotten from vitrinite reflectance. 

Hartwig  et al., (2010) reported seismic anomalies such as pockmarks, gas chimneys and mud 

volcanoes associated with gas leakage using 2-D seismic datasets covering exploration blocks 

from 1 to 4. The gas leakages has been classified in to two main categories: stratigraphically and 

structurally controlled, the stratigraphically controlled gas seepages occurred above the onlaps 

and pinch-out of the Albian age sequence, the gas chimneys particularly either reached the 
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surface or were constrained within the Miocene, or terminate at the Cretaceous-Paleogene 

unconformity. 

The structurally controlled gas chimneys are dominant in the extensional domain west of the 

present day-shelf break and above the Cretaceous normal faults in the Northern part of the 

Orange basin; their occurrence is constrained to water depths of less than 400m. Schmidt (2004), 

shows that the source of hydrocarbon desorbed from near surface sediments in the Orange basin, 

offshore South Africa is of thermal origin. his was supported by Wilhelms et al., (2001b), who 

suggested that the depth and origin of Gas chimneys in the Orange basin as well as their 

relationship to geological features indicates that a biogenic source of gas is unlikely, as microbial 

activity is considered to be inactive if not completely absent  at a temperature greater than 80 

degree Celsius. Van der spuy (2007) worked on the prospectivity of the Northern Orange basin 

and suggested that the Northern Orange basin has proven discovery of huge gas reserves. The 

study utilized seismic studies of three wells in the area to determine depositional environment 

and subsequently used the information to predict petroleum plays (rift and drift inclusive) as 

lacustrine sandstones which are charged by organic rich clay stone as encountered in A-J graben 

of the Southern Orange basin. 
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1.6 Reservoir Studies 

A clear understanding of reservoir geometry is important in field development planning; such 

understanding is enhanced by detailed integration of robust seismic, analogs and Petrophysical 

analysis. Seismic technology has improved over the years from 1D to recently 4D , the 

continuous improvement is targeted at having a holistic approach to understanding reservoir 

distribution and associated trapping mechanisms. Reservoirs vary in shape and size and so do 

their internal properties (porosity and permeability). The reservoir study is narrowed down to the 

grain scale for detailed understanding of the reservoir’s  properties, ‘lithofacies’ was coined to 

describe physical and chemical characteristics of rocks and include mineralogy, grain size, 

sedimentary structures, colour and fossil assemblages. Lithofacies are the basic units for the 

geological description of the reservoirs while the depositional environments under which these 

reservoirs are formed can be inferred from lithofacies analysis.  

The lithofacies and different diagenetic events determine the intrinsic properties of the reservoirs 

and this ultimately determine quality of the reservoirs. Both physical and chemical diagenesis 

can either enhance the reservoir quality or reduce the quality, thus, a relationship exist between 

the intrinsic properties (permeability, porosity and saturation) and different diagenetic events that 

characterise particular reservoirs. Estimating the volume of recoverable hydrocarbons is based on 

these intrinsic properties of the reservoirs, without these, reservoir evaluation and prospect 

generation will be seemingly impossible. 

Evaluation of a reservoir always requires a multidisciplinary approach utilising geophysics, 

petrophysics, geology and engineering principles. Geophysical wireline logs are used to 

determine reservoir properties by estimating porosity, permeability, saturation, NTG (Net to 

Gross ratio), while geology provides information regarding texture, mineralogical distribution, 

diagenesis and depositional environment. Application of engineering principles makes use of 
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information provided by geophysics and geology to strategically do well-placement and decide 

on production techniques. 

 

As a result of advancement in technology, modern soft wares have made reservoir evaluation 

less complicated than before; the creation of IP (interactive petrophysics), PETREL, SMT and 

others have helped geologists and engineers to make reliable assessments of the reservoirs. 

Reservoir modelling has also improved reservoir studies as it takes into consideration all 

components of the reservoirs to simulate the behaviour of fluids under different sets of 

circumstances and also helps in optimisation of hydrocarbon production from reservoirs.   
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CHAPTER TWO 

2.1 Literature Review 

 The different topics discussed in this section are crucial to achieving the aims and objectives of 

this research work, these topics include clay minerals, core description, depositional 

environment, petrophysical properties and diagenetic studies. This review will discuss the origin 

of clay minerals, the diagenesis and its role in reservoir quality enhancement and reduction’ 

Furthermore an overview of some petrophysical properties will be given and their importance in 

petroleum reservoir quality assessment will be highlighted. 

2.2 Clays and Clay Minerals 

Clay and clay minerals are diverse group of hydrous aluminosilicates, strictly classified as 

having particle diameters of less than 3.9nm (Wentworth, 1922).In addition to aluminium and 

silica, they may also contain other positive ions of alkali and transition metals. Clays are divided 

into four main groups which are the kaolinite group, smectite-montmorillonite group, illite group 

and chlorite group. This particular review will discuss the origin of major authigenic clay 

minerals, their morphology and their effects on reservoir quality.  

2.2.1 Kaolinite Group 

 Kaolinite was discovered in 1867 in Kao-Ling China and represents a group of minerals with 

general formula Al2 Si2 O5 (OH)4. The group comprises of members with the same chemistry but 

different structure (polymorphs) (Grim 1951). The crystal structure is represented with a silicate 

sheet (si2o5) bonded to an aluminium hydroxide layer (Al2 (0H)4) called the gibbsite layer. 

Members of this group include kaolinite, dickite and nacrite (Ruiz Cruz, 1994) the layers are 

bonded together by weak bonds existing between the silicate and gibbsite layers and occur 
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generally as booklet shape and vermicules consisting of pseudo hexagonal crystals that grow at 

the expense of feldspar, micas, acid igneous rocks and mud intraclasts.  

Authigenic clay minerals (Figure 2.0) have more damaging effects on the reservoir because they 

are formed by rock-fluid interactions in tightly packed sediments. Authigenic kaolinites together 

with some illitic material are the most common clay minerals encountered within the Sandstone 

reservoirs, (Beaufort et al., 1998). Dickite and nacrite are members of the kaolinite group and 

have been found to be dominant in crustal rocks where there has been fluid flow (Parnell et al., 

2000). Different authors postulated several but similar theories as regards the origin of kaolinite, 

authigenic kaolinite can precipitate from acidic meteoric fluids in a weathering environment 

(Estoule –Choux, 1983), from basinal fluids rich in aluminium or from the dissolution of 

feldspars (MacLuagling et al., 1994). Hydrothermal fluids interaction with rocks has also been 

identified as a major process of kaolinite formation (Schroeder and Hayes, 1968).  It is thus 

generally suggested that kaolinite is formed from hydrothermal alteration of feldspars and mica 

group minerals at temperatures of below 120
0 

C and that the mineral is generally  not prone to 

shrinking or swelling regardless of the water content . They often occur as pore filling pseudo 

hexagonal crystals with booklets and vermicular shapes.  

Abundance of kaolinite has also been identified as an indication of unconformities (Tardy, 1971, 

Emery et al., 1990) .Kaolinite does not form from feldspar only but could also be formed from 

other minerals, a classical example of such a scenario is in the North Sea where kaolinite in 

Jurassic Brent sandstones is formed from alteration of muscovite which ultimately caused a 

reduction in porosity (Bjorlykke, 1984). In certain scenarios, the release of CO2 from 

coalification often acidizes the depositional environment which can cause formation of Kaolinite 

and can modify the porosity and permeability of the reservoirs. Modification of porosity and 

permeability can occur as a result of meteoric flushing and subsequent dissolution of feldspars 

and micas which lead to secondary porosity by formation of kaolinite in other sections of the 

reservoirs. However, since the precipitation of kaolinite reduces porosity, there could be no net 

gain in porosity values (Bjorlykke, 1983).  

The role of an acidic environment in kaolinite precipitation was demonstrated by Ehrenberg 

(1991), he observed that the precipitation of kaolinite in the sandstones of the Garn formation 
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(Norwegian continental) shelf occurred at the top and bottom contacts of the formation with 

adjacent shale boundary as a result of migration of fluids from the adjacent shale. Kaolinite often 

occurs as pore filling cements, however, the effects on the reservoirs is less pervasive unless it is 

changed to another form of clay minerals which is more damaging. Grim (1951) noted that 

kaolinite is less abundant in ancient sediments than in younger sediments and therefore 

concluded it must have been changed to another form of clay minerals. Identification and 

separation of  allogenic kaolinite from authigenic kaolinite could be challenging, this challenge 

can been mitigated  by the usage of SEM and XRD as detrital kaolinite is fine grained and poorly 

crystallized when observed on the thin section and Scanning Electron Microscopy (Hancock and 

Taylor,1978). 

2.2.2 Chlorite Group:  

Chlorite is derived from hydrothermal alteration of ferromagnesian mineral rich metamorphic 

rocks and encompasses a group of minerals characterized by a wide range of chemical and 

structural variation (Bailey, 1988) and could also be formed from metamorphic rocks with high 

contents of Fe-Mg-rich silicate minerals such as biotite, garnet, pyroxene and amphibole. 

Specifically in an alkaline environment with a higher pH value and high iron content and are 

generally the most common authigenic clay cements in sandstones reservoir, they also serve as a 

pointer to diagenetic history and the chemistry of the pore waters (Berger et al., 2009). 

Different Chlorite group minerals include clinochlore (Mg-rich chlorite), chamosite (Fe-rich), 

nimite (Ni-rich), and pennantite (Mn-rich) (Bayliss, 1975).Structural formulas of most 

trioctahedral chlorite may be expressed by four end-member compositions, with sheet thickness 

of about 14 Å. The structure of the chlorite minerals consists of alternate mica-like layers and 

brucite-like hydroxide layers, where the unbalanced charge of the mica-like layer is compensated 

by an excess charge of the hydroxide sheet that is caused by the substitution of trivalent cations 

for divalent cations.The general formula of chlorite group is given as 

(Mg,Fe)3(Si,Al)4O10(OH)2·(Mg,Fe)3(OH)6.  

Most chlorites are trioctahedral (having a hydroxide sheet surrounded by three divalent cations) 

and as such they are normally rich in Fe and Mg. Detrital chlorite in sediments reflects its 
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provenance because they are easily weathered from ferromagnesian minerals-rich parent rocks 

(Bain, 1977). As a result of this, it is unusual to find abundant chlorite in sediments unless they 

were deposited in close proximity to the chlorite rich parent rock.  Chamley and Weaver ,(1989) 

also suggested that chlorite is largely concentrated and confined to sediments from high latitudes 

which show little tolerance to weathering, therefore, the abundance of chlorite in sediments can 

be attributed to its diagenetic formation. The evidence of cooler climate supporting the formation 

of authigenic chlorite was supported by studies of oceanic sediments from dated cores of the 

Western Atlantic region which record a general increase in chlorite content from Eocene to the 

Quarternary (Chamley and Weaver, op.cit). A thin layer of authigenetic chlorite has proven to be 

very effective in preventing quartz overgrowth; this was evident in Tuscaloosa sandstones of 

Southern Lousiana (Pitman et al., 1992). Pervasive quartz cementation is one of the major 

limitations of reservoir quality, and formations of early authigenic chlorite have always 

preserved the reservoir pore spaces from damage by quartz cementation. The origin of chlorite is 

complex and is controlled by the source of the material, pore water chemistry, early clay 

minerals and sealing or opening of the system (Huang et al; 2004). It could develop from the 

stage of eo-diagenesis to meso-diagenesis and displaces detrital grains (Jinglan et al., 2002). Sun 

et al., (2008), pointed out that chlorite can precipitate at the early and middle diagenetic stages 

and such chlorite formed at early diagenetic stage will continue to grow throughout the 

diagenetic history. The relationship between chlorite cements and reservoir quality has been 

identified years ago, previous studies have shown that chlorite cements are major causes of 

anomalous porosity and permeability (Sun et al., 2008), especially in deeper reservoirs 

sandstones   (Bloch et al., 2002). 

 Aside from the formation of chlorite from fluid-rock interaction in ferromagnesian rich rock, 

authigenic smectites and kaolinite are also likely to be transformed to chlorite (Grigsby, 2001, 

Berger et al., 2009).  Fe, Si and Al ions released during the dissolution of unstable minerals like 

lithic fragments and feldspars are sources of chloritization during diagenesis. Fe and Mg ions are 

sourced from alteration of Fe and Mg rich minerals; examples are biotite, amphibole, feldspar 

and volcaniclastic rock fragment (VRF) (Klass et al., 1981).  
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2.2.3 Illite Group 

This is a hydrated microscopic muscovite group with the mineral illite being the only common 

mineral represented. Variable amounts of water molecules as well as potassium ions lie between 

the sillicate-gibssite- sillicate sandwiches. However it is a significant rock forming mineral being 

a main component of shales and other argillaceous rocks, the general formula is (K, H) Al2 (Si, 

Al) 4O10 (OH) 2 - xH2O, where x represents the variable amount of water that this group could 

contain (http://209.51.193.54/minerals/sillicate/clays.htm) The structure of this group is similar 

to the montmorillonite group with silicate layers sandwiching a gibbsite-like layer, in an s-g-s 

stacking sequence. Illite is mostly referred to as hydrated microscopic muscovite and occurs as a 

dioctahedral mica-like clay mineral common in sedimentary rock especially shales (Pevear, 

1999).  

Illite is important in hydrocarbon resource studies because it enables the study of the timing of 

hydrocarbon generation. The breaking up of kerogen to form oil and gas occurs at almost the 

same temperature as that at which illite is formed (Pevear op.cit). It is difficult to separate the 

discussion on illite without discussing the smectite and illite mixed layer. The growth of 

authigenic illite in reservoir sandstones reflects an alkaline environment with raised 

temperatures, this is expected to develop at deeper burial depth and may be associated with 

corresponding compaction and dewatering of shale (Muller, 1967). Illite is generally idiomorphic 

because the crystals precipitate unconstrained from fluid and are present in relatively large pore 

spaces. Illite could also be formed from the reaction of brines with kaolinite (Maachi et al., 

1986), this similar origin is suggested for illite precipitation in the middle Jurassic Brent sand 

formation in the Northern North sea. (Hancock and Taylor 1978) 

The study of illite formation in reservoirs is necessitated due to damage done to the permeability 

of the reservoirs; illite has also been identified to inhibit quartz cementation but with a lesser 

capacity compared to chlorite. It exhibits varieties of growth morphology including flakes, fibres 
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and whiskers. Kaolinite has been found to be replaced by illite on many occasions as it is seen in 

Permian Rotliegendes of the North Sea (Lanson et al., 2002).Authigenesis of illite in 

Rotliegendes sandstones reduces the permeability but has little effects on the porosity.  There is 

no recorded authigenic illite of recent age despite abundance of illite in many pore waters of 

sandstones (Berger et al., 1995), and there are conditions that must be in place for authigenic 

illite to be precipitated, such as, neutral to alkaline pore fluids, sufficient K, Si4 and Al3. 

Authigenic filamentous illite can severely reduce permeability despite relatively high porosities 

in sandstones whose effect on rock properties is dependent on the illite's morphology (Cocker, 

1986).  By combining careful core preservation, critical-point drying, and scanning electron 

microscopy examination, it can be shown that illite has various morphologies, both natural and 

artifactual, (Rahman et al., 1995).  

 

The petrophysical properties of reservoirs containing illite depend significantly on the technique 

of core preparation, but commonly, illite collapses upon air drying resulting in high porosity, 

high permeability and low capillary pressure. Whenever illite gets in contact with fresh water, it 

gives rise to low porosity, low permeability and high capillary pressure (Rahman et al., op.cit). 

Illite has also shown high vulnerability to migration, it remains dispersed and is taken with the 

flowing fluid until the particles are trapped in pore restrictions.  Authigenic illite occurs in the 

pores of many sandstone formations which are known to contain hydrocarbon reservoirs, in 

particular, the Norphlet formation (Jurassic, Mississippi), Wilcox Formation (Eocene, Texas) and 

Fort Union Formation (Paleocene, Wyoming) all contain large amounts of authigenic illite 

(Rahman et al., op. cit). This illite occurs as laths with perfectly developed morphologies; laths 

have widths of 0.1 to 0.3 microns, thicknesses up to 200 A, and lengths ranging up to 30 

microns. Elemental analyses of the laths reveal Si, Al, and K as major constituents, transmission 

electron images show that these "hair-like" illites are associated with irregular blob-like cores 

which have chemistry very similar to that of the laths. The presence of hairy illite in sandstone 

pores greatly increases micro porosity and pore tortuosity, and decreases the permeability. Illite 

was found to be the main control on reservoir properties in Sherwood sandstone group of 

Morecambe field, United Kingdom (Guven et al., 1980). 
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2.2.4 Montmorillonite/Smectite Group  

This group is composed of several minerals including talc, vermiculite, sauconite, saponite, 

nontronite and montmorillonite. They differ mostly in chemical content and the general formula 

is (Ca, Na, H) (Al, Mg, Fe, Zn) 2(Si, Al) 4O10 (OH) 2 - xH2O, where x represents the variable 

amount of water that members of this group could contain 

(http://209.51.193.54/minerals/sillicate/clays.htm). Talc's formula, for example, is Mg3Si4O10 

(OH) 2, the gibbsite layers of the kaolinite group can be replaced in this group by a similar layer 

that is analogous to the oxide brucite (Mg 2(OH) 4). The structure of this group is composed of 

silicate layers sandwiching a gibbsite (or brucite) layer in between, in an s-g-s stacking sequence, 

the variable amounts of water molecules would lay between the s-g-s sandwiches.  

(http://www.galleries.com/minerals/silicate). 

 In this review, the study of smectite is limited to the more crystallized authigenic smectite; this 

has been observed to occur as highly wrinkled, honeycomb-like pore coatings (Wilson and 

Pittman, 1977). They are formed mostly from alteration of volcanic ash in a mildly alkaline 

environment (Bilbey et al., 1974; Owen et al., 1989).Often times, smectites are transformed to 

chlorite and illite in a progressive way, this stage includes a mixed layers smectite/illite or 

smectite/chlorite progressive transformation with increased abundance ratio. Examples of this 

have been observed in the North Sea where most smectite occur in the shallowest of the 

reservoirs and subsequently transformed into other clay minerals at deeper depth (Burley and 

Macquaker, 1992). Smectites are most often unstable at temperatures greater than 60 
0 

c and tend 

to convert to illite because of their metastability (Bjorlykke et al 1995, citing Aargard and 

Helgesson, 1983). 
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Three different origins of authigenic smectite have been proposed, these include reworking of 

weathering products in surficial soils and transient sediments deposit, marine alteration of 

volcanic materials, early diagenetic smectite resulting from different authigenic processes during 

eo-diagenesis, (Chamley, 1994). Authigenic smectite, specifically nontronite have been formed 

by hydrothermal influence by mixing and cooling of hydrothermal brines with ocean water and 

by fixation of K. The most commonly reported authigenic smectite in alkaline lakes are 

trioctahedral Mg –smectite, including stevensite, hectorite and saponite. Smectite represent about 

25% of clay cemented sandstones and are thus a reservoir quality issue (Primmer et al., 1997) 

 Detrital and authigenic smectite can occur in sandstones (Whitney and Northrop, 1987) and they 

are a good source of transformation for other diagenetic processes including illitization, quartz 

cementation and zeolite formation (Boles and Francks, 1979). Smectite is known to have enough 

clay-bound water which can lead to breakdown of clays and consequently the accumulation of 

in-situ formation water that can cause over pressuring (Burst, 1969). Smectite have a different 

pattern of behaviour in sandstones and mudstones because of differentiations in mineralogy, 

porosity, permeability, water-rock ratios, and oxidation and reduction buffers.  

The chemistry of smectite can show either a trioctahedral or dioctahedral arrangement; smectite 

is dioctahedral if two out of the three octahedral sites are occupied by trivalent cations like 

Fe
3+

or Al
3+;

 otherwise smectite behaves trioctahedrally (Guven, 1988). The dioctahedral minerals 

include montmorillonite, beidellite and nontronite while trioctahedral includes saponite, hectorite 

and sauconite.  These clay minerals are characterised by properties of unique cation exchange. 

Smectite have been reported to be major contributors to reservoir damage when in contact with 

fresh water because of the large surface area exhibited by smectite.(Guven, op.cit).The larger the 

surface area of clay minerals, the more severe they tend to reduce the permeability of the 

reservoirs, reservoirs that have a reasonable degree of smectite cements often display poor 

reservoir quality, the accommodation of bound water which causes smectite to swell always has 

a damaging effect on the porosity and permeability of reservoirs. Early formation of smectite 

before fluid migration in any reservoir impedes fluid flow by choking the pore throats due to 

swelling when it comes in contacts with water.                      
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(A) Thin idiomorphic platelets of kaolinite from Hirschau, South-East,Germany. (B)    

Montmorillonite showing a rose like texture in Miocene age Arkose, Madrid Basin, Spain   

(C) Mg-rich chlorite, Rotliegendes Sandstones, Northern Germany (D) Platy Illite from the 

Rotliegendes Sandstones, Northern Germany.  

 

                          Source:http://www.minersoc.org/pages/gallery/claypix       
 

     Figure 2.0: SEM pictures showing different Authigenic Clay minerals in different Basins. 
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2.3 Core Description: 

Cores are usually cut using a special coring bit and are retrieved in a long core barrel. Core 

barrels can be as long as 9 to 17 m with a hollow drill bit which is attached to the bottom of the 

drill pipe for the purpose of recovering continous samples of the formation while the hole is 

being drilled. Samples obtained are cylindrical cores and can be as long as the core barrel. 

(Reifenstuhl,  2002). 

The description of cores provides basic information including latitude, longitude, water depth, 

core length and lithological properties including megascopic and smear slides observations. 

Detailed core descriptions and interpretations include texture, grain size, sorting, sedimentary 

and biogenic structures, facies, composition, cementation, hydrocarbon occurrence, flow units, 

significant surfaces and fractures. Core description and interpretation are of crucial importance to 

regional and field studies because depositional facies, diagenesis, stratigraphy and fracture 

networks usually control porosity and permeability distributions which ultimately impact on 

reservoir performances. A basic understanding of the reservoirs dynamic behaviour often comes 

from integrated core & thin section descriptions and interpretations. Laboratory analysis of core 

samples is important to reservoir and petrophysical studies as it provides accurate measurement 

but sometimes damage can be done to the cores if laboratory test procedure, core sampling and 

handling are incorrectly done (Sinclair and Duguid, 1990). Destructive process which includes 

plugging do cause partial disintegration of formation and thus significantly increase 

petrophysical property measurement; this has been identified to cause highly optimistic 

permeability measurement (Hurst, 1987.) 

Laboratory procedures such as drying of the samples may drive off all the water in the clay 

samples (Sinclair and Duguid, op.cit). Core analysis has often been integrated with other 

petrographic analysis for qualitative description. Scanning Electron Microscopy, X-ray 

Diffraction and Energy Dispersive Spectrometry are other sophisticated techniques that have 

evolved over time to complement core studies and description. Different laboratories use 

different procedures in core analysis; this always results in discrepancies in results from different 

laboratories. Porosity measured in dried core plugs using humidity controlled methods has been 
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noted to be consistently lower than the one measured from oven dried core plugs (Penney and 

Looi, 1996). Percussion sidewall cores (SWC) are normally obtained when drilled wells have 

been completed, this is most times necessitated by requests to take more core samples for 

analysis, and this can be achieved by usage of core barrel which can penetrate different 

formations regardless of the hardness. Three types of samples are available for description from 

boreholes; these include ditch cuttings, SWC and the whole core. Ditch cuttings are often used 

for biostratigraphic study because they are the source of pollen, foraminifera and other 

palynomorphs which are used for dating. Cores, especially sidewall cores, have been proven to 

be more reliable than cores obtained while drilling in providing precise assessment of subsurface 

conditions. 

 

Figure 2. 1: Showing Cores layout http://hamptonroads.com/node/374 
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Figure 2.2: Percussion Sidewall-Coring Scheme (after Schlumberger, 1972) 

 

 

 
 

2.4 Depositional Environment: 

Each depositional environment possesses distinctive physical, chemical and biological 

characteristics that allow for specific kinds of deposits. The occurrence and abundance of clay 

minerals has often times been linked with the depositional environment in which sediments were 

deposited. Shammari et al., (2011) observed clay coatings are present in all depositional 

environments observed in Unayzah sandstones, Saudi Arabia .Kaolinite has been observed to be 

abundant in more mature quartzose and subarkosic sandstones and is the most common clay 

cement in all depositional environments except for aeolian settings, while illite is common in 

quartzose /subarkosic sandstones deposited in aeolian and fluvial settings (Kupecz et al, 1997).  
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Smectite is mostly common in deep marine depositional environment. Generally, volcanic ash 

deposited in a marine environment alters to smectite while the one deposited in non-marine fresh 

water alters to kaolinite. This process is well documented in coal measure sequences where 

altered volcanic ash deposits consisting of kaolinite are known as tonseins (Spears & O’Brien, 

1995). Diagenetic processes can be controlled by overall chemical, biological and physical 

processes within the depositional systems, few index minerals have been identified to define a 

particular depositional environment. Glauconite is often found in deep marine environments, 

commonly in marine environments  that are characterised by  alkaline waters  and dominated by 

aqueous sodium and chloride ions with subordinate So4
2-

, Ca
2+

 ,Mg
2+

 and with salinity of 35 %. 

Early and late diagenesis can be strongly influenced by physical and chemical characteristics of 

the depositional environment 

2.5 Petrophysical Properties:  

Petrophysical properties are intrinsic properties of reservoirs and form the basis of up scaling in 

any process of creating a functional reservoir model. Without having to perform routine core 

analysis to determine petrophysical properties, comprehensive wire line log interpretation can be 

performed with the industry accepted software to estimate petrophysical properties. Porosity, 

permeability and saturation are among the petrophysical properties that can be determined from 

log interpretation, petrophysical properties involve studying of the physical properties of the rock 

which are related to pore and fluid interaction (Archie, 1950). 

 The review of some petrophysical properties of reservoirs are discussed below. 

2.5.1 Porosity.  

This is the measure of the capacity of a rock unit to contain and hold fluids, where the usually 

occupied by pore space aroil, water and gas. It is also defined as the fraction of bulk rock volume 

that is filled with void spaces; it can be expressed as a percentage or a fraction by dividing pore 

volume by total bulk volume of the rock unit. Porosity data can be obtained from direct 

measurement on core samples or from computation of data obtained by running of wireline tools 

in the well, the data obtained from cores analysis are often used to calibrate data derived from 

well logs. The amount of pore spaces which allow transmission of fluids within the rock is 
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regarded as the effective porosity while total porosity always includes porosity in isolated pores, 

adsorbed water on grains, or particles surface associated with clays (Levorsen, 1967). Porosity is 

altered or influenced by some geological factors which include compaction, cementation, 

leaching, bioturbation, clay coatings and most importantly diagenesis .Effective porosity has 

been  defined by many authors, notably Juhasz (1990) and Clavier et al., (1984) defined it as 

total porosity – volume of dispersed clay in pore spaces of reservoirs expressed as a fraction of 

the bulk volume: 

Fe= fT- vD T = (ma - )/ (ma - (hc·(1-Sxo)+mf·Sxo)) 

where rma is the grain density, r is the density log measurement, rhc is the in-situ hydrocarbon 

density (from pressure data or sampling), rmf is the mud filtrate density (from correlation charts 

normally) and Sxo is the invaded zone water saturation.  

Porosity of a particular rock depends on many factors which include rock types, the arrangement 

of rock individual grains and the matrix. Based on the classification of wire line logs according 

to the parameters they can measure, density, sonic and neutron logs have been identified as the 

tools from which porosity data can be derived. Combination of these logs gives a good indication 

for lithology and accurate estimates of porosity value.  

Porosity can be primary or secondary;. Primary porosity is inter-granular or inter-crystalline and 

depends on the shape and size and arrangement of the solids; it is common in clastic rocks.  

Secondary porosity is commonly as a result of dissolution of fissures or cracks and matrix caused 

by mechanical forces. The key with all of these cements is that we can unravel how and why 

they were formed, utilizing the wide range of analytical techniques we have at our disposal, and 

hence be able to predict where reservoir quality will be degraded or preserved within the 

subsurface geological model. All of the above observations and analyses can be used to create 

textural, compaction and diagenetic models which can be used to help predict the occurrences, 

abundance and distribution of pores and pore-filling cements. These models can be used to help 

constrain and validate petrophysically-derived porosity-permeability models. 
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http://www.amiadini.com/NewsletterArchive/110128-NL143/envEnl-143.html 

Figure 2.3: Porosity identification in various rock samples. 

2.5.2 Permeability:  

This is a measure of the amount of fluid flow within a rock unit in response to an applied 

pressure gradient; it is the expression of   transmissibility of immiscible fluids within the 

reservoir pore spaces.  It exerts an important control on the flow rates and the volume of fluids 

that can be obtained from the wells, and can be measured through three procedures which are: 

well testing, wire line tool analysis and laboratory analysis of core samples. Permeability 

estimated in petroleum-reservoir rocks is commonly expressed in units called millidarcys.   

Industry accepted mathematical models and software packages have been used to calculate 

permeability, Carman –Kozeny equation (1968) and Interactive Petrophysics software are two of 

the many methods of estimating permeability from wireline logs. 

There are two measures of permeability which are intrinsic permeability and hydraulic 

conductivity. While intrinsic permeability is independent of the fluid present in the reservoirs, 

the hydraulic conductivity is dependent on the properties of the fluid present.  Permeability 

predictions involve the understanding of   how various geological factors enhance or reduce fluid 

flow. Grain size and sorting are the main controls on the reservoir’s permeability in 

unconsolidated sands (Beard and Weyl, 1973). Rocks with coarser grains would have higher 
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permeability because of the presence of larger pore throats while rocks that are poorly sorted 

have lower permeability. Different clay mineral cements affect permeability in different ways 

because they occupy different pore networks within the reservoirs (Stalder, 1973). Pore lining 

clay minerals have lesser effects on the permeability than pore filling clay cements (Pallatt et al., 

1984). However if thick coats of chlorite and illite occur, permeability can be seriously 

diminished, particularly in fine grained sandstones.  

Grain size has also been demonstrated to exert more influence on the permeability of reservoir 

sands. Reedy and Pepper (1996) demonstrated this in the unconsolidated turbidite reservoir sands 

of the Gulf of Mexico where a log- linear correlation exists between  permeability and grain size 

of reservoir sands. A poorly sorted sand exhibits low permeability and vice versa.  

Total, effective and relative permeability are of interest when fluid dynamics within reservoirs 

are discussed. Total Permeability is the measure of the transmissibility of a particular fluid 

within a porous medium when saturated with a single fluid. As absolute permeability hardly 

exists in reality, estimation of absolute permeability of a core unit is simulated in the laboratory. 

In contrast, effective permeability is the transmissibility of a single fluid in the presence of other 

immiscible fluids in the porous medium, it is the ability of a rock unit to transmit a particular 

fluid amongst other fluids. Relative permeability is the ratio of effective permeability to absolute 

permeability. 

Permeability defined by Darcy’s equation is  

 

K = Q μ / A (ΔP/L), 

 

K = Permeability (Darcy)  

Q = Flow per unit time (cm/s)  

μ=Viscosity of flowing medium (cp)  

A = Cross section of rock (cm2)  

L = Length of rock (cm)  

ΔP = Change in pressure (psi)  
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Figure 2.4 Rock permeability ranges (Garven, 1986).  

 

2.5.3 Fluid Saturation 

Estimation of saturation values in Petroleum reservoirs is invaluable in petrophysics, it is the 

ratio of water or hydrocarbon volume to pore volume of the reservoir unit. Additionally, 

saturation is the percentage of pore volume of a reservoir unit occupied by water or 

hydrocarbons. Due to immiscibility of water and hydrocarbons because of density contrast, water 

occupies the pore volume below the hydrocarbon-free level. The migration of hydrocarbons into 

the pore spaces displaces connate water downward but larger pore spaces are firstly occupied 

with hydrocarbons because of low capillary pressure needed to displace water in the pore spaces. 

The knowledge of the position of the oil-water contact helps reservoir geoscientist to plan 

production techniques that will optimize hydrocarbon recovery. The implication of this is that, 

once the water saturation is estimated, hydrocarbon saturation value can be estimated. Petroleum 

reservoir saturation is the summation of water and hydrocarbon saturation, water saturation tends 

to decrease with increase in height above the free water level where capillary pressure is zero. 
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The volume of free immobile water that cannot be displaced by hydrocarbon migration is the 

irreducible water saturation or residual water saturation, (Sirr). Connate water saturation and 

flushed zone water saturation can be calculated from information supplied by well logs. 

Archie (1942) related fluid saturation to the measure of electrical conductivity/ resistivity of the 

formation and defined the resistivity index (RI) as the ratio of the resistivity of partially water 

saturated rock Rt to the resistivity of the fully brine saturated rock Ro. The presence of clay 

cements within the reservoir affects overestimation of fluid saturation values, however,(Waxman 

and Smith) 1968, proposed a mathematical model that allows the calculation of the  formation 

factor independent of clay conductivity effects (Core Laboratories, 1982). In preparation of 

drilling fluids, the type of dominant clay minerals is put into consideration because active sites 

exist on clay surfaces which often cause exchange of ions between drilling fluid and clays. This 

often alters porosity and fluid saturation value. 

 

2.6 Diagenetic Studies 

Diagenesis involves all physical, chemical and biological changes undergone by sediments after 

its initial deposition   and after the sediment is lithified (Bates and Jackson, 1987). The timing of 

formation and the distribution of diagenetic minerals within a reservoir sequence also influence 

some of the variations in petrophysical characteristics (Al–Ramadan et al., 2005, Bjorlykke, 

1998). It influences the extent of source rock maturity and exerts a major influence in evaluating 

reservoir potentials of clastic and carbonate reservoir rocks. Diagenesis in sandstones starts with 

compaction and alteration, followed   by pore fill cementation and transformation of mineral 

phases in more deeply buried sandstones (Wilson and Pittman, 1977). Diagenesis is probably the 

only singular reason why porosity decreases with depth. Schmidt and Mc Donald (1979) 

classified diagenesis history into Eodiagenesis, Mesodiagenesis and Telodiagenesis. 

Eodiagenesis involves  diagenetic processes which occur in sediments at surfaces and 

immediately after deposition at temperature <70 degrees and prior to substantial compaction 

(Morad et al., 1990), while Mesodiagenesis takes place at deeper depth  with substantial 

compaction at temperatures of about 80 degrees Celsius, and may involve, cementation, 
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precipitation, dissolution and replacement processes. Telodiagenesis is often due to an uplift 

process which exposes already buried sediments to hydrothermal flushing of pore waters. Apart 

from the textural maturity that controls reservoir quality, the significance of clay mineral 

diagenesis controls on reservoir quality has more implications during drilling, production and 

well stimulation operations (Imam 1994). Drilling and well completion fluids are designed for 

the specific variety of clay minerals present in pore spaces (Almon & Davies, 1979). Diagenetic 

studies have benefited from improvement in imaging and geochemical studies; this aids the 

quantification of fluid compositions and the historical aspects of the sediments. Clay diagenesis 

may enhance or inhibit reservoir quality depending on the timing of precipitation and 

recrystallization; clay authigenesis is controlled by many factors which include initial 

mineralogy, depositional environment, temperature, pressure dissolutions and biogenic deposits. 

Detrital composition of sandstones can specifically influence reservoir quality by constraining 

pathways of both physical and chemical diagenesis (Bloch, 1994). Porewater chemistry plays a 

major role in controlling the alteration and dissolution of detrital grains including the type of clay 

mineral formed (Dutta and Suttener, 1986). Clay minerals presence in pore spaces is initiated by 

cementation processes which ultimately cause lithification of the rock. 

  

Figure 2.5: Various diagenetic regimes in reservoir rocks. Mazullo (1985) 
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CHAPTER THREE 

3.1Regional Geology 

The Orange basin is situated along the South Atlantic margin and straddles the borders of 

Namibia and South Africa, it is a divergent passive continental margin (Barton et al.,1993). The 

tectonic evolution was as a result of the break-up of Gondwanaland, rifting and subsequent 

drifting apart of South American and African plates in the late Jurassic and early Cretaceous 

period (figure 3.0) .The break up of Gondwanaland was initiated by extensional forces that 

started in the early Mesozoic. (Petroleum Agency Brochure, 2006). 

 

Figure 3.0: The rift phase in the Late Jurassic – Lower Valanginian showing the breakup of 

Africa, Madagascar and Antarctica (modified from Broad, 2004)  

This separation divided the South Africa offshore basins   into three tectono-stratigraphic zones. 

The narrow passive margin with protracted rift phase history along the east coast is as a result of 

separation of Madagascar and Antarctica. Due to limited sediment influx, only the Durban and 

Zululand basins contain denser sediments. To the S-E, the African plate is bounded by the 

Agulhas marginal fracture zone (Visser, 1998), a dextral transform margin that formed during 

the movement of the Falkland Plateau. Movement began in the early Cretaceous at the onset of 

South 

Africa 
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drifting and caused the truncation of structural trends such as the Permo-Triassic fold belt on the 

Jurassic- early Cretaceous graben and half graben complexes of the Outeniqua basin. The 

western coast of the offshore orange basin is a tensional transverse fractured marginal zone that 

has undergone local displacement and displays major structural attributes; the columbine-

Agulhas arch and adjacent continental margins.The divergent passive Orange basin is 

characterized by graben structures trending sub parallel to the coast line (Jikelo, 1999). 

 The basin is highly underexplored with relative ratio of 1 well drilled per 400km square, the 

sediment supply into the basin was sourced from a river system (Orange river) with a rivaling 

delta to the north of basin, the sediments are a mix of continental and volcanic sediments (Fatti et 

al., 1994).Olifant and Berg river systems have also sourced sediments for the Orange basin, but 

with a major influence in the Southern part of the basin (Brown et al., 1996). Sedimentation 

probably started in the Kimmeridgian and Tithonian (152-154 ma), the Cretaceous sediments in 

this basin range from continental in the East to deep marine in the West while the Tertiary 

succession of sediments mainly comprises of calcareous oozes and chemical sediments with a 

characteristic deformed thick wedge of sediment due to sediment loading and slope instability 

(Petroleum agency SA, 2006). Sand deposition was mainly as a result of reworked delta front 

and marine storm channel bars, as well as wave action. They are generally well sorted ranging in 

grain size from very fine to medium grained. Dominant occurrence of well laminated and 

massive, greenish sandstones are a major pointer to the presence of detrital glauconite which 

serves as an indication of prevailing marine conditions. 

3.2 Tectono-Stratigraphy 

The three major tectonic phases that characterize this area are classified into   Pre -, Syn- and 

post-rifts (Gerrard and Smith, 1982). Significant compressional tectonism occurred in the pre rift 

phase where high grade and low grade metamorphites dominate the southern part and occurrence 

of granitic and alkaline intrusive dominates dominates the northern part (Broad et al; 2007). The 

pre-rift rocks are overlain by a succession of Pre-Barremian synrift basic lavas within the central 

rift sequence and coarse continental clastic, fluvial and lacustrine sediments along with volcanics 

within the marginal rift basins (Barton et al., 1993).This is in turn overlain by a Barremian to 
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Aptian succession of Post rift alternating fluvial and marine rocks that are deposited as a result of 

transgression and regression of sea level (Van der Spuy, 2003). 

The sequences of sedimentary succession in the Orange basin are highlighted below; 

 Barremian to early Aptian sediments are occasionally interbedded with basaltic lavas 

together with shale and sandstones of marine origin. Sandstones of Aeolian origin have 

been intersected in the Namibia portion of Orange basin, (Barton et al., op.cit). 

 In the early to middle Aptian, there was extensive deposition of organic shale which may 

have been due to prevalence of an anoxic environment which was caused by basin margin 

sag. 

 The Albian to Cenomanian time witnessed the deposition of fluvio-deltaic sandstones 

while the Cenomanian to Turonian period was characterized by aggradational deposits. 

Progadational deposits as a result of sea level regression were also found but to a lesser 

extent than the aggradational deposits (Broad et al., 2007). 

 The Tertiary to recent successions of sediments are dominantly organic and chemical 

sediments with minimal presence of terriginous materials (Barton et al op.cit). 
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Figure 3.1: Chronostratigraphic and sequence stratigraphic diagram of the Orange Basin (Brown 

et al., 1996).  
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3.3 Brief description of Petroleum Systems: 

A Petroleum system is defined as the systemic interaction of some geological configurations that 

could lead to commercial accumulation of hydrocarbons, it is a unifying concept that 

encompasses all of the disparate elements and processes of petroleum geology (Magoon and 

Beaumont, 1999). The appropriate timing of generation or formation of these elements is crucial 

to the accumulation of hydrocarbon in pools. The essential elements of petroleum systems that 

will be discussed about the Orange basin are source, reservoirs and traps. 

3.3.1 Source Rock:  

Potential source rocks are dominantly postglacial black shales of late Permian age deposited in 

lacustrine or low salinity marine environments; these rocks could also act as an effective regional 

seal. Exploration activities so far in the Orange basin have suggested that there is evidence of 

active  Aptian source rocks and recently Cenomanian and Turonian source facies (Aldrich et al., 

2003).The strongest petroleum system is sourced from lower Aptian and Barremian  source 

shales located at the depocentre of the Orange basin (Petroleum agency report 2008).There is 

occurrence of synrift oil prone Hauterivian shale located within a half graben structure and 

trapped stratigraphically within lake shoreline sandstones interbedded with shale. An active 

petroleum system has been speculated to be present within the deep water areas of the basin, as 

seismic gas chimneys, seismic wipe-out zones, seafloor gas escape features, bottom simulating 

reflectors, flat and bright spot are all pointers to the likelihood of an active petroleum system 

(Jikelo, 1999). 

3.3.2 Reservoir Rock:  

Fluvio deltaic and lacustrine sandstones are the major reservoirs observed within the marginal 

rift basin while post rift successions of fluvio deltaic to deep marine turbiditic sandstones are 

also target reservoirs. Sandstones deposited in the late Permian were dominantly volcaniclastic 

with poor reservoir qualities; Triassic sandstones tend to be more mature (Petroleum agency 

report, op.cit). 
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3.3.3 Traps:   

Compactional drape anticlines, stratigraphic pinch-out traps and inversion related closures are 

found within the synrift sequence and can act as major traps. Possible structural traps occur in 

the earlier sedimentary succession; structural plays have been identified in the deeper waters 

comprising of roll over-anticlines in the growth fault zone (Van der Spuy, 2003).  A large 

number of possible traps, in the form of channel deposits and basin floor fans were in the basin 

in the Cretaceous and Tertiary (Roux et al., 2004). 
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CHAPTER FOUR 

4.1 Materials and Methods 

This chapter discusses the various materials, approaches and techniques used in this study. The 

flow chart below shows the stepwise procedures utilized in achieving the results of different 

analyses carried out for this study. Software packages used in this study are Petrel 2011, IP 

(interactive petrophysics) and Techlog. Core samples obtained from PASA were used   for 

different analyses while digitized wireline logs, Geological reports of wells to be studied were 

also collected from the agency. Materials received from PASA are listed below; 

1. Petroleum exploration report 2003. 

2   Core samples taken at selected depth 

3.  Digitized wireline logs data (Density, Neutron, Resistivity, Sonic and Gamma ray) 

4.  Geological reports of wells AU-1, KH-1 and KF-1. 
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Figure 4.0: Methodology Framework. 

Prior to data loading and sample collection, a review of the regional geology has been done to 

obtain a comprehensive understanding of tectonic evolution, stratigraphy, sedimentary source 

and quality of the petroleum systems. Core samples have been taken within the cored intervals 

and at selected depth for the purpose of petrographic and geochemical studies. The sampling 

position has been determined based on the length of the cores available .Sampled depth intervals 

would be chosen based on the identification of lithologies from the gamma ray log and length of 

cores recovered during core description. This was followed by core-log depth match while 

sample intervals within the reservoir section have been limited for detailed understanding of the 
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reservoir quality. The core mineralogy has been determined by the whole-core x-ray diffraction 

for mineralogy identification purposes and this was supported by ED x-ray analysis to know the 

elemental geochemistry of the core samples. The textural characteristics like grain sizes and 

shape have been studied with a petrological microscope for thin section slides. SEM has been 

carried out to confirm observations made from thin sections and determine the type of clay 

minerals present at specific depths for diagenetic history construction. The prevailing 

depositional environment conditions contributing to the authigenesis of particular clay minerals 

have been determined through pore water chemistry analysis, facies description and wireline 

logs. CEC has been carried out to determine the type of dominant exchangeable cations and to 

estimate cation exchange capacity per pore volume (Qv) which is a shaliness indicator. 

 

4.1.1Wireline logs: 

Geophysical logging was pioneered by Marcel and Conrad Schlumberger in 1927 with the aim of 

measuring the electrical properties of a borehole at Merkwiller-Pelchebron in Eastern France 

(Schlumberger, 1972). Geophysical logging has been applied in all aspect of geology and most 

importantly petroleum geosciences.  It is an invaluable tool used by geologists to confirm the 

ground truth when calibrated and compared with cores. It offers a unique opportunity in 

determining the composition, variability and physical properties of rocks around the borehole. 

The process of wireline logging is done by suspending a sonde from a steel cable or embedding 

it in a drill string (LWD) - Logging While Drilling. The concept of wireline logging is to 

measure the radioactive and electrical properties of the borehole with depth, this is usually before 

casing is done. 

Wireline logs may not be direct measures of some petrophysical properties but it can measure 

some parameters through which petrophysical properties can be derived. Parameters such as 

resistivity, density and natural gamma radiation are recorded as a function of depth. Wireline 

logs are classified based on the principles of usage and on   the properties they measure, 

highlighted below. 
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4.1.1.1 The Classification based on Principles of usage. 

1. Resistivity logs: induction log, laterolog and deep resistivity log. 

2. Lithology logs: Gamma ray and Spontaneous potential log. 

3. Porosity: Density, neutron and sonic log. 

4. Auxilliary log: Dipmeter and Caliper logs. 

4.1.1.2 The Classification based on Operational Principles. 

1. Electrical logs: Spontaneous potential and resistivity logs 

2. Nuclear or radioactive logs: Density, Neutron and Gamma ray logs 

3. Acoustics logs: Sonic logs 

4.1.2 Methods of usage.  Five wireline logs will be used in this study in estimating some 

petrophysical properties of the rocks under consideration. Emphasis is placed on the parameters 

they measure and how each parameter is used to estimate petrophysical properties. 

4.1.2.1Gamma Ray log: 

The GR log is a measure of the natural radioactivity of the rock formations. In sedimentary beds 

the log normally reflects the shale content of the formations through the measure of Th, K and U 

components. This is possible because radioactive elements tend to reside in clays and shales. 

Clean formations usually have a very low level of radioactivity, unless radioactive contaminant 

such as volcanic ash or granite wash is present or the formation waters contain dissolved 

radioactive salts. The gamma ray log is useful to detect zonation of reservoir intervals and also to 

correlate sand bodies. The standard unit for measuring gamma ray value is American Petroleum 

Institute (API). Scintillation counters attached to a sonde detect and record a natural dis-

integration from any source in the region close to the borehole. Gamma ray value of less than 45 

API indicates clean sand while gamma ray value of 75 API indicates shale whith GR values 

ranging between 45 and 75 API usually regarded as shaly sand. The different GR values always 
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reflect the radiation intensity of the formation. The relative gamma ray values mentioned above 

are due to the presence of organic matter and radioactive materials present in the rock samples. 

The scale range for GR measurement is usually from 0-100 or 0-150. The maximum deflection 

of gamma ray curve to the left indicates sandstones while the maximum deflection to the right 

indicates shale. In this study, estimation of the volume clay within the reservoir intervals will be 

done from the readings made from Gamma ray log. 

 

 

 

 
 

 

 

 

 

 

Figure 4.1: Gamma ray tool (after Serra, 1984) 

 

 
 

 Figure 4.1.1: Typical Gamma ray log response to different lithology. After Schlumberger, 

(1972) 
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4.1.2.2 Density Log 

This is the measure of the number of low energy gamma rays surrounding the logging tool which 

is due to the elastic scattering of Gamma rays from the borehole wall and is proportional to the 

electron density of the rock. When a radioactive material source is applied into the borehole wall, 

it emits medium-energy gamma rays into the formation. Upon emission of these gamma rays, 

there is always collision of high velocity particles with electrons in the formation. After each 

collision, the gamma ray loses some of its energy to the electron, and then continues with 

diminished energy. This type of interaction is called Compton scattering. The scattered gamma 

rays from the source reaching the detector at the fixed station are counted as an indication of 

formation density while the number of Compton scattering collisions is related directly to the 

electron density of the formation. Consequent upon this, the electron density determines the 

response of the density tool, the density logging tool measures electron density and photo-

electric density. 

4.1.2.2.1 Formation Bulk Density 

The density log measures bulk density of a formation, which is the overall density of a rock and 

includes the matrix, pores and fluids enclosed in the pores. Density logs often run in tracks of 

two or three of log tracks with scale ranging between 2-3 g/cm 
3
(Rider, 1996). 
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Table 4.0: Density values of various rock samples 

Lithology Density Values 

Limestone 

Sandstone 

Dolomite 

Anhydrite 

Salt 

2.71 

2.65 

2.87 Reading in Zero porosity 

2.98 

2.03 

Shale 

Coal 

2.2-2.7   Typical readings 

1.5+ 

4.1.2.3 Neutron Log 

This particular log tool measures the hydrogen ion concentration in the reservoir. During neutron 

logging, geological formations are bombarded with a radioactive source which is always neutron 

rather than gamma rays. Neutrons are typically emitted by a chemical source such as Plutonium 

Beryllium (Pu-Be), or produced by electronic neutron generators such as a minitron. Fast 

neutrons emitted from these sources interact with atoms of similar mass which are hydrogen 

atoms, because hydrogen atoms are always present in both water and petroleum filled reservoirs. 

Once the neutrons are slowed down due to collision with hydrogen atoms, they start to scatter 

elastically and slow down further because they are continuously absorbed into the nuclei of 

heavier atoms present in the formation. Because of this absorption, they become unstable and 

tend to lose some energy which makes them emit gamma rays which are recorded by the counter.  

A suitable detector which is positioned at a certain distance from the source, can measure either 
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epithermal neutron population, thermal neutron population, or the gamma rays emitted after the 

absorption. 

However there are types of neutron log which are run within the borehole: 

4.1.2.3.1 Compensated neutron log: This tool has two detector spacings and is sensitive to slow 

neutrons, it is used in both cased and open hole and detects thermal neutrons. 

4.1.2.3.2 Sidewall Neutron Porosity Log: This is an important tool for measuring the porosity 

of a reservoir section, it could be run in a cased or open hole, correction must however be made 

for casing and cement when run in a cased hole (Krygowski, 2003). 

Aside from porosity determination, the neutron log tool can also be used for detection of gas 

bearing zones when combined with the density log as well as for lithology determination when 

combined with the gamma ray log. 

 

 

 

 

 

 

 

 

 

Figure 4.2: Schematic diagram of Compensated neutron tool (after Rider, 1996). 
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4.1.2.4 Resistivity Logs 

This is a method of well logging that works by characterizing rocks and sediments based on their 

electrical conductivity while resistivity is a fundamental material property which represents how 

strongly a material opposes the flow of electrical energy. It is also used in formation evaluation 

during oil and gas well drilling. The resistivity of a well depends on water saturation, pore 

structure geometry and resistivity of formation water. In these logs, resistivity is measured using     

electrical conductors to eliminate the resistance of the contact leads. The log must be run in 

boreholes containing electrically conductive mud or water. Various types of resistivity logs 

include induction logs, latero- logs and micro resistivity logs 

4.1.2.4.1 Induction logs 

This is used in measuring the conductivity of an undisturbed formation i.e. a formation that is 

laterally distant from the borehole. It utilises a high frequency electromagnetic transmitter to 

induce current into the formation, naturally designed for an 8.5 inches borehole, it can run 

successfully in a larger hole size performed at 1.5 inches stand off from the borehole wall. 

4.1.2.4.2 Laterolog. This tool is applied in undisturbed formations, it can detect over-pressure 

formations and perform fluid saturation determinations. It makes use of bucking currents or 

focusing currents to monitor potential difference drops between an electrode and the tool; the 

drop in the potential of the electrode is a function of the resistivity changes within the formation. 

4.1.2.4.3 Micro-Resistivity log: This measures the resistivity of the flushed zone (zone of high 

mud cake thickness) with high resolution. It measures the resistivity of the invaded zone and 

does not reflect the true resistivity of the formation. 
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4.2 Petrophysical Properties Estimation 

The following parameters and rock properties will be estimated from integration and 

interpretation of different log suites. Various accepted industry software package and 

mathematical models are used for accurate determination of the parameters and properties. 

 

4.2.1Volume of Shale 

This is the measure of the degree of shaliness or clay content within the reservoir interval,the  

steiber method is appropriate because it suppresses the abnormal responses exhibited by the 

gamma ray tool to a small amount of shale. 

Using the Steiber equation (1970), Vsh (volume of shale) is calculated as: 

Vsh= IGR/3-(2IGR) 

4.2.2 Fluid saturation. 

Fluid saturation of hydrocarbon bearing intervals can be estimated from the resistivity logs by 

combining both a deep resistivity tool and a shallow resistivity tool.  

Sw= [F*(Rw /Rt)] 
0.5 

Where F=a/Porosity
m

, Rw = Resistivity of water, Rt = True resistivity of the formation 

The hydrocarbon saturation would be calculated as Shc=1-Sw 

Bulk volume of water (Vb) = Sw*Porosity 

Sirr= Vb/ effective porosity/ (1-Vsh 
2
).Sirr implies the minimum attainable amount of water that 

can be displaced from the reservoir due to hydrocarbon migration. 

When Sw=Sirr………………… implies hydrocarbon bearing intervals 

          Sw> Siirr………………..   Hydrocarbon production likely 
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           Sw< Siirr………………    Erroneous estimation 

 

4.2.3 Porosity 

Because of its high accuracy and minimal borehole effect, the density tool is used in the 

determination of Porosity,  

Porosity=   Pma-Pb /Pma-Pf  

The density tool can give an indication of gas bearing zones in the reservoir when combined with 

the Neutron log. Porosity from neutron log is thus calculated with the density log, where 

 [0.5*(Φd
2
+Φcnl

2
)] 

0.5
  

 Φd = Porosity reading from density log. 

Φcnl= Porosity reading from neutron log. 

for gas bearing reservoirs while for non-gas bearing reservoirs;  

Total porosity= Density porosity+ Neutron porosity /2.  

Effective porosity is given as [Total porosity *(1-Vsh)] provided Vsh is calculated by the Steiber 

method. 

4.2.4 Permeability 

Permeability values would be derived by using Coates formula and  is measured in milli Darcies 

K = GФeff  4       [ФT - (Фeff * Swir)] 
2 

 

                                   Фeff * Swir 

 

 

The Coates formular for calculating permeability works well in shaly-. sandy formation 

Фeff = Effective porosity 
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[ФT= Total porosity 

Swir =Irreducible water saturation. 

 

4.3 Wireline logs Loading: 

Well logs formatted in Las (Log ASCII Standard) file collected from PASA have been imported 

into the Interactive Petrophysics workstation and Petrel software; the log signature generated has 

been compared with the lithology observed on the cores to see any difference, after which a 

quality check and normalization of curve has been done. If need be, matching of core and log 

depth has been done based via the Gamma ray log signature and reservoir sections delineated 

through the integration of different logs displayed. The reservoir has been modeled with Petrel 

2011 because of its unique environment of 2D and 3D visualization windows and Microsoft 

windows based standards of shared earth modelling. 

4.4 Core Description:  

Materials needed for Core description are 

 Measuring Tape 

 Hand lens 

 Digital camera 

 Log sheet 

 Sample bags 

 Apron 

 Water 

Cores laid out at the PASA core store were arranged in different boxes and tagged with the name 

of the specific well. The cores were arranged from bottom to top; this makes the logging of these 

cores less complex. Quantitative and qualitative information can be gotten from detailed 
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description of cores, broken cores were taken into consideration as to be able to calibrate the 

total depth of cores with total depth of cores recovered. Cores were cleaned up with a wet apron 

for better visual observations of rock properties like colour, sedimentary structures, fossil 

assemblage, grain size and texture. The thickness of each of the cores described was measured 

and recorded using a measuring tape, grain sizes were viewed with a hand lens which was also 

used to observe any apparent sedimentary structures. A digital camera was used to capture cores 

with interesting geological features at different depth, while a grain size standard chart was used 

to classify the grain sizes. 

4.5 Scanning Electron Microscopy/EDS (Energy Dispersive Spectrometry). 

SEM utilizes a strong beam of electrons to image a sample by revealing information such as 

external morphology, chemical composition and crystalline structure. Because of the high 

resolution and magnification of up to 30,000 times, it was developed as a tool to replace the 

ordinary light microscope which has limited capacity to image samples. SEM has a larger depth 

of field which allows a large number of samples to be in focus at one time and produce an image 

in a 3D arrangement. Applications of SEM include fracture mechanics and structure 

determination. Because of its versatility, it is used for EDS analysis to determine chemical 

compositions of samples. This study used a Topcon Leo S440 fitted with EDS, this device 

measures the energy of X-rays generated by interaction of samples with beam of electrons. 

Pellets were prepared from samples by mixing with adhesives; the pellets were subsequently 

inserted into the carbon sputter to allow carbon coating. After this, the pellets were inserted into 

SEM image /EDS machine analysis. Sample preparation involves mounting on an aluminium 

stub covered with a carbon adhesive and subsequently coated with silver paste. The whole 

prepared sample was put in to the SEM and illuminated with electrons which later flow through 

it. 
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Figure 4.3: Scanning Electron Microscopy Machine/EDS (Physics Department, UWC) 
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Figure 4.4: Scanning and detection system in scanning electron microscope (Theodor, 2000) 
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4.6 X-Ray Diffraction (XRD) 

This is an electromagnetic radiation which generates photon energies in the range of 100ev to 

100Kev. X-rays often penetrate deep into the material or samples to reveal bulk structure. X-rays 

are generated when a focused electron beam is accelerated across a higher voltage field after 

which it bombards a stationary or rotating solid object. As beam of electrons collides with the 

atoms in the primary target and subsequently slows down after collision, it deflects away from 

the original source because of energy loss and generates a continuous spectrum of X rays (figure 

4.5 A). The phase identification of samples taken was done at the ITHEMBA labs x-ray facility 

using a Bruker D8 ADVANCED diffractometre. The experimental set up includes a 3 degree 

divergence slit on the secondary side as well as 3 degrees on the primary side. Samples prepared 

for analysis were measured from a 2-theta starting point of 10 degrees to 2 –theta stop of 85 

degrees with step size value of 0.02 degrees and step time of 0.3 s.  

 

A 

Figure 4.5: (A).Concept of diffraction of X-rays. 

 

4.7 Thin sections Analysis 

Thin section analysis involves a petrographic description of rock sample, basic properties such as 

grain size, degree of sorting, mineral abundance and porosity can be estimated from visual 

observations of thin sections. Preparation of rock samples for thin section analysis was done by 

impregnating it with epoxy to augment sample cohesion and prevent loss of material during the 

grinding procedure. Each of the samples were mounted on a frosted glass slide and then cut with 

a diamond saw to a thickness of approx. 5mm and thinned to a thickness of about 30 microns. It 
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is an invaluable tool in reconstructing diagenetic history as pore filling or pore lining cements 

can be identified on the thin sections’ photos. Information thus obtained from thin sections was 

matched with SEM and XRD results to authenticate the observations made. The occurrence of 

some minerals or authigenic clay cements does not only affect the reservoir but their pattern of 

distribution does play a major role in influencing reservoir quality. 

 

http://www.cmc-concrete.com/CMC%20Web%20Photos/airvoids.jpg 

Figure 4.6: Typical thin section photomicrograph 
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4.8 Cation Exchange Capacity (CEC). 

The analyses of cation exchange capacity on rock samples is the measure of the amount of sites 

on the samples’ surfaces that can hold cations by an electrostatic force (Ross, 1946 ).Crystal 

surfaces of clay do have exchange sites where ions offer an electrical path through the clay 

which always result in surface conductance (Bates et al.,1987).These ions do offer themselves 

for exchange when in contact with saline solution and thus, their capacity is measured by the 

number of ions that can be exchanged. The usefulness of CEC in agricultural research has been 

highlighted as CEC serves as an organic matter indicator in soil samples. The importance of CEC 

for estimation of petrophysical properties of rock samples using different models have been 

highlighted by many authors (Winsaur and Mc Cardell, 1953, Waxman and Smith, 1968 and 

Clavier et al., 1984). The Waxman and Smith model is the commonly used model in estimation 

of Petrophysical properties. CEC studies are crucial in this work because it gives pointers to clay 

diagenesis as the number and sites of exchangeable cations can be determined easily. 

Transformation and diagenesis of clay minerals involves the exchange of one cation with 

another. This exchange does have certain effects on the intrinsic qualities of the reservoirs at 

specific depth, for example fixation of K
+ 

in a very alkaline condition enhances the illitization 

process.  The CEC analysis in this study was carried out at BEM laboratory and the procedure 

involved the crushing of the core samples to a very fine powdered form.  

This is followed by weighing off 10 grams from each of the samples and dissolves this using 

ammonium acetate solution in Erlenmeyer flask. The solution was shaken thoroughly for 16hrs 

while a   5.5cm

Buchner funnel with moistened retentive filter paper fitted with light suction was used to 

separate the filtrate from the solution.  The residue was washed four times with 25M ammonium 

acetate solution and suction was again fitted to allow slow filtering and the resultant leachate 

generated was tested for exchangeable cations using inductively coupled Plasma spectroscopy. 

 Another importance of CEC in clay studies and reservoir quality assessment is the determination 

of Qv (shaliness indicator).Qv is defined as the CEC value per unit volume, is an important 

parameter in developing a water saturation model. 
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Table 4.1 CEC values of different Clay minerals. After Worden and Morad (2003) 

 

 

4.9 Porewater Chemistry 

Determination of Ec, pH and TDS was made easy because pH meter accounted for these 

measurements to be taken at a single probe. The pH meter probe was calibrated and always 

preserved in KCL solution.  Using the Eckert method (1988), the crushed core samples of the 

three wells at selected depth were weighed at 5 grams each and were dissolved with 50ml of 

ultra-water in a beaker. The beaker solution was centrifuged for ten minutes and allowed to settle 

for 15 minutes. This was followed by filtration using the suction pump and 50 microns filter 

paper, a clear filtrate obtained from the filtration was probed for Ec, pH and TDS. 
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Chapter Five 

5.1 Presentation of Results: Core Description, Geophysical logs and Petrophysical 

properties. 

 Core description and lithofacies identification are basic fundamental steps in reservoir 

characterization. The significance of core description is for depth matching with gamma ray logs, 

depositional environment inference and sedimentary structures determination. Detrital 

composition of rock samples have been identified to exert a major  influence on the reservoir 

quality as it conditions pathways of both physical and chemical diagenesis (Bloch,  1994). Depth 

matching of cores with the geophysical wire line logs is important for calibration because the 

drillers’ depth are often different from the logger’s depth, also, petrophysical properties 

estimation can be done by the integration of geophysical wire line logs . Lithological studies; 

taking into account all visual examinations made on the cores are often used to infer the 

depositional environment in which the cores were deposited while the type of sedimentary 

structures observed on a core sample do play a role in influencing the petrophysical properties of 

the rock units. The results from core description and geophysical logs interpretation will be 

discussed in this chapter and will be subsequently used to estimate petrophysical properties. The 

lower Cretaceous sedimentary deposits which are dominantly siliciclastic rock sequences have 

been grouped into different facies based on the evidence of grain size differences, colour, 

mineralogy and sedimentary structures. Core photographs were taken at various depths with 

interesting geological features, a suite of relevant geophysical logs were interpreted and were 

used to estimate the petrophysical properties. 
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5.1.1 Core Description 

Cores are cylindrical massive rock units obtained during the drilling of wells, by the usage of a 

core barrel lowered into the well bore. Observations made on cores represent a ground truth of 

the subsurface formation. Lithological observations and facies identifications are the major 

information that can be obtained from core description. The total length of cores described from 

well KF-1, AU-1 and KH-1 are 2.4m, 6m and 18 m respectively. The approach used by Nieto 

(1998) was used in grouping the rock units into different facies based on their colour, grain size, 

mineralogy and sedimentary structures. Emphasis was placed on grain sizes as the major 

justifications for grouping the facies. 

5.1.1.1 Core Description of K-F1 Well 

Cores were cut at depths of 3006-3009.3m.The cores consists of thinly interbedded to 

interlaminated highly deformed clay stone, siltstone and sandstones .After calibration with 

wireline logs, the core-depth shift rule was applied because of discrepancy of 3.1m (Table 5.0 

and Figure 5.3) observed between the depth of the cores and log depth, hence the depth cored is 

corrected and given as 3002.90-3005.93m. Depositional environment may be a low energy 

environment because of alternating fine and coarse grained sedimentation occurring as an over- 

bank deposit in a submarine fan channel environment. After careful calibration of cores’ depth 

with gamma ray log as observed on the Interactive Petrophysics software, depth shift correction 

was applied due to the discrepancy observed in depth of core-log measurements. The total depth 

described for KF-1 well is from 3002.90-3005.93m, with 90% of the cores recovered. The 

lithologies range from carbonaceous mudstone to thinly bedded fine-medium grained sandstone, 

subsequently intercalating with mudstone which later graded into predominantly mudstone. Mud 

drape and dewatering structures are evident on the cores which serve as a pointer to a high rate of 

sediment deposition and subsequent liquefaction of soft sediments. This commonly occurs in 
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deep water marine environment (Allen, 1984).The reservoir sand interval can be regarded as a 

thin bed as it is approximately 1.2m. 

 

 

 

Table 5.0; Summary of Core description for K-F1 well (Facies Legend below) 

DEPTH(M) DESCRIPTION SEDIMENTARY 

STRUCTURE 

DEPOSITIONAL 

ENVIRONMENT 

3006-3006.95 

 

 

 

Friable carbonaceous 

laminated mudstone  

highly ferruginised 

because of observable 

reddish brown stains 

which occur like a band 

.There is evidence of 

white shining imprints 

which suggest shells of 

invertebrates. Total 

cores recovered is 

0.75m 

Mud drape 

presence 

 

Shale laminae 

observed at 

3006.95m 

Low energy 

sedimentation of 

fine and coarse 

material possibly as 

overbank deposit in 

a sub-marine fan 

environment. 

A1 

 3006.95-3007.88 

 

 

Ferruginised 

carbonaceous mudstone 

with thin parallel 

laminae, grading into 

fine-medium grained, 

cross laminated 

sandstones at a depth of 

3007.11m. Total core 

recovered is estimated 

at 0.78 m. 

Dewatering 

structure and brown 

clast observed as 

concretion.

 

A1&A2 
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3007.88-3008.95 

 

 

Medium grained 

sandstones intercalating 

with mudstones and 

subsequently grading 

into mudstones which 

are finely laminated. 

Total core recovered is 

0.78m 

Dewatering 

structure and brown 

clast inclusion 

observed. 

A2&A1 

Facies Key: Mudstone –A1, Sandstones -  A2, Siltstone-A3, Dark Coloured Sandstone -A4, Conglomerate-A5 

                                         

                                      

                                   

A 

B 

C 
D 

E 

F 

Mud 

Intraclast Shale 

Laminae 
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(A) Mud Drape and dewatering structure at depth of 3007.50m (B) Fossilised Mudstone 

3008.90m (C) Shale laminae at depth of  3006.95m  (D) Mud intraclast at depth of 

3006.86m (E) Shale laminae at depth of 3009.5m (F) Water escape structure and Mud 

intraclast.    Figure 5.0: Different core photos at various depth for KF-1 Well. 

 

 

 

5.1.1.2 Core Description of AU-1 Well 

Cores were cut for stratigraphic purposes at depth interval between 2684-2697m.Three litho-

stratigraphic units observed from the core description include an upper fine-grained sandstone 

unit grading into a central interbeded sandstone and claystone unit and ending in a lower, 

predominantly claystone unit. Observations made from core description showed an upper unit of 

dark-grey, fine to medium grained sandstone grading into siltstone with subsequent intercalations 

with mudstone at a deeper depth. The sandstone interval within the cores is approximately 6.5m 

m thick, this agrees with the information obtained from the well report. The recovery rate is 

100% while core depth agreed with the log depth. The most prominent sedimentary structures 

observed are current ripple marks and wavy laminations; current ripple marks are associated with 

the dominance of waves and current superimposition during deposition. 
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Table 5.1; Summary of Core description for AU-1 well (Facies Legend on Page 62) 

DEPTH(m) DESCRIPTION SEDIMENTARY 

STRUCTURE 

DEPOSITIONAL 

ENVIRONMENT 

2684-2685.9 

 

 

 

Grey coloured, 

fine-medium 

grained sandstones. 

feldspar and 

muscovite observed 

under hand lens. 

 Wavy ripple mark. 

 

Reworked shallow 

marine sandstones 

typical of shelf 

environment. 

A2 

2685.9-2687.39 Massive, 

ferruginised 

sandstone unit 

grading into 

Siltstone, colour 

ranging from dark 

grey in sandstones 

to dark in Siltstone. 

Brown lithic 

fragment and  

ferruginised lamina 

were  observed 

within the siltstone 

unit 

Current ripple marks A2&A3 
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2687.39-2688.10 Siltstone 

intercalation with 

mudstones, thin 

parallel laminae 

observed. 

Current ripple marks A3&A1 

2688.10-2689.60 Siltstone grading 

into friable mud  

stone with a lot of 

inclusions  brown 

clasts and lithic 

fragments. Dark 

grey sandstone unit 

observed at 

2688.50 -2689.5m 

 

A3&A1 

2689.76-2690.92 Intercalation of 

siltstones and 

mudstones with 

evident parallel 

laminations 

Current ripple marks. A3&A1 

2690.92-2693.96 Intercalations of 

mudstones and silt 

stones 

Wavy ripple laminations. A3&A1 

 

 

(A) AU- 1 wavy ripple marks at depth of 2685.39m (B) AU-1 ripple marks at depth of 

2689m. 

A 

B 

Wavy 

Ripple 

marks 
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Figure 5.1: Different core photos taken at various depth for A-U1 well. 

5.1.1.3 Core Description of KH-1 Well 

The well was drilled to an estimated depth of 4268m, cores were cut at intervals between 3066-

3082m and comprise of an estimated 7m thickness of sandstone unit underlain by a massive 

claystone unit. Information obtained from the well report suggest the Sandstone unit was 

deposited as a marine channel sandstone unit. Observations made on the core section  show a 

whole sequence of 7 metres thickness (figure 5.5) comprising of sandstone unit, thinly laminated 

and highly ferruginised unit which graded  into silty sandstone at depth of 3073.5m.There is 

occurrence of angular to sub-angular lithic fragments at greater depth which may impede 

porosity and permeability while the presence of mud drape structures signify that the sand body 

was subjected to extraneous intermittent flows which led to the formation of mud layers 

infiltrating the sand deposit during quieter or slack flow period ( Reineck and Wunderlich,1968). 

Table 5.2; Summary of Core description for KH-1 well (Facies legend on Page 62) 

DEPTH(m) DESCRIPTION SEDIMENTARY 

STRUCTURE 

DEPOSITIONAL 

ENVIROMENT 

3066-3066.83 Coarse grained sandstones 

with lithic fragments 

presence 

Mud drape structure and  

ripple marks. 

 

Marine 

environment, 

Delta front 

detached bars.A2 

3066.83-3068.22 Grey coloured, medium  -

coarse grained sandstones, 

parallel laminated 

 A2 

3068.22-3069.18 Thinly laminated 

sandstones with mud 

stains, medium grained and 

 

 

A2 
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dark coloured.  

 

3069.18-3071.53 Dark stained, medium 

grained sandstone unit. 

Parallel lamination 

observed. 

 

A4 

3071.53-3072.70 Dark-grey massive 

sandstone unit with  lithic 

fragments . 

 A2 

3072.70-3073.86 Dark stained , massive 

sandstone unit grading into 

siltstone with reddish 

brown stains occurring like 

band and follow by 

subsequent intercalations 

with siltstone. 

Sinuous Ripple marks A4&A3 

3073.86-3074.85 Silty sandstone changing 

into conglomeratic 

sandstones, angular to sub 

angular lithic fragments 

with obvious reddish 

brown band. 

 A3&A2&A5 

3074.85-3075.82 Greywackes/conglomerates 

abruptly changed into dark 

coloured, finely laminated 

but ferruginised mudstones 

 A5&A1 

3078.82-3080.82 Friable, finely laminated 

mudstone 

 A1 
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3080.82-3082.08 One metre of cores 

recovered, mudstones 

changing into highly 

ferruginised conglomerate 

with a lot of pink feldspar. 

Wavy lamination 

 

 

A1&A5 
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KH-1 (A) Abrupt change of Conglomeratic Sandstone into Mudstone at depth of 3074.85m 

(B) Iron band observed on core sample at depth of 3073.2m (C) Lithic rock fragments of 

pebble sizes embedded within Sandstone unit at depth of 3074.23m.(D)Flaser bedding 

structure observed at depth of 3071m (E) Conglomeratic Sandstones with rock fragments 

of angular size and wavy laminations observed at depth of 3081m (F) Mud drape structure 

observed at depth 3066.5m(G) Mud stains observed at depth of 3069.18m (H) Parallel 

laminations observed within sandstones unit at depth of 3070m.   

Figure 5.2:  Different core Photos taken at various depths for K-H1 well.                                        

                    

5.1.2 Geological Interpretation of Wireline Logs 

Different suites of logs measure different properties of rocks in the subsurface. Wireline logs 

have improved formation evaluation studies over the years and have proven to be a good source 

of information as regards the understanding of subsurface geology. It enables the interpretation 

of physical properties of rocks or formations geologically, hence wireline logs interpretation 

would make lesser meaning if not done in relation with geology. The suites of logs used in this 

work are gamma ray, sonic, resistivity (short and deep) and neutron- density. The accurate 

interpretation and integration of these logs is crucial to the estimation of formation of 

petrophysical properties. Depositional environment and lithofacies analysis can also be inferred 

from the geological interpretation of wireline logs. Gamma ray logs have been consistently used 

over the years to determine grain size and to know the contributions of various radioactive 

minerals like Th, K and U isotope series. Both Th and K are associated with clay minerals 

(Hassan et al., 1976). Estimation of fluid saturation in a reservoir zone can be achieved by the 
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combination of short and deep resistivity measurements while the combination of neutron and 

density tools gives porosity value. Using some mathematical model specifically generating a 

linear regression formula on interactive petrophysics software, can also give permeability values. 

The conventional core analysis measurement of some of the petrophysical properties correlates 

in almost a near perfect manner to the values derived from the estimation of these properties 

from wireline logs for the three wells. 

 

 

5.1.2.1Geological Interpretation of Wireline Logs   for K-F1 Well. 

The interpretation of well KF-1 was preceded by depth match of core with the wireline logs. 

Core- log depth shift was applied because of discrepancies observed in measurements to a value 

of 3.1m. The core was cut between a depth of 3002.90-3005.93m (figure 5.3).The first track on 

the log suite shows the depth intervals in metres, the second track indicates the presence of a 

porous interval within the reservoir section. Gamma ray log is used for delineation of reservoir 

and a non-reservoir section, the unit is API (American Petroleum Institute). The resistivity logs 

combination is for the calculation of fluid saturation while the water saturation output curve is 

plotted next to resistivity log track (figure 5.3). Phie (effective porosity) comparison track is an 

output of the sonic log-derived porosity compared to core-derived porosity while the 

permeability curve and lithology curve with shale base line occupies track 7 and 8 respectively 

(figure 5.3). 
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Figure 5.3: Suite of Logs interpreted for KF-1 well 

 

In the reservoir section, the lowest GR value is 45 API for clean sands while for shaly sand the 

value is around 90 API (figure 5.3). The slightly irregular signature of the gamma ray log 

suggests minor variations in the grain sizes of the sandstone interval coupled with an alternating 

transgressive and regressive sequence that accompanies the deposition of the sand and mud rock. 

This is evident as the log suggest a transition from an initial coarsening upward sequence to a 

fining upward sequence at around the depth of around 3000m.It is an indication of   initial rapid 

deposition followed by gradual deposition abandonment; the log profile exhibited by KF-1 well 

is a typical log profile of a marine channel deposits (Rider, 2000).This observation can be 

justified by the evidence of water escape structures reported in the core description (figure 5.0). 

Within the cored section (indicated by red line on gamma ray track, figure5.3), there was 

evidence of alternating marine transgression and regression sequences that cause erosion and 

        Cored section 
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subsequent deposition of mud rock in the upper contact (Rider, 2000).The short and deep 

resistivity logs overlap each other and represent relatively low resistivity values at various depths 

except for the sudden increase observed at depth of 3003.95 m to 3005m. Sudden increase in 

resistivity value is an indication of the likely presence of hydrocarbon at that depth and this also 

corresponds to the depth at which clean sand is observed on the gamma ray log.  The plot of 

saturation  values of conventional core analysis data on the modified Simandoux (1963) shaly-

sand model  for water and gas saturation calculation plot confirms that the saturation curve 

agrees with  the average core  gas saturation  of 14% and water saturation  of 86% (figure 

5.3).The Simandoux (op.cit) shaly-sand  saturation model was used to generate the saturation 

curve. Careful study of fluid saturation curves shows that the fluid saturation values derived from 

cores agree with those observed from the logs.  The anomalous high water saturation values 

observed at the basal shale interval might be attributed to the dominant clay mineral making up 

the shale interval, perhaps because of high surface area of the clays which may also be attributed 

to the bound water. Because of the unavailability of a neutron log, the sonic log was used for the 

porosity estimation of the KF-1 well. The porosity value derived from the sonic log (13.6%) is 

higher than the core-derived porosity (10%) while corresponding values in permeability were 

observed. Considering the discrepancy of values in sonic log-derived porosity and core-derived 

porosity, it should be noted that core porosity is often a representation of the ground truth while 

the usage of only the sonic log to calculate porosity may be inaccurate. The depth of the highest 

value of the porosity and permeability plots corresponds to the depth (3004.5m) with lowest GR 

value and the lowest percentage of VCL (20%). 
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Curve Well Depths Min Max Mean Std DevMode P10 P50 P90

GR KF-1 1382.01M - 3794.61M 21.75 125.18 78.351 15.86 76.5 59.593 77.125 100.81

All Zones 21.75 125.18 78.351 15.86 76.5 59.593 77.125 100.81  

 Figure 5.4 :Gamma ray log Histogram for KF-1 well showing values range of clean sands to 

shale generated from Interactive Petrophysics software. 

 

 

 

 

 

Table 5.3:Petrophysical properties calculated  values for KF-1 well from Logs. 

 KF-1   

Depth (m) 

Average 
porosity 
(decimal) 

Average 
Permeability 
(milli darcy) 

Average water saturation 
(decimal) 

3006.25    
       0.098 0.01 0.1 

 High GR       

value. 

Low 

GR 

value 
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5.1.2.2 Geological Interpretation of Wire line Log K-H1 Well. 

Matching of core depth and log depth was done to ascertain any discrepancy in depth, no depth 

correction was applied. Track 1 on the log suite (figure5.5) represent the depth profile of the logs 

while tracks 2,3,4,5,6 and 7 represent gamma ray, neutron-density curve, resistivity logs, water 

saturation curve and porosity curve respectively. 

3007.07 
 0.12 0.02 0.09 

3007.6 
 0.125 0.01 0.1 

3008.13 
 0.093 0.01 0.11 
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Figure 5.5: Suite of Logs interpreted for Well KH-1 generated from Interactive Petrophysics 

software. 

The sand body is fairly thick (3066-3073m) (see figure5.5, indicated by red horizontal line), the 

deposition of the sand bodies might be due to vertical accretion which caused sand bars to 

overlay an initial lower bar facies of shale and siltstones. The log signature is typical for marine 

sand bars (Delta front detached bars), according to Rider (2000). There was a sharp upper 
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contact between the sand body and the shale interval while the basal contact shows a gradual 

change into shale. The lowest GR value is 55 API within the reservoir intervals .Unlike Well KF-

1 in which the sonic log was used in calculating porosity, the availability of neutron and density 

logs enables the calculation of porosity values. The estimation of porosity values was done using 

the combination of neutron and density log and the subsequent plot showed the overlapping of 

the conventional core porosity data with the neutron density porosity plot curve. Note that the 

Neutron-density porosity plot shows more correlation with the conventional core porosity values 

than the sonic log curve output for the KF-1 well. It appears therefore that estimation of porosity 

done via neutron and density logs yields more accurate results than those obtained using the 

sonic log plot. The average porosity within the reservoir section is calculated as 9.9%. Due to 

unavailability of conventional core fluid saturation data, comparison between core saturation and 

log saturation models cannot be made. Expectedly, there is an  increase in the deep and shallow 

resistivity values from the upper shaly interval to the reservoir interval; being a more porous 

interval, a higher resistivity value is expected if the reservoir is not water saturated. The 

Simandoux (1963) shaly-sand water saturation model curve indicates an average water saturation 

of about 50% .From the neutron –density plot, the variance in core porosity plots and log 

porosity is insignificant ( figure 5.5 above). Hence the porosity value from conventional core 

analysis and log analysis could be used interchangeably. The average volume of clay (VCL) 

within the reservoir section is less than 30%. It is therefore expected that porosity value fares 

better than the calculated value. It is assumed that the precipitation of different authigenic 

cements might have compromised the quality of the reservoir. 

Table 5.4:Petrophysical properties calculated  values for KH-1 well from Logs. 

 KH-1   

Depth (m) 

Average 
Porosity 
(decimal) 

Average 
Permeability 
(milli -darcy) 

Average water 
saturation (decimal). 

3067 0.1 0.04 0.42 

3068.09 0.1 0.04 0.4 

            3068.92 0.12 0.04 0.38 

3069.90 0.098 0.04 0.48 

3070.89 0.085 0.04 0.58 

3072 0.098 0.13 0.5 

3074.42 0.1 0.13 0.42 

3082.25 0.09 0.15 0.56 
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5.1.2.3 Geological Interpretation of Wire line Logs for AU-1 Well. 

 The different curves output of wireline logs for well AU-1 from depth 2679.93-2693.96m is 

shown in (figure 5.6). Prior to wireline logs loading in the software and subsequent calculation of 

the petrophysical properties, depth matching of core depth with log was done and no discrepancy 

was observed. The gamma ray log signature of AU-1 well is similar to that for the KH-1 well, 

the deposition of the sand bodies might be due to vertical accretion which caused sand bars to 

overlain an initial lower bar facies of shale and siltstones. The log signature is typical for marine 

bars (Delta front detached bars), (Rider, 2000). There is a sharp basal contact between the sand 

body and the shale interval while the upward contact shows a gradual change into shale. The 

sand body is estimated at about 6.5 metres thick (indicated by thin purple horizontal line in 

figure 5.6), facies A2 is predominant fine to medium grained sandstone and A3 is siltstone. The 

average gamma ray value for the reservoir interval is 60 API which is an acceptable value for 

potential reservoir zone which is not predominant clean sand. The resistivity value is fairly low 

and there is a run of continuous overlap between deep and shallow resistivity (figure 5.6) .This 

suggests that the pore spaces of the reservoir are saturated with water. The output curve of the 

density log was used in estimating the porosity values and appeared to be consistent with 

porosity and permeability values derived from conventional core analysis data. The average 

porosity estimated within the reservoir interval is 10% and an average permeability is 0.015Md. 

The shaly-sand-water saturation model indicates an average water saturation value to be less than 

65% within the reservoir zone. The water saturation in the upper shale contact is found to be 

higher than for the basal shale contact, this can be attributed to the type of dominant clay mineral 

at different depths within the section. A similar explanation can also be given to variations in 

water saturation values within the reservoir interval. A clay mineral with higher surface area and 

Qv attracts more bound water than clay minerals with lower surface area and low Qv. Once 

again, the reliability of petrophysical values estimated from logs is confirmed as the plots of the 

conventional core data agreed very well with the output curve from the density porosity log, this 

is evident in figure 5.6. The average volume of clay is estimated to be 32% within the reservoir 

section. 
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Figure 5.6: Suite of Logs interpreted for AU-1 well generated from Interactive Petrophysics 

software. 
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          Table 5.5:Petrophysical properties estimation  values for AU-1 well. 

 

 

            

              

 

 

 

           

 

 

 

 

 

 

 

 

 

 

 

 AU-1   

Depth m 
Average Porosity 

(decimal) 

Average 
Permeability (milli 
darcy) 

Average water 
Saturation(decimal) 

2684.05 0.12 0.02 0.5 

2684.67 0.11 0.02 0.6 

2685.39 0.11 0.02 0.65 

2685.84 0.09 0.02 0.68 

2686.51 0.1 0.01 0.51 

2687.8 0.1 0.02 0.68 

2688.38 0.11 0.01 0.45 

2690.33 0.09 0.01 0.38 
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5.1.3   Summary of Core Description and Wire line logs Interpretation 

 Detrital compositions of rocks always condition a pathway for subsequent diagenesis and may 

have effect on the values of some petrophysical properties. Calculation of some petrophysical 

properties values were done through detailed processing and interpretation of wire line logs and 

later compared with some limited data obtained from conventional core analysis data. The 

reliability of wire line logs in calculating porosity, permeability and saturation is evident (figure 

5.3, 5.5 and 5.6) because of the continuous overlap of core data and the wireline logs output 

curve.  

5.1.3.1 Core Description 

The rocks encountered within the K-F1 well were deposited under a low energy environment 

conditions with alternating fine and coarse grained sedimentation occurring probably as an over 

bank deposit. Mud drape- and dewatering-structures are prominent on the core , this is a feature 

of rocks deposited in deep marine environment (Allen, 1984). Lithology ranges from 

carbonaceous mudstone at 3006m to fine –medium grained sandstones at 3007m and mudstone 

at 3008.95m. 

 A-U1 lithology ranges from depth 2684m-2693m and consists of upper fine grained sandstone 

grading into central interbeded sandstone unit which later grades into mudstone. Current and 

wavy ripple marks were observed on the rocks which is a characteristic feature of a shallow 

marine sandstone unit of the shelf environment. The presence of current ripple marks on the 

cores serves as a confirmation that the sandstone unit may have been deposited under shallow 

marine conditions. A very massive, parallel laminated but ferruginised sandstone unit was 

encountered in K-H1 well at a depth of 3066m and this is underlain by a massive clay stone unit. 

Sedimentary structures observed include dewatering structures and mud drapes. The occurrence 

of mud layers on the sandstone is evidence that the sand body was subjected to extraneous 

intermittent flows which allows mud layers to infiltrate the sand body. 
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5.1.3.2 Wireline Logs 

Interactive Petrophysics
©

 software (IP) was used to process the well logs datasets and 

subsequently to calculate some petrophysical properties. Limited conventional core analysis data 

were loaded on an I.P workstation to output the data points and compare the results with 

calculated values from the well logs. 

 In K-F1 well (3006-3008.95m), a 3.1m depth correction was applied because of discrepancy 

observed in logs and core depth. The Simandoux (op.cit) water saturation model was adopted, 

water saturation of 86% was obtained from the well report, an average porosity of 10% and 

permeability in the region of 0.15md.The sonic log derived porosity is calculated to be 13.6% at 

a depth of 3004.72m, which is more than the core derived porosity of 10% at the same depth. 

This variance in value suggests that use of the sonic log only is not accurate in calculating 

porosity values, therefore other porosity logs should be combined and interpreted to obtain more 

reliable values. 

Neutron-Density logs were used to calculate porosity values in the K-H1 well in contrast to the 

sonic log in the K-F1 well. The average porosity within the K-H1 well reservoir section is 9.9%, 

the continous overlap of core data points and log’s curve on the neutron –density track (figure 

5.5) shows that neutron-density porosity estimation is as accurate as core ; the water saturation is   

about 50% while the permeability value is significantly low. In the A-U1 well (2684-2693m), the 

density log was used to calculate porosity values and an average of 10% was estimated, also an 

average water saturation of 65% was calculated from the logs while an average permeability 

value of 0.015md was obtained.  

It should be noted that the sampled depth of conventional core analysis data is not the same as 

the sampled depth of cores that were used for this work. This implies that direct comparison of 

log derived petrophysical properties values with conventional core data values of some specific 

depth could not be made, average values were calculated however within the reservoir intervals. 
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The output of the curves for logs and core data values have very close resemblance, as can be 

observed from figures 5.3, 5.5 and 5.6.  

 

Chapter Six: 6.1. Petrography and Geochemistry 

Different petrographic studies were carried out on various rock samples obtained from wells KF-

1, A-U1 and K-H1. Unraveling the dominant rock forming minerals in rock samples,   

understanding the crystal habits and distribution patterns of various allogenic and authigenic 

minerals are the main essence of undertaking petrographic studies. Textural maturity of 

sediments can be understood from thin section analysis, while XRD analysis complements 

observations made on thin section by giving direct information on the type of clay minerals 

present in rock samples. Scanning Electron Microscopy gives information about the crystal 

habits displayed by various authigenic cements, and the relative timing of precipitation of clay 

minerals can also be inferred from careful observations of SEM photomicrographs. Various 

geochemical analysis carried out are targeted at confirming observations made from petrographic 

studies and to understand the chemistry of the depositional environment in which the reservoirs 

were deposited. Pore water chemistry analysis gives information on the electrical conductivity 

and pH of pore waters, CEC analysis provides information on the dominant clay minerals, 

exchangeable cations and shaliness indicator while EDS (Energy Dispersive Spectrometry) 

provides information on the elemental composition of the core samples. 

6.1.1 Scanning Electron Microscope Interpretations 

The photomicrographs obtained from Scanning electron microscopy of different samples were 

interpreted with a SEM petrology atlas (Welton, 1984). Various clay minerals observed include 

montmorillonite, illite, kaolinite, chlorite and some accessories cements like quartz and pyrite. 

6.1.1.1 Scanning Electron Microscope Interpretation for AU-1 Well 

Results obtained from the analysis shows the occurrence of K-feldspar and pseudo –hexagonal 

kaolinite postdating quartz cement at depth 2684.05m (figure 6A), quartz cement have 

completely filled the pore spaces. The formation of kaolinite is apparently due to acidic leaching 

of K-feldspar or possibly muscovite, the precipitation of authigenic kaolinite and quartz cement 
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is often common to co-exist in marine environment conditions (Hurst and Irwin,1981) while 

quartz authigenesis has also been reported to take place in sea water (Mackenzie and 

Gees,1971).The origin of quartz cement in AU-1 well was probably sourced from silica 

precipitation due to the dissolution of feldspar by pressure dissolution  or sourced from the silica  

presumably derived internally from the intergranular dissolution of quartz grains in the sandstone 

( Bloch et al., 2002; Walderhaug, 1994; Walderhaug and Bjorkum, 2003).The occurrence of 

montmorillonite at depth of 2685.39m (figure 6C) suggest AU-1 has been exposed to meteoric 

flushing from depositional waters which is slightly alkaline and favours  the formation of 

montmorillonite at the availability of sodium and or calcium ions. The kaolinite also occurs as an 

euhedral shape as it has been observed globally to occur in marine environment (Kupecz  et al., 

1997), the occurrence of montmorillonite implies that the gibbsite layer of kaolinite is being 

gradually replaced by a similar brucite layer (Mg (OH) 4)) at depth of 2684.67m (figure 6 

B).Thus, mixed layer of kaolinite and montmorillonite is likely at this depth. The fixation of K
+ 

must have favoured the easier transformation of kaolinite to montmorillonite, transformation of 

kaolinite to montmorillonite appears to have completed at 2685.39m (figure 6.C). Chlorite 

cements also occurs as rims around the pores while pervasive occurrence of quartz cements 

occurs as pore filling at depth 2686.51m (figure 6D). The quartz crystals shows high deformation 

which might be due to high pressure  and temperature, cleavages of quartz are more pronounced 

at depth of 2688.3m (figure 6F),the cleavage observed in the quartz might be due to over 

pressure zone because  the presence of montmorillonite has been linked with overpressure zones 

(Hurst and Irwin,1982). Chloritization of kaolinite and smectite started taking place at depth of 

2685.84m (figure 6.0), kaolinite can convert directly to chlorite, specifically magnesium rich 

chlorite (clinochore) by reacting with quartz (reaction below). Evidence of chlorite formation 

was more pronounced at depth of 2686.51m. Chloritization always happens as a smectite-chlorite 

mixed layer and higher pH values with strong Fe presence (Tian et al., 2008). 

7H 20+Al 2Si 2 O5 (OH)4+5Mg2 +SiO2-             Mg2 Al(AlSi3)O10(OH)8+10H
+ 

        Kaolinite                              Quartz                         Clinochlore 

  Authigenic smectites   and kaolinite are all likely to be transformed to chlorite (Grigsby, 2001, 

Berger et al., 2009) . 
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6.1.1.2 EDS Interpretation for AU-1 Well. 

The results of EDS are presented graphically along side the SEM photos below. This is to enable 

better comparison of observations made on SEM and EDS and to further probe the progressive 

alterations or transformation of different clay minerals through the substitution of one ion with 

the other. The graphical plot of energy (Kev) on y axis and intensity exhibited by different 

elements on X-axis shows different elements observed from the EDS plot include O, Al, Ca, Na, 

S, Fe, C, Si, Co, Mg, Ti. The abundance of Si which shows high intensity confirms the 

siliciclastic nature of Orange basin reservoirs. Fe shows the highest intensity at depth of 

2685.39m (figure 6.0 C), this is a further confirmation of the observation made from core 

description which indicates the core sample from this depth is ferruginised and might also be 

associated with the presence of iron rich chlorite (chamosite).The occurrence of Mg at depth of 

2685.39m (figure 6C) might account for the occurrence of chlorite or montmorillonite. The 

presence of some elements like Ti and V is a pointer to the presence of illite in AU-1 well. 

 

 

 

 

 

 

 

      

 Figure 6A. (2684.05m) ; SEM and EDS  from core sample showing quartz and kaolinite. 
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Figure 6B (2684.67m) : SEM and EDS  from core sample showing pyrite. 

Q-Quartz, P-Pyrite, M-Montmorillonite, C-Chlorite, K-Kaolinite, Po-Pore spaces 

 

 

Figure 6C (2685.39m) SEM and EDS  from core sample showing montmorillonite. 

Q-Quartz, P-Pyrite, M-Montmorillonite, C-Chlorite, K-Kaolinite, Po-Pore spaces 
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Figure 6D (2686.51m) SEM and EDS  from core sample showing kaolinite and chlorite 

 

 

 

 

Figure 6E (2687.80m) SEM and EDS  from core sample showing pyrite. 
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Figure 6F (2688.38): SEM and EDS  from sandstone sample showing quartz . 

 

Q-Quartz, P-Pyrite, M-Montmorillonite, C-Chlorite, K-Kaolinite 

Figure 6.0 (A-F): Photomicrographs of SEM and EDS of AU-1 well. 

6.1.1.3 Scanning Electron Microscopy Interpretation for KF-1 well. 

The results obtained from the five samples analysed by means of scanning electron microscopy 

for well KF-1 show evidence of the abundance of montmorillonite and chlorite coats which 

occur as rims around the spaces where grains have been plucked out or dissolved at a depth of 

3006.25m (figure 6.1A).As mentioned above, the formation of authigenic chlorite is favoured by 

an alkaline depositional environment or an environment of meteoric waters in the presence  of 

ferromagnesium rich rocks (Berger et al., 2009). From the SEM photos it can be observed that  

chlorite formation at this depth is authigenic and not detrital. . Authigenic chlorite appears more 

crystallized than detrital chlorite on scanning electron microscope images. Authigenic chlorites 

occur at every depth in the KF-1 well and are likely to have been formed from  a pre- existing 

clay mineral specifically montmorillonite .At 3007.07m depth (figure 6.1B), chlorites occur as a 

‘rosette shaped algal bloom’ detaching itself from montmorillonite. They have also been 

observed perpendicular to the grain surfaces, which suggest it is being transformed from the 

montmorillonite. There are still quartz cements and overgrowth at a depth of 3007.07m present 

(6.1B). These minerals displayed habits in which major pore spaces were either filled or lined 

with them. At depth 3007.6m (figure 6.1C) below are differently shaped macropores that have 

been filled with clay cements. 
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6.1.1.4 EDS Interpretation for KF-1. 

The various intensity peaks observed from EDS graphical plots of energy (KeV) versus intensity 

show high peaks for Si and Al, there are occurrences of vanadium and nickel which can be a 

pointer to the presence of the nickel-rich chlorite nimmite. The occurrence of Ti is a suggestion 

that the sandstone at depths of 3007.60 m and 3008.13 m respectively (Appendix 1) might have 

been sourced from granitic silicate rocks (Choo et al., 2002) while the presence of ca, c and o 

could indicates calcite presence.  The presence of S at a depth of 3006.25m (figure 6.1A) 

indicates that the sample composition might have been sourced from volcanic basaltic deposits 

(Rickwood, 1981). Alternatively it can be explained by a significant occurrence of pyrite. There 

is iron present in all samples; this is also consistent with the observations made from AU-1 well. 

 

 

3006.25m 

Figure (6.1 A) SEM and EDS  from core sample showing montmorillonite. 
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3007.07m 

Figure 6.1B SEM and EDS  from core sample showing chlorite. 

 

3007.60m 

Figure 6.1C 

Figure 6.1(A-C): Photomicrographs of SEM and EDS for KF-1 well. 

Q-Quartz, P-Pyrite, M-Montmorillonite, C-Chlorite, K-Kaolinite Po-Pore spaces . 
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6.1.1.5 Scanning Electron Microscopy   Interpretation for KH-1 well 

The scanning electron microscope images obtained revealed the presence of mixed layer 

kaolinite -montmorillonite and calcite cements. Kaolinite is gradually being transformed to 

montmorillonite (swelling clay) while the calcite cement shows an elongated crystal similar to 

quartz overgrowth at the depth of 3066m (figure 6.2A).There is evidence of swelling of the 

montmorillonite clay mineral as it appears that montmorillonite is covering a wider surface area 

and blocking the pore spaces as observed at depth of 3067m (figure 6.2B).There is a clear 

indication that the pore spaces have reduced at a depth of 3067m because of swelling. A few 

metres further down illitisation has started at a depth of 3069.90m (figure 6.2C). According to 

Zhang et al (2008) there is a possibility of one clay mineral transforming to another under 

favourable conditions. e.g. smectite illitisation requires K
+
 fixation. The distribution of illite 

observed showed a web-like structure which has entangled the pore spaces and is likely to lead to 

a reduction in fluid flow. The illite occurs as pore bridging within   the pore spaces and also   

grows on the surface of montmorillonite at a depth of 3070.89m (figure 6.2D), with associated 

quartz overgrowth and the occurrence of framboidal pyrite cement. The occurrence of quartz is a 

by-product of the illitization process as illustrated by the formula below. 

K [AlSi3O8] + 2K0.3Al1.9Si4O10(OH)2         2K0.8Al1.9(Al0.5Si3.5)O10(OH)2 + 4SiO2 

(K-feldspar)        (smectite)                                                (illite)                              (quartz) 

The occurrence of pyrite could suggest a prevailing reducing environment conditions 

(Greensmith, 1989).  
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6.1.1.6 EDS Interpretation of KH-1 well 

The graphical plots obtained from Energy dispersive spectrometry of KH-1 show the occurrence 

of Al, Si, S, Fe, Na, Mg, Co C with Si showing the highest intensity in all samples analysed 

within the KH-1 well. The occurrence of S at depths of 3066m and 3067 m (figure 6.2 A and B) 

respectively indicates the influence of rock materials of volcanic alkaline basalt origin. The 

occurrence of Na at these depths furthermore suggests a sodium-rich montmorillonite, this may 

account for the apparent swelling of montmorillonite as observed at these depths. Sodium 

montmorillonite swells more than calcium rich montmorillonite because the Ca ion is more 

readily adsorbed compared to the Na ion (Rogers, 1963).The disappearance of S at a depth of 

3069.90 m (figure 6.2 C) and the occurrence of Ti suggests that the rocks at this depth might 

have granitic silicate rocks as their precursors. The calcite at a depth of 3066m (figure 6.2A 

below) shows an elongated crystal filling the pore space; the presence of the elements found in 

these samples confirmed the occurrence of clay minerals earlier mentioned from the SEM 

interpretation above. 
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3066m 

Figure 6.2A: SEM and EDS  from core sample showing calcite. 

Q-Quartz, P-Pyrite, M-Montmorillonite, C-Chlorite, K-Kaolinite Po-Pore spaces CA-

Calcite 

 

Figure 6.2B (3067m): SEM and EDS  from core sample showing Montmorillonite. 
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3069.90m 

Figure 6.2C: SEM and EDS  from core sample showing illite. 

Q-Quartz, P-Pyrite, M-Montmorillonite, C-Chlorite, K-Kaolinite, I-Illite, Po-Pore spaces 

 

 

3070.89m: SEM and EDS  from core sample showing illite and kaolinite 

Figure 6.2D 

Q-Quartz, P-Pyrite, M-Montmorillonite, C-Chlorite, K-Kaolinite, I-Illite, Po-Pore spaces 

I 

Po 
Po 

K 

i 

 

 

 

 



 94 

 

 

 

 

 

 

 

 

 

 

 

 

3072m 

 

Figure 6.2E 

Q-Quartz, P-Pyrite, M-Montmorillonite, C-Chlorite,K-Kaolinite Po-Pore 

 

 

 

 

 

 

 

   3082.25m 

Figure 6.2F: SEM and EDS  from core sample showing pyrite. 
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Figure 6.2(A-F): Photo Micrographs of SEM and EDS for KH-1 well. 

Q-Quartz, P-Pyrite, M-Montmorillonite, C-Chlorite-Kaolinite Po-Pore spaces, I-Illite                                                                                                                         

 

 

6.1.1.7 Summary of SEM and EDS analysis 

The leaching of K-feldspar or muscovite can account for the consistent presence of kaolinite in 

AU-1 well. Kaolinite is mostly found to co-exist with quartz cements in a marine environment. 

The fact that the sand bodies in A-U1 well were deposited under marine conditions confirms the 

hypothesis as regards the source of kaolinite. There is likely presence of halite or sodium-rich 

montmorillonite judging from the consistent presence of Na, furthermore the presence of iron 

rich chlorite is suggested because of the consistent presence of iron from EDS analyses. The 

source of chlorite does vary but it is considered to have been formed from a precursor mineral in 

the presence of iron and dominant alkaline pore waters. In the K-F1 well, EDS reveals the 

presence of Ni in KF-1 well. Nickel is an element often associated with chlorite; nimmite is a 

form of chlorite that is rich in nickel, consequently the chlorite observed in this well may be 

nickel-rich. Montmorillonite and calcite are also present in this well. The consistent presence of 

Ti in the KH-1 well as revealed from EDS could be attributed to illite cement presence.  Ti 

presence in reservoirs could in turn be attributed to the type of parent rock from which the 

reservoirs were sourced: granitic silicate rich rocks. Montmorillonite as observed from SEM in 

K-H1 well may be sodium rich because of the apparent swelling observed. Illite was also 

observed, mostly as a mixed clay mineral with montmorillonite. Sodium-rich montmorillonite 

swells more than calcium-rich clay minerals do (Rogers 1963), also, quartz cement and kaolinite 

are present in the reservoirs. Both quartz and kaolinite presence diminishes reservoir quality of 

siliciclastic sandstones. 
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6.1.2 XRD Interpretation. 

XRD technique was pioneered for usage in studying crystal habits and structures of substances in 

1912. It is based on the principle of interference between monochromatic X-rays and a 

crystalline sample. The technique is widely used in the phase identification of minerals, their 

compositional information and their nano-scale structures. The core samples taken from three 

wells KF-1, KH-1 and AU-1 were subjected to XRD analysis at ITHEMBA labs for qualitative 

identification of authigenic cements that are present within the lower Cretaceous sandstone of the 

Orange basin .This is crucial for the understanding of clay minerals diagenesis because clay 

minerals are difficult to be identified by other means (Ward et al., 2005). 

 

6.1.2.1 XRD Interpretation for AU-1 well. 

Pervasive quartz cementation has been identified as a major reservoir problem in the Orange 

basin. The results obtained from the XRD analysis of AU-1 do not suggest otherwise. The 

absence of chlorite cements in AU-1 well was however a surprise, previous work on the Orange 

basin (Opuwari, 2010, Akinlua and Smith 2009 and Adekola, 2010) highlighted the widespread 

occurrence of iron rich chlorite in the lower Cretaceous Sandstones, of the Offshore Orange 

basin. Calcite cementation might have been enhanced by highly alkaline pore fluids in the 

presence of Ca
+ 

and HCO3
-.
 Calcium carbonate detected by XRD might have been sourced from 

the dissolution of detrital carbonate rock fragments or skeletal marine debris (Dutton, 2008).The 

occurrence of pyrite suggests that sand bodies in AU-1 well were deposited in an anoxic 

environment (figure 6.3 A-H). Montmorillonite has the highest compositional percentage among 

all clay minerals with 2.61%, this is consistent with interpretation made from SEM observations. 

Muscovite exists in significant quantities too;as  illite and muscovite have similar peak angstrom 

during XRD analysis, the presence of illite could have easily been juxtaposed for muscovite 

presence. Muscovite can be considered as thermodynamically stable proxy for Illite (Lander et 

al., 2009). Leaching of feldspar in a slightly acidic condition could be justified because of the 

presence of kaolinite. The likely presence of HCO3
-     

as mentioned above might have supplied 

hydrogen ions into the pore fluids that favour the formation of kaolinite. Albite (sodic feldspar) 
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cements presence in reservoir sands is a common phenomenon according to Bjorkum,(1996). 

Albite can be sourced from the albitization process which includes K-feldspar or plagioclase 

(Ramseyer et al.,1993).The  proportion of calcite cement decreases gradually from a depth of 

2684.67m to  zero content at a depth of 2686.51m. There was re- precipitation of calcite at a 

depth of 2687.80m; this contrast might be attributed to the dissolution of detrital carbonate rock 

at 2684 .67 m in a weak acidic fluid (as seen from pore water ph) and followed by flushing of 

and transport by meteoric water into other parts of the reservoir section. 

  

                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3A (2684.05m) AU-1. Q-Quartz, P-Pyrite, A-Albite, K-Kaolinite, M-

Montmorillonite, Mu-Muscovite, C-Calcite 
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Figure 6.3 B (2684.67m) Q-Quartz, P-Pyrite, A-Albite, K-Kaolinite, M-Montmorillonite, 

Mu-Muscovite, C-Calcite 
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Figure 6.3 C (2685. 39m) Q-Quartz, P-Pyrite, A-Albite, K-Kaolinite, M-Montmorillonite, 

Mu-Muscovite, C-Calcite 
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Figure 6.3D (2685.84m) Q-Quartz, P-Pyrite, A-Albite, K-Kaolinite, M-Montmorillonite, 

Mu- Muscovite, C-Calcite 
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  Figure 6.3 E (2686.51m)                      

   Q-Quartz, P-Pyrite, A-Albite, K-Kaolinite, M-Montmorillonite, Mu-Muscovite, C-Calcite 
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Figure 6.3 F (2687.80m)                                                                 

 

Q-Quartz, P-Pyrite, A-Albite, K-Kaolinite, M-Montmorillonite, Mu-Muscovite, C-Calcite 
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Figure 6.3 G (2688. 38m)                                                                 

 

Q-Quartz, P-Pyrite, A-Albite, K-Kaolinite, M-Montmorillonite, Mu-Muscovite, C-Calcite 
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Figure 6.3 H (2690.30m) Q-Quartz, P-Pyrite, A-Albite, K-Kaolinite, M-Montmorillonite, 

Mu-Muscovite, C-Calcite 

Figure 6.3(A-H): XRD Photos of AU-1 well 
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6.1.2.2XRD Interpretation for KF-1 well 

In contrast to the high proportion of calcite cements in well AU-1, XRD analysis of samples 

from well KF-1 did not suggest a calcite presence (figure 6.4 A-D). In a similar way to the AU-1 

well, there is a strong presence of quartz cements in KF-1 which is a sure sign of reservoir 

problems. The occurrence  and the amount of illite precipitation is mostly dependent on the 

availability of kaolinite, smectite and K-feldspar (Bjorklykke,1997).Illite precipitation might be 

linked to initial alteration of micas which can produce kaolinite, siderite, K-Feldspar and 

smectite as by products (Morad,1990) .Smectite specifically has been identified as a major 

precursor to the precipitation of illite. The presence of albite could be attributed to the illitization 

of kaolinite and K-Feldspars in the presence of Na (Bjorlykke, op.cit). The dissolution of 

smectites and subsequent formation of illite normally takes place at temperatures of 65-75
0
C or 

at 85-100
0 

C (Dypvik and Eriksen,1983) .The formation of illite in KF-1 might have been caused 

by the transformation of montmorillonite considering the geothermal gradient of well KF-1 is 

3.5
0
 C/100m according to the Geological well completion report. The Na supply might have been 

sourced from seawater; this interpretation is supported by the detection of halite as one of the 

minerals present. The reaction below might also have supported illite and albite formation, as 

albite and illite may be formed from the reaction between kaolinite and K-feldspar in the 

presence of sodium. This process is called albitisation in which the sodium ion always acts as the 

catalyst for the precipitation of albite and other authigenic cements. 

3A12Si2O5(OH)4 + 2KA1Si308 + 2Na          2NaAlSi308+ 2KA13Si3010(OH)2 +  3H 20                

Kaolinite                    K-feldspar                      Albite                    Illite 
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Figure 6.4 A (3006.25m )                    

Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite  
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Figure 6.4 B (3007.07m )                    

Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite,  
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Figure 6.4 C  (3007.60m )             Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite 

 

 

Figure 6.4   D (3008.13m) 

Figure 6.4(A-D): XRD Photos of KF-1 well. 
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6.1.2.3 XRD Interpretation for KH-1 well 

Results obtained from analysis of core samples taken from well KH-1(figure 6.5 A-1) show 

consistent occurrence of quartz as the dominant cement like it was observed in the other two 

wells. Quartz cementation is sourced from the dissolution of quartz sand grains that is driven by 

the chemistry of pore waters. Other potential sources of silica for quartz cementation are 

numerous and include all documented silicate dissolutions reactions in sandstones and shale (Mc 

Bride, 1989).Unlike Well AU-1, the influence of seawater during the deposition of sand bodies 

in the well is acknowledged with presence of halite in the core sample, hence the availability of 

Na ions is inevitable. The presence of illite is assumed to have been formed from a pre existing 

clay mineral; this assumption favours the explanation as to the origin of albite in KH-1 because 

illitization of kaolinite with K-Feldspar in the presence Na
+ 

might be responsible for the 

precipitation of albite as it was observed in well KF-1, this observation is confirmed by the 

interpretation made from SEM analysis of KH-1 well as regards the presence of illite.  The 

dissolution of detrital carbonate as the source of Ca
+
 in pore waters is once again highlighted by 

(Milliken et al.,1998) whilst the release of carbon too. Calcite cementation in KH-1 was probably 

due to dissolution of detrital carbonate rock or sourced from shells of aquatic organism in 

shallow marine settings. The anomalous occurrence of ferroan carbonate cement (siderite) and 

dolomite at depth 3074.42m suggest that KH-1 well might have been opened to influx of 

hydrothermal fluids sourced from nearby volcanic activity (Ahmed et al .,2008).Hydrothermal 

fluids rich in ferromagnesian minerals could have supplied iron and magnesium ions that enabled 

the precipitation of dolomite and siderite cements in this well. 
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Figure 6.5 A (3066.00m)          Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite 
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Figure 6.5 B (3067.00m)          Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite 
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Figure 6.5 C (3068.09m)          Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite 
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Figure 6.5 D (3068.92m)          Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite 
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Figure 6.5 E (3069.9m)          Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite 
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  Figure 6.5 F (3070.89m)          Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite 
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Figure 6.5 G (3072.00m)          Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite 
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Figure 6.5 H (3074.42 m)          Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite 
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Figure 6.5 I (3082.25 m)          Q-Quartz, H-Halite, A-Albite, K-Kaolinite I- Illite 
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6.1.2.4 Summary of XRD Interpretation 

Calcite cement precipitation is prominent in wells K-H1 and A-U1, its presence confirms the 

observation made on core description that the reservoir sections encountered in these wells were 

deposited under shallow marine conditions. The presence of quartz cement and kaolinite is 

acknowledged in the three wells as expected because they are both known to co-exist in marine 

environments. Significant quantities of albite are present in the three wells studied but halite is 

present in wells KF-1 well and K-H1 which explains its formation; the absence of halite in well 

AU-1 suggests that the concentration of halite may not be significant enough in well AU-1 for 

detection by XRD, also considering that well A-U1 is at a shallower depth compared to wells K-

F1 well and K-H1. There was presence of illite in wells K-F1 and K-H1, while muscovite was 

detected in well AU-1. Muscovite serves as a precursor to illite formation at deeper depth, 

therefore, illite may have been formed from muscovite in well KH-1, hence the justification of 

illite presence in well K-H1. Pyrite presence in well AU-1 suggests a prevailing anoxic 

environment sometime during deposition. Siderite and dolomite were also detected at depth 

3074.42 m in well K-H1, which explains the increase in Mg ions at this depth as observed on the 

cation exchange plot.  
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6.1.3 Thin Section Interpretation 

Petrographic studies which are mainly thin section interpretation and hand specimen observation 

of rock samples are often done in conjunction with supplementary analyses like SEM, XRD and 

core analysis in sedimentary petrology studies. Sedimentary rocks rich in feldspar are often 

tagged as being mineralogically immature while textural maturity is also determined from the 

degree of sorting. Porosity estimation is normally done via thin section by impregnation with 

epoxy blue of the rock samples during thin section preparation, the spaces occupied by the epoxy 

blue will be visible under the microscope as pore spaces. Microscopic observation of rock 

samples under crossed polarized light enables the identification minerals, rock fragments, 

authigenic cements and pore spaces. Thin section analysis for this study was done as part of an 

integrated approach to achieve the set deliverables. During the preparation of thin sections from 

rock samples taken within the reservoir intervals of KH-1, KF-1 and AU-1 wells, epoxy blue was 

not added to the samples, hence porosity estimation through thin section was impossible. 

However, rock forming minerals, rock fragments and authigenic cements were easily recognized. 

 

6.1.3.1 Thin Section Interpretation AU-1 well. 

The observable grain sizes of well AU-1 are angular to sub-rounded in shape. Samples were 

taken at different depth along the cores (2684.05m, 2684.67m, 2685.39m, 2685.84m, 2686.51m, 

and 2687.80m). There are obvious quartz grains present in all slides while the green colour as 

observed at depth 2684.05m (figure 6.6A below) under plain polarised light (PPL) suggests the 

likelihood of glauconite presence in this well. Glauconite presence is commonly attributed to 

mica alteration in shallow marine settings under reducing conditions (Odin and Matter, 1981). 

Information derived from XRD indicates  that the presence of calcite is significant in this well, 

the abundance of calcite confirms that sand bodies in well AU-1 were deposited under shallow 

marine conditions,  calcite cement is very abundant in shallow marine settings because its early 

precipitation takes place a few centimetres below the sediment-water interface 

(Bjorlykke,1984).Also, the above statement is buttressed by the presence of pyrite as indicated 
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by XRD results, pyrite precipitation often takes place in marine environment with prevailing 

reducing conditions (Sauer et al.,1992). Feldspar content is low in well AU-1, possibly because 

they might have been altered to clay cements, also none of   the minerals observed displays a 

crystal habit of twinning which is a common attribute of feldspar. Biotite (figure 6.6D) always 

appears as greenish brown crystal or completely brown when viewed under PPL. There is a dark 

coloured mineral at a depth  of 2686.51m, this opaque mineral , is identified to be pyrite. 

 

 

      

 Figure 6.6 A (2684.05m)                             Figure 6.6 B    (2684.67m) 

       

Figure 6.6 C  (2685.39m )                         Figure 6.6  D     (2685.84m) 

 

   Q 

       G 

Clay 

         B 

 

 

 

 



 122 

    

Figure 6.6   E   (2686.51m )                          Figure 6.6 F  ( 2687.80m) 

 

P-Pyrite, B-Biotite, Q-Quartz, G-Glauconite 

Figure 6.6 (A-F): Thin section photos of AU-1 well. 

 

 

6.1.3.2 Thin Section Interpretation of well KF-1. 

Four core samples were taken and analyzed for well KF-1 because of limited core availability 

and lesser reservoir section within the cores cut, samples were taken at depths 3006.25m, 

3007.07m, 3007.60m,3008.13m. There is an abundance of biotite crystals and glauconite at 

3007.60m (figure 6.7A) below, the biotite appears brownish green and exhibited platy crystal 

habit as seen at depth of 3008.13m. This means the biotite crystals may be the in the process of 

conversion to glauconite. Quartz grains appear elongated at depth of 3007.07m: this might be 

due either to response of quartz grains to overburden pressure and subsurface temperature or 

because they are sourced from a fluvial environment. The different rock forming minerals 

observed under PPL are matrix supported as it is seen at depth 3006.25m. 
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Figure 6.7 A ( 3006.25m)                            Figure 6.7 B (3007.07m) 

    

Figure 6.7 C (3007.60m)                                    Figure 6.7 D (3008.13m) 

 

Ch-Chlorite, Q-Quartz, B-Biotite, G-Glauconite 

Figure 6.7(A-D):  Thin section photos of KF-1 well. 

6.1.3.3 Thin Section Interpretation of well KH-1. 

Thin section photos obtained from KH-1 well are displayed below, the sampled depths are 

3066m, 3067m, 3068.09m, 3068.92m, 3069.90m, 3070.89m, 3072m, 3074.42m. Interpretation of 

samples obtained from this well reveals the dominant presence of quartz grains which are 

angular to sub angular in shape. There is occurrence of feldspar at depth 3067m (figure 6.8B) but 

the feldspars look dis–orientated at this particular depth. Chlorite appears to be growing on the 

surface of quartz grains at a depth of 3068.09m (figure 6.8C). It has been observed that the 

quartz grains at depth of 3070.89 m are also clay coated. Significant feldspar content was also 
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confirmed from XRD results of well KH-1. At a depth of 3069.90m, it is suggested that clay 

cements are significantly present because of consistent brownish colours observed as coatings 

around the minerals, although, clay cements are difficult to be identified with an optical 

microscope because they usually appear as amorphous masses of brownish colour (Nichols, 

2009). There is evidence of chlorite growing on the surface of quartz grain at a depth of 3072 m, 

it appears as a coat on the surface of the quartz grain. The growth of chlorite may be attributed to 

the supply of iron and magnesium in the localized depositional environment pore waters which 

later favours its precipitation.   

     

   Figure 6.8 A (3066m)                                         Figure 6.8 B (3067m) 
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   Figure 6.8C (3068.09m)                                          Figure 6.8 D  (3068.92m )                                                                                                                        

 

 

 

 

   

 

  Figure 6.8 E (3069.90m)                                     Figure 6.8F (3070.89m) 
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 Figure 6.8 G (3072m)                                        Figure 6.8 H (3074.42m) 

P-Pyrite, B-Biotite, Q-Quartz, G-Glauconite, F-Feldspars, Ch-Chlorite,  

Figure 6.8(A-H) : Thin section photos of KH-1 well 

 

 

 

  6.1.3.4 Summary of Thin Section Interpretation. 

Quartz is the dominant mineral observed from the thin sections, they appear elongated at depth 

3072m (KH-1 well), the elongation of the quartz grains may be due to response to temperature 

and pressure in the subsurface. The identification of calcite on thin sections of AU-1 confirms 

XRD detection of calcite in same well. Pyrite identification on thin sections for well AU-1 also 

confirms the detection by XRD. Glauconite presence confirms the suggestion of a marine 

environment as the paleo-environment under which KF-1 reservoirs were deposited. Feldspar 

was noticed at depth of 3067m in well KH-1 while chlorite was observed to be growing on the 

surface of a quartz grain in well KH-1 (3072m). 
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6.1.4   Pore Water Chemistry Interpretation. 

Sediment pore water is defined as the water occupying   spaces between sediment particles. Pore 

water can occupy close to 30 -80% of the volume of the sediments, the volume occupied by 

water being greater  for fine grained silty sediment than for sandy sediment (Simpson, et al., 

2005). Pore water composition is the main control on diagenetic reactions in sandstones and is 

usually sourced either from fresh meteoricwater which is acidic or sea water which is alkaline 

(Hurst and Irwin, 1982). Pore water composition is influenced by surface water currents and 

tides and groundwater upwelling within the subsurface. Pore water samples were taken from 

wells AU-1, KF-1 and KH-1 core samples through a centrifugation process, which involves the 

extraction of the chemicals from core samples into ultra-pure water. The result is considered to 

be pore water samples. This analysis was carried out by observing all laboratory procedures and 

the results obtained are only vulnerable to insignificant errors; displacement of formation water 

from pore spaces because of mud filtrate influence. Centrifugation or squeezing is the most 

useful method of extraction for chemical analyses (Simpson   et al., op.cit). An increase from 

acidic to neutral values favours the precipitation of aluminosilicates and carbonates (Curtis, 

1983) while alkaline systems favour carbonate precipitation relative to aluminosilicates and 

quartz cements (Buyukutku, 2003). Ec (Electrical conductivities) values for various samples 

taken at intervals were also analyzed. Distribution of differential clay minerals has a great effect 

on electrical conductivity. In a shaly sand formation, two electrical conductivity paths are 

created; one due to formation water and the other due to clay conductivity. Ignoring clay 

conductivity effects often leads to underestimation of hydrocarbon saturation (deWaal, 1989).Ec 

in pore waters is the measurement of the extent at which dissolved solids in pore water create 

another conductivity path for electrical current. (It is commonly measured in milli Siemens per 

meter (mS/m)) while TDS (Total dissolve solid) is the measure of the amount of dissolved solids 

or dissolved ions in a sample of water. As a result of this, a direct correlation exists between total 

dissolved solids and electrical conductivity. 
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6.1.4.1 pH and Ec Interpretation for AU-1 Well. 

The pH values obtained from pore water analysis of well AU-1 indicate a range from a slightly 

acidic medium to a predominant alkaline medium (figure 6.9A below). Values ranged from 6.98- 

8.The pH values obtained from this well do not support the influence of organic matter 

maturation within the well, this confirms PASA’s geological well completion report on well AU-

1 which suggested that there is a lack of a matured source rock within a good migration interval 

for well AU-1, hence the influence of organic matter on the pH conditions is not expected. The 

different plots below show  values of pH (figure 6.9A)  which are slightly extreme  at deeper 

depth, this may signify the solubility of alkali feldspars and the fixation of alkali cations which 

could be Na
+
, K

+
, Ca

2+ 
 , or Mg

2+
 ; an indication of alkaline nature of the pore fluid. As 

mentioned earlier, in a shaly sand formation, two electrical conductivity paths are created; one 

due to formation water and the other due to clay conductivity. As expected, an increase in pH 

values corresponds to a decrease in Ec values for well A-U1. The slight reduction in pH value at 

depth of 2684.67m (figure 6.9A) could be a pointer to the loss of saline bound water by kaolinite 

which led to a relative increase in acidity and subsequent reduction in pH (Selby and 

Fateley,1955).The concentration of  dissolved strong cations like Ca, Mg, K, Na, and Al has a 

significant effects on the value of Ec; they enhance soil Ec in the same way as salinity does 

(http://ohioline.osu.edu/aex-fact/0565.html). As expected, linear correlation between Ec and 

TDS (Total dissolve solid) exists (figure 6.9 C), also variations of Ec and TDS with depth shows 

the same trend (figure 6.9 D). 
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    Figure 6.9   A                                                                    Figure 6.9  B 

 

 

 Figure 6.9 C                                                                    Figure 6.9  D 

Figure 6.9(A-D): Pore water Chemistry plots of AU-1 well 
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6.1.4.2 pH and Ec Interpretation for KH-1Well. 

Nine pore water samples were extracted from core samples taken from KH-1 and were 

subsequently subjected to Ec, pH and TDS (Total dissolve solid) analysis afte which values 

obtained were plotted as illustrated below in figure 6.10 A-D. Well KH-1 has a greater thickness 

of sand bodies intersected within the subsurface when compared to other wells within the block 

3A offshore Orange basin according to the PASA geological report. Pore water chemical 

composition analyses were done for more core samples taken at various depth intervals within 

the reservoir section. The pH values range from slightly acidic to predominant alkaline, 

specifically from 6.78-8.34.The highest pH value of 8.34 (figure 6.10) can be attributed to the 

fixation or dissolution of strong alkali metallic ions in the sediment pore waters or flushing of the 

reservoirs by hydrothermal a fluid rich in metallic ions. Increase in pH corresponds to an 

increase in Ec for all depths except for 3068.09m, 3068.92m, 3069.9m and 3070.89m .This 

anomaly could be explained by the type of dominant clay mineral that are present within the 

reservoir interval, clay minerals with wider surface area do have higher electrical conductivity 

and vice-versa (Grim 1951, de Waal,1989).Generally, it is accepted that when Ec increase, pH 

should decrease, this is subject to the dominant rock forming minerals of the core samples and 

thus the lithology. Linear correlation also exists between TDS and EC values which implies that 

the type and amount of dissolved ions is directly proportional to the electrical conductivity (Ec). 
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Figure 6.10 A                                                            Figure 6.10 B 

A                                                                           B 

                     

Figure 6.10C                                                    Figure 6.10D 

Figure 6.10(A-D):  Porewater Chemistry plots of KH-1 well 

Increasing pH 
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6.1.4.3 pH and Ec Interpretation for KF-1Well. 

Different plots of pore water chemistry for well KF-1 are presented below as figure 6.11(A-D), 

pH values range from 7.25 to 9.6 which is an alkaline range. An empirical relationship exist 

between Ec and pH as their corresponding plots against depth show a similar curve signature 

(Figure 6.11 A and B). As it has been observed in other wells, the regression coefficient value 

generated from the plots of Ec against pH indicates a linear correlation (figure 6.11C). Also, the 

data points of electrical conductivity with depth and TDS plot with depth show a similar trend, 

which is a confirmation to the precision of datasets obtained from the porewater analysis.  

  

 Fig 6.11(A) Plot of Ec versus depth for KF-1 .Fig 6.11(B) Plot of pH versus depth for KF-1 well     

    

                                                   

Increasing pH 
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Fig 6.11(C) Plot of Ec versus TDS for KF-1   Fig 6.11(D) Plot of Ec,TDS versus depth for KF-1      

                                                                                             

  Figure 6.11(A-D): Pore water Chemistry plots of KF-1 well. 
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6.1.5 CEC Interpretation for All Wells. 

CEC can be defined as the sum of exchangeable cations that can be absorbed at a specific pH on 

the surface of soil samples. In addition to the potential CEC of clay minerals, organic matter can 

also significantly affect the CEC of rock samples. For example, the presence of 3-5% organic 

matter can increase the CEC of rock samples by 20-50% (Gilot, 1987). Clay minerals are 

generally electrically charged and tend to absorb water by electrostatic forces, the rate of 

absorption is highly dependent on the exchange capacity of the cations present .It has been 

observed that the cations exchange capacity of soils rich in kaolinite, halloysite, iron and 

aluminium oxides is pH dependent (Sawney and Norrish, 1971).The CEC of the clay fraction 

gives an indication of the nature of clay mineral where only standard analytical data is available. 

In log interpretation, CEC is proportional to the volume of clay which is also dependent on the 

activity of the particular type of clay mineral, (Schlumberger, 1972).CEC can be dependent on 

the total weight of expansible clay minerals present in a rock sample (Ugbo, 2010), this 

explanation can be given by the proportionality of CEC with surface area and grain charge 

density (Patchett and Coalman, 1982). Presented in table 6.0 are different CEC ranges for clay 

minerals. 

Table 6.0: Table chart of CEC values for different clay minerals. ( Patchett and Coalman, op.cit) 
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Table 6.1 ; Estimated values of CEC for all wells 

AU-1   KF-1     KH-1 

Depth 

m CEC(meq/100g) 

Depth 

(m) CEC(meq/100g) 

Depth 

(m) CEC(meq/100g) 

2684.05 64.5 3006.25 50.02 3066 52.2 

2684.67 54.4 3007.07 14.2 3067 40.5 

2685.39 18.7 3007.6 5 3068.09 49.3 

2685.84 28.7 3008.13 66.1 3068.92 80.5 

2686.51 27     3069.9 39.4 

2687.8 64.1     3070.89 82 

2688.38 64.7     3072 36 

2690.33 38.1     3074.42 7.3 

        3082.25 45 

 

 

6.1.5.1 Cation Exchange Capacity Interpretation of KF-1 well 

The CEC measurement was performed on four core samples obtained from well KF-1, the 

samples were milled into fine powder form and were subjected to the CEC test. The CEC values 

obtained within well KF-1 range from a lowest value of 5 meq/100g at a depth of 3007.6m to a 

value of 66.1meq/100g at a depth of 3008.13m (Table 6.3). In well K-F1, a value of 50.02 

meq/100g at  a depth of 3006.25m indicates the dominance of mixed clay minerals from which a 

conversion of a clay mineral is being processed, there is suspicion of dominant illite at depth of 

3007.07m because of a CEC value of 14.2meq/100g, the illite may have been transformed to 

montmorillonite at a depth of 3008.13m considering a value of 66.1meq/100g (Table 6.12A) 

.The plot below (figure 6.12A) shows the abundance of calcium ions within well KF-1. Ca 
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significantly increased from 5 cmol /kg at a depth of 3006.25m to a maximum concentration of 

12.5 cmol /kg at a depth of 3007.07m (figure 6.12 A). More calcium ions appeared to have 

increasingly exchanged for Na, K and Mg at depth 3006.25m which lead to a sudden increase in 

Ca ions and a corresponding decrease in sodium, magnesium and potassium ions (figure 6.12 A). 

At a depth of 3007.6m, an increase in concentration of Na, Mg and K corresponds to a decrease 

in calcium ions concentration. The curves of K and Mg plot almost together, which implies that 

these cations exist in an almost equal proportion, although with a low concentration value of 

around 2 cmol /kg (figure 6.12A). With high relative concentration of Ca and Na ions occurring 

at the exchange sites on the clay surfaces, it is expected that the presence of albite or calcite 

cement might have been the source of Ca; sodium rich clay (montmorillonite) may also be 

present at this depth. The occurrence of sodium ion concentration may also be attributed to sea 

water influence, observations made on XRD confirm this interpretation. The concentration curve 

of K, Mg and Na follows the same trend while Ca concentration appears opposite. This value 

suggests the presence of chlorite or illite at the depth of 3007.6m and smectite-illite mixed clays 

presence within the reservoir at depths of 3006.25m, 3007.05m and 3008.13m(figure 6.12A) 

(Core Laboratories, 1973). The presence of illite and montmorillonite in well KF-1 is consistent 

with observations from SEM analysis of the same sample. The presence of organic matter could 

have significantly increased the value by 20-50% (Gilot, 1987) at this depth, aside from auxiliary 

cements of calcite that are likely to be present, a strong presence of smectite-illite is also  

suspected. 
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Plot of Depth Against Exchangeable Cations
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    Figure 6.12 A Cations plots of KF-1 well. 
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KF-1

Plot of CEC against Depth
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Figure 6.12 B 

 

Figure 6.12(A and B):Cations and Cations exchange  plots of KF-1 well. 
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6.1.5.2 Cation Exchange Capacity Interpretation of AU-1 well. 

The relative high concentration of Ca ion also occurs in well AU-1 with a highest estimated 

value of 19.86 C mol/kg at a depth of 2688.38m to the lowest value of 8 C mol/kg at a depth of 

2690.30m.The curve (Figure 6.13 A) below of exchangeable cations indicates that Ca is 

consistently present with relative higher concentration among all other cations within the well. K 

increased at a depth of 2686.51m, this could be attributed to the retention of K ions in sandstones 

following K-Feldspar dissolution (closed system diagenesis) ( Fawad  et al., 2001).A  decrease in 

K
+
 ion concentration from depth 2686.51m to 2688.38m (figure 6.13A) suggests that the 

potassium retained in sandstone might have been consumed for precipitation of other diagenetic 

cements ( Dutton, 2008).There is almost an equal but increased   concentration   Mg and K ions 

from depth 2687.8- 2690.3m (figure 6.13 A),  and a corresponding increase in Na ions is noticed 

between this depth interval; in contrast, a decrease in Ca is noticed within this depth interval. A 

trend of Ca ion decreases and Na ion increase and vice -versa continues till a depth of 2690.30m 

where their concentration becomes the same. The reason for this may be due to exchange 

capacity on montmorillonite surface (as detected by XRD) which always allows Na ion to be 

substituted for Ca ion and vice versa depending on absorption rate (Rogers, 1963). The CEC 

values observed at depths of 2684.05 m and 2684.67m are 64.5 meq/100g and 54.4meq/100g 

respectively (Table 6.0).These values represent mixed layer clay minerals. This assumption is 

confirmed as K, Mg and Na plots show similar trends at these depths. CEC values of 18.7 

meq/100g, 28.7 meq/100g, and 27 meq/100g for depths of 2685.39m, 2685.84m and 2686.51m 

depict the presence of illite (figure 6.13B). Illitization might have started at depths of 2684.05 m 

and 2684.67m, probably illitization of montmorillonite. Various clay minerals detected from 

XRD   conform to the observations made from this CEC interpretation. 
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Figure 6.13   A                                                             Figure 6.13     B 

Figure 6.13 (A and B): Cations and Cations exchange plot for AU-1 Well 
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6.1.5.3 Cation  exchange capacity interpretation of well KH-1. 

 Strong presence of Ca ions was once again evident throughout the reservoir interval. Ca i has the 

highest concentration of 19.32 C/mol kg at a depth of 3066m and the lowest concentration of  

8.93 C/mol kg at a depth of 3067m (figure 6.14 A). Except at a depth of 3067m, a decrease in Ca 

ion concentration corresponds to an increase in Na ion concentration at other depths .The 

concentrations trends of Na, K and Mg appear the same at a depth of 3074.42m with Mg having 

a higher concentration than Na and K (figure 6.14 A). Mg ion is generally associated with 

chlorite formation in highly alkaline pore fluids. Having detected the presence of dolomite in 

well KH-1 at this depth from XRD, it is believed that dolomite might be the source of Mg. 

Alternatively   magnesium can be sourced locally   from the alteration of mafic rocks during 

diagenesis (Uysal et al., 2001b). Na concentration subsequently increased from 1.36 C mol/kg at 

a depth of 3074.42m to 4.31 C mol/kg at a depth of 3082.25m. Increases in Na ion concentration 

always corresponds with an increase in CEC values in KH-1 (figure 6.14 A and B). High CEC 

means significant presence of montmorillonite (Patchett and Coalson, 1982). CEC values range 

from the lowest value of 7.3 meq/100g at a depth of 3074.42m to a highest value of 82 meq/100g 

at a depth of 3070.89 m (figure 6.14B). CEC values of 52.2, 40.5 and 49.3 meq/100g for depths 

3066m, 3067m and 3068.09m respectively indicate strong presence of illite or chlorite mixed 

with other clay minerals. The sudden increase of CEC to a value of 80.5 meq/100g indicates the 

mixed layer may have been dominantly an illite and montmorillonite mixed layer which later 

transformed into dominant montmorillonite (reversible process) (Stixrude and Peacor,2002). The 

fixation of Na  from sea water is suspected due to the sudden increment in the values of Na. Illite 

presence is suspected at a depth of 3074.42 m because of CEC values of 7.3 meq/100g (figure 

6.14 B) 

 

 

 

 

 

 

 



 142 

 

 

 

 

 

 

            Figure 6.14 (A): Cations plot of KH-1 well 
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Figure 6.14 (B): Cations exchange plot of KH-1 well 

Figure 6.14  (A and B). Cations and Cations exchange plot of KH-1 well. 

 

6.1.5.4 Summary of Ph, Ec and CEC Interpretation of All Wells. 

Information derived from pore water chemistry analyses and CEC analyses provides an insight 

into the chemical nature of pore fluids and dominant clay minerals present in the core samples.  

AU-1 well pore waters show a pH range of 6.98-8 implying dominant alkaline pore fluids. This 

suggests the presence of strong alkali ions in the pore fluids, the slight acidity observed at 

2684.67 m could be linked to the loss of saline bound water by kaolinite which reduces the pH. 

Values range obtained from CEC analysis indicates dominantly illite and montmorillonite or 

interstratified illite and montmorillonite while chlorite presence is suspected at depths of 

2684.05m and 2684.67m in well AU-1. The cations plots of Mg, Na and K shows a similar trend 

in contrast to Ca. The cause may have been due to exchanges of other cations for Ca, however, a 

sudden increase of Ca (figure 6.13) at a depth of 2686.51m may have been due to calcite 

precipitation which cause increase of Ca abundance. KH-1 alkalinity ranges between 6.78-8.34, 
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Ec and pH show corresponding trends with depth in the same well except at depths 3068.09m, 

3068.92m, 3069.9m and 3070.89m.This may be attributed to the elemental contents of dominant 

clay minerals present in the core samples, except for depth 3074.42m which has CEC value of 

7.3meq/100g (montmorillonite or chlorite), CEC values obtained from other samples in same 

well indicate illite and montmorillonite mixed clays presence while a sudden increase in Na at a 

depth of 3070.42 m may be due to albite presence. Well KF-1 has pH values that range between 

7.25 and 9.6 which is predominantly alkaline. Calcite, illite and montmorillonite are suspected 

diagenetic cements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15: Histograms plots of CEC For all wells 

      Figure 6.15: Histogram plots of CEC values for the three wells studied 
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6.1.6 Qv Plots Interpretation 

Qv is the cation exchange capacity per pore volume of rock samples and it is mostly used in 

reservoir characterization as a shaliness indicator of ‘siliciclastic’ reservoir intervals. The higher 

the Qv value within the reservoir interval, the shalier a reservoir interval is. Qv is normally 

estimated empirically from Grain density, CEC and Porosity values. The formula relationship is 

thus established as Qv=CEC*(1-Φ)*GD/ (100-Φ). The importance of Qv in reservoir quality 

evaluation has been under-emphasized with more focus being on shaliness as a function of the 

volume of clay. The effects  of clay or shale on reservoirs has more to do with the type of clay 

minerals than the volume of clay, clay minerals with high surface area will indicate more 

shaliness values than clay minerals with lower surface area.. The plot of Qv against porosity for 

three wells shows that shaliness is not the major compromise of the reservoir of the quality. In 

well KF-1 (indicated by purple square spots), the higher the Qv, the lower the porosity values, 

this probably suggests that clay minerals exert a major influence on the quality of the reservoirs 

within KF-1 well. Unlike KF-1 reservoirs, reservoirs units within AU-1 and KH-1 wells do not 

confirm   the influence of shaliness as the major compromise of reservoir quality, therefore  the 

influence of clay mineral types exert a major influence on the quality of the reservoirs in KH-1 

well (yellow spots; figure 6.16) and AU-1 ( blue spots. figure 6.16). Qv plots against porosity for 

well KH-1 and AU-1 shows an inconsistent trend with depth to underscore the influence of 

shaliness on the reservoir quality. 
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Plots of Qv against Porosity(v/v) for the three 

wells.
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Figure 6.16: Plots of Qv against Porosity for all wells. 

 

Figure 6.17: Idealized Diagenetic Model of Clay Minerals and some diagenetic cement 

encountered within Block 3A, Reservoirs, Orange Basin. South Africa 
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Chapter Seven 

7.1 Discussions. 

Clay diagenesis study by the usage of relevant tools (SEM,CEC,EDS,XRD ,cores, EC and Ph 

and wireline logs) to understand their effects on some petrophysical properties of reservoir rocks 

encountered within the Orange basin have been thoroughly assessed. The assessment results 

were based on studies made from three wells in block 3A, offshore Orange basin, South Africa. 

The findings emanating from these assessments are based on cores, logs, geochemical and 

petrographic studies. 

7.2 KF-1 Well. 

 (A) Core description 

 Core and lithological description reveals thinly bedded, fine to medium grained sandstones and 

carbonaceous mudstone predominance, dewatering structures (soft sediment deformation) are 

prominent in the cores. The rocks encountered within well K-F1 were interpreted to have been 

deposited under low energy conditions with the alternating fine and coarse grained sedimentation 

explained as occurring as overbank deposits.  

 (B) Petrophysical properties 
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 Detailed interpretation of wire line logs reveals an average GR value of 45 API for well KF-1, 

as well as a hydrocarbon saturation of 14 % and a water saturation of 86%.The Simandoux shaly 

sand saturation model was used in the estimation of water saturation using the resistivity logs 

combo. The Simandoux saturation model agrees with values obtained from the conventional core 

analysis in the well report, hence confirms the reliability of calculating petrophysical properties 

from wireline logs by the Simandoux model. KF-1 has an average volume of clay of about 20% 

and an extremely low permeability value in the region of 0.09Md and an average sonic-derived 

porosity value of about 13.6%. This value (13.6%) is higher than the core porosity value of 10%. 

Since core analysis always represent the ground truth, it can be concluded that porosity values 

derived from core analysis is more accurate than the sonic log derived porosity. 

 

 

(C). Clay mineral Assemblages 

In well K-F1, SEM images reveal quartz and kaolinite are consistently present in all samples 

analyzed; chlorite and montmorillonite presence are also evident. The EDS experiment revealed 

a consistent presence of Ni unlike AU-1 and KH-1 wells. Nickel is an element often associated 

with chlorite and Ni-bearing chlorite is called nimmite .Sulphur has been detected which may 

explain why pyrite is observed in thin section in this well; albite is also present in the sample. 

XRD confirms the presence of montmorillonite which may also have been converted to illite in 

the presence of Na and K-feldspar (albitization), hence explains the presence of illite. 

 

(D) Pore water Chemistry and CEC 

Well KF-1 has pH values in the range of 7.25-9.6 which is predominantly alkaline. This can 

explain the presence of calcite, illite and montmorillonite as the major diagenetic cements 

observed in KF-1 well. Alkaline pore fluids enhance the precipitation of these cements amidst 

other favourable conditions. CEC analysis also affirms the presence of illite and a mixed layer of 

montmorillonite and illite because the CEC values range from minimum 5 meq/100g to 66.6 

meq/100g. As expected, there is a linear relationship between the TDS (Total Dissolve Solid) 
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and Ec (Electrical conductivity), this confirms the accuracy of the data obtained from the 

analysis. 

7.3 Well AU-1. 

(A) Core description 

The sand bodies in well AU-1 consist of dark-grey, fine – medium grained sandstones with an 

approximate gross thickness of 3.2m; wavy lamination and current ripple marks are prominent 

throughout the sand body. This is a characteristic feature of a shallow marine sandstone unit of 

the shelf environment and consequently these sand bodies are interpreted as shallow marine 

sandstones deposited on the continental shelf. 

 

 

(B) Petrophysical properties 

 Well AU-1 reservoir interval has an average of 60 API GR value and an approximate thickness 

of 3m, an average porosity of 10 %, a VCL of about 32% and an average water saturation of 

about 65% while permeability is in the region of 0.15Md.  From various estimated values of 

petrophysical properties tabulated below (Table 7.0), it can be inferred that AU-1 and KH-1 

reservoirs have a similar quality because of similarities in the values estimated. The major 

difference is in the water saturation values, which can be attributed to the dominance of 

montmorillonite in well AU-1 as compared to well KH-1. Montmorillonite has more bound 

water because of the larger surface area it exhibit. 

(C) Clay mineral Assemblages 

SEM images reveal the consistent presence of quartz cements throughout the three wells. 

Kaolinite appears to be postdating quartz cement in well AU-1, while leaching of K-feldspar or 

muscovite might have accounted for the consistent presence of kaolinite in this well. They 

(kaolinite and quartz) appear together but with kaolinite appearing just on top of the quartz 

grains. There is a likely presence of halite or sodium-rich montmorillonite, judging from the 

consistent presence of Na from EDS results. Furthermore, the presence of iron-rich chlorite is 
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also possible because of consistent presence of iron as observed from results obtained from EDS 

(Energy Dispersive Spectrometry).  

XRD results reveal that calcite cement precipitation is prominent in well A-U1; its presence 

confirms the observation made on core descriptions that the reservoir sections encountered in 

these wells were deposited under shallow marine conditions. The observed presence of quartz 

cement and kaolinite in the three wells is expected because they are both known to co- exist in a 

marine environment; illite is absent but muscovite presence is observed.  Pyrite presence in AU-

1 well suggests a prevailing anoxic environment sometime during deposition. Pyrite 

identification in the thin sections from well AU-1 also confirms the observation from as XRD as 

to the presence of pyrite. 

 

 

(D) Pore water Chemistry and CEC 

Well AU-1 pore water shows a pH range of 6.98-8 implying predominantly alkaline pore fluids. 

This suggests the presence of strong alkali ions in the pore fluids, while the slight acidity 

observed at 2684.67 m could be linked to the loss of saline bound water by kaolinite which 

reduces the pH. Value ranges obtained from CEC analysis indicate dominant montmorillonite or 

mixed layer illite and montmorillonite, while chlorite presence is also suspected. The cation plots 

of Mg, Na and K show a similar trend in contrast to Ca: a sudden increase of Ca at certain depth 

as observed from cations plot may have been due to calcite precipitation which of course causes 

an increase in Ca abundance. As expected, there is a linear relationship between the TDS (Total 

Dissolve Solid) and Ec (Electrical conductivity; this confirms the accuracy of the data obtained 

from the analyses. 

7.4 KH-1 Well 

(A) Core description 

Well KH-1 has 7m gross thickness of sand, thinly laminated and highly ferruginised; this 

observation is based on the obvious reddish brown colouration observed during the core 
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description. Lithologies range from carbonaceous mudstone at 3006m, to fine – medium grained 

sandstones at 3007m and mudstones at 3008.95m. There is a presence of lithic fragments, mostly 

angular to sub angular shaped while the sandstone is very massive and parallel laminated. The 

occurrence of mud layers in the sandstone is evidence that the sand body was subjected to 

extraneous intermittent flows which allow mud layers to infiltrate the sand body. 

(B) Petrophysical properties 

Neutron-Density logs were used to calculate porosity values in well K-H1 in contrast to sonic log 

used in well K-F1. The reservoir interval encountered in well KH-1 is 7m thick and  has an 

average gamma ray log value of 55 API, 8.9% value for average porosity, a volume of clay of 

less than 30% and a water saturation value of about 50%. The permeability has a total average of 

0.15Md. Porosity and permeability may have been compromised by the presence of 

montmorillonite. 

 

(C) Clay mineral Assemblages 

Illite is dominant in KH-1 well samples as observed from the SEM images. The distribution of 

illite shows a web-like structure which has entangled the pore spaces and is likely to lead to a 

reduction in fluid flow. Montmorillonite as observed from SEM in well K-H1 may be sodium-

rich because of the apparent swelling observed. At depth 3070.89m, illite was observed growing 

on the surface of montmorillonite. Illite often contains Ti as an elemental composition, thus, the 

consistent presence of Ti in well KH-1 as revealed from Energy Dispersive Spectrometry (EDS) 

could be attributed to illite cement presence. XRD affirms all the diagenetic minerals observed 

on SEM (Scanning Electron Microscopy) images except for the presence of calcite. The presence 

of albite is also significant because the Na sourced from halite might have favoured the 

formation of albite. 

(D) Pore water Chemistry and CEC 

Well KH-1 alkalinity ranges between 6.78-8.34. Ec and pH show a corresponding trend with 

depth in the same well except at depths 3068.09m, 3068.92m, 3069.9m and 3070.89m.This may 

be attributed to dissolved cations in the extracted fluid, except at a depth of 3074.42m which has 
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CEC value of 7.3meq/100g (illite or chlorite). CEC values obtained from other samples in the 

same well indicate an illite and montmorillonite mixed clay layer presence while a sudden 

increase in Na at a depth of 3070.42 m may be due to precipitation of albite cement. As 

expected, there is a linear relationship between the TDS (Total Dissolve Solid) and Ec (Electrical 

conductivity), this confirms the accuracy of the data obtained from the analyses. 

Table 7.0: Table of different Petrophysical properties of Cretaceous Sandstones estimated from 

Wireline logs processed on Interactive Petrophysics (IP) software. 

Wells Volume of Clay 

(%) 

Porosity (%) Permeability(Md) Water Saturation 

(%) 

KF-1 20 13.6 0.09 86 

KH-1 30 8.9 0.15 50 

AU-1 32 10 0.15 65 

     

 

 

 

7.5 Conclusions 

This study has demonstrated that reservoirs encountered in the three wells studied are of  similar 

quality and that specific diagenetic cements are linked to corresponding depositional 

environments: Calcite presence in wells AU-1 and KH-1 indicates they were deposited in 

shallow marine conditions, while halite presence confirms the deep marine environment in which 

KF-1 well was deposited. Glauconite presence, as observed from thin section analysis points to a  

marine influence in samples analyzed. Aside from dominant quartz cement in all the three wells, 

calcite, montmorillonite, mixed clays and illite are reservoir challenges and have significantly 

compromised the quality of the reservoirs. The illite, as inferred from all analyses carried out 

was formed either from muscovite or transformed from montmorillonite under favourable 

conditions. The overpressure zone envisaged in the well report of well KF-1 could be linked to 

the dominant montmorillonite cement presence in this well. Observations made from visual 

examinations of core samples shows that some section of the reservoir rocks are well sorted and 

have limited lithic fragments which may reduce porosity and permeability.  Therefore, the 

extremely low petrophysical properties values calculated from wire line logs may have been due 
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to the precipitation of various diagenetic cements which reduce the porosity and permeability, 

hence clays and other associated cements exert a major influence on the petrophysical properties 

calculated. The major clay minerals (illite and montmorillonite) assemblage identified accounts 

for the low porosity and permeability values obtained from detailed wire line logs analysis of the 

three wells and usually montmorillonite and illite do have a more devastating effect on reservoir 

quality than any other type of clay mineral.  Based on the integration of all analyses carried out, 

the most qualitative reservoir zones within the reservoir interval are delineated as 3007.07-

3007.6m for well KF-1, 3070.89-3074.42m for well KH-1 and 2684.05-2685.84m for well AU-

1. Reservoir qualities of siliciclastic sandstones could improve basinward where depositional and 

environmental conditions are different and favourable. This may well turn out to be the singular 

reason why explorers are targeting ultra-deep waters as being done in offshore Niger-Delta and 

the Gulf of Mexico. It is therefore suggested that the reservoirs in the ultra-deep water of the 

offshore Orange Basin   could be further explored for proven reservoirs with better quality. 
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