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Abstract

Faculty of Science

Department of Computer Science

Master of Science

by Pei Li

Hand shape recognition is a pivotal part of any system that attempts to implement Sign

Language recognition. This thesis presents a novel system which recognises hand shapes

from a single camera view in 2D. By mapping the recognised hand shape from 2D to 3D,

it is possible to obtain 3D co-ordinates for each of the joints within the hand using the

kinematics embedded in a 3D hand avatar and smooth the transformation in 3D space

between any given hand shapes. The novelty in this system is that it does not require

a hand pose to be recognised at every frame, but rather that hand shapes be detected

at a given step size. This architecture allows for a more efficient system with better

accuracy than other related systems. Moreover, a real-time hand tracking strategy was

developed that works efficiently for any skin tone and a complex background.
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Chapter 1

Introduction

1.1 Background and Motivation

The ability to communicate is a necessary skill used in places such as schools, workplaces,

shopping malls, hospitals and homes. An individual’s ability to study, work, shop, see

a doctor and chat with family or friends depends solely on that individual’s ability to

communicate.

Many deaf people use a sign language as their primary language. Sign languages use

a different modality of communication than spoken languages. Sign language signs

are characterized by 6 parameters: hand motion, orientation, shape and location, and

non-manual gestures such as facial expressions, and body movements. Just as spoken

languages are primarily communicated using voice, sign languages are primarily com-

municated using the hands.

As a result, many deaf people are completely unable to communicate with hearing

people. The barrier to such communication is the difference in, both, the language

and the modality of communication. Therefore, many deaf people are faced with many

social problems. Those that primarily use sign language to communicate are unable to

communicate with hearing people even in their own area, home town, and country.

In South Africa, there are 600,000 deaf people that use South African Sign Language

(SASL) [30] as their primary language. In comparison with hearing people, deaf people

in South Africa receive very few opportunities to study and work. 75% of the South

African deaf are functionally illiterate and 70% are unemployed [30].

Many institutes and research groups, many of which are based at universities, have at-

tempted to use modern techniques to help deaf people breach this barrier. Such attempts

1

 

 

 

 



Chapter 1. Introduction 2

[19, 52, 77, 110] take the form of systems that convert voice to sign language and/or sign

language to voice. The “Integration of Signed and Verbal Communication: Sign Lan-

guage Recognition, Animation and Translation” group, more conveniently called the

SASL group [25], founded at the University of the Western Cape, is one such group.

This group has made many advances in its goal of developing a system to convert sign

language to voice and voice to sign language using commodity hardware. A main ob-

jective of the group is to make this system as natural as possible by tending away from

cumbersome devices such as data suits, data gloves and colour-coded clothes.

Many research projects have been conducted within the group. Whitehill [113] developed

a robust facial expression recognition system. Naidoo [79] developed a whole-gesture

recognition system to interpret entire sign language gestures to English. This system

lacked the ability to recognise and include the effects of different hand shapes in the same

gesture. Segers [89] developed a hand shape recognition system. However, this system

is only able to operate on a static background and with only the hand in the frame.

Using the 3D humanoid avatar developed by van Wyk [109], Achmed [2] developed a

system that can estimate the movements of the arms in 3D space. However, no system

currently exists in the group to estimate the shape and motion of the hands.

The aim of this research is to develop a system that can track, recognise and estimate

hand shapes from a video sequence on a non-static background. It has been mentioned

that the hand parameters form 4 of the 5 parameters that wholly characterize a sign

language sign. Therefore, this research forms one of the most pivotal parts of the SASL

project.

1.2 Research Problem

Sign language signs contain varied hand shapes. During the course of speech, the hand

shape may transition from one hand shape to another several times. The human hand

is an articulated object with many degrees of freedom. Therefore, the hand is highly

deformable [55, 66, 99]. Also, hand motions and deformations are often characterized

by self-occlusions. These factors imply that it is difficult to extract hand information

pertaining to sign language.

Data gloves and data suits can be used as reliable sources of such hand information

[61, 116]. However, these are very costly and cumbersome and reduce the natural feel

of the system. This goes against the objective of the SASL group. The use of computer

vision, which uses image processing and machine learning algorithms, can make the ex-

traction of such hand information from a video feed possible. Such a solution constitutes
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a comfortable non-contact user interface using commodity hardware – a commodity we-

bcam – as required by this research.

In a bid to simplify the extraction of information from a video feed, many studies have

added the requirement of colour-coded markers to be worn by users of the system – also

known as contact solutions – and/or have used multi-view cameras. Such constraints

defy the objective of the SASL group. Therefore, the problem exists to be able to

extract hand information from a video sequence without contact solutions and using a

monocular view.

The problem of extracting hand information in a video sequence can be broken down

into three sub-problems:

1. Detecting and tracking the hand in each frame.

2. Recognizing the hand shape in the frame. This can be a complicated process since

there are a multitude of different hand shapes formed by the hand that need to be

recognised.

3. Estimating intermediate hand shapes in the transition between two recognised

hand shapes.

Considering South Africans are of many different skin tones, the SASL project requires

that this system is able to work for people of any skin tone. It also requires that this

system be able to work in different environments (simple or complex backgrounds).

1.3 Research Question

Referring to the challenges mentioned in the previous section, the following research

question can be used to guide the research process: “Can South African Sign Language

hand shapes be recognised accurately and estimated for a person of any skin tone from

a monocular video feed on an arbitrary background?”.

1.4 Research Objectives

The objective of this research is to develop a system that can accurately:

1. Detect and track the hand in each frame.

 

 

 

 



Chapter 1. Introduction 4

2. Recognise the hand shape of the detected hand.

3. Estimate intermediate hand shapes in the transition between two recognised hand

shapes.

4. The system should also be robust and accommodate a wide range of skin tones

and users.

1.5 Thesis Outline

The remainder of the thesis is outlined as follows:

Chapter 2: Related Work: This chapter reviews the current techniques for hand track-

ing, hand shape recognition and estimation. Based on these techniques, techniques

suitable for this research are proposed.

Chapter 3: Hand Tracking: This chapter describes the hand tracking strategy used

in this research. The procedures involved in this process are also discussed. These

are: adaptive skin detection, Gaussian mixture model background subtraction, hand

detection and hand tracking.

Chapter 4: Hand shape Recognition: This chapter discussed the hand shape recognition

aspect of the system proposed by this research. An overview of the proposed recognition

strategy is presented. A detailed discussion of the pre-processing procedure used to

extract and normalize features from images in the video sequence is provided. In selecting

a suitable machine learning classification strategy to classify hand shapes using the

normalized features, a detailed comparative study between support vector machine and

neural network is also presented. The machine learning training and testing procedure

is explained. It also details specific modifications made to the recognition framework to

overcome recognition errors and enhance accuracy.

Chapter 5: Hand shape Estimation: This chapter provides an overview of the hand

shape estimation method proposed by this research. In order to describe clearly the

three dimensions hand model used, a review of “Van Wyk’s work” is also provided [109].

Details of each step of the estimation process are provided.

Chapter 6: Experimental Results and Analysis: This chapter describes the tests carried

out to assess the performance of the 3 sub-systems of this research: hand tracking, hand

shape recognition and hand shape estimation.
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Chapter 7: Conclusion and Future Work: This chapter concludes the thesis. It explains

the main contributions that this research has made to the field of study. Directions for

future research are also provided.
 

 

 

 



Chapter 2

Related Work

The aim of this research is to demonstrate the extraction of sign language hand shapes

from a monocular video sequence. The analysis of hand shape variations in a video

sequence requires three major tasks: hand tracking, hand shape recognition and hand

shape estimation. Hand tracking is the process of detecting the location of the hand in

each frame of the video. Hand shape recognition is the process of determining the shape

of the hand using the detected hand location. Accordingly, hand shape estimation is

the approximation of hand shapes that are formed in transitions between two recognised

hand shapes.

This chapter presents a detailed survey on hand tracking, hand shape recognition and

estimation. The review has been separated in the following sections: Sections 2.1, 2.2

and 2.3 present related work in the fields of tracking, recognition and estimation of

articulated objects, respectively; Section 2.4 concludes the chapter. In each case, an

overview of the method is presented as a base along with studies that have implemented

the method.

There are two categories of methods used to track articulated objects: model-based

methods [23, 101] and model-free methods [54, 81, 91, 97]. Model-based methods, also

known as shape-based methods, are methods which use shape features to detect the

target in each frame and include algorithms like chamfer distance matching and distance

functions. Model-free methods are methods which use the colour and intensity features

of the target to track it. These include algorithms such as mean-shift, particle filters

and optical flow. Section 2.1 explains why model-free methods are more suitable for

tracking articulated objects than model-based methods and excludes the latter from

this research. Sections 2.1.1–2.1.4 explain related work in the field of object tracking

using four methods: mean-shift, particle filters, methods that combine mean-shift and

particle filters, and optical flow.
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Chapter 2. Related Work 7

2.1 Articulated Object Tracking

Model-based methods have been applied to the field of articulated object tracking [66,

99, 115]. It has, however, been found that such implementations are generally unsuitable

for this task due to a number of reasons. Primarily, model-based methods are only able

to track a limited set of shapes. In this case, it is not possible to track objects of

unpredictable shape. The alternative is to use a large training set that contains all

possible variations of a target object. It is, however, very difficult to obtain such a

training set and the time cost involved in constructing a converged model with all these

shapes is substantial and infeasible. Additionally, the resulting model will be slow and

less than real-time [66, 99, 115]. Therefore, this research excludes model-based methods

as the basis for tracking.

Model-free tracking methods capture hand motions effectively. These include tracking

algorithms such as mean-shift, particle filters and optical flow. In principle, these algo-

rithms track any deformable or articulated object regardless of the shape and therefore

do not require shape-based models. The only factor that affects the performance of these

algorithms is the colour and intensity of the object. Therefore, the more distinct and

uniform the colour of the object, the higher the performance of the algorithm. By com-

bining multiple features such as colour, edge and motion, model-free tracking algorithms

can achieve an accurate and efficient result, even in complex environments.

These methods have successfully been applied to the task of hand tracking [54, 91, 97].

From Section 2.1.1–Section 2.1.4, we discuss and analyse studies that make use of three

model-free tracking methods to track articulated objects, namely: mean-shift, particle

filters and optical flow. In Section 2.1.5, a conclusion is drawn on a tracking algorithm

that is suitable for tracking sign language hand shapes.

2.1.1 Mean-Shift

Mean-shift is an effective colour-based tracking technique which is not computationally

expensive. It is a non-parametric clustering procedure. In comparison to the k-means

clustering approach, there are no embedded assumptions on the shape of the distribution

or the number of modes or clusters [16]. It is applied as a basic component for many

advanced trackers and HCI applications such as a perceptual user interface [17].

The mean-shift algorithm runs as follows [24]:
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1. The first time the algorithm is run, the target object is manually selected and

colour cue information about this region is extracted. A search window is posi-

tioned around the target object.

2. The colour cue probability distribution of the search window is computed. In other

words, a probability is computed for each pixel in the search window that indicates

the probability that it matches the computed colour cue.

3. The peak of the probability distribution, also known as the centre of mass, is com-

puted. This peak represents the region with the highest number of high probability

pixels, that is, the target object.

4. The search window is repositioned at the centre of mass, that is, on the target

object.

5. Steps 2 through 5 are repeated to track the object continuously.

An illustration of this procedure is shown in Figure 2.1. It can be seen that the search

window continuously shifts to the left towards the point with the highest density of high

probability points.

Figure 2.1: A demonstration of the operation of the mean-shift algorithm [16].

A principal drawback of the mean-shift algorithm is the static nature of the size and

orientation of the search window. This limits its use in hand tracking applications since

the size and orientation of the hand may change significantly.

In response to this drawback, Bradski [17] used the mean-shift algorithm as a basis for

the camshift (Continuously Adaptive Mean Shift) algorithm. Camshift is an extension

of the mean-shift algorithm that dynamically changes the size and orientation of the

search window. It was originally designed for a perceptual user interface in which the

camshift algorithm was used to track a user’s face and identify its direction of movement
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and rotation. Image capture was carried out with a single camera at a resolution of

160×120. The system was run on a 300 MHz Pentium II processor with 256 MB RAM

and achieved a real-time performance of 30 FPS.

Camshift tends to be robust against transient occlusion as the search window will tend

to first absorb the occlusion and then stick with the dominant distribution model when

the occlusion passes. However, this procedure fails to track the hands when the hands

pass over the face region and binds to the face region. This can be attributed to the

high skin colour probability distribution present in the face region as compared to the

hand.

Askar et al. developed a hand tracking algorithm that makes use of the centring and

re-centring approach of the mean-shift algorithm [5]. However, their implementation

uses an alternative method to initialize the search window as well as to determine the

centre of mass of the search window. They use a prior knowledge-based skin detection

method to segment skin pixels from non-skin pixels in the image. Only skin pixels are

considered, resulting in the appearance of skin blobs in the image which were mainly

the face and two hands. This is seen in Figure 2.2.

Figure 2.2: The histograms of the horizontal and vertical projection of Askar et al.’s
method [5].

A combination of horizontal-vertical projection and neighbourhood analysis is used to

search for the biggest blobs and so identify the position of the hands and head. A

bounding box is then drawn around the hand blobs where the search window begins.

This procedure is repeated to re-position the search window on the hands as they move.

Figure 2.3 illustrates this tracking strategy. The centre of the bounding box around the

blob is considered to be the centre of gravity of the blob in this method. The hand

contours are segmented by using a region growing approach on the centres of gravity of

the respective blobs.
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Figure 2.3: Tracking of the center of gravity [5].

This approach was tested on a 2 GHz Pentium IV PC on a colour frame sequence of

resolution 576×720 and achieved a real-time performance of 25 FPS. It was found that

the projection method has an inherent limitation: it is easily affected by noise [58]. Any

random pixels that are determined to be skin pixels can easily affect the projection.

This can be complicated further when a hand shape is used that produces a small skin

blob such as a flat hand that is perpendicular to the camera.

It can therefore be seen that a major strength of this method is its ability to perform in

real-time.

2.1.2 Particle Filters

Particle filters are sequential Monte Carlo methods for online learning within a Bayesian

framework. A posterior probability distribution is represented by a set of random sam-

ples with associated weights. Each sample is also known as a particle. The weights and

probability distribution are updated from one time measurement to the next.

There are various particle filters that differ in the procedures and measurements when

using different sampling strategies, such as sequential importance sampling(SIS) par-

ticle filters, sampling importance re-sampling(SIR) particle filters, auxiliary sampling

importance re-sampling(ASIR) particle filters and regularized particle filters. A detailed

explanation of these particle filters is provided in [4].

Particle filters generally seek filtered estimates of Xk based on the set of all available

measurements Z1:k = {Zi, i = 1, ..., k} up to time k.

Let {Xi
0:k, w

i
k}

Ns

i=1 denote a random measure that characterizes the posterior distribution

function(PDF) p(X0:k|Z1:k), where {Xi
0:k, i = 0, ..., Ns} is a set of support points with

associated weights {wi
k, i, ..., Ns} and X0:k = {Xj , j = 0, ..., k} is the set of all states up

to time k. The weights are normalized such that
∑

iw
i
k = 1.
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Draw N samples Xi
k from the proposed distribution q : Xi

k ∼ q(Xk|X
i
k−1, Zk)

Each particle is assigned a weight, wi
k, according to:

wi
k ∝ wi

k−1

p(Zk|X
i
k)p(X

i
k|X

i
k−1)

q(Xi
k|X

i
k−1, Zk)

(2.1)

and the posterior filtered density p(Xk|Z1:k) can be approximated as:

p(Xk|Z1:k ≈
Ns∑

i=1

wi
kδ(Xk −Xi

k)) (2.2)

An effective sample size N̂eff can be estimated by:

N̂eff =
1

∑Ns

i=1(w
i
k)

2
(2.3)

Particle filters have been successfully applied to visual tracking [48] and have been found

to be particularly robust in cluttered environments [72, 97]. However, a major drawback

of this method is the degeneracy phenomenon and the sample impoverishment problem.

Both problems limit the performance of particle filters.

The degeneracy phenomenon causes inefficiency in sampling since, after a few iterations

in a complex scene, most samples may have a very low likelihood. Their contribution to

the posterior estimation may become negligible. This causes unnecessary computational

costs. This can be seen in Figure 2.4. Also, the sample impoverishment problem causes

low success rates in the estimation phase since less samples can be used to reflect the

true probability distribution [4].

In response to the degeneracy phenomenon, Gordon et al. [86] introduced sequential

importance re-sampling (SIR) particle filters. The SIR particles are propagated over

time using a combination of sequential importance sampling and re-sampling steps. The

re-sampling step statistically multiplies and/or discards particles at each time step to

adaptively concentrate particles in regions of high posterior probability. These methods

are very flexible and can easily be applied to non-linear and non-Gaussian dynamic

models.

A recent study using SIR particle filters was conducted by Spruyt et al. [97]. Their

study utilizes an off-line trained skin model and Gaussian mixture model (GMM) to

reduce regions which are not represented in the skin colour space. In order to increase

the speed and efficiency of the SIR particle filters, they combine motion and skin colour
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Figure 2.4: A bad tracking result from particle filters [41].

information. Thus, any colour distributions that are similar to that of the target are

eliminated and do not affect the prediction of the SIR particle filters. They also use a

region growing algorithm for hand shape segmentation.

However, the usefulness of particle filters in online hand gesture tracking is limited by

the inefficiency of sampling and the computational complexity of the algorithm. The

details of the inefficiency in sampling of SIR particle filters is explained in the next

section since this drawback is common to SIR particle filters and methods that combine

mean-shift with standard particle filters.

Rincon et al. [72] make use of particle filters for tracking objects in complex scenes.

They present a new particle filter algorithm that uses two sampling techniques. This

substantially improves the efficiency of the filter. Tracking the object is based on a pro-

posed distribution which is determined using the a priori probability and information

about the current observation. Their method samples pixels from the object to repre-

sent the colour distribution. Using non-parametric density methods, they estimate the

probability of any observation in the colour space. Using the probability colour density

image(PDI) and a sample likelihood evaluation of all particles, they estimate the target

position in the next frame.
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2.1.3 Combining Mean-Shift and Particle Filters

The mean-shift algorithm and particle filters differ in their search paradigms. The former

is a stochastic and model-driven process while the latter is a deterministic and data-

driven process. Both methods have their respective strengths and weaknesses. A number

of studies emerged that proposed algorithms that combined the mean-shift algorithm

and particle filters.

Shan et al. [91] proposed a new algorithm, the mean-shift embedded particle filter

(MSEPF). In this study, the mean-shift algorithm is performed on each of the particles

after they are propagated so that the particles are “herded” to nearby local modes with a

large probability. The MSEPF produces a better estimation of the posterior estimation

to the position of the target even with a smaller set of samples, thus reducing the number

of computations required. Similar efforts on combining mean-shift with particle filter

have also been reported in the works of Koichiro et al. [31], Maggio and Cavallaro [70],

and Cai et al. [18].

Figure 2.5: The example of re-sampling impoverishment [108].

A major advantage of this method is its reduction of the degeneracy problem. However,

the mean-shift algorithm will inevitably make the samples too concentrated, aggravating

another problem of particle filters – sample impoverishment. Sample impoverishment

occurs when all particles collapse to a single point within a few iterations. The small

or negligible difference between particles reduces the effectiveness of the algorithm to

locate the moving object. This is especially severe when tracking a fast and randomly

moving object in which the velocity and movement varies quickly [31, 45, 70]. Thus,

the MSEPF begins to function similar to the mean-shift algorithm. This problem also

occurs in the SIR particle filters. Figure 2.5 illustrates at time k, the resampling process

in which samples are focused on the region which has the highest probability density

distribution. If only a small number of particles satisfy this requirement, it is easy to lose
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tracking at time k + 1. This is because, in this case, not enough particles are available

to estimate the correct position of the target.

2.1.4 Optical Flow

Optical flow is a method that tracks a pixel based on its intensity. The assumption that is

made is that image measurements such as the intensity of the pixels in the image remain

the same while their location changes over time. Mathematically, this is expressed as:

I(x+ u, y + v, t+ 1) = I(x, y, t) (2.4)

Where x and y are the x- and y- coordinates of the tracked pixel in the image, u and

v are changes in the x- and y-coordinates, t is the time, and I is the intensity of the

tracked pixel.

This assumption implies that the intensity of a pixel, having been displaced in the x

and/or y direction over a time sequence remains the same. This implies that this value

can be used to track the pixel.

Optical flow searches for the location of the required intensity value in consecutive frames

to track it. Figure 2.6 illustrates this tracking technique. However, noise is able to

severely affect the performance of this method. Any pixels that have the same intensity

value as the tracked pixel can affect the tracking result. Additionally, the lighting of the

image must be stable as any changes in intensity expectedly affect the result.

Figure 2.6: An implementation of optical flow tracking technique [11].

In order to reduce the interference of noise, the Lukas-Kanade (L-K) optical flow tech-

nique assumes small changes in location and constant flow of a tracked pixel in a local

neighbourhood. The algorithm is applied in a sparse context and only relies on local

information that is derived from a search window of known size surrounding each optical

flow point [16]. The size of the search window is a variable that can be optimized. The

use of smaller window sizes can cause the tracked pixel to easily fall outside the window
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if the motion is too fast, thus losing track. The use of larger window sizes begins to

introduce the same disadvantages as using no window at all, that is, sensitivity to noise.

The problem of determining an optimal window size led to the development of an en-

hanced L-K optical flow technique called the pyramidal L-K optical flow algorithm. This

algorithm assumes a small window size – typically 3×3 to track the motion of a pixel

by 1 pixel around its current location. It then handles the problem of large motions

in the tracked object by creating a pyramid of increasingly smaller resolution copies of

the image, as shown in Figure 2.7. An example of an image that has had its resolution

halved 4 times is shown in Figure 2.8. Tracking is then carried out on the lowest resolu-

tion image. This ensures that even large motions in the original image appear as small

motions in the lower resolution image, the size required by the search window. This

informs the tracking of the image in the preceding level in the pyramid and ensures that

tracking is not lost, despite a large motion. The motion estimate from the preceding

level is taken as the starting point for estimating motion at the next layer down. This

eventually propagates up to the original image in which tracking is now possible. A

drawback of this method is that it cannot effectively track objects that undergo large

deformations during global motions such as the hands [82].

Figure 2.7: Pyramid L-K optical flow [82].

A method developed by Kolsh and Turk called “flocks of features” attempts to manage

this problem and allows tracking despite vast and rapid deformations in the object as

it moves [54]. This method uses a set of initial L-K optical flow points that are placed

around a skin blob to be tracked. The main idea behind this method is that, similar

to a flock of birds in flight, the points in the flock of features should always maintain a

“safe” minimum distance from each other but should not wander too far from the flock

either. As the object moves, optical flow is used to relocate the positions of each of

the features in the flock. If relocation causes a violation of the constraint of the point
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Figure 2.8: One image in different resolutions [82].

moving too close to other points or too far from the flock, the point is re-located to a

position of high skin probability that does not violate the constraint [68, 92]. The hand

position in each frame is determined by taking the median distance of the features in

the flock. Their system operates at an average near-real-time performance of 12.7 FPS

for a video input at a resolution of 720×480 RGB on a 3 GHz PC.

There are, however, a few limitations of this method: the target cannot move too fast

and the velocity should remain constant when tracking in a complex background. The

tracker easily loses track when the background contains features similar to the hand.

Therefore, when the hand passes over the face or neck region, the tracker is attracted

by the latter regions and loses track of the hand. Figure 2.9 is an illustration of the

HandVu application [53] that uses flocks of features to track the hand. It can be seen

that the tracker loses track in frame 80 when the hand passes over the cupboard with

a similar colour distribution to the hand and frame 120 when it passes over the neck

region.

2.1.5 Summary of Articulated Object Tracking

Rigid objects with a known shape can be tracked reliably in environments with an arbi-

trary background using model-based methods [12, 49]. However, model-based methods
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Figure 2.9: An demo for hand tracking with flocks of features [57].

are infeasible and ineffective when the shape of an object varies vastly over time such

as with natural hand motion. In such cases, most approaches resort to a model-free ap-

proach. The model-free tracking approach does not model the appearance of the target.

Rather, it tracks the target using colour information.

The model-free approaches that are popularly used to track the hands include particle

filters, L-K optical flow and mean-shift [17, 54, 97]. These strategies are often used

for visual object tracking and their effectiveness in this area, where possible, has been

evaluated. Each of these methods have respective strengths and weaknesses but all three

have been seen to be able to operate in real-time. It is concluded that they are, for the

most part, on equal footing. Choosing a particular method therefore depends on the

specific application.

For the sign language application of this research, the mean-shift tracking algorithm is

selected. It is a computationally inexpensive method, yet very effective. It has been seen

that it operates faster than particle filters, optical flow and other combined methods,

due to the implementation of a single hypothesis that climbs the density gradients to

find the peak of probability distributions in the colour space. Specifically, the extension

of mean-shift called camShift is selected since it has been seen to be more robust than

mean-shift. The robustness of the algorithm on a complex background can be improved

by combining the proposed method with methods such as skin detection and background

subtraction.

2.2 Articulated Object Recognition

Recognition of articulated objects attempts to determine the shape of the object. Hand

shape recognition generally uses either template matching or machine learning tech-

niques. Template matching uses pre-constructed hand shape examples to compare and

match with an observed image from a camera. The match between the examples and the

observed image can be done by using the distance to edges technique [88, 94, 107] which

is also called the segmented silhouettes technique [100]. Machine learning techniques
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make use of pre-trained classifiers which are constructed from specific features extracted

from a number of classified examples. There are many machine learning techniques that

can be used to generate these classifiers such as support vector Machines (SVMs) and

neural networks (NNs). There are a wide range of features that can be used in these

classifiers such as shape contours and Fourier descriptors.

2.2.1 Template Matching Techniques

We first focus on template matching techniques. Shimada et al. used a distance to edges

method to recognise hand shapes [94]. In their method, 256 points are sampled along the

contour of the binary silhouette of the hand as seen in Figure 2.10. The distance from

each point to the centre of gravity is computed. The distances are plotted resulting in the

graph shown in Figure 2.10. The shape of the graph then determines the corresponding

hand shape and is unique to that hand shape. To make the result invariant to in-plane

rotations of the hand, the plotted distances are shifted to start with the most significant

peak. Thereafter, the distances are plotted either clockwise or counter-clockwise – it is

not clear which. The distances are also normalized to obtain scale invariance. Because

the distances are measured relative to the centre of gravity, this measure is also invariant

to translation. Their system was tested on a 6 node cluster [94] and achieved a real-time

recognition rate of 30 FPS. However, the recognition accuracy of the system is not clear.

Schreer et al. used a similar method but used a different distance function [88]. For

each contour point around the hand, the normal to the tangent of the point along the

contour is determined. Then, following the normal, the distance from the point to the

contour on the opposite side is determined and plotted. Figure 2.11 illustrates a hand

shape and the graph of the distances produced from that hand shape. A classification

into 13 different hand shapes can be performed using this method.

Their system was tested on a “state-of-the-art” PC [88] on a video feed at a resolution

of 640×480 pixels and achieved a real-time performance of 25 FPS.

This method is a completely data-driven approach and does not need any training process

or data-set of hand shapes. There are, however, limits to the detection rate of systems

using this method. The silhouette of the hand is affected by the law of perspective

projection. A major drawback of this system is that it is unable to recognise hand

shapes in which the fingers are not distinctly separated and visible.
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Figure 2.10: Shimada’s hand shape estimation by using distance measurement [94].

Figure 2.11: Schreer’s hand shape recognition by using distance function [88].

2.2.2 Machine Learning Techniques

A second approach to hand shape recognition is the use of machine learning techniques.

Stergiopoulou and Papamarkos [102] propose an extended neural network-based hand

shape recognition system. The program starts by locating the hand using a skin colour

distribution map in the YCbCr space [21]. Once the hand is located, they propose a

new technique called the Self-Growing and Self-Organized Neural Gas (SGONG) neural

network [9]. The SGONG is an innovative neural network that starts with a small

number of neurons and grows according to the hands morphology to approximate its

shape in a very robust way.

Figure 2.12 illustrates this procedure: Figure 2.12 (a depicts the SGONG starting with

only two neurons; the number of neurons grows, as seen in Figure 2.12 (b and converges
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in Figure 2.12 (c. In Figure 2.12 (c it is obvious that the grid of the output neurons has

taken the shape of the hand [102].

Furthermore, the tips of the fingers are located by locating those neurons which have a

small number of links with other neurons and are called root neurons. In Figure 2.12 (c,

such characteristics can be found in the tip of five fingers. This step is very important

for increasing the reliability of the system. Subsequently, the completion of the hand

shape recognition process is achieved by using a likelihood-based classification method

to determine the hand shape. The proposed hand shape recognition system has been

trained to identify 31 hand gestures that consist of combinations of raised and not raised

fingers. They conducted testing on their system. A total of 1800 tests using 180 hand

shape images were carried out. The recognition rate, under controlled conditions – a

static background and constant lighting conditions – was 90.45%. The computation time

cost for each hand shape was around 1.5 seconds on a 3 GHz CPU Computer.

Figure 2.12: Stergiopoulou’s hand shape recognition by using SGONG [9].

Sato et al. also used neural networks but devised a different method of hand shape

recognition [87]. They trained the classifier for six hand shapes using a number of

examples for each hand shape. In order to achieve a higher accuracy, they employ

a normalization pre-process on these images. First, the hand region is located. It is

translated so that the centre of gravity of the region is placed at the centre of the image.

The region is then rotated based on the orientation of the principal axis of the region

so that the axis is aligned with one of the image axes. Thereafter, the image is down-

sampled to a resolution of 12×12 pixels. This step is necessary to reduce the computation

cost and effects of small illumination variation. This normalized hand region is sent to

the training phase and ensures that the system is invariant to the hand alignment in the

image. This process is illustrated in Figure 2.13. The system uses two cameras which

observe the hand motion. This is carried out to overcome the problems arising from

self-occlusion.
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Figure 2.13: Sato uses normalized data for hand shape recognition [87].

The system was tested on a Pentium II 450 MHz PC with 384 MB memory. The system

was found to be able to process more than 20 FPS. A recognition accuracy of 85%

overall was achieved in this experiment. The typical mode of failure was misclassification

happening during transition from one hand shape to another. This result is to be

expected since the neural network was not trained to recognise those intermediate hand

shapes.

2.2.3 Summary of Articulated Object Recognition

Template matching methods can be used to achieve a real-time performance with a

high recognition accuracy in certain situations; in order to extract complete and clear

hand contours, these methods either need a simple background [88] or a special camera

configuration [94]. A normalization pre-process is used to make such features scale and

rotation invariant. Subsequently, a set of predefined criteria that uses a threshold or

range is used to recognise the hand shape.

This set of criteria will only be effective in the same conditions under which it was

constructed. In other conditions the recognition accuracy would deteriorate.

Therefore, while such methods are not complex and can operate in real-time with a high

recognition accuracy, they are mostly only effective under controlled conditions.

On the other hand, machine learning methods recognise hand shapes using a training

model. This model is trained on a number of examples. These examples can be obtained

from a variety of background conditions. The greater the number and diversity of

examples used for training, the greater the robustness of the system. Therefore, machine

learning methods tend to be more flexible than template matching methods; they can

be trained to operate under a variety of background conditions. The training process

is carried out using a machine learning algorithm. As in the case of template matching

methods, a normalization pre-process is used to make the features scale and rotation

invariant.
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Machine learning methods can be difficult to train and require many examples to achieve

a robust system. Also, the performance of the system can be affected resulting in

processing times that are less than real-time [102]. However, it has been shown that

real-time performance can be achieved [87] and the result is much more robust than

that of template matching methods.

Finally, a disadvantage of both methods is that they are only capable of recognizing

a pre-defined and limited number of hand shapes. This means that such systems will

not be able to recognise hand shapes that are formed as the hand transitions between

one hand shape and another. The next section explains how estimation can be used to

overcome this problem.

2.3 Articulated Object Estimation

Hand shape estimation uses a 3D model to approximate the exact configuration of the

hand using a set of input features. The methods used to estimate hand shapes can be

divided into two types. The first method matches the joints of the observed hand with

the joints of a 3D hand model using fitting algorithms. The second method incorporates

the use of hand shape recognition to match the shape of the observed hand with one in a

pre-defined database which covers all possible hand shapes. This database is generated

using a 3D model.

Subsection 2.3.1 and 2.3.3 describe the related work surrounding estimation using joint

matching methods and hand shape recognition respectively.

2.3.1 Joint Matching Methods

This method of estimation works by extracting local image features and fitting a given

3-D physical model [55, 83]. In most cases the model consists of a set of linked rigid

bodies. It is able to describe all possible variations in 3D [67]. The model is limited

to only those hand shapes that are plausible. Plausible hand shapes are determined

by using a kinematics model [56] or from the data collected using a data glove.1 In

each frame, image features such as the fingertips [55] or line segments on the observed

hand [84] are extracted and fitted onto the 3D model. The resulting model provides an

approximation of the exact 3D configuration of the hand.

Lee and Kunii [55] pioneered the use of a 3D model to analyse hand shapes. They employ

a set of constraints to simplify the finger inverse kinematics and propose a model fitting

1CyberGlove
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algorithm to fit the hand model to the observed image of the real hand. The matching

is guided by hand constraints and the tracking of seven characteristic points on the

hand. These characteristic points are illustrated in Figure 2.14. They use custom-made

colour-coded gloves and two cameras that are positioned at different viewpoints to track

these points. The exact estimation accuracy of their system is not clear.

Figure 2.14: 7 characteristic points on the hand [55, 62].

On the basis of Lee et al.’s contribution, Lien et al. [62] proposed an optimized hand

model fitting method to track the finger joints during hand motion using a stereo vision

system – “IIs-head” [93] – and a custom-made colour-coded glove similar to that of Lee

and Kunii [55].

To generalize the application of the marker-based hand shape analysis system and over-

come the scale inconsistency problem, a scale calibration process is carried out using an

image sequence of hand-grasping movements.

Hand-grasping movements are executed by bending five fingers. The image sequence

provides sufficient calibration information for the evaluation of the 3D hand model’s scale

fitness. During this process, ten scaling variables for the hand model are identified. The

scale of the 3D hand models are calibrated using the three-dimensional positions of the

seven markers. Once the three-dimensional hand model is calibrated, this hand model

of known size is applied to analyse the input hand shapes. The temporal information

of the hand motion is utilized to estimate the hand shape when occlusion of markers

pasted on the hand occurs. This information includes all joint angles in the current and

previous fitted hand models captured over time. The occluded hand shape is predicted

by applying the differential values between the two hand models.
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The system was tested on a AMD Athlon XP 2500+ 1.87 GHz PC and achieved an

estimation rate of between 3.7 and 10 FPS. Two hand shape deformations were used

to test their system: one without occlusion. These are illustrated in Figure 2.15. They

achieved an estimation accuracy of 99% the hand shape without occlusion shown in

Figure 2.15 a). The estimation accuracy of the hand shape with occlusion shown in

Figure 2.15 b) is not so clear although a histogram is provided and illustrated in Figure

2.16. The estimation of more complex hand shape deformations is not possible with the

current system.

a) Hand shape deformation without occlusion

b) Hand shape deformation with occlusion

Figure 2.15: Two hand shape deformations for testing.

Lu et al. [67] propose a method that uses a single camera and does not need for colour-

coded gloves. In this system, three image cues are used for tracking: edges, shading
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Figure 2.16: Error analysis for fitting the 3D model to a hand shape deformation
with occlusion shown in Figure 2.15 b).

information and optical flow. Initially the 3D model is fitted to a pre-defined hand

gesture. The Canny edge operator is used to extract the finger edges and a curvature-

finding function is used to locate the base points. The edge of the hand is tracked

by observing the change of base-point position between the current and next frame.

Subsequently, the finger tip is tracked using optical flow applied to the area inside the

edge. At each frame, visibility checking is carried out to match the corrected observed

hand and the 3D model hand.

Variations in the shading of the hand as it rotates with respect to the light source is also

used. This constraint combines the optical flow and shading constraints and degenerates

to one of these when the other is not available [67]. They combine these cues to reduce or

eliminate the errors arising from the assumption of brightness constancy. Their system

is able to track the complex and articulated motions of the hand as the shading changes.

The system was tested on a 1 GHz Pentium 4 PC and achieved an estimation rate of 4

FPS. The estimation accuracy is not so clear although a set of visual results is provided

and illustrated in Figure 2.17.

Figure 2.17: Lu’s hand shape estimation result [67].

This method handles partial occlusions by means of visibility calculations. However, it

is not a comprehensive solution to the problem in the case of single camera systems.

The method does not explicitly handle occlusions.
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2.3.2 Summary of Joint Matching Methods

Joint matching methods estimate the location of each joint or feature by projecting a 3D

hand model onto the image space and comparing it with the image features. Kinematic

constraints play an important role in hand shape estimation. These include: reduction

of computation cost and solving the problem of partial occlusions. Ambiguity arises

when multiple joints along the kinematic chain can produce similar limb movements.

Using multiple cameras and colour-coded gloves allows for the capturing of the posture

of the hand in detail. This can be used to increase and optimize the system performance

[55, 62]. However, the SASL project requires non-contact solutions. Therefore, these are

not suitable for this research. Methods that do not use colour-coded gloves are also able

to track a few features of the hand from a single view on a static background based on a

robust tracking algorithm such as optical flow [67]. However, such methods often fail due

to a large variation in the appearance of the hand and multiform self-occlusions made

by the hand. They are also complex and struggle to achieve real-time performance.

2.3.3 Methods that Use Recognition For Estimation

It is challenging to track joint features using a single camera and directly match it

with a 3D hand model. This section describes hand shape estimation methods that use

hand shape recognition to match a synthetic hand image and an observed image using

a single camera. Each synthetic hand image is labelled with parameters describing the

hand shape and the positions of all articulations. The system consists of a large hand

template database for describing all possible hand shapes.

Conventionally, a synthetic hand template database is populated by a computer graphics

application or data glove. In the estimation phase, given an input image, the system

retrieves the most similar hand template from the database, and the pre-stored configu-

ration parameters are then used as candidate estimates for the parameters of the hand

shape.

Athitsos and Sclaroff [8] followed a database retrieval approach. A database of 107,328

images consisting of 26 poses in 4128 views was constructed using a 3D model. Dif-

ferent similarity measures were evaluated, including chamfer distance, edge orientation

histograms, shape moments and detected finger positions. A weighted sum of these was

used as a global matching cost. Retrieval times of 3–4 seconds per frame on a 1.2 GHz

PC were reported in the case of a neutral background with an accuracy of 84%. Figure

2.18 illustrates some of the results of their work. Therefore, pose restrictions are a part
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of many full DOF hand pose estimation algorithms in order to avoid large amount of

occlusions.

Figure 2.18: Athitsos and Sclaroff’s hand shape estimation.

In order to avoid exhaustive searches in the database and achieve real-time processing,

Shimada et al. [94] proposed a strategy that uses an adjacency map to reduce the search

area in the database. For each frame, the search area is restricted to the neighbourhood

of the estimated appearance in the previous frame. A transition network was proposed

such that the search space can be limited. Figure 2.19 illustrates a possible transition

network. Only templates that are likely successors to the previous state are evaluated.

The network is learned from a series of example sequences. The details and drawbacks

of their strategies that are used for matching the features between input hand shape and

synthetic hand shape were described in Subsection 2.2.1.

Their system was tested on a 6 computer cluster framework running in parallel, with each

PC in the cluster consisting of a single 600 MHz Pentium III CPU and 256 MB RAM.

The system achieved a real-time processing rate of 30 FPS. However, the estimation

accuracy of their system is not discussed.

If self-occlusions of the fingers result in a loss of tracking, it is difficult to recover the

correct hand shape, even when a simple search is performed. This renders it unstable and

less reliable. An alternative is to use a predefined hand shape to initialise the tracking

process in the transition network. This natural sense of tracking makes it suitable for

real-life problems, such as a sign language estimation system. A generalized way of

solving the tracking initialization problem is to estimate possible configurations of the

hand from the current image rather than using information from the previous result.

This is done by hierarchical tree-based searching.
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Figure 2.19: Shimada’s transition network for hand shape estimation [94].

Thayananthan et al. propose a tree-based estimator using Bayesian filters [105]. Each

node of the tree corresponds to a cluster of natural hand configurations which are col-

lected using a data-glove. This approach uses a coarse-to-fine search approach by ap-

proximating the posterior distribution at multiple resolutions, without further evaluating

sub-trees of the search space. On the basis of the search tree idea, Stenger et al. [100]

proposed an alternative classification method which uses a multi-class cascade of classi-

fiers for shape template matching. Unlike the normal use of boosting for single object

detection, the cascade of classifiers is arranged in a tree order to recognise multiple ob-

ject classes – hand configurations – hierarchically, as shown in Figure 2.20. Each weak

classifier is trained to detect a single hand pose. If that pose is detected, the search

continues to child classifiers that do a finer classification.

Figure 2.20: Tree based cascade of classifiers [100].

Referring to the cascade of classifiers C for multiple classes in a tree structure with levels

indexed by I in Figure 2.20: similar objects are grouped together and the classifiers on
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the leaves recognise single objects. A binary tree is shown but the branching factor can

be larger than two.

The main advantage of boosting approaches are their speed. However, the number of

classifiers needed grows exponentially with the dimensionality of the pose parameters,

demanding a large amount of memory. Although high accuracy can be obtained, the

computational cost of this system is still too high for real-time applications. Using a

relatively small range of hand poses, an implementation of the method proposed by

Stenger et al. was found to operate at a rate of 0.5 FPS on a 1 GHz Pentium 4 PC.

2.3.4 Summary of Methods that Use Recognition For Estimation

Methods that use recognition for estimation perform well and are robust to self-occlusion,

since they directly match the intensity property between the input and the registered

template. They use a single camera and do not need a colour-coded glove. This makes

them very suitable to the system of this research since the sign language system requires

non-contact solutions.

The related work highlights three parameters that should be considered: the size of the

database to cover all possible hand shapes; the matching technique between the query

and database; and an efficient search strategy.

In comparison to the nearest neighbourhood searching strategy [6, 32, 94], the approach

proposed by Thayananthan et al. [105] and improved by Stenger [100] is able to obtain

a high accuracy. However, these frameworks demand a large set of classes if a compre-

hensive range of recoverable poses is desired. The drawback is that labelling a large

number of samples becomes a very time consuming process in the training phase. It also

increases the computation time in the prediction phase.

2.4 Conclusion

In this chapter, the related work surrounding the three main steps required to extract

hand shapes from a video sequence was discussed. These steps are: hand tracking, hand

shape recognition and hand shape estimation.

Under hand shape tracking, three popular tracking algorithms and their related works

were introduced. They are: mean-shift, particle filters and optical flow. For each

method, extensions to the method were also discussed. It was found that all three meth-

ods, on average, performed the same. camshift is an extension algorithm of mean-shift.
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It was found that this algorithm was slightly faster than other methods. Furthermore, it

was found to have a robust performance on a complex background by combining meth-

ods such as motion detection and background subtraction. Therefore, it is selected for

this project and used for tracking the hand.

The related work surrounding hand shape recognition was also discussed. Two methods

of hand shape recognition were discussed: template matching methods and machine

learning methods. It was found that machine learning methods have more potential

to perform robustly on a complex background than template matching methods. This

is because the training model that is used to determine hand shapes can be trained

under different backgrounds and conditions. Therefore this method was selected for this

research.

The related work in the field of hand shape estimation was also presented. It was also

categorized into two methods: joint matching methods and methods that use hand shape

recognition for estimation. Joint matching methods were found to be computationally

expensive and mostly required custom-made gloves worn by the user to perform well.

Therefore, these were not suitable for this research. It was found that the latter methods

have a robust performance and do not need the aforementioned glove.

However, this method has the disadvantage that it requires a large number of examples

if a comprehensive range of recoverable poses is to be achieved. This increases the

computation time. Although high accuracies can be achieved, the computational cost

of such a system is still too high for real-time applications. Thus far, a system that is

perfect in hand shape estimation does not exist. The estimation method proposed by

this research, and discussed in later chapters, is based on this method and extends it to

overcome these drawbacks.
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Hand Tracking

Hand tracking is a fundamental step in hand shape recognition. For recognition to take

place, the hand must first be located in the image sequences and segmented from the

background. The hand is a complex deformable object. It is capable of carrying out fast

and discontinuous motions. Chapter 2 compared colour-based tracking strategies such

as particle filters, optical flow and mean-shift. The chapter concluded with the selection

of the camshift algorithm as the primary tracking technique.

In this chapter, the contributions of this research to the field of automated hand tracking

on complex backgrounds is presented. An overview of the proposed system is presented.

Also, the background and theories of the techniques mentioned in this framework are

presented in order to establish a clear understanding of the framework.

The remainder of this chapter is organized as follows: Section 3.1 presents an overview

of the system design and implementation for hand detection and tracking proposed

by this research. Sections 3.2 through 3.5 discuss: adaptive skin detection using face

detection and histogram back projection; background subtraction; hand detection using

hierarchical chamfer matching; and the camshift tracking algorithm. The chapter is

concluded in Section 3.6.

3.1 System Design for Hand Tracking

The camshift tracking algorithm is often affected by noise in the background that has a

similar colour probability distribution as the tracked object. To overcome this weakness,

a combination of multiple cue methods is used to limit the noise on complex backgrounds.

Only moving skin coloured objects in the video sequence are required. Therefore, a

logical AND operation is performed between the motion cue image and the colour cue
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image to produce a final image where the skin colour of the hands have been successfully

extracted. This process is illustrated in Figure 3.1.

The skin cue image is determined in 3 steps: 1) A face is located in a scene. 2) A

cascade classifier will determine the nose region and use its colour as the skin colour

of the individual. 3) A skin cue image is computed using histogram back projection to

analyse the Hue-Saturation (H-S) histograms of the skin region and the original image.

The motion cue image is obtained by using an optimized Gaussian mixture model

(GMM) background subtraction method.

Figure 3.1: Combining multiple cues to filter out noise.

After producing the new image, through a combination of the motion and skin cue

images, the chamfer Distance matching algorithm is used to locate the position of the

hand in the image. The chamfer Distance matching algorithm is explained in Section

3.4.1. The Hierarchical chamfer Matching of the hand functions by detecting varying

resolution sizes of the hand, ascending form small sizes to large sizes. In this system,

the size of the face is used to obtain the optimal hand resolution size in the scene during

initialization. The theory used is based on the proportions of the human body specified

by the theory of Da Vinci [29]. This method improves the detection speed of the system

vastly. It is important to note that the hand location is only determined once using the

chamfer matching algorithm to obtain an initial region-of-interest (ROI) of the hand.

Thereafter, this region-of-interest is tracked continuously using camshift. The size of the

ROI is specified as 120×100 pixels in the testing carried out. The skin pixels of the face
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are eliminated from the resulting skin cue image using face detection since these pixels

may affect the tracking when the hand approaches the face. The entire hand tracking

system design and process is demonstrated in Figure 3.2.

Figure 3.2: Hand tracking system design and implementation.

3.2 Adaptive Skin Detection Using Face Detection and

Histogram Back Projection

In order to achieve versatile skin detection, the system is required to adapt to different

skin tones. The face is located in the frame using face detection. The skin colour

distribution of the region around the nose is extracted [2]. This distribution can be used

to identify all skin pixels of a user in a frame for any skin colour.

The following subsections explain face detection, skin region extraction and histogram

back projection.

3.2.1 Face Detection

The OpenCV library’s implementation of the face detection technique is employed. This

technique was initially developed by Viola and Jones [112]. The technique has 3 major

sections:

1. The Haar features are detected by 4 types of rectangular masks.

2. The region image is converted to the integral image for rapid feature detection.
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3. Cascade face detector is used to detect the face.

The following subsections detail each of these sections.

3.2.1.1 Haar Features Detection

Rectangular features are used to begin analysis on an image. These features are known

as Haar features [112]. Figure 3.3 is an example of 4 types of Haar features. In each

feature, the dark block is the same size as the light block.

Figure 3.3: Four types of features used in Viola-Jones [112].

The procedure in the Haar features detection is as follows; the image is converted to

grey scale so that the current image is defined as a set of intensity values from 0 to 255.

These values are used to detect large-scale rectangular Haar features in the image. This

is done by summing the intensity values in various rectangular blocks. The presence

of a Haar feature is determined from the difference between the average dark-region

pixel value from the average light-region pixel value. If the difference is greater than a

specified threshold, it is said that feature is present. Haar features are computed over

multiple image locations and multiple scales, as shown in Figure 3.4.

Figure 3.4: Haar features detection.

3.2.1.2 Efficient Computation Using the Integral Image Technique

Viola and Jones used a technique known as Integral Image [112] to efficiently and rapidly

determine the presence or absence of hundreds of Haar features at every image location
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and at several scales. The integral image is an intermediate representation of the image,

which progressively adds together small units of a region. In this case, the small units

referred to are pixel values. The integral value P ′(x, y) for each pixel is the sum of all

pixels to its left and above it. Starting at the top left of the image and traversing to the

right and down, the whole image can be integrated by proceeding row by row using the

previously computed integral image values together with the current pixel value P (x, y)

in the row of the image (P ) and calculating the next integral pixel value P ′(x, y) as

follows [16]:

P ′(x, y) = P (x, y) + P ′(x− 1, y) + P ′(x, y − 1)− P ′(x− 1, y − 1) (3.1)

An example that converts an image to an integral image is shown in Figure 3.5.

Figure 3.5: An example of a 7×5 image converted to a 7×5 integral image [16].

3.2.1.3 Cascade Face Detector

The face detector is trained by Adaboost which organizes it as a rejection cascade of

nodes. In the rejection cascade, each node contains an entire boosted cascade of groups

of binary classifiers trained on the Haar features from faces and non-faces. This is so that

the weighted training error is minimized. Rejection cascades can greatly reduce the total

computation time by quickly terminating the search in cases where the search region

is not recognised by a weak classifier. A search window searches across the image and

checks every location. The features in the search window of the image will be considered

as a face when all the features pass the entire cascade structure.

The face region generates a large cluster of regions that are detected to be a potential

face. The merge step first groups regions that contain a large amount of overlap and
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Figure 3.6: A cascade classifier.

then replaces all detected regions in the group with an average region. This region is

the final detected face. This is illustrated in Figure 3.7.

Figure 3.7: Applying the cascade classifiers in each search window and then merging
the detected regions of interest.

3.2.2 Skin Region Extraction

When expressing the skin region in an image, skin colour pixels were represented as

white pixels and non-skin colour pixels as black pixels [2]. As long as a face can be

detected in an image, the skin region of an individual can be extracted quickly and

accurately. After carrying out face detection, a cascade nose detector was applied to

only the face region. The result in shown Figure 3.8. The nose is used to extract the

skin colour.

3.2.3 Histogram Back Projection

Back-projection is applied to the frames using the extracted skin colour so as to high-

light the hands and eliminate all those objects which do not fall inside the skin colour

distribution [103, 104]. Histogram back projection describes a probability distribution

of skin pixels in an image depending on an H-S histogram that is obtained from the skin
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Figure 3.8: Nose region extraction used as the skin colour.

region of the nose. H-S is derived from the Hue, Saturation and Value (HSV) colour

space, which describes colour with individual values. According to the H-S histogram of

the skin region, given C represents the colour of a pixel and F is the probability that the

pixel is skin, P (C|F ) is the probability of drawing that colour when the pixel is actually

skin, then P (F |C) is the probability that the pixel is skin given its colour.

P (F |C) =
P (F )

P (C)
P (C|F ) (3.2)

This probability is then back-projected onto a grey scale image. Figure 3.9 illustrates an

example of a back projected image. An intensity value of 255 indicates a high likelihood

ratio of skin colour while a value of 0 indicates that the pixel has no skin colour.

This technique detects skin pixels effectively. However, it is often influenced by noise

in the background that has a similar or higher skin colour probability than the tracked

object. To overcome this, GMM background subtraction can be used as a pre-processing

step in order to eliminate the tracking of false objects. This is explained in the next

section.

3.3 Background Subtraction

Background subtraction is simply defined as the difference between the background im-

age and an observed image. Background subtraction is a technique used to classify mov-

ing objects as objects belonging to the foreground while stationary objects are classified

as objects belonging to the background [98]. This section will look at two methods of

background subtraction. These are: simple background subtraction in Subsection 3.3.1

and statistical background subtraction in Subsection 3.3.2. Subsection 3.3.3 provides a

comparison between the two methods.
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Figure 3.9: Projection and H-S histogram.

3.3.1 Simple Background Subtraction

Simple background subtraction uses a pre-defined background image from which each

new frame is subtracted and the result, thresholded. The binary image highlights non-

stationary regions in the image [74]. Large regions of non-stationary pixels are identified

as being an object of interest. This approach can be described by the following equation:

I(x, y)−B(x, y) > Threshold (3.3)

Where I denotes the pixel intensity in the observed image at position (x, y) and B

denotes the pixel intensity in the background image. T is a threshold value that is

usually determined empirically [90].

There is, however, a disadvantage when using a static background. It is easily affected

by small changes in illumination or camera movements. In addition, a single threshold

is not always suitable for every situation.

Frame differencing can efficiently solve these challenges by continuously refreshing the

background image. Frame differencing is a technique that determines the background

image by using recent frames. This approach is also referred to as an adaptive back-

ground subtraction approach. Each pixel value F (x, y) in the background image is based

on the pixel’s recent history. If using t to describe the time sequence, frame differencing

can be formulated as shown in the following equation:
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Figure 3.10: An example of simple background subtraction with a static threshold.

|Ft(x, y)− Ft−1(x, y)| > Threshold (3.4)

In addition to this technique, the median value of the last n frames can be used to update

the background image B in sequence [64]. The median value provides an adequate

background image and it can be formulated as shown in the following equations:

|Ft(x, y)−B(x, y)| > Threshold (3.5)

where

B(x, y) =

∑n
j=1 Fi−j(x, y)

n
(3.6)

This combination increases the stability of the background image.
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3.3.2 Statistical Background Subtraction

Statistical background subtraction is a method that uses clustering algorithms to gener-

ate a converged background model. The background model dynamically reflects sudden

illumination changes so as to only allow detection of highly active objects of interest.

Mixture of Gaussians is a popular approach for background modelling to detect moving

objects from static cameras [98]. A common optimisation scheme used to fit a GMM

is the expectation maximisation (EM) algorithm. The EM algorithm is an iterative

method that guarantees to converge to a local maximum in a search space. This search

space is formed by using collected frames [98].

However, the method requires long periods of time to train at initialization, especially in

busy environments. Based on such a framework, Bowden et al. [50] developed a method

that reduces the training time using the expected sufficient statistics update equations.

This method can efficiently initialize the training model. When the first L samples are

processed, the system then switches to the EM algorithm.

Such statistical update equations yield a good performance on the background model

estimation before all L samples are collected in the initial stages. This initial estimation

improves the estimation accuracy. For the purpose of producing a stable background

model, the initial estimation also allows for faster convergence.

The L-recent example update equations give priority over recent data. They are able

to adapt to changes in the scene. In this approach, recent variations of each pixel are

modelled by a mixture of k Gaussian distributions, k normally ranging from 3 to 5. To

formulate this concept, the probability that a certain pixel has a value of XN at time N

can be written as [50]:

P (XN ) =
k∑

j=1

Wjθ(XN ; ηj) (3.7)

Where Wj is the weight parameter of the jth Gaussian component, µk is the mean value

of k Gaussian distributions. θ(XN ; ηj) is the normal distribution of the kth component

represented by [50]:

θ(XN ; ηk) = θ(XN ;µ,
∑

k

) =
1

|2π
∑

k |
1
2

e−
1
2
(X−µk)

T
∑

−1
k

(X−µk) (3.8)

where
∑

k = σ2
kI is the covariance of kth component.
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Different colours are modelled by different Gaussians. The weight parameters of the

mixture Gaussian components represent the proportions of time that those colours re-

main in the scene. The background components are determined by an assumption that

the background contains B most probable colours. The probable background colours

stay longer and are more static.

Static objects which have a single colour tend to form tight clusters in the colour space

while moving objects form wider clusters due to different reflecting surfaces during the

movement. This measurement is known as the fitness value.

The k distributions are ordered based on a fitness value Wk/σk and the first B distri-

butions are used as a model of the background of the scene where B is estimated as

[50]:

B = argmin
b

(
b∑

j=1

Wj > T

)
(3.9)

The threshold T is the minimum fraction of the background model. In other words, it

is the minimum prior probability that the scene contains the background.

An update scheme is applied to allow the model to adapt to illumination changes and

operate in real-time. Each new pixel value is compared with existing model components

in order of fitness. The first model component that is matched is updated with the new

observation. If no match is found, a new Gaussian component is added to the mean at

the point.

Background subtraction is performed by marking a foreground pixel as any pixel that

is more than 2.5 standard deviations away from any of the B distributions. The first

Gaussian component that matches the test value will by updated by expected sufficient

statistics equations [50]:

WN+1
k = WN

k + αN+1(P (ωk|XN+1)−WN
k ) (3.10)

µN+1
k = µN

k + αN+1(XN+1 − µN
k ) (3.11)

N+1∑

k

=
N∑

k

+αN+1((XN+1 − µN
k )(XN+1 − µN

k )T −
N∑

k

) (3.12)

where
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P (ωk|XN+1) =

{
1; if ωk is the first match Gaussian component

0; otherwise
(3.13)

and

αN+1 = max(
1

N + 1
,
1

L
) (3.14)

ωk is the kth Gaussian component and 1
L

defines the time constant which determines

change.

3.3.3 Summary and Conclusions of Background Subtraction Methods

In a given scene, if a single steady camera and a stationary background is used, simple

background subtraction will suffice as a background subtraction technique. However,

when the environment is complex, there are moving objects and the lighting conditions

are uncontrolled, the static background subtraction method is not suitable for use.

The frame differencing approach can adapt quickly to changes in illumination and works

well for a continuously moving object. However, this approach necessarily requires the

object to be in constant motion. This is not true of the hands in sign language. For

instance, when the hand performs small motions in a fixed position, the hand will be

considered as a background object. If the background image is neither accurate nor

active, background subtraction can lead to the detection of false objects. In addition,

the median filter does not accommodate a rigorous statistical description and does not

provide a deviation measure for adapting the subtraction threshold.

The GMM background subtraction technique can efficiently separate the background

and foreground. It achieves a better performance than other background subtraction

approaches for the purpose of hand tracking. In Figure 3.11, the desired foreground is a

scene where only the hands are present. To adapt to changes in illumination, the only

requirement of this background subtraction technique is that the user sits or stands still

for approximately 3 – 4 seconds. In this period, the background model is computed and

updated by the difference between the current frame and the current background model

[59]. Thus, when the following frame is retrieved, the foreground pixels for the moving

objects can be separated automatically from the image and illumination changes on the

static object are still considered as part of the background. Therefore, GMM background

subtraction is selected as a background subtraction technique for this research.
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Figure 3.11: An comparison between simple background subtraction and model based
background subtraction.

3.4 Hand Detection Using Hierarchical Chamfer Matching

This section explains the hierarchical chamfer matching technique. In the previous

chapter, the camshift tracking algorithm was introduced. This colour-based tracking

technique requires an initial window to locate the target once. Subsequently, the tracking

window automatically tracks the moving target. In order to provide the algorithm with

this initial window, hierarchical chamfer matching is used to detect the hand only once.

The location of the hand is used to initialize the camshift tracker.

Subsection 3.4.1 describes the method of converting an edge image to a chamfer distance

image, also known as a distance image. Subsection 3.4.2 and 3.4.3 both describe the

methods that use templates to detect target objects in the chamfer distance image, but

the latter can be applied to detect the target of different scales.

3.4.1 Chamfer Distance Transform

The distance transform of edge images offers a platform for template-based shape match-

ing. This is true even in cases of an incomplete or unclear silhouette in the foreground.

A distance transform is an operation that converts a binary edge image to an approxi-

mate distance image. Each non-edge pixel is given an intensity value ranging from 0 to

255. This value is a measurement of the distance to the nearest edge pixel. An example

of this process is shown in Figure 3.12. This operation can be executed efficiently using

different distance masks.

 

 

 

 



Chapter 3. Hand Tracking 44

A 3×3 mask with value (3,4) distance transform is recommended by Borgefors [14, 15].

In Borgefors’ research, the city block and the 3×3 mask with (3,4) distance transform

were compared to the Euclidean distance and the use of the 3×3 with (3,4) distance

transform was recommended. Using the Euclidean distance itself is usually not necessary

as the edge points are influenced by noise. Furthermore, it is inefficient to compute exact

distances from inexact edges. The 5×5 mask and 7×7 mask show better approximation

accuracies in [28], but are more suitable for dense texture object matching such as street

map matching.

Figure 3.12: An edge image converted to a distance image using the distance trans-
form algorithm.

The 3×3 mask with (3,4) distance transform includes a forward mask and a backward

mask and is illustrated in Figure 3.13. Two passes are made over the image by propa-

gating the computed distance values across the image like a wave. The forward mask

travels from left to right and from top to bottom; the backward mask then travels from

right to left and from bottom to top.

Figure 3.13: The 3×3 mask with value (d1=4,d2=3) distance transform.

For each traversal, a distance mask is used for the propagation of the distance values.

The approximation is expressed in the following equations:

Forward:

Ci,j = min(Ci−1,j−1 + 3, Ci,j−1 + 4, Ci+1,j−1 + 3, Ci−1,j + 4, Ci,j) (3.15)
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Backward:

Ci,j = min(Ci,j , Ci+1,j+1 + 3, Ci,j+1 + 4, Ci−1,j+1 + 3, Ci+1,j + 4) (3.16)

3.4.2 Template Matching Using Chamfer Distance

Once the distance image has been computed, it is used to determine the similarity

between templates of the target object and the input image. This process is known as

chamfer distance matching. The template is a predefined binary hand contour image.

The input image combines skin cues and motion cues. The binary image is transformed

into an edge image. Subsequently, the distance image of the input image is computed.

In order to efficiently detect the hand in the image, the template image is overlapped

onto the transformed image. It is passed over each pixel on the transformed image from

left to right and top to bottom.

For every edge pixel in the template image, the corresponding pixel in the distance

transformed image is summed, as shown in Figure 3.14. This summed value can also be

understood as a distance measure. The location that contains the smallest sum value is

considered as the target position.

Figure 3.14: Template matching by chamfer distance [100].
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Chamfer distance matching can be made more robust by using the mean of the thresh-

olded distance. This approach reduces the effect of outliers and missing edges [106].

3.4.3 Hierarchical Template Matching for Hand Detection

Chamfer matching can not be used to detect the hand at different scales if only a single

template is used. Multiple templates at different scales can be used to solve this problem.

Borgefors [15] introduced hierarchical chamfer matching in which a coarse-to-fine search

is performed using a resolution pyramid of the image. A number of templates that

contain the target object at different scales are represented by a cluster prototype. This

method was optimized such that the prototype is first compared to the query image

using chamfer distance matching and only if the error is below a given threshold value

are the templates within the cluster compared to the image. The use of a combined

template hierarchy and coarse-to-fine approach in shape matching achieves very large

speed-ups [37].

Another optimization to this method is to use the size of the face to estimate the size

of the hand [59]. The optimal scale size of the hand can be determined in the scene at

initialization. This method vastly improves the speed of the system at initialization by

scaling it relative to the size of the face.

In this research, the location of the hand is determined only once using hierarchical

template matching. The size of the face is used to estimate the size of the hand, thus

speeding up processing. When the region-of-interest of the hand is found, it is tracked

using the camshift tracking algorithm.

3.5 CAMShift Tracking Algorithm

Camshift is the preferred tracking algorithm for this project. Therefore, some theory on

the algorithm is provided as a basis of overall understanding.

Camshift is based on the mean-shift algorithm. It is an effective and computationally

efficient colour-based tracking technique. It ascends the density gradients to locate

the peak of probability distributions [17]. It uses a search window positioned over a

section of the distribution. The maximum distribution can be computed by an average

computation within this search window. The search window is then shifted to the

location of this maximum distribution and an average computation is repeated. This

process is repeated until the algorithm obtains a local maximum and converges. Camshift

tends to be effective in overcoming transient occlusions. This is because the search
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window tends to first absorb the occlusion but reverts to the dominant distribution

when the occlusion passes.

The pixel data of the video frames are represented as a probability distribution. Each

pixel I(u, v) in a frame is assigned a probability value P (u, v), depending on its colour.

P is a value which indicates how likely it is that the related pixel belongs to the target.

Therefore, a target model of the desired object that may, for example, have been selected

by the user, is created in the form of a 1D histogram. Bradski takes the H-channel of

the HSV colour space to describe the target object by a range of colour hues. Depending

on the range of the hue in the histogram, the probability value lies in the range [0, 1].

To increase performance, the probability distribution for the mean-shift algorithm is

created within a search window. This is, in most cases, smaller than the image. The

probability values are assigned to the pixels depending on their hue. The histogram

is used as a lookup-table. After determining the probability distribution P (u, v), the

maximum of the distribution is located. The location of the maximum represents the

position of the target object in the actual frame. To calculate the maximum within the

search window, statistical moments of zeroth and first order are used [3, 17].

A statistical moment of order p and q can generally be formulated as [17]:

mpq =
∑

(u,v)∈σ

P (u, v)·up·vq (3.17)

Where σ is the distribution. The zero-order moment m00 is given by [17]:

m00 =
∑

(u,v)∈σ

P (u, v) (3.18)

This corresponds to the integral over the distribution σ. Similarly, the moments of first

order are given by [17]:

m10 =
∑

(u,v)∈σ

P (u, v)·u , m01 =
∑

(u,v)∈σ

P (u, v)·v (3.19)

The position of the target object c = (cx, cy) is then calculated as [17]:

cx =
m10

m00
, cy =

m01

m00
(3.20)
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After the position of the target object has been determined, the size of the search window

is adapted for the next frame. This is achieved using the moments of the zeroth order

and the maximum value in the distribution Pmax.

ws = s ·

√
m00

Pmax
and hs = 1.2 · ws (3.21)

where ws is the width and hs is the height of the search window. Bradski [17] multiples

the height with a factor of 1.2 since the human face is approximately elliptical. However,

the hand is an articulated object. Based on the centre of the original tracking window,

a new window with a specific size of 120×100 can locate the hand over any deformations

in time.

3.6 Conclusion

This chapter discussed the hand tracking strategy used in this research. The procedures

involved in this process were also discussed. These are: adaptive skin detection, GMM

background subtraction, hand detection and hand tracking. Adaptive skin detection

uses face detection and H-S histogram back projection to estimate a skin probability

image – the skin cue image. A motion cue image is created using GMM background

subtraction to form a new image that only highlights the pixels of the hand region. The

skin and motion cue images are combined. Based on the new image, hierarchical chamfer

matching detects the hand location and in the frame. The speed of this algorithm is

increased by choosing a template that has a size similar to that of the face. Finally, the

camshift tracking algorithm continuously and successfully tracks the hand motions.
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Hand Shape Recognition

Chapter 3 described the hand tracking method used in this research. The CamShift

algorithm was used to track the hand and extract a region of interest (ROI) of size

120×100 pixels containing the hand.

This chapter explains the method of recognition of hand shapes employed by this re-

search. The method of extracting contour features from the hand ROI and the use of

these features to efficiently recognise the hand shape is also explained. In Section 4.1, an

overview of the hand shape recognition system developed in this research is described.

This chapter is organized as follows: feature extraction and normalization is explained in

Section 4.2; Section 4.3 compares two machine learning algorithms: neural network and

support vector machine and chooses the more suitable one. Using the selected machine

learning algorithm to implement recognition is presented in Section 4.4. Section 4.5

concludes the chapter.

4.1 System Design for Hand Shape Recognition

In order to gain a distinct feature from different hand shapes, the hand contour is

used to represent the feature vector. Considering noise might still exist in the binary

images resulting from the combination of skin and motion cues, the connected component

analysis algorithm [34] is used to extract the contours of all blobs in the scene. The

contour which has the largest number of contour pixels is considered to be the hand.

In addition, a computational geometry algorithm [35] can be used to obtain an oriented

minimum bounding box to segment the hand contours from the ROI tracked by camShift.

In order to overcome misalignment invariance, normalization is carried out by rotating

and scaling the extracted hand region. The region is rotated based on the orientation of

49
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Figure 4.1: Hand shape normalization.

the principal axis of the region, such that the axis is aligned to one of the image axes.

Thereafter, the image is scaled to a resolution of 20×30 pixels. This step is essential

when aiming to reduce the computational cost as well as the effects of variation in the

size of the hand. An example of the results of this entire process is illustrated in Figure

4.1. Pre-processing allows for better generalization of features when using a machine

learning algorithm for recognition.

Support Vector Machines (SVMs) are selected as the preferred machine learning tech-

nique for this research. This choice is justified in Section 4.3. LibSVM [22] is an

open-source implementation of SVMs. It is used in this research as it provides a simple

and effective means to train and predict data using SVMs.

Figure 4.2: Process flow chart for feature extraction and hand shape recognition.
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4.2 Feature Extraction and Normalization

In the following sections, the techniques that are used to extract the hand contour from

the ROI in a clear and complete manner are described. Subsections 4.2.1 through 4.2.3

discuss: morphological operations, connected component analysis and feature normal-

ization by applying a minimum bounding rectangle.

4.2.1 Morphological Operations

Background subtraction may generate holes in the resulting image when the background

contains the same colour as the target and may generate noise when the illumination

changes.

To complete the silhouette of the hands, four morphological operations are used, namely:

dilation, erosion, opening and closing. The use of these operations ensures that noise is

smoothed out and holes in the hand area of the silhouette are filled in.

These operations are based on mathematical morphology. They arise in a wide variety

of contexts such as removing noise or joining disparate elements in an image. These

operations are used on either the binary images or greyscale images. However, in this

study only their use on binary images is discussed.

The following subsections describe these morphological operations.

4.2.1.1 Dilation and Erosion

Dilation and erosion are two fundamental morphological operations. The dilate opera-

tion can expand foreground regions. It is often used when attempting to find connected

components, that is, large discrete regions of similar pixel colour or intensity. Dilation

is necessary in many cases where a large region might be broken apart into multiple

components after the background subtraction technique. The dilation will cause such

components to merge together into one.

The erode operation can erode away the boundaries of regions as well as eliminate speckle

noise in an image. It is illustrated in Figure 4.3. The larger regions that contain visually

significant content are not affected [16].

These operations have two major elements: a binary input image and a 3×3 mask. As

the 3×3 mask is scanned over the binary image, the maximal or minimal pixel value is

computed by a pattern of elements relative to an origin at a certain pixel. This causes
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Figure 4.3: Dilation and erosion.

bright regions within an image to grow or shrink. Considering the binary image only

consists of 1s and 0s – “1” represents foreground pixels; “0” represents background pixels

– the dilation operation can be defined as [65]:

A⊖B = {X|Bx ∩A 6= ∅} (4.1)

and the erosion process can be defined as [65]:

A⊕B = {X|Bx ⊆ A} (4.2)

where A is a binary image, dilated or eroded by a mask B. Bx is the set B translated by

the vector X. The mask scans over the image. For the dilation process, if the 8 pixels

that surround the centre of the 3×3 mask all equal “0”, then the current pixel remains

a“0” – it is background; otherwise the current pixel is set to “1” – it is foreground. For

the erosion process, if the 8 pixels that surround the centre of the 3×3 mask are all equal

to “1”, then the current pixel remains a “1” – it is foreground; otherwise the current

pixel is set to “0” – it is background.

4.2.1.2 Opening and Closing

Opening and closing are both derived from the fundamental operations of dilation and

erosion. These two operators are important and normally applied to binary images.

Opening is defined as an erosion following by a dilation. It is similar to erosion and tends

to remove some of the boundary pixels from the edges of foreground pixels and eliminates

small clumps of undesirable foreground pixels. However, it is less destructive than

erosion in general. The effect of the operator is to separate the foreground objects and

to preserve large foreground regions that have a similar shape. The opening operation

of a binary image can be defined as [40]:

A ◦B = (A⊖B)⊕B (4.3)
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where the set A represents a binary image and the set B represents the 3x3 mask.

Closing is opening performed in reverse. It is defined as a dilation followed by an erosion

using the same mask for both operations. It is similar to dilation in that it tends to

enlarge the boundaries of foreground regions in an image but it is less destructive of the

original boundary shape [40]. The effect of the operator is to shrink holes in foreground

objects while attempting to keep the original shape of the objects. The closing operation

of a binary image can be defined as [40]:

A •B = (A⊕B)⊖B (4.4)

where set A represents as a binary image and the set B represents the 3x3 mask.

Figure 4.4: Opening and closing.

4.2.1.3 The Disadvantages of Morphology Algorithms

While morphology algorithms can be useful in limiting noise and filling in holes in the

image, they have disadvantages.

In the foreground image, the pixels cluster around the area of each blob, which can

potentially be the target object or noise in the image. The pixels of smaller unwanted

blobs are sparsely distributed and are not clustered. The pixels considered to be noise

can be shrunk or eliminated by applying erosion, and then applying dilation to rebuild

the area of the remaining components that was shrunk in erosion. This technique works

well for images which contain small amounts of sparsely distributed noise. However, in

this process, the target blob is affected as well.

Iterating each of the two operations – opening and closing – many times would not be

particularly useful. The opening or closing should only be performed once with the same

mask [16] to remove small amounts of scattered noise. It can be used as an initial clean

up on noise on the foreground image. The use of connected component analysis can

further reduce noise. This is explained in the following subsection.
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4.2.2 Connected Component Analysis

Connected Component Analysis is an algorithm that attempts to extract all contours

of the blobs in an image. Subsequently, the biggest contour will be considered as the

target object.

Connected components analysis [34] is implemented by applying 8-connectivity labelling

operators to scan the binary image row by row and column by column. Figure 4.5

illustrates the 8-connectivity labelling operator [85].

Figure 4.5: 8-connectivity labelling operator.

A point p is labelled when a foreground pixel, 255, is found. The p denotes the pixel to

be labelled at any stage in the scanning process. The 8-connectivity labelling operator

examines the 8 neighbours of p which have already been encountered in the scan based

on this information. The labelling of p occurs as follows [33]:

1. If all the neighbours of p are of the value 0 then assign a label q.

2. If all the neighbours of p are of the value 255 then assign a label p.

3. If more than one of the neighbours are of the value 255, assign one of the labels to

p and make a note of the equivalences.

After the completion of the scan, a secondary scan is made in which each label is replaced

by a label assigned to its equivalent class. The foreground components have only two

labels p and q belonging to the foreground and background respectively. All blobs that

are connected to each other are labelled as a single foreground object [33]. After the

connected component labelling, the boundaries of the blobs are approximated to polygon

lines or to convex hulls to a clear boundary.

The foreground pixels are gathered in the connected components. Each contour of

connected components is labelled with an index and a number of pixels. The remaining
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Figure 4.6: Connected components analysis to binary image of ROI.

smaller blobs are filtered out depending on the threshold on the size of each retrieved

contour [1, 10]. In Figure 4.6, the connected components analysis on the binary image

that is generated by combining skin cue and motion cue is illustrated.

Considering this technique is implemented in the ROI with a size of 120×100, the hand

contour can be identified easily due to its larger size. The hand region labelled 1 would

remain and the other small regions from labels 2 and 3 would be eliminated. The

processing speed for this computation is very fast since it is a small region.

4.2.3 Feature Normalization by Applying a Minimum Bounding Rect-

angle

A computational geometry algorithm [35] can be used to obtain an oriented minimum

bounding rectangle to segment the hand contours from the ROI of camshift. The mini-

mum bounding rectangle with an arbitrary orientation contains the vertex set S of the

geometric object.

The algorithm for a minimum bounding rectangle is based on a theorem by Freeman and

Shapira: the minimum area rectangle enclosing a convex polygon has a side collinear

with an edge of the polygon. The input is assumed to be a convex polygon, the vertices

of which are given in clockwise order [35]. Figure 4.7 illustrates the process of finding

the minimum bounding rectangle that encases the hand contour. It can be seen that

the minimum bounding rectangle, depicted in the right-most image of Figure 4.7, has a

side collinear with the hand.

The following rotating caliper algorithm determines the minimum bounding rectangle

of the convex polygon, in this case the hand contour [35]:
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Figure 4.7: The process of determining the minimum bounding rectangle of the hand
contour.

1. The hand contour p is to be encoded into a chain a1a2, · · · , an. This is also referred

to as a closed curve or convex polygon.

2. A bounding rectangle encloses the given curve. This rectangle is formed by lines

x1 = Wmin, y1 = Hmin, x2 = Wmax, y2 = Hmax. Wmin = minj
∑j

i=0 aix; Hmin =

minj
∑j

i=0 aiy; Wmax = maxj
∑j

i=0 aix; Hmax = maxj
∑j

i=0 aix, where j =

0, · · · , n; the aix and aiy are the x and y components of the vector denoted by ai.

Compute the area of the rectangle formed by the four lines and record it as the

current minimum bounding rectangle.

3. Rotate the lines clockwise and encase the given curve. Find the coordinate pa-

rameters (x,y) of the all the chain points lying on these lines. If more than two

chain points lie on one line, only the first and last are entered in the vertex list.

Label the selected chain point with the number of the chain link and keep it in an

ordered vertex list.

4. The current bounding rectangle and the previous bounding rectangle form two sets

of callipers. Compute the area of the current bounding rectangle and compare it

to the previous one using these callipers.

5. Update the current minimum bounding rectangle if necessary based on the new

bounding rectangle.

6. Repeat steps 3–5 until the area of the rectangles corresponding to all pairs of

successive vertices have been computed.

7. Output the minimum bounding rectangle.

The details of the geometric computation of this algorithm can be found in [34, 35].

In order to solve misalignment invariance, normalization is carried out by rotating and

scaling the extracted hand region. The selected region is rotated according to the orien-

tation of the principal axis of the region, in order to align the axis to one of the image

axes. It is also essential to scale the resolution to a size of 20×30 pixels. This allows
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for better generalization of features when training and testing using Machine Learning

methods. This process has two advantages: the recognition accuracy of the Machine

Learning methods is improved and the computational cost is reduced significantly.

4.3 Neural Network vs Support Vector Machine

This section presents two popular machine learning algorithms: neural networks (NNs)

and support vector machines (SVMs). A comparative study of the two techniques is

undertaken. Subsequently, the better of the two is adopted for the task of hand shape

recognition in this research. Subsection 4.3.1 and 4.3.2 present the basic theories of NNs

and SVMs. Subsection 4.3.3 gives a summary of this comparison.

4.3.1 Neural Networks

A neural network is a machine learning algorithm composed of interconnecting artificial

neurons that simulate real biological neurons to solve artificial intelligence problems.

In principle, an artificial neuron is a mathematical algorithm that implements non-linear

mapping. Consider a vector X that contains I input signals:

~X = (x1, x2, ..., xI) (4.5)

Figure 4.8: Artificial neural configuration [96].
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Referring to Figure 4.8, each input signal xi is assigned a weight wi to strengthen or

deplete the input signal. The artificial neuron computes the Net input signal, and uses

an activation function FAN to compute the output signal y given the Net input. The

strength of the output signal is further influenced by a threshold value θ, also referred

to as the bias.

The Net input signal to a neuron is usually computed as the weighted sum of all input

signals:

Net =
I∑

i=1

xiwi (4.6)

The neurons that compute the Net input signal as the weighted sum of input signals

are referred to as summation units. An activation function then receives the Net input

signal and determines the output of the neuron. Popular activation functions include:

linear functions, step functions, Ramp functions and Gaussian functions. All these func-

tions have respective weaknesses and strengths. Choosing a particular type of function

depends on the specific problem.

In this discussion, the step function is considered as a basis of understanding since it is

a basic function. This activation function is given by:

F (Net− θ) = F (
I∑

i=1

xiwi − θ) =

{
β1; if Net ≥ 0

β2; if Net < 0
(4.7)

The wi and θ are adjusted during the training process. The learning quality depends on

the example data. The learning consists of adjusting weights and threshold values until

a certain criterion is satisfied.

The process of training takes the form of providing the neuron with a data set consisting

of input vectors and a desired output associated with each input vector. This data set

is referred to as the training set. Supervised training then involves adjusting the weight

vector ~W and threshold value θ such that the error between the real output of the neuron

and the target output is minimized. The real output of the neuron is given by:

y = F (Net− θ) (4.8)

To simplify the learning equations, the input vector is augmented to include an additional

input unit xi+1, referred to as the bias unit. The value of xI+1 is always −1, and the
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weight xI+1 serves as the value of the threshold. The Net input signal to the AN is then

calculated as:

Net =
I∑

i=1

xiwi + xI+1wI+1 =
I+1∑

i=1

xiwi (4.9)

where θ = xI+1wI+1 = −wI+1.

In the case of the step function, an input vector yields an output of 1 when
∑I+1

i=1 xiwi ≥

0, and 0 when
∑I+1

i=1 xiwi < 0.

A single neuron can only be used to realize linearly separable functions. For more

complex problems, an interconnected network of neurons is required. The neurons are

arranged in layers, with outputs from one layer feeding into inputs in the next layer.

Multilayer perceptron networks consist of three layers of neurons, illustrated in Figure

4.8.

This network has an input layer, a hidden layer and an output layer. Each neuron may

be connected to several neurons in the next layer where the output of the neuron in one

layer feeds in as the input to neurons in the next layer. The input layer only distributes

the input value to the next layer and is often referred to as a two-layer network. The

output may consist of several neurons.

This implies that NNs are not limited to binary classification problems but are suitable

for multi-classification problems as well [20, 96]. Multilayer perception properties include

universal approximation of continuous non-linear functions, learning with input-output

patterns and the ability to create advanced network architectures with multiple inputs

and outputs [96].

However, multilayer perception properties introduce the following issues: NNs may not

be able to find an optimal global solution to the problem due to the use of the back-

propagation, rather locating a local minimum; and it may be difficult to determine the

correct number of neurons required for an optimal neural network for a task at hand.

It is important to note that even if the neural network converges, it may not result in a

unique solution [75].

4.3.2 Support Vector Machines

The foundations of support vector machines (SVMs) were developed by Vapnik [111].

Using statistical learning theory, SVMs were originally developed to deal with binary

classification problems, but have since been extended to support classification of multiple
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classes [2]. SVMs are gaining popularity due to the many attractive qualities of the

technique. The training procedure of the technique finds a global and unique solution

using a hyperplane to separate the different classes in a higher dimensional space or

feature space with a maximum margin. The separation achieved by the maximum

margin overcomes the problem of converging on local minima. A kernel function is

used to project the feature data in the input space to the feature space. This allows

SVMs to use linear classification techniques to solve non-linear classification problems.

During the training phase, the weight can be scaled very well since the training model

only selects feature vectors that lie on the respective hyperplanes in the feature space –

support vectors – to carry out the training process.

The following subsections describe major techniques involved in the use of SVMs. Sub-

section 4.3.2.1 presents maximum margin classification; Subsection 4.3.2.3 explains the

kernel function; soft margin classification is introduced in Subsection 4.3.2.2; and Sub-

section 4.3.2.4 presents a method of using binary-class classification to be able to handle

multi-class classification problems.

4.3.2.1 Maximum Margin Classification

Maximum margin classification is an important technique for classification optimization.

It is an empirical performance requirement that provides the least change that causes

a misclassification when a small error occurs in the location of the boundary between

two classes[27]. Maximum margin classification attempts to find the global and unique

optimal solution to solve the classification problem.

Figure 4.9: The optimal solution to classify the data in many hyperplanes [76].

Referring to Figure 4.9, there are many linear classifiers or hyperplanes that can separate

a given set of data. However, only one of these hyperplanes – the green line – achieves

maximum separation of the data.
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The importance hereof is that a hyperplane drawn to separate that data may end up

closer to one subset of the dataset than others, which is undesirable. Only the hyperplane

that separates the two classes with the maximum margin in this space is the optimal

solution. This hyperplane is also known as the maximum margin hyperplane or optimal

hyperplane.

Maximum margin classification attempts to find an optimal hyperplane which separates

the data set of one class from that of the other class in an exact manner. The optimal

hyperplane passes the mid-point between the boundaries of these sets and is the most

distant hyperplane from both sets. This hyperplane is expected to be the optimal

classification of the sets.

The training vectors that lie on the boundaries are called support vectors. An illustration

of the optimal hyperplane with the maximum margin is provided in Figure 4.10.

Figure 4.10: The optimal hyperplane with the maximum margin [76].

To present the use of the maximum margin to solve binary classification problems such

as the illustration in Figure 4.10, let the training set S have n vectors as follows:

S = {(xi, yi)|xi ∈ R
p, yi ∈ {−1, 1}}ni=1 (4.10)

Each point, xi, can be a n-dimensional vector but is a 2-dimensional vector in this

example. Each element in the vector is a positive real number. yi is the class of the

corresponding vector and indicates the class to which the vector xi belongs.

Let D describe the distance between the boundaries of the two classes. The margin for

the linear classifier shown in Figure 4.10 is given by:

D =
2

||w||
(4.11)
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SVMs use a weight coefficient vector w and a bias term b to maximize the margin

between the parallel hyperplanes that are as far apart as possible while still separating

the data.

In order to maximise the margin, the term ||w|| has to be minimized. Considering the

points still need to fall outside the margin, the w constraints are given by:

w · xi + b ≥ 1 for yi = 1 (4.12)

and

w · xi + b ≤ −1 for yi = −1 (4.13)

These two can be combined into one set of inequalities:

yi(w · xi + b)− 1 ≥ 0, ∀ i = 0, 1, 2, ..., n (4.14)

The boundary hyperplanes of both of the classes can be described as:

{
a) w · xi + b = 1

b) w · xi + b = −1
(4.15)

w and b are scaled using the support vectors xi that lie on the respective boundary

hyperplanes.

This procedure involves the following quadratic programming optimization problem:

considering the norm of w – ||w|| – involves a square root, it is necessary to alter the

equation by substituting ||w|| with 1
2 ||w||2, the factor of 1

2 being used for mathematical

convenience. The optimization for minimizing w is defined as:

Minimize
1

2
||w||2

Subject to yi(w · xi + b)− 1 ≥ 0, ∀ i = 0, 1, 2, ..., n (4.16)

The constraint formulation for each i in Equation 4.14 can be replaced by constraints

on the Lagrangian multipliers themselves, that is, α1, α2, ..., αn ≥ 0. As such, w and

the constraint functions are simplified. The new constraint equations are multiplied

by positive Lagrangian multipliers and subtracted from the objective function. The

Lagrangian is defined as:

 

 

 

 



Chapter 4. Hand Shape Recognition 63

LP =
1

2
||w||2 −

n∑

i=1

αi(yi(w · xi + b)− 1) (4.17)

It is then required to minimize LP in Equation 4.16 with respect to w and b and, at

the same time, cause the derivatives of LP with respect to all the ai to vanish, with all

these subject to constraints ai ≥ 0. This is given by:

min{LP } = min
w,b

{
1

2
||w||2 −

n∑

i=1

αi(yi(w · xi + b)− 1)} (4.18)

LP is the primal Lagrangian formulation. In order to deal with the convex quadratic

programming problem, LP is translated into LD to form a dual Lagrangian formulation

which is referred as Lagrangian duality.

Requiring that the gradient of LP with respect to w and b vanish gives the conditions:

w =

n∑

i=1

αiyixi (4.19)

n∑

i=1

αiyi = 0 (4.20)

Substituting Equation 4.19 and Equation 4.20 into Equation 4.17 yields:

LD =
n∑

i=i

αi −
1

2

n∑

i,j=1

αiαjyiyjxi · xj (4.21)

Therefore 4.16 can also reduce to a maximization function:

max{LD} = max
αi

{
N∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyj(xi, xj)}

Subject to

n∑

i=1

αiyi = 0 and αi ≥ 0, i = 1, 2, ..., n (4.22)

The dual form Lagrangian formulation LP reveals that the maximum margin hyperplane

and the classification task are only functions of the support vectors – the training data

that lie on the margin.
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According to Equation 4.15, those training data points with non-zero αi values will fall

on the +1 or -1 plane. These are the data points that contribute to defining the decision

boundary. If the other data points are removed and the classifier is retrained on the

remaining data, the training will result in the same decision boundary. Support vectors

with larger αi are more important since they have a stronger influence on the decision

boundary.

In order to conveniently handle w and other coefficients, the constraint formulation 4.14

is replaced by the Lagrangian formulations LP and LD.

The two Lagrangians are given different labels, “P” for primal and “D” for dual, to

indicate that the two formulations are different: LP and LD arise from the same objective

function but with different constraints and the solution is found by minimizing LP and

maximizing LD.

4.3.2.2 Soft Margin Classification

Ideally an SVM analysis should produce a hyperplane that completely separates the

feature vectors into two non-overlapping groups. Realistically, if the data has noise and

outliers, perfect separation may not be possible. These noise and outliers may also cause

overfitting which prevents the trained model from generalizing well. The soft margin

method attempts to find a hyperplane that splits the examples as clearly as possible,

while still maximizing the distance to the nearest clearly split data.

This is achieved by using a set of variables ξ, also known as slack variables, which measure

the degree of misclassification of the data xi. The cost function can be expressed as:

min
w,b,ξ

{
1

2
||w||2 + C · Σn

i=1ξi}

Subject to yi(w · xi + b) ≥ 1− ξi

where ξi ≥ 0 and 0 ≤ αi ≤ C (4.23)

The cost parameter C determines the trade-off between allowing rigid maximum margins

to be enforced and tolerating the training errors, in order to allow some flexibility in

separating the categories. In LibSVM, a grid search function is available, which can be

used to find the best value for C and γ. The grid search function uses geometric steps

to try each parameter value across the specified search range. If the model fit improves,

then the centre of the search moves to a new point where the process is repeated. If

there is no improvement, the step size will be reduced and the search will be repeated.
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When the step size of the search is reduced to a specific tolerance level, then the pattern

search will stop [2].

According to formulation 4.23, the solution to the optimisation problem of Equation

4.22 subject to
∑n

i=1 αiyi = 0 and αi ≥ 0 is given by the saddle point of the Lagrangian:

LP = L(w, b, α, ξ, β) =
1

2
||w||2+C

n∑

i=1

ξi−
n∑

i=1

αi(yi(w ·xi+b)−1+ξi)−
n∑

j=1

βiξi (4.24)

where α and β are both the Lagrangian multipliers. The Lagrangian has to be mini-

mized with respect to w, b, x and maximized with respect to α and β. Referring to

Equation 4.21, classical Lagrangian duality enables the primal formulation 4.24 to also

be transformed to its dual formulation:

maxL(α, β) = max
α,β

(min
w,b,ξ

L(w, b, α, ξ, β))

Subject to
n∑

i=1

αiyi = 0 and αi ≥ 0, i = 1, 2, ..., n (4.25)

4.3.2.3 Kernel Function

The description of linear classification mentioned previously is based on an assumption:

the data is linear separable so a separating hyperplane can be used to divide the data.

However, it is often the case that the data is far from linear and the datasets are

inseparable. To allow for this, kernel functions are used to non-linearly map the input

data to a higher-dimensional feature space where a hyperplane can be used to do the

separation [73]. A very simple illustration of this is shown in Figure 4.11.

Let Φ be a transformation to a higher dimensional space, xi be a training vector in the

input space and xj be the corresponding training vector in the higher dimensional space.

The transformed space should satisfy the requirement that the distance is defined in the

transformed space and that the distance has a relationship to the distance in the original

space. The kernel function K(xi, xj) that satisfies the above conditions is introduced.

The kernel function satisfies [73]:

K(xi, xj) = φ(xi)φ(xj) (4.26)
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Figure 4.11: The use of kernel functions to separate inseparable data [73].

This equation indicates that the kernel function is equivalent to the distance between

xi and xj measured in the higher dimensional space transformed by φ. Following this

constraint, there are 4 kernels that are most used by SVMs for training and classification

[73]:

1. Linear: K(xi, xj) = (xi)
T · (xj)

2. Polynomial: K(xi, xj) = (γ(xi)
T · (xj) + r)d, where γ > 0

3. Radial basis function (RBF): K(xi, xj) = exp(−γ · ||xi − xj ||
2), where γ > 0

4. Sigmoid: K(xi, xj) = tanh(γ · (xi)
T · (xj) + r), where γ > 0

where r, γ and d are kernel parameters [26].

The choice of kernel function is important as it influences the prediction capabilities of

the SVM [39]. However, no standard method exists to find the most appropriate kernel

[117]. Selecting an appropriate kernel is often a process of trial and error [26].

4.3.2.4 Multi-class Classification

By definition, SVMs are binary classifiers used for 2-class problems. However, they can

still can be applied to multi-classification problems by using a variety of techniques.

These techniques attempt to reduce the single multi-class problem into multiple binary

classification problems. “One-versus-one” is one of the most common methods [44]. An

brief explanation of this method follows.

Let L be the number of classes, L(L−1)
2 binary classifiers are trained using every binary

pair-wise combination of the L classes. A classifier is trained for each distinct pair

(u, v) and u 6= v. By using the data points in class u and v as positive and negative
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examples, every classifier is trained to differentiate between the two classes. The max-

wins algorithm [36] is used in order to combine the classifiers. This algorithm determines

the correct class by selecting the class with the majority vote as voted by the classifiers

[69].

4.3.3 Summary of Neural Network vs Support Vector Machine

In general, many researchers prefer to use neural networks to train knowledge-based

classifiers for most tasks involving hand shape recognition and human body detection

[80, 87, 118]. However, traditional neural network approaches suffer from local minima

and over-fitting. The former is caused by the fact that the NN may not produce a

unique and optimal solution to classify the dataset in the training phase. The latter

is caused by the presence of too many dimensions and complexity in the training data.

Traditional NNs do not have an effective strategy to control or mitigate this problem.

On the other hand, SVMs use the maximum margin strategy which always finds the

unique optimal hyperplane to separate the dataset. They also use a kernel function

which maps data points to a higher dimensional space to separate the dataset. Therefore

SVMs are not encumbered by higher dimensional data such as image data. Moreover,

SVMs use a cost function and a cost parameter to balance the complexity of the training

data and the training error.

SVMs are claimed to be the best classification technique when given very limited or very

complex data examples [111]. In this research, the SVM method is used for the task of

recognition.

4.4 Recognition Using SVM

This section discusses the entire procedure used to implement the hand shape recognition

sub-system of this research. Subsection 4.4.1 presents the approach for training the

SVM. SVMs require examples for training. This is a costly process in terms of time.

However, it is only required once as an off-line process. Once the classifier is trained,

on-line recognition of new input data can be performed efficiently and accurately. To

demonstrate that this system can be used to recognise hand shapes, 10 hand shapes were

selected from a South African Sign Language (SASL) dictionary [42] and the system

was trained on these hand shapes. These hand shapes are illustrated in Figure 4.12.

In order to ensure that the resulting classifier is robust, Subsection 4.4.2 describes a

method to test the classifier. Subsection 4.4.3 describes the use of the classifier to
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recognise the selected hand shapes. Subsection 4.4.4 then details the modifications made

to the recognition system to reduce the recognition errors arising from intermediate hand

shapes.

Figure 4.12: South African sign language hand shapes.

4.4.1 Training

In order to achieve a large set of examples for training a knowledge-based classifier, 10

videos, one for each of the 10 hand shapes, were recorded, with each video consisting of

no less than 500 frames. In each video, the performer was asked to hold up the hand

shape from start to stop. Using the methods explained in the previous section, the

hand contours were automatically extracted from the video. Of the approximately 500

frames, 40 examples were manually selected as training data for each hand shape. This

was followed by the feature normalization stage. The resolution of the hand contour

image was scaled to a 20×30 pixel image as seen in Figure 4.13.

Figure 4.13: The normalized image of size 20×30 pixels for the hand shape labelled
1.

Finally, all the hand contour images were written to a feature data file. Each contour

image was represented as a vector with a size of 600× 1. In each element of the vector,

a “1” was inserted to represent a contour pixel and a “0” for other pixels. The vectors

of the same hand shape were given a common label. The data file is described in the

format shown in Figure 4.14.
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Figure 4.14: The data file for describing the features with labels in the training phase.

The following step in the system is to obtain the kernel parameters. Keerthi and Lin [51]

have shown that the radial basis function (RBF) kernel can be used to solve the problems

of a non-linear nature between attributes and multi-classes. They have also shown

that the use of an RBF kernel with parameters C and γ and a linear kernel with only

parameter C, provides comparable performance. The polynomial kernel on the other

hand, in comparison to the RBF kernel, has more hyper parameters, thus increasing

the complexity of the SVM [63]. Furthermore, it is also shown that the sigmoid kernel

with certain parameters behaves similar to the RBF kernel [63]. Therefore, based on

the evidence shown, it is reasonable to begin experimentation with the RBF kernel.

When determining the parameters for the RBF kernel, two parameters C and γ are

required. In order to train the SVM effectively and predict the test data accurately, the

best C and γ should be chosen for the given problem. To determine the best parameters,

an exhaustive approach can be used by manually trying each C and γ combination, where

every parameter is an exponentially growing sequence. An alternative approach is to

use the grid-search function offered in LibSVM, which uses cross-validation to divide the

training set into n equal subsets. The classifier is then trained on the n− 1 subsets and

the remaining subset is used for testing, for each parameter combination [63]. In this

research, the latter approach is used to determine the best cross-validation accuracy for

the given problem where the optimized C and γ parameters are chosen.

4.4.2 Testing

The testing phase follows the same feature extraction and normalization procedure as

the training phase except that different examples are used in the training phase. The

features, along with their labels, were stored in the data file, where each feature vector

represents the corresponding hand contour. Using the trained model, the SVM predicted

the labels for these vectors. In the testing phase the accuracy of the trained model of

the SVM was identified. If an acceptable accuracy was obtained, the process moved on
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to the recognition phase. If an acceptable accuracy was not obtained, more hand shape

samples were obtained and used to re-train the SVM model.

4.4.3 Recognition

Once the knowledge-based data model was correctly generated, on-line recognition for

new input data could be performed efficiently. First, this input data would be considered

as an unknown hand shape image that was segmented from the hand detection step.

The recognition process then followed the same feature extraction and normalization

strategies as the training phase. However, only a single feature vector of the hand shape

was written to the data file with a default label. Finally, the SVM recognised the hand

shape by predicting the label of the feature vector.

4.4.4 Modification of Hand Shape Recognition to Avoid Intermediate

Hand Shapes

Practically, recognition proved to be problematic in cases where the user moved between

two known hand shapes. The system was unable to correctly classify intermediate hand

shapes between two hand shapes that were known and the correctness of the recognition

was affected. It was resolved to carry out recognition after every 3 frames. With this

modification most intermediate hand shapes are skipped in the deformation between

two known hand shapes. The remaining intermediate hand shapes are very similar to

the next gesture and do not significantly affect the recognition accuracy. Moreover, this

modification also significantly speeds up the performance of the entire system.

4.5 Conclusion

This chapter discussed the recognition aspect of the system proposed by this research.

An overview of the proposed recognition sub-system was presented. A detailed discussion

of the pre-processing procedure used was provided. This included the procedure used

to extract and normalize features from images in the video sequence.

In selecting a suitable machine learning classification strategy to classify hand shapes

using the normalized features, a detailed comparative study between SVMs and NNs was

presented. SVMs were selected as the preferred strategy since they are able to generalize

well on the training set and are very suitable for higher dimensional data such as images.
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The implementation of the recognition system was also explained. This involved the

training and testing of the SVM and subsequent recognition using the SVM. Modifica-

tions to the recognition framework to overcome recognition errors were also discussed.
 

 

 

 



Chapter 5

Hand shape Estimation

This chapter discusses the proposed method of estimating transitions between two recog-

nised hand shapes using kinematics functions embedded into a 3D hand model.

VanWyk [109] developed a methodology for the creation of a high quality 3D hand model

in the modelling and animation tool Blender. The methodology included a method to

fit the hand with kinematic constraints to ensure that only plausible hand shapes and

motions could be simulated. This model is used in this research in a novel method to

estimate intermediate hand shapes between two known hand shapes. Two recognised

hand shapes are set as keyframes on the model and all intermediate hand shapes are

then generated using interpolation functions. The constraints on the model ensure the

prevention of implausible hand shapes during the transition.

In order to comprehensively describe the robustness of the framework, Section 5.1 pro-

vide an overview on kinematics and the kinematics functions that make it possible to

simulate a realistic human hand using a 3D hand model. Section 5.2 introduces a pow-

erful environment for 3D computer graphics modelling and animation, namely Blender.

The methodology developed by van Wyk [109] is reviewed in Section 5.3. Van Wyk

demonstrated the effectiveness of his methodology by using it to create a high quality

3D hand model. In Section 5.4, the method proposed by this research is explained.

5.1 Hand Kinematics

Kinematics is a branch of classical mechanics that describes the motion of bodies or

hands without consideration of the forces that cause the motion. In the current context,

there are two methods that are used to pose the hand model: forward kinematics (FK)

and inverse kinematics (IK).
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Inverse kinematics involves transforming a bone lower in the tree and automatically

calculating and assigning rotation angles to its parent and ancestor bones such that the

bones remain connected and the transformation is valid [78]. Figure 5.1 b) depicts a 3D

hand model and the bones placed inside it. The bones at the finger tips are IK-enabled

bones. When each of these bones are moved, bones below them move with the them in

such a way that they remain attached and the movement is plausible. This is illustrated

in Figure 5.2.

Figure 5.1: 3D hand model in Blender [55, 109].

When applying an IK rotational constraint to a distal bone, one can set rotational

constraints for the whole chain of bones that is linked to it [109].

Figure 5.2: Illustration of IK applied to the tip of the pinky – pinky3.

Forward kinematics involves transforming each bone in the hand into the correct pose

starting at bones higher up in the skeleton tree and working down the tree in the same

manner. In Figure 5.1 b) all bones that are not at the tip are set as FK-enabled bones.

In other words, rotating or translating these bones causes bones higher up in the tree

to move accordingly and plausibly. A simple example of FK motion on the base of the

pinky finger – pinky1 – can be seen in Figure 5.3.
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Figure 5.3: Illustration of IK applied to the base of the pinky – pinky1.

The next sections explain how IK and FK are used in this research.

5.2 Why Blender?

Blender is a free and open source generic interactive 3D modelling package developed

by the Blender Foundation [13]. The large user community can be attributed to fact

that Blender can be used for modelling, animation, rendering, compositing and the

development of real-time interactive applications [13]. Moreover, Blender simplifies the

task of 3D animation since one can interactively rotate and translate bones and create

poses using both forward kinematics (FK) and inverse kinematics (IK). In this research,

version 2.49 of Blender is used.

Blender includes many useful features such as [13]: a skeleton (armature) system with

scale, rotation and translation constraints; constraint-capable forward and inverse kine-

matics; an embedded Python interpreter with an application programming interface

(API); a state-of-the-art internal game engine with its own Python API and a visual

game logic editor. With its advanced features and APIs, Blender can be a powerful in-

terface for 3D programming and simulation with artificial intelligence. The Python APIs

support information interaction between clients and servers on the Internet. Therefore,

Blender has the potential to host virtual online communication and online games. By

integrating the Python API with the Blender game engine, the development time of

complex projects can be significantly reduced. An example of a Blender window config-

uration that demonstrates Blender’s Python editor and the game engine’s logic editor

can be seen in Figure 5.4.

Blender’s skeleton system is a tree of bones. A skeleton in Blender has a root bone with

a global or object co-ordinate frame for the entire skeleton (skeleton space) and a local

co-ordinate frame for each bone (bone space). Each bone has a root and a tip, with the
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Figure 5.4: An example window configuration of Blender’s Python editor and game
engine logic [109].

co-ordinate frame situated at the root where rotation or articulation occurs. The root

of a bone can thus be considered as a joint. A bone’s co-ordinate system describes the

bone’s position in 3D space – X-, Y-, Z – co-ordinates. This system proves very useful

for the purposes of this project.

Blender also has an advanced keyframe animation system with features such as con-

straints for its skeletal system, forward kinematics (FK), inverse kinematics (IK) and

has several interfaces to aid in hand animation. Van Wyk developed a 3D hand model

in Blender that is used in this research. His work is explained in the section that follows.

5.3 A Review of van Wyk’s Work for 3D Hand Modelling

and Animation

Van Wyk developed a methodology for the creation of a high quality 3D hand model in

Blender. His model was acquired from MakeHuman [71]. MakeHuman is a parametric

modelling tool that allows the creation of a high quality customized human model. Van

Wyk’s model was exported as a MakeHuman model and imported into Blender. He then

created a skeleton for the model in Blender. The skeleton of the hand model was built

according to the Humanoid Animation (H-Anim) standard [109].

H-Anim [47] is an open standard developed by the H-Anim working group [46]. It

specifies a standard implementation for the skeleton structure of humanoid Avatars
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parameterized using skeletal subspace deformation. The H-Anim specification defines

a term “Level of Articulation” (LoA) that ranges from 0 to 3 and refers to standard

quantities of joints (articulations) present in a skeleton structure. Higher LoA allow for

more realistic motions, but require more bones and more complex skeleton structures.

The skeleton of the 3D hand model developed by van Wyk can be seen in Figure 5.1 b).

The skeleton was then attached to the model – a process known as “rigging” – using the

automatic rigging algorithm by Baran and Popović.

Van Wyk applied IK rotational constraints to distal phalanges – finger tips – and FK

rotational constraints to all other bones. This can be seen in Figure 5.1 b).

When applying an IK rotational constraint to a distal bone, rotational constraints for the

whole chain of bones that is linked to it can be set [109]. Figure 5.5 illustrates an example

rotational constraint on a bone. Table 5.1 summarizes the rotational constraints placed

on all the bones in the hand model. These constraints made the hand model capable of

creating realistic human hand gestures and shapes.

Table 5.1: constrains of rotation DOFs in degrees (◦) for bones in the hand [109].

Bone(joint) Limit X-axis Limit Y-axis Limit Z-axis

thumb1 -180–20 -180–0 -90–120

thumb2 -85–30 0 -5–5

thumb3 -90–60 0 0

middle0 0 0 0

index0

ring0 0 0 -5–5

pinky0

middle1 -90–0 0 0

ring1 -115–25 -5–25 -15–15

pinky1 -115–25 -5–18 -25–15

pinky2 -110–5 0 0

ring2

middle2

index2

pinky3 -90–15 0 0

ring3

middle3

index3

By combining the Blender game engine, Python API and the 3D hand model, van

Wyk developed a finger spelling alphabet animation controller in Blender. He created

26 stored keyframes that represent 26 letters in the finger spelling alphabet. Each
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a) Constraints placed on bones pinky0 and pinky1, both represented as a range.

b) Constraints placed on bones pinky2 and pinky3, both represented as a red curve.

Figure 5.5: Constraints placed on the bones of the pinky.

keyframe was created by posing the virtual hand manually. It was then stored in the

action-database or animation-database in Blender.

A keyboard sensor also forms part of the Blender game engine and can be used to capture

keyboard input and pass it to a Python controller. An Action actuator is used by the

Python controller to activate a pre-defined action within the action-database. When

a letter of the keyboard is pressed, the virtual hand changes hand shape to the one

that represents that finger spelling letter. The transition between different hand shape

actions during the animation is smoothed using the kinematics functions embedded

in the armature bones of the hand and the interpolation system embedded into the

animation system.

Van Wyk [109] performed experiments on his model on a MacBook Pro with a 2.16 GHz

Intel Core 2 Duo processor, 1 GB RAM and ATI Mobility Radeon X 1600 graphics card.

The finger spelling animation system was tested by pressing various keys to activate the
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Figure 5.6: The finger spelling animation process [109].

corresponding finger spelling hand shapes. All animations were rendered at between

300–600 FPS.

5.4 Proposed System Design for Hand Shape Estimation

After tracking the hand in the video sequence and recognizing specific hand shapes, the

recognised hand shape can be mapped from the 2D recognition to the 3D model. This

makes it possible to obtain 3D co-ordinates of each of the joints. Also, interpolation in

the animation system in Blender can be used to estimate smooth transitions in 3D space

between two recognised hand shapes.

Figure 5.7 depicts the entire system with the estimation and recognition components

highlighted.

Figure 5.7: Process Flow Chart for hand shape estimation.
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This section is broken into the following subsections: Subsection 5.4.1 discusses the

method used to integrate the 3D hand model created by van Wyk with the hand shape

recognition subsystem of this research; and Subsection 5.4.2 describes a strategy to

overcome prediction errors by the SVM and demonstrates results of the proposed hand

shape estimation method.

5.4.1 Linking the Recognition Subsystem with the Blender Game En-

gine for Hand Shape Estimation

The 3D hand model can be linked with the hand shape recognition subsystem of this

research to perform hand shape estimation in real-time. It has been explained that van

Wyk used the keyboard sensor to detect keyboard signals. The Blender game engine

also has a sensor called the random sensor. This sensor can be configured to detect a

signal from a pre-defined variable in the Python interface. A change in the value of this

variable triggers the sensor to send its value to the actuator. In the current context, the

value of the variable is continuously set to the hand shape detected by the recognition

subsystem. When a signal is received, that is, the hand shape has changed, the result

of the hand shape recognition subsystem is sent to the controller. Figure 5.8 illustrates

the framework of hand shape estimation system.

Figure 5.8: Hand shape estimation controller in the Blender game engine.

Two consecutive detected hand shapes are then set as keyframes in the animation system

in the model. The model is transformed between the two hand shapes by means of

an interpolation functions. This happens smoothly and correctly. Figure 5.9 is an

example of the hand shape estimation that Blender carries out between two detected

hand shapes G(t) and G(t+1). It should be noted that the animation system continues

to correctly update the estimation process as long as the next detected hand shape from

the recognition phase G(t+ 1) is correct.

 

 

 

 



Chapter 5. Hand Shape Estimation 80

Figure 5.9: Smooth estimation of the transition between hand shapesG(t) andG(t+1)
using Blender animation interpolation.

The framework is designed so that it relies on Blender’s interpolation to fill in interme-

diate frames. This enables the recognition system to only focus on major hand shapes in

SASL and ignore the wide variety of possible intermediate hand shapes. It, thus, avoids

the need for large and infeasible training sets for the recognition system.

5.4.2 Modification of Hand Shape Estimation to Enhance Performance

The fact that the SVM is not 100% accurate implies that, in many cases, an incorrect

classification is obtained. Consider the case where the user holds up an open hand. The

SVM may be affected by various types of random noise and classify the input as various

different, possibly erroneous, hand shapes. A modification was made to the estimation

framework such that the hand shape will only be sent to the estimation process to be

set as a key frame if three consecutive frames of the same classification are obtained. In

all other cases, recognised frames are ignored. This significantly increases the accuracy

of the estimation process.

Another modification was mentioned in Section 4.4.4 that described the recognition as

only taking place on every third frame with the aim of skipping intermediate hand shapes

between two known hand shapes. By combining these two modifications, the system is
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able to operate at a rate of 18–25 frames per second. Figures 5.10 and 5.11 present two

examples of the hand shape estimation process. It can be observed that a self-occlusion

occurs in Figure 5.11 such that only the thumb and forefinger are visible. However, the

system continues to operate correctly.

Figure 5.10: Hand shape estimation without self-occlusion [60].

Figure 5.11: Hand shape estimation with self-occlusion [60].

5.5 Conclusion

This chapter provided an overview of the hand shape estimation method proposed by

this research.
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The chapter explained kinematics functions FK and IK which are used in 3D models

to provide realism. The open-source modelling and animation tool Blender was then

introduced. This tool was used extensively in the estimation system of this research. A

justification for the use of this tool was presented.

Van Wyk’s work was reviewed and his methodology was explained. His work provides

a methodology for the creation of a high quality 3D hand model (and humanoid model)

in Blender. His work also includes a method to fit the hand with IK and FK constraints

with specific DOF-limits on bones to ensure that only plausible hand shapes and motions

can be simulated.

It was explained that the Python API was used to link the hand model with the hand

shape recognition sub-system of this research. Two recognised hand shapes are set

as keyframes on the model and all intermediate hand shapes are then generated using

interpolation functions in Blender. As long as the recognition of these two hand shapes is

accurate, the estimation remains accurate as well. The constraints on the model ensure

the prevention of implausible hand shapes during the transition. This architecture allows

for a more efficient system with better accuracy than other related systems.

Modifications to this system were also explained. These modifications significantly re-

duce the effects of misclassification by the recognition system to ensure accurate esti-

mation. The system proposed uses a strategy that does not require marked gloves to be

worn and does not require a hand shape to be recognised at every frame.

 

 

 

 



Chapter 6

Experimental Results and

Analysis

This chapter aims to assess the methodologies proposed in this research. Section 6.1

discusses the setup of the experiments carried out, such as, the equipment used and the

environment in which testing was carried out. The sections that follow, Sections 6.2

to 6.5, detail the experimentation carried out to assess the three major parts of this

research: hand tracking, hand shape recognition, and hand shape estimation. Section

6.6 concludes the chapter.

6.1 Experimental Setup

All experiments were carried out on a MacBook Pro with an Intel Core 2 Duo, 2.53

GHz CPU and 4 GB RAM, running the Ubuntu Linux 10.10 Operating System. A

Logitech notebook Quick Cam web camera was used at a resolution of 640×480 pixels.

Figure 6.1 depicts the locations at which the experiments were carried out as well as

the equipment used. Two different backgrounds shown in Figures 6.1a – background A

– and 6.1b – background B – were used in the experiments. Background A is a simpler

and less noisy environment than background B. All testing was conducted on the left

hand of test subjects.

The subjects were labelled A–F. For a clear understanding, Figure 6.2 illustrates the 6

subjects in Background A and Figure 6.3 illustrates the same subjects in Background

B.
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Figure 6.1: The two backgrounds used for testing.

Figure 6.2: The 6 subjects in background A.

Figure 6.3: The 6 subjects in background B.
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6.2 Hand Tracking Testing

The hand tracking subsystem is an essential part of the system. All steps that follow

tracking, such as feature extraction, hand shape recognition and hand shape estimation,

are based on the ROI that is detected and provided by the hand tracking subsystem.

Therefore, this subsystem is tested first.

The objective of the experiments in this section is to assess the rate of success of the

hand tracking subsystem for different test subject and under different environments,

that is, backgrounds A and B.

Subsection 6.2.1 describes the experimental procedure used to test the hand tracking sub-

system and the criterion used to evaluate the testing results. Subsection 6.2.2 presents

the results obtained and the analysis of those results.

6.2.1 Experimental Procedure

In this experiment, subjects B–F were used. Subject A was excluded from this exper-

iment because the subject was not available at that time. Each subject was required

to sit on the chair in front of the web-camera. The subjects were instructed to move

their left hand. Such hand motion could include hand shape deformations, as instructed

by the experimenter. Figure 6.4 illustrates one hand tracking test: a subject moves his

hand across his face from one side of the frame to the other side. The tracking subsystem

follows the motions of the left hand of the subject.

Figure 6.4: An example of the hand tracking test.

In order to test whether the hand tracking subsystem is robust, the testing was carried

out under different conditions, similar to the testing strategy employed by Kolsch and
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Turk [54]. Table 6.1 depicts the test subjects and the conditions under which the exper-

iment took place. In each case, the table also presents whether or not the background

contained pixels that were similar to the test subject’s skin colour and whether or not

the subject changed hand shapes during the test.

Table 6.1: Details of each subject.

Subject Background Skin background Changing hand shapes

Subject B Background B yes yes

Subject C Background B yes no

Subject D Background A no no

Subject E Background A yes yes

Subject F Background B yes no

The light conditions in the test location were found to change in the time taken to

switch between test subjects. In order to clearly describe the testing environment for

each subject, detailed information about the environments in each case is provided in

Table A.1 in Appendix A. Table A.1 provides: the skin region and environment H-

S histogram which jointly illustrate the similarity between skin colour of the subject

and the background colour; and an intensity histogram which illustrates the lighting

conditions at that time. An example of this table for Subject E is provided in Table 6.2.

Table 6.2: A detailed descriptions of the testing environment for Subject E.

Subject E in hand
tracking testing

Skin region
H-S histogram

Environment
H-S histogram

Environment
intensity
histogram

For each subject, after the tracking window was initialized using hand detection, each

frame captured was recorded to disk for a total of 10 seconds. This procedure was car-

ried out three times for each subject in the same environment. Table 6.3 shows the total

number of frames for each subject over the three testing iterations. It should be noted

that the total number of frames for each subject varies. This is because the frame rate

at which the tracking system ran varied. This is because the GMM background sub-

traction runs slower in a complex background than in a simple background. Moreover,

illumination changes affect the frame rate as well.

 

 

 

 



Chapter 6. Experimental Results and Analysis 87

Table 6.3: The total number of frames captured by the tracking subsystem over 30
seconds for each subject.

Subject Total frames

Subject B 963

Subject C 1098

Subject D 1146

Subject E 1065

Subject F 1002

The criterion for a successfully tracked frame is defined as a frame that contains a

tracking window of size 120×100 that encases the hand. This verification was done

manually by the researcher.

6.2.2 Results and Analysis

Table 6.4 depicts the success rate of the hand tracking subsystem for each subject. A

ratio of the tracked to the total number of frames can be used to evaluate the performance

of the hand tracking subsystem for each subject in the corresponding testing conditions.

Table 6.4: Results of the hand tracking experiment.

Subject Tracked frames / Total frames Success rate (%)

Subject B 721 / 963 74.9

Subject C 783 / 1028 76.2

Subject D 1024 / 1146 89.4

Subject E 904 / 1065 84.9

Subject F 814 / 1002 81.2

Average 81.3

Referring to Table 6.4, the hand tracking subsystem achieves a success rate that ranges

from 74.9% for Subject B to 89.4% for Subject D. The high performance achieved by

Subjects D and E can be attributed to the fact that the backgrounds used in these

experiments were less noisy than those applied to Subjects B, C, and F.

The experiments performed with Subjects C and F had similar conditions: they did not

contain hand shape variations and were both conducted using background B. However,

Subject F achieved a better performance than Subject C. This is attributed to the better

lighting conditions for Subject F. This can be seen by comparing the light conditions

of the two experiments using the corresponding intensity histograms in Table A.1 in

Appendix A.

In analysing the frames after the experimentation, it was found that the hand motion

was very fast in some cases. This fast motion caused blurring of the resulting extracted
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frames. Figure 6.5 illustrates an example of a blurred hand. This blurring of the image

changes the colour of the target. As a result, the tracking window can easily be grabbed

by another region that contains a higher skin colour probability distribution than the

blurred target, thus losing track. Therefore, it is not possible to avoid the loss of tracking

due to very fast hand motions.

The ability to recover from this kind of error is very important. One solution to this

problem is the use of a camera that captures frames at a faster rate. An example of such

a camera is the spot action camera called HD Hero from GoPro [114]. The use of such

a device is not available in this research. The solution adopted in this research arises

from the nature of the camshift algorithm. When tracking is lost, the real target can

still take back the tracking window by moving to the position where tracking had been

lost. The target skin probability distribution of the real target is still higher than that

of the region that grabbed the window and will take it back, as explained in Section 3.5.

As such, the camshift algorithm effectively overcomes this problem.

Figure 6.5: A blurred hand caused by fast hand motion.

6.3 Training and Testing Data for Recognition and Esti-

mation

In order to provide a clear understanding of the testing carried out, the training data

and testing data are explained in this section.

Using the methods mentioned in Section 4.4.1, a dataset of real hand images was col-

lected from three subjects labelled B, C and E and shown in Figure 6.6 in Background

A. Referring to Figure 4.12, this dataset contains more than 1500 examples for each of

the hand shapes H1 to H10. To produce a training set, 40 examples were randomly
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selected from the dataset for each hand shape. Figure 6.6 illustrates the subjects and

corresponding backgrounds used for training.

Figure 6.6: The three subjects and the corresponding backgrounds used for training.

For the testing phase, the six subjects A–F shown in Figure 6.2, were asked to perform

each of the ten hand shapes H1–H10 once in succession. Each subject was asked to

hold each hand shape for a few seconds (but no less than 9 frames) before transitioning

to the next hand shape. This procedure took place once in Background A and once

in Background B. This yielded 6 videos containing a sequence of hand shapes for each

background, one per subject – a total of 12 videos. These videos were then used for hand

shape recognition testing and hand shape estimation testing, as explained in subsequent

sections.

6.4 Hand Shape Recognition Testing

This section describes the procedure and results of the experimentation of the hand

shape recognition sub-system of this research.

Subsection 6.4.1 describes the approach used, and mentioned in Section 4.4.1, to select

a suitable kernel function for the SVM used in the recognition sub-system. Section

6.4.2 describes the criterion that determines whether a recognised frame is correct or

incorrect. This is used to assess the results of the experiments.

Subsequently, using this kernel function, two tests are described in Sections 6.4.3 and

6.4.4. The first test aims to obtain an indication of the robustness of the recognition

sub-system for different test subjects. The second test aims to determine the success rate

of the hand shape recognition in the two environments – background A and background

B.
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6.4.1 Determining a suitable kernel function and its corresponding

parameters

This section presents a method to determine a suitable kernel for this research. In

Chapter 4, the RBF kernel was identified as a suitable kernel for this system since it is

recommended by Hsu et al. [43] and Keerthi and Lin [51]. It was also tested by Achmed

[2] for the task of multi-classification using an SVM and achieved very good results.

Based on this, Hsu et al. propose a method of determining a suitable kernel [43]. They

propose that an assessment of the RBF kernel should be carried out first. This can be

done using the grid-search function mentioned in Chapter 4. An example is the grid-

search function provided by LibSVM. If this kernel performs well, it will be adopted as

the preferred kernel for the system. If it does not perform well, the performance of other

kernels, such as the linear, polynomial and sigmoid kernels, will be evaluated.

This method is adopted by this research. The performance of the RBF kernel is assessed.

If it performs well, the test concludes by adopting this kernel for this system. If it does

not perform well, other kernels will be tested to determine the optimum kernel.

The results of the grid-search function on the training set mentioned in the previous

subsection are depicted in Figure 6.7. The optimum parameters obtained were as follows:

C was 0.03125, γ was 2. The accuracy rate of the kernel ranged from 98.8% before

optimization to 99.5% after optimization. The small difference between the two accuracy

rates indicates that the RBF kernel is very suitable and achieves a very high accuracy.

Even without optimization, the system achieves a very high accuracy rate of 98.8%.

Therefore, it is unnecessary to test other kernels and the RBF kernel is adopted for use

in this research.

In order to increase the accuracy rate of the system based on the optimization pro-

cess, the SVM was re-trained using the optimized parameters of C and γ previously

mentioned. The re-trained knowledge-based classifier was used for all subsequent tests.

6.4.2 Criterion for a Correctly Recognised Hand Shape

The following test involves comparisons between the inputs and the outputs of the hand

shape recognition system. A criterion to analyse the input and output is presented in

this section.

The recognition system uses a knowledge based classifier – SVMs – to predict labels

(1-10) as outputs to input images. In order to easily compare inputs and outputs, 10
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Figure 6.7: Results of the grid-search optimization function.

synthesized hand images are used to represent the labels of 10 hand shapes. During the

testing, each real hand image corresponds to a synthesized hand image; the real hand

image and the synthesized image are given the same index number as their name and

saved in two folders. The criterion which defines a correctly recognised image is that

the same hand shape can be found between a real hand image and a synthesized hand

image.

The recognition sub-system outputs a label ranging from H1 to H10 given an input image

containing an arbitrary hand shape that is to be recognised. During the test procedure

mentioned previously, the recognition sub-system produced a label corresponding to each

hand shape recognised in the video. Such classification is deemed correct if the hand

shape that corresponds to the output label correctly matches the input hand shape. In

order to simplify this process, the system was modified slightly for this test so that,

for each hand shape recognised in the test video, it stored the original segmented hand

image along with the image of the predicted label shown in figure 4.12 to disk with a

common index. These two images were then manually compared. Correct classification

was then defined as a match between the original hand image and the synthetic predicted

image.
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6.4.3 Test to Determine the Relationship between the Recognition

Accuracy and Different Users

This section describes the experimentation carried out to assess the effect of varying the

test subject on the recognition accuracy.

Different users of the system may perform the same hand shape with slight variations.

For example, it was noted that the open hand shape differed significantly when performed

by different users. Figure 6.8 depicts the contours of this hand shape as detected from

different test subjects. Note that the images appear to be of the right hand because

they are mirrored during capture. Even though the intended hand shape was the same,

small variations led to very different recognition results.

Figure 6.8: Contours of hand shape H1 – the open hand – as performed by different
subjects.

One solution to this problem is to increase the number samples in the training phase.

The following test assesses the degree to which the recognition accuracy is affected by

variations in test subjects.

6.4.3.1 Experimental Procedure

The testing data collected on Background A was used in this experiment. 30 hand

images for each of the 10 hand shapes for each of the 6 subjects were used – a total of

1800 images.

The criterion mentioned in Section 6.4.2 was used to determine correctly and incorrectly

recognised images.

A Chi-Square statistical test was then applied to the results to produce a Chi-Square

value and degree of freedom (df) value for each hand shape. The Chi-Square value and

df value are then used to determine the corresponding P-Value as shown in Table B.1

of Appendix B.1. The P-Value is used to determine the statistical significance between

recognition accuracy and subjects. The process used to determine the Chi-Square value

and df is also provided in Appendix B.2 for completeness.
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6.4.3.2 Results and Analysis

Table 6.5 summarizes the P-Values for each hand shape above the threshold of 0.05. It

is observed that the P-value for every hand shape exceeds 0.1. Therefore varying the

test subject has no significant effect on the recognition accuracy of the system. There

is no relationship between the recognition accuracy and the test subject. The system is

robust to variations in test subjects.

Table 6.5: Chi-Square test results for the test to determine the relationship between
the recognition accuracy and test subject (df = 5).

Hand shape Chi-Square P-value

H1 3.8603 0.5711

H2 2.6732 0.7502

H3 1.6951 0.8906

H4 3.8741 0.5682

H5 1.6031 0.9015

H6 4.2234 0.5173

H7 7.3842 0.1946

H8 4.8612 0.4332

H9 2.4023 0.7915

H10 1.6033 0.9019

6.4.4 Hand Shape Recognition Testing on Backgrounds A and B

This section assesses the hand shape recognition accuracy on backgrounds A and B.

6.4.4.1 Experimental Procedure

The test data collected on Background A and B was used in this experiment. 30 hand

images for each of the 10 hand shapes on each background for each of the 6 subjects

were used – a total of 3600 images.

The criterion mentioned in Section 6.4.2 was used to determine correctly and incorrectly

recognised images. The average recognition accuracy was then determined for each hand

shape, subject and background.

6.4.4.2 Results and analysis

Tables 6.6 and 6.7 summarize the recognition accuracies obtained for each hand shape

and subject for Backgrounds A and B respectively.
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An analysis of the results under Background A was carried out. Referring to Table 6.6,

high recognition accuracies are achieved by all test subjects for all 10 hand shapes on

this background. The overall accuracy per subject ranged from 79.0% for Subject F to

87.0% for Subject C.

Analysing the accuracy results on a per-hand shape basis, it is observed that the accuracy

ranged from 75.6% for hand shape H1 to 92.8% for hand shape H7. Referring to an earlier

experiment carried out [59], the accuracy of hand shape H1 has increased from 55.0%

to 75.6%. This was achieved by increasing the number of samples in the training phase

from that experiment. Hand shapes H6 and H7 obtained the highest accuracies of 90.6%

and 92.8%. Overall, an average accuracy of 83.3% was achieved on Background A.

An analysis of the results under Background B was also carried out. Referring to Table

6.7, good recognition accuracies are achieved by all subjects for all hand shapes. On

a per-subject basis, the accuracy ranged from 71.3% for subjects C and F and 77.3%

for subject E. The accuracy per hand shape ranged from 67.8% for hand shape H4 to

80.0% for hand shape H6 on a per-hand shape basis. The overall average accuracy on

this background was 73.6%. This result is very encouraging given Background B was a

very cluttered and noisy background.

The overall average accuracy of the system over both backgrounds was 78.5%. This

result is very encouraging and indicates that the recognition sub-system is very accurate

and robust to test subjects and background noise.

Analysing the causes of the difference between the accuracies achieved on Backgrounds

A and B, it was found that two factors affected the result: varying light conditions and

background noise in the form of regions that resembled skin in Background B. These

factors make segmentation of a complete hand contour image in a frame very difficult.

To overcome these factors, Shimada et al. [94] and Schreer et al. [88] either use a

CCD camera on a static background or a simple background. The solution that can be

adopted in this research is to include more examples during the training phase. This

will aid the SVMs in predicting the correct hand shape given an unclear and incomplete

hand contour image. Figure 6.9 illustrates examples of correctly recognised hand shapes

from incomplete or unclear hand contours.

6.5 Hand Shape Estimation Testing

This section describes the procedure and results of the experimentation of the hand

shape estimation sub-system of this research. Section 6.5.1 describes the criterion that
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Table 6.6: Hand shape recognition accuracy on Background A.
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

Subject
Hand shape

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Average

Subject A 76.7 80.0 83.3 70.0 83.3 90.0 96.7 70.0 83.3 86.7 82.0

Subject B 80.0 83.3 86.7 83.3 86.7 96.7 96.7 76.7 76.7 80.0 84.7

Subject C 73.3 93.3 83.3 86.7 83.3 93.3 100.0 86.7 86.7 83.3 87.0

Subject D 83.3 80.0 86.7 73.3 86.7 83.3 86.7 86.7 83.3 83.3 83.3

Subject E 76.7 83.3 86.7 76.7 80.0 93.3 90.0 86.7 90.0 76.7 84.0

Subject F 63.3 83.3 76.7 83.3 76.7 86.7 86.7 76.7 80.0 76.7 79.0

Average 75.6 83.9 83.9 78.9 82.8 90.6 92.8 80.6 83.3 81.1 83.3

Table 6.7: Hand shape recognition accuracy on Background B.
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

Subject
Hand shape

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Average

Subject A 66.7 70.0 73.3 70.0 56.7 83.3 80.0 70.0 70.0 76.7 71.7

Subject B 76.7 80.0 66.7 70.0 80.0 76.7 80.0 76.7 70.0 76.7 75.3

Subject C 73.3 63.3 73.3 66.7 83.3 80.0 70.0 66.7 63.3 73.3 71.3

Subject D 63.3 80.0 73.3 63.3 70.0 83.3 86.7 83.3 70.0 73.3 74.7

Subject E 73.3 76.7 80.0 66.7 76.7 86.7 83.3 70.0 73.3 86.7 77.3

Subject F 63.3 70.0 76.7 70.0 63.3 70.0 76.7 70.0 76.7 76.7 71.3

Average 69.4 73.3 73.9 67.8 71.7 80.0 79.5 72.8 70.6 77.2 73.6
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Figure 6.9: Examples of correctly recognised hand shapes from unclear and incom-
plete hand contour images on Background B.

determines whether an estimated frame is correct or incorrect. This criterion was used

to analyse the estimated results.

Subsequently, two tests are described in Sections 6.5.2 and 6.5.3. The first test aims to

determine the difference between the estimation accuracy as computed using two meth-

ods on the simple background A. The second test determines the estimation accuracy on

the two backgrounds A and B, similar to the test carried out for hand shape recognition.

6.5.1 Criterion for a Correctly Estimated Hand Shape Transition

One technique that can be used to determine whether the transition between two hand

shapes has been estimated correctly involves the use of a data glove. The joint locations

and other 3D parameters of each estimated intermediate hand shape would be compared

with the actual value obtained from the data glove. This would indicate whether or not

the estimation process was done correctly [95]. However, this device is very costly and

was not available for this research.

A second technique involves the use of manual observation to determine whether or

not an intermediate hand shape has been correctly matched with the corresponding

estimated image. This approach has been used in a number of other projects that involve

hand shape estimation [8] and body motion estimation [2, 7]. This is the technique used

in this research.

It should be noted that the number of frames of the actual transitions were different to

the number of frames of the estimated transitions. This is because the speed at which

subjects performed hand shape transitions differed to that of the estimation system.
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The estimation system does not extract speed or timing information of transitions from

the input. It only uses recognised hand shapes as key frames in the transition animation,

and these are placed at a constant time apart. Additionally, this number also varied

between test subjects depending on the speed at which each individual moved their hand.

Therefore, the second technique involves comparing the frames of the actual transition

with those of the estimated transition on a holistic basis. Frames of the estimated

transition that are perceived to be correctly moving towards the next hand shape are

marked as correct. Frames that are perceived to be moving towards a different and

incorrect hand shape are marked as incorrect.

Figure 6.10 illustrates an estimated transition in which the actual hand shapes are H7

and H8. The estimated hand shape first moves correctly towards H8. These frames are

marked as being correctly estimated. However, at frame 954 it begins to move away from

H8 and towards an incorrect hand shape because the pinky and ring fingers begin to rise

in these frames. These frames are marked as being incorrectly estimated. Thereafter,

at frame 956, the hand shape is again seen to revert towards the correct hand shape –

H8 – as the pinky and ring fingers fall. These frames are once again marked as being

correctly estimated.

Figure 6.10: An estimated transition from H7 to H8.
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6.5.2 Test to Compare the Estimation Accuracy of Two Methods of

Estimation

This test attempted to determine whether there is a significant difference in the estima-

tion accuracy of two different methods of hand shape estimation.

When a subject performs a hand shape transition on a simple background, there are

two reasons that lead to an incorrect hand shape estimation result. The first reason

is the presence and incorrect classification of intermediate hand shapes which are not

recognised by the recognition system. The second reason is classification errors by the

SVM, even in cases where a correct hand shape input is provided. In the Section 4.4.4

of Chapter 4 and Section 5.4.2 of Chapter 5, two methods used to overcome these

problems were mentioned. These two methods, henceforth referred to as M1 and M2,

are as follows:

M1: Recognise only every third frame and use the result as a keyframe for hand shape

estimation.

M2: Recognise only every third frame and only use the result as a keyframe for hand

shape estimation if three consecutively recognised frames yield the same hand

shape.

The following subsections describe the comparative test carried out on these methods

and the subsequent results and analysis of the results.

6.5.2.1 Experimental Procedure

9 hand shape transitions – T1 to T9 – were defined for this experiment. These transitions

are detailed in Table 6.8. The table also shows the start and end hand shapes that

characterize each transition. It was not feasible to test all possible transitions, such as

H1 to H3–H10, H2 to H4–H10 etc, due to time constraints. However, transitions T1–T9

make a fair representation of all possible transitions, ranging from simple transitions

such as T1 to complex transitions such as T8.

The testing data collected on Background A was used in this experiment. It has been

explained that the number of frames between any two transitions performed by test

subjects differed. This is because test subjects performed transitions at varying speeds.

A complete list of the number of frames, in the test data, for each transition performed

by each subject is shown in Table 6.9.
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Table 6.8: Pre-defined hand shape transitions used in estimation testing.

Transition Start Hand Shape End Hand Shape

T1 H1 H2

T2 H2 H3

T3 H3 H4

T4 H4 H5

T5 H5 H6

T6 H6 H7

T7 H7 H8

T8 H8 H9

T9 H9 H10

Table 6.9: The number of frames for each transition as performed by each test subject.

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

Subject
Transition

T1 T2 T3 T4 T5 T6 T7 T8 T9 Total

Subject A 29 18 23 29 15 20 25 26 19 204

Subject B 17 13 16 10 12 15 16 20 12 131

Subject C 20 15 17 22 29 25 23 27 28 206

Subject D 27 26 20 17 25 19 29 26 30 219

Subject E 16 21 15 12 28 14 22 25 11 164

Subject F 21 11 19 23 26 17 15 20 18 170

The criterion mentioned in Section 6.5.1 was used to determine correctly and incorrectly

estimated frames in each transition.

McNemar’s test is a paired version of the Chi-Square test in which df is always 1.

MacNemar’s test was applied to the the number of correctly and incorrectly estimated

frames obtained from the two methods.

Tables B.4 to B.12 in Appendix B.3 illustrate the Chi-Square and P-Value for each

transition from T1 to T9 across all subjects.

6.5.2.2 Result and Analysis

Tables 6.10 and 6.11 summarize the results of the estimation accuracy achieved for each

method. An analysis of the results for method M1 was carried out. Referring to Table

6.10, high estimation accuracies are achieved by all test subjects for all 9 transitions

for this method. The overall accuracy per subject ranged from 64.7% for Subject A to

77.0% for Subject D.

Analysing the accuracy results on a per-transition basis, it is observed that the accuracy

ranged from 64.4% for transition T3 to 94.5% for transition T6. Overall, an average

accuracy of 72.5% was achieved using method M1.
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An analysis of the results under method M2 was also carried out. Referring to Table

6.11, improved estimation accuracies are achieved by all subjects for all transitions.

On a per-subject basis, the accuracy ranged from 85.4% for subjects A and 92.7% for

subject E. The accuracy per transition ranged from 82.3% for transition T3 and 98.5%

for transition T6. The overall average accuracy using this method was 88.5%. This

result is very encouraging for both methods.

Figure 6.11 is a graphical comparison between the estimation accuracy of the two meth-

ods for each transition. It is observed that method M2 achieves much higher accuracies

for all transitions than method M1.

Figure 6.11: Estimation accuracy comparison for methods M1 and M2.

Table 6.12 summarizes the results of performing McNemars test on this data. It is

observed from the table that the P-Value of transition T6 was greater than the acceptable

significance level of 0.05. Therefore, this is the only transition in which there is no

significant difference in estimation accuracy between the two methods M1 and M2.

Therefore, the estimation accuracy achieved for transition T6 will be the same using

both methods.

The other 8 transitions have P-Values that are less than the acceptable significance level.

Transitions T1 and T4 obtain P-Values less than 0.0001 which indicates that there is

an extremely significant difference between methods M1 and M2 for these transitions.

The remaining 6 transitions obtain P-values that indicate that there is a very significant

difference between two methods for these transitions.

Therefore, it is concluded that method M2 is more suitable than M1 and was adopted

as the estimation method for the subsequent test.
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Table 6.10: Success rate of hand shape estimation using method M1 on Background A.
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

❵
❵

❵
❵

Subject
Transition

T1 T2 T3 T4 T5 T6 T7 T8 T9 Average

Subject A 51.7 72.2 56.5 69.0 66.7 85.0 60.0 57.7 63.2 64.7

Subject B 76.5 61.5 62.5 70.0 75.0 100.0 75.0 75.0 75.0 74.5

Subject C 65.0 73.3 58.8 72.7 69.0 100.0 78.3 66.7 75.0 73.2

Subject D 63.2 90.5 72.7 72.7 83.3 81.8 80.8 62.1 86.4 77.0

Subject E 66.7 76.5 72.7 60.0 76.9 100.0 75.0 76.9 66.7 74.6

Subject F 64.7 84.6 63.2 60.0 70.6 100.0 64.7 66.7 66.7 71.2

Average 64.6 76.4 64.4 67.3 73.6 94.5 72.3 67.5 72.1 72.5

Table 6.11: Success rate of hand shape estimation using method M2 on Background A.
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

❵
❵
❵

Subject
Transition

T1 T2 T3 T4 T5 T6 T7 T8 T9 Average

Subject A 89.7 88.9 78.3 79.3 73.3 100.0 84.0 80.8 94.7 85.4

Subject B 88.2 92.3 87.5 90.0 91.7 100.0 87.5 85.0 91.7 90.4

Subject C 85.0 86.7 76.5 95.5 86.2 100.0 78.3 88.9 89.3 87.4

Subject D 84.2 90.5 81.8 88.9 100.0 90.9 92.3 72.4 86.4 87.5

Subject E 80.0 94.1 90.9 93.3 92.3 100.0 91.7 92.3 100.0 92.7

Subject F 70.6 100.0 78.6 84.0 100.0 100.0 82.4 88.9 83.3 87.5

Average 83.0 92.1 82.3 88.5 90.6 98.5 86.0 84.7 90.9 88.5
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Table 6.12: Results of McNemars test on the hand shape estimation accuracy results
of methods M1 and M2.

M1 M2 Chi-Square P-Value

T1 T1 18.893 <0.0001

T2 T2 9.389 0.0022

T3 T3 13.136 0.0003

T4 T4 16.531 <0.0001

T5 T5 11.130 0.0008

T6 T6 3.200 0.0736

T7 T7 14.063 0.0002

T8 T8 14.667 0.0001

T9 T9 14.450 0.0001

6.5.3 Hand Shape Estimation Testing on Backgrounds A and B

This section assesses the hand shape estimation accuracy of the system on backgrounds

A and B. As such, the estimation accuracy on these backgrounds can be determined.

6.5.3.1 Experimental Procedure

The testing data collected on Background A and B was used in this experiment. The

data used was the frames in these videos for transitions T1 to T9 explained previously.

The criterion mentioned in Section 6.5.1 was used to determine correctly and incorrectly

estimated frames in each transition. For the case of Background A, the required test had

already been conducted in the experiment to determine the difference between methods

M1 and M2. As stated previously, method M2 was adopted as the primary estimation

method. Therefore the results summarized in Table 6.11 were used for this experiment.

The experiment was conducted for Background B.

6.5.3.2 Result and analysis

Table 6.13 summarizes the estimation accuracies obtained for each hand shape transition

and on Background B. The same results for Background A have been provided in Table

6.11.

An analysis of the results under Background A was carried out. Referring to Table

6.11, high estimation accuracies are achieved by all test subjects for all 9 hand shape

transitions on this background. The overall accuracy per subject ranged from 85.4% for

Subject A to 92.7% for Subject E.
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Analysing the accuracy results on a per-hand shape basis, it is observed that the accuracy

ranged from 82.3% for transition T3 to 98.5% for transition T6. Transition T6 obtained

the highest accuracy of 98.5%. Overall, an average accuracy of 88.5% was achieved on

Background A.

An analysis of the results under Background B was also carried out. Referring to Table

6.13, encouraging estimation accuracies are achieved by all subjects for all hand shape

transitions. On a per-subject basis, the accuracy ranged from 70.2% for subject D

and 78.1% for subject E. The accuracy per hand shape transition ranged from 69.6%

for transition T1 and 94.9% for transition T6 on a per-hand shape basis. The overall

average accuracy on this background was 75.4%.

Given Background B was a very noisy background, this result is very encouraging. The

overall average accuracy of the system over both backgrounds is 82.0%. This result is

very encouraging and indicates that the estimation sub-system is accurate and robust

to background noise.

6.6 Summary of Results

This chapter described the set of tests carried out to assess the performance of the 3

sub-systems of this research – hand tracking, hand shape recognition and hand shape

estimation. Below is a summary of these tests and the results obtained:

• The hand tracking subsystem was tested on different test subjects performing

varying hand shapes on different backgrounds. It was found that the system can

track the hands very accurately. Overall, an impressive tracking accuracy of 81.3%

was achieved across all subjects and backgrounds.

• A suitable kernel was then selected for the hand shape recognition sub-system.

This was done using the grid-search function. It was found that the RBF function

was suitable with a final accuracy of 99.5%. Based on this kernel, the system

was then tested in two ways. The first test aimed to determine the relationship

between the recognition accuracy and different users. It was found that varying the

users had no significant effect on the recognition accuracy. The second test aimed

to determine the recognition accuracy on two backgrounds: a simple background

and a complex background. It was found that both backgrounds achieve a very

high accuracy. As expected, the accuracy on the simple background – 83.3% –

was higher than that on the complex background – 73.6%. An overall accuracy of

78.5% was achieved across both backgrounds.
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Table 6.13: Hand shape estimation accuracy on Background B.

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

❵
❵

❵
❵

Subject
Transition

T1 T2 T3 T4 T5 T6 T7 T8 T9 Average

Subject A 74.1 75.0 75.9 73.7 66.7 100.0 71.0 74.1 75.9 76.2

Subject B 65.5 85.0 70.8 70.0 86.2 93.3 69.2 72.4 83.3 77.3

Subject C 74.1 82.4 66.7 73.7 72.7 100.0 74.1 66.7 77.3 76.4

Subject D 65.0 60.0 76.5 63.6 75.9 76.0 69.6 66.7 78.6 70.2

Subject E 62.5 90.5 73.3 66.7 78.6 100.0 77.3 72.0 81.8 78.1

Subject F 76.2 63.6 73.7 73.9 73.1 100.0 66.7 75.0 66.7 74.3

Average 69.6 76.1 72.8 70.3 75.5 94.9 71.3 71.1 77.3 75.4
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• The hand shape estimation sub-system was also tested in two ways. The first

test aimed to determine the effect of two estimation methods on the estimation

accuracy. The first method involved using the recognition result of only every

third frame. The second method involved using the recognition result only if three

consecutively recognised frames were consistent. It was found that, apart from

the transition between hand shape H6 and H7, there was a significant difference

between the two methods, with the second method performing better – 88.5%

– than the first – 72.5%. Based on this, the second method was adopted as a

basis for the subsequent experiments. The second test aimed to determine the

estimation accuracy on two backgrounds: a simple and a complex background.

It was found that a high overall estimation accuracy of 82.0% was achieved over

both backgrounds. Again, as expected, the accuracy was much higher on the

simple background – 88.5% – than the complex background – 75.4%.

6.7 Conclusion

In conclusion, 81.3% of frames are tracked correctly. The potential tracking losses in

the remaining 18.7% of frames are compensated for effectively using method M2 – rec-

ognizing only every third frame and only using the result as a keyframe for hand shape

estimation if three consecutively recognised frames yield the same hand shape. Using

this method, it is possible to obtain 100.0% recognition and estimation accuracy as was

the case in 9 estimation tests on Background A – a simple background (Table 6.11).

Therefore, the RBF kernel is the optimum kernel for this system. Method M2 is better

than method M1. Using this method, the system is user-independent and tolerant to

background noise.

It is concluded that the system performs at a very high level of accuracy and is robust

to background noise and variations in test subjects.
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Conclusion

This research has contributed to 3 fields of hand based human computer interaction.

These are: hand tracking, hand shape recognition and hand shape estimation.

A state-of-the-art hand tracking system was developed in line with the first objective

of this research mentioned in Chapter 1. This system uses a multi-cue strategy to

effectively reduce the effects of background noise. A skin cue image is produced by

face detection and 2D histogram back projection and a motion cue image is produced

by using GMM background subtraction. The combination of the skin and motion cue

images effectively facilitates the detection of only the moving objects that contain skin.

The use of face detection makes this multi-cue image adaptable to users of any skin

tone. Based on the multi-cue image, hierarchical chamfer matching detects the hand

location in a frame only once at system start. The speed of this algorithm is increased

by choosing a template that has a size similar to that of the face. Finally, the camshift

tracking algorithm continuously tracks the hand motion. It tracks the target by finding

the highest probability distribution using a single hypothesis search strategy. It achieves

a very fast implementation speed and is able to track regardless of any deformations of

the hand during motion. The system is also able to recover from tracking losses caused

by very rapid hand motions. The system achieves a very high accuracy.

A highly accurate novel hand shape recognition system was also developed as a response

to the second objective of this research mentioned in Chapter 1. Using the image of the

tracked hand, the system uses an advanced normalization strategy that ensures scale

and orientation invariance of the hand. The system uses a support vector machine with

the radial-basis function kernel to recognise hand shapes. The hand shape recognition

system is highly robust and accurate and is able to recognise hand shapes against both

simple and complex backgrounds. It was also shown that the system is invariant to skin
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tone and different users. This has not been achieved in any known research studies to

date.

Finally, a novel hand shape estimation system was developed in line with the third ob-

jective of this research mentioned in Chapter 1. The system relies on the hand shape

recognition system and Blender to estimate intermediate hand shapes in the transition

between recognised hand shapes. Smooth transitions are achieved by interpolating be-

tween recognised hand shapes using the embedded kinematics function in the 3D hand

model developed in Blender, which is used in this research. This enables the recognition

system to only focus on major hand shapes in SASL and ignore the wide variety of possi-

ble intermediate hand shapes. This avoids the need for large and infeasible training sets

for the recognition system but is still able to produce them by means of estimation. This

strategy is also a novel approach proposed and used in this research. The hand shape

estimation system was also shown to achieve a very high and encouraging accuracy.

The entire system is highly accurate and robust and has satisfied the fourth objective

of this research mentioned in Chapter 1. In response to the overall research question

mentioned in Chapter 1, it is concluded that it is possible to accurately recognise and

estimate South African Sign Language hand shapes for a person of any skin tone from

a monocular video feed on an arbitrary background.

This research has contributed greatly to the SASL project and the field of hand based

human computer interaction.

7.1 Directions for Future Work

While this research was able to produce an accurate and effective hand shape recognition

system for SASL, 10 hand shapes were used as a proof of concept. In future, the system

can be trained on all major SASL hand shapes. The system can also be integrated into

the current machine translation framework prototype developed at the group, called

iSign [38].

It was mentioned in a previous chapter that it was not possible to obtain a data glove

during the course of this research. The data glove can be used to compare the data

captured from actual users with the results of the hand shape estimation system. If

found necessary, it is possible to improve on the animations of the estimated transitions

by including more constraint functions determined from the data glove data.
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7.2 Concluding Remarks

The experience throughout the course of this research has been of great educational

value to the researcher. It is hoped that this research will serve as a valuable asset in

the advancement of sign language translation at the SASL group and be of value to the

field of human computer interaction.

 

 

 

 



Appendix A

The Environment Used for Hand

Tracking Testing

109

 

 

 

 



A
p
p
en
d
ix

A
.
T
h
e
E
n
viro

n
m
en

t
U
sed

fo
r
H
a
n
d
T
ra
ckin

g
T
estin

g
1
10

Table A.1: Description of the environment for each subject.

Subject Environment image Skin region H-S his-
togram

Environment H-S
histogram

Environment intensity his-
togram

Subject B

Subject C

Subject D

Subject E

Subject F

 

 

 

 



Appendix B

Chi-Square and McNemar’s Test

B.1 Chi-Square Distribution

Table B.1: Chi-Square Distribution.

Degree
of
Free-
dom
(df)

Probability (P-Value)

0.95 0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.01 0.001

Chi-Square

1 0.004 0.02 0.06 0.15 0.46 1.07 1.64 2.71 3.84 6.64 10.83

2 0.10 0.21 0.45 0.71 1.39 2.41 3.22 4.60 5.99 9.21 13.82

3 0.35 0.58 1.01 1.42 2.37 3.66 4.64 6.25 7.82 11.34 16.27

4 0.71 1.06 1.65 2.20 3.36 4.88 5.99 7.78 9.49 13.28 18.47

5 1.14 1.61 2.34 3.00 4.35 6.06 7.29 9.24 11.07 15.09 20.52

6 1.63 2.20 3.07 3.83 5.35 7.23 8.56 10.64 12.59 16.81 22.46

7 2.17 2.83 3.82 4.67 6.35 8.38 9.80 12.02 14.07 18.48 24.32

8 2.73 3.49 4.59 5.53 7.34 9.52 11.03 13.36 15.51 20.09 26.12

9 3.32 4.17 5.38 6.39 8.34 10.66 12.24 14.68 16.92 21.67 27.88

10 3.94 4.86 6.18 7.27 9.34 11.78 13.44 15.99 18.31 23.21 29.59

Nonsignificant Significant

B.2 Chi-Square Test

An example is provided on the method that was used to obtain the Chi-Square and P-

Values for the experiment to determine the relationship between the recognition accuracy

and different users. Table B.2 depicts the parameters that are required for the test and

the method used to compute them.
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Table B.2: The table used in the Chi-Square test illustrating the various parameters
and their computation.

Correct frames Incorrect frames Total

Subject A a b a+ b = sumr1

Subject B c d c+ d = sumr2

Subject C e f e+ f = sumr3

Subject D g h g + h = sumr4

Subject E i j i+ j = sumr5

Subject D k l k + l = sumr6

Total a+c+e+g+ i+
k = sunc1

b+d+f+h+j+
l = sumc2

a+ b+ c+d+e+f +
g+h+i+j+k+l = N

Let i be the column number and j be the row number. df of table B.2 can be obtained

using the following equation:

df = (i− 1)(j − 1) = (6− 1)(2− 1) = 5 (B.1)

Let S = {xv|a, b, · · · , l} represent each date from a to l, table B.3 depicts the method

used to obtain O(x) and E(x):

Table B.3: Observed and expected values.

Observed valve = O(x) Expected value = E(x)

O(a) = a E(a) = (sumr1)(sumc1)/N

O(b) = b E(b) = (sumr1)(sumc2)/N

O(c) = c E(c) = (sumr2)(sumc1)/N

O(d) = d E(d) = (sumr2)(sumc2)/N

O(e) = e E(e) = (sumr3)(sumc1)/N

O(f) = f E(f) = (sumr3)(sumc2)/N

O(g) = g E(g) = (sumr4)(sumc1)/N

O(h) = h E(h) = (sumr4)(sumc2)/N

O(i) = i E(i) = (sumr5)(sumc1)/N

O(j) = j E(j) = (sumr5)(sumc2)/N

O(k) = k E(k) = (sumr6)(sumc1)/N

O(l) = l E(l) = (sumr6)(sumc2)/N

A Chi-Squared, or χ2, value for table B.2 can be obtained by applying:

χ2 =

v∑

u=1

(O(xu)− E(xu))
2/E(xu) (B.2)

Using the Chi-Square value and the df value, the corresponding P-Value in table B.1

is obtained. The P-Value can be applied to determine the significance between subject

and accuracy for table B.2.
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B.3 McNemar’s Test

McNemar’s test is a paired version of the Chi-Square test. The test was applied to the

the number of correctly and incorrectly estimated frames obtained from the two methods

M1 and M2 in chapter 6.

Let “1” represent the correctly estimated frames and “0” represent the incorrectly es-

timated frames. Tables B.4 to B.12 summarize the Chi-Square and P-Value for each

transition from T1 to T9 across all subjects. The df is 1 for each table from T1 to T9.

The P-Value is then obtained in the same manner as described in the previous section.

Table B.4: McNe-
mar’s test for T1.

M1

M
2

“1” “0” Total

“1” 72 26 98

“0” 2 17 19

Total 74 43 117

Chi-Square 18.893

P-Value <0.0001

Table B.5: McNe-
mar’s test for T2.

M1

M
2

“1” “0” Total

“1” 73 2 75

“0” 16 6 22

Total 89 8 97

Chi-Square 9.389

P-Value 0.0022

Table B.6: McNe-
mar’s test for T3.

M1

M
2

“1” “0” Total

“1” 59 2 61

“0” 20 16 36

Total 79 18 97

Chi-Square 13,136

P-Value 0.0003

Table B.7: McNe-
mar’s test for T4.

M1

M
2

“1” “0” Total

“1” 76 4 80

“0” 28 11 39

Total 104 15 119

Chi-Square 16.531

P-Value <0.0001

Table B.8: McNe-
mar’s test for T5.

M1

M
2

“1” “0” Total

“1” 68 3 71

“0” 20 7 27

Total 88 10 98

Chi-Square 11.130

P-Value 0.0008

Table B.9: McNe-
mar’s test for T6.

M1

M
2
“1” “0” Total

“1” 106 0 106

“0” 5 2 7

Total 111 2 113

Chi-Square 3.200

P-Value 0.0736

Table B.10: McNe-
mar’s test for T7.

M1

M
2

“1” “0” Total

“1” 86 0 86

“0” 16 17 33

Total 102 17 119

Chi-Square 14.063

P-Value 0.0002

Table B.11: McNe-
mar’s test for T8.

M1

M
2

“1” “0” Total

“1” 83 5 88

“0” 28 17 45

Total 111 22 133

Chi-Square 14.667

P-Value 0.0001

Table B.12: McNe-
mar’s test for T9.

M1

M
2

“1” “0” Total

“1” 70 1 71

“0” 19 7 26

Total 89 8 97

Chi-Square 14.450

P-Value 0.0001
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