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1. General Introduction and Literature Review 

Fusarium species are widely distributed in soil and on agricultural commodities, both 

in temperate and tropical regions, and are known to be some of the most important plant 

pathogens (Booth, 1971 ). ]<1,sarium species such asF verticillioides (Sacc.) Nirenberg ( F. 

monil!forme Sheldon), F. graminearum Scwabe, F. avenaceum (Fr.) Sacc. and F culmorum 

( Smith WG) Sacc. are serious pathogens of grains causing several plant diseases. Although 

the predominant interest in the genus has been their role as plant pathogens, their involvement 

in human and animal diseases has been studied since the early 1900. 

Fusarium species are frequently associated with diseases in animals including cattle, 

sheep, pigs and poultry (Wyllie and Morehouse, 1978; Marasas et al., 1984). The toxicological 

effect of different Fusarium species in experimental animals are well documented and fully 

reviewed by Marasas et al. (1984). During the past 20 years F verticillioides received special 

attention regarding its role in human and animal diseases. This fungus occurs on maize and 

other cereals throughout the world and its toxicity is being investigated extensively. Various 

strains of F. verticillioides were found to be highly toxic to experimental animals (Marasas 

et al, 1984). 

1.1 Fumonisins (Cawood et al., 1991) 

Many fungi commonly found on grain products have the capacity to form chemical 

substances that are toxic, mutagenic or carcinogenic when consumed by humans or animals. 

These substances are called mycotoxins, a term derived from "myco", meaning fungus or 

mould, and "toxin", meaning poison. The toxins can accumulate in maturing maize, cereals, 

soybeans, sorghum, peanuts, etc. and may remain in food and feed long after the fungus that 
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produced them has died. These toxins can therefore be present at potentially dangerous levels 

in products that are not visibly mouldy. They can also develop under storage conditions 

favourable for the growth of the toxin-producing fungus or fongi. Diseases caused by 

mycotoxins in humans and animals are called mycotoxicoses and are specific to the fongal 

species and the toxin present. Maize appears to be a common substrate for the natural 

occurrence of many mycotoxins. 

Among the various categories of identified mycotoxins, the fumonisins are assuming 

a growing significance since their discovery due to their diverse toxicological effects in humans 

and various animals, including horses, pigs and experimental animals ( Gelderblom et al., 1991; 

1996; Marasas, 1996). Fumonisins are synthesized by fimgal species belonging to the genus 

Fusarium, and are a group of structurally related mycotoxins that occur worldwide. The 

highest level offumonisinB, recorded is I 7900 µ.gig, produced by F. verticillioides MRC 826, 

on sterilised maize (Alberts et al., 1994). This is also the first known h1sari11m species to 

synthesize fumonisins. F. verticillioides is one of the most prevalent seed-borne fungi 

associated with maize (Zea mays) intended for human and animal consumption throughout the 

world (Marasas et al., 1984). This fungal species can be recovered from most maize kernels 

including those that appear healthy. There is also a positive correlation between the formation 

of fumonisins in maize in the field and the incidence of F. verticillioides (Rlieeder et al., 1992 ). 

Fusarium kernel rot of maize can be caused by F verticillioides which is one of the most 

important ear diseases in warmer maize-growing areas. Fumonisins are also much more likely 

to be formed in maize in warm to hot, dry regions, conditions most common in the Transkei 

region of the Eastern Cape Province, South Africa as well as in China where the incidence of 

oesophageal cancer (OC) is also very high (Rheeder et al, 1992). 

Fumonisins were first isolated in 1988 from maize cultures of F verticillioides strain 
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MRC 826 at the Programme on Mycotoxins and Experimental Carcinogenesis (PROMEC) of 

the South African Medical Research Council (MRC) by Gelderblom et al. (l 988a). The 

structures of fumonisins were elucidated in 1988 in collaboration with the South African 

Council for Scientific and Industrial Research (CSIR) (Bezuidenhout et al., 1988). One 

particular analogne turned out to be more frequently traceable, both in cultures of 

F. vertici llioides on maize and in naturally contaminated substrates. This analogue was given 

the name fumonisin B1 (FBi). Characteristically, F. verlicillioides strains are capable of 

producing this metabolite in higher concentrations than the other fumonisins (Marasas, 1996). 

1.1.1 Characteristics 

Fumonisins are a group of structurally related, polar metabolites (Bezuidenhout et al., 

J 988). Their structures are based on a long hydroxylated hydrocarbon chain 

(pentahydroxyeicosane) containing methyl and either amino (B 1 and B2) or acetyl amino groups 

(A, and A2) (Dutton, 1996). FB1 differs from FB2 in that it has an extra hydroxyl at position 

10 of the C-backbone of the fumonisin (Figure I), the backbone of the .FB1 molecule can be 

chemically converted to FB2 (Badria et al., 1995). FB3 was isolated later (Gelderblom et al., 

l 992a; Plattner et al., l 992b ), and was found to differ from the other fumonisin analogues in 

the hydroxylation pattern (Figure l). 
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GENERAL CHEMICAL STRUCTURE OF THE FUMONISINS 

Fumonisin B 1 X = OH, Y :: OH 

Fumonisin B 2 X:: OH, Y :: H 

Fumonisin El 3 X = H, Y = OH 

Figure 1. Chemical structure of fumonisins B1 (FB1), B2 (FB2) and B3 (FB3). 
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1.2 Role of F. verticillioides 

F verticillioides (synonym = F moniliforme ), is frequently detectable in cereals, in 

particular as one of the fungi most frequently associated with maize (Marasas et al., 1979; 

Bacon and Williamson, 1992; Marasas, 1996). F verticillioides was also isolated from other 

substrates such as sorghum and millet (Gelderblom et al., J 988a; Nelson et al., 1991; Thiel et 

al., 1991; Sydenham et al., 1992). Due to the consumption of cereals, it was suspected that 

this species and its metabolites may be associated with disease in both humans and animals. 

With the characterization of the fumonisins in 1988 by Gelderblom et al. (1988a), the 

toxic metabolites were initially detected in a culture of F verticil/ioides. Most of the initial 

research concerning the fumonisins was related to the toxic substances produced by the strain 

of F. verticillioides known as 'MRC 826', originally isolated from maize originating from the 

Transkei region of the Eastern Cape Province, South Africa, where the inhabitants suffer from 

a high incidence ofOC. In addition to its cancer-promoting activity in a short-term bioassay 

in rat liver ( Gelderblom et al, l 988a; 198 8b; 1991 ), the role of pure FB1 in 

leukoencephalomalacia (ELEM) in horses (Marasas et al., 1988; Kellerman et al., 1990) and 

pulmonary edema syndrome (PES) in pigs (Harrison et al., 1990) has been confirmed 

Research conducted by Nelson et al. (1992), outlined the fungal species that produce 

fumonisins. The study involved 90 strains of F. verticillioides obtained from various 

geographical areas and isolated from different substrates. They were able to verify that only 

three oftheF verticillioides strains studied, did not demonstrate the capability of synthesizing 

FB1' while the remaining 87 strains produced fumonisins in variable concentrations, ranging 

from minimal values of less than 10 µgjg to maximum values greater than 6000 µgjg. 

Concentrations of more than 1000 µgjg ofFB1 were demonstrated in 38 cultures out of the 

90 F verticil!ioides strains studied. 
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1.3 Other toxigenic species belonging to the genus Fusarium 

Several studies in recent years have shown that the synthesis of fumonisins is not a 

unique characteristic of F. verticillioides strains, but that several other species of the genus 

Fusarium are involved. Eight Fusarium species other than F verticillioides have been 

reported to produce fumonisins (Table I). Within the section Liseola, five are identified; 

F. proliferatum (Matsushima) Nirenberg (Ross et al, 1990; Thiel et al, 1991 ), 

F. anthophilum (A Braun) Wollenw. (Nelson et al., 1992), F thapsinum Klittich ef 

al. (Klittich et al, 1997), F. globosum Rheeder et al (Sydenham et al., 1997), three within the 

SectionDlaminia; F. dlamini Marasas et al. (Nelson et al., 1992), F. napiforme Marasas et 

al. (Nelson et al., 1992) and F. nygamai Burgess and Trimboli (Thiel et al., 1991 ); one species 

in Section Flegans, F. oxysporum Schlecht. (Abbas and Ocamb, 1995); and one species in 

Section Arthrosporiella, F. polyphialidicum Marasas et al. (Abbas and Ocamb, 1995). 

The relative production ofFB,, FB2 and FB3 for the species in the Section Liseola are 

summarized in Table I. F. verticillioides and F proliferatum are the most important producers 

of fumonisins which is noticeable in their overall higher levels of production and their 

association with several animal mycotoxicoses (Ross et al, 1990; 1992). 

F. globosum, a recently described Fusarium species classified in the section liseola, 

was originally isolated from naturally infected maize kernels harvested in the Transkei region 

of the Eastern Cape Province, South Africa (Rheeder et al, 1996). 
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Table 1. Fumonisin B,, B2 and B3 production by h1sarium species. 

Fusarium spp Maximum fumonisiu levels (µg/g)* 

FB1 FB2 FB3 

F. verlicillioides 17 900 3 OOO 2 325 

F proliferatum 4 500 2 060 310 

F. anthophilum 613 35 ND** 

F globosum 3 254 4 24 

F dlamini 82 ND ND 

F. napiforme 479 ND ND 

F. nygamai 7 162*** 530 143 

F. thapsinum 30 5 5 

* Summarised fumonisin levels from the literature. Respective FB 1•3 levels are 

not indicative of only one strain per species. 

ND 

*** 

No Data 

This high level of7162 µgig was recorded for only one strain. The next highest 

levels ofFB1 production by F. nygami in the region of3500 - 4000µglg. 
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2. Diseases caused by and effects of I<11monisi11s 

2.1 Horses 

Diseases in animals and humans resulting from the consumption of mycotoxins are 

called mycotoxicoses. The effects in domestic animals include allergic reactions, reproductive 

failure, loss of appetite and suppression of the immune system. The involvement ofPROMEC 

with the toxicology of F verticillioides started in July 1970 when some horses in South Africa 

died of a neurotoxic disease known as equine leukoencephalomalacia (ELEM) (Kellerman et 

al., 1972). It was also known that similar field outbreaks of ELEM in horses and donkeys 

occurred regularly in many countries (e.g., United States, Argentina, Egypt and China). 

Thousands of horses died of the disease in the United States during some seasons (Marasas 

et al, 1984). 

The predominant fun6'US isolated from the maize associated with field outbreak in 

South Africa during 1970 was F. verticillioides. In earlier diagnosed cases of ELEM (Wilson 

and Maronpot, 1971; Kellerman et al, 1972; Marasas et al., 1976; Pienaar et al., 1981), 

common elements were observed in the affected animals. They were : ( 1) in appetence after 

a period of eating contaminated feed; (2) lethargy; and (3) as neurotoxic effects including 

uncoordinated movement and aimless walking with blindness. Death can also occur in some 

cases without any nervous symptoms and in others, liver-related symptoms are seen, such as 

swelling of the lips and nose and severe icterus (Dutton, 1996). When Prof BJ Wilson of the 

University of Tennessee reported that he had reproduced ELEM experimentally with an 

Egyptian isolate ofF verticillioides in a donkey, researchers from PROMEC started to dose 

pure cultures of F. verticillioides to horses at Onderstepoort (Wilson and Maronpot, 1971 ). 

The causative role of F verticillioides in ELEM was confirmed with several South African 
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isolates of the fun!,'US and the pathognomonic pathological changes were described in detail 

(Kellerman et al., 1972; Marasas et al., 1976; Pienaar et al., 1981). 

The mycotoxin which caused ELEM was at that time still unknown because 

intravenous injection of donkeys with metabolites ofF verticillioides (Fusarin C, moniliformin 

(MON), fusaric acid, and 2-methoxy-4-ethylphenol) failed to reproduce the disease (Buck et 

al., 1979). This resulted in great confusion in the literature regarding mycotoxins produced by 

this species (Marasas et al., 1984; Marasas et al., 1986; Mirocha et al., 1990). Marasas et al. 

( 1988) was the first to describe the reproduction of ELEM by intravenous injection of a horse 

with FB1 Clinical signs ofneurotoxicosis appeared on day 8. Lesions included severe oedema 

of the brain and focal necrosis in the medulla oblongata. In severe cases, there may be a large 

liquified cavity within the white matter of the right cerebral hemisphere, with the cerebrum 

posterior to the cavity enlarged, oedematous with congested blood vessels (Kellennan et al., 

1972). ELEM was successfully reproduced, with a pure compound, by Kellerman et al. (1990) 

in two horses by oral dosing. 

2.2 Pigs 

ELEM is certainly not the only animal disease associated with consumption of feed 

contaminated with F verticillioides. A 198 J study of the oral toxicity of F verticillioides 

culture material to various animal species reported the deaths of two of three treated pigs 

(Kriek et al., 1981 ). The principal lesions, however, were not in the brain, but in the lungs, 

where a fatal edema developed. An outbreak of PES in pigs occurred during the fall of 1989 

when 34 mature pigs died on two farms in Georgia, USA (Harrison et al., 1990). The animals 

had pulmonary oedema and hydrothorax, the thoracic cavities being filled with yellow liquid. 

This discovery led to the suspicion that amycotoxicosis was involved. Abortions also occurred 
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on both farms and these stopped when the maize screenings were removed (Harrison et al., 

l 990). The problem was traced to maize screenings from which F. verticillioideswas isolated. 

The maize screenings were found to contain FB1 at levels of up to 155 µ.gig. Several studies 

linked PES with outbreaks of ELEM (Ross et al., 1990), and it became accepted that the two 

diseases had a common cause, i.e., fumonisins. 

2.3 Rats 

Several experiments had been done where rats were dosed with maize infected with 

F verticillioides related to outbreaks of ELEM (Wilson et al., 1985; Voss et al., 1989) or to 

OC (Marasas etal., 1984; Jaskiewicz et al., 1987b; Gelderblom et al., l 988a). Rats were used 

as a model to explore the carcinogenic potential of fumonisins. Several studies on rats were 

done by researchers at PROMEC (Gelderblom et al., 1991; I992b; Shephard et al, 1992a; 

1992b; Gelderblom et al., 1994; Shephard et al., 1994a; l 994b). These studies were divided 

in two types, those exploring the absorption and excretion offumonisins and those examining 

its effect on the animal. Voss et al. (1989) found that maize naturally contaminated with 

F. verticillioides associated with outbreaks of ELEM, was hepatotoxic when fed to rats. 

Wilson et al (1985) reported that naturally contaminated maize, associated with ELEM, was 

hepatocarcinogenic when fed to rats for 123 to 176 days. 

Gelderblom et al. (I 988a) showed that FB 1 was hepatotoxic and induced 

glutamyltranspeptidase-positive GGT foci in the liver when fed to rats. The presence ofGGT 

foci in the liver was taken as an indication of tumour promoting activity. A study conducted 

by Gelderblom and coworkers in South Africa (Gelderblom et al., 1991) demonstrated that 

pure FB, can cause an increased incidence ofhepatocellular carcinoma when fed to rats for 26 

months at 50µ.g/g feed. Subsequent studies demonstrated hepatocarcinogenesis of FB,, FB, 

and FB3 in short term (3 week) initiation-promotion bioassays in rat liver (Gelderblom et al., 
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t993) 

2.4 Poultry 

Considering the economic importance of chickens and their dependance on maize­

based feeds, which are often contaminated with F verticillioides (Bragulat et al., l 995a; 

l 995b ), investigations using fumonisins only began in 1992, although earlier trials had been 

done with maize infected with F. verticillioides (Bryden et al., 1987). Day-old broiler chicks 

were fed doses ofFB1 ranging from 0 to 400 µgig 21 days and 300 µ.gig for 2 weeks (Brown 

et al., 1992; Ledoux et al., 1992). Body weight gain was greatly reduced; hepatic necrosis, 

biliary hyperplasia, and thymic cortical atrophy were noted, along with diarrhoea and rickets. 

Increased sphiganine and sphiganine: sphingosine ratios were shown in young chicks 

treated with culture material containing FB,. Weibking et al. (1993) also found that day-old 

chicks fed ratios containing 199 and 200 µgig ofFB1 for 21 days had lower body weight gains 

and feed efficiency when compared to the controls. There were also differences in organ 

weights. 

Ducklings were used by Marasas (1982) and Vesonder et al. (1989) as a test animal 

to investigate material from an OC area and ELEM outbreak, respectively. Some of the 

isolates of F verticillioides, when grown and incorporated into feed, caused 100 % mortality. 

These birds had slightly swollen and reddened livers, with low body fat and loss in weight 

compared to the controls. 
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3. Human Involvement 

3.1 Human Oesophageal Cancer 

Although many aetiological factors may play a role in OC, attention in this review will 

be focussed on only one factor, i.e. contamination of maize with fumonisins. Available 

evidence indicates that fumonisins are a risk factor for OC in different parts of the world. Very 

high incidence rates of OC (>50 per l 00000 per annum) have been reported in three 

geographical areas in the world, e.g., Transkei region of the Eastern Cape Province of South 

Africa (Van Rensburg, 1985, Jaskiewicz et al., l 987a;l 987b; Makaula et al, 1996), Linxian 

County ofHenan Province in northern China (Li et al., 1980; 1989; Yang, 1980) and the 

Caspian littoral of Iran (Homozdiari et al., 1975). The development of oesophageal brush 

cytological screening methods has presented real possibilities of the early diagnosis and 

treatment of OC in remote areas in Southern Africa (Jaskiewicz et al., l 987b; Venter, 1995a; 

l 995b; 1998). 

In South Africa, OC is the most common cause of cancer death in black males while 

in black females OC is the third most common cancer (Sitas et al., 1997). The incidence rates 

of OC in South African whites are 3-4 times lower (Sitas et al., 1997). Within South Africa, 

the highest incidence rates in both males and females are amongst the Xhosa-speaking 

population of rural Transkei, where age-standardised incidence rates (ASIR) as high as 55.6 

per l 00 OOO per annum have been reported in males in the Kentani district during the period 

1985-1990 (Makaula et al., 1996). 

ln most rural communities in Southern Africa, the main staple diet is maize. Maize 

which is grown in these and other areas of the world, is highly susceptible to infection by 

several fungi, in particular Fusarium spp. and of these, F. verticillioides is the most prevalent 
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(Marasas et al, 1979; 1980; 1982; 1988). Investigations into the high incidence rates of OC 

experienced in areas of the Transkei region of the Eastern Cape of South Africa and in 

Northern China, led to the discovery of this fungus in maize and the mycotoxins produced by 

them. Further investigations revealed very high levels of fumonisins in maize that was being 

used for human consumption in these regions. A significant difference in the levels of 

fumonisins in maize between high and low-risk OC areas in Transkei was found (Rheeder et 

al., 1992; Marasas et al., 1993). Higher levels ofFB1 and FB2 in good as well as mouldy maize 

from these high-risk OC areas than those in corresponding maize from low rate areas. 

In China it was also found that the incidence offumonisins in high-risk areas was twice 

that in low risk areas (Chu and Li, 1994; Yoshizawa et al., 1994). The FB1 levels in some of 

these maize samples were very high, up to I I 8 µ.gig in central China (Shephard et al., 1996; 

Rheeder et al., 1992). FB1 and FB2 were found in "good" homegrown maize in both low and 

high OC areas. FB1 ranged from 0-550 µg/kg for low and 50-7900 µglkg for high OC areas 

(Sydenham et al., I990b). In some cases in 1989, a JO-fold increase ofFB, in the high OC 

areas (up to 117.52 µglkg) over low (11.34 µg/kg) was reported. Maize meal from South 

Africa had levels ofFB1 ranging from 0-475 µg/kg, and that from Egypt, up to 2980 µg/kg 

(Sydenham et al., 1991). High levels ofFB 1 have also been reported from around the world 

(Sydenham et al., 1993). 

The role of fumonisins in human diseases and, most particularly, their carcinogenic 

potential in humans is very difficult to determine. Many research centers such as PROMEC, 

the International Agency for Research on Cancer (IARC), the US. Food and Drug 

Administration (FDA), etc. are in the process of evaluating the carcinogenic potential of 

fumonisins. These studies include the carcinogenicity in experimental animals, the mechanism 

of action of fumonisins in various animal models and in cell culture systems and 
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epidemiological studies in humans. Concern about the toxicological hazards posed to humans 

by the fumonisins, has led to the classification of these toxins derived from F vertici llioides 

as Group 2B carcinogens (i.e. possibly carcinogenic to humans) by the IARC in Lyons, France 

(IARC, I 993). This presentation reviews the literature since the characterization offumonisins 

in 1988 until 1998, on fumonisin production by Fusarium species. 

3.2 Control 

3.2. l Risk assessment 

From the above mentioned information, it is certain that people who eat maize, are 

exposed to fumonisins. The evidence also indicates that certain rural populations are exposed 

to high levels offumonisins. Thiel et al. (1992) estimated that people living in Transkei would 

have a daily intake of0.014 µgig body weight from consuming so-called healthy maize, and 

this intake will increase to 0.44 µgig when mouldy maize is eaten. These risk assessments 

indicate a range of possibilities from very low risk in Switzerland, the Netherlands and USA 

(mean daily intake ranging from 0. 02 - 0. 09 µglkg body weight) to a ve1y high risk in parts of 

rural South Africa. A number of estimates made for South Africans showed the considerable 

impact of differing maize consumption patterns by different population groups (Gelderblom 

et al., 1996). Lower tolerance levels would be appropriate for countries where consumption 

of maize products is high, and higher levels for countries where consumption is low. 

3.2.2 Limiting contamination 

Mycotoxin production in the field is difficult to control. It is important to know and 

follow practices that minimise mycotoxin production levels after harvesting and production of 

foodstuffs. When weather conditions or hail predispose grain to infection by toxic fungi, it is 
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best to treat this grain with extreme caution. Storage of grain and feed at low moisture 

contents and temperatures will help prevent fungal growth. F. verticillioides, for example, will 

not grow in starchy seeds unless the moisture content is higher than 22 to 24 % (Kommedahl 

and Windels, 1981 ). When appropriate moisture and temperature conditions are maintained, 

fumonisin levels are believed not to increase during storage (Munkvold and Desjardins, 1997). 

Of great importance to the rural farmer is assistance with farming practices to limit mycotoxin 

formation during growing, harvesting and storage of maize. Methods such as crop rotation, 

sun drying of crops, and simple sealed storage facilities could minimise much of the spoilage 

that currently occurs (Dutton et al., 1993). 

A number of strategies for reducing fumonisin concentrations in maize are currently 

under development. Prevention offumonisin production can be assisted by developing cultivars 

that are resistant to infection with toxigenic strains of Fusarium (Blackwell et al., 1999). 

Genetic manipulation may provide solutions to the problem surrounding fumonisins in maize. 

Among the possibilities are genetically engineered resistance to Fusarium infection or 

detoxification of fumonisins in planta (Munkvold and Desjardins, 1997). Engineering plants 

to produce antifungal proteins is a possible approach to enhancing resistance to fi.mgi 

(Munkvold and Desjardins, 1997). 

4. Factors interfering with fnmonisin synthesis 

Although F. verticillioides occurs world-wide on a great variety of plant hosts and is 

one of the most prevalent fungi on maize, it does not produce equal amounts of fumonisins on 

all of them (Nelson et al, 1991 ). Fungi may grow well under a given set of conditions but not 

necessarily produce mycotoxins. The quality of the grain and its suitability for storage are 
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adversely affected by a high moisture content, physical damage to the kernels, and the extent 

to which storage fungi have invaded the seed (Munkvold and Desjardins, 1997). !n the field, 

during harvest and storage, maize grains are exposed to fungal contamination and the degree 

of mycotoxin contamination depends on environmental factors, the composition of the 

substrate, inoculum level and the length of incubation (Marin et al., l 998). 

4.1 Intrinsic parameters 

Those parameters of plant and other substrates that are an inherent part of the tissues 

are referred to as intrinsic parameters. These parameters include pH, moisture content and 

nutrient content. It has been well established that fungi grow best at pH values below 4.0. It 

is a common observation that fruits undergo post-harvest fungal spoilage and this is due to the 

ability of these organisms to grow at pH values less than 3.5 (Mossel and Ingram, 1955; Juven, 

1976). 

Relative humidity (RH) of the incubation environment is important when controlling 

the water activity (3-v) within the substrate surfaces (Hattingh, I 995; James, J 996). When the 

3-v of the substrate is set at 0.96 3-v, it is important that the cultures should be incubated under 

conditions ofrelative humidity that do not allow the substrate to absorb moisture from the air 

or lose moisture when placed in an environment of low RH. There is a relationship between 

RH of the incubation chamber, the~ of the substrate and the incubation temperature (James, 

1996). In general, the higher the temperature, the lower the RH and vice versa. 

The aw of a substrate represents the activity with which the water content of the 

product makes itself noticeable externally (Rockland and Beuchat, 1987; Hattingh, 1995; 

James 1996). The ~-value ofa product depends on the composition, the water content and 

the temperature of the product. The water content would therefore express the origin whereas 
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iiw expresses the effect of moisture. Water activity is a critical environmental factor determining 

whether a substrate will support fungal growth and toxin production (Marin et al., 1995). 

It is important to note that the a_, is influenced by other environmental parameters such 

as pH, temperature and nutrition (Guthertz et al., 1976). Firstly, at any temperature, fimgal 

growth is reduced as the aw is lowered. Secondly, the range of <i.v over which growth occurs 

is greatest at the optimum temperature for growth. Thirdly, the presence ofnutrients increases 

the range of iiw over which the fungi can survive. The general effect oflowering <i.v below the 

optimum is to increase the length of the lag phase of growth and to decrease the growth rate. 

Marin et al. (1995) regard the influencing iiw and temperature, on growth and FB 1 and 

FB2 production by F verticillioides on maize grain as the most critical environmental factors 

determining whether a substrate will support fungal growth and toxin production. Their 

objective was to detennine the effect of iiw and temperature on colonization and production 

ofFB 1 and FB2 by Spanish isolates of F verficillioides (25N) and F proliferatum (73N and 

131 N) on maize kernels placed in petri dishes. Isolates examined in their study are 

representative of high fumonisin producers in Spain only, while strains from other parts of the 

world may differ in their ability to produce fumonisins in high levels. They showed in their 

study that there was an increase in fumonisin production with time. Maximum FB 1 and FB 2 

was produced by isolates ofbothF verticillioides (25N) and F proliferatum (73N and 131 N) 

at 0.956 and 0.968 a.vat 25°C and 30°C. 

Cahagnier et al. (1995) studied the link between the growth of F verticillioides and 

its production offumonisin on maize grain, as a function of thermodynamic water activities. 

Experiments on maize grain at different iiw have demonstrated the influence of a.von fumonisin 

biosynthesis, and on fungal growth defined by measurement of ergosterol levels. Fumonisin 

levels decreased threefold when iiw was lowered by 5%, while the growth rate of the fungus 

http://etd.uwc.ac.za/



19 

was unchanged. The quantities offumonisin produced by the same strain were 3000, 1100 and 

11 µgig, for respective 8w values of 1.00, 0.95 and 0.90. 

It has been shown that moisture content and temperature are crucial in determining the 

extent offomonisin production by F verticillioides (Alberts et al., 1990). The growth rate of 

F. verticillioides, as measured by ergosterol concentration, was higher at 25°C than at 20°C, 

reaching a stationary phase after four to six weeks in both cases. FB1 production commenced 

after two weeks during the active growth phase, continued to increase during the stationary 

phase, and decreased after 13 weeks. The overall maximal yield ofFB 1 (17.0 g/kg, dry weight) 

was obtained in maize cultures incubated at 20 ° C for 13 weeks, but it was not significantly 

higher than the maximum yield (16.6 g/kg, dry weight) obtained at 25°C after 11 weeks. 

However, a significantly higher mean yield was detected at 25°C (9.5 g/kg, dry weight) than 

at 20°C (8. 7 g/kg, dry weight). Production reached a plateau after seven weeks of incubation 

at 25°C and after nine weeks of incubation at 20°C. 

Another method involves medium consisting of 500 g yellow maize kernels and 500 

ml distilled water added to a 30.5 x 61 cm autoclavable polyethylene bag (Nelson et al., 1994). 

The maize was inoculated by drawing a suspension from a lyophilized culture into a sterile 5 

ml syringe fitted with a 19 gauge needle and injecting l ml through the side of each 

polyethylene culture bag. Bags of inoculated maize were incubated in the dark at 20 ° C to 

22 °C for 4 weeks. Seven to 8 days after inoculation, holes were punched near the tops of the 

bags to promote aeration. Nelson et al. (1994) found that the most important factors in the 

production of fumonisins in bulk maize cultures were temperature control, moisture and 

aeration. Yields obtained in this study were consistent and ranged from 6 to 1 O g/kg ofFB,. 

In order to grow and produce mycotoxins the fungus of interest requires water, a 

source of energy, vitamins and related growth factors and minerals and or trace metals. The 
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influence of zinc, iron, cobalt, and manganese on submerged cultures of F. verticillioides 

1'.'RRL 13616 was assessed by measuring dry weight accumulation, fusarin C biosynthesis, and 

ammonia assimilation (Jackson et al., l 989). Zinc (26 to 3 ,200 ng/ml) inhibited fusarin C 

biosynthesis, increased dry weight accumulation, and increased ammonia assimilation. 

Maximum fusarin C levels, 32.3 µglmg (dry weight), were produced when cultures were 

supplied with manganese, whereas minimum fusarin C levels, 0.07 µ.g/mg, were produced 

when zinc, iron, cobalt, and manganese were supplied. These results suggest a multi-functional 

role for zinc in affecting F verticillioides metabolism. Another study done by Scott et al. 

( 1986) showed the effect of trace metal nutrition on the functioning of the patulin biosynthetic 

pathway in submerged cultures of Penicillium griseojitlvum Dierckx [ syn. Penicillium urticae 

(Bainier)] (NRRL 2159A). Of eight metal ions examined, only manganese strongly influenced 

secondary metabolite production. In control cultures or cultures deficient in calcium, iron, 

cobalt, copper, zinc, or molybdenum, pathway metabolites appeared in the medium at about 

25 hr after inoculation. In manganese-deficient cultures, 6-methylsalicylic acid continued to 

accumulate, with only minor amounts of patulin being produced. Clear dose responses (patulin 

versus manganese) were found in different media, with no effect on growth yield. Addition of 

manganese to depleted cultures at 18, 26, or 36 hr resulted in increasing marker enzyme 

activity and patulin concentrations. 

Certain metals added as salts to a defined basal culture medium influenced the level of 

aflatoxin production by Aspergillus parasiticus Speare in the low µg/ml range of the added 

metal (Marsh et al., 1975). In many cases no change or a relatively small change in mat weight 

and final pH of the medium, accompanied this effect. With zinc at added levels of 0 to 10 

µg/ml in the medium, aflatoxin increased 30-to !OOO-fold with increasing of zinc, whereas 

mycelial (mat) weight increased less than threefold. At an added level of25 µg or less of the 
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metal per ml, salts of iron, manganese, cooper, cadmium, trivalent chromium, silver, and 

mercury partly or completely inhibited aflatoxin production, without influencing mat weight. 

It can therefore, be concluded that trace metals exert a specific effect on mycotoxin 

biosynthesis. Several studies were done in MYRO liquid medium containing MgS04 to 

produce fumonisins (Blackwell et al., 1994; Dantzer et al., 1996). However, fumonisin 

production in MYRO medium, yielded very low levels when compared to those obtained in 

solid maize patties. Therefore, further studies need to be done in liquid medium, using trace 

metals, to increase FB1 yields. 

4.2 Extrinsic parameters 

The extrinsic para.meters are those properties of the environment that effect both fungal 

growth and mycotoxin production such as temperature, relative humidity, presence and 

concentration of gases such as 0 2, incubation time, inoculum, etc. 

4.2.l Temperature and incubation time 

Just as fungi are able to grow over wide ranges of pH, osmotic pressure and nutrient 

content, they are also able to grow over a wide range of temperatures. Several studies 

indicated that the optimum incubation temperature for FB1 production was at 25°C (Alberts 

et al. 1990; Marin et al. 1995; Melcion et al., 1997). Alberts et al. (1990) studied the effect 

of temperature and incubation period on FB 1 production by F. verticillioides MRC 826 in 

maize cultures. The relationship between fungal growth and FB1 production as well as heat 

stability of this mycotoxin were also investigated. MRC 826 was originally isolated from maize 

in Transkei, Southern Africa, and used in all experiments. The authors investigated the 

production ofFB1 at constant temperatures of20, 25, and 30°C. Under the conditions used 
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the optimal incubation regimen for FB, production by F verticillioides MRC 826 in cultures 

on maize in terms of cost effectiveness, is 7 weeks at 25 ° C producing 9. 5 g/kg, dry weight. 

The effect of moisture levels on the production of FB, at different incubation temperatures, 

was not investigated at that time. 

Le Bars et al. ( 1994) examined the toxigenic potential of F. vertici llioides isolates from 

maize seeds compared to isolates from other plant seeds, to determine the effects of the main 

abiotic factors (temperature, aeration and moisture content) on FB, production on maize, and 

to evaluate the thermostability of this toxin. Maximum toxin production was found when the 

fungal strains were incubated at a temperature of20°C. A notable decline in synthesis was 

observed with the same strains at an incubation temperature of 25 ° C. Progressively reduced 

concentrations of FB1 were obtained in correspondence with the following temperatures, 

according to the order indicated: 15 °C; I 0°C; 30°C. Strains of F. verticillioides incubated at 

35°C, in spite of considerable growth on both maize and potato dextrose agar, turned out to 

be incapable of synthesizing analytically significant amounts of toxin, even when the incubation 

period was protracted for as long as 10 weeks. Tests performed by advance preparation of the 

cultures in anaerobiotic conditions only showed minimal fungal development, while no FB, 

synthesis was found. The results from the study conducted by Le Bars et al. (1994) are, 

however, different from those found elsewhere in the literature (Alberts et al., 1990; Marin 

etal., 1995; Melcionetal., 1997) 

4.2.2 Presence and concentration of gases such as 0 2 

Differences in oxygenation are substantial in shake flask and fermenter-grown cultures 

and can greatly influence the level ofFB1 produced (Keller et al., 1997). In previous studies, 

well-aerated conditions were linked to a higher FB1 production. As a consequence considerably 
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more FB1 can be produced in fermenters than in shake cultures (Miller et al., 1994). From 

original reports of74 mg/I ofFB1 (Jackson and Bennett, 1990), yields have now risen to over 

500 mg/l of medium (Blackwell et al., 1994). 

4.2.3 Inoculum 

The toxigenic ability of strains of F. verticillioides may depend on the geographic 

location from which they were isolated and the substrate or host of origin (Nelson et al., 

1991). The ability of an inoculum to produce fumonisins could possibly be genetic and 

therefore be lost during subculturing. Moreover, the concentration of viable conidia present 

in inocula is an important factor influencing production. Studies should therefore, investigate 

the effect of viable conidial concentration on fumonisin production in order to counteract 

variation between experimental runs. 

Inoculum densities may be another factor affecting the production of fumonisin. The 

density ofinoculum present could influence toxin production based on culture media standard. 

However there is little information about production regarding the effect ofinoculum densities 

on FB1 production. As with aflatoxin production it is important to determine which inoculum 

densities are optimal for FB, production. Garcia et al. (1995) reported that lower inoculum 

sizes may produce more aflatoxin yields than higher ones. Different factors may influence 

fumonisin production: strain, composition of growth medium, temperature, moisture level, 

oxygen tension and incubation time. 

4.2.4 lnoculum viability 

The determination of the viability oflyophilised fungal cultures used as an inoculum 

in experiments is very important. The standardisation of inocula includes the evaluation of 
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conidial viability for either quantitative and/or qualitative information. 

Plate count techniques have been used in most environmental introductions of 

microorganisms and for the detection of microorganisms (Lapage et al., 1970; Sano 

et al., 1993; Hjerstedt et al., 1998). These techniques are well established, usually inexpensive, 

practical and rely on the ability of microorganisms to multiply and form colonies on agar 

media. It should, however, be recognised that fungi may have dormant stages, especially when 

subjected to environmental stresses and could in many cases be viable but not always culturable 

under certain set conditions. The plate count technique is reproducible, but variation between 

samples is dependant upon the source and the characteristics of the study organisms. 

Specificity can be determined by the use of selective media, unusual carbon sources, or the use 

of differential media. Quantitative evaluation is dependant upon the efficiency of a homogenous 

suspension of single cells or conidia. Poor dispersal and clumping of cells can lead to 

inaccurate quantification of colony counts. 

A range of techniques can be applied for the enumeration and specific detection of 

microorganisms using both light and epifluorescence microscopy. Bacteria, yeast and fungi can 

be enumerated directly, while vital staining can distinguish viable cells (Parkkinen et al., l 976; 

King et al., 1981). 

A new fluorescent staining technique for yeast cells (Millard et al., 1997) utilizes the 

differential affinity of viable cells for FUN-1 cell stain (Molecular Probes, Inc., Eugene, 

Oregon). A mounting medium has been devised that includes the dye. This medium allows 

direct processing of cells from a broth and provides optimal conditions for fluorescence 

intensity. FUN-I stain can be used to determine the metabolic activity of yeast cells. Only 

actively respiring cells are marked clearly with orange-red fluorescent structures, while dead 

cells exhibit diffuse, green-yellow fluorescence (Millard et al., 1997). 
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Ethidium bromide (EB) is a powerful mutagen widely used in biochemical research 

laboratories for visualising nucleic acids (Sambrook et al., 1989). The compound forms 

fluorescent complexes by intercalation and these compounds are readily visible under 

ultraviolet (UV) light. Singh and Kumar (1991) used EB to stain nuclei in mycelia and spores 

of different fungi. Nuclei show up bright red under green fluorescent excitation. This method 

proved to be very efficient, specific, reproducible and cost effective. 

Trypan blue (TB) and methylene blue (MB) are two stains recommended for use in dye 

exclusion procedures for viable cell counting (Auger et al., 1979). After exposure, the stain 

is taken up by cellular proteins within non-viable cells, while viable cells have the ability to 

exclude these dyes (Saijo, 1973; Walum et al., 1985). TB and MB are unable to cross intact 

plasma membranes, and consequently only label dead cells. The viability of cells can be 

observed visually using an inverted phase contrast microscope. 

4.3 Liquid Cultures 

Most studies on the production offumonisins have been conducted with solid maize­

based media (Nelson et al., 1994). Important factors related to production on solid media 

were reported to be temperature, with an optimal temperature range of 20-25°C, <lw and 

aeration (Alberts et al., 1990; Le Bars et al., 1994). Marin et al. (1995) found that increased 

awresulted in both increased growth and fumonisin production. Although Nelson et al. (l 994) 

indicated good aeration to be an important factor in the production of FB,, no data were 

provided concerning the effect of aeration. Liquid media would be ideal for the production 

of unlabeled and l 4C-labeled fumonisins since the nutritional composition is less complex than 

maize and isolation procedures are simplified (Alberts et al., 1994). Several complex- and 

chemically defined liquid media have been employed in the past to determine the environmental 
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and nutritional conditions required for optimal production of mycotoxins produced by 

F11.mrium spp. 

Alberts et al. (1994) evaluated a number ofliquid media used previously (Jackson and 

Bennett,1990) as well as vermiculite supplemented with the respective media for their ability 

to support FB1 and FB2 production by F verticillioides MRC 826. In addition, fungal growth 

and FB, production under various physiological conditions were investigated in order to obtain 

a liquid medium which supports optimal fumonisin production. Differences in the trend of 

fumonisin production within the respective media was observed. From this it became clearthat, 

apart from the genetic ability, certain physiological factors are determinative for fumonisin 

production. For a particular strain, the production in solid maize patty cultures may exceed 

production in liquid cultures J 00 to I OOO fold. 

The relationship between fungal growth and the production of fumonisin on maize 

grain by 25 strains of F vertici/lioides of different origins has been investigated by Melcion 

et al. (1997). Although sporulation was essentially the same for all the strains, ergosterol 

assays revealed marked variations in fungal biomass. All strains studied produced highly 

variable amounts ofFB,, the highest levels being observed in strains of ergosterol content 

above 400 µgll. However, no correlation could be established between the synthesised 

biomass and the quantity offumonisins produced. 

Branham and Plattner (1993) studied alanine as a precursor in the biosynthesis ofFB1 

by F verlicillioides in liquid culture. Under static culture conditions, 20.8 µg/ml ofFB1 were 

produced. Under shake culture conditions, much higher levels ofFB, was produced with levels 

reaching 159-240 µglml by 21 days after culture initiation. It is evident that alanine is 

incorporated intact into FB1• 

Keller et al. ( 1997) examined the effects of aeration and pH under conditions which 
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previously showed high levels ofFB 1 production in liquid cultures. Both factors appear to have 

a profound effect on growth and the production of fumonisin. The effects of pH appear similar 

to that found by Blackwell et al. (1994) in that a pH lower than 4.0 is required for good 

fumonisin production. The best production was observed between pH 3.0 to 4.0. The effect 

of oxygen on fumonisin production supports observations made on solid media (Nelson et al., 

1994). 

Since the nutritional composition of liquid media is less complex than maize and the 

isolation procedures for fumonisins are simplified, yielding a 89 % recovery, it is an advantage 

to produce fumonisins in such a medium (Miller et al, 1994). The method developed for the 

purification offumonisins from liquid culture was also applied to a maize culture, resulting in 

only 70.1 % recovery of fumonisins (Miller et al., l 994). Several complex and chemically 

defined liquid media have been employed to determine the environmental and nutritional 

conditions required for optimal production of fumonisins produced by Fusarium species 

(Miller et al, 1994; Dantzer et al, 1996). 

Dantzer et al. (1996) reported that F verticillioides strain M5991 produced FB1 

concentrations of619, 659, and 375 mg/I after 35, 47, and 52 days ofincubation, respectively, 

in modified MYRO liquid medium. By analysis, a total yield of20 g FB 1 was obtained from 

three serial batch fermentations. 

Labelled furnonisins were readily produced in cultures of F verticillioides using a 

defined liquid medium (Plattner and Shackelford, l 992a; Blackwell et al, 1994). The formation 

of3-acetyldeoxynivalenol (ADON) and other secondary metabolites of P11sarium culmorum 

in a stirred jar fermenter has been described in relation to changes in concentration of sugars, 

N, P and 0 2, and in pH in the medium as well as in cellular parameters (Miller and Blackwell, 

1986). 
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Currently, FB1 is obtained primarily by using solid culture methods (Alberts et al., 

l 990; Keller and Sullivan, 1996). Although FB1 concentrations obtained in solid cnlture are 

typically quite high, subsequent extraction and purification present problems. In addition, 

current methods utilize complex media which makes analysis of biosynthetic pathways and 

control mechanisms difficult. Liquid culture methods of production could eliminate many 

problems associated with production in solid culture. Factors affecting the production ofFB1 

from a shake flask scale of 100 ml to a fermenter scale of I 00 liters were examined in their 

study. Best results were obtained by using a fed batch method that is nitrogen limited, with pH 

control. Keller et al. (1997) also concluded that within a pH range of 3.0 and 4.0, FB, 

production can exceed l OOO µgig provided there is sufficient aeration during the early growth 

period. However, these levels were not obtained. 

5. Analytical methods for detecting fumonisins 

The common occurrence of fumonisins in maize products and their implication for 

human health has driven the development of accurate analytical techniques for these 

mycotoxins. 

5.1 Thin-layer chromatography (TLC) 

TLC, which is qualitatively useful, is not accurate for quantifying fumonisin levels. 

Using TLC, Gelderblom et al. (1988a) first isolated fumonisins from culture extracts. TLC is 

the simplest but, like all the other analytical procedures, depends upon their efficient extraction 

and clean-up. The lack of a suitable chromophore in the molecule means that the metabolites 

must be derivatised with reagents to allow detection. Cawood et al. (1991) used silica gel G 
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plates with two developing solvents, chlorofonn/methanol/water/acetic acid (6:3: 1). 

Fumonisins are being visualised with anisaldehyde spray reagent orninhydrin (0.2 gin ethanol), 

whereafter it is heated at 120 ° C. 

5.2 High-performance liquid chromatography (HPLC) 

HPLC is the most commonly used method for the analysis of fluorescence derivatised 

fumonisins. Soon after the discovery offumonisins, a method employing HPLC was reported 

from PROMEC (Sydenham et al., 1990a; Alberts et al, 1993). In this method, maleic 

anhydride was used to make the maleyl derivative that was detected by absorption at 250 nm. 

Although this method was adequate for determining the fumonisins in cultures of F 

verticillioides and heavily contaminated feedstuffs, i.e. levels > 10 µgig (Sydenham et al., 

1990a ), it was not sensitive enough for the lower levels found in foods and physiological fluids 

and tissues. For this purpose, a HPLC method using precolumn derivatization with o­

phthaldialdehyde (OP A), isocratic elution, and fluorescence detection to analyze maize samples 

for FB1 and FB2, was developed (Shephard et al., 1990) and the modified method has 

subsequently been used widely (Sydenham et al., 1992; Sydenham et al., 1996). This system 

allows levels as low as 5 /Lg/kg ofFB" FB2 and FB3 to be detected and has been specifically 

modified for FB2 measurements (Shephard et al., 1995). 

5.3 Gas chromatography/mass spectrometry (GC/MS) 

GC/MS which is based on hydrolysis of the esterified side chain and derivatisation with 

trimethylsilyl or trifluoroacetate on the furnonisin backbone has been reported (Plattner et al, 

1990; 1991; Thiel et al., 1991). Although sensitive and selective, the method involves 

expensive equipment and a hydrolytic pre-treatment (Shephard et al., 1992b). 
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5.4 Enzyme-linked immunosorbent assays (ELISAs) 

Competitive ELIS As, which are easy to perfonn and do not need extensive equipment, 

can be used only for qualitative screening of FB1. An assessment of an ELISA based on 

polyclonal antibody (Pestka et al, 1994) versus GC/MS and HPLC, indicated that it could 

assay fumonisins in food as effective as the other methods. Scneider et al. (1995) have 

developed a dipstick that can detect FB1 down to levels of 40-60 ng/g of maize-based foods. 

Clearly this method will be useful where rapid tests are required as primary screens to check 

the safety of food and legislated tolerances. 

5.5 Liquid Chromatographic-Mass Spectrometric methods (LC/MS) 

The determination of fumonisins in naturally contaminated maize by HPLC generally 

requires the use of derivatives to provide the necessary sensitivity of detection (Shephard, 

1998). However, the advances currently being made in the interfacing ofMS to HPLC and the 

development of numerous commercial LC/MS systems has resulted in the application of this 

technique to the analysis of food and feed samples for fumonisins without prior derivatisation. 

The use of LC/MS also provides strong confirmation of the presence of the fumonisins 

(Shephard, 1998) 
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6. General aims and objectives 

The general aims and objectives of this study are: 

( l) To optimise the yield parameters for the production of fumonisins in maize patty 

cultures, which could facilitate the bulk purification of these toxins needed for 

biological experiments on toxicity and carcinogenicity as well as commercial 

sales, 

(2) To develop an inoculum viability test to determine the percentage viable conidia 

in a specific culture to be used in subsequent experiments. 

(3) To determine the possible role ofFB1 as an antifungal agent and 

(4) To investigate the effect ofFB 1 on the germination of freshly harvested conidia 

of Fi1sarium and other fungal species, 
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Abstract 

The production of fumonisin B, by Fusarium verticillioides strains were studied in 

maize patty cultures and liquid media. The effects of different parameters on the production 

of fumonisin were investigated compared to a standardized set of parameters. In the case of 

maize patty cultures a moisture content of30 g maize to 30 ml water and incubation at 25 °C 

was used. The parameters that were varied included initial moisture content of maize patty 

cultures as well as temperature, initial pH and the addition of the fumonisin precursors, L­

methionine and L-alanine. Preliminary investigations were done in modified maize patties and 

MYRO liquid medium at two concentrations of L-methionine (0.1 % and 0.3%), inoculated 

withF verticillioidesMRC 4316 and incubated at 20°C and 30°C, respectively. It was found 

that the production ofFB, was increased in maize patty cultures by the addition of0.3 % L­

methionine, and that cultures incubated at 25 ° C gave a significantly higher yield of FB, 

(1614 µgig) (P < 0.05) than the cultures incubated at 30°C (888 pg/g). In liquid cultures 

however, the addition ofO. l % L-methionine slightly enhanced FB1 production (P >O. 05), but 

a higher concentration ofO. 3 % L-methionine, greatly suppressed FB, production at both 25 ° C 

and 30°C (P < 0.05). The results obtained in the three-way interactions ofinitial maize patty 

moisture content, L-methionine and temperature, showed that the highest yield of FB1 

(5777.26 pg/g) was produced by MRC 4316 at an initial moisture content of30 ml water to 

30g of maize in the patty, 0.3 % L-methionine at 25°C. MRC 826 was negatively affected by 

these parameters, producing lower levels ofFB, (3492.24 pg/g), compared to MRC 4316 at 

an initial moisture content (20 ml water to 30 g maize), L-methionine (0.3 %) and 25 °C. 

Among the single factors tested, the addition of0.3 % L-methionine had the greatest effect on 

FB1 production Optimum initial pH (2. 0) of maize patties resulted in high FB1 yields 
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(6445.58 µgig), but with no statistical differences between the pH levels tested. The addition 

of0.3 % L-alanine yielded 7359. 73 µgig FB1• at initial patty moisture content (30 ml water to 

3 0 g maize) However, further increase in the L-alanine concentration (0. 5%) suppressed FB1 

production. F verticillioides MRC 7424 (= NRRL 13616), produced the highest levels ofFB1 

(l 16 µglml), while South African isolates, F verticillioides MRC 4316 and MRC 826, 

produced lower FB1 levels (93 µglml and 62 µglml, respectively) in MYRO liquid medium. 

In general, FB 1 production in maize patty cultures far exceeded levels obtained in liquid shake 

cultures. It is concluded that not only the genetic ability of a particular strain of F 

verticillioides to produce FBI> but the interaction of a variety of physiological and nutritional 

factors and the culture medium, are important in the production of FB1. 
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Introduction 

Mycotoxins, toxic secondary metabolites of fungi, have plagued humans since the 

commencement of agriculture. The mass production of food and its storage allow for the 

colonisation or infection of the stored produce by fungi. Fusarium verticillioides (Sacc.) 

Nirenberg (~F. moniliforme Sheldon), an ubiquitous fungus belonging to the section Liseola, 

is one of the principal fungi found in maize worldwide (Marasas et al, 1984). The organism 

has been associated with human oesophageal cancer (Marasas et al., 1979, 1981) and several 

animal mycotoxicoses (Marasas et al., 1984). F. verlicillioides produces a group of 

mycotoxins known as fumonisins under suitable environmental conditions. FumonisinB1 (FB1) 

is ofinterest because of its biological activities when administered to or consumed by animals. 

The mycotoxin is present in maize infested by F. verticillioides and in feed prepared from such 

maize. Culture material of F. verticillioides MRC 826, which was originally isolated from 

maize in a high oesophageal cancer rate area in Transkei, was shown to be hepatocarcinogenic 

in rats (Marasas et al., 1984). Liver cancer developed in rats fed a 50 mg pure FB/kg diet for 

26 months (Gelderblom et al., 1991 ). Pulmonary edema was induced in weanling pigs fed 92 

mg FB/kg diet under experimental conditions within 6 days (Osweiler et al., 1992). 

Fi1sarium species are often isolated from maize and yet, even in visibly mouldy maize, 

fumonisins are not always present. Conversely, visibly healthy maize may contain high levels 

offumonisins (Bacon and Williamson, 1992). Most studies on the production offumonisins 

have been conducted with solid maize-based media (Nelson et al., 1994). Important factors 

related to production in solid media were reported to be temperature, moisture and aeration 

(Alberts et al, 1990; Le Bars et al., 1994). Marin et al. (1995) found that increased water 

activity resulted in both increased fungal growth and fumonisin production. Blackwell et al. 
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(1994) indicated that a low oxygen tension was required for optimal FB1 production in liquid 

culture since higher levels of FB1 were produced by increasing inoculum size or volume of 

media in flasks. Keller and Sullivan (1996) examined factors affecting the production of 

fumonisin B1 from a shake flask scale of I 00 ml to a fermenter scale of I 00 liters. Best results 

were obtained by using a fed batch method that is nitrogen limited, with pH control. Shim and 

Woloshuk (1999) reported on the production ofFB1 as early as 18 hours in a defined medium 

containing 1.25 mM or 2.5 mM ammonium phosphate. Although total FB1 production was 

greater in resuspension cultures grown in higher concentrations of ammonium phosphate, the 

accumulation was independent of the inoculum size and carbon/nitrogen ratio. Keller et al. 

( 1997) examined the effects of aeration and pH under conditions which previously showed 

high levels ofFB 1 production in liquid cultures. Both factors appear to have a profound eftect 

on growth and the production of fumonisin. 

The purpose of this report is to describe FB 1 biosynthesis regarding (I) the interaction 

of moisture content, incubation temperature and L-methionine, (2) the effect of pH, (3) L­

alanine and moisture content in maize patty cultures. (4) The production of fumonisins in 

MYRO liquid medium, comparing three strains of F verticillioides, was also investigated. 

Materials and Methods 

Fungal strains. Two of the three strains of single-spared lyophilized Fusarium 

verticillioides cultures (MRC 826 and Iv!RC 4316) used in all experiments were originally 

isolated from maize in the Transkei region of the Eastern Cape, South Africa, during 1975 and 

1985, respectively, and deposited in the culture collection of Programme on Mycotoxins and 

Experimental Carcinogenesis (PROMEC) at the Medical Research Council (Iv!RC) of South 
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Africa. F. verticillioides MRC 826 used in the present study has previously been shown to be 

a high fumonisin producer on maize grain (Alberts et al., 1990). F verticillioides MRC 7424 

(= F verticillioides NRRL 13616) (Miller et al., 1994) was obtained from USDA, Peoria, 

USA 

Lyophilization. One freeze-dried vial of each strain was resuspended in 2ml sterile 

distilled water and inoculated onto carnation leaf agar (CLA) (Nelson et al., 1983) slants. The 

slants were incubated at 22°C under a mixture of white and black fluorescent light (300-380 

nm) with a J 2 h photo period for 14-48 days. Freeze-dry buffer (lOml) were added to each 

slant and superficially scratched with a sterile bent platinum wire to dislodge the conidia in the 

buffer. A homogenous conidial suspension was prepared for each strain by adding suspensions 

obtained from the CLA slants together and stirred for 15 minutes with a magnetic stirrer. Two 

ml aliquots from these suspensions were aseptically added to 8 ml vaccine vials and stoppered 

with a sterile fluted butyl rubber stopper. These vials were freeze-dried for 72 hrs (Freeze-drier 

model• SSE-FD-05/3-V, SS Engineering, SA). Vials were sealed under vacuum, then double 

sealed with an aluminium cap, numbered, dated and stored at 4 ° C. 

Inoculations. All inoculations were prepared from standardized conidial suspensions 

oflyophilized conidia adjusted to Ix l 06 conidia/ml with the aid of a Neubauer hemacytometer. 

Media. All the chemicals and media, unless stated differently, were analytical grade and 

purchased from NT Laboratory Supplies, Eppindust, South Africa. 

Influence (!f L-methionine and incubation temperature on the production t~f FB1 

by F. verticillioides in liquid media and maize patty cultures. Maize patty cultures were 

prepared by weighing 30 g quantities of ground yellow maize kernels out in 90 mm diameter 

Pyrex petri dishes. Petri-dishes were autoclaved at J 10°C, 150 kPa (for l hr) on two 

consecutive days. The liquid medium used was MYRO medium as described by Blackwell et 
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al. (1994): l g (NH4) 2HP04; 3 g KH2P04 ; 0,2 g MgS04.7H20; 5 g NaCl; 40 g sucrose; 10 g 

glycerol per litre of ultrapure water. Aliquots of 50 ml modified MYRO medium in 250 ml 

Erlenmeyer flasks were prepared and autoclaved at l l0°C, 150 kPa for 15 minutes. 

FB, was produced in liquid shake cultures, using MYRO medium, and maize patty 

cultures as described above. Both media were modified by adding L-methionine at 0.1 % or 

0.3 % and using 0 % as a control. The rationale for this approach was that methionine is a 

substrate utilized by many fungal methyl transferases, and that it is a pre-cursor of FB, 

(Cahagnier et al., 1994). Triplicate sets of 50 ml liquid cultures were amended with 0.1 %, 0.3 

% and control L-methionine, respectively. Duplicate sets of maize patty cultures were also 

prepared at these concentrations. Both sets of cultures were inoculated withF verticillioides 

MRC 4316 and incubated at 25 °C and 30 °C in the dark for 21 days. The fumonisin B1 

concentrations in these triplicate cultures were detennined by HPLC (see below). 

The effect of L-alanine and moisture content on the production <~f FB1• To 

determine the effect ofL-alanine on fumonisin production (Branham and Plattner, 1993), the 

addition of three concentrations (0.1 %, 0.3 % and 0.5 %) ofL-alanine (Sigma Chemical Co, 

St Louis, MO 63178, USA) to the medium was investigated. Two initial moisture content 

levels ( 46 % and 50 %, prior to sterilisation) were used for each treatment. The experiment 

was set up as for L-methionine, except that incubation was done at only one temperature 

(25 ° C). Patties were each inoculated with 1 ml of a standardized spore suspension (Ix !06
) of 

F verlicillioides MRC 4316. 

Effect of pH on FB, production in maize patty cultures. Three Erlenmeyer flasks, 

each containing 600 ml water, at 3 different pH values (2, 4 and 7 = control) were prepared. 

The pH was adjusted with lMHCl prior to sterilization. L-methionine was added at 0.3 % and 

0. 0 % for the control to the respective flasks. This water was used to prepare the maize patty 
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cultures. Only one moisture content ( 46 % ) was used for each treatment. Patties were 

inoculated with I ml of a standardized spore suspension (Ix 106
) of F verticillioides MRC 

4316. Cultures were incubated at 25°C for 21 days. 

Interaction of moisture content, temperature and L-methionine on FB 1 production 

in maize patty cultures. The selected fumonisin-producing strains were used to study the 

influence of temperature, moisture content of the medium and the addition ofL-methionine on 

FB 1 production. The substrate used was prepared as described by Alberts et al. (1993). 

Sterilized distilled water (30 ml or 20 ml) containing 0.15 % and 0.3 % L-methionine, 

respectively, was added to 30 g ground maize to achieve the initial moisture content of the 

maize patties. All experiments were done in duplicate. Thus, for each L-methionine 

concentration, i.e. 0 I and 0.3 %, 12 petri dishes were prepared. Patties were inoculated with 

l ml of the standardized spore suspensions of(I x 106
) of F. verticillioides MRC 826 and MRC 

4316, respectively. The control was prepared at only one moisture content (50 %). Culture 

conditions were therefore at three L-methionine concentrations (0 l %, 0.3 % and control) to 

two moisture contents ( 46 % and 50 %) to two temperatures (25 °C and 30 °C). All cultures 

were incubated stationary for 2 I days. 

FB, production by three F. verticillioides strains in liquid shake cultures. Aliquots 

of 50 ml sterilized modified MYRO medium per 250 ml Erlenmeyer flask were prepared and 

inoculated with I ml of the freshly prepared standardized spore suspension (1 x 106
) of MRC 

826, MRC 4316 and MRC 7424, as described above. The flasks were incubated in the dark 

at 25°C on a New Brunswick Scientific rotary shaker, 100 rpm, 3.81 cm throw for 21 days. 

Statistical analyses. Statistical analyses were performed by means of the NCSS 2000 

(Hintze, 1998) statistical analysis package. The General Linear Model analysis of variance, that 

can cope with unequal sample sizes, was generally used. The multiple comparison test used 
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was the Newman-Keuls test. The factorial design analyses on many of the experiments were 

performed twice, namely, (1) with the "Control" included as a one-way analysis of variance 

to test whether the "Control" was significantly different from the other treatment combinations; 

and (2) with the "Control" excluded in a proper factorial analysis to test for treatment factor 

main effect and interactions. 

Fumonisin standards. FB 1 was isolated and purified as described previously by 

Cawood et al. (1991). For use as an analytical standard, FB1 was further subjected to two 

successive column separations on silica gel and reverse phase (C 18) columns. The purity of 

FB1 (> 95 % ) was verified by Nuclear Magnetic Resonance (NMR) spectroscopy and Atomic 

Absorption at the Department of Physics and High-Performance Liquid Chromatography 

(HPLC) at the Department of Chemistry, University of Stellenbosch, Stellenbosch. 

High-peT;formance liquid chromatography (HPLC) analytical technique for the 

quant!fication of FB1 . (1) Sampling o(maize patty cultures. All other reagents, unless stated 

otherwise, were analytical grade purchased from Merck (Darmstadt, Germany). Patties were 

dried overnight at 50 ° C. Each patty was separately ground in a commercial coffee grinder. The 

coffee grinder was thoroughly cleaned between each sample. A 5 g sub-sample was weighed 

out into a 250 ml centrifuge bottle and extracted by adding 50 ml of methanol/water (3: 1) and 

homogenizing for 5 minutes with a Polytron homogeniser. This was followed by centrifugation 

at 10 OOO rpm for 10 minutes at 4 ° C. The supernatant was filtered (Whatman No I) and the 

filtrate collected for analysis. The pH of the filtrate was adjusted to 5.8-6.3 with O. l M KOH. 

J-5 ml (amounts varying according to concentration) of a sample was applied to pre­

conditioned (5 ml methanol and 5 ml 75 % methanol-water) Bond-Elute SAX cartridge (3 cc 

capacity; Varian, Harbor City, CA 90710, USA) on a Solid-phase extraction tube manifold 

(Supelco, Bellefonte, PA 16823, USA), as described by Shephard et al. (l 990). The cartridge 
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was rinsed with 8 ml 75 % methanol-water and 3 ml methanol, the fumonisins eluted with lO 

ml of 1 % acetic acid in methanol and collected in vials under the influence of gravity. The 

contents of each vial was transferred to a WISP vial and evaporated to dryness under a stream 

of nitrogen at 60°C on a Silli-therm (Pierce, Rockford, IL 61105, USA). The collection vial 

was rinsed with methanol and added to the WISP vial for drying. The latter was sealed and 

stored at 4 °C. The filtrate was derivatised for fluorescence detection according to the maleyl 

derivatisation technique an analysed by HPLC (AJberts et al., 1993). 

(2) Liquid Cultures. The pH of the culture filtrate was adjusted to 6 with O. lM KOH. 

Purification was done by filtering I ml of the culture filtrate through a 0 .22 µm pore size cameo 

syringe filter (MSI). The filtrate was derivatised for fluorescence detection according to the 

maleyl derivatisation technique and analysed by HPLC (Alberts et al., 1993). 

The method described is suitable for the detennination ofFB1 in extracts of maize and 

liquid cultures of F verticillioides MRC 4316 as a result of the high levels found to be 

produced by this strain in culture. Several complex and chemically defined liquid media have 

been employed in the past to determine the environmental and nutritional conditions required 

for optimal production offumonisins produced by h1sarium spp. (Miller et al., 1994; Dantzer 

et al., 1996). The analytical technique used for the quantification ofFB1 in liquid cultures of 

F. verticillioides MRC 4316 had a recovery of approximately 95 % for FB1 compared to a 

recovery of 70 % in maize patty cultures. The high recoveries obtained from liquid cultures 

could mainly be ascribed to the fact that liquid cultures contain less impurities which could 

interfere with purification and derivatisation procedure than maize cultures (Alberts et al., 

1993; 1994). This analytical technique allows levels as low as 10 µg/kg ofFB" to be detected 

(Sydenham et al., 1996) 
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Figure 1. HPLC-eluting chromatograms ofFB1 standard (Std) and a purified extract of culture material of Fusarium verticillioides MRC 4316. 
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Results 

HPLC chromatograms demonstrating the eluting position of FB, standard and a 

purified extract of a F verticillioides MRC 4316 maize culture are illustrated in Figure 1. 

The relationship ofL-metltionine and incubation temperatures on FB1 production 

in liquid and maize patty cultures. Fumonisin B1 production in maize patty and liquid shake 

cultures were compared under the same physiological conditions in order to find a medium 

which will support the optimal production of FB,. The FB1 concentrations obtained on 

modified maize and liquid MYRO medium are illustrated in Figure 2. A slight increase in FB1 

production is seen with an increased addition ofL-methionine (0.1 % ) in maize patty cultures 

at 20°C. By adding more L-methionine (0.3%), the FB, production was further increased, but 

it was not statistically significant (P > 0.05). By comparing the results from the two incubation 

temperatures, it was found that at both temperatures, production was increased by an increased 

addition ofL-methionine, and that cultures incubated at 25 ° C gave a significantly higher yield 

(P < 0.05) ofFB1 than the cultures incubated at 30°C. 

The addition ofO. l % L-methionine slightly increased FB 1 production in liquid medium 

but this was not statistically significant (P > 0.05). A further increase in L-methionine 

concentration (0.3%) significantly suppressed FB1 production in liquid cultures at both 

temperatures (P < 0.05). Incubation temperature did not have a significant effect on FB 1 

production (P > 0.05) although FB1 production was numerically higher at 25 °C than at 30°C. 

From this can be concluded that FB 1 production in liquid cultures in this experiment was more 

sensitive to L-methionine concentration than incubation temperature. 
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Figure 2. The effects ofL-methionine and temperature on the production offumonisin B1 in 

maize patty and liquid shake cultures by Fusarium verticillioides MRC 43 l 6. 
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The interaction between moisture content, temperature and L-methionine on 

fumonisin B,production. Table l summarises the mean concentrations ofFB, produced by 

two strains of F verticillioides on maize patties when considering the moisture content, 

temperature and the addition ofL-methionine to the medium. In general, comparing the results 

obtained for the two isolates used, FB 1 production was higher for MRC 4316 than for MRC 

826 (Table 1 and Figure 3). Under standard (control) incubation conditions, MRC 826 

produced higher levels of PB, (3241 µgig) than MRC 4316 (2524.1 µgig). These isolates 

showed different responses to FB 1 production when growth conditions were manipulated. 
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Table 1. The interaction between moisture content, temperature and L-methionine on fumonisin B1 production by F. verticillioides MRC 4316 and 

MRC 826 in maize patties. 

Treatments Moisture Content Temperature L-methionine MRC4316** MRC 826** 

(%)* (OC) (%) FB1 (µg/g)*** 

z, 46 25 0.1 4499.90 2655.20 

z, 46 25 0.3 4369.50 3242.40 

Z3 46 20 0.1 3906.10 3212.80 

z, 46 20 0.3 5410.4' 3492.30 

z, 50 25 0.1 3841.70 285640 

z6 50 25 0.3 5777.3" 2771.30 

z, 50 20 0.1 4264.20 3088.30 

Zs 50 20 0.3 3708.40 2990.00 

Control 50 25 0.0 2524.10 324 l.OO 

* Moisture content prior to sterilisation 

** Standardised inoculum of lxl06 CFU I ml 

*** Mean of three cultures 

# Significant (P < 0.01) - Compared to controls. 
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Figure 3. Comparison offumonisin FB 1 production of two strains of Fusarium verticillioides, i.e. MRC 4316 and MRC 826, with regard 

to the interaction of moisture content, temperature and L-methionine Zl - Z8 culture conditions as indicated in Table 1. 
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The highest levels of FB1 (541042 µgig and 5777.26 µgig) were produced by 

MRC 4316, at treatments Z4 and Z6, respectively, (Z4 = 20 ml/30 gx20°C x 0.3 % L-meth. 

and Z6 = 30 mll30 g x25°C x 0.3 % L-meth.). FB 1 production by MRC 4316 on maize patties 

at these specific culture conditions was significantly higher (P < 0. 01) than control samples. 

Statistically, the ANOV A for FB, production showed that only the three-factor interaction was 

significant at P < 0.012, in affecting FB1 production by this strain. Among the single factors 

tested, L-methionine had the greatest effect (P > 0.05) on FB, production. The lowest levels 

ofFBJ> almost similarto controls, were produced by MRC 4316 under culture conditions Z5 

and Z8, with even lower levels being produced at Z5. MRC 826 reacted completely differently 

to the treatment conditions than MRC 4316. At almost all the culture conditions, except for 

Z2, Z3 and Z4, FB1 production by MRC 826 was reduced. The lowest FB1 levels measured 

were with Zl (2655.16 µgig), and the highest being Z4 (3492 24 µgig). Therefore, different 

strains of F verticillioides have different inherent abilities to produce FB1 under similar culture 

conditions. 

Effect of initial pH. The effect ofinitial pH on FB1 production was examined in maize 

patty cultures at three different pH levels (2.0, 4.0 and 7.0 =control), one moisture content 

(20 ml to 30 g maize) and 0.3 % L-methionine, usingF verticillioides MRC 4316 (Figure 4). 

The highest FB1 yield (6445.6 µgig) was obtained at a low pH of2.0, but with no statistical 

differences (P > 0.05) between individual treatments. 
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Figure 4. The effect of initial pH of maize patties on the production of fumonisin B1 by Fusarium verticillioides MRC 4316. 
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L-al!mine. The combined effect ofL-alanine and initial moisture on FB1 production in maize 

patty cultures is shown in Figure 5. The addition of0.1 % L-alanine slightly enhanced FB1 

production in maize patties at the higher moisture level (30 ml to 30 g maize), but had the 

opposite effect at the lower moisture level (20 ml to 30 g maize). An increase in L-alanine 

concentration to 0.3 %, further stimulated FB1 production at both moisture levels. The 

maximum FBI level (7359. 7 µgig) was reached with the L-alanine concentration at 0.3 % and 

moisture level at 30 ml water to 30 g maize in the patties. When the L-alanine concentration 

was raised to 0.5 %, FBI production was decreased. A lower moisture level resulted in lower 

FB, production, when compared with the higher moisture levels. Although numerically higher 

yields of FB1 were obtained under the conditions mentioned, no significant differences were 

noted (P > 0 05). 
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Fumonisin B1 production by Fusarium verticillioides strains in liquid culture>~ 

Fumonisins were produced in liquid shake cultures, using the defined MYRO medium 

(Blackwell et al., 1994). Figure 6 represents the mean FB1 concentrations (µg/ml) produced 

by three strains ofF verticillioides under the treatment conditions used. Some differences in 

FB1 yields were observed between the strains used, viz. F. verticillioides MRC 7424, produced 

the highest amount of FB1 ( 116 µg/ml). In contrast, the South African isolates, 

F verticillioides MRC 4316 and MRC 826, produced lower FB1 levels (93 and 62 µglml, 

respectively). F verticillioides MRC 826 produced considerably smaller amounts of FB, 

compared to MRC 7424. Interestingly, there was a high variability in FB, production by 

replicates of F verticillioides MRC 7424, while the other two strains were quite consistent. 

However, although marked differences in FB1 production were observed, these differences 

were not statistically significant (P > 0.05). Similar results were obtained for FB2 and FB3. 

Discussion 

Preliminary research has shown that the F verticillioides strains which produced 

relatively high levels of FB1 in maize patties did not necessarily do so in MYRO medium, 

irrespective of the addition of the fumonisin precursor, L-methionine. While low FB 1 yields 

were obtained in liquid medium, FB1 production in maize patty cultures exceeded production 

in liquid cultures, implying that a solid substrate medium enhances fumonisin production in the 

present study. The addition of L-methionine suppressed production of FB1 in liquid cultures 

to a great extent and FB1 production in liquid cultures was more sensitive to L-methionine than 

incubation temperature. 

This study investigates the interaction of the initial moisture content of the maize 

substrate, the L-methionine addition and the incubation temperatures on FB1 yields. It is 
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important to note that the production ofFB1 can be either negatively or positively influenced 

when a single growth parameter is altered. Apart from these interacting physiological 

conditions, the FB1 production is also linked to the inoculum factor. The amount of FB1 

produced by an individual F verlicillioides strain depend on many complex environmental 

factors and genetic characteristics of the isolate (Leslie et al., l 992). This was confirmed when 

the control cultures ofMRC 826 were compared to MRC 4316 for their abilities to produce 

FB1. When the physiological conditions were manipulated, the better producer under standard 

(control) conditions (MRC 826), was negatively influenced with respect to FB1 production, 

whereas MRC 4316 was stimulated to produce higher levels ofFB1. 

Under the conditions (moisture content, temperature and L-methionine) described 

above, a stimulation in FB1 production at all interactions were observed compared to 

controlled conditions for F verticillioides MRC 4316. Significantly higher FB1 levels than 

controls were observed for culture conditions Z4 and Z6. The optimum regimen for the 

productionofFB1 by F verlicilliosisMRC 4316 and MRC 826 was found to be 0.3 % x 25°C 

x 30 ml water and 0.3 % x 20°C x 20 ml water, respectively. Between the three parameters 

used, L-methionine and temperature were the most important factors in the production ofFB1 

by F verticillioides MRC 826 and MRC 4316. 

Blackwell et al. (1994) reported that a pH lower than 4.0 appears to be required for 

good fumonisin production and this is similar to our findings, in that the highest level ofFB1 

was produced at pH 2. This is also in agreement with investigations regarding other 

mycotoxins produced by F verticillioides (Faber and Sanders, 1986) and F. graminearum 

(Vasavasa and Hsieh, 1987), where mycotoxin production was stimulated at low pH values 

in liquid cultures. Here, we have determined the best pH for FB1 production is at pH 2.0. We 

also showed that even in a medium such as maize, with a complex nutritional composition 
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(Kruger et al., 1992), including high concentrations of phosphates and amino acids buffering 

the medium (Vasavasa and Hsieh, 1987), pH influenced the production of fumonisin in maize 

patty cultures, although not significantly. 

A previous study on the effect ofL-alanine on FB 1 production (Branham and Plattner, 

I 993) was carried out in liquid media, while our assay was done on natural maize. The findings 

of Branham and Plattner ( 1993) provided evidence that L-alanine was incorporated intact into 

FB,, indicating that alanine is a precursor in the biosynthesis of FB1. They also found that 

alanine, although successfully incorporated, reduced the production ofFB 1 in liquid cultures. 

Plattner and Shackelford (1992) observed that added L-methionine, also a known fumonisin 

precursor, sharply reduced FB, production under similar conditions. However, in our study, 

the addition of L-alanine resulted in the stimulation in the FB1 production in maize patty 

cultures. The present experiment showed that the optimal incubation regimen for FB1 

production by F verticillioides MRC 4316 in maize patty cultures is a moisture content of 

30 ml water to 30 g maize and the addition of0.3 % L-alanine at 25 "C. It is important to note 

that both moisture and L-alanine played an important role in this stimulatory effect on FB1 

production. 

Comparing the results obtained for the three Pl1sarium strains used, MRC 7424 was 

the best FB1 producer in liquid shake cultures followed by MRC 4316. Conversely, the best 

producer on maize patties (MRC 826), produced the lowest yields ofFB1 in liquid media. A 

possible explanation may include the area of origin (Nelson et al., I 991) or mating status 

(Leslie et al., 1992). Although the areas of origin were similar for two of the strains, i.e. MRC 

826 and MRC 4316, a numerical difference in FB1 production was still observed. The origin 

and genetic ability of a particular strain are therefore important factors that influence FB 1 

production in different types of media. 
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Our investigation together with previous studies have detailed the important influence 

of several parameters on the ability of F verticillioides strains to produce fumonisins. To 

understand why these strains are able to produce furnonisins, a knowledge of the complex 

interaction that occurs between biotic and abiotic parameters and their impact on toxin 

production. Our results again reflect the interacting factors and the intraspecific differences 

between strains, which may also be present in field conditions. Variation of a single factor such 

as temperature in field conditions due to seasonal change, can therefore have a major effect on 

fumonisin production. A chain reaction may occur when changes in moisture, pH, etc. also 

take place which will influence fumonisin production fu1iher. 

It is concluded that not only the genetic ability ofa particular strain of F verticillioides 

to produce FB1' but the interaction of a variety of physiological and nutritional factors and the 

culture medium, are important in the production of FB1 However, for a more closely 

monitored physiological environment, experiments should be aimed at a continuous 

fermentation system for FB, production (Miller and Blackwell, 1986; Miller et al., 1994). 
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THE VIABILITY OF LYOPHILISED CONIDIA OF FUSARIUM 

AND ALTERNARIA SPECIES ASSAYED WITH FLUORESCENT 

AND OTHER STAINS 
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Abstract 

Lyophilisation of fungal cultures proves to be an excellent method to preserve a wide 

range of fungi over long periods of time. It is, however, necessary to determine the viability 

of conidia stored in lyophilised vials at 4 °C on a regular basis. Membrane-permeant nucleic 

acid-binding dyes (FUN-I) are viability stains that are relatively new flourescent probes for 

assessing the viability of metabolically active yeast cells. The purpose of the present study was 

to microscopically determine the viability of lyophilised conidia of fl1sarium and A lternaria 

species, including F verticil!ioides (= F moniliforme) strains MRC 826, 4316 and 7424, 

F subg!utinans MRC 1077, F graminearum MRC 1785 and A. a/temata MRC 1843, using 

the yeast Saccharomyces cerevisiae as a control. FUN- I was compared to two other staining 

methods, i. e. ethidium bromide (EB) and methylene blue (MB) and the viability of the conidia 

was compared to colony-forming units (CFU) on solid media as a control. FUN-I stained the 

cylindrical intra-vascular structures (CIVS) orange-red and the nucleus with a green 

fluorescence in viable conidia. Non-viable conidia exhibited a diffuse, green-yellow 

fluorescence throughout the cell. EB stained the nuclei of viable conidia and yeast cells bright 

red. Although the viability of yeast cells could be determined with MB, this method was not 

suitable for conidial cells because it did not distinb>uish between viable and non-viable conidia. 

The fluorescence ofEB was enhanced by using green fluorescent excitation ( 465-550 nm), and 

showed advantages over the FUN-1 stain due to its simplicity, reproducibility, cost and time­

effectiveness when used on conidia. FUN-1 and EB stains gave good results when the 

microscopic viability of metabolically active yeast cells were compared to their CFU's. Even 

though these stains differentiated between viable and non-viable lyophilized conidia 

microscopically, no correlation between the CFU's and the microscopic viability of the 
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lyophilised conidia of F verticillioides, F subglutinans, F. graminearum and A. alternaria 

was fuund (FUN-1: r = 0.303, P >0.05; EB: r = 0.257, P >0.05). Neither FUN-1 nor EB can 

therefore be recommended to accurately determine the viability of lyophilized conidia by 

microscopy only. 
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Introduction 

Lyophilisation of fungal cultures proves to be an excellent method to preserve a wide 

range of fungi over long periods of time (Smith and Onions, 1994). It is, however, necessary 

to determine the viability of conidia stored in lyophilised vials at 4 ° C on a regular basis. The 

standardisation ofinocula includes the evaluation ofconidial viability and, therefore, could play 

an important role in experimental studies concerning mycotoxin production. Viability of 

conidia can be measured by methods such as plate counts, germ tube formation and staining 

with vital dyes. The determination of viability by plate counts may take several days, or 

sometimes up to one week Furthermore, Goiman-Yahr et al. (1980) reported on the poor 

plating efficiencies and Restrepo et al. (I 982) on the unreliability and prolonged incubation of 

the plate count method. The observation of germ tube formation needs several hours 

depending on the fungal species to be tested (Restrepo et al., 1982; Sano et al., 1991). 

Living cells have a semi permeable membrane, i. e. different membranes allow different 

amounts of an aqueous solution to pass through. Semipermeability can be determined through 

dye exclusion techniques, which involve using basic dyes, composed of salts of the particular 

dye and organic acids. Trypan blue (TB) and methylene blue (MB) are two stains 

recommended for use in dye exclusion procedures for viable cell counting (Auger et al., 1979). 

After exposure, the stain is taken up by cellular proteins within non-viable cells, while viable 

cells have the ability to exclude these dyes (Saijo, 1973; Walum et al., 1985; Denyer et al. 

1993). The stains TB and MB are unable to cross intact plasma membranes, and therefore only 

label dead cells. The viability of cells can be observed visually using an inverted phase contrast 

microscope. 
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Ethidium bromide (EB) is a powerfol mutagen widely used in biochemical research 

laboratories for visualising nucleic acids (Sambrook et al., l 989). The compound forms 

fluorescent complexes by intercalation, which are readily visible under ultraviolet (UV) light. 

Singh and Kumar ( 1991) used EB to stain nuclei in mycelia and spores of different fongi, and 

this stain proved to be highly efficient, nucleus-specific, stable in solution and less expensive 

than other fluorescent stains. A relatively new family of fluorescent probes has been developed 

for assessing the viability and metabolic activity of yeast cells. This class of halogenated 

unsymmetric cyanine dyes 1s exemplified by the FUN-1 

[2-chloro-4-(2,3-dihydro-3-methyl-(benzo- I ,3-thiazol-2-yl)- methylidene )-1-phenylquinol i nium 

iodide] stain, a membrane-permeant nucleic acid-binding dye that has been found to give rise 

to cylindrical intravacuolar structures (CIVS) in viable Saccharomyces cerevisiae Hansen cells. 

Only actively respiring cells, i.e. metabolically active cells, are marked clearly with orange-red 

CIVS, while dead cells exhibit diffi1se, green-yellow fluorescence (Millard et al., 1997). 

Jn order to evaluate fungal cell viability, the choice of method depends on the need for 

quantitative and/or qualitative information. Enumeration of viable cells by colony counting is 

time-consuming and does not reliably report on the metabolic activity of slow growing or non­

deviding cells. Conventional direct count methods, which typically involve vital staining with 

indicators such as MB (Parkkinen et al., 1976), are used to assess the activity of cellular 

oxidoreductases in yeasts (Millard et al., 1997). The objective of the present study was to 

microscopically determine the viability of lyophilised conidia of Fusarium and Altemaria 

species with fluorescent and other stains. 
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Materials and Methods 

The fungal strains used in this study were obtained from the culture collection of the 

Programme on Mycotoxins and Experimental Carcinogenesis (PROMEC) of the Medical 

Research Council (MRC) of South Africa. FUN- I (Molecular Probes, Inc.) viability stain was 

compared to two other staining methods, i.e. EB and MB. The viability oflyophilised conidia 

of Fusarium verticillioides (Sacc.) Nirenberg(= F monil(forme Sheldon) strains MRC 826, 

4316 and 7424, F subglutinans (Wollenw. & Reinking) Nelson, Toussoun & Marasas (MRC 

I 077), F graminearum Schwabe (MRC 1785) andAlternaria alternata (Fr.) Keissler (MRC 

1843) and freshly harvested conidia of F verticillioides MRC 826 were investigated. 

Lyophilised and actively growing cultures of Saccharomyces cerevisiae (MRC 7872) were 

used as controls following the staining method described by Millard et al. (1997). Heat killed 

yeast cells and conidia were included as negative controls. Conidium viability was compared 

to the colony-forming units (CPU's) on solid media, using potato dextrose agar (PDA) and 

yeast peptone dextrose agar (YPD). 

Culture conditions. Yeasts were cultured in YPD broth medium, containing 10 % 

yeast extract, 10 % peptone and 20 % glucose. Cultures were derived from single colonies on 

culture plates grown for 24 to 48 hrs at 30° C. Overnight yeast broth cultures shaken at 200 

rpm in a 3 0 ° C incubator were used for the positive staining procedure. Cultures of 

F verticillioides MRC 826 were prepared by growing the fungus on carnation leafagar (CLA) 

(Nelson et al., 1983). CLA slants were incubated at 22°C under a mixture of white and black 

t1ourescent light (300-380 nm), with a 1212 hr lightdark photo period for 14-48 days. Five 

ml sterile Nonidet-P40 water (to prevent clumping of cells) was added aseptically to the CLA 

slant and the colony superficially scraped with a sterile bent platinum wire to dislodge the 
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conidia into the water. Mycelial growth was removed by filtering suspensions through two 

layers of sterile muslin cloth (Keyser et al., 1999). Conidial suspensions were standardized by 

microscopically adjusting densities [to approximately 1x106 conidia!ml] with the aid of a 

Neubauer hemacytometer. 

Staining with.fluorescent and other dyes. One ml of the overnight yeast culture was 

centrifuged at 3000 rpm for 7 min in a microcentrifuge and the pellet resuspended in a GH 

staining solution, consisting of 20 % glucose and l 0 mM Na-HEPES at pH 7.2. The GH 

medium was sterilised by filtration through a 2 µm-pore-size syringe filter (Corning Inc, 

Germany). The yeast cell suspension was also adjusted to a density of approximately 

I 06 cell/ml with the aid of a hemacytometer. This was necessary to avoid too highly 

concentrated cell suspensions that may be difficult to count, while suspensions that are too 

diluted may give erroneous results. 

FUN-I dye stock solution was prepared in DMSO at a final concentration of l - I 0 

mM. For staining, FUN-1 stock solutions, a l • l 0 dilution EB [98 % stock solution (20 µ.g/ml), 

ICN Biomedicals Inc, Ohio] and MB (I % in saline) were added in equal 100 µl volumes to 

both yeast and conidial suspensions (both freshly harvested conidia and lyophilized cultures), 

respectively, such that the final DMSO concentration was below 0.2 % and FUN-l cell stain 

between 5 - 20 µM. Each tube was gently mixed. Yeast cells stained with FUN- I were 

incubated for 60 min at 30°C in the dark, while the fungal cultures were incubated for 60 min 

at 30°C. Both yeast and fungi stained with EB were incubated for 10 min at room temperature. 

Staining with MB required 5 min at room temperature for both yeast and fungal cultures. The 

yeast cells and conidia remained in the presence of the dyes for observation under the 

microscope. 

Microscopy. Microscopy was carried out with a Olympus light microscope and a 
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fluorescent microscope (Zeiss Axioskop ), which was equipped with a digital camera linked to 

a computer to capture images by means of a Vysis software programme. Epifluorescence 

illumination was provided by a 100 W mercury arc lamp. The fluorescent filter sets included 

the following: for the FlJN-1 dye, a fluorescing iso thycianide (FITC) filter set, 485 - 500 nm 

excitation (EX) and 490 - 550 nm emission (EM), while for EB green fluorescence filter, EX 

465 - 550 nm, were used. The full experiment was repeated three times in duplicate. 

Enumeration of yeast cells and conidia. Yeast and fungal CFU' s were counted by 

using a hemacytometer. With FUN-! and EB (fluorescent stains), conidia and yeast cells were 

initially viewed under the microscope using visible light, using a 40x objective. The diaphragm 

was adjusted to reduce light to keep the hemacytometer grid visible. While keeping the visible 

light on, the microscope was switched to fluorescence and the cells and conidia were observed, 

counted and viability calculated. Staining with MB required only visible light with no 

fluorescence. 

Plate count. One ml each from the lyophilised and fresh cultures were serially diluted 

(8x) and agar plates of each dilution were poured by adding 25 ml potato dextrose agar (PDA) 

to lml conidial suspension or 25 ml YPD agar to !ml yeast suspension in a 90 mm diameter 

petri dish. Fungal cultures were incubated at 25 ° C for 7 days in the dark, while yeast cultures 

were incubated at 30°C for approximately 2 days in the dark Colonies were counted in each 

petri dish and the mean was obtained from triplicate determinations. Viability counts were 

expressed as colony forming units (CFU's) per ml 

Statistical analysis. All analyses were performed by using the general linear model 

analysis of variance procedure (ANOVA) of the SYSTAT 8.0 for Windows, SPPS Inc., 

Chicago, USA 
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Results 

Viability counts of fluorescent staining with FUN-1 and EB, dye exclusion test with 

MB and CPU's/ml on PDA and YPD are summarized in Table I. FUN-1, EB and MB stains 

gave good comparative results when the microscopic viability of metabolically active yeast 

cells were compared with their CFU' s. Some variations between the dyes and the colony count 

methods, except in the case of S. cerevisiae, showed very similar results for the methods used. 

Results obtained from all the stains show clearly that the yeast strain did not survive the freeze 

drying process. This was confirmed by the plate count technique. 

The results obtained for fluorescent staining with EB and FUN-1, were very similar for 

each of the fungi tested. However, the conidial counts obtained by CPU's on PDA for 

lyophilised F. verticillioides strains and A. alternata were somewhat lower. The FUN- I and 

EB determinations for viability compared fairly well for each strain tested, but viabilities 

obtained using the CFU method were lower. F. subglutinans, however, was the only test 

fungus which showed markedly lower CFU counts compared to the different staining methods. 

Although viable conidia were observed with the two staining methods under the microscope, 

no CFU's were found on PDA for F. graminearum. 

http://etd.uwc.ac.za/



Table 1. Comparison of conidium viability between the number of colony forming units (CFU 's) and fluorescent and other stains.# 

Viability counts ( conidia/ ml x 106
) 

Fungal Cultures FUN-1 EB MB CFU's 

Total Viable## Total Viable## Total Viable 

Lyophilised cultures 

F vertici/lioides MRC826 11.60 10.20 11.60 10.30 9.00 as l .6x!04 

F verticil/ioides MRC 4316 9.90 7.30 10.00 7.90 7.90 as 6.7xJ05 

F verticillioides MRC 7424 5.50 4.80 6.00 5.20 5.80 as l Ax 104 

F subglulinons MRC 1077 4.40 3.10 7.20 4.30 3.20 as 3xl02 

F graminearum MRC 1785 2.70 1.50 2.20 1.10 1.90 as 0 

A. alternaria MRC 1843 0.36 0.28 0.31 0.31 0.33 as 5xl04 

S. cerevisiae MRC 7872 5.00 0 4.20 0 4.00 0 0 

Conidial culture* 

F verticillioides MRC826 7.50 7.20 7.10 as 7.00 7.00 3.7xl06 

Yeast culture** 

S cerevisiae MRC 7872 14.10 8.70 11.10 9.20 12.50 7.60 5.6xJ06 

it- = All tests were done in duplicate and repeated three times. 
## = P > 0.05, compared to the CFU,s (control) 
as = All viable and non-viable conidia stained blue with MB 
* - Conictia harvested from CLA slants 

'° ** = Yeast cells incubated overnight in YPD broth 0 

FUN-!= FUN-1 [2-chloro-4-(2,3-dihydro-3-methyl-(bcnzo-1,3-lhiazol-2-yl)- methylidene)-1-phenylqninolinium iodide] 
EB = Ethidium bromide 
l\1B = Methylene blue 
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Figure l. Saccharomyces cerevisiae labelled with FUN-1 dye for approximately 30 min at 30°C. (a) Viable cells gave rise to orange red cylindrical 

intravacuolar structures (CIVS) within the yeast vacuoles. (b) Dead cells are stained uniformly with bright yellow-green fluorescence. 

'° -
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Figure 2. (a) Fungal nuclei stained with Ethidium bromide (EB) and observed under fluorescent light (green fluorescent filter, excitation 465 - 550nm). 

EB stained the nuclei of viable conidia and yeast cells bright red. (b) Conidia stained with FlJN-1 and observed under fluorescing iso thycianide (FITC) 

filter set (excitation 485 - 500 nm and emission 490 - 550 nm). Within viable conidia the nuclei stained prominently green while the red cylindrical 

intravacuolar structures (CIVS) was not always visible. Dead conidia stained uniformly with a faint yellow-green fluorescence (yellow arrow). 

'° N 
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When lyophilised and freshly harvested conidia were stained with FUN-1 dye and 

observed by epifluorescence microscopy, orange red cylindrical intravacuolar stmctures 

(CIVS) could be observed in viable cells (Figs. l & 2b). Cells which contained no CIVS were 

stained uniformly with a bright yellow green fluorescence (Fig. 2b, yellow arrow), and were 

considered to be non-viable because heat-killed cells were found to stain with similar 

fluorescence. Optimal loading with FUN-1 was achieved when yeast cells and conidia were 

exposed to limiting levels of the dye (12.5 µM), which was then processed by the cells into 

CIVS. Excessive loading (>12 5 µM) with FUN-1 stain increased the amount of green 

fluorescence, whereas suboptimal loading typically limited the number of CIVS formed. 

Optimal FUN-! concentration for maximal CIVS formation was 12.5 µMforyeast cell staining 

and 50 11M for conidial staining. 

Excellent nuclear staining of lyophilised cultures was obtained with EB in all the test 

fungi and control yeast (Fig. 2a). The nuclei were stained brick red under green excitation 

(EX) at 465-550 nm. Green EX was preferred because of bright nuclear fluorescence, poor 

to no fluorescence of other cell component, and absence of background fluorescence. To 

visualize septa, cell walls and the grids of the hemacytometer, normal transmitted light was 

switched on while viewing with fluorescent light. Nuclear fluorescence with EB was stable as 

there was no visible fading even after 24 hrs. 

EB reacted differently when tested on freshly harvested conidial cultures. No 

distinction could be made between viable and non-viable freshly harvested oonidia as no 

nuclear staining was visible. This was however, not the case with actively growing yeast 

cultures. 

When performing viability counts with MB on lyophilised cultures of the fungal strains 

used and yeast control, all cells stained dark blue with no differentiation between viable and 
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non-viable lyophilised conidia and yeast cells. The fact that no viable counts were obtained 

with S. cerevisiae, was probably because the yeast cells did not survive the lyophilisation 

process. These results were confirmed by the CFU's, as no growth was found on YPD agar 

plates. MB differentiated between viable and non-viable cells when tested with freshly 

harvested conidia and yeast cells. After exposure to treatments with MB, the stain was taken 

up by non-viable cells and stained dark blue. The viable cells did not take up the dye and were 

phase bright. Yeast cell buds emerging from mother cells were counted as a separate cell when 

the bud was at least one-half the size of the mother cell. 

Even though only FON-1 and EB stains differentiated between viable and non-viable 

lyophilised conidia microscopically (Fig. 2), no correlation between the CFO' s and the 

microscopic viability of the lyophilised conidia was found (FON-I • r = 0.303, P >0.05; EB • 

r = 0.257, P >0.05). 

Discussion 

The stains tested have several advantages over the plate count technique because they 

are rapid, highly sensitive and simple to use. Colony forming units on PDA and YPD agar 

showed different efficiencies for different isolates tested. F verticillioides, A. alternata and 

S. cerevisiae strains showed higher CFU' s than the other fungal cultures tested, whenever 

measured. The results were consistent when these tests were repeated. PDA was found to be 

more useful for detecting live fi.mgal units of F verticillioides and A. alternata, while YPD 

plates were used with S. cerevisiae. The absence of correlation between the results of CFO's 

on agar and the fluorescent and dye exclusion techniques may be due to the fact that these tests 

measure different parameters. While colony counting on plates could reflect on the growth rate 
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of cells, the staining assays reflects the internal enzyme content of the cell and the permeability 

of the cells (Calich et al., 1978). The agar used might not be the optimal growth medium for 

the lyophilised cultures with very little or no CFU' s formed, i.e. F. subglutinans and 

F graminearum, respectively. 

The present investigation shows that all three staining methods can be successfii.lly 

employed to assay viability ofactively growing yeast cells. Numerically, no marked differences 

in results between the stains were observed. CIVS derived from FUN-! stain have been used 

to specifically identify the vacuolar compartment in S. cerevisiae (Burgess et al., 1994) and 

is used to distinguish viable from non-viable cells. 

The CJVS was also visible in conidia of all the fungi when treated with FUN-1. No 

CIVS were formed when heat killed conidia were treated with FUN-1 stain. Dead conidia 

stained uniformly with a faint yellow-green fluorescence. This is due to the fact that the 

transport ofFUN-1 stain from the cytosol to the vacuole does not occur in dead cells. 

EB and MB were the only stains that reacted differently when tested on lyophilised 

conidia and fresh conidia harvested from slants. MB did not differentiate between viable and 

non-viable lyophilised conidia, but did so with freshly harvested conidia. Non-viable cells do 

not have the metabolic capability to expel the intruding MB dye. EB reacted conversely when 

tested with freshly harvested conidia of F verticillioides. EB successfully distinguished 

between viable and non-viable lyophilised conidia but not freshly harvested conidia. lt is 

evident that the metabolic activity of lyophilised conidia are lower than that of freshly 

harvested conidia (Smith and Onions, 1994). The cell wall permeability of dead cells is greater 

than that of viable cells. Lyophilised conidia with a lower metabolic activity than that of freshly 

harvested conidia may also have a higher permeability. This may explain why these dyes 

reacted differently when tested on conidia with different metabolic activity. 
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Neither FUN-!, EB nor MB can therefore, be recommended to accurately determine 

the viability of lyophilised conidia. At present, plate count methods remain the most valid 

technique for the detection of the viability oflyophilised conidia. However, for the purpose of 

determining or screening for percentage viability in a specific inoculum it is recommended that 

EB is used in the case oflyophilised conidia, and MB in the case of freshly harvested conidia. 

Although viable fluorescent stains are recommended as a good way to determine the 

cell viability of a fungus, it needs relatively complicated procedures and has a time limit in 

which the stain can be used. In this study, fluorescent and other cell viability staining of 

lyophilised conidia depended on isolate differences and technical procedure as reproducible 

results were obtained with all the isolates tested. The result of this study emphasize that the 

use of dyes to determine viability of lyophilised conidia requires a critical definition of 

protocols for a specific fungal species, and that a good correlation with colony counts needs 

to be demonstrated. Plating efficiencies could be increased by altering the nutritional content 

of the media and cultural conditions (Goihman-Yahr et al., 1980) Many conidia may not have 

the ability to germinate under specific growth conditions which may influence CFU counts. 

The findings of this study could contribute useful applications in various studies on living and 

dead conidiaI populations. 
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Abstract 

Fumonisins are mycotoxins produced by several Fusarium species that are commonly 

found on maize and maize products. Fumonisins have diverse toxicological effects in animals 

and are associated with oesophageal cancer in humans, but their function in nature is obscure. 

To determine the antifungal effect of fumonisin B1 (FB1) on Fusarium verticillioides 

(~ F. moniliforme), F prolif'eratum, F globosum, F. subglutinans, F. graminearum, 

Penicillium expansum, Aspergi!lus fla1ms, Alternaria alternata and Botrytis cinerea, the 

sensitivity of these fungi was tested by an agar-diffusion method on PDA plates at FB1 

concentrations of 40-0.05 rru\1 at pH 5.45. Fumonisin B1 inhibited mycelial growth of five of 

the nine fungi tested. The minimum inhibitory concentration of FB, ranged from O. 25-0. 5 mM 

for A. alternata, 1-5 mM for P. expansum and B. cinerea, and 5-10 mM for F graminearum, 

whereas the other fungi tested showed no sensitivity to the mycotoxin. A small inhibition zone 

was visible with F proliferatum, a FB 1-producing species, at 40 mM. The mycelial growth of 

the other two FB1-producing species, F. verticillioides and F globosum, was not affected by 

the toxin. This is the first report on the antifungal activity of FB1 . 
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Introduction 

Fusarium verticillioides (Sacc.) Nirenberg ( F. moniliforme Sheldon), an ubiquitous 

fungus belonging to the section Liseola, is one of the principal fungi found in maize worldwide 

(Marasas et al., I 979; 1981). Under suitable environmental conditions, F verticillioides 

produces a group of toxins known as fumonisins (Gelderblom et al., 1988). Toxigenic 

Fusarium species in South African maize are associated with human oesophageal cancer (OC) 

and several animal mycotoxicoses (Marasas et al., 1979; 198 I). Mycological comparisons of 

home-grown maize from different areas in the Transkei region of the Eastern Cape province 

of South Africa revealed a statistically highly significant correlation between the incidence of 

F verlicillioides in maize and OC rate (Marasas et al., 1981; Rheederel al., 1992). Fumonisins 

are involved in the neurotoxic disease, leukoencephalomalacia, in horses (Kellerman et al., 

1990). Pathognomonic brain lesions were reproduced after 20 doses containing 1-4 mg of95 

% pure fumonisin B, (FB 1)/kg diet (total dose 8.4 g FB,) for 29 days (Kellerman et al., I 990). 

Culture material of F verticillioides MRC 826, originally isolated from maize in a high OC 

area in T ranskei, was hepatocarcinogenic in rats (Marasas et al., 1984). Liver cancer developed 

in rats fed a diet containing 50 mg pure FB,fkg for 26 months (Gelderblom et al., 1991). 

Pulmonary oedema was induced in weanling piglets fed 92 mg FB,fkg diet under experimental 

conditions within 6 days (Osweiler et al., 1992). 

FB 1 caused a dose-dependent inhibition of the growth rate of yeast (Saccharomyces 

cerevisiae Hanson) cells (Wu et al., 1995). Although FB1 is phytotoxic at concentrations as 

low as 0.1 µM, no inhibition of the growth of several species of Gram-positive and Gram­

negative bacteria was observed at concentrations as high as 1 OOO µM (Lamprecht et al., 1994; 

Becker et al., 1997). The effects ofFB, on filamentous fungi are unknown. Fumonisins are of 
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interest because of their physiological action when administered to or consumed by animals, 

but their function in nature is obscure. The diverse toxicological effects of fumonisins in 

animals and plants raise the possibility that these toxins may also inhibit the growth of fungi. 

This study investigated the antifi.mgal effect ofFB1 on someFusarium and other fungal species. 

Materials and Methods 

The fungi used in this study were from the culture collection of the Programme on 

Mycotoxins and Experimental Carcinogenesis (PROMEC) of the Medical Research Council 

(MRC) of South Africa: Fusarium verticillioides, Fi1sarium prol{feratum (Matsushima) 

Nirenberg (MRC 7431 ), Fusarium glohosum Rheeder, Marasas & Nelson (MRC 6647), 

Fi1sarium subglutinans(Wollenw. & Reinking) Nelson, Toussoun& Marasas(MRC 1077) and 

F11sarium graminearum Schwabe (MRC 1785), Penicillium expansum Link (MRC 7200), 

Aspergillusjlavus Link ex Fries (MRC 3791 ), Altemaria altemata (Fr.) Keissler (MRC 1843) 

and Botrytis cinerea Pers. ex Fr. (MRC 1364). Standardized conidial suspensions were 

prepared by growing the P11sarium spp. on Carnation Leaf Agar (CLA) and the other fungi on 

Potato Dextrose Agar (PDA) slants (Nelson et al., 1983). The PDA slants were incubated at 

25 ° C in the dark whereas the CLA slants were incubated at 22 ° C under a white fluorescent 

light (300 - 380 nm) with a 1212h light dark photo period for 14-48 days. Sterile water (5ml) 

was added aseptically to each CLA and PDA slant and the colonies were superficially scraped 

with a sterile bent platinum wire to dislodge the conidia into the water. Large pieces of 

mycelium were removed by filtering the suspensions through two layers of sterile muslin cloth. 

Conidial densities were microscopically adjusted with the aid of a Neubauer hemacytometer 

to approximately 1x106 conidia/ml. 
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The sensitivity of the respective strains of fungi to FB 1 was tested by an agar-diffusion 

method on PDA plates. All experiments were carried out in triplicate (3 petri plates for each 

concentration of each fungus). FB, was extracted, isolated and purified as previously described 

(Cawood et al., 1991). Briefly, maize cultures ofF vertici!lioides M_RC 826 were prepared 

as described by Albe1is et al. (1990) incubated in the dark at 25°C for six weeks, oven-dried 

at 50°C, ground and stored at 4 °C. Culture material (500 g) was extracted twice with ethyl 

acetate and the fumonisins extracted three times with MeOH:H20 in a ratio 3: 1. The filtrate 

was evaporated to dryness under vacuum at 50°C. The aqueous methanol extract was 

rractionated on an Amberlite XAD-2 column using MeOH:H20 (1 :3) and MeOH:H20 (1: l) 

as eluting solvents, while FB1 was eluted with 100 % MeOH. Two Silica columns (Silica Gel 

60) were used for isolation and subsequent purification ofFB1 using CHCl3: MeOH:CH3COOH 

(6:3: I) and CHCl3:MeOHH20:CH3COOH (55 36 8: J) as eluants respectively. Final 

purification was carried out on a low pressure Reverse Phase C18 column using a linear gradient 

ofMeOH: H20 (I: l-4 l ). The fractions containing FB1 were pooled and evaporated to dryness 

under vacuum at 50°C. The FB, had a purity of90-95% as determined by high-perfonnance 

liquid chromatography, atomic absorption spectroscopy and nuclear magnetic resonance 

(Cawood et al., 1991). 

Solutions ofFB1 at concentrations of 40, 20, I 0, 5, and I mM were prepared in sterile 

water at pH 5.45 (adjusted with 0. lM NaOH) Petri dishes (90 mm) containing PDA (30 ml 

agar each) were surface-inoculated with 120 µI of the prepared standardised conidial 

suspension of each fungus and evenly spread across the agar surface and allowed to dry. Five 

I-cm-diameter wells were aseptically made in each of the inoculated PDA plates using a pre­

sterilized cork borer. Each well was loaded with 200 µl of the respective FB 1 solutions. 

Fumonisin solutions were filter-sterilized (pore-size 0.22 µm) before being added to the wells 
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of the plates. Amphotericin B (Amp B) E-test strips (Davies Diagnostics) were used as a 

positive control due to the efficacy to a wide range of fungi at fairly constant levels (Holeman 

and Einstein, 1963; Hildick-Smith, 1968). Negative controls were included for each test by 

substituting FB1 with sterile, distilled water and pH adjusted to 5.45 with 0.1 M NaOH. Plates 

were incubated at 25°C for 2 days and the inhibition zones (clear zones) were measured in 

triplicate, from the edge of the well and means determined. Once the sensitivity range for each 

fungus was known, the minimum inhibitory concentration (MIC) was determined by following 

the above procedure, and by using 0.5, 0.25 and 0.05 mM concentrations ofFB1 to which the 

strain was sensitive. The reproducibility of the method was assessed by repeating the 

experiment twice. 

Results 

Growth inhibition zones were observed for five, i.e. A. alternata (Fig. I a), P. expansum 

(Fig. lb), B. cinerea, F. graminearum (Fig. le) andF proliferatum, of the nine fungi tested. 

The standardised inoculum resulted in confluent grow1h for all the strains tested. A result was 

defined as positive when triplicate samples showed inhibition (clear) zones at all concentrations 

of FB1 . Inhibition zones were proportionate to the concentrations used for the respective 

sensitive fungi, and differed for each fungus tested according to their sensitivity to FB1. !n the 

case of B. cinerea, resistant colonies grew within the clear inhibition zones. Fully resistant 

fungi, i.e. F. verticillioides, (Fig 2), F. globosum, F subglutinans and A. flavus, grew up to 

the edge of the well showing no sensitivity to FB 1. 

Macroscopic changes in cultural characteristics were noted in FB1-sensitive fungi such 

as P. expansum and A. altemata in which pigment production was inhibited directly adjacent 
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to the inhibition zone. Stereo-microscopy demonstrated that conidia did not form in the non­

pigmented areas of these cultures. It was also observed that in all FB 1-sensitive strains, poor 

germination occurred or that only short germ tubes developed within the zones of inhibition. 

Hyphal stunting and abnormal growth continued during the observation period. At lower 

concentrations of FB" germ tubes appeared longer, developing into short, distorted hyphal 

growth which showed swollen and necrotic tips. This was seen in P. expansum, A. a/temata 

and B. cinerea. Control plates for each strain, for which FB 1 was replaced with water, 

displayed normal macroscopic and microscopic growth with normal hyphal growth and conidial 

production. 
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Figure la. Sensitivity ofAlternaria alternata MRC 1843 to different concentrations ofFB1 

using an agar-diffusion method. The respective FB1 concentrations are clockwise from the top 

(arrow): 40, 20, 5, and 10 mM, and lmM in the centre (A). Duplicate result (B).Negative 

controls (C): Wells filled with sterile water. Positive control (D): Amphotericin BE-test (An 

inert and non-porous plastic strip with a predefined and exponential gradient of the dried and 

stabilized Amp B on the surface. Concentration range of 0.002 to 32 µglml). 
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Figure 1 b. Sensitivity of Penicillium expansum MRC 7200 to different concentrations ofFB 1 

using an agar-diffusion method. The respective FB, concentrations are clockwise from the top 

(arrow): 40, 20, 5, and 10 mM, and 1 mM in the centre (A). Duplicate result (B). Negative 

controls (C): Wells filled with sterile water. Positive control (D): Amphotericin BE-test (An 

inert and non-porous plastic strip with a predefined and exponential gradient of the dried and 

stabilized Amp B on the surface. Concentration range of 0.002 to 32 µg/ml). 
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Figure 1 c. Sensitivity of Fusarium graminearum MRC 1785 to different concentrations ofFB1 

using an agar-diffusion method. The respective FB 1 concentrations are clockwise from the top 

(arrow): 40, 20, 5, and I 0 mM, and I mM in the centre (A). Duplicate result (B).Negative 

controls (C): Wells filled with sterile water. Positive control (D): Amphotericin BE-test (An 

inert and non-porous plastic strip with a predefined and exponential gradient of the dried and 

stabilized Amp B on the surface. Concentration range of 0.002 to 32 µg/ml). 
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Fig. 2. Fully resistant fungus, fumonsin B1-producing Fusarium verticillioides. 
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The MIC values for FB 1 sensitive strains are shown in Table l. They ranged from 0.25-

0.5 mM for A. alternata, 1-5 ITI.cl\lf for P. expansum and B. cinerea, and 5-10 mM for 

F. graminearum. At the highest concentration of 40 mM FB" a small inhibition zone was 

visible in the case of F proliferatum, a fumonisin producing species, but this fongus was 

considered to be resistant to FB 1. The MIC for fungi sensitive to Amp-B was 4 1;,g/ml for A. 

alternata, 4 µ.g/ml for P. expansum and 12 µg/ml for F graminearum. 

Table 1. Minimum inhibitory concentration (MIC) of fumonisin B1 for different fungi 

Fungi MRC* MIC (mM) 
number 

Altemaria altemata 1843 0.25 - 0.5 

Penicillium expansum 7200 1 - 5 

Bot1ytis cinerea 1364 l - 5 

Fusarium graminearum 1785 5 - 10 

Fusarium proliferatum 7431 > 40 

F11sarium verticillioides 826 >40 

Fusarium globosum 6647 >40 

Fusarium subglutinans 1077 >40 

A.spergillusflavus 3791 >40 

* Accession numbers in the culture collection of the Programme on Mycotoxins and 

Experimental Carcinogens, Medical Research Council, Tygerberg, South Africa. 
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Discussion 

The FB,-producing Fusarium species isolated from maize, F. verticillioides, 

F globosum and F. proliferatum, were resistant to FB1 even though a small inhibition zone at 

the highest FB 1 concentration of 40 mM was noted in the case of F proliferatum (Ross et al., 

1990; Sydenham et al., 1997) . However, amongst two non-producing Fusarium spp. also 

isolated from maize, F. subglutinans was resistant and F graminearum was sensitive. The 

most sensitive fongi tested were non-producing species not isolated from maize, i.e. 

A. altemata, B. cinerea and P. expansum. This is the first report on the antifongal activity of 

FB1. 

The high concentrations of fumonisins used in our experiments are based on the 

evidence that maize samples from the Kentani district in the high oesophageal cancer area of 

Transkei, that are naturally contaminated with Fusarium species that produce FBI> contained 

levels of fumonisin up to l 17 5 µgjg (Rheeder et al., ! 992). Thus, even at unnaturally high 

levels of the toxin, some of the test organisms remained resistant to FB,. 

It has been reported that F. verticillioides can inhibit maize infection by A . .flavus 

(Wicklow e/ al., 1988; Zummo and Scott, 1992). However, present study showed no inhibiting 

effect ofFB1 in relation to A . .flavus. It is possible that the interactions between the two fongi 

in maize kernels is influenced by other mechanisms or metabolites produced by them within the 

kernels. 

A negative correlation between the isolation frequencies of F. graminearum and 

F verticillioides from maize kernels was found by Blaney et al. (1986) while Van Wyk et al. 

(1988) reported that the pre-inoculation of maize germlings with F. verticillioides, protected 

the seedlings from subsequent infection by F graminearum. The fact that FB, inhibited the 
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growth of F graminearum in our study may offer some explanation as to why there was a 

negative correlation in the isolation frequencies of the two fungi. However, F. graminearum 

was the only fungus that appeared to adapt to the presence ofFB,, because it resumed growth 

after two days in the presence of the mycotoxin. The inhibition zones of the other fungi tested 

remained clear after two days. 

The MIC is a quantitative indicator to derive the lowest concentration of FB1 that 

prevents any visible growth of the test fungus under a specific set oflaboratory conditions. It 

is a relative measurement because it is influenced by change in the conditions (pH, temperature, 

inoculum density, incubation time and media) under which the MIC is determined (Gehrt et al., 

1995; Pujol et al., 1997). The inability of the fungus to grow in the presence ofFB" the reason 

for the inhibition zone, is used as a measurement of sensitivity to FB,. Large zones ofinhibition 

indicate that the organism is more sensitive, while small or no zones of inhibition indicate 

resistance to FB1. Alternaria alternata proved to be the most sensitive followed by 

B. cinerea, P. expansum, F. graminearum and F. proliferalum. Moreover, there was a dose­

dependent increase in zone diameter with FB1 concentration among the FBi-sensitive fungi. 

Although some species ofAlternaria, e.g. A. alternata f sp. lycopersici, produce host­

specific phytotoxins (AAL toxins), which are structurally closely related to the fumonisins, the 

particular A. alternata strain, MRC 1843 used in our experiment showed remarkable sensitivity 

to FB1 (Bezuidenhout et al., 1988; Shephard et al., 1993). Although this strain was not tested 

for its ability to produce AAL toxin, toxin formation in liquid medium by A. alternala f. sp. 

lycopersici normally begins after 48 hours at low concentrations (Shephard et al., 1993). It is 

therefore most unlikely that AAL toxin, if produced in PDA by M..RC 1843, contributed to its 

sensitivity. Furthermore, no growth inhibition was visible on the control plates after 72hrs. 

It was of interest to observe that single colonies grew within the inhibition zones in the 
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case of B. cinerea. This may represent a mycotoxin resistance mechanism expressed by conidial 

variants in the inoculum used. Analyses of field isolates of B. cinerea showed that their DNA 

content per nucleus varied considerably, indicating that aneuploidy /heteroploidy is a widespread 

phenomenon in this species (Buttner et al.,1994). Spontaneous colony variants in fi.mgal 

cultures are characteristic ofheteroploid shifts to new types ofaneuploid variants (Tolmsoff, 

1983). However, heteroploidy as a source ofresistance to mycotoxins has not been studied 

in fungi. 

Amp B acts on the ergosterol pathway and interferes with selective membrane functions 

that may result in stasis or death of most fungi (Gale et al., 1981; Rippon, 1988). Interestingly, 

in this study three of the fungi showing inhibition zones with FB,, namely, A. alternata, P 

expansum andF graminearum, were sensitive to Amp B, while B. cinerea and F proliferatum 

demonstrated resistance. The Amp B resistance of B. cinerea could also be due to the resistant 

conidia present in the inoculum. FB, and Amp B may therefore have similar modes of action 

on the ergosterol pathway of fungi, but further study is necessary to elaborate this. FB, 

inhibited both the growth of the fungi tested and their spore formation. The specific mode of 

action of FB1 on fungi remains unknown. 
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Abstract 

Fumonisins are a group of structurally related mycotoxins produced by a number of 

Fusarium species that occur worldwide some of which can produce these toxins at levels up 

to several g/kg on sterilized maize. Fumonisins have been shown to cause equine 

leucoencephalomalacia in horses, to be carcinogenic to laboratory animals (rats and mice), and 

has been reported to be associated with pulmonary edema in swine. Nine fungal species, i.e. 

Fusarium verticillioides MRC 826, F. proliferatum MRC 7431, F. globosum MRC 6647, F. 

subglutinans MRC 1077, F graminearum MRC 1785, Penicillium expansum MRC 7200, 

Aspergillusflavus MRC 3791, Altemaria alternata MRC 1843 and Botrytis cinerea MRC 

1364, were used for the germination assay in PDA at different fumonisin B1 concentrations, 

i.e. 0.25, 0.5, I, 2.5, 5, 7.5, 10, 20 and 40 rnM. Germ tube lengths were reduced at increasing 

concentrations ofFB, for all the fungal species examined, except for F subglutinans, in which 

case germ tube lengths were increased. Statistical analyses showed that the inhibiting effect of 

FB 1 was highly significant (P <0.001). P. expansum, B. cinerea and A. altematawere the only 

test fungi completely inhibited by FB1. The conidia of F subglutinans germinated faster than 

the controls at increased concentrations of FB 1 This stimulatory effect on conidium 

germination diminished with time, as swellings on the tips appeared and stunted germ tubes 

were formed. 
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Introduction 

Fusarium verticillioides (Sacc.) Nirenberg(= F. moniliforme Sheldon) is associated 

with ear-rot of maize world-wide (Booth, 1971; Marasas et al., 1979; Marasas, 1982) and is 

regarded as the most common seed-borne fongus of maize in South Africa (Rheeder et al., 

1993). The fungus often causes symptomless infections in maize kernels (King and Scott, 

1981) and is associated with several human and animal diseases (Thiel et al., 1992). 

Fumonisins B1 (FB1) and B2 (FB2), produced by F. verticillioides, causes 

leukoencephalomalacia in horses (Kellerman et al., 1990) and pulmonary oedema syndrome 

in pigs (Harrison et al., 1990). FB1 is also hepatotoxic and hepatocarcinogenic in rats 

(Gelderblom et al., 1991; Gelderblom et al., 1993). Fumonisins have also been statistically 

associated with high risk of oesophageal cancer in humans who consume contaminated home­

grown maize in South Africa (Transkei) (Rheeder et al., 1992) and the People's Republic of 

China (Linxian County) (Chu and Li, 1994). 

Keyser et al. (1999) reported on the antifongal activity ofFB1 to mycelial growth of 

Fusarium and other fongal species. Growth inhibition zones were observed for 

Alternaria alternata (Fr.) Keissler (MRC 1843), Penicillium expansum Link (MRC 7200), 

Bot1ytis cinerea Pers. ex Fr. (MRC 1364) and F graminearum Schwabe (MRC 1785) of nine 

fongi tested. The FBi-producing Fusarium spp. isolated from maize, i.e. F. verticillioides, 

F. globosum Rheeder (MRC 6647) and F. proliferatum (Matsushima) Nirenberg (Ross et al, 

1992; Sydenham et al., 1997) were resistant to FB1 while two non-producing Fusarium spp. 

isolated from maize, F. subglutinans (Wollenw. & Reinking) Nelson, Toussoun & Marasas 

(MRC 1077) and F. graminearum, were resistant and sensitive, respectively. 

Several different methods exist to test the susceptibility of fungi against antimycotic 
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drugs and mycotoxins. These include broth dilution (Sandhu et al., 1979), agar-diffusion 

(Keyser et al, 1999), disk diffusion (Utz and Shacomy, 1976; Holt, 1978) and microtiter 

bioassays (Fisher and Armstrong, 1977). Morphological deformations observed in mycelia of 

certain filamentous fungi induced by antibiotics and mycotoxins have been reported 

(Richmond, 197 5; Gunji et al., 1983; Keyser et al., 1999). These bioassay methods were found 

to be useful in detecting proper minimum inhibitory concentration (MIC) zones and also 

different deformations such as curling, swelling and hyphal stunting caused by the specific 

antifungal agents. 

Results obtained with MIC's are defined on the basis of visible mycelial growth. 

Conidia should germinate and produce germ tubes for monitoring the growth inhibition or 

stimulation and the fungicidal activity of the compound, compared to a control. If a compound 

is capable of inhibiting the germination of conidia, while either affecting or not affecting the 

growth of the organism, the MIC is considered the concentration of the compound required 

for the inhibition of conidial germination, but not necessarily the concentration required for 

inhibition of the growth of the organism. The use of conidial germination has resulted in 

excellent reproducibility of germ tube inhibition results obtained in different laboratories 

(Manavathu et al., 1996; Denning et al., 1997; Pujol et al., l 997). The objective of the study 

was to investigate the effect of FB1 on the germination of freshly harvested conidia of 

I'z1sarium and some other fungal species. 

Materials and Methods 

Fungal isolates. Fusarium verticillioides MRC 826, F. proliferatum MRC 7431, 

F. globosum MRC 6647, F. subglutinans MRC 1077, F. graminearum MRC 1785, 
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P. expansum MRC 7200, A . .flavus MRC 3791, A. alternata MRC 1843 and R. cinerea 

MRC 1364 were obtained from the culture collection of the Programme on Mycotoxins and 

Experimental Carcinogenesis (PROlVIEC) of the Medical Research Council (MRC) of South 

Africa for this study. Freshly harvested conidia (FHC) were collected as described previously 

(Keyser et al., I 999). For the germination assay for each fongal species, filtered suspensions 

of FHC were suspended in 5 ml sterile distilled Nonidet P40 water to prevent clumping of 

conidia, and the density adjusted microscopically to 1xl06 conidia/ml with a Nenbauer 

hematocytometer. 

Fumonisin B1. FB1 was obtained as a powder (96 % pure) from PROlVIEC. The FB1 

was extracted, isolated and purified as previously described (Cawood et al., 1991). 

Standardization ofFB1 solutions. A 21ml stock solution of FB1 at a concentration 

of 40 mM was prepared by dissolving 0.433 g FB1 in 0.5 ml 1 M NaOH and 2.5 ml H20 (pH 

adjusted to 7). The fumonisin solutions were filter-sterilized by using millipore filters (pore-size 

0.22 µm, Corning Inc, Germany) and made np to 21 ml with 18 ml autoclaved potato dextrose 

agar (PDA) previously cooled to 50°C. A serial dilution of the stock solution was made with 

PDA, to yield FB1 concentrations of0.25, 0.5, 1, 2.5, 5, 7.5, 10, 20 and 40 mM, respectively 

These FB 1-amended PDA solntions were kept in a water bath at S0°C to prevent them from 

solidifying. FB1 is thermostable and could therefore be kept at 50°C. 

For each fungal species, 200 µI of the respective conidium suspension, was separately 

transferred to a 1. 5 ml centrifuge tube by means of a sterile micro-pipette (9 concentrations 

ofFB 1 were done in triplicate). Three controls, containing no FB1 were also prepared. The 

conidia were harvested for each treatment by centrifuging the conidial suspension for 5 minutes 

at 3000 rpm. The pellets in each of the tnbes, were resuspended in 200 µI of respective FB1-

amended PDA stock solntions and kept on a hot block (Pierce Reacti-Thenn UI Heating 

http://etd.uwc.ac.za/



125 

module) at 50°C. 

Figure I. Incubation chamber consisting of a pre-sterilized 90 mm diameter Pyrex petri dish, 

lined with Whatman No.I filter paper (a); a taped microscope slide (b); with three round 12 

mm diameter cover slips on top ( c ), placed on a bent glass rod. 
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Three 200 µl aliquots of the standardized, evenly dispersed conidia in PDA containing 

a specific FB1 concentration, were aseptically transferred onto the three round cover slips on 

top of the microscope slide in the incubation chamber as illustrated in Figure 1. Five ml sterile 

water was used to saturate the Wbatman filter paper, which then served as moisture chamber 

for the incubation period at 25 ° C in the dark. Conidia were allowed to germinate in the 

presence ofFB 1 and the slides were examined under the microscope every hour. A control 

slide, containing no FB1 in the PDA conidial suspension, was prepared for each fungus 

examined. All experiments were stopped when the conidia in control slides reached 100 % 

germination. The percentage conidium germination was based on the random sampling of 100 

conidia per FB1 treatment. For each FB, treatment the germ tube length of 40 randomly 

selected germinating conidia was measured. In the case of fungi with multi-celled conidia, a 

conidium was considered genninated if a germ tube was visible from at least one of the cells. 

Germ tube length of control and FB,-treated conidia were measured by using a image analysis 

system which consisted of a Leica conventional light microscope linked to the PC running 

HLimage 97++ image analysis software, a Pulnix video camera and a frame grabber. The 

image capturing device was calibrated for each objective used, so that all measurements were 

actual measurements expressed in µm. The germ tube length data given in the results represent 

the means for all tests done. 

JJata analysis. Statistical analyses were performed by means of the NCSS 2000 

statistical analysis package (Hintze, 1998). The General Linear Model analysis of variance, that 

can cope with unequal sample sizes, was generally used. The multiple comparison test used 

was the Newman-Keuls test. The factorial design analyses on many of the experiments were 

performed twice, namely: (I) with the "Control" included as a one-way analysis of variance 

to test whether the "Control" was significantly different from the other treatment combinations; 
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and (2) with the "Control" excluded in a proper factorial analysis to test for treatment factor 

main effect and interactions. 

The test for parallel regression lines in the germination experiment was performed as 

follows: ( 1) by performing a covariance analysis with treatment level as covariate and "Strain" 

as factor to estimate the residual sum of squares when fitting a common linear regression slope; 

(2) performing a regression analysis on the data for each strain separately to get the residual 

sum of squares when fitting a best linear regression line to that strain; and (3) the difference 

between the residual arrived at in step one and the sum of the residuals arrived at in step two, 

yields a test to ascertain whether the assumption of a common regression slope is valid. 

Results 

The effect of nine FB1 concentrations, ranging from 0.25 to 40 mM, on the conidium 

germination of nine test fongi was determined. The inhibiting effect ofFB1 was determined by 

means of percentage germination of conidia and germ tube or hyphal length measurements 

(Table 1). 

Germ tube lengths were reduced at increasing concentrations ofFB1 for A. alternata, 

!'. expansum, B. cinerea, F. graminearum and F. prolijeratum, F'. verticillioides,A.jlavusand 

F. globosum (Table 1, Fig. 2) compared to the control cultures. Statistical analyses showed 

that the inhibiting effect ofFB1 was highly significant (P <0.001) for the fongal strains tested, 

and that significant intra-strain differences occurred(!' <O. 00 J ). P. expansum, B. cinerea and 

A. alternata were the only test fungi that were completely inhibited by FB 1 . Concentrations of 

FB 1 higher than 1 mM prevented the germination of P. expansum completely. The germination 

ofbothB. cinerea and A. alternata was completely inhibited at a FB, concentration of40 mM 
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(Table I). 

The percentage germination of all test fungi was influenced when grown in the presence 

ofFB1 compared to their control cultures (Figs. 3-7). The mean percentage germination over 

time for F verticillioides, .F gramineamm, F proliferatum, P. expansum and A. altemala 

was numerically faster in the control cultures on PDA than in FB 1 amended PDA. The 

germination rate in control cultures for F globosum (Figure 4a), A. flavus (Figure 6a) and 

B. cinerea (Figure 7b ), were similar to the corresponding FB 1 amended cultures. The conidia 

of F subglutinans germinated faster than the controls at increased concentrations ofFB 1. 

Of the nine fungi tested, F subglutinans was the only fungus which germinated faster 

in the presence of high concentrations of FB, compared to the controls (Fig. 4b). Although a 

complete inhibition of germination was found at intermediate concentrations of FB1 at 0. 5, l, 

and 5 mM (Figure 8a), higher concentrations between 7.5 and 40 mM stimulated growth and 

longer germ tubes than in the control cultures were formed (Figure 8). FB1 amended cultures 

reached 100 % germination one hour earlier than control cultures. However, the tips of the 

germ tubes became swollen and stunted soon after germination (Figure 8b ). The controls 

formed normal germ tubes with several septa (Figure 8c). 

The initial microscopic evaluations of the conidial germination and percentage 

germination of the conidia of F verticillioides, F globosum and A.flavus, indicated that these 

fungi were slightly resistant to FB 1 with no obvious differences in germ tube lengths between 

control and test cultures. However, statistical analyses indicated that germ tubes were 

significantly inhibited compared to the controls at 100 % germination (P <0.001) (Table 1, 

Fig. 8). Comparison of images ofA.flavus at different FB 1 concentrations revealed that the 

germ tubes of the control cultures were not only thicker, but that the conidia were also slightly 

bigger than conidia germinating in the presence of high concentrations of FB1 (Images not 
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included) 

At FB1 concentrations of 0.25 mM, A. altemata. P. expansum. B. cinerea and 

F graminearum gave reduced germ tube lengths, while at 1 mM and higher concentrations, 

all except F subglutinans. produced shorter germ tubes (Table I). Thus, distinct differences 

between A. alternata, P. expansum, B. cinerea and the remaining six fungi were observed, 

with A. alternata being very sensitive to FB 1. 

Control cultures of A. alternata, B. cinerea and P. expansum showed normal 

germinating conidia with relatively long and thick germ tubes (Figs. 9-11 ), and the germ tubes 

of A. alternata developed septa soon after gennination (Figure 9a-c). In the presence ofFB1 

at concentrations ranging between 2. 5 and 20 !Tu\'l, the germ tubes became swollen at their tips 

for all three these fungi. Stunting occurred before any septa were formed in B. cinerea and 

P. expansum. At concentrations higher than 20 mM, conidia of A. altemata, B. cinerea and 

P. expansum, initially produced very short germ tubes, which did not develop any further at 

longer incubation. 
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Table 1. Mean germ tube length (µm) of nine fungi at different concentrations of fumonisin B1 after 100% gennination of control conidia in PDA at 

25°C. 

Fungi Tested 

Control 0.25 

Fusarium verztciilioides MRC 826 12 09 11.67 

Fusarium proliferatwn MRC 7 431 20.69 19.53 

Fusarium subglutinans MRC 1077 18.66 NM 

Fusarium graminearum MRC 1785 18.38 16.85 

Fusarium globosum MRC 6647 29.73 29.14 

Bot1J1tis cinerea MRC 1364 27.ll 26.45 

Alternaria altemata MRC 1843 68.72 40.46 

Aspergi/lusflavus MRC 3791 18.19 17.82 

Penicil/ium expansum MRC 7200 13.97 10.73 

Ger1n tubes not measured 

NM ~ Germ tubes not measurable due to swellings 

ng ~ No ger1nination 

Fumonisin concentrations (mM) 

1 5 

Genntube length (,am) 

10.50 

17.95 

ng 

13.38 

25.15 

19.11 15.31 

20.96 11.55 

16.90 16.51 

ng ng 

10 

8.93 

14.36 

NM 

1107 

26.83 

13.21 

9.49 

16.46 

ng 

40 

8.26 

12.98 

NM 

8.70 

2101 

ng 

ng 

14.53 

ng 

-e;; 
0 
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Figure 2. Effect of FB1 at different concentrations on the germ tube length of Fusarium 

verticillioides , F. proliferatum, F. globosum, F. graminearum, P. expanswn, A. jlavus, A. 

alternata and B. cinerea. The Scatter plot graph represents the mean Log germ tube length (>40 

determinations per fungus) at different FB1 concentrations. F. subglutinans not included in graph-

germ tubes not measurable due to swellings. 
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Figure 3. Mean percentage germination of (a) Fusarium verticillioides (MRC 826)and (b) 

F. prol/feratum (MRC 7431) at different concentrations ofFB1 after incubation on PDA at 25°C, 

compared to 100 % germination of control cultures. 
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Figure 4. Mean percentage germination of (a) Fusarium globosum (MRC 6647)and (b) 

F subglutinans (MRC 1077) at different concentrations ofFB1 after incubation on PDA at 25°C, 

compaied to 100 % germination of control cultures. 
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Figure 5. Mean percentage germination ofFusarium graminearum (MRC 1785) at different 

concentrations ofFB 1 after incubation on PDA at 25°C, compared to 100 % germination of 

control cultures. 
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Figure 6. Mean percentage germination of (a) Penicillium expansum (MRC 7200) and (b) 

Aspergillus jlavus (MRC 3791) at different concentrations ofFB1 after incubation on PDA at 

25°C, compared to I 00 % germination of control cultures. 
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Figure 7. Mean percentage germination of (a) Alternaria alternata (MRC 1843) and (b) 

Botrytis cinerea (MRC 1364) at different concentrations ofFB1 after incubation on PDA at 25°C, 

compared to 100 % germination of control cultures. 
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Figure 8. Stimulatory effects on the germination of Fusarium subglutinans conidia at increasing concentrations ofFB1 in PDA at 25°C. (a) Conidia 

did not form germ tubes after 7hrs incubation and exposure to intermediate concentrations of 0.5 to 5mM FB1• (b) Swollen germ tube tips developed 

after7hrs incubation exposed to higher FB1 concentrations (7 .5 - 40mM). ( c) Germ tubes rapidly developed into hyphal growth after 6hrs incubation 

in control cultures. 
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Figure 9. Inhibitory effect of increasing concentrations ofFB1 on the germination ofAlternaria alternata. (a) Control (b) 2.5-20mM FB1and ( c) 40mM 

FB1 in PDA after 4hrs incubation at 25°C. 
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Figure 10. Inhibitory effect of increasing concentrations ofFB 1 on the germination of Botrytis cineria. (a) Control (b) 2.5-20mM FB1and ( c) 40mM 

FB1 in PDA after 7hrs incubation at 25 °C. 
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Figure 11. Inhibitory effect of increasing concentrations ofFB 1 on the germination of Penicillium expansum. (a) Control (b) 2.5-20mM FB1and (c) 

40mM FB 1 in PDA after 7hrs incubation at 25 °C. 
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Discussion 

The FB,-produci11g h1sarium species isolated from maize, i.e. F. verticillioides, 

F. globosum and F. pro!iferatum showed a decrease in germ tube length with an increase in 

FB1 concentrations, compared to the control cultures. Thus, indicating that these fungi can 

only tolerate their own toxic metabolite to a certain extent. However, amongst two non­

producing Fusarium spp., i.e. F. subglutinans and F. graminearum also isolated from maize, 

the former was induced to germinate faster in the presence ofFB, but soon developed stunted 

germ tubes, and the latter one developed shorter germ tubes thai1 control cultures. The most 

sensitive fungi tested were species not isolated from maize, i.e. A. alternala, B. cinerea and 

P. expansum, which did not germinate at higher FB1 concentrations. 

The conidial germination bioassay was more sensitive in the detection of the antifungal 

activity of FB, tha11 the Petri dish bioassay. Since the MIC's of FB1 to various fungi was 

defined on the basis of visible mycelial growth (Keyser et al, 1999), this technique allowed the 

conidia to germinate and produce germ tubes for monitoring of the growth inhibition and 

fungicidal activity of FB,. The MIC's of FB, for visible mycelial growth were closely 

comparable to those obtained from conidial germination 

It is important to note that FB, did not completely inhibit gennination of 

F. verticillioides, F globosum, F prol/feratum, F graminearum and A. jlavus at 

concentration higher than 0.25 mM, but only reduced germ tube length. FB, at these 

concentrations was equally effective in suppressing the germination rate of all but 

F subglutinans, but still allowed some conidia to germinate, only slower. This investigation 

therefore has demonstrated that FB1 has a dose-dependent effect on the rate of germination 

and the subsequent germ tube elongation on the fungi tested except for F. subglutinans. 

http://etd.uwc.ac.za/



142 

There are reports that F verticil/ioides can inhibit maize kernel infection by A. jlavus 

in inoculated maize ears and lead to reduced atlatoxin contamination in kernels (Wicklow et 

al., 1988; Zummo and Scott, 1992). The results reveal a significant reduction in germ tube 

length of A. jlavus with increasing FB 1 concentrations. 

The conidia of F subglu tinans were induced to germinate faster than the controls with 

increased concentrations of added FB,. Apart from this stimulatory effect on the % 

germination, these germ tubes showed swellings on their tips while tbe controls formed septa 

and branches. This stimulatory effect on conidium germination diminished with time, as 

swellings on the tips appeared and stunted germ tubes were formed. No measurable germ tube 

lengths could be determined for F subglutinans at these stimulatory conditions, due to 

stunting of germ tubes. No tests were performed on the viability ofungerminated conidia. 

The results of the germination studies clearly show strong antifungal activity for FB 1 

towards B. cinerea, P. expansum, A. alternata and F graminearum, confirming the findings 

of Keyser et al. ( 1999) that FB1 at similar concentrations completely inhibited mycelial growth 

of these four fungi. This antifungal assay also allowed conidia to germinate almost 

synchronously, within short periods of time of incubation, to obtain reproducible results. 

Longer incubation could result in rapid growth of germ tubes, and hyphal ormycelial mass may 

increase rapidly. 

One of the concerns in the development of a standard method for the in vitro 

susceptibility testing of filamentous fungi is the nature of the inoculnm. It has been shown that 

the MIC's ofantifungal agents for filamentous fungi are dependent on the nature and the size 

of the inoculum (Manavathu et al., 1996; Guarro et al., 1997; Keyser et al., I 999). There are 

no universally accepted procedures forthe determination offungal susceptibilities. Variabilities 

in the test results are related to inoculum size, medium composition, medium pH, incubation 
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temperature, incubation time and end point criteria (National Committee for Clinical 

Laborat01y Standards, 1985). The use of conidia is therefore an attractive option in a study like 

this. This technique make use of freshly harvested conidia allowing them to germinate in the 

presence of the specific antifungal agent (FB 1). This method demonstrated that the germination 

process was also affected by FB1. 

The mechanism by which FB1 enters fungal cells has not been elucidated. It has been 

speculated by Keyser et al. (1999) that FB1 and Amphotericin B may have similar modes of 

action on the ergosterol pathway of fungi. If so, increases in membrane permeability, which 

could be caused by high FB1 concentrations, could also enhance penetration of FB1 to the 

fungal cell interior, and this might account for the increased inhibition of germination, stunting 

and swollen hyphal tips. 
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SUMMARY 

Fi1sarium verticillioides is a very important mycotoxin-produeing fungus associated with 

maize. F verticillioides produces a group of mycotoxins known as fumonisins under suitable 

environmental conditions. A series of studies was designed to provide information regarding 

some of the factors associated with the production offumonisin B1 (FB1) in maize patties and 

MYRO liquid medium. Our investigation together with previous studies have detailed the 

important influence of several factors on the production of fumonisins by F verticillioides 

strains. To understand why these strains are able to produce these toxins, an investigation into 

the complex interaction that occurs between biotic and abiotic parameters and their impact on 

fumonisin production was necessary. The results reflect the interacting factors and the 

intraspecific differences between strains, which may also be present in field conditions. 

The parameters that were varied under a predetermined set of culture conditions, 

included initial moisture content of maize patty cultures, temperature, initial pH and the 

addition of the fumonisin precursors, L-alanine and L-methionineto the cultures. Investigations 

into the three-way interactions of initial maize patty moisture content (30 ml water to 30g of 

maize), L-methionine (0.3 %) and temperature (25°C), resulted in the highest yield ofFB1 

(5777.26 µgig) produced by MRC 4316. In contrast, MRC 826 was negatively affected, 

producing lower levels ofFB1 (3492.24 µg/g), compared to MRC 4316 at an initial moisture 

content (20 ml water to 30 g maize), L-methionine (0.3 %) and 25 °C. An American strain of 

F verticillioides MRC 7424 (= NRRL 13616), produced the highest levels of FB, (116 

µg/ml), while the South African isolates, MRC 4316 and MRC 826, produced lower FB1 levels 

(93 and 62 µg/ml, respectively) in MYRO liquid medium. 

In general, FB1 production in maize patty cultures far exceeded levels obtained in liquid 
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shake cultures. It appears that not only the ability ofa particular strain of F. verticillioides, but 

the interaction of a variety of physiological and nutritional factors and the culture medium, are 

important in the production of FB,. Thus, variation of a single factor such as temperature 

under field conditions due to seasonal change, may therefore have a major effect on fomonisin 

production. A chain reaction may occur when changes in moisture, pH, etc. take place, which 

may influence fumonisin production further. 

Lyophilisation of fungal cultures proves to be an excellent method to preserve a wide 

range of fungi over long periods of time. It is, however, necessary to determine the viability 

of conidia stored in lyophilised vials at 4 ° Con a regular basis. At present, plate count methods 

remain the most valid technique for the detection of the viability of lyophilised conidia. 

Membrane-permeant nucleic acid-binding dyes (FUN-I) are viability stains that are relatively 

new flourescent probes for assessing the viability of metabolically active yeast cells. The 

purpose of this study was to microscopically determine the viability oflyophilised conidia of 

Fusarium and A lternaria species, using the yeast, Saccharomyces cerevisiae, as a control. 

FUN-1 viability stain was compared to two other staining methods, i.e. ethidium bromide (EB) 

and methylene blue (MB) and the viability of the conidia was compared to colony-forming 

units (CFU) on solid media as a control. For the purpose of determining or screening for 

percentage viability in a specific inoculum, results indicate that EB can be used in the case of 

lyophilised conidia, and MB in the case of freshly harvested conidia. Although FUN- I are 

recommended as a good way to determine the cell viability of a fungus, it needs relatively 

complicated procedures and has a time limit in which the stain can be used .. The result of this 

study emphasize that the use of dyes to determine viability of lyophilised conidia require a 

critical definition of protocols for a specific fungal species, and that a good correlation with 

CFU needs to be demonstrated. The findings of this study could find useful applications in 
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various studies on living and dead conidial populations. 

The diverse toxicological effects of fumonisins m animals and plants raised the 

possibility that fumonisins may also inhibit the growth of filamentous fungi. This study 

investigated the antifungal activity of FB1 to some h1sariu111 and other fungal species. The 

sensitivity of these fungi was tested by an agar-diffusion method on PDA plates. FB1 inhibited 

the myceliaJ growth of five of the nine fungi tested. The FB1-producing Fusarium species 

isolated from maize, i.e. F verticil/ioides, F glohosum and F proliferatum were resistant to 

FB1 even though a small inhibition zone at the highest FB1 concentration of 40mM was noted 

in the case of F. proliferatum. However, amongst two non-producing Fusarium spp. also 

isolated from maize, one (F subglutinans) was resistant and one (F graminearum) was 

sensitive. The most sensitive fungi tested were non-producing species not isolated from maize, 

i.e. A lternaria alternata, Botrytis cinerea andPenicillium expansum. The minimum inhibitory 

concentration ofFB1 ranged between 0.25-0.SmM for A. alternata, 1-SmM for P. expansum 

and B. cinerea and 5-1 OmM for F. graminearum, while the other fungi tested showed no 

sensitivity to FB1 This is the first report on the antifungal activity ofFB1 to filamentous fungi. 

Another study investigated the effect of FB1 on the germination of freshly harvested 

conidia of Fusarium and some other fungal species. The FB1-producing F'usarium species 

isolated from maize, i. e. F vertici llioides, F. globosum and F. pro lifer alum showed a decrease 

in germ tube length with an increase in FB1 concentrations. This indicated that these fungi can 

tolerate their own toxic metabolite to a ce11ain extent. However, amongst the two non­

fumonisin producing Fi1sarium spp. examined, i.e. F. subglutinans and F. graminearum, 

isolated from maize, F. subglutinans was induced to genninate faster in the presence ofFB1 

but soon developed stunted germ tubes, while F graminearum developed shorter germ tubes 

compared to the control cultures. The most sensitive fungi tested were species not isolated 

http://etd.uwc.ac.za/



152 

from maize, i.e. A. alternata, B. cinerea and P. expansum, which did not germinate at higher 

FB1 concentrations at all. Statistical analyses showed that the inhibiting effect of FB1 was 

highly significant (P <0.001). The conidial germination bioassay was more sensitive in the 

detection of the antifungal activity ofFB1 than the petri dish bioassay. The minimum inhibitory 

concentrations ofFB1 for visible mycelial growth were closely comparable to those obtained 

from conidial germination. 

Results of these studies provide considerable information on the parameters affecting 

the production of FB 1 and will be of great benefit in further studies focussing on fumonisin 

prodnction. 
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