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ABSTRACT 

 

Identifying and mapping invasive alien plant individuals and stands 

from aerial photography and satellite images in the central Hawequa 

conservation area 

 

A.T. Forsyth 

 

MSc Thesis, Department of Biodiversity and Conservation Biology, 

University of the Western Cape 

 

The Cape Floristic Region, situated at the southern tip of Africa, is one of the 

world’s most botanically diverse regions. The biodiversity of this region faces 

various types of threats, which can be divided into three main categories, namely 

increasing urbanisation, agriculture expansion, and the spread of invasive alien 

vegetation. It has been shown that botanically diverse areas are more prone to 

invasion by invasive alien plant (IAP) species. The Hawequa conservation area, 

in the south-western Cape, is particularly botanically diverse, such that it is very 

prone to aggressive invasion by IAP species. Therefore, conservation 

management of the Hawequa conservation area urgently need to map, prioritise 

and clear IAP species. Due to the topographical complexity of this mountainous 

area, it is not possible to map the distribution of IAP species throughout the 

protected area by conventional field methods. Remote sensing may be able to 

provide a suitable alternative for mapping.  

 

The aim of this research was to assess various image classification methods, 

using two types of high-resolution imagery (colour aerial photography and 

WorldView-2 satellite imagery), in order to map the distribution of IAP species, 

including small stands and individuals. Specifically, the study will focus on 

mapping Pinus and Acacia spp. in a study site of approximately 9 225ha in the 

Hawequa conservation area.  
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Supervised classification was performed using two different protocols, namely 

per-pixel and per-field. For the per-pixel classification Iterative Self-Organising 

Data Analyses Technique (ISODATA) was used, a method supported by ERDAS 

Imagine. The per-field (object-based) classification was done using fractal net 

evolution approach (FNEA), a method supported by eCognition.  

 

The per-pixel classification mapped the extent of Pinus and Acacia spp. in the 

study area as 1 205.8 ha (13%) and 80.1 ha (0.9%) respectively, and the per-

field classification as 1 120.9 ha (12.1%) and 96.8 ha (1.1%) respectively. 

Accuracy assessments performed on the resulting thematic maps generated 

from these two classification methods had a kappa coefficient of 0.700 for the 

per-pixel classification and 0.408 for the per-field classification. Even though the 

overall extent of IAP species for each of these methods is similar, the reliability of 

the actual thematic maps is vastly different.  

 

These findings suggest that mapping IAP species (especially Pinus spp.) stands 

and individuals in highly diverse natural veld, the traditional per-pixel 

classification still proves to be the best method when using high-resolution 

images. In the case of Acacia spp., which often occurs along rivers, it is more 

difficult to distinguish them from the natural riverine vegetation. Using 

WorldView-2 satellite images for large areas can be very expensive 

(approximately R120 per km2 in 2011), but in comparison with the cost of 

mapping and the subsequent clearing, especially in inaccessible areas, it might 

be a worthwhile investment. Alternative image sources such as the high-

resolution digital colour infrared aerial photography must be considered as a 

good source for mapping IAP species in high altitude areas.  
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Chapter 1: GENERAL INTRODUCTION 

 

1.1.  Introduction  

 

"Human communities and natural ecosystems worldwide are under siege from a 

growing number of destructive invasive alien species" (Richardson & van Wilgen 

2004 p 45). 

 

The invasion of indigenous vegetation by invasive alien plants (IAP) species is 

amongst the biggest threats to natural ecosystems worldwide (Chornesky & Randall 

2003, Fridley 2008, Huang & Asner 2009). Aggressive weeds can penetrate and 

replace indigenous vegetation (Stow et al. 2000; Henderson 2001). A study by 

Rouget et al. (2003) has shown that 2.6% or 2 290 km2 of the Cape Floristic Region 

(CFR) is currently transformed by medium to dense stands of IAP species, mainly 

trees and shrubs such as Australian Acacia spp., Hakea, and European Pinus spp. 

(Lloyd et al. 1999). The fynbos biome (Rebelo et al. 2010), which falls mostly within 

the CFR (Goldblatt & Manning 2002), is the most extensively invaded vegetation 

type in South Africa (Henderson 2007). 

 

Non-native plants have been, both intentionally and unintentionally, brought into 

Southern Africa and have naturalised. These plants are reproducing and spreading 

across the country with, or without, assistance from people (Henderson 2001).  

 

Due to the threat, extent and rate of invasion of IAP species in South Africa, the 

government has created two regulations to deal with the monitoring, control, and 

eradication of IAP species, namely the Conservation of Agricultural Research Act, 

Act 43 of 1983 (CARA) and the National Environmental Management Biodiversity 

Act, Act 10 of 2004 (NEMBA). 

 

Many initiatives to manage IAP species have been established. It has been shown 

that clearing IAP species yield as much water as a new dam (Van Wilgen et al. 

1998), and is clearly cheaper (Marais et al. 2004; Turpie 2004). The Working for 

Water (WfW) programme was started in 1995, with the mandate to coordinate and 

conduct the management of IAP species in South Africa. This programme is now 
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also leading other management initiatives and is the biggest programme of its 

nature in the world (Richardson & Van Wilgen 2004). The functions of the WfW 

programme are based on an integrated water resources management approach, 

which outlines goals such as (i) ensuring sustainable water runoff, (ii) conserving 

biodiversity, (iii) job creation, training, and capacity building, (iv) empowering small 

emerging contractors from historically disadvantaged communities, and (v) the 

eradication of IAP species (Van Wilgen et al. 1998, Enright 2000). Studying the cost-

effectiveness of clearing IAP species, by comparing it with the cost of developing 

more water supply schemes and also by the link it has in socioeconomic 

development through job creation, made it possible for this programme to obtain 

funding from government and, later, from the private sector and foreign aid (Van 

Wilgen et al. 1998). 

 

Through the Cape Action for the People and the Environment (C.A.P.E.) 

programme, an invasive alien species strategy was compiled. The strategy was 

launched on 28 August 2009. The development of this strategy was funded through 

the Global Environment Facility (GEF) through the World Bank. The six main goals 

set out in the strategy are (i) “around implementation in the appropriate policy and 

legislative frameworks”, (ii) coordinate the activities of the various role-players 

through strategic planning and prioritisation, (iii) proper education and awareness-

raising, “institutional arrangements and capacity building”, (iv) “prevent new 

invasive species through early detection and rapid response”, (v) “the 

implementation of integrated control measures”, (vi) “and adaptive management 

informed by research, monitoring and evaluation” (Stafford & Van Vuuren 2009). 

 

1.2.  IAP species  

 

In order to plan and conduct IAP species management, maps of where each species 

occur and in what densities, are required.  

 

The spatial scale used when mapping IAP species is crucial as it can affect the 

evaluation of the distribution and abundance of IAP species, as well as the 

compiling of management plans for clearing and monitoring spread. A study done by 

Foxcroft et al. (2009) in the Kruger National Park illustrated how the scale selection 
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can affect the results. This research showed that when using 0.1 x 0.1 km cells, only 

0.4% of the park is invaded whereas when using quarter-degree cells then more 

than 90% of the park is invaded. 

 

The mapping of IAP species has been done, mainly on demand, for specific 

projects, at various scales, and for specific areas.  

 

For studies like the C.A.P.E. project (Cowling et al. 1999), the lack of useful 

distribution data for IAP species, at a scale useful for analysis, was identified. 

Therefore, during the C.A.P.E. project, threats such as IAP species were mapped at 

a scale of 1:250 000 using remote sensing. This mapping was done by Lloyd et al. 

(1999) using LANDSAT TM satellite images, dated between 1997 and 1998. 

Consequently, the distribution maps produced by this study are both too old and too 

coarse to be useful for planning clearing action at reserve level. 

 

Mapping the potential spread of IAP species was conducted by Rouget et al. (2004), 

which used the South African Plant Invaders Atlas (SAPIA) data. SAPIA database 

collects information on species occurrence, as well as habitat and abundance, per 

quarter-degrees square (QDS) grids, each grid covering approximately 25 x 27 km. 

The SAPIA project was very active between 1994 and 2000, but since then, has 

slowed down due to lack of funding, with only 10 000 records added (Henderson 

2007). Therefore the SAPIA data is too coarse and not sufficiently current to use in 

on-reserve clearing prioritisation. In summary, neither of the above studies can give 

us IAP species distribution (density and age class) maps at sufficient resolution over 

the whole province. 

 

In order to do prioritization of clearing efforts across the whole province, at a 

conservation area level, more detailed mapping of the current distribution of IAP 

species is needed. This information must also be continually updated to support 

annual funding applications for clearing, based on revised priorities. 
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1.3.  Selection of IAP species to map  

 

When conducting the mapping of IAP species, which species to focus on is very 

important.  

 

A study by Le Maitre et al. (2000) on the impact of IAP species on water usage in 

South Africa showed that the worst invaders are Melia azedarach, P. pinaster, P. 

patula, and A. mearnsii. This is confirmed by Henderson (2007) in her summary of 

the IAP species situation in South Africa. She listed A. mearnsii as the most 

prominent invasive species followed by A. saligna, A. cyclops, and P. pinaster in the 

fynbos biome. Richardson & van Wilgen (2004) summarise the principal invaders, in 

their study of the ecological impacts of IAP species in South Africa, as the genera 

Acacia, Hakea and Pinus. 

 

Acacia spp. in particular A. mearnsii originated from south-east Australia and 

Tasmania. This is an evergreen tree that can grow up to 15 m tall (Henderson 

2001). These trees are mainly used for firewood and construction poles (Henderson 

2001). There is biological control available for this species in the form of seed 

feeders and fungus spray (Henderson 2001). A. mearnsii was categorised as very 

widespread and abundant, covering both riparian and terrestrial habitats (Nel et al. 

2004). This species is listed on the CARA as category 2, which means this species 

can be planted for commercial use in demarcated areas, but any spread beyond the 

boundaries must be controlled (Nel et al. 2004). 

 

Pinus spp., in particular P. pinaster is a coniferous tree that grows up to 30 m tall. 

These trees were mainly introduced for timber and originated from the 

Mediterranean (Henderson 2001). The mountain and lowland areas in the fynbos 

are the main areas where these species spread (Richardson 1998; Henderson 

2001). Pinus pinaster was categorised as widespread and abundant, covering many 

landscape habitats (Nel et al. 2004). This species has also been listed as a CARA 

category 2. 
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1.4.  Remote Sensing and GIS in IAP species mapping  

 

GIS and remote sensing are used as tools to map the occurrence and measure the 

spread of IAP species, and to support the design of management strategies, such 

as prioritising clearing actions (Richardson et al. 2004). These tools also provide a 

baseline for monitoring future expansion of IAP species (Underwood et al. 2003). 

 

Remote sensing is the observation of the earth to gather information from a 

distance, by means of measuring reflectance or emission of electromagnetic energy, 

using remote sensing instruments onboard (Campbell 1996). This has become a 

very useful source of information for various environmental studies in recent years, 

due to an increase in the availability of digital imagery. Remote sensing has been 

shown to provide an efficient way of mapping IAP species distribution and spread 

over time, for example the mapping of giant salvinia (Salvinia molesta) using 

satellite imagery in Texas, United States of America (USA) (Everitt et al. 2008), 

mapping of alien Australian pines (Casuarina spp.) in south Florida (Xie et al. 2008), 

and the mapping of Acacia spp. using infrared digital camera imagery along major 

roads, West Coast, Western Cape, South Africa (Stow et al. 2000).  

 

There are various remotely sensed images that have been used for mapping land-

based features, readily available through Satellite Application Centre (SAC). Some 

of these images are used more frequently than others due to the costs of the images 

and over-pass times. The most commonly used are Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) (Hirano et al. 2003), Satellite Pour 

l’Observation de la Terre (SPOT) (Hirano et al. 2003), Moderate-resolution Imaging 

Spectroradiometer (MODIS) (Huete et al. 2002), and the three Landsat systems, 

namely Multispectral scanner (MSS), Thematic mapper (TM), and Enhance 

Thematic Mapper (ETM) (Lloyd et al. 1999). Other images, less frequently used due 

to the high costs, are IKONOS (Dial et al. 2003), QuickBird 2 and WorldView-2 

(DigitalGlobe 2012), National Oceanographic and Atmospheric Administration-

Advanced Very High Resolution Radiometric (NOAA-AVHRR) (Huete et al. 2002), 

and EROS A1 (Westin & Forsgren 2001).  
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Remotely sensed images come in various formats and resolutions that present 

limitations to its uses at regional and local level (Huang & Asner 2009). Satellite 

images of a moderate spatial resolution (10 m to 1 km resolution such as MODIS, 

ASTER, SPOT, and Landsat) have frequently been used for studying terrestrial 

vegetation at regional level. However, it has been difficult to extract the identity and 

distribution of IAP species, as they often blend with the background vegetation due 

to the size of the pixel in relation to the size of the tree or shrub that needs to be 

mapped and the spectral similarity (Huang & Asner 2009). Moderate spatial 

resolution imagery was only successful at mapping large stands of IAP species, and 

only when these images were taken in the right season. For example Acacia spp. 

stands can be mapped from moderate spatial resolution imagery if these images are 

taken during the flowering season (Huang & Asner 2009). 

 

A study by Huang & Asner (2009) of IAP species mapping in the USA showed that 

high spatial resolution imagery (less than 10 m resolution such as QuickBird 2, 

IKONOS, and WorldView-2) does allow more accurate classification of individual 

trees and shrubs of IAP species, in particular at a local level. Standard colour aerial 

photography are the images with the highest spatial resolution available for the 

research that can be used, but only if the colour aerial photographs were taken 

during the flowering season of the plants (Huang & Asner 2009). Additionally, 

extensive manual processing is required, which means it’s only feasible to use in 

small areas (Underwood et al. 2003). Digital colour infrared aerial photography is 

great (Stow et al. 2000) but was not available for this study area in 2010. Historical 

analogue colour aerial photography is readily available and since 2010 the digital 

colour infrared aerial photography is becoming more readily available in South 

Africa. These images are now regularly flown and updated by the national 

department and are freely available for use by other institutes and general public. 

 

This research will be using two sets of high spatial resolution imagery from different 

sources, namely analogue colour aerial photography (from now only referred to as 

colour aerial photography) and WorldView-2 satellite images. The analogue colour 

aerial photography cannot be used in the actual classification due to insufficient 

spectral information and artefacts caused by inconsistent tilting of the plane 

(Campbell 1996) and correcting these will entail too much manual interpretation. 
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Therefore these images were mainly used as reference. The WorldView-2 satellite 

imagery provides the necessary spectral information, and at a fine enough 

resolution to map individual trees and shrubs. 

 

1.5.  Aim of study  

 

To investigate the use of the spectral reflectance information available in high-

resolution imagery, such as WorldView-2 satellite images, to map individual trees 

(for Pinus spp.) and stands (for Acacia spp.) of IAP species. 

 

The following questions are posed: (i) Can the proposed remote sensing methods 

distinguish Pinus spp. individuals from the surrounding natural vegetation? (ii) Can 

the proposed remote sensing methods distinguish Acacia spp. stands from the 

surrounding natural vegetation? (iii) Can density estimates for Pinus and Acacia 

spp. be calculated using the proposed remote sensing methods? 

 

1.6.  Objectives  

 

i. To review the relevant literature on the use of high-resolution satellite imagery 

and colour aerial photography, with particular reference to IAP species 

mapping. 

 

ii. To review the relevant literature on various methods and algorithms used to 

analyse remotely sensed imagery. 

 

iii. To perform image classification, in particular the mapping of IAP species and 

their densities, using two classification methods and assess the accuracy of 

each method. 

 

iv. To compare the results of the two methods based on accuracies achieved and 

efficiency of the classification (speed and ease). 
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1.7.  Fynbos biome  

 

The CFR, situated at the southern tip of the African continent, is one of the world’s 

“most botanically diverse regions” (Goldblatt & Manning 2002) (Figure 1 insert). The 

CFR is characterised by the presence of high species diversity, as well as by 

several endemic plant families (Cowling et al. 1992; Goldblatt & Manning 2002). The 

CFR (ca. 90 000 km2) covers an area less than 5% of the southern Africa 

subcontinent and the number of vascular plant species are 9 030 (Goldblatt & 

Manning 2002). This is remarkable for a temperate zone, in comparison with same 

size areas in the wet tropics (Cowling et al. 1992; Hobohm 2003; Rebelo et al. 

2010).  

 

The CFR overlay five biomes, which includes part of the fynbos biome (Goldblatt & 

Manning 2002). The fynbos biome covers the majority of the CFR (83%). The other 

four biomes are succulent karoo (11%), albany thicket (3%), azonal vegetation (2%), 

and forests (1%) (Mucina & Rutherford 2006) (Figure 1). 
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Figure 1.  The Cape Floristic Region (CFR) boundary (in red) overlays five biomes, namely 

the fynbos biome, succulent karoo biome, albany thicket biome, azonal vegetation, and 

forests biome.  

 

Fynbos typically grows on nutrient-depleted, sandstone-derived, well-leached, acidic 

soils (Campbell & van der Meulen 1980; Rebelo et al. 2010). The vegetation is 

dominated by sclerophyllous, evergreen shrubs and forest trees with hard, leathery, 

thick leaves (Read et al. 2006). Various authors (Moll et al. 1984; Rebelo et al. 

2010) highlight the predominance of restoids, ericoid, and proteoid as defining 

characteristics of fynbos. These plant species occur in areas with a rainfall between 

600 to 800 mm per annum (Rebelo et al. 2010). Fynbos has high species richness 

of birds, mammals, frogs, reptiles and insects, but in low quantities, that play a major 

role in seed dispersal and pollination (Rebelo et al. 2010). 

 

Fynbos is influenced by fire and needs to burn in order to sustain its plant species 

(Rebelo et al. 2010; Van Wilgen et al. 2010). After fires, many species release their 

seed and many other species resprout (Rebelo et al. 2010). Fynbos species 

become senescent when not burnt, allowing forest and thicket plant species to 

encroach (Rebelo et al. 2010).  
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The study area falls within the fynbos biome. Mucina & Rutherford (2006) listed the 

vegetation type name as Hawequa Sandstone Fynbos. Most of the study area is 

covered with mountain fynbos with patches of Afrotemperate forests in the deep 

kloofs. The study area falls within proclaimed protected areas. The only big threat to 

this area are IAP species, and in particular the Pinus spp.  
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Chapter 2: LITERATURE REVIEW 

 

2.1.  Introduction  

 

After direct habitat destruction, invasion by alien plants is considered the second 

biggest global threat to biodiversity (Vitousek et al. 1997; Chornesky & Randall 

2003, Fridley 2008, Huang & Asner 2009). According to Vitousek et al. (1997), 

humans are the biggest contributing factor to the spread of IAP species. In South 

Africa, the presence and spread of invasive alien species has been studied for a 

long time. 

 

Research on the management of IAP species has been conducted in South Africa 

since the 1930s (Richardson & van Wilgen 2004). Richardson & van Wilgen (2004) 

summarised the main research initiatives done in South Africa, namely (i) biological 

control of IAP species done by the Department of Agriculture, Plant Protection 

Research Institute, University of Cape Town, and Rhodes since 1930 which are still 

ongoing, (ii) catchment conservation research program by the South African 

Forestry Research Institute between 1973 and 1990, (iii) South African national 

program for ecosystem research by the Council for Scientific and Industrial 

Research (CSIR) between 1977 and 1985, (iv) Scientific Committee on Problems of 

the Environment (SCOPE), which is part of the program on biological invasions, 

done by the CSIR and other organisations, between 1982 and 1986, (v) SAPIA by 

the Plant Protection Research Institute since 1975 and still ongoing (Henderson 

2007); (vi) Invasive plant ecology program done by the Institute for Plant 

Conservation since 1994 and still ongoing (Higgins et al. 1999), and (vii) WfW 

program managed by the Department of Water Affairs since 1996 and still ongoing. 

Various analyses have been done on the cost of the management and clearing of 

these invasive alien species, and in particular IAP species, but not on the cost of the 

above research. 

 

The clearing of IAP species is very costly, e.g. it can cost up to R2 000 per hectare 

to clear, and that does not even include herbicides (Marais et al. 2004). 

Unfortunately, much funding is spent on non-priority IAP species, such as Lantana 

camara, Chromolaena odorata (triffid weed) and Cactaceae (cacti) (Marais et al. 
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2004). Cost of clearing increases comparably with density of IAP species increase 

(Marais et al. 2004). For Acacia spp. to clear a sparsely infested area (0%-1%) costs 

R15 per hectare, and it increases to R1 927 per hectare for areas densely invested 

(75%-100%). It is, therefore, very important to prioritise and co-ordinate efforts and 

to share responsibility with landowners in clearing IAP species (Marais et al. 2004).  

 

The Richardson & van Wilgen (2004) article highlights that not enough emphasis 

when assessing the damage done by IAP species, is placed on all the other 

negative impacts these invasions have, other than the ecological impacts. Therefore 

this article lists several negative consequences that have a more direct impact on 

the social wellbeing of humans, such as:- the impact on water sources; the increase 

in fire intensities (causing soils to be more water repellent and leading to erosion); 

binding the sands that leads to erosion of beaches; providing undergrowth that leads 

to fires climbing into forest canopies; creepers destroying indigenous forest 

canopies; reduction in areas with grazing potential; reducing river areas that can be 

used in recreation such as canoeing and reducing fresh water feeding into estuaries, 

which reduces the frequency of river mouth breaching. 

 

The effects on agriculture, forestry, and human health have been widely studied 

(Richardson & van Wilgen 2004). Some of the direct consequences of IAP species 

in the agricultural industry are the reduction in palatable grazing by species such as 

Opuntia aurantiaca (jointed cactus) and Prosopis spp. (mesquite) (Sparks 1999).  

 

The forestry industry has been a major contributor to the introduction of IAP species 

to the country. The spread of species such as Pinus and Acacia spp. has its origin 

from the forestry industry (Le Maitre et al. 2002). The main reason for the 

introduction of these forestry species was due to the lack of natural fast growing 

trees that can be harvested (Le Maitre 1998). Undoubtedly, the forestry industry is 

very important to the country and economy, but the contribution that it has on the 

introduction of IAP species will have to be managed better as this has a direct 

impact on our scarce water resources (Le Maitre et al. 2002). 

 

The harvesting of wild flowers from indigenous fynbos is also affected by the 

displacement by IAP species (Van Wilgen et al. 2001). Studies summarised in Van 
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Wilgen et al. (2001) showed that harvest value of wild flower, for commercial or 

recreational use, has reduced from R67.90 per hectare to R7.00 per hectare, due to 

invasion of natural areas for harvesting. 

 

2.2.  IAP species: What it is 

 

Richardson et al. (2000) provide clear definition on what invasive alien species are. 

In his definition he clearly distinguishes between what is an alien species and what 

is an invasive alien species. Alien species, whether they are plants (for example 

Pinus spp.), animals (for example Oryctolagus cuniculus, the European rabbit) or 

micro-organisms (for example green algae), occur outside their country of origin, or 

in non-natural habitats, and are introduced through human activities, either by 

accident or on purpose. Invasive alien species are naturalised species that produce 

off-springs in such large numbers and which establish at considerable distance from 

the parent, such that it has the potential to spread over vast areas. These plants 

have overcome both geographical and environmental barriers and are spreading 

beyond the sites of introduction. These invasive alien species can be found in 

households (for example as pets or garden plants), on land (for example plants, 

birds, and mammals), or in water (for example fish species). 

 

The results from a study done by Robinson et al. (1995) confirmed the theory that 

areas with high species richness are more readily invested by IAP species.  

 

Invasive alien species are a key threat to biological diversity, worldwide (Chornesky 

& Randall 2003). Invasive alien species are harmful to the indigenous environment. 

These invasive alien species displace indigenous species. The impact these 

invasive species have can be local, by suppressing a single indigenous species or 

lead to the broader extinction of species and thus changing how ecosystems 

function (Chornesky & Randall 2003). The most documented causes of the species 

extinction are through predation, competition, parasitism, or disease.  

 

In South Africa the best source of information on the distribution of IAP species is 

the SAPIA database. This database covers South Africa, Lesotho, and Swaziland 

(Rouget et al. 2004). The SAPIA database catalogued 548 IAP species in South 
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Africa, Lesotho and Swaziland (Henderson 2007). Since 2007, a new summary of 

the status of IAP species has been compiled in the report by Henderson (2010). A 

further 106 IAP species have been added to the SAPIA database in the past five 

years. This brings the total number of IAP species to approximately 660. A further 

13 470 records have been added to the database in the past five years,  of which  

12 407 were based on roadside surveys done by Henderson, and a further 1 063 

records from members of the public. Only 24 records were added through the 

website and the rest of the records were submitted via e-mail directly to Henderson 

(Henderson 2010). 

 

Even through a new report on the status of IAP species in Southern Africa has been 

released; this information has not yet been used for further studies. The study done 

by Richardson & van Wilgen (2004) derived some statistics on the IAP species 

invasion situation in South Africa. These statistics were derived from the SAPIA 

data, as compiled in 2001. The fynbos biome, one of the smaller biomes, has fewer 

IAP species recorded than other species. In 153 QDS blocks only 156 species were 

recorded (in comparison to 294 species in 653 QDS blocks for savanna). In the 

fynbos biome, as many as 44% of the IAP species were recorded as abundant (in 

comparison to 25% for the Karoo). A more recent summary done by Henderson 

(2007) indicated that the fynbos biome was the second most invaded area, based 

on average abundance for all species per QDS. The database had 216 species 

recorded for this biome, with 47% of the QDS heavily invaded. These figures seem 

to indicate that, even though a lot of clearing effort is made, there seems to be an 

increase in species as well as abundance. This could also be due to how the SAPIA 

database is populated and data accuracy. 

 

2.3.  IAP species: Impact on ecosystems  

 

Chornesky & Randall (2003) quoted Charles Elton (1958) in that “species 

translocations due to human activities are transforming the biological world”. IAP 

species are spreading to the extent that it causes ecological and economic harm 

and can possibly affect human health (Chornesky & Randall 2003).  
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Fragmentation is caused through habitat loss or the transformation thereof, which is 

mainly due to land-use practices (Rouget et al. 2003). The Rouget et al. (2003) 

studies showed that approximately 1 394 km2 of the CFR is covered by dense 

stands  of  IAP species,  895 km2  by  medium dense stands of IAP species,  and  

60 067 km2 by low-density stands. Rouget et al. (2003) continued to predict that a 

further 27.2% to 32% of untransformed land could be invaded by IAP species. 

 

The most harmful impact that IAP species have is the way they alter the ecological 

processes that contribute to the community structure and ecosystems (Vitousek et 

al. 1997). This harm or disturbances include the suppression of indigenous species 

(Chornesky & Randall 2003). The transformation of natural ecosystems, caused by 

IAP species, is due to its excessive use of natural resources, like water, light, and 

oxygen (Richardson et al. 2000). 

 

Most of the research done in South Africa around the impact of IAP species, has 

been done in the fynbos biome, and these research indicated a rapid reduction in 

native plant diversity and abundance at small scale (Richardson et al. 1989). Further 

studies on the impact of dense stand of Acacia saligna, summarised by Richardson 

& van Wilgen (2004), highlighted the reduction in seed banks in the soil leading to 

localised extinction of indigenous species. IAP species and alien trees, in particular, 

can convert very diverse vegetation to single-species stands of trees (Van Wilgen et 

al. 1998). Furthermore IAP species can lead to hybridisation, which leads to the 

altering of the gene pool (Chornesky & Randall 2003).  

 

IAP species have an indirect impact that alters the behaviour of indigenous species 

(Chornesky & Randall 2003). For example, changes in the feeding behaviour of 

native bird species causing change in seed dispersal (Richardson & van Wilgen 

2004). These indirect impacts cause changes in the faunal communities and 

reduction in diversity thereof (Richardson & van Wilgen 2004). 

 

Other effects of IAP species, not already mentioned by Chornesky & Randall (2003), 

as summarised by Richardson & van Wilgen (2004) are the promotion or 

suppression of fires. IAP species have an effect on local fire patterns and intensities 

due to the increase in biomass and accumulating leaf litter (Richardson & van 
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Wilgen 2004). These accumulated leaf litter also cause change in the soil nutrients 

(Richardson & van Wilgen 2004).  

 

The presence of IAP species along watersheds affects the soil’s ability to repel 

water, leading to erosion (Richardson & van Wilgen 2004). The introduction of IAP 

species and subsequent heavy infestation of coastal zones stabilising sand 

movement (like dunes) lead to the reduction of beaches (Richardson & van Wilgen 

2004). 

 

Le Maitre et al. (2002) did a study in four catchments to investigate the reduction in 

water flow due to IAP species invasion. Other than the commercial forests, the main 

IAP species recorded in the Keurbooms catchment are Pinus, Hakea, and Acacia 

spp. In this catchment the commercial forests use 5.7% of the annual runoff and the 

IAP species use 22.1% of the annual runoff. 

 

The reduction of usable water for human need is, in part, a result of the increased 

usage of water by IAP species. Furthermore, the reduction in water flow in rivers has 

a detrimental effect on the ecology (Enright 2000). IAP species use more water than 

indigenous grasses and shrubs (Bosch & Hewlett 1982). The effects of IAP species 

on catchments in South Africa and the evidence of the higher use of water by these 

species were researched by the CSIR. The results, based on the Jonkershoek 

experiments, indicated a reduction in water runoff due to IAP species, of as much as 

350 mm per year (Van Wilgen et al. 1997). 

 

2.4.  Mapping of IAP species using remote sensing  

 

Several studies have been done to identify and map both IAP species individual 

trees and stands using various data sources and testing different techniques. In 

these studies various accuracies were achieved. A few studies are briefly 

summarised below, that illustrate the vastly different approaches to mapping IAP 

species tested.  

 

Rowlinson et al. (1999) mapped IAP species in riparian zones in KwaZulu-Natal, 

South Africa. In this study aerial videography, aerial photography and satellite 
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imagery were used to map IAP species and the accuracies achieved were examined 

for each of these data sources. The highest overall accuracy of 68.74% was 

achieved using the 1:10 000 black and white aerial photography, but this was by 

using a manual photo-interpretation technique. This is a more traditional method of 

mapping IAP species from aerial photography that can be time consuming for larger 

areas.  

 

The use of a single-chip colour-infrared digital camera that obtained inexpensive 

images were tested with mapping IAP species in the West Coastal Plain (north of 

Cape Town) and also whether individual trees species, as small as 1.5 m in 

diameter, could be identified. However, as the values for the near-infra red (NIR), 

red and green bands were not well separated, these type of imagery could not 

distinguish between native thicket clumps and Acacia stands (Stow et al. 2000). 

Consequently, this imagery was deemed unsuccessful at mapping IAP species at a 

species level. Whereas, the airborne colour-infrared photography with a spatial 

resolution of 0.5 m was used to successfully map Chinese tallow (Sapium 

sebiferum) in the coastal region near the border between Texas and Louisiana. An 

accuracy of greater than 95% was achieved (Ramsey III et al. 2002).  

 

At the Vandenberg Air Force Base, California, non-native plants were mapped using 

airborne visible/infrared imaging spectrometer (AVIRIS). This study area has 836 

plants species documented, of which a quarter is invasive alien plants, for example 

species such as iceplant (Carpobrotus edulis) and jubata grass (Cortaderia jubata). 

The AVIRIS data provided a pixel resolution of 4.5 m. Three techniques were 

applied to processing these images, namely minimum noise fraction (MNF), 

continuum removal, and band ratio indices. Then a maximum likelihood supervised 

classification was done. The accuracy achieved per processed image product are (i) 

76.2% (kappa coefficient = 0.70) for MNF, 54.9% (kappa coefficient = 0.44) for 

continuum removal classification, and 58.8% (kappa coefficient = 0.49) for the band 

ratio technique (Underwood et al. 2003). Underwood et al. (2003) indicated that 

even though MNF achieved the highest level of accuracy, the continuum removal 

classification using AVIRIS data proves most sufficient for mapping  C. edulis and  

C. jubata for future repetition of the same process. This study highlighted different 
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pre-processing techniques that can enhance the classification of IAP species from 

high-resolution imagery. 

 

Lawrence et al. (2006) sought to map Centaurea maculosa Lam. (spotted 

knapweed) in Madison County, Montana, at two sites that were infested at various 

densities. Hyperspectral imagery, obtained from the Probe-1 sensor, with image 

resolution of 3 to 5 m, was used. As for the study done by Underwood et al. (2003), 

a MNF transformation was performed to control the noise in the images. Lawrence 

et al. (2006) used the randomForest package in R statistical software to classify the 

imagery (R-project 2012). The producer’s and user’s accuracy achieved for the 

spotted knapweed were 60% and 76% respectively and for co-occurring vegetation 

was 93% and 86% respectively. The overall accuracy of 84% (kappa coefficient = 

0.56) was achieved. These results indicate the potential of using high-resolution 

imagery to map specific IAP species such as spotted knapweed, which is a relatively 

small plant.  

 

Hamada et al. (2007) mapped the presence of Tamarix spp. at two sites along the 

San Dieguito River, east of Lake Hodges, California, using airborne hyperspectral 

imagery. These images were obtained from the SOC-700 hyperspectral imaging 

sensor. A resolution of 0.5 m was obtained for these images with 120 hyperspectral 

bands. Three classification methods were tested, namely parallelepiped, root 

squared differential area, and mixture tuned matched filtering. An overall accuracy of 

70% to 95% was achieved with false detections between 15% and 30% (Hamada et 

al. 2007). This study showed that using high-resolution imagery, selecting four 

narrow wavebands proves reliable for mapping Tamarix spp. at a local scale 

(Hamada et al. 2007).  

 

Giant salvinia (Salvinia molesta), an aquatic fern indigenous to Brazil, was mapped 

at a study area located on Siepe Bayou in Huxley, Texas. QuickBird satellite 

imagery was obtained for this mapping. These images have a spatial resolution of 

2.4 m for the multispectral bands and 0.6 m for the panchromatic band. A composite 

of these images was subjected to unsupervised classification using Iterative Self 

Organising Data Analysis (ISODATA), a method used in ERDAS Imagine software. 

The overall accuracy obtained with this study was 92.9% (Everitt et al. 2008). This 
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study clearly illustrated that high-resolution imagery such as QuickBird can be used 

to map giant salvinia. 

 

These studies showed that good accuracies can be achieved using high-resolution 

imagery to map IAP species. The choice of method and data sources for a particular 

study must be considered carefully. 

 

2.5.  Choosing appropriate remotely sensed imagery for the research  

 

Remotely sensed imagery can vary in spatial and spectral resolutions (Lu & Weng 

2007). Key factors in selecting appropriate images, for a particular study, are spatial 

scale of the imagery in relation to the scale of the features that need to be mapped, 

as well as spectral characteristics required in the images in order to identify the 

study features. In general, when working at a local level, fine-scale resolution 

images are required (Lu & Weng 2007). In addition, the aim of the study is to map 

small stands of IAP species, as well as individual IAP species trees.   

 

There are numerous multispectral satellite image products available and in use in 

South Africa (Table 1). Some of the products mentioned below have been 

decommissioned and so no longer produce new images, but the historical imagery 

is still useful. Some of the multispectral satellite image products are available for 

download free of charge, whereas other products are quite costly to obtain. The 

SAC supports and routinely receives data from various satellites, namely (i) Terra 

and Aqua MODIS since December 2003, (ii) NOAA series of satellites since 

November 1984, (iii) SPOT 4 since June 1999, (iv) SPOT 5 since October 2006, (v) 

EROS A1 from 2001, and (vi) Landsat MSS, TM and ETM from 1972 (Satellite 

Application Centre CSIR 2009). In addition, QuickBird and WorldView imagery can 

be ordered through SAC from DigitalGlobe per specified area on request. Likewise, 

SAC has a distribution contract with United States Geological Surveys (USGS) to 

obtain Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) and IKONOS satellite images. 
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Table 1.  A list of multispectral satellite image products available in South Africa. The 

resolution reflected in the table below is the finest resolution available within all the bands 

provided with the image. The following acronyms for the bands were used: NIR = near 

infrared, MIR = mid infrared, TIR = thermal infrared. 

Sensor Date Highest  Bands  

   Resolution 

Landsat MSS 1982 80 m 4 (blue, green, red, NIR) 

Landsat TM 1982 30 m 7 (blue, green, red, NIR, MIR, TIR) 

Landsat ETM 1999 15 m 8 (blue, green, red, NIR, MIR, 2 x TIR,  

    Panchromatic) 

SPOT 1 – 4 1986 10 m 5 (blue, green, red, NIR, Panchromatic) 

SPOT XS  10 m 3 multispectral bands 

SPOT 5 2002 2.5 m 5 (green, red, NIR, MIR, Panchromatic) 

ASTER 1999 15 m 14 (visible NIR, short wavelength infrared, TIR) 

IKONOS 1999 1 m 4 (blue, green, red, NIR) 

EROS A1 2000 1.8 m Panchromatic band 

QuickBird 2 2001 0.61 m 4 (blue, green, red, NIR) 

NOAA-AVHRR 1978, 2009 1.1 km 5 (visible, NIR, 3 x TIR) 

MODIS 1999, 2002 250 m 36 multispectral bands 

WorldView-2 2009 0.5 m 8 (coastal, blue, green, yellow, red, red edge,  

    NIR-1, NIR-2) & 1 Panchromatic 

 

There are mainly two types of sensor architecture used for these scanners, namely 

whisk-broom (TM & ETM) and push-broom (SPOT, ASTER, and QuickBird) 

(Campbell 1996). Push-broom scanner means that all scanning parts are fixed, and 

scanning is accomplished by the forward motion of the scanner (ERDAS 2009). 

Whisk-broom is a mirror that scans across the satellite’s path using a single detector 

that collects data one pixel at a time using a side-to-side motion (Campbell 1996; 

NASA 2010). 

 

The choice of remotely sensed imagery is very important and must be considered 

carefully. For this study the spatial resolution is a big determining factor as the aim 

of the study is to map individual trees as well as sparse stands of IAP species. 

Various multispectral images that were considered were discussed herewith.  
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2.5.1.  Landsat product range 

 

The Landsat system operated by the USGS, which includes Landsats 1 to 5, carries 

a MSS sensor and a TM sensor. The MSS sensor acquires four multispectral bands, 

namely blue, green, red, and near infrared (NIR). The TM sensor acquires seven 

bands, namely blue, green, red, NIR, two mid infrared (MIR), and thermal infrared 

(TIR) (ERDAS 2009; USGS 2010). The MSS images have a spatial resolution of 80 

x 80 m whereas the TM images have a spatial resolution of 30 x 30 m. Both these 

sets of images cover a swath of 185 km and have a repeating cycle of 16 days. The 

Landsat 7 satellite was launched in April 1999. This system carries an ETM sensor 

that also captures a panchromatic band with a spatial resolution of 15 x 15 m 

(ERDAS 2009). Satellite images captured from the ETM sensor started to 

experience a scan-line error since 2003 (USGS 2010). The TM sensor (Landsat 5) 

is now also out of commission (USGS 2012).  The resolution of these images is too 

coarse to pick up individual trees or even sparse stands of IAP species. In addition, 

no new images are available.  

 

2.5.2.  SPOT 

 

SPOT satellites (one to five), a French owned system operated by Spot Image, were 

launched in 1986. The first one was called SPOT 1. This was followed by SPOT 2 

(1990), SPOT 3 (1993), SPOT 4 (1998), and lastly SPOT 5, launched in 2002. 

SPOT 2 and SPOT 3 delivered four multispectral bands with a resolution of 20 x 20 

m and one panchromatic band with a resolution of 10 x 10 m. SPOT 4 also had four 

multispectral bands and one panchromatic band, but these bands were onboard 

merged to produce one product with a 10 x 10 m resolution. The key improvement 

with the SPOT 5 imagery is the increase in resolution from 10 m to 2.5 m for the 

panchromatic band and 20 m to 10 m for the multispectral bands respectively. The 

multispectral  bands  consist  of  three 10 m bands,  namely a green band  (0.50-

0.59 µm), a red band (0.61-0.68 µm), and a NIR band (0.78-0.89 µm), and one 20 m 

MIR band (1.58-1.75 µm). The swath width for the SPOT images is 60 km and it 

acquires images 12 times every 26 days of its orbital cycle (Astrium Geo-information 

Services 2010).  The products delivered by this system have a resolution of  10 to 

20 m and have also been successful in producing digital elevation model (DEM) 
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(Hirano et al. 2003). Even though some success can be achieved in mapping 

medium to dense stands of IAP species, the spatial resolution is too coarse to map 

individual trees. 

 

2.5.3.  ASTER 

 

ASTER is a sensor on-board the National Aeronautics and Space Administration 

(NASA)’s Terra, launched in December 1999, as part of NASA's Earth Observing 

System (EOS). ASTER data is being used to generate detailed maps of land surface 

temperature, reflectance and elevation (Campbell 1996). The ASTER sensor 

provides 14 visible NIR (three channels), short wavelength infrared (five channels) 

and TIR multispectral (six channels) bands (Hirano et al. 2003). These bands also 

include digital stereo images at a 15 m resolution that can be used to generate a 

DEM (Campbell 1996; Hirano et al. 2003). Resolution of 15 m is too coarse to map 

sparse stands and individual trees of IAP species. 

 

2.5.4.  IKONOS 

 

The IKONOS satellite, operated by GeoEye, was launched in September 1999. The 

panchromatic sensor on board this satellite has a resolution of one meter, and the 

multispectral scanner a resolution of four meter. The repeat cycle is every 2.6 days 

for the one meter resolution imagery. The swath width is 13 km and orbits at an 

altitude of 681 km.  This sensor achieves  a horizontal accuracy of approximately  

12 m and a vertical accuracy of approximately 10 m without ground control (Dial et 

al. 2003; ERDAS 2009). The spectral resolution consist of four bands; blue band 

(0.445-0.516 µm), green band (0.506-0.595 µm), red band (0.632-0.698 µm), and 

NIR band (0.757-0.853 µm) (Dial et al. 2003).  These images are similar to 

QuickBird 2 (ERDAS 2009). These images are a possibility but, ideally, a sub-meter 

resolution to map individual trees is needed. To obtain these images is just as costly 

and complicated as WorldView-2 satellite images, but the resolution is coarser. 
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2.5.5.  EROS A1 

 

The EROS A1 sensor was launched early December 2000 by ImageSat 

International. The EROS A1 satellite is unique in that it offers only panchromatic 

imagery which can be pointed, moved and stabilised to suit customer requirements. 

The EROS A1 sensor captures data at  1.8 m  resolution with a swath of  12.5 x 

12.5 km (Westin & Forsgren 2001). These images include only a panchromatic band 

and are therefore unsuitable for the research. 

 

2.5.6.  QuickBird 2 

 

QuickBird satellite was launched in late 2001 by DigitalGlobe. The QuickBird 2 

sensor offers panchromatic imagery with very high-resolution of 0.61 m, 

multispectral imagery with a resolution of 2.5 m. The swath distance is 16.5 km at 

nadir. The bands have ranges similar to that of the IKONOS 2 sensor (ERDAS 

2009). QuickBird 2 has a much lower accuracy specification of 23 m against the five 

meters of WorldView-2, but at the same cost (DigitalGlobe 2012). These satellite 

images are also available from SAC. 

 

2.5.7.  NOAA-AVHRR 

 

The NOAA-AVHRR is a meteorological satellite that was developed by NOAA to 

assist with weather prediction (NOAA 2012). The swath widths of these sensors are 

generally much larger (2 700 km local and 4 000 km global) and the ground 

resolution far coarser (1.1 km local and 4 km global), due to the need to observe 

large weather systems in their entirety (ERDAS 2009). The first NOAA satellite was 

launched in 1978 (NOAA 2012). Since then 15 other satellites were launched up to 

2009. The spatial resolution of these images is too coarse for use in the research. 

 

2.5.8.  MODIS 

 

The MODIS instrument operates on both the Terra and Aqua satellites, launched in 

1999 and 2002 respectively (Meraka 1999; Justice et al. 2002). These satellites are 

operated by NASA. Justice et al. (2002) further indicated that the Terra satellite 
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orbits around the earth from north to south in the morning and the Terra satellite 

orbits from south to north in the afternoon. MODIS is used for meteorology and 

monitoring sea surface temperature, sea ice, vegetation, various ocean biological 

activities and atmospheric conditions. The viewing swath is 2 330 km wide and 

orbits the earth daily. The sensor produces images with 36 bands. The spatial 

resolution of the images collected are 250 m, 500 m, and 1 000 m (Meraka 1999; 

Justice et al. 2002). These images are too coarse for the mapping of IAP species 

individuals. 

 

2.5.9.  WorldView-2 

 

WorldView-2 is the newest commercial imagery satellite launched on the 8th of 

October 2009. This satellite is operated by DigitalGlobe. The colour image products 

are the first high-resolution imagery with 8 multispectral bands. The panchromatic 

band has a resolution of 0.46 m and the multispectral bands 1.84 m. The images are 

made commercially available with a resolution of 0.5 m. This satellite is capable of 

collecting up to 975 000 km2 of imagery per day. The swath distance is 16.4 km at 

nadir. The 8 multispectral bands include a coastal band (0.400-0.450 µm), blue 

band (0.450-0.510 µm), green band (0.510-0.580 µm), yellow band (0.585-0.625 

µm), red band (0.630-0.690 µm), red edge band (0.705-0.745 µm), NIR-1 (0.770-

0.895 µm), and a NIR-2 band (0.860-0.900 µm) (DigitalGlobe 2009). 

 

Visual inspection of the pansharpened WorldView-2 satellite images (0.5 x 0.5 m) 

and digital colour aerial photography (0.5 x 0.5 m) showed that individual trees for 

Pinus spp. can only be identified at a resolution of 1 x 1 m, or finer.  

 

2.5.10.  Other image sources 

 

A different source of high-resolution imagery is aerial photography, both colour and 

panchromatic. Aerial photography has traditionally been taken using analogue 

cameras. The resolution for these images is 0.75 x 0.75 m. This is a very costly 

process as it entails a lot of post-processing (scanning, georeferencing, and tiling). 

These aerial photography suffer from artefacts such as banding (different pixel gray 

values along the seam line), tilting of the plane, and glare from the sun (Campbell 
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1996; Afek & Brand 1998) all of which lead to inconsistent colouring across each 

aerial photo. This means that the spectral information available within aerial 

photography is not reliable for classification.  

 

Fortunately, in South Africa the national department of Rural Development and Land 

Reform, Chief Directorate: National Geo-spatial Information (CD:NGI), have been 

carrying this expense by producing analogue colour aerial photography for the 

whole country. This cost has now been reduced by the acquisition of high-resolution 

digital sensors capturing imagery in natural colour (red, green, and blue), NIR, and 

panchromatic since 2008 (National Geo-spatial Information 2011). This imagery 

(referred to as colour infrared aerial photography) has a resolution of 0.5 m. High-

resolution digital imagery was flown for this study area in 2010, but the orthorectified 

product was only made available after September 2011 (National Geo-spatial 

Information 2011).  

 

Therefore, this research used WorldView-2 satellite images as the main high-

resolution source of consistent spectral values across the whole scene. The digital 

colour aerial photography was a good independent source from which reference 

information for the accuracy assessment were obtained. 

 

2.6.  Remote sensing: Classification techniques 

 

There are two major techniques of image classification, supervised (human-guided) 

or unsupervised (calculated by software) classification (Campbell 1996). Some 

classification methods, such as maximum likelihood and minimum distance to mean, 

use a combination of both (ERDAS 2009). 

 

Supervised classification uses a priori information in the form of samples from a 

training site to classify unknown areas. It is important to know beforehand what 

information classes need to be extracted, for example soil type, land-use, and 

vegetation (ERDAS 2009) so that training samples can be correctly situated so as to 

gather the relevant spectral information. Supervised classification is thus a process 

of decision making based on known information (Eastman 2001b). The advantage of 

this type of classification is that the analyst has control over the data set and the 
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selection of categories for specific purposes; the results are more predictable and it 

enables comparisons with other classifications done over time (Campbell 1996). 

Finally, it is easier to detect errors in the classification when running comparisons 

with the verification data. There are also numerous disadvantages to supervised 

classification, such as imposing a structure upon the data that does not match the 

natural classes, training data is defined on informational data firstly and only 

secondly on spectral information, and lastly the training data selected might not fully 

represent the type of class throughout the whole study area (Campbell 1996). 

 

Unsupervised classification requires only minimal input, but the classes created by 

the algorithm need to be interpreted afterwards. This type of classification is also 

called clustering, based on natural groupings of pixels (ERDAS 2009). This 

approach is different from supervised classification as the algorithm is allowed to 

uncover patterns based on occurrence of distinctive reflectance values. Then these 

natural classes are identified using a combination of ground-truthing and knowledge 

of the area (Eastman 2001b). Basically, unsupervised classification is the 

identification, labelling, and mapping of natural classes (Campbell 1996). 

Advantages of unsupervised classification are (i) extensive a priori knowledge of the 

region is not  required,  (ii)  possible  errors  due to miss-training is minimal,  and  

(iii) distinctive classes are recognised (Campbell 1996). The disadvantages include 

(i) difficulties of matching the “natural” groupings to pre-defined classes, (ii) limited 

control over the choice of classes and their identities, and (iii) the fact that spectral 

properties of specific classes can change, therefore the same spectral definitions 

cannot be carried over time (Campbell 1996). 

 

Classification methods vary for different purposes and often there is no standard 

method or algorithm to use for particular results, as summarised by Liu et al. (2002). 

Sometimes combined classification methods can produce better results (Liu et al. 

2002). The different classification methods to perform either supervised or 

unsupervised classification which were investigated can be placed in the categories 

per-pixel, object-oriented (per-field), contextual, and vegetation indices. 

 

Per-pixel classification is the traditional method used for landcover and land-use 

classification (Burnett & Blaschke 2003; Yu et al. 2006). Per-pixel classification 
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develops a signature value for a particular feature by combining all the training-set 

pixels (Lu & Weng 2007). Each pixel is classified as a separate entity based on its 

spectral value. This type of classification method does not make use of the 

properties of a landscape, such as homogeneity (Burnett & Blaschke 2003). Per-

pixel classification can be either parametric or non-parametric. With parametric 

classifiers, it is assumed that the data has a normal distribution. This becomes 

problematic in a complex landscape. The major problem with using parametric 

classifiers is that it is difficult integrating the spectral data with supporting data (Lu & 

Weng 2007). Non-parametric classifiers do not assume normal distribution of data 

and therefore do not need statistical parameters when performing classification. 

 

Unfortunately, per-pixel classification of high-resolution imagery often leads to a 

“salt-and-pepper” effect (Yu et al. 2006). An alternative approach to per-pixel 

classification, that will solve this shortcoming, is to classify objects (i.e. groups of 

pixels), rather than individual pixels. This is called object-oriented or per-field 

classification. When performing classification with an image with large pixels, all 

spectral information related to one feature is contained within one pixel, whereas 

when classifying an image with small pixels, many pixels, with variation in spectral 

information, make up one feature (Laliberte et al. 2004). In other words, in addition 

to the reflectance value for an individual pixel under consideration, per-field methods 

consider the pixel in the context of its neighbourhood of pixels (e.g. homogeneity of 

reflectance among surrounding pixels) (Benz et al. 2004; Lewiński & Zaremski 

2004). Per-field classification is the grouping of pixels into objects using various 

grouping algorithms, followed by the classification on these objects (Walter 2004). 

Existing topographical information, like vector data of rivers or roads, can be used to 

guide the definition of objects (Baltsavias 2004). Objects can be defined 

hierarchically, meaning at different scales and levels, for example separate buildings 

can be identified within an urban area (Benz et al. 2004). 

 

In contextual classification, the neighbouring pixel values are also used when 

classifying an image using normal per-pixel classification (Lu & Weng 2007) by 

exploiting the relationship between neighbouring pixels, and so doing, increasing the 

classification accuracy (Magnussen et al. 2004). Contextual classification’s chief aim 

is to restore degraded images (Besag 1986). Contextual classifiers are usually run 
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on top of an initial classification (Lu & Weng 2007). Consequently, the accuracy of 

contextual classification is dependent on the accuracy of the initial classification 

(Magnussen et al. 2004). In the case of this study area in the Hawequa conservation 

area, an initial inspection indicated that the spectral difference between indigenous 

riverine forest patches and Acacia spp. stands will be too small for the contextual 

classification to pick up. Therefore the effort and time to run a contextual 

classification is not justified. 

 

Other than the normal classification methods available, various vegetation analysis 

methods are also available to detect change in vegetation patterns (Eastman 

2001b). For this research, and for the sake of completeness, these methods had to 

be considered. Only two vegetation indices (VI) were considered, namely 

normalized difference vegetation index (NDVI) and enhanced vegetation index 

(EVI).  

 

There are two groups into which VI can be divided; slope-based and distance-based 

(Jackson & Huete 1991). The NDVI is a slope-based VI and is the more traditional, 

two-dimensional method using the Red and NIR bands. This VI indicates both the 

status and abundance of green vegetation cover (Eastman 2001b). The EVI is a 

distance-based VI that measures the reflectance of bare soils, and then by how 

much it is obscured by vegetation. This method minimises the effect of the soil 

background. This method needs the Red and NIR bands, as well as the 

perpendicular vegetation index (PVI). Thus it requires that the slope and soil line 

intercept be calculated (Eastman 2001b).  

 

The most widely used products for analysing VI is from the MODIS. Comparison 

studies were done by Huete et al. (2002) and Chen et al. (2006) to determine the 

quality of the two products MODIS-EVI and MODIS-NDVI. Both NDVI and EVI prove 

to be good tools to analyse and monitor vegetation conditions in semi-arid 

grass/shrub, savanna, and tropical forest biomes (Huete et al. 2002). The NDVI 

saturation over high biomass is problematic but it had a higher range in values over 

the semi-arid sites. The EVI again are very sensitive to vegetation cover and canopy 

structure. Both NDVI and EVI had a similar range in values for the grassland/shrub 

areas (Huete et al. 2002). Chen et al. (2006) found that the accuracy between 
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MODIS-EVI and MODIS-NDVI was similar irrespective of the resolution. MODIS-

NDVI results for the various resolutions had no differences, whereas using MODIS-

EVI the different resolutions produced different results (not necessarily more 

accurate). 

 

2.7.  Remote sensing: Protocols and algorithms 

 

Many protocols and algorithms were developed for a wide range of purposes to 

perform image classifications. These include clustering algorithms such as K-mean, 

and also protocols such as ISODATA techniques and fractal net evolution approach 

(FNEA). It is very important to choose the right protocol based on what you want to 

achieve. It is also important to consider the type of imagery that will be used, in 

particular whether the images’ spectral data is parametric or non-parametric. With 

non-parametric data the assumption of the data having a normal distribution is not 

required. Non-parametric classifiers may provide better classification results than 

parametric classifiers in complex landscapes (Foody 2002). The WorldView-2 

satellite images used in this research have non-parametric spectral data, as verified 

by extracting the histograms per image multispectral band using ERDAS Imagine 

(ERDAS 2009). 

 

For this research various classification algorithms and protocols were considered 

within each of the categories discussed under point 2.6. The table added as an 

appendix (Appendix A) outlines all the various protocols considered. It also outlines 

some of the advantages and disadvantages of using the various protocols 

investigated. 

 

2.7.1.  Per-pixel classification 

 

Per-pixel classification is the simplest form of digital image classification and can be 

defined as the method by which individual pixels are assigned to a class (Campbell 

1996). This method does not consider adjacent or mixed pixels. This classification 

method can be either parametric or non-parametric. This method also has the most 

variations or choices of different methods that can be used. Classification methods 

can also be categorised as either hard classification or soft classification. This refers 
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to whether the classification method makes a definite decision when allocating a 

class to the pixel or object (Lu & Weng 2007). 

 

The following methods were investigated; Hierarchical clustering (HC), K-mean, 

ISODATA, RGB Clustering, Maximum Likelihood (ML), Artificial Neural Networks 

(ANN), Regression tree, Minimum distance, Parallelepiped, Feature space, and 

Support vector machine (SVM). 

 

The algorithm HC can be described as the process of clustering pixels together with 

similar reflectance characteristics in images with multiple bands (Eastman 2001b). A 

HC can be either an agglomerative (bottom-up) or divisive (top-down) clustering 

(Acharya & Ray 2005 p 165). The agglomerative algorithm merges individual 

clusters into larger groups, whereas a divisive algorithm divides a big cluster into 

smaller clusters. This clustering method does not require the input of the number of 

clusters beforehand (Huang 2002). This algorithm uses Euclidean distance and is 

an unsupervised classification. Problems in segmentation of high-resolution imagery 

using HC have been recorded (Rongjie et al. 2008). Both ISODATA and K-mean 

need some a priori knowledge and can be very slow due to iterations, whereas 

divisive HC are much faster with large datasets, but its overall accuracy is not as 

good as ISODATA (Huang 2002). This is one of the methods supported by the 

IDRISI software (Eastman 2001b).  

 

 A K-mean is a self-organising, iterative heuristic technique that is used to partition 

an image into clusters. This is an unsupervised classification technique. As 

mentioned, with K-mean a priori knowledge of the area is required. It appears that 

this method is not generally used on its own within remote sensing software, but 

rather as part of other methods, e.g. ISODATA (Huang 2002). The study done by 

Rongjie et al. (2008) also showed that agglomerative HC performs a lot better than 

K-mean when using high-resolution images in complex areas.  

 

For classification using ISODATA, the user must specify various parameters 

manually, which run iteratively until the desired clusters are formed (Huang 2002). 

The ISODATA does a comparison of the spectral value for a pixel with the mean of 

a pre-defined cluster. If the pixel is added to the cluster, the mean is recalculated for 
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the new cluster (Yu et al. 2006). This technique uses the minimum spectral distance 

to assign the pixel to a cluster (Everitt et al. 2008). Using training sites or user-based 

seed assignment can improve accuracy from 64%-86% to 74%-94% (Huang 2002). 

An example classification was when Giant salvinia were mapped using ISODATA 

using the ERDAS Imagine from QuickBird images in Mexico (Everitt et al. 2008). 

The classification started with 75 classes and merged it down to four classes. 

Accuracy between 87.8% and 93.5% were achieved (Everitt et al. 2008). It appears 

that the general rule when using ISODATA seems to be that you start with lots of 

classes (blind choice) and then merge these classes together until desired classes 

are achieved. 

 

A RGB clustering is a simple clustering and data compression technique for images 

with three bands. It is an unsupervised classification method that uses a partitioning 

algorithm (ERDAS 2009). This is a fast, simple application that can be used when 

no specific classes are required, but this makes it difficult to assign the resulting 

classes into information classes afterwards (ERDAS 2009). This is a function 

available with the ERDAS Imagine software. 

 

The algorithm ML evaluates the likelihood that a given pixel belongs to a pre-defined 

or random category, and classifies the pixel to the category with the highest 

likelihood of membership (Eastman 2001a). This method is readily available in most 

software, including ERDAS Imagine as a variable in the decision rule supervised 

classification module. This algorithm takes the variability of classes into account by 

using a covariance matrix. It is the most accurate classifier in ERDAS Imagine 

(ERDAS 2009). Lu & Weng (2007) summarised this method as parametric, using a 

partitioning algorithm, and can be used either in supervised or unsupervised 

classification. The method uses a probability density function, based on Bayesian 

statistics (Lu & Weng 2007). It is a well-known parametric method, meaning it is 

based on the assumption that the data has a normal distribution (Gaussian) (Liu et 

al. 2002). 

 

An ANN uses simple nodes, called artificial neurons, which store processing 

behaviours together with weighted links of those nodes, which represents the 

strengths of the links between the nodes (Lu & Weng 2007). Liu et al. (2002) 
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provides a good summary of the advantages of this method; (i) non-parametric 

classifier, (ii) random decision boundary capabilities to manage modelling tasks that 

are not constant,  (iii) can easily adapt to different data sets and input structures,  

(iv) can identify subtle patterns in training data, (v) fuzzy output values, (vi) good 

generalisation of input data, and (vii) can process noisy data. This method 

significantly outperforms ML (Dixon & Candade 2008). The training takes quite 

some time but the results are good with high levels of accuracy (Dixon & Candade 

2008). Software like PREDICT (WH&O International 2004) uses this method. The 

drawback in using this system is the length of training the system will need and 

using an unknown software package might take too long.  

 

Regression tree calculates the “relationship” between one set of values against 

another. The Expert Classification method described in ERDAS Imagine uses 

hierarchy of rules, or a “decision tree” to perform multispectral image classification 

(ERDAS 2009). In ERDAS Imagine, decision tree classification entails a lot of post-

classification refinement and modelling, which is not the object of this research. This 

research is looking at the classification of features with minimum user input. This 

method is non-parametric and used in supervised classification (Lu & Weng 2007). 

 

Minimum distance calculates the distance of a pixel’s spectral value to the mean 

spectral value of each signature, and then allocates the pixel to the category with 

the closest mean (Eastman 2001a). This is an iterative clustering that is very time 

consuming. This method leaves no pixels unclassified (forcing all pixels into a 

class), which action can in fact decrease the overall classification accuracy (ERDAS 

2009). It is available in software such as IDRISI and ERDAS Imagine (Eastman 

2001a; ERDAS 2009) and can be used on both parametric and non-parametric data 

performing supervised classification (Lu & Weng 2007). 

 

Parallelepiped creates ‘boxes’ using minimum and maximum values, or standard 

deviation units, within the training sites. If a given pixel falls within a signature box, it 

is assigned to that category (Eastman 2001a). The square shapes can cause more 

overlaps and also the spectral values of the pixels in the far corners will differ by 

quite a large margin to the ones in the middle (ERDAS 2009). Just like the minimum 

distance method, this method is available in both IDRISI and ERDAS Imagine 
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(Eastman 2001a; ERDAS 2009). This method is non-parametric and used with 

supervised classification (Lu & Weng 2007). 

 

Feature space does a direct comparison to the training sample data and then places 

pixels accordingly. Feature space provides an accurate way to classify a class with 

a non-normal distribution, e.g. individual pines, Acacia stands. This method is mainly 

available in ERDAS Imagine. The method uses nearest neighbour (NN) algorithm 

and is non-parametric. It is used with supervised classification (ERDAS 2009). 

 

The classification technique SVM uses a decision surface to separate the classes. 

These decision surfaces are created from boundary pixels. This maximises the 

margin between class values. It is faster and simpler to implement than ANN, and 

performs better with complex input data. This method generalises better, which 

minimises error on unseen data. In the study done by Dixon & Candade (2008), it 

significantly outperforms ML and ANN on use and accuracy. This method is 

implemented using LIBSVM Version 2.6 (Chang & Lin 2012) which is not widely 

used. The method is non-parametric and is a hard classification, which means the 

method produces a definitive decision per class (Dixon & Candade 2008). 

 

2.7.2.  Per-field classification 

 

The per-field classification approach is analysing objects as opposed to pixels. 

Ecologically this is more relevant because the landscape consists of patches that 

can be classified as objects (Laliberte et al. 2004).  

 

The following methods were investigated; FNEA segmentation, and map-guided 

classification. 

 

The FNEA segmentation merges areas “pairwise” into objects using a bottom-up 

segmentation algorithm (Baatz et al. 2004). In other words, it divides the image up 

into meaningful objects. This technique appears to be similar to agglomerative 

hierarchical clustering and uses Euclidean distance. This method does not just look 

at the value and statistical information of the pixel, but also at the texture and 

topology. The pairing of the pixels into objects considers three parameters, namely 
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shape, scale, and colour. Shape is referred to as the actual shape of the object and 

is considered during the classification – shapes like squares, circles (elliptic fit) and 

stars. The colour refers to the spectral information, and the scale relates to the 

image resolution (Laliberte et al. 2004). The FNEA approach then uses the nearest-

neighbour algorithm to classify the broader objects and then fuzzy logic membership 

function for classifying the finer scale objects within the broader objects. The 

software that runs this approach is eCognition and uses co-occurrence matrix for 

texture analyses (Baatz et al. 2004; Laliberte et al. 2004). 

 

The only other per-field approach considered was map-guided classification. This 

approach functions similarly to a per-pixel classification, but within the delineated 

areas, e.g. mapping defoliation within forest stands delineated using polygons 

(vector). This is only useful where a fair amount of a priori digitisation has narrowed 

the problem down to a fine level. This approach was not useful for this research as 

no a priori differentiation exist for the whole study area (Chalifoux et al. 1998). 

 

2.7.3.  Contextual classification 

 

With contextual classification, the relationship among neighbouring pixels are 

quantified and used to increase the accuracy of an existing per-pixel classification 

(Magnussen et al. 2004). Cortijo & Pérez de la Blanca (1996) defined it as 

incorporating additional information related to the spatial neighbourhood “context” 

into the classifier. 

 

The following methods were investigated; Iterated Conditional Modes (ICM), and 

Extraction and Classification of Homogeneous Object (ECHO). 

 

The ICM is an iterative procedure which incorporates knowledge about the 

underlying scene by the choice of a “neighbourhood system”, weight function and 

smoothing parameter (Cortijo & Pérez de la Blanca 1998). Basically, it exploits the 

tendency of adjacent pixels to have the same colour. Magnussen et al. (2004) study 

showed that you need an initial accuracy between 60% and 80% and then it adds 

only between 4% and 6% to the accuracy. Magnussen et al. (2004) study 

recommended using ICM only when the ML does not meet the pre-defined quality 
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criteria. Furthermore, the results of the contextual classification are dependent on 

the spectral separation between the classes (Magnussen et al. 2004). This method 

is used by open source software called MRFSEG+GAMIXTURE (Tohka 2007). The 

ICM protocol uses Markov random field-based contextual classifier and deterministic 

algorithm, which maximises local conditional probabilities sequentially (Besag 1986). 

It represents a basic variant of the NN method (Cortijo & Pérez de la Blanca 1998; 

Magnussen et al. 2004). 

 

The method ECHO performs an object-seeking segmentation and then uses 

maximum likelihood classification (Yu et al. 2006). This method is implemented by 

open source software called MultiSpec (Landgrebe & Biehl 2011). This protocol 

differs from ICM in that it performs the contextual analyses on the objects, rather 

than the pixels. Various parametric or non-parametric classifiers are used to 

generate an initial classification and then contextual classification is done on the 

classified thematic map (Yu et al. 2006; Lu & Weng 2007).  

 

2.8.  Conclusion 

 

Many studies over several years in South Africa have shown that IAP species are a 

big threat and are spreading fast. When analysing the figures provided in the 

Henderson (2007) summary, IAP species in the fynbos biome are increasing in 

species numbers and abundance.  

 

These IAP species have a detrimental effect on the biodiversity of the fynbos biome. 

They displace the indigenous species. They affect various industries in South Africa 

such as agriculture (which in itself is a threat to biodiversity), water sources, and fire 

management. The impact on ecological processes, their transformation and 

fragmentation, has been studied extensively by various experts in the field. 

 

Various management strategies have been investigated and implemented in South 

Africa to control and/or remove these IAP species. Methods such as manual 

clearing and biological control of certain IAP species have been implemented by the 

WfW program. Clearing of IAP species is very costly and funding is limited, with 

available funding shrinking every year.  
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Prioritizing which IAP species to focus on is very important. Therefore, knowing the 

exact extent of where these IAP species occur, in what densities, and what their 

impact is on the environment is very important. This type of information is currently 

either very coarse or patchy, only covering small study areas at a time. This 

information is also not kept up to date regularly enough to support decision making.  

 

Over the years, using many different methods, IAP species were mapped at various 

study areas. Remotely sensed images have been used since the 1990s to map IAP 

species. The accuracy achieved varied based on the IAP species mapped as well 

as on the images used for the mapping. The landscape and vegetation types also 

affect the accuracy of the IAP species mapping. In the fynbos biome, there is very 

little difference in the spectral signature of some of the IAP species such as Hakea 

spp., against the indigenous species.  

 

Until now, obtaining remotely sensed images in South Africa has been very costly, 

especially high-resolution images. Now images such as SPOT 5 at a 2.5 x 2.5 m 

resolution are readily available from SAC, or the annual mosaic product from 

CD:NGI. Aerial photography has been very limited in the past as only small areas 

are flown at a time, and the method these images were captured and processed 

also limited their use. Now CD:NGI has obtained a digital camera, which speeds up 

the capturing process of colour infrared aerial photography images in the country. 

They are also mandated to provide information for free to users. Digital colour 

infrared aerial photography is not available yet for this study area. As the purpose of 

this research is to map individual trees, I have used WorldView-2 satellite images. 

These images have a resolution of 0.5 x 0.5 m (similar to digital colour infrared 

aerial photography) and can also be obtained with eight multispectral bands. Any 

resolution more coarse than 1 x 1 m will make it impossible to map individual trees. 

The WorldView-2 satellite images are very costly, however.  

 

Other than the availability of high quality remotely sensed images and reference 

data, deciding on the classification methods and algorithms is very important. 

Therefore the comparison and testing of various classification methods is 

necessary. For this research, two methods are being compared.  
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Classification methods can be divided into two main groups, namely supervised and 

unsupervised classification. For supervised classification, knowledge of the area and 

auxiliary data is necessary. Furthermore the different protocols and algorithms can 

be divided into four groups, namely per-pixel, per-field, contextual, and vegetation 

indices. Both contextual classification and vegetation index classification have very 

specific uses and will not be tested as general classification methods. 

 

Based on the literature study conducted, which is summarised in the table added as 

an appendix (Appendix A), a per-pixel and a per-field image classification will be 

used.  

 

For the per-pixel protocol, ERDAS Imagine provides a standard protocol called 

ISODATA. This protocol incorporates the feature space method for the non-

parametric classification and then maximum likelihood, a parametric classification, 

for any pixels left unclassified. eCognition uses a protocol for per-field (object-

oriented) classification called FNEA. Both the above mentioned software is readily 

available in South-Africa, even though both are quite expensive. Most of the other 

protocols or methods investigated are not often used and therefore learning the 

software can be time consuming.  
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Chapter 3: RESEARCH METHODS 

 

3.1.  Introduction 

 

Based on the literature review done, this research will test two supervised 

classification methods, namely per-pixel classification, using ISODATA, and per-field 

classification, using FNEA. 

 

The steps used in the image classification included the following; 

i. Data acquisition. 

ii. Study area selection and description. 

iii. Selection of IAP species for mapping. 

iv. Pre-processing of the satellite images. 

v. Survey design for the selection of training and reference sites. 

vi. Classification protocol. 

vii. Accuracy assessment. 

 

3.2.  Data acquisition 

 

For this research the WorldView-2 satellite images will be used for the classification 

and the colour aerial photography for the referencing. 

 

The WorldView-2 satellite images were sourced from the SAC. The most recent and 

most cloud-free images, available at the time for this study area, were provided as 

two images (Table 2).  
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Table 2.  Details of two adjacent WorldView-2 images received from the Satellite Application 

Centre (SAC). 

 Image 1 Image 2 

Acquisition Date 9 February 2010 26 January 2010 

Total Max Off Nadir Angle 15.43° 17.95° 

Area Max Off Nadir Angle 15.15° 16.85° 

Area Min Sun Elevation 55.17° 59.93° 

Total Cloud Cover Pct 0% 8% 

Area Cloud Cover Pct 0% 11% 

Imaging bands Pan; MS1-4 Pan; MS1-4 

 

The images were received in GeoTIFF format, together with the relevant XML, 

license TXT, IMD, TIL, and RPB files (see Glossary II). The four multispectral bands 

and the panchromatic band for the WorldView-2 satellite images were provided as 

separate images. The spatial resolution of the multispectral bands is 2 m and the 

panchromatic band is 0.5 m.  The multispectral bands include blue, green, red, and 

NIR. Even though this satellite sensor comes with an additional four multispectral 

bands (as mentioned in Chapter 2), it was too expensive to obtain it for this 

research. The additional four bands enhance vegetation analyses (DigitalGlobe 

2009) and therefore could have been useful for this research. However, a study 

done by Immitzer et al. (2012) in mapping tree species, did not show any 

improvement with the accuracy achieved when using the four additional bands, in 

comparison with using the standard multispectral bands. 

 

The colour aerial photography was sourced from the CD:NGI at Mowbray. These 

images were captured in the spring of 2010, at a scale of 1:20 000, with a pixel size 

of 0.5 m. They are provided as orthorectified RGB images. These images were 

mainly used to obtain reference sites, as the target features of this research, e.g. 

individual Pinus, scattered Acacia, can be clearly identified. The colour aerial 

photographs were also used as reference image for the orthorectification process 

due to the high level of spatial accuracy. 
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3.3.  Study area selection and description 

 

The Hawequa Nature Reserve (42 160 ha) is a proclaimed state forest area, and 

forms part of the Limietberg reserve centre. Surrounding this reserve is private land 

that is proclaimed as Mountain Catchment Area (30 170 ha). The Limietberg 

Conservation Area was declared mountain catchment in 1970, in Government 

Notice no 2121/7824/10.9/10/81, under the Mountain Catchment Areas Act 63 of 

1970. For the purposes of this research, the proclaimed state forest area, together 

with the proclaimed mountain catchment area, is called Hawequa conservation area.  

 

This research focuses on an area of approximately 9 293.6 ha in the north-eastern 

part of the Hawequa conservation area. The study area is located between the N1 

national  road  and  the  historical Bain’s  Kloof  Pass  and  is  bounded   by   the   

co-ordinates 19°05’49”E (19.1°)  to  19°12’20”E (19.21°) longitude  and  -33°35’47”S  

(-33.59°) to -33°42’12”S (-33.70°) latitude (Figure 2). 

 

However,   the   WorldView-2   satellite   images   received   cover   a   larger   area  

(13 769.1 ha) than the original study area. Therefore the classification was done 

covering a bigger area to incorporate the entire WorldView-2 satellite images (Figure 

2).  
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Figure 2.  The study area (solid black boundary) falls within the Hawequa conservation area 

(green and yellow area), situated in the south-western corner of South Africa (shaded area of 

the insert). The dashed line indicates the extent of the WorldView-2 satellite image used 

during the classification. 

 

The vegetation of this study area is dominated by Hawequa Sandstone Fynbos with 

some Western Coastal Shale Band Vegetation and Boland Granite Fynbos patches 

(Rebelo et al. 2010), which fall within the broader fynbos biome. The mountains, 

within the fynbos biome, form part of the Cape Folded Belt, which are mostly 

quartzites of the Table Mountain Group. The soils are generally nutrient-poor 

(Campbell 1986).  

 

The climate of the fynbos biome is largely Mediterranean and in the west, where this 

study area is located, it is strictly winter rainfall (Campbell 1986; Rebelo et al. 2010). 

The region’s annual rainfall varies from 300 mm to over 1 500 mm, depending on 

the altitude (Campbell 1986). The maximum altitude in the area is 2 000 m above 

sea level (Campbell 1986).  
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3.4.  Selection of IAP species for mapping 

 

Research on invasiveness of the IAP species in South Africa has been published in 

two national studies.  The study done by Nel et al. (2004) used the SAPIA data to 

classify IAP species into two groups, namely major invaders and emerging invaders. 

Within these two groups, the species were categorised by their range (very 

widespread or widespread) and by their abundance (abundant, common or scarce).  

i. Acacia mearnsii was categorised as very widespread and abundant, covering 

both riparian and terrestrial habitats (Nel et al. 2004). This species is listed on 

the CARA as category two, which means the species can be planted for 

commercial use in demarcated areas, but any spread beyond the boundaries 

must be controlled (Nel et al. 2004). 

ii. Pinus pinaster was categorised as widespread and abundant, covering many 

landscape habitats (Nel et al. 2004). This species has also been listed as a 

CARA category two. 

A study by Le Maitre et al. (2000) showed that the worst invaders, from a 

water usage perspective, are  Melia azedarach,  P. pinaster,  P. patula,  and 

A. mearnsii. 

 

Based on the above mentioned studies, the genera Pinus and Acacia were chosen 

as the focus for this research.  The choice is confirmed by Henderson (2007), who 

listed A. mearnsii and P. pinaster as amongst the top twenty prominent invaders in 

the fynbos biome. 

 

 A statement made in Richardson & van Wilgen (2004 p 46) emphasise this by 

stating: “The principal invaders are trees and shrubs in the genera Acacia, Hakea 

and Pinus.”  

 

3.5.  Pre-processing of satellite images 

 

The images were in the standard L2A process level, which included 

orthorectification using a rough 90 m DEM for geopositioning only (Lück pers. 

comm., via e-mail communication, 10 October 2011). Radiometric corrections were 
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performed on the raw data (Updike & Comp 2010). No atmospheric corrections or 

topographic normalisation was done to these images as this research does not aim 

to do time series (multi-date) analysis, but normal thematic feature extraction (Lück-

Vogel pers. comm., discussion session, 9 October 2011; Thompson pers. comm., e-

mail communication, 4 October 2011). In addition due to computational restrictions, 

the adjacent images were not mosaiced, which would otherwise have made 

atmospheric corrections essential. Therefore these images only had to undergo four 

steps before the classification could be done. These steps of pre-processing were (i) 

pansharpening of thermal bands with panchromatic band, (ii) reprojection to 

Transverse Mercator, central meridian 190 (Lo 19), (iii) orthorectification of the 

images against the colour aerial photography, and (iv) cutting the images into four 

image blocks which were sufficiently small to be processed by the software and 

hardware.  

 

These steps were conducted on multispectral and panchromatic bands as they were 

received as separate image files. 

 

3.5.1.  Pansharpening 

 

To merge the multispectral bands and panchromatic band together, the resolution 

merge function provided with ERDAS Imagine (ERDAS 2009) was used. The main 

purpose of merging the two sets of bands is to sharpen the image (Pohl & van 

Genderen 1998) by fusing the low-resolution multispectral bands with the high-

resolution panchromatic band (Figure 3). The method used was Principal 

Component and the resampling technique was cubic convolution. Cubic convolution 

was used because this method resampled using sixteen pixels in  a  four  by  four  

(4 x 4) window to calculate the output pixel values (ERDAS 2009). This four by four 

(4 x 4) resampling window matched the pixel sizes of the image bands to be 

merged, which was two by two meters (2 x 2 m) with 0.5 x 0.5 m. All spectral bands 

were included in the merge.  
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Figure 3.  An example showing (a) the panchromatic bands and (b) the multispectral bands, 

followed (c) by the product resulting from merging of the WorldView-2 satellite images.  

 

3.5.2.  Reprojection 

 

Once the band images were fused together, the single resultant image could then 

be reprojected to Transverse Mercator Lo 19 and the datum set to Hartebeesthoek 

94. This projection was used for conforming to the reference image used for the 

orthorectification. The standard reprojection function provided with ERDAS Imagine 

was used. The resampling was done using NN.  

 

3.5.3.  Orthorectification 

 

The orthorectification of the images, as received from SAC, was not done very well 

and the two adjacent images did not overlap precisely. The images had to be 

orthorectified again. For this orthorectification process, a 20 m DEM (projected to 

Transverse Mercator Lo 19 and datum Hartebeesthoek 94), obtained from Scientific 

Services CapeNature, was used. The reference images were the colour aerial 

photography, also in the same projection (Transverse Mercator Lo 19 and datum 

Hartebeesthoek 94). For the first image, 57 ground control points (GCPs) were 

selected and the total error was 29.3 pixels, which is equal to 14.6 m. For the 

second adjacent image 62 GCPs were selected and the total error was 25.2 pixels 

(12.6 m). This result was not good enough to ensure a proper overlap between the 

two images. Therefore further rectification was necessary, but this time between the 

(a) (b) (c) 
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two WorldView-2 satellite images, where they overlapped. For this 57 GCPs were 

selected and the error was 70.3 pixels (35.2 m). A better result could not be 

achieved due to the preliminary orthorectification that was done when the L2A 

product was generated (Lück pers. comm., via e-mail communication, 10 October 

2011). Even though the two adjacent images were not mosaiced for the 

classification, it was still important to achieve a good match, as the resulting 

classified thematic maps were merged.  

 

3.5.4.  Subsetting imagery 

 

Rather than mosaicing the two adjacent images together, they were left as two 

separate images and these two images were further divided. This resulted in four 

image blocks on which the image classifications were done. This was necessary as 

the software eCognition cannot run segmentation on too large images. 

 

In addition, the images had some areas covered in clouds (256 ha). Based on visual 

inspection of the colour aerial photography, which contained no cloud cover, no IAP 

species were visible in these areas. Therefore, to minimise the effect of the clouds 

on the image, the image was subsetted to exclude most of the areas covered in 

clouds and the cloud shadows. 

 

3.6.  Selection of vegetation information classes 

 

As a first step to identify the vegetation information classes that will be used in this 

research, an unsupervised classification, called clustering, was run in IDRISI using a 

composite image of the different bands generated from the colour aerial photos and 

SPOT 5 spectral image. This clustering process uses a histogram peak selection 

technique (Eastman 2001a). Eight clusters were generated. These clusters, called 

spectral classes, were then named according to the feature each represents. When 

comparing the clusters generated with the natural colour image, the following 

spectral classes were identified; two clusters represented short vegetation; one 

indicated bare soil and rocks; three clusters represented tall vegetation; one 

represented open water and parts of buildings and one represented white spots on 

buildings. This result demonstrated the difference between spectral classes and 
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vegetation information classes. These spectral classes did not relate to the features 

this research wanted to map. 

 

Vegetation information classes are defined by the aim and goals for the research 

(Campbell 1996). For this research, very specific vegetation information classes 

needed to be mapped. Due to the topographical complexity of the study area, the 

vegetation information classes identified had to be stratified across landform 

categories.   

 

The focus of the study was mapping Pinus and Acacia spp. and so one broad 

vegetation information class was defined for each species. Acacia spp. only occurs 

in the study area as dense stands along some river courses, mainly outside the 

conservation area, and the vegetation information class is termed ‘Acacia stand 

dense’. Pinus, however, occur in various densities in the study area and so a further 

four subclasses were defined:- ‘Pinus individual’; ‘Pinus stand scattered’; ‘Pinus 

stand sparse’ and ‘Pinus stand dense’. The ‘Pinus individual’ class is defined where 

trees are more than 30 m apart from other Pinus trees; ‘Pinus stand sparse (<25%)’ 

are groupings of trees where individuals are approximately 20 m apart; ‘Pinus stand 

scattered (25-50%)’ are where individuals are approximately 10 m apart and ‘Pinus 

stand dense (>50%)’ are where individuals are less than 5 m apart.  

 

In some situations it is easy to confuse the spectral characteristics of dense Acacia 

stands with Southern Afrotemperate forests in kloofs. Southern Afrotemperate 

forests (referred to as Afrotemperate forests from now on) are a sub-type of the 

broader Afromontane forests that occur throughout Africa (Mucina & Geldenhuys 

2010). Consequently, ‘Afrotemperate forest’, in kloofs, is identified as a target 

vegetation information class in order to ensure spectral separability between these 

communities and Acacia stands along rivers. 

 

A number of other vegetation information classes (landcover types) occur in the 

study area, including short indigenous vegetation (short mountain fynbos), seeps / 

wetlands (Restio / Bruniaceae), indigenous riverine vegetation, open water (river or 

dam), riverine sand (and next to dams), rocky areas on mountain tops, burnt areas, 

and shadows. Shadows are defined as the areas where there is a loss of image 
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information due to a cast shadow from a mountain or kloof, caused by the angle of 

the sensor at the time of image acquisition (Dare 2005). However, these vegetation 

information classes were not the focus of this research and consequently were all 

grouped as ‘other’, which is similar to the research done by Laliberte et al. (2004). 

Including these vegetation information classes individually in the classification would 

have resulted in an unrealistically large number of classes requiring sampling for 

classification-training and accuracy assessment. 

 

The final vegetation information classes were stratified across the following 

topographical, or landform, categories, namely (i) top of mountain, (ii) cliffs, (iii) 

slopes, (iv) lowlands, and (v) river courses. The top of mountains are areas above 

800 m altitude and with a slope less than 45°. Cliffs are areas where the slope is 

between 45° and 90°. Slopes are areas between 35° and 45°, and below 800 m 

altitude. Lowlands are areas with a slope between 0° and 35° and below 800 m 

altitude. The above categories were generated using a 20 m DEM. The river 

courses were generated using a 30 m buffer (15 m on both sides) along the main 

rivers captured from 1:50 000 topographical data as well as visual interpretation of 

open water and sandbanks on colour aerial photos. This buffer distance was 

determined by measuring the approximate width of the main river courses from the 

colour aerial photography. These categories are based on the standards used by 

WfW (Working for Water 2003).  

 

To account for the effect of the warmer and cooler slopes which could lead to 

variation in the brightness values of features to be classified, the north- and south-

facing aspects of the study area and the placement of the training sites in particular, 

were also taken into consideration (ERDAS 2009). An aspect shapefile was 

generated from the 20 m DEM. The categories generated were grouped together 

into two main categories, namely north and south. Both of the WorldView-2 satellite 

images were scanned in the morning and therefore the eastern slope was included 

as part of the sunny north-facing slope and the western slope as part of the cooler 

south-facing slope. The total area of the northern slopes summed up to 8 869.4 ha, 

which equals 59% of the area. The southern slopes summed up to 6 063.4 ha, 

which equals 41%.  
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3.7.  Survey design for the selection of training and reference sites  

 

There are various sampling strategies which can be used, namely simple random 

sampling, systematic sampling, stratified random sampling, cluster sampling, and 

stratified systematic unaligned sampling (Congalton 2001). 

 

Verification information, preferably in the form of GCPs, or at least, visual 

interpretation from a finer-scale image than that to be classified, is required to gather 

information to be used in the training of the algorithm, as well as for the assessment 

of the accuracy of the classification output of the algorithm. Sample sites, consisting 

of training sites and reference sites, are areas with known geographical location and 

have the correct vegetation information class assigned (Campbell 1996).  

 

Campbell (1996) provides guidelines on selecting training sites, of which this 

research focussed on the number and location of sites. (i) Number - The number of 

training sites that are needed per vegetation information class depends on the 

heterogeneity within a class (i.e. uniformity), the number of vegetation information 

classes defined, and the resources available for delineating, or for field visits to, 

training sites. The sites used for the training of the classification should be different 

to the sites used for the accuracy assessment. The training sites are used for 

training the system to run the classification, and the reference sites (which are 

different sites) are used for the accuracy assessment (Campbell 1996 p 380). 

Congalton (1991) recommends that 50 reference sites be used per vegetation 

information class, and Campbell (1996) suggests that 10 sites be used for training 

per vegetation information class per image. (ii) Location – Ideally, each vegetation 

information class should have training and reference sites randomly positioned 

across the entire study area, in order to represent variations within the images. 

However, this is constrained by a number of factors. (a) Placement: The boundaries 

of the training sites should be placed well away from pixels with big contrast as this 

will influence the signature of the training site pixels. (b) Uniformity: It is important 

that the spectral signature of the training site should show a degree of spectral 

homogeneity. (c) Accessibility: Topographical complexity of this study area means 

many areas are inaccessible by car or even foot. Flying is prohibitively expensive, 

and so, delineation of sites using good maps, had to be used to supplement field 
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sites. An accessibility layer was developed for the study area so that sample sites 

are mainly focussed within areas that can be physically accessed. Accessibility was 

defined by a 1 km buffer of roads and hiking trails, as amended by local expertise of 

areas that can be reached from these tracks, depending on local topography 

(steepness of slope, roughness of under-foot conditions, and known routes around 

cliffs) (Figure 4). The inaccessible sites were delineated from the colour aerial 

photographs (Campbell 1996). 

 

Due to software limitations on the size of images that can be processed, the 

WorldView-2 satellite image had to be divided into four image blocks. Therefore, for 

each of the four image blocks, 10 training sites had to be selected per vegetation 

information class. These training sites were also stratified across the landscape. 

This added up to 90 sample sites per vegetation information class in total. 

 

The placement of the 90 sample sites per vegetation information class was stratified 

according to the aerial coverage of the landform category in that vegetation 

information class (Figure 4). The occurrence of vegetation information class varies 

over the study area. Consequently, a proportional random approach to sampling 

was decided on (Hunt & Tyrrell 2004) – i.e. the approximate number of sample sites 

required per vegetation information class was determined by the proportion of that 

vegetation information class in the study area. So, the 90 sample sites for a 

vegetation information class were apportioned across the landform categories 

according to area (Table 3).   
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Table 3.  Number of sample sites (reflected as actual numbers) calculated per vegetation 

information classes (rows) stratified across the different landform categories (columns) were 

randomly selected for use during the image classification.  

        Topographical    

Vegetation Vegetation information Top of   Cliffs Slope Lowlands River Total 

 classes mountain    Course 

IAP species and densities 

Pinus Pinus individual 74   12 7 12 1 106 

 Pinus stand dense 63   4 3 19 - 89 

 Pinus stand sparse 79   10 9 17 2 117 

 Pinus stand scattered 78   8 7 10 2 105 

Acacia Acacia stand dense 6   1 3 88 8 107 

Other filler classes 

 Afrotemperate forest in 

 kloofs – incl. indigenous 14   22 23 41 9 107 

 riverine vegetation 

 Other 47   7 11 25 - 90 

 

The apportioned sample sites were then randomly selected from available localities 

within the accessibility buffer.  In cases where the apportioned number of sites could 

not be met with field work, heads-up digitising from the colour aerial photography 

was used to augment field data (Campbell 1996). Note that where the stratification 

exercise indicated a sample size for any given vegetation information class between 

zero and one, it was sampled as one site. Therefore, for some vegetation 

information classes the total sample sites exceed 90 sites. 
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Figure 4.  Randomly selected sample sites apportioned by vegetation information class and 

landform category (see legend). The area accessible by foot is indicated with a light-blue 

boundary.  

 

Then the training sites were divided in proportion to the aspect shapefile. The 

randomly selected training sites were overlayed with the aspect shapefile (Table 4).  
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Table 4.  Percentage calculation of where the training sites plot within the north and south 

aspects. Number of training sites randomly selected per vegetation information classes 

(rows) overlayed with the aspect shapefile (columns). 

  North South Total number North South 

  (number (number of training (%) (%) 

  of sites) of sites) sites 

 Pinus individual 25 2 52 48 52  

 Pinus stand dense 22 27 49 45 55  

 Pinus stand sparse 33 23 56 59 41  

 Pinus stand scattered 33 22 55 60 40  

 Acacia stand dense 38 15 53 72 28  

 Afrotemperate forest 25 25 50 50 50  

 

Based on these figures and percentages above, the distribution of training sites 

between the north and the south are evenly distributed with the exception of the 

Acacia spp. sites. This can be explained by the fact that most of the Acacia spp. 

infestation occurs on the northern part and the northern slopes of the classification 

area. This should also not be a problem, from a classification point of view, as most 

of these sites are in the lower flatter areas. 

 

The sites were surveyed using global positioning system (GPS) readings along the 

footpaths and roads. The actual point locality of the IAP species was then 

interpolated from these readings using the colour aerial photography. If possible the 

reading was taken next to the IAP species. The additional points obtained through 

heads-up digitizing were digitized from the colour aerial photography. Due to the 

orthorectification error on the WorldView-2 satellite image, the sample sites (both for 

training and reference purpose) were interpolated from the colour aerial 

photography across to the WorldView-2 satellite image. For the mountainous areas, 

it was relatively easy to be sure that the Pinus spp. was indeed Pinus spp. This 

assumption was based on experienced gained during the field visit, accompanied by 

a botanical expert. The assumption was also made that the Acacia spp. within this 

study area was limited to the lower slopes. The final selected sample sites were 

then checked to ensure these sites co-register accurately with the WorldView-2 

satellite image.  
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3.8.  Classification Protocol 

 

Based on the literature study conducted, which is summarised in the table added as 

an appendix (Appendix A), a per-pixel and a per-field image classification was used. 

As shown in the literature review, there is often no standard image classification 

technique able to achieve the desired results (Liu et al. 2002).  

 

Per-pixel image classification is the simplest and more traditional method used with 

image classification (Burnett & Blaschke 2003; Yu et al. 2006). Each pixel is 

classified individually, based on its spectral value and assigned to a vegetation 

information class (Campbell 1996; Burnett & Blaschke 2003; Yu et al. 2006), 

whereas per-field image classification factors in the homogeneity of the landscape 

by grouping pixels into objects (Benz et al. 2004; Lewiński & Zaremski 2004) and 

then performs the classification on the objects. The grouping of these pixels into 

objects is done using various grouping algorithms (Walter 2004). 

 

Often a number of different classification methods and algorithms are combined to 

achieve the desired results (Lu & Weng 2007). For these two classification methods, 

it was decided that a combination of algorithms will be applied as described below. 

 

3.8.1.  Classification: per-pixel  

 

For the per-pixel method, the ISODATA protocol (Viovy 2000), supported by ERDAS 

Imagine, were used to run a supervised classification. This method consisted of 

various steps, which included (i) predefining the signatures per vegetation 

information class, (ii) evaluating the signatures, and then (iii) running the supervised 

classification using feature space. Feature space places pixels using the training 

sites by direct comparison (ERDAS 2009). The analytical procedure used during the 

image classification, in this research, is graphically represented in the flow diagrams 

for the per-pixel classification process (Figure 5). 
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Figure 5.  Work flow for the per-pixel image classification of invasive alien plants (IAP) 

species from WorldView-2 satellite images. The work flow was developed based on the 

extensive literature study conducted on various classification methods (as summarised in 

Appendix A). 

 

For the first and second steps the signature files were generated and tested. For the 

development of the signature files, areas of interest (AOI) were generated from seed 

pixel (ERDAS 2009) (Figure 6). The selection of the initial seed pixels was based on 

the point layer containing the training sites per vegetation information class. Each 

seed pixel is compared to pixels that are adjacent to it based on set parameters.  

 

 

 

 

 



55 

 

 

Figure 6.  Example of how the area of interest (AOI) was drawn for a vegetation information 

class based on a seed pixel. The AOI serve as training sites during the supervised 

classification. 

 

The decision on which parameters to use was based on testing various settings, 

such as ensuring that the right amount of pixels representing the vegetation 

information class is included in the AOI (Table 5). Due to the small size of the pixel 

area, a Euclidean distance of 10 does not include pixels that add too much “noise”. 
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Table 5.  The different settings used for the spectral Euclidean distance (recorded in digital 

numbers) and geographical constraint (number of pixels) during the capturing of the areas of 

interest (AOI) per vegetation information class.  

  Geographical constraint Euclidean distance 

 Pinus individual 30 10 

 Pinus stand dense 75 7 

 Pinus stand sparse 30 10 

 Pinus stand scattered 30 10 

 Acacia stand dense 100 10 

 Afrotemperate forest 100 10 

 

This method to set up the AOI is less time consuming, but may lead to 

underestimation of the vegetation information class variances, whereas the other 

methods, such as digitized polygons, user-defined polygons, and thematic raster 

layer, are more time consuming as they involve a lot of user input and can lead to an 

overestimation of the vegetation information class variance (ERDAS 2009).  

 

Signature files were generated from these AOI, per training site, for each pre-

defined vegetation information class for the classification. The signature files were 

then tested to see whether the signatures were a true representation of the pixels to 

be classified per vegetation information class. For this test, the “Alarm” evaluation 

was used. The “Alarm” evaluation uses the parallelepiped decision rule to display 

the selected pixels on the original image and thus allowed me to recognise patterns 

through visual inspection. In some instances some of the signature files for a 

vegetation information class overestimated the extent of a class and so include too 

much variation. The advantage of first testing the signature file is that the AOI can 

then be adjusted or excluded before the final merged signature files per vegetation 

information class were generated. The “Alarm” evaluation is a standard function 

provided with the ERDAS Imagine software (ERDAS 2009). 

 

For the third step, namely running the classification, the ISODATA supervised 

classification technique (Viovy 2000) was used. The choices within this routine are 

fairly complicated and the results rely on the quality of the training sites and the 

choice of algorithm used. As the signature file data did not have a normal 
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distribution, a non-parametric rule for the classification was used. The non-

parametric rule used was feature space (ERDAS 2009). With this rule, each 

candidate pixel is tested whether it fits in with the signature for a particular 

vegetation information class (ERDAS 2009). The other method available with 

ISODATA is parallelepiped, which uses rectangular shapes to select the pixels for 

each vegetation information class. This means that some pixels, with a value quite 

far out of the range of the signature files, are added, leading to an overestimation of 

the vegetation information class, which is why the feature space method was 

preferred. Where a pixel did not fit, the system was set to leave it unclassified. For 

the overlapping vegetation information classes, I chose to use a parametric rule. 

This means that where a pixel falls within two overlapping signatures, the system 

assigned the pixel to the overlapping signature that is parametric (ERDAS 2009). 

The other two choices are to classify by order (the pixel is assigned to the first 

signature which was set by the signature editor), or leaving the pixel unclassified. 

The parametric rule was set to ML, which works on the probability that a pixel 

belongs to a vegetation information class and assumes that these probabilities are 

equal for all vegetation information classes and that the multispectral bands have a 

normal distribution (ERDAS 2009). The resulting classification had the expected 

salt-and-pepper effect (Figure 7). 

 

  

Figure 7.  An example of the results of the per-pixel supervised classification of invasive 

alien plant (IAP) species using Iterative Self Organising Data Analysis (ISODATA). The 

image on the left is the WorldView-2 satellite image (natural colour) and on the right is the 

classification result. 
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As the classification process was performed per image block, the four resulting 

classified thematic maps had to be merged afterwards. The merging process 

entailed first ensuring that the four classified thematic maps had the same grid 

codes, and then clipped to remove overlaps. 

 

3.8.2.  Classification: per-field / object-oriented 

 

For the object-oriented protocol, the FNEA was used. The FNEA segments the 

image into objects by merging areas “pairwise”, using a bottom-up segmentation 

algorithm, and then performing the classification on these objects using NN (Baatz 

et al. 2004). This is the protocol used by eCognition to do object-oriented image 

classification. The process followed could be divided into three steps, namely (i) the 

images were segmented into homogeneous areas, referred to as objects, (ii) the 

vegetation information classes were loaded and then the classification was 

performed for both levels of segmentation and then (iii) the final improved classified 

thematic map was generated by the integration of the classification of the finer scale 

objects (level two) with the classification of the coarser scale objects (level one). The 

analytical procedure followed for the image classification for this research is 

graphically represented in the flow diagram for the object-oriented classification 

process (Figure 8). 
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Figure 8.  Work flow for the per-field (object-oriented) image classification of invasive alien 

plants (IAP) species from WorldView-2 satellite images. The work flow was developed based 

on the extensive literature study conducted on various classification methods (as 

summarised in Appendix A). 

 

STEP 1: Segmentation of the images  

Multiresolution segmentation was performed at different scales, which can represent 

the image objects at different resolutions simultaneously (Laliberte et al. 2004). This 

is a standard function available in eCognition. Expert judgement and visual 

interpretation were used to decide on the segmentation parameters, namely colour 

and scale. The colour parameters were captured using a weighted value between 

zero and one, and the scale parameters were captured using a value between five 

and 250.  
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For the level one segmentation, the colour and scale parameters were set to 60 for 

the scale and 0.9 for the colour (Figure 9). Visual inspection of segmentation results, 

using a scale of 60, showed that this scale mapped stands of Pinus well, but did not 

map individual trees. The use of a coarser scale parameter results in bigger image 

objects (Benz et al. 2004). In this research, running the segmentation with a scale 

setting of 110 generated objects were too large for classification because the 

resultant objects incorporated too much natural vegetation with the IAP species. The 

higher the colour scale is set, the greater the emphasis that was given to the 

variation in the spectral information of the image, therefore the colour scale was set 

at 0.9.  

 

 

Figure 9.  Multiresolution segmentation done with the scale set to 60 and the colour set to 

0.9 in eCognition using WorldView-2 satellite images. These settings were most suitable to 

delineate invasive alien plants (IAP) species stands. 
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For the level two segmentation, the scale was set to 15 and the colour to 0.8. Visual 

inspection showed this scale to be a good scale to pick up the individual Pinus spp. 

(Figure 10). A finer scale setting than 15 could not be used due to computer 

hardware and software processing constraints.  

 

 

Figure 10.  Multiresolution segmentation done with the scale set to 15 and the colour set to 

0.8 in eCognition using WorldView-2 satellite images. These settings were most suitable to 

delineate invasive alien plants (IAP) species individuals. The inset shows an enlargement of 

how the segments delineate the ‘Pinus individual’ trees. 

 

STEP 2: Classification of segmentation objects 

The vegetation information classes were assigned and captured into two registers, 

namely the groups register and the inheritance register. The groups register 

summarises the child classes into broader meaningful groups, whereas the 

inheritance register indicates the vegetation information class features the child 

class inherits from the parent class (Baatz et al. 2004; Definiens 2009). For this 
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research the same class hierarchy was loaded for both the group and inheritance 

register (Figure 11). 

 

 

Figure 11.  The legend shows the class hierarchy loaded in eCognition for the classification 

process of invasive alien plant (IAP) species. 

 

The classification performed on the level one segmentation used a standard NN 

classifier. The training sites were selected manually by highlighting the objects and 

then assigning the vegetation information classes to these objects. The classification 

performed on the level two segmentation was also done using a standard NN 

classifier using all the vegetation information classes (as done for the level one 

segmentation), but then the classification of the individual Pinus spp. was refined by 

setting thresholds. Setting the thresholds enabled the system to eliminate objects 

classified as ‘Pinus individual’ that was actually small clumps of two or more Pinus 

trees (Laliberte et al. 2010). For the ‘Pinus individual’ class the threshold was set on 

the size of the area and length, and the number of pixels. Visual interpretation was 

used by examining various known sites of ‘Pinus individual’ to determine the 

appropriate size of the area and length, and the number of pixels to use. The 

thresholds were set for areas smaller than 167 pixels, length smaller than 20, width 

smaller than 13, and number of pixels smaller than 167. The end results were two 

separate classification products, namely a classified thematic map indicating IAP 

species stands (all vegetation information classes) and one showing only the ‘Pinus 

individual’ vegetation information class.  

 

STEP 3: Integration of levels one and two classifications 

On comparing the level one and level two classified thematic maps, it appeared that 

the classification algorithm could not make a clear distinction between the classes 

Pinus sparse and ‘other’. The level one classified thematic maps showed large 
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areas classified as ‘other’ natural areas whereas the level two classified thematic 

map indicated the occurrence of ‘Pinus individual’ vegetation information class. In 

other instances the level one classified thematic map showed areas classified as 

‘Pinus stand sparse’, but no individual Pinus trees were recorded in these objects. 

The classification of individual Pinus trees at a lower level (level two) allowed for the 

recalculation of the stand densities of Pinus spp. at a higher level (level one). I 

extracted from the level one segmentation all the objects originally classified as 

‘Pinus stand sparse’ and ‘other’. Using the level two objects classified as ‘Pinus 

individual’, I recalculated new Pinus spp. densities for the extracted level one 

objects. These recalculations changed the vegetation information classes of these 

extracted objects to either ‘Pinus stand sparse’, ‘Pinus stand scattered’, or ‘other’. 

The original level one objects classified as ‘Pinus stand sparse’ and ‘other’ were 

then updated with the newly recalculated objects with new vegetation information 

classes, thus generating a new improved per-field classified thematic map (Figure 

12). 

 

  

Figure 12.  An example of the final improved per-field classified thematic map after 

incorporating the results from the level two classification into the level one classification. The 

image on the left is the WorldView-2 satellite image (natural colour) and on the right is the 

classification result. 

 

As the whole classification process was performed per image block, the four 

resulting classified thematic maps per classification product had to be merged 

afterwards. The merging process entailed first ensuring that the four classified 

thematic maps per classification product had the same grid codes. These were then 

clipped to remove overlaps. Three final per-field classification products were 
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generated, namely (i) original level one classified thematic map, (ii) level two 

classified thematic map, and (iii) final improved per-field classified thematic map. 

The level two classified thematic map, containing all the vegetation information 

classes, was generated only for comparison purposes. 

 

3.9.  Accuracy assessment  

 

Any classified thematic map contains errors. These errors can be caused by many 

factors, such as misidentification, over-generalisation, error in spatial registration 

and, most of all, the incorrect assignment of vegetation information classes to 

spectral classes (Campbell 1996). It is, therefore, essential to assess the accuracy 

of the classified thematic map (Congalton 2001). 

 

Various factors can influence the choice of the assessment strategy. The sampling 

design used for the accuracy assessment has a very important implication on the 

accuracy estimation (Foody 2002). Budget and other practical constraints such as 

accessibility can influence the selection of sampling sites (Foody 2002, 2009). 

Having an adequate number of sample sites for the assessment is 50 reference 

samples per vegetation information class (Congalton 1991), but this can be very 

costly and time consuming. There are examples of accuracy assessments where 

fewer sites were used. Fairbanks & Thompson (1996) used a simple random 

sampling method for the South African Landcover map, which added up to 100 

points per map sheets (areas of approximately 160 x 120 km), and not per 

vegetation information class. De Leeuw et al. (2006) used 178 plots to assess the 

accuracy of a classification with 19 vegetation information classes. For the research 

presented in this thesis, 50 reference sites were used per vegetation information 

class. 

 

The sample sites, used for the reference map, were surveyed together with the 

training sites and the same method of stratified random sampling was used 

(Campbell 1996; Lu & Weng 2007). For the accuracy assessment a total of 362 

sample sites were used. Of these 362 sample sites, 98 sample sites were ground-

truthed in the veld, and the other 264 sample sites were obtained from high-

resolution colour aerial photography. The terrain was too topographically complex to 
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allow ground survey of all sample sites, and the IAP species, especially the Pinus 

spp., were clearly visible from the colour aerial photography. 

 

Before the accuracy assessment is done, it is best to decide what accuracy 

achievement is required (Foody 2008). Setting an unrealistic target can pose 

problems, such as giving an unfair negative view of the quality of the classified 

thematic map (Foody 2008). For this research it was very difficult to determine 

beforehand what accuracy would be achievable, as the whole purpose of the study 

is to test different classification methods and then assessing which gives the best 

results.  

 

The most widely used method for accuracy assessment of a classification is a site-

specific accuracy assessment (Campbell 1996). Another frequently used method is 

to perform a non-site specific assessment, which is done by comparing a complete 

classified thematic map with the reference map (Campbell 1996; Congalton 2001). 

Foody (2002) and Wickham et al. (2004) also listed some other strategies used such 

as ‘windshield’ surveys, techniques based on double sampling, and cluster 

sampling. For the site-specific assessment the confusion matrix is used, due to its 

ability to give a good summary of the two types of errors, namely omissions and 

commissions (Congalton 2001; Foody 2002, 2008, 2009). The omission error 

indicates pixels that were not correctly classified (omitted from the vegetation 

information class). Commission errors occur when a particular pixel is assigned to 

the wrong vegetation information class (Campbell 1996). Even though various 

literature indicates that this site-specific accuracy method does not always produce 

the best results (Wilkinson 2005; de Leeuw et al. 2006; Foody 2008, 2009), for this 

research, this method is adequate as it presents the results clearly and concisely. 

The image classification results therefore were assessed using the confusion matrix 

and using the kappa coefficient to quantify the classification (Campbell 1996).  

 

An individual site-specific accuracy assessment was performed on each of the four 

classified thematic maps generated during the traditional per-pixel classification 

methods, as well as the three per-field classification outputs. In addition, for the per-

pixel classification and improved per-field classification, different vegetation 

information class combinations were considered. In other words, for these two 
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classified thematic maps, a confusion matrix was generated considering all the 

vegetation information classes with the break down per densities and then another 

confusion matrix was generated, looking at a combination of the vegetation 

information classes (combining all the Pinus spp. classes together).  

 

The results of all the confusion matrices were summarised for comparison. For this 

only the total percentage omission error, the total percentage commission error, the 

total producer’s accuracy (as a percentage), the consumer’s accuracy (as a 

percentage), and the kappa coefficient of each of the confusion matrices were 

recorded in a table. 
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Chapter 4: RESULTS: PRESENTATION AND DISCUSSION  

 

4.1.  Introduction  

 

This research is aimed at assessing whether high-resolution satellite images and 

colour aerial photography could be used to map IAP species accurately, especially 

in topographically complex areas. The research tested two classification methods, 

namely per-pixel classification using ISODATA and per-field classification using the 

FNEA protocol. Both methods were run using a supervised classification approach. 

Therefore, before either of these classifications could be run, sample sites had to be 

identified and field verification of these sample sites had to be done. 

 

The Hawequa conservation area is a topographically complex environment (Figure 

13). Large parts of the study area were inaccessible due to steepness of slopes and 

high cliffs. The landform areas referred to as slopes (between 35° and 45°) cover 

8.4% of the study area, and cliffs (greater than 45°) cover 14.3% of the study area.  

 

 

Figure 13.  A photograph (1 November 2010) taken in the Hawequa conservation area 

illustrating the slopes and cliffs within the study area. 
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In addition, over half (54.6%) of the study area lies at an altitude greater than 800 m. 

Only small parts of these areas are accessible from footpaths. These factors lead to 

major constraints in obtaining sample sites in the field. Consequently only about a 

quarter (27%) of all the sample sites were verified in the field. 

 

The results of this research will be presented in two sections, namely (i) as a 

summary of the results per method (total cover of IAP species per vegetation 

information class as mapped per method), and (ii) the accuracy assessment results 

per method (what percentage accuracies were achieved and which method 

achieved better results). 

 

4.2.  Summary of results per method 

 
The per-pixel and per-field classifications conducted on the WorldView-2 satellite 

images yielded very different results. The two final maps were added as 

appendices, namely the per-pixel classified thematic map (Appendix B) and the per-

field classified thematic map (Appendix C). The resulting classified thematic maps 

were converted to shapefiles. These were then used to calculate the areas and 

densities covered by IAP species, per vegetation information class, for the study 

area. For the per-pixel classified thematic map, a straight forward summation was 

performed. For the per-field classified thematic map, the IAP species cover was 

calculated by translating the pre-defined density categories to an average 

percentage cover and then multiplying these percentages with the total object areas 

per vegetation information class. 

 

4.2.1.  Per-pixel classification 

 

The area of each vegetation information class was summed for the study area 

(Table 6; Figure 14). Even though the results were summed and presented per 

density category for each IAP species, the total areas represent actual cover of IAP 

species, and therefore no further calculation was needed to derive the total areas 

covered by IAP species. The density categories were only an indicator of the 

proximity of the classified pixels from other pixels with a similar spectral value. The 

‘Pinus individual’ vegetation information class covers 208.0 ha (2.2%), ‘Pinus stand 
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sparse’ covers 546.0 ha (5.9%), ‘Pinus stand scattered’ covers 243.1 ha (2.6%), 

‘Pinus stand dense’ covers 208.7 ha (2.2%), and ‘Acacia stand dense’ covers 80.1 

ha (1.5%). 

 

Table 6.  Summed areas classified per vegetation information class extracted from the per-

pixel classified thematic map. The percentages calculated represent the actual invasive alien 

plants (IAP) species cover.  

Vegetation information class Area in hectares Percentage of 

 hectares the total study 

  area 

Pinus individual 208.0 2.2 

Pinus stand sparse (< 25%) 546.0 5.9 

Pinus stand scattered (25%-50%) 243.1 2.6 

Pinus stand dense (> 50%) 208.7 2.2 

Acacia stand dense (> 50%) 80.1 0.9 

Afrotemperate forest 136.8 1.5 

Other 7 870.9 84.7 

 

 

 

Figure 14.  Summary of the vegetation information classes as extracted from the per-pixel 

classified thematic map for this study area. With these percentages, the density categories 

were already translated to actual invasive alien plants (IAP) species cover. 
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With the per-pixel classification, each pixel was classified as a separate entity and 

consequently presenting the results using densities categories was inaccurate.  It is 

more realistic to indicate the area per IAP species rather than by density categories. 

The results from the different Pinus spp. vegetation information classes were 

summed together (Table 7). The extent of Pinus and Acacia spp. in the study area 

according to the classification is 1 205.8 ha (13.0%) and 80.1 ha (0.9%) 

respectively.  

 

Table 7.  The summarised areas classified per invasive alien plants (IAP) species, 

Afrotemperate forest, and ‘other’ extracted from the per-pixel classified thematic map. The 

Pinus spp. vegetation information classes were combined to give one area. 

Vegetation information class Area in Percentage of the 

 hectares total study area 

All Pinus spp. 1 205.8 13.0 

Acacia stand dense (> 50%) 80.1 0.9 

Afrotemperate forest 136.8 1.5 

Other 7 870.9 84.6 

 

4.2.2.  Per-field classification 

 

To calculate the actual IAP species cover, using the per-field method, the group 

midpoint, or average percentage per pre-defined density category, which is a WfW 

standard, was used (Working for Water 2003). The IAP species per vegetation 

information class cover was calculated by multiplying the sum of the object areas 

with the average percentage per pre-defined density category. For example, the 

total object area classified as ‘Acacia stand dense’ is 129.1 ha, but according to the 

definition used for ‘Acacia stand dense’, only 75% (96.8 ha) of this area is covered 

by actual Acacia spp. The remaining hectares were reassigned to the ‘other’ 

vegetation information class (Table 8; Figure 15). 
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Table 8.  The summarised areas classified per vegetation information class extracted from 

the per-field classified thematic map. The actual areas for invasive alien plants (IAP) 

species were calculated using average percentages per pre-defined density categories. 

The remainder areas not covered by IAP species were added as ‘other’. 

Vegetation information class Sum of the Average Condensed Percentage 

 object area percentage area (ha) of the total 

 (ha) per density  study area 

  category 

  (WfW) 

Pinus stand sparse (< 25%) 2 144.1 12.5 268.0 2.9 

Pinus stand scattered (25%-50%) 1 027.9 37.5 385.5 4.2 

Pinus stand dense (> 50%) 623.2 75 467.4 5.0 

Acacia stand dense (> 50%) 129.1 75 96.8 1.1 

Afrotemperate forest 403.0 100 403.0 4.3 

Other 4 966.2 100 4 966.2 53.4 

Other (Remaining hectares reassigned from other vegetation information classes) 

   2 706.7 29.1 

 

 

 

Figure 15.  Summary of the vegetation information classes as extracted from the per-field 

classified thematic map for this study area. With these percentages, the density categories 

were already translated to actual invasive alien plants (IAP) species cover. 
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Now that the IAP species density categories were translated to actual IAP species 

cover, the per-field classified thematic map can be further summed to indicate the 

figures per IAP species rather than by vegetation information class. The results from 

the different Pinus spp. vegetation information classes were summed together 

(Table 9). The extent of Pinus and Acacia spp. in the study area is 1 120.9 ha 

(12.1%) and 96.8 ha (1.1%) respectively. 

 

Table 9.  Summed areas, classified per invasive alien plants (IAP) species, Afrotemperate 

forest, and ‘other’ extracted from the per-field classified thematic map. The Pinus spp. 

vegetation information classes were combined to give one area. 

Vegetation information class Area in Percentage of the 

 hectares total study area 

All Pinus spp. 1 120.9 12.1 

Acacia stand dense (> 50%) 96.8 1.1 

Afrotemperate forest 403.0 4.3 

Other 7 672.9 82.5 

 

 

When considering the results of the overall calculation of IAP species cover, the two 

different methods provided very similar results (Table 10). On comparing the 

summaries of the areas classified per method, there is not a big difference in the 

general distribution of the summarised vegetation information classes. The 

vegetation information classes with the biggest differences in the percentage cover 

are ‘Afrotemperate forest’ and ‘other’ at 2.8 and 2.1 respectively, but this difference 

is still very small (Table 10). For the IAP species, which was the main focus of the 

mapping exercise, the difference in percentage cover between the two methods was 

less than 1%.  
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Table 10.  Comparison of the results of the summed areas, classified per invasive alien 

plants (IAP) species, Afrotemperate forest, and ‘other’ extracted from the per-pixel and per-

field classified thematic map.  

Vegetation information class Percentage Percentage Difference 

 (per-pixel) (per-field) in percentage 

   cover 

All Pinus spp. 13.0 12.1 0.9 

Acacia stand dense (> 50%) 0.9 1.1 0.2 

Afrotemperate forest 1.5 4.3 2.8 

Other 84.6 82.5 2.1 

 

Comparing the overall results (total number of hectares per IAP species cover) 

(Tables 7 & 9) there is no difference in the performance of the two methods. 

However, this is a non-site specific way of comparing the results (Campbell 1996) 

and does not show whether the hectares mapped are indeed mapped in the correct 

place. It is very important to consider the actual spatial accuracy of the classified 

thematic maps by performing a site-specific accuracy assessment, which is 

presented next. 

 

4.3.  Accuracy of results per method 

 

For this research, the confusion matrix was used to assess site-specific spatial 

accuracy of the classified thematic maps (Campbell 1996). Reference sites were 

selected using stratified random sampling and where different from the sample sites 

used for training the classification process.  

 

A confusion matrix was compiled for each of the classified thematic maps generated 

from the two classification methods. This compares pixels indentified as a particular 

class by the classification versus what the reference site data shows that pixel’s 

class to be. For each map a confusion matrix was generated including commission 

and omission error, as well as the producer’s accuracy, the consumer’s accuracy, 

and the kappa coefficient (Campbell 1996) (Table 11). 
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Table 11.  Definition and mathematical calculation summary of the five calculations 

performed within each confusion matrix (Campbell 1996). 

Calculations 

 Definition 

Omission error (%) 

The percentage error of omission, which indicates how much the classification missed 

(percentage of sites not correctly classified).  

This was calculated by deducting the correctly classified pixels from the number of reference 

pixels in that class and then divided with the total number of reference pixels in that class. 

Commission error (%) 

The percentage error of commission, which indicates where the classification over-mapped.  

This was calculated by deducting the correctly classified pixels from the number of classified 

pixels in the class and then divided with the total number of classified pixels in that class. 

Producer’s accuracy (%) 

The proportion of reference area (%) in a class correctly classified in the output classified 

thematic map.  

This was calculated by dividing the number of correctly classified pixels with the total 

number of reference pixels in that class. 

Consumer’s accuracy (%) 

The proportion of the classified area (%) in a class that was correctly classified in the output 

classified thematic map. The consumer’s accuracy shows reliability of the map as a 

predictive device and gives the probability that the pixels have been correctly assigned in 

the output classified thematic map.  

This was calculated by dividing the number of correctly classified pixels with the total 

number of classified pixels in that class. 

kappa coefficient 

This calculation measured the difference between the observed pixels and the agreement   

 that might be attained solely by chance matching. 

 

4.3.1.  Per-pixel classification 

 

An accuracy assessment of the resulting classification was performed using 362 

reference sites acquired across the seven vegetation information classes (Table 12). 

The overall producer’s accuracy achieved was 74.3%, consumer’s accuracy of 74%, 

and a kappa coefficient of 0.700. 

 

Table 12.  Confusion matrix to assess the accuracy of the per-pixel classified thematic map. 

This matrix was done using all the vegetation information classes. The following acronyms 

were used in the matrix; Acacia = Acacia stand dense, Afro.forest = Afrotemperate forest, P. 
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indiv. = Pinus individual, P. sparse = Pinus stand sparse, P. scattered = Pinus stand 

scattered, P. dense = Pinus stand dense, Omission = Omission error (%), Commission = 

Commission error (%), Prod. acc = Producer’s accuracy (%), and Cons. acc. = Consumer’s 

accuracy. The diagonal values represent accurately classified pixels (match between classes 

assigned to pixels by the classification and reference sites). 

   Predicted class 

 Acacia Afro.forest P. indiv. P. sparse P. scattered P. dense Other Total 

Actual class 

  Acacia 45 4 1 3 - - - 53 

  Afro.forest 2 54 - - - 1 2 59 

  P. indiv. - - 31 8 6 4 3 52 

  P. sparse 1 1 7 38 9 1 4 61 

  P. scattered - 1 3 5 31 9 1 50 

  P. dense 1 - 2 - 7 30 - 40 

  Other 1 1 1 2 2 - 40 47 

Total 50 61 45 56 55 45 50 362 

 

Class Omission Commission Prod. acc Cons. acc. 

  Acacia 15.1 9.4 84.9 90.0 

  Afro.forest 8.5 11.9 91.5 88.5 

  P. indiv. 40.4 26.9 59.6 68.9 

  P. sparse 37.7 29.5 62.3 67.9 

  P. scattered 38.0 48.0 62.0 56.4 

  P. dense 25.0 37.5 75.0 66.7 

  Other 14.9 21.3 85.1 80.0 

Total 25.7 26.4 74.3 74.0 

kappa coefficient = 0.700 

 

 

The Pinus spp. vegetation information classes were then combined and another 

confusion matrix compiled, using only species specific vegetation information 

classes (Table 13). Combining the Pinus spp. resulted in an increase in the overall 

producer’s accuracy of 14.6% (88.9%) and in the consumer’s accuracy of 14.4% 

(88.4%), with a new kappa coefficient of 0.858. Landis & Koch (1977) proposed the 

following strengths of agreement: 0.010 to 0.200 is poor, 0.210 to 0.400 is fair, 0.410 

to 0.600 is moderate, 0.610 to 0.800 is substantial, greater than 0.810 is near 

perfect.   
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Table 13.  Confusion matrix to assess the accuracy of the per-pixel classified thematic map. 

For this matrix all the Pinus spp. vegetation information classes were combined. The 

following acronyms were used in the matrix; Acacia = Acacia stand dense, Afro.forest = 

Afrotemperate forest, Omission = Omission error (%), Commission = Commission error (%), 

Prod. acc = Producer’s accuracy (%), and Cons. acc. = Consumer’s accuracy. The diagonal 

values represent accurately classified pixels (match between classes assigned to pixels by 

the classification and reference sites). 

  Predicted class 

 Acacia Afro.forest Pinus spp. Other Total 

Actual class 

  Acacia 45 4 4 - 53 

  Afro.forest 2 54 1 2 59 

  Pinus spp. 2 2 191 8 203 

  Other 1 1 5 40 47 

Total 50 61 201 50 362 

 

Class Omission Commission Prod. acc Cons. acc. 

  Acacia 15.1 9.4 84.9 90.0 

  Afro.forest 8.5 11.9 91.5 88.5 

  Pinus spp. 5.9 4.9 94.1 95.0 

  Other 14.9 21.3 85.1 80.0 

Total 11.1 11.9 88.9 88.4 

kappa coefficient = 0.858 

 

The results of the per-pixel classification method are very promising, in the context 

of the research. The results showed that the classification could accurately identify 

the presence of Pinus and Acacia stands, even though it could not determine 

different densities of Pinus spp. with a high degree of certainty. This is based on the 

lower consumer’s accuracies achieved (56.4%-68.9%), which relates to over 

mapping for the vegetation information classes ‘Pinus stand scattered’ and ‘Pinus 

stand dense’, and the under mapping for the vegetation information classes ‘Pinus 

individual’ and ‘Pinus stand sparse’ (Table 12). Therefore, when performing a per-

pixel classification, it is better to use only species-based vegetation information 

classes e.g. Pinus or Acacia spp. When the different Pinus spp. vegetation 

information classes (i.e. density classes) were combined, an overall consumer’s 

accuracy for Pinus of 95.0% was achieved (Table 13). 
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4.3.2.  Per-field classification 

 

The per-field classified thematic maps were generated at two segmentation scales, 

namely a coarse scale, referred to as level one, and a finer scale, referred to as 

level two. From these two levels, three classified thematic maps were generated, 

namely (i) original level one, (ii) original level two, and (iii) final improved per-field 

classified thematic maps. The accuracy assessment was performed on all of these 

maps. 

 

Original level one per-field classified thematic map: A confusion matrix was 

compiled for the original level one per-field classified thematic map (Table 14). All 

the vegetation information classes were assessed. The level one per-field 

classification excluded the ‘Pinus individual’ vegetation information class. Therefore, 

only 310 reference sites were used with this assessment. The overall producer’s 

accuracy achieved was 47.7%, consumer’s accuracy of 45.0%, and a kappa 

coefficient of 0.372. The classification of the three Pinus vegetation information 

classes had the lowest producer’s accuracy (16.4%, 16,0% and 37.5% respectively). 

This could be due to the too large size of the objects and the inability of the method 

to decipher the complexity of the natural environment and determine the IAP 

species densities within (Huang & Asner 2009). Another possible reason for the low 

accuracy of the classified thematic map could be due to the density categories 

assigned to the reference sites. In detail, the reference sites were randomly selected 

from stands of Pinus and Acacia spp. which were delineated from colour aerial 

photography. A visual estimate was used to determine the boundary and density of 

the Pinus spp. stand. The segmentation process was run independently and 

therefore the object area delineated could have been different from the reference 

site’s delineated area. Therefore, the segmented object area could have had a 

different density category for the Pinus spp. than the reference site. 
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Figure 16.  Comparison between an area of invasive alien plant (IAP) species that was 

manually delineated from the colour aerial photography (bold red line) and the object 

segmented from the WorldView-2 satellite image using eCognition (bold blue line). The area 

in bold red represent ‘Pinus stand dense’ and the area in bold blue represent ‘Pinus stand 

scattered’. 

 

For example, the area of ‘Pinus stand dense’ indicated in bold red, was manually 

delineated from the colour aerial photography, whereas the area of ‘Pinus stand 

scattered’ indicated in bold blue, was segmented from the WorldView-2 satellite 

image (Figure 16). 
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Table 14.  Confusion matrix to assess the accuracy of the original level one per-field 

classified thematic map. This matrix was done using all the vegetation information classes, 

excluding ‘Pinus individual’. The following acronyms were used in the matrix; Acacia = 

Acacia stand dense, Afro.forest = Afrotemperate forest, P. sparse = Pinus stand sparse, P. 

scattered = Pinus stand scattered, P. dense = Pinus stand dense, Omission = Omission 

error (%), Commission = Commission error (%), Prod. acc = Producer’s accuracy (%), and 

Cons. acc. = Consumer’s accuracy. The diagonal values represent accurately classified 

pixels (match between classes assigned to pixels by the classification and reference sites). 

   Predicted class 

 Acacia Afro.forest P. sparse P. scattered P. dense Other Total 

Actual class 

  Acacia 28 25 - - - - 53 

  Afro.forest 7 50 - - 1 1 59 

  P. sparse 1 2 10 19 8 21 61 

  P. scattered 2 4 8 8 16 12 50 

  P. dense 3 14 2 4 15 2 40 

  Other 1 3 6 - - 37 47 

Total 42 98 26 31 40 73 310 

 

Class Omission Commission Prod. acc Cons. acc. 

  Acacia 47.2 26.4 52.8 66.7 

  Afro.forest 15.3 81.4 84.7 51.0 

  P. sparse 83.6 26.2 16.4 38.5 

  P. scattered 84.0 46.0 16.0 25.8 

  P. dense 62.5 62.5 37.5 37.5 

  Other 21.3 76.6 78.7 50.7 

Total 52.3 53.2 47.7 45.0 

kappa coefficient = 0.372 

 

Original level two per-field classified thematic map: Three confusion matrices 

were compiled for the original level two per-field classified thematic map. The first 

confusion matrix compared the ‘Pinus individual’ vegetation information class 

against all the other vegetation information classes merged into one class called ‘All 

other classes’ (Table 15). This is a problematic matrix and a consumer accuracy of 

86.4% does not give a true reflection of how well the system picked up individual 

Pinus trees. Of the 52 reference sites for ‘Pinus individual’, only 11 reference sites 

(21%) were correctly classified. That is most probably also why the kappa coefficient 

was so low, namely 0.298. The omission of the 41 reference sites (78.8% omission) 
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could be explained by the inability of the per-field classification system to delineate 

the individual Pinus spp.. On running the initial segmentation, when investigating 

what segmentation scales to use, the impression was that the system identified the 

‘Pinus individual’ vegetation information class very well, but, on closer inspection, it 

was the shadows of the trees that the system identified and not the spectral 

reflectance of the tree foliage. Another reason for the high omission of ‘Pinus 

individual’ could be that numerous reference sites identified as ‘Pinus individual’ 

were segmented and classified as part of larger objects, which were excluded from 

the classification when a size threshold was set for ‘Pinus individual’. Using a fixed 

set of threshold setting to identify individual trees can lead to a greater commission 

error (Wulder et al. 2000). 

 

Table 15.  Confusion matrix to assess the accuracy of the original level two per-field 

classified thematic map. For this matrix only the ‘Pinus individual’ vegetation information 

class were assessed and all the other vegetation information classes combined. The 

following acronyms were used in the matrix; Omission error (%), Commission = Commission 

error (%), Prod. acc = Producer’s accuracy (%), and Cons. acc. = Consumer’s accuracy. The 

diagonal values represent accurately classified pixels (match between classes assigned to 

pixels by the classification and reference sites). 

  Predicted class 

 Pinus individual All other classes Total 

Actual class 

  Pinus individual 11 41 52 

  All other classes 2 308 310 

Total 13 349 362 

 

Class Omission Commission Prod. acc Cons. acc. 

  Pinus individual 78.8 3.8 21.2 84.6 

  All other classes 0.6 13.2 99.4 88.3 

Total 39.7 8.5 60.3 86.4 

kappa coefficient = 0.298 

 

The second confusion matrix compiled for the level two per-field classified thematic 

map included all the vegetation information classes (Table 16). This classified 

thematic map was done as part of the finer-scale classification from which the ‘Pinus 

individual’ vegetation information class was extracted. This confusion matrix was 
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compiled to compare this classification with the coarser level segmentation and 

classification. The idea of the comparison was to determine if the finer-scale 

segmentation and classification would give a better result as each object would have 

less spectral variation within. The overall producer’s accuracy achieved was 38.5%, 

consumer’s accuracy of 45.2%, and a kappa coefficient of 0.278. This classification 

performed worse than the coarser level classification, which had a kappa coefficient 

of 0.372 (Table 14). Half of the ‘Pinus stand dense’ class (50%) was misclassified as 

‘Afrotemperate forest’. Stands of Acacia were also misclassified as ‘Afrotemperate 

forest’ (omission of 94.3%). This indicated that the per-field classification method 

had difficulty in distinguishing between the different objects of dense stands of 

vegetation, whether they were Afrotemperate forests, Acacia or Pinus spp. Even 

with the smaller objects used for the level two classification, the spectral variation in 

the objects where ‘Pinus stand sparse’ occur effected the system’s ability to 

distinguish between ‘Pinus stand sparse’ and ‘other’. 
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Table 16.  Confusion matrix to assess the accuracy of the original level two per-field 

classified thematic map. This matrix was done using all the vegetation information classes, 

including ‘Pinus individual’. The following acronyms were used in the matrix; Acacia = Acacia 

stand dense, Afro.forest = Afrotemperate forest, P. indiv. = Pinus individual, P. sparse = 

Pinus stand sparse, P. scattered = Pinus stand scattered, P. dense = Pinus stand dense, 

Omission = Omission error (%), Commission = Commission error (%), Prod. acc = 

Producer’s accuracy (%), and Cons. acc. = Consumer’s accuracy. The diagonal values 

represent accurately classified pixels (match between classes assigned to pixels by the 

classification and reference sites). 

   Predicted class 

 Acacia Afro.forest P. indiv. P. sparse P. scattered P. dense Other Total 

Actual class 

  Acacia 3 49 - - 1 - - 53 

  Afro.forest - 53 - - - 2 4 59 

  P. indiv. 1 4 10 4 4 10 19 52 

  P. sparse 1 7 1 8 7 16 21 61 

  P. scattered 1 11 - 2 8 17 11 50 

  P. dense - 20 - 1 2 17 - 40 

  Other 2 3 - 1 2 - 39 47 

Total 8 147 11 16 24 62 94 362 

 

Class Omission Commission Prod. acc Cons. acc. 

  Acacia 94.3 9.4 5.7 37.5 

  Afro.forest 10.2 159.3 89.8 36.1 

  P. indiv. 80.8 1.9 19.2 90.9 

  P. sparse 86.9 13.1 13.1 50.0 

  P. scattered 84.0 32.0 16.0 33.3 

  P. dense 57.5 112.5 42.5 27.4 

  Other 17.0 117.0 83.0 41.5 

Total 61.5 63.6 38.5 45.2 

kappa coefficient = 0.278 

 

Then, for the third confusion matrix generated on the level two classified thematic 

map, as for the per-pixel classification accuracy assessment, all the Pinus spp. 

vegetation information classes were combined (Table 17). Combining the Pinus 

spp., resulted in an improvement in the overall producer’s accuracy of the map to 

57.8% (increase of 19.3%) and the consumer’s accuracy to 52.4% (increase of 

38.0%), with a new kappa coefficient of 0.388. Even though this combination of the 
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Pinus spp. shows a very high consumer’s accuracy (94.7%), the consumer’s 

accuracy for Acacia spp. was still very low (37.5%). The reason for this was that 

large stands of Acacia spp. were misclassified as ‘Afrotemperate forest’, thus 

affecting the consumer’s accuracy of ‘Afrotemperate forest’ (36.1%) negatively. The 

overall accuracy of the classified thematic map co-varied with the commission error 

rates; the strong agreement with the reference data in one class relates to a large 

number of false detections in another class (Hamada et al. 2007).  

 

Table 17.  Confusion matrix to assess the accuracy of the level two per-field classified 

thematic map. For this matrix all the Pinus spp. vegetation information classes were 

combined. The following acronyms were used in the matrix; Acacia = Acacia stand dense, 

Afro.forest = Afrotemperate forest, Omission = Omission error (%), Commission = 

Commission error (%), Prod. acc = Producer’s accuracy (%), and Cons. acc. = Consumer’s 

accuracy. The diagonal values represent accurately classified pixels (match between classes 

assigned to pixels by the classification and reference sites). 

  Predicted class 

 Acacia Afro.forest Pinus spp. Other Total 

Actual class 

  Acacia 3 49 1 - 53 

  Afro.forest - 53 2 4 59 

  Pinus spp. 3 42 107 51 203 

  Other 2 3 3 39 47 

Total 8 147 113 94 362 

 

Class Omission Commission Prod. acc Cons. acc. 

  Acacia 94.3 9.4 5.7 37.5 

  Afro.forest 10.2 159.3 89.8 36.1 

  Pinus spp. 47.3 3.0 52.7 94.7 

  Other 17.0 117.0 83.0 41.5 

Total 42.2 72.2 57.8 52.4 

kappa coefficient = 0.388 

 

Final improved per-field classified thematic map 

A confusion matrix was generated for the final improved per-field classified thematic 

map (Table 18). This improved classified thematic map was derived by combining 

the results from the level two per-field classification (which only included the ‘Pinus 

individual’) with the original level one per-field classification. The improved per-field 
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classification excluded the ‘Pinus individual’ vegetation information class. Therefore, 

only 310 reference sites were used with this assessment. The overall producer’s 

accuracy achieved was 50.2%, consumer’s accuracy of 49.5%, and the kappa 

coefficient was 0.408. The improvement of this final product, in comparison to the 

initial level one classification was mainly due to the improvement of 6.6% in the 

accuracy of the ‘Pinus stand sparse’ vegetation information class. However, those 

accuracy levels are still low and insufficient to help reserve management in mapping 

IAP species for clearing work. The accuracy required by WfW for data used to issue 

clearing contracts, namely two to five meter accuracy over 66% of the project area, 

can only be achieved through mapping the areas using GPS or capturing IAP 

species stands using manual heads-up digitising from colour aerial photography 

(Working for Water 2003).  
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Table 18.  Confusion matrix to assess the accuracy of the final improved per-field classified 

thematic map. This matrix was done using all the vegetation information classes, excluding 

‘Pinus individual’. The following acronyms were used in the matrix; Acacia = Acacia stand 

dense, Afro.forest = Afrotemperate forest, P. sparse = Pinus stand sparse, P. scattered = 

Pinus stand scattered, P. dense = Pinus stand dense, Omission = Omission error (%), 

Commission = Commission error (%), Prod. acc = Producer’s accuracy (%), and Cons. acc. 

= Consumer’s accuracy. The diagonal values represent accurately classified pixels (match 

between classes assigned to pixels by the classification and reference sites). 

   Predicted class 

 Acacia Afro.forest P. sparse P. scattered P. dense Other Total 

Actual class 

  Acacia 28 25 - - - - 53 

  Afro.forest 7 50 1 - 1 - 59 

  P. sparse 1 2 23 19 8 8 61 

  P. scattered 2 4 14 8 16 6 50 

  P. dense 3 14 4 4 15 - 40 

  Other 1 3 9 - - 34 47 

Total 42 98 51 31 40 48 310 

 

Class Omission Commission Prod. acc Cons. acc. 

  Acacia 47.2 26.4 52.8 66.7 

  Afro.forest 15.3 81.4 84.7 51.0 

  P. sparse 62.3 45.9 37.7 45.1 

  P. scattered 84.0 46.0 16.0 25.8 

  P. dense 62.5 62.5 37.5 37.5 

  Other 27.7 29.8 72.3 70.8 

Total 49.8 48.7 50.2 49.5 

kappa coefficient = 0.408 

 

The results of the per-pixel classification method were more promising than those 

obtained from the per-field classification. Based on visual inspection of the final 

resulting thematic map, the segmentation readily picked up dense stands of 

vegetation as discrete objects, but experienced difficulty in correctly assigning these 

defined objects to the correct vegetation information classes. The results showed 

that the method struggled to distinguish between ‘Acacia stand dense’ and between 

‘Afrotemperate forest’ and ‘Pinus stand dense’. Results were also very poor in 

respect of the classification of the vegetation information classes ‘Pinus stand 

sparse’ and ‘Pinus stand scattered’. The main reason for this could be due to the 
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size of the objects and the large variation of spectral signatures of pixels included in 

these objects, i.e. an object where two Pinus trees occur were referred to as ‘Pinus 

stand sparse’, but was classified as ‘other’ because the majority of the object is 

‘other’.  

 

4.4.  General discussion  

 

4.4.1.  Comparison between reference map and classified thematic map 

 

An overall comparison between the reference maps and the per-pixel classified 

thematic map was done looking at Pinus and Acacia spp., and Afrotemperate 

forests (Figure 17). The reference maps (Figures 17a, 17c & 17e) were generated 

using visual interpretation from the colour aerial photography and then verified in the 

field. This reference map was used to determine the proportional random selection 

of the reference sites that were used during the accuracy assessment. Over-

classification occurred in all three the above mentioned vegetation information 

classes (Figures 17b, 17d & 17f). These maps also highlight the misclassification 

between the information vegetation classes. 

 

 
(a) (b) 
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Figure 17.  A visual comparison between the per-pixel classified thematic map and the 

delineated stands of invasive alien plant (IAP) species used as reference map. The six maps 

are; (a) delineated stands of Pinus spp. at various densities, (b) classified Pinus spp., (c) 

delineated stands of Acacia spp., (d) classified Acacia spp., (e) delineated stands of 

Afrotemperate forests, and (f) classified Afrotemperate forests.  

 

The reference maps (Figures 17a, 17c & 17e) illustrated distinctive patterns where 

Pinus and Acacia spp., the focus of the research, occur. The Pinus spp. occurs 

scattered on the higher altitude slopes, whereas the Acacia spp. occurs mainly 

along rivers on the lower slopes. The dense stands of Afrotemperate forests occur 

mainly in deep kloofs at a higher altitude as the Acacia spp. These maps indicate 

(c) (d) 

(e) (f) 
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that vector information could be used to enhance the classification results through a 

rule-based system (Chalifoux et al. 1998).  

 

Comparing the results from the research with those of other published studies where 

IAP species were mapped, the results achieved, using both the per-pixel and per-

field classification methods, had large differences. For mapping IAP species using a 

per-pixel classification approach (irrespective of the algorithms) accuracies such as 

50.4%, 70%, and 92.9% were achieved (Hamada et al. 2007; Everitt et al. 2008; 

Hantson et al. 2012). Mapping IAP species, or other vegetation classes, using a per-

field classification approach, also had varied results, such as 56.3% and 60% (Yu et 

al. 2006; Hantson et al. 2012).  

 

4.4.2  Comparison between methods based on accuracy assessment 

 

A summary was generated of all the confusion matrices generated (refer to section 

4.3) for all classified thematic maps (Table 19).  This summary included the totals for 

the five error calculations per confusion matrix per scenario (per class or per 

species), namely percentage omission, percentage commission, producer’s 

accuracy (%), consumer’s accuracy (%), and kappa coefficient. A comparison of the 

overall accuracy results shows that the per-pixel classification performed best under 

all scenarios, both per class scenario (all vegetation information classes used) and 

per species scenario (classes summarised per species, e.g. Pinus or Acacia). The 

kappa coefficient achieved for the per-pixel classification was 0.700 and 0.858 

respectively, compared to the per-field classification (kappa coefficient of 0.408).  
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Table 19.  A summary of all the confusion matrices done for all classified thematic maps. 

The totals for the five error calculations per confusion matrix per scenario were listed, 

namely percentage omission, percentage commission, producer’s accuracy (%), consumer’s 

accuracy (%), and kappa coefficient. The scenario reflects whether the accuracy assessment 

was done per class (using all vegetation information classes) or per species (e.g. Acacia or 

Pinus). The following acronyms were used; Omission = Omission error (%), Commission = 

Commission error (%), Prod. acc = Producer’s accuracy (%), Cons. acc. = Consumer’s 

accuracy, and kappa = kappa coefficient. 

Classification method  

 Scenario (per class or per species) Omission Commission Prod. Acc. Cons. acc. kappa 

Per-pixel classification 

 Per class 25.7 26.4 74.3 74.0 0.700 

 Per species 11.1 11.9 88.9 88.4 0.858 

Per-field classification; Level one 

 Per class (excl. ‘Pinus individual’) 52.3 53.2 47.7 45.0 0.372 

Per-field classification; Level two 

 Per class (only ‘Pinus individual’ and ‘other’) 39.7 8.5 60.3 86.4 0.298 

 Per class (ALL classes) 61.5 63.6 38.5 45.2 0.278 

 Per species (ALL classes) 42.2 72.7 57.8 52.4 0.388 

Per-field classification; Levels one and two merged into on map 

 Per class (excl. ‘Pinus individual’) 49.8 48.7 50.2 49.5 0.408 

 

Based on the results of the accuracy assessments, the per-pixel classification vastly 

outperformed the per-field classification. Also based on visual interpretation, the per-

pixel classification appears more accurate (Figure 18).  

 

    

Figure 18.  A visual comparison of the per-pixel classified thematic map (b) and the per-field 

classified thematic map (c) against the WorldView-2 satellite image (a). The following colours 

were used for the different vegetation information classes; Pinus individual = red, Pinus stand 

sparse = pale pink, Pinus stand scattered = bright pink, Pinus stand dense = brown/maroon, 

(a) (b) (c) 

B 

A 
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A 
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Acacia stand dense = yellow, and Afrotemperate forest = dark green. The area marked with A 

illustrated a good comparison between the two methods. Example areas marked with B and C 

indicated misclassification between the two methods.  

 

The example area marked with A shows a scattered stand of Pinus on the 

WorldView-2 satellite image (Figure 18a). The per-pixel classified thematic map 

(Figure 18b) indicated the same stand of scattered Pinus, as well as the per-field 

classified thematic map (Figure 18c). This example illustrated a good comparison 

between the two methods. Example areas marked with B and C indicated 

misclassification between the two methods. The area marked with B indicated a 

dense stand of Pinus (Figure 18a), which was correctly classified as Pinus spp. in 

the per-pixel classification (Figure 18b), but was misclassified as Acacia in the per-

field classification (Figure 18c). The per-field classification method delineated dense 

stands of Pinus and Acacia accurately, but could not distinguish between dense 

stands of Pinus and Acacia, and Afrotemperate forests. The area marked with C is a 

natural area with some shadows and bare patches (Figure 18a), which was correctly 

classified as ‘other’ in the per-pixel classification (Figure 18b), but was misclassified 

as ‘Pinus stand dense’ in the per-field classification (Figure 18c). In various places, 

areas with high occurrence of shadows were misclassified as ‘Pinus stand dense’.  

 

In various studies, landcover was mapped using both the feature space and FNEA 

methods, and the results were compared. In all the example studies, the per-field 

classification performed better than the per-pixel classification. With the mapping of 

deforestation in the Amazon basin, the results of the classification using the two 

methods were 81.1% (per-pixel) and 81.6% (per-field) respectively (Lu et al. 2012). 

Matinfar et al. (2007) mapped landcover in a relatively flat, arid area in Iran, and 

achieved accuracies of 81% (per-pixel) and 91% (per-field) respectively. The 

interesting factor with this study was that the per-pixel classification performed better 

with the vegetated classes, such as agriculture and orchards. Dehvari & Heck 

(2009) mapped landcover for a small study area in the Ontario province in Canada, 

which had gentle slopes, and was mostly cleared for agriculture, except for a 

riparian area and some woodlands containing medium to tall deciduous trees. The 

per-pixel and the per-field classification achieved accuracies of 59.5% and 80% 

respectively. The factor having the biggest influence on the results achieved with 
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these examples were the study areas, the complexity of the landscape, and the 

classes mapped. None of the examples match the complexity (mountainous 

topography and vegetation diversity) of the study area in the Hawequa conservation 

area, used in this research. Mostly the study areas were either flat or slightly 

undulated and the landscape more homogenous, such as urban, agriculture, or 

deforested areas (Matinfar et al. 2007; Walsh et al. 2008; Dehvari & Heck 2009; Lu 

et al. 2012). No literature was found where individual trees were mapped using high-

resolution imagery and per-field classification in a complex landscape.  

 

4.5.  Efficiency per method  

 

The time taken to map and classify IAP species for an area is an important 

consideration, as a greater time equates to greater costs. How easy the software is 

to use and also the availability of support, in using the software, can also play an 

important role when calculating how long a mapping exercise is expected to take. 

For software such as ERDAS Imagine, the user base is very large and support can 

easily be obtained. The software is also a lot easier to learn. eCognition is a 

relatively new software with a very small user base. Even performing simple steps 

with this software is difficult to learn. The cost of the software for this research was 

not considered as both these software packages are very expensive to obtain and to 

maintain annual licensing. 

 

For both methods, the same set of sample sites were used for both training and 

reference sites. Therefore there was no time difference in collecting the sites. This is 

an important part of the preparation for the classification and often takes up most of 

the time in a study.  

 

The study area was divided into four image blocks. The main reason why the 

images covering the study area had to be divided was that eCognition has a serious 

limitation on the size of image it can segment as one process. The resolution of the 

image also limited the size that eCognition can cope with at a time. For an image 

with a 0.5 x 0.5 m spatial resolution, eCognition has an approximate limit of 14 000 

rows and 14 000 columns (IMG file format with a file size of one gigabyte). ERDAS 

Imagine can handle much larger images when performing classifications. An image 
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with a resolution of 0.5 x 0.5 m with approximately 47 000 rows and 57 000 columns 

(IMG file format with a file size of 10 gigabyte) was tested and ERDAS Imagine 

handled the classification with ease. Therefore, for both classification methods used 

in this research, the process had to be run four times (once for each image block). 

The per-field classification process per block using eCognition took considerably 

longer. The reason for this is that the classification had to be run twice, once for 

each of the two levels of segmentation. The complete process, including the 

segmentation and classification, took approximately four days. Then the process to 

combine the two levels into one improved classified thematic map, took a further two 

days. The per-pixel classification process took two days to run, which included the 

creating and testing of the training sites, and then less than one day to complete the 

classification. Therefore, in summary, when considering only the classification 

process and compilation of the final classified thematic maps, the per-field 

classification took three times longer to complete. 

 

When accounting for the accuracy assessment done thereafter, the assessment of 

the per-field classification maps took much longer as a confusion matrix had to be 

generated for each of the levels as well as the improved thematic map. The 

accuracy assessment of the per-pixel classification had to be done only once. 

 

4.6.  Conclusion  

 

The comparison of the accuracy assessment results for the two methods show that 

the per-pixel classification method using ISODATA outperforms the per-field 

classification method using FNEA. The accuracy of the per-pixel classified thematic 

map derived from a site-specific assessment had a kappa coefficient of 0.700 

(results per vegetation information class) in comparison to the kappa coefficient of 

only 0.408 achieved with the per-field classified thematic map. 

 

The similarity between the results, in terms of the number of hectares of the two 

methods, when comparing the summarised IAP species cover, i.e. the comparison 

of area (number of hectares) mapped per vegetation information class by the two 

methods, can be explained by the big extent (25% and 50%) within each density 

category. I used the average percentage to translate the density categories to actual 
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IAP species cover for the per-field classified thematic map. This is the method used 

by WfW (Working for Water 2003).  

 

Various studies were done, comparing the results when performing a per-pixel and 

per-field classifications (Matinfar et al. 2007; Walsh et al. 2008; Dehvari & Heck 

2009; Lu et al. 2012). These published studies cover a wide range of study areas, 

methods and algorithms (as outlined under 4.4). In general, the results of these 

studies indicated that the per-field classification performed better than the per-pixel 

classification, but none of these study areas compared with the topographical 

complexity and diversity of the study area covered in this research.  

 

Furthermore, even though both these software packages are very expensive to 

obtain and maintain, the extensive user base for ERDAS Imagine makes it a much 

more viable option at this stage. In addition, the software was more time efficient 

than eCognition, which required more post-processing to extract IAP species cover 

extent information. 
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Chapter 5: CONCLUSIONS AND RECOMMENDATIONS  

 

5.1.  Introduction 

 

This research has sought to test the use of high-resolution imagery, such as 

WorldView-2 satellite images, to map Pinus and Acacia spp. stands and individuals, 

in rugged mountainous areas. The research also examined which classification 

method is most suitable for such mapping. 

 

The IAP species problem in South Africa needs serious attention. Various studies 

have noted the negative impact of IAP species on biodiversity and water security 

(Richardson et al. 1989; Enright 2000; Le Maitre et al. 2002; Richardson & van 

Wilgen 2004). In an attempt to better manage this problem, better knowledge of the 

extent of the invasion is needed. Again, various projects and studies to map IAP 

species mapping were done, but mostly concentrating on smaller study areas. Since 

1999 a number of studies have tested different methods, using remote sensing to 

map IAP species, with various degrees of success (Rowlinson et al. 1999; Stow et 

al. 2000; Ramsey III et al. 2002; Underwood et al. 2003; Lawrence et al. 2006; 

Hamada et al. 2007; Everitt et al. 2008). Great progress has been made in the use 

of remote sensing to map IAP species.  

 

5.2.  Application and limitations of remote sensing in mapping IAP species, using 

high resolution imagery 

 

The invasion of IAP species, a major threat to biodiversity due to its disruptive form 

of ecological change (Chornesky & Randall 2003; Fridley 2008; Huang & Asner 

2009), must be managed. Pinus spp., in particular, is a major invader of 

mountainous areas and was identified as a priority IAP species (Richardson & van 

Wilgen 2004). Mapping Pinus spp. can provide a very good overall distribution 

indication of IAP species, particularly in mountainous areas. 

 

This research has proven that IAP species can be studied and mapped using 

specific sets of remotely sensed data and methods.  

 

 

 

 

 



95 

 

5.2.1.  Remotely sensed data 

 

Over the past three decades, the availability and resolution of both satellite images 

and digital colour aerial photography has improved tremendously (Wilkinson 2005; 

Huang & Asner 2009). As summarised during the literature review of this research, 

the resolution has improved from an 80 x 80 m resolution for Landsat MSS in 1982, 

to a 0.5 x 0.5 m resolution for WorldView-2 satellite images. The high spatial 

resolution imagery became more readily available since 2002, with the WorldView-2 

satellite only launched in 2009. In addition, technology has advanced, enabling easy 

searching and requesting of satellite imagery through on-line catalogues (Satellite 

Application Centre CSIR 2009). 

 

The decision of which product to use depends on the purpose. Visual inspection 

indicated that a resolution of less than 1 m is necessary to map individual trees, 

such as Pinus spp., in this study area. The WorldView-2 satellite image was used in 

this research. 

 

The WorldView-2 satellite image has a high spatial resolution (0.5 x 0.5 m) 

panchromatic band that was used to pansharpen the coarser multispectral bands 

(resolution of 2 x 2 m). The WorldView-2 satellite image used in this research had 

only four of the eight available multispectral bands, namely the visible and NIR 

bands. These satellite images can be requested through SAC and are available at 

various levels of processing, namely basic, standard, and advance orthorectified 

series (Satellite Application Centre CSIR 2009; DigitalGlobe 2012). This satellite 

revisits any place on earth within two days (DigitalGlobe 2012). WorldView-2 

satellite images are very expensive (approximately R120 per km2 in 2011). As the 

WorldView-2 satellite was only launched in 2009, limited studies using these images 

for vegetation analyses are available. Immitzer et al. (2012) used WorldView-2 

satellite images to map 10 tree species in east Austria, and also tested the benefits 

and limitations of the additional four multispectral bands. He found that no benefit 

was added for mapping the four main tree species and only limited benefit for the 

other six tree species. Therefore, it is recommended that the use of the four 

additional multispectral bands be carefully evaluated first, in relation to the extra 

costs of obtaining these bands. 
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The use of satellite imagery presents various limitations, such as its inability to 

record data through cloud cover. This limitation can be overcome by the orbiting 

frequency of the WorldView-2 satellite around the earth. Images can be requested 

for a cloud-free day within a relatively short time frame. Another limitation, when 

using satellite imagery in topographically complex landscapes such as this study 

area, is shadows. The effect of shadows can be overcome by obtaining imagery 

captured during mid day, when the zenith angle is at its smallest.  

 

In summary, this research showed that high-resolution imagery such as WorldView-

2 satellite images (once pansharpened) is a good image source for mapping four to 

five year old Pinus spp. in fynbos, in inaccessible mountainous areas. The 

frequency of the availability of these images can also facilitate monitoring 

programmes, such as assessing the rate of spread of IAP species in mountainous 

terrain (Asner et al. 2008; Huang & Asner 2009). The mapping of scattered stands 

of Pinus spp. in inaccessible areas at a higher accuracy will contribute to more 

accurate modelling of potential invasions (Higgins et al. 1999; Rouget et al. 2003, 

2004).  

 

Other than using WorldView-2 satellite images for mapping IAP species, these 

images can be a valuable data source to estimate biomass (Eckert 2012). Eckert 

(2012) tested the use of WorldView-2 satellite images to calculate biomass in 

forested areas in northeastern Madagascar, thus allowing the calculation of 

incentives to preserve the natural forested areas. Likewise, these images can assist 

in South Africa to map and determine the biomass value of dense stands of IAP 

species for use as biofuel (Blanchard et al. 2011).  

 

Due to the high costs of purchasing WorldView-2 satellite images, obtaining them to 

map the entire Western Cape Province could be unaffordable for organisations such 

as CapeNature, but purchasing these satellite images for small ad-hoc inaccessible 

areas is worthwhile in comparison to the costs of field surveys. 

 

There are other data sources that can be considered which provide the same 

multispectral bands and spatial resolution. Since 2010 digital colour infrared aerial 
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photography is captured and processed for the entire country by the CD:NGI 

(National Geo-spatial Information 2011). These images are only flown every second 

or third year or if requested for a specific area, but then only if it can be fitted within 

the work plan of the CD:NGI. These high-resolution images are of a very high 

spectral quality and accurately orthorectified. These images are available free of 

charge to the requester. These images were used to successfully map woody IAP 

species, such as Acacia spp. and Eucalyptus spp., on the West Coastal Plain in the 

Western Cape (Stow et al. 2000). The normal cloud and shadow limitations often 

experienced with satellite remotely sensed imagery in topographically complex 

areas, are reduced with aerial photography as the flight directions can be adjusted 

to reduce shadows through sufficient overlap, and flying only on cloud-free days 

(Campbell 1996). 

 

Another alternative data source which can be considered is combining two different 

sources of remotely sensed imagery. This was more applicable when change 

detection analyses needed to be done over a period before high-resolution satellite 

imagery and digital colour infrared aerial photography became available. For 

example, older scanned panchromatic or colour aerial photography can be used to 

pansharpen SPOT 5 satellite images where both image sources has been captured 

within the same period. The technique to combine images of different sources, also 

known as image fusion, refers to the combining of high-resolution panchromatic 

band of one image source with the low-resolution multispectral bands of another 

image source, thus preserving the original spectral characteristics of the 

multispectral bands (Ling et al. 2008; Roberts 2009). A spatial resolution ratio of 

1:10 and higher is necessary to successfully combine a multispectral image, as long 

as the panchromatic image was not already down sampled to a coarser resolution 

(Ling et al. 2008). Most of the older, coarser satellite imagery is readily and cheaply 

available. Also scanned colour aerial photography, and now digital colour infrared 

aerial photography is freely available from the CD:NGI. Therefore, using image 

fusion to generate high-resolution imagery has a definite cost advantage. Pohl & van 

Genderen (1998) summarised a range of example studies where image fusion was 

implemented in areas such as topographic map updating, land-use mapping, 

agriculture and forestry mapping, flood monitoring, ice and snow monitoring, and 

geology. 
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There are conflicting results regarding the success of the fusion of imagery from 

different sources. The research done by Roberts (2009), testing different image 

fusion techniques, determined that the classification results on the fused image were 

not as good as the results using the original multispectral image. Whereas the 

research done by Ling et al. (2008) found that feature interpretation was much 

improved, using the fused image rather than the original multispectral image.  

 

5.2.2.  Classification algorithms and protocols 

 

The development of better algorithms and software packages has enhanced the 

ability to map IAP species from high-resolution satellite images and colour aerial 

photography. Four main groups of algorithms and protocols were examined in this 

research, namely per-pixel, per-field, contextual, and vegetation indices. The two 

methods selected based on the literature review, were a per-pixel classification 

called ISODATA and a per-field classification called FNEA.  

 

Both methods used in this research are hard classifiers. Hard classifiers run the 

classification on the classification decision boundary (derived from the selected 

training sites) to separate the classes and does not apply probability, whereas soft 

classifier works out the conditional probability of the class and then run the 

classification on the estimated probability that a pixel belongs to a class (Lu & Weng 

2007). This research was aiming to classify only specific features, allowing features 

to remain unclassified, and not force features into a class using probability. The use 

of error matrices for accuracy assessment, as used in the research, is only suitable 

for hard classification (Lu & Weng 2007).  

 

Per-pixel classification is the simplest form of image classification that considers 

each pixel individually and then assigns it to a class (Campbell 1996; Burnett & 

Blaschke 2003). The purpose of this research was to map IAP species that occurs 

sparsely scattered and in occasional dense patches across a very diverse 

landscape. The main concern with this method is that the system does not consider 

the relationship between the pixel and its neighbours, and this resulted in a salt-and-

pepper effect (Campbell 1996; Yu et al. 2006). Therefore, it was important to also 
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test to what extent the relationship between pixels can affect the classification 

accuracy. A per-field classification was performed to test this. 

 

Per-field classification is a more specialised method that factors in the homogeneity 

of a landscape, when grouping pixels into objects (Benz et al. 2004; Lewiński & 

Zaremski 2004). The ability of per-field classification to perform accurately is highly 

dependent on the study area (Yu et al. 2006). In a naturally diverse landscape, such 

as this study area, the segmentation boundaries are often incorrectly allocated and 

the contents of each segmented object very heterogeneous. The size of the objects 

(if too large) can affect the classification accuracy (Lu & Weng 2007). In most 

published studies where per-field classification was implemented more successfully 

than per-pixel classification, it was due to the difference in the landscape, both from 

a landcover and topography aspect from this study area (Matinfar et al. 2007; Walsh 

et al. 2008; Dehvari & Heck 2009; Lu et al. 2012). Refining the scale settings for the 

segmentation and threshold settings for the classification of individual trees may 

improve the classification results (Wulder et al. 2000; Laliberte et al. 2004).  

 

5.2.3.  Classification results 

 

The results of this research indicated that remotely sensed imagery with high spatial 

resolution can be used to map adult IAP species, such as Pinus spp., in fynbos 

using supervised per-pixel classification. That said, some level of misclassification 

was experienced between the classes at an IAP species level. 

 

Misclassifications can be attributed to the complexity and diversity of the landscape. 

Even though high-resolution imagery has been used in many studies to map IAP 

species at a genus level (Everitt et al. 2008), it is still a challenge to discern plants at 

a species level (Hamada et al. 2007; Dehvari & Heck 2009). There was a high level 

of misclassification between dense stands of Acacia spp., dense stands of Pinus 

spp., and Afrotemperate forests. 

 

The classification results of this research are summarised per research question. 
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(i) Can the proposed remote sensing methods distinguish Pinus spp. 

individuals from the surrounding natural vegetation?  

 

Per-pixel classification using WorldView-2 satellite images and using the ISODATA 

protocol successfully mapped Pinus spp. individuals older than four to five years in 

the Hawequa conservation area. The consumer’s accuracy when mapping the Pinus 

spp. individuals was 95%. However, using the per-field classification to map the 

Pinus spp. individuals did not work as well as the segmentation process identified 

the associated shadows of the individual trees rather than the reflectance of the 

foliage. Therefore only 21% (11 of the 52) sample sites were classified correctly.  

 

(ii) Can the proposed remote sensing methods distinguish Acacia spp. stands 

from the surrounding natural vegetation?  

 

The per-pixel classification successfully mapped stands of Acacia spp. within fynbos 

areas, but this method could not successfully identify Acacia spp. within riverine 

areas and often misclassified these stands as Afrotemperate forests. The per-field 

classification successfully delineated the dense stands of vegetation accurately, but 

also had limited success in distinguishing between Afrotemperate forests, Acacia 

and Pinus spp. 

 

(iii) Can density estimates for Pinus and Acacia spp. be calculated using the 

proposed remote sensing methods? 

 

The purpose of performing a per-field classification is to delineate an area into 

objects and then classify them according to the IAP species densities. These objects 

can, for example, represent mapping units used to delineate IAP species for clearing 

projects. This did not prove very successful as the highest consumer’s accuracy 

achieved was 49.5%. Therefore, this method cannot successfully estimate densities 

for Pinus and Acacia spp. The per-pixel classification was done using vegetation 

information classes based on density categories, but the correct interpretation of the 

results is based on species specific vegetation information classes (merging the 

Pinus spp. vegetation information classes into one class). The resulting per-pixel 

classified thematic map can be used to estimate densities by overlaying the 
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mapping units and then to calculate the densities for Pinus and Acacia spp. per 

mapping unit. This is done by intersecting the mapping units with the classified 

Pinus and Acacia spp. using GIS and then calculating the proportion of the mapping 

unit covered with these IAP species. 

 

A summary of the results of the accuracy assessment, performed on the two final 

classified thematic maps, shows that the per-pixel classification outperforms the per-

field classification (Table 20). 

 

Table 20.  Overall summary of the accuracy assessment results (expressed as percentages) 

for the two classification methods (per-pixel and per-field) used and tested. 

Classification method Scenario Producer’s Consumer’s kappa 

 (per class or  accuracy (%) accuracy (%) coefficient 

 per species)  

Per-pixel classification  

 Per class 74.3 74.0 0.700 

 Per species 88.9 88.4 0.858 

Per-field classification (levels one and two merged into one map)  

 Per class (excl.  50.2 49.5 0.408 

 Pinus individual) 

 

Based on the delineated reference maps and per-pixel classification results 

illustrated in chapter four, section 4.4.1., distinctive patterns where IAP species 

occur in the study area, were discerned. Therefore, in addition to just mapping IAP 

species using remote sensing, it is important to consider the use of vector 

information to enhance the accuracies of the classified thematic maps. This can be 

achieved by narrowing down the areas where particular IAP species occur and only 

classifying them, within these defined areas, using a rule-based approach. For 

example, Pinus pinaster mainly occurs in areas with nutrient poor soil, at higher 

altitude, and rainfalls higher than 800 mm (Higgins et al. 1999). Acacia mearnsii 

occur in nutrient rich areas,  at  lower elevations,  and rainfall between 850 mm and 

1 300 mm (Higgins et al. 1999). Therefore, incorporating vector layers such as 

geology, vegetation maps, a DEM, and rainfall maps, can be used to define the 

rules by which various IAP species are mapped. For example, Chalifoux et al. 
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(1998) delineated forest stands and then used image classification to establish the 

mortality of forest trees within the stand, rather than classifying each pixel.  

 

5.3.  Recommendations 

 

This research has shown that per-pixel classification applied to WorldView-2 satellite 

images can be used to accurately map the presence of Pinus and Acacia spp. 

greater than two meters tall in fynbos that is less than two meters tall. 

 

It is therefore recommended, in the fynbos and excluding riverine areas, that in high 

altitude areas within provincial nature reserves and mountain catchment areas in the 

Western Cape, a baseline map for invasions by Pinus and Acacia spp. be compiled 

using per-pixel classification, using WorldView-2 satellite imagery. This image 

source will provide a complete coverage of the entire province within a short time 

interval, which is often a limitation with aerial photography. This baseline map can 

then be updated annually by mapping IAP species from WorldView-2 satellite 

images, using per-pixel classification, for areas that have reached five years old as 

this research has shown that invasions by Pinus spp. can only be detected from this 

age onwards.  

 

A comparison should be made between the mapping accuracy of Pinus and Acacia 

spp. achieved using WorldView-2 satellite imagery and the mapping of Pinus and 

Acacia spp. using colour infrared aerial photography that contains the same visible 

and NIR bands as the WorldView-2 satellite images. The reason for this is due to 

the high costs of WorldView-2 satellite imagery, while the colour infrared aerial 

photography is made available bi-annually by the CD:NGI at no cost to 

organisations such as CapeNature. The use of a combination of these two imagery 

sources for the production of the baseline map should be considered, depending on 

the results of this comparison.  

 

Even though the per-pixel classification method used in this research is suitable for 

mapping IAP species in areas with short natural vegetation (one to two meters tall 

fynbos), further testing is needed in areas with taller natural vegetation (taller than 

two meters), such as the Southern Cape.  
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APPENDICES 

 

Appendix A.  Summary of the results of the literature review conducted to investigate different methods and protocols considered for mapping IAP 

species from high-resolution imagery.  For each method, a description of the method, software packages that support the method (provided in blue 

text for ease of use), algorithms used, and references are provided. The methods used in this research are highlighted in green. 

Protocol Description of method (concepts) and in which 

software it is used 

Algorithms used References 

 

Per-pixel classification: 

 

Artificial Neural Networks 

(ANN) and expert 

systems, e.g. multilayer 

perceptron 

Simple nodes, called artificial neurons, which store 

processing behaviours together with weighted links of 

those nodes, that represents the strengths of the links 

between the nodes; Advantages are that it is easy to 

adapt to different data inputs, giving fuzzy output values, 

and useful when using multiple images; significantly 

outperforms ML; Training takes quite some time but the 

results are good (high levels of accuracy); PREDICT 

software.  

The length of training on how to use the system when 

using an unknown software package might take too long. 

 

Non-parametric; Supervised  WH&O International 2004; Lu & 

Weng 2007; Dixon & Candade 

2008 

Feature space This algorithm does a direct comparison to the training 

sample data and then place pixels accordingly; Feature 

space provides an accurate way to classify a class with a 

non-normal distribution, e.g. individual pines, Acacia 

Non-parametric; Supervised; 

Nearest neighbour algorithm 

ERDAS 2009 
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stands; Used in ERDAS Imagine. 

 

Hierarchical clustering 

(HC) 

Agglomerative (bottom-up) and divisive (top-down); 

Agglomerative HC have problems in segmentation of 

high-resolution imagery (Rongjie et al. 2008); ISODATA & 

K-mean need some a priori knowledge and can be very 

slow due to iterations, whereas divisive HC are much 

faster with large datasets, but its overall accuracy is not as 

good as ISODATA (Huang 2002). 

 

Parametric; Euclidean 

distance; Can also be used as 

divisive hierarchical clustering; 

Unsupervised 

Huang 2002; Rongjie et al. 2008 

ISODATA (Iterative Self 

Organising Data Analysis 

Technique) 

This method does a comparison of the spectral value for a 

pixel with the mean of a pre-defined cluster; If the pixel is 

added to the cluster, the mean is recalculated for the new 

cluster (Yu et al. 2006); Implemented in ERDAS Imagine; 

Training sites or user-based seed assignment can 

improve accuracy from 64-86% to 74-94% (Huang 2002). 

Example - Giant salvinia were mapped using ISODATA in 

ERDAS from QuickBird images in Mexico. Started with 75 

classes and merged it down to 4 classes. Accuracy of 

87.8 – 93.5% (Everitt et al. 2008).  

The general rule when using ISODATA seems to be that 

you start with lots of classes (blind choice) and then 

merge these classes together iteratively until the desired 

classes are achieved. 

 

Non-parametric; Partitioning 

algorithm; Unsupervised; Hard 

classifier; K-mean algorithm 

plus merging of the clusters; 

Can also use training sites for 

clusters, thus making it 

supervised. 

Campbell 1996; Huang 2002; Yu 

et al. 2006; Everitt et al. 2008 

K-mean Self-organising, iterative heuristic technique that is used to 

partition an image into clusters.  

Parametric or Non-parametric; 

Partitioning algorithm; 

Huang 2002; Rongjie et al. 2008 
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It appears that this method is not generally used on its 

own within remote sensing software, but rather as part of 

other methods, e.g. ISODATA. 

 

Unsupervised 

Maximum Likelihood (ML) This method evaluates the likelihood that a given pixel 

belongs to a pre-defined or random category, and 

classifies the pixel to the category with the highest 

likelihood of membership (Eastman 2001a); Generally 

available in most software, including ERDAS Imagine as a 

variable in the decision rule supervised classification 

module; Takes the variability of classes into account by 

using a covariance matrix and is the most accurate 

classifier in ERDAS (ERDAS 2009). 

 

Parametric; Partitioning 

algorithm; Supervised and 

Unsupervised; Probability 

Density Function, based on 

Bayesian statistics. 

Eastman 2001a; Lu & Weng 

2007; ERDAS 2009  

Minimum distance to 

mean 

Minimum distance calculates the distance of a pixel’s 

spectral value to the mean spectral value of each 

signature, and then allocates the pixel to the category with 

the closest mean (Eastman 2001a); This method leaves 

no pixels unclassified (forcing all pixels into a class), 

which action can in fact decrease the overall classification 

accuracy (ERDAS 2009); Used in IDRISI and ERDAS 

Imagine. 

 

Parametric or Non-parametric; 

Supervised 

Eastman 2001a; Lu & Weng 

2007; ERDAS 2009  

Parallelepiped This method creates ‘boxes’ using minimum and 

maximum values, or standard deviation units, within the 

training sites; If a given pixel falls within a signature box, it 

is assigned to that category (Eastman 2001a); The square 

Non-parametric; Supervised Eastman 2001a; Lu & Weng 

2007; ERDAS 2009 
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shapes can cause more overlaps and also the spectral 

values of the pixels in the far corners will differ by quite a 

large margin to the ones in the middle (ERDAS 2009); 

Used in IDRISI and ERDAS Imagine. 

 

Regression Tree Calculates the “relationship” between one set of values 

against another; Expert Classification method described in 

ERDAS uses hierarchy of rules, or a “decision tree” to 

perform multispectral image classification. 

In ERDAS, decision tree classification entails a lot of post-

classification refinement and modelling, which is not the 

priority of this research. This research is looking at the 

classification of features with minimum user input. 

 

Non-parametric; Supervised Lu & Weng 2007; ERDAS 2009 

RGB clustering Simple clustering and data compression technique for 3 

bands; used in ERDAS Imagine. 

 

Non-parametric; Partitioning 

algorithm; Unsupervised 

ERDAS 2009 

Support vector machine 

(SVM) 

This classification technique uses a decision surface to 

separate the classes; These decision surfaces are created 

from boundary pixels; This maximises the margin between 

class values; It is faster and simpler to implement than 

ANN; Better with complex input data; Generalise better; 

Minimise error on unseen data; Significantly outperforms 

ML; Implemented using LIBSVM Version 2.6. 

 

Non-parametric Dixon & Candade 2008; Chang 

& Lin 2012 
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Per field classification: 

 

Fractal net evolution 

approach  

(FNEA)  

Segmentation: Merging areas “pairwise”, using a bottom-

up segmentation algorithm (Baatz et al. 2004). Dividing 

the image up into meaningful objects; Doesn’t just look at 

the value and statistical information of the pixel, but also 

at the texture and topology; Shape is referred to as the 

actual shape of the object and is considered during the 

classification – shapes like squares, circles (elliptic fit) & 

stars. 

Classification of objects:  Nearest-neighbour algorithm is 

used to classify the broader objects and then fuzzy logic 

membership function is used for classifying finer scale 

objects within the broader objects. 

 

Object-oriented; this technique 

appears to be similar to 

agglomerative hierarchical 

clustering; Nearest neighbour 

algorithm used in classifying 

the objects; Euclidean 

distance; eCognition uses co-

occurrence matrix for texture 

analyses  

Laliberte et al. 2004; Baatz et al. 

2004  

Map-guided classification This protocol functions similarly to a per-pixel 

classification, but within the delineated areas, e.g. 

mapping defoliation within forest stands delineated using 

polygons (vector).  

This is only useful where a fair amount of a priori 

digitisation has narrowed the problem down to a fine level. 

It probably won’t be useful for this research where I want 

to classify whole scenes for which there is no a priori 

differentiation.  

 

Parametric or non-parametric; 

Uses combination of other 

methods. But see comment as 

to why this method won’t be 

pursued. 

Chalifoux et al. 1998  
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Contextual classification:  

In contextual classification, the neighbouring pixel values are also used when classifying an image using normal per-pixel classification (Lu & Weng 2007). 

Contextual classifiers are mainly run on top of an initial classification (Lu & Weng 2007). The accuracy of contextual classification is dependent on the 

accuracy of the initial classification (Magnussen et al. 2004). Comment: In the case of the Hawequa study area, the spectral difference between indigenous 

riverine forest patches and Acacia spp. stands will be too small for the contextual classification to pick up. Therefore the effort and time to run a contextual 

classification is not justified.  

 

ECHO (Extraction and 

Classification of 

Homogeneous Object) 

This method performs an object-seeking segmentation 

and then uses maximum likelihood classification (Yu et al. 

2006); Used in MultiSpec (open source); This protocol 

differs from ICM in that it performs the contextual analyses 

on the objects, rather than the pixels.  

“Parametric or non-parametric 

classifiers are used to 

generate initial classification 

images and then contextual 

classifiers are implemented in 

the classified images.” 

 

Yu et al. 2006; Lu & Weng 2007; 

Landgrebe & Biehl 2011 

Hybrids There are two types of smoothing techniques: pre-

smoothing and post-smoothing. The smoothing technique 

add additional bands as contextual information, and then 

conduct normal spectral classification, and post-

smoothing conducts the classification on a classified 

thematic map image. 

 

Use smoothing techniques, 

spatial statistics, fuzzy logic, 

segmentation, or neural 

networks 

Lu & Weng 2007 

Iterated Conditional 

Modes (ICM) 

The iterative procedure incorporates knowledge about the 

underlying scene by the choice of a “neighbourhood 

system”, weight function and smoothing parameter; 

Basically it exploits the tendency of adjacent pixels to 

Markov random field-based; 

deterministic algorithm, which 

maximises local conditional 

probabilities sequentially; 

Besag 1986; Cortijo & Pérez de 

la Blanca 1998; Magnussen et 

al. 2004; Tohka 2007 
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have the same colour. Magnussen et al. (2004) study 

showed that you need an initial accuracy between 60 – 

80% and then it adds only between 4-6% to the accuracy; 

Basically Magnussen recommends using ICM only when 

the ML does not meet the pre-defined quality criteria; 

Furthermore the results of the contextual classification are 

dependent on the spectral separation between the classes 

(Magnussen et al. 2004); MRFSEG+GAMIXTURE 

software bundle (open source). 

 

represents a basic variant of 

nearest neighbour method. 

 

Vegetation index analyses:  

There are two types of vegetation index (VI) methods that can be used to classify vegetation; slope-based and distance-based.   

Slope-based VI is your more traditional, two-dimensional method using the Red and Near Infrared (NIR) bands. The most common method used is the 

normalized difference vegetation index (NDVI). This VI can be represented in a fan-like scattergraph with an x-axis (NIR) and a y-axis (Red) (Eastman 

2001b). 

Distance-based measures the reflectance of bare soils, and then by how much it is obscured by vegetation. This method minimises the effect of the soil 

background. This method needs the Red and NIR bands, as well as the perpendicular vegetation index (PVI). Thus it requires that the slope and soil line 

intercept be calculated (Eastman 2001b). This type of VI method is used when classifying vegetation using enhanced vegetation index (EVI). 

 

The most widely used products for analysing VI is from the Moderate Resolution Imaging Spectroradiometer (MODIS). Comparison studies were done by 

Huete et al. (2002) and Chen et al. (2006) to determine the quality of the two products MODIS-EVI and MODIS-NDVI. Both NDVI and EVI prove to be good 

tools to analyse and monitor vegetation conditions in semi-arid grass/shrub, savanna, and tropical forest biomes (Huete et al. 2002). NDVI had a higher 

range in values over the semi-arid sites, but a lower range over the more humid forested areas. Both NDVI and EVI had a similar range in values for the 

grassland/shrub areas (Huete et al. 2002). 

Chen et al. (2006) found that the high-resolution product (250m) derived from MODIS does not provide more accurate information than the lower resolution 

products (500m and 1,000m). He also found that the accuracy between MODIS-EVI and MODIS-NDVI was similar. MODIS-NDVI results for the various 
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resolutions had no differences, whereas the different resolutions produced different results (not necessarily more accurate) using MODIS-EVI.   

 

Distance-

based 

EVI EVI was developed for use in areas with higher 

vegetation biomass and to separate the canopy 

background signal, and reduce atmospheric influences. 

The EVI formula is EVI = G(NIR - Red/NIR + C1 x Red - 

C2 x Blue + L) (Huete et al. 2002). 

 

 

NDVI analyses are influenced 

by the background soil 

reflectance and the vegetation 

densities (Huete et al. 2002; 

Chen et al. 2006), whereas the 

PVI algorithm eliminates the 

soil reflectance when using 

EVI. 

Huete et al. 2002, Chen et al. 

2006 

Slope-based NDVI NDVI is sensitive for chlorophyll, but EVI is more 

responsive for different canopy structures. 

NDVI is calculated using a ratio of the NIR and Red 

band. The formula used is NDVI = (NIR - Red/NIR + 

Red) (Huete et al. 2002). 

 

Huete et al. 2002, Chen et al. 

2006 
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Appendix B.  Final distribution map of invasive alien plant (IAP) species in the Hawequa conservation area. This map was generated using supervised per-

pixel classification from high resolution WorldView-2 satellite images.  
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Appendix C.  Final distribution map of invasive alien plant (IAP) species in the Hawequa conservation area. This map was generated using supervised per-

field classification from high resolution WorldView-2 satellite images. 
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