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Abstract  

Due to economic and environmental concerns associated with use of fossil fuels, humanity is 

seeking alternative fuels. Ethanol is one of the alternative fuels produced commercially. Current 

ethanol production technologies using first generation ethanol processes is criticised for 

depleting the food supply and escalating food prices. Biomass is a target feedstock for use in 

bioethanol production and would resolve the criticism associated with the current bioethanol 

industry. Bacterial strains such as Geobacillus thermoglucosidasius NCIMB 11955 can be used 

to produce ethanol from biomass because they assimilate hexose and pentose sugars, a property 

that is lacking in first generation ethanol producing microbes (Saccharomyces cerevisiae and 

Zymomonas mobilis) (Riyanti and Rogers, 2009). Due to the low ethanol tolerance (4 % v/v 

(maximum)) of G. thermoglucosidasius, use of this species for bioethanol production is not 

economically viable. GroES and GroEL genes are involved in stress tolerance in bacteria: 

activation of these genes has been observed in stress induced bacteria (Rasouly and Ron, 2009). 

In this study the ethanol tolerance of G. thermoglucosidasius NCIMB 11955 was characterised 

by culturing at 45 ºC and 55 ºC in the presence of ethanol. A greater ethanol tolerance was 

observed at the sub-optimal growth temperature of 45 ºC. Escherichia coli metabolic systems are 

well understood. Aiming to improve the ethanol tolerance G. thermoglucosidasius NCIMB 

11955, the GroES and GroEL genes of the organism were cloned in an expression vector and 

expressed in E.coli before testing their ability to confer an increased tolerance to ethanol. 

Proteomic analysis of the recombinant E. coli strain showed that GroES was over-expressed 

while GroEL was not.  After over expression of GroES, the optical density of cultures was 

periodically measured. Over-expression of the G. thermoglucosidasius NCIMB 11955 GroES 

gene improved the ethanol tolerance of E. coli Rosetta pLySs growing in 4% (v/v) ethanol.      
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Chapter 1:  Literature review 

1.1 The current state of fuel usage 

Due to environmental and sustainability concerns surrounding the use of fossil 

fuels, the use of alternative and renewable fuels has become a major scientific 

and social area of interest (Solomon et al., 2007). A number of renewable 

forms of energy are currently being developed to replace or supplement fossil 

fuels. These include wind and solar derived energy (electricity), chemical 

energy, biological gas (mainly hydrogen gas for transportation, heating and 

cooking) and biological liquid biofuels for transportation (Pernick and Wilder, 

2007). The latter covers the current feasible liquid renewable alternatives for 

the automobile industry as a replacement for or a blending agent with gasoline.  

 

Other petrol alternatives suffer from a number of disadvantages. The 

volumetric energy density of hydrogen gas is less than that of petrol (Savage, 

2011). Hydrogen requires an infrastructure of pipe lines for transportation 

which, in Africa at least, is largely non-existent and expensive (Gardener, 

2004). Electric powered cars are generally less efficient than those running on 

hydrogen, biofuels and fossil fuels (Gardner, 2004). Electricity has to be 

sourced from coal, solar or wind energy and at present it is a technologically 

challenging task to produce sufficient quantities to meet demand. Biofuels are 

possibly the most efficient and cost effective replacements to petroleum but are 

again less energy efficient in comparison to petrol. Bioethanol is 1.67 times 

less energy efficient than petrol (Samson, 1991). Amongst the renewable fuels 
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(principally ethanol, butanol, higher chain or branched chain alcohols and 

biodiesel) bioethanol is arguably the most efficient and has the added benefit of 

potentially addressing a number of environmental concerns that have arisen 

from oil consumption in the last 50 - 100 years (Solomon et al., 2007). 

 

In comparison to other liquid fuels, ethanol possesses a number of innate 

characteristics that make it attractive as a liquid transportation fuel. It has a 

higher octane value than petrol (Chandel et al., 2007) and, being renewable, 

secures energy rights for a country. Bioethanol can be generated locally while 

oil is localised globally and is therefore controlled by holder states (Green, 

2004). Bioethanol can also be integrated as a blended product into the current 

transport petroleum infrastructure with little modification. Most cars currently 

tolerate addition of 5 - 10% ethanol to the petrol supply of the internal 

combustion engine (Antoni et al., 2007; Solomon et al., 2007).  

 

Currently industrial bioethanol production is based on mature technology 

involving the fermentation of maize and sugarcane-derived carbohydrates (so-

called first generation ethanol production) (Butzen and Haefele, 2008). These 

processes are biocatalysed by industrial strains of Saccharomyces cerevisiae 

(Butzen and Haefele, 2008). Although this is a proven technology which is 

capable of producing ethanol at a commercial level, ethanol production from 

maize and sugarcane has been criticised for diverting carbohydrates from the 

human food chain and for driving up the price of maize (Figure 1.1). In the 

short term this has been less of a concern in western countries but is a hotly 
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debated topic in third world nations (Strydom, 2009). Global implementation of 

this technology is seen as a transitional mitigation of the problems concerning 

fuel security because of its ethical greyness. 

 

 

Figure 1.1: Comparison of the amount of US grain used to produce ethanol and the 

population size the grain could feed (Vidal, 2010           

http://www.theguardian.com/environment/2010/jan/22/quarter-us-grain-biofuels-food ) 

 

Based on the model above, for every 90 million tonnes of maize used to 

produce ethanol, nearly 325 million people are deprived of food or could be fed 

from grain diverted for fuel use). This is approximately three times the 

population of Africa (ICPD Program of Action, 1998). The region is faced with 

a shortage in the supply of food, has insufficient arable land for food 

production and suffers from erratic environmental factors (such as rainfall) 
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which, in the absence of intensive farming systems and widespread fertiliser 

use, may impact the efficacy of first generation biofuel production (Chirwa, 

2007).  

 

North America currently uses 21 million barrels of oil per day, which equates 

to maize ethanol derived from 11.2 million tons of maize (Vidal, 2010). At its 

highest maize yield, 14.2 billion square metres of land would be required to 

provide North America with approximately 30 hours of ethanol at the current 

usage. Therefore first generation ethanol production is probably not feasible for 

any country, developed or otherwise, that wished to shift entirely from 

petroleum to biofuel products in the long term. 

 

1.1.1 Second generation biofuel production  

Critics of the use of food chain carbohydrate for ethanol production have 

motivated for the development of second generation bioethanol production 

(Antoni et al., 2007; Demain, 2009). Second generation processes utilise 

biomass (the lignocellulosic quotient of biological materials) as the raw source 

material from which to derive carbohydrates for biofuel production.  

 

The benefits of this approach over first generation technologies are numerous. 

Firstly, the issues of food security are bypassed since lignocellulose is inedible. 

Secondly, the majority of biomass available is regarded as waste material as it 

is derived from agricultural waste feed stocks, wood and paper waste, 

municipal wastes and unfermented materials from current fuel production 
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processes (Galbe and Zacchi, 2002; Chandel et al., 2007). The use of these 

waste materials to produce ethanol would not require additional arable land. 

The biomass could even be produced on non-arable land if a dedicated drought 

resistant or tolerant crop was sourced. Unlike first generation biofuel processes, 

the potential for economic growth and job creation exists, as does the 

production of a valuable product with applications in transportation (Solomon 

et al., 2007). However these technologies are mostly at the laboratory stage of 

development and few commercially viable processes exist at present (Demain, 

2009). 

 

British Petroleum (BP) is one of the fuel processing companies that supplies 

petrol and other transportation fuels on a large scale. The company plays a 

major role in the production of ethanol from sugar cane in Brazil (Butamax, 

December 2012). With the realised need to shift from corn/sugarcane ethanol 

production to biomass ethanol production, BP has been developing 

technologies that will reduce biomass ethanol production costs in partnership 

with the Verenium Corporation. The partnership, which started in 2008, is 

currently producing 1.4 million gallons of cellulosic ethanol in its 

demonstration facility (Butamax, December 2012). BP, which acquired the 

Verenium Corporation’s biofuels business for $98.3 million, intends to build an 

industry leading cellulosic ethanol facility in the USA (Verenium Industry, July 

2010). 
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Other companies such as TMO Renewables are also focussing on cellulosic 

ethanol production (Taylor et al., 2008). In 2008 TMO Renewables introduced 

a pilot cellulosic ethanol plant near Surrey, England which utilises a 

thermophilic bacterium (a Geobacillus thermoglucosidasius mutant) to produce 

high levels of ethanol and smaller quantities of by-products (such as lactate and 

formate) than was previously possible (Taylor et al., 2008). The process cuts 

the costs of lignocellulose pretreatment as the mutant Geobacillus strain can 

ferment complex sugars and has an optimum growth temperature of 55 to 60 

˚C. Due to the high temperature (60 to 70 ˚C) of the biocatalytic process, 

cooling costs during biomass processing to ethanol have been reduced (Taylor 

et al., 2008). 

 

1.1.2 Limitations to the development of second generation processes 

Biomass in its raw form is recalcitrant to biological degradation or 

fermentation (Antoni et al., 2007). Costly and laborious chemical and 

enzymatic pre-treatments are required in order to liberate fermentable sugars 

(Samson, 1991). Costing, based on the current best biomass treatment and 

fermentation technologies (acid treatment of biomass and delignification 

processes), showed that in 1991 a gallon of ethanol cost $4 to produce, 

compared to $0.63 for a gallon of petrol (Samson, 1991).  

 

There are two main obstacles blocking the full realisation of second generation 

technologies. First, the added cost implications required to pre-treat biomass 

needs to be reduced either through the optimisation of chemical methods or the 
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reduction in cost of production by specific biological catalysts for 

deconstruction (Green and Mugica, 2005). Secondly, a versatile ethanologenic 

strain with a broad catabolic phenotype is required (Cripps et al., 2009). 

Geobacillus spp. are good candidates, as they have many of the required 

qualities. 

 

Refinement of the pre-treatment and enzymatic catalysis steps and raw material 

modifications may reduce the cost of bioethanol at the pump (Solomon et al., 

2007). This research and development, together with the coupling of ethanol 

production to other processes such as electricity generation, may further reduce 

the cost of ethanol production from biomass (Green and Mugica, 2005). 

Genetically modified lignocellulosic materials which would facilitate pre-

treatment are being investigated (Weng et al., 2008). Lignocellulose contains 

lignin which is an inhibitor of the saccharification enzymes that are responsible 

for breaking down hemicellulose (Demain, 2009). Reducing the amount of 

lignin in plants used for bioethanol production will greatly reduce pre-treatment 

and ethanol production costs.  

 

The choice of organism used in the catalysis of biomass to ethanol is critical for 

improving efficiency and lowering production costs. An organism that utilises 

both pentose and hexose sugars is the only feasible production strain for the 

efficient processing of biomass to ethanol. The focus taken by some groups has 

been to investigate thermophilic prokaryotes with known ethanol production 
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phenotypes and catabolic promiscuity. One such organism is G. 

thermoglucosidasius NCIMB 11955 (Blumer-Schuette et al., 2008). 

 

G. thermoglucosidasius utilises both pentose and hexose sugars, making it an 

ideal candidate for biomass hydrolysate fermentation.  This species tolerates up 

to 4 % v/v ethanol at an optimum growth temperature of 55 ºC. The drawbacks 

of using this strain for commercial ethanol production include the low ethanol 

tolerance, low ethanol yields (they are mixed acid fermenters) and growth 

inhibition both by their metabolic by-products (lactate, pyruvate, acetate and 

formate) and pre-treatment derived inhibitors, for example furfural (Blumer-

Schuette et al., 2008).  

 

1.2 Sources of fuel  

1.2.1 Fossil fuels 

Fossil fuels are defined as any natural occurring organic fuels that are formed 

in the earth’s crust. These include petroleum, coal, and natural gas. The 

overriding limitation to their efficacy is that fossil fuels are finite and oil will 

not last into the 21st century, if the Hubbert peak theory is to be believed 

(Hubbert, 1956; Campbell and Laherrère, 1995).  

 

A decline in oil production can cause an increase in oil demand and therefore 

an oil price increase (Galbe and Zacchi, 2002). As more countries are 

becoming industrialised, the demand for oil is increasing and petrol producers 

have cited the need for more oil reserves to sustain future demands (Galbe and 
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Zacchi, 2002). Some countries have responded to the crisis by developing 

methods for petrol production through coal liquefaction. For example, Sasol in 

South Africa produces one third of the country’s fuel using coal liquefaction 

(Wakeford, 2008). Coal is more abundant than oil, but like oil, coal is a finite 

resource and therefore the long term sustainability of these technologies is 

questionable.  

 

A long term replacement that is renewable and has a low environmental impact 

is the ultimate goal for meeting energy requirements (Strydom, 2009). 

Environmental and energy security concerns (as witnessed in the 1970s) have 

re-emerged and the need for alternative fuel has once again seen revalidation of 

the concept of biofuel (in particular ethanol) as a good alternative fuel (Sun and 

Cheng, 2001; Galbe and Zacchi, 2002; Chandel et al., 2007). 

 

1.2.2 Bioethanol 

Ethanol yields and the process economics/technicalities of bioethanol 

production are the driving variables determining the success of current efforts 

to produce ethanol (Mishima et al., 2008). Ethanol is a good alternative fuel 

and it can potentially assist in the reduction of greenhouse gas emissions by 

combusting to completion to produce water and carbon dioxide (Mishima et 

al., 2008).  

 

Ethanol enhances engine performance by increasing its thermal efficiency, 

therefore reducing heat loss (Wyman, 1996). Based on its stoichiometry, 

 

 

 

 



 
 

10 

ethanol flame temperature is 1930˚C, lower than that of petrol (1977˚C) and 

diesel (2054˚C) (Wyman, 1996). Ethanol can replace the use of tetraethyl lead 

as an octane enhancer in gasohol and decrease smog emission due to its lower 

volatility (Demain, 2009). Besides these advantages, ethanol is less toxic to the 

environment as it does not contain sulphur (Demain, 2009). Sulphur burns in 

air to produce sulphur dioxide which reacts with water to form acid rain with 

detrimental effects to the environment (Jones, 1950). Bio-ethanol has also been 

used as an oxygenate to replace methyl-tert-butyl ether (MTBE) (Antoni et al., 

2007; Demain, 2009). MTBE was used as a petrol oxygenate for years but its 

use was phased out due to its toxicity and pollution of large volumes of ground 

water (Demain, 2009). In addition, ethanol is twice as efficient as MTBE at 

oxygenating petroleum (Sun and Cheng, 2001). 

 

There are drawbacks to using ethanol as an alternative fuel or supplement to 

gasoline. These include the fact that bioethanol production is currently 

dependent on food supplies (maize and sugar cane) and that raw materials and 

production costs are high resulting in ethanol costing more than petrol 

(Demain, 2009). Due to the industrial production of ethanol from food-derived 

carbohydrate, costs of staple foods (corn) have increased (Vidal, 2010). As a 

result, many families are unable to afford a basic meal and human rights groups 

have condemned bioethanol production as unethical (Demain, 2009). The 

condemnation of this first generation bioethanol production has shifted the 

focus of ethanol producers to using biomass as a raw material. Second 

generation bioethanol production may be a solution of two major problems 
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faced by southern Africa i.e. a lack of usable energy and food security 

(Strydom, 2009).  

 

Southern Africa has no viable oil deposits and is always hit hard by increases in 

fuel prices (Wakeford, 2008). Creating a viable second generation ethanol 

production industry in southern Africa will result in a region that can sustain 

itself in terms of energy security and food supply. A biomass based ethanol 

industry is a possible solution to some of the economic problems facing 

southern Africa.  

 

1.2.3 Biobutanol 

Biobutanol is produced from sugar by the acetone-butanol-ethanol (ABE) 

fermentation process (Demain, 2009). The organism used for the industrial 

production of acetone from starch is Clostridium acetobutylicum (Antoni et al., 

2007).  

 

Butanol has a low octane number, a factor that limits its application as an 

oxygenate for gasoline. The octane number of a fuel is the measure of how 

resistant the fuel is to engine knocking and does not relate to the energy content 

of the fuel (Surisetty et al., 2011). Engine knocking can rapidly damage an 

engine (Surisetty et al., 2011). A fuel with a higher octane number is less likely 

to cause engine knocking, a property that motor vehicle manufacturers have 

taken advantage of by adjusting the ignition timing (Surisetty et al., 2011). 

Ethanol is a more desirable fuel because it has a higher motor octane number 
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(89 MON) than butanol (78 MON) 

(http://www.eia.gov/oiaf/analysispaper/biodiesel/).  

 

The development of biobutanol infrastructure is cheaper than that of bioethanol 

infrastructure. Butanol does not require engine modification until it reaches a 

concentration of 40 % v/v of the total fuel. By comparison ethanol requires 

engine modification if it is going to be used at concentrations beyond 15 % v/v 

of the total fuel volume (Demain, 2009).  

 

High butanol production yields can be achieved by gas stripping of liquefied 

maize starch during fed batch fermentation; this ABE process has been shown 

to produce 56 g/l butanol, 24 g/l acetone and 1 g/l ethanol from 225 g/l sugar 

(Demain, 2009). Despite the advantages, the production of butanol and the 

genetic modification of the organisms involved are currently not at the stage 

whereby commercialisation can be realised. Although companies such as 

DuPont and BP are focusing on commercialisation of this fuel, butanol 

production methods require much improvement to bring it to the level of 

current ethanol production technologies.  

 

DuPont and BP merged to form Butamax whose headquarters are in 

Wilmington, USA (http://www.butamax.com/Portals/0/pdf/butamax_advanced  

_biofuels_llc_fact_sheet.pdf). Butamax is responsible for the completion of the 

butanol research of DuPont and BP and the company has advanced research to 
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a point that the technology is at a demonstration phase. Butamax expects to 

launch the first commercial butanol production plant during the year 2013. 

 

 

1.2.4 Biodiesel 

Biodiesel refers to a non-petroleum based diesel fuel that consists of short 

chain alkyl (methyl or ethyl) esters made by transesterification of vegetable oil 

or animal fat (Demirbas, 2005). Biodiesel is produced through acid or base 

esterification (http://www.eia.gov/oiaf/analysispaper/biodiesel/). Oil feed 

stocks containing about 4 % free fatty acids by volume are put through an acid 

esterification process to maximise the output of biodiesel 

(http://www.eia.gov/oiaf/analysispaper/biodiesel/). The acid esterification 

reaction is catalysed by sulphuric acid; the acid is mixed with methanol prior to 

conversion of free fatty acids to produce biodiesel. In an acid/base biodiesel 

process, acid esterification of oils is done to free fatty acids that are used to 

maximise extraction of more fatty acids in the base catalysed reaction 

(Demirbas, 2005). The products of acid esterification and water free oils are 

mixed and the mixture undergoes transesterification, a reaction catalysed by 

potassium hydroxide containing methanol (Demirbas, 2005). Once the reaction 

is complete, the products (biodiesel and glycerine) are separately extracted 

before methanol is removed. Removing methanol last is necessary because 

methanol prevents the reverse reaction from proceeding (Van Gerpen, 2005). 
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Biodiesel was made available to the public when diesel engines were 

introduced. Petroleum separation and processing to petrol is cheaper and more 

efficient than processing of oil (plant and animal fats) to biodiesel (Demirbas, 

2005). This resulted in the phasing out of biodiesel as a transportation fuel. As 

a result of the limited oil supply in the 1970’s (Cavallo, 2004), production of 

biodiesel increased noticeably in the 1990’s (Demirbas, 2005). In 1999, the 

National Biodiesel Board of the USA recorded production of biodiesel at 1.9 

million litres per day and 25.4 million litres per day in 2000 

(http://www.eia.gov/oiaf/analysispaper/biodiesel/). Regardless of its 

advantages, biodiesel production is limited by a limited supply of raw material. 

Biomass for ethanol production is more abundant than biomass for biodiesel 

production (Demirbas, 2005). 

 

1.2.5 Commercialisation and economics of bioethanol production 

Brazil has been producing bioethanol from sugarcane since 1970 (Kamimura 

and Sauer, 2008). Brazil’s fuel stations supply 100 % bioethanol and car 

manufacturers in Brazil have adjusted to the demand of ethanol powered 

engines. For example Ford and Honda have been supplying cars able to use 95 

% ethanol as fuel since the 1980’s (Blumer-Schuette et al., 2008). Due to high 

ethanol outputs facilitated by infrastructure development, Brazil was not 

severely impacted by the fuel price rise in 2008 (Chandel et al., 2007). Brazil 

leads the world in the use of ethanol to replace fossil fuels.  
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The ethanol industries of Brazil and the USA cannot ethically be reproduced in 

continents such as Africa due to the short supply of food in the continent. 

Consequently the idea of the production of ethanol from grain was criticised in 

southern Africa before the technology was put into practise (Strydom, 2009). 

Due to food supply concerns, producers of ethanol are trying to shift from 

using food carbohydrate (maize and sugar cane) to the use of biomass as the 

raw material (Demain, 2009). The capital cost of ethanol production from 

biomass is five times higher than that of ethanol production from maize (Van 

Gerpen, 2005). Based on the Energy Information Administration findings, the 

cost of biomass fermentation to ethanol was $2.6 per litre in 2008. 

Fermentation of biomass to ethanol still requires developments to bring it to the 

level of starch fermentation by yeast (Galbe and Zacchi, 2002; Chandel et al., 

2007). 

 

1.2.6 Industrial production of ethanol using Saccharomyces cerevisiae 

S. cerevisiae is a facultative anaerobe that is used in the industrial production of 

ethanol. S. cerevisiae produces ethanol from the pyruvate formed by the 

Embden-Meyerhof pathway with the aid of pyruvate decarboxylase (pdc) and 

alcohol dehydrogenase (adh) enzymes (Li et al., 2012) (Figure 1.2).  

 

 

 

 



 
 

16 

                 

 

Figure 1.2: Ethanol production in S. cerevisiae. Adapted from Li et al., 2012  

 

Sugars (glucose) are converted to pyruvate through the Embden Meyerhof or 

Entner Doudoroff pathways (Gunasekaran and Chadra Raj, 1999). Pyruvate is 

then converted into acetaldehyde and carbon dioxide (Zhang et al., 2007). 

Carbon dioxide is excreted from the cell and the acetaldehyde is further 

converted into ethanol through catalysis by alcohol dehydrogenase (Zhang et 

al., 2007). S. cerevisiae produces ethanol efficiently at 30 °C, pH 5 and at 

glucose concentrations of 25 g/l.  

 

S. cerevisiae cannot ferment pentose sugars such as xylose (Li et al., 2012). As 

a result, research is focussed on the constitutive expression of genes coding for 

enzymes involved in the fermentation of pentose sugars to ethanol. Strategies 

to improve S. cerevisiae for the fermentation of D-xylose have been 

implemented. These include the insertion of a bacterial D-xylose isomerase 

gene (Brat et al., 2009) and the heterologous expression of pentose utilizing 
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genes (Walfridsson et al., 1995). The expression of the xylose isomerase gene 

from Clostridium phytofermentans in S. cerevisiae enhanced the growth of S. 

cerevesiae in xylose containing media but did not enhance ethanol production 

(Brat et al., 2009). The engineered strain converted xylose to xylitol which 

accumulated in the cells. Xylitol is an inhibitor of the xylose isomerase gene.  

 

Further attempts made to engineer S. cerevisiae for xylose fermentation 

included the introduction of aldose reductase, xylitol dehydrogenase and 

xylulokinase genes from Pichia stipitis into the genome of S. cerevisiae 

(Walfridsson et al., 1995). Expression of aldose reductase alone did not 

produce the desired effects. The engineered strain did not grow in xylose 

containing media but did grow in a xylose-glucose mixture, producing xylitol 

at a high yield. However, the excess xylitol caused a redox imbalance within 

the cell (Meinander et al., 1996). Expression of both aldose reductase and 

xylitol dehydrogenase allowed the engineered strain to grow on xylose 

containing media (Meinander et al., 1996). The genes for xylose fermentation 

have been cloned into S. cerevisiae from other organisms including Pichia 

tannophilus (Stevis et al., 1987). Although pentose utilisation by S. cerevisiae 

has been successfully achieved, optimisation of the metabolic system for 

simultaneous, exogenous sugar metabolism is still required (Young et al., 

2010).  

 

For efficient fermentation of lignocellulose hydrolysates, an ethanologenic 

bacterial strain such as G. thermoglucosidasius that co-ferments hexose and 
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pentose sugars is required. Developing a yeast strain that co-ferments hexose 

and pentose sugars efficiently has been an obstacle to the application of yeast 

in the commercial fermentation of biomass (Young et al., 2010). The ethanol 

industry has diverted focus from developing yeast strains to ferment xylose to 

the improvement of bacteria that naturally ferment xylose. Organisms such as 

G. thermoglucosidasius are prime candidates.  

 

1.3 Ethanologenic prokaryotes 

1.3.1 Escherichia coli 

E. coli is a Gram negative bacterium with an optimum growth temperature of 

37°C (Yu et al., 2000).  For many years E. coli has been the workhorse for 

production of many economically viable chemicals due to its well understood 

genetic background, amenability to genetic modification and good growth 

properties with low nutrient requirements (Yu et al., 2000).  

 

E. coli produces very little ethanol (Ingram et al., 1987). Due to the demand for 

renewable fuels and the dwindling supply of petroleum, researchers have 

attempted to develop strains such as E. coli for commercial ethanol production. 

The major factors that limit E. coli as a commercial strain for ethanol 

production are its poor ethanol tolerance and low ethanol yield (Ingram et al., 

1987; Yu et al., 2010). The poor ethanol yield from E. coli is associated with 

the lack of pdc and adh genes in the strain, which instead produces succinate, 

acetate and lactate as major fermentation products (Ingram et al., 1987). A 

number of strategies have been implemented to improve its ethanol yield. The 
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pdc and adhB genes from Zymomonas mobilis were integrated into E. coli 

(Wang et al., 2008). When integrating pdc and adh, an artificial operon of the 

two genes was developed and integrated into the pZY507 vector under the 

control of a lac promoter. Both genes were expressed under the control of 

lacIq-tac (Wang et al., 2008). Expression of the pdc and adh genes in E. coli 

reduced acetate accumulation by shifting the carbon flow to ethanol production 

(Wang et al., 2008). Expression of the pdc and adhB genes from Z. mobilis in 

E. coli improved ethanol tolerance from undetectable amounts to 18 mmol/l 

(Ingram et al., 1987).  

 

 

 

1.3.2 Klebsiella spp. 

Klebsiella is a genus of Gram negative non-motile pathogenic bacteria that is 

associated with diseases such as pneumonia and urinary tract infections in 

hospitalised patients or alcoholics (Podshun and Ullmann, 1998). Species from 

this genus are oxidase negative and have a polysaccharide based capsule 

(Podshun and Ullmann, 1998). Klebsiella species ferment D-xylose to produce 

ethanol, butanediol and mixed acids. The concentration of ethanol produce by 

Klebsiella species is low compared to that produced by Z. mobilis and S. 

cerevisiae (Tolan and Finn, 1987). Klebsiella species produce a maximum of 7 

g/l ethanol when cultured on pressed sugar beet pulp (Sutton and Peterson, 

2001). Genetic engineering of this species has been attempted to improve 

ethanol yields. The pdc gene from Z. mobilis was cloned into Klebsiella to 
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enhance ethanol production. Ethanol production increased to 25.1 g/l on xylose 

and reduced the production of mixed acids (formate, acetate, lactate and 

butanediol) (Tolan and Finn, 1987). The engineered Klebsiella sp. expressing 

the Z. mobilis pdc gene produced 9.1 g/l more ethanol compared to an E. coli 

mutant expressing the same gene (Tolan and Finn, 1987). Klebsiella are 

pathogenic and this factor limits their commercial application as ethanol 

producers. 

 

1.3.3 Clostridium spp. 

Clostridium species are Gram positive bacteria belonging to the Firmicutes. 

This genus is characterised by pathogenic and non-pathogenic species. 

Pathogenic Clostridium species cause food poisoning (C. perfringens), tetanus 

(C. tetani) and post natal death (C. sordellii) (Bruggemann and Gottschalk, 

2009). There are some species in this genus that are useful in industrial 

processes. C. thermocellum ferments biomass hydrolysates to ethanol 

(Bruggemann and Gottschalk, 2009) and C. acetobutylicum is used to produce 

acetone and biobutanol from starch (Bruggemann and Gottschalk, 2009). 

 

Clostridium species ferment both hexose and pentose sugars into acetone, 

butanol and ethanol through the ABE process (Lovitt et al., 1984). Clostridium 

species can generally tolerate a maximum ethanol concentration of 1.6 % v/v; 

at 2 % v/v ethanol, fermentation of sugars is totally inhibited (Lovitt et al., 

1984). In the presence of mixed sugars, glucose is the preferred substrate (Ezeji 

et al., 2008).  
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1.3.4 Zymomonas mobilis  

 The genus Zymomonas is sub-divided into Z. mobilis and Z. anaerobia 

(Gunasekaran and Chandra Raj, 1999). Z. mobilis is a Gram negative 

facultative anaerobic bacterium with a number of industrially desirable 

characteristics (Yang et al., 2010). Z. mobilis has a high specific productivity, a 

high ethanol yield and a unique anaerobic Entner Doudoroff pathway (Yang et 

al., 2010). This species can tolerate up to 13 % ethanol v/v within a pH range 

of 3.5-7.5 (Yang et al., 2010). Due to the activity of the Entner Doudoroff 

pathway, Z. mobilis produces ethanol with a concurrent low diversion of 

carbon to biomass formation (Gunasekaran and Chandra Raj, 1999). 

Comparing it to ethanologenic yeasts, Z. mobilis has advantages for the 

industrial production of ethanol: it does not require the controlled addition of 

oxygen during fermentation and it is amenable to genetic manipulation.  

 

Regardless of its advantages, there are limitations in using Z. mobilis for 

biomass fermentation. For example, it can only utilise glucose, fructose and 

sucrose as substrates, although co-culturing Z. mobilis with C. saccharolyticum 

has been proposed to circumvent this (Table 1.1). Z. mobilis is also inhibited by 

its by-products (formate, lactate, and acetate) and more severely by biomass 

pre-treatment products (hydroxymethylfufural and furfural) (Gunasekaran and 

Chandra Raj, 1999).  
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Table 1.1: Ethanol yields from various glucose-xylose sugar mixtures by a coculture 

fermentation consisting of Z. mobilis and C. saccharolyticum (pdc negative) (Murray and 

Asther, 1984) 

Glucose-xylose sugar mixture (g/l) Ethanol yield (mmoles/l) Efficiency (%) 

20 glucose + 10.8 xylose 322 98.5 

40 glucose + 21.6 xylose 620 92.0 

60 glucose + 32.4 xylose 903 89.3 

80 glucose + 43.2 xylose 907 67.3 

 

Attempts have been made to introduce pathways that are involved in pentose 

sugar fermentation into Z. mobilis with a goal of improving ethanol production 

from biomass (Gunasekaran and Chandra Raj, 1999). Metabolic engineering of 

Z. mobilis to produce a xylose fermenting strain was based on supplementing 

the wild type genome with genes responsible for pentose uptake and catabolism 

(Zhang et al., 1997).  

 

To introduce the pentose metabolic pathway from E. coli, genes coding for 

xylose isomerase, L-ribulokinase, xylulokinase, L-arabinose isomerase, L-

ribulose-5-phosphate, 4-epimerase, transaldolase and transketolase were 

integrated into the Z. mobilis genome. A multicopy plasmid was used to 

introduce these pentose pathway genes into Z. mobilis (Zhang et al., 1997). 

This multicopy plasmid mutant is a stable pentose and hexose sugar fermenting 

strain and is able to ferment xylose, glucose and arabinose produced by 

biomass hydrolysis (Zhang et al., 1997). 
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1.3.5 Geobacillus spp. 

The genus Geobacillus consists of thermophilic microorganisms capable of 

fermenting sugars into alcohol (ethanol) and organic acids (Popova et al., 2002; 

Blumer-Schuette et al., 2008). These bacteria utilise pentose and hexose sugars 

as carbon sources. Members of the genus Geobacillus were first classified as 

phenotypically and phylogenetically coherent Bacilli (group 5) before their 

reclassification to the genus Geobacillus where Geobacillus 

stearothermophilus was the type strain (Nazina et al., 2001).  

Geobacillus species are isolated from a variety of high temperature 

environments: hot springs, compost and artificial high temperature biotopes 

(Maugeri et al., 2002). Members of the genus Geobacillus are used in a number 

of industrial processes. They are used in the field of biotechnology processing 

as a source of thermostable enzymes including pullanases, proteases and 

amylases and for the production of exopolysaccharides (Moriello et al., 2003).  

 

Geobacillus species also produce bacteriocins. Bacteriocins have lytic activity 

against bacteria, including those that are medically important such as 

Salmonella typhimurium (Novotny and Perry, 1992). These bacteriocins reduce 

the risk of contamination in bioreactors where these organisms are used as 

biocatalysts.  

 

The growth temperature range of members of the genus varies from 45 to 75 

°C, with an optimum growth temperature of 55 ˚C – 65 ˚C and a pH range of 6 
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- 8 (Thompson et al., 2008). Geobacillus species are potential ethanologens for 

biomass fermentation due to the flexibility of their cultivation conditions (they 

are facultative anaerobes and utilise pentose and hexose sugars) (Payton, 1984). 

Higher culturing temperatures of up to 60 °C can be used when working with 

Geobacillus cultures (Riyanti and Rogers, 2009).  

 

Production of ethanol at high temperatures offers many advantages. These 

include obviating the need for process cooling and increasing the solubility of 

carbohydrates. In addition there is no risk of contamination by mesophiles 

(Zhang et al., 2007). Fermentation at high temperatures reduces the solubility 

of gases making it easy to maintain a near-anaerobic environment. The use of 

thermophiles such as Geobacillus spp. for biomass fermentation is limited by 

high by-product formation, poor ethanol tolerance and growth inhibition from 

the by-products furfural (a pre-treatment product) and mixed acids 

(fermentation products) (Galbe and Zacchi, 2002).  

 

1.4 Use of Geobacillus spp. for ethanol production 

Members of the genus Geobacillus are ideal biocatalysts to use in second 

generation bioethanol production because of their ability to utilise both hexose 

and pentose sugars. G. thermoglucosidasius produces ethanol concentrations of 

0.2 g/l during the exponential growth phase (Riyanti and Rogers, 2009). This 

limits its application in its current form as a commercial strain for bioethanol 

production.  
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Thermophilic ethanologens such as members of the genus Geobacillus lack pdc 

and adh genes (Zhang et al., 2007; Riyanti and Rogers, 2008).  To achieve a 

higher ethanol yield and simultaneously solve the mixed acid production 

problem in G. thermoglucosidasius 11955, genetic manipulation was employed 

to redirect mixed acid (acetate, pyruvate, formate etc.) pathways towards 

ethanol production (Cripps et al., 2009). Pyruvate dehydrogenases were over-

expressed in G. thermoglucosidasus NCIMB 11955 and both the ldh and pflB 

genes were knocked out (Cripps et al, 2009). After genetic manipulation, a 

mutant strain (G. thermoglucosidasius TM242) was created. G. 

thermoglucosidasius TM242 produces no lactate and formate and less acetate 

than the wild type strain (Cripps et al., 2009). Accumulation of pyruvic acid in 

the mutant strain was also lower than that in the wild type strain (Cripps et al., 

2009).  

 

 Although these Geobacillus species utilise a wide range of sugars and their 

development to improve ethanol yield was successful, they have a low ethanol 

tolerance. G. thermogucosidasius M10EXG has a higher ethanol tolerance than 

other Geobacillus species with G. thermoglucosidasius M10EXG and G. 

thermoglucosidasius NCIMB 11955 have maximum ethanol tolerances of 10 

and 4 % v/v respectively (Galbe and Zacchi, 2002; Maugeri et al., 2002).   

 

Should these species be engineered to tolerate ethanol concentrations to 

approximate that of S. cerevisiae, they would be highly efficient for biomass 

fermentation. Geobacillus thermoglucosidasius M10EXG utilises xylose and 
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glucose simultaneously to produce ethanol (Riyanti and Rogers, 2009). When 

glucose is abundant, xylose metabolism is suppressed through glucose 

repression of the xylose uptake mechanism (Riyanti and Rogers, 2009).  

 

1.5 Ethanol tolerance and the general stress response 

Bacteria encounter a variety of stressful conditions during growth (Sardessai 

and Bhosle, 2002). Heat and solvent stress stimulates the induction of stress 

response mechanisms (Laksanalamai and Robb, 2003). Stress response 

mechanisms of bacteria include oxidative, solvent and temperature stress 

response mechanisms (Amartey et al., 1998). The site of action for solvent 

(ethanol) stress is the cell membrane (Sardessai and Bhosle, 2002) which plays 

a vital role in the survival of bacteria by controlling movement of compounds 

in and out of the cell. 

 

The toxicity of a solvent depends on its log P value (Sardessai and Bhosle, 

2002). The log P value of a compound is the ratio of the compound’s organic to 

aqueous phase concentrations (Hirakawa et al, 2005).  Solvents with lower log 

P values are more toxic as they have a higher efficiency of partitioning into the 

cell membrane. The toxicity of a solvent is dependent on the amount which 

accumulates in the cell membrane rather than on its chemical composition 

(Sardessai and Bhosle, 2002). Solvent tolerance levels differ between 

organisms, a factor determined by physiological properties such as the amount 

of unsaturated fatty acids in the membrane lipid bilayer (Taylor et al., 2008). 

The extent to which the lipid bilayer of an organism tolerates solvent stress is 
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dependent on its composition (Michel et al., 1985). Accumulation of alcohol in 

the cell membrane causes the cell to leak by disrupting its normal structure 

(Sardessai and Bhosle, 2002; Taylor et al., 2008; Ding et al., 2009).  

 

When partitioning into the lipid bilayer, ethanol resides at the water/lipid 

interface. This phenomenon is dependent on the chemical composition of the 

polar groups at the water/lipid interface (Nizza and Gawrisch, 2009). Lipid 

bilayers with phosphatidylglycerol, phosphatidylserine and sphingomyelin at 

their lipid/water interface are less susceptible to ethanol partitioning. These 

lipids bilayers have higher partition coefficients compared to those with 

phosphatidylethanolamine bilayers (Nizza and Gawrisch, 2009). The functional 

implications of ethanol binding to proteins are poorly understood. A number of 

research groups are focussing on elucidating the effect of ethanol on the 

functionality of biopolymers (Westerman et al., 1988). 

 

Physiological characteristics of organisms that tolerate high ethanol 

concentrations have been studied. The ethanol tolerance of S. cerevisiae is 

associated with up regulation of zinc finger proteins (MacPherson et al., 2006) 

and prolyl hydroxylase (PHD) finger 1 proteins (Betz et al., 2004) which are 

involved in the expression of stress related genes. Changes in expression of 

heat shock protein regulator genes due to ethanol stress suggests heat shock 

proteins play a role in the ethanol tolerance of bacteria  (MacPherson et al., 

2006).  
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A number of metabolic pathways are involved in the stress response 

mechanism. Increased production of heat shock proteins is one of the 

mechanisms used to combat solvent and heat stresses (Park et al., 2001). As the 

concentration of solvent increases, a point is reached when stress response 

mechanisms cannot withstand the enzyme denaturing effect of the stress stimuli 

and bacterial growth is hampered (Sardessai and Bhosle, 2002; Taylor et al., 

2008). Some heat shock proteins are up regulated due to temperature changes 

but not by high ethanol concentrations while for others the opposite is true 

(Dubaquié et al., 1997). Much stress tolerance research focuses on temperature 

stress while solvent (ethanol) stress is less studied (Michel et al., 1985). 

 

 

1.5.1 Heat-shock proteins 

Heat shock proteins are a class of functionally related proteins, whose 

expression is up regulated when an organism is exposed to stress. Increased 

expression of heat shock proteins is transcriptionally regulated by heat shock 

factors (Rasouly and Ron, 2009). Heat shock proteins are found in every 

organism, from bacteria to humans (Laksanalamai and Robb, 2003). Heat 

shock protein nomenclature is based on their molecular weight. For example, 

Hsp60 and Hsp10 are 60 kDa and 10 kDa in size respectively (Kim et al., 

1996). Heat shock proteins with molecular weights between 15 kDa and 42 

kDa are known as small heat shock proteins (Laksanalamai and Robb, 2003).  
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Heat shock proteins are intracellular chaperones for other proteins: they play a 

role in protein folding and assist the formation of functional protein 

conformation (Kim et al., 1998). Some heat shock proteins are expressed under 

ambient conditions. These heat shock proteins are part of the house keeping 

proteins and they differ from organism to organism and, in some species, from 

organ to organ (Rasouly and Ron, 2009). 

 

Chaperones are proteins that assist the formation of non-covalent interactions 

between proteins or within proteins that result in their folding or unfolding and 

assembly or disassembly, as well as in protein transportation (Chen et al., 

2006). Chaperones do not take part in their substrate’s biological functions 

(Segal and Ron, 2006). Chaperonins are a subclass of chaperones directly 

involved in the folding process of non-native polypeptides into their native 

functional state. 

 

The chaperone group is sub-divided into two groups (Luo et al., 2009). Group 

1 chaperonins are found in bacteria and organelles of endosymbiosis (Luo et 

al., 2009). In E. coli, GroEL and GroES are referred to as chaperone 60 and 

chaperone 10 respectively. The group 1 chaperonins found in prokaryotes are 

characterised by α-crystalline conserved sequences (Luo et al., 2009). Group 2 

chaperonins are found in the eukaryotic cytosol and in archaea (Fenton and 

Horwich, 2003). 
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The pathways through which unfolded proteins are processed are shown in 

figure 1.3. Once a protein is produced by the ribosome, it is taken up by the 

DnaK/DnaJ/GrpE complex (Luo et al., 2009). The unfolded protein is pre-

processed into a conformation that is identified by the GroES/GroEL complex 

(GroESL) which further processes the protein to its functional conformation 

(Ranford et al., 2000). The two complexes (GroES/GroEL and 

DnaK/DnaJ/GrpE) work hand in hand but can also refold proteins 

independently (Ziemienowicz et al., 1993). The GroESL complex is more 

efficient than the DnaK/DnaJ/GrpE complex (Ranford et al., 2000).  

 

 

 

Figure 1.3: The pathways through which unfolded or denatured proteins are processed 

(adapted from Luo et al., 2009) 
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IbpAB and ClpB are small heat shock proteins that bind to unfolded or 

denatured proteins to prevent the proteins from aggregating (Figure 1.3) 

(Ziemienowicz et al., 1993). Small heat shock proteins bind to denatured 

proteins and give unfolded proteins a conformational structure that is 

recognisable by the GroESL and DnaK/DnaJ/GrpE complexes (Ziemienowicz 

et al., 1993).  

 

1.5.2 Role of GroES and GroEL in protein folding 

The GroES and GroEL proteins have been extensively studied since the 

observation of their involvement in stress tolerance. The mechanism and structure 

of the GroESL complex of E. coli was elucidated (Gupta, 1995) (Figure 1.4).  

 

 

Figure 1.4: The GroESL complex of E. coli (Gupta, 1995) 

 

The GroESL complex is composed of a 7 member GroES ring that caps the 

GroEL cis-ring. The GroEL complex has a membrane that separates the cis and 

GroES 

GroEL cis-ring  

GroEL trans-ring 
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trans-ring. The other end of the complex (the trans side) is closed by a membrane. 

The rings communicate through allosteric structural changes (Dubaquié et al., 

1997). 

 

GroEL is composed of 14 subunits of 58 000 relative molecular weight each. The 

subunits attach to form a 2 stacked heptameric ring enclosing a central cavity (the 

substrate binding site) (Xu et al., 1997). Each subunit of GroEL is composed of 

three domains: an apical domain, an equatorial domain and the intermediate 

domain (Ranford et al., 2000). The domains are grouped into a cis-ring and a 

trans-ring. The cis-ring is composed of the apical domain while the trans-ring is 

composed of the intermediate and equatorial domains. 

 

 Prior to protein binding, the intermediate domain swings towards the equatorial 

domain, causing the central channel to pivot 25 degrees around Pro 137 and Gly 

410 (Xu et al., 1997). Such a conformational change closes the binding site at the 

top part of the equatorial domain, simultaneously creating a number of 

interactions within the subunits and with neighbouring subunits. These 

interactions sterically hinder dissociation of ADP from the cis-ring and link the 

binding of GroES to the cis-ring ATP hydrolysis site. GroES is a single 

heptameric ring that forms an asymmetrical 1:1 complex with the ATP-bound 

GroEL cylinder. ATP binds at the equatorial domain (the cis-ring) of GroEL 

subunits. Once ATP is bound to the intermediate domain, it effects a 

conformational change that results in the alteration of the hydrophobic and 
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hydrophilic binding sites. This enlarges the central cavity and increases the 

efficacy of the complex for protein folding (Xu et al., 1997; Lou et al., 2009).   

 

GroEL has ATPase activity equivalent to 5U/minute/monomer (Ranford et al., 

2000). GroES attaches to the GroEL at the apical domain on the cis-ring, forming 

a dome like cover.  GroES can only bind to ATP-activated GroEL. Through 

protein crystallography the conformational changes that occur as the 

GroESL/ATP complex prepares for protein folding was elucidated (Xu et al., 

1997). On its own, GroEL interacts with unfolded proteins and prevents them 

from aggregating into an irreversible state (Truscott et al., 1994). This requires 

ATP. GroEL without a core-chaperone (ATP or GroES) increases the rate of 

protein aggregation (Luo et al., 2009).  

 

1.5.3 Regulation of heat shock genes 

As discussed in section 1.5.1, heat shock proteins play a major role in bacterial 

stress tolerance. Their expression is vital for cellular survival under normal or 

stressful conditions. Like all genes, the heat shock protein genes are regulated 

by promoters and other repression factors. In most bacteria, sigma factor 32 

and sigma 70 (vegetative sigma factor) regulate the expression of heat shock 

genes (Burdon, 1986). 

 

1.5.3.1 Sigma factor 32  

 An understanding of the mechanisms and factors that play a role in the 

regulation of heat shock protein expression is necessary before attempts can be 
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made to over-express them. In E. coli, the heat shock gene operons have heat 

shock promoters that are specific to sigma factor 32 transcription factors (Segal 

and Ron, 2006).  

 

Sigma factor 32 is an activator which as a result of protease (HflB) activity, has 

a short half-life of approximately 4 min (Segal and Ron, 2006). When a cell is 

exposed to temperatures at which proteins denature, the accumulation of 

denatured proteins stimulates a series of events that lead to the stabilisation of 

sigma factor 32 thereby up-regulating the heat shock proteins. In bacteria such 

as E.coli, Pseudomonas aeruginosa and Vibrio cholera only sigma factor 32 is 

detected as a regulatory factor for heat shock operons (Rasouly and Ron, 2009).  

 

Expression of heat shock proteins is dependent on the expression of sigma 

factor 32. An increase in production and stabilisation of this heat shock factor 

is therefore necessary for stress tolerance in bacteria such as E. coli (Rasouly 

and Ron, 2009). HflB protease is not the only protease that plays a role in 

regulating levels of sigma factor 32. HsiVU protease also degrades sigma 

factor 32 through an ATP dependent pathway (Yura et al., 1993). Under 

ambient conditions, the synthesis of sigma factor 32 is repressed post 

transcriptionally (Straus et al., 1987). 

 

The sigma factor 32 mechanism of heat shock regulation does not apply to all 

bacteria. Some bacteria use sigma factor 32 together with an inverted repeat, 

some use sigma factor 70 alone, and some use sigma factor 70 together with an 
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inverted repeat (IR) while some bacteria use more than one sigma factor 

(Straus et al., 1987). 

 

1.5.3.2 Regulation of heat shock protein expression in Geobacillus species 

Expression of heat shock genes in Geobacillus species is regulated by sigma 

factors (Segal and Ron, 2006). Unlike in E. coli where sigma factor 32 is the 

major player in heat shock protein expression, Geobacillus spp. heat shock 

protein expression is regulated by a number of sigma factors. Proteomic 

analysis of the soluble sub-proteome of G. thermoleovorans T80 revealed that 

sigma factors 37, w, 70 and 43 were produced in response to nutrient limitation 

and oxidative stress (Graham et al., 2006).  

 

Expression of sigma factors in response to stress suggests that G. 

thermoleovorans T80 prepares itself for the production of proteins that would 

allow the cells to survive the imposed stress (Hecker et al., 1996). Sigma 

factors 43 and 70 belong to the group sigma factor A, which transcribes genes 

under the control of HrcA-CIRCE in Gram positive bacteria (Hecker et al., 

1996). CIRCE is known as the Controlling Inverted Repeat of Chaperonin 

Expression (Reischl et al., 2002). HrcA is a negative control transcriptional 

repressor to CIRCE in group 1 heat shock operons (Hecker et al., 1996). Under 

optimum growth temperatures for bacteria, HrcA is bound to CIRCE, thereby 

repressing the expression of heat shock proteins. Under stress conditions HrcA 

dissociates from its operators thereby allowing the induction of the heat shock 

operons and expression of heat shock proteins (Reischl et al., 2002). The 
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activity of the HrcA system is modulated by the GroE chaperon system, where 

the GroE system maintains HrcA in a conformation that is able to bind CIRCE 

(Reischl et al., 2002).  

 

When proteins are denatured in the cell, the GroE system and not HrcA bind to 

the proteins because the GroE system has higher affinity for denatured proteins 

than HrcA (Reischl et al., 2002). Since there is no GroE system to maintain a 

functional conformation of HrcA, HrcA cannot bind to CIRCE and repression 

of heat shock proteins ceases (Reischl et al., 2002). GroESL and DnaK operons 

are regulated by the sigma A promoter (sigma factor 43 and 70) and a 

conserved CIRCE (Reischl et al., 2002). 

 

1.6 Aims and objectives of this study 

Geobacillus thermoglucosidasius TM242 cannot tolerate ethanol 

concentrations beyond 4 % v/v (Maugeri et al., 2002). In previous proteomics 

studies, it was observed that heat shock protein 60 is up-regulated in G. 

thermoglucosidasius as ethanol concentrations increase (Charewa, 2008). 

Studies in other thermophiles reveal that heat shock proteins are up-regulated 

due to temperature and solvent stress (Michel et al., 1985). Following these 

observations, it was hypothesised that over-expression of heat shock proteins 

may result in an increased ethanol tolerance in G. thermoglucosidasius NCIMB 

11955.  
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The small heat shock protein from Pyrococcus furiosus when over-expressed in 

E. coli BL21 was able to maintain the activity of Taq DNA polymerase, DNA 

restriction endonuclease Hindlll and lysozyme at elevated temperatures (Chen 

et al., 2006). Crystals of the GroEL protein of Thermococcus litoralis were 

produced when a recombinant E. coli strain harbouring the cloned GroEL gene 

was grown at temperatures exceeding 80 °C. It is evident that heat shock genes 

from thermophiles can be expressed in E. coli (Osipiuk et al., 2000) and can 

enhance the protection of proteins from denaturation due to stress (Chen et al., 

2006). 

 

In this study the focus was to further understand ethanol tolerance in G. 

thermoglucosidasius. The effect of over-expressing G. thermoglucosidasius 

NCIMB 11955 heat shock proteins (GroES and GroEL) on ethanol tolerance 

will be tested by expressing these proteins in Escherichia coli. The major 

objectives of this research are listed: 

I. Further characterisation of the relationship between ethanol tolerance 

and growth temperature in G. thermoglucosidasius NCIMB 11955. The 

ethanol tolerance of G. thermoglucosidasius NCIMB 11955 at growth 

temperature of 45 and 55 °C in complex media will be studied. 

II. Amplification and expression of the GroELS operon of G. 

thermoglucosidasius NCIMB 11955 in E. coli Rosetta pLysS. The 

GroELS operon of G. thermoglucosidaius NCIMB 11955 has been 

implicated in acquired ethanol tolerance in this strain (Charewa, 2008). In 
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order to characterise this operon in vitro and in vivo, expression constructs 

within heterologous hosts are required.  

III. In vivo characterisation of imparted stress tolerance in expression 

hosts. Expression strains will be subjected to high exogenous ethanol 

concentrations in order to determine if the GroELS complex could 

enhance strain stress tolerance and complement the general stress 

response. 
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Chapter 2: Materials and methods  

2.1 Chemicals and reagents  

Chemicals were obtained from the following suppliers: Sigma Aldrich, Merck, 

Kimix Chemicals and Laboratory Suppliers.  

 

Endonuclease enzymes, polymerase enzymes, DNA and protein markers were 

purchased from Fermentas Life Science Ltd. Primers for polymerase chain 

reactions were synthesised and supplied by Inqaba Biotech.  

 

2.2 Buffers and solutions  

Distilled water was used to prepare buffers and solutions. The pH of buffers was 

adjusted using 5 M NaOH or 1 M HCl.  A Crison pH-meter (Basic 20+) was used 

for pH determination. Solutions that required autoclaving were autoclaved at 

121˚C for 20 min. 

 

10 mM Tris, 1 mM EDTA buffer pH 8 (TE) 

1 ml of 1 M Tris (pH 8) and 0.2 ml of 0.5 M EDTA were added to a 250 ml 

autoclaved bottle containing 98.8 ml of sterile water. The mixture was shaken and 

aliquoted into 10 ml aliquots. The 1 x TE was stored at room temperature. 

 

Sodium phosphate buffer 1 M (pH 8) 

14.2 g of Na2HPO4 was dissolved in 10 ml of sterile water. Simultaneously and 

separately, 1.56 g of NaH2PO4 was dissolved in 10 ml of sterile water. A volume 
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of 9.3 ml of the Na2PO4 stock was mixed with 6.8 ml of the NaH2PO4 stock. The 

mixture was adjusted to pH 8 and filter sterilised before use. 

 

2.3 Media  

Media components used in this study were supplied by Oxoid and Biolabs. 

Autoclaving of media and components was performed at 121 °C for 20 minutes. 

 

2 x TY media (Taylor et al., 2008) 

2x TY media was used for culturing overnight cultures of G. thermoglucosidasius.  

Constituent                               g/L 

Tryptone                                   16 

Yeast extract                            10 

NaCl                                          5 

 

The constituents were added to distilled water and autoclaved at 120 °C for 15 

minutes. Ampicillin, Xgal and IPTG were added to cooled (50 °C) medium where 

necessary. 

Luria Bertani broth and agar (LB) 

LB broth was used as a cellular propagation medium. LB agar was used for 

colony culturing of E. coli cells.  

Constituent                               g/L 

Tryptone                                   10 

Yeast extract                            5 

NaCl                                         10 
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LB agar was prepared from LB broth by adding 13 g/L of bacteriological agar.  

The constituents were added to distilled water and autoclaved at 120 °C for 15 

minutes. Ampicillin, Xgal and IPTG were added to cooled (50 °C) medium where 

necessary. 

 

SOC medium 

SOC media was used for reviving newly transformed E.coli cells. 

Constituent                               g/L 

Tryptone                                   20 

Yeast extract                            5 

NaCl                                         0.5   

KCl (250Mm)   10 mL     

 

Constituents were added to distilled water and the medium was autoclaved and 

cooled to 50 °C prior to the aseptic addition of 5 ml of filter sterilised 2 M MgCl2 

and 20 ml of 1 M glucose.   

 

2.4 Bacterial strains and plasmids 

The following strains (Table 2.1) and plasmids (Table 2.2) were used in this 

study. 
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Table 2.1: Bacterial strains used in this study 

Bacterial strains Supplier  

E. coli  Gene Hog Invitrogen (USA) 

E. coli Rosetta2 (DE3) pLysS Novagen (USA) 

Geobacillus thermoglucosidasius NCIMB 

11955 

TMO Renewables (Surrey, UK) 

Geobacillus thermoglucosidasius M10EXG Department of Biochemistry, Ohio State 

University, USA  

 

 

Table 2.2: Plasmids used in this study 

Plasmid Characteristics  Supplier 

pET21a (+) Expression vector containing an 

ampicillin resistance gene and a T7 

lac  promoter  

Novagen  

pGem-T-Easy Cloning vector containing an 

ampicillin resistance gene.  

Fermentas Life Sciences  

 

 

2.5 Effect of temperature on the growth and ethanol tolerance of 

G. thermoglucosidasius NCIMB 11955   

2.5.1  Effect of temperature on the growth  

G. thermoglucosidasius NCIMB 11955 cells were plated on LB agar plates and 

incubated at 55 °C overnight. A single colony was inoculated into 12 ml of SOC 

broth and incubated at 55 °C overnight with shaking.  Three flasks containing 

50ml 2 x TY broth were  pre-warmed at 55 °C and 3 others were pre-warmed at 
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45 °C. 200 µl of the overnight culture was inoculated into each flask. The flasks 

were incubated at 55 °C and 45 °C respectively with shaking. The OD600 of the 

cultures were measured periodically.  

 

2.5.2 Effect of temperature on ethanol tolerance  

Geobacillus thermoglucosidasius NCIMB 11955 cells were streaked on LB agar 

plates and incubated at 55 °C overnight. A single colony was inoculated into 12 

ml of SOC broth and incubated at 55 °C overnight with shaking.  In duplicate, 200 

µl of the overnight culture was added to 50 ml of pre-warmed 2x TY broth 

containing ethanol concentrations of 0, 2, 4, 6, 5 and 8 % v/v. One of each 

duplicate culture was incubated at 55 °C and the other at 45 °C with shaking.  

 

2.6 General recombinant DNA procedures  

2.6.1 DNA quantification  

For routine quantification, DNA concentrations were determined using a 

Nanodrop ND-1000 instrument. DNA was re-suspended in double distilled water 

overnight at 4 °C. For more accurate quantification, DNA concentrations were 

measured using the QubitTM DNA assay kit according to the recommended 

procedures.  

 

2.6.2 Gel extraction and DNA purification  

DNA fragments were briefly visualized under UV illumination at a peak 

wavelength of 302 nm and excised from agarose gels using a sterile scalpel blade. 

A GFX PCR DNA gel band purification kit (GE Healthcare Life Sciences) was 

 

 

 

 



 
 

44 

used to purify the DNA from the gel slices according to the manufacturer’s 

instructions. The DNA was eluted in 10 mM Tris-buffered double distilled water 

at pH 8.0.  

 

2.6.3 Plasmid DNA purification 

The Macherey-Nagel Nucleospin Extract ll PCR Clean Up and Gel Extraction kit 

was used to purify DNA from solutions and agarose gels according to the 

manufacturer’s instructions.  

 

2.6.4 Agarose gel electrophoresis  

Analysis of DNA using agarose gel electrophoresis was performed according to 

the method of Sambrook and Russell (2001) with minor adaptations. TAE agarose 

gels containing 1 % agarose w/v were cast and electrophoresis was performed at 

100 v in 0.5 X TAE buffer. A concentration of 0.5 µg/ml of ethidium bromide was 

added to the agarose gels to allow visualisation of DNA under UV 

transillumination. DNA fragments were sized based on their migration on gels in 

comparison to the migration of fragments of a Pst I digested lambda DNA marker. 

An Alpha Imager was used to visualise agarose gels. 
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2.7 Genomic DNA extraction 

Genomic DNA extraction was carried out according to the method described by 

Sambrook and Russelll (Sambrook and Russell, 2001).  

 

A single colony of G. thermoglucosidasius NCIMB 11955 was inoculated into 5 

ml volumes of pre-warmed (pre-incubated at 55 °C for at least 30 min) 2x TY 

medium. The culture was incubated at 55 °C overnight. From the overnight 

culture, a 0.5 ml aliquot was inoculated into two separate 10 ml volumes of pre-

warmed 2x TY medium. The cultures were incubated overnight at 55 °C. The 

overnight culture was centrifuged (Eppendorf 5810 R centrifuge) at 10 000 x g at 

4 °C for 10min to harvest cells. The cell pellet was re-suspended in 0.5 ml of 

phosphate buffer saline (PBS) lysis buffer. The cell suspension was frozen on ice 

for 15 to 20 min, thawed and sonicated with a Bandelin Sonopulse 2070 sonicator. 

Sonication was done three times for 10 s at a power setting of 30 W. A final 

concentration of 0.1 mg/ml proteinase K was added to the lysate suspension and 

the lysate was incubated for 60 min at 37 °C. An equal volume of 25:24:1 

phenol/chloroform/isoamyl alcohol was added to the suspension. The mixture was 

centrifuged for 5 min at 16 000 x g. The aqueous layer was transferred to a clean 

1.5ml micro-centrifuge tube. DNA was re-extracted with an equal volume of 

25:24:1 phenol/chloroform/isoamyl alcohol. The aqueous layer was transferred to 

a clean tube after every phenol/chloroform/isoamyl alcohol extraction. DNA was 

further extracted by adding equal volumes of 24:1 chloroform /isoamyl alcohol. 

To every 400 µl of aqueous phase, 15 µl of 5 M NaCl was added. The Eppendorf 
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tube was filled with ice cold 99.6 % ethanol and incubated overnight at -20 °C. 

The solution was centrifuged for 15 min at 16 000 x g at 4 °C. The pellet was 

washed with 500 µl of 70 % ethanol and air dried for 15 min. The pellet was re-

suspended in 50 μl of sterile water and stored at -20 °C.  

 

2.8 Amplification of the GroES and GroEL genes    

The GroESL operon genes were amplified independently. Primer sets employed 

in this study are listed in Table 2.3. When designing primers, the Integrated DNA 

Technologies tool Oligonucleotide Analyser was used to determine useful 

sequences. Restriction sites were incorporated into the primer sequences for 

directional cloning (Table 2.3).  

 

The highlighted region in primer W1 represents an incorporated Nde I restriction 

site while the highlighted region in primer W3 is an Nde I restriction site. An 

EcoR 1 restriction site is highlighted in the W2 reverse primer. Highlighted on 

reverse primer W4 is the Not 1 restriction site. 
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Table 2.3: Primer sequences and PCR conditions for amplification of genes in 

the GroESL operon 

Genes 

amplified 

Primers used PCR conditions Reference 

GroES W1: Forward primer 

5’CGGGGTCATATGC-

TAATAAGAACGGCG3’ 

95°C  for 30s, 30x 

(95°C for 30s, 55°C 

for 30s, 72°C for 40s), 

72°C for 10 min 

This study 

W2: Reverse primer 

5’AGGAGGGCTCATT-

AACCAATCACAGCC3’ 

GroEL W3: Forward primer  

5’-CGGCGCGGCGCA 
 
TATGGCAAAAGAAAT-3’ 
 

95°C  for 30s, 30x 

(95°C for 30s, 55°C 

for 30s, 72°C for 40s), 

72°C for 10 min 

This study 

W5: Reverse primer 

5’-TAGCGAGCTCTTAC 

ATCATTCCGCCCATC-3’ 

M13 Primers  Forward primer 

5’-GTTTTCCCAGTC ACGAC- 

3’ 

95°C  for 30s, 30x 

(95°C for 30s, 55°C 

for 30s, 72°C for 40s), 

72°C for 10 min.  

Life 

Technologies  

Reverse primer  

5’-AGCGGATAACAATT 

TCACACAGGA- 3’ 

 

PCR amplification was performed in 0.2 ml thin walled tubes using an Eppendorf 

master-cycler gradient thermo-cycler. A standard 20 µl PCR reaction contained 

10µl of sterile distilled water, 0.5µM of forward primer, 0.5 µM of reverse primer 

(Table 2.3), 0.2 mM of each dNTP (dATP, dTTP, dCTP, dGTP), 1U of Taq DNA 

polymerase, 1ng/µl of bovine serum albumin, 2 µl of 1x Taq buffer and 4 ng of 
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plasmid DNA or 25 ng of genomic DNA. The annealing temperature used for 

GroES and GroEL amplifications was 55 °C.   

 

2.9 Cloning of PCR products 

A ligation reaction of 10 µl final volume was used throughout. Reactions 

consisted of a 3:1 ratio of insert to vector, 1 µl of T4 DNA ligase enzyme, 5µl of 2 

X T4 DNA ligase buffer. The volume was made up to 10 µl with the addition of 

sterile water. For the 3:1 insert to vector addition 20 ng of plasmid DNA and 60 

ng of each gene fragment were added to the ligation reagents. The ligation 

mixture was incubated overnight at 4 °C. The GroES and GroEL fragments were 

independently cloned into the pGem-T-Easy vector (Fementas Life Sciences) 

before they were excised and cloned into the pET21 (a) + vector. The GroES 

fragment was cloned into the pET21 a (+) multiple cloning site using restriction 

sites Nde I and EcoR I. The clone was designated pET21 (a) +/ GroES. GroEL 

was subsequently cloned downstream of the GroES fragment at the Not 1 

restriction site situated in the multiple cloning site of the vector. The pET21 (a) +/ 

GroES construct was treated with shrimp alkaline phosphatase prior to ligation 

with the GroEL gene fragment. 

 

2.10 Preparation of Escherichia coli competent cells  

The Sambrook and Russell (2001) method for preparation of competent cells was 

used. Glassware was pre-washed with 70 % ethanol and autoclaved before use. 

An overnight culture was prepared by inoculating a single colony of E. coli 

Rosetta pLySs into 5ml of LB broth and incubated overnight at 37 °C. From the 
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overnight culture, 1ml was inoculated into 50ml of LB broth and incubated at 37 

°C until the culture reached an OD600 of 0.4. The culture was cooled on ice for 20 

min. Cells were harvested by centrifugation (Eppendorf 5810R fixed rotor 

centrifuge) at 3000 for 10min. The supernatant was decanted and the cells were 

re- suspended in 10ml of ice cold 0.1 M CaCl2 and incubated on ice for 20 min. 

The cells were harvested by centrifugation as described above and suspended in 2 

ml of 0.1 M CaCl2 containing 15 % v/v glycerol. Cells were aliquoted into 50 μl 

volumes and stored at -80 °C. 

 

2.11 Transformation of competent cells 

Chemically competent cells stored at -80 °C were thawed on ice for 5min prior to 

the addition of 5 μl of a pre-cooled ligation mixture. The mixture was incubated 

on ice for a further 20min. The cells were heat shocked at 42 °C for 1 min and 

were returned to ice for 2 min. A volume of 400 µl pre-warmed SOC broth 

(Section 2.3.4) was added. The solution was incubated at 37 °C for 60min with 

shaking. A volume of 50 µl of the cells was plated onto LB agar plates containing 

ampicillin (100 µg/ml), 0.1mM IPTG and 40 µg/ml X-Gal. The plates were 

incubated overnight at 37 °C. 

 

2.12 Screening for GroES and GroEL habouring clones  

Positive transformants (white colonies) were inoculated into 5 ml of LB broth 

containing 100 µg/ml of ampicillin. The cultures were incubated overnight at 37 

°C prior to plasmid extraction. Restriction digestion (section 2.11.1), PCR 

amplification (Section 2.8) and DNA sequencing were used to screen for positive 
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clones after each cloning step. Plasmid DNA purification was done as described 

in section 2.6.2.     

 

2.12.1 Restriction enzyme digestion 

Restriction enzyme digests were done in 0.6 ml microcentrifuge tubes. A final 

volume of 10 µl was used. The restriction enzymes EcoR l and Nde l were used to 

confirm the presence of the GroES insert after each cloning attempt. Restriction 

enzyme Not 1 was used to confirm the presence of the GroEL gene fragment. The 

pET21/GroESL construct was digested with restriction enzyme EcoR 1 to predict 

the arrangement of the GroES and GroEL genes in the pET21 (a)+ vector. 

Fragment sizes of 1600, 1000, 600 and 400 bps were expected after digestion with 

EcoR I if the GroEL fragment lay in the same orientation as the GroES fragment. 

Reactions were set up so that 1U of each restriction enzyme was used to digest 1 

µg of plasmid DNA. Reactions were incubated at 37 °C for 2-24 hours. The 

restriction products were analysed by gel electrophoresis on 1 % agarose gels 

(section 2.5.4). 

 

2.12.2 Sequencing  

Sequencing of cloned insert DNA was performed by the DNA Sequencing Group, 

Department of Molecular and Cell Biology (MCB) at the University of Cape 

Town (UCT) using M13 forward and reverse primers (Table 2.3). The Bioedit and 

DNAMAN programmes were used for sequence analyses and annotation of the 

sequences. The edited and annotated sequences were submitted to the National 
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Centre for Bioinformatics (NCBI) server (http://www.ncbi.nlm.nih.gov/blast/) for 

Blast analysis. 

 

2.13 Protein analysis  

2.13.1 Over-expression of the GroES and GroEL genes 

A single E. coli Rosetta colony carrying the pET21/GroESL construct was 

inoculated and incubated overnight at 37 °C in 5 ml LB broth containing 100 

mg/ml ampicillin. Simultaneously, the negative control (E. coli Rosetta pLysS 

carrying the pET21 a (+) vector without insert) was inoculated and incubated as 

above. A volume of 1ml of each overnight culture was inoculated separately into 

50 ml LB broth containing 100 mg/ml ampicillin. The cultures were incubated at 

37 °C and growth was monitored by measuring optical density (OD) using a 

spectrophotometer at 600 nm (Biomate 3, Thermo Electron Corporation). At an 

OD600 of 0.4 the cultures were induced for expression of the GroESL genes by the 

addition of 500 µl of 0.1 M IPTG. The induced cultures were incubated at 37 °C 

for 6 hours. Cells were harvested by centrifugation in an Eppendorf 5810 R 

centrifuge at 10 000 for 5 min. Cell pellets were re-suspended in 350 μl of PBS 

buffer. The cell suspensions were sonicated using a Bandelin Sonopulse 2070 

sonicator at 30 W; sonication was performed three times for 30 s. The lysed cells 

were transferred to a 1.5 ml microcentrifuge tube before centrifugation at 16 000 

for 15 min to pellet cell debris. The supernatant (intracellular protein solution) 

was transferred to a clean 1.5 ml micro tube. The concentration of intracellular 

protein was determined using the Bradford assay (section 2.13.2). The cell debris 

pellet containing insoluble protein was re-suspended in 20 µl of protein loading 
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dye. Proteins in the supernatant and insoluble fractions were separated and 

visualized by SDS PAGE. All protein samples were analysed on 12 % SDS 

polyacrylamide gels (section 2.14.3). 

 

2.13.2 Determination of protein concentration  

The Bradford assay (Bradford, 1976) was used to determine protein 

concentration. A bovine serum albumin stock solution of 2.4 mg/ml was used 

for preparing the standards of 10, 20, 40 and 50 mg/ml.  

 

2.13.3 SDS polyacrylamide gel electrophoresis (PAGE) 

Separation of proteins by SDS PAGE was performed using a Mighty Small 

vertical slab unit (Hoefer SE 280).Gels (1.5 mm thick) containing 12% 

acrylamide resolving and 4% acrylamide stacking gels were prepared using the 

Hoefer SE 245 dual gel caster. Protein samples (40 ng) were added to an equal 

volume of 2 X SDS PAGE loading buffer (Sambrook and Russell, 2001) prior to 

incubation at 90 °C for 5 min. An unstained protein marker (6 µl) was used for 

size determination. Electrophoresis was performed at a constant voltage of 70 V 

in 1 X running buffer (Sambrook and Russell, 2001). Gels were stained overnight 

with Coomassie Blue and destained four times using PAGE destaining solution 

(Sambrook and Russell, 2001).  
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2.14 Characterisation of the tolerance to ethanol of E. coli Rosetta pLySs/    

pET21 (a) +/ GroESL  

A single colony of E. coli pLySs/ pET21 (a) + / GroESL was inoculated into 5ml 

of pre warmed LB medium. The culture was incubated at 37 °C overnight. 4 ml of 

the overnight culture was inoculated into 630 ml 2TY broth and the culture was 

grown at 55°C with shaking. When the culture reached an OD600 of 0.8, the 

culture was divided into 12 x 250 ml flasks (50 ml per flask). All Flask where 

incubated at 37 °C with shaking. 6 duplicates where made from the 10 flask. 

Ethanol concentrations of 0, 2, 3, 4, 5 and 6 % v/v were added to the flasks, in a 

situation where there where 2x of each ethanol concentration containing flask. E. 

coli Rosetta pLySs was inoculated into one set of flasks containing 0, 2, 3, 4, 5 

and 6 % ethanol v/v. E. coli Rosetta pLySs/ pET21 (a) +/ GroESL was inoculated 

into the other set of flask containing 0, 2, 3, 4, 5 and 6 % ethanol v/v. The cultures 

were incubated at 37 °C with shaking for a further 16 hrs. The OD600 of the 

cultures was measured periodically. 
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Chapter 3: Construction of the GroESL recombinant plasmid  

3.1 Introduction 

In a previous proteomic study, it was observed that heat shock proteins of G. 

thermoglucosidasius NCIMB 11955 were up-regulated as the ethanol 

concentration of the growth medium was increased (Figure 3.1) (Charewa, 2008). 

Protein spot P2 (Figure 3.1) was identified as the G. thermoglucosidasius NCIMB 

11955 GroEL protein.  Based on the above proteomic study and published 

literature (Kim et al., 1996), it was hypothesised that up-regulation of the GroESL 

operon of G. thermoglucosidasius NCIMB 11955 could improve the tolerance of 

the bacterium to ethanol. The aim of this section was to clone the GroESL operon 

of G. thermoglucosidasius NCIMB 11955 into the pET21 (a) + vector.    

 

            

Figure 3.1: 2-D gels of the soluble proteins extracted from cultures of G. thermoglucosidasius 

NCIMB 11955 stressed with 0 and 5% ethanol, respectively. (a) 0% ethanol condition and (b) 

5% ethanol conditions. Protein spot P1 was down and protein spot P2 was up-regulated as ethanol 

concentrations in the growth medium were increased. The gels were reproduced in triplicates. 

Similar patterns for each condition were noted obtained (Charewa, 2008) 

 

Gene regulation factors control the expression of heat shock proteins (Segal and 

Ron, 2006). CIRCE secondary structure hairpin loops are regulatory elements of 

a b 

P1 

P1 

P2 P2 
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the GroESL operon of bacteria such as E. coli and G. thermoglucosidasius 

(Section 1.6.3). These secondary structures are located downstream of the GroES 

gene and upstream of the GroEL gene within the 72 base pair sequence linking the 

two genes in G. thermoglucosidasius (Segal and Ron, 2006) (Figure 3.2). Hairpin 

loops affect PCR amplification - the effect of hairpin loops depends on loop size 

and the number of complementary bases (Singh et al., 2000). Hairpin loops with 

less than four complementary bases have no effect on PCR amplification, but 

anything longer will hinder PCR amplification. The hairpin loop in the G. 

thermoglucosidasius GroESL operon is nine base pairs long and thus long enough 

to affect PCR amplification (Singh et al., 2000). The size of the hairpin loop was a 

concern when attempting to replicate the GroESL operon via PCR amplification. 

Amplification of the entire GroESL operon was unsuccessful (data not shown) 

and the two genes (GroES and GroEL) were amplified independently.  
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GTGCTAATAAGAACGGCGAAAATTATGTTAAGGAGGTTGTTTTCCGTGATAAAGCCATTAGGTGATCGCGT

TGTCATTGAAATCGTTGAAACGGAAGAAAAAACTGCAAGCGGTATCGTATTGCCAGATACTGCAAAAGAAA

AACCGCAAGAAGGCAAAGTTGTTGCCGTTGGAAAAGGACGCGTACTTGACAACGGTCAACGCGTAGCTCCA

GAAGTGGAAGTTGGCGATCGCATTATCTTCTCGAAATATGCGGGTACAGAAGTGAAATATGACGGCAAAGA

ATACTTAATTTTGCGTGAAAGCGATATTTTGGCTGTGATTGGTTAATATATAGCGTTGATAACATAGATGTG

CAAAAAAATACTTAACGATTTCATTTTACAAGGAGGTAACGGGGTATGGCAAAAGAAATTAAATTCAGC

GAAGAAGCTCGTCGTGCGATGCTGCGCGGTGTTGACAAACTAGCGATGCAGTAAAAGTAACGTTAGGTCCAA

AAGGCCGTAACGTTGTATTAGAGAAAAAATTCGGTTCTCCATTAATTACAAACGACGGTGTTACGATCGCGA

AAGAAATCGAATTAGAAGACCCATTTGAAAACATGGGTGCGAAGCTTGTTGCTGAAGTTGCAAGCAAAACA

AACGATGTTGCTGGGGACGGTACAACAACAGCGACAGTTTTAGCTCAAGCGATGATCCGTGAAGGCTTAAAG

AACGTAACAGCTGGCGCAAACCCAATGGGAATCCGCAAAGGTATTGAAAAAGCGGTTGCTGTAGCGGTAGA

AGAATTAAAAGCAATCTCCAAACCAATCCAAGGAAAAGAATCGATCGCGCAAGTTGCGGCTATTTCTGCGGC

TGACGAAGAAGTTGGCCAATTAATTGCAGAAGCAATGGAACGCGTCGGCAACGACGGTGTTATCACATTAG

AAGAATCAAAAGGTTTCACAACAGAATTAGATGTTGTGGAAGGTATGCAATTTGACCGCGGTTATGCGTCTC

CATACATGATCACAGATACAGAAAAAATGGAAGCAGTGCTTGAAAATCCATATATCTTAATCACTGACAAAA

AAATCTCGAACATTCAAGACATCTTGCCTATCTTAGAACAAGTTGTTCAACAAGGCAAACCATTGTTAATCAT

CGCGGAAGACGTCGAAGGCGAAGCGCTTGCAACATTAGTTGTTAACAAACTTCGCGGCACGTTCACTGCGGT

AGCGGTTAAAGCGCCTGGCTTCGGTGATCGCCGTAAAGCAATGTTGGAAGACATCGCAATCTTAACTGGCGG

TGAAGTCATCTCCGAAGAATTAGGACGCGAATTAAAATCAACAACAATTGCATCACTTGGCCGCGCTTCGAA

AGTTGTTGTAACGAAAGAAAATACAACAATCGTTGAAGGCGCTGGCGATTCTGAACGCATTAAAGCTCGCAT

CAACCAAATCCGCGCTCAATTAGAAGAAACTACTTCTGAATTCGACCGCGAAAAATTACAAGAACGTTTGGC

AAAACTTGCTGGCGGCGTAGCGGTCATCAAAGTTGGTGCAGCGACAGAAACAGAATTGAAAGAACGCAAAT

TGCGCATTGAAGACGCGCTCAACTCTACTCGTGCGGCTGTCGAAGAAGGTATCGTAGCCGGCGGTGGTACGG

CATTAATGAACGTATATAACAAAGTTGCTGCGATCGAAGCAGAAGGCGACGAAGCAACTGGTGTGAAAATC

GTTCTTCGCGCAATCGAAGAGCCAGTTCGCCAAATCGCGCAAAACGCTGGTTTGGAAGGCTCTGTCATTGTT

GAACGCTTAAAATCCGAAAAACCTGGCATCGGCTTCAACGCTGCTACTGGCGAATGGGTAAACATGATCGAA

GCTGGTATTGTTGACCCAACGAAAGTAACTCGCTCCGCTCTGCAAAACGCAGCTTCTGTTGCCGCTATGTTCT

TAACAACAGAAGCAGTTGTCGCTGACAAACCAGAAGAAAACAAAGGCGGCAATAGCGGAATGCCTGACAT

GGGCGGAATGATGTAA 

 
Figure 3.2: The GroESL operon of the G. thermoglucosidasius NCIMB 11955 genome (Li 

and Wong, 1992). The DNA sequence highlighted in blue is the GroES sequence which is 

followed by the 72 bp spacer (highlighted in green). The sequence highlighted in yellow following 

the 72 bp spacer is the GroEL sequence. The regions of the operon used to design the primers W1, 

W2, W3 and W5 are in bold and are located at the ends of each gene 
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The GroES and GroEL genes of G. thermoglucosidasius NCIMB 11955 were 

cloned independently into the pET21 (a) + vector multiple cloning site simulating 

their arrangement in the G. thermoglucosidasius NCIMB 11955 GroESL operon.  

 

3.2 Results   

3.2.1 PCR amplification of the GroES and GroEL genes from genomic DNA 

The GroES and GroEL genes were amplified from the G. thermoglucosidasius 

11955 genome using primers W1 and W2 (GroES) and W3 and W5 (GroEL) as 

described in Section 2.7. A volume of 8 µl of the PCR products was 

electrophoresed on a 1% agarose gel. The GroES (Figure 3.3) and GroEL (data 

not shown) fragments were gel excised and independently cloned into the pGem-

T-Easy vector (Figures 3.4 and 3.5). 

 

 

 

Figure 3.3: Agarose gel electrophoresis of restriction enzyme digests to assess the presence of 

GroES in the p-Gem- T- easy vector. Lane 1: λ DNA digested with Pst I. Lane 3: p-Gem-T-Easy 

digested with Nde 1/ EcoR 1. Lane 6: p-Gem-T-easy/ GroES digested with Nde 1/ EcoR 1 

 

350 bp GroES fragment 

 L1      L2    L3     L4    L5     L6 
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3.2.2 Cloning of the GroES and GroEL genes into the p-Gem-T-easy vector  

The GroES (350 bp) and GroEL (1680 bp) fragments were gel excised from the 

gels and sequentially cloned into the p-Gem-T-easy vector. 

 

Digestion of the p-Gem-T-easy/ GroEL construct using restriction enzymes Nde 1 

and EcoR 1 released two bands corresponding to the p-Gem-T-easy backbone 

(3045 bp) and a fragment corresponding in size to GroEL (1680 bp) (Figure 3.4). 

 

 

 

Figure 3.4: Agarose gel electrophoresis of the restriction enzyme digests to assess the 

presence of GroEL in the p-Gem- T- easy/ GroEL construct. Lane 1: λ DNA digested with Pst 

I. Lane 2: Restriction digestion of the pGem- T- easy/ GroEL construct digested with Not 1 

         L1                          L2 

3045bp pGem-T-Easy 
Fragment 
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3.2.3 Construction and analysis of the pET21 (a) +/ GroESL plasmid  

The 350 bp GroES fragment (section 3.2.2) was cloned into the pET 21 (a) + 

vector using the restriction sites Nde 1 and EcoR 1. The resultant plasmid was 

designated pET21 (a) +/ GroES. pET21 (a) +/ GroES was subsequently linearized 

using the restriction enzyme Not 1 and was treated with shrimp alkaline 

phosphatase to prevent recircularisation. This was ligated with the 1680 bp GroEL 

fragment (section 3.2.2) resulting in the pET21 (a) +/ GroESL plasmid. Following 

both cloning procedures the plasmids were transformed into E. coli Rosetta pLysS 

and plated onto LB Agar containing ampicillin (100 µg/ml), 0.1mM IPTG and 40 

µg/ml X-Gal. 

 

Using the blue/ white clone selection positive clones were selected and the 

presence of the GroES and GroEL inserts were verified by restriction digestion, 

PCR amplification and by sequence analysis of the pET21 (a) +/ GroESL 

recombinant plasmid (Figures 3.5 - 3.9).  

 

Restriction digestion using enzymes Not 1, Nde 1 and EcoR 1 confirmed the 

presence and direction of the GroES and GroEL fragments in the pET21 (a) +/ 

GroESL recombinant plasmid. A 1680 bp band corresponding to GroEL fragment 

and a 5720 bp band corresponding to the pET21 (a) +/ GroES were released when 

pET21 (a) +/ GroESL was digested with Not 1 enzyme (Figure 3.5). 
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Figure 3.5: Restriction digest to assess the presence of GroEL in the pET21 (a) +/ GroESL 

construct. Not 1 was used to digest the construct. Lane 1: λ DNA digested with Pst I. Lane 3: 

pET21 (a) +/ GroESL construct digested with Not 1 

 

Agarose gel electrophoresis of the pET21 (a) +/ GroESL recombinant plasmid 

digested with Nde 1 and EcoR 1 showed four bands of approximately 350, 570, 

1000 and 5400 bp (Figure 3.6).  

    1        2         3       4 

 

 

 

 

 

 

 

Figure 3.6: Agarose gel electrophoresis of a restriction digest of the pET21 (a) + / GroESL 

construct using Nde 1 and EcoR 1 enzymes. Lane 1: λ DNA digested with Pst I. Lane 2: p-Gem-

T-easy vector digested with EcoR 1. Lane 3: p-Gem-T-easy vector digested with Nde 1. Lane 4: 

pET21 (a)  + /  GroESL construct digested with EcoR 1 and Nde 1 enzymes.  
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PCR amplification of the pET21 (a)+/ GroESL recombinant plasmid with the 

forward primer W1 and reverse primer W5 resulted in a 2000 bp band as expected 

(Figure 3.7). Both analyses (restriction digestion and PCR amplification) 

confirmed the presence and orientation of the GroES and the GroEL fragments in 

the pET21 (a) +/ GroESL recombinant plasmid. 

 

 

Figure 3.7: Agarose gel electrophoresis of PCR amplification products of the pET21 (a)+/ 

GroESL construct using primers W1 and W5, to verify the presence and direction of the 

GroES and GroEL fragments in the construct. Lane 1:  λ DNA digested with Pst I. Lane 2: 

2000 bp PCR amplicon. 

 

A non-proof reading Taq polymerase was used in the initial amplification of the 

GroES and GroEL genes. DNA sequencing of the pET21 (a) +/ GroESL 

recombinant plasmid confirmed that the GroES and GroEL gene sequences were 

not altered during PCR amplification. DNA sequencing was also done to confirm 

whether the GroES start codon was in-frame with the T7 promoter of the pET21 

(a) + vector, both genes were in the correct orientation and that the vector was 

intact. 
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3.2.4 Sequence analysis  

Pairwise alignment was done using the BioEdit sequence analysis software. The 

sequence of the pET21 (a) +/ GroESL plasmid was aligned to the sequence of the 

pET21 (a) + vector published by Novagen and to the sequences of the GroES and 

GroEL genes provided by TMO Renewables. The cloned genes were identical in 

sequence to the database sequences. Figure 3.8 shows the alignment of the cloned 

GroES gene to the GroES sequenced provided but TMO Renewables. Pairwise 

alignment of the resultant sequence to the pET 21 (a) + sequence confirmed that 

the cloned GroES and GroEL genes were in-frame and adjacent to the T7 

promoter in the pET21 (a) + vector fragment. The cloned GroES and GroEL 

genes and gene expression elements such as the pET21 (a) + T7 promoter and the 

ribosomal binding site sequences of the pET21 vector were correctly oriented. 
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....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 

65         75         85         95        105        115 

WC Construct ACATATGCTA ATAAGAACGG CGAAAATTAT GTTAAGGAGG TTGTTTTCCG TGATAAAGCC 

GroES        ----GTGCTA ATAAGAACGG CGAAAATTAT GTTAAGGAGG TTGTTTTCCG TGATAAAGCC 

 

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 

125        135        145        155        165        175 

WC Construct ATTAGGTGAT CGCGTTGTCA TTGAAATCGT TGAAACGGAA GAAAAAACTG CAAGCGGTAT 

GroES        ATTAGGTGAT CGCGTTGTCA TTGAAATCGT TGAAACGGAA GAAAAAACTG CAAGCGGTAT 

 

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 

185        195        205        215        225        235 

WC Construct CGTATTGCCA GATACTGCAA AAGAAAAACC GCAAGAAGGC AAAGTTGTTG CCGTTGGAAA 

GroES        CGTATTGCCA GATACTGCAA AAGAAAAACC GCAAGAAGGC AAAGTTGTTG CCGTTGGAAA 

 

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 

365        375        385        395        405        415 

             WC Construct GCGTGAAAGC GATATTTTGG CTGTGATTGG TTAATGAGCC CTCCTAATCA CTAGTGAATT 

GroES       GCGTGAAAGC GATATTTTGG CTGTGATTGG TTAA------ ---------- ---------- 

 

Figure 3.8: Pair wise alignment of pET21 (a) +/ GroESL (WC) to the GroES sequence 

provided by TMO Renewables. The Nde l restriction site is highlighted in red. 
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 Based on the alignment in Figure 3.8, no DNA replication errors occurred during 

PCR amplification and cloning of the GroES gene. The GroEL sequence was 

observed on analysis of the T7 promoter sequencing results: GroEL starts at 

position 473 base pairs (data not shown). Pairwise alignment verified that the 

GroES and GroEL genes were cloned in-frame with the pET21 vector expression 

system and that there were no errors during PCR amplification. 

 

A restriction map of the pET21 (a) +/ GroESL construct (Figure 3.9) was 

constructed from the DNA sequence using DNAMAN and BioEdit software. The 

restriction fragments obtained from the restriction digest of the recombinant 

pET21 plasmid (Figure 3.5 and 3.6) correlated with the fragments expected from 

restriction analysis of the pET21/ GroESL construct. Figure 3.9 shows the 

arrangement of the GroES and GroEL genes in the recombinant plasmid. The G. 

thermoglucosidasius NCIMB 11955 GroESL operon was successfully simulated 

in the pET21 vector, although the simulation of the 72 base pair sequence 

interlinking the two genes in G. thermoglucosidasius was not successful.  
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Figure 3.9:  Restriction map 0f the pET21 (a) +/ GroESL construct. The green arrow 

represents the T7 promoter upstream of GroES. The GroES gene is represented by a blue arrow 

and the GroEL gene is represented by a red arrow.  

 

3.3 Discussion 

The GroES and GroEL genes of G. thermoglucosidasius NCIMB 11955 were 

successfully cloned into the pET21 (a) + vector. A number of challenges were 

faced during the cloning procedures.  

 

3.3.1 PCR amplification of the GroESL operon from genomic DNA 

An initial attempt to amplify the entire GroESL operon of G. thermoglucosidasius 

NCIMB 11955 was not successful. The hairpin loop structure situated within the 

72 base pair sequence that separates the GroES from the GroEL gene in G. 

thermoglucosidasius NCIMB 11955 (Segal and Ron, 2006) may have affected the 

attempts at amplification. A similar 9 bp inverted repeat structure in the G. 

stearothermophilus GroESL operon is located at the same position as the hairpin 
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loop in G. thermoglucosidasius NCIMB 11955 (Schuön and Schumann, 1993). 

Hairpin loops characterized by more than three complementary base pairs greatly 

affect PCR amplification (Schuön and Schumann, 1993). In some cases, it is 

possible to adjust PCR parameters so as to amplify across hairpin loops. These 

adjustments include altering the annealing temperatures and the magnesium 

chloride concentrations used during amplifications. All the attempts to amplify the 

complete GroESL operon were unsuccessful.  

 

An alternative strategy using primers designed to independently amplify the 

GroES and GroEL genes of G. thermoglucosidasius NCIMB 11955 was 

successful. The amplification of both genes was achieved using a 55 ºC annealing 

temperature. The 72 base pair sequence interlinking the GroES and GroEL genes 

in G. thermoglucosidasius NCIMB 11955 was not amplified, suggesting that the 

ribosomal binding site of the GroEL gene was not amplified (Figure 3.9).  

 

3.3.2 Cloning and gene analysis of clones 

The GroES and GroEL genes of G. thermoglucosidasius NCIMB 11955 were first 

cloned into the pGem- T- easy vector to increase the efficiency of digestion by 

restriction enzymes, since the efficiency of restriction enzymes is determined by 

the number of nucleotide base pairs present on either side of the restriction site 

(Berg et al., 2002).   

 

Restriction map analysis of the genes and plasmids used was performed using 

NEBcutter V2.0 and appropriate restriction sites were identified. The restriction 
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enzymes Nde 1 and EcoR 1 were used to excise the GroES gene from the p-Gem- 

T- easy/ GroES construct and to clone the gene into the pET21 (a) + vector. This 

resulted in directional cloning of GroES into the multiple cloning site of the 

pET21 vector (Figure 3.9). Furthermore the GroES gene was inserted in-frame 

with the T7 promoter of the vector. Thereafter pET21 (a) +/ GroES construct was 

digested with the restriction enzyme Not 1 and was treated with shrimp alkaline 

phosphatase to prevent the plasmid from circularization (Sambrook and Russell, 

2001). Restriction analysis (Figure 3.6) and PCR amplification using primers W1 

and W5 were used to verify the presence of the desired insert in the recombinant 

clone. 

 

The recombinant clone was named pET21 (a) +/ GroESL (WC construct) and 

sequenced. Alignment of sequence of the cloned GroESL construct with the 

GroES and GroEL sequences of the G. thermoglucosidasius NCIMB 11955 

provided by the TMO Renewables confirmed that the cloned sequences were 

identical to those from the parent strain (Figure 3.8). The alignment verified that 

there were no DNA replication errors made during the initial amplification of the 

genes from genomic DNA even though a non- proof DNA polymerase enzyme 

(Lab Taq) was used during amplification. The recombinant plasmid map of 

pET21 (a) +/ GroESL was constructed using DNAMAN and indicated that the 

GroES and GroEL genes were in-frame with the T7 promoter of the vector 

(Figure 3.9).  The recombinant plasmid was transformed into the expressional 

host E. coli Rosetta pLysS and used to determine whether the cloned GroESL 

complex was able to enhance the ethanol stress tolerance of the strain.  
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Chapter 4: Chapter 4: Effect of growth temperature on bacterial 

growth and ethanol tolerance 

4.1 Introduction 

4.1.1 Effect of growth temperature on bacterial growth and ethanol tolerance  

In order to determine growth conditions which improve the ethanol tolerance of 

G. thermoglucosidasius NCIMB 11955 it was necessary to understand the effects 

of temperature on the growth of the organism. The effect of growth temperature 

on G. thermoglucosidasius NCIMB 11955 was determined. 

 

An increase in growth temperature typically results in two major changes in 

bacteria. The fluidity of the cell membrane increases and the expression of heat 

shock proteins is induced (Banat et al, 1998). The increased fluidity of the cell 

membrane leads to the cell membrane becoming more susceptible to ethanol 

toxicity (Georgieva et al., 2007). The change in the fluidity of the cell membrane 

is known as homeoviscous adaptation - a process whereby microorganisms alter 

the proportion of saturated and unsaturated fatty acids in their lipid membrane 

(Hazel, 1995).  

 

Analysis of the growth of cultures of G. thermoglucosidasius in media containing 

ethanol at varying concentrations and at various growth temperatures will provide 

insight into the effects of growth temperature on the ethanol tolerance of the 

organisms and will determine the optimum conditions for improved ethanol 

production. These observations are necessary when developing strains for the 

industrial production of ethanol. 
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4.1.2 In vivo characterisation of the effect of GroES and GroEL over-

expression 

Heat shock proteins play a major role in protein folding and in the stabilisation of 

proteins against denaturation. Denaturation of proteins is caused by a number of 

factors including temperature, pH and solvent stresses (Geogieva et al., 2007). 

The expression of heat shock proteins is a mechanism of stress tolerance in 

organisms (Laksanalamai, 2003; Silveira et al., 2004). Generally, the higher the 

intensity of the stress, the more heat shock protein expression is required (Silveira 

et al., 2004). Therefore for bacteria to tolerate high ethanol concentrations, 

expression of ethanol tolerance specific heat shock proteins is required in order to 

refold denatured proteins and to prevent the formation of protein aggregates. 

Bacteria control the levels of heat shock proteins they produce; they do however 

have a limited turnover capacity which is determined by their protein production 

mechanisms (Silveira et al., 2004). Stress (in this case an increase in the ambient 

ethanol concentration) stimulates the induction of heat shock production 

efficiency to a certain maximum rate (Georgieva et al., 2007). Once the maximum 

heat shock protein production rate is achieved, the cell cannot further increase 

heat shock protein production, resulting in insufficient heat shock proteins for 

reviving the cellular enzymes. The result is cell death (Georgieva et al., 2007).  

 

The need for thermophilic bacteria which tolerate higher ambient ethanol 

concentrations has encouraged researchers to investigate ways in which heat 

shock protein expression can be employed in improving the ethanol tolerance of 
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industrially important microorganisms. Based on observations cited in previous 

studies (Joon Cha and Je Yoo, 1995; Banat et al, 1998) over-expression of heat 

shock proteins improves ethanol tolerance. There are two ways in which over-

expression of heat shock proteins in bacteria can be achieved; by integration of 

heat shock coding genes into plasmid DNA or by integration of these genes into 

the bacterial chromosome (Joon Cha and Je Yoo, 1995).   

 

When over-expressing genes in bacteria, cloning of the genes into vectors such as 

the pET21 (a) + vector is favoured over the integration of the genes into the 

bacterial chromosome (Joon Cha and Je Yoo, 1995). Over-expression of plasmid 

borne genes results in higher protein turnover than expression of chromosomally 

integrated genes. However plasmid borne genes are less stable than those 

integrated into the chromosome (Joon Cha and Je Yoo, 1995).  

 

In this study the GroES and GroEL genes of G. thermoglucosidasius NCIMB 

11955 were over-expressed in E. coli by integrating both genes into the pET21 (a) 

+ vector multiple cloning site.  

 

E. coli is a workhorse for the expression of a variety of compounds due to its 

well-researched genetic background. Although E. coli is efficient at expressing 

genes from other organisms, it is important to understand E. coli codon usage in 

relation to the composition of the gene being studied.  Codon usage, which is 

greatly affected by the G+C composition of a gene, is the difference in frequency 

of synonymous codons in coding DNA (Rocha, 2004). The codon usage of E. coli 
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has been analysed in relation to the expression of a number of thermophilic genes. 

Thermophilic heat shock genes are expressed in E. coli; the GroES and GroEL 

genes from Thermoanaerobacter brockii have been expressed and their gene 

products purified from E. coli (Truscott et al., 1994). The alcohol dehydrogenase 

gene from G. thermoglucosidasius M10EXG was expressed in E. coli without 

experiencing codon usage problems (Jeon et al., 2008). This hinted that codon 

usage would not be problematic when expressing the GroES and GroEL genes 

from G. thermoglucosidasius NCIMB 11955 in E. coli Rosetta pLysS. 

 

4.2 Results  

4.2.1 Effect of temperature on the growth of G. thermoglucosidasius NCIMB 

11955  

G. thermoglucosidasius NCIMB 11955 was independently cultured at 45°C and 

55°C in 2x TY medium (Section 2.5). The experiment was done in triplicate. The 

optical density at 600 nm (OD600) of each culture was plotted against time (Figure 

4.1). The lag phase of both cultures was similar, although the culture growing at 

45 °C had an hour longer lag time. The cultures growing at 55 °C and 45 °C 

entered the stationary phase of growth after 11 and 12 hours respectively and 

attained maximum OD600’s of 1.9 and 2.3 respectively (Figure 4.1). 
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Figure 4.1: The effect of temperature on the growth of G. thermoglucosidasius NCIMB  

                    11955 in 2x TY medium. Experiments were performed in triplicate. Error bars  

                    indicate the measurement error at each point.  

 

4.2.2 Effect of temperature on the ethanol tolerance of G.thermoglucosidasius 

NCIMB 11955 

G. thermoglucosidasius strain NCIMB 11955 was cultured at temperatures of 

45°C and 55°C in 2x TY medium supplemented with varying concentrations of 

ethanol as described in section 2.5.1. The optical density of cultures after 16 hours 

incubation was determined (Figure 4.2). Cultures with final optical density 

readings ≥ 0.3 were regarded as viable cultures.  
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G. thermoglucosidasius NCIMB 11955 cultures grown in the presence of ethanol 

consistently had a higher cell density when growing at 45 ºC than when growing 

at 55 ºC (Figure 4.2). At 55 ºC, the growth of cultures of G. thermoglucosidasius 

NCIMB 11955 was inhibited by ethanol concentrations above 4 % v/v. At 45 ºC, 

cultures of G. thermoglucosidasius NCIMB 11955 grew in a maximum ethanol 

concentration of 6 % v/v (Figure 4.2). The largest difference in final cell densities 

between the cultures grown at 45 ˚C and 55 ˚C was observed at 4 % v/v ethanol.  
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Figure 4.2: The effect of growth temperature on the ethanol tolerance of G. thermoglucosidasius NCIMB 11955. Cultures were grown for 16 hours on 2 x 

TY medium supplemented with ethanol before the final optical density (OD600) was recorded. Cultures with a final OD600 of ≥ 0.3 were regarded as viable.
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4.2.3 In vivo characterisation of GroES and GroEL over-expression 

Expression of a 10kDa protein coded for by the recombinant plasmid pET21 (a) 

+/ GroESL was observed in E. coli Rosetta pLySs cells induced with 0.7 mM 

IPTG (Figure 4.3).  The 60 kDa GroEL heat shock protein was not over expressed 

(Figure 4.3). The 10 kDa protein band was excised and subjected to tryptic 

digestion and mass spectrometry. It was positively identified as the GroES heat 

shock protein and had a protein score of 106 when compared to the GroES heat 

shock protein from G. stearothermophilus. 

 

 

  

Figure 4.3: Polyacrylamide gel electrophoresis of the intracellular proteome of E. coli 

Rosetta pLySs and E. coli Rosetta pLySs harbouring the pET21 (a) +/ GroESL construct. 

Lane 1: Protein marker (Fermentas) Lane 2: intracellular proteome of wild-type E. coli Rosetta 

pLySs. Lane 3: intracellular proteome of E. coli Rosetta pLySs harbouring the pET21 (a) +/ 

GroESL recombinant plasmid. 
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To characterize the ethanol tolerance capacity of the recombinant strain, the 

viability was compared to that of the wild type strain when challenged by 

increasing concentrations of ethanol. Optical density measurements were taken to 

follow the growth of the E. coli Rosetta pLySs strain and the E. coli Rosetta 

pLySs harboring the pET21 (a) +/ GroESL construct and their survival following 

an ethanol challenge. Survival curves of the cultures are shown in figures 4.4, 4.5 

and 4.6. Figure 4.4 follows cultures of E. coli Rosetta pLySs which were grown to 

an OD600 of 1.0 before being challenged by concentrations of 0, 4, 6, 8, 9 and 10 

% (v/v). Cultures exposed to 4% and higher ethanol concentrations were inhibited 

while the cell density of the non-stressed culture increased over the entire 22 hour 

observation period. In figure 4.5 the growth/survival of the E. coli Rosetta pLySs 

culture transformed with pET21 (a) +/ GroESL recombinant plasmid is shown. 

The cultures were exposed to concentrations of 0, 4, 6, 8, 10 % ethanol (v/v) when 

the OD600 of the starter culture reached 1.00. The optical densities of cultures of 

E. coli Rosetta pLysSs and E. coli Rosetta pLySs pET21 (a) +/ GroESL growing 

in medium containing no added ethanol mirrored each other (the standard error 

bars overlapped) (Figure 4.6). The OD600 of cultures harbouring the recombinant 

plasmid exposed to 4% ethanol continued to increase for a period of an hour 

following the addition of ethanol (an OD600 increase of 0.4 was noted) before 

plateauing while that of the culture of E.coli Rosetta pLysSs plateaued on addition 

of the ethanol stress (Figures 4.5 and 4.6). This suggests that the differences in the 

optical densities of the cultures exposed to 4% ethanol were due to the improved 

ethanol tolerance of the recombinant strain.  
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         Key:              0% ethanol          4% ethanol                 6% ethanol     8% ethanol          9% ethanol               10% ethanol 

Figure 4.4: Growth of unchallenged and ethanol challenged E. coli Rosetta pLySs in 2 x TY. Ethanol (4, 6, 8, 10% v/v) was added when cultures reached an 

OD600 of 1.0. The survival of the cultures was monitored following the addition of ethanol.

Ethanol was added at OD600 1.0 
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                Key:              0% ethanol                4% ethanol                 6% ethanol           8% ethanol                 9% ethanol               10% ethanol 

Figure 4.5: Growth of unchallenged and ethanol challenged E. coli Rosetta pLySs/ pET21 (a) +/ GroESL in 2 x TY.  Ethanol (4, 6, 8, 10 v/v) was added when 
cultures reached an OD600 of 1.0.  The survival of the cultures was monitored following the addition of ethanol. 

Ethanol was added at OD600 1.0 
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     Key:            0% ethanol (E. coli pLySs/  pET21 (a) +/ GroESL)                                                 0% ethanol (E. coli Rosetta pLySs)                 

                          4% ethanol  (E. coli pLySs/ pET21 (a) +/ GroESL)                                            4% ethanol (E. coli Rosetta pLySs) 

  Figure 4.6: Effect of the addition of ethanol (4 % v/v) on the growth of E. coli Rosetta pLySs and E. coli Rosetta pLySs/ pET21 (a) +/ GroESL. The survival 

of the cultures was monitored following the addition of ethanol. 

Ethanol was added at OD600 1.0 
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Using OD600 measurements the growth rates of stressed and unstressed cultures 

were estimated using the simple growth rate equation: growth rate (µ) = 2.303 

(log OD2 – log OD1) / (t2 - t1) (Zwietering et al., 1990) (Table 4.1). t1 was the time 

point 3h after ethanol was added to the stressed cultures (i.e. 3h after starter 

cultures had reached an OD600 of 1.0). t2 was the time point 15h after the addition 

of ethanol to stressed cultures.  

 

The growth rate of unstressed (no ethanol added) wild type and recombinant 

cultures was 0.20 and 0.202 respectively (Figure 4.6 and Table 4.1). Negative 

growth rates were recorded for all cultures (recombinant and wild type) stressed 

by the addition of ethanol bar for the recombinant culture stressed by the addition 

of 4% ethanol (Figures 4.6 and Table 4.1). This culture, harbouring the pET21 (a) 

+ / GroESL construct, recorded a growth rate of 0.102 while the host strain 

experienced cell death (a negative growth rate of -0.014) under the same 

conditions. 

 

Table 4.1: Growth rates of E.coli Rosetta pLysSs and E.coli Rosetta pLysSs/pET 21 (a) 

+/GroESL cultures grown at  37oC in 2 x TY medium with and without an ethanol challenge. 

Cultures were grown to an OD600 of 1.0 prior to the addition of 0, 4, 6, 8, 9 and 10% (v/v) ethanol. 

Growth rates were calculated over a 12 hour period starting 3h after the addition of ethanol. 

Percentage of ethanol 
added 

E.coli Rosetta pLysSs   E.coli Rosetta pLysSs/pET 
21 (a) +/GroESL 

0 0.200 0.202 

4 -0.014 0.102 

6 -0.04 -0.10 
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The final turbidity of ethanol challenged and unchallenged cultures after 18h 

exposure to ethanol (in the case of unchallenged cultures this was the 18h period 

after reaching an OD600 reading of 1.0) was determined. A decrease in the final 

turbidities of cultures with increasing ethanol concentrations was recorded . The 

final turbidity of cultures of E. coli Rosetta pLySs/ pET21 (a) +/ GroESL was 

higher than that of the E. coli Rosetta pLySs cultures exposed to the same 

conditions.  The biggest difference in final culture turbidity was observed when 

challenged with 4 % ethanol.  

 

4.3 Discussion  

4.3.1 Effect of temperature on the growth of G. thermoglucosidasius NCIMB 

11955  

The optimum growth temperature of Geobacillus thermoglucosidasius NCIMB 

11955 is 55 °C (Cripps et al., 2008). A growing bacterial culture typically exhibits 

four growth phases: a lag phase, an exponential growth phase, a stationary phase 

and an exponential death phase (Zwietering, 1990). The lag phase in cultures of 

G. thermoglucosidasius NCIMB 11955 in 2x TY medium at 45 °C and 55 °C was 

1.5 hours (Figure 4.1). The culture growing at 55 ºC exhibited a higher growth 

rate than the culture growing at 45 ºC (Figure 4.1). The culture at 45 ºC achieved 

higher cell density (OD600 2.2) than the culture at 55 ºC (OD600 1.9). These 

observations do not agree with the Arrhenius law (Ratkowsky et al., 1982) which 

describes the temperature dependence of the specific reaction rate constants in a 

chemical reaction. Based on the Arrhenius law, the growth rate of cultures at 45 

and 55 ºC was predicted to be marginally different. However because bacterial 
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growth is a complex reaction involving a variety of enzymes and substrates 

(Ratkowsky et al., 1982) the results observed in this study i.e. the similar growth 

rates of cultures at 45 and 55 ºC were not nullified as the Arrhenius law does not 

adequately describe the effect of temperature on the bacterial growth rate 

(Ratkowsky et al., 1982).  

 

4.3.2 Effect of growth temperature on the ethanol tolerance of Geobacillus 

NCIMB 11955 

After culturing G. thermoglucosidasius NCIMB11955 at 45 ˚C and 55 ˚C in 2x 

TY medium containing increasing concentrations of ethanol (0 - 10 % v/v) it was 

apparent that growth temperature influenced the ethanol tolerance of the cultures. 

The cell turbidity readings of G. thermoglucosidasius NCIMB 11955 cultures 

after an hour growth in 2x TY medium at 45 ºC and 55 ºC differed by OD 0.3. 

The cell turbidities of this strain at 45 ºC and 55 ºC in 2% and 4% v/v ethanol 

differed by 0.64 and 0.76, respectively . A higher cell density in the presence of 

ethanol implies better ethanol tolerance (Georgieva et al., 2007). These findings 

suggest that G. thermoglucosidasius NCIMB 11955 has a higher tolerance to 

ethanol when growing at 45 ºC than at 55 ˚C.  

 

Similar observations were made when B. stearothermophilus LLD 15 was grown 

in liquid media containing increasing concentrations of ethanol (Amartey, 1991). 

In this strain the effect of ethanol on the growth rate of cultures was slight, but the 

growth rate was consistently greater at 70 °C than at 60 °C (Amartey, 1991). The 

decrease in the ethanol tolerance of B. stearothermophilus LLD 15 at increased 
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temperatures was linked to high concentrations of cardiolipin protein in the cell 

membranes of the organism (Amartey, 1991). The cardiolipin content of the cell 

membranes of B. stearothermophilus LLD 15 increased with increased growth 

temperatures under anaerobic conditions (Mosley et al., 1976). 

 

The observations in figures 4.2 that cultures of G. thermoglucosidasius NCIMB 

11955 were more tolerant to ethanol when growing at 45 °C than at 55 °C may be 

linked to the phenomenon of ‘bacterial suicide’. The bacterial suicide hypothesis 

suggests that when subjected to a stress a rapidly growing bacterial culture is 

more likely to suffer growth arrest than a slow growing culture (Aldsworth et al., 

1999). The hypothesis suggests that when cells undergo growth arrest their 

metabolism does not stop. Due to the growth arrest and the continued metabolism 

an imbalance between catabolism and anabolism is experienced. This imbalance 

results in free radical formation (Aldsworth et al., 1999). The activity of the free 

radicals which accumulate is lethal to the cell i.e. the lethality is not due to the 

stress (Aldsworth et al., 1999). Accumulation of free radicals reduces the fitness 

of the cell due to an imbalance between the endogenous superoxide stress and the 

antioxidant defences of the cell (Strohmeier et al., 1998). If the imbalance favours 

the accumulation of endogenous superoxide, DNA and cellular enzymes are 

damaged resulting in cell death (Walker, 1996).  

 

Regardless of homeoviscous adaptation and bacterial suicide through stress, 

changes in growth temperature induce the production of heat shock proteins in 

bacterial cells (Cooper and Ho, 1983). Heat shock proteins play a major role in the 

 

 

 

 



 

84 
 

stress tolerance of bacteria (Silveira et al., 2004). GroEL, Group E small heat 

shock protein and GroES are examples of group 1 heat shock proteins present in 

bacteria such as E. coli (Luo et al., 2009). It is evident that these heat shock 

proteins are over expressed in stressed cells. To determine whether the GroES and 

GroEL gene products of G. thermoglucosidasius NCIMB 11955 were able to 

influence the tolerance of E. coli Rosetta pLySs to ethanol the genes were cloned 

and expressed in E. coli Rosetta pLySs.  

 

4.3.3 In-vivo characterisation of GroES and GroEL over-expression 

Analysis of the proteome of E. coli Rosetta pLySs harbouring the pET21 (a) + / 

GroESL construct to that of the wild type strain was used to indicate whether 

GroES and GroEL were over-expressed (Figure 4.3). No obvious protein band 

corresponding to the GroEL gene product was observed on a SDS PAGE gel 

while expression of a 10Kda band corresponding in size to the GroES gene 

product was observed (Figure 4.3). Analysis of the pET21 (a) +/ GroESL insert 

sequence indicated that the construct lacked a Shine-Dalgarno sequence upstream 

of GroEL. A Shine-Dalgarno sequence is a ribosomal binding site located eight 

base pairs upstream of the start codon for a gene (Staples and Hindley, 1971; 

Shine and Dalgarno, 1975). This binding site facilitates a complementary base 

pairing between DNA and RNA polymerase and signals the start of a new gene 

(Stamples and Hindley, 1971). Without a Shine-Dalgarno sequence, RNA 

polymerase is unable to recognise the GroEL start codon downstream of the 

GroES stop codon and the GroEL gene would not be transcribed.    
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Optical density was used to monitor culture growth. Bacterial cells in a culture 

scatter light, reducing the amount of light that reaches the photoelectric cell, and 

the reduction in light is measured and recorded as optical density (Widdel, 2010). 

Spectrophotometry does not differentiate dead cells from growing cells, a factor 

that need to be addressed when using optical density to monitor growth (Lin et al., 

2010). To overcome errors associated with the conversion of optical density to 

cell density, a standard curve of optical density versus colony counts should be 

created (Lin et al., 2010). From the standard curve, a proportionality factor can be 

calculated (Lin et al., 2010). The proportionality factor is then used to calculate 

the cell number of a culture at the time when optical density was measured.  Due 

to time constraints colony counts were omitted in this study. In this study the 

growth rate over a particular period during culture growth was calculated from the 

optical density using the equation growth rate (µ) = 2.303(logOD2 – logOD1) / (t2-

t1) (Table 4.1). 

 

Growth rates were used to compare ethanol tolerance of cultures of E. coli Rosetta 

pLySs to that of the strain harbouring the pET21 (a) +/ GroESL construct. A 

higher growth rate in the presence of ethanol would suggest better ethanol 

tolerance of that strain. Ethanol-stressed E. coli Rosetta pLySs/ pET21 (a) +/ 

GroESL cultures had a greater tolerance to the presence of 4% ethanol than the 

corresponding E. coli Rosetta pLySs cultures (Figure 4.6). This may be due to the 

presence of increased levels of the GroES heat shock protein in the cultures. 

Based on these findings, it is suggested that over-expression of the GroES heat 
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shock protein in cultures prior to the addition of ethanol improves the ethanol 

tolerance of the strain (Dugas, 1996; Chen et al., 2006; Georgieva et al., 2007).  

 

Increasing the cyclic rate of the protein folding mechanism of the GroESL 

complex by increasing the amount of the GroES protein present in a cell increases 

the ability of bacteria to tolerate higher ethanol concentrations (Dugas, 1996; 

Chen et al., 2006; Georgieva et al., 2007). The GroESL mechanism of protein 

folding (section 1.4) in which the GroES protein binds to the GroEL protein 

improves the efficiency of protein folding (Chen et al., 2006). ATP and substrate 

proteins bind to the hydrophobic cavity of GroEL, inducing a conformational 

change that attracts binding of GroES to the other end of the GroEL cavity. 

Binding of the GroES protein together with ATP hydrolysis induces a 

conformational change in GroEL, pushing the substrate protein into the 

hydrophilic cavity of GroEL (Chen et al., 2006). In the hydrophilic cavity, 

unfolded proteins bury their hydrophobic groups, thereby refolding. Binding of 

unfolded protein to the hydrophobic cavity of GroEL sends an allosteric signal to 

the hydrophilic cavity. This results in the release of GroES and folded protein, and 

the cycle begins again (Dugas, 1996; Chen et al., 2006).  

 

The formation of the GroESL/substrate complex is the rate determining step of the 

protein folding reaction (Gupta et al., 2006). Based on the co-enzyme principle, 

having the GroES population dominating the GroEL population suggests that 

there are always GroES molecules available to activate GroEL for protein 
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refolding. Therefore, the rate of protein folding/refolding is completed more 

quickly. Although expression of the GroEL protein from the pET21 (a) +/ 

GroESL construct was not detected, the presence of overexpressed GroES protein 

in E. coli Rosetta pLySs/ pET21 (a) +/ GroESL increased the ability of the 

bacteria to tolerate the presence of 4% ethanol in the growth medium.  

 

An extensive amount of work has been done on the co-over expression of GroES 

in E. coli together with other foreign proteins (Gupta et al., 2006). The 

observations in these studies are similar to observations made in this study: over 

expression of GroES improves stress tolerance. To compare the effect of 

expression of the GroES gene on tobacco mosaic virus coat protein (TMV CP) 

stability and solubility, a recombinant plasmid harbouring the gene coding for 

TMV CP and the GroES gene was expressed in E. coli while a plasmid carrying 

only the TMV CP gene was simultaneously expressed in E. coli (Hwang et al., 

1998). A 3 to 5 fold increase in the amount of soluble TMV CP at 30°C was 

observed in the strain harbouring the GroES gene.  

 

In this study the G. thermoglucosidasius NCIMB11955 GroESL operon was 

successfully cloned into the pET 21 (a) + expression vector but the 72bp sequence 

interlinking the genes in the G. thermoglucosidasius genome was not cloned. 

Expression of a 10kDa protein coded for by the recombinant plasmid pET21 (a) + 

/ GroESL was observed in E. coli Rosetta pLySs cells induced with IPTG (Figure 

4.3). This protein was identified as the GroES heat shock protein (section 4.1.3). 
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The 60kDa GroEL heat shock protein was not overexpressed, possibly due to the 

absence of structures within the interlinking sequence which would allow for the 

binding of RNA polymerase. To fully characterise the effect of overexpression of 

the GroES and GroEL genes on the ethanol tolerance of strains it is essential to 

develop constructs containing the full complement of regulatory sequences 

necessary for the expression of the genes. Overexpression of the GroES gene 

together with the GroEL gene would potentially influence protein stability and 

solubility in host cells and result in an improved tolerance to stress. 

 

 

 

 

 



 

89 
 

Chapter 5: Conclusion and future perspectives  

5.1 Conclusion 

The objectives of this project were partially achieved. The first objective was to 

determine whether growth temperature affects the tolerance to ethanol of G. 

thermoglucosidasius NCIMB 11955. Changes in the growth temperature clearly 

affected the tolerance of the strain to ethanol: when the growth temperature was 

lowered to 45ºC (the optimum growth temperature of the strain is 55ºC cultures 

tolerated the presence of higher ethanol concentrations. 

 

The second objective was to clone the G. thermoglucosidasius GroES and GroEL 

genes into the pET21 (a) + expression vector for expression in E. coli Rosetta 

pLySs. The GroES and GroEL genes were successfully cloned into the multiple 

cloning site of the expression vector. This was confirmed by restriction digestion, 

DNA sequencing and PCR amplification. 

 

The final objective was to express the pET21/GroESL construct in E. coli Rosetta 

pLySs and to assess the effect of expression of the cloned genes on the growth, 

stability and ethanol tolerance of the host strain. Transformation of the 

recombinant plasmid into E. coli was successful and the resultant clone was 

named E. coli Rosetta pLySs WC. Proteomic analysis of E. coli Rosetta pLySs 

WC proteome on one dimensional SDS-PAGE gels showed that GroES was over-

expressed while GroEL was not. GroEL was probably not over-expressed because 

the gene lacked a Shine-Dalgarno sequence upstream of its start codon. However, 

over-expression of GroES alone improved the ethanol tolerance of the E. coli 
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host. The difference in ethanol tolerance of cells of the host and recombinant 

strains was observed in media containing 4% v/v ethanol: the recombinant strain 

showed growth in 4% v/v ethanol while growth of the host strain was inhibited. 

 

5.2 Future perspectives 

It is critical for this study that a Shine-Dalgarno sequence be inserted upstream of 

the GroEL gene so that both genes are over-expressed. Over-expression of GroEL 

is expected to result in a further increase in the ethanol tolerance of the strain. The 

GroEL protein is involved in protein folding. Chromosomal integration of the 

GroESL operon into the G. thermoglucosidasius chromosome is an alternative 

strategy to overexpress the heat shock proteins. Chromosomal integration of the 

GroESL operon into the G. thermoglucosidasius genome would increase the 

copies of the operon in the chromosome and may result in overexpression of the 

GroESL genes. 

   

Further characterisation of the G. thermoglucosidasius ethanol response proteins 

would result in a better understanding of ethanol tolerance-related problems in 

this species. Once a database of ethanol stress response proteins is available, a 

recombinant clone that caters for all heat shock proteins - which are up-regulated 

as ethanol concentration increases – could be designed. 
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