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ABSTRACT 

The cascade of neurotoxic events involved in the pathogenesis of Alzheimer’s disease may 

explain the inefficacy of currently available treatment based on acetylcholinesterase 

inhibitors (AChEI - donepezil, galantamine, rivastigmine) and N-methyl-D-aspartate 

(NMDA) antagonists (memantine). These drugs were designed based on the “one-molecule-

one-target” paradigm and only address a single target. Conversely, the multi-target drug 

design strategy increasingly gains recognition. Based on the versatile biological activities of 

tacrine, trolox and β-carboline derivatives, the attention they have received as lead structures 

for the design of multifunctional drugs for the treatment of Alzheimer’s disease, and the 

topology of the active site of AChE, we have designed tacrine-trolox and tacrine-tryptoline 

hybrids with various linker chain lengths. The aim with these hybrids was to provide additive 

or synergistic therapeutic effects that might help overcome the limitation of current anti 

Alzheimer’s disease drugs.  

All synthesized compounds were designed from lead structures (tacrine, tryptoline and 

trolox) to obtain cholinesterase (ChE) multisite binders and multifunctional AD agents. The 

study was rationalized by docking all structures in the active site of TcAChE using Molecular 

Operating Environment (MOE) software before proceeding with the synthesis. ChE 

inhibition was assessed in a UV enzyme inhibition assay using Ellman’s method. Anti-

oxidant activities were assessed using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH.) absorbance 

assay. 

The hybrids containing the trolox moiety (compounds 8a-e) showed moderate to high AChE 

inhibitory activity in the nano to micro molar range (IC50: 17.37 - 2200 nM), BuChE 

inhibition was observed in the same range (IC50: 3.16 – 128.82 nM), and free radical 

scavenging activities in micro molar range (IC50: 11.48 – 49.23 µM). These are comparable 

or slightly higher than their reference compounds donepezil (AChE IC50 = 220 nM), tacrine 

(BuChE IC50: 14.12 nM), and trolox (DPPH IC50: 17.57 µM). The hybrids with longer linker 

chain lengths, 6 and 8 carbons (8d and 8e), showed better ChE inhibitory activity than the 

shorter ones, 2, 3, and 4 carbons (8a-c respectively). This correlates well with literature. Free 

radical scavenging activities, however, seems not to be significantly affected by varying 

linker chain lengths. The hybrid compound (14) containing the tryptoline moiety linked with 

a 7 carbon spacer displayed the best AChE and BuChE inhibitory activity (IC50 = 17.37 and 
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3.16 nM) but poor free radical scavenging activity. Novel anti-Alzheimer’s disease drugs 

with multi-target neuroprotective activities were thus obtained and hybrid molecules that 

exhibit good ChE inhibition (8d, 8e and 14) and anti-oxidant (8d and 8e) activity were 

identified as suitable candidates for further investigation.  
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CHAPTER 1.                                                                                                             

INTRODUCTION 

1.1 Alzheimer’s disease 

Alzheimer’s disease (AD) is a chronic, multifactorial disease of the central nervous system 

(CNS). It was first described by the German neuropsychiatrist Alois Alzheimer in 1906 

(Ricerca, 2009). Its characteristic symptoms include short-term memory impairment at the 

beginning, which worsens as the disease progresses and eventually leads to severe cognitive 

and physical disability (Silvestrelli et al., 2006). AD represents the main cause of dementia 

and no curative drug is available. To date, it is estimated that 36.6 million people worldwide 

are suffering from the disease. This number is expected to double or triple by 2030 and 2050 

respectively if aggressive, exceptional and well-funded efforts to prevent, diagnose and cure 

the disease are not made (Duthey, 2013). The sequence of molecular events that underlies the 

occurrence of AD is still a mystery. Current hypotheses from many investigations suggest a 

decrease in the level of the neurotransmitter acetylcholine (ACh) in the brain regions 

involved in learning and memory, β-amyloid plaque formation (Aβ), oxidative stress, 

neuroinflammation and aggregation of tau protein (τ-protein) (Skovronsky et al., 2006; 

Crews and Masliah, 2010). 

The current treatment of AD is limited to acetylcholinesterase inhibitor (AChEI) drugs 

(donepezil, galantamine and rivastigmine) and an N-methyl-D-aspartate (NMDA) antagonist 

(memantine). These drugs have been identified based on the “one-molecule-one target” 

paradigm and they offer only symptomatic treatment but do not stop the progression of the 

disease (Capurro et al., 2013). In light of the different mechanisms involved in the 

pathogenesis of AD, this strategy has been questioned recently. Considerable efforts are now 

devoted to search for single drugs with multifunctional activities. So far, none of the 

innovative candidate drugs have survived clinical trials due to lack of satisfactory efficacy 

and toxicity issues (Capurro et al., 2013). Therefore, the identification of safer and cost-

effective disease-modifying drugs remains an open challenge for drug discovery. 
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1.2  Rational for the design of tacrine-tryptoline and tacrine-trolox 

hybrids 

1.2.1 Lead compounds: Tacrine, Tryptoline and Trolox 

Tacrine was the first AChEI drug approved by the US Food Drug Administration (FDA) for 

the treatment of AD before being withdrawn from the market due to toxicity issues 

(Thiratmatrakul et al., 2014). Its therapeutic effect normalizes the levels of acetylcholine 

(ACh) in the synaptic cleft. Recent studies have demonstrated that lead optimization of 

tacrine in the design of novel AD drugs can improve its biological profile and alleviate its 

hepatotoxicity. Based on these studies, tacrine appears to be a suitable lead compound for the 

design of multitarget drugs because of its privileged structure, its efficacy and its low 

molecular weight (Inglot et al., 2013).  

Trolox is an analogue of Vitamin E (α-tocopherol) with well documented antioxidant 

capacity. Besides this therapeutic virtue, trolox has the ability to prevent neurotoxicity 

induced by Aβ and hydrogen peroxide (H2O2) (Radesätera et al., 2003). Another source 

revealed that trolox could inhibit glycogen synthase kinase3β (GSK 3β) whose hyperactivity 

causes neurofibrillary tangle (NFTs) formation (Mun et al., 2002). These different biological 

activities of trolox acknowledge and consolidate its neuroprotective capacity and make it an 

excellent lead for the design of multifunctional drugs for treating AD. 

Tryptoline is a β-carboline derivative. Beta-carbolines are a group of alkaloids first 

discovered in plants. Later, it was found that they could be formed in the human body from 

tryptamine derivatives (Baiget et al., 2011). Previous research has shown that they have a 

large range of biological activities associated with target proteins involved in the 

pathogenesis of AD (Herraiz et al., 2010). The conjugation of tacrine to tryptoline with an 

appropriate spacer may thus provide a novel multitarget strategy for the treatment of AD.  

1.2.2 Multitarget Directed Ligand design strategy - Cholinesterase dual 

binders 

The multitarget directed ligand paradigm is based on the design of a single molecule with the 

ability to modulate multiple targets simultaneously (Simoni et al., 2012). 

Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are the major 
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cholinesterases in vertebrates. They are so called due to their higher selectivity to 

acetylcholine (Ach) and butyrylcholine respectively. Their function is to hydrolyse the 

cholinergic neurotransmitter acetylcholine after it has terminated its activity (Greig et al., 

2001). The depletion of ACh level in AD due to inability of the cholinergic system to 

maintain constant the level of ACh has legitimized cholinesterase inhibitors as a useful option 

for the symptomatic treatment of AD. Accumulation of evidence have demonstrated that 

cholinesterase play a double role in AD pathology defined by the topology of their active 

sites. Cholinesterase have got two distinct binding sites (Agis-torres et al., 2014): The 

peripheral anionic site (PAS) which is believed to induce Aβ aggregation and the catalytic 

anionic site (CAS) which is involved in the hydrolysis of Ach (Figure 1.1) (Agis-torres et 

al., 2014). Currently, accumulation of Aβ in specific regions of the brain is believed to be the 

main factor that triggers the cascade of neurotoxic conditions leading to AD. Therefore, a 

molecule that can span both the PAS and CAS may achieve symptomatic treatment and also 

stop disease progression. 

The multifactorial aspect of AD questions the design strategy of the current treatments. Drugs 

that affect only a single target are not capable of modifying disease progression. Multitarget 

drugs are thus increasingly gaining recognition. Tacrine is a very attractive lead compound 

that has successfully been used in the multitarget design strategy. It has ChEI activity and 

additional biological activity such as monoamine oxidase inhibition (MAOI) and ion channel 

modulating ability (Kozurkova et al., 2011). Trolox possesses potent antioxidant activity and 

it is also capable of reducing neurotoxicity induced by Aβ and H2O2 (Radesätera et al., 

 

 

Figure 1.1: Illustration of the binding sites of Torpedo californica AChE (TcAChE) and selected 

conserved aromatic residues: Ser200, His440 and Glu327 are the catalytic triad amino acid residues 

responsible for the hydrolysis of choline substrate while Trp279, Tyr334 are aromatic residues involved 

in the binding interaction (Tedwilliams, 2006). 

 

 

 

 

 

http://etd.uwc.ac.za/



CHAPTER 1  INTRODUCTION 

4 

 

2003). Tryptoline is a β-carboline derivative, therefore could modulate ChE, MAO, CdK5, 

DYRK1A and NMDAR activity (Frost et al., 2011). Based on the topology of the active site 

of ChE we hypothesized that the combination of tacrine with trolox or tryptoline through 

linkers of varied chain lengths may yield two series of multisite binder hybrid compounds 

(tacrine-trolox and tacrine-tryptoline) with the ability to interfere with a large spectrum in the 

disease network. It is expected that in both cases, tacrine’s pharmacophore will undergo 

stacking interaction with conserved aromatic residues in the CAS of ChE necessary for ChE 

inhibition while trolox or tryptoline will undergo H-π or stacking interaction respectively 

with conserved aromatic residues in the PAS necessary for the prevention of ChE-induced Aβ 

aggregation (Figure 1.1).  Varying the linker chain length seeks the appropriate fitting of 

pharmacophores in the active site of the ChE target that will achieve useful activity. The aim 

with these hybrids is to provide additive or synergistic therapeutic effects that might help 

overcome the limitation of current anti-Alzheimer’s disease drugs (Figure 1.2). The study 

was rationalized by docking all structures in the active site of AChE using Molecular 

Operating Environment software (MOE) before proceeding with the synthesis.  

 

1.3 Aim of the study 

Referring to recent hypotheses, Alzheimer’s disease results from the disturbance of many 

signalling pathways in the nervous system. Therefore, disease modifying drugs should be 

developed with the ability to interfere with or to modulate these multiple pathways with 

limited harmful effects. The study will be articulated around the following points:  

Figure 1.2: Diagram illustrating the rational of the hybridization of tacrine-trolox, tacrine-

tryptoline and expected outcomes. 
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 Selection of the lead compounds from the literature. 

 Design of the hybrid compounds (lead optimization).  

 Modelling studies to rationalize the study using molecular modelling. 

 Synthesis of the hybrid compounds. 

 Biological evaluation of the capacity of the synthesized (Figure 1.3) compounds to 

inhibit ChE and to scavenge free radicals. 

 

It is presumed that each of these hybrid compounds will display multifunctional activity on 

target proteins involved in the pathogenesis of AD. Regarding the present study, the 

biological evaluation of these hybrids will be limited to acetylcholinesterase and 

butyrylcholinesterase inhibitory activity and free radical scavenging ability.

Figure 1.3: Structures of synthesized and tested compounds according to the synthesis procedure. 
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CHAPTER 2.                                                                                                                

LITERATURE REVIEW                                                                                                    

2.1 Introduction 

In this chapter, the risk factors of AD and distribution will be discussed. In addition, the 

pathophysiology and current hypothesis explaining the aetiology of AD, which is the basis of 

therapeutic intervention, will be assessed. Multitarget directed ligand paradigms as alternative 

drug design strategies to overcome the limitation of current treatment options of AD will also 

be evaluated. This chapter will be concluded with arguments that guided the choice of lead 

compounds of the study namely tacrine, trolox and tryptoline. 

2.2 Epidemiology 

Epidemiological studies are concerned with the investigation of the occurrence of the disease 

or health-related conditions in a defined population (Bartlett and Judge, 1997). The 

principle of epidemiological studies is based on the measurement of disease frequency and 

distribution, precisely, its prevalence and its incidence in a given population. Data generated 

from epidemiological findings provides evidence that aids public health or community 

decision makers in designing new approaches for controlling, preventing and treating 

diseases (Ray, 2010). To date, it is estimated that 36.6 million people over 65 years of age 

worldwide are suffering from AD. This number is expected to double or triple by 2030 and 

2050 respectively (Duthey, 2013). Old age is the major risk factor for AD. The proportion of 

patients with AD in the United States in 2015 (Figure 2.1) shows age-related increases in the 

prevalence of AD of 4% (65 years); 15% (< 65-74 years); 48% (75-84 years) and 38% (85+) 

(Alzheimer’s Association, 2015). 
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The reason is that at senescence, random effects (chronic internal or external stress) cause 

gradual increase in non-repair cellular damage, which weakens the cellular repair mechanism 

and perturbs the equilibrium in cell homeostasis (Kent, 1983). These events accumulate over 

time and are believed to increase the vulnerability of predisposed individuals to the 

development of AD (Hindle, 2010; Swerdlow, 2011). As aging is the strongest risk factor 

for AD, women are disproportionately affected. One of the explanations may be associated to 

their higher longevity. The biological explanation may be associated to inherent differences 

between sexes such as anatomy, genetics and hormones. This includes women’s brain 

anatomy and physiology being more open to pathological lesions with lower cognitive 

reserve (Carter et al., 2012). Moreover, the depletion of oestrogen levels in post-menopausal 

women increase their risk of AD, since, oestrogen has been found to up-regulate the 

expression of anti-oxidative enzyme in pre-menopausal women (Carter et al., 2012). This 

finding is supported by the efficacy of oestrogen usage for the prevention or delay of AD in 

early post-menopausal women (Simpkins et al., 2009). Data from epidemiological studies 

have revealed low level of education as another risk factor for AD (Tyas et al., 2001). These 

studies are supported by the cognitive reserve hypothesis (Alzheimer’s Association, 2013). 

Others risk factors for AD include cardiovascular diseases, type 2 diabetes, brain injuries, 

genetic factors such as mutations on genes like β-amyloid precursor protein gene (APP), 

presenilin genes (involved in the early-onset of AD)  and inheritance of the isoform Ɛ4 allele 

of the apolipoprotein E ( involved in the late-onset of AD) (Reitz et al., 2012) . 

2.3 Pathophysiology 

Pathophysiology is a branch of human biology that studies the physiology of the diseased 

body or that seeks to know how the diseased body works. Thorough comprehension of 

Figure 2.1: Circular diagram showing ages of patients suffering from AD in the United States of 

America in 2015 (Alzheimer’s Association, 2015). 
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pathophysiology is indispensable in understanding the disease progression and its 

mechanism. It is useful, moreover, in helping to assess non-specific toxicity of therapeutic 

intervention (Jackson-Siegal, 2005). More research still needs to be done to fully 

comprehend the pathophysiology of AD and the mechanism that promises to uncover new 

strategies for diagnosing, preventing, or finding novel molecules that could stop the disease 

progression. Extracellular deposition of β-amyloid (Aβ) fibrils in senile plaques (SPs), 

accumulation of hyperphosphorylated τ-protein filaments in NFTs and death of neuronal cells 

are well-documented mean factors that characterize the neurodegenerative process on a micro 

level (Morrison and Lyketsos, 2005; Morley and Farr, 2014; Hong-qi et al., 2012). These 

molecular events are distributed in particular regions within the brain, which are believed to 

be involved in memory (hippocampus) and cognition (cerebral cortex) as depicted in Figure 

2.2. 

 

Death of neuronal cells which may commence years before memory disturbance, on a macro 

level, is characterized by histopathological changes studied by magnetic resonance imaging 

(MRI) or positron emission tomographic (PET), and include shrinking of the brain, 

enlargement of ventricle and presence of cerebrospinal fluid in empty space created by brain 

atrophies (Wang et al., 2006) (Figure 2.3). 

Figure 2.2: Side view of the brain showing major areas affected in AD. Adapted from (Alzheimer’s 

Society, 2012). 
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These structural changes expand as the disease progress to other regions of the brain and are 

generally accompanied by the presence of τ-protein and Aβ in the blood or cerebrospinal 

fluid (Medindia, 2013). These pathological conditions are responsible for the progressive 

clinical symptoms displayed by AD patients, from mild or early stage, to severe stage as 

described in Table 2-1. 

 

2.4 Aetiology 

The mystery that surrounds the cause of AD has not been totally uncovered since its 

discovery and numerous hypotheses have been suggested to explain how the disease occurs 

(Kent, 1983). The most influential of these hypotheses, specifically those that pay the 

Table 2-1: Description of different stages of AD and their clinical symptoms associated. MCI stands 

for mild cognitive impairment (Chetelat and Baron, 2003). 

 

AD stages Clinical symptoms 

MCI or early 

stage 

Difficulties in remembering familiar places, people, and time; misplacing things, 

difficulties in deciding; mood changes; communication problem. 

Moderate or 

middle stage 

Difficulties in accomplishing complex tasks (cooking, shopping, driving etc.); 

communication problem worsens; become aggressive and agitated, personality change. 

Severe or late 

stage 

Ignore time and place; cannot recognize relatives and friends, objects, experience 

difficulties in swallowing become totally dependent (eating, moving) on care support 

and supervision, incontinence. 

Figure 2.3: Histopathological changes in AD brain compared to healthy brain (Medindia, 2013). 
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greatest attention to the prevention and diagnosis of AD, as well as the development of safe 

and effective pharmacological treatments will be discussed in the following section. 

2.4.1 Cholinergic hypothesis 

The term cholinergic refers to that part of the neuronal system involved in the synthesis, 

storage and hydrolysis of the neurotransmitter acetylcholine (ACh). The period 1960s to 

1980s witnessed combined research efforts in different domains of neurosciences leading to 

the discovery and the characterization of the cholinergic and other important neuronergic 

systems. Based on evidence from these global research efforts, the correlation between the 

alteration of the neurotransmitter systems and neuropathology has gained full recognition 

(Contestabile, 2010). Evidence from this research approach have revealed that characteristic 

symptoms caused by degeneration of cholinergic neurones in selective regions (cortex, 

hippocampus and amygdala) in the brain of AD patients, is as a result of the reduction in the 

activity of choline acetyltransferase (ChAT), an enzyme involved in the synthesis of 

acetylcholine. It is also due to a decrease in the activity of the high affinity choline-uptake 

(HACU) system which functions as a precursor of the substrate choline for the synthesis of 

acetylcholine in the neuronal cell, a decrease in the level of the neurotransmitter ACh and an 

alteration of the functions of other components of the cholinergic system (Kasa et al., 1997). 

The results of these studies substantiate the role of ACh in cognition. Studies in human and 

non-human primates demonstrating that memory loss induced by blocking the cholinergic 

system with scopolamine can be reversed by an AChEI such as physostigmine, together led 

to the development of the “cholinergic hypothesis” (Craig et al., 2011). In light of these 

studies, and though the cholinergic hypothesis is not the primary cause of AD, depletion of 

acetylcholine levels appears to contribute significantly to cognitive impairment in AD. This 

explains the rationale of inhibiting cholinesterase as an important aspect of therapeutic 

intervention. 

2.4.1.1  Acetylcholinesterase:  structure, localization, function and mechanism of 

action 

Acetylcholinesterase (AChE) is a member of the cholinesterase family of proteins that 

hydrolyse cholinesters more rapidly than other substrates. There are two major 

cholinesterases in vertebrates: AChE and butyrylcholinesterase (BuChE). AChE derives its 
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name from its higher specificity in hydrolysing acetylcholine. AChE, like other 

cholinesterases, is reversibly and irreversibly inhibited by natural carbamate alkaloids 

(physostigmine) and organophosphates such as diisopropylflurophosphate (DFP) respectively 

(Massoulié et al., 1993).  

2.4.1.1.1 Structure 

AChE was first purified and crystalized in 1991 from the Torpedo California (Tc). electric 

organ (Dvir et al., 2010). This electric organ was chosen as source of enzyme because of its 

capacity to hydrolyse amounts of acetylcholine equivalent to up to three times its weight in 

an hour (Mortimer et al., 1947), hence an abundant source of AChE. TcAChE displays 

structural characteristics common to alpha / beta hydrolase fold enzymes that consist 

essentially of beta sheets connected by alpha helices (Figure 2.4). In the active site of 

TcAChE is found a catalytic triad consisting of Ser200, His440 and Glu327 or aspartate. This 

catalytic triad is involved in the hydrolysis of the substrate acetylcholine and is buried at the 

bottom of a 20 Å deep aromatic gorge. This aromatic gorge is highly conserved in different 

species (Tripathi et al., 2015). 

 

These features of TcAChE have been shown to be similar to human, drosophila and mouse 

AChE. Affinity labelling revealed cation-π interaction between the quaternary group of 

choline and the indole ring of Trp84. This particular residue, among other conserved residues 

(Phe330, Phe331), has been demonstrated to play a key role in stabilizing the charged part of 

the substrate entering the active gorge. AChE also possesses a secondary binding site called 

the peripheral anionic site (PAS) localized at the entrance of the cavity, which contains 

Figure 2.4: Ribbon diagram of TcAChE showing anti-paralleled beta sheets (Green) 

connected by alpha helices (Brown) with conserved aromatic residues (purple) and its natural 

substrate ACh in space-filling model docked in its active site ( Sussman and Silman, 2009).           
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another group of conserved aromatic residues including Trp279, Tyr121, Tyr70 and Asp72 

(Pohanka, 2011). Its major role is to trap the substrate. A modelling study has revealed that 

Trp279 is highly flexible and this feature contributes to stabilizing interactions between an 

inhibitor that is bound to the PAS site through π-π stacking or cation-π interaction (Xu et al., 

2008). 

Further studies revealed that the axis of the active-site gorge of TcAChE possesses a 

singularly large dipole moment pointed in the active-site gorge direction in such a way that it 

forces the positive charge of ACh down to the active site (Sussman and Silman, 2009). The 

role played by the PAS site Trp279 and CAS site Trp84 of AChE (confer Figure 1.1) in 

ligands’ interaction plus studies that have demonstrated the role of the PAS site of AChE in 

Aβ aggregation, have led to profound changes in the design strategies of new molecules for 

AD therapy (Inestrosa et al., 1996). The design strategy has moved from single target drugs 

that bind to the CAS site to dual target compounds that span the CAS and the PAS site with 

double therapeutic effects that is; the prevention of Aβ aggregation and increasing the 

concentration of neurotransmitter ACh in the synaptic cleft (Savini et al., 2003; Rook et al., 

2010). 

2.4.1.1.2 Localization and function of AChE 

A study conducted to understand the molecular and cellular biology of AChE has enabled the 

identification, in vertebrates and invertebrates, of different molecular forms of AChE sharing 

common catalytic properties, but different in their type of oligomerization,  mode of 

adherence to the cell surface, level of expression, their localization and function (Massoulié 

et al., 1993). In mammals, AChE is expressed by a single gene that undergoes alternative 

splitting of its H (for hydrophobic) and T (for tailed) subunits to generate many forms as 

shown in Figure 2.5.  
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The AChEH subunit generates the glycogen phosphatidyl inositol-anchored (GPI) dimers 

(GPI-G2). Immunohistochemistry studies have revealed the expression of this form in 

mammalian red blood cells (RBC), white blood cells (WBC), embryonic muscle and liver. 

Their localization in RBC and WBC is believed to indicate the implication of the cholinergic 

system in detoxication and the regulation of the immune function respectively (Gouri, 2004; 

Chacko and Cerf, 1960). The AChET subunit generates monomer G1, dimer G2, 

hydrophobic tail tetramer G4, soluble tetramer G4 and the collagen-tailed (Col Q) form. The 

hydrophobic tail tetramer G4 is membrane anchored and is predominantly present in the 

synaptic space of the mammalian brain. It is believed to be responsible for 80 to 90% AChE 

activity, that is, the termination of ACh activity (Gouri, 2004). The decrease of AChE 

activity in AD patients has been correlated with decrease of the hydrophobic tail tetramer G4 

form in the frontal cortex with a relative increase in the level of monomer G1, dimer G2 and 

soluble tetramer G4 forms, the likely intracellular precursors of mature hydrophobic tail 

tetramer G4 form. The collagen-tailed form results from the association of the AChET subunit 

with Col Q found principally in the neuro-muscular junction (NMJ). The Col Q is the product 

of unit gene, which, based on the level of expression and availability of AChET defines which 

type of collagen-tailed will be produced: A4, A8, or A12 (Figure 2.5). The A12 form is 

expressed in NMJ where they are involved in nerve innervation whereas A4 and A8 are 

expressed both in NMJ and extra junction. A study done to establish the physiological role of 

Col Q has revealed that a defect of expression of Col Q results in abnormal build-up of 

AChET in NMJ, which desensitizes acetylcholine receptors resulting in the symptoms 

Figure 2.5: Different molecular forms of AChE splice variants (Massoulié et al., 1993). 
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characteristic of myasthenia (Massoulié et al., 1993). The remarkable affinity of AChE for 

acetylcholine, its high activity in the cholinergic system and its implication in Aβ aggregation 

makes it the most attractive target for therapeutic intervention for the treatment of AD (Lane 

et al., 2006).  

2.4.1.1.3 Mechanism of action 

The neurotransmitter acetylcholine is responsible for transmission of action potential across 

the cholinergic system and in the neuromuscular synapse. The physiological function of 

AChE in the CNS and the peripheral nervous system (PNS) is to hydrolyse ACh and 

terminate its action. The catalytic triad Glu327, His440 and Ser200, controls the hydrolysis as 

shown in Figure 2.6. It follows two steps; the first step involves acylation of the AChE and 

the second step requires one molecule of water and involves deacylation of the AChE by fast 

hydrolysis of acylated AChE with liberation of choline and acetic acid and regeneration of 

glutamate and deprotonated histidine. 

 

2.4.1.2 Butyrylcholinesterase: structure, localisation, function and mechanism of 

action 

BuChE derives its name from its specificity for the substrate butyrylcholine. BuChE and 

AChE are members of the cholinesterase family of proteins. As such, they share some 

common features, molecular forms, mechanisms of action (Figure 2.6) (observed in serine 

Figure 2.6: Chemical mechanism of hydrolysis of Ach by AChE with residue number of Torpedo 

California (Zhou et al., 2010). 

 

 

 

 

http://etd.uwc.ac.za/



CHAPTER 2  LITERATURE REVIEW 

15 

 

hydrolase) and often an overlapping localization pattern. They also display some 

characteristic differences including their substrate specificity and function.  

2.4.1.2.1 Structure 

BuChE has a similar structure to AChE, but some important differences have been 

demonstrated in their substrate specificity. These enzymes share 65% amino acid sequence 

homology and are encoded by two different genes on human chromosome 7 (7q22, AChE) 

and chromosome 3 (3q26, BuChE) (Lane et al., 2006). The reason for the substrate 

specificity difference resides within the 35% other amino acids in their primary structure, 

which determine the three-dimensional size and shape of their binding and catalytic pocket 

(Lane et al., 2006). For instance, crystallographic studies have shown that amino acids 

residues Phe 288 and Phe 290 lining the gorge (acyl-binding pocket) of TcAChE, are 

replaced by hydrophobic amino acid residues Leu286 and Val288 in BuChE. These changes 

have been suggested to increase the volume of the acyl-binding pocket and partly explain the 

capability of BuChE to accommodate bulkier substrates such as butyrylcholine (Nicolet et 

al., 2003). Furthermore, a similar PAS  described in BuChE have been demonstrated via site-

directed ligand mutagenesis and photo-affinity labelling studies to be localised half way 

between the peripheral and the acylation sites and is formed by two amino acid residues, 

Asp70 and Tyr332 (Nicolet et al., 2003; Lane et al., 2006). 

2.4.1.2.2 Localization and function 

AChE is responsible for approximately of 80% of ChE activity in the healthy brain, while 

only 20% is attributed to BuChE activity. This is related to the low level of BuChE in 

neuronal cells (Greig et al., 2001). BuChE in the brain is mostly associated with the region 

receiving cholinergic innervation, notably glial cells and endothelial cells where it modulates 

neurotransmission (Lane et al., 2006). In the PNS, BuChE is localized in the heart and liver 

where it serves as drug metabolisers and antitoxins (Bono et al., 2015). As for AChE, BuChE 

is expressed by a single gene; however, unlike AChE, it does not go through alternative 

splitting. All soluble globular tetrameric forms (in the plasma) or membrane bound forms in 

the synapses (brain and muscle) are encoded by unique BuChE mRNA (Bono et al., 2015). 

Accumulation of evidence in recent literature highlights the neurobiological importance of 

BuChE and its implication in the progression of AD. A review study done to comprehend the 

distribution and the role of BuChE in the CNS has revealed that transgenic mice exhibited no 
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abnormality of the cholinergic system in the CNS during a period of 3-4 months after birth. 

However, they showed high sensitivity to a selective inhibitor of BuChE, bambutol. Similar 

studies have shown that 10% of ChE positive neurones express BuChE in the human 

hippocampus and amygdala of an AD brain; moreover, high activity of BuChE has been 

detected mainly in the temporal cortex and hippocampus, which are areas regularly affected 

by AD (Greig et al., 2001). A separate study also revealed that the level of the form G4 

AChE and BuChE may decrease by nearly two-thirds while the level of the G1 form of 

AChE, which has low affinity for ACh, remains unchanged and the G1 form for BuChE, in 

mitigation, increases 30% - 60% in the AD brain (Greig et al., 2001). The results of these 

studies emphasized the key role played by BuChE in the cholinergic system as a co-regulator 

of ACh with AChE. Further studies have demonstrated that selective BuChE inhibition can 

increase ACh levels in a rat's cortex and also improve memory in elderly rats, ruling out 

speculations about the role of BuChE in the cholinergic system (Greig et al., 2001). These 

studies, coupled with the decreased sensitivity of BuChE to substrate inhibition as compared 

to AChE, and other studies supporting the role of AChE and BuChE in promoting the 

formation of toxic β-amyloid peptide in tissue culture legitimise BuChE as a suitable target 

for the development of new AD drugs (Yan and Feng, 2004). 

2.4.2 Amyloid hypothesis 

2.4.2.1 History of amyloid fibrils 

The term amyloid is derived from the expression “corpora amylacea” 

introduced the first time in 1854 by the German physician scientist 

Rudolph Virchow (Figure 2.7) to denote small corpuscles with 

atypical microscopic appearance detected around the blood vessel in 

the CNS of subjects at old age (Sipe and Cohen, 2000). As these 

corpuscles colour pale blue in the presence of iodine, a property 

common to starch, Virchow compared the amyloid content to starch 

and named them “corpora amylacea”. Later in 1859, subsequent 

investigations demonstrated that the amyloid content is not of a carbohydrate nature, but has 

a high nitrogen content. These discoveries shifted the study of amyloids to a new direction. 

Amyloids were no longer studied as carbohydrates but as proteins susceptible to 

conformation change forming amyloid fibrils (Sipe and Cohen, 2000). In the early nineties, 

the necessity to discover new therapeutic approaches to slow, avoid, reverse or halt amyloid 

Figure 2.7: Rudolph 

Virchow (1821-1902). 
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formation gained some success with advances in molecular biology research and the 

development of biophysics tools including solid phase Nuclear Magnetic Resonance (NMR) 

and other techniques. This progress has enabled the understanding of the molecular 

deposition and composition of amyloid fibrils (Rambaran and Serpell, 2008). Recent 

convincing evidence now shows that amyloid fibrils are extracellular deposits of insoluble 

misfolded native proteins (Figure 2.8), structurally dominated by β-sheet structure. They are 

detectable by apple green birefringence when treated with Congo Red and examined under 

polarized light (Rambaran and Serpell, 2008; Sipe and Cohen, 2000).  

 

Factors that accelerate the misfolding and aggregation of proteins are not well understood. 

Nevertheless, currently proposed explanations include amino acid sequence composition of 

the protein, mutations, aging, defects in the chaperones' function (chaperones are proteins that 

assist in proteins folding) and environmental changes (pH variation, agitation, ionic force, 

sudden variation etc.) (Herczenik and Gebbink, 2008). These misfolded proteins that form 

amyloid fibrils are responsible for many neurodegenerative diseases including AD (Figure 

2.8). They are grouped in the general term of amyloidosis. The type of amyloidosis provoked 

is mostly influenced by the site of accumulation of the amyloid fibrils and the nature of the 

protein precursor of that amyloid fibril formation (Figure 2.8). Amyloid precursor protein 

(APP) was confirmed as precursor of Aβ after it was cloned in 1987 (Rambaran and 

Serpell, 2008). 

A specimen containing insoluble abnormal intracellular accumulation of amyloid fibril and 

neuritic plaques was isolated and purified in 1984, and was similar to a special substance 

discovered in the brain tissues of an autopsy performed on a 55 year old woman called 

Figure 2.8: Native protein due to some intrinsic factors or drastic conditions might undergo 

conformation change and aggregate. The type of neurodegeneration depend on the region of 

accumulation of misfolded protein and its nature (Di Carlo et al., 2012). 
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Auguster Deter earlier in 1907. Auguster was Alois Alzheimer’s patient and died from a 

behavioural disturbance and cognitive impairment (O’Brienand Wong, 2011). Alzheimer 

hypothesized at this time that histopathological changes in his patient’s brain might be the 

cause of disease symptoms. The prediction of Alzheimer was soon correlated with many 

more people with the same symptoms and was named AD. It is important to underline that 

before the case of Auguster D as documented by Alois Alzheimer, dementia was considered 

as a disease of normal aging along with its histopathological abnormality (neuritic plaques 

and neurofibrillary tangles). Thanks to Alzheimer's work, it was understood and recognized 

that APP plays a role in AD forming Aβ that accumulate to form neuritic plaque and 

neurofibrillary tangle derivatives. Therefore, the biological function of APP and its metabolic 

products have been a continued subject of attention in research.  

2.4.2.1.1 APP: structure and physiological functions  

 

The APP is a single pass transmembrane protein best known as a precursor molecule. The 

gene encoding for APP is located on chromosome 21q21.3 in humans. In addition, it contains 

18 exons and can undergo alternative splitting leading to the expression of three isoforms 

Figure 2.9: Proposed 3D structure of APP showing its different domains and functions and the sites of 

post-translational processing by α, β, γ, ζ and ε secretases (Dawkins and Small, 2014). 
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with 695, 751 and 770 amino-acids. The complete 3D structure of APP is not yet resolved, 

however, the crystallized structure of individual domains have been achieved as shown in 

Figure 2.9. The structure contains a large extracellular portion formed by a cysteine rich 

domain or E1 domain comprising the Heparin-binding domain (HBD) and the Copper or 

metal Binding Domain (CuBD), the Kunitz-type Protease inhibitor (KPI) domain, E2 domain 

and the cleavage sites of β, and α secretase; the Intracellular domain or C-terminal domain is 

linked to the extracellular domain through the Transmembrane Domain (TDM) bearing the 

cleavage sites of others secretases. Many studies have been done to comprehend the 

physiological function of APP and its role as precursor of Aβ formation. Though the normal 

biological function off APP is not totally clear, some published data provide evidence of its 

role in cell growth and proliferation. Additionally, APP act as trophic factors, therefore may 

control molecular events including outgrowth, synaptogenesis and signal transduction 

(Dawkins and Small 2014; Müller and Zheng, 2013). 

2.4.2.1.2 Metabolic processing of APP and its role in AD 

Amyloid precursor protein, after transcription into mRNA in the nucleus and its migration 

into the cytoplasm where it is translated into protein, undergoes post-translational 

modification (PTM) including glycosylation, phosphorylation, sialylation and tyrosine 

sulfation. This is required for the proper folding of the newly expressed protein into its native 

form (De Strooper and Annaert, 2000). Besides these PTM, APP undergoes sequential 

proteolytic cleavage considered as an activation process inside or outside the cell by the 

secretases family of proteins; notably α-secretase, β-secretase, and γ-secretase generating 

peptide fragments, which, are responsible for its proposed normal physiological functions as 

mentioned in the preview session (Gervais et al., 2007). 

In the normal brain, the activation of APP by sequential processing is tightly controlled by 

three membrane proteases: α-secretase, β-secretase and γ-secretase. All of the three proteins, 

when in close proximity with APP, are able to recognize their normal cleavage site on APP 

sequence (Figure 2.10). 
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If APP is first recognized and cleaved by α-secretase, it generates an α-secretase cleaved C-

terminal Fragment (α-CTF) and an α-secretase cleaved soluble APP (APPsα) fragment; then 

the α-CTF can be recognized and cleaved by γ-secretase to generate protein 3 (p3) and APP 

Intracellular Domain (AICD). However, if APP is first recognized and cleaved by β-

secretase, it generates a β-secretase cleaved C-terminal Fragment (β-CTF) and β-secretase 

cleaved APP soluble (APPsβ) fragment; then β-CTF can be recognized and cleaved by γ-

secretase to finally generate an amyloid beta (Aβ) fragment and APP Intracellular Domain 

(AICD) fragment. This pathway is also considered as the amyloidogenic pathway since it 

leads to the production of Aβ (O’Brien and Wong, 2011; Zheng and Koo, 2011). Products 

of these sequential processing in both cases, as already mentioned in the previous section, 

have poorly understood physiological function. The Aβ fragment is the most known and 

documented to be susceptible to oligomerization and aggregation, therefore the most 

suspected product in disease conditions. However, a study done to understand the role of Aβ 

in the regulation of memory has revealed that at physiological concentration (Pico molar 

(pM) or Nano molar nM), Aβ may enhance memory and only impair cognition in higher 

concentration (Morley and Farr, 2014). Factors known as the driving forces responsible for 

the cause of Familial Alzheimer’s Disease (FAD), also known as early onset AD or 

inheritance form of AD, as we shall describe in the next section, might support this study. 

The build-up of Aβ in the brain has been demonstrated to be the pathological hallmark of 

both types of AD (Mondragón-Rodríguez et al., 2012). 

Figure 2.10: Post-translational processing of APP in normal and pathological conditions leading to 

plaque formation. The green and red are circles indicating possible points of regulation of APP 

processing (Cell biology of disease and exercise, 2012). 
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2.4.2.1.2.1 Sporadic AD  

The argument put forward so far to explain the role of Aβ in sporadic AD is the disturbance 

in the mechanism controlling the rate at which Aβ is generated versus clearance (Tanzi et al., 

2004). Two pathways are retained to describe how the levels of Aβ are normalized or cleared 

from the brain. Included are proteolytic degradation and receptor-mediated transport from the 

brain. The level of Aβ in brain is normalized or regulated by amyloid degrading enzymes 

such as insulin-degrading enzyme (IDE) and Neprilysin (NEP), which are more specific for 

degrading Aβ monomer types. Additional amyloid degrading enzymes are the angiotensin 

converting enzyme (ACE) and plasmin (Dries et al., 2012). The activity of IDE is inhibited 

by insulin, supporting diabetes mellitus as a risk factor for AD disease (Bates et al., 2009). 

The receptor-mediated transport across the Blood Brain Barrier (BBB) includes the 

multiligand cell surface Receptor for advance glycation and end product (RAGE) that 

mediates the influx of Aβ into the brain and Low-density Lipoprotein Receptor-related 1 

(LRP 1) protein that mediates efflux of the Aβ from the brain to the peripheral system 

through endocytosis where it is targeted for degradation in the liver (Tanzi et al., 2004) 

(Figure 2.11). 

 

The expression of LRP 1 decreases in AD whereas the expression of RAGE increases (Dries 

et al., 2012), and an age-related defect of Aβ transport across the BBB (Bates et al., 2009), 

are believed to be responsible of accumulation of Aβ which, disrupt neuronal integrity, 

interfere in nerve transmission and triggers a multiple cascade neurotoxic events leading to 

AD. The major risk factor of sporadic AD is associated with the presence of the isoform of 

ApoE ε4 in the genome (Liu et al., 2013). 

Figure 2.11: Flux of Aβ  between the brain and the peripheral system and its target degradation in the 

liver (Dries, Yu, and Herz, 2012). 
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2.4.2.1.2.2 Early onset of AD or FAD 

The dysregulation in the metabolic processing of APP is believed to orchestrate the build-up, 

oligomerization and aggregation Aβ leading to FAD (Shimizu et al., 2008).  γ-Secretase that 

cleaves APP after β-secretase is able to cleave APP at several sites, which results in the 

production of Aβ with various fragments. Under normal conditions, the sequential processing 

of APP produces Aβ38-43 residues with the more common ones Aβ40 and Aβ42 (Rang et al., 

2012).  Many studies have demonstrated that Aβ40 is produced in relative higher proportion 

than Aβ42. Aβ40 is more soluble and less toxic whereas Aβ42 is insoluble and more susceptible 

to aggregation, therefore more toxic (LaFerla et al., 2007). In other words, the ratio of Aβ42 / 

Aβ40 is low in healthy brain and the equilibrium between the production of Aβ and the 

clearance pathways is well controlled (Bates et al., 2009). However, in the AD brain, 

mutation of the gene encoding APP coupled with the mutation of presenilin (part of γ-

secretase complex protein comprising: Presenilin 1, presenilin 2, Nicastin and Anterior 

Pharynx-defective 1 (APH 1)) is believed to shift the preferable cleavage site of γ- secretase 

towards high production of Aβ42, increasing the Aβ42 / Aβ40 ratio which is supported by many 

studies as a pathological hallmark of FAD (Rang et al., 2012; Pachaiyappan and Boobalan, 

2011). 

In light of the information provided by these data, it can be retained that although the 

pathological process leading to both forms of AD are different, the accumulation of Aβ 

appear to be the starting point that trigger the cascade of neurotoxic events, for instance, 

neuroinflammation, production of reactive oxygen species (ROS), ion dyshomeostasis, tau-

hyperphosphorylation, synaptic dysfunction and neuronal loss leading to dementia. These 

compelling arguments have been at the base of the Amyloid hypothesis and is strengthened 

by the observation that immunotherapy that reduces the Aβ level in mice, improve cognitive 

impairment (Elder et al., 2010). 

In conclusion, of all secretases involved in the APP processing are points of regulation that 

may help decrease the level of Aβ in the brain, either by stimulating or inhibiting α-secretase 

and β-secretase activity respectively (Figure 13) (Dries et al., 2012). Additionally, 

accelerated degradation or promoting clearance of Aβ from the brain by modulation of LRP 

1, RAGE and enzymes that degrade Aβ may also contribute in reducing Aβ in the brain. 

However, β-secretase also called BACE (β-site APP Cleaving Enzyme), the preponderant 
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transmembrane aspartyl protease, is the immediate and primary cause of Aβ production. 

Therefore, it seems to be the most attractive target for the design of drugs that can stop the 

disease progression (Shimizu et al., 2008). 

2.4.3 Tau protein hypothesis 

Tau protein is a member of the Microtubule-Associated Protein (MAP) family, so called due 

to their ability to promote the assembly of tubulin into microtubules (MT). Microtubules are 

part of the neuronal cytoskeleton, which provide structural support that are essential for the 

physiological function of neurones. Tau protein discovery dated from 1975 in Marc 

Kirschner’s Laboratory at Princeton University (Mandelkow and Mandelkow, 2012). Nine 

years later, it was demonstrated that the degree of phosphorylation of tau-protein determines 

its capacity to promote microtubule assembly. Many years after, subsequent studies found 

that Paired Helical Filaments (PHFs) forming NFTs in AD brain is a result of hyper-

phosphorylation of the tau protein. This finding and the discovery that tau deposits were 

linked to other neurodegeneration independently to Aβ peptide aggregation, attracted the 

curiosity of researchers and increased their interest in understanding how Tau protein is post-

translationally regulated after its synthesis and also to establish the molecular mechanism 

leading to NFTs (Mandelkow and Mandelkow, 2012). 

Molecular biology studies, biophysical studies and NMR have enabled the location of Tau 

protein on the human genome and the determination of its 3D conformation. The gene 

encoding human tau protein is located on chromosome 17q21. It contains 16 exons, which 

undergo alternative splitting to produce 6 isoforms with various numbers of amino acids 

ranging from 352 to 441. The variation in AAs contained is linked to either no insert or the 

presence of one or two inserts (E2, E3) of 29 amino acids in their N-terminal region and a 

three or four repeat-region in the C-terminal region (Figure 2.12). The longest isoform, 441 

amino acids, is present in the CNS and it contains four repeat-regions (R1, R2, R3 and R4) 

and two inserts E2 and E3 (Lim et al., 2014).  

They are naturally heat resistant and less sensitive to degradation in acidic medium. These 

characteristics are attributed to their “natively unfolded” protein nature (Tenreiro et al., 

2014). The activities of tau proteins are tightly regulated by multiple kinases and 
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phosphatases, which can add or remove a phosphate group to specific residues (Threonine / 

serine), (Gong et al., 2006). 

 

Tau protein function depends on degree of phosphorylation and also aging factors. In normal 

conditions, tau proteins promote tubulin assembly to microtubules, providing them structural 

support, which assist axonal transport of nutrients, nerve impulses and other important 

substances away from nerves cells (Johnson, 2004). In the light of this information, we can 

conclude that tau proteins are indispensable for communication between nerve cells. In AD, 

tau proteins are hyperphosphorylated due to unbalanced tau kinase and phosphatase activities. 

Hyperphosphorylation of tau proteins induce conformation changes unfavourable to their 

continued attachment to microtubules. Therefore, they detach from microtubule and 

spontaneously self-associate into insoluble PHFs, which further aggregate to form NFTs 

causing the break-down of neural functions (Figure 2.13). This pathological consequence, 

interrupt communication between neurones in regions regularly associated with AD (Chung, 

2009). 

 Protein phosphatase 2A (PP2A), Protein phosphatase 1 (PP1) and 5 (PP5) are the major 

serine / threonine tau phosphatases whose activities are crucial for tau dephosphorylation 

(Billingsley and Kincaid, 1997). The hyperphosphorylation of tau protein is suspected to be 

the result of a decrease in their activities in many neurodegenerative diseases, and particularly 

in AD. This assumption somewhat correlates with previous studies which show that activities 

Figure 2.12: Longest (441 AAs) isoform of Tau protein present in the CNS showing its different 

regions. Residues in red coloured are site-specific phosphorylation mediated by GSKβ3. The 

phosphorylation of grey residues is mediated by others kinase (Lim et al., 2014). 
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of both PP2A, PP5 and PP1 decrease in AD brain patients due to an endogenous phosphatase 

inhibitor (Chung, 2009; Billingsley and Kincaid, 1997). 

 

Glycogen synthase kinase β3 (GSKβ3), Cyclin-dependent kinase 5 (CdK5), Dual-specific 

Tyrosine (Y)-Regulated Kinase 1A (Dyrk1A), Mitogen-Activated Protein Kinase (MAPKs) 

and many others are serine / threonine tau proteins kinase capable of phosphorylating tau 

protein at specific sites (Mietelska-Porowska et al., 2014). CdK5 and GSKβ3 are known to 

have some overlapping phosphorylation sites, for instance Ser199, Thr181 (Mietelska-

Porowska et al., 2014). Accumulation of evidence confirms hyperactivity or higher 

expression of these kinases in AD (Chung, 2009; Gong et al., 2006). The 

autophosphorylation of Tyr216 is believed to be one of the reasons that explains the 

hyperactivity of GSKβ3 in AD (Johnson, 2004). On the other hand, the increase of CdK5 

activity is associated with increased overexpression of protein 25 (p25), a protein resulting 

from the cleavage of protein 35 (p35) mediated by calcium-dependent protease Calpain in 

neurotoxic conditions like Aβ (Johnson, 2004). The imbalance in the activities of key 

proteins (protein kinases and phosphatases) responsible for phosphorylation and 

dephosphorylation of tau proteins are suggested by the tau hypothesis of aetiology of AD to 

be the main cause of misfolding and further aggregation of tau protein into NFTs which 

interferes in synaptic function leading to neuronal death (Desai and Chand, 2009). The tau 

hypothesis is also supported by the observation that decreased tau levels in transgenic mice 

reduces neuronal dysfunction and the extent of tau disease, which is associated to cognitive 

impairment in humans (Chesser et al., 2013). In line with these observations, preventing or 

Figure 2.13: Propose process of NFTs formation: hyperphosphorylation of tau protein causes 

disassembly of MT leading to NFTs (red arrows) formation in AD (Drewes, 2004). 
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reducing hyperphosphorylation of Tau protein by modulating kinase and phosphatase 

activities appear as tau-based strategy for the treatment of AD.  

2.4.4 Other neurotoxic events 

The formation of senile plaques and aggregation of tau protein into NFTs are believed to be 

the major upstream molecular factors that trigger a cascade of neurotoxic events including; 

disturbance of metal ion homeostasis, mitochondrial and endoplasmic dysfunction, 

neuroinflammation, oxidative stress, collapse of neurotransmission system, stimulation of 

programmed cell death and atrophy of the brain observed in AD patient (Yamasaki et al., 

2012). In this section, we will discuss only the role played by oxidative stress in the 

pathogenesis of AD, which is believed by some sources to be a contributor to the early stages 

of AD (Pereira et al., 2005; Zhao and Zhao, 2013), while emphasizing their relevance for 

therapeutic intervention.  

2.4.4.1 Oxidative stress 

Oxidative stress can be defined as a physiological reaction of the body in response to 

cumulative damage orchestrated by free radicals improperly neutralized by endogenous 

antioxidants that is believed to be linked to aging or diseases. Free radicals are compounds 

that contain one or more unpaired electrons and are generally more reactive. For instance 

(Figure 2.14), the superoxide radical (O2 ) which results from the reaction of oxygen (O2) 

with one electron escaped from the electron transport chain in the mitochondrial membrane 

(Halliwell, 2001). The reaction is catalysed by the enzymatic complex Nicotinamide Adenine 

Dinucleotide plus Hydrogen (NADH), ubiquinone reductase and ubiquinone cytochrome C-

reductase. Hydrogen peroxide (H2O2), the least harmful ROS, results from the conversion of 

superoxide (more harmful) catalysed by an antioxidant enzyme superoxide dismutase (SOD) 

and H2O2 in turn can interact either with copper (Cu+) or iron (Fe2+) (by Fenton reaction) to 

produce the potent oxidant species, hydroxyl radical (.OH). Alternatively, they can interact 

with chlorine (catalysed by myeloperoxidase (MPO) to produce hypochlorous acid (HOCl). 

H2O2 can also be converted into water (H2O) by the antioxidant enzyme catalase (CAT) or 

Glutathione peroxidase (GPX). Nitric oxide (NO) interacts with superoxide to produce 

peroxinitrite (ONOO.) (Lü et al., 2010).  
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In the healthy body, these ROS have antimicrobial activities and play a vital role in degrading 

foreign matter (Nimse and Pal, 2015). Generally, excess ROS are neutralized by antioxidant 

enzymes as mentioned above and antioxidant compounds such as carotenoids, α-tocopherol 

(Vitamin E), glutathione and ascorbic acid (Vitamin C). Therefore, the diseases associated 

with ROS, particularly AD, usually results from an imbalance between free radical generation 

and neutralization. Excess free radicals cause the peroxidation and damage of biological 

molecules, for instance peroxidation of lipids (ROO.), protein modification, DNA damage 

and enzyme inactivation. If the damage is too great, the cell might undergo apoptosis or 

programmed cell death (Uttara et al., 2009). 

 Another’s factor responsible for ROS production that have been revealed in AD and 

neurodegeneration is associated with β-amyloid formation; interaction of β-amyloid with 

transition metals ions (Cu2+, Fe3+ and Zn2+) generates Cu+ / Fe2+ /  Zn+ which further reacts 

with H2O2 to produce very harmful .OH (Uttara et al., 2009). Additional sources of ROS 

production are by-products of monoamine oxidase (MAO) activities. MAO are Flavin 

enzymes present in the outer mitochondrial membrane where they accelerate oxidative 

deamination or degradation of monoamine neurotransmitters, neuromodulators and hormones 

thus preventing their neuro and cardio-toxicity (Outcomes and Monoamine, 2012). H2O2 is 

one of many by-products of MAO activities which when converted into other ROS provokes 

mitochondrial and cytoplasmic dysfunction or damage (Sturza et al., 2013). It has also been 

demonstrated that exposure of the cell to glutamate reduces mediation of cystine into the cell 

and cystine is the precursor of glutathione synthesis; Glutathione is an antioxidant, therefore 

Figure 2.14: Diagram showing different sources of ROS and sites of antioxidant activities (Lü et al., 2 

010). 
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reduction of its synthesis impair the ability of the cell to protect against oxidative damage 

(Maher and Davis, 1996). 

Many other lines of evidence indicate oxidative stress in the pathology of AD: the presence 

of numerous traces of free radical attack, mitochondrial dysfunction, nucleic acid damage and 

protein oxidation. The build-up of free radicals has also been demonstrated in the brain of old 

age AD patients and is associated with an increase of transition metal anion copper, and Zinc, 

both precursors of free radical production (Pereira et al., 2005). In light of these findings, 

enhancing cellular defences against oxidative stress using antioxidants might be of 

therapeutic value. 

2.4.5 Conclusion from the aetiology of AD 

Recent studies demonstrated that aging remains the principal risk factor of sporadic AD 

dominated mainly by the build-up of β-amyloid peptide, a result of imbalance of generation 

and clearance. Early onset AD results from genetic mutation of APP, presenilin 1 / 2 (part of 

BACE complex) which cause the dysregulation of metabolic processing of APP with the 

pathological consequences of accumulation of β-amyloid peptide. The accumulation of β-

amyloid is believed to be the primary factor that triggers downstream events including 

dysregulation of tau protein phosphorylation leading to aggregation of PHFs into NFTs, 

oxidative stress and death of the nerve cells leading to dementia (Figure 2.15).  

 
Figure 2.15: Proposed diagram of the chronology of toxic events involved in AD (Mao and Reddy, 

2011). 
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The multiple molecular events leading to AD partly explain the limitation of the current 

treatment, but also explains why combined therapy are continuously gaining more attention 

as alternative strategy for stopping the disease progression.  

2.5 Therapy of Alzheimer’s disease and limitation 

The pathogenesis of AD covers a complex network of dysfunction involving processing of 

proteins interacting with each other (Zheng et al., 2014). This complexity poses a serious 

challenge in designing safer drugs that can stop the disease progression and up to now, the 

challenge is still open. The current drugs approved for treatment of AD are symptomatic and 

limited to cholinesterase inhibitors drugs (donepezil, galantamine and rivastigmine) designed 

to address abnormally decreased levels of the neurotransmitter ACh and a glutamatergic 

receptor modulator (Memantine) (Soininen, 2010). 

 

Although these drugs have demonstrated some beneficial effects in the treatment of AD, 

(Table 2-2), they interfere only on a single level in disease pathways with marginal effects. 

Cholinesterases promote survival of ACh in the synapse junction when bound to CAS or 

reduce ChE-induce β-amyloid aggregation when able to bind both the PAS and CAS 

(Donepezil particularly), hence improved cognition and daily life. Memantine modulates Ca2+ 

influx in the cell, limiting excitotoxicity, hence preventing damage of nerve cells (Parsons et 

al., 2013). AD is a multifactorial disease and bodies of evidence suggest that a single drug 

with multiple effects or that can interfere at different levels of the disease pathway may 

synergistically improve the therapeutic effect and stop disease progression (Agis-torres et 

al., 2014; Fern et al., 2010). 
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Table 2-2: Summary of pharmacological characteristics of current AD drugs.  

 

 Donepezil Galantamine Rivastigmine Memantine 

Therapeutic class Piperidine derivative Alkaloid Carbamate 
Adamantane or 

diamanoid 

FDA approved 1996 2001 2000 2003 

Use 

Palliative treatment 

mild-to moderate 

AD 

Palliative treatment 

mild-to moderate AD 

Palliative 

treatment mild-

to moderate 

AD 

Palliative 

treatment 

Moderate –to 

severe AD 

Targets 
AChE and negligible 

BuChE 
AChE 

AChE / 

BuChE 
NMDAR 

Benefits 
Improve cognitive 

function and speech 

Improve cognitive 

function and speech 

Improve 

cognition, 

daily life 

activity 

Decrease 

emergency of 

behavioural 

symptoms such 

as cognition, 

Side effects 

Gastro international 

abnormalities, 

nausea, anorexia, 

abdominal pain 

Nausea, vomiting, 

anorexia, diarrhoea 

Nausea, 

vomiting, 

anorexia, 

diarrhoea, head 

ache 

Head ache, 

dizziness, 

confusion, 

somnolence, 

Infrequent 

hallucination 

 

Mechanism of action 

Binds to the PAS 

and CAS of AChE 

and inhibits 

acetylcholinesterase 

activities 

Binds to the CAS of 

AChE and inhibits 

acetylcholinesterase 

activities 

Binds to the 

PAS of AChE / 

BuChE and 

inhibits 

cholinesterase 

activities 

Uncompetitively 

binds with 

moderate and 

voltage 

dependent to 

NMDAR and 

antagonizes 

NMDAR activity 

Half life 70 hours 7 hours 10 60-80 hours 

References (Mehta et al., 2012) (Soininen, 2010) 
(Soininen, 

2010) 

(Parsons et al., 

2013) 

     

2.6 Multitarget Directed Ligand (MTDL) paradigm 

The accumulation of evidence on the complex nature and the diverse causes (dysfunction of 

the cholinergic system, ChE-induced Aβ aggregation, Aβ accumulation into neurotic plaque, 

NFT formation, ROS, excitotoxicity, neuroinflammation and apoptosis) involved in the 

pathogenesis of AD clearly explains the draw-back of the current treatment limited to 

AChEIs and NMDA receptor modulators. In fact, these drugs have been designed based on 

“one-drug-one-target” paradigm and only address a single target (Ricerca, 2009). More 

recently, this design strategy has been questioned and substituted by a poly-pharmacology 
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approach. Poly-pharmacology is the combination of drugs to treat disease with 

pathophysiology involving multiple target proteins (Simoni et al., 2012). The objective is a 

synergistic effect with enhanced efficacy and reduced individual toxicity associated with each 

drug, thus overcoming the limitation of the current treatment.  However, this strategy proved 

ineffective on the treatment of certain diseases such as hypertension and the difficulty of 

patient in adherence to the treatment (Agis-torres et al., 2014). 

The Multitarget directed ligand paradigm is based on the design of a single molecule with the 

ability to act on multiple targets simultaneously (Figure 2.16) (Nepovimova et al., 2014). 

The strategy offers diverse advantages, for instance improved efficacy associated with 

synergistic effect and a single drug is safer than poly-pharmacology due to the reduced doses. 

Pharmacokinetic studies of a single drug are also easier to predict, drug-drug interaction is 

minimized, and compliance of patients is increased (Simoni et al., 2012).  

 

Numerous examples of drug candidates have already been developed and published in a 

recent review that supports the validity of MTDL, with pharmacological profile offering 

promise of slowing or stopping the disease progression (Simone et al., 2014). However, none 

of these innovative candidate drugs have so far survived clinical trials due to lack of 

satisfactory efficacy and toxicity issues (Capurro et al., 2013). 

Figure 2.16: Drug development strategy for AD. Shifted from “one-drug-one target” paradigm 

(current treatment) on the left to one-drug multiple targets paradigm (current approach for the 

discovery of drug modifying disease drugs) on the right (Agis-torres et al., 2014). 
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2.7  Strategy for designing multitarget ligand drugs for AD therapy. 

The most widely used strategy in the design of novel drug-like compounds against AD is the 

dual binders of ChE. It consists of hybridizing pharmacophore subunits (or lead compounds) 

of molecules currently used for the symptomatic treatment of AD and include AChEI 

(Tacrine, Galantamine, Rivastigmine and Donepezil) and NMDAR modulators (Memantine). 

For example the Bis-7-tacrine dimer, galantamine-memantine hybrid (Simoni et al., 2012) or 

the attachment, via a spacer with appropriate chain length, to a bioactive synthetic or natural 

product displaying versatile biological activities on other target proteins involved in the 

aetiology of AD to produce a hybrid compound; like the phenylthiazole-tacrine hybrids 

(Simone et al., 2014).  

 

These compounds are capable of modulating more than one pathophysiological pathway 

leading to neurodegeneration for instance, β-secretase activity, hyperphosphorylation of tau-

protein and ROS activities (Cavalli et al., 2008). Another successfully applied type of 

hybridization involves natural products with diverse neuroprotective activities, for example 

bivalent β-carboline (Rook et al., 2010). An alternative design approach is the optimization 

of existing AChEI, with the aim to enlarge their spectra of activity regarding target proteins 

involved in AD (Cavalli et al., 2008). 

2.8  Lead compounds for novel multitarget AD drug design. 

A lead compound can be defined as a compound with one or more recognized therapeutic 

useful properties. In the context of the MTDL drug development strategy for AD treatment, 

attractive lead compounds are those that can interfere in multiple pathophysiological 

networks, and therefore, their lead optimization might yield novel compounds with the ability 

to reverse the situation. For the purposes of our study, we have selected the lead compounds 

described in the following section. 
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2.8.1 Tacrine (9-amino-1,2,3,4-tetrahydroacridine) 

Tacrine was first synthesized in 1945 while investigating 

antibacterial properties of acridine derivatives (Kozurkova et al., 

2011). Tacrine was the first drug approved to reverse cognitive 

impairment in 1993 by the FDA in US, Canada and parts of Europe, 

but its hepatotoxicity limited its clinical application 

(Thiratmatrakul et al., 2014). Tacrine is a potent inhibitor of AChE and BuChE and its 

therapeutic effect normalizes the levels of acetylcholine (ACh) in the synaptic cleft. Further 

biological activities include MAOI activity, the ability to decrease neuronal uptake of 5-

hydroxytryptamine and dopamine, modulation of muscarinic ACh receptors and certain 

potassium ion channel activities (Kozurkova et al., 2011). Recent studies have demonstrated 

that, lead optimization of tacrine in the design of novel AD drugs can improve its biological 

profile and alleviate its hepatotoxicity. Based on what precedes, tacrine appears to be a 

suitable lead compound for the design of multitarget drugs because of its privileged structure, 

its efficacy and its low molecular weight (Inglot et al., 2013).  

2.8.2 Tryptoline (pyrido[3,4-b]indoles) 

Tryptoline belong to a family of β-carboline compounds. They 

are alkaloids with structures dominated by a core indole structure 

and a pyrrolidine ring (Frost et al., 2011) and were first 

discovered in plants. Previous studies have shown that they have 

a large range of biological activities associated with target 

proteins involved in the pathogenesis of AD (Herraiz et al., 2010). β-carbolines have also 

been demonstrated to improve memory in low concentration (0.3mg / kg) in mice (Venault 

and Chapouthier, 2007). Additional studies have shown that β-carbolines can inhibit AChE 

and BuChE activities, which are first choice targets for the symptomatic treatment of AD 

(Schott et al., 2006; Becher et al., 2005).  Furthermore, β-carboline can influence the 

activities of the NMDA receptor, MAO and also inhibits CdK5 (Song et al., 2002). Harmine, 

one of the β-carboline derivatives in particular has been shown to be a potent inhibitor of 

DYRK1A. As described earlier, DYRK1A overexpression and CdK5 deregulation are linked 

Tacrine  

Tryptoline  
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to NFT formation in AD (Frost et al., 2011). These versatile biological activities of β-

carbolines suggests that tryptoline could modulate AChE, BuChE, NMDAR, MAO, CdK5 

and DYRK1A activities. Therefore, tryptoline appears as legitimate lead compound for the 

development of multifunctional AD drugs. 

2.8.3 Trolox (6-hydroxy- 2,5,7,8-tetramethylchromane-2-carboxylic acid) 

Reactive oxygen species are one of the major factors that 

contribute to AD by overproducing free radicals that exceed 

the antioxidant capacity of neuronal cells, thus compromising 

their viability (Hamad, 2010). This excess of free radicals 

can be neutralized using exogenous antioxidant compounds 

such as Vitamin C, Vitamin E (α-tocopherol) and a Vitamin E analogue, 6-hydroxy-2,5,7,8-

tetramethylchromane-2-carboxylic acid (Trolox) (Hamad, 2010). All these compounds 

exhibit good free radical scavenging and other neuroprotective activities to different degrees. 

Comparative studies have demonstrated that trolox possess greater antioxidant effect than 

Vitamin C and vitamin E (Mun et al., 2002). Trolox has an additional advantage over its 

analogue, Vitamin E, in that it has capacity to incorporate into the lipid and the water soluble 

compartment of cells. Moreover, trolox has the ability to prevent neurotoxicity induced by 

Aβ and H2O2 (Radesätera et al., 2003).  The same study suggests that trolox prevents 

neurotoxicity induced by H2O2 by decreasing permeability to H2O2. A separate study revealed 

that trolox can inhibit GSK3β whose hyperactivity causes NFT formation (Mun et al., 2002). 

Considering the ability of trolox to protect neuronal cells using a different mechanism, and 

the large advantage it offers over other antioxidant compounds (Vitamin C and Vitamin E), it 

was selected as the third lead compound. 

2.9 Conclusion 

In light of the current hypothesis underlining the cause of AD, aging, and some genetic 

predisposition interplay leading to Aβ aggregation into neurotic plaque and 

hyperphosphorylation of tau-protein that accumulates to form NFTs. These events create a 

complex network of neurotoxic conditions responsible for the disease progression. The 

multifaceted nature of the aetiology involving interconnected multiple signalling pathways 

explain the marginal effects of the current treatment that is limited to cholinesterases 

Trolox  

 

 

 

 

http://etd.uwc.ac.za/



CHAPTER 2  LITERATURE REVIEW 

35 

 

inhibitors (Donepezil, Galantamine, Rivastigmine) and NMDA receptor modulators 

(Memantine). This supports the need of the MTDL paradigm as an alternative strategy for the 

development of novel drug compounds capable of overcoming limitations attributed to the 

“one-drug-one target” paradigm. Lead compounds (tacrine, trolox and tryptoline) were 

identified based on their multiple biological activities on target proteins involved in the 

pathophysiology of AD. It is hypothesized that connecting tacrine-trolox and tacrine-

tryptoline with an appropriate linker chain length might yield hybrids with promising disease 

modifying drug potency. 
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CHAPTER 3.                                                                                                                     

MOLECULAR MODELLING AND SYNTHESIS 

3.1 Molecular Modelling Study  

3.1.1 Introduction 

Molecular modelling also referred to as computer aided-drug design can be defined as all 

techniques which use computerized methods to explore the three dimensional conformation 

change that small molecules (ligands) or macromolecules (proteins) undergo during any kind 

of intermolecular interaction (Ferreira et al., 2015). One of the most used techniques is 

molecular docking. It assists in estimating the binding interaction between drugs and specific 

target proteins. It has the ability to provide useful information regarding the different 

conformations adapted by the drugs in the active site such as, the binding energy, the type of 

interactions, the affinity of binding, and the stability, which are helpful in predicting 

molecular recognition (Durrant and McCammon, 2011). 

3.1.2  Method 

Modelling was performed using the Molecular Operating Environment (MOE 2014.0901) 

software package. The X-ray crystal structure of the acetylcholinesterase / bistacrine complex 

(code: 2cmf) was downloaded from the protein data bank (PDB) and loaded in the working 

environment. The ligand was removed and the structure was protonated ignoring water 

molecules and heteroatoms. The structure was protonated in “generalized born” implicit 

solvated environment before importing the ligands. Hybrid compounds were accurately 

drawn in Chemsketch and saved as MDL mole file (V3000) for import into the Database. The 

structures were energy minimized in implicit solvated environment under AMBER99 force 

field and docked into the active site of the protein. The binding site was defined with the 

conserved aromatic residues Trp279 and Trp84. All other parameters were left as default 

values. Finally, the conformation with the lowest docking score was selected for analysing 

the interactions between the AChE and the hybrid compounds. 
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3.1.3 Results and discussion 

Docking was performed using MOE 2014.0901 and the 3D and 2D images depicting 

interactions of selected lowest docking score conformations of each compound with TcAChE 

(PDB code: 2cmf) are included below (Figure 3.1). The results of the docking revealed that 

selected conformations of the tacrine-trolox hybrids, the tacrine-tryptoline hybrid and the 

tryptoline dimer show similar binding patterns. The two moieties (trolox-tacrine / tacrine-

tryptoline) in both hybrids spanned the CAS and PAS of TcAChE but with different energy 

scores. Compounds with the short linker chain lengths (2 carbons) tend to have high energy 

scores of -8.10 (16) to -9.84 (8a) while 8b, 8c, 8d, 8e and 14 have relatively lower energy 

score -10.20, -10.30, -11.43, -11.70 and -10.40 respectively. The difference in energy scores 

indicate a disparity in how strong / fast / stable the synthesized compounds bind to the active 

site. This therefore can be a determining factor indicating to which extent they can inhibit the 

activity of TcAChE activity. Based on this concept, compounds with the longest linker chain 

length (6 and 8 carbons) followed by (3, 4, and 7 carbons) is expected to display the highest 

activity. In all experiments, tacrine occupied the CAS and trolox / tryptoline occupied the 

PAS (Figure 3.1), which correlated well with our prediction and also demonstrated the high 

selectivity of tacrine for the CAS as supported in the literature (Savini et al., 2003; Lan et 

al., 2014). In Figure 3.1, the ball and stick representations are compounds from 8a to 16 and 

dashed lines are interactions between ligands and TcAChE. In pink and cyan are Trp84 

(CAS) and Trp 279 (PAS), crucial amino acids regularly involved in inhibition of the 

TcAChE activity. This binding mode corresponds to that found in the crystallised ligands. 
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Compounds docked in TcAChE active site 

(3D) 
 

Ligand interaction with conserved 

aromatic residues (2D) 

 

8a 

 

 

8b 

 

 

8c 

 

 

8d 
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8e 

 

 

14 

 

 

16 

 

Figure 3.1: Compounds docked in the active site of TcAChE (3D) and possible interactions (2D). 

It is clear from the images that the quinoline ring of tacrine of all the synthesized hybrids 

form π-π interactions (green dashed line, 2D) with Trp84 (pink, 3D). Hybrid 8e also 

undergoes backbone acceptor interactions (dashed blue line) and side chain interaction 

(dashed green line) between H of the amide bond and the O of the OH group of trolox with 

conserved aromatic residues Tyr334 and Trp279 in the PAS. The indole ring of the tryptoline 

dimer undergoes π-π interaction and H-π interaction with Trp84 and Gly118 in the CAS. The 

second pyrrole ring undergoes π-π interaction with Trp279 in the PAS. A H-π interaction is 

also observed with compound (14) between 9-H and Trp279. These results suggest the 
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cholinesterase multisite binder ability of these newly designed hybrids and thus support the 

rational of our design strategy. In this study, due to the high similarity in tridimensional 

structure of AChE and BuChE, ligands were expected to dock in similar fashion in the 

BuChE active site 

3.2 Instruments 

The instruments described below were used for reaction monitoring and to confirm the 

structure of the synthesized compounds. 

3.2.1 Nuclear Magnetic Resonance Spectroscopy (NMR) 

1H and 13C NMR spectra were obtained using a Bruker Ascend™ 400 spectrometer at 

frequency of 400.12247 MHz for proton NMR and 100.1216005 MHZ for 13C with 

tetramethylsilane (TMS) or deuterated solvent used as internal standard. The chemical shifts 

(δ) were expressed in ppm and coupling constants (J) in Hz.  

3.2.2 Infrared Spectroscopy (IR) 

IR spectra were recorded on a Perkin Elmer spectrum 400 spectrometer, fitted with a 

diamond attenuated total reflectance (ATR) attachment.  

3.2.3 Mass spectrometry (MS) 

An analytical Perkin Elmer Single Quadrupole (SQ) 300 mass spectrometer was used to 

record mass spectra with Direct Infusion Electrospray Ionization positive Mass Spectrometry 

(DI-ESI- (+)) as ionization technique. 

3.2.4 Thin layer chromatography (TLC) 

Analytical TLC were performed on 0.20 mm thick aluminum silica gel sheets (Alugram SIL 

G / UV254, Kiesegel 60, Macherey-Nagel, Duren, Germany). Visualization was achieved 

using a Chromto-vue® Cabinet under UV light (254 nm and 366 nm), a spray reagent 

(containing Ninhydrin in ethanol) or iodine vapours. Mobile phases were prepared on a 

volume-to-volume basis. All chemical reactions were monitored by TLC. 
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3.2.5  Column Chromatography (CC)  

Compounds were purified using a standard open glass column. Silica gel (0.063-0.200 mm / 

70-230 mesh ASTM, Macherey-Nagel, Duren, Germany) was used as stationary phase with 

mobile phases as indicated for each compound. 

3.2.6 Melting Point 

Melting points were determined using Stuart SMP-10 melting point apparatus in capillary 

tubes. 

3.2.7 Microwave Reactor 

CEM DiscoverTM focused closed vessel reactor was used as source of microwave in some of 

synthetic procedures. 

3.3 Synthesis of selected compounds 

All starting materials used were bought from Sigma Aldrich® and Merck® and used without 

any further purification.  

3.3.1 Synthesis of (spiro [2H-3,1-benzoxazine-2,1-cyclohexan]-4(1H)-one (3) 

In 100 ml toluene in a 250 ml round bottom flask was dissolved 50 g (0.36 mol) anthranilic 

acid (1) and 45.3 ml (0.44 mol) cyclohexanone (2) was added. The mixture was refluxed for 

4 hr using a Dean-Stark trap until approximately 6.8 ml water was collected. The reaction 

mixture was cooled to room temperature and needle like-crystals formed. The solid was 

collected by filtration and successively washed with 50 ml toluene and 50 ml ethanol. The 

solid was then dried in vacuo and 72.51 g white crystals were collected which afforded a 

yield of 90.91% of product (3) with physical characteristics similar to that described in the 

literature (Chao et al., 2012). 

3.3.2 Synthesis of 9-chloro-1,2,3,4-tetrahydroacridine intermediate (4) 

In a 250 ml round bottom flask, containing 120 ml (1.30 mol) of POCl3 was added 67 g (0.31 

mol) of 3 and the mixture was refluxed on an oil bath at 120⁰ C for 2 hrs. The reaction 
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mixture was then cooled to room temperature and cautiously added to 540 g KOH in 1000 ml 

ice water while stirred rapidly. 1500 ml CH2Cl2 was added to dissolve the solid. The aqueous 

layer was extracted with 3×1000 ml CH2Cl2. The combined organic extracts were dried with 

anhydrous MgSO4. The mixture was filtered and the solvent was removed on a rotary 

evaporator to give a yellow solid, which was further recrystallized in acetone to give 64 g of 

pure yellow clear crystals (4) with the physical characteristic as described in the literature 

(Lan et al., 2014). The synthetic procedure is shown in Figure 3.2. 

 

3.3.3 Synthesis of N1(1,2,3,4-tetrahydroacridin-9-yl)alkane-1,w-diamine 

 (w = 2, 3, 4, 6 or 8; alkane = ethane, propane, butane, hexane or 

octane) 

To 0.43 g (2.00 mmol) of 4 contained in a microwave tube, was added 40.10 mmol of the 

appropriate alkylenediamine (5n). The mixture was reacted for 30 minutes at 200 ⁰C with 

250 W power and maximum pressure. After cooling, 30 ml of CH2Cl2 was added to the 

reaction mixture. Excess alkylenediamine was extracted from the mixture with 3×30 ml of 

distilled water acidified to pH5-6 with diluted HCl. The organic layer was dried with Na2SO4 

and filtered through filter paper. The organic solvent was evaporated on a rotary evaporator 

to yield the final products (6n). The physical characteristics of these compounds were exactly 

the same as described in the literature (Lan et al., 2014). 

3.3.4 Activation of Trolox and synthesis of Tacrine-Trolox hybrid 

To a solution of THF (20 ml) containing 0.75 g (3.20 mmol) of Trolox (7) was added 0.54 g 

(3.30 mmol) of N,N-carbanoyldiimidazole. The mixture was stirred at room temperature for 

30 minutes before adding 3.00 mmol of the appropriate N1-(1,2,3,4-tetrahydroacridin-9-yl) 

alkane-1,w-diamine (6n) in 10 ml THF. The resulting solution was reacted overnight at room 

temperature. Thereafter, the solvent was removed in vacuo and the residue was added to 

Figure 3.2: Reagents and conditions. a) Toluene, reflux 4 hrs, b) POCl3, 2 hrs, KOH, Ice H2O. 
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DCM (25 ml) and extracted with acidified water (pH 3) 3×25 ml. The organic phase was 

further extracted with 5 N NaOH (aq) 3×25 ml. The combined organic phase was dried over 

anhydrous MgSO4 and the solvent was removed in vacuo rendering the crude products, which 

were first purified by flash column chromatography with acetone as mobile phase and then 

flushed with ethanol (250 ml) to render the impure products (8n). A final purification was 

carried out by column chromatography for each compound with mobile phase ethyl acetate-

ethanol (1:1) to yield pure products with similar characteristics to recently published work 

(Nepovimova et al., 2015). The synthetic procedure is described in Figure 3.3. 

3.3.4.1 6-Hydroxy-2,5,7,8-tetramethyl-N-{2-[(1,2,3,4-tetrahydroacridin-9-

yl)amino]ethyl}-3,4-dihydro-2H-1-benzopyran-2-carboxamide (8a) 

 

C29H35N3O3; yield 16%; Physical data: MP: 33-35 ⁰C; Rf 0.3 (ethyl acetate-ethanol / 1:1); 

1H NMR (400 MHz, CDCl3), (spectrum 1a) δH: 7.95 (d, J = 8.97 Hz, 1H, H-31), 7.87 (d, J = 

8.97 Hz, 1H, H-34), 7.55-7.53 (m, 1H, H-32), 7.32-7.26 (m, 1H, H-33), 6.86 (t, J = 5.95 Hz, 

1H, H-18), 3.61-3.56 (bs, 4H, H-19, 20), 3.08-3.05 (m, 2H, H-27), 2.67-2.63 (m, 2H, H-24), 

2.35-2.31 (m, 2H, H-4), 2.12-2.03 (3s, 9H, H-14, 15, 17), 1.89 (bs, 6H, H-3, 25, 26), 1.52 

(s,3H, H-11),  13C-NMR (100 MHz, CDCl3), (spectrum 1b) δC: 176.64, 148.86, 145.86, 

 

Figure 3.3: Reagents and conditions. c) Microwave radiation at 200 ⁰C, 250 W and maximum 

pressure for 30 minutes, DCM, NaHCO3, H2O, Na2SO4, d) N,N-carbonyldiimidazole, tetrahydrofuran 

(THF).  
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143.91, 141.47, 133.34, 129.89, 129.65, 129.06, 128.65, 124.37, 122.91, 121.76, 117.74, 

78.33, 50.27, 40.22, 31.94, 29.67, 29.40, 25.26, 24.71, 24.43, 22.64, 21.95, 20.44, 14.10, 

12.30, 12.03, 11.34.   MS (DI-ESI(+) m/z), (spectrum 1c): 474.31 [M + H]+; IR (ATR, cm-1) 

Vmax (spectrum 1d): 3326, 2924, 1447, 1091, 760. 

3.3.4.2 6-Hydroxy-2,5,7,8-tetramethyl-N-{3-[(1,2,3,4-tetrahydroacridin-9-

yl)amino]propyl}-3,4-dihydro-2H-1-benzopyran-2-carboxamide (8b) 

 

C30H37N3O3; Yield 24.85%; Physical data: MP: 118-122 ⁰C Rf 0.33 (ethyl acetate-ethanol / 

1:1); 1H NMR (400 MHz, CDCl3), (spectrum 2a) δH: 7.93-7.87 (m, 2H), 7.51-7.49 (m, 1H), 

7.34-7.31 (m, 1H), 6.71 (t, J = 6.26 Hz, 1H), 3.47-3.35 (m, 4H), 3.039 (bs, 2H), 2.68-2.60 (m, 

5H), 2.07-2.03 (3s, 9H), 1.87 (bs, 6H), 1.72-1.68 (m, 3H), 1.54 (s, 3H); 13C-NMR (100 MHz, 

CDCl3), (spectrum 2b) δC: 175.62, 157.75, 151.55, 146.03, 144.26, 129.09, 127.53, 124.31, 

122.70, 122.13, 121.84, 120.00, 119.59, 118.00, 116,32, 78.58, 45.39, 36.56, 32.99, 31.43, 

29.86, 25.07, 24.89, 23.05, 22.59, 20.76, 12.47, 12.15, 12.06, 11.61. MS (DI-ESI(+) m/z), 

(spectrum 2c): 488.39 [M + H]+, IR (ATR, cm-1) Vmax, (spectrum 2d): 3326, 2927, 1447, 760. 

3.3.4.3 6-Hydroxy-2,5,7,8-tetramethyl-N-{4-[(1,2,3,4-tetrahydroacridin-9-

yl)amino]butyl}-3,4-dihydro-2H-1-benzopyran-2-carboxamide (8c) 

 

C31H39N3O3; yield 13%; Physical data: MP: 154-159 ⁰C Rf 0.36 (ethyl acetat-ethanol / 

1:1); 1H NMR (400 MHz, CD3OD), (spectrum 3a) δH: 8.15 (d, J = 8.45 Hz, 1H), 7.71-7.67 

(m, 2H), 7.46-7.42 (m, 1H), 3.59 (bs, 2H), 3.32-3.28 (m, 2H), 3.06 (bs, 1H), 2.94 (bs, 2H), 
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2.62 (bs, 2H), 2.48-2.41 (m, 2H), 2.24 (m, 1H), 2.08-2.05 (2s, 6H), 1.93 (s, 3H), 1.90-1.86 

(m, 4H), 1.72-1.70 (m, 1H), 1.45-1.44 (m, 4H), 1.40 (s, 3H); 13C-NMR (100 MHz, CD3OD), 

(spectrum 3b) δC: 174.69, 153.94, 153.62, 145.97, 144.19, 142.00, 130.60, 124.57, 123.74, 

123.64, 122.60, 121.56, 120.18, 117.84, 117.54, 113.04, 78.27, 48.09, 38.43, 30.53, 29.65, 

28.04, 26.97, 24.52, 24.37, 21.46, 20.60, 12.64, 12.02, 11.68. MS (DI-ESI(+) m/z) (spectrum 

3c): 502.34 [M + H]+; IR (ATR, cm-1) Vmax, (spectrum 3d): 3370, 2928, 1520, 1088, 750, 

530.  

3.3.4.4 6-Hydroxy-2,5,7,8-tetramethyl-N-{6-[(1,2,3,4-tetrahydroacridin- 9-

yl)amino]hexyl}-3,4-dihydro-2H-1-benzopyran-2-carboxamide (8d)  

 

C33H43N3O3; yield 12%; Physical data: MP: 146-149 ⁰C Rf 0.46 (ethyl acetate-ethanol / 

1:1); 1H NMR (400 MHz, CDCl3), (spectrum 4a) δH: 8.29 (d, J = 8.55 Hz, 1H), 8.19 (d, J = 

8.55 Hz, 1H), 7.61-7.57 (m, 1H), 7.40-7.336 (m, 1H), 6.34-6.31 (m, 1H), 3.77 (t, J = 7.25 Hz, 

2H), 3.14 (t, J = 6.29, 2H), 2.68 (t, J = 5.82 Hz, 2H), 2.52-2.43 (m, 4H), 2.17-2.08 (3s, 9H), 

1.85-1.77 (m, 6H), 1.62-1.52 (m, 2H), 1.51 (s, 3H), 1.23-1.19 (m, 6H), 0.92-0.90 (m, 2H); 

13C-NMR (100 MHz, CDCl3),  (spectrum 4b) δC: 174.49, 155.42, 151.41, 146.18, 144.41, 

139.31, 131.96, 124.98, 124.49, 122.90, 121.48, 120.99, 118.09, 116.14, 11.37, 78.50, 48.24, 

38.73, 38.54, 30.96, 29.74, 29.39, 28.83, 26.85, 26.31, 25.77, 25.36, 24.13, 22.12, 20.86, 

13.09, 12.94, 11.99; MS (DI-ESI(+) m/z), (spectrum 4c): 530.38 [M + H]+; IR (ATR, cm-1) 

Vmax, (spectrum 4d): 3270, 2932, 1520, 1088, 576. 
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3.3.4.5 6-Hydroxy-2,5,7,8-tetramethyl-N-{8-[(1,2,3,4-tetrahydroacridin- 9-

yl)amino]octyl}-3,4-dihydro-2H-1-benzopyran-2-carboxamide (8e) 

 

C35H47N3O3; yield 19 ; Physical data: MP: 63-66 ⁰C Rf 0.5 (ethyl acetate-ethanol / 1:1); 1H 

NMR (400 MHz, CDCl3), (spectrum 5a) δH: 8.31 (bs, 1H), 8.19 (d, J = 8.52 Hz, 1H), 7.59 

(bs, 1H), 7.43-7.36 (m, 1H), 6.35-6.34 (m, 1H), 3.80 (t, J = 7.15 Hz,  2H), 3.16 (bs, 2H), 2.69 

(t, J = 5.32 Hz, 2H), 2.54-2.44 (m, 2H), 2.19-2.09 (3s, 9H), 1.85-1.77 (m, 6H), 1.60 (t, J = 

7.21, 2H), 1.52 (bs, 4H), 1,39-1.35 (m, 3H), 1.27-1.21 (m, 4H), 0.91-0.82 (m, 3H); 13C-NMR 

(100 MHz, CDCl3), (spectrum 5b), δC: 174.50, 155.49, 151.22, 147.70, 146.17, 144.40, 

139.00, 132.01, 124.99, 124.49, 122.76, 121.49, 120.46, 118.10, 115.99, 111.16, 78.51, 

48.20, 38.56, 30.96, 29.75, 29.40, 28.65, 26.33, 26.04, 25.78, 25.37, 24.12, 22.10, 20.86, 

20.82, 14.39, 12.04, 8.83; MS (DI-ESI(+) m/z), (Spectrum 5c): 602.42 [M + 2Na-H]+; IR 

(ATR, cm-1) Vmax, (spectrum 5d): 3271, 2926, 1521, 760. 

3.3.5 Synthesis of N-(7-bromoheptyl)-1,2,3,4-tetrahydroacridin-9-amine 

intermediate (12) 

9-Amino-1,2,3,4-tetrahydroacridine (780 mg) (10) was obtained by precipitating tacrine 

hydrochloride (9-amino-1,2,3,4-tetrahydroacridine hydrochloride) 1g (9) in a sodium 

hydrogen carbonate solution. To a solution of CH3CN (10 ml) containing 400 mg (2.01 

mmol) of (10) in a 100 ml round bottom flask was added 2.60 g (10.10 mmol) of 1,7-

dibromoheptane (11) and 224 mg (4.02 mmol) of KOH. The mixture was stirred at room 

temperature overnight. The reaction was monitored by TLC (mobile phase: ethyl acetate-

hexane-TEA (10:10:1). After completion, the reaction mixture was poured into 10 ml of 

distilled water and extracted with DCM (3×20 ml). The combined organic layer was dried 

over anhydrous Na2SO4, filtered, and the solvent was evaporated under reduced pressure. The 

residue was purified by silica gel column chromatography using ethyl acetate-hexane-TEA 

(10:10:1) as eluent to produce 100 mg (13.20%) of a pure yellow oil product (12) with the 

same characteristics as described in the literature (Savini et al., 2003).  
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3.3.6 Synthesis of Tacrine-Tryptoline hybrid (14) 

In a microwave tube containing 5 ml of DMF was dissolved 70 mg (0.18 mmol) of 12. 26.30 

mg (0.15 mmol) of tryptoline (13) and 38.80 mg (0.30 mmol) of K2CO3 were added with a 

catalytic amount of KI. The mixture was irradiated in the microwave at 160 ⁰C, 250 PSI, 200 

W, Ramp 30 s, power max on and high stir for 1 hr. The reaction was monitored by TLC 

(mobile phase: ethyl acetate-hexane-TEA in a ratio 10:10:1. After completion, the reaction 

mixture was poured into 5 ml of distilled water and extracted with ethyl acetate (3×10 ml). 

The combined organic phase was washed with water, and then saturated NaCl solution (3×10 

ml). The organic fraction was dried with anhydrous Na2SO4 and evaporated under reduced 

pressure. The residue was purified by silica gel column chromatography using of ethyl 

acetate-hexane-TEA (10:10:1) to produce 18 mg (25.30%) of a pure dark yellow product 

(14). The synthetic procedure is described in Figure 3.4. 

 

3.3.6.1 N-(7-(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)heptyl)-1,2,3,4-

tetrahydroacridin-9-amine (14) 

 

Figure 3.4: Reagents and conditions. e) Sodium hydrogen carbonate, f) CH3CN, KOH, rt, overnight, g) 

DMF, K2CO3, Microwave 160 ⁰C, 250 PSI, 200 W, 1h, Ramp 30 S.  
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C31H38N4; yield 21.43%; MP: 98-101 ⁰C; Physical data: Rf 0.43 (ethyl acetate-hexane-

TEA / 10:10:1); 1H NMR (400 MHz, CDCl3), (spectrum 6a), δH: 8.37 (s, 1H, H-6), 7.98 (m, 

2H, H-31, 34), 7.59-7.55 (m, 1H, H-32), 7.45 (d, J = 7.29 Hz, 1H, H-12), 7.37-7.30 (m, 2H, 

H-9, 33), 7.13-7.044 (m, 2H, H-10,11), 3.58-3.54 (m, 4H, H-24, 27), 3.08 (s, 2H, H-13), 

2.83-2.80 (m, 4H, H-25, 26), 2.68 (t, J = 6.02 Hz,  2H, H-20), 2.54 (t, J = 7.67 Hz, 2H, H-14), 

1.90 (m, 4H, H-3, 2), 1.67-1.65 (m, 2H, H-19), 1.53 (m, 2H H-15), 1.35 (m, 6H, H-16, 17, 

18); 13C-NMR (100 MHz, CDCl3), (spectrum 6b), δC 157.66, 151.60, 136.24, 132.05, 129.04, 

127.76, 123.95, 123.15, 121.29, 119.70, 117.99, 115.22, 110.88, 108.33, 57.86, 51.39., 50.43, 

49.39, 33.31, 31.72, 29.23, 27.37, 27.29, 26.78, 24.76, 23.01, 22.61, 21.38,, 18.57; MS (DI-

ESI (+) m/z), (spectrum 6c): 467.35 [M + H]+; IR (ATR, cm-1) Vmax, (spectrum 6d): 3214, 

2926, 1563, 740. 

3.3.7 Synthesis of Tryptoline dimer (16) 

To a solution of CH3CN (20 ml) containing 0.4 g (2.32 mmol) of 13 in a 100 ml round 

bottom flask was added 2.18 g (11.61 mmol) of 1,2-dibromoethane (15) and 0.26 mg (4.63 

mmol) KOH. The mixture was irradiated in the microwave (130 W, 250 PSI, 100 ⁰C, Ramp 

30s, high stir, power max on for 1 hr). The reaction was monitored by TLC (mobile phase: 

methanol). After completion of the reaction, the solvent was evaporated under reduced 

pressure and the resulting solid residue was dissolved in methanol and purified by silica 

column chromatography (mobile phase: methanol) to yield impure powder like-product, 

which was further subjected to 2 cycles of recrystallization in ethanol to afford 150 mg pure 

white pale powder (16). The synthetic procedure is described in Figure 3.5. 

 
Figure 3.5: Reagents and conditions. h) KOH, CH3CN, microwave 100 ⁰C, 250 PSI, 130 W, Ramp 30s, 

high stirr, power max on, for 1 hr  

 

 

 

 

http://etd.uwc.ac.za/



CHAPTER 3 MOLECULAR MODELLING AND SYNTHESIS 

49 

 

3.3.7.1 1,2-bis(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)ethane (16) 

 

C24H26N4; yield 17.45%; white pale crystals; Physical data: MP: 255-260 ⁰C; Rf 0.57 

(methanol); 1H NMR (400 MHz, (CD3)2SO), (spectrum 7a), δH: 10.70 (s, 2H, H-6 / 21), 7.35 

(m, 4H, H-9, 12 / 24, 27), 6.97(m, 4H, H-10,11 / 25, 26), 3.69 (s, 4H, H-13 / 28), 3.35 (s, 4H, 

H-3 / 18), 2.80 (bs, 4H, H-2 / 17), 2,68 (s, 4H, H-14 / 15);  13C-NMR (100 MHz, (CD3)2SO), 

(spectrum 7b), δC: 135.85, 132.95, 126.70, 120.23, 118.20, 117.30, 110.85, 106.41, 55.33, 

51.21, 50.46, 21.26; MS (DI-ESI(+) m/z), (spectrum 7c): 371.13 [M + H]+; IR (ATR, cm-1) 

Vmax, (spectrum 7d): 3374, 2815, 1450, 741. 

3.4 Structure elucidation and confirmation 

1H NMR spectra of compounds 8a-e were characterized by 4 strong signals, three singlets at 

δ 2.18-2.03 and one singlet at δ 1.93-1.60 corresponding to C-14, C-15, C-17, and C-11 of 

the trolox moiety. These strong signals and the integration match with the four methyl groups 

of trolox present in the final compounds. This characteristic is common to other hybrids 

containing the trolox moiety (Nepovimova et al., 2015) . Four downfield aromatic signals 

with multiplicity caused by variation of the chemical environment at δ 8.31-7.26 were 

assigned to the quinoline ring of tacrine. Others upfields signals were assigned to the cyclic 

hydrocarbon of tacrine, trolox and the linker. In the 13C spectra, a signal was observed at δ 

176.64-174.49 which is the characteristic signal of the carbonyl and signals at δ 160-110 

were assigned to the quinoline ring of tacrine and aromatic ring of trolox. In the IR spectra, a 

sharp peak appeared at 1589-1692 cm-1 due to carbonyl group of the respective compounds. 

The final structures were confirmed by ESI-MS and molecular ion peaks were observed at 

m/z 474.31 [M+H]+, 488.39 [M+H]+, 502.34 [M+H]+, 530.38 [M+H]+, and 602.42 [M+2Na-

H]+, for 8a-e respectively. 

The 1H NMR spectrum of compound 14 was characterized by nine downfield signals. A 

weak singlet, which integrated for 1 H at δ 8.37 corresponded to H-6. Overlapping multiplets 

at δ 7.99-7.97, 7.37-7.34 and 7.30-7.044, which can be clearly distinguished by the 

 

 

 

 

http://etd.uwc.ac.za/



CHAPTER 3 MOLECULAR MODELLING AND SYNTHESIS 

50 

 

integration as six signals and two multiplets at δ 7.59-7.55 and 7.37-7.34 was assigned to the 

aromatic ring of the quinoline (tacrine) and indole (tryptoline). The final structure was 

confirmed by ESI-MS and the molecular ion peak appeared at m/z 467.35 [M + H]+. 

For compound 16, the 1H and 13C NMR spectra were characterized by the appearance of a 

new peak in at the aliphatic region at δ 3.69 / 55.33, corresponding to the C-14 / 15 of the 

linker which does not appear on the spectrum of tryptoline. The final structure was confirmed 

by ESI-MS and molecular ion peak at m/z 371.13 [M + H]+. 

3.5 Discussion and conclusion 

The synthesis of the tacrine-trolox hybrid (8n) required intermediate 9-chloro-1,2,3,4-

tetrahydroacridine that was obtained from two sequential reactions; Condensation of 

anthranilic acid and cyclohexanone, followed by a reaction of the Spiro intermediate with 

phosphoryl chloride. The intermediate (chlorotacrine) was then aminated via microwave with 

appropriate alkyl diamine linkers followed by conjugation to trolox through an amide bond. 

The tacrine-tryptoline hybrid (14) was synthesized by a two-step reaction including 

amination of 1,7-dibromoheptane with 9-amino-1,2,3,4-tetrahydroacridine to produce an 

intermediate, followed by its condensation to tryptoline through a further amination reaction. 

The tryptoline dimer (16) resulted from reaction of tryptoline with excess 1,2-dibromoethane. 

The yields of all final products were low, ranging from 12 % to 24.85 % (Table 3-1). 
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Table 3-1: Final products of synthesis and theirs percentage yield. 

Synthesized compounds Numbers Percentage yield 

 

8a 17 % 

 

8b 24 % 

 

8c 13 % 

 

8d 12 % 

 

8e 19 % 

 

14 21 % 

 

16 17.45 % 

These reaction methods suffer from degradation products, secondary reaction products and 

unreacted starting materials that contaminate the desired final product and necessitated 

lengthy purification and hence low yield. New synthetic methods thus need to be developed 

with the aim to improve the yield, reduce reaction time and produce relatively pure product.  
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CHAPTER 4.                                                                                                                                

BIOLOGICAL ASSAY 

4.1 Introduction 

It was expected that the newly synthesized multifunctional compounds developed based on 

MTDL strategy would display the ability to modulate multiple target proteins or multiple 

pathways, which play crucial roles in the aetiology of AD. To stay in the scope of this study, the 

biological evaluation was limited to the investigation of cholinesterase inhibitory activity and 

free radical scavenging activity of synthesized compounds. This would give an indication of the 

ability of the designed and synthesized compounds to protect neuronal cells. 

4.2 Anti-cholinesterase assay 

AChE and BuChE are the two major cholinesterases present in vertebrates. Both enzymes have 

been demonstrated to regulate ACh activity by terminating its physiological action by 

hydrolyzing it into acetate and choline in the synaptic cleft (Massoulié et al., 1993). In healthy 

brain, choline resulting from the hydrolysis of Ach, is taken up in the presynaptic nerve for use 

as precursor in the synthesis of new ACh by the cholinergic system. This process maintains a 

constant level of ACh in cholinergic nerves. In AD, the cholinergic system does not work 

efficiently. This leads to loss of neuronal cells, and cause depletion of ACh levels in the regions 

responsible for cognition and memory such as neocortex, hippocampus and basalis of Meynert, 

leading to dementia (Francis et al., 1999). Therefore, the inhibition of cholinesterase activity has 

been proposed in the cholinergic hypothesis as alternative to correct cholinergic system deficits 

and cells loss by promoting the survival of ACh in the synaptic cleft using cholinesterase 

inhibitors. 

One of the most used techniques for the determination of cholinesterase activity is the 

colorimetric Ellman’s assay. This method offers some advantages such as its simplicity, rapidity 

and low cost (Worek and Thiermann, 2012). The general principle is based on the 

measurement of the ability of AChE or BuChE to catalyse the hydrolysis of their analogue 
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substrates acetylthiocholine and butyrylthiocholine, generating thiocholine and acetate / butyrate 

respectively. The thiocholine then reacts with the chromogen 5,5-dithiobis-(2-nitrobenzoic acid) 

(DTNB) to produce the 5-thio-2-nitrobenzoate anion (TNB-) with a yellow colour. The intensity 

of the coloration is proportional to the quantity of substrate hydrolysed monitored at 405 nm 

absorbance. Figure 4.1 illustrates the chemical reaction taking place in the assay. 

 

The principle behind this method was adapted to determine the inhibitory effect of synthesized 

compounds on cholinesterase activity. 

4.2.1 Method and materials 

All chemicals were purchased from Sigma Aldrich. Absorbance was recorded at 405 nm using a 

Rayto 6100 microplate reader. Trizma®-Hydrochloride (2-Amino-2-(hydroxymethyl)-1,3-

propanediol hydrochloride) buffer (50 mM) was prepared, the pH adjusted to 8 with NaOH and it 

was refrigerated until use for no longer than 5 working days. The stock solution of test 

compounds were dissolved in DMSO and thereafter diluted with DMSO to five different 

concentrations ranging from 10 mM – 10 nM. The final concentration of DMSO in the working 

solution was 1%. Acetylthiocholine (15 nM) and butyrylthiocholine (15 mM) solutions were 

prepared with Tris-HCl buffer pH 8 immediately preceding the assay and protected from light by 

means of aluminum foil. Stock solutions of electric eel AChE / BuChE (12 units/ml) were 

Figure 4.1: Summary of principal chemical reactions taking place in the colorimetric method of 

determination of cholinesterase activity using Ellman’s assay (Worek and Thiermann, 2012). 
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prepared and 20 µl were aliquoted in 2 ml Eppendorf tubes and stored at – 60 ⁰C. Each working 

day, a suitable amount of stock solution 12 units/ml were defrosted and diluted with Tris-HCl 

buffer to a working concentration of 0.12 units/ml containing 0.1% of Bovine Serum Albumin 

(BSA).  

The in vitro assay was carried on as follows: Into each Eppendorf tube was pipetted 148 µl of the 

1.5 mM DTNB solution and to this was added 50 µl of diluted enzyme 0.12 Unit/ml (AChE / 

BuChE) and 2 µl of the corresponding test compound / DMSO for the blank / reference 

compounds. The mixture was vortexed vigorously before being transferred into a 96 well plate 

and incubated for 10 minutes at 37 ºC. 30 µl of the substrate, acetyl / butyrylthiocholine iodide 

(15 mM) was added using a multipipette and it was mixed by pipetting up and down. The plate 

was returned into the incubator for 20-30 minutes. Afterwards it was placed in the microplate 

reader to determine the absorbance at 405 nm. For the blank, 2 µl of DMSO was used in place of 

test compounds and all other parameters were kept the same. Donepezil and tacrine were used as 

reference compounds for the acetylcholinesterase and butyrylcholinesterase assay respectively. 

The procedure is summarized in the Figure 4.2. During incubation of test compounds with 

AChE / BuChE, interaction occurs that determines, in the second incubation time, the 

concentration of free enzymes available to catalyse hydrolysis of substrates (acetyl / 

butyrylcholine), liberating thiocholine, which further reacts with DNTB to produce yellow 

colour TNB- (optical density, 405 nm). The intensity of the yellow colour is proportional to 

substrate hydrolysed.  

The percentage inhibition was obtained by subtracting the absorbance of the blank from the 

absorbance of test compounds at each concentration, divided by the absorbance of the blank x 

100 ((Absorbance blank - Absorbance test compounds) / absorbance blank x 100). Each 

concentration was run in triplicate.  

 

 

 

 

 

http://etd.uwc.ac.za/



CHAPTER 4 BIOLOGICAL ASSAY 

55 

 

 

4.2.2 Results and Discussion 

4.2.2.1 Anticholinesterase assay 

Five different concentrations of test compounds were run in triplicate.  The percentage inhibition 

was calculated from the absorbance values using Microsoft Excel 13 and expressed as mean and 

standard deviation (SD). The IC50 was determined by non-linear regression using Graphpad 

Prism® version 6.5 by plotting the Log of concentrations of test compounds versus percentage 

inhibition of cholinesterase (AChE / BuChE). IC50 is defined as the concentration of test 

compounds required to half the activity of cholinesterase and is useful for comparing the potency 

of test compounds to each other and to the control. Figure 4.3 and Figure 4.4  represent the 

typical graphs of non-linear regression curve obtained by plotting log concentration of test 

compounds versus percentages inhibition.  

4.2.2.1.1 AChE inhibition assay 

Biological evaluation results of AChE inhibitory ability of synthesized compounds are expressed 

in terms of IC50 (Figure 4.3). 

The tacrine hybrid compounds showed moderate to high AChE inhibitory activities comparable 

or better than their reference compounds donepezil and tacrine. Compounds 16 displayed no 

Figure 4.2: Simplified procedure of determination of inhibitory effect of synthesized compounds using 

Ellman’s method. 
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inhibitory activity against AChE. Though tryptoline is not known to have AChE inhibitory 

activity, it is possible that the short linker chain length (C2 carbon) limited the flexibility of the 

pharmacophore (tryptoline moieties) and prevented the dimer from adopting a stable 

conformation for effective activity. This scenario is slightly different from 8a where the 2 carbon 

linker chain length is extended by the amide bond. Compounds 8d and 8e with 6 and 8 carbon 

linker chain lengths respectively display higher activities than 8a, 8b and 8c with 2, 3 and 4 

carbon linker chain lengths. Compound 14 with the 7 carbon linker exhibited the highest activity 

and this is consolidated by the modelling study that clearly illustrate the interaction of the two 

pharmacophore moieties (tacrine and tryptoline) with Trp84 and Trp279, which is crucial for 

AChE activity. It can be deduced from this observation that, hybrids with longer linker chain 

lengths have increased AChE inhibitory activities compared to the shorter ones. This is in line 

with predictions from the modelling study and also correlates well with other studies described in 

the literature (Simone et al., 2014). 

The idea of varying linker chain length seeks to assign to the two linked pharmacophore units, 

the ability to span the PAS (important for attraction of ACh) and CAS (necessary for the 

hydrolysis of ACh) of AChE, and obtain the appropriate orientation that would enable them to 

interact with crucial amino acids in the active site, generating better activities. As confirmed by 

these results, shorter linker chain lengths (less than 5 carbons) are less favourable for this. 
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4.2.2.1.2 BuChE inhibitory assay 

Biological evaluation results of BuChE inhibitory ability of synthesized compounds are included 

in Figure 4.4. These synthesized compounds showed moderate to high BuChE inhibitory 

activities comparable or higher than their reference compound tacrine. Compound 8d, 8e and 14 

with 6, 8 and 7 carbon linker chain lengths respectively tend to display higher activities than 8a, 

8b, and 8c with 2, 3 and 4 carbons linker chain lengths. It can be deduced from this observation 

that hybrids with longer linker chain lengths also seem to exhibit increased BuChE inhibitory 

activities compared to the shorter ones. 

 

   

  
 

Figure 4.3: Graphs showing the inhibitory activity of synthesized compounds against AChE in terms of 

IC50 (compounds 8a-e and 14). The IC50 value was calculated using the equation; Log IC50 = X (X is the 

numerical value of LogIC50 determined graphically or generated automatically by graph prism 6 as 

equivalent of the X coordinate of 50% activity on the X axis). The blue graph is the positive control (PC). 
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This similarity of interaction of synthesized compounds and target proteins (AChE / BuChE) is 

consistent with the similarity of the topology of their active sites. Compounds 8d, 8e and 14 

exhibited BuChE inhibitor activity almost 4 fold, 3 fold and 4 fold higher than tacrine. All the 

synthesized compounds showed higher inhibitory activity for BuChE than AChE. This might be 

the result of the higher affinity of synthesized compounds to BuChE. It has been demonstrated 

that the two proteins share 65% amino acid sequence similarity and the 35% difference in their 

amino sequence confer to BuChE the ability to accommodate bulkier substrates than AChE 

(Nicolet et al., 2003). 

The difference in amino acid sequence of AChE and BuChE might prove to be a challenge in 

effects to design a 100% non-selective cholinesterase inhibitor. The goal of the 

anticholinesterase assay was to discover new dual inhibitors of cholinesterase since both proteins 

are believed to contribute, to different degrees, to the depletion of ACh levels in AD brain. Based 

 

 

 

   

   
Figure 4.4: Graphs showing the inhibitory activity of synthesized compounds against BuChE in terms of 

IC50 (compounds 8a-e, 14 and 16). 
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on this observation, selective inhibitors could be less effective as therapeutic options. The 

synthesized compounds showed different selectivity index as can be seen in Table 4-1.  

Compounds MW  

(g / mol) 

AChE  

IC50 (nM) 

BuChE  

IC50 (nM) 

AChE / BuChE  

(SI) 

Log P 

8a 473.6 1530 128.82 11.87 5.98 

8b 487.6 1530 12.58 121.62 6.31 

8c 501.7 2200 11.22 196.07 6.70 

8d 529.7 49.31 4.74 10.40 7.57 

8e 557.8 77.62 5.62 13.81 8.63 

14 466.66 17.37 3.16 5.49 8.02 

16 370.49 0 1698.24 - 4.21 

Tacrine - nd 14.12 nd - 

Donepezil - 220 nd nd - 

Compounds 8d, 8e and 14 showed relatively low SI with inhibition of both enzymes at nano 

molar concentration, which could make them suitable as dual inhibitors of cholinesterase. 

Compounds 8a-8c inhibited AChE in the micro molar range and would be less effective as dual 

ChE inhibitors. However, they were selective inhibitor of BuChE.  

4.2.3 Antioxidant assay 

4.2.3.1 Introduction 

Free radicals are compounds that contain one or more unpaired electrons (superoxide free radical 

(O2 ), hydroxyl free radical (.OH). etc.) and are generally highly reactive. They are produced in 

the body by diverse pathways. Their physiological concentration has been demonstrated to 

protect cells from foreign substances by degradating them and it also dysplay anti-microbial 

Table 4-1: Selectivity Index (SI) of synthesized compounds and their Log P values and MW 

(obtained from ACD / Chemsketch software), nd (not determined). 
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properties (Nimse and Pal, 2015). Neurotoxic conditions such as accumulation of toxic Aβ in 

AD can cause high production of free radicals that overwhelm endogenous antioxidant activities 

(Vitamin C, Vitamin E, superoxide dismutase etc.) responsible of maintaining the level of free 

radicals in the physiological concentration. Inadequate neutralization of excess free radicals can 

attack biological molecules (proteins , DNA and lipids), leading to oxidative stress. Therefore, 

enhancing the cellular defence against oxidative stress based on exogenous antioxidants might 

offer positive therapeutic value. 

Multiple methods are used to assess the free radical scavenging or antioxidant effect of given 

substances. The most frequently used are the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) 

(ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. They offer similar advantages like 

accessibiliy, cheapness and simplicity (Shalaby and Shanab, 2013). DPPH was chosen for the 

evaluation of free radical scavenging properties of the synthesized compounds. The characteristic 

absorbance of DPPH• is at 517 nm. The principle of DPPH assay consists of monitoring whether 

the decrease of the absorbance of the DPPH• (purple) is reduced in presence of a free radical 

scavenging substance to generate DPPH-H (light yellow) (Shalaby and Shanab, 2013) as 

shown in Figure 4.5.  

4.2.3.2 Method and materials 

All chemicals were purchased from Sigma Aldrich. DPPH• methanolic solution (0.12 mM) was 

prepared the day of the assay and was protected from light by means of aliminium foil. Four 

different concentrations (10 mM, 1 mM, 0.1 mM and 0.01 mM) of test compounds from the 

Ellman’s assay were used. Trolox was used as positive control and the required amount for four 

different concentrations were disolved in the same solvent (DMSO) as test compounds. 180 µl 

aliquots of methanolic solution of DPPH• were placed in a 96 well microplate using a 

multiplepipette. 20 µl of the test compounds, positive control or DMSO for the blank were added 

to the corresponding wells and it was incubated in a dark at room temperature for 30 minutes. 

The absorbance was then measured at 517 nm (POLARstar omega spectrophotometer (Figure 

4.5).  
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Each concentration was run in triplicate. The percentage activity was calculated using the 

following equation: (absorbance of blank – absorbance of test compounds) / absorbance of blank 

× 100). Data analysis and, further calculations, graphs and IC50 determination were done using 

GraphPad Prism 6.5 software as discussed in the results session. 

4.2.3.3 Results and discussions 

Biological evaluation results for free radical scavenging ability of synthesized compounds were 

expressed in terms of IC50 values (Figure 4.6). 

Trolox has well documented antioxidant properties and is regularly used as reference compound 

in investigating antioxidant or free radical scavenging activity of new drugs. As can be seen in 

Figure 4.6, the conjugation of trolox to tacrine through varying linker chain lengths did not 

affect its ability to scavenge free radicals.  

All the newly synthesized compounds exhibited activity with IC50 value in the same range as that 

of trolox (17.57 µM), 11.48 µM (8b), 14.38 µM (8c), 12.67 µM (8d), and 14.96 µM (8e). The 

exception is compound 8a (46.23 µM) which showed free radical scavenging activity of about 

half that of trolox. Compounds 14 and 16 exhibited lower free radical scavenging activity with 

IC50 values of 129.41 µM and 125.24 µM. This can be expected as the trolox moiety is replaced 

by the less potent free radical scavenging tryptoline moiety. 

Figure 4.5: Schematic representation of the principle reaction of DPPH assay. 
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4.3 Conclusion 

All designed, synthesized and tested compounds showed inhibitory activities against AChE, 

BuChE and antioxidant activities that correlated well with predicted and modelling results. The 

most potent are compounds 8d and 8e and 14. Compounds 8d and 8e demonstrated good activity 

in all three assays with acceptable SI towards AChE / BuChE. Compound 14 showed the best 

dual cholinesterase inhibitor activity but with lower free radical scavenging activity. As 

illustrated in the bar graph in Figure 4.7, 8d and 8e are the best lead molecules from this study 

as they demonstrated the best ability to inhibit AChE, BuChE and free radical scavenging 

activity with IC50 values lower than their reference compounds and also good non-selective 

cholinesterase inhibitory activity. Compounds 14 showed promising activity for ChE inhibition 

and these hybrid molecules in this series could also be further explored. 

Figure 4.6: Graphs showing the free radical scavenging activity of synthesized compounds in terms of IC50 

(concentrations in µM range of test compounds 8a-e, 14 and 16 required to scavenge 50 % free radical of 

DPPH). 
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Figure 4.7: Bar graph showing comparative study of IC50 value depicting the multifunctional ability 

of synthesized compounds. Cholinesterase assay IC50 (nM); Free radical scavenging activity assay 

IC50 (µM). 
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CHAPTER 5.                                                                                                                        

CONCLUSION 

5.1 Introduction 

Though the mystery that surrounds the cause of AD is not totally uncovered, accumulation of 

Aβ, dysregulation of tau protein phosphorylation, free radical production and defects in the 

cholinergic system are believed to be the main factors that trigger the cascade of neurotoxic 

events causing the death of neuronal cells, which leads to characteristic symptoms of AD. 

Evidence gathered from the multifactorial aspects of the pathogenesis of AD explains the 

limitation of the current treatment, which are drugs designed to modulate single target protein 

activity. This traditional approach is no longer deemed appropriate to treat this complex disease. 

Conversely, the MTDLs concept, which is based on the design of a bioactive molecule that can 

modulate multiple biological pathways, is increasingly believed to be a viable alternative to 

address the problem. This concept can be exemplified by molecules that have already been 

developed such as the bis-7-tacrine dimer, galantamine-memantine, the bivalent β-carboline 

hybrid or phenylthiazole-tacrine hybrids which have shown encouraging pharmacological 

profiles (Simone et al., 2014; Simoni et al., 2012).  

This study set out to design and synthesize multifunctional drug candidates and assess their 

biological activity for possible AD therapy. All desired structures (hybrids) were designed from 

lead structures (tacrine, trolox and tryptoline) to obtain dual binders of ChE and thus 

multifunctional properties.  

5.2 Rationalization of the study 

The molecular recognition (docking) study was performed to confirm possible interaction with 

TcAChE using MOE. From this study, it was predicted that pharmacophores linked by less than 

five carbons, in terms of chain length, would have lower ChE inhibitory activity compared those 

with more than five carbon chain lengths. This is in line with published literature (Savini et al., 

2003; Lan et al., 2014).  
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5.3 Synthesis and characterization  

The yield of the synthesized compounds were low due to non-optimized methods used. New 

synthetic methods thus need to be developed with the aim to improve the yield, reduce reaction 

time and produce relatively pure product. The synthesized final products were characterized by 

physical methods (IR, MP, NMR and MS). The investigation of multifunctional ability of the 

synthesized tacrine-trolox and tacrine-tryptoline hybrids in the case of this study was limited to 

the screening of their inhibitory effect on cholinesterases (AChE / BuChE) and their ability to 

scavenge free radicals. 

5.4 Cholinesterase and free radical scavenging assay 

The ability of the synthesized compounds to inhibit cholinesterase and to scavenge free radicals 

were tested using Ellman’s method and the DPPH. assay respectively. Compounds 8d and 8e 

which exhibited good inhibition of cholinesterase and good free radical scavenging activity with 

IC50 values better than their reference compounds (tacrine, donepezil and trolox) (Table 5-1) 

were identified. These compounds also displayed reasonable non-selectivity toward AChE and 

BuChE, which is essential in correcting cholinergic system defects as the basis of symptomatic 

treatment. Compounds 8a, 8b and 8c also showed good BuChE activity, good free radical 

scavenging activity and reasonable AChE activity. Their selectivity index however impairs their 

dual cholinesterase inhibitors potency, but they still appear as to be promising lead compounds 

endowed with multifunctional biological activity regarding the target proteins involved in the 

aetiology of AD. Compound 14 had the best dual cholinesterase inhibitory activity with IC50 

values 17.37 and 3.16 nM for AChE and BuChE respectively, but relatively poor free radical 

scavenging activity IC50 value 129.41 µM. 
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Table 5-1: Summary of IC50 values of promising multi-target agents compared to references 

compounds (nd: not determined). 

Compounds / 

references 

AChE IC50 (nM) BuChE IC50 (nM) Free radical 

scavenging 

activity IC50 (µM) 

8d 49.31 4.74 12.67 

8e 77.62 5.62 14.96 

14 17.37 3.16 129.41 

Donepezil 220 nd nd 

Tacrine nd 14.12 nd 

Trolox nd nd 17.57 

These compounds further show good interaction with PAS of AChE in docking studies and this 

might be indicative of the ability of 8a-d and 14 to prevent cholinesterase induced Aβ 

aggregation. Compound 16 showed no AChE inhibitory activity, poor BuChE IC50 1698.24 nM 

compared to tacrine IC50 14.12 nM and poor free radical scavenging activity IC50 125.89 µM 

compared to trolox IC50 17.57 µM.  

5.5 Future works and recommendations 

The investigation of cholinesterase and free radical scavenging activity of the newly synthesized 

compounds is part of an ongoing project. Our next goal is to assess the biological activity of the 

newly developed hybrids on other pathways linked to AD progression. Included are ChE induced 

Aβ aggregation associated with interaction of toxic Aβ with the PAS of ChE; MAO; NMDA; 

anti-apoptotic activity and BACE activity. Furthermore, to perform the kinetics studies which are 

important in defining the type of inhibition and the mechanism of action of the synthesized 

compounds. Tacrine-tryptoline hybrids have shown the best dual cholinesterase inhibition and 

expanding the library by conjugating tacrine to other β-carboline structures (Harmane, 

norharmane, harmine, harmaline) could lead to the discovery of new multifunctional agents for 

AD therapy.  
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5.6 Conclusion 

In this study, novel multi-target anti-Alzheimer’s drugs were designed, synthesized and 

evaluated for ChE inhibition and free radical scavenging activity. All the hybrid compounds 

synthesized and tested have shown inhibitory activities against AChE, BuChE and free radical 

scavenging activities, some even more than their reference compounds. Furthermore, new 

hybrids designed for ChE dual binder capability should have spacers of at least five carbons to 

achieve good ChE inhibitory activity. This result is supported and confirmed by recently 

published work wherein nonhepatoxicity of tacrine-trolox hybrids has been demonstrated as 

expected (Nepovimova et al., 2015). Compounds 8d and 8e showed AChE, BuChE and free 

radical scavenging activity with IC50 values lower than their reference compounds donepezil, 

tacrine and trolox respectively. Therefore, 8d and 8e were identified as suitable candidates for 

further investigation. The bioavailability and the ability of the newly synthesized compounds to 

cross the BBB were analysed based on criteria stipulated by Lipinski rule of five (Keller, 

Pichota, and Yin, 2006). Only compounds 8d and 8e violate more than one of the rule with a 

molecular weight greater than 500 g/mol and Log P value greater than 5 but should still be able 

to cross the BBB. 
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ANNEXURE: 

                       SPECTRAL DATA 1HNMR, 13C, MS AND IR 
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Spectrum 1: 6-Hydroxy-2,5,7,8-tetramethyl-N-{2-[(1,2,3,4-tetrahydroacridin-9-yl)amino]ethyl}-3,4-dihydro-2H-1-benzopyran-2-

carboxamide (8a). 

Spectrum 1a:1H-NMR 
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Spectrum 1b: 13C 
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Spectrum 1c: MS 
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Spectrum 1d: IR 
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Spectrum 2: 6-Hydroxy-2,5,7,8-tetramethyl-N-{3-[(1,2,3,4-tetrahydroacridin-9-yl)amino]propyl}-3,4-dihydro-2H-1-benzopyran-2-

carboxamide (8b). 

Spectrum 2a: 1H NMR 
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Spectrum 2b: 13C NMR 
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Spectrum 2c: MS 
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Spectrum 2d: IR 
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Spectrum 3: 6-Hydroxy-2,5,7,8-tetramethyl-N-{4-[(1,2,3,4-tetrahydroacridin-9-yl)amino]butyl}-3,4-dihydro-2H-1-benzopyran-2-

carboxamide (8c). 

Spectrum 3a: 1H NMR 
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Spectrum 3b: 13C NMR 
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Spectrum 3c: MS 
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Spectrum 3d: IR 
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Spectrum 4: 6-Hydroxy-2,5,7,8-tetramethyl-N-{6-[(1,2,3,4-tetrahydroacridin- 9-yl)amino]hexyl}-3,4-dihydro-2H-1-benzopyran-2-

carboxamide (8d). 

Spectrum 4a: 1H NMR 
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Spectrum 4b: 13C NMR 
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Spectrum 4c: MS 
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Spectrum 4d: IR 
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Spectrum 5: 6-Hydroxy-2,5,7,8-tetramethyl-N-{8-[(1,2,3,4-tetrahydroacridin- 9-yl)amino]octyl}-3,4-dihydro-2H-1-benzopyran-2-

carboxamide (8e). 

Spectrum 5a: 1H NMR 
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Spectrum 5b: 13C NMR 
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Spectrum 5c: MS 
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Spectrum 5d: IR 
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Spectrum 6: N-(7-(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)heptyl)-1,2,3,4-tetrahydroacridin-9-amine (14). 

Spectrum 6a: 1H NMR 
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Spectrum 6b: 13C NMR 
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Spectrum 6c: MS 
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Spectrum 6d: IR 
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Spectrum 7: 1,2-bis(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)ethane (16). 

Spectrum 7a: 1H NMR 
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Spectrum 7b: 13C NMR 
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Spectrum 7c: MS 
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Spectrum 7d: IR 
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