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ABSTRACT 

My Thesis aimed at expanding the current knowledge on how variations of temperature 

characteristics including the possible existence of urban heat islands (UHI) over urban areas 

of Kenya could be influencing rainfall characteristics, and to examine if the stationary 

extreme value distributionis still suitable for modeling urban storm designs in view of the 

global climate change. My hypothesis was that the floodingoccurring frequently in major 

urban areas of Kenya are due to increased rainfall caused by global climate change, and the 

urban heat island (UHI) effect. To put this perception into perspective, temperature and 

rainfall characteristics and their inter-relationships, of four of the major urban areas in Kenya 

namely, Nairobi, Mombasa, Kisumu, and Nakuru, were investigated. I obtained data from 

meteorological stations in and around each urban area, which had at least thirty (30) years of 

continuous monthly (or daily) temperatures and rainfall values, from the Kenya 

Meteorological Department. I checked the datasets for quality and missing values and 

adjusted where necessary before commencing with analysis. I sourced other supporting 

global dataset from various websites’ data banks.I used various methods of data analysis 

which included; i) exploratory data analysis techniques such as the continuous wavelet 

transform (CWT), geographical information system (GIS) maps, and visual time series plots. 

In particular and unique in my Thesis was the use of the CWT method as a diagnostic tool to 

examine non-stationaritiesand variability of temperature and rainfall time series. The use of 

land surface temperature data to investigate UHIs was also adopted to supplement the air 

temperature; ii) statistical methodsincluding parametric (linear and quantile regression) and 

non-parametric (Mann-Kendal) trend tests, Pearson’s correlation analysis and the extreme 

value analysis. Statistical hypotheses were stated and testedat the 5% level of significance. 

Particularly unique in the statistical analysis is the use of the quantile regression which has 

not been used to investigate trends of the highly variable rainfall of the equatorial East 
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African (EEA) region, and the generalized extreme value analysis (GEV) analysis which has 

virtually no published literature for the EEA rainfall extreme value analysis. Most of the 

analysis was carried out in the R environment. I established that; i) there is warming due to 

urbanization as well as global warming within and in the neighbourhood of each of the four 

urban areas especially for the night-time temperature; ii) there was generally no significant 

change over time of rainfall atthe monthly, seasonal and annual time scales; however, there 

were few exceptions where stations close to urban areas, had trends of monthly and seasonal 

rainfall. In particularly, I observed thatJune-July-August (JJA) seasonal rainfall was 

decreasing over the coastal region and increasing over Nairobi.On further analysis of inter-

relationships between rainfall and temperature I established fairly strong statistical 

relationship been rainfall and temperature.For instance, I found that JJA seasonal rainfall in 

Nairobi at the Dagoretti corner station was strongly associated with JJA temperature of the 

stations to the northeast of Mombasa town (R2~0.7, p-value 0.001). Such relationships were 

attributed to the changes in local and regional thermal circulations resulting from enhanced 

temperatures;iii) Urban heat islands (UHIs) exist in Nairobi and Mombasa which were 

observable more clearly from the land surface temperature (LST). The UHIs are strongest 

during the dry season (DJF). For instance,Nairobi urban area hasa strong day-time and weak 

night-time UHI,particularly within the CBD and heavily built up areas, while Mombasa has a 

weaker UHI than Nairobi during both daytime and nighttime. However, the UHIsin both 

cities are more distinguishable in the night-time than in the day-time LST. I found no 

evidence in general, thaturbanization and/or UHI have directly influenced seasonal rainfall 

within Mombasabut there was evidence of changes downwind of Nairobi and;iv) lastly, I 

carried out the extreme value analysis of rainfall under stationary and non-stationary 

conditions using the generalized extreme value (GEV) method and established that stationary 

GEV modelsof the Gumbel type were applicable to produce design storms for each town.The 
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implications of these outcomes to urban stormwater management in Kenya are that; a) 

changes in temperatures due to global warming and UHI effect in urban areasare influencing 

(positive or negative) changes in rainfall characteristics, which will affect urban hydrology; 

b) the day-time UHI effect especially over Nairobi, has the potential to strengthen the 

convective activities in urban areasand their downwind neighborhoods, and in the presence of 

moisture could intensify the rainfall storms with consequences of urban flooding. Thus there 

is need to extend this study to investigate the effects of UHI and global warming on storm 

intensities; iii) although stationary GEV models are adequate in producing design storms, 

there is need to understand the non-stationarity of rainfall, and the influence of climate modes 

of variability on the occurrence of extreme rainfall events in the EEA region,since such 

events will cause flooding even when urban stormwater management systems are adequately 

put in place.  
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1 CHAPTER 1: INTRODUCTION 

Activities of a rapidly increasing and industrializing human population have added significant 

quantities of greenhouse gases in the atmosphere. The increased greenhouse gases have 

affected the radiative balance of the earth’s atmosphere resulting in climate change. 

According to the Intergovernmental Panel on Climate Change (IPCC)(Stocker, 2013),there is 

evidence of anincreasein atmospheric and sea surface temperatures which is likely to 

intensify the hydrological cycle, leading to increased intensity and frequency of rainfall. 

Urban areas are faced with special climatic conditions owing to the enhanced temperatures 

caused by the Urban Heat Island (UHI) effect that may contribute to increasing rainfall 

intensities (Wang, et al., 2008; Rosenzweig, et al., 2011). Regional studies have indicated 

changes in temperature and rainfall patterns in several parts of the world (New, et al., 2006; 

Skansi, et al., 2013; Omondi, et al., 2014). However, these regional studies have coarse 

spatial resolution and the results may not be applicable at local (urban) scale, such as 

determining possible changes in both frequencies and magnitude of rainfall that is likely to 

impact on urban stormwater management systems.  

 

Studies that have investigated possible changes of spatial and temporal characteristics of 

temperature and rainfall at the local scale over the equatorial east African (EEA) region are 

very few. Omondi, et al. (2014) analysed daily temperature and rainfall extreme indices over 

the Greater Horn of Africa (GHA) and the results indicated a significant decreasing trend in 

total rainfall during wet days  (for rainfall greater than 1mm/day), increasing warm extremes 

and decreasing cold extremes in temperature. While Kenya is a part of the GHA, only three 

stations were included in the study and one method of change detection was used which may 

not give conclusive evidence for change as suggested by Sonali and Kumar, 

(2013).Moreover, indices of extreme temperature and rainfall were the only variables usedin 
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this study.  Furthermore, the study by Omondi et al. (2014) did not  investigate the possible 

existence of the urban heat island effect within the fast growing cities of the EEA region and 

its possible impacts on rainfall characteristic. In my Thesis, I sought to provide animproved 

understanding of how possible changes in temperature and rainfall characteristics within and 

around urban areas of the equatorial region may influenceextreme rainfall events considered 

important for urban stormwater management. A brief discussion of the research gaps that 

exist in this regard is presented below. 

 

1.1 Temperature variability and change 

Climate change studies have reported global warming in some parts of the world. Skansi, et 

al. (2013) reported warming across South America since the mid-twentieth century.Jhajharia 

and Singh, (2010) analysed maximum, minimum and mean temperatures over northeast India 

and found no trends in winter and pre-monsoon seasons and increasing trends in both 

minimum and maximum temperatures in the monsoon and post monsoon seasons.Sonali and 

Kumar (2013) found increasing trends of minimum temperatures over the whole of India. 

Kruger and Sekele, (2013) using climate indices ofdaily temperatureextremes,found 

increasing trends of warm extremes and decreasing trends of cold extremes over South 

Africa, while Omondi, et al. (2014) analysed daily temperature extremes over the Greater 

Horn of Africa (GHA) and New, et al. (2006) over the southern and western African region; 

the results from both studies indicate increasing trends of surface temperatures extremes. 

These studies indicate a general increase in regional surface temperatures which was also 

reported in global climate studies by the IPCC (Stoker, 2013).  

 

However, regional studies of temperature variability and changes at small spatial scales and 

in the EEA region have not been investigated especially for the rapidly growing urban areas 
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of this region. Different methods of change detection in urban and rural temperature have not 

been employed to explore thepossible influence of urbanization on temperature. I, therefore, 

endeavoured to examine temperature variations at small spatial scales in and around urban 

areas of Kenya using different methods of data exploration and trend analysis in order to 

provide new knowledge on the variability and possiblechanges in temperature at various time 

scales.Any changing patterns of temperature characteristics at different time scales in and 

around the major urban areas of Kenya,was then used to investigate their influence on rainfall 

characteristics, that may in turn influencestormwatergeneration. 

 

1.2 Rainfall variability and change 

Rainfall is the main input in the terrestrial hydrologic system and its variability has a direct 

impact on urban stormwater systems. Noticeable influence of human activities on rainfall 

patterns has been reported in some parts of the world especially in urban areas.For example, 

Marengo et al. (2013) foundincrease in total and heavy rainfall and decrease in light rains 

over Sào Paulo metropolitan area (Brazil) and suggested that effects of urbanization are 

significant. Some studies on rainfall distribution over the eastern African region have shown 

that there is a decreasing trend in annual rainfall amounts (Omondi, et al., 2014). However 

(Opija et al. (2007) indicated that the Nairobi (Kenya) urban area showed increasing trends 

of high-intensity rainfalland attributed it to the effects urbanization.  Rainfall over the 

equatorial region is seasonal and highly variable. Kenya has two main rainy seasons; the 

March to May (MAM) season locally referred to as the ‘long rain season’, and the ‘short 

rain season’ from October to December (OND). The onset and cessation of each 

seasoncoincide with the arrival and withdrawal respectively of the Inter-Tropical 

Convergence zone (ITCZ) which is mainly responsible for the high inter-annual and intra-

seasonal variability (Okoola, 1998). The spatial and temporal variability of seasonal rainfall 
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in EEA region has mainly been linked to changes in the sea surface temperatures (SSTs) of 

the Indian and Atlantic oceans (Mukabana and Pielkle, 1996), the El-Nino Southern 

Oscillation (ENSO) and the Indian Ocean Dipole (IOD) anomalies (Indeje et al., 2000; Clark 

et al., 2002; Black, et al., 2003; Nicholson, 2014;Nicholson, 2015). Decadal variability of 

the East African rainfall has been established and linked to different modes of SST 

anomalies over the Indian and Atlantic oceans (Omondi, et al., 2012; Omondi, et al.,2013). 

 

A comparative study of rainfall variability and possible changes at various temporal scales 

over urban areas and their rural surroundings and especially in relation to urban storm 

designs has not yet been carried out in the EEA region.The urban areas of this region have 

been expanding rapidly over the last few decades (Mundia and Aniya, 2006). Furthermore, 

rigorous methods of change detection at small spatial scales have not been employed in the 

Kenyan rainfall although reported cases of increased damage by urban floods have been on 

the rise. More details on rainfall temporal and spatial variability including change detection 

methods are discussed in Chapter 3.  

 

1.3 The urban heat island (UHI), and temperature-rainfall relationships 

Most of the regional studies over the EEA region have not shown if there are differences in 

trends and variabilities of temperatures and rainfall between urban and rural areas. Studies of 

UHI effects over EEAurban areas are few. For example Opija and Mukabana, (2004) 

examined the effects of urbanization on the water budget over Nairobi, and indicated that the 

presence of the city has influence on the water budget.  Opija et al. (2007) further indicated 

that the urban effects are modifying the heat budget over the city of Nairobi. Apart from the 

likely increase in surface temperatures resulting from global warming in a given region, the 

development of large cities creates UHIs which may further influence local climate and 
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especially rainfall characteristics.  UHI is an urban area which is significantly warmer than its 

surrounding rural areas. The ‘island’ designation is due to the circular isothermal patterns of 

the near-surface air temperature surrounded by a ‘sea’ of the cooler area (Oke, 1995). The 

UHI has been studied widely especially for the megacities of the world (Peng, et al., 2011; 

Vardoulaski, et al., 2013; Ahmed, et al., 2014). The intensity of the UHI is mainly measured 

as the difference between thesurface temperature of the urban area and a neighbouring rural 

area (Oke, 1995; Rosenberg, et al., 2010).  The UHI intensity (UHII) in a city has been found 

to be apparent when winds are weak and skies are clear.  For instance, Murphy, et al. (2011) 

computed urban heat island intensities for San Juan metropolitan area (Puerto Rico) using 

data collected by mobile and fixed stations for various seasons and different spatial locations; 

Vardoulaski, et al. (2013) studied UHI inAgrinio city in Greece that has high summer 

temperature using a network of air sensors located at different locations in the city. Both 

studies indicated that night-time UHI was on average stronger than day-time UHI. Studies 

have also shown that UHI is a phenomenon that is common regardless of the climatic region 

and is manifested more strongly in winter than summer (Peng, et al., 2011) for temperate 

regions, and more strongly during dry seasons than wet seasons in tropical regions.  

 

The urban UHI effect is likely to affect urban stormwatergeneration through enhancing 

convective activities. Studies have shown that the presence of the UHI enhances urban 

rainfall. According to Bornstein and Lin, (2000), under calm regional wind flow, a relatively 

low pressure may be created over the city by the anomalously high temperature of the UHI 

and cooler air rushes into the urban area causing warm air to rise. This vertical motion can 

create convective thunderstorms that may produce rainfall in the city and mostly at night 

when the UHI is strongest. On the other hand, when the regional flow is unstable, winds tend 

to diverge around the city because of increased surface roughness thus creating maximum 
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precipitation on the lateral and downwind edges of the city with minimum precipitation 

located over the urban area (Shepherd, 2005). Other factors that may induce changes in the 

natural precipitation in an urban environment include modification of microphysical and 

dynamical processes of passing clouds through the addition of condensation nuclei from 

industrial pollutants, increase in low level mechanical turbulence from urban obstructions and 

modification of low level atmospheric moisture content by additions of industrially generated 

plumes from cooling towers (Huff and Changnon, 1973; Stewart and Oke, 2012).  Studies 

that examine possible relationships between enhanced urban surface temperatures (resulting 

from UHI effect and/or global warming) and urban rainfall characteristics in the African 

region are few (Efe and Eyefia, 2014). Opija, et al. (2007) used dynamical simulations and 

suggested apossible influence of enhanced urban temperatures on convective activities over 

Nairobi (Kenya) although the study did not establish the existence of UHI. Studies that 

improve the understanding of the UHI, and the interaction between the enhanced urban 

temperatures and urban rainfall characteristics in the rapidly growing cities of the equatorial 

African region are lacking. My Thesis, therefore,forms a basis upon which such 

understanding is improved and new knowledge provided.  

 

1.4 Change detection and the extreme value analysis 

Changes in temperature and rainfall characteristics due to climate and other factors are not 

consistent even at regional or country levels (New et al., 2006; Mazvimavi, 2010; Murphy 

and Elis, 2014; Omondi, et al., 2014). Furthermore, information of any changes at small 

spatial scales is important for water resources management particularly for urban catchments 

where even small changes in rainfall intensity or duration of storms may result in floods due 

to thehigh proportion of imperviousness (Jacobson, 2011). Different approaches to change 

detection are therefore needed particularly, in the equatorial region where rainfall is highly 
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variable and with multi-temporal cycles (Omondi et al., 2012; Gitau, et al., 2014). In this 

study in order to improve the understanding of thetemporal and spatial variability of 

temperature and rainfall respectively, various methods of variability and change detection 

were employed which include parametric and non-parametric statistical methods, and the 

wavelet transform spectral analysis method.  A wavelet transformis an approach being 

applied in change detection to overcome some of the challenges of conventional parametric 

and non-parametric methods that are particularly sensitive to temporal cycles. The wavelet 

analysis method extracts the relevant information from a time series by transforming it from 

one variable (time) function to a two variables (time and scale) function. Several studies have 

used wavelet spectral based analysis on climatic and hydrologic data (Nakken, 1999; Prokoph 

and Patterson, 2004; Adamowski, et al., 2013; Adamowski, et al., 2013) and have found this 

method to be valuable in investigating variability and changes in time series that have inter-

annual, inter-decadal and other temporal cycles which would impede the detection of trends. 

In my Thesis, the wavelet analysis was particularly used as a diagnostic tool to assess 

variability before change detection analysis was done. The use of wavelet spectral analysis, 

together with other conventional methods of trend detection in meteorological data provides 

stronger evidence of change and helps understand the nature of the underlying factors causing 

such changes. 

 

Significant changes in rainfall characteristics in urban areas may influence magnitude and 

severity of flooding (Biggs and Atkinson, 2011). In most urban areas, the design of the 

drainage systems has been based on historical rainfall intensities. Changes in rainfall 

characteristics such as increasing daily intensity may result in the drainage systems being 

ineffective in controlling flooding (Milly, et al., 2008; Efstratiadis, et al., 2013). Mailhot and 

Duchesne, (2009) suggested that assumptions made during the statistical analysis of design 
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storms for urban stormwater systems should be regularly revised to integrate the changes in 

rainfall that may be brought about by climate change and other anthropogenic changes, such 

as urbanization. The starting point in the estimation of design storms is the extreme value 

analysis (EVA) of the rainfall time series (Liu et al., 2013). The extreme value theorem 

forms the basis for EVA (Coles, 2001) which uses the assumptions that a series of the 

extreme values (e.g., annual daily maximum values) is suitably long, the elements of the 

series are independent and identically distributed and that the series is stationary. However, 

there is evidence that the hydro-meteorological elements such as rainfall can be non-

stationary either due to natural climatic variability and/ or climate change (Milly et al., 2008; 

Cannon, 2010). The EVA has therefore been extended to include non-stationarity (Beguería 

et al., 2011; Gilleland et al., 2006; Gilleland et al., 2013). Studies that have examined the 

suitable extreme value models that are applicable to storm water modelling systems in 

Kenya are lacking. To reduce this knowledge gap, my Thesis examined the suitability of the 

stationary against several non-stationary models that can be used to produce design storms 

in Kenyan towns. 

 

1.5 Research questions and objectives 

This study was motivated by the need to improve the understanding of the variations of 

temperature and rainfall at spatial scales relevant to urban storm water management,and 

would form a basis for further urban hydro-climatological studies. This knowledge is lacking 

in most of the climate studies carried out in Kenya.  Hence, the study endeavored to answer 

the following questions: 

1. Are there significant changes over time in temperature and rainfall characteristics inthe 

urban and neighbouring rural areas of Kenya? 
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2. Do urban heat islands (UHI) exist in urban areasof Kenya, and if they do what are the 

characteristics of their intensities? 

3. Dochanging urban and rural (maximum and minimum) temperatures influence rainfall 

characteristics within and around the urban areas?  

4. If temperatures have changed and also affected rainfall, is the assumption of a 

stationary extreme value distribution of maximum rainfall series valid in the 

estimation of design storms for urbanstormwater management systems in Kenyan 

towns? 

 

The main aim of this study was, therefore, to improve the knowledge of the current 

understanding of variability and/or changes in temperature and rainfall characteristics in and 

around urban areas and examine if such changes have affected the stationarity of extreme 

value distribution that may affect urban stormwater management in Kenyan towns.  

 

To address the research questions and achieve the main aim of this study, specific objectives 

were addressed in Chapters 2 to 6 of the thesis and a summary of the findings given in 

chapter 7;the objectives are: 

1. To establish if there have been changes over time in temperature and rainfall 

characteristics within and in the neighborhood of the major urban areas of Kenya. 

(Chapters 2&3), 

2. To determine whether urban heat islands exist in the rapidly expanding towns within 

an equatorial climatic region (Chapter 4), 

3. To examine if changes in surface air temperature influence rainfall in the urban areas 

(Chapter 5)  
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4. To establish if the assumption of  stationary extreme value distribution model is suitable 

for describing rainfall events used for estimating storm designs in view of the possible 

effects of urban heat island and global climate change. 

 

1.6 Significance of the study 

Even as more evidence is gatheredabout climate change (Stocker, 2013), there is still limited 

information in the EEA about possible changes over time of the maximum and 

minimumtemperature and rainfall characteristics at small spatial scales needed in storm water 

management and especially within urban areas. Various studies of trends of extreme values 

over the African region indicate increasing trends in temperature but mixed trends in the 

rainfall characteristics (New, et al., 2006; Omondi et al., 2014). These studies were carried 

out over large areas (covering a number of countries) and used a limited number of stations in 

each country. For storm water management, a rigorous analysis of data from adenser network 

of meteorological stations is needed (Sonali and Kumar, 2013). Changes in temperatures and 

rainfall patterns in many parts of the world have been reported to result in increased 

frequency and intensity of weather-related hazards such as floods particularly in the urban 

areas (Skansi, et al., 2013). Enhancement of temperature through the urban heat island (UHI) 

and global warming have also been suggested to have possible enhancement of convective 

activities (Shepherd, 2005; Shepherd 2006). Although the UHI is a well-studied phenomenon 

in many parts of the world (Peng, et al., 2011; Vardoulaski, et al., 2013; Ahmed, et al., 2014), 

its existence and/or influence on hydro-climatic processes of urban areas of equatorial 

African region have not yet been fully investigated.  

 

As the atmosphere in urban areas becomes warmer due to climate change and possible UHI 

effect, and alters the hydrological cycle, changes in the amount, timing, form and intensity of 
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rainfall are likely to be witnessed (Opija, et al., 2007;Marengo, et al., 2013). These changes 

are likely to affect the systems designed to protect the quantity of storm water and hence 

affect public health and safety. Frequent news that makes headline locally and internationally 

about theserious damage of property and even loss of lives especially during seasonal rains in 

Kenya provides evidence of how vulnerable a country could be to water-related extreme 

events. For instance, there have been scores of injuries and even deaths reported in Nairobi 

and Mombasa urban areas and damages to houses and roads in the recent past following 

heavy rainfall (e.g., April 2012 , November, 2015 and April-May, 2016) (Fig 1.1). Such 

water related incidences are usually loosely attributed to climate change. There is however, 

not enough scientific evidence to support the claims of climate change or even changes in 

rainfall variability. These reports are pointers to the vulnerability of the urban environment to 

changes in rainfall characteristics and or poor urban stormwater infrastructure. Therefore, 

proper scientific documentation of rainfall variability andpossible changes in urban areas is a 

starting point to improving urban flooding. Again, thedesign storms used in the engineering 

of storm water drainage systems have been based on the assumption that rainfall 

characteristics are stationary in time. The validity of this assumption is now questionable in 

view of climate change and urban heat island effect (Milly, et al., 2008). The revision of 

many aspects of stormwater management procedures such as the design storm models can 

only be carried out if local environmental and climatic conditions are understood. Kenya in 

particular lacks studies on extreme value distribution that may be used in the development of 

urban stormwater design manuals for its towns.Hence, there is the need to explore and 

establish if the stationary statistical distributions of the extreme values that may be used to 

prepare design storms for the development of stormwater management systems in the urban 

areas of Kenya are still valid.By incorporating the changes needed in the development of the 
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design storms in urban infrastructure, other non-climatic factors influencing urban flooding 

may be effectively established. 

 

 

Figure 1.1:A photograph of a flooded road in the city of Nairobi during the long rains of March to May 
2016 (source: https://www.kenyans.co.ke/news). 

 

1.7 The study area 

Kenya lies on the equator between about 5oN, 5oS, and 34oE, 42oE (Fig 1.2). From the coast 

of the Indian Ocean, the low plains rise to the central highlands. The highlands are bisected 

by the Great Rift Valley. Kenya has a population of about 40 million people (KNBS 2010) 

and covers an area of 581,309 square kilometres. Climatologically, Kenya lies within the 

tropical equatorial climate which is greatly modified by altitude and influenced by the 

monsoon wind systems. The climate of Kenya may be broadly classified into four categories 

based on the winds and the averaged weather characteristics including: 

• the north-easterly monsoon season from December to February (DJF) characterized 

by windy, sunny and warm conditions with generally clear skies, especially in 

December and January. The prevailing winds during this season are northeast 

monsoon winds 
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• the long rain season from March to May (MAM). The prevailing winds are North-

easterlies (NE) becoming South-easterlies (SE) later in the season. The season is 

characterized by heavy stormy rains with increasing cloudiness towards the end of 

May 

• Southeast monsoon from June to September (JJAS) characterized by prevailing SE 

winds and generally cloudy with overcast days. Low temperatures are experienced 

with occasional drizzles during this period  and;  

•  the short rain season between October to December (OND), characterized by light SE 

winds changing NE towards the end of the season.  

However, the varied topography makes the climates within these seasons to vary with wetter 

conditions over the highland and the coastal region and semi-arid and arid conditions over 

parts of the rift valley and most of the northern and eastern Kenya. The mean annual rainfall 

in Kenya is about 630mm/year.  A description of the locations and demographic 

characteristics of towns used in this study is given below 
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Figure 1.2:The relief map of Kenya (Source: www.map.library.com/) 

 

1.7.1 Nairobi city 

The Nairobi urban area extends between 36o 4` and 37o 10` east and approximately between 

1o 9` and 1o 28` south, covering an area of 689km2 (Fig 1.3). The average altitude is 

approximately 1700m above sea level. The population of Nairobi has increased almost 

tenfold in the last five decades mainly due to rural-urban migration and natural population 

growth. In the early 1960’s Nairobi had a population of about 350,000 and by 2009 more than 

3.1 million people live within the city (Table 1.1). The main central business district (CBD) 

contains the commercial buildings, government and state premises, and the industrial area. 

The population densities vary widely within the city. High-income locations have average 
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densities as low as 500 people/km2 while low-income locations such as those in the slums 

have densities as high as 63 000 people/km2 (UN Habitat Report, 2008).  

 

1.7.2 Mombasa city 

Mombasa is located about 3o 8', 4o 10' south of the equator and 39o 6', 39o 8' east of the 

Greenwich (Fig 1.3). It has a total landmass of 230 km2 and 65 km2 of in-show waters. The 

city has two parts referred to in this study as the Mombasa Island and the mainland towns. 

The city has a population of about 1.0 million people (Table 1.1) and is located mainly on 

Mombasa Island and   sprawls to the surrounding mainland to the west, north and south of the 

island. The Island is separated from the mainland by two creeks; Tudor creek and Kilindini 

harbour. The Islandis connected to the mainland to the north by the Nyali Bridge, to the south 

by the Likoni Ferry, and to the west by the Makupa causeway, alongside which runs the 

Kenya-Uganda railway. 

 

1.7.3 Kisumu town 

Kisumu town, lies about 0o00' and 0o13'S and 34o35'and35oEast. It lies between Lake 

Victoria to the west and the Nyando escarpment to the north at a mean altitude of 1160 

mamsl. It covers an area of 417 square kilometres (Fig 1.3). The town has a population of 

over 0.4 million people as of the 2009 Kenya National census (KNBS, 2010). The climate is 

sub-humid tropical with ahigh mean temperature of about 28oC and mean annual rainfall 

varying between 1100mm/ year in the south to 1500mm/year in the north (Indeje, et 

al.,2000). 
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1.7.4 Nakuru town 

Nakuru town lies in the central Rift Valley between the latitude 0o15' and 0o31'South and 

longitude 36o35' and 36o12 'East with an average altitude of 1860 mamsl (Fig 1.3). It covers 

an area of 290 km2 which includes the area covered by Lake Nakuru. The urban growth 

pattern of this town is such that it is characterized by intense urban pressure along the main 

highways and then sprawls into sub-urban areas. The current population is about 310,000 

people (KNBS, 2010). 

 

Table 1.1:Kenya’s major towns and their population (Kenya National Bureau of 

Statistics (KNBS) 2010) 

City/ Town Location Size in km2 Population 

Nairobi 1oS,36oE 689 3,138,369 

Mombasa 3oS,39oE 230 1,200,000 

Kisumu 0oS,34oE 417 409,928 

Nakuru 0oS,36oE 290 307,990 
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Figure 1.3:Location of counties and the major towns 

 

1.7.5 Justification of the choice of study area 

Kenya is among the countries in the equatorial African region where there is limited literature 

on the variability of temperature, rainfall and UHI effect especially in relation to water 

resources management. Kenya has experienced rapid urbanization during the last five 

decades and the existence of UHIs and their possible effect on rainfall characteristics have 

not been fully investigated. Rainfall in Kenya exhibits high variability over time and space 

(Opija, et al., 2007) which is a challenge for effective stormwater management and hence any 
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changes brought about by urbanization and/or climate change would further affect the 

management of storm water. Kenya has a fairly dense network of meteorological stations 

with relatively long time data series (more than 30 years) that have less than 10% of missing 

values compared to other countries in this region (Omondi, et al., 2012; Omondi et al., 2014), 

which makes it comparatively ideal for my study. Other records such demographic and urban 

development data that may be needed to investigate factors influencing theformation of urban 

heat islands are also available. The major cities and towns in Kenya are distributed in 

different climatic zones (e.g., Nairobi in the central highlands east of the Rift Valley, Nakuru 

within the Rift Valley, Kisumu in the Lake Victoria region west of the Rift Valley and 

Mombasa a coastal town bordering the Indian Ocean) which enabled an assessment of the 

temporal variability of temperature and rainfall and the effects of the UHI (where possible) 

on rainfall in different climatic zones. 

 

1.8 Thesis outline 

This thesis is formulated in such a way that it follows the ‘Chapter Format’. In this format a general 

discussion of the research problem, statement of the objectives and description of the study area are 

given in Chapter one (1).  Subsequent Chaptersanswers the specific research questions. Each 

Chapter has a background and literature review relevant to it, description of data and methods of 

data analysis and,results, theirdiscussion, and summary. However, where methods of data analysis 

are common to Chapters, they are not repeated in subsequent Chapters. The motivation of using this 

format is that each chapter is covering an independent objective which is linked to the overall aim, 

andis envisioned to be a publication after the Thesis is completed. The Thesis is organized into 

seven (7) chapters as follows:  

• . Chapter 1has provided the background information of temporal variability and changes 

of temperature and rainfall from global, regional and local scales, the urban heat islands and 

http://etd.uwc.ac.za/



 

 

 

 

 
 

19 
 

their influence on local microclimates. The main and specific objectives were stated. 

Various methods used for analysis of variability and change detection, and extreme value 

distributionwere highlighted. The study area was described together with its suitability for 

this study. The significance of the study particularly with respect to management of storm 

water in urban areas of the equatorial East African region was highlighted. 

• In Chapter 2, temperature characteristics of urban and neighbouring rural areas of four 

towns in Kenya were investigated. This chapter starts by presenting the relevant literature 

review of temporal and spatial characteristics of temperature at global, regional and local 

scales. Description of data used and the various methods of change detection and trend tests 

are described. Particularly, the spectral-based method using continuous wavelet transform is 

discussed in detail as a diagnostic method that has become valuable in detecting multi-

temporal cycles that act to influence variability in meteorological variables. The results are 

presented and discussed, and findings fromthis Chapter summarized. 

• In Chapter 3 rainfall variability and change were investigated. A literaturereview regarding 

rainfall variability and change in EEA is given. Various variables obtained from the daily 

and monthly rainfall time series are described and some of the methods used for analysis 

that were not already discussed in Chapter 2 are highlighted and discussed. The results are 

presented and discussed and a summary drawn for this Chapter.  

• Chapter 4 presents the investigations of thepossible existence of urban heat islands (UHI) 

in Nairobi and Mombasa, which are the two major towns of Kenya by population size and 

spatial extent and had an adequate number of stations with air temperature of data. 

Literature of UHI formations and factors that influence their development from cities of 

different regions of the world is reviewed. Data required for UHI analysis and various 

methods used to determine the existence and the intensity of UHI are discussed together 

with methods for testing for statistical significance of the rural-urban temperature 
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differences. Trend analysis methods are referred to from Chapter 2. The results from this 

Chapter are presented, discussed and summarized. 

• Chapter 5 links the results of Chapters 2-4 and addresses the effects of enhanced 

temperature within and close to urban areas due to global warming and/or UHI effects on 

urban rainfall characteristics. The literature on the effect of urbanization on precipitation 

patterns in some cities in the world was reviewed. Various methods used to determine 

relationships between precipitation and temperature were discussed. Results for this 

Chapter are presented, discussed and summarized. 

• In Chapter 6, the extreme value analyses under stationarity and non-stationarity conditions 

of annual daily maximum rainfall series aredone. An introduction and literature review of 

the extreme value analysisis discussed. The theory of the generalized extreme value 

(GEV)distribution under stationarity and non-stationarity condition, together with the 

theories of estimating the model parameters, choice of models, and the statistical tests 

required are discussed. The rainfall and other climate covariates data series required for 

GEV analysis were described. The results are presented, discussed and summarized. 

• Chapter 7 summarizes the results from all the analyses done from chapter 2 to 6 and 

highlights the major findings and conclusions. The implications of these findings, 

limitations and challenges are highlighted and finally, recommendations and suggestions 

for future work are highlighted.  
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2 CHAPTER 2: TEMPORAL VARIATIONS OF TEMPERATURE 

2.1 Introduction 

The aim of this Chapter is to investigate variability and possible changes over time of 

maximum and minimumair temperature of urban and nearby rural areas. The results from this 

Chapter will form a basis for the investigations of the influence of temperature and the urban 

heat island (UHI) (Chapter4) on urban rainfall. This Chapter starts by a review of 

theliteratureon the spatial and temporal variations and changes of temperature from the 

global, regional and local perspectives.  

 

The radiation budget of the earth is a fundamental element of the climate system. The earth 

is considered to be in radiative imbalance with more energy from the sun entering than 

exiting at the top of the atmosphere since about 1970 (Stocker, 2013). This has resulted in 

positive radiative forcing (RF); a phenomenon used to describe the net change in the energy 

balance of the earth’s system in response to some external influence. Positive RF leads to a 

warming while a negative RF would lead to a cooling of the climate system. The spatial and 

temporal energy imbalance due to radiation and latent heat flux between low and high 

latitudes produce the general circulation of the atmosphere and oceans. The general 

circulation transports heat from warm to cold regions and acts to reduce thespatial imbalance 

in the available energy. Anthropogenic influence on the climate system occurs mainly 

through perturbations of the components of the earth’s radiation budget such as through 

increase of concentrations of greenhouse gases and aerosols into the atmosphere, thus 

increasing theatmospheric greenhouse effect. Land surface changes, such as deforestation 

and urbanization may have impacts on local and regional climate change through processes 

that are not always directly radiative in nature but have thepotential to influence temperature 

changes. According to the IPCC (Stocker, 2013), human activities have caused more than 
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half of the observed global increase in average surface temperature from 1951-2010.   

 

Air temperature has been used globally as an indicator of the state of climate mainly due to 

its ability to represent the energy exchanges over the earth’s surface with reasonable 

accuracy (Jhajharia and Singh 2011; Zhang, et al., 2011). According to Braganza et al. 

(2004), changes in the mean temperature indicate climate variability and Jhajharia and Singh 

(2011) indicated that the diurnal range of temperature may be used as an index for climate 

change since recent surface warming has been attributed more to increase in global 

minimum temperatures rather than the maximum. Further, Christy, et al. (2009) indicated 

that the maximum and minimum temperatures should be treated as separate datasets in 

climate studies since they seem to be influenced by different factors.  

 

There area number of studies carried out on trends of temperature over  the African 

continent and most of them reported positive trends of the minimum more than the 

maximum temperatures especially during the last five decades (King’uyu, et al., 2000; 

Kruger and Shongwe, 2004; Christy, et al., 2009; Collins, 2011; Nicholson, et al., 2013). 

Other regional studies of temperature extremes have also reported increasing trends in the 

minimum temperature indices. For example, Jury and Funk (2013) over Ethiopia, Funk, et 

al. (2012) over Senegal, Nsubuga, (2011) over Uganda, and Anguilar et al. (2009) over 

equatorial western and central Africa have reported increasing trends in the minimum 

temperature.  Over the EA region, King’uyu, et al. (2000) further reported that the coastal 

and the Lake Victoria region showed night-time cooling during the (1939-1992) period. This 

cooling was attributed to thermally induced mesoscale circulations which act to modify 

patterns of the large-scale circulations and thus modulate temperature. 
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In general air temperature in the East African region is controlled by complex maritime (from 

the adjacent Indian and Atlantic Oceans and inland water bodies) and terrestrial interactions 

that produce a variety of climates (Indeje, et al., 2000; Christy, et al., 2009). The variability 

of temperature in space and time poses a challenge in understanding the response of local 

changes caused by rapid urbanization and environmental degradation to the global warming. 

Kenya has diverse climatological zones owing to its heterogeneous relief (Fig 1.2). Localized 

circulations of thermal and orographic origins greatly influence the climatic patterns and 

hence, there exist spatial differences of temperature variability even over short distances 

(Christy, et al 2009). Githui (2008) indicated that the western side of the Rift Valley in Kenya 

had increasing temperatures with higher rates of increase over the lowlands than the 

highlands. Omumbo et al. (2011) reported evidence of warming trends of the maximum 

(Tmax), minimum (Tmin) and mean temperature over western Kenya highland region using 

meteorological data for Kericho station for the 1979-2009 period. However, the variations of 

temperature on small spatial scales that may exist between the urban and neighbouring rural 

areas within the same climatic zones are still under-investigated. Moreover, wavelet aided 

studies of temperature variability and trend analysis are lacking although such information is 

important for change detection of temperature over time in a region where climate variability 

is high and fast urbanization has taken place over the last five decades.  

 

2.2 Data types and sources 

The variability and/or changes of theTmax and Tmin for areas within urban and neighbouring 

rural areas were investigated. The various time scales used to analyse trends include daily 

temperature extremesindices,the monthly, seasonal and annualmeans of Tmax and Tmin. The 

rationale of using these time scales is that the analyses of temperature forms the basis 

ofwhich the influence of changes of urban temperature on rainfall was investigated (Chapter 
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5) and each of the time scales is important since rainfall in Kenya is seasonal. Mean daily and 

monthly Tmax and Tmin time series for urban, sub-urban and rural stations around the four 

main towns of Kenya (Nairobi, Mombasa, Kisumu and Nakuru) were collected from Kenya 

Meteorological Department (KMD). I used the location ofstations’closeness to central 

business district CBD of each town and the availability of continuous data for at least thirty 

yearsas criteria an urban station (Kruger and Shongwe, 2004). Neighbouring rural stations 

were those that are in the same climatic zone with the urban stationand are in relatively less 

built up area or in complete rural environments (Steward and Oke, 2012);the choice of rural 

stations also depended on the availability of continuous daily and/or monthly data for at least 

thirty years. Ten stations (Table 2.1) that met the above criteria were selected for the 

comparative analyses of variability and possible change of urban and rural temperature. 

 

Studied have shown that temperature trends near urban areas are being influenced by global 

warming as well as urbanization effects (Kruger and Shongwe, 2004), however, no studies in 

EEA have tried to separate the effects of urbanization and global warming in temperature 

studies. I sought to statistically examine the influence of global warming on the variability 

and change of the urban and rural temperatures using the global monthly mean temperature 

anomaly indices (designated here as GT). GT data were obtained from the National Oceanic 

and Atmospheric Administration (NOAA) database (http://www.ncdc.noaa.gov/monitoring); 

the data was obtained as monthly mean values of the standardized anomalies of land and 

ocean surface temperatures from the National Climate Data Centre (NCDC). The global 

temperature anomalies describe climate variability over large areas and have the advantage 

over absolute temperature since they offer a frame of reference that allows assessments 

between locations (Smith et al., 2008). The gradual rise in the average global temperature has 
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been used as an indicator of global warming which represents one aspect of climate change 

and has been used in climate studies as a proxy for global warming (Stocker, 2013).  

 

While a sufficiently long-term (at least 30 years) data series from a dense network of stations 

is ideal for trend analysis of climate data, the acquisition of continuous daily (and or monthly) 

temperature data from Kenya Meteorological Department (KMD) is a constraint due to lack 

of completeness of data for many weather stations (i.e., most stations have data with long 

periods of missing values).Network of stations that are spatially close and have sufficient 

longtime series arealso sparse (King’uyu et al., 1999; Christy et al., 2009;Omumbo, et al., 

2011). However, for the purposes of this study, the ten stations that had temperature data for 

the last three decades (1980-2013) were sufficient to examine temperature changes when 

rapid urbanization has been taking place over the study areas (Makokha and Shisanya, 2010; 

Muthoka and Ndegwa, 2015), and also give an indication of the state of regional warming of 

different climatic zones of Kenya both within urban areas and in the rural neighbourhoods. 

 

2.2.1 Infilling of missing data 

Climatological records often contain errors, missing values, and other inconsistencies that 

should be checked before analysis. I estimated the missing monthly values using regression 

methods. The station with the highest correlation coefficient (> 0.5) with the station with 

missing value (s) was used to develop a linear regression equation between the observations 

at the station with amissing value(s) and the observations of the station it is highly correlated 

with (King’uyu et al., 2000). The missing value was then estimated. For the daily data, only 

years with complete daily data were analysed since estimating daily values would cause 

accuracy challenges.  
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2.3 Description of urban and rural stations 

Table 2.1 gives the description and Figure 2.2 theshows locations of urban and rural stations 

for each of the four urban areas. The areas represented are as follows:  

a) Nairobi urban area, which is in the central highlands of Kenya east of the Rift valley, and 

the largest city by population and spatial extent was represented by; i) Wilson airport 

(NU) as the urban station which is within a moderately high density built up area 

(Makokha and Shisanya 2010); it is 4 km south of the  Nairobi CBD and 2 km southwest 

of main industrial area; ii) Dagoretti Corner (NRD) a station which is 8 km to the west of 

the CBD and  10 km from the main industrial area; it is in a less populated area compared 

to NU as it is located on the outer fringes of the city and bordered by a natural (Ngong) 

forest to the north and west and thus was considered rural with respect to NU; iii) Kabete 

(NRK) station is 20 km northwest of the CBD and is used as a rural station relative to NU 

and; iv) Thika (NRT) station is in a rural area within the central highlands, 50 km north-

east of Nairobi CBD, and outside Nairobi urban area. The four stations are used in this 

Chapter to investigate the variability and trends of temperature within and close to 

Nairobi city. 

 

b) Mombasa is the  second largest town in Kenya, and was represented in this study by; 

i) Mombasa airportstation(MU) representing the urban station located 10 km to the 

northwest of Mombasa Island; it was the only station within Mombasa town that 

hadtemperature data.This station was used to study the effect of urbanization on wind 

speed and direction in Ongoma et al. (2013); ii) Mtwapa (MRMt) station which is 16 

km northeast of from MU and situated in a rural area north of Mtwapa town and; iii) 

Msabaha (MRMs) station which is about 90 km northeast of MU and a station in a 

coastal rural area. 
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c) Over the highlands west of the Rift Valley and Lake Victoria region there is Kisumu 

urban area, represented by; i) Kisumu (KU) urban station and; ii) Kisii (KR) station 

representing a rural station about a 150 km southeast of Kisumu town (note: there were 

no other stations close to Kisumu town that had complete data for at least thirty years). 

 

d)  Nakuru urban area was only presented by Nakuru station (NKU) due to lack of other 

stations within the Rift valley and close to Nakuru with complete data which is 

sufficiently long for long-term analysis.  

The acronyms and designationsof these stations remain the same throughout my Thesis. 

Table 2.1:Stations used for analyses of air temperature: 

Meteorological 

Station 

Number 

Station 

name 

Station 

acronym  

Lat. 

(oS) 

Long. 

(oE) 

Altitude 

(m) 

Temperature  

data period 

Type of 

data 

9136130 

9136164 

9136208 

9137048 

Wilson  

Dagoretti 

Kabete 

Thika  

NU-Urban 

NRD 

NRK 

NRT 

1.32 

1.30 

1.27 

0.98 

36.82 

36.70 

36.75 

37.07 

1679 

1798 

1820 

1549 

1984-2013 

1980-2013 

1980-2013 

1980-2013 

Daily 

Monthly 

Monthly 

Monthly 

9334021 

9339036 

9340007 

Mombasa  

Mtwapa 

Msabaha 

MU-urban 

MRMt 

MRMs 

4.03 

3.93 

3.27 

39.60 

39.73 

40.05 

55 

20 

91 

1980-2013 

1980-2013 

1974-2013 

Daily 

Monthly 

Monthly 

9034025 

9034088 

Kisumu 

Kisii 

 KU-urban 

 KR 

0.10 

0.67 

34.75 

34.78 

1146 

1493 

1980-2013 

1976-2013 

Daily 

Monthly 

9036261 Nakuru NKU-urban 0.267 36.10 1901 1980-2013 daily 

Note: that continuous daily data were only available in a few stations, while the rest of the data was 

available as monthly means. 
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Figure 2.1:Locations of meteorological stations and their acronyms asused forthe 
analysis of temperature 

 

2.4 Data analysis 

The quality controlled temperature data were used to develop variables that were used to 

investigate possible existences of trends and other temporal cycles. The variables included:  

a) the monthly mean Tmaxand Tmin for each month of theyear. The monthly means are 

normally computed by time averaging the daily Tmax(Tmin) of a given month, i.e 

 

Monthly mean Tmax=
1
𝑡𝑡
∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡
1                 (2.1) 

 

KU 

KR 

NKU 

NRT 

MRMs 

 

MU 
MRMt 

 

NU 

NRK 

NRD 
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where t is the number of days in a given month; the same is done for the Tmin 

 

b)  the seasonal mean Tmax,and Tmin,for the seasons: i) December, January, and February 

( DJF); ii) March, April, and May (MAM); iii) June, July and August (JJA) and ; iv) 

September, October and November ( SON); which represent the dry, wet (long rains), 

cool and wet (short rains ) seasons respectively in the EEA region, are computed by 

averaging the Tmax ( Tmin) of the three months that make the season; i.e., 

 
Seasonal mean  Tmax,=

1
3
∑  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑙𝑙𝑙𝑙 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,
3
1    (2.2)   

    
 

where monthly Tmax is as computed in Equation (2.1); the same is computed  for  Tmin 

 

c) the annual mean Tmax and Tmin for each station and each year. Here the Tmax(Tmin) for 

all the months are averaged into one variable; thus,  

 

Annual mean Tmax=
1

12
∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑙𝑙𝑙𝑙 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚12
1                (2.3) 

 

d) Daily temperature indices as specified in Table 2.2.Four stations that adequately 

represented each urban area,and had adequate length of daily data, were used to 

compute the temperature indices of extremes. The behaviour of temperature extremes 

in urban is important in relation to urban rainfall (Shepherd, 2006) and hence their 

analyses wereincluded. A total of nine indices were obtained from the daily Tmax and 

Tmin using the ClimDex software; a Microsoft Excel-based program for the 

calculation of indices of climate extremes for monitoring, and detecting climate 

change. ClimDex software is run in R language as 
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RclimDex(http://cccma.seos.uvic.ca/ETCCDMI/RClimDex/rclimdex.r) (Zhang and 

Yang 2004). It has been used in the Commission of Climatology/Climate Variability 

and Predictability (CCI/CLIVAR) workshops to prepare temperature indices for 

climate studies.  

 

Table 2.2:Indices of daily temperature extremes selected 

Index ID Indicator Name Indicator definition units 

TXx Max Tmax Monthly max value of daily max temperature oC 

TNx MaxTmin Monthly max value of daily min temperature oC 

TXn minTmax Monthly min value of daily max temperature oC 

TNn MinTmin Monthly min value of daily min temperature oC 

TN10p Cool nights (Tmin10p) % of time when daily min temperature<10th  percentile % 

TX10p Cool days (Tmax10p) % of time when daily max temperature<10th  percentile % 

TN90p Warm nights (Tmin90p) % of time when daily min temperature>90th  percentile % 

TX90p Warm days (Tmax90p) % of time when daily max temperature>90th  percentile % 

DTR Diurnal temperature 

range 

Monthly mean difference between daily max and min 

temperature 

oC 

 

 

Several methods of data analysis were applied to the above variables. The methods included: 

i) Exploratory data analysis (time series plots, temporal averages and the continuous wavelet 

transform (CWT)); ii) trend analysis using linear regression and Mann-Kendall (MK) tests 

and; iii) correlations for testing relationships between temperature and global warming at 

seasonal and annual time scales. The detailed description of each method of analysis is 

outlined in the next sub-sections. 
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2.4.1 Continuous wavelet transform (CWT) as an exploratory tool 

CWT was mainly used in this Chapter as a diagnostic tool to explore the variability of 

monthly temperature time series before trend analysis was carried out. The purpose of 

CWT as an exploratory data analysis (EDA) tool in time series analysis is to reveal the 

properties of the underlying processes within the observations so as to get a preliminary 

indication of the characteristics of thevariability of the time series (Labat, 2005). 

 

The wavelet analysis has become an important diagnostic tool for analysing non-

stationarity in climatological time series. CWTis based on the convolution of one variable 

function (in this case temperature) T(t)into a function of two variables (time and scale). 

Basically, the wavelet analysis allows for the determination of the frequency (scale) of the 

time series signal and to assess the temporal variations of the frequency content. The CWT 

analysis, in particular, improves the determination of the temporal variations by allowing 

isolation of the dominant multi-scale processes in a time series signal that is characterized by 

multiple variable processes (Torrence and Compo, 1998) (e.g., high-frequency and low-

frequency modes of variability forced by local and global factors respectively). Land use 

changes due to urbanization and the effects of climate change may be influencing 

temperature characteristics that may not be differentiated by the use of the conventional trend 

analysis methods alone. Since CWT analysis allows a time series signal to be localized in 

both scale (period) and time, theevolution of processes in the signal can be tracked  at 

different scales (Labat 2005; Sen and Ogrin 2015) which can be attributed to local or large-

scale forcing ( Prokoph and Patterson 2004).  

 

The fundamental objective of a wavelet transform is to obtain a complete time/scale 

representation of localized and transient systems occurring at different periods in a time 
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series. It is considered as a time slided windowed Fourier transform with the advantage of 

having resolution properties of time and scale (period) domain and has been applied in 

hydro-meteorological long-term data analysis to search for change signals (Bejranonda and 

Koch, 2010). In the wavelet analysis unlike classical Fourier transform,the basis function in 

Fourier transform is replaced by a two parameter basis {ψs, ƾ(t), (s,ƾ)∈ ℛ∗x ℛ}, where ψs, ƾ(t) 

is wavelet function which allows time-scale discrimination of the processes (Labat 2005) (see 

CWT theory below). The functions of the CWT are derived from the translation and dilation 

of a ‘mother’ wavelet ψ (t). The mother wavelet must be a function centred at zero and in 

the limits as t→ ∞, ψ (t) → 0and also ψ (t) must have a mean of zero (known as the 

admissibility condition) for the invertibility of wavelet transform. The CWT serves as a 

continuously sweeping ‘microscope’ in examining the spectral components of a dataset 

(Kumar and Georgiou, 1997; Wang and Lu, 2009). The CWT as an diagnostic tool therefore 

improves the determination of temporal and spatial variations and permits the detection of 

multiple scales in a given time that are not apparent using the conventional data exploration 

methods such as time series plots (Labat, 2005; Sang,et al., 2013; Sen and Ogrin, 2015).I 

used the CWT method of time series analysis to explore comparatively the temporal and 

spatial variations of urban and rural Tmax(and Tmin) time series respectively, and further to 

help me interpretthe nature of the variability and changes that may have occurred in 

temperature over time. 

 

CWT analysis theory 

The CWT of a temperatureT(t) time series signal is defined as the convolution of the time 

series with an analysing wavelet function and may be expressed as: 

 

Ťψ (s,ƾ)=∫ T(𝑡𝑡)+∞
−∞ ψs, ƾ (t) dt                   (2.4) 
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 where Ťψ (s,ƾ) is the transform of the time series T(t); T (t) is a temperature random variable 

with values at  t=1…..n taken at equal time intervals 𝜕𝜕 𝑡𝑡 (e.g. daily, monthly or annually), the 

functions ψs,t (t) are the wavelets with scaling parameter s and translating parameter ƾ and is 

given by: 

 

ψs, ƾ  (t)=
1
√𝑠𝑠
𝜓𝜓(𝑡𝑡 −  ƾ ), 𝑠𝑠 > 0  ƾ ∊ ℛ               (2.5)                   

 

where ℛ is set all real numbers. The set of analysing wavelets ψs, ƾ (t) are produced from a 

single wavelet called the mother wavelet, ψ (t), by scaling and shifting it. The shifting 

parameter ƾ is responsible for time location while s is the scaling parameter used for 

stretching(𝑠𝑠 > 1 )and compressing (s< 1) the mother wavelet. The choice of a sine-like 

wavelet as the mother wavelet such as the Morlet wavelet, after Morlet (1982), allows the 

value s to be approximated as wavelength and the reciprocal value  1
𝑠𝑠
 to be interpreted as 

frequency. The Morlet wavelet is expressed as:  

ψ= 𝜋𝜋
−1
4 [exp(-i2 𝜋𝜋fot)(exp(- 1

 2
(t)2))]    (2.6) 

 

and for the set of shifted wavelets it follows that: 

 

ψ(s, ƾ)=𝜋𝜋
−1
4 [exp(-i2 𝜋𝜋fo(𝑡𝑡−ƾ

𝑠𝑠
))(exp(- 1

2
(𝑡𝑡−ƾ
𝑠𝑠

)2))]              (2.7) 

 

where parameter fₒ defines the basic frequency of the mother wavelet and controls the 

number of oscillations below the Gaussian envelope, and other symbols are as defined in 

Equation 2.4 and 2.5(Prokoph and Barthelmes 1996).The Morlet wavelet has both complex 
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and real parts and therefore offers the advantage that it combines wavelet power both 

positive and negative peaks into a single broad peak.  

 

Choice of scales and the cone of influence (COI) 

The scaling factor for the Morlet wavelet used in the transformation of the temperature time 

series waschosenfollowing Torrence and Compo,(1998) as a discrete set of scales that are 

powers of 2 according to the equation: 

𝑠𝑠𝑗𝑗=𝑠𝑠02𝑗𝑗𝜕𝜕𝑗𝑗                     (2.8) 

j=0,1……..J and  

J=𝜕𝜕𝑗𝑗−1𝑙𝑙𝑙𝑙𝑙𝑙2(𝑁𝑁𝑁𝑁𝑁𝑁
𝑠𝑠0

)                   (2.9) 

where 𝑠𝑠0 is the smallest resolvable scale, N is the number of data points, 𝜕𝜕𝜕𝜕 is the time step  

and j determines the largest scale; for example for a monthly time series 𝜕𝜕𝜕𝜕=1 month and 𝑠𝑠0 

is 2(i.e.,2 𝜕𝜕𝜕𝜕).  

 

Dealing with finite length time series introduces errors at the beginning and end in CWT 

analysis since the classical Fourier transform assumes the data to be cyclic. In wavelet 

transform of the temperature series, I used the method of padding with zeros before the 

transformation and then removing them afterwards so as to reduce the edge effects in the 

CWT wavelet power spectrum plots (Torrence and Compo1998). For example for a time 

series of thirty (30) years of monthly data, 𝑁𝑁𝑁𝑁𝑁𝑁= 408 which is not a power of two. Therefore 

104 zeros would be padded at the end of the series to make it 512 (29). However the padding 

with zero produces discontinuities at the end points and for larger scales decreases the 

amplitude near the edges as more zeros enters the analysis. The cone of influence (COI) of a 

power spectrum defines the region where the effects of padding becomes important and is 
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defined as the e-folding time of the auto-correlation of the wavelet power at each scale. The 

e-folding time is chosen so that the wavelet power for a discontinuity at the edges drops by a 

factor 𝑒𝑒−2, and ensures that the edge effect are negligible beyond this point. For the Morlet 

wavelet function the, e-folding time at each scale is computed as:  

𝜏𝜏𝑒𝑒 = √2𝑠𝑠          (2.10) 

where 𝜏𝜏𝑒𝑒 is the e-folding time and s is the scale (Torrence and Compo, 1998). 

 

The wavelet power spectrum (WPS) 

The WPS represents the signal energy at a specific scale (period) and time, and for the Morlet 

wavelet function that is complex, the WPS is also complex. The WPS (also called a 

scalogram or wavelet periodogram) is defined as the squared modulus of the CWT expressed 

here as: 

𝑊𝑊𝑇𝑇 = �Ť𝜓𝜓 (𝑠𝑠, ƾ)�
2
         (2.11) 

where 𝑊𝑊𝑇𝑇 is the WPS of the transformed time series Ť𝜓𝜓. 

 

The 𝑊𝑊𝑇𝑇 is then ploted as a contour map where dominant modes of variability (such as inter-

seasonal, inter-annual and even inter-decadal) occurring in a time series can be inferred from 

the cycles (periodicity) realised in a WPS map (Sen and Ogrin, 2015). 

 

           Significance testing of dominant frequency features (periodicities) 

 To determine the level of significance of the dominant frequency features in a 𝑊𝑊𝑇𝑇, an 

appropriate background spectrum is chosen. I assumed that different attainments of CWT 

process will be randomly distributed about this mean background and the actual spectrum can 

be compared against this random distribution. The appropriate background chosen for 

temperature is the red noise. I chose the red noise background because the temperature data 
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was found to approximate to normal distribution which is a criterion of choosing this 

background. To construct this background, I first modelled the time series as a lag-1 

autocorrelation (AR(1)) process. Thus:  

 

𝑇𝑇𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝛼𝛼𝑇𝑇𝑡𝑡−1 + 𝑍𝑍𝑡𝑡         (2.12) 

 

where 𝑇𝑇𝐴𝐴𝐴𝐴(𝑡𝑡) is the modelled time series,  𝑍𝑍𝑡𝑡 is taken from a Gaussian white noise process 

(the white noise process assumes that data is random and the variance is evenly distributed 

among frequencies), 𝛼𝛼 is the estimated autoregressive coefficientand 𝑇𝑇0=0. Then a local WPS 

(𝑊𝑊𝑡𝑡) defined as the vertical slice of the 𝑊𝑊𝑇𝑇 at a given time, is expressed as: 

 

𝑊𝑊𝑡𝑡=
1−𝛼𝛼2

1+𝛼𝛼2−2𝛼𝛼cos (2𝜋𝜋𝜋𝜋𝑁𝑁 )
             (2.13) 

Where k= 0,1……N/2 is the frequency index (Torrence and Compo, 1998). 

 

To establish the significance of a peak of a local wavelet spectra, I defined a null hypothesis 

by assuming that the time series has a mean power spectrum given by Equation (2.10) and if 

a peak in the 𝑊𝑊𝑇𝑇 is significantly above this background power spectrum, then it is a true 

feature with a given percentage of confidence (in this case 95%). I used the χ2 distribution to 

test for the significance of the 𝑊𝑊𝑇𝑇 since it follows a chi-square distribution with two degrees 

of freedom (Torrence and Compo, 1998). The significant modes are then shown as contours 

in the wavelet power spectrum (WPS) map. 

 

I performed the wavelet transform of temperature time series using the ‘biwavelet’ software 

package which uses the Morlet as the mother wavelet.The package is written in R language 
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by Gouhier and Grinsted, (2015) http://github.com/tgouhier/biwavelet),using the wavelet 

program written by Torrence and Compo (1998) and modified by Valeda et al. (2012). 

 

To aid the interpretation of CWT results, Figure 2.2 illustrates a CWT analysed variable in 

which several frequency features are observed. In this figure, the wavelet power spectrum 

(WPS) shows periods in monthsin the vertical axis against time (years); short periods (high-

frequency features) are presented at the top and long periods (low-frequency features) at the 

bottom of the y-axis. Several significant features are labelled in the diagram; the most 

dominant being the 4-8 months periodicities which represent the semi-annual cyclesand 8-16 

months periodicities representing quasi-annual cycles are spread throughout the time axis. 

 

Figure 2.2: An illustrative diagram(WPS map) of an output of a time series variable 

analysed using the CWT method (source: Author) 
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2.4.2 Trend analysis 

Simple linear regression and correlation methods 

A simple linear regression of a variable T, on time (t) as a test for trend is written as: 

 

T= βo + β1t +ε                           (2.14) 

 

where T is the temporally averaged variable [e.g., maximum (Tmax) or minimum(Tmin) 

temperature] t is the time in days, months, seasons or years, β0 and β1 are the y-intercept and 

slope respectively and ε is the random error. The null hypothesis for trend analysis is that the 

slope coefficient β1=0, which means that no trend exists. Regression assumes that the data 

are normally distributed, and hence the time series was checked for normality before trend 

analysis was performed. The computation of β1 is as shown in Table 2.2. The t-test is used to 

test the null hypothesis that β1 =0, against the alternative β1≠0: 

 

ȶ = β1
𝜍𝜍 �𝑆𝑆𝑆𝑆𝑇𝑇⁄   =   𝑟𝑟√𝑛𝑛−2

√1−𝑟𝑟2
       (2.15a) 

whereȶ represent the t-statistic,r is the correlation coefficient defined as: 

 

𝑟𝑟 = 𝑆𝑆𝑆𝑆𝑡𝑡/�𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑡𝑡               (2.15b) 

and 𝜍𝜍the variance defined as: 

 

 𝜍𝜍 = �(𝑆𝑆𝑆𝑆𝑇𝑇 − β1𝑆𝑆𝑆𝑆𝑡𝑡)/𝑛𝑛 − 2             (2.15c) 
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The terms in Equation (2.15) are defined in Table 2.3 

H0 is rejected if |ȶ| > ȶ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (at n-2 degrees of freedom and at significant level α= 0.05). 

 

Table 2.3:Definition of terms and formulas used in computing regression and 

correlation coefficients; 𝒕𝒕 � and𝑻𝑻� are the arithmetic means of time and temperature 

respectively 

Name of term Formula 

Sums of squares of t(SSt) 
�(𝑡𝑡𝑖𝑖 − 𝑡𝑡̅)2
𝑛𝑛

𝑖𝑖=1

 

Sums of squares T(SST) 
�(𝑇𝑇𝑖𝑖 − 𝑇𝑇�)2
𝑛𝑛

𝑖𝑖=1

 

Sums of cross-product (SSTt) 
�(𝑇𝑇𝑖𝑖 − 𝑇𝑇�)
𝑛𝑛

𝑖𝑖=1

(𝑡𝑡𝑖𝑖 − 𝑡𝑡̅) 

Estimate of β1 β1 =
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
𝑆𝑆𝑆𝑆𝑡𝑡

 

 

The Mann-Kendall test 

TheMann-Kendall test(Kendall,1975)is anon-parametric test that detectsthe 

presenceofamonotonic trendwithinatimeseriesin the  absenceof any seasonal variation 

or other cycles (BiggsandAtkinson, 2011). Thismethod hasthe advantages that, it is 

notaffected by grossdataerrorsandoutliers,andhas 

beenwidelyusedtotestrandomnessagainsttrendinhydrologyandclimatology.  

 

The Mann-Kendall test can be stated generally as a test for checking whether the temperature 

random variable T(t) in a time series increase or decrease with time (t). No assumption of 

normality is required but there must not be serial correlations in the T(t) data for the p-values 
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to be correct. The test is monotonic and hence invariant to power transformation (Helsel and 

Frans, 2006). The Kendall tau (τ) is computed by first ordering all data pairs (T,t) by 

increasing T.  If no trend exist, the T-values will decrease and increase about an equal number 

of times. The test statistics is the Kendall S is computed by subtracting the number of 

‘discordant pairs’,M, ( i.e. the number of (T, t) pairs where T decreases as t increases) from 

the number of ‘concordant pairs’ P (i.e. the number of (T, t) pairs where T increases  with 

increasing t). 

S=P-M                                       (2.16) 

Where P= number of pluses (concordant pairs) T𝑖𝑖 > 𝑇𝑇𝑗𝑗  

M= number of minuses discordant pairs 𝑇𝑇𝑖𝑖 < 𝑇𝑇𝑗𝑗 

Where 𝑡𝑡𝑗𝑗 > 𝑡𝑡𝑖𝑖 for all i=1,………(n-1) and j= (i+1),………….n and n is the number of data 

points. 

 

The null hypothesis H0 and alternative hypothesis H1 may be stated as follows:  

                          H0: prob [𝑇𝑇𝑖𝑖 > 𝑇𝑇𝑗𝑗] =0.5 where 𝑡𝑡𝑗𝑗 > 𝑡𝑡𝑖𝑖  

                           H1:prob [𝑇𝑇𝑖𝑖 > 𝑇𝑇𝑗𝑗] ≠ 0.5               (2.17) 

If no trend exists (i.e. H0 is true), about half of the comparisons would be concordant and half 

discordant and S would be close to zero. If S is significantly different from zero, the data 

indicate that a trend in T occurs. Since there are  𝑛𝑛(𝑛𝑛−1)
2

  possible comparisons made, among 

the n data pairs, then if all values of T increase along with t values, then: 

 

S=  𝑛𝑛(𝑛𝑛−1)
2

= 1         (2.18) 

and if all values of T decrease with increase of t, then: 
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S= ( 𝑛𝑛(𝑛𝑛−1)
2

 ) =-1                 (2.19) 

The coefficient τ measures the strength of the monotonic association between T and time (t) 

given by: 

 τ = 𝑆𝑆
𝑛𝑛(𝑛𝑛−1)/2

        (2.20) 

 where -1≤ τ ≤1 

The significance of τ is tested by comparing S to what it would be when H0 is true. The p-

value summarizes the probability of getting the observed value of τ, or one more extreme 

when H0 is true. When p-value is small (< 0.05), the likelihood that there is either a positive 

(+ τ)ornegative (-τ)trend is high and H0 is rejected.For larger sample sizes S is converted to 

Z, a statistic that isapproximated by a normal distribution as described in Helsel and Frans, 

(2006).  

 

An important observation from Kruger and Sekele, (2013) is that trend analyses of variables 

with magnitudes that have cyclic signature depend heavily on the analysis period and that in 

climate analysis with near decadal cycles, erroneous or exaggerated long-term trends may be 

inferred by the trend analysis. However, by using monthly and seasonally averaged time 

series, seasonal and annual cycles are minimized and only long-term (decadal) cycles may 

influence the trend result.Such cycles have not been established in the temperature of the 

EEA region. 
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2.5 Results and discussion 

2.5.1 Spatial and temporal variations of temperature 

Climatologically, temperature in Kenya exhibits spatial variability owing to the heterogeneity 

of the topography, presences of large water bodies as well as geographical location (Fig 1.2). 

Table 2.4 shows the long-term annual mean Tmax and Tmin for stations in the central highlands 

east of the Rift Valley (Nairobi), the coastal region (Mombasa), within the Rift 

valley(Nakuru) and over the highlands west of the Rift Valley (Kisumu). Generally, the 

stations over the highlands have lower mean temperature than those at the coastal region 

except Kisumu that has Tmax almost comparable to the coastal region due to its location close 

to Lake Victoria;  Nakuru though higher in elevation than Nairobi has higher mean Tmax and 

much lower  Tmin due to its location within the Rift Valley. 

 

Table 2.4Variation of annual mean temperature with altitude 

Region Station Altitude (mamsl) Tmax (ᵒC) Tmin(ᵒC) 

Nairobi (central 

highlands) 

NU 

NRD 

NRK 

NRT 

1679 

1798 

1820 

1549 

25.1 

24.0 

23.3 

25.7 

14.1 

13.6 

13.2 

14.1 

Mombasa (coast) MU 

MRMt 

MRMs 

55 

20 

91 

30.5 

30.0 

30.1 

21.8 

22.6 

22.9 

Kisumu (western 

highlands &Lake 

Victoria) 

KU 

KR 

1146 

1493 

29.8 

25.6 

17.3 

15.4 

Nakuru (Rift Valley) NKU 1901 25.8 11.9 

 

Descriptive statistics of long-term monthly means (Figure 2.3) further indicate that on 

average Tmaxand Tmin over Nairobi are higher in the urban station than their neighbouring 

rural station while over the coast the urban area is cooler than the neighbouring rural areas. 

Over the western highlands, Kisumu is warmer than Kisii on average. Note also that: a) 
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Tmaxover Nairobi is highest in February and Tmin is highest in March (Fig 2.3 a&b));b) Tmax 

over Mombasa is highest in March and Tmin in April (Fig 2.3 (c&d)), and; c) that temperature 

in Kenya has an annual cycle with a long hot season from September to April and a shorter 

cool season from May to August. 

 

 

a) b)  

c) d)  

Figure 2.3: Annual temperature cycle of the mean monthly Tmax and Tmin for urban and representative 

nearby rural stations for; a&b)Nairobi ; c&d Mombasa 

 

A number of factors that could account for the observed differences in long-term mean 

temperature in urban and neighbouring stations within the same climatic zone include: 

 

• i) differences in elevation and geographical location; for instance KR station is about 

300 metres above mean sea level (mamsl) higher than KU which could account for 

some of the temperature differences due to thelapse rate. NU and NRT over Nairobi 

are lower in elevation than NRD and NRK and mean temperature differences are also 

notable and;  
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• ii) local and environmental factors such as the urban heat island effect due to 

urbanization, nearness of a station to forested land (cooling effect due 

evapotranspiration) and nearness to water bodies (effects of land and sea breezes. 

The influence of urbanization on the temperature differences was investigated further 

in Chapter4.  

 

The temperature differencesbetween seasons of Tmax and Tminrespectively aresmall in all 

stations. For instance, the temperature difference between the warmest (DJF) and coolest 

(JJA) seasons in a given station is <5oC for both Tmax and Tminwhich is a characteristic of 

temperatures of the equatorial regions. The lowest seasonal Tmin was observed in Nakuru 

within the Rift Valley (Fig 2.4). The spatial variations of seasonal Tmax and Tmin are such that 

the coastal region (Mombasa) and Kisumu near Lake Victoria have mean Tmax above 25oCin 

all seasons, while Nairobi, Nakuru, and Kisii have Tmax of between 20 to 25oC. Likewise, the 

Tmin is highest at the coast for all seasons (>20 but <25oC) while all other stations Tmin is 

between 10, during the cold season, and 15oC during the warm season. 

 

 

Figure 2.4:Spatial and temporal variations of the mean seasonal temperature for urban and rural 
stations; a)Tmax ; b) Tmin 
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2.5.2 Continuous wavelet transform (CWT)analysis of temperature 

To examine thevariability of temperature, the monthly mean Tmax and Tmintime series were 

subjected to further exploration using time series plots and CWT analysis. In a CWT analysis, 

the temporal distribution of the frequency features of temperature signal was found by 

successively passing dilated and compressed functions of a Morlet wavelet according to 

Equation (2.4). The wavelet coefficients obtained were computed into the wavelet power 

spectrum (WPS) according to Equation (2.11) and plotted on a WPS contour map. The cone 

of influence (COI) on each WPS map was computed using Equation (2.10) and indicated on 

the map while areas of significant dominant frequency components (periodicities), at the 95% 

levelof confidence against a red-noise background were determined (Equations 2.12 and 

2.13). The corresponding time series of the monthly temperature were plotted alongside the 

WPS for each station. In each WPS plot the horizontal axis shows the time dimension 

(covering the analysis period) while the vertical axis shows the scales (periods in months in 

powers of 2) starting from high (at the bottom) to low periods (as illustrated in Figure 

2.2).The spectral power representing regions of low (high) spectral energy isindicated by the 

colour code in such a way that the power ranges from blue (low power) to dark red (high 

power). The high spectral power regions that are circled with the black contour lines 

indicatethe existence of significant periodicities and the region below the white U-shaped 

curve represent the cone of influence (COI) within which the edge effects become important 

and the results within this region are interpreted with caution (Torrence and Compo 1998). 

The results are given for each urban area. 

 

Nairobi area 

The comparative examination of thevariability of Tmax (and Tmin) within an urban station and 

its neighbouring rural stationsfrom the wavelet power spectrum (WSP)and the corresponding 
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time series plots for two stations (urban (NU) and rural (NRD)) are presentedin Figure 

2.5.Considering Tmax, the WPS plots for two stations are almost similar (Figure 2.5 (a&b)). 

The expected annual cycle is observed in both stations while semi-annual cycles 

(periodicities of 4-6 months) thatcovered groups of years and were more frequent before the 

year 2000 and became short in duration with long non-significant periods thereafter, are also 

prominent. The time series plots (Fig 2.5b&c) have no observable trends. 

 

Figure 2.5:The wavelet power spectrum plots (WPS) of  Tmax over Nairobi; a)  NU and; 

b) NRD; the dark red regions encircled by black contours in the WPS plots indicates the 

periodicities that are significant at the 95% level of confidence and the white U-curve 

marks the cone of influence (COI); the colour code is such that blue represent low 

spectral power and red is high power;  c&d) show respectively the temporal variability 

of the monthly Tmax of the same stations 
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To summarize the above observations, Tmax in Nairobi has a dominant quasi-annual cycle that 

varies between periodicities of 8-16 months (centred at 12months).  There were Semi-annual 

cycles that were more common before 2000 than in later years in the two stations. The 

resultant effects of the occurrence of high-frequency features and the quasi-annual cycles are 

observed in the time series plots as high peaks values. I particularly observed thatwhen 

multiple periodicitiesoccurred simultaneouslyhigher temperature peaks were realized than 

when the quasi-annual cycle is the only dominant periodicity.For example in the time series 

plot, months in  1992, 1996 and 2012 have high peaks in both stations that are attributable to 

the simultaneous occurrence of the quasi-annual cycle with the 4-6 months 

periodicities.There wasno observable increasing or decreasing trends in each of the time 

series. The quasi-annual cycle is also observed to vary with time in such a way that the 

significant periodicities cover more months (broad along the period axis) in some years than 

others (e.g.,in NRDbetween 1995- 1998 the annual cycle is not significant and low 

temperature were observed); these observations imply that Tmax over Nairobi exhibits high 

inter-annual variability that could be responsible for occurrence of high extremes in the time 

series plots. There are no cycles in the Tmax over Nairobi that is longer than 16 months.  

 

Considering Tmin of the same stations (Fig 2.6 (a &b)), the semi-annual cycle is more 

dominant than in Tmaxi.e.,there are more periodicities of 4-8 months that are in isolated 

groups of years but present throughout the period (1980-2013) than were present in Tmax; for 

example extended significant periodicities of4-8monthswereobserved from 1998 to 2005 and 

between 2007 and 2013 in NU.Similar periodicities were observed for NRD station from 2000 

to 2013. The annual cycle was also dominant and more continuous forthe urban station (NU) 

than rural (NRD), which has non-significant periods along the time axis.The semi-annual 

cycle in NRD is also more dominant than the quasi-annual cycle. This would imply that local 
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influence on Tmin of NRD is more than it is in NU.The time series plots indicate notable 

increasing trends in the Tmin series in each of the two stations (Fig 2.6 c&d)). 

 

Figure 2.6:The wavelet power spectrum plots (WPS) of  Tmin over Nairobi; a)  NU and; 

b) NRD; the dark red regions encircled by black contours in the WPS plots indicates the 

periodicities that are significant at the 95% level of confidence and the white U-curve 

marks the cone of influence (COI); the colour code is such that  blue represent low 

spectral power and red is high power;  c&d) show respectively the temporal variability 

of the monthly Tmin of the same stations 

 

Comparing CWT analysis of Tmax and Tmin over Nairobi, the difference in the variability of 

the Tmincompared to Tmax is clearly observed. For example,Tmin hasnotable increasing trends 

that can be attributed to the more frequent semi-annual cycles enhancing the annual cycle; 

note that the semi-annual periodicitieswere almost absent in Tmax after the year 2000. Also 
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spatial variability especially of Tminwas observed between the twostations; for instance the 

wavelet power spectrum of Tminat NRD stationhas more high frequency featuresthan 

NU,which would suggest that local effects are influencing Tmin more in the NRDstation that 

could be attributed to urbanization through urban sprawl.Another notable observation was 

that both Tmin like Tmaxhad no significant periodicities beyond the quasi-annual cycle. This 

would imply that temperature in this region may not be influenced by the climate modes of 

variability (such as ENSO) that influence climate in the EEA region and have cycles beyond 

one year or the effects of such modes are superimposed in the annual cycle. 

 

Mombasa urban area 

Figure2.7 (a&b) shows the variability of Tmax of two stations in the coastal region.For 

Mombasa urban station (MU)the WPS plot (Fig 2.7 (a)) have a dominant and broad quasi-

annual cycle (8-16 months periodicities) with no periodicities beyond the 16 months and 

some isolated 1-5 and 1-3 months periodicities around 1992 and 2012 respectively. 

Consequently, the same pattern was observed in the WPS plot of the rural station MRMs(Fig 

2.7 (b)) although in this station there were no other significant periodicities except the quasi-

annual one. The time series plot of MU have no increasing or decreasing trend over the 

period from 1980-2013 (Fig 2.7(c)), while time series plot of the rural station exhibits an 

increasing trend especially observed after 1990(Fig 2.7(d)). 
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Figure 2.7: The wavelet power spectrum plots (WPS) of the Tmax over Mombasa; a) MU 

and; b) MRMs; the dark region regions encircled by black contours in the WPS plots 

indicate the periodicities that are significant at the 95% confidence level and the white 

curve marks the cone of influence (COI); the colour code is such that blue colour is low 

spectral power, and red is high power; c&d) show respectively the temporal variability 

of the monthly Tmax of the same stations 

 

Comparing the urban and rural stations over Mombasa, the rural station has higher spectral 

energy throughout the 1980- 2013 period in the region of 4-6months periodicities (though not 

significant) that would be associated with the increasing trends in this station. These results 

indicate that high-frequency components (low periodicities) have almost no influence onthe 

variability of Tmax over the coastal region. Again there are no significant periodicities beyond 

the annual cycle implying that climate modes of variability that influence climate in EEA 
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hasno influence on Tmax at the coast over this period or such influence is embedded within the 

annual cycle. 

 

Observations from the Tmin depict observable differences from the Tmax in that there are high-

frequency modes of variability scattered along the time series and mainly at periodicities of 

6-8 months for MU (Fig 2.8 (a)) and between 0-8 months for MRMs (Fig 2.8 (b)).However, 

the dominant periodicity is still the annual cycle. Considering the time series plots of Tmin, 

MU indicate a decreasing trend between 1980 to1995 followed by increasing trend from 1990 

to 2013(Fig 2.8(c))  and MRMs had an increasing trend throughout(Fig 2.8(d)). 

 

Figure 2.8:The wavelet power spectrum plots (WPS) of the Tmin over Mombasa; a) MU 

and; b) MRMs; the dark region regions encircled by black contours in the WPS plots 

indicate the periodicities that are significant at the 95% confidence level and the white 

curve marks the cone of influence (COI); the colour code is such that blue colour is low 

spectral power, and red is high power; c&d) show respectively the temporal variability 

of the monthly Tmax of the same stations 
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Thetime series plot for MRMs stationindicates an increasing trend throughout the 1980-2013 

periods. The implications of these results are that Tmin at the coastis being influenced bylocal 

factors such as urbanization and other forms of land cover changes, as well as global factors. 

It is worth noting that there are no high peaks in the time series plots especially for the Tmax 

for stations at the coast. This observation could be explained by the lack of multiple cycles 

occurring simultaneously like was observed over Nairobi. Some of the factors influencing 

temperaturevariability are explored further in Section (2.6.4) below. 

 

In general,the results of rural areas at the coast of Kenya have indicated warming in both Tmax 

and Tmin, while in the urban station increasing trend was only observed in the Tmin and after 

1990. Different factors could be influencing the warming of the Tmax and Tmin. For example, 

all the stations at the coast have a strong annual cycle buthigh-frequency components in the 

0-6 month’s periodicity were mainly found in the Tmin.These observations would imply that 

local factors are influencing Tmin while regional or global factors are influencing the Tmax 

more than local factors in rural areas.  Further investigations to examinethe significance of 

the trends in Tmax and Tminwere done statistically in the next Section (2.6.3) and later in 

Chapter 4, urban effects on temperature are explored. 

 

Kisumu urban area 

Kisumu (KU)and Kisii (KR)are stationsin the western region of Kenya and close to Lake 

Victoria. Considering Tmax(Figure 2.9(a&b)), the annual cycledoes not occur continuously 

over the whole time (1980-2013) but have significant isolated periodicities. For example 

during the periods 1980-85, 1990-95 and 2003-2007 in KU (Figure 2.9(a)), while KR (Figure 

2.9(b))had significant annual periodicities for isolated group of years between1980-1985 

followed by a long period of non-significant periodicities. Significant periodicities 
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appearedagain in KR between 1995 and 2013. For both stations, 4-6 months periodicities that 

are frequent but not continuous were observed after 1995. The time series plot depicts 

frequent high peaks of TmaxatKU and no observable increasing or decreasing trend, while KR 

plot showed an increasing trend (Figure 2.9(c&d)). 

 

 

Figure 2.9:The wavelet power spectrum plots (WPS) of the Tmax over the Lake region; 

a) Kisumu (KU) and; b)Kisii (KR); the black regions encircled by contours in the WSP 

plots indicates the periodicities that are significant at the 95% confidence level and the 

white curve marks the cone of influence (COI); the colour code is such that blue colour 

is low spectral power, and red is high power; c&d) show the temporal variability of the 

monthly Tmax of the same stations respectively 
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For the Tmin series, the high frequency component (4-6 months periodicities) are more 

dominant over KU than the annual cycle which only has a significant periodicity between 

1980 and 1995 (Figure 2.10 (a) while in KR (Figure 2.10 (b)) the annual cycle is the 

dominant one with only a few isolated periodicities of 1-6 months. Notable also is the high 

spectral energy in the region of 32-64 months periods that were not in either Nairobi or 

Mombasa areas.  Both stations showedincreasing trendsof Tmin(Figure 2.10 (c&d)).  

 

Figure 2.10:The wavelet power spectrum plots (WPS) of the Tmin over the Lake region; a) Kisumu (KU) 

and; b)Kisii (KR); the black regions encircled by contours in the WPS plots indicates the periodicities 

that are significant at the 95% confidence level and the white curve marks the cone of influence (COI); 

the colour code is such that blue colour is low spectral power and red is high power; c&d) show the 

temporal variability of the monthly Tmin of the same stations respectively 
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Nakuru urban area 

Nakuru(NKU) is the only station representing theurban area within the Rift Valley. The 

WPS, plot of Tmax(Figure 2.11 (a), shows a dominant quasi-annual cycle (8-16 months 

periodicity) and isolated 1-8 months periodicities that were more frequently before the year 

2000. The time series plot (Fig 2.11 (b)of the Tmaxhas no trend between 1990 and 2005 after 

which a decline is observed from 2005-2013. High peaks of Tmax values are observed 

especially between 1980 and 1990 when multiple periodicities are also observed in the WPS 

plot. 

 

Figure 2.11:a) The wavelet power spectrum plots (WPS) of the Tmax in Nakuru (NKU); the black regions 

encircled by contours in the WPS plots indicates the periodicities that are significant at the 95% 

confidence level and the white curve marks the cone of influence (COI); the colour code is such that blue 

colour is low spectral power, and red is high power; b) The temporal variability of the monthly Tmax of 

NKU 

 

The WPS plot of Tmin for Nakuru station (Figure 2.12(a)) had spectral characteristics that 

were different from all other stations. For instance, the annual cycle is not common,and had 

high spectral energy in regions of periodicities of 8-32 months. The time series plot, 

however,depicts low and high peaks with an observable increasing trend (Figure 2.12(b)). 
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Figure 2.12:a) The wavelet power spectrum plots (WPS) of the Tmin in Nakuru (NKU); the black regions 

encircled by contours in the WPS plots indicates the periodicities that are significant at the 95% 

confidence level and the white curve marks the cone of influence (COI); the colour code is such that blue 

colour is low spectral power, and red is high power; b) The temporal variability of the monthly Tmin of 

NKU 

 

The CWT applied in this section, as an exploratory data analysis tool to investigate the spatial 

and temporal variability of the Tmax and Tminwithin and in the neighbourhood of the four 

major urban areas of Kenya,brought about the following general observations: 

 

i) The annual cycle of the Tmax and Tminexhibited spatial differences across the the 

four regions. For instance, the annual cycle was the only dominant feature in the 

Tmaxover the coastal region, while in Nakuru and the Lake Victoria region, the 

annual cycle was not continuously significant over the analysis periods and semi-

annual cycles are more prominent. 

 

ii) The Tmin has high-frequencyfeatures (less than one-year periodicities) especially 

in urban stations, and in most of the stations, the Tmin time series had increasing 

trends in both urban and rural stations. 

http://etd.uwc.ac.za/



 

 

 

 

 
 

57 
 

iii) High peak temperature in the time series plots for a given station, across the 

analysis period, were observed when high and low-frequencyfeaturesoccurred 

simultaneously, while trends were observed when occurrence of multiple 

periodicities are continuous over a long period of time; as observed in Tmin series 

for most stations 

 
 

iv) There were spatial differences in the variability of Tmax and Tmin as observed from 

WPS plots; for instance a time series plot alone may not be able to show the 

significant difference between the temperature variability over the coastal region 

and central highlands i.e., over the coastal region the annual cycle is the only 

dominant mode of variability while over the highlands, there are high frequency 

(periodicities of 1-6 months) modes reinforcing the annual cycle in both Tmax and 

Tmin. 

 

v) Tmax and Tmin at monthly time scale had no significant periodicities longer than 16 

months. 

 
 

The observations in the CWT analysis indicates the existence of multi-temporal cycles in the 

temperature time series that would be interpreted to indicate that local factors and global 

factorsare influencing the observed changes in temperature. However, the attribution of these 

factors would require further analysis to establish the factors that influence temperature at 

both local and global scales. The influence of global warming on urban and rural temperature 

was investigated in the next Section while in Chapter 4, the urban heat island (UHI) effect 

was investigated.However, a study byProkoph and Patterson, (2004) using asimilarmethod, 
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interpreted the inter-seasonal cycles to suggested that urban heat island effect was influencing 

temperature changes in Ottawa city (USA). Also land use changes and growth of towns in 

ruralareas could be associated to some of theobserved changes. For instance, Kisii 

stationshowed significant change in both Tmax and Tmin after 1995 and was indicated in 

Mironga, (2005) to have undergone land usechanges through draining of wetlands and 

increase of built-up areas of the Kisii town. Lack of significant cycles beyond one year would 

imply that the temperature within theselocations  is either not influenced by global modes of 

of climate variability such as El-Nino Southern Oscillation (ENSO) and the Indian Ocean 

Dipole (IOD) which have cycles longer than one year, or their effects are superimposed 

within the annual cycles. 

 

Using the CWT analysis as a diagnostic tool,I was  able to establish important differences in 

the variability of the Tmax and Tmin as well as spatial differences (and similarities) in 

temperature variability within the same and across different climatic zones, and within urban 

and rural areas. These results agree with other studies that Tmin is increasing more than the 

Tmax in the EEA region (King’uyu, et al., 2000; Christy, et al., 2009; Omumbo, et al., 2011). 

However, the CWT analysis also revealed that, although Tmaxshowed no temporal trends in 

some stations, there were frequent occurrence of high values observed in time series plots 

that wereresultant of simultaneous occurrence of the annual cycle and the high-frequency 

components. The frequent occurrence of high peaks is likely to introduce trends in the 

indices of extreme values of Tmax. However, CWT as a diagnostic tool would require the 

trend analysis methods to test for the significance of the observed changes.Trends analysis 

was carried out in the next section using the annual, seasonal and monthly time-scales of 

both Tmax and Tmin. 
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2.5.3 Trend analysis 

Trend analysis at various time scales was carried out in this Section to confirm the 

exploratory observations. The outcome of the trend resultswould form foundation upon which 

the influence of temperature on rainfall (Chapter 5) would be investigated.The following 

variables were tested for trends in both Tmax and Tminusing the parametric linear regression 

and the non-parametric Mann-Kendall methods (Equations 2.14-2.20) including ; i) mean 

monthly values; ii) the means of the four seasons in each year (DJF, MAM, JJA and SON) 

and; iii) the mean annual values for each station.For each time-scale, Tmax and Tmin from all 

stations (Table 2.1) were tested for trends but only those whose β and τ coefficients were 

significant (p-value < 0.05) were presented in the results. 

 

  Trend analysis of Tmax 

Figure 2.13shows linear regression coefficients (β) for four stations whose Tmax had 

significant trends;Figure 2.13 (a) shows the trends of monthly Tmax while Figure 2.13 (b) 

shows the trends in the seasonal and annual means of Tmax. For instance, MRMs station at the 

coast had trends in all months, all seasons and the annual mean, while the other stations had 

trends in some months and seasons and not in others. Notably,linear regression method 

detected trends in Tmaxonly in stations at the coast and KR in western Kenya, with the highest 

trend in annual mean recorded at MRMs (0.044oC/year). 
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Figure 2.13:A summary of linear regression trend test results of Tmax; a) regression 

coefficients (β) for the monthly Tmax ; b) β of the seasonal and annual mean Tmax; note 

stations with no trends in Tmax for any of the month, season or annual mean were not 

included in the summary; gaps in some periods for a given station indicate no trends 

(All the β values are significant at α =0.05;p-values  <0.05) 

 

Figure 2.14 (a&b) shows the summary of the Mann-Kendall coefficients (τ) for the period 

that a station had trends in Tmax. Figure 2.14(a) shows the trend test results ofall the stations 

where the coefficients of monthly Tmaxwere statistically significant, while Figure 2.14(b) 

shows the same results for the seasonal and annual mean Tmin.There were moretrends 

detected by the Mann-Kendallmethod than with the linear regression method but all trends 

detected by the linear regression method were also confirmed by the Mann-Kendall 

method.For instance, MRMs has increasing trends in all months and NKU has negative trends 

in the months of September and October detected by Mann-Kendall but were not significant 

according to linear regression.  
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Figure 2.14:A summary of Mann-Kendall trend test results of Tmax; a) Mann-Kendall 

(τ) for the monthly Tmax; b) τ for the seasonal and annual mean Tmax; note: stations with 

no trends in Tmax for any of the month, season or annual mean were not included in the 

summary; gaps in some periods for a given station indicate no trends (All the τ values 

are significant at α =0.05;p-values <0.05) 

 

In general,positive trends were observed at the coastal stations and Kisii near lake Victoria. In 

particular Msabaha (MRMs) which is about 90 km northeast of Mombasa town had increasing 

trends throughout the year. These results are consistent with the observations from the CWT 

analysis in some cases (MRMs andKR) while in other cases trends were not observed but have 

been detected through the statistical analysis  at various scales(e.g., MU had increasing trends 

in JJA, SON and annual mean).Other studies that have reported trends in temperature in the 

EEA region include that of Christy, et al. (2009) who suggested that increasing Tmax represent 

a significantly greater day-time connection to the deep atmosphere and hence may be proxy 

for global temperature change and Omumbo et al. (2011) who indicated that the increasing 

trends of local temperature were consistent with the global temperature change. 

Investigations of the influence of increasing global temperatures (global warming) to the 

local urban and rural temperatures were investigated in Section 2.6.5. 
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Trend analysis of Tmin 

Figure 2.15 shows the linear regression results in which the β values were significant. Figure 

2.15 (a) are the results for the monthly trends, while Figure 2.15 (b) are the results for the 

seasonal and annual means. NU and NRD(in Nairobi)had no trends in the months of January 

to July, and NKU (Nakuru)had no trends except in the months of August, September, 

December and the SON season which was the highest seasonal trend (0.074oC/year) among 

all stations. At the coastal region, MRMshad positive trends in all periods while MRMt has 

only January and February without trends. Note that MU had no trends for the whole period 

(1980-2013) which was attributed to the decline between 1980 and 1990 followed by an 

increase thereafter observed in the time series plot and the CWT analysis in the previous 

Section. Over the western Kenya and Lake Victoria region, Kisii(KR) station had weak but 

significant increasing trends for all the months, seasons and annual mean. 

 

 

 

Figure 2.15:A summary of linear regression trend test results of Tmin; a) regression coefficients 

(β) of the monthly Tmin ; b) β of the seasonal and annual mean Tmin;  (All the β values are 

significant at α =0.05;p-values  <0.05)) 
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The results of the Mann-Kendall trend test indicate showed more positive trends in each 

station than was found with regression method (Fig 2.16). For instance, NU had positive 

trends from January to May that were not significant with the regression method and NKU 

has more months (Fig 2.16(a)) and seasons (Fig 2.16(b)) with positive trends. The coastal 

stations had increasing trends in almost all months, seasons and the annual mean except MU 

that no trends.None of the stations had decreasing trends for the Tmin series.  

 

 

Figure 2.16:A summary of Mann-Kendall trend test results of Tmin; a) Mann-Kendall (τ) for the monthly 

Tmin ; b) τ for the seasonal and annual mean Tmin; note stations with no trends in Tmin for any of the 

month, season or annual mean were not included in the summary; gaps in some periods for a given 

station indicate no trends (All the τ values are significant at α =0.05 ( with p-values  <0.05)) 

 

Although there is night-time warming over the coastal region throughout the year (as 

indicated by monthly positive trends), Tminat MU had trends only when analysed from 1990-

2013. The increasing trends over this period may have been influenced mainly by local 

changes as suggested by the increase of the high-frequency components (4-6 months 

periodicities) WPS (Fig 2.7(a)) after 1995. It is worth noting that increasingtrends of the 

Tminwere observed in almost all stations and especially during the months of September to 

Decemberand the SON season. 
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In summary, the trend analysis results corroborated those of King’uyu, et al. (2000), Christy, 

et al. (2009) and Omumbo, et al. (2011) who have reported increasing trends of the Tmin over 

the EA region and also confirm some of the observations of the CWT analysis. For instance, 

the cooling and warming of MU that makes trend results to apparently indicatelack oflong-

term change over time in Tmin.  

 

The comparative analysis of rural and urban stations was important to establish the influence 

of both urbanization and global warming on local temperature. However trend analysis alone 

may be limited to show such differences. Combined with the CWT analysis which shows the 

high-frequencyfeatures associated with local changes, there is an indication that temperature 

is increasing due to both local changes (such as urbanization) and global warming. For 

example, Tmax at the coast has increasing trends although there were no significant high 

frequency (low periodicities) modes of variability thus implying that the warming is more 

global than local while the increasing trends in Tmin over Nairobi indicated more local 

influence than global.  

 

Trend analysis of extreme temperature indices 

The analysisof extreme indices of temperature was performed to establish if daily maximum 

values and other extreme indices from each of the four urban areas are undergoing changes 

over time. The aim of this analysis was to examine if the observed high (low) peak 

temperatures observed in the CWT analysis have long-term trends,that are likely to influence 

rainfall patterns.Four stations that had complete daily data were used to compute the 

temperature indices. A total of nine indices indicated in Table 2.2were analysed for 

trendsusing the linear regression and Mann-Kendall methods. 
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Table 2.5 shows the results of the trends of annual series of each of the nine indices in each 

station. The diurnal temperature range (DTR) had significant negative trends in MU (coast) 

and NKU (Rift valley) stations implying that the annual mean daily difference between the 

Tmax and Tmin has declined over the last thirty years (1980-2013) at these two stations. This 

could be resulting from notable decreasing trends in the percentage of the days in a year when 

daily Tmin was less than the 10th percentile (i.e decreasing cool nights) and increasing trends 

in the percentage of the days in a year when daily Tmin was greater than the 90th percentile (i.e 

increasing warm nights) also in MU, maxTmin and minTmin   have significant increasing trends 

which are likely to influence negative trends in DTR. In general, all stations except NKU has 

increasing trends in the proportion of the time when Tmax was greater than the 90th percentile 

and when Tmin was greater than the 90th percentile while having negative trends in the 

proportion of the time when Tmin was less than the 10th percentile. Particularly in Mombasa 

and Nairobi, theminimum temperature is increasing as well as the proportion of time when 

Tmax exceeds the 90th percentile; i.e even when Tmax has no temporal trends, the number of 

hot days in a year is increasing.  

 

These results agree with those of Omondi, et al. (2014) who reported that warm days and 

nights are increasing while cool nights are decreasing over the eastern African region. Kruger 

and Shongwe (2004) and New, et al. 2006 also reported the same for the southern and 

western African region respectively, and also reported that DTR does not show uniform 

increasing (or decreasing) trends across all regions.  
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Table 2.5:Trend results of the extreme temperature indices of four stations; MU(Mombasa), NRD 

(Nairobi), NKU(Nakuru in Rift Valley) and KR (Kisii over the Western Kenya highlands); values in bold 

red are significant at α=0.05; the indices are described in Table 2.2 

Station 

Index 

MU NRD NKU KR 

Τ Β τ Β τ β τ β 

DTR 

MaxTmax 

MaxTmin 

MinTmax 

MinTmin 

Tmax10p 

Tmax90p 

Tmin10p 

Tmin90p 

-0.63 

-0.11 

0.46 

-0.06 

0.58 

-0.12 

0.47 

-0.62 

0.7 

-0.09 

-0.03 

0.1 

-0.01 

0.13 

-0.01 

0.52 

-1.0 

0.63 

-0.04 

0.27 

0.48 

-0.12 

0.38 

-0.11 

0.44 

-0.39 

0.69 

-0.01 

0.03 

0.07 

-0.02 

0.11 

0.04 

0.46 

-0.16 

0.83 

-0.45 

0.06 

0.23 

0.05 

-0.03 

0.19 

-0.15 

-0.43 

0.62 

-0.06 

0.02 

0.09 

0.02 

-0.01 

0.47 

-0.03 

-0.38 

0.42 

-0.09 

0.31 

0.35 

-0.17 

0.06 

-0.35 

0.35 

-0.5 

0.44 

-0.01 

0.03 

0.05 

-0.02 

-0.06 

-0.12 

0.24 

-0.04 

0.37 

 

 

2.5.4 Influence of global temperature anomalies 

The CWT and trend analysis have shown that warming in and around urban areas is likely to 

be resulting from local (presence of periodicities few months in WPS plots) as well as global 

factors. To establish the influence of global warming on local urban and rural temperatures, 

correlation and regression analysis of the seasonal Tmax and Tmin respectively with the global 

mean (land and ocean) temperature anomalies (GT) was performed. Global warming is a term 

used to describe the gradual increase in the average temperature of the earth’s atmosphere 

and oceans.GThas been used as an indicator of global warming since it represents the 

warming of the atmosphere across land and oceans (Hansen, et al., 2010). GT linear trend for 

the period 1880-2012 was used to report global warming in the Fifth Assessment Report of 

the IPCC (Stocker, (2013)). 

 

The GT was averaged into seasonal and annual means using the monthly values with time 

corresponding to the length of time of temperature at the stations. Correlations were then 
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computed for each season and the annual mean. Figure 2.17 (a) shows the results of the 

correlations between the GT and Tmax for the four seasons namely DJF, MAM, JJA and SON 

annual means. Results of Tmaxof NU, NRD and NKU showed no significant correlation with 

GT for all the seasons and MU has only weak correlations in JJA and SON. However, there 

were significantpositive correlations in all seasonsbetween GT and Tmaxof MRMt and MRMs. 

KR is also significantly correlated with GT except for the DJF season. These results imply 

that global warming is influencing the observed changes in Tmaxof the coastal and western 

rural areas of Kenya.The correlation between Tmin and GT show higher positive correlations 

for all stations (Figure 2.17 (b). NU, MU, KR had significant r in all seasons and MRMs still 

has the highest correlation values in all seasons (all close to 0.8 except in DJF). These results 

corroborate the report of IPCC (Stocker, 2013) that global warming is influenced more by 

changes in Tmin than Tmax.  Christy et al. (2009) suggested that the Tmax and Tmin should be 

treated as separate variables when evaluating temperature changes in climate change studies.  

 

Figure 2.17:The association between global temperature anomalies (GT) and the urban 

and rural temperature for the four seasons (DJF, MAM, JJA and SON); a) Tmax and;  

b) Tmin;the horizontal bar shows the value above (or below) which the correlations are 

statistically significant at α=0.05 
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Further analysis was carried out using linear regression to establish the proportion of 

variations of the annual mean Tmax and Tmin that could be explained by variations in the 

annual mean GT. Table 2.6 shows a summary of the proportions of variance of the station 

annual mean temperature that could be explained by the variance of the annual mean GT. In 

general, GT has more influence on thetemperature of rural stations than the urban ones; e.g., 

GT explains 52% and 68% of the variance of MRMs Tmax and Tmin respectively, and 41% and 

56% of the variance of KR Tmax and Tmin respectively. Noted also was that although Tminat 

MU had a high annual rate of change over the last twenty years, only 36% of this change is 

accounted for by the GT; on the other hand, more than 50% of the variation of Tminat NU and 

NRD is accounted for by variation of GT.  

 

Table 2.6:Proportion of variance of temperature explained by variation of global 

temperature (GT);* indicate values where the regression coefficients were not 

significant at α=0.05; values in bold red indicate proportions where more than 50% of 

the variance of temperature is accounted for by GT 

 Station 

NU NRD NRK NRT MU MRMt MRMs KU KR NKU 

Proportion 

(%) 

GT-Tmax 

GT-Tmin 

14 

54 

13* 

54 

35 

39 

40 

26 

22 

36 

43 

47 

52 

68 

13 

41 

41 

56 

08* 

28 

 

These results imply that global warming has more influence on Tmin than Tmax and influences 

temperatures more in ruralthan urbanareas. Also noted was that although global warming has 

asignificant influence on local temperature changes, it does not account for all the variations 

of Tmax and Tmin in each station which imply that other local factors such as urbanization have 

an effect on the observed changes. Urban effects on temperature are explored in Chapter 4. 
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2.5.5 Discussion 

Temperatureof the EEA region has not been subjected to rigorous analysis in relation to 

variability and change as global climate changes. With the emerging global warming and its 

expected influence on rainfall (Stocker, 2013), understanding temperature variability and 

change becomes important. The continuous wavelet transform (CWT) analysis brought about 

notable differences between the long-term variations of monthly mean Tmax and Tminboth in 

the urban and neighbouring rural stations. In general, from the four areas, the most dominant 

mode of temperature variability of Tmax is within the annual cycle, although higher frequency 

modes in Tmax were observed over the highlands, the Rift Valley, and the Lake region. For 

Tmin both the annual cycle and semi-annual cycles were common especially for the urban 

stations. I interpreted these results to imply local climate perturbations have more influence 

on the Tmin than the Tmax in Kenya. Similar suggestions were made by Christy, et al. (2009) 

who indicated that human development is responsible for the rising Tmin,while having little 

effect on Tmax. However at a small spatial scale, this study has established increasing trends 

of the Tmax at the coast(using rural stations) which could not have been apparent if Mombasa 

station alone was used for trend analysis; as is commonly the case in many climate studies 

(King’uyu, et al., 2000; Christy, et al., 2009; Omondi, et al., 2014). Other rural stations that 

are not commonly used in regional climate studies and had trends in Tmax included, Kisii in 

western Kenya, and Thika and Kabete near Nairobi. These observations suggest that a dense 

network of stations is required in studies of temperature variations and trends. Important 

observations was that, in general, the urban stations had no trends in Tmax, while many of the 

rural stations had. Further, global warming is influencing thetemperature of the rural areas 

more than the urban areas. It is worth noting thatthe commonly used stations in most climate 

studies in EEA are those inand near urban areas, and so some ofthe changes observed here 
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have not been reported.Trend analysis of extreme temperature indices over the urban stations 

showed that, days when Tmaxand Tmin exceeded the 90th percentile are increasing while cool 

nights are decreasing. Similar results were reported by Omondi, et al. (2014) for the Greater 

Horn of Africa (that includes Kenya). Even without trends in Tmax, increase of extremes could 

impact on rainfall especially in urban areas through enhancement of convective activities. 

Further,I have established that there exist significant relationships between the increasing 

trends in the station temperatures (especially Tmin) and the global warming, thus 

corroborating other studies that the warming in the African region is consistent with global 

warming and is being influenced more by changes in Tmin than Tmax (Shongwe and Kruger, 

2004; Christy et., 2009; Omumbo et al., 2011; Stocker, 2013).The results also agree with the 

observations made by Prokoph and Patterson (2004) for Ottawa (Canada) , Kruger and 

Shongwe (2004) for South Africa, and Christy et al. (2009) for EEA that the Tmin trends in 

and near urban centres are more influenced by the local urbanization processes than global 

climate change. In this regard, higher correlations between local temperature and global 

temperature (used as a proxy for global warming) were observed in rural stations.According 

to the IPCC (Stoker, 2013), the total global radiative forcing (RF) is positive which has led to 

increased uptake of energy by the climate system and accordingly, the mean global surface 

temperature has increased since the late 19th century. The global increase in surface 

temperature has been attributed mainly to increased concentrations of anthropogenic 

greenhouse gases that are mainly transparent to the incoming shortwave radiation and have 

the ability to absorb the outgoing long wave radiation and radiate in back into the atmosphere 

when the earth is cooler than the greenhouse gases, thus influencing the night-time 

temperature more than the day-time. 
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2.6 Summary 

The aim of this Chapter was to investigate variability and possible changes of temperature of 

urban and rural stations in and around the four main urban areas of Kenya.Spatially the 

highest temperatures are experienced at the coast and Lake Victoria region while cooler 

temperatures are experienced over the highlands. Temporally the hottest period of the year in 

each region is December to April, while Juneand July are the coolest months. The non-

stationarity of temperature was examined using the continuous wavelet transform 

(CWT)where semi-annual cycles (short periodicities) entrenched  in the dominant annual 

cycles were observed. The short periodicity features were more frequent in Tmin than in Tmax 

for stations over Nairobi, Nakuru, and Lake Victoria regions while at the coast the annual 

cycle was dominant. The frequency of occurrence of the short periodicity was more in urban 

stations than rural stations. The concurrence of the annual and semi-annual cycles at a given 

time producedhigh peak of temperature values at that time.Trend analysis of monthly, 

seasonal and annual temperature in each of the stations further confirmed that Tmin has more 

increasing trends and that the urban stations have higher rates of increase of the Tmin than the 

rural stations. Trends of annual daily maximum temperature indices indicated that the 

percentage of the time when daily maximum and daily minimum temperature is greater than 

the 90th percentile is increasing while the percentage of the time when daily minimum 

temperature is less than the 10th percentile is decreasing;this implies that nights and days are 

warming while cool nights are decreasing. Further this study has shown that there exists 

significant relationships between the increasing trends in local temperatures (especially Tmin) 

and the global warming and the relationship is stronger in rural areas than urban areas.  

 

The implications of the observed trends and variability of temperature to urban design storms 

would be mainly through the influence of temperature on rainfall characteristics in urban 
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areas. Other factors such as the urban heat island (UHI) effect that could be influencing urban 

temperature were explored further in Chapter 4 and the effects of temperature changes 

(including UHI effect) on rainfall patterns in urban areasare investigated in Chapter 5. 
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3 CHAPTER 3: TEMPORAL VARIATIONS OF RAINFALL 

3.1 Introduction 

The aim of Chapter 3 is to investigate variability and possible changes over time of rainfall of 

urban and nearby rural areas. The comparative analyses of rainfall characteristics of urban 

and nearby rural areasform a basis upon which effects of temperature and urbanization on 

rainfall (Chapter 5), and the statistical analysis of extreme value were investigated (Chapter 

6).  In this part of my thesis, I used rainfallfrom sixteen (16)stations within urbanareas of the 

four major towns (Nairobi, Mombasa, Kisumu,and Nakuru) and their rural neighbourhoods 

for analysis.The El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) 

indices were used to investigate their effects on rainfall variability in the urban and 

ruralareas. The Chapter starts with a review of theliterature on spatial and temporal variations 

and changes of rainfall, and especially over East Africa. 

 

The understanding of the spatial and temporal variability of rainfall is important for 

sustainable water resources as well as storm water management in both urban and rural areas. 

Studies have emphasized that global warming will increase rainfall variability and increase 

flood risks in many regions of the world (Jung, et al., 2011; Tabari, et al., 2012). Over the 

African region, studies have shown varied results in the changes of the variability of rainfall. 

For instance, Omondi, et al. (2014) analysed daily rainfall for the 1960-2006 period over the 

greater Horn of Africa (GHA) and reported a significant decrease in total rainfall for wet days 

(with rainfall more than 1mm), while New, et al. (2006) found mixed trends in rainfall 

extreme indices over the southern and western Africa region. From these studies, rainfall has 

mixed trend patterns over the African region with some countries having generally no trends 

in annual and seasonal rainfall. Most of the studies of rainfall characteristics in the EEA 

region are usually too coarse in spatial resolution (using only a few representative stations for 
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each country) and focused on trend analysis of indices of extreme daily rainfall. These results 

may not be directly applicable to storm water management at the urban area scale. Moreover, 

most of these studies did not indicate whether there were differences in rainfall variability 

between urban and rural areas although urbanization and other land use changes may cause 

such differences (Callejas, et al., 2011; Borges, et al., 2013). Again the response of the 

rainfall characteristics to climate change in urban and rural areas of the EEA needs to be 

understood for effective stormwater management. The comparative analysis of rainfall 

characteristics in urban and rural areas forms a basis for understanding possible changes in 

rainfall patterns that are important to modelling of urban design storm applicable 

instormwater management systems.  

 

The fifth IPCCreport indicated that there is a general increase in precipitation globally in 

response to the anthropogenic forcing resulting from enhanced moisture content in a warmer 

atmosphere, and that model projections of rainfall indicate anincrease in extreme rainfall 

associated with global warming(Stocker, 2013). Regional studies on changes of climate 

extremes have confirmed that various indices of rainfall have changed particularly over the 

last four decades (New, et al., 2006; Anguilar et al., 2009; Donat, et al., 2014; Omondi, et 

al., 2014). Unlike the temperature extremes, precipitation has shown mixed regional trends 

with some regions showing increasing, others decreasing and even no trends. For instance 

Jhajharia, et al. (2012) reported mixed trends of total rainfall at monthly, seasonal and 

annual time scales over the northeast India, while Beguería, et al. (2011) reported no 

evidence of a generalized trend in extreme rainfall over northeast Spain.  Mazvimavi, (2010) 

reported no significant change in annual rainfall over Zimbabwe.  

 

Noticeable influence of human activities on rainfall patterns has been reported in some parts 
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of the world especially in urban areas; for example, Opija et al. (2007) found marked 

increase of heavy rainfall intensities attributable to anthropogenic changes over Nairobi 

(Kenya) area while Marengo et al. (2013) found increase in total and heavy rainfall and 

decrease in light rains over Sào Paulo metropolitan area (Brazil), and suggested that effects 

of urbanization were significant. However comparative studies on the spatial and temporal 

variations of rainfall within the fast growing urban and their neighboring rural areas of the 

equatorial EA region are limited. Such studies are important for understanding the 

challenges of urban storm water management taking into account local and global climate 

changes.  

 

3.1.1 Climatology ofrainfall over the EEA region 

Most of the annual rainfall over the tropics occurs within the tropical convergence zones 

such as the Inter-Tropical Convergence Zone (ITCZ) over the Pacific, Atlantic and Africa 

equatorial belt, the South Pacific convergence zone (SPCZ) over central south Pacific, and 

the South Atlantic Convergence Zone (SACZ) over southern America and southern Atlantic 

(Asnani, 1993). Over the equatorial African region, the beginning and end of the rainy 

seasons coincide with the arrival and the withdrawal respective of the ITCZ, which is mainly 

responsible for the inter-annual and intra-seasonal variability of rainfall (Bowden and 

Semazzi, 2007; Gitau, et al., 2014). The different scales of variability (diurnal, seasonal, 

annual and decadal) of rainfall in this region have mainly been linked to changes in the sea 

surface temperatures (SST) of the Indian and Atlantic oceans (Mukabana and Pielkle, 1996), 

and the El Nino Southern Oscillation (ENSO) anomalies (Giannini, et al., 2001). However 

Marchant, et al. (2007) indicated that the dominant driver of the EA rainfall variability is the 

variation of the Indian Ocean sea surface temperatures (SSTs); the main feature being the 

Indian Ocean dipole (IOD). The IOD has been shown to influence rainfall through either 
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anomalous low-level easterly flow of moist air into the continent (Shongwe, et al., 2011), or 

a weakening of the low level westerly flow over the northern Indian Ocean that carries 

moisture away from the continent (Black, et al 2003). The effect of the IOD is more evident 

in the OND rainy season than in MAM although William and Funk, (2011) suggested that a 

reduction of MAM rains over Kenya and Ethiopia could be a response to a warmer Indian 

Ocean SSTs. In the EA region, other climate systems that drive the inter-annual variability 

are the monsoon winds, the relative positions and intensities of the pressure gradients of the 

equatorial low pressure (in the ITCZ), and the subtropical high pressure zones, that 

determine the areas of convergence between the south-easterly and north-easterly monsoon 

winds (Okoola, 1999). The SSTs of the adjacent oceans determine the moisture content the 

monsoons winds bring to the EEA region (Manatsa, et al., 2013). The interaction between 

the large scale flow and the localized circulations of thermal and orographic origins largely 

govern the spatial distribution of rainfall. The climatological large scale systems control the 

inter-annual and intra-seasonal variability of rainfall over Kenya, while the meso-scale and 

the local circulations mainly control spatial and diurnal variability (Mukabana and Pielke, 

1996; Indeje, et al., 2000). Studies done in the EEA region have not considered the urban 

effects on rainfall characteristics that are likely to affect storm water management systems. I 

therefore undertook to investigate variability and possible changes of rainfall characteristics 

atdaily, monthly, seasonal and annual time scales within and in the neighbourhood of the 

four major towns of Kenya. The Chapter form the foundation upon which the effects of 

enhanced temperature(observed in Chapter 2) on rainfall in urban areas wereinvestigated 

(Chapter 5). 
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3.2 Data types and sources 

Daily and monthly total rainfall time series for some urban and rural stations around the four 

main towns of Kenya (Nairobi, Mombasa, Kisumu and Nakuru) were collected from the 

Kenya Meteorological Department (KMD). From rainfall data, various variables were 

prepared for each station for the comparative analysis of urban and rural rainfall variations. 

The variables included: i) annual total rainfall; ii) seasonal total rainfall for MAM, JJA and 

OND; iii) monthly total rainfall, and; iv)daily extreme rainfall indices as defined by Expert 

Team on Climate Change Detection Monitoring  and Indices (ETCCMDI) (Table 3.1) and 

prepared using the RClimDex software (Zang and Yang, 2004) described in Chapter 2, 

Section 2.6.4. 

 

Table 3.1:Indices of daily rainfall extremes used in this study 

Index Index Name Index definition units 

RX1day Max 1-day rainfall amount Monthly maximum 1-day rainfall mm 

RX5day  Max 5-day rainfall amount Monthly maximum consecutive 5-day 

rainfall 

mm 

SDII Simple daily intensity index Ratio of daily amount to the number of 

wet days (≥ 1 𝑚𝑚𝑚𝑚) 

mm/day 

R10 Number of heavy rainfall 

days 

Annual count when rainfall ≥ 10 𝑚𝑚𝑚𝑚 days 

R25 Number of heavy rainfall 

days 

Annual count when rainfall ≥ 25 𝑚𝑚𝑚𝑚 days  

CDD Consecutive dry days Maximum number of consecutive days 

when rainfall is ≤ 1 mm 

days 

CWD  Consecutive wet days Maximum number of consecutive days 

when rainfall is ≥ 1 mm 

days  

R95p Very wet days Annual total rainfall >95% percentile mm 

R99p extremely wet days Annual total rainfall >99% percentile mm 

PRCPTOT Annual total wet day rainfall Annual total rainfall from days ≥ 1 mm mm 
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3.2.1 Description ofrainfall stations 

The heterogeneous terrain of Kenya makes the country to have diverse climatic zones where 

localized circulations of thermal and orographic origin greatly influence the rainfall and thus 

creating significantly different rainfall patterns from one region to the other. Indeje, et al. 

(2000) delineated zones according to inter-station annual rainfall correlations with the highly 

correlated stations in a given region forming a homogeneous zone (Fig 3.2). Using Indeje, et 

al. (2000) classification, rainfall stations in my Thesis (Table 3.2) fell into the following 

categories: a) the stations over the coastal region, with Mombasa (MU)representingthe urban 

stationof Mombasa urban area, are inZone I; b) stationsover the central highlands of Kenya 

withWilson airport (NU) as the urban stationare located in zone III; and; c) stations located in 

the western region and the Rift Valleywith KU and NKU representing the urban stations in 

Kisumu (near Lake Victoria) and Nakuru (within the Rift Valley) towns respectively are 

located in Zone VI.  
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Figure 3.1: The eight homogeneous rainfall zones of East Africa (adopted from Indeje, 

et al., 2000) 
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Table 3.2:Stations used for analysis of rainfall 

Meteorological 

Station Number 

Station 

name 

Station 

acronym  

Latitude 

oS(-) /oN (+) 

Long. 

(oE) 

Altitude 

(m) 

Length of 

rainfall  data 

9136130 

9136164 

9137048 

9138050 

Wilson  

Dagoretti  

Thika  

Nyeri 

NU 

NRD 

NRT 

NYR 

-1.32 

-1.30 

-0.98 

+0.43  

36.82 

36.70 

37.07 

36.97 

1679 

1798 

1549 

1815 

1961-2013 

1961-2013 

1961-2013 

1970-2008 

9034021 

9339036 

9340007 

9237000 

9338001 

9340008 

9240001 

Mombasa  

Mtwapa 

Msabaha 

Makindu 

Voi 

Malindi 

Lamu 

MU 

MRMt 

MRMs 

MKD 

VOI 

MLD 

LAM 

-4.03 

-3.93 

-3.27 

-2.28 

-3.70 

-3.23 

-2.27 

39.18 

39.73 

40.05 

37.83 

38.57 

40.10 

40.90 

55 

20 

91 

1000 

560 

20 

30 

1961-2013 

1961-2013 

1961-2013 

1961-2008 

1961-2008 

1961-2008 

1961-2008 

9135001 

9034025 

8334096 

9034088 

9036261 

Narok 

Kisumu 

Kakamega 

Kisii 

Nakuru 

NRK 

 KU 

KKM 

 KR 

NKU 

-1.13 

-0.10 

+0.28 

-0.68 

-0.27 

35.83 

34.70 

3475 

34.73 

36.12 

1890 

1146 

1580 

1493 

1901 

1961-2008 

1961-2013 

1961-2008 

1963-2013 

1970-2013 

 

3.2.2 ENSO and IOD data 

Rainfall variability in the EEA region has been associated with several modes of climate 

variability mainly ENSO and IOD.The El Niño tends to cause above average rainfall during 

the OND season, and the La Nina results in depressed rainfall during the same 

season.Positive IOD mode is associated with above normal rainfall(Indeje, et al., 2000;Clark, 

et al., (2003); Nicholson, 2014; Nicholson,2015). As such, I used these two indices to 

examine their influence on the urban and rural rainfall characteristics in different climatic 

zones. ENSO in this study was represented by the NINO 3.4 SST index which issea surface 
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temperature anomalies over the central equatorial Pacific (5oN-5oN and 120o-170oW). The 

mean monthly standardized values of this variable were obtained from the National Oceanic 

and Atmospheric Administration (NOAA) 

database(http://www.cpc.noaa.gov/data/indices/>CPC).Mean monthly standardized indices 

of the Indian Ocean dipole (IOD) indexwere obtained from the Japanese agency for Marine-

Earth Science and Technology  

(http://www.jamstec.go.jp/frsgc/research/d1/iod/">FRCGC</a>); the IOD index is defined as 

the standardized  anomalies of the difference between the sea surface temperature (SST) in 

the western (50o-70oE and 10oN/S) and eastern (90o-110oE and 10oN/S) equatorial Indian 

Ocean. The two variables were computed into seasonal and annual variablesaccording to the 

corresponding rainfall variables. 

 

3.3 Data quality control and methods ofanalysis 

Climatological records often contain errors, missing values, and other inconsistencies that 

should be checked before analysis. The missing rainfall values were estimated using 

correlation and regression methods described in Chapter 2 Section 2.5. The data were then 

tested for homogeneity using mass curves. 

 

Rainfall was analysed to establish spatial and temporal variations at different time scales for 

stations within urban and neighbouring rural areas of the major urban areas of Kenya. 

Temporal and spatial variability and possible trends of monthly, seasonal and annual rainfall 

totals and daily rainfall indices were investigated using various methods that included the 

quantile regression; Mann-Kendall trend tests and the continuous wavelet transform (CWT). 

CWT is a valuable tool that is applied on rainfall data to discriminate temporal and spatial 
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variability of rainfall (Nakken, 1999; Nicholson, 2015). The CWT method interprets a 

rainfall time series by extracting the relevant information from the series as frequency 

components through transforming without changing it (Torrence and Compo 1998; 

Adamowski, et al., 2013). The strength of the wavelet transform method is in its ability to 

detect multiple cycles in a time series and how these cycles vary with time. Such cycles may 

influence results of trend tests when assumed absent.   

 

The detailed description of the linear regression and Mann-Kendall trend test methods were 

presented in Chapter 2 (Section 2.5) and will be applied in this Chapter for rainfall analysis, 

since the methods are also suitable for testing trends in rainfall time series and have been 

widely used in rainfall analysis (Mazvimavi, 2010; Kruger and Sekele 2013; Omondi, et al., 

2014). CWT method was also discussed in detail in Chapter 2 (Section 2.5) and will be 

applied in this Chapter by substituting the temperature variable T(t) in equations of 

transformation with the rainfall variable Y(t). Some of the analyses methods not discussed in 

Chapter 2 and are used in theanalysis of rainfall are discussed below. 

  

3.3.1 Quantile regression 

 Quantile regression (QR) is a method of estimating the relationships between one or more 

covariates and the conditional quantile of the response variable.  It was developed in the 

1970s as an extension of the linear model for approximating rates of change (Koenker and 

Bassett, 1978). The QR parameter estimates the change in a specified percentile of the 

response variable produced by a change in the predictor variable. Unlike the linear regression 

that assumes that the response is only affected by location (50th percentile) of the distribution, 

the QR provides a complete picture of the conditional distribution of the response variable 

when both the lower and the upper or all the quantiles are of interest. In the analysis of 
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change of rainfall characteristics, all quantiles of the rainfall variable are important; 

particularly, changes in the upper quantiles of rainfall in urban areas that would enhance 

flooding. The parameters estimated are semi-parametric since no parametric distribution is 

presumed for the random error part of the model, although a parametric form is presumed for 

the deterministic portion. The conditional quantiles denoted by Y(κ\ t) are the inverse of the 

conditional cumulative distribution function of the response variable Y-1 (κ\t) where κ ∈ [0,1] 

signifies the quantiles. The QR estimates are an ascending sequence of planes that are above 

an increasing segment of sample observations with increasing value of the quantiles (κ). 

The linear function of rainfall variable Y(t) is given by:  

 

Y(κ\ t) =β0 (κ) + β1 (κ) t1 + 𝜀𝜀                 (3.1) 

        

 where, Y(κ\ t) is the conditional quantile of rainfall, Y(t) is the rainfall time series of interest 

(e.g., annual or seasonal)  and t is the time (the independent variable or covariate); the κ 

indicates that the parameter are for a specified quantile κ (0< κ <1); β0 and β1 are the 

intercept and slope respectively, and 𝜀𝜀 is the random error of the QR model. 

 

To detect the presence of trend for any given percentile in the rainfall time series, the β1 (κ) 

was evaluated. A positive (negative) β1 (κ) that is significantly different from zero at a given 

level of significance (5% in this case) would be an indicator of increasing (decreasing) trend 

of the time series in quantile κ. I used the “quantreg” software developed by Koenker (2006) 

and written in R language (http://www.r-project.org) to evaluate the coefficients of the quantile 

regression model (Equation 3.1) applying the rank inverse method. With this software I also 

estimated the standard error, the t-statistic, the p-value and the confidence intervals of the 

coefficients. The advantage of the QR over the simple linear regression is that it is able to 
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describe the response of both variables with constant slope in all quantiles and those with 

varying slopes from one quantile to another (Mazvimavi, 2010).  The 10th 20th and 

30thquantile were considered to designate low rainfall while the 70th 80th and 90thare heavy 

rainfallpercentiles.  

 

3.4 Results and discussion 

3.4.1 Estimating missing values and homogeneity test 

The method of inter-station correlations of neighbouring stations discussed in Chapter 2, 

Section 2.4 was used to estimate missing values in the monthly rainfall time series. The 

complete time series was then checked for errors and other inconsistencies.  

 

Lack of homogeneity in data may occur due to station relocations, 

equipmentchanges,equipmentdrifts,changesinthemethodofdatacollection,andchanges in 

thegeneralsurroundings ofa station. The rainfall data underwent homogeneity testing to 

identify any breakpoints which may have resulted from non-climate factors. The data for the 

sixteen rainfall stations were fairly homogeneous as indicated by results of mass curves of 

some stations (Figure 3.2). 
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Figure 3.2: Mass curves of rainfall of some stations showing rainfall homogeneity 

 

3.4.2 Spatial and temporal variability of rainfall 

The mean total annual rainfall for the stations within and close to the four major towns of 

Kenya ranges from 500 to 2000 mm/year (Fig 3.3(a)). MKD and VOI stations are situated in 

the lowlands between the central highlands and the coastal plains and have thelowest mean 

annual rainfall in the range of 500-600mm/year. Over the central highlands (NU,NRD, NYR 

and NRT stations) and Rift valley (NKU), the mean annual rainfall rangesbetween 900 and 

1000 mm/year, while the coastal region receives mean annual rainfall ranging between 1000 

to 1200 mm/year. The western region of Kenya has the highest mean annual rainfall; KR and 

KKM stations havemean annual rainfall of 1800 and 2000mm/year respectively. The seasonal 
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variations follow the same pattern, with the MAM season providing almost half of the annual 

total rainfall at most stations.The rural stations have in general higher mean annual total 

rainfall than the urban ones; for example NRD (1065 mm/year) is higher than NU (948 

mm/year), MRMt (1276mm/year) is higher than MU (1056 mm/year) and KR (2060 mm/year) 

is much higher than KU (1379 mm/year).  

 

 

Figure 3.3:Spatial variation of the mean annual and seasonal rainfall 

 

The spatial difference between the urban and rural stations could however not be attributed to 

effects of urbanization alone since other factors, such difference in altitude between the urban 

and rural stations could also play a part.Opija,et al. (2007) suggested that the spatial 

variability of rainfall over Nairobi result from forest distribution in the less built-up areas 

enhancing the humidity field conducive for convective activities, while Mukabana and 

Pielke, (1996) attributed spatial variability to differences in altitude.The mean annual rainfall 

is mainly contributed by the two rainy seasons that occur during the transition of the 

monsoon wind circulations. During MAM, the ITCZ moves slowly over the EEA region with 

resultant heavy rainfall for a longer period(Okoola, 1999). On the other hand during the OND 
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season, the ITCZ migrates rapidly southwards and the season is characterized by heavy rains 

of relatively short duration as illustrated in Figure 3.4.  

 

 

 

 

Figure 3.4:An example from NU station showing the mean pentad distribution of 

rainfall within a year. (MAM spread from about the 13th to the 30th pentad while OND 

is from pentad 58 to 70); mean 5-day rainfall total 

 

Figure 3.5 depicts the mean spatial variations of the monthly rainfall showing when peak 

rainfall is receivedat stations in different climate zones. The stations over the central 

highlands (NU, NRD and NRT), the Rift Valley (e.g., NKU) and the western Kenya highlands 

(e.g., KU and KR) have a first peak rainfall in April (with the highest amount received in the 

western Kenya region). The coastal stations (e.g MU, MRMt and MRMs) receive their first 

peak in May (with highest totals of about 300mm/month in MRMs and MRMt);the second peak 

in the year is in November for all stations. Some stations over the coastal and the Rift Valley 

regions have significant amounts of rainfall during the months of June, July and August that 

forms the JJA season.  
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Figure 3.5:Spatial variability of the mean monthly rainfall depicting the bimodal 

rainfall characteristics and seasonal peak months of some stations from each climatic 

zone 

 

Apart from the spatial variability, rainfall over the EEA region has high inter-annual 

variability. Anomalies of annual total rainfall showed that there were agroup of years with 

annual rainfall above (below) the mean for each station (Fig 3.6(a-c)).For example, annual 

rainfall between 1970 and 1976 was below the mean at all stations, while 1979-1987 annual 

rainfall was below themean over the western highlands and 2001-2006 and 2008-2013 the 

coastal stations annual rainfall was below average. On the other hand, the coastal region 

between 1996 and 2000, western highlands from 2009 to 2013 and central highlands from 

2008 to 2012 had above average rainfall. Inter-annual variability of the seasonal rainfall 

influences the annual rainfall outcome.  
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Figure 3.6:Temporal variability of annual total rainfall for urban and rural stations 

over; a) central Kenya highlands; b) coastal region; c) Lake Victoria region and the Rift 

Valley 

 

Figure 3.7shows the inter-annual variability of seasonalrainfall received in MAM at stations 

representingthe different climatic zones.Over the central highlands of Kenya,some years had 

rainfall that was more than two standard deviations (2σ) above the mean e.g., 1963 (NU), 

1967 (NRT), 1978 and 1981(NRD).  However, from 1982-2013, no year had seasonal rainfall 

equal to or more than 2σ for all stations within the central highlands. Over the coastal region, 

1967, 1981 1986 and 1998 had rainfall of 2σ above the mean, but in none of the years was 
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seasonal rainfall anomalies lower than -2σ. Over western Kenya, very few years had rainfall 

above or below 2σ; e.g., KU in 1967 &1994 and NKU in 1978 and 1988 had rainfall equal to 

or more than 2σ above the mean. 

 

Figure 3.7: Temporal variability of MAM seasonal rainfall for urban and rural stations; 

a) central highland; b) Coastal region and; c) western Kenya and Rift Valley; the mean 

and standard deviations were calculated from the whole length of the time series (1961-

2013) 
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Considering the OND season, over the central highlands and the coast region, high rainfall 

values exceeding 3σ above the mean were observed in several years (Fig 3.8). For example, 

1961 over the central highlands, and 1997 over the coast; the seasonal rainfall was close 5σ 

above the mean.The western Kenya had rainfall of close to 3σ above the mean in 1961 and 

1997. No year in the three regions had rainfall in ONDof 2σ below the mean for the period 

considered (1961-2013). What I observed to unusual was that the coastal region had the 

lowest values of the standardized anomalies compared to stations from the central and 

western Kenya highland in 1961((Fig 3.8(ii)); the year which has been documented in 

literature to have had the worst floods in EEA in recent times. This observation would 

suggest that factors that influenced anomalous rainfall of 1961 over the EEA had less 

influence over the coastal region unlike in 1997/98 where anomalously high rainfall was 

recorded at the coast. 
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Figure 3.8:Temporal variability of OND seasonal rainfall for urban and rural stations; 

a) central highland; b) coastal region  and; c) western Kenya and Rift Valley 

a) 

b) 

c) 
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From the observed temporal behaviour of the annual and seasonal rainfall, further analysis 

using the continuous wavelet transform CWT analysis of monthly rainfall was done to 

examine the persistence and the cyclic behaviour of the observed variabilities.  

 

3.4.3 Exploring rainfall variability using CWT 

The basic aim of the CWT analysis is to determine the dominant frequency components 

(periodicities) at a given time and the characteristics of these components over time in order 

to ascertain the nature and persistence of the modes of rainfall variability. I subjected the 

monthly rainfall totalsto the CWT analysis using one-month time step and scales (periods) of 

powers of 2. As discussed in detail in Chapter 2, Section 2.5, the CWT maps the spectral 

characteristics of the time series onto a time-frequency (time-period) plane from which the 

significant dominant periodicities can be observed and related to rainfall variability.The 

temporal distribution of the frequency components of the rainfall time series signal was found 

by successively passing stretched and compressed functions of a Morlet wavelet according to 

Equation (2.2) as described in Chapter 2, Section 2.5. 

 

CWT analysis of monthly rainfall in and around Nairobi  

Figure 3.9 (a)are the WPS plots showing the variability of spectral powerof monthly rainfall 

time series at an urban (NU) and a  nearby (NRD) station respectively, while Fig 3.9 (b)  are 

the time series plots of monthly rainfall at the same stations. The general similarities of the 

features of the WPS plots of these two stations are an indication that they belong to same 

rainfall homogeneous zone and hence the rainfall is controlled bythe samelarge-scale climate 

systems. The most dominant periodicities are semi-annual cycles (4-6 month) that represent 

the seasonality of rainfall. Quasi-annual cycles (8-16 months periodicities) werealso observed 

in each WPS plot which would imply the inter-annual variability of rainfall caused by climate 
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modes of variability that influence the EEA rainfall. Other less common features are the high-

frequency cycles (1-4 months periodicities) and an isolatedlow-frequency cycles (32-64 

months periodicities) that are observed in both stations between 1995 and 1998. Particularly 

notable was the high peak rainfall observed in years when there was simultaneous occurrence 

of multiple periodicities (particularly the annual and semi-annual cycles).For instancein 1961, 

1967, 1978, 1998 had high rainfall peaks.However, there were no observable trends in the 

monthly rainfall time series plotsFig 3.9 (b).The spatial differences in rainfall variability 

between the urban and rural stations were mainly observed in occurrence of the high 

frequency cycles, but were not conspicuous. 

 

Figure 3.9:a) The wavelet power spectra of rainfall time series of; i) NU and; ii) NRD stations; the black 

contours mark the significant periodicities at 95% confidence level while the white U-shaped curve marks 

the COI. The colour code is such that blue is for low spectral energy and red is high energy; b) The 

variability of monthly rainfall total over time of; i) NU and; ii) NRD 
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CWT of monthly rainfall in and around Mombasa  

Figure 3.10 (a) shows the spectral power variance of rainfall time series of an urban (MU) 

and nearby rural (MRMt)stationnear Mombasa town. The general observations of rainfall 

variability at the coast are the dominant semi-annual cycles (4-6 months 

periodicities)representing the seasonality of rainfall and a fewperiodicities of 8-16 monthsthat 

only appeared after 1963. The high-frequencyfeatures (periodicities of 1-4 months) were also 

frequentat both the urban and rural stations implying local effects on rainfall probably as a 

result of land-seas breezes. Inter-station differences were observed in the WPS plots such that 

MU has quasi- annual cycle only between 1980 and 1981 with high rainfall peak (Fig 3.9(b)) 

while MRMthas more frequent annual cycles, especially between 1980 and 2000.Again a low-

frequencyfeature (periodicities of 16-32 months) was observed in the WPS plot ofMU 

between 1995 and 2000and not in the other stations (although the spectral energy is also 

high). The infrequent occurrence of the quasi-annual cycles would imply that the mode of 

climate variability that influences the inter-annual variability of rainfall over the coastal 

region is less common than over the central highlands. For instance, 1961-1962 had 

significant annual cycles over the highland that are conspicuously absent from the coast. High 

monthly rainfall peak values in the time series plots (Fig 3.10(b)) were observed when 

multiple cycles occurred simultaneously; for example, in 1997 to 2000, and from 2006to2008 

in both stations.However, no temporal trends were observable in the rainfall time series plots. 
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Figure 3.10: a) The wavelet power spectra of rainfall time series of; i) MU and; ii) MRMt 

stations; the black contours mark the significant periodicities at 95% confidence level while the 

white u-shaped curve marks the COI. The colour code is such that blue is for low spectral 

energy and red is high energy; b) The variability of monthly rainfall total with of; i) MU and; ii) 

MRMt 

 

These observations suggest that the rainfall variation is influenced by both local factors and 

other modes of climate variability (such as positive phases of ENSO and IOD). Notable was 

the lack of significant quasi-annual cycles from 1970-1976 and from 2000-2005 with 

resultant low rainfall in the time series plots. Depressed rainfall at the coast during these 

periods was also observed in the preliminary exploration of the annual and seasonal rainfall 

in the previous Section.     
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 CWT analysis of monthly rainfall for Nakuru and Kisumu  

Figure 3.11 shows the spectral energy variation for Nakuru rainfallwithin the Rift Valley. 

From the WPS plot (Figure 3.11 (a)), only isolated high-frequency components (1-8 months 

periodicities) that are punctuated by long periods of low energy were observed. The low 

spectral energy of the WPS is an indication of lower rainfall received at this station than over 

the central highlands or the Lake Victoria region in western Kenya.The low rainfall over 

Nakuru station is also depicted in the time series plots. A notable feature in this station, 

however, is the occurrence oflow-frequencyfeatures (periodicities of 32-64 months) observed 

in 1978 and also from 1992 - 1995. The concurrence of the high frequency features,the 

annual cycle and the low frequency feature (periodicities of 1-6, 8-16 and 32- 64 months)in 

1978 resulted in high peak rainfall observed in the time series plot (Figure 3.11 (b)),which 

was also observed in the annual rainfall anomalies in the previous Section. The semi-annual 

cycles at Nakuru from 1970-2013 are separated by long periods of low spectral energy. For 

example, 1970-1975, 1976-1986 and from 1987-2002had low spectral energy, and were 

observed as periods with low rainfall in the time series plots. This observation would imply 

that seasonal rainfall within the Rift Valley haslong periods of lowrainfall, and high rainfall is 

observed when multiple frequency components occur simultaneously.There were no 

observable trends in the monthly rainfall time series. 
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Figure 3.11: a) The wavelet power spectrum of rainfall time series of Nakuru (NKU); 

the black contours mark the significant periodicities at 95% confidence level while the 

white U-shaped curve marks the COI. The colour code is such that blue is for low 

spectral energy and red is high energy; b) the variability of monthly rainfall total with 

time of NKU 

 

Figure 3.12 shows the spectral power variance ofrainfall over the western highlands of 

Kenya. The common frequency features observed at Kisumu (KU) and Kakamega (KKM) 

are the annual (8-16 months periodicities) and semi-annual (4-8 months) cycles; high-

frequency cycles (1-4 months periodicities) are also observed (Figure 3.12 (a&b)). 

Particularly notedwas that annual cycles at KKM (Figure 3.12 (b))had major breaks from 

1964 to 1970 and from 1995 to 2002 with asignificant reduction in monthly rainfall during 

these periods (Figure 3.12 (c&d). Similar annual periodicities were observed in KU but less 

frequent and only appeared before 1992. 
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Figure 3.12:a) The wavelet power spectra of rainfall time series of; i) Kisumu (KU) and; 

ii) Kakamega (KKM) stations; the black contours mark the significant periodicities at 

95% confidence level while the white U-shaped curve marks the COI. The colour code is 

such that blue is for low spectral energy and red is high energy; b) The variability of 

monthly rainfall total with of; i) Kisumu and; ii) Kakamega 

 

Another observable difference between KU and KKM WPS plots was that after 1990, KU 

had frequent and significant high-frequency components (1-8months’ periodicities) while in 

KKM the annual cycleswere more common. For both stations, there were no frequency 

components beyond the periodicities of 16 months. 
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The observations of rainfall variability over Kisumu and Kakamegasuggest thatalthough the 

two stations are in the same rainfall homogeneous zones, the factors influencing rainfall 

variability are different.Kakamega has more inter-annual variabilitythan Kisumu,as indicated 

by the frequent occurrence of the quasi-annul cycles in Figure 3.12 (a(ii)). On the other hand, 

local factors appear to influence the variation of Kisumu rainfall more than in Kakamega. 

These variances could be attributed to the urban and lake breeze effects on rainfall in 

Kisumu, which is near Lake Victoria. The higher spectral energy of the WPS of KKM is 

attributable tothe higher amount of rainfall than in Kisumu. None of the two stations had low-

frequency components beyond the annual cycle; thus suggesting that low-frequency modes of 

climate variability have little influence on rainfall in this region. High rainfall peaks observed 

in the time series plots occurred when the quasi-annual cycle occurred simultaneously with 

the high-frequency cycles; for example in 1961 in both stations and 1997-1998 in 

Kisumu.None of the time series plots showed increasing or decreasing trend. 

 

From the CWT analysis of thevariability of monthly rainfall, multiple spectral cycles (semi-

annual, intra-annual and inter-annual) were observed in all the stations considered in this 

study. Results showed that time periods that had unusually high rainfall amounts were 

associated with the simultaneous occurrence of multiple periodicities over a given year (or 

group of years). In Kenya rainfall has high temporal and spatially variability, the 

mainfeatures observed from the CWT analysis include: 

• Multiple cycles were observed in each time series; the common ones arehigh 

frequency, semi-annual and the quasi-annual cycles that were associated with the 

factors that influence rainfall at local, seasonal and inter-annual time scales. 
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•  Simultaneous occurrence of multiple cycles was observed to cause high rainfall 

amounts. For example, the concurrence of the semi-annual (1-8 months periodicities) 

and the annual cycles (8-16 months periodicities) in 1961-1963 caused high rainfall 

over the central and western highlands of Kenya;  simultaneous occurrence of the 

semi-annual, annual cycle and 32-64 months periodicities in 1965-1967, 1995-1998, 

2005-2007caused resultant high rainfall total over the coastal region and the central 

highlands of Kenya.  

 

• Lack of significant simultaneously occurring cycles in the 1970s in all regions and 

from 2008 to 2013 at the coast caused resultant depressed rainfall in the regions. 

 

Similar methods of the CWT analysis were used by Turki, et al. (2016) who reported multiple 

cycles of rainfall in Marrakech (Morocco) and noted that high (low) spectral power appeared 

during wet (dry) periods and Li, et al.(2015) observed a dominant annual  (1-year) cycle in 

the monthly rainfall of Huangtupo (China) which was associated with the monsoons of Asia. 

These observations agree with Nicholson, (2015) who indicated that several factors appear to 

act jointly to produce the very wet years. 

 

3.4.4 Effects of ENSO and IOD on rainfall variability 

ENSO and IOD modes of climate variability have been shown to influence rainfall variability 

at annual and seasonal time scales in the EEA region (Indeje, 2000, Clark, et al., 2003; Black, 

et al., 2003; Nicholson 2014; Nicholson 2015). However, the influence of these modes of 

climate variability on rainfall at a small spatial scale is not yet fully established. From the 

previous Section, western Kenya region did not have high rainfall in 1997-98 periods, which 

has been documented as a period when ENSO coupled with IOD to produce widespread 
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rainfall anomalies during the OND season. Likewise, the coastal region did not have 

anomalous rainfall in 1961 as was observed in the other regions, and 1961 have been 

documented to have had a positive IOD mode (Clark, et al., 2003). These observations 

prompted me to examine relationships of these two modes of climate variability with rainfall. 

 

Figure 3.13 shows the spectral variance of the annual NINO3.4and IOD indices respectively. 

NINO 3.4 had significant cycles of 3-4 year periodicities between 1967and 1970 followed by 

a long period of low spectral energy until about 1980. Between 1980 and 2000 there was an 

extended 3-6 year periodicity. In comparison, the IOD was continuously significant from 

1961 to 2000 with periodicities between 4-6 years that changed from 1985 to 2000 to 3-4 

year periodicities.  

 

Figure 3.13: The wavelet power spectra ofthe annual time series of; a) NINO3.4 and; b) IOD 

indices; the black contours mark the significant periodicities at 95% confidence level while 

the white U-shaped curve marks the COI. The colour code is such that blue is for low 

spectral energy and red is high energy 
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To compare the variability of ENSO and IOD with annual rainfall at local level, CWT 

analysis was carried out on the annual rainfall time series. Figure 3.14 shows some 

representative results from each region. A 3-6 years periodicity was dominant in all regions 

between 1995 and 2000. This time coincides with the simultaneous occurrence of significant 

periodicities of ENSO and IOD. In addition,an 8-11years periodicity was dominant at the 

coast and lake region from 1995-2000; thus implying that not all the annual rainfall 

variability in 1997-98 could be explained by the variability of ENSO and IOD. Worth noting 

was that not all regions had significant periodicities in the rainfall time series during 1961-

1962 (e.g., coastal region); thus implying that positive mode of IOD does not influence 

rainfall variability equally in all parts of Kenya. 

 

 

Figure 3.14:The wavelet power spectra of annual rainfall of stations in; a) Nairobi; b) 

Mombasa; c) Kisumu; the black contours mark the significant periodicities at 95% 

confidence level while the white U-shaped curve marks the COI. The colour code is such 

that blue is for low spectral energy and red is high energy 
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These observations corroborate partly the results of Clark et al., (2003)and Black, et al., 

(2003) who indicated that the widespread anomalousrainfall of 1997-1998 resulted from a 

positive ENSO coupling with an IOD event. However, the occurrence of significant 8-

11periodicitycycle at the coast and Kisumu suggests that another low-frequency climate 

system was also responsible for the rainfall anomalies at the coast and western Kenya during 

the 1997-98 periods. These observations agree with Nicholson, (2014) and Nicolson (2015) 

who indicated that ENSO and IOD are not totally responsible for the occurrence of 

anomalous rainfall in Kenya. 

 

Further analysis was carried out to examine the statistical relationships between the ENSO 

and IOD respectively with seasonal and annual rainfall of the various urban areas that come 

from different climatic zones. Linear correlations between the anomalies of annual and 

seasonal rainfall and NINO 3.4 and IOD respectively (Figure 3.15) showed that there were 

more stations whose annual rainfall were significantly positively correlated with mean annual 

IOD indices than the NINO 3.4 indices (Figure 3.15(a)) and that the OND seasonal rainfall 

was more positively correlated with either seasonal NINO 3.4 or IOD at any given station 

than the MAM season. 
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Figure 3.15:Linear correlations between; a) annual rainfall with NINO 3.4 and IOD 

indices respectively; b&c) seasonal rainfall with IOD and NINO 3.4 indices; the 

horizontal bar in each plot marks the point (r= 0.27) above which the coefficients are 

significant at α=0.05 

 

The deductionsfrom the correlations between rainfall and ENSO and IOD were that:  

i) The influence of ENSO and IOD on rainfall at seasonal and annual time scales is 

spatially different.For instance, the western Kenya region has almost no 

significant correlations at annual time scale with either NINO 3.4 or IOD,and had 

only a few positive correlations between IOD and OND rainfall. 

 

ii)  IOD has more positive correlations with annual and OND rainfall than NINO 3.4 

in each region; meaning that rainfall in each region is influenced more by the 
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variability of sea surface temperature over the Indian Ocean than in the anomalies 

in the Pacific 

iii)  The MAM rainfall has no significant correlations with either NINO 3.4 or IOD in 

all regions. 

 

These results collaborates those of the CWT analysis, and Black, et al. (2003) who observed 

that there have been above average rainfall during every positive IOD mode from 1960-2001, 

compared to only during four out of nine El-Niño years, and that the five seasons with 

highest OND rainfall during the 1960-2001 period occurred during a positive IOD 

mode.These observations also agree with results of Camberlin et al. (2009) who indicated 

that MAM rainfall depends on a combination of unrelated factors and are only weakly 

correlated with ENSO. Nicholson (2014) and Nicholson (2015) alsoindicated that two or 

more factors act in each season simultaneously to produce anomalously wet years and that 

ENSO alone is weakly associated with rainfall anomalies over the EEA region.  

 

3.4.5 Trend analysisof rainfall 

After examining rainfall variability and the possible factors that influence occurrences of high 

seasonal rainfall, it is also important to examine if there have been long-term trends in rainfall 

at various time scales in and around the major towns to inform better decisions in the designs 

of urban stormwatermanagement systems. Parametric (linear and quantile regression) and 

non-parametric (Mann-Kendall) methods of trend analyses were used to investigate trends in 

the monthly, seasonal and annual rainfall in all the stations.  
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Results from quantile regression 

Considering the MAM season,the most notable trends were in NRD (Dagoretti Corner in 

Nairobi) station which had decreasing trend from the 20thto the 60thpercentile (Table 3.3). 

The other station with trends in MAM rainfall is Nakuru (NKU) with increasing trend in the 

60th percentile. Figure 3.16 gives a graphical representation of some of the trend results. 

 

Table 3.3:Quantile regression trend results of MAMseasonal rainfall 

 MAM 
station NRD NKU 
nth Quantile 20 30 40 50 60 60 
β(κ) (mm/year -0.6 -0.5 -0.5 -6.3 -5.6 4.2 
note: only quantiles with significant coefficients at 𝜶𝜶 =0.05 (p<0.05) were presented; - β(κ) values signifies 
decreasing trends and β (κ) is for increasing trends 

 

Rainfall in the JJA season had increasing trends over Nairobi; in particular, NRD station 

which had increasing trends in the 20th, 30th and 90th percentile (Table 3.4) thus implying an 

increase of light rains as well as heavy rains during this season; increasing trends were also 

observed in Kisumu rainfall in the 90th percentile, while Nakuru had increasing trends in the 

90th percentile and decreasing trend in the 10th percentile. Other decreasing trends during this 

season were detected in Mombasa where both MRMt and MRMs had respectively decreasing 

trends in the 50th and 60th percentile.  

 

Table 3.4:Quantile regression trend results of JJA seasonal rainfall 

                                   JJA Season 
station                NRD MRMt MRMs KU NKU 
nth 
percentile 

20 30 90 50 60 50 60 90 10 90 

β(κ) 
(mm/year) 

0.8 9.7 3.8 -2.4 -0.3 -3.7 -2.8 3.2 -3.1 2.6 

note: only quantiles with significant coefficients at 𝜶𝜶 =0.05 (p<0.05)were presented; - β(κ) values signifies 
decreasing trends and κ is for increasing trends 
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During OND season, only MRMt and MRMs had an increase in light rains (10th percentile) and 

Nakuru also had increasing trends in several percentiles (Table 3.5(a)). The trend 

resultsshowed that there were no significant changes in the annual total rainfall in all the 

stations except). Nakuru(NKU), that had an increasing trend in the 10thpercentile (Figure 

3.16(b)).  

 

Table 3.5:Quantile regression trend results ofOND seasonalrainfall 

                 OND Season  

station MRMt MRMs                           NKU 
nth percentile 10 10 20 30 40 60 

β(κ) (mm/year) 2.0 1.5 2.3 2.0 2.2 3.0 

note: only quantiles with significant coefficients at 𝜶𝜶 =0.05 (p<0.05) were presented; - β(κ) values signifies 

decreasing trends and β(κ) is for increasing trends 
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Figure 3.16:Quantile regression analysis for; a) MAM rainfall at NRD ; b) annual 
rainfall at Nakuru; c) JJArainfall at Nakuru and; d) JJA rainfall at Mtwapa (MRMt) 
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Results from linear regression and Mann-Kendall 

Trends observed in monthly rainfall are given in Table 3.6. The stations with trends in the 

monthly rainfall detected either by the linear regression or the Mann-Kendall methods were 

found to be those mainly from the stations that had trends in one quantile or another in the 

quantile regression analysis of the seasonal rainfall.For instance, NRD had most trends in 

which, in some months rainfall was increasing ( e.g., June, July, September) and decreasing 

in others (April, May, and November) thus confirming the increase in JJA and decrease 

trends in MAM seasonal rainfall. The Mann-Kendall test of the seasonal rainfall also 

confirmed a decrease of MAM and an increase of JJA rainfall in NRDas well as an increase of 

OND rainfall in Nakuru (Table 3.4(b)). 

 

Table 3.6: Trend analysis of monthly andseasonal rainfall from Mann-Kendall (τ) and 

linear regression (β) 

a)  
Station                                      NRD NU NKU KU KR 
Month Feb Apr May Jun Jul Sep Nov Apr Nov Sep Feb 
MK(τ) 0.24 -0.37 -0.26 0.20 0.21 0.32 -0.23 -0.17 0.2 0.23 -0.25 
LR(β) 
mm/yr 

2.1 -1.5 ------- 0.6 2.3 1.5 -1.6 ------- ------- 1.2 4.5 

 

b)  

Station NRD NKU 

Season MAM JJA OND 

MK, (τ) -0.24 0.24 0.29 

Note: only for stations where the coefficients were significant at 𝜶𝜶 =0.05 (p<0.05); ---- signifies months 

when trends were not detected by one of the methods 

 

The different methods used to investigate trends in rainfall showed that out of the sixteen 

stations, the only stations with significant changes in rainfall are Dagorreti (NRD) in Nairobi, 

stations at the coast (MRMt and MRMs) near Mombasa town and NKU station in Nakuru 

town; thesestations are either in urban or rural areas near the towns. Worth noting is thatmost 
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rural stations away from the major towns had no temporal trends. The observed trends could 

be resulting from changes in local circulation patterns as a result of changes in heat flux 

resulting from theexpansion of built up area and urban development and or changes of 

regional temperature especially at the coast (observed in Chapter 2). For instance, NRD is 

situated on the outskirts of Nairobi downwind of the central business district (CBD) and have 

been undergoing environmental changes as the city expands (Mundia and M. Aniya 2006), 

which is likely to affect rainfall characteristics on a small spatial scale. Influence of Changes 

in local factors on urban rainfall was explored further in Chapter 5.  

 

Trend analysis of dailyindices of extreme rainfall 

Analysis of annual daily rainfall indices of extremes described in Table 3.2 showed no trends 

in most of the indices in almost all the stations except in Nakuru (NKU); in this station, 

PRCPTOT (annual total wet day rainfall), R25(annual count of days when rainfall was more 

than 25mm), and R95p (annual rainfall total greater than the 95th percentile) indices had weak 

increasing trends detected only by the MK tests (Figure3.17). These results were consistent 

with those of the quantile regression analysis that indicated an increase in heavy and annual 

rainfall in Nakuru station.  
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Figure 3.17: Temporal variation ofindices of rainfall extreme atNakuru station depicting weak 

positive trends; a) PRCPTOT-annual total wet day rainfall; b) R25- annual count of days when 

rainfall ≥ 25mm; c) R95p - annual precipitation total > 95th percentile. 

 

3.4.6 Discussion 

Rainfall variability 

Variability and possible changes of rainfall at stations in and nearby each of the four urban 

areas of Kenya used in my Thesis was thoroughly investigated using exploratory data 

analysis, CWT and statistical methods. The temporal variability of the seasonal rainfall in 

each climatic zone has spatial differences,although rainfall occurs mainly within the MAM 

and OND season. The spatial differences implythat rainfall variabilityin each climatic zone 

responds differently to the modes of climate variability that influence rainfall over the EEAas 

was also indicated in Camberlin, et al. (2009), Hastenrath et al. (2010) and Nicholson, (2015). 
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 The spatial and temporal variabilities were observed more clearly from the CWT analysis of 

monthly rainfall time series in which the significant spectral variance of the rainfall was 

observed in the dominant periodicities of the WPS plots.The concurrent of multiple 

periodicities signify the different modes of climate variability that influence the outcome of 

rainfall at a given time as was indicated by Li, et al.(2015). Over the EEA the high-frequency 

features were observed that were attributableto local factors such as the breezes (at the coast 

and Lake Victoria regions) and other thermal circulations such urban effects. It was noted 

that the stations at the coast and in urban areas had more of the high-frequency cycles (1-4 

months periodicities) than those in rural areas and away from water bodies. The semi-

annualcycles were associated with the two rainfall seasons (MAM and OND) that are 

influenced by the bi-annual convergence of the monsoon winds in the ITCZ within the EEA 

region, while the quasi-annual cyclesand other higher periodicities (e.g., a common 

periodicity of 32-64 months observed in all regions except western Kenya in 1997-98), 

wereassociated with synoptic systems that influence rainfall in EEA. For instance coupled 

positive ENSO/ IOD anomaliesweresuggested to have caused the rainfall anomalies of 197-

98 (Clark, et al., 2003; Black, et al., 2003). Other observations from the CWT analysis 

showed that 1982-1994 had no significant periodicities and rainfall was depressed at the coast 

and, the highest monthly peak rainfall occurred between 1995 and 2000 in most stations. 

These results corroboratestatistical observations byClark, et al., (2003) that IOD and ENSO 

correlations with the coastal OND rainfall were weak between 1983 and 1993 with resultant 

depressed rainfall, and strong between 1994 and 2000 with resultant increased rainfall. 

Spatial variabilities within the same climatic zones were mainly observed from differences 

inspectral energy in the WPS plot and common occurrence of high frequency features (1-4 

month periodicities); thus implying that the differences were as a result of local factors rather 
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than from large-scale climate systems. Notable was that rainfall at Nakuru, within the Rift 

Valley, haddifferent characteristics than the station to the east and to the west of the Rift 

Valley.Rainfall variability at this station is influenced more by the quasi-annual cycles than 

the seasonal cycle. This observation may be explained by the statistical results which 

indicated that Nakuru rainfall during the OND season is significantly correlated with ENSO 

and IOD indices.The results from the CWT analysis in this study agree with Nakken, (1999), 

Adamowski, et al. (2013) and Nicholson (2015) who indicated that changes in hydro-

meteorological time series are not controlled by a single factor and that occurrence of many 

factors produce extreme events. 

 

Statistically, the relationship between rainfall variability and ENSO and/or IOD was shown in 

this study to differ according to region and season. In particular, ENSO is weakly associated 

with seasonal rainfall, especially in central and western highlands of Kenya. IOD is more 

strongly associated with OND rainfallthan with MAM rainfall andmainly over the central 

highlands and the coast than the western Kenya region. Individually the associations of IOD 

or ENSO with OND rainfall is weak (r<0.5) in all regions. From the CWT 

analysis,however,the urban effect on rainfall could not be discriminated since other factors 

such as altitude and presence of water bodies could also bring about the observed differences. 

For the first time in the studies of rainfall variability over Kenya, important spatial and 

temporal variabilities have been established using the CWT analysis at small spatial scales. 

Further analysis to examine theinfluence of urbanization on rainfall was explored in Chapter 

5. 

 

  Rainfall trends 
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Trends of annual, seasonal and monthly rainfalltime series together with extreme daily 

rainfall indices from sixteen stations were carried out. The quantile regression was 

particularly useful in investigating if there are trends in other percentiles,since the Mann-

Kendall method tests trends around the median (50th percentile). Most stations had no trends 

for the annual, seasonal or monthly rainfall totals and also in most of thedaily rainfall extreme 

indices. However, there were few cases where trends were detected by either of the methods 

or both. While the methods in most cases agreed, there were a few cases where trends of a 

particular seasonal rainfall were not detected by the Mann-Kendall tests but showed trends in 

some percentilese.g., in JJA rainfall ofMRMt and MRMs ,respectively showed negative trends 

in 50th and 60th percentile which were not detected by the Mann-Kendall tests. The stations 

that showed consistent increasing and decreasing trends were only NRD (in Nairobi city) and 

NKU (in Nakuru town). Therefore, from the stations considered in this study, which were 

drawn from the highland west and east of the Rift valley and the coast of Kenya(in the 

neighbourhoods of the four major urban areas),rainfall generally had no trends at annual and 

seasonal time scales over the last fifty years. The indices of extremes also generally had no 

significant change over time.The few isolated trends were thereforeattributed tolocal 

anthropogenic influence on rainfall rather than large-scale forcing of the climate systems. 

Similar conclusions were made in Clark, et al. (2003) for rainfall at the coast of Kenya,while 

Mazvimavi (2010) found no significant changes in seasonal and annual rainfall 

overZimbabwe. 

 

3.5 Summary 

The aim of this Chapter was to investigate variability and possible changes of rainfall, in and 

around the four major urban areas of Kenya. The spatial-temporal variations and trends of 

daily, monthly, seasonal and annual rainfall were examined using exploratory data, CWT,and 
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trend analysis methods for sixteen stations drawn in and around the towns. The four major 

towns of Kenya are situated in three different rainfall homogeneous zones. All the stations 

receive varying mean annual amounts of rainfall ranging from 600mm/year in the lowlands, 

900 mm/year over the central highlands and 1200-2000mm/year over the western and coastal 

regions. Although most of thestationshad no temporal trends in rainfall series at all the time-

scales considered, the high inter-annual variability with frequent occurrences of high daily 

(and seasonal) amounts could be a challenge in urban stormwater management.  

 

In conclusion, therefore, I have established that inter-annual variability of rainfall at various 

time scales in Kenyais more important in water resources management than temporal trends. 

While a number of years have had anomalous seasonal rainfall, only a few stations near to 

urban areashad increasing or decreasing trends. This observation suggests that in urban storm 

water management, the factors that influence rainfall variability should be well understood. 

The study further showed that temporal and spatial variability of the factors influencing 

rainfall (observed as dominant periodicitiesfrom the CWT analysis)are important since they 

influence the occurrence of extreme rainfall events.The years that had anomalous rainfall 

were observed to have high and low-frequencyfeaturesthat are indicative of different forcing 

factors occurring simultaneously.However, there isneed to understand the nature of these 

factors that force extreme rainfall events. For instance, I established that although ENSO and 

IODinfluence rainfall variability at inter-annual time scales (either individually or 

together),their influenceindividually is weak and has spatial disparities.Understandingof non-

stationarity of rainfall variability at small spatial scale is therefore important in water 

resource management in the diversely heterogeneous climate zones of EEA.Challenges of 

storm water management in urban areas of Kenya are therefore likely to be experienced due 

to changes in rainfall variability (forced at a given time by different factors) rather than 
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through long-term temporal trends.Further investigationsof theinfluence oflocal factors 

(urbanization and temperature) on urban rainfall were investigated in Chapter 5, while the 

suitable extreme value models for producing design storms applicable in storm water 

management systems wereexplored in Chapter 6.However, in the next Chapter (4), I explored 

the possible existence of the urban heat island whose effect is likely to influence urban 

rainfall. 
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4 CHAPTER 4: URBAN HEAT ISLAND 

4.1 Introduction 
From the analyses of temperature and rainfall in Chapters 2 and 3 respectively, I have 

established that local factors are influencing temperature changes that could also be 

influencing rainfall changes in areas close to the towns. The aim of this Chapter is to 

exploreif UHI, as one of the local factors likely to have influenced temperature changes, 

existin the fast growing cities ofKenya. The outcome of this Chapter, together with the 

outcomes of Chapters 2&3, forma basis for which the influence of temperature on urban 

rainfall is investigated (Chapter 5). Temperature from weather stations within and near 

Nairobi and Mombasa, and land surface temperatures (LSTs) over each city were used to 

investigate UHI and determine its intensity. The choice of these two cities was motivated by 

the fact that they are the largest in Kenya by population and spatial extent and they have a 

network of weather stations with temperature data of sufficient time length that represent 

urban and rural temperature characteristics adequately. The Chapter starts with reviewing the 

relevant literature on UHI and its determination in various parts of the world. Methods used 

for determination of UHI and the challenges encountered are also highlighted.  

 

The United Nations (UN Habitat, 2008) estimate that, about half of the world’s population is 

living in urban areas, and this proportion may reach 70% by the year 2050. This rate of 

urbanization is currently the key driver of the climate change mainly because intense and fast 

urbanization has resulted in human-inducedland use/land cover changes that impact on the 

climate system through changes in urban heat fluxes (Mc Carthy, et al., 2010; Zhang, et al., 

2014). Such changes are likely to influence changes in rainfall patterns over urban areas 

which are likely to impact on storm designs used in storm water management systems. 
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Human activities such as urbanization, intense use of land, deforestation, burning of fossil 

fuels among others, usually modify the planetary boundary layer (PBL) through changes in 

local air circulations. The PBL is that part of the troposphere that is directly affected by the 

presence of the earth’s surface and acts in reaction to the surface forcing on time scales of 

hours or less; such forcings include frictional drag, evaporation, and transpiration, pollutant 

emissions,terrain-induced flows, etc.). The surface-atmosphere interactions play an important 

role in the earth’s climate system since the PBL transport heat, momentum, and humidity 

within it (Gross, 2014; Barlow, 2014). In urban areas, the PBL is modified into the urban 

boundary layer (UBL) which has a roughness layer (depending on the building height and 

density), inertia layer and the outer layer. UBL is much deeper than the PBL (Fig 4.1) 

(Barlow, 2014). The heterogeneous surface heat fluxes between urban and rural environments 

produce positive temperature differences over the urban and negative over the rural areas; a 

phenomenon termed as the urban heat island (UHI) effect. 

 

a) b)  

Figure 4.1:Schematic diagram of daytime convective UBL with wind flowing from left to right. Dashed 

lines indicate thetop of rural and urban boundary layers; solid lines indicate local internal boundary 

layers; (b) Schematic diagram of roughness and inertial sub-layers; grey arrows indicate streamlines; 

dashed line indicates mean building height (adopted from Barlow (2014)). 
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4.1.1 Generation of UHI 

The urban area alters the boundary layer processes mainly by the creation of a UHI.A typical 

example of rural and urban surface energy fluxes is given in Figure 4.2 after Shepherd 

(2005). Surface heat budget equation may be represented as:  

qsw + qlw + qsh + qle + qg + qa = 0                  (4.1)  

where qswrepresent the net shortwave irradiance, qlwis the net long-wave irradiance, qsh is the 

surface sensible heat flux, qle  is the latent turbulent heat flux, qa  is the anthropogenic heat 

input, and qg represents ground heat conduction. A typical example (Figure 4.2 (a)) shows the 

apportioning of solar radiation in an urban and rural environment. The incident solar 

radiation, qI, of7.6 kW h m2 day-1 is received in both locations since they obtain solar 

radiation of equal intensity. In therural forest, with an albedo of 0.25 typical of a rural 

ecosystem, the reflected solar radiation, qR , is 1.9 kW h m2 day-1 and  in the city where the 

albedo is much lower, the reflected radiation is 0.4 kW h m2 day-1. This illustration shows 

that the urban environment has a capacity to absorb more of the sun’s energy than the rural 

environment and thus increasing its surface temperature as shown in Figure 4.2 (b). The 

differences in the reflected solar radiation, anthropogenic heat, latent heat, and outgoing 

infrared terms lead to heat islands and result in urban island thermal circulations (Shepherd, 

2005; Stewart and Oke 2012). 

 

a) b)  

Figure 4.2:A typical rural and urban surface energy balance (the values are in units of kW h m2 day−1 
(Shepherd 2005)); b) day-time urban heat island profile (from World Resource Centre) 
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The anthropogenic heat enters the environment directly while only a part of the solar 

radiation heat up the environment directly. As the earth’s surface gets replaced with concrete 

buildings, asphalt pavements and tarmac roads in an urban setting, higher solar radiation is 

retained through greater thermal conductivity, while the ability to release the energy at night 

(stored mainly during the day), becomes low due to the sky view factor; defined as the ratio 

of the amount of sky hemisphere visible from ground level to that of an unobstructed 

hemisphere ( Grimmond,2007; Stewart and Oke, 2012), and low albedo which results  in high 

heat retention within the building structures. Reduced vegetation cover reduces cooling 

through evapotranspiration,while high roughness reduces the amount of convective heat 

removal and transfer by winds. Increased human activities especially in transport and 

industries add aerosols and gaseous pollutants which increase greenhouse gas effect (i.e., 

absorption of outgoing long wave radiation and re-radiating it back at night when the earth’s 

surface is cooler than the air above it).Direct heat from combustion of fuels and other thermal 

sources of heat also increases heat ejected into an urban environment. The overall effect is a 

warmer urban environment as compared to the surrounding rural environment and thus 

theUHIphenomenon.  

 

The strength of the UHI formed in a given city is influenced by natural and anthropogenic 

factors. For instance, winds help to regulate temperature by cooling down the hot urban air 

with the cooler air of surrounding rural areas. In cities and heavily built up areas, the wind 

speed is lower with frequent gusts experienced in urban canyons (Ongoma, et al., 2013) 

hence lowering the mixing of warm and cool air. The varied urban morphology results in 

increased frictional drag on the air flowing over the urban terrain, and the thermal 

convergence created by the UHI slows down wind. The limited air circulation and low wind 

speeds tend to retain heat and pollutants in the urban area thus strengthening the UHI. 
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Increase in cloud cover reduces the solar heat intensity and hence reduces the radiative 

cooling at night, while calm days and clear skies maximize the amount of radiation received 

(Memmon, et al 2007).  From an anthropogenic perspective, urban populations influence UHI 

through direct heat release through metabolism, and indirectly through heat-generating 

activities such as domestic heating, automobiles, power plants, and air conditioners among 

other sources (Stewart and Oke, 2012). Other factors such as building design and building 

materials of the urban fabrics play a role in the amount of heat absorbed and emitted in an 

urban area; the balance of which forms the UHI (Figure 4.3).  

 

Over coastal cities, the UHI interact with the ocean breeze and the prevailing synoptic wind 

systems to produce a unique circulation system that is largely dependent on the strength of 

the ocean breezes, the intensity of the UHI and the speed and direction of the prevailing 

winds (Freitas, et al., 2007). During the day, this interaction intensifies the sea breeze 

circulation and hence a chain flow is created that is able to transport pollutants and heat away 

from the urban area and may create urban cool islands within the city (Ohashi and Kida, 

2002).   

 

 

Figure 4.3:Factors that influence the generation of Urban Heat Island (Oke, 2010). 
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4.1.2 Determination of UHI intensity 

The UHI intensity (UHII) has been measured as the surface air temperature difference 

between an urban area and a neighboring rural area. Studies have shown that UHII 

phenomenon is common in cities regardless of the climatic region and is manifested more 

strongly at night-time than daytime. UHII is stronger in winter than summer in temperate 

regions, and also in dry than wet season in the tropical regions (Murphy et al., 2011; Peng et 

al., 2011; Vardoulaski et al., 2013; Ahmed et al., 2014).UHII has been shown to be more 

apparent when winds are weak and skies are clear (Shepherd, 2005). The UHII can exhibit 

diurnal and seasonal cycles, is modulated by wind and cloud conditions and its magnitude is 

proportional to the size of a city (Karl, et al., 1988; Shepherd 2005; Peng, et al., 

2011).Various methods have been used to determine UHII ranging from trend analysis of 

long-term temperature data (Makokha and Shisanya 2010; Efe and Eyefia 2014), direct 

measurement of temperature differences in urban and rural locations for a given period of 

time, and use of satellite thermal imagery (Cheng, et al., 2006; Kloog, et al., 2012; Cheval 

and Dumitrescu, 2015).  

 

Some of the assumptions made in determining UHI intensity from weather station data are 

that the landscape effects on both stations are insignificant and the rural station has 

insignificant urban effects. However there are limitations of choice of such urban and rural 

stations because, in many areas, the rural stations close to urban areas are also facing 

urbanization as urban populations increase (Arnifield, 2003; Barlow, 2014), there are 

inadequate meteorological stations especially in the rural areas that have not been influenced 

by urbanization, and the limited time in which data are available (Hart and Sailor 2009). 

These limitations give rise to underestimation or overestimation of the UHI effect that makes 

alogical comparison between studies difficult (Stewart and Oke, 2012).  
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According to the World Meteorological Organization (WMO, 2008), urban and rural stations 

should monitor the areas which give the largest and least impacts respectively to a city. 

However, UHIIs have been determined using a range of different methods; such as the 

temperature difference between a well-developed urban area and least developed area 

(Murphy, et al., 2011), or between two differently built up areas (Dixon and Mote 2003). The 

methods of data collection for determining UHII in different cities all over the world are also 

varied in terms of the type, time scale of data collected as well as spatial coverage of the 

urban and rural areas.  

 

Lack of standard methods of characterizing urban and rural sites in urban climate studies and 

the problem of urban sprawling into rural areas, make it difficult to adequately define urban 

and rural sites for such studies. It also becomes difficult to compare the representativeness of 

urban and rural sites within an urban area and across urban areas of other regions. To address 

this problem, Stewart and Oke (2012) proposed a climate based classification system for 

describing the physical conditions around the temperature measuring sites; the system is 

referred to as a Local Climate Zone (LCZ) classification scheme. The LCZs are defined by 

regions of uniform surface cover, structure, materials and anthropogenic activities that extend 

hundreds of meters to a few kilometres in the horizontal scale, upwind of the temperature 

sensor. Each LCZ has a typical screen-height temperature. The LCZ types are categorized by 

their measurable physical properties such as the sky view factors, building surface fraction 

height, and proportion of roughness elements (Figure 4.4). In this classification framework, 

the intra-urban UHI intensity is defined as the temperature difference between two LCZs that 

have different urban characteristics rather than the common urban-rural temperature gradients 

used in most studies (Stewart and Oke, 2014; Caseo, et al., 2014). Although this scheme 

would adequately represent intra-urban UHI intensity in a city, it requires a dense network of 
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temperature sensors to adequately represent different characteristics of urban morphology 

that may not be available in most urban areas. Most of the weather stations have sensors that 

measure temperature that represent a number of different LCZs (Savic, et al., 2013). 

 

 

Figure 4.4:The ‘Local Climate Zone’ (LCZ) classification scheme and its 17 standard classes (from 
Stewart and Oke, 2012). 

 

Due to the scarcity of a dense network of weather stations within urban areas, intra-urban 

temperature differences, including UHI have also been studied using land surface temperature 

(LST) data retrieved from various earth observing satellite data (Kloog, et al 2012; Cheval 

and Dumitrescu 2015). The remote sensing of LST is based on Plank’s theory of 
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electromagnetism, which relates the radiative energy of a black body to its temperature. 

According to this theory, a black body has anemissivity of one (𝜀𝜀 = 1); however, most 

natural objects are non-black bodies with emissivity ranging between 0 and 1 (0 < 𝜀𝜀 < 1) for 

a given wavelength (𝜆𝜆)of radiation (Dash, et al., 2002). The spectral emissivity 𝜀𝜀(𝜆𝜆) is the 

ratio between the radiance released by an object at a given 𝜆𝜆 and that emitted by a black body 

at the same temperature. The Plank’s function for non-black body may be expressed as: 

 

R(𝜆𝜆,T)= 𝜀𝜀(𝜆𝜆)B(𝜆𝜆,T)= 𝜀𝜀(𝜆𝜆) 𝑐𝑐1𝜆𝜆−5

𝜋𝜋(exp (𝑐𝑐2/𝜆𝜆,T)−1
    (4.2) 

 

where B(𝜆𝜆,T) is the spectral radiance of a black body (WM2μm-1sr-1); R(𝜆𝜆,T) is the spectral 

radiance of a non-black body; 𝜆𝜆 is the wavelength in meters;  𝜀𝜀(𝜆𝜆) is the emissivity at that 

wavelength; T is the brightness temperature in Kelvin (K), and c1 and c2, are universal 

constants (Dash, et al., 2002). The temperature,T, is computed from the radiance measured at 

the top of the atmosphere (TOA) and can be obtained by inversing the Plank’s function. 

Thus: 

 

 T= 𝑐𝑐2
𝜆𝜆𝜆𝜆𝜆𝜆�𝜀𝜀(𝜆𝜆)𝑐𝑐1

𝜋𝜋𝜆𝜆5𝑅𝑅
+1�

                  (4.3) 

 

where all the terms are as given in Equation 4.2.  

 

The TOA brightness temperature is usually lower than the surface temperature due to 

atmospheric effects that attenuate the radiance energy as it passes through it, and spectral 

emissivity due to roughness properties of the land surface (Kloog, et al., 2012). The LST is 

therefore retrieved from T using various algorithms that account for the atmospheric effects. 
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One such algorithm is the generalised split-window that is used to retrieve Moderate 

Resolution Imaging Spectral radiometers (MODIS) data that was used in this study 

(described later).  A limitation of the thermal remote sensing technique is the requirement of 

clear skies in order to derive accurate readings. Hence clear skies observations are obtained 

using cloud masking algorithms in MODIS data. The MODIS land surface temperature data 

has been found to have an accuracy within the limits of 1oC in the -10 and 50oC, as was 

validated by the MODIS land team validation (MODIS land team 2011) (Cheval and 

Dumitrescu, 2015).However, due to the limited time that MODIS LST data is available, it is 

not sufficiently long for climate studies and have been used in this study to complement the 

surface air temperature data from the meteorological stations. LST data are ideal since they 

have spatial coverage of the whole urban area, and especially overthe central business 

districts(CBD) where the greatest UHI effect is likely to be felt and have no weather stations. 

 

4.2 Methodology 

Nairobi and Mombasa (Fig 4.5) were used to investigate the existence of UHI since they have 

adequate temperature measuring sites within and outside the urban areas necessary for long-

term temperature differences analysis (Table 4.1). The physical and climatological 

description of these cities was given in Chapter 1. 
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Figure 4.5:Map of Kenya showing the locations of Nairobi and Mombasa; Nairobi urban area in central 
highlands of Kenya and Mombasa is a coastal town 

 

4.2.1 Description of urban and rural temperature measuring stations 

According to WMO (2011), guidelines on selection of sites for the assessment of urban 

effects on weather and climate (such as the UHI effect), urban and rural stations should be 

selected such that they are likely to sample air drawn across relatively homogeneous terrains 

and thus representative of a single climate zone. However due to variation in topography in 

Kenya, microclimate effects between the network of stations is likely to be experienced. To 

reduce these effects in the assessment of the UHI intensity in this study and following the 

study of Tyanc and Toros, (1997) and Elagib, (2011), the temperature differences are 

analysed for trends to examine if continued urbanization has an effect on UHI intensity. 

 

Nairobi 
Mombasa 
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 The existing weather stations may not be described completely as a Local Climate Zone 

(LCZ) following the scheme proposed by Stewart and Oke (2012).However certain aspects 

of this scheme were used in this study in describing the land-use/cover types around each of 

the station designated to represent “urban” and “rural” sites. Over Nairobi for example, 

NRDdesignated as rural station for Nairobi in this study is located in the outer fringes of the 

Nairobi urban area and therefore have suffered urban sprawl over the years; however, it 

represents an area with natural vegetation and less built-up area relative to the city centre, 

and hence considered as a rural station. The UHI intensities were defined as the temperature 

differences between two sites designated as∆𝑇𝑇(𝑢𝑢 − 𝑟𝑟);u and r representing theurban and 

rural stations respectively. Table 4.3 shows the description of the locations and elevations of 

the seven stations used for UHI investigations; of which four are within and near Nairobi 

(NU, NRD, NRK and NRT) and three in coastal region of Kenya (MU, MRMt and MRMs). 

Note that I used the same acronyms in Chapter 2&3, and that MU and NU represents the 

urban(U) sites, while all the other sites are designated as rural(R) with reference to the urban 

site. Description of each site is aimed at bringing out the differences between the land 

use/cover types in sites designated as urban and rural since some of the rural sites may have 

some urban characteristics due to urban sprawling into rural areas.  

 

Temperature measuring sites over Nairobi 

The distribution of meteorological weather stations around the city makes it ideal for intra-

urban UHI studies using historical temperature data. Figure 4.9 (a) shows the land use types 

around three of the four stations used my Thesis. The rural and urban stations for Nairobi 

were described using information from field visits and from the Google earth maps as 

follows: 
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i) NU station (marked 4 in Figure 4.9 (a)) is stationed at the Wilson airport 4 km south 

of the CBD, about 2 km northeast of the main industrial area and borders the Nairobi 

Nation Park to the south. The type of land use upwind of NU station is mainly high-

density habitation of compact mid-rise buildings with scattered trees (e.g., Fig 4.9(b)) 

that can be described as an LCZ2Din Stewart and Oke (2012),and an industrial area 

comprising of low-rise and mid-rise industrial structures described as an LCZ10 (Fig 

4.4). Since wind direction over Nairobi is predominantly north-easterly (Ongoma, et 

al., 2013) and  a temperature sensor records air temperature a few kilometres upwind 

of the station (Stewart and Oke 2012), NU, therefore, represents the air temperature 

of the built up areas to the east and south-east of the station including from the 

industrial area. 

 

ii) NRD(marked 2 in Fig 4.9(a)) is situated at the Kenya Meteorological Department 

(KMD) headquarters, 8 km west of the CBD along Ngong Road. The immediate 

neighbourhood upwind of the station comprises of low-density habitation with a 

combination of open high-rise building types with scattered trees (LCZ4B) and 

woodland. This area could have urban effects due to its location downwind of the 

Nairobi CBD. 

 

iii) NRK (marked 1 in Fig 4.9(a)) is an agro-meteorological station situated at the 

University of Nairobi (Kabete Campus) about 20 km northwest of the CBD. The 

station is in arural environment such that the area upwind of the station isa low-

density habitation of medium built-up areas to the south and open agricultural areas 

to the east that can be described by LCZ6B. The temperature sensor at this site 
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samples air mainly from the surrounding agricultural land areas thus has less urban 

effect than NRD. 

iv) NRT (outside the urban area) is an agro-meteorological weather station housed at 

Kenya Research Institute (KARI) in Thika district, and about 50 km North-east of 

Nairobi. The type of land use upwind of this station is agricultural, that can be 

described as LCZD.  

 

 

 

Figure 4.6:a)Location of three of the four weather stations used to study UHIin Nairobi 

(adopted from Makokha and Shisanya 2010 and modified for clarity ); b) An aerial 

image of Nairobi built-up areas south of the CBD close to Wilson airport (NU) (source: 

World Resource Institute, 2014) 
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Temperature measuring sites at the coast of Kenya near Mombasa 

The stations used to investigate UHI in Mombasa city (Fig 4.7) are as follows: 

i) MU station is about 10 km west of Mombasa Island. The Island accommodates 

the main administrative centre, the CBD, and main industrial area of 

Mombasacity. The land uses upwind of MU include dense mix of midrise 

buildings with few trees and mostly concrete paved land cover that can be 

described as an LCZ2B close to the airport,and (LCZ10)near the industrial area 

according to Stewart and Oke (2012) . The area is partly surrounded by ocean 

water from the creeks described as an LCZG (Fig 4.4). The predominant winds 

over Mombasa are south-easterlies (Ongoma, et al., 2013) and hence MU station 

records air temperature mainly from the areas to the east and southeast of the 

airport including from the main town on the Island. The temperature would also 

be influenced by the surrounding water from the creeks and from the ocean to the 

east. 

 

ii) MRMt is a station on the outskirts of Mombasa town located at KARI (Kilifi) 

about 16 km northeast of Mombasa Island and a few kilometres north of the 

Mtwapa town. The area to the east of the station is predominantly agricultural 

while compact low rise buildings dominating the southern part that can be 

described by LCZ6 and LCZB. The area upwind of MRMt station is partly from 

open agriculture land, partly from the town to the south-east and from the ocean 

since the winds are predominantly south-easterlies. 
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iii) MRMs is also an agro-meteorological station about 90 km northeast of Mombasa 

Island; the station is located in a region that is predominantly agricultural with 

bushes, shrubs and, woody trees; land cover is mostly pervious (bare soil) that can 

be described by LCZC. The area upwind of the station is completely ‘rural’ with 

no urban influence but open to the ocean. 

 

 

Figure 4.7: Locations of urban and rural stations at the coast 

 

Table 4.1:Urban and rural stations used to investigate UHI 

Station No. Station 

name 

Acronym  Lat. (oS) Long. 

(oE) 

Altitude 

(m) 

Length of 

Temperature  data 

9136130 

9136164 

9136208 

9137048 

Wilson  

Dagoretti  

Kabete 

Thika 

NU (Urban) 

NRD 

NRK 

NRT 

1.38 

1.30 

1.27 

0.98 

36.82 

36.70 

36.75 

37.07 

1679 

1798 

1820 

1549 

1980-2013 

1980-2013 

1980-2012 

1980-2012 

9334021 

9339036 

9340007 

Mombasa  

Mtwapa 

Msabaha 

MU (Urban) 

MRMt 

MRMs 

4.03 

3.93 

3.27 

39.60 

39.73 

40.05 

55 

21 

90 

1980-2013 

1980-2013 

1974-2013 

 

Msabaha 
(MRMs)  

Mtwapa 
(MRMt) 

Mombasa (MU) 
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4.2.2 Data and methodology 

Temperature data taken from the seven stations described in the previous section were used 

to investigate long-term temperature differences between the urban and rural stations and 

consequently the existence of UHI in the two major towns of Kenya. The approach I used  to 

investigate UHI from the surface air temperature was to compute the monthly, seasonal and 

annual UHI intensities and analyse their trends. Land surface temperature (LST) data for the 

last twelve years were also obtained from remote sensing using theMODIS data 

(MOD11A2) taken at a spatial resolution of one (1) km and temporal resolution of 

eight(8)days. The LST data were averaged into monthly means and used as an alternative set 

for investigating urban temperature variations and theexistence of UHI. 

 

Computations of UHII from air temperature 

In my thesis, the urban heat island intensity (UHII)is defined as the temperature difference 

between the urban and rural station,symbolicallygiven as: 

∆Tmax (u-r) = 𝜃𝜃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(4.4a) 

∆Tmin(u-r)= 𝜃𝜃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)    (4.4b)     

where ∆Tmax(u-r)[ ∆Tmin(u-r)] is the temperature differences between the urban and rural 

stations respectively and 𝜃𝜃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) are the urban and rural Tmax [ Tmin] respectively. 

The urban-rural pairs of stations used are shown in Table 4.2.  The mean monthly Tmax and 

Tmin from the urban and rural stations were usedto compute the monthly∆Tmax (u-r) and 

∆Tmin (u-r) respectively, while the seasonal temperature differenceswere computed as the 

averagemonthly differences for December, January and February (DJF),  March, April and 

May (MAM), June July August(JJA) and September, October and November (SON).  These 

seasons correspond to the hot and dry (DJF); warm and wet(MAM); cool and cloudy(JJA) 

and; warm and wet(SON) seasons respectively of the equatorial East Africa (EEA) region.  
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Variables computed from the station data were the monthly, seasonal and annual ∆Tmax (u-r) 

and ∆Tmin (u-r) for each pair ofstations over Nairobi and Mombasa urban areas.The time 

series for the monthly ∆T(u-r)variables were computed by subtracting the rural monthly Tmax 

(Tmin) from the corresponding urban value for each monththus: 

∆𝑇𝑇𝑗𝑗𝑖𝑖(u-r)=𝜃𝜃𝑗𝑗𝑗𝑗𝑖𝑖 − 𝜃𝜃𝑗𝑗𝑗𝑗𝑖𝑖  (4.5) 

where ∆𝑇𝑇𝑗𝑗𝑖𝑖 is the temperature difference of Tmax (orTmin) of month i and yearj; 𝜃𝜃𝑗𝑗𝑗𝑗𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃𝑗𝑗𝑗𝑗𝑖𝑖  

are the point temperature data of monthi and year j for urban and rural station respectively.  

Note that for each year j there are twelve values (i=1…….12) and j will depend on the 

length of data i.e., j=1…..n where n is the time length of data. For the seasonal and annual 

means for year j were computed as: 

Seasonal mean [∆𝑇𝑇𝑗𝑗𝑗𝑗 (u − r)] = ∑ ∆𝑇𝑇𝑗𝑗
𝑖𝑖3

1
3 (4.6) 

Where k is the season of three months in each year and j=1…….n 

 Annual mean[∆𝑇𝑇𝑗𝑗(u-r)]=
∑ ∆𝑇𝑇𝑗𝑗

𝑖𝑖12
𝑖𝑖=1

12
(4.7) 

The computations yielded twelve (12) time series for the monthly temperature differences 

for each pair of stations, four (4) for the seasonal values and one (1) for the annual values 

and each variable had time length n. 

 

Table 4.2:Urban-rural pair ofstations used to compute temperature differences 

(∆T(u-r)) 
Urban area Station pairs Length of temperature data 

Nairobi NU-NRD 

NU-NRK 

NU-NRT 

1980-2013 

1980-2013 

1980-2013 

Mombasa MU-MRMt 

MU-MRMs 

1990-2013 

1990-2013 
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The computed ∆Tmax (u-r) and ∆Tmin (u-r) were used to explore temporal and spatial long-

term variations of UHI intensityfor each urban area and if there have been trends in the 

UHII. Thus trend analysis using the Mann-Kendall and linear regression methods was done 

on each variable and results tested using the t-test at α=0.05.  The hypothesis for the trend 

analysis was that UHI intensity would have positive trend if the temperature of the urban 

station has increased over time due to urban effects and hence imply thestrengthening of 

UHI. The assumption was that none of the rural stations has decreasing trends (in this case 

supported by results of Chapter 2). The methods of trend analysis of time series applied in 

this Chapter were discussed in detail in Chapter 2 (Section 2.5). 

 

Determination of UHI from land surface temperature  

The advantage of the land surface temperature (LST) remote sensed data is in their ability to 

represent large area whose temperature is synchronously observed. LST data have been used 

in many UHI studies to supplement or as alternative to weather station data (Chen, et al., 

2006; Scwarz, et al., 2011; Cheval and Dumitrscu 2015). LST data for Nairobi and its 

environs, between the latitudes 1.10oS and 1.52oS and longitudes 36.51oE and 37.21oE, 

andfor Mombasa and its environs, between the latitudes 3.85oS and 4.19oS and longitudes 

39.51oE and 39.82oE were retrieved from the Moderate Resolution Imaging 

Spectroradiometer (MODIS)(modis.gsfc.nasa.gov/data/dataprod/dataproducts).The MODIS 

product MOD11A2is obtained using the generalized split-window algorithm (Wan and 

Dozier, 1997).Generalized Split Window algorithm is used to execute corrections of the 

atmospheric effects based on the differential absorption of infra-red (IR) bands next to each 

other and within one atmospheric window. The algorithm requires land surface emissivity as 

the input data (Wan and Dozier, 1997).  
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According to the split window algorithm, LST is retrieved from the equation given as: 

 

LST=𝑏𝑏0 + �𝑏𝑏1 + 𝑏𝑏2 �
1−𝜀𝜀
𝜀𝜀
�+ 𝑏𝑏3

∆𝜀𝜀
𝜀𝜀2
� 𝑇𝑇𝑖𝑖−𝑇𝑇𝑗𝑗

2
+ �𝑏𝑏4 + 𝑏𝑏5 �

1−𝜀𝜀
𝜀𝜀
� + 𝑏𝑏6

∆𝜀𝜀
𝜀𝜀2
� 𝑇𝑇𝑖𝑖−𝑇𝑇𝑗𝑗

2
          (4.8) 

 

where  𝜀𝜀 and ∆𝜀𝜀 are the mean and differences of emissivity in the wavelength bands 31 and 

32 and i=31 and j=32; Ti and Tj are the top of the atmosphere brightness temperature of each 

band computed from Equation 4.3; the coefficients 𝑏𝑏0, 𝑏𝑏1 … … … … . 𝑏𝑏6 depend on viewing 

zenith angle, atmospheric surface temperature and water vapour, and are derived using 

regression analysis of radiative transfer simulation data of surface air temperature (Wan, 

2014).The MOD11A2 comprises of LST data for day-time and night-time taken at a spatial 

resolution of 1 km and temporal resolution of 8 days and computed as monthly mean values 

at each co-ordinate “X”, “Y”; where “X” represents the longitude and “Y” the latitude. 

Twelve years of monthly mean LST was available for analysis (2004-2015). Kloog, et al., 

(2012) using data for Massachusetts (USA) indicated that there is a high correlation (R2 

=0.85) between air temperature and LST especially for the night-time values and hence 

comparisons of UHI from LST and air temperature data would be appropriate. 

In my Thesis, LST data was used to: 

a) examine the variations of day-time and night-time temperature across Nairobi and 

Mombasa urban areas. Here, two transects (North-south (N-S) and west-east (W-

E))that traverse the heavily built-up areas (CBDs) in each city were drawn and 

LSTalong each transect used to investigate surfaceUHI.The transects were drawn 

using the Google Earth maps and city land use maps,traversingthe CBD and the 

heavily built up areas of each city (Figure 4.8). Thus; i) N-S transect for Nairobi was 

located along the longitude 36.81oE and the latitudes varied from 1.09 oS (rural areas 
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to the north of the CBD) to 1.41oS (National park and rural areas south of the CBD). 

The W-E transect passed through the latitude 1.28oS and the longitudes varied from 

36.64 oE (low-density residential areas) to 37.10oE (high density residential and open 

land) (Fig 4.8(a&b)). Day-time and night-time monthly LST for pixels along 

longitude 36.81oE ( for N-S)and latitude1.28oS (for W-E)were then plotted against 

the latitude (longitude) so as to observe the temperature profile of Nairobi urban area 

for both day-time and night-time and thus locate the UHI; ii)The N-S and W-E 

transects for Mombasa were drawn passing through Mombasa Island which formsthe 

main part of the city (Figure 4.8(c&d)). The N-S transect was located along the 

longitude 39.64oE and the latitudes varied from 3.85oS (rural areas to the north of the 

Island) to 4.18oS (rural areas south of the Island). The W-E transect passed through 

the latitude 4.05oS and the longitudes varied from 39.48oE (west of Port Rietz) to 

37.10oE (rural land to the east of the Island) (Fig 4.8(c&d)).Note that the main city of 

Mombasa is surrounded by water, and thetransects pass through the water both in the 

N-S and W-E directions.  Day-time and night-time LST for pixels along  

longitude39.64oE ( N-S)and latitude 4.05oS (W-E) were then plotted against the 

latitude (longitude) so as to observe the temperature profile of Mombasa Island  for 

both day-time and night-time and thus locate the UHI. For each urban area, the LST 

data used for analysis included mean temperature for the cold season (represented by 

July), hot season (represented by January) and the annual mean for each year; a mean 

for the twelve years for the same months and annual mean were also computed and 

plotted in order to examine the long-term mean temperature profiles. The results of 

this analysis are presented in the next Section. 
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a) b)  

c) d)  

Figure 4.8: a) Google Earth map showing the N-S (along 36.81 oE) and W-E (along 1.28oS)transects 

(marked yellow) used to compute temperature profiles for Nairobi; b) Nairobi land use Map; c) Google 

Earth map showing the N-S (along 39.64oE)and W-E (along 4.05oS)transects (marked red) used to 

compute temperature profiles for Mombasa; d) Mombasa land use map( both land use maps adopted 

from survey of Kenya, 2014) 

 

b) Surface temperature maps of the mean monthly LST data were constructed for each 

urban area to examine the spatial distribution of the LST. The LST MODIS images 

are typically distributed as HDF (Hierarchical Data Format) 10 by10 tiles, projected 

in sinusoidal projection. This type of projection is not supported in many geographical 

information systems (GIS). The data was first processed into a GIS usable format and 
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plotted into surface temperature raster maps. A base maps showing the administrative 

boundaries of each urban area were then overlaid on the LST raster maps.  

 

4.3 Results and discussion 

4.3.1 The difference of means of Tmax and Tmin in urban and rural stations 

The long-term means of Tmax and Tminof the urban and rural stations over Nairobi and 

Mombasa were computed (Table 4.3) and differences of means tested for significance 

(𝛼𝛼 =0.05) for the period of 1980-2013 (Table 4.4). The hypothesis here was that significant 

positive (negative) differences in the long-term means of the urban and rural temperatures 

would infer possible existence of UHI (urban cool island(UCI)) in the urban areas. 

 

Over Nairobi, the differences in the long-term means between NU-NRD, and NU-NRK for all 

seasons and the annual mean, for both Tmax and Tminwere positive (positive t-values)and 

statistically significant. The resultsthus indicate that,on average,the urban station is warmer 

than the rural stations. The relative warmth of the urban station could be as a result of micro-

climatic factorsor the existence of the UHI. Further investigations were therefore carried out 

in next section to establish if this difference is due to UHI. 

 

Over Mombasa urban area; i) the Tmax differences of means between MU and the rural 

stationswas significant and t-values were positive except for DJF season which was negative 

(Table 4.4). Positive difference indicates that the urban station is on average warmer than 

rural stations while negative values indicate that the rural station is warmer; for instance 

MRMtand MRMs(rural stations in Mtwapa and Msabaha) are significantly warmer than 

Mombasa airport during DJF season; ii) the difference of means for the Tmin, for the two pairs 
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of stations (MU-MRMt and  MU-MRMs), are all negative and significant except DJF season 

which is not significant; thus implying that it is warmer in the rural areas at night than in 

urban area. 

Table 4.3: The long-term mean of seasonal and annual Tmax and Tmin  of selected 

stations in and near Nairobi and Mombasa 

 NU NRD MU MR Mt MR Ms 

                                   Mean temperature (oC) 

Season Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin 

DJF 26.2 14.6 25.1 13.8 32.4 22.6 31.6 22.9 31.9 22.9 

MAM 25.8 15.2 24.6 14.8 31.4 22.9 31.0 23.7 31.0 23.8 

JJA 23.0 12.4 21.9 12.0 28.2 20.1 27.8 21.5 27.7 22.3 

SON 25.4 13.9 24.3 13.7 28.8 21.7 29.4 22.0 29.6 22.4 

Annual 25.1 14.1 24.0 13.6 29.3 21.8 29.9 22.5 30.0 22.9 

 

Table 4.4:Analysis of differenceof mean of Tmax and Tmin between urban and rural 

stations over Nairobi and Mombasafor each season and the annual mean; t-value 

represent the t-statistic; * indicate t- values that are not significant at a 𝜶𝜶 =0.05 

                      Nairobi  Mombasa 

 Tmax Tmin Tmax Tmin Tmax Tmin 
 NU-NRD NU-NRD MU-MR Mt MU-MR Mt MU-MRMs MU-MRMs 

 DJF    
t-value 6.1 4.9 -8.3 -1.4* -2.8 -1.5* 
MAM   
t-value 7.0 2.7 3.4 -4.6 -0.4* -3.8 

JJA   
t-value 7.3 3.1 5.0 -7.5 3.5 -10.8 

SON   
t-value 8.9 1.5 3.5 -3.1 0.2* -5.1 

ANNUAL   
t-value 4.5 3.8 6.5 -4.7 2.4 -5.8 
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In general, the differences in the means between the urban and rural stations were positive 

over Nairobi for both Tmax and Tmin which (in the absence of the spatial differences) would be 

an indicator of UHI. Over the coastal areameans of Tmin (and in some cases even Tmax) was 

higher in the rural stations than the urban which is a pointer to the existence of an urban cool 

island (UCI). Further investigations were carried out in next sections to confirm these 

observations. 

 

4.3.2 UHI over Nairobi 

Temperature trends for Nairobi urban area 

To further examine the existence of UHI over Nairobi, the rates of warming in the urban and 

rural stations for the seasonal Tmin were compared using the linear regression coefficients (β) 

which are statistically significant at α= 0.05 (Fig 4.9). The proposition here was that if urban 

areas have higher rates of warming than the rural areas, then UHI exists since in the absence 

of the urban effects the temperature within Nairobi would be influenced by similar climate 

factors and relativelychange at the same rate (note that from Chapter 2,Tmax had no trends 

over Nairobi and hence not used here). NU and NRD have comparatively equal rates of 

change in all seasons while NRK has the lowest except in JJA season. 
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Figure 4.9:Comparison between the rates of change of seasonal Tmin between urban and 

rural stations in Nairobi area. (all the regression coefficients (β) are significant at 

α=0.05) 

 

The observed significant warming of Tmin in the three stations could be attributed to 

urbanization as well as global warmingeffects(as established in Chapter 2). However, UHI 

could not clearly be inferred from the trends between NU and NRDsince the stations have 

almost equal rates of change of Tmin over time. However, there is aconsiderabledifference 

between the urban station and NRK. Therefore there is a possibility that UHI exists in the 

urban area whose intensity is stronger between NU and NRKthan between NU and NRD. In 

the next section, temperature differences wereused to examine the UHI intensity between the 

urban and rural stations and its temporal variability. 

 

Temporal variability and trends of temperaturedifferences (∆T(u-r))   

Figure 4.10(a,b&c) shows the temporal variability of the of the annual mean ∆Tmax(u-r)  

and ∆Tmin(u-r) for NU-NRD , NU-NRK and NU-NRTpairs of stations respectively.Figure 4.11 

shows the long-term mean seasonal and annual values of the ∆Tmax(u-r)  and ∆Tmin(u-r) of the 

same station pairs. 
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Figure 4.10:Temporal variations of annual ∆Tmax (u-r) and ∆T min(u-r) for urban-rural 

pair of station in Nairobi; a)NU- NRD, b) NU- NRK, and c) NU- NRT 

 

b) 

c) 

a) 
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Figure 4.11:Seasonal and annual mean values of  ∆T max (u-r) and ∆T min(u-r) over 

Nairobi  (for the temperature differences between urban station 

 

The observations I made from the above results were that; i) higher temperature differences 

between the urban and rural areas over Nairobi on average occur during the day; i.e., the 

∆Tmax (u-r) of each pair of stationsare higher than the ∆Tmin (u-r). The ∆Tmax (u-r) values were 

however observed to be decreasing with time. For example, annual mean ∆Tmax (u-r) forNU-

NRD and NU-NRK was 1.6oC and 2.3oC respectively in the year 2000 and has decreased to 

about 0.8oC and 1.1oC respectively by 2013. Note that the annual mean ∆Tmax (u-r) for NU-

NRT (Fig 4.9 (c)) had no observable trend and the variability does not suggest consistent UHI 

intensity while ∆Tmin (u-r) showed an increasing trend; ii) the Tminannual mean temperature 

differences are increasing although they are lower than the day-time for each pair of stations 

and; iii) seasonally, ∆Tmin(u-r) are lower compared with those of ∆Tmax(u-r) in each season. 

Higher values of ∆Tmin (u-r) were observed in the dry season (DJF) than in warmer seasons. 

Seasonal values of∆Tmax(u-r) and ∆Tmin (u-r)are relatively much lower for NU-NRD than the 

NU-NRK pair in all seasons. 

 

http://etd.uwc.ac.za/



 

 

 

 

 
 

146 
 

These observations indicatethatpositive temperature gradients exist between the highly built 

up areas around the Wilson Airport (NU) and the rural stations in the outer fringes of the city. 

The differences for Tmax are however decreasing with time being higher in the 1990s than in 

recent years (2013) and are fairly constant in all seasons, while for Tmin, the differences are 

increasing and are higher during the warm seasons than the colder season. Since the stations 

are within the same climatic zone and the difference in elevation is minimal (<150m), 

temperature differencescould be attributed to the UHI effect and their values represent the 

UHI intensity between the urban and the rural area.The UHI intensity was tested for trends to 

ascertain if the changes observedin the exploratory time series were statistically significant. 

 

Table 4.5 shows the result of the trend analysis in which negative trends for ∆Tmax(u-r) and 

positive trends for  ∆Tmin (u-r) were  realised. 

 

Table 4.5:Assessment of temporal trends of ∆T(u-r) for Nairobi using linear 

regression;results  are only for those seasons that trends were significant at α=0.05 

Season Station pair t-statistic β (oC/year) p-value 

JJA ∆Tmax(u-r) NU-NRK -4.8 -0.06 0.000 

SON ∆Tmax(u-r) NU-NRK -5.2 -0.05 0.001 

SON ∆Tmin(u-r) NU-NRK 2.0 0.03 0.042 

Annual ∆Tmax(u-r) NU-NRK -5.6 -0.03 0.000 

Annual ∆Tmin(u-r) NU-NRK 2.1 0.03 0.043 

Annual ∆Tmax(u-r) NU-NRD -2.8 -0.02 0.011 

Annual ∆Tmin(u-r) NU-NRD 2.2 0.02 0.040 

MAM ∆Tmin(u-r) NU-NRT 4.7 0.05 0.034 

JJA ∆Tmin(u-r) NU-NRT 2.3 0.03 0.024 

SON ∆Tmin(u-r) NU-NRT 5.1 0.05 0.025 

Annual ∆Tmin(u-r) NU-NRT 3.0 0.02 0.005 
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From the trend results, the following observations were made: 

i. There are Significant negative trends in the ∆Tmax (u-r) seasonal and annual series 

especially in the NU-NRK pair; thus implying that the day timeUHI intensity between 

Wilson airport andKabetehas declined over the years.  Note that NU-NRD pair had a 

negative trend only in the annual ∆Tmax(u-r) and NU-NRT had no trends in ∆Tmax(u-r). 

 

ii. ∆Tmin (u-r) series had significant positive trends in all pairs; In particular, NU-NRT 

pair has increasing trends in all seasons except DJF, while NU-NRK had positive 

trends in SON and annual ∆Tmin (u-r) and NU-NRD had positive trends only in the 

annual mean ∆Tmin (u-r).  

 
The existence of apositive trend innight-time UHI intensity would imply that temperature in 

the urban station has been increasing, or temperature in the rural station has been decreasing. 

Since the latter is not the case (from Chapter 2) then, positive UHII trends imply 

strengthening of the night-time UHI over time in the city. On the other hand, decreasing 

trends of day-time UHII would imply a number of possibilities; i)that the rural temperature is 

increasing more than in the urban (which was observed for Kabete station Tmax in Chapter 

2)and/ or;ii) that temperature is decreasing in the urban areas. Since Tmaxof NU had no 

temporal trends, there is a high possibility that the weakening of UHII would bedue to the 

increasing Tmax in the rural areas. 

 

To examine if indeed increasing Tmax of the rural areas is associated significantly with 

decreasing ∆Tmax (u-r), I correlated the annual mean ∆Tmax(u-r) with the rural stations’ annual 

Tmax. The results (Figure 4.12) showed negative relationships that were statistically 

significant. The relationship is stronger between NU-NRK than NU-NRD. The negative 
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correlations imply that the increasing trends in Tmaxin rural areas are to some extent 

influencing the decline in temperature gradient between the urban and rural areas and thus 

lowering the UHII. 

 

 

 

Figure 4.12: Linear relationships between ∆Tmax(u-r) and the rural Tmax over Nairobi 

depicting the influence of increasing rural Tmax on UHI intensity; a) ∆Tmax(u-r) for NU-

NRKand Tmax at NRK ; b) ∆Tmax(u-r) for NU-NRDand Tmax at NRD 

 

The relationship between UHII and temperature also reported in Camillon and Baros (1997) 

who indicated that negative correlations between UHII and rural temperature suggest that 

UHI intensity is partially dependent on temperature itself. Thus increasing trends of rural 

b) 

a) 
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temperature would diminish the urban-rural temperature gradients. However, considering the 

weak correlations, other factors could also be influencing that change. Further investigations 

of UHI were done using the land surface temperature in the next Section. 

 

The conclusions drawn from the analysis of the temperature differencesbetween urban and 

rural areas over Nairobi were that; i)a stronger day-timethan night-time UHI exist in Nairobi 

whose intensity relative to the rural stations is diminishing partly due to increasing Tmax in 

rural stations; ii)A night-time UHI also exists whose intensity relative to rural stations is 

increasing partly due to higher rate of increase of Tmin in the urban area. However, due to the 

lack of a dense network of weather stations, the conclusions only hold for the part of theurban 

area where the urban station is located and only relative to the rural areas considered here. 

UHI intensity has been shown to be dependent not only on the location of the urban station in 

the city but also the land use type of the rural area(s)used to compute the UHII (Cheval and 

Demistrescu, 2015). To expand more on the existence of UHI over Nairobi, and considering 

that the urban station used in this section was not within the CBD, land surface temperature 

data was used. 

 

Analysis of UHI from LST over Nairobi  

Lack of adense network of stations in and around Nairobi to represent different land use 

types, necessitated the use LST data to assess the spatial variation of UHI in Nairobi. The 

gridded monthly LST data dating from January 2004 to December 2015 were used. Day-time 

and night-time LST for a north-south (N-S) transect, along the longitude 36.81oE, and west-

east (W-E) transect, along the latitude 1.28oS, bothpassing through the CBD were used. 
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Latitude (longitude) was plotted against temperature for each year showing the variation of 

LST during the hot season (represented by January), cool season (represented by July) and 

the annual mean LSTfor each year; also the long-term average SLT for each month and each 

year (averaged for the period 2004-2015), was plotted against the longitude (latitude) to show 

the mean profile.The aim of this analysis was to observe if temperature profiles (for both day-

timeand night-time) of the transects passing through the heavily built-up areas of the city will 

show the urban heat island and the  spatial characteristic of its intensity when the city is 

approached from rural areas with different land use/cover types. 

 

Figure 4.13(a) shows the N-Svariation of day-time,and night-time LST for the year 2015, and 

the mean profile.  Figure (4.13a(i)) shows aplot for the year 2015 showing the location of the 

CBD and the land use types to the North and south of the CBD; Figure (4.13a (ii)) shows the 

same information but for the mean LST profile.  Figure 4.13(b) shows the N-S variation of 

the night-time temperature for the same periods. Note that the profiles were labelled using the 

land use and Google Earth maps shown in Fig 4.8(a). 

 

Figure 4.14(a) shows the W-E variation of day-time, and night-time LST for the year 2015, 

and the mean profile for the twelve years (2004-2015). Figure (4.14a (i)) shows a plot for the 

year 2015 showing the location of the CBD and the land use types to the west and east of the 

CBD; Figure (4.14a (ii)) shows the same information but for mean LST profilefor the period 

(2004-2015).  Figure 4.14(b) shows the W-E variation of the night-time temperature for the 

same periods.  
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Figure 4.13: N-S land surface temperature profiles (along longitude 36.81) showing; a) 

day-time; b) night-time temperature variability between the CBD and rural area to the 

north (Karura forest) and south (woodland in the Nairobi National Park); each profile 

shows temperature variability for the warm (January) and cool (July) months and the 

annual mean for;  i) 2015; ii) long-term average (2004-2015); note Nairobi UHI  is 

observed clearly within the CBD(1.25-1.30oS) for both day and night-time profiles 
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Figure 4.14:W-E land surface temperature profile (along Latitude 1.28 oS) showing a) day-time; 

b) night-time temperature variations between the City CBD  and low-density residential area to 

the west and high-density residential areas to the east; each profile shows LST variability for 

the warm (January) and cool (July) months and the annualmean for i) 2015; ii) long-

termaverage (2004-2015); note Nairobi UHI is observed within the CBD (between longitude 

36.81-36.87oE) in the night-time profile 
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Figure 4.15 shows maps of monthly mean land surface temperature for Nairobi during a hot 

month (January) and a cool month (July) for some years. The maps show that the eastern side 

of Nairobi is warmer than the western side during both day and night. The night-time UHI is 

also observable in most maps 

 

 

Figure 4.15: Mean monthly distribution of land surface temperature for 2015; a) 

January day-time; b) January night-time; c) July day-time and; d) July night-time; the 

horizontal axis represents the Longitudes(oE) and the vertical axis represents latitudes 

(oS); the CBD is located approximately 1.28-1.29oS and 36.81-36.84oE; The vertical bar 

in each map shows the range of temperature in oC 

 

 

a) Jan 2015 day 
b)Jan 2015 night 

c) Jul 2015 day 
d) Jul 2015 night 
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From the analysis of LST over Nairobi, the following observations were made: 

a) From the temperature profile for the N-S transect, day-time temperature difference 

between the forested area to the north (Karura Forest) and the CBD is about 4oC 

(using the long-term annual mean profile) and between woodland area (National Park) 

and the CBD is about 3oC. The forest is much cooler during the day which is 

attributed to the latent heat flux via evapotranspiration.  

 

b) For the night-time profile of the N-S transect, the temperature differencewere much 

lower (about1 oC on average) between the CBD and the forested areawhereas there 

was a sharp dropbetween the CBD to the coolest point in the woodland to thesouth of 

about 4oC on average.This observation implies that land in the Park, which mainly has 

shrubs,bushes, and bare ground, cools much more at night than in the deciduous forest 

to the north, and that the intensity of surface UHI depends on the land cover of the 

rural environment. Noted also was that the in night-time LST profile, changes of 

temperature from one land cover type to another occur gradually unlike for the day-

time where changes are abrupt.Another observation between day-time and night LST 

was that temperature remained lower outside the CBD for the night-time LST, which 

was not the case for the day-time profile.  

 

c) The W-E transect depicts an LST day-time profile that has a different pattern with the 

areas east of the CBD having relatively higher temperature than the west. On average 

the temperature difference between the low-density residential areas to the west and 

the CBD is about 6oC, while the temperature difference between the CBD and the 

high-density residential areas to the east is about -2oC. However, unlike the N-S 

profile, the UHI of the CBD from the W-E profile is not distinguishable from the 
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higher temperatures to the east. The pattern could be attributed to the rapid growth of 

high-density residential houses and increased road networks to the east. 

 

d) From the night-time LST profiles of the W-E transect, there is a steady rise in 

temperature from west to east with highest being within the CBD and a fall thereafter. 

The temperature difference between the low-density residential areas and CBD is 

about 2oC. Beyond the CBD eastwards temperatures are slightly lower than within 

theCBD which implies that the high-density residential areas cool faster than the CBD 

although the difference is minimal immediately out of the CBD, and becomes more 

pronounced in the rural areas(beyond 36.95oE).  

 

The LST over Nairobi suggests that UHI exists within the highly built-up areas of the city 

(especially within the CBD). The intensity of the UHI is more prominent in the N-S direction 

than the W-E due to the existence of natural land cover in the forested area to the north and 

the bush land to the south; implying  the dependency of surface UHI intensity on the land 

cover of the rural environment. The UHI within the CBD is stronger during the day but easily 

distinguishable from the night-time temperature profile. The day-time land surface 

temperature maps clearly depict the relative warmth of the eastern side of Nairobi city than 

the western side. Seasonally the UHI is more pronounced during the hot season than the cold 

season.  
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4.3.3 UHI over Mombasa 

Temporal trends of minimum temperatureover Mombasa 

The same investigations that were carried over Nairobi were done for Mombasa. Further 

analysis to confirm the preliminary results obtained in Section 4.4.2, were carried out to 

establish the nature of UHI over Mombasa.The rates of warming in the urban and rural 

stations for the Tmin were compared using the linear regression coefficients (β) that were 

statistically significant at α= 0.05 (Chapter 2). The hypothesis here was that if urban areas 

have higher rates of warming than the rural areas then UHI exists; assuming that in the 

absence of the urban effects the temperature within Mombasa would be influenced by similar 

climate factors and change at relatively the same rate. Tminwas used since it had increasing 

trends in all stations for the period between 1990 and 2013. 

 

Figure 4.16 shows the trendsof the Tminof stations at the coastal region near Mombasa. The 

urban station (MU) hadincreasing trends that were higher than in the rural stations in all 

months(Figure 4.16(a)). The trends in MU were especially high during the cool season of JJA 

(Figure 4.16(b)). 
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Figure 4.16: Comparison of the rates of change of Tmin between the urban station and the rural 

stations for; a) monthly trends and; b) seasonal and annual trends; all the coefficients were 

statistically significant at α=0.05. 

 

Temporal variability of temperature difference (∆T (u-r)) 

The temperaturedifferences between the urban and rural stations over Mombasa revealed 

different scenarios from that observed over Nairobi area. Figure 4.17shows the temporal 

variations of the annual ∆Tmax (u-r) and ∆Tmin (u-r). The temporal variability of ∆Tmax (u-r) for 

both pairs of stations showed that the values  were close to zero with only a mean value of 

slightly more than 1ᵒC in 2004 in the MU-MRMt pair. On the other hand,∆Tmin(u-r) values for 

both pairs of stations were less than zero (i.e., negative) over the whole period but are 

increasing with time. For instance, for∆Tmin(u-r) between MU and MRMt, the 

lowestdifference (~-2 ᵒC) recorded in 1994 has progressively increased to ~-0.5ᵒCby 2010 

(Figure 4.17 (a)) , also ∆Tmin(u-r) between MU and MRMshas a similar pattern except that the 

negative values of ∆Tmin (u-r) were much lower  in the 1990s (~-3.0 ᵒC) and has progressively 

increased to about -1ᵒCby 2010(Figure4.17(b)). 
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Figure 4.17:TemporalVariation of annual mean temperature differences (∆Tmax(u-r)  

and ∆Tmin(u-r)) over Mombasa for; a) MU-MRMt and, b)MU-MRMs 

 

Figure 4.18 shows the long term mean monthly and seasonal ∆Tmax(u-r)  and ∆Tmin(u-r). For 

both pairs of station, low positive values of ∆Tmax (u-r) were observed. Accordingly, the mean 

monthly and seasonal values of the ∆Tmin (u-r) from both pair of stations, were all negative 

and lowest in the cool months from April to September with a peak in July, while seasonally 

the lowest values were in JJA (~-2.5ᵒC) and highest in DJF (~ -0.5ᵒC) (Fig 4.18).  

 

Figure 4.18:Long-term mean monthly and seasonal values of  ∆Tmax(u-r)  and ∆Tmin(u-r) 

for; a) MU-MRMt, and b)MU-MRMs 
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From the long-term variations of ∆T (u-r), day-time UHI intensity in Mombasa relative to the 

two rural stations,is almost non-existent, while the night-time UHI intensity is negative. The 

negative values of ∆Tmin (u-r) suggest the existence of an urban cool island (UCI) over 

Mombasa whose intensity is diminishing with time. 

 

To further examine if the observed trends in the temperature differences were statistically 

significant, trend analysis was performed on the seasonal and annual means of both ∆Tmax (u-

r) and ∆Tmin (u-r) for MU-MRMt and MU-MRMs pair of stations. As expected, the ∆Tmax (u-r) 

series in both pair of stations had no trends in any season or even in the annual mean (results 

not shown).Positive trends were found in all seasons and the annual mean for the ∆Tmin (u-r) 

(Table 4.6). The important thing to note from these results is that the positive trends are from 

the negative temperature differences between the urban and the rural stations towards positive 

differences; implying theUCI intensity is diminishing with time. 

 
Table 4.6:Temporal trends of temperature differences between Mombasa urban and 

rural stations;all the β values are significant at α=0.05 

Season ∆Tmin(u-r) t-stat β(oC/year) p-value 

DJF MU-MRMt 3.67 0.04 0.003 

MU-MRMs 2.76 0.06 0.011 

MAM MU-MRMt 2.45 0.05 0.023 

MU-MRMs 1.93 0.03 0.005 

JJA MU-MRMt 4.05 0.06 0.000 

MU-MRMs 3.24 0.07 0.004 

SON MU-MRMt 3.32 0.06 0.003 

MU-MRMs 3.74 0.06 0.001 

ANNUAL 

MEAN 

MU-MRMt 4.22 0.05 0.000 

MU-MRMs 3.67 0.05 0.001 
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Since the Tminof the urban station in Mombasa was found to be increasing at a higher rate 

than in the rural stations, the influence of Tminat MU on ∆Tmin (u-r) for each pair of stations 

was examined. Fig 4.19 shows that there exist significant positive relationships between 

∆Tmin (u-r) and Tmin for MU with R2 values ≈0.7 for each pair of stations.  

 

Figure 4.19:Linear relationships between urban-rural temperature differences and the urban 

Tmin over Mombasa; a) ∆Tmin(MU-MRMt) and MU Tmin ; b) ∆Tmin (MU-MRMs) and MU Tmin 

 

The regressionresults confirm that higher rate of increase of the Tminat MU than in the rural 

stations is partly attributing to the weakening of negative temperature differences between 

urban and rural areas at the coast. Hence Mombasa town within the airport area is tending 

towardsbecomingan urban heat island. The deductions from the analysis of the urban-rural 

temperature differences for Mombasa were that: 

• A day-time UHI over Mombasa could not be established from theurban and rural 

weather stations. Further investigations were done in the next Section using remotely 

sensed land surface temperature. 
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• For the night-time temperature, negative temperature differences suggest urban cool 

island (UCI) intensity in Mombasa city around the airport (location of theurban 

station) whose intensity has weakened over time. The existence of negative UHI 

intensitieswas attributed to the nearness of the rural stations to the Indian Ocean, since 

oceans are warmer during the night than land, while the diminishingnegative 

intensitieswerefairly stronglyassociated withthe increasing Tmin of the urban station.  

 

Analysis of UHI from LST in and around Mombasa 

To further examine UHI over the coastal city of Mombasa, LST data described in Section 

4.3.2 were used. Particular attention was given to the temperatures of Mombasa Island where 

the maincity buildings (including the central business district (CBD)and industrial area) are 

situated. Monthly data ofLSTfor 2004-2015, covering the area enclosed bylatitudes 3.85oS - 

4.02oS and longitudes 39.5oE - 39.82oE, and retrieved at a spatial resolution of 1 km were 

used.For each year, I analysed LST along two transects, (north-south (N-S) and west-east (W-

E)). I used the N-Stemperature valuesat each pixel along the longitude 39.64 and varying 

from latitudes3.85oS to 4.02oSto examine the N-S temperature variations. The choice of this 

longitude was motivated by the fact that it passes through theheavilybuilt-up urban area 

including the industrial area within the Island. A temperature profile of N-S transect was then 

plotted for the mean monthly LSTdata at each latitude and along the fixed longitude (see 

Figure 4.8) for the hot season (DJF), the cool season(JJA) and for the annual mean (average 

for all months in one year); a mean profile comprising of long-term averages of the monthly 

and annual LST at each latitude and along the fixed longitude was also plotted. 
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Fig 4.20 (a&b) shows the profiles depicting N-S variations of theday-time and night-time 

mean LST for January, July and annual mean of; i)2005 and; ii) the mean profile for the 

whole period (2004-2015). Fig 4.20 (c) shows a rotated strip of a Google Earth map 

indicating the different land cover types (the rural areas, the urban areas, and ocean water) 

whose temperature isrepresented in the profile.   

 

Figure 4.20:  N-S land surface temperature profiles (along longitude 39.64oE) showing;  a) day-

time; b) night-time LST spatial variability between the Mombasa Island town and rural area to 

the north and south; each profile shows temperature variability for the warm (January) and 

cool (July) months and the annual mean for;  i) 2015; ii) long-term average (2004-2015) for the 

same months and annuals;. c) a rotated N-S strip of Google Earth map of Mombasa showing the 

different types of land cover traversed by the temperature profile from thenorth (left) to south 

(right). 
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The main observations here are that; i) the day-time profile have sharp drops in temperature 

from the north rural areas to the Tudor Creek,which then increases sharply from the creek to 

in the city within the Island. From the Island, the temperature drops again within the Likoni 

waterway, then rises over the mainland town, and drops in the rural areas further south. The 

temperature drops are more pronounced in the hot season (January) than in the cold season 

(July); ii) the night-time profile depicts a different pattern in which temperature rises 

gradually from the rural area to the north, across the Tudor creek and the Island town and 

decreases slightly over the Likoni Waterway and then rises over the mainland town. Note that 

from the north, the temperature of the Tudor Creek and the Island town is not distinguishable 

but between the Island and the Likoni Waterway the difference is noticeable. The difference 

could be attributed to the depth of the ocean; Likoni waterway is deep sea while Tudor is 

shallow sea. 

 

Figure 4.21shows thesame information as Figure 4.18 but the profile depicting W-E variation 

of January, July and annual mean day-time and night-time LST. Figure 4.19 (c) shows a strip 

of a Google earth map indicating the different land cover types traversed by the W-E transect 

whose temperature profile is presented. An almost similar pattern with the N-S profile is 

observed here. For the day-time profile, the temperatures are high in rural areas east of the 

Island and drop sharply over the Port Rietz water-way (deep sea). The temperature then rises 

sharply over the town before dropping slightly over the Tudor Creek (shallow sea). Note that 

Port Rietz is an extension of the Likoni waterway. For the night-time profile, the temperature 

between the Island and water is hardly distinguishable especially during the hot season.  
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Figure 4.21:W-E land surface temperature profiles (along latitude 4.05oS) showing;  a) day-

time; b) night-time LST variability between the Mombasa Island town and rural area to the 

west and east; each profile shows temperature variability for the warm (January) and cool 

(July) months and the annual mean for;  i) 2015; ii) long-term average (2004-2015); a W-E strip 

of Google earth map showing the different land cover types traversed by the W-E profile from 

the west to the east. 

 

The following deductions were made from the spatial and temporal analysis of LST over 

Mombasa: 

a) The temperature profile over Mombasa is greatly influenced by the neighbouring 

water bodies. During the day, the N-S and W-E profilesshowed higher 
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temperaturesover the rural areas that decreased sharply over the water bodies and rose 

sharply over the city.On average,the day-time temperature in the city was lower than 

in the rural areas. These observations imply that there are day-time negative LST 

differencesbetween the city and the rural land in theneighbourhood. The negative LST 

differenceswould imply an urban cool island over the Island town relative to the rural 

land areas; however, the town is warmer than the adjacent water bodies. For instance 

for the N-S profile, the average LST differencebetween the urban area and the rural 

land areas is about-2oC and in absolute terms is higher during the hot season than the 

cold season. Noted also was that in the N-S direction, theday-timetemperature 

increased after passing Likoni waterway towards the south similar to that observed 

over the Island. This observationportrays a UHI of the urban sprawl in the coastal 

mainland area. 

 

b) On average, the night-time LST profiles showed gradual changes in temperature 

across the different land cover types.Temperatures in rural areas are lower than those 

of both the water and the town. Worthwhile notingalso was that,there is almost no 

difference between the temperature of water and the neighbouring urban land in the 

night-time profile, and temperatures to the east of the Island are higher than to the 

west which is quite opposite of the day-time profile.The UHI is clearerduring day-

time than duringnight-time profiles. 

 
c) The Mombasa airport and surrounding areais relatively cooler thanthe Island with 

about 1oC (averaged over the period 2004-2015). Similar observations were made 

using the land surface temperature maps(Figure 4.22). The area around theMombasa 

airport areais also cooler at night than rural areas close to the ocean. This 

observationis likely to explain the existence of night-time negative air temperature 
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gradients between Mombasa airport and the two stations along the coast (Mtwapa and 

Msabaha) (considering that, I found  a positive correlation between air temperature 

and LST of ~ 0.6 in both urban areas). 

 

Figure 4.22:Mean monthly distribution of night-time LST of 2005 and 2015 January and July 

showing the cool areas around the airport and higher temperature in the city, the water-ways 

and the areas near the ocean; the horizontal axis represents the Longitudes(oE) and the vertical 

axis represents latitudes (oS); the vertical bar in each map shows the range of temperature in 
oC; Mombasa airport is located at approximately4.04oS, 39.6oE. 

 

The LST results showed that in general; i) Mombasa Island town is cooler than neighbouring 

rural land areasbut warmer than the adjacent water bodiesduring the day; ii) Mombasa town 

is onlyslightly warmer than its surroundingat night;iii) the urban area close to the Mombasa 

airport is cooler than themore urbanized Island, and also than the areas close to the 

oceanduring the night.The weak UHI in Mombasa city (within the Island) and the sprawling 
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towns in the mainland,was observed in night-time LST; iii) the ocean-land temperature 

contrast both during the day and at night influences the temperature profiles of Mombasa and 

thus modulates the UHI. 

 

4.3.4 Discussion 

Nairobi UHI 

Temporal variability and trend analysis of day-time and night-time air temperature differences at 

monthly, seasonal and annual timescales, between urban and rural stationsshowed that UHI exists 

over Nairobi. The day-time UHI was found to be stronger than the night-time but its intensity has 

decreased over time. The decline of the day-time UHI intensity was significantly associated with 

increasing trends in Tmaxof rural areas. The increasing Tmax was attributed partly to global 

warming (Chapter 2) and effects of urban sprawl as was indicated in Makokha and Shisanya 

(2010) who reported that urban sprawl into rural areas close to the CBD has influenced 

temperature increase in these areas. The use of remote sensed land surface temperature (LST) 

greatly strengthened the conclusion of existence of UHI observed from station data. The N-S 

transects passing through the CBD of Nairobi showed that temperatures increased steadily 

towards the CBD and decreased out of the CBD; thus showing a well formed UHIespecially for 

the night-time profile.However, the day-timeUHI in the W-E transect was diffusewith higher 

temperatures in the eastern side of the CBD than over the CBD. The higher temperatures to the 

east were attributed to the development of high-density residential buildings, and effects of urban 

sprawl. This increase of LST on the eastern side of the CBD was also reported by Muthoka and 

Mundia, (2014) who associated the increase to theconversion of natural vegetation to built-up 

land. Cheval and Demitrescu (2015) used asimilar method to study UHI over 

Bucharest(Romania), and indicated that the type of landcover in an area exerts a strong influence 
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on the LST and hence on the relative UHI intensity.The observed day-time UHI both in air 

temperature and LST could be associated with land use/cover changes and increase in population. 

For instance Land cover/use change studies over Nairobi area reported that built up areas have 

increased significantlyover the last three decades (Mundia and Aniya, 2006; Muthokha and 

Mundia, 2014) and urban population in Nairobi has also increased from about half a million 

people in the 1960s to more than 3.1 million (KNBS 2010). Government reports also indicate 

that, apart from the residents living in Nairobi, commuters from other parts of the country who 

work in Nairobi usually push the daytime population to over four million people. The increase in 

population and economic activities have increased anthropogenic sensible heat  in Nairobi 

especially during the day and also pollutants that have greenhouse gas effect (Opija et al., 2008; 

Hart and Sailor, 2009) thus increasing the heat energy flux in the urban environment.  

 

The UHI intensitiesover Nairobihave seasonal characteristics; for instance, the night-time UHII 

from the air temperature data was strongest during the DJF season and weakest in JJA season. 

The DJF season is the hottest period of the year when dry continental north easterlies dominate 

the EEA region. The sky alsois mainly cloudless during this season thus maximum radiation is 

received during the day and the urban fabric would absorb more heat during the day and release 

at night. These results agree with those of Murphy et al., (2011), Vardoulaski, et al.(2013) and 

Ahmed, et al. (2014) who indicated that UHII in the tropical cities is highest during the dry 

season. However from the LST, night-time UHI over Nairobi CBD has almost the same intensity 

for the hot and cold season. 
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Mombasa UHI 

From the analysis of air temperature data, the day-time temperature difference between Mombasa 

town (around the airport) and rural areas to the northeastnear the coastline, were close to zero. 

However, from the LST analysis, the day-time N-S and W-E transects traversing the Mombasa 

Island showedinteresting temperature profiles in which the different land cover types were easily 

distinguishable. The day-time LST profile showed that the rural areas are warmer than Mombasa 

Island(city centre) while the areas covered by inshore water from the Indian Ocean are much 

cooler than the Island. Therefore, relative to the rural land areas, the Island have negative UHI 

intensity, while relative to the inshore water, the UHI intensity is positive during the day. The 

influence of water bodies on UHI was also reported in Cheval and Demitrescu (2015)for the city 

of (Bucharest) Romania.  

 

The night-time airtemperature differences between Mombasa Airport station and the rural 

areas to the northeast were found to be negative. The trends of these urban-rural temperature 

differences were increasing thus implying decreasing of the urban Cool Island (UCI) 

intensity. The decreasing UCI intensity was attributed to the increasing trend of Tminat the 

Mombasa airport station. The night-time LST along the N-S and W-E transects showed 

profiles in which temperature changed gradually from one land cover type to another. The 

rural areas were on average cooler than the city at night. Interestingly, it was not possible to 

distinguish the inshorewaterfrom the urban area in the night-time profiles; the temperature 

gradually increased to a maximum over the city and then decreased. Considering the night-

timeLST, a weak UHI was detected in Mombasa Island, and also in themainland townsclose 

to the Island. 
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The temperature profiles over Mombasa are however more complex than over Nairobi mainly 

due to the presence of the ocean and the inland waterways. For instance, the surface 

temperature maps showed that night-time LST is higher over the land closer to the ocean than 

away from the coast. This phenomenon is expected climatologically since oceans are cooler 

than land during the day and warmer at night. The presence of the sea-land breezes during the 

day and land-sea breezes during the night complicates the radiative processes of a coastal city 

(Emmanuel and Johansson, 2006). Freitas, et al. (2006) showed that the presence of a city at 

the coast increases sea breeze propagation into the centre of the city; a phenomenon that 

could be used explain the relative coolness of Mombasa Island compared to the inland rural 

areas.  Further, the influence of the ocean-land temperature contrast at night observed in the 

LST maps could explain theexistence of the night-time negative air temperature gradients 

between Mombasa airport area (inland town) and the stations along the coast (Mtwapa and 

Msabaha).  

 

Studies have shown that Indian Ocean SSTs close to the Kenyan coast have been increasing 

since the mid-20th Century (Deser et al., 2010; Roxy, 2014; Roxy, et al., 2014)which could 

also influence temperature differences betweenMombasainland town and the rural areas close 

to the ocean. Wind speeds in Mombasa were reported to have significantly reduced in the last 

twenty years (Ongoma et al., 2013). Reduction in wind speed would affect the effective 

mixing of cool and warm air and also thetransport of pollutants thus enhancing the night time 

temperature over Mombasa as indicated byGiannaros and Melas, (2012). 
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4.4 Summary 

In this Chapter,I aimed at establishing if UHIs exists in Nairobi and Mombasa cities. The results 

from this Chapter formed a basis upon which investigations of theinfluence of urban temperature on 

rainfall in the next Chapteris based. The use of the air temperature and LST were 

complementary in the establishment of UHI over Nairobi and Mombasa. The data from the 

limited weather stations were not adequate alone to make firm conclusionsof UHI mainly 

because none of the weather station is situated withinthe CBD of either town. On the other 

hand, LST data from MODIS allowed for a more spatial evaluation of the UHI particularly 

with respect to the heavily built-up town centres and their immediate environs. However, the 

data was only available for the last twelve (12) years and could not be adequately used to 

investigate long-term trends inUHI intensity. The conclusions thus arrived at were made 

stronger through the use of both types of data. From the two cities,UHI was observed. 

However, its intensity is highly dependent on the time of day andland cover types of the rural 

areas considered.  

 

There were important differences of the UHI and its intensity between Nairobi and Mombasa 

cities; 1) Over Nairobi, theday-time UHI intensity from the air temperature data was found to be 

stronger than the night-time one. The day-timeair temperature UHII had decreasing trends that were 

found to be significantly negatively correlated with the Tmax at the rural stations.The 

decreasing trends of UHII werepartly attributed to the effects of global warming that is 

influencing rural temperature more than urban temperatureand effects of urban sprawling into 

rural areas.The night-time UHIIfrom air temperature was much lower than the day-time but 

its intensity had increased over time.From the LST, both day and night UHIs over Nairobi 

were distinguishable within the CBD from the temperature profiles especially for the N-S 

transects that traversed rural areas with natural vegetation. The night-time UHI was more 
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conspicuous and regularly formed than the day-time one. The LSTUHI intensity wasalso 

much lower during the night-time than day-time. Seasonally, UHII was higher during hot 

monthsthan the cold months: 2) Over Mombasa urban area, there was no significant day-time 

UHI intensity from the air temperature between the Mombasa Airport and the stations in 

Mtwapa and Msabaha along the Kenyan coast. However, the day-time LSTs within Mombasa 

Island were lower than in the rural land areas, but higher than the adjacent water bodies. 

From the night-time surface air temperature, negative temperature differences indicative of an 

urban cool island (UCI) was observed between Mombasa airport areaand rural stations along 

the coast.The UCIintensities were on average higher during cool months than the warm 

months. The UCI intensity had decreasing trendsthat were associated with the increasing of 

Tmin at the Mombasa Airport station. The LST data confirmed that the area around the airport 

is on average cooler than areas near the coastline at night and thus the reason for UCI 

intensities.  

 

The main implication of the day-time and or night-time UHI effect to stormwater 

management in urban areas would be through UHI circulationinfluencing the formation of 

convective clouds and hence increase rainfall intensities especially in the downwind areas of 

the CBDs. If rainfall intensities or duration of wet spells are enhanced due to the UHI effect, 

the urban design storms that are used in storm water management systems would be affected, 

and undue urban flooding could be experienced in the urban areas and/or their downwind 

neighbourhoods. The effects of enhanced urban temperatures on rainfall were investigated in 

Chapter 5. 

 

 

 

http://etd.uwc.ac.za/



 

 

 

 

 
 

173 
 

5 CHAPTER 5: EFFECTS OF TEMPERATURE ON URBAN RAINFALL 

5.1 Introduction 

The continuing conversion of natural land cover to urban land is altering the surface energy 

balance, and consequently increases sensible heat at the expense of the latent heat (Lamptey, 

2010). The difference between the relative warmth of a city and the surrounding rural area is 

due to the changes in the surface energy budget in the city arising from anthropogenic heat 

released from buildings, greater absorption of incoming shortwave radiation resulting from 

urban canyon geometry and urban building materials, decreasing outgoing long wave 

radiation due to reduced sky view factor by canyon geometry, and increased pollution as 

discussed in Chapter 4. The result of the differential thermal heating in an urban environment 

is greater day-time storage and night-time release of solar energy and increased convective 

heat due to reduced latent heat flux from impermeable surfaces (Shepherd 2005). This 

modification of the natural environment, affects thermal stratification of the air above the 

urban area, the local heat balance, the hydrologic cycle as well as the micro and meso-scale 

circulation patterns (Molders and Olson, 2004). The high aerodynamic roughness and surface 

heterogeneity of a city affect the speed of the wind (Ongoma, et al., 2013), low-level 

convergence, transport of suspended pollutants and increase vertical mixing through changes 

in theurban boundary layer (UBL).  

 

Energy flux changes resulting from urbanization have the potential of modifying rainfall 

patterns in terms of amount, spatial distribution, and /or intensity. The urban-induced changes 

of the natural precipitation could result from the modification of the atmosphere through 

formation of urban heat islands (UHIs), modification of microphysical and dynamical 

processes in passing clouds through addition of condensation nuclei from industrial 
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pollutants, increase in low level mechanical turbulence from urban created obstacles, and 

modification of low level atmospheric moisture content by accumulations of industrially 

generated plumes from cooling towers (Huff and Changnon, 1972; Zhong and Yang, 2015). 

Changes in rainfall intensity and or distribution in an urban environment have the potential to 

influence the urban hydrologic response especially in the way stormwater is generated.  

 

5.1.1 Effects of urban temperature on urban precipitation patterns 

The Metropolitan Meteorological Experiment (METROMEX) was one of the early studies 

that took place in the 1970s in the United States to investigate the modification of meso-scale 

and convective rainfall by major cities (Changnon, et al., 1977). The results from these 

studies indicated that urban effects lead to increased precipitation during summer months of 

these regions which was found to occur 50-75 km downwind of a city. The areal extent and 

the magnitude of the urban and downwind precipitation anomalies were related to the size of 

the city. Baik et al. (2001) showed that even weak heat islands result in surface sensible heat 

flux convergence and buoyancy that influence rainfall development. Shepherd, (2006) 

indicated that the prevailing flow of wind interacts with the UHI to enhance urban 

precipitation downwind of the city. Other regional studies that have suggested correlations 

between rainfall intensities and UHI include Jauregui and Romales (1996) over the Mexico 

City (Mexico),Shepherd, et al. (2010) over a coastal city in USA and Fujibe, (2003) over 

major cities in Japan. Biazeto, (2012) and Marengo, et al. (2013) suggested that changes in 

rainfall regime in the urban areas had a strong correlation with urbanization.  Efe and Eyefia, 

(2014) observed that in the city of Benin in Nigeria, the precipitation amount and intensity 

had increased due to urbanization and the presence of the UHI.  Shepherd et al. (2002) 

studied four cities in the USA using rainfall rates from the Tropical Rainfall Measuring 

Mission (TRMM) and corroborated Bornstein and Lin (2000) that there is a bias towards 
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greater rainfall enhancement in the downwind region of the urban area with minimal 

enhancement directly over or upwind. Kishtawal, et al. (2010) assessed the urbanization 

impact on the heavy rainfall climatology of Indian summer monsoon and observed an 

increasing trend in the frequency of heavy rainfall over urban regions during the monsoon 

season.  

 

UHI circulation would interact with the meso-scale and large-scale circulations in a region to 

influence rainfall patterns not only in the neighbourhood of the urban area but further 

downwind. Miao, et al. (2009) investigated the influence of the urban temperature on the 

urban boundary layer (UBL) using both observations and numerical simulations over the city 

of Beijing (China) and found that the UHI modified the local mountain/valley circulations. 

Yang et al. (2013) and Zhang et al. (2014) showed that UHI circulations influence local lake 

breezes.Wang, (2008) showed that an isolated UHI might enhance horizontal wind speed 

over an urban area. Opija and Mukabana (2004) using dynamical simulation over Nairobi 

area, suggested that urban-rural circulations forced by thedifference in temperature between 

cities and their surrounding and sustained by frictional drag over the urban built-up areas 

enhanced the development of convective rainfall and may alter rainfall patterns in and 

downwind of the urban area. 

 

 In a dynamical simulation to investigate the impacts of meso-scale circulations on rainfall 

over Kenya considering terrain induced circulations and land-water temperature contrast 

(excluding UHI effect), Mukabana and Pierlke (1996) indicated that the complex 

heterogeneity of the terrain, large inland and coastal water bodies together with the strong 

equatorial insolation generate strong meso-scale circulations with strong diurnal cycles which 
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interact among themselves and with the large scale monsoon flow to produce the observed 

rainfall patterns over Kenya. Opija and Mukabana (2004) suggested that the UHI in Nairobi 

urban area have adestabilizing effect on the monsoon flow which would enhance thermal and 

mechanical turbulence.Coupled with increased roughness within the city, the destabilized 

monsoon flow may result in enhanced rainfall downwind of the urban area. However, the 

effects of the interactions among the enhanced thermal circulations due to UHI and global 

warming, the meso-scale circulations and the large-scale monsoon circulations on rainfall 

distribution over urban areas of Kenya have not yet been established.  

 

5.1.2 The mechanisms of temperature enhancement on urban rainfall 

When land cover changes due to urbanization, the atmosphere responds to the perturbations 

in the lower boundary conditions through complex processes and responses that may 

influence rainfall patterns. The physical processes that link changes in the land surface with 

climate system include; a) the changes of local surface conditions in terms of temperature and 

humidity occasioned by the changes in the surface energy balance;a process driven mainly by 

changes in the surface albedo and surface emission of the earth’s radiation, and  b) the 

apportioning of the net surface radiation into sensible and latent heat fluxes which is driven 

by changes in moisture storage ability in the soil layer, and changes in surface roughness 

(Eltahir and Pal, 1996; Pielke, 2001). These changes are explained by considering the energy 

and moisture budget equations and their inter-dependence. The surface heat budget equation 

was expressed in Equation 4.1(Chapter 4) as: 

qsw + qlw + qsh + qle + qg + qa = 0                  (5.1) 

where qswrepresent the net shortwave irradiance, qlwis the net long-wave irradiance, qsh is the 

surface sensible heat flux, qle  is the latent turbulent heat flux, qa  is the anthropogenic heat 
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input, and qg represents ground heat conduction. By representing the net radiative fluxes (qsw 

+ qlw ) as 𝑅𝑅𝑛𝑛, and assuming that qa is negligible, Equation (5.1)is  represented as: 

𝑅𝑅𝑛𝑛=𝑞𝑞𝑔𝑔+ qsh + qle         (5.2) 

The moisture budget of the surface may be represented as: 

 P=E+T +R +I         (5.3) 

where P is the total precipitation; E = evaporation; T= transpiration; R= runoff and; I = 

infiltration (see Figure 5.1 which show a schematic representation of the moisture budget in 

an urban and rural environment). E is a function of qle (i.e.,E=f(qle))and; 

 

qle=𝑅𝑅𝑛𝑛 − (𝑞𝑞𝑔𝑔+ qsh)                                                                                                               (5.4) 

Thus surface changes affecting  𝑅𝑅𝑛𝑛, 𝑞𝑞𝑔𝑔,or qsh  will affect E.Surface heat flux change in the 

absence of large-scale wind flow is related to change in temperature through the following 

thermodynamic equation: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 = 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑞𝑞𝑠𝑠ℎ
𝜌𝜌𝑐𝑐𝑝𝑝
�                             (5.5)  

where 𝑐𝑐𝑝𝑝is the specific heat capacity of air at constant pressure, 𝜌𝜌 is the density of air, z is the 

vertical distance and 𝜃𝜃 is the temperature; Equation (5.5) can be integrated and averaged 

(according to Pielke (2001)) to get: 

𝜕𝜕𝜃𝜃�

𝜕𝜕𝜕𝜕
= 1.2
𝜌𝜌𝑧𝑧𝑖𝑖𝑐𝑐𝑝𝑝

𝑞𝑞𝑠𝑠ℎ                                 (5.6) 

where 𝑧𝑧𝑖𝑖 is the height of the boundary layer. In Equation (5.6), changes in sensible heat flux 

(𝑞𝑞𝑠𝑠ℎ)  at a given height of the boundary layer is directly related to the rate of change in 
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temperature if other conditions of the equation are kept constant; also 𝑧𝑧𝑖𝑖 will depend on the 

rate of heating produced by a given amount sensible heat flux.  

 

a)  b)  

Figure 5.1: A schematic diagram showing elements of precipitation in an (a) urban and; 

(b) rural area(adopted from Efe and Eyefia, 2014). 

Changing local temperature creates instability and rising air motions. The degree of local 

instability is characterized by convective available potential energy (CAPE) which is a 

function of temperature and humidity (Eltahir and Pal, 1996). The triggering mechanism 

leading to energy release and creation of rainfall in convective storms is a non-linear process 

prompted partially by surface conditions and partially by upper air conditions. Vertical 

motions can create convective thunderstorms that may produce rainfall in the city and mostly 

at night when the UHI intensity is strongest if there is enough moisture and winds are calm 

(Bornstein and Lin, 2000). 

 

5.1.3 Influence of thermally induced motionson rainfall 

The UHI circulation results from the interaction of the atmosphere and the horizontal 

temperature difference associated with gradients in sensible heat densities between urban and 
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rural areas. The thermally created pressure gradients induce convergent motions towards the 

centre of a city in the lower levels with divergent motions in the upper levels. The surface 

heat flux in the rural area can be significant during the day and may develop into a mixed 

layer. However, the rural heat flux is lower than the urban equivalent because plants use up a 

large portion of the solar energy in evapotranspiration and the subsequent difference in the 

heat flux sets up the UHI circulation. The impact of the ambient wind strength causes the 

UHI circulation to become urban trails directed downwind of the city (Opija and Mukabana, 

2004; Hildalgo, et al., 2009). According to Bornstein and Lin (2000), under calm regional 

wind flow, a relatively low pressure may be created over the city by the unusually high 

temperature of the UHI and cooler air rushes into the urban area causing warm air to rise, that 

may cause rainfall over the city. On the other hand, when the regional flow is unstable, winds 

tend to diverge around the city because of increased surface roughness thus creating 

maximum precipitation on the lateral and downwind edges of the city with aminimum located 

over the urban area (Shepherd, 2005).  

 

Furthermore, studies have shown that thermally induced circulation in a given location could 

affect moisture convergence in far off regions (100s of kilometres) through the interaction 

with the meso-scale and synoptic scale systems of that region (Weaver and Avissar, 2001; 

Zhong and Yang 2015), and that the spatial structure of the surface heating can produce 

focused preferred regions for deep convection (Pielke, 2001). In the equatorial 

regions,insolation is usually strong for most parts of the year which encourage theconvective 

type of rainfall. Various studies have suggested that there is a reasonably stable relationship 

governing the intensity characteristics of theconvective type of rainfall with urban energy 

flux (Eltahir, and Pal, 1996; Opija and Mukabana, 2004). The interaction between urbanized 

landscapes and the overlying atmosphere influence the way heat and moisture move upwards 
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from the surface into the atmosphere. According to Dixon and Mote (2003), the effects of the 

UHI circulations on rainfall patterns have been best observed when the atmosphere is 

unstable but not enough to produce widespread rainfall and suggested that low-level moisture 

rather than UHI intensity is more important for UHI induced rainfall. Mukabana and Pielke, 

(1996) suggested that convective rainfall in Kenya only occurs when the synoptic monsoon 

wind system provides the necessary moisture; even in regions of strong meso-scale 

circulations such as the coast and Lake Victoria regions. UHI in Kenyan towns would, 

therefore, be expected to interact with the meso-scale and synoptic systems to influence 

rainfall patterns during the periods when the monsoon winds bring in moisture. In Chapter 2, 

I established that increasing trends in temperature are not only in urban areas but also in sub-

urban and rural areas near them, although higher rates were observed within the urban 

stations.In Chapter 4,I established that day-time and night-time UHI exist in Nairobi 

andMombasa. It would be expected therefore that changes in energy fluxes due to 

urbanization and global warming would influence rainfall patterns in and around the urban 

areas. 

 

Due to the heterogeneity of topography and presence of water bodies, the EEA region 

experiences different scales of atmospheric motions which interact to produce the observed 

weather and climate patterns. Figure 5.2 shows a schematic representation of the various 

spatial and temporal dimensions of such atmospheric motions which include; a) the micro-

scale horizontal motions which are mainly caused by small-scale air disturbances covering a 

few metres to a few kilometres and takes seconds to a few hours to dissipate (they are 

referred to as local circulations in this study e.g., UHI circulations and other local thermally 

induced motions); b) the meso-scale motions  that are larger and covers from tens to about 

1000 km, and  persist for days to weeks (e.g., land and sea breezes and mountain and valley 
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winds) and; c) the synoptic scale motions that are sometimes referred to as the planetary 

motions(e.g.,Figure 5.3). Using dynamical simulations, Mukabana and Pielke, (1996) 

suggested that the ocean breeze at the Kenyan coast not only influences rainfall at the coast 

but also interacts with the upslope winds from the walls of Rift Valley to influence 

convergence over the central highlands. Weaver and Avissar (2000) indicated that by 

changing the scale and properties of naturally occurring land surface elements (such as in 

urbanization), human influence can significantly change local (and regional) weather and 

climate through changes in air circulation patterns, and Kang, et al. (2012) suggested that 

local surface heterogeneity at scales of 10s to 100s of km might create changes in low-level 

horizontal wind speed thus influencing vertical motions and rainfall patterns. Further, 

Hildago, et al. (2009) indicated that UHI circulation is affected by background wind field and 

demonstrated that when the background winds increase, the surface convergence over a city 

decreases and the UHI circulation moves downwind of the city. These observations suggest 

that the effects of enhanced temperature in one location are likely to be experienced not only 

at that location but in locations of 100s of kilometres further downwind depending on the 

prevailing climatic conditions and surface heterogeneity.  
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Figure 5.2: Temporal and spatial extent of different scales of atmospheric motions 
(Source:http://www.comet.ucar.edu/) 

 

a) b)  

Figure 5.3: Mean westerly and easterly winds and pressure systems across the globe in  
a) January and; b) July depicting synoptic scale motions  (red dashed line shows the 
equatorial low-pressure belt; referred to as the ITCZ over African continent) (Source: 
http://www.comet.ucar.edu/) 

 

The major urban areas of Kenya are situated within regions of naturally occurring strong 

meso-scale circulations. For instance; a) Mombasa at the coastal and Kisumu near Lake 

Victoria are urban areas that experience land (sea) breeze circulations; with the coastal sea 
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breeze relative to the town being an easterly flow and the Lake Victoria breeze a westerly 

flow and; b) Nakuru experiences valley/mountain circulations induced by the floor and the 

escarpments east and west of the Rift, and land/lake breezes from Lake Nakuru within the 

town. The interactions among the synoptic-scale, meso-scale and the local circulations 

induced by UHI effect and regional warming are likely to influence rainfall patterns locally 

and regionally.  

 

Trend analysis of rainfall in Chapter 3 showed that only some stations within and near urban 

areas had long-term temporal trends in seasonal rainfall amounts. Using statistical methods in 

this Chapter, I investigated the effects of the UHI and regional warming (especially over the 

coastal region) on the rainfall patterns over urban areas locally, and whether the interactions 

of the different scales of atmospheric motion as suggested in Weaver and Avissar, (2000) and 

Pielke, (2001) would influence changes in rainfall across the varied climatic zones that these 

urban areas are found. 

 

5.2 Materials and methods 

The aim of this Chapter is to establish if increasing temperatures in and around the major 

urban areas of Kenya, and the existence of UHI in the urban areas, (that were established in 

Chapter 2 and 4 respectively), have influenced seasonal rainfall characteristics in urban areas. 

Chapter 2 showed that increasing temperatures are being experienced in both urban and 

neighbouring rural areas. Chapter 3 established that only a few stations within and close to 

urban areas had temporal trends (positive and negative) in monthly and seasonal rainfall 

during the 1961-2013period. This Chapter links with results from Chapter 2, 3&4 and I 

hypothesised that the trends observed in the rainfall in and close to urban areas(Chapter 
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3)have been influenced by the increasing temperature and the UHI effect.  I used Statistical 

methods to investigate; i) if there have been any significant urban effectson seasonal rainfall 

by comparing rainfall at the urban station with rainfall at the neighbouring rural stations; ii) if 

there exist statistical relationships between the UHI intensities and rainfall at the urban and 

nearby rural stations and; iii) if enhanced temperature within and around  urban areas in one 

climate zone influences changes in rainfall in urban areas of other climate zones in the 

diversely inhomogeneous terrain of Kenya that produces varied scales of atmospheric 

motions. The Chapter starts with a review of theliterature on the influence of urbanization 

(including UHI) on urban rainfall patterns, effects of enhanced thermal circulation on 

theconvective type of rainfall and the various methods that have been used to determine 

relationships between enhanced temperature and rainfall patterns. 

 

To investigate the influence of increasing temperatures on urban rainfall,rural stations close 

to the urban stations (NU and MU), were selectedfrom the sixteen (16) stations used in 

Chapter 3(Appendix 5.1). Inter-stations correlations (Appendix 5.2) were used to delineate 

the stations in and around each urban area that have the highest rainfall correlations with the 

urban station in each seasonand therefore have the least spatial climatological 

differences(Camberlin et al., 2009). Temperature data for the selected stations was retrieved 

from Chapter 2, and UHI data from Chapter 4. The rationale for using seasonal data is that 

rainfall and temperature in Kenya are seasonal and varies spatially according to climatic 

zones (Indeje, et al., 2000). Table 5.1 shows the urban-rural pairsof stations used for 

investigating the urban and UHI effect on rainfall.  
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Table 5.1: Pairs of urban-rural stations used in investigating urban and UHI effects on 

rainfall 

Urban area Station pair Length of rainfall 

data 

Length of 

temperature data 

 

Nairobi 

NU-NRD 

NU-NRK 

NU-NRT 

NU-NYR 

1961-2013 

1961-2013 

1961-2013 

1961-2008 

1980-2013 

1979-2013 

1984-2013 

………… 

 

Mombasa 

MU-MRMt 

MU-MRMs 

MU-VOI 

MU-LAM 

1961-2013 

1961-2013 

1961-2008 

1961-2008 

1980-2013 

1980-2013 

…………. 

…………. 

Note: “……” indicate that temperature data was missing 

 

Seasonal rainfall differences between an urban and rural station (designated in my Thesis as 

∆RU-R) and logarithmic values of the ratio of urban to rural seasonal rainfall (designated in 

this study as log (U/R)) were then computed as time series for each season as: 

∆𝑅𝑅𝕛𝕛𝕛𝕛−𝑅𝑅𝑖𝑖  = 𝑅𝑅𝕛𝕛𝕛𝕛𝑖𝑖 −𝑅𝑅𝕛𝕛𝕛𝕛𝑖𝑖                    (5.7) 

log (U/R)=𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑈𝑈𝕛𝕛
𝑖𝑖

𝑅𝑅𝕛𝕛
𝑖𝑖�                   (5.8) 

Where ∆𝑅𝑅𝕛𝕛𝕛𝕛−𝑅𝑅𝑖𝑖 is the rainfall difference in mm for season i and year𝕛𝕛, RUand RR are seasonal 

rainfall totals for the urban and rural stations respectively, and log (U/R) is the logarithm of 

the ratio of urban 𝑈𝑈𝕛𝕛𝑖𝑖𝑗𝑗
𝑖𝑖
 to rural 𝑅𝑅𝕛𝕛𝑖𝑖seasonal rainfall of season i and year 𝕛𝕛 . A time series from 

each method, and for each season (MAM, JJA and OND) is created whose length is 
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from 𝕛𝕛=1……. 𝕛𝕛=n; n is the number of years in the rainfall time series. The two variables 

were then used to:  

a) Investigate the changes over time that may have occurred between seasonal rainfall 

in an urban and a neighbouring rural station. To achieve this, exploratory time series 

plots and trend analysis of the ∆RU-R and log (U/R) time series were used. The trend 

analysis was done using the linear regression and Mann-Kendall methods discussed 

in Chapter 2. The hypothesis here was that the presence of trends in the long-term 

series of ∆RU-R and or log (U/R) implies changes in rainfall have occurred as a result 

of urban effects influencing seasonal rainfall characteristics; otherwise, no trends 

would mean the variability is due to micro-climatic differences between the urban 

and rural station. A similar method was used in Tayanc and Toros, (1997) to 

investigate theurban effect on rainfall over Turkey.  

 

b) Correlations between the seasonal∆RU-R(log (U/R))and the corresponding seasonal 

UHI intensity (computed in Chapter 4) for each urban and rural pair of stations were 

computed. The hypothesis to be tested here was that existence of the UHI 

hasinfluenced urban seasonal rainfall. 

 

Other investigations to establish influence of enhanced temperature on rainfall in urban areas 

included: 

c) Correlations ofUHI intensity with the individual urban and rural rainfall time series 

of each season in order to examine the influence of UHI on the urban and rural 

rainfall separately.  
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d) Correlations between seasonal rainfall and temperature at each station, and inter-

station correlations of rainfall with thetemperature at other stations in the 

neighbourhood, and in other climatic zones. My hypothesis here was that increasing 

temperature in and nearby urban areas in one climatic zone could influence urban 

rainfall at that station and/ or at stations in other zones through enhanced thermal 

circulations interacting with thesynoptic monsoon and other meso-scale circulations 

as suggested by Mukabana and Pielke (1996). In this analysis, Tmax and Tmin (from 

Chapter 2) of the corresponding seasons with rainfall were used.The rationale to use 

seasonal Tmax and Tmin was that each of these temperature variables was observed to 

have increasing trends in most stations in and around the urban areas (Chapter 2). 

 
Since temporal dependence between rainfall and temperature is likely to influence the 

significance of correlation coefficients (Zhao and Khalil 1992), the t-test statistics was 

computed by considering the effective number of degrees of freedom for each paired sample. 

The effective degrees of freedom (𝜐𝜐) were computed following Davis (1976) as:  

𝜐𝜐 = 𝑁𝑁∆𝑡𝑡
𝜂𝜂

         (5.9) 

where, 

𝜂𝜂 = (1 + 2∑ 𝐶𝐶𝑅𝑅𝑅𝑅 (𝑖𝑖∆𝑡𝑡)𝐶𝐶𝑇𝑇𝑇𝑇𝑁𝑁
𝑖𝑖=1 (𝑖𝑖∆𝑡𝑡))∆𝑡𝑡     (5.10) 

N is the number of the paired data points, ∆𝒕𝒕is the time step 𝑪𝑪𝑹𝑹𝑹𝑹 and𝑪𝑪𝑻𝑻𝑻𝑻 are the auto-

correlation coefficients of rainfall and temperature respectively. The computed values of 

𝝊𝝊werethen used to compute the t-test statistics and the significant values at 5% level were 

identified.  
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5.3 Results and discussion 

5.3.1 Urban and UHI effects on rainfall 

Spatial and temporal variability of seasonal ∆RU-R and log (U/R) were examined in order to 

establish if continued urbanization has influenced changes in rainfall of the urban station. The 

rainfall time series of Nairobi and Mombasa and their respective neighbouring stations runs 

from 1961-2013; a period when both cities have been rapidly developing (refer to Chapter 

1&4). 

 

Time series plots of seasonal ∆RU-R and log (U/R) from each of the urban-rural pair ofstations 

indicated that ∆RU-R had changed during some periods as shown in Figure 5.4 for Nairobi and 

Figure 5.5 for Mombasa. For instance; i) ∆RU-R of MAM season between NU and NRD 

changed from being near zero to positive from 1985 to about 2005 (Figure 5.4(a)), and within 

this period, the positive difference is observed to be increasing with time. The positive values 

imply that rainfall at the urban station during this period was higher than rainfall at the rural 

station, while the two stations were receiving relatively equal amounts of rainfall between 

1961 and 1985. These results are consistent with the results of Chapter 3 which showed 

decreasing trends in MAM rainfall at NRD during MAM season; ii) ∆RU-R of JJA season 

between NU and NRD had observable decreasing trends especially from 1990 onwards (Fig 

5.4(b)). This observation implies that the rural station was receiving more rainfall than the 

urban station. The observation is consistent with results of Chapter 3 that indicated that JJA 

seasonal rainfall at NRD had increasing trends while NU had no trends. 
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Figure 5.4:Temporal variability of NU- NRDseasonal ∆RU-R  for a) MAM, b) JJA and c) OND 

 

In Mombasa, there is notable decrease, of ∆RU-R between MU and MRMtduring MAM season, 

and increase of ∆RU-R from the year 2000 during the JJA season (Fig 5.5(a&c)). Other ∆RU-R 

time series between Mombasa and the rural stations had no observable changes over the 

analysis period (1961-2013). 
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Figure 5.5:Temporal variability of MU- MRMt. seasonal ∆RU-Rof; a) MAM, d) JJA and c) OND 

 

Theurban-rural rainfall differences were further investigated for long-term temporal trends 

using linear regression and Mann-Kendall methods and the results tested at α=0.05. Only 

∆RU-R and log (U/R) of NU-NRD pair of stations during the JJA season showed significant 

negative trends from both methods (with p-values<0.05) (Fig5.6) all other pairs had no long-

term temporal trends. 
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Figure 5.6: Trends of log (U/R) between; a) NU and NRD JJA rainfall; the decreasing trend was 

significant (τ= -0.31, p-value= 0.01; β= -5.3, p-value= 0.01); b) NU and NRK MAM rainfall 

showing no trend 

 

The implication of these observations was that from the long-term rainfall series, urban 

effects have not influenced seasonal rainfall in general, and especially in Mombasa. However 

in Nairobi, changes of rainfall in NRD were observed in MAM and JJA. These changes imply 

that either rainfall at the urban station was increasing or that rainfall in the rural station was 

decreasing for the MAM season. From trend analysis in Chapter 3, NU had no temporal 

trends in MAM rainfall while NRD had negative trends. A similar conclusion was made for 

the JJA season in which NRD had increasing trends for JJA seasonal rainfall. A decline in 

MAM, increase in JJA and no trend in the annual total rainfall at NRD(Chapter 3), suggests a 

shift of rainfall from MAM towards JJA at this station. Note thatrainfall in NRD had negative 

trends for April and May and positive trends for June and July months (Chapter 3).NRD is 

about 10 km downwind of the Nairobi city centre and it is likely that these changes are 

resulting from the UHI effect from the city. To ascertain if this is the case further analysis 

was carried out.  
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First, correlations between the seasonal ∆RU-R (and log (U/R)) and UHI intensity of each 

urban and rural pair of stations were carried using both the UHI intensities(∆Tmax (u-r) and 

∆Tmin (u-r)) respectively as defined in Chapter 4. Then UHI intensities were correlated with 

the urban and rural station rainfall respectively. The results showed that all the urban-rural 

station pairs had no significant correlations with UHI, and rainfall at individual stations was 

not significantly correlated with UHI (results not presented).These results indicate that the 

local UHI effect is either not strong enough to induce the observed changes or is masked by 

the synoptic and other meso-scale systems;for example, NRD, NRKstations are downwind of 

the Nairobi CBD UHII had no significant correlations with∆RU-R (or log (U/R)) or with the 

rainfall. 

 

Several reasons could be attributed to the general lack of UHI effects on seasonal rainfall in 

the Kenyan urban areas and the surrounding rural areas including: 

a) Dependence of rainfall over the EEA on the large scale synoptic systems (mainly 

ITCZ and monsoon winds). These systems which have been suggested in Shepherd 

and Burian, (2003) to diminish thermal differentiation between urban and surrounding 

rural areas. The effects of urbanization are likely to be diffused in the rainfall of the 

main seasons (MAM and OND); for instance Kaufmann, et al. (2007), indicated that 

the urban effect on rainfall in the Pearl River Delta (China) was more apparent during 

winter when the large-scale summer monsoon was not dominating the area. The 

results of the rainfall difference between NU (urban) and NRD rural station downwind 

of the Nairobi CBD during the JJA season would suggest urban effects of on rainfall. 

However, lack of significant correlation of the rainfall differences (or rainfall at each 

station) with UHII would imply that the observed change could be resulting from the 
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interaction of the UHI over Nairobi with the synoptic monsoon system. For the 

coastal region rural areas close to the town that would be expected to have higher 

rainfall owing to the existence a negative UHI intensity had no significant 

correlations. The complex interaction between the negative temperature gradients’ 

circulation, the land/sea breezes and the synoptic flow is likely to advect moisture 

further downwind towards the urban areas over the highlands owing to landscape 

heterogeneity and the thermal gradient between the coastal region and the highlands 

as suggested by Weaver and Avissar (2000).  

 

b) Another reason why urbanization may not have adirect influence on seasonal rainfall 

could be due to lack of enough moisture to cause moist convection during periods 

when UHI is strong; for example UHI in Nairobi is strong during the hot and dry 

season of DJF while atmospheric moisture is lowest and hence resulting in dry 

convection. Dixon and Mote (2003) showed that availability of low-level moisture 

rather than UHI intensity was more important for urban-induced rainfall. 

 

c) Apart from the meteorological and thermodynamic conditions, urban effects on 

rainfall patterns have been attributed to the size of the city (Shepherd 2005).  In this 

study, the rainfall differenceswere computed for a period of over fifty (50) years over 

which rapid urbanization have been taking place. However, there was no significant 

change in rainfall difference in most of the urban-rural pair of stations except between 

NU and NRD during JJA season which was not significantly correlated with the UHII. 

The results, therefore, imply that the growth of the cities has not directly influenced 

the observed long-term trends in rainfall amounts at the seasonal time scales. To 
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examine further, the effects of enhanced temperature on rainfall, correlations of 

temperature and rainfall on a region scale were computed as described in Section 5.2.  

 

5.3.2 Spatial influence of temperature onurban rainfall 

In the previous Section (5.3.1), UHI intensity was not significantly associated with urban or 

the neighbouring rural seasonal rainfall. However, in Chapter 3, the few temporal trends in 

rainfall were established for stations in and close to the urban areas. In this Section, it is 

hypothesized that increasing temperature (Tmax and Tmin) at a given station will influence 

rainfall changes at that station, in the neighbouring stations, and in stations in other climatic 

zones. The rationale of this hypothesis is that Kenya has a heterogeneous topography that 

produces diverse atmospheric circulations of thermal and orographic origin. These motions 

have been shown to interact with each other and with the monsoon system, and control areas 

of convergence of rainfall in Kenya (Mukabana and Pielke, 1996). Enhanced temperatures 

due to UHI and global warming are expected to influence changes in rainfall through 

enhanced thermal circulations. These circulations interact with the other atmospheric 

circulations to influence changes in rainfall in other climatic zones. To establish if the 

hypothesis is true, station and inter-station correlation analyses were done between seasonal 

rainfall and the corresponding seasonal mean Tmax and Tmin for seven stations which had 

temporal trends in rainfall (Chapter3), and are in different climatic zones. To minimize 

chance correlations, the resulting correlation coefficients were tested for effective 

significance using Equations (5.8) and (5.9). In most samples, the auto-correlations of rainfall 

and temperature respectively were zero, and therefore the degrees of freedom used in the t-

test was equal to the number of data points for the samples being correlated. 
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Tables 5.4-5.6show results of the correlations of rainfall and temperature of the three rainfall 

seasons (MAM,JJA, and OND), and Figure 5.8 shows some examples of regression plots. In 

Table 5.4, the correlations between MAM seasonal rainfall with mean Tmax and Tminof MAM 

season respectively showed that: 

• For the Tmax, significantnegative correlation between station rainfall and temperature 

during this season was observed at MU(Table 5.4 (a)). However, MU rainfall was 

also negatively correlated with Tmax of the two neighbouring stations (MRMt and 

MRMs). Inter-station positive significant correlations were observed between; i) 

rainfall at NRD (in Nairobi area) with Tmax at MRMt (at the coast); ii) rainfall at NKU 

(within the Rift Valley) with Tmax at MRMt and MRMsrespectively (at the coast).  

 

• For the Tmin, significant positive correlations between station rainfall and temperature 

during MAM season were observed at NRD and NKU respectively (Table 5.4 (b)). 

Rainfall at NRD, and at NKU was also respectively significantly positively correlated 

with Tmin of a number of stations in other climatic zones. Only MRMt rainfall is 

significantly negatively correlated with MU Tmin (r=-0.45), while NU, KU, and MU 

rainfall was not significantly correlated with Tmin at the station or any other station. 
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Table 5.2:Correlations coefficients of MAM rainfall and mean MAM  temperature 

   a)                                                          MAM     Tmax 

  NU NRD NKU KU MU MRMt MRMs 

 

 

MAM 

rainfall 

 

NU 

NRD 

NKU 

KU 

MU 

MRMt 

MRMs 

-0.37 

-0.29 

0.00 

-0.38 

-0.33 

-0.25 

-0.22 

0.00 

0.00 

0.13 

-0.29 

-0.45 

-0.29 

-0.32 

-0.22 

-0.21 

0.00 

-0.13 

-0.26 

-0.16 

0.18 

-0.31 

0.28 

0.00 

-0.56 

0.00 

0.00 

0.00 

-0.14 

0.00 

0.16 

-0.22 

-0.55 

-0.48 

-0.48 

0.00 

0.55 

0.65 

0.00 

-0.33 

-0.28 

-0.34 

0.00 

0.32 

0.54 

0.00 

-0.33 

-0.16 

0.00 

  

 b)                                                MAM Tmin 

  NU NRD NKU KU MU MRMt MRMs 

 

 

MAM 

rainfall 

NU 

NRD 

NKU 

KU 

MU 

MRMt 

MRMs 

0.33 

0.43 

0.46 

-0.16 

-0.19 

-0.18 

0.00 

0.26 

0.61 

0.39 

0.00 

0.00 

0.00 

0.00 

0.39 

-0.14 

0.43 

0.00 

-0.21 

-0.17 

0.00 

0.26 

0.46 

0.54 

0.20 

-0.32 

-0.34 

-0.28 

0.20 

0.25 

0.47 

-0.22 

-0.37 

-0.44 

-0.15 

0.20 

0.25 

0.62 

0.17 

-0.37 

-0.31 

-0.27 

0.00 

0.47 

0.55 

0.00 

-0.4 

-0.31 

0.00 

Note: all values in bold red ( r >± 0.42) are significant at α=0.05; the stations highlighted in blue /yellow 

has positive/negative trends in MAM rainfall (Chapter 3) 

 

Table 5.5 shows the correlations between JJA seasonal rainfall and JJA mean Tmax and Tmin 

respectively. 

• Considering the correlations of JJA rainfall with Tmax (Table 5.5 (a)); i) negative 

correlations between station rainfall and Tmax were observed at NKU, KU, and MU; 

ii) for the inter-station correlations, only rainfall of NRD was significantly positively 
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correlated with Tmax of the coastal stations (MU (r=0.54), MRMs(r=0.45) 

MRMs(r=0.59), andrainfall at MRMt and MRMs stations was negatively correlated with 

Tmax of MU.  

 

• From the correlations between JJA rainfall and Tmin (Table 5.5(b)), significant 

correlations between station rainfall and temperature were only observed atNU and 

NRDwhich had positive correlations. Other inter-station correlations between rainfall 

in one station and temperature at another station were observed. For example;  i) NU 

rainfall was positively correlated with TminatMRMs station ; ii) rainfall at NKU was 

positively correlated with Tminat KU and; iii) NRD rainfall was positively correlated 

with Tmin of all the other stations except NKU with particularly high correlations with 

the Tminat coastal and Lake region stations (e.g., correlation between rainfall at NRD 

and Tminat MRMt(r= 0.60); MRMs(r = 0.83) and; KU (r=0.73). There were no 

significant negative correlations between any pair of stations with Tmin during this 

season.  
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Table 5.3: Correlations coefficients of JJA rainfall and mean JJA temperature 

(a)                                      JJA Tmax 

  NU NRD NKU KU MU MRMt MRMs 

 

 

JJA 

rainfall 

NU 

NRD 

NKU 

KU 

MU 

MRMt 

MRMs 

-0.12 

0.21 

-0.37 

0.00 

0.10 

0.24 

0.00 

0.00 

0.41 

0.00 

0.11 

0.00 

0.00 

-0.23 

0.00 

0.00 

-0.43 

0.00 

0.13 

0.25 

0.25 

0.00 

0.33 

-0.12 

-0.43 

-0.17 

0.00 

0.00 

0.14 

0.54 

0.15 

0.26 

-0.44 

-0.60 

-0.53 

0.30 

0.45 

0.00 

-0.27 

-0.15 

-0.17 

-0.29 

0.33 

0.59 

0.34 

0.00 

-0.52 

-0.38 

-0.41 

 
(b)                                                                   JJA Tmin 

  NU NRD NKU KU MU MRMt MRMs 

 

JJA 

rainfall 

NU 

NRD 

NKU 

KU 

MU 

MRMt 

MRMs 

0.56 

0.64 

0.40 

0.11 

-0.14 

0.00 

0.00 

0.41 

0.47 

0.32 

0.26 

0.00 

-0.17 

0.15 

0.00 

0.10 

0.20 

-0.14 

0.00 

-0.17 

0.00 

0.37 

0.73 

0.58 

0.20 

-0.32 

-0.34 

-0.28 

0.13 

0.53 

0.11 

0.15 

0.00 

-0.23 

-0.19 

0.00 

0.60 

0.00 

0.00 

0.00 

0.00 

-0.42 

0.49 

0.83 

0.22 

0.00 

-0.25 

-0.31 

-0.36 

Note: all values in red (r>± 0.42) are significant at α=0.05; the stations highlighted in blue /yellow had 

positive/negative trends in JJA rainfall (Chapter 3) 

 

The correlations between OND seasonal rainfall and Tmax and Tmin respectively are as shown 

in Table 5.6. During this season only KU had a significant negative correlation between 

station rainfall and Tmax(Table 5.5(a)). From the correlations between rainfall ofOND and 

Tmin (Table 5.6(b)), there were no significant correlations between station rainfall and 

Tminexcept for NKU which was also consistently positively correlated with almost all other 

http://etd.uwc.ac.za/



 

 

 

 

 
 

199 
 

stations. Other stations where rainfall had significant inter-correlations with Tminare shown in 

the Table. 

 

Table 5.4: Correlations coefficients of OND rainfall and mean OND temperature 

a)                                                                                   OND Tmax 

  NU NRD NKU KU MU MRMt MRMs 

 

 

OND 

rainfall 

NU 

NRD 

NKU 

KU 

MU 

MRMt 

MRMs 

-0.30 

-0.16 

0.00 

-0.13 

-0.22 

-0.28 

0.00 

-0.24 

-0.38 

-0.18 

0.00 

-0.41 

-0.43 

0.00 

0.00 

0.13 

0.00 

0.00 

0.00 

0.00 

-0.13 

-0.25 

0.11 

0.1 

-0.45 

0.28 

0.14 

-0.29 

0.00 

0.18 

-0.13 

0.00 

-0.4 

-0.37 

-0.12 

0.00 

-0.35 

0.00 

0.00 

0.39 

0.31 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

 

OND Tmin 

b)  NU NRD NKU KU MU MRMt MRMs 

 

 

 

OND 

rainfall 

NU 

NRD 

NKU 

KU 

MU 

MRMt 

MRMs 

0.35 

0.00 

0.46 

0.45 

0.13 

0.12 

0.37 

0.47 

0.00 

0.52 

0.35 

0.23 

0.34 

0.49 

0.59 

0.23 

0.56 

0.46 

0.13 

0.23 

0.44 

0.10 

0.10 

0.56 

0.35 

0.10 

0.10 

0.33 

0.35 

0.00 

0.43 

0.12 

0.00 

0.00 

0.00 

0.2 

0.00 

-0.24 

0.00 

0.15 

0.25 

0.00 

0.17 

0.00 

0.24 

0.17 

0.00 

0.00 

0.00 

Note: all values in red (r>± 0.42) are significant at α= 0.05; the stations highlighted in blue has positive 

trends in OND seasonal rainfall (Chapter 3); the stations highlighted in blue had positive trends in OND 

rainfall (Chapter 3) 

The general observations from the rainfall-temperature correlations were that: 
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a) Most stations did not have a significant relationship between rainfalland temperature 

at the same station in any of the seasons. 

b) Few significant negative correlations between station rainfall and temperature were 

mainly observed in areas of sea/land breeze circulations. For instance, MAM rainfall 

at Kisumu station was negatively correlated with Tmaxat the station, and over the 

coastal region, urban rainfall is negatively correlated with both Tmax and Tmin within 

the station and with the nearby stations, especially during MAM and JJA seasons. 

 

c) Seasonal temperatures (especially Tmin) over Mombasa and the neighbouring stations 

are positively correlated with rainfall over Nairobi and Nakuru, especially during 

MAM and JJA seasons. 

 

d) OND season had virtually no station or inter-station rainfall-temperature correlations 

for Tmax and a few positive correlations for Tmin, especially at Nakuru. 

 

e) Stations that had temporal trends in rainfall (Chapter 3) had significant station and 

inter-station rainfall-temperature correlations especially with the Tmin, e.g., NRD in 

Nairobi during JJA season, and NKU in Nakuru during OND season. 
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Figure 5.7: Rainfall-temperature relationships; a) rainfall at Dagoretti in Nairobi and Tminat 

Msabaha near Mombasa for JJA season; b) rainfall at Mtwapa in Mombasa and Tmin at 

Mombasa Airport. 

 

5.3.3 Discussion 

The general lack of temporal trends in the urban-rural rainfall differences (and the logarithm 

of rainfall ratios) over Nairobi and Mombasa urban areas, indicate that urbanization effect has 

not significantlyinfluenced changes in urban seasonal rainfall amounts.Particularly at the 

coast, no pattern or trends were detected in the seasonal rainfall difference. These results are 

similar to those of Tayanc and Toros (1997) who used the logarithm of rainfall ratios to 

investigate the influence of urbanization on rainfall urban areas of Turkey and found no urban 

influence on rainfall. An exception to these observations was found within Nairobi area 

where JJA seasonal rainfall difference between the urban and a neighbouring station(NU and 

NRD)had a significant negative trend in the rainfall differences (and log ratios). The negative 

trend was associated with increasing seasonal rainfall of NRDduring JJA(Chapter 3) implying 

that there is enhanced rainfall downwind of Nairobi CBD during this season. The lack of 

significant correlations between the rainfall differences (or rainfall total) and the UHI 
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intensity over Nairobi suggested that this observed change in JJA rainfall at NRD is not 

directly associated with UHI over Nairobi. Reasons for this would be that night-time UHI 

intensity during the cool months of JJA is weak, and the day-time UHI intensities are 

decreasing with time over the last thirty years (Chapter4); thus active convection as a 

consequence of UHI effect would be weak. 

 

The station and inter-stationrainfall-temperature correlations were closely related to the 

results of the seasonal rainfall trends obtained in Chapter 3; positive (negative) rainfall-

temperature correlations correspond, in most cases, with positive (negative) temporal trends 

in seasonal rainfall as observed in Section 5.3.2. These results suggest that changes in 

regional temperatures (including the UHI effect) have apositive/negative influence on 

seasonal rainfall not only within that urban area but also across urban areas in other climatic 

zones, and that Tmin has more positive influence on local and regional rainfall than Tmax. 

However, the observed rainfall-temperature relationships could be resulting from several 

different physical mechanisms including, changes in cloud cover, changes in rainfall, and 

changes in the heat budget due to UHI and global warming.Changes in rainfall may affect 

soil moisture which in turn may affect surface temperature by regulating the partitioning 

between the sensible heat and latent heat fluxes. In Chapter 2, I  established that most urban 

and nearby rural stations had positive temporal trends in temperature (especially Tmin), 

Chapter 3 established only very few temporal trends in seasonal rainfall in and close to urban 

areas, and in this Chapter (5), stations which had positive/negative trends in rainfall also had 

positive/negative rainfall-temperature relationships. I therefore concluded that the significant 

positive/negative rainfall-temperature relationshipsare as a resultof changes in the heat budget 

of the urban areas and their environs. Changes in the heat fluxes caused by increasing 

temperatures due to urbanization and global warming (Chapter 2 and 4), especially at the 
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coast, are associated with changes in local thermal circulations. For example at the coast, the 

enhanced thermal circulations would interact with the meso-scale circulation (ocean/land 

breeze) to influence the convergence and divergence patterns of moist air brought in by the 

SE monsoon wind system(Mkabana and Pilke 1996; Weaver and Avissar, 2000).For instance, 

the widespread positive correlations between JJA rainfall at NRD and Tmin of the coastal and 

western Kenya region, and the subsequent increasing trendsin rainfall could be explainedto 

be a resultant ofinteraction of the enhanced thermal circulations with the synoptic and meso-

scale systems. This interaction wouldenhance moisture convergence over Nairobi downwind 

of the city as was suggested by Opija and Mukabana,(2004). A possible mechanism that 

could explainthe statistical relationships would be that the strong SE winds along the coast 

during JJA season would interact with warm, light and rising air due to enhanced 

temperatures (global warming and UHI effect) pushing it further downwind towards the 

highlands as suggested in Kitanda etal. (1997) and Hildago et al. (2009). The warm 

convective air in Nairobi due to its own UHI effect would further interact with the air from 

the coastal region influencing cloud formation downwind of the CBD (Shepherd, 2005). 

Weaver and Avissar, (2000) suggested that landscape heterogeneity is the main driving force 

of thermally induced motions and that their effect could be felt not only locally but in regions 

far away from the source. The moist cool air moving from the coast on the surface is replaced 

by a return flow from the highlands in the upper atmosphere subsiding over the coast. The 

subsiding air would be warmer than the cool south-easterlies at the surface and thus may 

create a stable atmosphere that is not conducive to cloud formation at the coast (Kitanda, et 

al., 1997). In this way, moist air would be shifted from the coast towards the highlands, active 

convection enhanced by Nairobi UHI downwind of the CBD, and rainfall gets depressed at 

the coast. 
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The positive rainfall-temperature relationship at Nakuru during the OND season would 

explain the increasing trend of seasonal rainfall.For instance, increasing Tmin within the 

station would enhance convergence of moist air from winds coming from the eastern and 

western highlands. Nakuru town has a more complex terrain than the other urban areas, 

withseveral meso-scale circulations interactingwhich include; i) the extended westerlies from 

Lake Victoria (sea breeze) and Congo air-mass (Mukabana and Pielke, 1996); ii) 

mountain/valley circulations induced by the escarpments (east and west) and floor of the Rift 

Valley and; iii) Lake Nakuru which is within the urban area south of the CBD setting up local 

land-lake (lake–land) breezes and; iv) the thermal circulations induced by the town’s own 

UHI. From thermodynamic considerations, increasing Tmin would act to strengthen 

mountain/valley circulations at night (and weaken the land-breeze from Lake Nakuru) thus 

enhancing moisture convergence within the valley from the east and west of the valley. 

Increasing Tmin over the Lake Victoria region would further enhance convergence in Nakuru 

by weakening the land-lake breeze hence strengthening the westerly winds. This complex 

interaction of local and large-scale circulations could explain the positive association of 

rainfall with temperature at Nakuru town with resultant increasing trends in OND rainfall. 

 

5.4 Summary 

The aim of this Chapter was to establish if changing temperatures within and around urban 

areas (including UHI effect) haveinfluencedchanges in urban rainfall over the four major 

urban areas of Kenya. The conclusions made in this regard were that: a) in general, local 

urban and UHI effect have not significantly influenced changes in rainfall amounts at 

seasonal time scales; b) there exist positive relationships betweenurban rainfall and minimum 

temperature over Nairobi area and negative relationships over Mombasa; c) increasing 
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temperatures at the coast of Kenya is associated with increasing/decreasing of rainfall of JJA 

season over Nairobi/Mombasa, while increasing Tmin over Nakuru, Kisumu and Nairobi are 

positively influencing rainfall of OND season over Nakuru. The effect of temperature on 

rainfall was attributed to interactions between local thermal circulations (induced by the 

changing temperature and UHI)with other meso-scale and synoptic-scale atmospheric 

processes. Notably, the four major urban areas used in my Thesisare in regions of strong 

meso-scale circulations even in the absence of urbanization, and hence changes in 

temperature in these urban and their surrounding areas not onlyaffect the surrounding weather 

but also couple with the meso-scale and the large scale systems to influence temporal and 

spatial distribution of rainfall over larger areas. The possible interaction of UHIand regional 

warming with the natural meso-scale and large-scale flows of the Kenya’s diverse topography 

was suggested by the statistical results of the rainfall-temperature relationships.However,I 

suggest that further studies using more deterministic methods be combined with the statistical 

method to improve on the effects of UHI and increasing temperatures on rainfall both locally 

and regionally. 

 

Although urban effects including UHI have not locally influenced changesinurban rainfall 

amountsat seasonaltime scales, rainfall may have changed in terms of the distribution of the 

daily rainfall over the hours of the day (i.e., hourly intensity) due to the increasing surface 

temperature caused by UHI and global warming (Chapter 2&4) which I did not investigate. 

Further investigations would be required to establish if intensities of individual storms have 

increased as a result of the increasing urban temperatures, especially over Nairobi where UHI 

is strong. Another important outcome was that rainfall in one location was observed to be 

influenced by changes of temperature of another location. This outcome was conspicuous 

during the JJA season and between Nairobi and the coastal region. There is a need for further 
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studies to document the physical factors and processes influencing such rainfall-temperature 

relationships. In the next Chapter (6), factors influencing the annual daily maximum rainfall 

series were investigated, and an extreme value model established for each of these four 

towns.  
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6 CHAPTER6: EXTREME VALUE DISTRIBUTION MODELS OF URBAN 

RAINFALL 

6.1 Introduction 

The aim of this Chapter is to establish suitable extreme value distribution models for each of 

the four urban areas of Kenya. I established in Chapter 3 that the annual rainfall maximum 

series had notemporal trends for the last 50 years and thatanomalously high values of daily 

rainfall were influenced by oceanic and atmospheric factorssuch as ENSO and IOD.In 

Chapter 5, local temperature was observed to influence rainfall at seasonal time scales. In this 

Chapter, it is hypothesized that there is non-stationarity in the extreme value distribution due 

to theinfluence of local temperature and theclimatemodes of variability (covariates)on the 

occurrence of extreme values. The following paragraphs provide the rationale and the 

literature related to the development of suitable extreme value distribution models and the 

theories involved.  

 

In many urban areas of the developing countries, storm water drainage is already a problem 

especially for short duration high peak rainfall intensities, and or heavy rainfall events 

prolonged for several days. Stormwater resulting from such events is likely to exceed the 

drainage capacity and cause urban flooding (Parkinson and Mark, 2005). In Kenya, like in 

many African countries, there is little literature on urban storm designs for water management 

systems (Parkinson and Mark, 2005). In particular very little literature exists on modeling of 

extreme rainfall in Kenya. Further, there are no design criteria manuals for urban drainage 

infrastructure in the Kenyan towns. According to the Nairobi City Council urban Master Plan 

(NCC, 2015), there are no usable technical data available with the city engineering 

department for carrying out design and maintenance of the storm water drainage at present; 
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aproblem common in most urban areas of Kenya. The absence of such data makes it hard to 

manage the development and maintenance of stormwater drainage systems. The first step to 

effectively address the problem of flooding in Kenyan urban areas is to provide an adequate 

knowledge base on the characteristics of the distribution of extreme rainfall in urban each 

area. 

 

Climate model projections indicate that urban flooding is likely to become more frequent 

especially in the developing countries as climate changes, and rapid urbanization continues 

(Zhang, et al., 2011; Stocker, 2013). Parkinson and Mark, (2005) suggested that potential 

climate change could be taken into account when planning the urban storm water 

management systems, while Milly et al. (2008) caution the use of stationarity of climate 

variables in urban infrastructure design. Mailhot and Duchesne, (2010) and Efrastratiadis et 

al. (2013) suggested changes in the methodologies used to create design storms for 

hydrological infrastructure and recommended that the design criteria should consider the 

projections ofclimate change. However without, the baseline surveys of the behavior of the 

extreme rainfall and its statistical distribution, such changes and future projections would not 

be possible. 

 

Shongwe, et al. (2010) indicated that the frequency of anomalously high-intensity rainfall 

causing floods in East Africa (EA) has increased and that there has been an increase in the 

number of the reported hydro-meteorological disasters in this region. There is a perception 

that the increased flooding in urban areas of Kenya is from increased rainfall intensity as a 

result of climate change. However, Yang et al. (2011)suggested that the spatial pattern of 

urban development may also affect hydrologic regime of a catchment by influencing the 
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hydrologic connectivity of the urban area and flooding may occur even when rainfall 

intensity has not increased. In Chapter 3, trend analysis using the highest daily rainfall value 

for each year (annual block maxima) in each of the towns showed that there were no 

significant linear temporal trends of these extreme values for the period between 1961 and 

2013, and the 95th percentile of rainfall in most stations did not have significant trends. 

However, due to high inter-annual variability of seasonal rainfall, there are years in the time 

series when daily values were extremely high; for example Mombasa recorded a daily rainfall 

value of 233 mm on the  19th October of 1997 during a wet spell that had other significantly 

high values (Okoola et al., 2008). Such extremes have been attributed to the inter-annual 

variability of ENSO/IOD (Chapter 3) and cause urban flooding especially because the 

extreme value comes within a wet spell in which high values are recorded for a consecutive 

number of days ( Gitau, et al., 2014).  

 

Although non-stationarity in extreme value analysis (EVA) of meteorological variables have 

been mainly associated with temporal trends in the model parameters (Coles 2001), studies 

have shown that non-stationarity may be also contributed by other large-scale modes of 

climate variability such as ENSO, IOD, SSTs and global temperatures influencing seasonal 

rainfall and or local factors such as mean (maximum or minimum) temperature (Cannon, 

2010; Mondal and Mujumdar, 2015). Chapter 3 showed that anomalous seasonal rainfall is 

closely linked with different modes of climate variability occurring simultaneously and that 

there have been groups of years with high extreme values and others with low values. These 

observations suggest that the time series of extreme values may not be stationary with respect 

to these modes of climate variability. Nyeko-Ongiramoi, et al. (2013) indicated that over the 

Lake Victoria basin, themean minimum temperature was positively correlated with extreme 

rainfall especially in the eastern side of the lake. Chapter 5 of this thesis also established 
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significant positive correlations between seasonal rainfall and temperature (especially with 

Tmin) in urban areas.Several studies have shown that the statistical properties of the extreme 

values could change through time due to changes in other factors that directly or indirectly 

influences these variables (Cannon 2010; Mundal and Mujumdar, 2015). Cheng, et al., (2014) 

suggested that time-varying factors such as SSTs should be incorporated into the modelling 

of extreme values in order to improve the overall model fit and to investigate possible drivers 

of the extreme events. Mondal and Mujumdar, (2015) in a study of extreme rainfall over 

India, used ENSO (Nino 3.4 SST index), global and local air temperatures as covariates while 

Garcia-Aristzabal, et al.(2014) studied extreme values of rainfall and temperature for Dar Es 

Salaam (Tanzania) allowing for non-stationarity in time in the location parameter of the 

distribution model . It is, therefore, probable that even if the annual block maxima had no 

temporal trends (Chapter 3), other climate factors (referred to here as covariates) that are 

functions of time, and influence seasonal rainfall may influence the distribution of theextreme 

series.Such influence could render the methods for estimating flood designs used in the 

engineering of hydraulic structures, and other stormwater management systemsdeveloped for 

a stationary climate to be inappropriate,as was suggested by Mailhot and Duchesne, (2010).  

 

The two rainfall seasons in Kenya within which the extreme events are experienced have 

different mechanisms that trigger their inter-annual variability. ENSO have been shown to 

strongly interact with climate dynamics of the Indian Ocean both in the monsoon season 

(JJA) and during the transition of the monsoon periods (MAM and OND) which coincides 

with the rainfall seasons in EEA (Mutai and Ward 2000; Camberlin and Philippon, 2002). 

Zonal sea surface temperature gradients over the equatorial Indian Ocean and the coupled 

IOD-ENSOevents have been linked with some of the wettest periods in Kenya(e.g., in 1961, 

1997 and 2006) which recorded high extreme values as was observed in Chapter 3 and 
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indicated in Black, et al.(2003) and  Owiti, et al.(2008).Most of the anomalously high rainfall 

values, however, occur mainly during the OND season,and they form only a small fraction 

(about 10%) of the annual block maximum series.The bulk of the annual maximum values is 

recorded during the MAM season. The factors that influence the inter-annual variability of 

rainfall in the EEA have the potential to influence the extreme value distribution of rainfall. 

From the foregoing, both stationary and non-stationary extreme value distribution should be 

examined and compared for a given station in each of the four urban areas. The outcome of 

the extreme value analysis in this Chapter  will form a foundation upon which the intensity-

duration- frequency (IDF) curves used to design and/or upgrade flood protection structures in 

these urban areas can be based.This undertaking is important because the urban water 

structures proposed to be developed or upgraded in Kenya would require the knowledge of 

updated characteristics of extreme rainfall distribution which are not available in published 

literature at present. 

 

The capacity of the existing urban drainage elements in many parts of the world has been 

defined through the statistical analysis of the recorded intense rainfall events. The extreme 

value theorem provides a framework for describing the statistical distribution of extreme 

rainfall events(Begueria, et al., 2011). The theorem was first introduced by Fisher and Tippet 

(1928) to study a series of independent and identically distributed variables under generalized 

conditions (Faranda, et al., 2011). There are two approaches used in performing the extreme 

value analysis. One approach usesa series of annual maximum upon which the generalized 

extreme value (GEV) is defined,andthe other utilizes partial duration series in which the 

generalized Pareto distribution (GPD) is based. The GDP analysis utilizes values above a 

certain threshold in a time series (Gilleland and Kartz, 2006;Gilleland and Kartz, 2013; 

Mondal and Mujumdar, 2015). The main challenge of the use of the GDP is the choice of 
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threshold, especially where there is apossibility of the data series having auto-correlations 

(Madsen, et al., 1997; Vasiliades, et al., 2014).  

 

 I used the GEV in this my Thesisby the considering that rainfall over EEA is seasonal and 

exhibits intra-season variability with groups of wet and dry spells within a season (Gitau et 

al., 2014). Thus auto-correlation of extreme values makes the GPD method of extreme value 

analysis unsuitable.  On the other hand, GEV analysis is robust when an annual maximum 

series is sufficiently long, and also allows for the inclusion of non-stationarity(Gilleland and 

Kartz, 2006).  

 

6.2 Data sources 

The daily rainfall data used in Chapter 3 were used. The highest daily rainfall recorded in 

each year for each station formed the annual maximum values (designated as Ω (t) in my 

Thesis). Ω (t) for Nairobi (NRD), Mombasa (MU), Kisumu (KU) and Nakuru (NKU) urban 

areas were usedto fit the generalized extreme value (GEV) statistical model for each town 

(see thelocation of each town in Figure 1.3 in Chapter 1). The data period for each town is 

shown in Table 6.1. 
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Table 6.1:Location of stations in each urban area with daily rainfall data used in GEV 

analysis 

City/ 

Town 

Station 

acronym 

Size of town  in 

km2 

Location (oS; oE) Data period 

Nairobi NRD 689 1.3; 36.75 1961-2013 

Mombasa MU 230 4.03; 39.62 1961-2013 

Kisumu KU 417 0.1; 34.58 1961-2008 

Nakuru NKU 290 0.27; 37.07 1970-2013 

 

Global indices that have been used as climate covariates included: a) NINO 3.4 and IOD 

Indices(described in Chapter 3);b) Southern Oscillation index (SOI);the SOI is defined as the 

standardized (or normalized) atmospheric pressure difference between Tahiti (India) and 

Darwin (Australia) over the western Pacific and was obtained from the National Centre for 

Environmental Prediction (NCEP) database 

(ftp://ftp.ncep.noaa.gov/pub/cpc/wd52dg/data/indi);  c) global (air and ocean) temperature 

anomaly indices(described in Chapter2 ).  

 

6.3 Data analysis 

To assess if the common modes of climate variability that influence rainfall also influence the 

annual maximum value series, linear correlations were computed between the Ω(t) series and 

the various global atmospheric and oceanic covariates.Zero- and time-lagged correlations 

were computed between the Ω(t) series and the seasonal and annual series of the climate 

covariates . The rationale of using lag correlations was that according to several studies 

anomalies of the covariates usually lead seasonal rainfall anomalies. These covariatesaffect 

both the MAM and OND rainfall variabilitybut have more influence of the OND rainfall as 
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was established inChapter 3 and reported inIndeje, et al.(2000), Camberlin and Philipon, 

(2002) and Nicholson, (2014). For each station, the covariate(s) that correlated with Ω (t) at 

the 5% level of significance was(were) used in the extreme value analysis. Linear regression 

and correlation methods were discussed in detail in Chapter 2. The generalized extreme value 

(GEV) analysis is described in the next section. 

 

6.3.1 Generalized extreme value (GEV) distribution 

The GEV is a three parameter function in which the probability of occurrence (Pr) of an 

extreme event, observed at any time (t) can be described as: 

 

Pr= {𝑦𝑦 ≤ 𝑧𝑧(𝑡𝑡)}=GEV(𝑧𝑧(𝑡𝑡); (𝜇𝜇,𝜎𝜎, 𝜉𝜉))                 (6.1) 

 

where 𝜇𝜇,𝜎𝜎 𝑎𝑎𝑛𝑛𝑑𝑑 𝜉𝜉 are respectively the parameters of location, scale and shape;  𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧(𝑡𝑡) 

are the random variables of rainfall at time t. When the parameters in this distribution are 

time independent, the model is referred to as stationary in which it is assumed that the values 

of 𝜇𝜇,𝜎𝜎 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉 will remain the same during the next nyears; the location parameter µ specifies 

the centre of the distribution; the scale parameter 𝜎𝜎 determines the size of the deviations ofµ; 

the shape parameter 𝜉𝜉 shows how rapidly the upper tails decay (+ 𝜉𝜉 implies a heavy tail while 

–𝜉𝜉 implies a bounded tail and a limit of  𝜉𝜉 →0 implies an exponential tail) (Coles 2001).  

 

If a significant trend is detected in the annual maximum rainfallseries or the annual maximum 

series varies with an independent covariate, which is also a function of time, the assumption 

that the probabilistic structure of this series is invariant does not apply (Coles, 2001; Blain, 

2011; Liu, et al., 2013). Therefore under non-stationary climate conditions, the use of the 

stationary GEV model may underestimate or overestimate the probability of occurrence 
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associated with an extreme meteorological event (Milly, 2008; Blain, 2011). In that case, the 

non-stationary GEV model in which the parameters vary with time and or with a climate 

covariate (which is a function of time and does not come from the parent distribution of the 

extreme value series) could be fitted. 

 

 

The GEV theory 

Let  Y1, Y2…., Yn be a series of independent and identically distributed random variables of 

rainfall of length, n, and having a common distribution F, then the distribution of the annual 

maxima may be presented as: 

 

Ωn=max{ Y1, Y2…., Yn},                  (6.2) 

 

in which the distribution of the block maxima can be derived as :  

 

Pr (Ωn<z) =Pr {Y1< z,…….,Yn< z},     (6.3)  

 

and because of the independent property of Y1,….Yn then, 

 

Pr(Ωn<z) =Pr {Y1< z,)x…….x Pr {Yn< z} ={F(z)}n,    (6.4) 

 

Ωn (t) can be normalized linearly by  

 

Ω*n= Ω𝑛𝑛−𝑏𝑏𝑛𝑛
𝑎𝑎𝑛𝑛

                   (6.5) 
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if there exists sequences of constants {𝑎𝑎𝑛𝑛 < 0} and bn such that�Ω𝑛𝑛−𝑏𝑏𝑛𝑛
𝑎𝑎𝑛𝑛

< 𝑧𝑧� → 𝐺𝐺(𝑧𝑧), as n→

∞ , then, 𝐺𝐺(𝑧𝑧) is the generalized extreme value (GEV) distribution described as: 

 

𝐺𝐺(𝑧𝑧)= exp�− �1 + 𝜉𝜉 �z−µ
𝜎𝜎

�� −1/𝜉𝜉�,                  

(6.6)  

and defined on {z: 1+ 𝜉𝜉(z−µ
𝜎𝜎

)>0, and −∞ < µ < ∞, 𝜎𝜎 >0  −∞ < 𝜉𝜉 < ∞.   

If 𝜉𝜉=0, the GEV distribution is referred to as type I or the Gumbel distribution, if 𝜉𝜉 >0, the 

GEV distribution is referred to as the type II or the Fréchet distribution, and if 𝜉𝜉 < 0, the 

distribution is referred to as the type III or the Weibull distribution.  

 

To incorporate climate trends in the modelling of extremes, the model structure of the GEV is 

described such that parameters are estimated as functions of time (Blain 2011) and to 

incorporate climate covariates in the modelling of extremes, the model structure of the GEV 

is described such that the parameters of the GEV are specified as functions of covariates that 

are themselves functions of time(Cannon 2010; Gilleland and Kartz, 2014). Under this 

framework, GEV models with increasing number of parameters to be estimated are added to 

the stationary GEV described by equation (6.6). 

These parameters include: �
𝜇𝜇(𝑡𝑡) = 𝛽𝛽𝛽𝛽(𝑡𝑡)
𝜎𝜎(𝑡𝑡) = 𝜎𝜎0
𝜉𝜉(𝑡𝑡) = 𝜉𝜉

      (6.7) 

where 𝑋𝑋(𝑡𝑡) is the covariate which is also a function of time and 𝛽𝛽 is a regression coefficient. 

In Equation (6.7), the location parameter is considered to be changing linearly with the 

covariate while the scale and shape parameters are constant. Equation (6.7) can also be 

written in such a way that the scale parameter or both scale and location parameters are 

changing linearly with the covariate. The shape parameter is mostly allowed to be a constant 
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(Cannon 2010; Gilleland and Kartz, 2014).  In this study, the extReme software package 

written in R language by Gilleland and Katz, (2014) (R Development Core Team, 2010) was 

used for the GEV analysis. The choice of the package was motivated by the fact that it is an 

open source, and it is well oriented to climate applications. The package also allows for the 

incorporation of covariates into the parameters of the GEV and one can easily test for the 

goodness of fit between models. 

 

6.3.2 Estimation of parameters of GEV distribution 

The parameters of the GEV distribution may be estimated by use of several methods, and the 

commonly used are maximum likelihood (ML) (Gilleland and Katz, 2014) and the 

generalized maximum likelihood (GML) method (Ouarda and Al-Adlouni 2011). In this 

study, the maximum likelihood method is used as it is stable for large values (~50) and 

allows for the extension to non-stationarity in the GEV model. 

 

Method of maximum likelihood 

  Consider  𝜉𝜉 ≠0, the log likelihood function of Gis given as: 

𝑙𝑙(𝜇𝜇,𝜎𝜎, 𝜉𝜉)= -mlog 𝜎𝜎-�1 + 1
𝜉𝜉
� ∑ log �1 + 𝜉𝜉 �𝑧𝑧𝑖𝑖−µ

𝜎𝜎
�� − ∑ �1 + 𝜉𝜉 �𝑧𝑧𝑖𝑖−µ

𝜎𝜎
��𝑚𝑚

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1

−1/𝜉𝜉           

(6.8) 

With 1 + 𝜉𝜉 �𝑧𝑧𝑖𝑖−µ
𝜎𝜎

� >0, i=1,…….., m 

And when 𝜉𝜉=0, the log-likelihood function is: 

𝑙𝑙(𝜇𝜇,𝜎𝜎, )= -mlog 𝜎𝜎-∑ �𝑧𝑧𝑖𝑖−µ
𝜎𝜎

� − ∑ 𝑒𝑒𝑒𝑒𝑒𝑒 �−�𝑧𝑧𝑖𝑖−µ
𝜎𝜎

��𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1             (6.9) 

By maximizing the log-likelihood function of G, i.e., by letting 

𝜕𝜕𝜕𝜕(𝜇𝜇,𝜎𝜎,𝜉𝜉)
𝜕𝜕 𝜇𝜇

=0,                              (6.10) 
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𝜕𝜕𝜕𝜕(𝜇𝜇,𝜎𝜎,𝜉𝜉)
𝜕𝜕𝜕𝜕

= 0,         (6.11)  

𝜕𝜕𝜕𝜕(𝜇𝜇,𝜎𝜎,𝜉𝜉)
𝜕𝜕𝜕𝜕

 =0         (6.12) 

 

for the case 𝜉𝜉 ≠0 and 

𝜕𝜕𝜕𝜕(𝜇𝜇,𝜎𝜎,)
𝜕𝜕 𝜇𝜇

=0,                  (6.13) 

 

𝜕𝜕𝜕𝜕(𝜇𝜇,𝜎𝜎,)
𝜕𝜕𝜕𝜕

= 0                  (6.14) 

 

𝜕𝜕𝜕𝜕(𝜇𝜇,𝜎𝜎,)
𝜕𝜕𝜕𝜕

=0                   (6.15)  

for the case the 𝜉𝜉 =0, then the maximum likelihood estimator of the parameters of GEV is 

obtained. 

 

6.3.3 Model diagnostics 

The methods generally used to give an exploratory interpretation of how well a set of extreme 

values are fitted into GEV model are the probability-probability (PP) plots, and the quantile-

quantile plots (QQ). A  probability –probability (PP) plot is a graphical technique used to 

compare if the fitting result of theprobability distribution is anacceptable model by comparing 

theoretical and empirical probabilities. For instance, let 𝑦𝑦(1) ≤ 𝑦𝑦(2) ≤ 𝑦𝑦(3) ………. ≤ 𝑦𝑦(𝑛𝑛) be 

ordered sample of independent observations from a population with distribution function F, 

then the estimated empirical distribution function is defined by 

  F(Y)= 𝑖𝑖
𝑛𝑛+1

 for 𝑦𝑦(1) ≤ 𝑦𝑦 ≤ 𝑦𝑦(𝑛𝑛)                                     (6.16) 
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Thus with an estimated distribution function𝐹𝐹� ,  a p-p plot consist of plots of 

{( 𝐹𝐹� (y (i)), (
𝑖𝑖

𝑛𝑛+1
), i=1,………,n} 

A reasonable model of𝐹𝐹� leads to p-p plot close to a diagonal (Coles 2001) 

 

The QQ plot is also a graphical method of assessing if a fitting result of a probability 

distribution is a reasonable model by comparing the ( 1
𝑛𝑛+1

)thvalue derived from theoretical and 

empirical distributions. With an estimation distribution function  𝐹𝐹� , a q-q plot consists of the 

points 

{( 𝐹𝐹�−1( 𝑖𝑖
𝑛𝑛+1

), y (i) )   i=1,………,n} 

For a GEV with covariates, the data is first transformed in order to plot model diagnostics. 

Consider zt~GEV(μ(t),σ(t), (t)), the standardized variables 

źt =
1
ξ

log {1 + ξ(t) �ź𝑡𝑡−µ(t),
σ(t)

�                (6.17) 

where zt and źt are the estimated and standardized models respectively each havingGumbel 

distribution with aprobability distribution function 

Pr{źt≤ 𝑧𝑧} = exp {−𝑒𝑒−𝑧𝑧}, 𝑧𝑧 ∈ ℝ.                (6.18) 

The probability and quantile plots can be made with Equation (6.18) as the reference 

distribution. if  ź1:n………………… źn:n denotes the ordered values transformed from the 

variable Zt, the probability plot consist of pairs {( 𝑖𝑖
𝑛𝑛+𝑖𝑖

, exp(− exp(−ź𝑖𝑖:𝑛𝑛)) ; 𝑖𝑖 = 1, … . . ,𝑛𝑛} and  

quantile plots consist of pairs {(-log(-log( 𝑖𝑖
𝑛𝑛+1

)), ź𝑖𝑖:𝑛𝑛, i=1,………,n)}. 
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6.3.4 Choice of model 

The log-likelihood ratio test is used to determine the better model between two models of the 

same distribution. For instance, in this study M0 represent the stationary modeland M1 amodel 

with a covariate either in the scale or location parameters of a GEV distribution.The log-

likelihood ratio test is used on the deviance statistics D, defined as: 

 

D=2{l1 (M1)-l0 (M0)}                 (6.19) 

 

where l1and l0  are the maximized log-likelihood functions of the two modelsM1 

andM0respectively, M1being the more complex model. M0 asymptotically obey chi-square 

distribution with k degrees of freedom, i.e. χ2(k), and k is the difference of the number of 

unknown parameters between M1 and M0. The null hypothesis is stated that M0 is not better 

than M1. If D is large and greater thanχ𝛼𝛼2(𝑘𝑘), (α=0.05)then H0 is rejected and model M0 is 

believed to perform better than the complex modelM1; otherwise, the null hypothesis H0is not 

rejectedand M1believed to perform better (Coles, 2001; Ouarda and El-Adlouni, 2011; Liu et 

al., 2013). 

 

6.3.5 Return period and return level 

Once the appropriate model is fitted into the annual maximum rainfall time series, two 

statistics (the return period 1
𝑝𝑝
 and the return level𝑧𝑧𝑝𝑝) can be estimated from the GEV 

distribution. For instance for annual maxima, the return level 𝑧𝑧𝑝𝑝is an estimated high value 

which is expected to be exceeded in any year during the return period  1
𝑝𝑝
 with probability p 

where 0< p<1. From the estimated values of the stationary GEV distribution 

parameters, 𝜇𝜇,𝜎𝜎 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉, the return level 𝑧𝑧𝑝𝑝 can be estimated as: 
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𝑧𝑧𝑝𝑝 = 𝜇𝜇 − 𝜎𝜎
𝜉𝜉
�1 − [− log(1 − 𝑝𝑝)] − 𝜉𝜉�, 𝜉𝜉 ≠ 0              

(6.20) 

𝑧𝑧𝑝𝑝 = 𝜇𝜇 − 𝜎𝜎 log[− log(1 − 𝑝𝑝)],   𝜉𝜉 = 0              (6.21) 

The estimation of return levels when the parameters are fitted with covariates in any of the 

parameters (mainly in 𝜇𝜇 and 𝜎𝜎), is not straightforward since the return level, 𝑧𝑧𝑝𝑝, will also vary 

with the covariate. One method of interpretation of return levels with covariates (i.e., for a 

non-stationary model) that was suggested by Gilleland and Kartz (2014) is to look for 

effective return level; defined as the level that would be got for a specific value(s) of the 

covariate(s) (i.e., a time varying quantile). For example, to get the 20-year return level in a 

model where  𝜇𝜇 is varying with a covariate xt, first find the 𝜇𝜇(20) (=𝜇𝜇0 + 𝜇𝜇(xt=20)) and then 

estimate the return level using the 𝜇𝜇(20) as the location parameter; likewise for any of the 

other parameters (Gilleland and Kartz 2014). 

 

Confidence interval of return levels 

Normal method (in which normal distribution is assumed) is used to estimate the confidence 

intervals of the return period with considerable accuracy especially for periods of twice the 

data period and for GEV models whose shape parameter is close to zero (Gumbel or type I). 

Otherwise, the profile log-likelihood method is used more accurately than the Normal method 

to obtain the confidence intervals for longer period return levels and where the shape 

parameter is significantly positive (Fréchet or type II) or negative (Weibull or type II) 

(Gilleland and Kartz, 2014).   
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6.4 Results and discussion 

6.4.1 Correlations between annual daily maximumrainfall and climate covariates 

The annual maximum of daily rainfall series,Ω(t) , of  each station had no temporal trends as 

shown in Figure 6.1. Considering the correlations, only mean annual IOD index and its one 

year lag are weakly but significantly positively correlated with Ω(t) of MU, KU (mean annual 

IOD) and NRD (one year lag mean annual IOD) (Table 6.2). Ω (t) of NKU had no significant 

correlation with any of these indices.  

 

 

Table 6.2:Correlations of the Annual daily maximum series with climate covariates 

Ω(t) 
 

Covariate 

MU NU KU NKU 

IOD 0.4 0.1 0.3 -0,2 
Lag IOD -0.2 0.3 -0.2 0.0 

SOI -0.1 0.1 -0.1 0.0 
Lag SOI 0.1 0 0.2 0.0 

NINO3.4 0.2 -0.1 0.0 0.0 
Lag NINO 3.4 -0.1 0.2 -0.2 0.0 

Global mean Temp 0.0 0.2 -0.2 0.0 
Lag GTmean 0.0 0.0 -0.2 0.0 

Note:values in bold are significant at α=0.05; results for Mombasa (MU), Nairobi (NU), Kisumu (KU) and 
Nakuru (NKU) 

 

Note that correlations of local temperature with Ω(t) were not used as covariates due to short 

lengths of the temperature data available for this study, which affect the GEV distribution. 

From these results only the parameters that have significant correlations,and had the same 

length as the Ω(t), were used as covariates in the GEV analysis for each station. 
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Figure 6.1:Temporal variability of the annual daily maximum rainfall (Ω(t)) series a) 
Nairobi; b) Mombasa; c) Kisumu and; d) Nakuru. 

 

6.4.2 GEV analysis results 

Several models for each station were fitted according to Equations (6.6) (i.e., stationary) and 

Equation (6.7) (i.e., with covariates). Note that model with covariates was only fitted where 

the covariates were significantly correlated with Ω(t). The model parameters were estimated 

using the method of maximum likelihood (according to Equations ((6.8)-(6.15)). The fitted 

models were then tested for goodness of fit using the log likelihood ratio test according to 

Equation (6.16). The GEV distribution model with no trends (stationary) was first fitted for 

all stations. From the correlation analysis, the covariates that were significantly correlated 

with Ω(t) were then used to fit the non-stationary GEV models and tested against the 

stationary one. The GEV analysis results for each urban area(Nairobi, Mombasa Kisumu and 

Nakuru) presented below.  
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Nairobi  

First the stationary model was fitted (M0); the three parameters were estimated, The second 

model was fitted with the lagged mean annual IOD indices as a covariate in the location 

parameter (M1)(i.e., μ(xt)= μ0 + μ1(xt), where xt is the covariate representing the annual IOD 

indices) and a third (M2) one with the same covariate in the scale parameter (M2) (i.e., σ (xt)= 

σ0 + σ1(xt)). The results from the GEV analysis for models with the highest log likelihood 

values(M0) and (M1) are shown in (Table 5.3). 

 

Table 6.3:Comparison of model parameters of a stationary and non-stationary GEV 

distribution model fitted for Nairobi 

  

Nairobi 

           

Stationary GEV model(M0) 

  

 Non-stationary model (lagIOD in scale) (M1)  

Parameter  Estimate 

Standard  

error 

 

 Parameter  Estimate 

Standard 

error 

          

Location (μ)  68.4 3.4 

 

 location (μ)  68.2 3.3 

Scale (σ)  20.5 2.6 

 

 location (σo)  22.6 2.9 

Shape (ξ)  -0.07 0.1 

 

 scale (σ1)  8.27 3.4 

Negative log likelihood 219.3 

 

 

 shape (ξ)  -0.09 0.1 

 

 

Negative log  

likelihood 218.1 

  

 

Figure 6.2 (a&b)) show the density plots of the stationary and the non-stationary model for 

Nairobi and Figure 6.2(c&d) are the quantile plots of the two models which show that the 

GEV model with no covariates has more of the quantiles almost aligned diagonally which is 

an indication of the suitability of the model. 
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Figure 6.2:Diagnostic plots comparing the stationary and non-stationary GEV 
distributionsfor Nairobi; a&b probability density plots; c&d) QQ plots for the 
samemodels 

 

The two models (M0) and (M1)are tested using the log likelihood ratio test so as to get the 

better model between them. The log likelihood ratio test value (lr)=1.79, χ𝛼𝛼=0.05
2  =3.84, and 

p-value =0.18). Since lris less thanχ𝛼𝛼=0.05
2 , and has a p-value > 0.05) then at the 5% 

significant level H0 is rejected. Hence the stationary model is accepted as more suitable than 

the non-stationary. From the small values of the shape parameter,(ξ has a range of - 0.266<-

0.07<0.126), and by testing ξ using the likelihood ration test of Gumbel (H0:  ξ=0against H1: 

ξ≠0), the null hypothesis of a Gumbel type is not rejected (rl ratio=0.33, χ𝛼𝛼=0.05
2  =3.84, 

p=value=0.57) and therefore the GEV distribution is approximated to the Gumbel type. The 

Gumbel distribution is light tailed; meaning that although the maximum value can take on 
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infinitely high values, the probability of obtaining such levels becomes small 

exponentially.The stationary GEV equation for this station isestimated as: 

Ω (t)~GEV(μ, σ,) where μ=68.4 (±6.5);  σ=20.5(±5.7) 

The values in brackets give the error bounds for the 95% level of confidence found by 

multiplying the standard error (Table 6.3) by zα=0.05 (i.e.,1.96). 

 

A simpler model that adequately describes the extreme value distribution is more preferable 

to a more complex one, since the more the number of parameters, the higher the uncertainty 

in the estimated values (Serinaldi et al., 2015); therefore for Nairobi, a stationary Gumbel 

distribution would be adequate to estimate the return periods and return levels of the extreme 

values. 

 

Mombasa  

The stationary model (M0) was fitted for MU station together with a second model fitted with 

the annual mean IOD index as a covariate in the location parameter (M1) (i.e., μ(xt)= μ0 + 

μ1(xt), where xt is the covariate representing  annual IOD) and a third one (M2) with a 

covariate in the scale parameter (i.e., σ (xt)= σ0 + σ1(xt)). Results for two models (M0and 

M1)with highest negative log-likelihood values are shown in (Table 6.4). 
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Table 6.4:Comparison of model parameters of a stationary and non-stationary GEV 

distribution model for Mombasa 

 

Mombasa 
    

      
 

Stationary GEV model 

  

Non-stationary model (IOD in location) 
 

Parameter  Estimate 

Standard 

error 

 

Parameter Estimate  

Standard 

error 
 

Location (μ)  70.2 3.7 

 

location (μ0) 70.2  3.6 

Scale (σ)  23.2 2.7 

 

location (μ1) 8.48  4.6 
 

Shape (ξ)  0.05 0.1 

 

scale (σ) 22.4  2.7 
 

Negative log likelihood 

                        

227.7 

  

shape (ξ) 0.05  0.1 
 

  

negative log  

likelihood 226 

 

Figure 6.3(a&b) show the density (P-P)plotsof the stationary and the non-stationary model 

and (c&d) are the quantile (Q-Q) plots of the two models. From the density plot, the 

difference between the stationary and non-stationary models is minimal.  It should be noted 

in the QQ plot that there is a point out of line from both the stationary and non-stationary 

model and the stationary model has almost all the other empirical quantiles aligned on the 

diagonal line (Fig 6.3(c)). The outlier quantile could be resulting from the models not able to 

capture properly the thickness of the tail of the distribution. The estimation procedure tries to 

find one single set of parameters that fit all the different parts of the distribution and the 

resulting compromise often penalizes the high value. The very high value recorded in this 

station on 19th October 1997 (233mm) could explain this case.  
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Figure 6.3:Diagnostic plots comparing the stationary and non-stationary GEV 

distributions for Mombasa; a&b) Probabilityplots; c&d) QQ plots for the same models 

 

To determine the best model, the log likelihood ratio (lr) test is performed between M0 

(stationary model) and M1. The results showed thatlr test value =3.17; χ𝛼𝛼=0.05
2  =3.84 and; p-

value =0.07. Since lr ratio is less thanχ𝛼𝛼=0.05
2 , and has a higher p-value > 0.05 at 5% level of 

significance,then H0 is rejected i.e the stationary model performs better than non-stationary 

one. This station model also have small value of the shape parameter,ξ, in the range of -

0.91<0.05< 1.11) and from the likelihood ration test of Gumbel, GEV distribution was also 

approximated to the Gumbel type.The GEV equation for this station is then written as: 

Ω (t)~GEV(μ, σ,) where μ=70.2 (±7.25);σ(x)=23.2(±5.3) 
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The values in brackets give the error bounds at 95% level of confidence. 

 

Kisumu  

The stationary model (M0) fitted for this station yielded the three parameters estimates as 

μ=70.3, σ=16.8,and ξ=-0.08. The second model (M1)was fitted with the annual mean IOD 

index as a covariate in the location parameter (i.e., μ(xt)= μ0 + μ1(xt), where xt is the 

covariate), and a third one (M3)with the same covariate in the scale parameter (i.e., σ (xt)= σ0 

+ σ1(xt)). The results from the GEV analysis for the first and second model are shown in 

(Table 6.5). 

 

Table 6.5:Summary comparison of model parameters of a stationary and non-stationary GEV 

distribution model fit for Kisumu 

Kisumu 

         

Stationary GEV model 

  

Non-stationary model (IOD in location) 

Parameter  Estimate 

  Standard 

error 

 

 Parameter   Estimate 

Standard 

error 

          

Location (μ)  70.3 2.7 

 

 location (μ0)  69.9 2.6 

Scale (σ)  16.8 2.7 

 

 location (μ1)  7.7 4.6 

Shape (ξ)  -0.08 0.1 

 

 scale (σ)  15.5 1.8 

Negative log likelihood 

                        

209.2 

 

 

 shape (ξ)  -0.03 0.1 

 

 

negative log 

likelihood226 
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Figure 6.4 shows the density plots of the stationary and the non-stationary model 

respectively, and the quantile plots of the same models. From the probability density plot (Fig 

6.4(a&b)) the non-stationary model fitted the data slightly better than the stationary model.   

 

Figure 6.4:Diagnostic plots comparing the stationary and non-stationary GEV 

distributions for Kisumu;a&b) Probabilityplots; c&d) QQ plots for the same models 

 

From the log likelihood ratio (lr) test, between the M0(stationary) and M1 (with a covariate in 

the location parameter), lr value =4.5; χ2 (at α=0.05)=3.84; p-value =0.03). Since lr ratio is 

greater thanχ𝛼𝛼=0.05
2 , and has a low p-value (<0.05 at 5% level of significance) H0 is not 

rejected; therefore the non-stationary model performs better than stationary one. The shape 
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parameter, ξ, value is small of the in the range of -0.23<-0.03<0.17 and from the Gumbel 

likelihood test, GEV distribution was approximated to the Gumbel type. The GEV equation 

for this station is written as: 

Ω (t)~GEV(μ( xt), σ, ) where μ=69.9(±5.3) + 7.7 (xt) (±6.7); σ =15.5 (±3. 

The values in brackets give the error bounds at 95% level of confidence. 

 

Nakuru  

The estimated parameters for the stationary GEV model for Nakuru town are μ=41.7, 

σ=12.0,and ξ=0.06. In this particular station, only the stationary model was fitted since Ω (t) 

had no temporal trends and was not correlated significantly with any one of the considered 

covariates. The GEV also approximated to the Gumbel type and thus distribution for this 

station is written as: 

Ω (t)~GEV(μ, σ, ) where μ=41.7 (±3.9); log σ =12.0 (±2.7) 

The values in brackets give the error bounds at 95% level of confidence. The summary of the 

parameters is given in Table 6.6.  

 

Table 6.6:Parameters of a stationary GEV distribution model for Nakuru 

Nakuru 

Parameter Estimate Standard error 

Location (μ) 41.7 2.00 

Scale (σ) 12.0 1.4 

Shape (ξ) 0.06 0.1 

Negative log likelihood176.9 
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Figure 6.5 (a) shows the density plot of the stationary and Figure 6.6 (b) shows the QQ plot. 

From these plots,a stationary GEV distributionadequately modeled the annual daily 

maximum rainfall for Nakuru. 

 

Figure 6.5: Diagnostic plots for stationary GEV distributions for Nakuru;(a) the P-P 

plot; b) QQ plot 

 

6.4.3 Predicting return levels and return periods with the GEV models 

Once a model for a given station was fitted, it was used to determine the return levels of 

extreme rainfall for given return periods using Equation (6.21). The models were also used to 

find the probability of occurrence of the extreme values (such as the 233 mm/day that 

occurred in Mombasa in 1997) by applying the same equations. Figure 6.6 shows the plots 

that were used to estimate the return levels for given return periods.  
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Figure 6.6:Estimating return levels of each the four stations; a)Nairobi; b) Mombasa; c) 

Kisumu; d) Nakuru; in each plot the solid line estimates return levels for a given return 

period; the dashed lines gives the upper and lower error bounds of the 95% confidence 

level estimated by the Normal method. 

 

The error region in each plot becomes broader as the return period increases. This implies 

that the estimation of the return levels becomes more uncertain at longer return periods. In 

Figure 6.6(b), the extreme value of 233mm recorded on 19th of October 1997 in Mombasa 

station lies outside the upper error bound meaning that the probability of occurrence of such 

an extreme is higher than 0.02 (i.e. the 50-year return period) and it actually lies within the 

error bounds of the 100-year return period (Table 6.7). The prediction line is only slightly 

curved in each of the four plots implying the goodness of fit of the Gumbel type of 

distribution (ξ~0) (Gilleland and Katz, 2011). 

 

      

 

a) b) 

c) 
d) 
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Table 6.7: Return levels for some selected return periods for each of the four urban 

areas; the errors were estimated by the Normal method for the  95% level of confidence 

Return 

period 

(years) 

Return 

level 

(mm) 

lower 

bound 

(mm) 

Upper 

bound 

(mm) 

Return 

period 

(years) 

Return 

level 

(mm) 

lower 

bound 

(mm) 

Upper 

bound 

(mm) 

Nairobi Kisumu 

2 75.8 68.1 83.4 2 76.5 70.7 82.2 

10 116.5 100.7 132.4 10 105.0 95.2 114.9 

20 132.5 109.2 155.9 20 114.8 101.6 128.1 

50 153.7 115.9 191.4 50 126.7 107.1 146.2 

100 169.9 117.7 221.8 100 135.0 109.6 160.5 

200 186.0 126.7 255.4 200 142.9 110.7 175.1 

Mombasa Nakuru 

2 78.7 70.6 87.0 2 40.8 41.8 50.3 

10 125.3 107.4 143.1 10 54.2 59.2 74.2 

20 144.2 118.8 169.6 20 60.9 63.9 84.0 

50 169.6 130.1 209.0 50 65.2 68.2 97.6 

100 189.3 136.0 242.7 100 68.1 70.1 108.2 

200 209.6 139.4 279.9 200 70.2 71.2 119.2 

 

6.4.4 Discussion 

The results indicate that the GEV distribution has been able to adequately model the annual 

daily maxima rainfallseries for each of the four stations. When the GEV was applied with 

covariates in the location (μ) and scale (σ) parameters, only Kisumu’s stationary model was 

slightly improved by an IOD covariate in the location parameter ( p-value =0.03). However, 

the predictions were done using the stationary model for each urban area including Kisumu. 

A similarstudy was done by Gercia-Aristizabal, et al. (2014) for Da-Es-Salaam (Tanzania) 

and indicated that a model with a linear trend in the location parameter only performed better 

than the stationary one when there was evidence of a trend.The model for each urban area 
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was estimated to be of the Gumbel type(ξ~0). The stationary GEV distribution was found to 

be adequate inestimating return periods of up to 200 yearsbut uncertainties would be less for 

the 100-year return periods (twice the length of data) as suggested in Gilleland et al, 2013). 

Most of the observed daily maximum values in each town have return periods of between 2 

and 20 years, while return periods for the anomalously high values have return periods of 50-

100 years.  

 

There is a research gap in the extreme value analysisof rainfallin the EEA region. Fiddes, et 

al.(1974) produced a simple method of predicting the characteristics of storms for the design 

of hydrological structures in East Africa. However, the length of rainfall data used in that 

study was too short (less than 20 years) to be applicable in urban stormwater management 

systems. In my Thesis I have used fairly long series ofmaximum values of daily rainfall data 

(~50 years) and used the generalized extreme value analysis which does not confine the data 

to a particular distribution. The GEV model under non-stationary condition allowed for 

incorporation of climate covariates, while the rigorous method of model selection ensured 

that a more complex model was not chosen unnecessarily. Serinald and Kilsby, (2015) 

suggested that, modeling of hydro-meteorological data should start fromthe simplest 

informative approach, and that complex models produce more uncertainty when used in 

practical applications. Rainfall in Kenya is seasonal and highly variable, therefore the 

stationary GEV models should be applied while considering several factors which include 

that; 1) the occurrence of extreme rainfall is closely related to multi-temporal cyclesthat are 

forced by anomalies in the local and/or global climate modes of variabilities (Chapter 3). 

There is a possibility that any changes (either in thefrequency of occurrence or intensity) in 

these multi-temporal modes of climate variability that affects seasonal rainfall are likely to 

affect the magnitude of extreme values. According to the IPCC ( Stocker, 2013), thechanging 
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climate is likely to lead to changes in the behavior of the climate modes of variability and can 

result in unprecedented extreme events; In such a case,events that have been modeled to have 

long time return periods (i.e.,have low probability of occurrence) can occur more frequently; 

2) local and regional temperature were observed to influence rainfall changes in urban areas 

(Chapter 5)  but have not been applied as  climate covariates due lack of adequate lengthof 

daily temperature data for this study.Future studies should considerthe influence of UHI and 

regional warming on the extreme value distribution of rainfall through incorporatinglocal 

temperature data as covariates and comparing with the stationary models. 

 

6.5 Summary 

The aim of this Chapterwas to establish if stationary extreme value distribution models are 

still applicable for estimating design storms in urban stormwater management systems in 

Kenya. GEV models were fitted to anannual maximumof daily rainfall series foreach of the 

four major towns using rainfall from a station within each town that had complete and 

continuous daily data for close to50 years. The stationary GEV model of the Gumbel type 

was found to adequately produce return levels for up to the 100 year return periods. This 

informationis important in the development and upgrading of storm designs for effective 

stormwater management systems. However, in Kenya, there is almost no published work on 

extreme value analysis of rainfall although numerous cases of urban flooding are 

continuously being reported in major urban areas. Further, most cities in Kenya are in the 

process of creating  stormwater criteria manuals in which technical information would be 

needed to provide the baseline knowledge for the development of the intensity- duration- 

frequency curves, that are used in development and upgrading of hydraulic and hydrologic 

structures. My Thesis, therefore,apart from providing the much needed knowledge of the 

http://etd.uwc.ac.za/



 

 

 

 

 
 

237 
 

extreme value analysis of rainfall in Kenya, forms a basis upon which urban planners and 

engineers could get the technical information needed in developing storm water design 

criteria manuals. The outcome of this Chapter also forms a foundation upon which future 

studies of modeling of extremes in the urban areas of the EEA would be extended.  Through 

the results of this Chapter, I have demonstrated that extreme value modeling is adequately 

done for each area,mainly due to the varied topography that produces spatial variability of 

rainfall. The parameters of the GEV models varied with the location and were highest in 

areas that receive high rainfall and lowest in drier areas.I, however,recommend that future 

work of modeling of extremes should consider the use of areal averages of the daily 

maximum values from a dense network of stations in each urban area instead of a 

representative station in order to take into account local spatial variations of rainfall. This 

undertaking was constrained in my Thesis bylack of many stations in one urban location that 

had long time series of daily dataconsidered adequate for GEV modeling.   
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7 CHAPTERSEVEN: CONCLUSION 

The aim of my Thesis was to comparatively analyse the variations of temperature and rainfall 

within the major urban areas of Kenya and their rural neighbourhoodsin order to provide a 

basis upon which effective urban stormwater management can be done. To achieve this aim, 

five Chapters were formulated under which various climatological aspects of these two 

meteorological elements were analysed in order to answer the main research questions.Other 

atmospheric, oceanic and environmental variables needed were also sourced. The study was 

motivated by the need to expand the current knowledge on the variability and possible 

changes of these two climatic elements and their possible influence on the extreme value 

distributionused to prepare design storms, while considering rapid urbanization and global 

climate change.  

 

The study therefore compared analytically variability and changesintemperature and rainfall 

in the urban and neighbouring rural areas using mainly exploratory and statistical data 

analysis methods in which hypothesis formulated were tested at the 5% level of significance. 

The thesis was organized in such a way that the first Chapter provided the background of the 

study, described the study area,and gavea general organization of the thesis, then: a) in 

Chapters 2 and 3, the long-term variations of temperature and rainfall respectively were 

investigated; b) in Chapter 4  existence of the urban heat islands (UHIs) using air and land 

surface temperature were investigatedin  two cities in Kenya (Nairobi and Mombasa); c) 

Chapter 5 addressed the effects of enhanced temperature and UHI from the previous 

Chapters, on rainfall at various time scales,and the implications to urban storm water 

management and; d) the last Chapter (6) addressed the issue of statistical modelling of the 

extreme rainfall series using the annual block maxima, andtoestablish the best statistical 
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models between the stationary and non-stationary that would be suitable to estimate design 

storms for urban stormwater management systems, in each of the four major towns. 

 

Temperatures and rainfall from Meteorological stations within and in the neighbourhood of 

each town and with at least thirty (30) years of monthly (or daily) data were used for 

analysis.Other supporting data such as global atmospheric and oceanic indices and 

environmental remote sensed data such as land surface temperature (LST) were sourced from 

various website data banks as explained in Chapters where they were applied.Various 

methods of data analysis that were mainly exploratory and statistical were employed to 

diagnose the variations and detect changes in the temperature and rainfall, and also to 

examine the influence of other climatic factors on them. In particular and unique in this study 

was the use of the continuous wavelet transform (CWT) analysis method as a diagnostic tool 

to examine non-stationarity and variability of temperature and rainfall data. Different and 

rigorous parametric and non-parametric methods of change detection were applied to each 

data set in order to strengthen the statistical evidence (or lack) of change.  

 

The main outcomes of the Thesis include that: 

a) There is warming due to urbanization as well as global warming in each of the four 

urban areas and their neighbourhoods,especially for the night-time temperatures. In 

particular,  i) the rate of night-time warming is higher in urban than rural areas; more 

soin the last twenty years; ii) there is more evidence ofday-time warming in rural 

areas than in urban areas, and temperature in rural areas that was fairly strongly 

correlated with the global warming; iii) the minimum temperature in urban areas is 

increasing in the lower and upper percentiles,whilethe maximum temperature is 

increasing in the upper percentiles (Chapter 2). 
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b) Urban heat islands (UHIs) exist in the Kenya urban areas (Nairobi and Mombasa) 

both from the air and land surface temperatures. The UHI of the air temperaturewas 

found to have stronger intensities during the dry seasons (DJF and SON). 

Particularly;i) Nairobi is experiencing a diminishing day-time UHI intensityand 

increasing night-time UHI intensityrelative to the stations in its outskirts to the west; 

the decreasing day-time UHII was attributed to effects of urban sprawl (UHI effect in 

sub-urban areas) and global warming which are enhancing the day-time temperature 

inrural more than in the urban areas. From the land surface temperature (LST) data, 

the day-timeUHI is strongest within the CBD and the heavily built up 

areasparticularly to the east of the CBD while at night, the UHI is mainly within the 

CBD; ii) the airportarea of Mombasa coastal city had no significant day-time UHI 

intensity and a night-time cool island intensity from the surface air temperature 

relative to rural stationsto the north-eastern side, close to the Indian Ocean. 

However,the intensity of the cool island had positive temporal trends partly associated 

with higher rate of increase of minimum temperatures withinthe townthan over the 

rural areas. From LST, there were negative temperature differences between 

Mombasa Island town and the neighbouring land areas and positive differences 

between the town and the adjacent water bodies.Atnight-time, the surface UHI was 

observed within the Island and the heavily built up areas in the mainland(Chapter 4).  

 

c) In general rainfall totals at monthly, seasonal and annual time scales had no 

significant change over time with only a few exceptions where monthly and seasonal 

rainfall within and close to urban areas had increasing or decreasing temporal trends. 

The trends were attributed to the influence of changes in local and regional 

temperatures. High rainfall variability, especially during the OND season in which 

http://etd.uwc.ac.za/



 

 

 

 

 
 

241 
 

anomalous rainfall values were observed in several years,were associated with inter-

annual variability of the global atmospheric and oceanic parameters particularly when 

ENSO and IOD occurred simultaneously. Continuous wavelet transform (CWT) 

analysisrevealed that local factors also enhance the global factors to produce the 

anomalously high seasonal rainfall (Chapter 3). 

 

d) There was statistical evidence that UHI and enhanced temperature within and close to 

urban areas have potentiallyinfluenced urban rainfall positively andnegatively 

possibly through interactions of local thermal circulations (such as UHI) with the 

meso-and synoptic wind systems. The main observations in this regard were that; i) 

there was a general decline of rainfall during the JJA at the coast and an increase in 

Nairobi area downwind of the CBD that was associated with enhanced temperatures 

at the coast and over Nairobi; ii)  the main rainfall seasons (MAM and OND) are 

minimally influenced by local temperature changes except in Nakuru within the Rift 

Valley where OND rainfall is significantly influenced by minimum temperature of 

regions to the east and west of the valley and; iii) rainfall in each season at the coast 

and Lake Victoria region is negatively associated with the maximum temperature of 

each region respectively while minimum temperatures of these regions are positively 

associated with rainfall over the central highlands and Rift Valley (Chapter 5).    

 

e) Stationary GEV models of annual maximum of daily rainfall series were found to 

apply in three of the four towns, except Kisumu whose model was only slightly 

improved by IOD covariate applied in the location parameter; it is worth noting that 

about 90% of annual daily maxima occurred within the MAM season which is least 

influenced by the IOD and/or ENSO. However,thehighest daily totals with very low 
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probability of occurrence were recorded in OND season during the positive phases of 

ENSO and/or IOD. The stationary GEV distribution models wereused to predictreturn 

levels for various return periods in each of the four urban areas. However,if the global 

oceanic and atmospheric modes of climate variability change either in frequency or 

intensity due to climate change,the probabilities of occurrence of high extreme events 

arealso likely to change. Such changes are envisioned in climate change scenarios, 

and would affect the storm water management systems based on theprobability of 

occurrence of extreme events from the GEV distribution(Chapter 6).  

 

7.1 Significance of the outcomes 

Kenya is among the countries within the equatorial African region where there is limited 

literature on studies of variability and change of temperature (and especially urban heat 

islands (UHIs)), and rainfall at spatial scales relevant to stormwater management. Kenya has 

experienced rapid urbanization in the last five decades and the effects of urbanization 

(including UHI) and global temperature changes on rainfall intensity and distribution at small 

spatial scales have not been investigated. Rainfall in Kenya exhibits high spatial and temporal 

variability which poses a challenge to effective stormwater management and especially in 

urban areas where natural land cover have over time been replaced with impervious 

surfaces.Results from this study on temperature variability and changein major towns of 

Kenya have brought out asignificant difference between the warming of the urban areas as 

compared to their rural surroundings; thestudy has shown that there is more warming in urban 

areas especially in the night-time (Chapter 2) due to UHI effect.Trends in rainfall 

characteristics were mainly found close the urban areas (Chapter3). Such differences in 

rainfallthat would influence the urban hydrologyareusually masked in regional studies. The 
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factors influencing the variability of temperature and rainfall at different time scales 

werehighlighted through the usecontinuous wavelet transform (CWT) analysis. Such studies 

are not common in the EEA region though temperature and rainfall are highly variable and 

the factors influencing the variability are not well understood. The use CWT analysis showed 

thatalthough anomalous seasonal rainfall has been linked to changes in global oceanic and 

atmospheric systems, local factors are important during years of extreme rainfall events. In 

temperature time series, transient features were observed in the CWT mainly in urban 

stations. These high-frequencyfeaturesenhance the annual temperature cycle resulting into 

warming. This study has therefore greatly contributed to the knowledge and has increased 

understanding of the variability and changes in temperature and rainfall in urban areas of 

Kenya and forms a strong foundation for further urban climate/hydrological studies. The 

extreme value distributions of extreme rainfall in Kenya have hardly been studied, although 

flooding in Nairobi and Mombasa have been occurring almost every year. In this study, four 

statistical models of extreme value distribution were developed using fairly long time series 

of the annual maximum of daily rainfall series for the four major towns in Kenya. This 

information is important to city planners, since most towns in Kenya are in the process of 

upgrading and developing new storm water drainage systems. 

 

7.2 Implications of the findings to urban hydrology 

a) Changes in temperature within and around urban areas, which have been shown to 

influence changes in rainfall at seasonal time scale,are likely to change the hydrology 

of the urban areas. For instance, Nairobi is likely to be wetter during the JJA season, 

and drier in MAM, while Mombasa is likely to be drier in JJA. However, JJA is not 

the main rainfall season and so such changes in wetness may not affect the design 

stormsbut is likely to change the hydrology of the affected areas. In Nakuru, OND and 
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annual rainfall have increasing trendsthat arelikely to impact more on the hydrology 

of the town. 

 

b) Although rainfall of the main seasons(MAM and OND) had, in general,no significant 

temporal trends, multiple factors that simultaneously influence rainfallvariabilities 

with resultant extreme events, are important in storm water management. Therefore 

local and or global changes that may influence changes in local and large-scale 

atmospheric and oceanic circulations (such as ENSO, IOD, monsoon winds, the 

pressure systems and UHIs) are likely to influence the occurrence of extreme events. 

 

c) Although the stationary GEVdistribution was found to model adequately the extreme 

values from each urban area, the understanding of the inter-annual variability of the 

EEA rainfall is important for effectiveapplication of such models;therefore proper 

understanding and timely predictions (and projections) of the present and future 

behaviour of the modes of climate variability that causes anomalous rainfall is 

important in modelling urban storm water. 

 

7.3 Recommendations 

The recommendations of my Thesis target mainly climate scientists, research institutions, 

urban hydrologists, urban planners and other users of urban climate information. 

 

7.3.1 Recommendations to climate scientists and research institutions 

My Thesis forms a basis under which further studies could be extended to include more urban 

areas within the EEA region. Rainfall and temperature are two important climate 
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variablesthat influences directly or indirectly storm water generation. The understanding of 

the variability and or changes of these two climatic elementsand their inter-relationships, and 

taking into consideration the global climate change, is important for effective management of 

urban stormwater. Local news of damages of infrastructure and sometimes loss of human life 

caused by urban flooding has been associated with climate change without the benefit of a 

scientific enquiry. Studies should be carried out to cover wider areas so as put this notion into 

perspective, and so that other factors that cause urban flooding (e.g., environmental, 

geographical or geological) can also be explored. One of the challenges that I encountered is 

the limited access to climate data, especially at daily and sub-daily time-scales. Although the 

monthly data that meteorological services provide for research are adequate to investigate 

variabilities of rainfall at monthly, seasonal and annual time scales, datasets at sub-diurnal 

time-scales (in mm/hr) would improvestudies of urban hydrology. Investigations of the 

distribution of daily rainfall within the hours of the day would provide information of the rate 

at which stormwater is generated and if this rate has changed over time, especially in urban 

areas with strongUHIs. 

 

There are very few studies that have documented the existence of UHI in EEA cities. There is 

aneed to increase such studies and further investigations of the factors influencing UHI 

development to be established. UHI has been shown to influence local storm intensities in 

other parts of the world but no such studies are available over the EEA region. 

 

In most climate studies in EEA, local and regional air surface temperatures have not been 

considered as factorsinfluencing rainfall variability. I haveestablished(Chapter 5) local and 

regional statistical relationships between rainfall and temperature thatshould be considered in 
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seasonal rainfall predictions. Further studies should, however, be carried out such that wider 

areas and longer time series of temperature are used, and more deterministic (together with 

statistical) methods applied.I recommend that dynamical simulation studies be carried out to 

document the physical and dynamical process responsible for the observed statistical 

relationships. Also, further investigations possibly using dynamical simulations should be 

carried out to establish the influence of enhanced local and regional temperature changes on 

local and regional convective storm intensities at diurnal time scales. Changes in storm 

intensities (in mm/hr) are critical for preparation of design storms and the intensity-duration-

frequency curves.  

 

I strongly recommend the use of the wavelet analysis in studies of variability and change of 

climatic and hydrological variables. In Chapter 2&3 of my Thesis, I  demonstrated that CWT 

is a strong diagnostic tool in the investigations of variabilities and changes of a 

meteorological time series. I found CWT to be very useful in discriminating multi-temporal 

cycles of a time series and give insights of how such cycles influence the meteorological 

variable over time.Further, spatial differences of a given variable could be observed by 

comparing the multi-temporal cycles among different locations. I recommend this method be 

used more often in climate studies and especially where spatial averages of the climatic 

elements into homogeneous groups would lessen the burden of too many wavelet power 

spectra maps; this would enable easier comparison of temporal and spatial variations of the 

climatic elements within and acrossclimatic zones.  

 

Studies on extreme value analysis of climate data in EEA are rare. In my Thesis, I have for 

the first time, using stationary and non-stationary generalized extreme value analysis 
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developed models that can be adequately applied to create design storms applicable in urban 

stormwater management systems in four Kenyan towns (Chapter 6). However, since each 

model is dependent on the rainfall climatology of a given location, this very important 

scientific modeling should be extended to other towns within the EEA region.  

 

7.3.2 Recommendations to urban environmentalist and hydrologists 

In the Thesis, I did not investigate the hydrological response of the urban areas to rainfall or 

temperature variability and has not also considered other environmental factors that would 

influence storm water generation and urban flooding. I recommend that further research that 

combines the climatic with hydrological factors be undertaken for effective stormwater 

management. 

 

7.3.3 Recommendations to urban planners 

City and municipal councils should consider the outcomes of this study (Chapter6) to revise 

the design storms taking into considerations that, the occurrence of extreme values in the 

EEA region is very much linked to the various modes of climate variability that influence 

seasonal rainfall and cause the extreme rainfall events. I therefore, recommend that the 

revision of the design storms should be done in close consultations with climate scientist so 

as to incorporate safe limits from the future projections of the extreme values in climate 

change models.  
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9 Appendices 
 

Appendix 5.1:Stations used for computing inter-station correlations of rainfall; rainfall 

homogeneous zones from  Indeje, et al., (2000) is shown in coloumn 3; the stations and 

their acronyms were as used in Chapters 2, 3 &4. 

Station 

name 

Station 

acronym  

Region Latitude 
oS or oN 
 oS =(-) 

 

Long. 

(oE) 

Altitude 

(m) 

Length of 

rainfall  data 

Wilson  

Dagoretti  

Thika  

Nyeri 

Narok 

Nakuru 

NU 

NRD 

NRT 

NYR 

NRK 

NKU 

 

Central 

highlands 

and Rift 

Valley 

-1.32 

-1.30 

-0.98 

0.43  

-1.13 

0.27 

36.82 

36.70 

37.07 

36.97 

35.83 

36.12 

1679 

1798 

1549 

1815 

1890 

1901 

1961-2013 

1961-2013 

1961-2013 

1970-2008 

1961-2008 

1970-2013 

Mombasa  

Mtwapa 

Msabaha 

Makindu 

Voi 

Malindi 

Lamu 

MU 

MRMt 

MRMs 

MKD 

VOI 

MLD 

LAM 

 

 

The 

coastal 

regions 

-4.03 

-3.93 

-3.27 

-2.28 

-3.70 

-3.23 

-2.27 

39.60 

39.73 

40.05 

37.83 

38.57 

40.10 

40.90 

55 

20 

91 

1000 

560 

20 

30 

1961-2013 

1961-2013 

1961-2013 

1961-2008 

1961-2008 

1961-2008 

1961-2008 

Kisumu 

Kakamega 

Kisii 

 

 KU 

KKM 

 KR 

 

Lake 

victoria 

region 

-0.100 

0.28 

-0.68 

 

34.70 

34.75 

34.73 

 

1146 

1580 

1493 

 

1961-2013 

1961-2008 

1963-2013 
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Appendix 5.2:Seasonal rainfall Inter-station correlationsa) MAM; b) JJA and c); OND; 

all the values highlighted in red (r≥ ±0.27) are significant at α=0.05; the black 

rectangles show inter-correlations of NU and MU with neighbouring rural stations; the 

station names are as shown in Table 5.1 

 

 

  

a)
MAM NU NRD NRT NYR NRK NKU KU KR KKM MKD VOI MU MRMt MRMs MLD

NRD 0,63

NRT 0,71 0,51
NYR 0,44 0,33 0,49
NRK 0,58 0,43 0,59 0,24
NKU 0,57 0,35 0,44 0,27 0,50
KU 0,29 0,12 0,35 0,25 0,46 0,18
KR 0,12 0,18 0,24 0,09 0,13 0,16 0,32
KKM 0,24 0,15 0,20 0,36 0,42 0,22 0,49 0,14
MKD 0,48 0,65 0,61 0,33 0,44 0,38 0,19 0,26 0,17
VOI 0,16 0,30 0,34 0,39 0,29 0,02 0,03 0,08 0,10 0,61
MU 0,08 -0,01 0,06 0,28 0,11 -0,17 0,04 -0,25 0,15 0,22 0,34
MRMt 0,04 -0,03 0,07 0,17 -0,02 -0,11 0,05 -0,20 0,06 0,13 0,10 0,85

MRMs 0,10 0,08 0,18 0,37 0,09 0,02 0,08 -0,05 0,07 0,24 0,37 0,76 0,70
MLD 0,02 0,07 0,01 0,18 -0,03 -0,05 -0,07 -0,19 -0,02 0,11 0,17 0,66 0,66 0,75
LAM 0,17 0,16 0,17 0,45 0,06 0,01 -0,04 0,03 0,18 0,13 0,21 0,58 0,61 0,77 0,62

(b)
JJA NU NRD NRT NYR NRK NKU KU KR KKM MKD VOI MU MRMt MRMs MLD

NRD 0,46

NRT 0,25 0,02
NYR 0,32 0,28 0,54
NRK 0,42 0,03 0,36 0,35
NKU 0,17 0,23 0,01 0,30 0,21
KU 0,28 0,22 0,07 -0,08 0,01 0,31
KR 0,06 0,06 0,26 0,05 0,24 0,06 0,21
KKM 0,15 0,10 -0,07 0,08 0,01 0,27 0,24 0,28
MKD 0,07 -0,06 0,34 0,28 0,07 0,00 -0,19 0,18 -0,13
VOI -0,17 0,02 0,02 0,19 -0,19 -0,06 -0,11 -0,11 -0,08 0,37
MU -0,20 -0,22 0,00 -0,08 -0,33 -0,11 -0,09 0,02 0,08 0,09 0,68
MRMt 0,01 -0,19 -0,09 -0,09 -0,10 -0,21 -0,01 -0,08 0,00 -0,04 0,51 0,67

MRMs -0,17 -0,24 0,20 0,00 0,04 -0,19 0,07 0,08 -0,18 0,07 0,27 0,51 0,53
MLD -0,03 -0,09 0,25 0,07 0,28 -0,01 0,01 0,10 -0,15 0,12 0,33 0,42 0,24 0,60
LAM -0,14 0,13 0,02 -0,25 -0,03 0,02 -0,06 0,03 -0,17 -0,04 -0,06 0,15 0,25 0,40 0,31

 (c)
OND NU NRD NRT NYR NRK NKU KU KR KKM MKD VOI MU MRMt MRMs MLD

NRD 0,76

NRT 0,76 0,63
NYR 0,59 0,49 0,77
NRK 0,88 0,82 0,68 0,68
NKU 0,74 0,56 0,65 0,67 0,81
KU 0,72 0,65 0,70 0,73 0,76 0,71
KR 0,43 0,35 0,39 0,27 0,46 0,39 0,61
KKM 0,76 0,64 0,60 0,44 0,76 0,70 0,69 0,33
MKD 0,72 0,59 0,66 0,56 0,68 0,44 0,65 0,34 0,49
VOI 0,62 0,49 0,50 0,50 0,64 0,55 0,52 0,21 0,45 0,72
MU 0,46 0,47 0,66 0,78 0,57 0,65 0,63 0,24 0,43 0,52 0,60
MRMt 0,53 0,46 0,62 0,77 0,56 0,64 0,68 0,24 0,51 0,50 0,63 0,88

MRMs 0,61 0,59 0,72 0,81 0,63 0,76 0,76 0,31 0,52 0,58 0,57 0,87 0,86
MLD 0,35 0,32 0,64 0,62 0,46 0,61 0,59 0,27 0,33 0,33 0,37 0,75 0,61 0,76
LAM 0,44 0,45 0,66 0,79 0,51 0,68 0,62 0,27 0,38 0,46 0,51 0,89 0,79 0,86 0,75
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