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1. M.B. Tchoula Tchokonté, J.J. Mboukam, B.M. Sondezi, A.K.H. Bashir, A.M.

Strydom, Britz, D. and D. Kaczorowski, Critical behaviour study around the para–to-

ferromagnetic phase transition in Pr2Pt2In.

2. J.J. Mboukam, B.M. Sondezi, M.B. Tchoula Tchokonté, A.K.H. Bashir, A.M.
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Abstract

Rare-earth intermetallic compounds continue to draw considerable attention, due to

their fundamental importance in understanding physical properties and potential applica-

tions based on a variety of phenomena. The focus of this project is to employ two family

of rare-earth intermetallic compounds: RE2Pt2In (RE = Pr, Nd) and RE8Pd24Ga (RE =

Gd, Tb, Dy) ternary intermetallic systems as a model candidate to uncover the underlying

ground state properties that result in a strong coupling between the conduction electron

and the 4f -electron of the rare-earth ions.

The present thesis report on the magnetocaloric effect, the critical behaviour study

around the magnetic phase transition temperature and other low-temperature properties

of RE2Pt2In (RE = Pr, Nd) and RE8Pd24Ga (RE = Gd, Tb, Dy). The start of the

research project was focused on sample synthesis using arc-furnace melting and sample

characterization using X-ray powder diffractometer D8 Advance with Cukα radiation.

The elemental composition and homogeneity of the prepared samples was checked by

scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS) and micro-

probe detection. The physical and magnetic properties investigated included: electrical

resistivity (ρ(T )), heat capacity (Cp(T )), magnetic susceptibility (χ(T )), magnetization

(M(µ0H)), and isothermal magnetization (M(µ0H,T )). Magnetocaloric effect was esti-

mated from M(µ0H,T ). All these properties were measured using the physical property

measurement system (PPMS) and the magnetic property measurement system (MPMS)

both from Quantum Designs.

The results of ρ(T ), χ(T ) and Cp(T ) indicate that both compounds Pr2Pt2In and

Nd2Pt2In order ferromagnetically below TC = 9 K and 16 K, respectively. In the ordering

state, ρ(T ) and Cp(T ) data for both Pr2Pt2In and Nd2Pt2In compounds are dominated

by magnon contribution with an energy gap of about ∆R = 13(1) K and 8(2) K and
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∆C = 7.6(3) K and 6.0(3) K, respectively. Above TC, ρ(T ) variations of Pr and Nd

compounds are characteristic of electron-phonon interaction in the presence of the s-d

interband scattering, while Cp(T ) follows the standard Debye formula with the Debye

temperature θD = 155.0(3) K and 152.44(2) K for Pr2Pt2In and Nd2Pt2In, respectively.

In the case of Nd2Pt2In, the 4f -electron specific heat shows a Schottky-type anomaly

around 60 K associated with crystal-electric-field with energy splitting ∆1 = 145(7) K

and ∆2 = 195(13) K of the Nd3+-ion (J = 9/2) multiplet, that we associated with

the first and second excited state of Nd3+-ion. On the other hand, χ(T ) data at high

temperature for all the investigated compounds follow the Curie-Weiss relation giving an

effective magnetic moment close to that expected for the RE3+-ion. The magnitude of the

magnetocaloric effect estimated from the isothermal magnetization for selected investigated

compounds are similar to the values reported for most rare-earth based intermetallics.

Characteristic behaviour of the isothermal magnetic entropy change maximum points out

to a second-order character of the magnetic transition. The critical behaviour study at

the paramagnetic to ferromagnetic phase transition in Pr2Pt2In and Nd2Pt2In has been

investigated by means of isothermal magnetization. The Arrott-plots confirm the second-

order character of the ferromagnetic phase transition for both compounds. The derived

critical exponent values obtained for Pr2Pt2In are close to those expected for a 3D-Ising

ferromagnet and Nd2Pt2In are close to both 3D-Ising and 3D-Heisenberg ferromagnet.

For RE8Pd24Ga family of compounds, the results of ρ(T ), χ(T ) and Cp(T ) indicate

antiferromagnetic phase transition for RE = Gd and Dy and complex magnetic behaviour

for RE = Tb at low-temperatures. Above the ordering temperature, ρ(T ) show normal

metallic behaviour for all three compounds, while Cp(T ) follows the standard Debye

formula above their respective magnetic transition temperature with the Debye temperature

θD = 238.886(7) K, 230.26(4) K and 233.20(2) K for RE = Gd, Tb, Dy, respectively.

The work in this thesis is presented as follows:

Chapter 1 presents the introduction and an overview of rare-earth intermetallic com-

pounds. This is followed by the definition, preparation and metallurgical aspects of RE

intermetallic compounds and ends with a motivation of the work carried out in this thesis.

Chapter 2 presents various theoretical concepts, which have been used to analyse and
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interpret the experimental results discussed in this thesis. These are among others: the

different magnetic interactions which allow to generate magnetism in intermetallic com-

pounds, the different kinds of magnetism present in compounds, the spin wave theory, the

critical behaviour, the mean field theory as well as the concepts of magnetocaloric effect.

The theoretical concepts of the physical and magnetic properties of rare-earth intermetallic

compounds are also presented in this chapter.

In chapter 3, the experimental methods used in this study are presented. Sample syn-

thesis, characterization and measurement techniques are discussed.

Chapter 4 and 5 report the experimental results obtained for the tetragonal system

RE2Pt2In and the cubic series of compounds RE8Pd24Ga, respectively. A brief discussion

of the results studied in these families of compounds is also presented.

Chapter 6: presents the conclusion of the thesis and further works.

vii

http://etd.uwc.ac.za



 

 

 

 
Contents

1 Introduction 1

1.1 Overview of rare-earth intermetallic compounds . . . . . . . . . . . . . . . 1

1.2 Definition, preparation and metallurgical aspects of rare-earth intermetallic

compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical concepts 6

2.1 Magnetic properties of binary and ternary rare-earth compounds . . . . . . 6

2.2 Origin of magnetism in rare-earth compounds . . . . . . . . . . . . . . . . 7

2.2.1 Overview on magnetic structure . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Theory of magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Crystal electric field effect and Schottky anomaly . . . . . . . . . . 23

2.3 Critical behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Mean-field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 The Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 The Heizenberg model . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Phase transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Landau theory of second-order phase transition . . . . . . . . . . . 32

2.5 Magnetocaloric effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Introduction and background . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Magnetocaloric effect principle . . . . . . . . . . . . . . . . . . . . . 33

2.5.3 Thermodynamic approach of magnetocaloric effect . . . . . . . . . . 34

2.6 Physical and magnetic properties . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 Electrical resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.2 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

viii

http://etd.uwc.ac.za



 

 

 

 

Contents

2.6.3 Magnetization and magnetic susceptibility(see also section 2.2.2) . . 47

3 Experimental techniques 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Procedure of samples preparation . . . . . . . . . . . . . . . . . . . 50

3.2 Sample characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Energy Dispersive Spectroscopy (EDS) . . . . . . . . . . . . . . . . 52

3.2.2 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Physical Property Measurement System (PPMS) . . . . . . . . . . . . . . 57

3.3.1 Electrical resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Magnetic Property Measurement System (MPMS) . . . . . . . . . . . . . . 61

3.4.1 Magnetic measurements . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Results and Discussion:

RE2Pt2In (RE = Pr, Nd) 63

4.1 Literature review and introduction . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Crystallographic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Pr2Pt2In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Electrical resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2 Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.3 Magnetic susceptibility and magnetization . . . . . . . . . . . . . . 78

4.3.4 Critical behaviour study around the magnetic phase transition in

Pr2Pt2In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.5 Isothermal magnetization and magnetocaloric effect . . . . . . . . . 87

4.4 Nd2Pt2In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Electrical resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.2 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.3 Magnetic susceptibility and magnetization . . . . . . . . . . . . . . 98

4.4.4 Critical behaviour study around the ferromagnetic phase transition

in Nd2Pt2In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.5 Isothermal magnetization and magnetocaloric effect . . . . . . . . . 108

4.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ix

http://etd.uwc.ac.za



 

 

 

 

Contents

5 Results and Discussion:

RE8Pd24Ga (RE = Gd, Tb, Dy) 112

5.1 Literature review and introduction . . . . . . . . . . . . . . . . . . . . . . 112

5.1.1 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.2 Electrical resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1.3 Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1.4 Magnetic susceptibility and magnetization . . . . . . . . . . . . . . 127

5.1.5 Isothermal magnetization and magnetocaloric effect . . . . . . . . . 132

5.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Conclusion and future works 137

x

http://etd.uwc.ac.za



 

 

 

 
List of Figures

2.1 Ferromagnetic representation of spins aligned in the same direction. . . . . 12

2.2 Ferrimagnetic representation of spins aligned in opposite directions with

difference in magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Antiferromagnetic representation of spins aligned in opposite directions with

same magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Schematic representation of the basic processes of the magnetocaloric effect. 33

2.5 Diagram presenting the different processes of the magnetocaloric effect.

Solid green line represents the total entropy in two different magnetic fields

(H0 = 0 and H1 > 0), the dotted lines show the electronic and lattice con-

tributions to the entropy (non-magnetic) and the dashed lines show the

magnetic entropy in the two fields. The horizontal red arrows shows ∆Tad

and the vertical arrow shows ∆SM, when the magnetic field is changed from

H0 to H1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 The figure showing the arc-furnace chamber, with the titanium and the

starting elements placed in the appropriate copper crucible. . . . . . . . . . 51

3.2 Photograph of Field Emission Gun Scanning Electron Microscope. . . . . . 53

3.3 Photograph of diffractometer D8 Advance. . . . . . . . . . . . . . . . . . . 54

3.4 Cross section of the incident and reflected X-ray beams on the surface of a

powdered sample: Bragg’s law. . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Cross section of Physical Properties Measurements System (PPMS). . . . . 58

3.6 Photograph of a sample mounted on channel 2 using spot welding techniques

for the electrical resistivity measurements. . . . . . . . . . . . . . . . . . . 59

3.7 4He specific heat puck and its schematic representation of the platform. . . 60

3.8 Schematic representation of Magnetic Properties Measurement Syspem (MPMS). 61

xi

http://etd.uwc.ac.za



 

 

 

 

List of Figures

3.9 Picture showing sample mounted in the straw for the magnetization and

magnetic susceptibility measurements on MPMS. . . . . . . . . . . . . . . 62

4.1 Cross section micrograph of scanning electron macroscope done on Pr2Pt2In

with a scale of 50µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Cross section micrograph of scanning electron macroscope done on Nd2Pt2In

with a scale of 50µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 The X-ray diffraction pattern (green symbols) of La2Pt2In collected at room

temperature and its Rietveld (a) and Pawley (b) refinement (red curves).

The bottom black curves are the difference between the experimental and

calculated patterns. The vertical ticks in (a) represent the Bragg’s reflections. 68

4.4 The X-ray diffraction pattern (green symbols) of Pr2Pt2In collected at room

temperature and its Rietveld (a) and Pawley (b) refinement (red curves).

The bottom black curves are the difference between the experimental and

calculated patterns. The vertical ticks in (a) represent the Bragg’s reflections. 69

4.5 The X-ray diffraction pattern (green symbols) of Nd2Pt2In collected at room

temperature and its Rietveld (a) and Pawley (b) refinement (red curves).

The bottom black curves are the difference between the experimental and

calculated patterns. The vertical ticks in (a) represent the Bragg’s reflections. 70

4.6 The tetragonal unit cell of RE2Pt2In. The pink, brown and black balls

represent In, Pt and Pr atoms, respectively. . . . . . . . . . . . . . . . . . 71

4.7 (a) Temperature variation of the electrical resistivity, ρ(T ), of Pr2Pt2In

measured in 0 T. The solid red curve through the data points is the least

squares fit of equation 4.1 to the experimental data. The inset displays the

low-temperatures ρ(T ) data in 0 T. The black solid curve represents the

least squares fit of equation 4.2 to the experimental data. (b) displays the

low-temperatures ρ(T ) of Pr2Pt2In measured in a field of 0.5; 3 and 5 T.

The black solid curves represent the least squares fits of equation 4.2 to the

experimental data. The arrows indicate the position of TC. . . . . . . . . . 73

4.8 The temperature derivative, dρ/dT , as a function of temperature. The arrow

indicates the critical temperature TC associated with the maximum in the

curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xii

http://etd.uwc.ac.za



 

 

 

 

List of Figures

4.9 Temperature variation of the heat capacity, Cp(T ) of Pr2Pt2In measured in

0 magnetic field. The solid red curve is the least squares fit of equation 4.3

to the experimental data. The solid dash line represents the Dulong-petit

value 3nR = 124.7 J/mole.K. The inset shows an expanded view of the

low-temperatures Cp(T ) data. The arrows indicate the position of TC of

Pr2Pt2In taken in 0 and in applied field of 2 and 5 T. . . . . . . . . . . . . 76

4.10 Temperatures variation of the 4f contribution to the total heat capacity,

C4f(T ) of Pr2Pt2In measured in (a) 0 and (b) 2 T. The solid red curve is

the least squares fit of the spin-wave dispersion relation (equation 4.4) to the

C4f(T ) data measured in 0 magnetic field. The arrows indicate the position

of TC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.11 Temperature variation of the 4f -electron magnetic entropy S4f(T ) of Pr2Pt2In

measured in 0 and 2 T. The arrows indicate the position of TC. The hor-

izontal dash line marks the value R ln2 = 5.76 J/mole.K expected for the

doublet ground state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.12 Temperature variation of the inverse magnetic susceptibility, χ−1(T ), of

Pr2Pt2In measured in a field of 0.1 T. The red solid line is least squares

fit of the Curie-Weiss relation equation 4.6 to the experimental data above

150 K. The inset displays the magnetic field variation of the magnetization

in Pr2Pt2In taken at 1.7 K. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.13 (a) The low-temperatures χ(T ) data of Pr2Pt2In in the ferromagnetic region,

measured in field of 0.1 T. The arrow indicates the ferromagnetic transition

temperature TC taken at the midpoint of the abrupt rise in the χ(T ) curve.

(b) dχ(T )/dT curve with the arrow indicating the position of TC taken at

the minimum of dχ(T )/dT curve. . . . . . . . . . . . . . . . . . . . . . . . 80

4.14 The standard Arrott-plot for the mean-field model M2 vs. µ0H/M of

isotherms collected around TC for Pr2Pt2In. . . . . . . . . . . . . . . . . . 81

4.15 Modified Arrott-plots using the critical exponent of the 3D-Ising model. The

solid red lines are the linear fits, according to equation 4.7. . . . . . . . . . 82

xiii

http://etd.uwc.ac.za



 

 

 

 

List of Figures

4.16 Temperature variation of the spontaneous magnetization, Ms(T ) (left axis),

and the reciprocal initial susceptibility, χ−1
0 (T ) (right axis), derived from

the modified Arrott-plots shown in figure 4.15. The solid curves are least

squares fits using equations 4.8 and 4.9. . . . . . . . . . . . . . . . . . . . . 84

4.17 Kouvel-Fisher plot of spontaneous magnetization Ms(T ) (left axis) and the

inverse initial susceptibility χ−1
0 (T ) (right axis). The straight lines are the

least squares fits of the data points using equations 4.10 and 4.11. . . . . . 85

4.18 (a) Field variation of the critical isotherm, M(µ0H,TC = 8.8 K) for Pr2Pt2In.

The inset shows the data with log-log representation. The straight line is

the linear fit using equation 4.12. (b) The renormalized magnetization in

Pr2Pt2In plotted as a function of the renormalized field (see equation 4.14).

The isotherms in two separate branches correspond to temperature TC and

above TC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.19 Isothermal magnetization curves, M(µ0H, T ) of Pr2Pt2In measured in the

vicinity of the Curie temperature TC = 9 K. . . . . . . . . . . . . . . . . . 88

4.20 (a) Temperature dependencies of the isothermal magnetic entropy change,

−∆SM(T ), in Pr2Pt2In measured with different field changes in steps of

0.5 T. (b) The maximum isothermal magnetic entropy change at TC as a

function of reduced field h2/3 (see text for definition). The solid line is the

least squares fit to the experimental data using equation 4.16. . . . . . . . 90

4.21 Temperature dependence of the magnetic entropy change at 5 T calculated

from CM(T, µ0H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.22 (a) Temperature variation of the electrical resistivity, ρ(T ) of Nd2Pt2In mea-

sured in 0 magnetic field. The inset displays the low-temperatures ρ(T ) data

with the red solid curve representing the least squares fit of the spin-wave

dispersion relation 4.2. The arrow indicates the position of TC. (b) and (c)

The low-temperatures ρ(T ) data measured in a magnetic field of 0.5 and 5

T, respectively the solid red curves are the least squares fits of the spin-wave

dispersion relation 4.2 and the arrows indicate the position of TC. . . . . . 92

4.23 The temperature variation of the derivative of the electrical resistivity,

dρ/dT . The arrow indicates the position of the critical temperature TC

taken at the midpoint of the anomaly in dρ/dT . . . . . . . . . . . . . . . . 93

xiv

http://etd.uwc.ac.za



 

 

 

 

List of Figures

4.24 (main panel) Temperature variations of the heat capacity, Cp(T ) of Nd2Pt2In

and La2Pt2In measured in 0 magnetic field. The solid blue curve is the least

squares fit of the Debye-Einstein model (equation 4.18) and the dark brown

curve is the least squares fit of the standard Debye formula (equation 4.3)

to the experimental data. The arrow in the main panel indicates the posi-

tion of TC. The inset (a) shows the specific heat data of La2Pt2In plotted as

Cp/T
3 vs. T with the arrow indicating the position of a local maximum that

provides an estimation of the Einstein temperature. The inset (b) shows an

expanded view of the low-temperatures Cp(T ) data. The arrows indicate the

position of TC of Nd2Pt2In taken in 0 magnetic field and applied magnetic

field of 2 and 3 T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.25 (a) The temperature variations of the 4f -electron contribution to the total

heat capacity, C4f(T ) of Nd2Pt2In measured in (a) 0 magnetic field and (b)

2 T. The solid red curves are least squares fits of the spin-wave dispersion

relation (equation 4.4) to the C4f(T ) data. The solid dark green curve in (a)

is the least square fit of the Schottky anomaly (equation 4.19) to the C4f(T )

data with energy scheme as inset. . . . . . . . . . . . . . . . . . . . . . . . 97

4.26 The temperature variations of 4f -electron magnetic entropy S4f of Nd2Pt2In

measured in 0 magnetic field (black symbols) and in 2 T (blue symbols). The

horizontal dash line marks the value of Rln2 = 5.76 J/mole.K expected for

the double ground state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.27 Temperature variation of the inverse magnetic susceptibility, χ−1(T ) of

Nd2Pt2In measured in a magnetic field of 0.1 T in the temperature range

1.7 K - 400 K. The solid red line is the Curie-Weiss fit using equation 4.6

to the experimental data above 100 K. The inset displays the magnetic field

variation of the magnetization, M(µ0H), in Nd2Pt2In, measured at 1.7 K

in increasing (blue symbols) and decreasing (red symbols) magnetic field. . 99

4.28 (a) The low-temperatures χ(T ) data of Nd2Pt2In in the ferromagnetic re-

gion, measured in field of 0.1 T. The arrow indicates the ferromagnetic tran-

sition temperature TC taken at the midpoint of the abrupt rise in the χ(T )

curve. (b) dχ(T )/dT curve with the arrows indicating the positions of TC

and Tt taken at the minimum and maximum of dχ(T )/dT curve respectively.100

xv

http://etd.uwc.ac.za



 

 

 

 

List of Figures

4.29 The standard Arrott-plots for the mean-field model M2 vs. µ0H/M of

isotherms collected around TC for Nd2Pt2In. . . . . . . . . . . . . . . . . . 102

4.30 Modified Arrott-plots using the critical exponent of the (a) 3D-Heisenberg

and (b) 3D-Ising model. The solid black lines are the linear fits using equa-

tions 4.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.31 Temperature variations of the spontaneous magnetization, Ms(T ) (left axis)

and the reciprocal initial susceptibility, χ−1
0 (T ) (right axis) derived from the

modified Arrott-plots, for the (a) 3D-Heisenberg and (b) 3D-Ising models.

The solid curves are least squares fits using equations 4.8 and 4.9. . . . . . 104

4.32 Kouvel-Fisher plots of spontaneous magnetization Ms(T ) (left axis) and the

inverse initial susceptibility χ−1
0 (T ) (right axis) for Nd2Pt2In. The straight

lines least squares fits of the data points to equations 4.10 and 4.11 for both

the (a) 3D-Heisenberg and (b) 3D-Ising models. . . . . . . . . . . . . . . . 105

4.33 Field variation of the critical isotherm, (a) M(µ0H,TC = 16.2 K) and

M(µ0H,TC = 15.9 K) for Nd2Pt2In. The insets show the data with log-

log representation. The straight lines are the fits using equation 4.12. . . . 106

4.34 The renormalized magnetization in Nd2Pt2In plotted as a function of the

renormalized field following equation 4.14 with (a) TC = 16.2 K for the 3D-

Heisenberg model and (b) TC = 15.9 K for 3D-Ising model. The plots show

the collapse into two distinct separate branches below and above TC. The

insets show the same plots on a log-log scale. . . . . . . . . . . . . . . . . . 107

4.35 Isothermal magnetization curves M(µ0H, T ) of Nd2Pt2In measured in mag-

netic field up to 7 T at temperatures between 4 to 30 K with a step of 2

K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.36 (a) Temperature dependencies of the isothermal magnetic entropy change,

−∆SM(T ), measured for Nd2Pt2In with different field changes in steps of

0.5 T. (b) The maximum isothermal magnetic entropy change at TC as a

function of reduced field h2/3 (see text for definition). The solid line is the

least squares fit of equation 4.20 to the experimental data. . . . . . . . . . 110

5.1 Cross section micrograph of scanning electron microscope done on Gd8Pd24Ga

with a scale of 250 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xvi

http://etd.uwc.ac.za



 

 

 

 

List of Figures

5.2 Cross section micrograph of scanning electron microscope done on Tb8Pd24Ga

with a scale of 250 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Cross section micrograph of scanning electron microscope done on Dy8Pd24Ga

with a scale of 250 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 The X-ray diffraction pattern (green symbols) of Gd8Pd24Ga collected at

room temperature along with its Rietveld refinement (red curve). The bot-

tom black curve is the difference between the experimental and calculated

patterns. The vertical lines are the Bragg position. . . . . . . . . . . . . . 118

5.5 The X-ray diffraction pattern (green symbols) of Gd8Pd24Ga collected at

room temperature with its Rietveld refinement (red curve). The bottom

black curve is the difference between the experimental and calculated pat-

terns. The vertical lines are the Bragg position. . . . . . . . . . . . . . . . 118

5.6 The X-ray diffraction pattern (green symbols) of Dy8Pd24Ga collected at

room temperature with its Rietveld refinement (red curve). The bottom

black curve is the difference between the experimental and calculated pat-

terns. The vertical lines are the Bragg position. . . . . . . . . . . . . . . . 119

5.7 The cubic unit cell of RE8Pd24Ga. The pink, brown and black balls represent

Ga, Pd and RE atoms, respectively. . . . . . . . . . . . . . . . . . . . . . . 119

5.8 Temperature dependence of electrical resistivity, ρ(T ) for (a) Gd8Pd24Ga,

(b) Tb8Pd24Ga and (c) Dy8Pd24Ga obtained under 0 magnetic field. The

insets show the low-temperatures of ρ(T ) with the least squares fits (in (b)

and (c), solid red curves) using the spin-wave relationship (equation 5.1).

The arrows show the position of the magnetic transition. . . . . . . . . . . 121

5.9 The Low-temperatures, ρ(T ) data of (a) Gd8Pd24Ga and (b) Tb8Pd24Ga

depicting an expanded view of the antiferromagnetic superzone regions. The

solid red curves are the least squares fits of equation 5.2. . . . . . . . . . . 123

5.10 The first derivative of electrical resistivity, dρ(T )/dT data of (a) Gd8Pd24Ga,

Tb8Pd24Ga and (c) Dy8Pd24Ga. The arrows indicate the positions of TN. . 124

xvii

http://etd.uwc.ac.za



 

 

 

 

List of Figures

5.11 Heat capacity data of (a) Gd8Pd24Ga, Tb8Pd24Ga and (c) Dy8Pd24Ga, mea-

sured in 0 magnetic field. The red solid curves are the Debye fits to the ex-

perimental Cp(T ) data using equation 4.3. The horizontal dashed lines are

the Dulong-petit values limit. The insets are the expanded low-temperatures

region plotted as Cp/T vs. T . The arrows show the position of the magnetic

transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.12 Temperature variation of the inverse magnetic susceptibility, χ−1(T ) of (a)

Gd8Pd24Ga, (b) Tb8Pd24Ga and (c) Dy8Pd24Ga data. The red solid lines

are the Curie-Weiss fits done above 20 K for all the data using equation 4.6. 129

5.13 (a) Low-temperatures χ(T ) data of (a) Gd8Pd24Ga, (c) Tb8Pd24Ga and (e)

Dy8Pd24Ga in the antiferromagnetic region measured in a magnetic field of

0.1 T. (b), (d) and (f) display the dχ/dT calculated from χ(T ) data of all

three compounds. The arrows indicate the point of the transition temperature.130

5.14 The magnetic field dependence of magnetization, M(µ0H), of (a) Gd8Pd24Ga,

(b) Tb8Pd24Ga (left axis) and (c) Dy8Pd24Ga (left axis) measured at T =

1.7 K. The derivatives of magnetization are shown in (b) and (c) (right

axis). The vertical arrows pointing at the maximum of dM/d(µ0H) show

the metamagnetic point in Tb and Dy compounds. . . . . . . . . . . . . . 131

5.15 Isothermal magnetization curves, M(µ0H,T ) of (a) Tb8Pd24Ga and (b)

Dy8Pd24Ga measured in magnetic field up to 7 T at the vicinity of the

transition temperatures (from 2 K - 10 K with a step of 1 K). . . . . . . . 132

5.16 (a) Temperature dependencies of the isothermal entropy change, −∆SM(T )

in Tb8Pd24Ga measured in different magnetic fields up to 7 T in the step

of 0.5 T. lines are guide to the eye. (b) The maximum isothermal magnetic

entropy change (−∆SmaxM ) around TN as a function of reduced magnetic field

h2/3 (see test for the definition of h). The solid line is the least squares fit

of equation 4.16 to the calculated −∆SmaxM data. . . . . . . . . . . . . . . . 134

xviii

http://etd.uwc.ac.za



 

 

 

 

List of Figures

5.17 (a) Temperature dependencies of the isothermal entropy changes, −∆SM(T )

in Dy8Pd24Ga measured with different field change in step of 0.5 T. (b)

The maximum isothermal magnetic entropy change (−∆SmaxM ) at TN as a

function of reduced magnetic field h2/3 (see test for the definition of h). The

solid line is the least squares fit of equation 4.16 to the calculated −∆SmaxM

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xix

http://etd.uwc.ac.za



 

 

 

 
List of Tables

2.1 Ionic properties of rare-earth elements with their splitting factors and their

theoretical magnetic moments. . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 purity of the starting elements given in wt. %. . . . . . . . . . . . . . . . 51

4.1 Atomic coordinates derived for RE2Pt2In from the Rietveld refinement. The

site occupancies S.O. = 1 and the isotropic displacement parameters Beq =

1 were assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 R-factors obtained from the Rietveld and Pawley refinement methods in X-

ray powder diffraction data analysis of RE2Pt2In, with RE = La, Pr and

Nd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 The parameters derived from the analysis of the low-temperatures electrical

resistivity data of Pr2Pt2In. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Values of the critical exponents β, γ and δ derived for Pr2Pt2In from the

modified Arrott-plots, the Kouvel-Fisher model and the critical isotherm.

The values of δ for modified Arrott-plots and the Kouvel-Fisher model have

been calculated from the Widom scaling. The theoretical values for various

models are also given for the sake of comparison. . . . . . . . . . . . . . . 87

4.5 Electrical resistivity parameters of Nd2Pt2In derived from the low-temperatures

least squares fits of equation 4.2 to the measured data. . . . . . . . . . . . 92

4.6 Heat capacity data of Nd2Pt2In obtained from the low-temperatures least

square fits of equation 4.4 to the measured data. . . . . . . . . . . . . . . . 97

xx

http://etd.uwc.ac.za



 

 

 

 

List of Tables

4.7 (3D-Heisenberg model). Values of the critical exponents β, γ and δ as

estimated from the modified Arrott-plots, the Kouvel-Fisher model and the

critical isotherm for the Nd2Pt2In. The values of δ for modified Arrott-

plots and the Kouvel-Fisher model have been calculated from the Widom

scaling. The theoretical values for various models are also given for reasons

of comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.8 (3D-Ising model). Values of the critical exponents β, γ and δ as estimated

from the modified Arrott-plots, the Kouvel-Fisher model and the critical

isotherm for the Nd2Pt2In. The values of δ for modified Arrott-plots and

the Kouvel-Fisher model have been calculated from the Widom scaling. The

theoretical values for various models are also given for reasons of comparison.108

5.1 Atomic coordinates derived for Gd8Pd24Ga from the Rietveld refinement.

The site occupancies S.O. = 1 and the isotropic displacement parameters

Beq = 1 were assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 R-factors obtained from the Rietveld refinement methods in X-ray powder

diffraction data analysis of RE8Pd24Ga, with RE = Gd, Tb and Dy. . . . . 117

xxi

http://etd.uwc.ac.za



 

 

 

 
Chapter 1

Introduction

1.1 Overview of rare-earth intermetallic compounds

[1, 2]

The group of lanthanide comprises the elements with atomic number 57 - 71 in the

periodic table. In nature, these elements are always found together and are taken together

in general with yttrium. It has become natural to call the elements consisting of the

lanthanide and yttrium, the rare-earth elements.

The outer electron shell determining the number and nature of the valences is much

the same for these 15 elements. The same for their atomic or metallic radii which differ by

the order of only a few per cent. These similarities lead to the same chemical properties.

As a result of that it presents considerable difficulties in separating these elements from

each other. Furthermore, the chemical similarity leads to more or less uniform behaviour

when the rare-earth metals are combined with other metals. In other words, one can say

that if one member of the group forms an intermetallic compound of a given composition

and crystal structure, all the other members will act in the same way. In contrast to the

chemical properties, the physical properties may vary remarkably within such a series of

isotropic compounds. The 4f -electron shell of the rare-earth elements are gradually filling

up from 0 - 14; as a result, spin and orbital moment will show a large variation as one

proceeds from La compound to the corresponding Lu compound. This situation offers

the possibility of studying theoretical models in which spin and orbital moment occur as

parameters under a wide variety of different conditions.
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1.1. Overview of rare-earth intermetallic compounds

The family of compounds formed between rare-earth and 3d-transition metals is of

particular interest in this research project and the total number of these compounds is

enormous. Examples are the binary intermetallic compounds where the combination of

one rare-earth element and 3d-element give rise to more than ten different compounds

and the ternary intermetallic compound where the one rare-earth element, one 3d-element

and one element of the p-block give rise to a large number of compounds. The major-

ity of investigations of rare-earth-transition compounds reported in the literature so far,

deal with the magnetic properties of these compounds and other few physical properties

of compounds were reported in order to obtain a good understanding of the nature of

the magnetic interactions. In the binary and ternary rare-earth compounds, the magnetic

properties are determined by the rare-earth moments. The transition metals, except for

Mn do not carry magnetic moments. These materials have a metallic character and the

interatomic distance between the rare-earth are fairly large. The magnetic interaction be-

tween the highly localized 4f -electrons is realized by their conduction electrons mediating

in an exchange interaction, and the effect of crystal-electric-field acting on the 4f -electrons.

In rare-earth intermetallic compounds, exchange interactions between rare-earth moments

are mediated by spin polarization of conduction electrons. This mechanism leads to long-

range exchange interaction with an oscillatory dependence of the interaction strength on

the distance between the moments and is known as the Ruddermann-Kittel-Kasuya-Yosida

(RKKY) interaction. Intermetallic compounds in which the rare-earth partner bears no

magnetic moment such as La, Lu, Y and tetravalent Ce have received much attention since

they provide a good opportunity to investigate the origin and the nature of the 4f -electron

magnetism.

In recent years, interest in intermetallic compounds between rare-earth and transition

metals has increased rapidly from the discovery that several of its members can be used as

magnetic refrigerant for magnetic refrigeration and as a starting material for permanent

magnets of outstanding quality. Interest in magnetic refrigeration is increasing rapidly as

an environment-friendly alternative to conventional vapor-cycle refrigeration [3].

2
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1.2. Definition, preparation and metallurgical aspects of rare-earth
intermetallic compounds

1.2 Definition, preparation and metallurgical aspects

of rare-earth intermetallic compounds

[1]

When two metals A and B are alloyed, three possibilities exist. First of all, the two

metals may not mix in the solid state, in which case A and B are present as separate phases.

Such a situation occurs if the heat of mixing is distinctly positive. Secondly, the two metals

may form a solid solution of the metals A and B which is not much different from the liquid

mixture. Its physical properties most often agree with those expected on the basis of a

linear interpolation between the properties of the parent materials. Thirdly, the alloying of

the two metals lead to the formation of intermetallic compounds which are characterized by

well defined stoichiometric compositions such as AB, A3B, AB2, AB5 etc. In an ideal case,

the A and B atoms are not distributed at random but are arranged in the crystallographic

unit cell at defined positions, being different for A and B atoms. Its physical properties

need not have anything in common with the physical properties of the composing elements.

For the synthesis of most of the intermetallic compounds, the stoichiometric propor-

tions of the starting materials are melted together either in an arc-furnace or a levitation

or induction furnace on a crucible (Al2O3, ThO2, MgO, Cu). Since rare-earth elements

react readily with crucible materials at elevated temperatures, heating in a resistance fur-

nace is less satisfactory. The melt will contain additional impurities from crucible beside

the impurities incorporated in the crucible. For instance, Al impurity leads to a deficient

in rare-earth concentration. After cooling the sample from liquid state to solid state, the

sample is not always single phase but may consist of a mixture of several intermetallic com-

pounds. This situation is closely related with the phase relationship of the corresponding

RE-M p phase diagram.

1.3 Motivation

In the field of engineering, sustainable development has become a large focus as climate

3
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1.3. Motivation

change and carbon emission both become more pressing issues. As modern technologies

improve, so does the need for sustainability, which is defined by the Environmental Protec-

tion Agency (EPA) as creating and maintaining the conditions under which humans and

the natural world can exist in productive harmony to support present and future genera-

tions [4]. Creating sustainability solutions is a challenge with which modern engineers are

faced.

One challenge that engineers currently face within the realm of sustainability is refrigera-

tion. Although it is an issue that goes unnoticed by most people, traditional refrigeration

systems are harmful to the environment. It is predicted that by the year 2030 refrigeration

systems and air conditioning will account for 13% of carbon gas emissions [5]. In brief,

traditional refrigeration is not sustainable and change is necessary.

As refrigeration becomes an urgent problem in consideration to global warning and car-

bon emissions, engineers are looking for alternative methods of refrigeration which show

much more promise than traditional cooling systems. One of these methods that is being

currently researched, is magnetocaloric refrigeration. As opposed to typical refrigeration

that uses harmful chemical refrigeration agents, magnetocaloric refrigeration utilizes the

application and removal of a magnetic field in order to change the temperature of specific

materials with magnetocaloric properties in order to achieve a desired cooling effect.

Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling

technology, which is on the threshold of commercialization. The magnetic rare-earth ma-

terials are utilized as the magnetic refrigerants in most cooling devices and for many cooling

applications, the Nd2Fe14B permanent magnets are employed as the source of the magnetic

field [6].

Research on magnetic refrigeration based on magnetocaloric effect has attracted much

attention nowadays due to its higher efficiency and eco-friendly concerns over the conven-

tional gas compression method. It has been also demonstrated to be a very promising

alternative to conventional vapor-cycle refrigeration due to its potential savings and allevi-

ation of the environmental concerns [3, 7, 8]. Therefore, it has aroused worldwide interest
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1.3. Motivation

in the search and development of new magnetic refrigerants with a large magnetocaloric

effect which is considered to be the most important requirement of the industrial applica-

tion near temperature helium liquefaction [9]. A variety of prototype materials involving

second-order and first-order magnetic transition have been investigated theoretically and

experimentally in an attempt to achieve a large magnetocaloric effect [10, 11, 12, 13, 14, 15].

In view of this challenge within the realm of sustainability, the present research project is

mainly focused on the search of magnetic rare-earth intermetallic compounds with large

magnetocaloric effect.

5
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Chapter 2

Theoretical concepts

2.1 Magnetic properties of binary and ternary rare-

earth compounds

[1, 16]

A well-known property of the rare earth elements is their incomplete 4f shell which

becomes progressively more filled as one moves from La (4f 0) to Lu(4f 14). The unpaired

electron in this 4f shell completely determines the physical properties of the rare-earth el-

ements and compounds. These 4f shells are deep inside the atom and close to the nucleus.

Furthermore, they are well shielded by the 5s25p6 shell. As a result of that, they remain

unaffected by their environment and the chemical properties of the rare-earth are almost

the same. The wave function of the 4f shell is of small radial extent giving a localized

character to the 4f electrons. All rare-earth elements give rise to the same type of com-

pound when combined with other metals to form binary or ternary compounds. Exceptions

are Ce, Eu and Yb. The other rare-earth elements are present in the trivalent state in

metal systems, the three elements Ce, Eu and Yb generally adopt different valences. For

instance, Ce most often tends to be tetravalent and Eu and Yb divalent.

Spin (S), orbital (L) and total angular (J) momentum of the single rare-earth ions are

determined by Hund’s rules. The corresponding quantum number are gathered in table 2.1

together with the spectroscopic splitting factor gJ , values of gJ [J(J + 1)]1/2 and gJJ . The
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2.2. Origin of magnetism in rare-earth compounds

two latter quantities completely determine the magnetic behaviour in the paramagnetic

and magnetically ordered regime, respectively. In most models, the magnetic coupling

between two localized moments is proportional to ~Si.~Sj. In this case, the spin coupling

remains unchanged within a class of isostructural rare-earth compounds and the ordering

temperature are predictable to scale as (g − 1)2J(J + 1).

Table 2.1: Ionic properties of rare-earth elements with their splitting factors and their
theoretical magnetic moments.

RE-ion Ground
term S L J gJ gJ [J(J + 1)]1/2 gJJ

La3+ 4f 0 1S0 0 0 0 — 0 0
Ce3+ 4f 1 2F5/2 1/2 3 5/2 6/7 2.54 2.14
Pr3+ 4f 2 3H4 1 5 4 5/4 3.58 3.20
Nd3+ 4f 3 4I9/2 3/2 6 9/2 8/11 3.62 3.28
Pm3+ 4f 4 5I4 2 6 4 3/5 2.68 2.40
Sm3+ 4f 5 6H5/2 5/2 5 5/2 2/7 0.84 0.72
Eu3+ 4f 6 7F0 3 3 0 0 0 0
Gd3+ 4f 7 8S7/2 7/2 0 7/2 2 7.94 7
Tb3+ 4f 8 7F6 3 3 6 3/2 9.72 9
Dy3+ 4f 9 6H15/2 5/2 5 15/2 4/3 10.63 10
Ho3+ 4f 10 5I8 2 6 8 5/4 10.60 10
Er3+ 4f 11 4I15/2 3/2 6 15/2 6/5 9.59 9
Tm3+ 4f 12 3H6 1 5 6 7/6 7.57 7
Yb3+ 4f 13 2F7/2 1/2 3 7/2 8/7 4.54 4
Lu3+ 4f 14 1S0 0 0 0 — 0 0

2.2 Origin of magnetism in rare-earth compounds

[17, 18, 19, 20, 21]

The magnetism of rare-earth compound originates from the rare-earth ion. One of

the fundamental properties of an electron (beside that it carries a charge) is that it has a

magnetic dipole moment, i.e. it behaves like a tiny magnet, producing a magnetic field.

This dipole moment originated from the more fundamental property of the electron that

has quantum mechanical spin. Owing to its quantum nature, the spin of the electron

can be in one of only two states; with the magnetic field either pointing ”up” or ”down”.

Ferromagnetism originates mainly from the spin of the electron, although there is also
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2.2. Origin of magnetism in rare-earth compounds

a contribution from the orbital angular momentum of the electron around the nucleus.

Briefly, the magnetic moment of a free atom originates from three principal sources:

• The spin angular momentum associated with an electron.

• The orbital angular momentum as a result of movement of the electron around the

nucleus.

• The change in the orbital momentum induced by an applied magnetic field.

The first two give paramagnetic contributions to magnetization and the third gives a

diamagnetic contribution. Materials made of atoms with filled electron shells have a total

dipole moment of zero (see table 2.1), because the electrons all exist in pairs with oppo-

site spin. Every electron’s magnetic moment is cancelled by the opposite moment of the

second electron in the pair. Only an atom with unpaired spins can have a net magnetic

moment, thus ferromagnetism only occurs in materials with partially filled shells. The

unpaired spins (which also include angular momentum) tend to align in parallel to an

external magnetic field, an effect called paramagnetism. Ferromagnetism involves an ad-

ditional phenomenon; however in a few substances the dipoles tend to align spontaneously

leading to a spontaneous magnetization, even when there is no applied magnetic field.

In summary, Magnetism arises in rare-earth compounds from the open 4f shell with

a variation of spin and orbital moments. The electronic configuration of the rare-earth

elements in the solid is [Xe]4f
n(5d6s)3, except for the divalent Eu and Yb. This series of

rare-earth elements shown in table 2.1 is characterized by a successive filling of the 4f shell

with increasing atomic number from 0 to 14. It is almost completely localized within the

occupied 5s and 5p orbitals and remains atomic-like even in the solid state. As a result of

that, the 4f electrons are not directly involved in the chemical properties of the atoms. The

increasing screening of the core potential with the degree of occupancy of the 4f causes a

decrease of the ionic radius. Therefore, the rare-earth are a series of chemically very similar

elements that differ by their ionic radius and their magnetic properties. Magnetism arises

from the open 4f shell, with a systematic variation of spin and orbital moments across the

series. Rare-earth compounds are subjected to the strong coulomb interaction to which are

added the effects of spin-orbit coupling, the crystalline-field and the exchange interactions.
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2.2.1 Overview on magnetic structure

As mentioned above, localized magnetism arises from the open 4f shell of rare-earth

ions which are completely localized within the 5s and 5p orbitals. The magnetism of the

rare-earth compounds is mainly governed by the Hund’s rule. Already the elemental met-

als exhibit a rich variety of magnetism phenomena. While Gd and divalent Eu exhibit

pure spin magnetism (L = 0, J = S = 7/2), Dy and Ho carry the largest total moments

of all elements. Due to the strong localization of the 4f electrons, the direct overlap of the

wave function of these 4f electrons is a negligible contribution to the inter-atomic coupling,

which is rather dominated by the indirect RKKY interaction in the metals [17, 22]. The

4f -4f coupling mechanism is due to a direct intra-atomic exchange interaction between

the 4f electrons and the conduction electrons which then mediate the coupling between

the 4f electrons of different lattice sites. This exchange interaction will be discussed in

the next section.

The rare-earth compounds exhibit magnetic behaviour primarily as a result of unpaired

4f -electrons. In physics, several different types of magnetism are distinguished and the type

of magnetic behaviour exhibited is divided into several categories such as diamagnetism,

paramagnetism, ferromagnetism, ferrimagnetism, antiferromagnetism, canted ferromagne-

tism, helical spin array, ferromagnetism energy band etc. In the present thesis, an overview

of these different types of magnetic behaviour of only the diamagnetism, paramagnetism,

ferromagnetism, ferrimagnetism and antiferromagnetism will be presented.

2.2.1.1 Diamagnetism

Diamagnetism is a quantum mechanical effect that occurs in all materials. Diamag-

netism is exhibited by all materials when subjected to an applied magnetic field. Diamag-

netic materials are repelled by a magnetic field. Indeed an applied magnetic field creates

an induced magnetic field in the opposite direction, causing a repulsive force. The com-

mon treatment of diamagnetism of atoms and ions make use of the Lamor theorem which

state that: in a magnetic field the motion of the electrons around a central nucleus is, to
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2.2.1 . Overview on magnetic structure

the first order in applied magnetic field, B, the same as a possible motion in the absence

of B except for the superposition of a precession of the electron with angular frequency:

ω = eB/2m, e and m being the charge and the mass of the free electron, respectively [23].

In diamagnetic materials, all electrons are paired and the total magnetic moment is

zero. The applied field tends to deform orbitals so that the motion of electrons creates a

magnetic field which opposes the external field, this decreases the magnetic field within

the material. The diamagnetic behaviour gains its origin from the induction associated

with the orbital motion due to paired electrons [24]. Therefore, the magnetic induction

increases linearly with the power of the external field. This phenomenon is a weak form

of magnetism and in most cases, other phenomena completely overshadow this contribu-

tion because those phenomena are more powerful. So to see the diamagnetic behaviour, it

is important to eliminate other magnetic phenomena as ferromagnetism or antiferromag-

nism [25]. Generally, the magnetic susceptibility of diamagnetic materials is negative with

a magnitude of the order of −10−5. In most materials diamagnetism is a weak effect which

can only be detected by sensitive laboratory instruments. The magnetic susceptibility of

diamagnetic materials normally depends only very weakly on temperature and is almost

temperature independent from room temperature and below.

2.2.1.2 Paramagnetism

In contrast to diamagnetic materials, paramagnetic, ferromagnetic, ferrimagnetic, and

antiferromagnetic materials are attracted by a magnetic field. Substances are considered

paramagnetic when there is an intrinsic non-zero magnetic moment on each of their atoms,

which is independent of the applied magnetic field. There is also no dipole moment and the

electron spins are randomly oriented in the absence of a magnetic field. When a magnetic

field is applied, and the unpaired electrons of the substance are aligned in the direction of

the applied field, it is considered to be ferromagnetic. In paramagnetic and ferromagnetic

materials, the weak diamagnetic force is overcome by the attractive force of magnetic

dipoles in the material. The magnetic susceptibility of paramagnetic materials is always

positive with an order of magnitude of 10−4.
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2.2.1.3 Ferromagnetism

Ferromagnetism is the basic mechanism by which certain materials (such as ions)

form permanent magnets, or are attracted by magnets. Materials are only ferromagnetic

below their corresponding Curie temperature. Ferromagnetic materials are magnetic in

the absence of an applied magnetic field. When the field is absent, the material has

spontaneous magnetization (also called the saturation magnetization) which is a result of

the ordered magnetic moments; that is, for ferromagnetism, the spins are symmetric in that

they are aligned in the same direction creating a permanent magnetic field. The magnetic

interactions are held together by exchange interactions; otherwise thermal disorder would

overcome the weak interactions of magnetic moments. Below the Curie temperature (TC),

the electron spins are aligned and parallel, causing spontaneous magnetization (figure 2.1).

Above the Curie temperature, the material is paramagnetic, as the atoms lose their ordered

magnetic moments when a material undergoes a phase transition [26]. Ferromagnetism is

the strongest type of magnetism: it is the only one that typically creates a force strong

enough to be felt, and is responsible for the common phenomena of magnetism in magnets

encountered in everyday life. Permanent magnets (materials that can be magnetized by

an external magnetic field and remain magnetized after the external field is removed) are

either ferromagnetic or ferrimagnetic, as are the materials that are noticeably attracted to

them. Only a few substances are ferromagnetic e.g. Fe, Ni and Co including most of their

alloys and some rare-earth compounds. Ferromagnetism is very important in industry and

modern technology (magnetic refrigeration) and is the basis of many electrical and electro-

mechanical devices [17]. Ferromagnetism is a property not just of the chemical make-up

of a material, but of its crystalline structure and microstructure. There are ferromagnetic

metal compounds whose constituent elements are not themselves ferromagnetic, called

Heusler compounds, named after Fritz Heusler. On the contrary, there are non-magnetic

compounds, such as stainless steel, composed almost exclusively of ferromagnetic elements.

Amorphous (non-crystalline) ferromagnetic metallic compounds can be made by very rapid

quenching (cooling) of a liquid compound. These materials have an advantage in that their

properties are nearly isotropic; these results in low coercitivity, low hysteresis loss, high

permeability and high electrical resistivity [17]. These properties made these materials

good candidates for magnetic refrigeration. One such typical material is a transition metal-
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2.2.1 . Overview on magnetic structure

metalloid compound made from about 80% transition metal (e.g. Fe, Co or Ni) and a

metalloid (e.g. B, C, Si, Al or P) [17]. A new class of exceptionally strong ferromagnet

are the rare-earth magnets, which forms part of the investigations presented in this thesis.

They contain rare-earth elements that are known for their ability to carry large magnetic

moments in well localized 4f -orbitals.

Figure 2.1: Ferromagnetic representation of spins aligned in the same direction.

In many ferromagnetic crystals, the saturation magnetization at T = 0 K does not

correspond to the parallel alignment of the magnetic moments of the constituent param-

agnetic ions, even in crystals for which the paramagnetic ions have their normal magnetic

moments [23]. For instance, in the magnetite Fe3O4 or FeO− Fe2O3, the ferri (Fe3+) ions

are in the state with spin S = 5/2 and zero orbital moment, which means each ion should

contribute 5 µB to the saturation moment. On the other hand, the ferrous (Fe2+) ions have

spin of S = 2 and should contribute 4 µB, neglecting the residual orbital moment contri-

bution. Thus, the effective number of Bohr magnetons per Fe3O4 formula unit should be

about 14 if all spins were parallel but the observed value is 4.1. This shortfall is understood

if the moments of Fe3+ ions are antiparallel to each order, therefore the observed moment

arise from Fe2+ ion [23].

12

http://etd.uwc.ac.za



 

 

 

 

2.2.1 . Overview on magnetic structure

2.2.1.4 Ferrimagnetism

The term ferrimagnetism, was coined originally to describe the ferrite type ferromag-

netic spin order such as in figure 2.2. Ferrimagnetic materials are only ferrimagnetic below

the Curie temperature. They are magnetic in the absence of an applied magnetic field and

are made up of two different ions with moments directed antiparallel to each other. When

a magnetic field is absent the material has a spontaneous magnetism which is the result

of ordered magnetic moments; that is, for ferrimagnetism one ion’s magnetic moments

aligned facing in one direction with certain magnitude and the other ion’s magnetic mo-

ments are aligned facing in the opposite direction with a different magnitude (figure 2.2).

As the magnetic moments are of different magnitude in opposite direction, there is still

a spontaneous magnetization and a magnetic field is present [27]. Similar to ferromag-

netic materials the magnetic interactions are held together by exchange interactions. The

orientation of moments however are antiparallel which results in net magnetic moments

by subtracting their momentum from one another [27]. The magnetization and magnetic

susceptibility behaviour of ferrimagnetic materials are similar to that of the ferromagnetic

materials. In general, ferrimagnetic materials are poor conductors compared to ferromag-

netic materials but useful in applications when a material with a minimum spontaneous

magnetization is required to operate at high frequencies like in the transformer devices

with no significant Eddy current.

Figure 2.2: Ferrimagnetic representation of spins aligned in opposite directions with difference
in magnitude.
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2.2.1.5 Antiferromagnetism

In antiferromagnet, the spin are ordered in an antiparallel arrangement with zero

net moment at temperature below the ordering or the Néel temperature TN. An antifer-

romagnet is a special case of a ferrimagnet for which both magnetic moments have equal

saturation magnetization. Materials are only antiferromagnetic below their corresponding

Néel temperature ( TN). This is similar to the Curie temperature as above TN the material

undergoes a phase transition and becomes paramagnetic. The material has equal magnetic

moments aligned in opposite directions (figure 2.3) resulting in a zero magnetic moment

and a net magnetism of zero at all temperatures below TN. Antiferromagnetic materials

are weakly magnetic in the absence or presence of an applied magnetic field. Similar to

ferromagnetic and ferrimagnetic materials the magnetic interaction are held together by

exchange interactions preventing thermal disorder from overcoming the weak interactions

of magnetic moment. When disorder occurs it is at TN [27].

Figure 2.3: Antiferromagnetic representation of spins aligned in opposite directions with same
magnitude.
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2.2.2 Theory of magnetism

2.2.2.1 Paramagnetism and the Curie-law

Paramagnetism is the simplest type of magnetism in which the magnetization is

reversible. For low levels of magnetization, the magnetization of paramagnets follows what

is known as Curie’s law, at least approximately. This law indicates that the magnetic

susceptibility of paramagnetic materials is inversely proportional to their temperature, i.e.

materials become more magnetic at lower temperatures. The mathematical expression of

the Curie law is:

M = χH =
C

T
H, (2.1)

where H is the applied magnetic field and C is a material-specific Curie constant. Curie’s

law is valid under the commonly encountered conditions of low magnetization (µBH ≤ kBT ,

where µB is the Bohr magneton and kB is the Boltzmann constant), but does not hold in

the high/low temperature regime where saturation of magnetization occurs (µBH ≥ kBT )

and magnetic dipole are all aligned with the applied magnetic field. When the dipole are

aligned, increasing the external magnetic field will not increase the total magnetization

since there can be no further alignment. For paramagnetic ion with non-interacting mag-

netic moments with total angular momentum J , the Curie constant, C, is related to the

individual ions magnetic moments through the relation:

C =
NA

3kB

µeff where µeff = gJµB

√
J(J + 1). (2.2)

The parameter µeff is interpreted as the effective magnetic moment per paramagnetic

ion. NA is the Avogadro number and gJ is the gyromagnetic ratio also known as the Landé

g-factor defined as follows:

gJ = 1 +
J (J + 1) + S (S + 1)− L (L+ 1)

2J (J + 1)
, (2.3)

with S and L representing the total electron spin and the total orbital momentums,
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respectively. The origin of the observed magnetic behaviour results from electron spin and

orbital motion and it becomes clear from equation 2.1 to 2.3 how the magnetic behaviour

is directly related to the electron configuration of the magnetic ions. For the compounds

investigated in this thesis, only the rare-earth elements contribute to the magnetism or

carry a magnetic moment with good agreement between the theoretical and experimental

µeff values.

2.2.2.2 Curie-Weiss law

The Curie-Weiss law is a simple model derived from mean-field approximation, this

mean it works well for the materials with temperature T much greater than their cor-

responding Curie or Néel temperature, T � TC or TN; however it fails to describe the

magnetic susceptibility, χ, in the immediate vicinity of the Curie or Néel point because of

local fluctuation between atoms [28]. The Curie-Weiss law is an adapted version of the

Curie law. It holds particularly at high temperature where there is known spontaneous

interaction between neighboring unpaired electrons (systems with minimal interaction).

For systems with interaction, paramagnetic behaviour is observed but at low enough tem-

peratures the magnetic moment may order. The Curie or Néel point is seen as a phase

transition between a ferromagnet or antiferromagnet and a paramagnet. The word para-

magnet merely refers to the linear response of the system to an applied magnetic field.

Therefore, a modification is made to the Curie law which incorporates a parameter, θ, to

indicate the strength of the interaction between the unpaired f -electrons, and known as

the Curie-Weiss law:

χCW (T ) =
Nµ2

eff

3KB (T − θP)
, (2.4)

where θP is the Weiss temperature. The sign of θP depends on whether ferromagnetic or

antiferromagnetic interactions dominate and it is rarely exactly zero, except in the dilute,

isolated cases. The paramagnetic Curie-Weiss description above TC or TN is a rather differ-

ent interpretation of the word paramagnet as it does not imply the absence of interactions,

but rather that, the magnetic structure is random in the absence of an external magnetic

field. Usually, ferromagnetic substances show very large susceptibilities compared to para-
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magnetic substances and deviate from Curie-Weiss law below a ferromagnetic temperature

TC. This deviation results from the parallel alignment of the magnetic moments which

eventually saturate at a very low-temperature. On the other hand, substances which order

antiferromagnetically typically possess smaller χ values than paramagnetic substances at

low-temperatures. The transition to antiferromagnetic order occurs below TN as a result of

disorder i.e. exchange interactions, which couple the magnetic moments and aligns in the

antiparallel manner. Both the Curie and Curie-Weiss law cannot describe the susceptibility

behaviour below TC or TN.

2.2.2.3 Exchange interactions

i) Direct interaction

Magnetism is a macroscopic phenomenon that at microscopic level occurs due to

exchange interactions, whose typical range, or more simply length scale, is determined by

the spatial extent of the quantum mechanical wave function [29]. Confinement of these

wave functions for example; the presence of a surface leads to many unusual magnetic

phenomena [30]. The mechanism of spin alignment is not magnetic in origin; it is essentially

the effect of the Pauli exclusion principle tending to keep parallel spins apart and known

as exchange interaction. The interaction is a result of the fact that the wave function of

two electrons must be antisymmetric under the exchange of all electron coordinates, space

and spin:

ψ(~r1, ~s1;~r2, ~s2) = −ψ(~r2, ~s2;~r1, ~s1). (2.5)

From this relation, it follows that the wave function vanishes when the coordinates

of two electrons are identical: ~s1 = ~s2, ~r1 = ~r2. The overall antisymmetry of the wave

function therefore tends to keep electrons of parallel spin apart so that the expectation

of the coulomb repulsion energy e2/4πε0|~r1 − ~r2| of both electrons is reduced for parallel

spin than that of antiparallel spin. This represents the exchange interaction between the

two electrons and can be expressed in the form J12~s1.~s2, which correspond to the Coulomb

energy of the parallel spin state being 2J12 smaller that of the antiparallel spin state.

It result from this interpretation that J12 > 0 for ferromagnetic alignment of spins and

17

http://etd.uwc.ac.za



 

 

 

 

2.2.2 . Theory of magnetism

J12 <0 for antiferromagnetic alignment of spins. Exchange interaction between the elec-

trons of the same atoms explain Hund’s rule. On the other hand, Coulomb interaction

between two electrons on different atoms depends on their relative spin orientation as a

result of the antisymmetry of the wave function. The resulting exchange energy decreases

rapidly with increasing distance between the two atoms. This type of interaction just dis-

cussed is known as direct interaction which cannot explain magnetic ordering in rare-earth

metals due to the small overlap of the 4f wave functions on neighboring atoms.

ii) Indirect interaction: Rudderman-Kittel-Kasuya-Yosida interaction

Another type of interaction is the indirect exchange process observed in the rare-earth

metals. This indirect exchange interaction also leads to a coupling between spins of the

same form as in the direct exchange interaction: −J12~s1.~s2. In this case, J12 alternates in

sign and decreases in magnitude with increasing distance between the atoms. The RKKY

interaction refers to the interaction of the localized moments themselves through a spin

density oscillation of the RKKY-type. This interaction results from the limited spatial

extent of the 4f wave function of adjacent rare-earth centres which may turn out to be

a negligible contribution to the inter-atomic coupling. Interaction between them can only

be possible via polarized conduction electrons and leads to a magnetic ordering of 4f

moments at low-temperatures. In contrast to the 3d metals, the 3d wave functions are

spatially more extended and one can expect to find direct interaction provided that the

atoms are close enough together or in an appropriate concentrated state. The mechanism of

RKKY interaction is that the interaction between localized magnetic moment of the 4f ion

and the spin of the conduction electron causes a spin polarization of the conduction band,

creating an oscillating spin density wave [31]. The RKKY interaction for the magnetic

exchange is described by the Hamiltonian:

HRKKY = J ijRKKY
~Si.~Sj, (2.6)

where ~Si and ~Sj are the total spins of the localized 4f electrons located at i and j position,

respectively and separated by a distance ~rij.J
ij
RKKY is the coupling constant found to be
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in the form [19, 32]:

J i,jRKKY = 6πZJ2N (EF)

(
sin (2kFrij)

(2kFrij)
4 −

cos (2kFrij)

(2kFrij)
3

)
, (2.7)

with Z being the number of conduction electrons per atom, kF the Fermi wave number,

N(EF) is the density of state at the Fermi level and J is the exchange integral defined

according to the Schrieffer-Wolff transformation [33] as follows:

J = − |Vsf |2

|ε4f − εF|
; (2.8)

Vsf is the hybridization matrix element between the 4f electrons and the conduction band

so |Vsf |2 will describe the strength of the hybridization between the itinerant conduction

electrons and the localized 4f electrons; ε4f denotes the position of the 4f energy level

relative to the Fermi energy level εF. The negative sign indicates that the coupling between

the conduction electrons and the local moment is antiparallel. The RKKY exchange coef-

ficient J ijRKKY , oscillates from positive to negative as the separation of ions changes and

has the damped oscillatory nature. Therefore, depending upon the separation, rij between

a pair of ions, their magnetic coupling can be ferromagnetic or antiferromagnetic. The

energy scale connected to the RKKY interaction is given by:

KBTRKKY ∝ J2N (EF) . (2.9)

2.2.2.4 Spin wave theory

[27, 34]

There are several reasons why researchers want to know the elementary excitations

of ordered magnets. Some of these are: (i) experiments measure them and (ii) they deter-

mine thermal behaviour (at low-temperature) such as the specific heat, the resistivity or

the reduction of the order parameter by thermal fluctuations.

Spin waves are the analog for magnetically ordered systems of lattice waves in solid sys-
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tems; just like the quantized lattice wave is called a ”phonon” and a quantized spin wave

is called ”magnon”. This section illustrates the determination of the low-temperatures

thermal behaviour of the heat capacity, magnetization and electrical resistivity relevant in

this thesis.

A classical mechanical calculation of the low lying excited states of a chain of ferro-

magnetically aligned spins, assumed that the spins behave as classical angular momentum.

This calculation is similar to that used to calculate the lattice vibrations in a solid sys-

tem. Considering only the nearest neighbor exchange interaction and using the Heisenberg

Hamiltonian:

H = −
∑
i

∑
j 6=i

Jij ~Si.~Sj, (2.10)

(Jij is the exchange interaction between the total spin momentums Si and Sj of the i and

j atoms) the exchange energy of the nth spin in the chain is given by:

En = −2J ~Sn.
(
~Sn−1 + ~Sn+1

)
, (2.11)

where 2J is the nearest neighbor exchange interaction. From the equation of motion of the

nth spin with some approximations, the dispersion relation of the spin waves is given by:

~ωk = 4JS(1− cos(ka)), (2.12)

with k the wave vector and a the lattice spacing.

A quantum mechanical approach to the calculation of the spin waves also yields to the

same dispersion relation given by equation 2.12, however, as we might expect from the

analogy with lattice vibration, the energy of a mode of wave number k is quantized and

can only take the value:

En =

(
n+

1

2

)
~ωk. (2.13)

From the dispersion relation given by equation 2.12, the magnon energy ε as k tends to
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zero, leads to a quadratic dependence of ε in the form:

ε = ~ωk = 2JSak2. (2.14)

The contribution of the spin waves to the heat capacity of ferromagnet materials at low

temperature is then obtained using the number of spin wave modes with wave number

between k et k + dk and the number of mode with frequency between ω and ω + dω.

The energy associated with each mode is related to the average number of magnons at

temperature T given by the Bose-Einstein distribution function. Thus, the contribution of

the magnons to the total energy is given by:

E = E0 +
V

4π2

(
~

2JSa2

)3/2(
kBT

~

)5/2 ∫ ∞
0

x3/2

ex − 1
dx, (2.15)

where E0 is the zero point energy, V is the volume of the crystal and x = ~w/kBT .

Equation 2.15 leads to the spin wave contribution to the heat capacity at low temperatures

in the form:

CM =
dE

dT
∝ kBT

3/2. (2.16)

Similar to the heat capacity, the magnetization can be expressed in the form:

M = Ms

[
11− 1

NS4π2

(
kBT

2JSa2

)3/2 ∫ ∞
0

x1/2

ex − 1
dx

]
, (2.17)

where Ms = NgµBS is the saturation magnetization and the integral give a constant

number. It follows from equation 2.17 that the magnetization decreases as T 3/2 from its

saturation value is much better with the experimentally observed behaviour than those

predicted by the mean-field theory.

For an anisotropy ferromagnet material, the magnon dispersion relation is given in the

limit of small wave number k in the form [34]:

ωk = ∆ +Dk2, (2.18)

where ∆ accounts for an anisotropy gap and D is the spin wave stiffness. The electrical

resistivity resulting from the scattering of conduction electron due to the spin wave modes
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is given by:

ρM =
A

kBT

∫
ω

sinh2 (ω/2kBT )
dω

∫
k3 Imχ(k, ω)dk, (2.19)

where A = (1/3~)(4πmG2/ne) with m, e, and n being the mass, charge and number of

conduction electrons per unit volume, respectively. G is the coupling constant between the

conduction electrons and the rare-earth moments. The imaginary part of the transverse

dynamic susceptibility, Imχ(k, ω), associated with the spin waves is given by:

Imχ (k, ω) = π [δ (ω − Ek) + δ (ω + Ek)] , (2.20)

with Ek the energy of the magnetic excitation responsible for the scattering of the con-

duction electrons. In the isotropic ferromagnet case ∆ = 0 (gapless dispersion in k-space)

one obtains ρM ∼ T 2. For anisotropy ferromagnetic materials or when a symmetry lifting

external magnetic field is applied, there is a gap in the spectrum and the resistivity can

be obtained for kBT � ∆, given by [35]:

ρM (T ) = a∆FMT

[
1 + 2

kBT

∆FM

]
exp

(
−∆FM

kBT

)
, (2.21)

where a is a constant which depends on the materials. The spin wave contribution to the

heat capacity at low-temperatures expected for an energy gapped ferromagnetic spin wave

is given by:

CM (T ) ≈ γT +BT 3/2exp

(
−∆FM

kBT

)
, (2.22)

where γ is the Sommerfeld coefficient and B a constant that defines the stiffness of the

sample.

For antiferromagnetic materials, Yamada and Takada [36] suggest a new expression of

the transverse dynamic susceptibility, Imχ(k, ω) associated with spin waves given by:

Imχ (k, ω) =
π

εk

[
δ
(
ω − ω+

k

)
+ δ

(
ω + ω−k

)]
(2.23)

ω±k = −µeffH ± εk,
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with:

εk =
1

2

(
ω+
k − ω

−
k

)
=
(
∆2 +Dk2

)1/2
. (2.24)

The resistivity then follows:

ρM(T ) ≈ b∆2
AFM

(
kBT

∆AFM

)1/2

exp

(
−∆AFM

kBT

)
×[

1 +
2

3

(
kBT

∆AFM

)
+

2

15

(
kBT

∆AFM

)2
]
, (2.25)

where b is a constant. The spin wave contribution to the heat capacity at low temperatures

expected for an energy gapped antiferromagnetic spin wave having the same dispersion

relation given by equation 2.24 takes the form [37]:

CM(T ) = ∆
7/2
AFMT

1/2exp

(
−∆AFM

kBT

)
×[

1 +
39

20

(
kBT

∆AFM

)
+

51

32

(
kBT

∆AFM

)2
]
. (2.26)

2.2.3 Crystal electric field effect and Schottky anomaly

Crystal electric field results from the surrounding electrons and ions in the crystal. In

a compound, a 4f -ion is exposed to a crystal-electric-field, which reflects the symmetry

at the rare-earth ion site. This crystal-electric-field completely or partially lifts the de-

generacy of the 4f free-ion ground state multiplet (2J + 1), J being the total angular

momentum. It should be noted that the ground state of a free-ion or atom with a partially

filled 4f shell can be derived using Hund’s rule. Ground state multiplets generally denote

the lowest lying multiplets in the presence of a crystal-electric-field. The resulting number

of multiplets is determined by the local crystal symmetry and their relative energy levels

depends on the exact form and magnitude of the crystal-electric-field.

In rare-earth compounds, crystal-electric-fields are likely responsible for the magne-

tocrystalline anisotropy, but may themselves cause the splitting of the (2J + 1)-fold de-

generate manifold. The crystal-electric-field splitting affects many physical properties. For

a system with a first excited level at kBT∆CEF
(T∆CEF

denotes the temperature correspond-
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2.3. Critical behaviour

ing of the crystal-electric-field) above the ground state, only the lowest lying multiplet has

a high probability of occupancy for T � T∆CEF
. Therefore, the properties of the system are

determined by the ground state multiplet. With increasing temperature, the state above

the ground state becomes populated. The corresponding increase of entropy shows up as

an extra contribution to the 4f -electron specific heat of the system in the region T∆CEF
, in

the form of Schottky anomaly, expressed for m number of levels in the form:

CSch(T ) =
R
∑m

i=0 gi
(

∆i

T

)2
exp(−∆i

T
)[∑m

i=0 gi
(
−∆i

T

)]2 ×[
m∑
i=0

giexp(−
∆i

T
)−

m∑
i=0

gi(
∆i

T
)2exp(−∆i

T
)

]
, (2.27)

where level i with degeneracy of gi is situated at an energy ∆i above the ground state.

The change of the effective moment with increasing occupancy of higher energy levels

becomes evident in the magnetic susceptibility. Transport properties reflect the enhanced

scattering on crystal-electric-field excitation around T∆CEF
. In the case of the temperature

variation of the electrical resistivity, crystal-electric-field is sometimes characterized by a

broad curvature at high temperatures around T∆CEF
.

2.3 Critical behaviour

The description of magnetic transition in the vicinity of critical temperature can be

made through the use of critical exponents. It is a matter of expressing the quantities

studied according to the relevant quantities of the system in accordance with a power law.

In magnetic systems, the most relevant critical exponents correspond to the temperature

dependence of the spontaneous magnetization and magnetic field dependence of magneti-

zation value at the Curie temperature. Depending on the type of model, the value of the

exponents are different. According to the scaling hypothesis, for second order phase tran-

sition, the spontaneous magnetization Ms below TC, inverse initial susceptibility χ−1
0 (T )

above TC and magnetization M at TC follow the power-law dependence [38]:

Ms (T ) = M0 (−t)β ; t<0, (2.28)
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2.3. Critical behaviour

χ−1
0 (T ) = Γ (−t)γ ; t>0 (2.29)

M = XH1/δ; t = 0, (2.30)

where t = (T − TC) /TC is the reduced temperature, M0, Γ and X are the critical

amplitudes. The magnetic equation of states relating to the variables M(µ0H, t), µ0H and

T can be obtained using the scaling hypothesis and can be expressed as:

M(µ0H, t) = |t|β f±
(
µ0H

tβ+γ

)
, (2.31)

where f+(T > TC) and f−(T < TC) are regular analytic functions. Equation 2.31 implies

that for true scaling relations and right choice of β, γ and δ, the scaled M/|t|β plotted as a

function of µ0H/|t|β+γ reveals that the magnetic isotherms in the vicinity of TC fall into two

individual branches, one for T<TC and the other for T>TC. However, the critical exponents

often show various systematic trends or crossover phenomena as one approaches TC [39,

40, 41]. This occurs if the magnetic system is governed by various competing couplings

and/or disorders. In that case, it is useful to introduce the temperature-dependent effective

critical exponents, βeff and γeff for t 6= 0. It can be mentioned that effective exponents are

nonuniversal properties and they are defined as [38]:

βeff(t) =
d [lnMs(t)]

d ln(t)
γeff (t) , (2.32)

γeff(t) =
d
[
lnχ−1

0 (t)
]

d (ln t)
. (2.33)

• In the asymptotic limit t −→ 0, the effective exponents approach the universal critical

(asymptotic) exponent.

• In the critical regime (asymptotic limit) where χ ∼ (T - TC)γ, γeff , is defined as

lim
t→0

γeff = γ.

• At high temperatures (mean-field theory, T −→ ∞) where we can establish the

Curie-Weiss law, χ = C/(T − TC), γeff is defined as lim
t→0

γeff = 1.
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2.3.1 . Mean-field theory

2.3.1 Mean-field theory

[42]

The mean-field theory is one of the main tools of finding the critical temperature of

magnetic materials below the paramagnetic phase transition. This theory usually applies

to a spontaneous magnetization and on the inverse initial susceptibility respectively, just

below and above the critical temperature. From this, the mean-field theory could be

defined as an approximation of treating a full system of interacting particles, it is a useful

approach which gives a qualitative prediction of the behaviour at the phase transition [43].

So, in Physics there are some complicated equations to solve and therefore require some

approximations to get the right solutions. Some researchers like Ising and Heisenberg,

found the tools to overcome these difficulties via the mean-field theory model. From

interactions studied above and the fact that atoms are a set of spins (±1
2
), the simplest

approach to consider, according to the interactions between spins is to take into account

the average exchange felt by a particular spin (i) due to all the other spins in atom [44].

This is the essence of the mean-field theory. In this system, spins are connecting to the

nearest neighbors of the specific spin (i) by the Hamiltonian [42, 45]:

δHi = Si

[
J
∑
δ

Si+δ

]
− ~µiH = −~µiHeff , (2.34)

which includes the coupling term of the spin to the external field with Heff the effective

magnetic field defined as: Heff = − J
gµB

∑
δ Si+δ +H.

In mean-field theory, the term Si is replaced by the average of the neighboring operators

<Si+δ>, so, the effective magnetic field becomes [42]:

Heff = − Jn

(gµB)2
M, (2.35)

where M = <µ> is the magnetization and n is the number of nearest neighbors atoms.

In an effective magnetic field, the magnetization takes the form of [42]:

MγSB (βγSHeff) = γSB

(
βγS

[
− Jn

(gµB)2
M

])
, (2.36)

where γ and β are constants and B(x) is the Brillouin function (with x = βγSHeff). This
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2.3.2 . The Ising model

nonlinear equation can be solved for a given H. So, to get the critical temperature for

example, this equation will be solved for H = 0 and the B(x ) will be expanded for small

value of x. Then equation 2.36 above becomes:

M = −γSB
(
nJ

γTC

M

)
≈ −γSS + 1

3S

nJ

γTC

M ; (2.37)

⇒ TC = −S (S + 1)

3
nJ. (2.38)

In this theory, TC is of the same order with the interaction energy |J |. Below TC,

the variation of the magnetization near the transition is proportional to T as follows:

M∼ (T − TC)1/2. Just above TC the inverse magnetic susceptibility is also proportional to

T as χ−1
0 ∼ (T − TC). The exponents 1/2 and 1 are characteristic of the disappearance of

the order parameter near the transition of the classical mean-field theory model [46, 47].

2.3.2 The Ising model

The Ising model is a crude model for ferromagnetic compounds that takes the lattice

of magnetic moments into account [48, 49]. It can be derived from quantum mechanics

through several considerations, educated guesses and rough simplifications. This theory

on the studies of phase transition (which take place when a small variation of a parameter

such as temperature or applied magnetic field changes the state of a system) was discovered

by Ernest Ising in 1920 [50]. The spontaneous magnetization of ferromagnetic compounds

is the original purpose of this model. In this regard, two cases are well-established [42, 48,

49, 51, 52]:

• in the absence of interactions, the spin are in paramagnetic state and trying to align

with an applied field. The Hamiltonian in this particular approximation is:

HP =
∑

gµBB~σ, (2.39)

with σ = ±1
2

being the value of the spin and B is the applied magnetic field.

• by considering the interactions between neighboring spins i and j, the Hamiltonian
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2.3.2 . The Ising model

takes the form of:

Hint = −J
2

∑
i6=j

σiσj. (2.40)

The Ising model put together these two cases [42]:

HIsing = −J
2

∑
i6=j

σiσj +
∑

gµBB~σ. (2.41)

Looking at this latter equation, Ising proposed some approximations to solve it by using

the mean-field theory. This theory is based on treating exactly one spin at a time and

average over all of the properties of the surrounding spins and makes the assumption that,

the mean-field for all spins is the same (so that the result must be self-consistent) [46]. By

focusing on one spin i, the factor 1/2 cancels and the average Hamiltonian over the lattice

volume becomes [42, 53]:

Hi = −Jσi
∑

<σj>+ gµBBσi, (2.42)

where, <σj> is the average value of neighboring spins in the lattice. Suppose <σj> = n

<σi>, where n is the number of the nearest neighbor spin. The self-consistent approxima-

tion reveals <σj> = <σi> for every spin j and it follows [42, 53]:

Hi = (−Jn<σi>+ gµBB)σi. (2.43)

In the absence of an external field, the energy depending on the average value of

neighboring spins is [42]:

Eσi = ±1

2
= ±Jn

2
<σi>. (2.44)

From the point of view of statistical mechanics, the partition function Z could be stated

as [42, 54]:

Z = eβJn<σi>/2 − e−βJn<σi>/2, (2.45)
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2.3.2 . The Ising model

with:

<σi> =
1

2

eβJn<σi>/2 − e−βJn<σi>/2

eβJn<σi>/2 − e−βJn<σi>/2
≈ 1

2
tanh

(
βJn<σi>

2

)
, (2.46)

where β = 1/kBT . By solving the self-consistency equation for <σi>, the magnetization of

the material can be determined from the plotted graph y = <σi> and (1/2) tanh (βJn<σi>/2).

When T is small, it leads to the spontaneous magnetization and the transition point from

paramagnetic to ferromagnetic region which can be found by looking at the slope of the

given curves for a small value of <σi>.

For a small value of x, tanh(x) ≈ x ⇒ (1/2) tanh (βJn<σi>/2) ≈ βJn<σi>/4,

so, if βJn/4 < 1 two lines intersect at <σi> = 0 and if βJn/4 > 1, the lines will intersect

again at non zero values of <σi> and the critical temperature TC occurs when βJn/4 = 1

or Jn/4kBTC = 1, so, the critical temperature found takes the expression [42]:

TC =
Jn

4kB

. (2.47)

Considering the system at temperatures above the phase transition point the magneti-

zation and the magnetic susceptibility, respectively become [42]:

M =
N(E)µ2

BB

kBT
, (2.48)

where N (E) is the density of spins with energy E related to the magnetic susceptibility

by:

χ = lim
B−→0

µ0
∂M

∂B
=

χCurie

1− TC

T

. (2.49)

Around TC, the inverse magnetic susceptibility (just above TC) and the spontaneous

magnetization (just below TC) are proportional to T as follows χ−1
0 ∼ (T − TC)γ and

M0∼ (T − TC)β, respectively with γ = 1.241 and β = 0.325. The exponents γ and β

are characteristic of the disappearance of the order parameter near the transition of the

classical 3D-Ising model [46, 47].
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2.3.3 The Heizenberg model

[38, 55]

In the Heisenberg model of the mean-field theory, the main idea is the fact that

it exists as an exchange interaction with a coupling constant λ between the magnetic

moments of spins Si and Sj located on different sites i and j. In this particular case, the

exchange energy can be expressed as:

Eex = −2JijSi.Sj, (2.50)

where Jij is the exchange parameter. The negative sign conforms to the agreement that

if Jij >0 the configuration in which the spins Si and Sj are parallel is privileged. In the

opposite case (Jij <0), the antiparallel alignment of spins is favoured. So, in order to easily

solve equation 2.50 according to its complexity, one can assume that Jij = 0 except when

site i and j are neighboring of the lattice. The Hamiltonian for the entire system in this

case then takes the expression:

Hex = −
n∑
i=1

n∑
j=1

JijSiSj − gµB

n∑
i=1

Si.H, (2.51)

where H is the applied magnetic field. The mean-field approximation to the Heisenberg

Hamiltionian of equation 2.51 is one of the largest classes of cluster approximations [56].

In this case, one only treats the interactions among the spins within a cluster exactly,

whereas for the remaining spins in the system (in the z-direction) one can suppose Siz =

<Sz> and Six = Siy = 0. For the molecular field approximation, one chooses the cluster

to consist of a single spin, so that the Hamiltonian becomes:

Hi =

(
−2
∑
j

Jij<Sz>− gµBH

)
Siz. (2.52)

Equation 2.52 describes a single spin situated in a magnetic field of magnitude:

Heff = 2

(∑
j Jij

gµB

)
<Sz>+H = 2

(∑
j Jij

(gµB)2

)
M +H, (2.53)
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2.4. Phase transition

with the coupling constant λ = 2
(∑

j Jij/(gµB)2
)

. So, the relation between the critical

temperature, the Curie constant C and λ is given by:

TC = λC =
2

3kB

S(S + 1)
∑
j

Jij. (2.54)

For the case of nearest neighbors interactions (Jij = J only when site j is one of the q

sites that are nearest neighbors of site i),
∑

j Jij = qJ (q being the coordination number)

and TC in this case could be written as follows:

TC =
2

3kB

qJS (S + 1) . (2.55)

In this Heisenberg model, the disconcerting aspect about equation 2.55 is that it predicts

two lattices with the same value of q. For instance, the simple cubic lattice is predicted to

have the same value of TC as the plane triangular lattice.

The spontaneous magnetization below TC and the inverse magnetic susceptibility are

proportional to TC. i.e. Ms ∼ (T−TC)β and χ−1
0 ∼ (T−TC)γ with β = 0.365 and γ = 1.386.

The exponents β and γ are characteristic of the disappearance of the order parameter near

the transition of the classical 3D-Heisenberg model [46, 47].

2.4 Phase transition

All thermodynamic systems are characterized by a certain number of physical parame-

ters, called variables of state such as the density or the magnetization. If the metal has the

magnetic properties, it is evident that these variables strongly depend on the conditions

applied to the system, in particular the temperature, the pressure, and the applied mag-

netic field. From this dependence emerges a fundamental property of matter, which is the

possibility of seeing one of these parameters of state undergoing sudden variation on the

macroscopic scale. This is what is called a ”phase transition”. There are two main types of

transitions (first and second order), which are distinguished by the existence or not, of the

variation of entropy during the transition from one phase to another at constant tempera-

ture and pressure. The first order phase transition is characterized by a discontinuity of at

least one first derivative of the appropriate potential such as the entropy at the transition

point. Then comes the transition of higher order which is characterized by the continuity

31

http://etd.uwc.ac.za



 

 

 

 

2.4.1 . Landau theory of second-order phase transition

of all the first derivatives of the potential. Nevertheless, a great majority of them are of

the second order, that is to say, that some second order derivatives are discontinuous as it

is in the case of the specific heat at constant pressure [57].

2.4.1 Landau theory of second-order phase transition

The Landau theory of second order phase transition is based on the existence of order

parameter (the spontaneous magnetization is the order parameter of the transition), thus,

the value characterizes the phase present in the considered system. At high temperature

this parameter is zero. At low-temperatures, a spontaneous symmetry break occurs at

about the critical point and the order parameter takes a non-zero value in the ordered

phase. At the vicinity of the critical point, Landau suggests developing the free energy

of the system in power of order parameter. From this development, Landau comes out

with the value of the critical exponents known as the mean-field model. In this model, the

succession of the phases when the temperature increases is understood by a competition

between the internal energy U (which favor order in the system) and the entropy S (source

of disorder) in the free energy G and in which the minimum value of the order parameter

denotes the thermodynamic equilibrium [54, 57, 58].

2.5 Magnetocaloric effect

2.5.1 Introduction and background

The first observation of the magnetocaloric effect dates back to almost 136 years (1881),

when Warburg observed it in iron. So, in the years 1926 - 1927, the idea of using adia-

batic demagnetization to reach a very low-temperature has been proposed, independently

by Debye and Giauque [59, 60]. The magnetocaloric effect is defined as the change in

temperature of certain magnetic materials due to the variation of an applied magnetic

field. One of the most important applications of this effect, is the magnetic refrigeration

which is based on the results in the heating of a material during its magnetization and

its cooling during its demagnetization process. So, in a conventional refrigeration system,

a gas is used, which leads to its heating and then its cooling. Similarly, the studies of
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the magnetocaloric effect in rare-earth compounds has great importance in magnetism in

order to improve the quality of magnetic refrigeration. In addition to refrigeration, the

magnetocaloric effect applies to several areas of technology such as electronic devices, air

conditioners and heat pumps.

2.5.2 Magnetocaloric effect principle

To describe the magnetocaloric effect, a paramagnetic or a ferromagnetic spin system

close to its transition temperature has to be considered. The entropy of the system can be

described by the entropy relative to the magnetic order of the system (magnetic entropy)

and that related to the temperature of the system (lattice entropy, electronic entropy).

The application of an external field aligns the spin moments at the origin disorder by the

thermal agitation as is shown in figure 2.4:

Figure 2.4: Schematic representation of the basic processes of the magnetocaloric effect.

In most cases, the electronic and lattice contribution of the entropy are independent

of the magnetic field. In the isothermal process shown in figure 2.4 above, the variation

of the magnetic entropy is ∆SM, whereas, if the operation is performed without heat

exchange with the outside (adiabatic process), the electronic and lattice entropy increase

in order to maintain the entropy of the unchanged system. The increasing of entropy

leads to a heating of the system and therefore to an increase of the temperature. If the

process is reversible, an adiabatic demagnetization will cause a decrease in temperature up

to its initial value [61]. For the antiferromagnetic system, the application of an external
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field destroys the antiparallel arrangement of the magnetic moments and therefore the

disorder increases. The magnetocaloric effect generally passes through extrema (minimum

or maximum) at the transition temperature. It requires an important magnetic moment

to have a significant magnitude. In fact, during the isothermal magnetization process, the

total magnetic entropy change ∆SH of the magnetic system due to the external applied

field H is given as:

∆SM(T,H) =

∫ H1

H0

(
∂M (T,H)

∂T

)
H

dH. (2.56)

Since ∂M/∂T has its maximum around the transition temperature, a large value of

the magnetocaloric effect is expected near the transition temperature. In fact the maxi-

mum theoretical molar magnetic entropy variation of a material is given by its magnetic

contribution [62]:

∆SM
max = R ln (2J + 1) , (2.57)

where R is the gas constant and J is the total angular momentum of the magnetic ion.

2.5.3 Thermodynamic approach of magnetocaloric effect

The entropy of magnetic materials at constant pressure depends on the applied magnetic

field H and the temperature T. The thermodynamic entropy relation can be written as

the sum of three contributions (magnetic, lattice and electronic contribution), viz:

S(T,H) = SM(T,H) + Slat(T ) + Sel(T ). (2.58)

When a variation of a magnetic field is applied (from H0 to H1), adiabatic process

and reversible process state that the total entropy of the system remains constant and

the system undergoes an increase in temperature and a decrease in the magnetic entropy

∆SM. The increase in temperature ∆Tad can be evaluated as the isentropic difference of

S(T) curves to H0 and H1 as in figure 2.5 [11] where the difference between the entropy

curves at H0 and H1 at a given temperature corresponds to the variation of the magnetic

entropy ∆SM.
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Figure 2.5: Diagram presenting the different processes of the magnetocaloric effect. Solid green
line represents the total entropy in two different magnetic fields (H0 = 0 and H1 > 0), the dotted
lines show the electronic and lattice contributions to the entropy (non-magnetic) and the dashed
lines show the magnetic entropy in the two fields. The horizontal red arrows shows ∆Tad and the
vertical arrow shows ∆SM, when the magnetic field is changed from H0 to H1.

So, the variation of the adiabatic temperature ∆Tad and the variation of the magnetic

entropy ∆SM represents the two physical quantities allowing to quantify the magnetocaloric

effect. This variation of both quantities are determined by the physical measurements of

the magnetization or the heat capacity. The thermodynamic relationship that links ∆Tad

and ∆SM are:

• Variation of magnetic entropy ∆SM and the magnetization M. The thermodynamic

properties of a magnetic system where the pressure is constant and where the tem-

perature and the applied field H is varying, are described by the free Gibbs energy

G:

G (P,H, T ) = U + PV − µ0MH − TS, (2.59)

where U is the internal energy of the system, V is the volume of the sample, µ0 is the
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permeability of the vacuum and S is the entropy. The differentiation of G gives:

dG (P,H, T ) = dU + PdV − µ0MdH − TdS + V dP − µ0HdM − SdT. (2.60)

If these three parameters (P, H and T) are not constant , this becomes:

dG(P,H, T ) =

(
∂G

∂P

)
H,T

dP +

(
∂G

∂H

)
P,T

dH +

(
∂G

∂T

)
H,P

dT. (2.61)

From the equations 2.60 and 2.61, it emerges the first thermodynamic principle:

dU = TdS + µoHdM − PdV, (2.62)

and equation 2.61 becomes:

dG (P,H, T ) = V dP − µ0MdH − SdT. (2.63)

From these last equations, the equation of states is described as:

V =

(
∂G

∂H

)
H,T

; µ0M =

(
∂G

∂H

)
P,T

; S = −
(
∂G

∂T

)
P,H

. (2.64)

The partial derivative of these three equations of states lead to Maxwell equations:

µ0

(
∂M

∂T

)
P,H

= − ∂

∂T

((
∂G

∂T

)
P,T

)
P,H

= − ∂

∂H

((
∂G

∂T

)
P,H

)
P,T

=

(
∂S

∂H

)
P,T

. (2.65)

The variation of the entropy associated with the magnetocaloric effect at constant

pressure and at constant temperature can be determined by:

∫ H1

H0

µ0

(
∂G

∂T

)
P,H

dH =

∫ H1

H0

µ0

(
∂S

∂H

)
P,T

dH = ∆S (T,H0 −→ H1) , (2.66)

⇒

∆S (T,H0 −→ H1) = µ0

∫ H1

H0

(
∂G

∂T

)
P,H

dH. (2.67)

This variation of the entropy is called change of magnetic entropy ∆SM
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• Variation of ∆SM, ∆ad and heat capacity Cp:

The quantity ∆SM is connected to the quantity of heat which can be transferred from T0

to T1 (heating process) from the equation:

q =

∫ T1

T0

∆SM (T,H0 −→ H1) dT, (2.68)

the derivative of the entropy in respect to the variables T, H, P gives:

S = S (P,H, T )⇒ dS =

(
∂S

∂T

)
H,T

dP +

(
∂S

∂H

)
P,T

dH +

(
∂S

∂T

)
P,H

dT. (2.69)

The heat capacity at constant pressure and constant field is defined as:

CP,H = T

(
∂S

∂T

)
P,H

. (2.70)

If the system is at constant pressure, the differentiation of Maxwell equation above

(equation 2.69) becomes:

dS = µ0

(
∂M

∂T

)
P,H

dH +
CP,H
T

dT. (2.71)

In this latter equation (equation 2.71), if dT = 0, then dH 6= 0. And if the integration

of ∆SM varies from H0 to H1, it will be clear that the variation of the entropy will be

higher. This occurs around the critical temperature of a magnetic compound. For a given

magnetic filed, the entropy can be determined from the heat capacity as follows [11]:

dS =
CP,H
T

dT ⇒ ∆S (T,H) =

∫ T1

T0

CP,H
T

dT. (2.72)

So, the variation of the entropy due to ∆H = H1 - H0 can be written as:

∆S (T,H0 −→ H1) =

∫ T1

T0

CP,H0 − CP,H1

T
dT. (2.73)

By considering dS = 0 (adiabatic process) the expression of the temperature variation
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becomes [11]:

dT = − T

CP,H
µ0

(
∂M

∂T

)
P,H

dM

⇒ ∆T (H0 −→ H1) = −
∫ H1

H0

T

CP,H
µ0

(
∂M

∂T

)
P,H

dH. (2.74)

Moreover, by considering all these equations, some information about the behaviour of

the magnetocaloric effect in compounds can be figured out:

• Magnetization at a constant field in both paramagnetic and ferromagnetic materials

decreases with increasing temperature i.e. (∂M/∂T )H <0 ⇒ ∆SM (T,∆H) <0.

• In ferromagnetic compounds, the absolute value of the derivative of magnetiza-

tion with respect to temperature, | (∂M/∂T )H | is maximum at TC and therefore

|∆SM(T,∆H)| should show a peak at T = TC.

The magnetocaloric effect is thus a very multiform property (different order/disorder

transition, diversity of transition), which can be divided into various categories. Firstly,

we can distinguish the magnetocaloric effect following: (i) the order of the transition:

second order transition or first order transition (ii) the sign of magnetocaloric effect (nor-

mal or standard), as in the case of ferromagnetic materials with heating at the adiabatic

application of the field, or inversely with the cooling (antiferromagnetic-ferromagnetic,

respectively). From a point of view of magnetocaloric effect application, all types of ma-

terials (anti, ferro, paramagnetic) could be useful in a magnetic refrigeration system, air-

conditioning and electronic devices.

2.6 Physical and magnetic properties

This section illustrates the theory of the physical and magnetic properties investigated

in this thesis. These properties include: the electrical resistivity, the heat capacity, the

magnetic susceptibility and magnetization.

2.6.1 Electrical resistivity
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In general, transport properties in materials are governed by the free charge electrons

(conduction electrons). Thus, knowledge of the density of the free electrons, the energy

associated with free electrons and the paths they follow in a material are of great impor-

tance for the study of transport properties in particular, the electrical resistivity relevant

in the present thesis. The free electrons in metals obey the Fermi-Dirac statistic. The

Fermi surface separates the unoccupied state above the Fermi level to the occupied state

below the Fermi level. As a result of that, the electrons near the Fermi surface govern the

transport properties of a given material.

Transport properties in metals arise from scattering of conduction electrons from

different sources. These sources can be:

• The presence of impurities can either be accidental, deliberate in the crystals or an

imperfections in the crystals. The resistivity and thermal conductivity resulting from

this scattering process are dominated at low-temperatures. The resistivity associated

with this scattering process is known as residual resistivity, ρ0 and is temperature-

dependent.

• The vibration of the ions in the crystals around their fixed positions due to quan-

tized lattice phonons. The effect increases largely as the temperature increases and

it dominates at high temperatures. The resistivity associated with this scattering

process is known as the phonon resistivity, ρph and is temperature-dependent.

• The perfect magnetic order in ferromagnetism or antiferromagnetism as the temper-

ature is decreasing below their Curie or Néel temperature. The resistivity associated

with this scattering process is known as the magnetic resistivity, ρM and is dependent

on the temperature.

• The localized magnetic moments of 4f or 5f atoms in diluted or concentrated Kondo

systems, heavy fermion materials, intermediate valence and spin fluctuation systems.

It is noted that this scattering process is irrelevant for materials under investigation

in the present thesis.

• The electrons themselves, but for normal metals this effect is negligible and at

high temperature electron-electron interaction is also negligible due to the dominant

electron-phonon interaction [23]
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Apart from the electron-electron scattering process, the transport properties such as elec-

trical resistivity, ρ(T ), thermoelectric power, S(T ) and thermal conductivity, λ(T ) may be

described using the linearised Boltzmann equation [63, 64] and can be expressed as follows:

1

ρ(T )
= e2K0; S(T ) = − K1

|e|TK0

; λ(T ) =
1

T

(
K2 −

K2
1

K0

)
. (2.75)

The integrals Kn are given by:

Kn =
K2

F

3π2m

∫
εnkτ(εk)

(
−∂fk
∂ε

)
dεk, (2.76)

where KF is the wave vector at the Fermi surface, fk the Fermi-Dirac distribution function,

τ(εk) the relaxation time and εk the energy of the conduction electrons in a state k. Once

the relaxation time is determined, the difference in transport properties can be obtained.

i) Linear approximation

The electrical resistivity of most materials changes with temperature. If the change in

temperature (∆T = T − T0) is too small, a linear approximation is used and it is written

in the form:

ρ(T ) = ρ0 [1 + α(T − T0)] , (2.77)

where α denotes the temperature coefficient of resistivity, T0 is a fixed reference tempera-

ture, usually taken at room temperature and ρ0 is the resistivity at temperature T0. The

parameter α is an empirical parameter obtained from the fit of measurement data. Because

the linear fitting is only an approximation, α is different for different reference tempera-

tures. As a result of that, it is often to specify the temperature that α was measured

at with a suffix, such as α10, and the relationship only holds in a range of temperatures

around the reference [65]. For temperatures over a large temperature range, ρ(T ) deviates

from linearity and a more detailed analysis and understanding should be required.
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ii) Electrical resistivity of materials

The resistivity of metals originates from the contribution of different scattering processes

than an electron suffers along its motion in a crystal. If the rates of collisions from these

different scattering mechanisms are taken independently as first approximation, therefore

this leads to Mathiessen’s rule according to which the total resistivity is given by:

ρ(T ) = ρ0 + ρph + ρM(T ). (2.78)

The sum of the first two terms is the total resistivity for a nonmagnetic material while the

sum of the three terms is the total resistivity for a magnetic material.

As mentioned above, ρ0 arises from the scattering of free electrons by stationary im-

perfections, defects or impurities in the crystal. This contribution to the total resistivity

is a sensitive measure of the perfection of a specimen. In current practice, ρ0 specifies

the overall purity and perfection of a metal crystal. This is done by quoting the ratio

of the resistivity at room temperature to that of the resistivity near zero temperature as

RRR = ρ300K/ρ2K . In general, imperfections of a specimen have a great effect on the

residual resistivity. The reduction of imperfections of a specimen can be achieved by heat

treatment of the specimen at a sufficiently high temperature for a period of time. The

value of ρ0 of a metal directly dependent to its impurity concentration. Some materials

lose all electrical resistivity at sufficiently low-temperatures, due to an effect known as

superconductivity. At finite temperature, the thermal vibration of ions around their equi-

librium position, produces departures from the perfect regularity of the ideal crystal and

hence leads to scattering. This thermal vibration is known as phonons and give rise to

electron-phonon scattering. The procedure for calculating the scattering probability due to

phonons as a function of temperature is namely to find the number of available states into

which an electron may be scattered and the number of suitable phonons available for scat-

tering [66]. For an electron in a spherical Fermi surface, however, the density of available

states is practically independent of the energy of the electron compared with the Fermi

energy but depends strongly on the occupation probability [66]. The resulting temperature
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dependence of the phonon resistivity is given by the Bloch-Grüneissen formula [67]:

ρ (T ) = A

(
T

θR

)n ∫ θR/T

0

xn

(ex − 1) (1− e−x)
dx, (2.79)

where A is a constant that depends on the velocity of electrons at the Fermi surface, the

Debye radius (the Debye radius also called the Debye length in plasma and electrolytes is a

measure of a charge carrier’s net electrostatic effect in solution and how far its electrostatic

effect persists.) and the number density of electrons in metals as well as the strength of

electron-phonon coupling. θR is the Debye temperature as obtained from resistivity mea-

surements and matches closely with the values of Debye temperature obtained from heat

capacity measurements [68]. n is an integer that depends upon the nature of interaction:

• n = 5 implies that the resistivity is due to scattering of electrons by phonons (as it

is for simple metals)

• n = 3 implies that the resistivity is due to s− d inter-band scattering (as in the case

for transition metals)

• n = 2 implies that the resistivity is due to the electron-electron interaction.

If more than one source of scattering is simultaneously present, Matthiessen’s rule

must be applied, that the total phonon resistivity can be approximated by adding up

several different terms, each with the appropriate value of n. At high temperatures and

low-temperatures, equation 2.79 can be approximated by:

ρph ∝
(
T

θR

)
(T � θR); ρph ∝

(
T

θR

)5

(T � θR). (2.80)

The magnetic contribution ρM, relates to the scattering associated with magnetic 4f

ions. As mentioned above, ordered magnetism can be ferromagnetism, antiferromagnetism,

ferrimagnetism or helical ordering as observed in heavy rare-earth metals. In magnetically

ordered materials, no scattering of conduction electrons is observed when T tends to zero.

As T approaches the ordering temperature, Tord, an increase of the spin-disorder scattering

is observed and reaches its maximum value above the ordering temperature (paramagnetic

region). The calculation of the resistivity in the paramagnetic region was found to be
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independent of the temperature and expressed in the form [69, 70, 71]:

ρM = (T>Tord) =
3πnm∗

2~e2EF

|Γ|2 (gJ − 1)2 J (J + 1) , (2.81)

where m∗ is the effective electron mass, EF is the Fermi energy, e is the electron charge, n

is the number of atoms per unit volume and Γ is the measure of the strength of the s− f

interaction.

At low-temperatures, below the ordering region, T<Tord, the magnetic resistivity, ρM

originates from the interaction of conduction electrons with the magnetic spin system (spin

wave). This contribution added to the phonon resistivity, which is reasonably well described

by the Bloch theory [67], varying at T 5 at low-temperatures and as T above the Debye

temperature. It is difficult however to estimate the magnitude of the spin wave scattering.

As the work in this section is entirely concerned with spin wave scattering, it would simplify

the problem considerably if the phonon contribution to the measured resistivity could

be estimated in some way and subtracted from the experimental curve. Vonsovski [72]

appears to have been the first person to recognize that an additional contribution to the

resistivity would occur in ferromagnetic materials as a result of the exchange interaction

between the conduction electron and localized magnetic moment often called the s − f

interaction. Following that, Turov [73] used spin wave treatment to show that the s − f

interaction leads to a contribution ρM ∼ T 2 at low-temperatures. Later on, Kasuya [69]

suggested a qualitative description of the temperature dependence of ρM. Representing

the s − f interaction by a molecular field, he obtained an expression which describes the

main features of the variation of ρM from low-temperatures to temperatures above TC . A

similar approach was suggested by de Gennes and Friedel [70] who examined the effects of

short-range order around TC . Later on, Kasuya [74] used a spin wave description of the

interaction to derive a low-temperature expression for ρM. Assuming a spin wave dispersion

relation of the form ω(q) ∼ q2, he obtained:

ρM(T ) =
π2

8

V m

ne2

J2(0)

~EF

(gJ − 1)2 j

(
kBT

kFJ(0)

)2

, (2.82)

where J(0) is a parameter which describes the strength of the s− f interaction, gJ is the

Landé g factor, j is the total angular momentum quantum number of each magnetic atom,
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EF is the Fermi energy of the conduction electrons and V and n are respectively the volume

and the number of atoms in the crystal. The same result was obtained by Mannari [75]

using a slightly different method.

For antiferromagnetic materials, several authors [76, 77, 78] obtained a T 4 depen-

dence of ρM at low-temperatures using the antiferromagntic magnon spectrum dispersion

ω(q) ∼ q. Yamada and Takada [79] suggest the calculation of the electrical resistivity

of antiferromagnetic metals due to electron-magnon scattering on the s − f model in the

low-temperatures region by the use of the variational approach to the Boltzmann equation.

They obtained the temperature variation of ρM in the form:

ρM(T ) =

∼ T 5, for ∆� T � TN

∼ Texp
(
−
√
TN∆
T

)
, for T � TN ,∆

, (2.83)

where ∆ is the anisotropy energy of the spin system. More discussions on spin wave theory

is given in subsection 2.2.2.4 above.

2.6.2 Heat capacity

1. The measurements of the heat capacity in this work are done at constant pressure,

therefore the term CP will be used throughout the thesis.

2. The heat capacity of metals results from various contributions. These are the: elec-

tronic contribution, Ce, the lattice or phonon contribution, Cph, the magnetic contri-

bution, CM and the Schottky contribution, CSch, and the nuclear contribution, Cnucl.

The total heat capacity is then given by adding all the contributions and can be

written as:

Cp(T ) = Ce(T ) + Cph(T ) + CM(T ) + Cnucl(T ). (2.84)

The phonon contribution is well described by the Debye model given in the form [19]:

Cph = CD(T ) = 9nR

(
T

θD

)3 ∫ θD/T

0

x3ex

(ex − 1)2dx, (2.85)
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with x = (~ω)/(kBT ). n is the number of atoms per formula unit, R is the gas constant

and θD is the characteristic Debye temperature. At low-temperatures the integral give a

constant and Cph(T ) follows a T 3 power law:

CD(T ) =
12π4

5
nR

(
T

θD

)3

. (2.86)

In a few cases, the phonon contribution is also described by both the Debye and Einstein

models, with the Einstein model given in the form [19]:

CE(T ) = 3nR

(
θE

T

)2
e
θE
T(

e
θE
T − 1

)2 , (2.87)

where θE is the Einstein temperature. The resulting phonon contribution described by the

two models can be approximated by the formula [80]:

Cph(T ) = kCD(T ) + (1 + k)CE(T ). (2.88)

The parameter k is a mutual weight of phonon modes of the two models.

At high temperatures, Dulong and Petit predicted the heat capacity of metals to be a

constant 3nR. This can be explained by the equipartition theorem, for which each atom

can be considered as an independent oscillator. This high temperature constant heat ca-

pacity is often used to inspect whether the sample structure and the number of atoms per

formula units is consistent with the measured and classical limit of heat capacity. Experi-

mental results of the phonon heat capacity of magnetic materials are obtained from their

homologue non-magnetic La, Y, Lu based compounds.

The electronic heat capacity dominates at very low-temperatures and follows a linear

behaviour with temperature:

Ce(T ) = γT, (2.89)

where γ is the electronic or Sommerfeld coefficient. It should be noted that in metals, only

electrons close to the Fermi level, contribute to the heat capacity. Therefore, the electronic

coefficient γ is proportional to the density of state at the Fermi level, N(EF), which in
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turn is related to the effective mass of the conduction electrons given in the form [64]:

γ =
2

3
π2k2

BN (EF) =
1

3
k2

B

m∗kF

~

3

, (2.90)

where kF is the Fermi wave number. It should be mentioned that, Ce is one of the most

important contributions used to identify heavy-fermion systems. Thus for non-magnetic

materials the total heat capacity at low-temperatures can be approximated by the formula:

Cp(T ) = γT + βT 3. (2.91)

For magnetic materials, the magnetic excitations contribute to the total heat capacity,

CM. This contribution is described well by the formula that accounts for scattering of

conduction electrons on ferromagnetic or antiferromagnetic spin waves with energy gap ∆

in magnon spectrum (see section 2.2.2.4: spin wave theory). Another property associated

with the magnetic contribution, CM, to the total heat capacity is the 4f -electron magnetic

entropy, SM. This property is defined by the relation:

SM(T ) =

∫ T

0

CM(T ′)

T ′
dT ′, (2.92)

SM illustrates the degeneracy of the system. Owing to the weak interaction between the

local magnetic moment of the rare-earth ions, each ion possesses an intrinsic total angular

momentum J , and the ground state will be (2J + 1) fold degenerate. As the temperature

increase all the states above ground state are populated and the magnetic entropy saturate

to a constant value given by:

SM = R ln(2J + 1). (2.93)

Another contribution to the total heat capacity is the Schottky term which describes the

overall crystal-electric-field, responsible for the splitting of the ground state into different

energy levels. As a result of this, an ion can occupy different energy levels (see section 2.2.3

above) giving rise to a Schottky anomaly which manifests itself by a broad maximum on

the CM(T ) curve and a tendency to be zero at low and high temperatures. This broad

maximum superimposes on the lattice and other contributions [80]. In the case of two

energy levels ε0 and ε1 and with a degeneracy g1 and g2, the resulting Schottky term is
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defined as follows:

SSch(T ) = R

(
∆

T

)2(
g0

g1

)
e

∆
T(

1 + g0

g1
e

∆
T

)2 , (2.94)

where ε1/kB is the energy separation between the ground state and the first excited state.

A general expression of the Schottky term for n energy levels and degeneracy is given in

section 2.2.3, equation 2.27.

The last contribution is the nuclear heat capacity, Cnucl, originating from the rare

earth nuclear Schottky anomaly which is enhanced due to the hyperfine interaction. This

contribution can be expressed by a Cnucl ∝ 1/T 3, since the high temperature tail of the

nuclear specific heat follows [28]:

Cnucl(T )

R
=
I(I + 1)g2

Nµ
2
N(1 +K2)

3k2
B

(
Beff

T

)2

, (2.95)

K =
χA

jJµBgNµiN

where Beff is the effective magnetic field acting on the rare-earth nuclei, I is the nuclear

spin (e.g. I = 5/2 for Pr), gN is the gyromagnetic coefficient for the rare-earth atom (e.g.

13 MHz/T for Pr), µN is the nuclear magnetic moment of the rare-earth atom and K

∝ χ is the enhancement factor which is proportional to the magnetic susceptibility. K

also expresses the hyperfine interaction. This contribution is characterized by an increase

Cp(T ) with decreasing temperature well below the ordering temperature, TC or TN.

2.6.3 Magnetization and magnetic susceptibility(see also section 2.2.2)

A material is magnetized in the presence of a magnetic field, B. The overall magneti-

zation of a system of N moments per unit volume is given by [27]:

M = N

∑+J
Jz=−J −gµBBJzexp

[
−gµBJz

kBT

]
∑+J

Jz=−J exp
[
−gµBJz

kBT

] , (2.96)

where J is the total angular momentum and g is the Landé g-factor. To evaluate the

magnetization it is convenient to express it in terms of the partition function of the dipole
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moment, Z given in the form:

M = −NkBT
2

B

1

Z

(
∂Z

∂T

)
B

= −NkBT
2

B

(
∂ lnZ

∂T

)
B

. (2.97)

Z =
+J∑

Jz=−J

exp

[
−gµBBJz

kBT

]

The calculation of Z leads to the formula of the magnetization given in the form:

M = NgµBJBJ(x), (2.98)

where x = (gµBBJ) / (kBT ) is a dimensionless measure of the magnetic field and BJ(x) is

the Brillouin function defined as follows:

BJ(x) =
2J + 1

2J
coth

[(
2J + 1

2J

)
x

]
− 1

2J
coth

( x
2J

)
. (2.99)

From this relation it is clear that the behaviour of the magnetization is similar to that

BJ(x) which increases linearly at low fields and tends to the saturation magnetization

NgµBJ at high fields, which correspond to maximum possible alignment of the dipole

moments with the field. For x� 1, BJ(x) can be approximated in the form:

BJ(x) ≈ (J + 1)

3J
x, (2.100)

so that, the low fields magnetization be approximated as follows:

M(B) =
Ng2µ2

BJ(J + 1)

3kBT
B. (2.101)

Recalling that B is a local magnetic field of the rare-earth ion which is usually dif-

ferent from the applied magnetic field, the magnetic susceptibility can be obtained from

equation 2.101. Therefore one obtains:

χ(T ) =
µ0M

B
=
Ng2J(J + 1)µ2

Bµ0

3kBT
, (2.102)

where µ0 is the permeability of the free space or vacuum. The effective magnetic moment
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is then defined as:

µeff = g [J (J + 1)]1/2 µB. (2.103)

Equation 2.102 is known as the Curie law for a paramagnet, which states that the

susceptibility is inversely proportional to the absolute temperature and be written in the

form:

χ(T ) =
C

T
(2.104)

C =
Ng2J(J + 1)µ2

Bµ0

3kB

.

C is known as the Curie constant. For ferromagnetic and antiferromagnetic materials, the

Curie law is modified by the Curie-Weiss relationship (see section 2.2.2).
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Chapter 3

Experimental techniques

3.1 Introduction

This chapter presents the manner in which all the processes and methods were

used in obtaining the results. The details of synthesizing the compounds as well as their

characterization with respect to their crystal structure studied are extensively described.

The description of equipment used to get different results on such RE-based compounds

will be discussed.

3.1.1 Procedure of samples preparation

Polycrystalline samples of RE2Pt2In and RE8Pd24Ga and their non-magnetic La-analogs

were prepared using the arc-furnace. The synthesis by arc-furnace involves the melting of

pure elements together using arc plasma. For compounds containing unstable elements

like Pr and La, extra care was taken. The RE-elements were etched in a 50:50 nitric

acid: deionized water solution. This was done to ensure that the thin alkaline oxide layer

is removed from the surface of the element. The etched elements were then rinsed and

dried in acetone. The purities of all elements used in this study are listed in table 3.1.

Stoichiometric quantities of all elements were carefully weighed to the accuracy of 0.0002

g for a starting sample mass of 2.0 g. The elements were then placed together in a copper

crucible water cooled system in an arc furnace having an ingot of titanium-getter. This
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3.1.1 . Procedure of samples preparation

latter element is added in order to absorb any impurity in the chamber during the melting

process. The chamber (see figure 3.1) has been closed hermetically and a high vacuum

degassing eliminates atmospheric gasses that might be inside the chamber. The chamber

was flushed with argon (Ar) seven times, before a high vacuum was established. The

elements were melted together into a button which was over-turned three times to ensure

homogeneity. Water was allowed to continuously flow under the copper hearth during

the melting process. The arc plasma which generated the flame in the chamber to melt

the samples was provided from the inverter system manufactured by Thermamax; model

TSA-400D. The melted samples were then weighed and mass loss was determined, and

obtained to be about 1% for all compounds.

Table 3.1: purity of the starting elements given in wt. %.

Element Purity(wt.%)

La 99.99
Pr 99.90
Nd 99.99
Gd 99.99999
Tb 99.99
Dy 99.99
Pt 99.95
Pd 99.99
In 99.999
Ga 99.99

Figure 3.1: The figure showing the arc-furnace chamber, with the titanium and the starting
elements placed in the appropriate copper crucible.

51

http://etd.uwc.ac.za



 

 

 

 

3.2. Sample characterisation

3.2 Sample characterisation

The microstructure and chemical composition of all the synthesized samples were

investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy

(EDS). The quality of the samples was checked by X-ray powder diffraction at room

temperature using a Bruker D8 Advance diffractometer (figure 3.3) with a CuKα radiation

(λ = 1.540698Å). The room temperature crystallographic structures were determined by

analysing the X-ray powder diffraction spectrum using the cell and intensity least square

(CAILS)-Pawley and Rietveld refinements method from TOPAS ACADEMIC programme.

3.2.1 Energy Dispersive Spectroscopy (EDS)

The energy dispersive spectroscopy analysis has been performed using Field Emission

Gun Scanning Electron Microscope (FEGSEM) Auriga (see figure 3.2) in order to obtain

the chemical composition of the starting elements. The energy dispersive spectroscopic

analysis usually involves the generation of an X-ray spectrum from the entire scan area

of the scanning electron microscopy. To perform this, the samples were all mounted on a

sample holder aluminium stub with carbon sticky tapes and were inserted in FEGSEM.

In the Detector Secondary Electron (DSE) the samples were magnified 100 times, the

Electron High Tension (EHT) was set at 20 kV and the working distance was around 9.2

mm. Images were analysed and recorded using an energy dispersive spectroscopy software

Aztec Energy.
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Figure 3.2: Photograph of Field Emission Gun Scanning Electron Microscope.

3.2.2 X-ray diffraction

X-ray diffraction is a powerful technique of obtaining the structural information of

substances. For this, the sample needs to be grain powder in order to produce an important

signal and therefore a strong intensity. Small pieces of samples cut from the button have

been collected, crushed and ground in an agate mortar, in order to have a fine powder

specimen. The powdered sample was then placed on a glass slide mounted at the middle

of the diffractometer of figure 3.3. The sample holder was made from a polyvinyl chloride

(PVC) glass, which is an amorphous material (ensuring that the scattering X-ray that is

produced is not a coherent signal and can be easily subtracted from the measured data).
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3.2.2 . X-ray diffraction

Figure 3.3: Photograph of diffractometer D8 Advance.

So, to perform the measurements, X-ray beams were directed onto the surface of the

crystal, the waves (with a wave vector ~Kt) are partially transmitted and partially reflected

( ~Ks) by the crystals. For elastic scattering, |Kt| = |Ks| =
2π

λ
must be satisfied. The

appearance of peaks or the X-ray diffraction spectra in the range of 0◦≤ 2θ ≥90◦ appeared.

This means that the reflected waves on the plane of atoms or crystals are in phase and

implies that there is equality between the angle of incident and the scattering angle. On

the other hand, this means that the positive interference of diffracted X-ray beams occurs

when the Bragg condition is satisfied:

nλ = 2dhkl sin(θ), (3.1)

where n (an integer) is the diffraction order, λ is the wavelength of the X-ray beams, θ is

the angle between the incident X-ray and the surface of the crystal, dhkl is the interplanar

distance.
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3.2.2 . X-ray diffraction

The diagram depicting a schematic representation of Bragg law is presented in figure

3.4:

Figure 3.4: Cross section of the incident and reflected X-ray beams on the surface of a powdered
sample: Bragg’s law.

3.2.2.1 Cell and Intensity Least Square (CAILS)-Pawley and Rietveld refine-

ment method

[81, 82, 83]

The CAILS-Pawley refinement method provides information about the lattice

parameters of the crystal structure. In this refinement method, only cell parameters, peak

width parameters and integrates intensities are refined. CAILS refinement is independent

of the atomic position parameters (or structural model) and only depends on the space

group symmetry. Furthermore, in the CAILS method the intensities of all diffraction peaks

vary independently.

The Rietveld refinement method also depends on the space group symmetry, but is

different for the CAILS method. The difference is in the sense that not only the parameters

as in the CAILS method are refined but the intensities of all peaks vary dependently and the

full structure are refined such as the atomic coordinates, the site occupancy, the isotropic

displacement parameters as well as the interatomic distances.
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3.2.2 . X-ray diffraction

3.2.2.2 Criteria of fit

The Rietveld refinement method uses selected parameters to considerably reduce the

difference between experimental pattern (observed data, yo) and a model based on the

hypothesized crystal structure and instrumental parameters (calculated pattern, yc). The

use of full profile fitting and crystallographic constraints (lattice parameters and space

groups to constrain peak positions, crystal structure to constrain peak intensities) are

carefully considered. The Rietveld analyses the whole diffraction pattern by including the

profile fitting, the refinement of the structure parameters from diffraction data (lattice

parameters, atomic positions and site occupancies). TOPAS ACADEMIC is a graphics

based profile analysis program built around a non-linear least squares fitting [84, 85]. The

quality of the fit is defined by the refined agreement indices of the sample. These are

referenced [84]:

• R-pattern (Rp) and R-pattern background corrected (R′p): It is an indicator of the

goodness of fits (GOF ) given by:

Rp =

∑
|Yo,m − Yc,m|∑
|Yo,m|

, R′p =

∑
|Yo,m − Yc,m|∑
|Yo,m −Gkgm|

; (3.2)

• R-weighted pattern (Rwp) and R-weighted pattern background corrected (R′wp): It

is a measure of the GOF , calculated point by point and weighted by a standard

deviation of the data, given by:

Rwp =

√∑
wm (Yo,m − Yc,m)2∑

wmY 2
o,m

, R′wp =

√ ∑
wm (Yo,m − Yc,m)2∑
wm (Yo,m −Bkgm)2 ; (3.3)

• R-expected (Rexp) and R-expected background corrected (R′exp): It is an expected

value of Rwp, given by:

Rexp =

√∑
M − P∑
wmY 2

o,m

R′exp =

√ ∑
M − P∑

wm (Yo,m −Bkgm)2 ; (3.4)

• the goodness of fit (GOF ) based on statistics is expressed by:

GOF = χ2 =
Rwp

Rexp

; (3.5)
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• R-Bragg (RB or intensity factor): It is a measure of the quality of the structural

model related to the peak shape and not the area. It is given by:

RB =

∑
|Io,k − Ic,k|∑
|Io,k|

; (3.6)

• and finally the Durbin-Watson parameter (DW ) d: It is a measure of the fit model,

given by [86, 87]:

DW = d =

∑M
m=2 (∆Ym −∆Ym−1)∑M

m=1 (∆Ym)2
, (3.7)

∆Ym = Y0,m − Yc,m,

where Yo,m and Yc,m are the observed and calculated data respectively at data point m,

Bkgm is the background at data point m, M and P are respectively the number of data

points and parameters, wm the weighting given to data point m, Io,k and Ic,k are the

observed and calculated intensities of the kth reflection.

3.3 Physical Property Measurement System (PPMS)

The PPMS manufactured by Quantum Design (USA) allows the physical property

measurement (electrical resistivity, heat capacity, thermal transport option, magnetoresis-

tivity) of compounds at the temperature range of 400 K - 1.8 K with an applied field up to

9 T and it can also be measure down to 50 mK by inserting the Helium-3 (3He) cryogenic

system, which is also from the same manufacturer. In this equipment, the magnet is in

axial solenoid configuration, with the center of the magnet corresponding to the sample

position. However, the PPMS can also allow the measurement of magnetic properties

by using the vibrating sample magnetometer (VSM) techniques. In these techniques, the

magnetic field and ramp rate are determined by the magnetic power supply. All physical

properties (resistivity and specific heat) results reported in this work were measured on

the PPMS shown in figure 3.5 [88]:
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3.3.1 . Electrical resistivity

Figure 3.5: Cross section of Physical Properties Measurements System (PPMS).

3.3.1 Electrical resistivity

A rectangular bar sample was mounted on an AC resistivity puck which caters for

two samples. Before mounting the sample on the puck, the surface of the puck was firstly

cleaned with ethanol then the kapton tape was cut and placed on its surface to electrically

insulate the samples from the puck. The four point probe technique as presented in figure

3.6 was used. In this technique, 2 current contacts attached at the side of the sample pass

the current through the sample, while 2 voltage contacts were attached at the surface of

the sample, measuring the potential difference drop across a section of the sample. The

contacts were made with 50 µm of diameter gold wires with purity of 99.99 wt. % and were

attached to the sample using spot welding techniques. These samples were then fixed on

the puck using GE vanish glue and was left for a while to dry. This special glue was used

for its properties of keeping contact at very low temperatures and avoids the possibility of

sample detachment during the measurement process. All samples were spot welded in this
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manner as depicted in this figure:

Figure 3.6: Photograph of a sample mounted on channel 2 using spot welding techniques for
the electrical resistivity measurements.

The prepared samples were loaded into the PPMS. The typical excitation current 4500

µA was used for Helium-4 (4He) direct current resistivity measurements under the fre-

quency of 17 Hz. The potential difference between the gold wires fixed on the sample is

used to automatically measure the resistance and consequently the resistivity (ρ(T )) of the

sample. All ρ(T ) measurements were done in the temperature range 300 K down to 100

K at the cooling rate of 1.5 K/min, from 99 K to 11 K at the rate of 1 K/min in 90 steps

and from 10 K to 1.8 K at 0.5 K/min in 41 steps. This sequence was applied on all the

electrical resistivity measurements in this work.

3.3.2 Specific heat

Specific heat measurements carried in temperature range 300 K - 1.8 K were performed

on a Quantum Design PPMS which operates according to the thermal relaxation calorime-

try method. They were run at constant pressure and changes in sample volume were

negligible according to the change rate of the measured temperature. These measurements

were first done by mounting the Apiezon N grease on the specific heat puck (sapphire

specimen holder) in order to ensure good thermal contact and was loaded onto the PPMS.

The specific heat measurements of the grease plus puck (Addenda measurements) were

carried out before each measurement. The appropriate sequence was set and was run at
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the same range of temperature as the data would be recorded. The addenda measurement

was followed by a sample measurement where a typical sample mass used was between 9

mg - 11 mg. This was deposited on the Apiezon N grease to ensure a good signal noise

ratio as shown in the schematic representation of the heat capacity puck in figure 3.7 [88].

This measurement of the heat capacity first uses a heating period which is followed by

a cooling period, after which the capacity option fits the entire temperature response of

the sample platform to a model that accounts for the thermal relaxation of the sample

platform to the bath temperature and the relaxation between the sample platform and the

sample itself. Moreover, the specific heat measurements were done, with the heat pulse of

around 1% of the current puck temperature. The contribution of the platform and sample

gives the total specific heat. This latter contribution is determined from a ”two−τ” model

which simulates the effect of heat flowing between the sample and the platform, and the

effect of heat flowing between the platform and the puck. The contribution of the grease

and platform to the total specific heat was determined by a separate measurement using

a one-τ model fitting:

Ctotal
dTp

dT
= −Kw(T − Tb) + P (t), (3.8)

with:

τ = Ctotal/Kw, (3.9)

where τ is the relaxation time and Kw is the thermal conductance of the supporting wires,

Tb is the constant related to puck temperature and P(t) is the heater power.

Figure 3.7: 4He specific heat puck and its schematic representation of the platform.

60

http://etd.uwc.ac.za



 

 

 

 

3.4. Magnetic Property Measurement System (MPMS)

3.4 Magnetic Property Measurement System (MPMS)

The magnetic properties studied, were measured using MPMS which is also from

the same manufacturer as PPMS equipment, as seen in figure 3.8 [89]. This equipment

has three main modes of measurements, namely the reciprocating sample option (RSO),

alternative current (AC), and direct current (DC) measurements methods. In DC method,

two Josephson junction (that consists of two weakly coupled superconducting electrodes)

are connected parallel onto two superconductors with an insulating gap in between. If the

gap is thin enough, electron pairs can tunnel from one superconductor across the gap to

the other superconductor, by means of quantum tunnelling, a resistanceless current flows

across the insulator.

The MPMS measures the magnetic properties such as magnetic susceptibility and mag-

netization with a field range of up to 7 T produced by a highly uniform axial solenoid

magnet. Moreover, the working frequency in this system is given as ωj = 2πV/Φ0, where

Φ0 is the magnetic flux quantum and V is the applied voltage [89, 90].

The magnetic properties studied in this thesis were performed using DC option mea-

surements. Here, the magnetometer is very accurate so as to easily detect a high magnetic

moment of diamagnetic, paramagnetic, ferromagnetic and antiferromagnetic magnetic ma-

terials.

Figure 3.8: Schematic representation of Magnetic Properties Measurement Syspem (MPMS).
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3.4.1 Magnetic measurements

The measurement consists of oscillating the sample through superconducting detection

coils at a constant speed with a chosen amplitude of 4 cm with an oscillation frequency of

0.5 Hz at a given temperature and in a homogeneous magnetic field. When the sample is

moving within the coils, the magnetization of the space within the coils changes, thereby

inducing an electrical current in the detection coils. This induced current is not attenuated

and any change in magnetic flux produces a proportional change of current in the detection

circuit according to Faraday’s principle (∇× E = - ∂B
∂t

). However, the maximum value of

the induced voltage corresponds to the time when the sample is in the center of the pick

up coils and this centering is done prior to the measurement. The coils are inductively

coupled to a superconducting quantum interference device (SQUID), through a flux gate

transformer. Therefore, by moving the sample on either side of the detection coils, an

integration of the magnetic field is realized and the flux transformer is used to transmit the

signal to SQUID [89, 91]. From the phase difference across the junction of the SQUID, the

magnetic moment in emu (electromagnetic unit) is obtained from the SQUID response. The

amplitude of the measured signal is proportional to the magnetization of the sample. These

measurements can be carried out by varying the temperature (magnetic susceptibility

measurements) or maintaining the temperature constant, and vary the applied magnetic

field (magnetization measurements). Samples were put in a 1 cm straw which was placed

at the middle of the uncut straw as shown in figure 3.9. This uncut straw serves as the

sample holder and has a diamagnetic signal which is linear in field.

Figure 3.9: Picture showing sample mounted in the straw for the magnetization and magnetic
susceptibility measurements on MPMS.
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Chapter 4

Results and Discussion:

RE2Pt2In (RE = Pr, Nd)

4.1 Literature review and introduction

Recently, a group of ternary Ce-based rare-earth compounds with the composition

Ce2T2M (T = 3d-, 4d-, 5d-transition elements; M = In, Sn, Pb) crystallizing in the

primitive tetragonal structure of the Mo2FeB2-type (an ordered derivative of the U3Si2-

type structure) was reported [92, 93]. The proximity of the 4f level to the Fermi level

generates unusual ground state properties, such as heavy fermion, intermediate valence,

magnetic ordering, superconducting or Kondo insulator. Magnetic measurements of this

group of compounds indicated that the physical property was mainly governed by the 4f-d

hybridization [92]. For the family of compounds Ce2T2In in particular, it was reported that

the ground state changes from a nonmagnetic to a well localized magnetic regime [92]. For

the compounds Ce2Ni2In and Ce2Rh2In, the magnetic susceptibility data shows a broad

maximum at high temperatures, a signature of intermediate valence (IV) systems [92,

93, 94]. Magnetic measurements of Ce2Pt2In suggest that this compound is strongly

temperature-dependent with no magnetic ordering down to 1.7 K [92, 95] whereas, the

compounds Ce2Cu2In and Ce2Pd2In order antiferromagnetically below TN = 5.5 K and

3.2 K, respectively. Ce2Au2In orders ferromagnetically below TC = 4.0 K and undergo

spin rearrangement of the Ce magnetic moment above TC at 4.3 K [92, 93, 95]. Similarly,

Ce2Pd2Sn order ferromagnetically below TC = 4.2 K. The electrical resistivity, ρ(T ) results

confirm the IV behaviour of Ce2Ni2In and Ce2Rh2In compounds while the remaining
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ternary compounds in the family of Ce2T2In was found to be determined by an interplay

of Kondo and crystal-electric-field effect [92]. In the case of Ce2Ni2Sn compounds, ρ(T )

results are characteristic of Kondo behaviour with a Kondo temperature TK = 9 K [93].

Antiferromagnetic order was observed for the Ce2Pd2Pb at TN = 6.2 K with a second-order

phase transition involving a reduction in the effective moment observed at T = 120 K of

Ce ion [93].

During the writing of this report, no ferromagnet has been observed or reported up to

now in the actinide-based 2:2:1 compounds [96, 97]. Few ferromagnets up to date in the

family of rare-earth based 2:2:1 compounds were found [93, 95, 98].

The study of critical behaviour of the second-order magnetic phase transitions is amongst

the valuable tools to study the appropriateness of the double exchange mechanism to de-

scribe the magnetism of the compound. Furukawa and Motome [99] show theoretically that

the 3D-Heisenberg model is compatible with the double exchange mechanism. We found

it interesting to undertake the study of the critical behaviour near the paramagnetic-

ferromagnetic phase transition in Pr2Pt2In and Nd2Pt2In compounds. This was done

through isothermal magnetization measurements around the transition temperature TC as

well as magnetic susceptibility. On the other hand, magnetic refrigeration based on mag-

netocaloric effect of solid state substances has been proven to bear many advantages over

conventional gas-compression refrigeration techniques, like higher efficiency and environ-

mental features [3, 8]. Currently, intense research is being carried out to identify suitable

magnetic materials for their use in refrigeration technology. Although magnetocaloric ef-

fect is an intrinsic property of all magnetic materials, especially alloys and compounds

of rare-earth metals, they are expected to show enhanced, field-tunable magnetic entropy

change. This is mainly because of intrinsically large molar magnetic entropy values asso-

ciated with tripositive rare-earth ions [100]. Furthermore, the magnetic moments corre-

sponding to 4f -electrons of the rare-earth are larger than those of a typical 3d-electron

system by a factor of 2 [100]. Magnetocaloric effect is characterized by an adiabatic change

in temperature (∆Tad) and an isothermal magnetic entropy change, ∆S, arising from the

application or removal of magnetic field under adiabatic conditions. The physics of mag-

netocaloric effect gets enriched by correlated spin-lattice degree of freedom [100]. It has
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been observed that many materials with first or second-order phase transition exhibit large

magnetocaloric effect, but at the same time magnetic hysteresis reduces the cooling effi-

ciency. Hence, materials with large magnetocaloric effect and negligible hysteresis are good

candidates for applications in magnetic refrigeration. Prominent examples of such systems

are Gd5(Si,Ge)4 [101], MnAs [14, 102] and Ni2MnGa [103]. The search for new heavy

rare-earth intermetallic compounds prospective for magnetic refrigeration application is

presently one of the key topics in modern materials science [104, 105, 106].

The results of X-ray diffractometer, energy dispersive spectroscopy, crystal structure,

electrical resistivity, magnetic susceptibility, magnetization, heat capacity, critical behaviour,

magnetocaloric effect obtained on polycrystalline compounds Pr2Pt2In and Nd2Pt2In are

presented and discussed in this chapter.

4.2 Crystallographic

The micrographs of Pr and Nd compounds magnified at 50 µm taken from scanning

electron macroscope are presented in figures 4.1 and 4.2 respectively. The micrograph

images of both compounds show a microstructure with a region of slightly different darkness.

Furthermore, they are characterized by a smooth surface. The results of this analysis

implied that the entire samples were homogeneous which indicate that the dissimilar

regions should be attributed to crystallites with different crystallographic orientation.

The quantitative energy dispersive spectroscopy measurents over the surface area of each

sample indicate the sample elemental composition normalized to the rare-earth content

to be: Pr2Pt1.980(2)In0.953(2) and Nd2Pt1.970(2)In0.945(2) which are roughly close to the 2:2:1

composition. The small offsets of the atomic ratios are ascribed to the small mass loss that

occurs during sample synthesis.
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Figure 4.1: Cross section micrograph of scanning electron macroscope done on Pr2Pt2In with
a scale of 50µm.

Figure 4.2: Cross section micrograph of scanning electron macroscope done on Nd2Pt2In with
a scale of 50µm.

Figures 4.3a, 4.4a, 4.5a displayed X-ray diffractograms obtained for La, Pr and Nd

compounds together with Rietveld full-profile least squares refinement fits to the data. X-

ray diffraction study revealed single-phase characters of all three compounds and confirms

the tetragonal Mo2FeB2-type structure (an ordered derivative of the U3Si2-type structure)

with space group P4/mbm-D5
4h, No. 127). In this structure, the RE atoms occupy the

crystallographic 4h sites; Pt atoms occupy the 4g site and In atoms occupy the 2a sites.

The resulting tetragonal crystal structure is depicted in figure 4.6 and the atomic coordi-
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nates are listed in table 4.1. In the refinement process, the site occupancy fraction (S.O.)

as well as the isotropic displacement parameter (Beq) of all atoms were kept fixed (fully

occupied). The phase density value obtained amounts to 22.0(1) g/cm3; 20.695 g/cm3 and

21.152(8) g/cm3 for La2Pt2In, Pr2Pt2In and Nd2Pt2In respectively. These values are of

the same order of magnitude which indicates the same phase density for all three com-

pounds. The room temperature lattice parameters and the unit cell volume are gathered

in table 4.1. These values are in good agreement with the literature data [92, 94]. The

observed relationship VLa2Pt2In >VPr2Pt2In >VNd2Pt2In, confirms the lanthanide concentra-

tion between La and Nd. The final refined agreement indices as defined in chapter 3,

subsection 3.2.2.2, for La2Pt2In, Pr2Pt2In, Nd2Pt2In are gathered in table 4.2. The ob-

served values of RB indicate that the structural model may be correct. However, in order

to check the quality of the Rietveld refinement, the X-ray diffraction patterns of all three

compounds was refined on the basis of the CAILS-Pawley refinement method using the

same space group, P4/mbm-D5
4h, (No. 127, see figures 4.3b, 4.4b, 4.5b). As mentioned

in chapter 3, subsection 3.2.2.1, the CAILS refinement method is different from the Ri-

etveld refinement method in the sense that only cell parameters, peak width parameters

and integrated intensities are refined. Furthermore, the CAILS refinement method does

not involve the atomic position parameters or the structural model and only depends on

the space group symmetry. In the CAILS method the intensities of all peaks vary inde-

pendently. The value of the agreement indices obtained from the CAILS refinement are

also listed in table 4.2. It is observed that these values are of the same order of magni-

tude with that obtained from the Rietveld refinement discussed above. This observation

indicates that the χ2 and R-factors are not due to an incorrect structural model. A more

detailed analysis of the refinement for both methods reveals that the observed peak shape

is different from the peak calculated using three phase peak-type functions for classical

analytical full pattern fitting. However, the peak shapes are still not well fitted, which

may be due to strain or chemical inhomogeneity or high defect density in the sample. The

overall diffraction patterns show that all three compounds are largely single-phase with no

impurities.
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Figure 4.3: The X-ray diffraction pattern (green symbols) of La2Pt2In collected at room tem-
perature and its Rietveld (a) and Pawley (b) refinement (red curves). The bottom black curves
are the difference between the experimental and calculated patterns. The vertical ticks in (a)
represent the Bragg’s reflections.
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Figure 4.4: The X-ray diffraction pattern (green symbols) of Pr2Pt2In collected at room tem-
perature and its Rietveld (a) and Pawley (b) refinement (red curves). The bottom black curves
are the difference between the experimental and calculated patterns. The vertical ticks in (a)
represent the Bragg’s reflections.
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Figure 4.5: The X-ray diffraction pattern (green symbols) of Nd2Pt2In collected at room tem-
perature and its Rietveld (a) and Pawley (b) refinement (red curves). The bottom black curves
are the difference between the experimental and calculated patterns. The vertical ticks in (a)
represent the Bragg’s reflections.
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Figure 4.6: The tetragonal unit cell of RE2Pt2In. The pink, brown and black balls represent
In, Pt and Pr atoms, respectively.

Table 4.1: Atomic coordinates derived for RE2Pt2In from the Rietveld refinement. The
site occupancies S.O. = 1 and the isotropic displacement parameters Beq = 1 were assumed.

Atom
Wyckoff

site x y z a(Å) c(Å) V(Å3)

La 4h 0.683(1) x+1/2 0.5 7.8524(5) 3.9365(3) 242.72(4)
Pt 4g 0.127(1) x+1/2 0
In 2a 0 0 0
Pr 4h 0.683(1) x+1/2 0.5 7.7694(6) 3.8634(4) 233.66(4)
Pt 4g 0.127(1) x+1/2 0
In 2a 0 0 0
Nd 4h 0.683(1) x+1/2 0.5 7.7576(9) 3.8383(5) 230.990(3)
Pt 4g 0.127(1) x+1/2 0
In 2a 0 0 0
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Table 4.2: R-factors obtained from the Rietveld and Pawley refinement methods in X-ray
powder diffraction data analysis of RE2Pt2In, with RE = La, Pr and Nd.

discrepancy
factors-Rietveld La2Pt2In Pr2Pt2In Nd2Pt2In

Rwp [%] 9.546 9.071 7.285
Rexp [%] 2.441 2.191 2.211
Rp [%] 6.741 7.511 5.637
χ2 3.910 4.429 3.401
DW 0.213 0.615 0.259
RB [%] 8.574 8.226 4.775

discrepancy
factors-Pawley

Rwp [%] 16.679 18.381 16.039
Rexp [%] 2.422 4.168 4.716
Rp [%] 9.904 13.976 12.566
χ2 3.886 4.410 3.295
DW 0.078 0.765 1.097

4.3 Pr2Pt2In

4.3.1 Electrical resistivity

The electrical resistivity measurements were done on a bar-shaped specimen of

typical dimension 1×1×6 mm3. The temperature dependence of the electrical resistivity,

ρ(T ), of Pr2Pt2In is displayed in figure 4.7. The compound shows metallic conductivity

with some bending of the ρ(T ) curve characteristic of s-d interband scattering. Based on

the Matthiessen’s rule, this experimental data was described in the framework of Bloch-

Grüneisen-Mott function [107, 108]:

ρ (T ) = (ρ0 + ρ∞0 ) + 4kθR

(
T

θR

)5

×∫ θR
T

0

x5

(ex − 1) (1− e−x)
dx− αT 3, (4.1)

where ρ0 represents the residual resistivity due to static imperfections in the sample, ρ∞0 is

the spin-disorder resistivity, the second term accounts for the electron-phonon scattering

processes and the third term describes the scattering of conduction electrons into a narrow

d-band (interband Mott scattering). The constant k and α are related to the strength of
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the electron-phonon and the s-d interactions respectively, whereas, θR is a characteristic

energy scale of lattice vibrations, a rough measure of the Debye temperature in the system.

The least squares fit of equation 4.1 to the experimental ρ(T ) data (solid red curve figure

4.7a main panel) yielded: the sum of the residual and the spin-disorder resistivity ρ0 +

ρ∞0 = 44.5(2) µ.Ω.cm, the Debye resistivity temperature θR = 193.8(6) K, the electron-

phonon coupling constant k = 674.3(4) µΩ.cm.k−3 and the inter-band scattering coefficient

α = 5.61(1) ×10−7 µΩ.cm.K−3. The inset to figure 4.7a displays an expanded view of the

low-temperature ρ(T ) data. At TC = 9 K, the electrical resistivity shows a sudden drop

marking an onset of the ferromagnetically ordered state, also observed in heat capacity

and the magnetic susceptibility (see section 4.3.2 and 4.3.3).
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Figure 4.7: (a) Temperature variation of the electrical resistivity, ρ(T ), of Pr2Pt2In measured
in 0 T. The solid red curve through the data points is the least squares fit of equation 4.1 to the
experimental data. The inset displays the low-temperatures ρ(T ) data in 0 T. The black solid
curve represents the least squares fit of equation 4.2 to the experimental data. (b) displays the
low-temperatures ρ(T ) of Pr2Pt2In measured in a field of 0.5; 3 and 5 T. The black solid curves
represent the least squares fits of equation 4.2 to the experimental data. The arrows indicate the
position of TC.
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4.3.1 . Electrical resistivity

Figure 4.7b shows the low-temperature electrical resistivity data of Pr2Pt2In ρ(T ) mea-

sured in an external magnetic field of 0.5, 3, 5 T. The application of magnetic field shifts

the phase transition to high temperatures, as expected for ferromagnet materials. In 5

T, the ferromagnetic anomaly is not discernible on the ρ(T ) curve. As can be inferred

from figure 4.7b (see also the inset of figure 4.7a), in the ordered state, the ρ(T ) variations

measured in 0 and finite applied magnetic field can be well described by the formula that

accounts for scattering conduction electrons on ferromagnetic spin-wave excitations with

an energy gap ∆R in magnon spectrum [34]:

ρ(T ) = ρ0 + A∆RT

[
1 + 2

T

∆R

]
exp

(
−∆R

T

)
, (4.2)

where A is a prefactor that determines the stiffness of the sample. The least squares fits

of equation 4.2 to the experimental data yielded the parameters gathered in table 4.3.

Combining the results of the performed evaluations of the zero-field resistivity (equation

4.1 and equation 4.2), the spin-disorder resistivity can be derived to be ρ∞0 = 4.0(3) µΩcm,

with the transition temperature at TC = 9 K.

Table 4.3: The parameters derived from the analysis of the low-temperatures electrical
resistivity data of Pr2Pt2In.

µ0H [T] ρ0 [µΩ.cm ] A [µΩcm/K2] ∆R [K]

0 40.6(3) 0.13(7) 8(2)
0.5 40.69(4) 0.021(8) 7(1)
3 40.61(3) 0.010(3) 8.1(9)

The magnetic phase transition manifests itself as a pronounced feature in the temper-

ature derivative of the resistivity, dρ/dT . In accordance with the criterion given by Sato

et al in [109], the value of TC can be defined as a midpoint of the anomaly in the dρ/dT

curve as shown in figure 4.8.
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Figure 4.8: The temperature derivative, dρ/dT , as a function of temperature. The arrow
indicates the critical temperature TC associated with the maximum in the curve.

4.3.2 Heat Capacity

The temperature variation of the specific heat, Cp(T ), of Pr2Pt2In is depicted in figure

4.9. At room temperature, the specific heat attains a value of 131 J/mole.K, close to the

Dulong-petit limit 3nR = 124.7 J/mole.K (n = 5 is the number of atoms per formula unit,

R stands for the gas constant ). In the paramagnetic state, Cp(T ) can be approximated

by the standard Debye formula:

Cp(T ) = γT + 9nkB

(
T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2dx, (4.3)

where γ is the Sommerfeld coefficient and θD is the Debye temperature. The least squares

fit of equation 4.3 to the experimental data yielded γ = 1.7(1) J/mole.K2 and θD = 155.0(3)

K. The value of θD is similar to those reported for other members of the RE2Pt2In series [92].

It is fairly close to the value of θR derived from the electrical resistivity data of Pr2Pt2In.
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The low-temperatures, Cp(T ) data of Pr2Pt2In, measured in 0 magnetic field, 2 and

5 T, are displayed in the inset of figure 4.9. Cp(T ) data shows a λ-shape anomaly at

TC = 9 K that correspond to the second order phase transition from the paramagnetic state

to the ferromagnetic state one, in line with the Arrott-plots analysis(see section 4.3.4). The

observed TC value in 0 magnetic field agree with the results obtained from the electrical

resistivity (see section 4.3.1) and the magnetic susceptibility studies (see section 4.3.3)

studies. Typical for ferromagnetic materials, the specific heat peak marking the onset

of the magnetically ordered state shifts to higher temperatures with an increase in the

magnetic field strength. In 5 T, the peak disappears, in accordance with the behaviour of

the electrical resistivity measured at the same field (see above).

Figure 4.9: Temperature variation of the heat capacity, Cp(T ) of Pr2Pt2In measured in 0
magnetic field. The solid red curve is the least squares fit of equation 4.3 to the experimental
data. The solid dash line represents the Dulong-petit value 3nR = 124.7 J/mole.K. The inset
shows an expanded view of the low-temperatures Cp(T ) data. The arrows indicate the position
of TC of Pr2Pt2In taken in 0 and in applied field of 2 and 5 T.

Figure 4.10 displays the magnetic 4f -electron contribution to the total specific heat,

C4f(T ) of Pr2Pt2In in 0 and 2 T, obtained by subtracting the phonon contribution that

was assumed to be the same as in the isostructural compound La2Pt2In (see section 4.4.2).
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4.3.2 . Heat Capacity

As depicted in the figure, below TC the C4f(T ) data measured in 0 magnetic field can be

described by the formula:

C4f(T ) = γT +BT 3/2exp

(
−∆C

T

)
, (4.4)

that takes into account the electronic term and the magnon contribution with an

energy gap, ∆C, in the ferromagnetic spin-wave spectrum (B is a constant associated

with the stiffness of the sample). The parameters obtained by least squares fitting are: the

Sommerfeld coefficient γ = 0.09(4) J/mole.K2, B = 1.42(3) J/mole.K2, ∆C = 6.0(3) K in

0 T. The value of ∆C is close to TC, and very similar to the values of ∆R derived from the

low-temperatures ρ(T ) data.

At high temperatures, C4f(T ) measured in 0 magnetic field (figure 4.10a) shows a broad

hump around 20 K that can be attributed to crystal-electric-field effect.

Figure 4.10: Temperatures variation of the 4f contribution to the total heat capacity, C4f(T )
of Pr2Pt2In measured in (a) 0 and (b) 2 T. The solid red curve is the least squares fit of the
spin-wave dispersion relation (equation 4.4) to the C4f(T ) data measured in 0 magnetic field.
The arrows indicate the position of TC.

The 4f -electron magnetic entropy was calculated from the integration:
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4.3.3 . Magnetic susceptibility and magnetization

S4f(T ) =

∫ T

0

C4f(T
′)

T ′
dT ′, (4.5)

and the results are presented in figure 4.11. The entropy attains the value of R ln2 appro-

priate for a well isolated doublet very close to TC.

Figure 4.11: Temperature variation of the 4f -electron magnetic entropy S4f(T ) of Pr2Pt2In
measured in 0 and 2 T. The arrows indicate the position of TC. The horizontal dash line marks
the value R ln2 = 5.76 J/mole.K expected for the doublet ground state.

4.3.3 Magnetic susceptibility and magnetization

Figure 4.12 shows the inverse magnetic susceptibility, χ−1(T ) measured in the field of

0.1 T in the temperature range 400 K - 1.7 K. It is observed that χ−1(T ) data follows the

Curie-Weiss relationship above 150 K:

χ−1(T ) =
3kB(T − θP)

NAµ2
eff

, (4.6)

78

http://etd.uwc.ac.za



 

 

 

 

4.3.3 . Magnetic susceptibility and magnetization

where the parameters have their usual meaning (see chapter 2). Least squares fit on χ−1(T )

data to equation 4.6 gives the values of the effective magnetic moment, µeff = 3.61(2)µB/Pr

and the Weiss temperature constant, θp = 20.1(4) K. The observed value of µeff is very

close to that expected for the free Pr3+ ion;
(
gJ
√
j(j + 1) = 3.58µB

)
and indicates a

development of well localized magnetic moments in Pr2Pt2In. The positive value of θP

reveals the ferromagnetic ground state of Pr2Pt2In. Below 150 K, χ−1(T ) deviate distinctly

from the Curie-Weiss behaviour which is likely due to magnetocrystalline anisotropy or to

thermal depopulation of crystal-electric-field split Pr 4f 2-state.

Figure 4.12: Temperature variation of the inverse magnetic susceptibility, χ−1(T ), of Pr2Pt2In
measured in a field of 0.1 T. The red solid line is least squares fit of the Curie-Weiss relation
equation 4.6 to the experimental data above 150 K. The inset displays the magnetic field variation
of the magnetization in Pr2Pt2In taken at 1.7 K.

The inset of figure 4.12 shows the field dependence of the magnetization, M(µ0H) for

Pr2Pt2In measured at 1.7 K. The shape of M(µ0H) is typical for ferromagnetic materials.

In a field stronger than 0.5 T, one observes a saturation at a value Ms = 2.05 µB/Pr3+,

which is smaller than the theoretical value (gJJ = 3.2 µB) calculated for a free Pr3+-ion.

This reduction can be attributed to the crystal-electric-field effect as well as to magnetic
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4.3.3 . Magnetic susceptibility and magnetization

anisotropy.

Figure 4.13a shows the low-temperatures χ(T ) data for the Pr2Pt2In. χ(T ) data shows

an abrupt rise characteristic of ferromagnetic materials. The magnetic phase transition

temperature was estimated at the midpoint of the abrupt rise in the χ(T ) curve and

accurately taken at the minimum of the derivative of χ(T ) curve as indicated in figure

4.13b by the vertical arrow at TC = 9 K.
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Figure 4.13: (a) The low-temperatures χ(T ) data of Pr2Pt2In in the ferromagnetic region,
measured in field of 0.1 T. The arrow indicates the ferromagnetic transition temperature TC

taken at the midpoint of the abrupt rise in the χ(T ) curve. (b) dχ(T )/dT curve with the arrow
indicating the position of TC taken at the minimum of dχ(T )/dT curve.
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4.3.4 . Critical behaviour study around the magnetic phase transition in
Pr2Pt2In

4.3.4 Critical behaviour study around the magnetic phase tran-

sition in Pr2Pt2In

4.3.4.1 Arrott-plots

Figure 4.14 shows the standard Arrott-plot M2 vs. µ0H/M for the magnetization

isotherms taken in the temperature range 8 K - 11.2 K in step of 0.2 K.

Figure 4.14: The standard Arrott-plot for the mean-field model M2 vs. µ0H/M of isotherms
collected around TC for Pr2Pt2In.

Apparently, all the isotherms deviated from linearity even in a strong magnetic field,

which indicates that a mean-field description of the magnetic exchange interactions in

Pr2Pt2In is not appropriate. In the entire temperature interval examined, the isotherms

have positive slopes, which indicates a second-order nature of the transition [110]. In

order to evaluate the critical exponent, and thus the class of universality to which Pr2Pt2In
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compound might belong, we have used the modified Arrott-plots given by [111]:

(
µ0H

M

)1/γ

= a
(T − TC)

T
+ bM1/β. (4.7)

As starting trial values of β and γ, the values predicted within the 3D-Ising model (β

= 0.325, γ = 1.241) and the 3D-Heisenberg (β = 0.365, γ = 1.386) were applied. Linear

fittings of the experimental data points at high fields provides quantitative information

when comparing their slopes for each universality class. The deviation of each slope with

respect to the average values for both models was compared and pointed out to be good for

the 3D-Ising model. Thus, the 3D-Ising critical exponents has been taken as the starting

point from which an iterative process was carried out similar to references [51, 112]. The

result of this treatment is presented in figure 4.15.
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Figure 4.15: Modified Arrott-plots using the critical exponent of the 3D-Ising model. The solid
red lines are the linear fits, according to equation 4.7.

Following the theory of ferromagnetism, it is observed from figure 4.15 that in weak
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4.3.4 . Critical behaviour study around the magnetic phase transition in
Pr2Pt2In

magnetic fields, the data exhibit a downward curvature as they are averaged over domains

which are magnetized in different directions [113]. In the next step, an iterative process was

used, similar to that described in reference [51]. A linear extrapolation of the isotherms in

figure 4.15 gave (Ms)
1/β and

(
χ−1

0

)1/γ
as intercepts on the (M)1/β and (µ0H/M)1/γ axes,

respectively. The obtained values of Ms (T ) and χ−1
0 (T ) are plotted in figure 4.16. They

were evaluated using the formulas [38]:

Ms(T ) = M0

(
−T − TC

TC

)β
(T<TC) , (4.8)

χ−1
0 (T ) = Γ

(
T − TC

TC

)γ
(T>TC) , (4.9)

where M0 and Γ are the critical amplitudes. The least squares fit of equation 4.8 to the Ms

data yielded β = 0.325(3) and TC = 8.80(3) K, while the least squares fit of equation 4.9

to the χ−1
0 (T ) data gave γ = 1.058(3) and TC 8.814(3) K. These new values of the critical

exponents were used to construct other modified Arrott-plots similar to those shown in

figure 4.15. The process was repeated until convergence was reached and the final values

of the critical exponents were β = 0.324(2), γ = 1.15(2). Remarkably, these values are

close to those predicted within the 3D-Ising model, and smaller than the critical exponents

derived in the 3D-Heisenberg model (β = 0.365, γ = 1.386).
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Figure 4.16: Temperature variation of the spontaneous magnetization, Ms(T ) (left axis), and
the reciprocal initial susceptibility, χ−1

0 (T ) (right axis), derived from the modified Arrott-plots
shown in figure 4.15. The solid curves are least squares fits using equations 4.8 and 4.9.

4.3.4.2 Kouvel-Fisher

Another approach applied to the magnetization data of Pr2Pt2In in order to obtain

accurate values of the critical exponents was the scaling analysis developed by the Kouvel

and Fisher [114, 115]. The experimental Ms(T ) and χ−1
0 (T ) data were fitted by the Kouvel-

Fisher equations [115, 116]:

Ms(T )

dMs(T )/dT
=
T − TC

β
, (4.10)

χ−1
0 (T )

dχ−1
0 (T )/dT

=
T − TC

γ
. (4.11)

As displayed in figure 4.17, both plots are straight lines with their slopes being equal
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4.3.4 . Critical behaviour study around the magnetic phase transition in
Pr2Pt2In

to 1/β and 1/γ, respectively, and their intercepts with the temperature axis defines TC.

From those straight line fits, the estimated critical exponents and TC were: β = 0.323(6),

TC = 8.8 K (from equation 4.10) and γ = 1.054(3) and TC = 8.4(3) K (from equation 4.11).

All these critical exponents estimated from the various techniques are gathered in table 4.4,

together with the theoretically predicted values of the different models. Apparently, the

Kouvel-Fisher analysis led to the results very similar to those obtained from the modified

Arrott-plots.

Figure 4.17: Kouvel-Fisher plot of spontaneous magnetization Ms(T ) (left axis) and the inverse
initial susceptibility χ−1

0 (T ) (right axis). The straight lines are the least squares fits of the data
points using equations 4.10 and 4.11.

4.3.4.3 Critical isotherm analysis and scaling law

The critical isotherm exponent δ can be determined directly from the critical isotherm

given by:

M(µ0H,TC) = X(µ0H)1/δ, (4.12)
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where X is the critical amplitude. Figure 4.18a (main panel) shows the magnetic field

dependence of the magnetization in Pr2Pt2In measured at TC = 8.8 K. As apparent from

the inset to this figure, the plot logM vs. log(µ0H) is a straight line with its slope being

equal to 1/δ. The derived value of critical exponent is δ = 4.54(4).
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Figure 4.18: (a) Field variation of the critical isotherm, M(µ0H,TC = 8.8 K) for Pr2Pt2In. The
inset shows the data with log-log representation. The straight line is the linear fit using equation
4.12. (b) The renormalized magnetization in Pr2Pt2In plotted as a function of the renormalized
field (see equation 4.14). The isotherms in two separate branches correspond to temperature TC

and above TC.

The exponent δ can also be calculated using the Widom scaling relationship [116, 117]:

δ = 1 +
γ

β
. (4.13)

Applying the values of β and γ derived from the modified Arrott-plots one obtained

δ = 4.26(4), while using the critical exponents from the Kouvel-Fisher plots one got

δ = 4.26(7). All the critical exponent values (β, γ and δ) obtained using different methods
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match reasonably well, which proves internal consistency of all the analysis performed.

Finally, it will be interesting to investigate the validity of our results obtained by

checking if the critical exponents can reproduce the equation of states given by:

M(µ0H, t) = |t|β f±
(
µ0H

tβ+γ

)
, (4.14)

where f+ and f− are the regular functions for T < TC and T > TC respectively, and

t = (T − TC) /TC is the reduced temperature. As can be inferred from figure 4.18b, using

the critical exponents β and γ and the critical temperature TC, derived within the different

methods applied, one obtains a collapse of the data representing the region below and

above TC into two distinct curves, in line with the expected scaling behaviour. The critical

exponents obtained in this work for Pr2Pt2In are gathered in table 4.4, together with the

theoretical predicted values of the different models, it is clear that the values found for

this compound do not match with the conventional mean-field theory and they are slightly

smaller than those of the isotopic 3D-Heisenberg model. Apparently, the ferromagnetic

transition in Pr2Pt2In can be ascribed to the 3D-Ising universality class.

Table 4.4: Values of the critical exponents β, γ and δ derived for Pr2Pt2In from the
modified Arrott-plots, the Kouvel-Fisher model and the critical isotherm. The values of
δ for modified Arrott-plots and the Kouvel-Fisher model have been calculated from the
Widom scaling. The theoretical values for various models are also given for the sake of
comparison.

Material Ref. Technique β γ δ

Pr2Pt2In This work Modified Arrott-plots 0.325(3) 1.058(3) 4.26(4)
This work Kouvel-Fisher 0.323(6) 1.054(3) 4.26(7)
This work Critical isotherm 4.54(4)

Mean-Field model [47] Theory 0.5 1.0. 3.0
3D-Heisenberg model [47] Theory 0.365 1.386 4.80
3D-Ising mode [47] Theory 0.325 1.241 4.82

4.3.5 Isothermal magnetization and magnetocaloric effect

Figure 4.19 depicts the field variations of the isothermal magnetization, M(µ0H,T )

in Pr2Pt2In, measured in an applied field of up to 7 T in the temperature range 4 K -

20 K in a step of 2 K. The compound exhibits a behaviour typical of ferromagnet in the

ordered state. At T = 4 K, M(µ0H) reaches a saturation value of 2.05 µB per Pr3+-ion,
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4.3.5 . Isothermal magnetization and magnetocaloric effect

i.e. much smaller than the theoretical value of gJ = 3.2 µB expected for a free Pr3+-ion.

This reduction can be attributed to crystal-electric-field effect and/or magnetic anisotropy.
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Figure 4.19: Isothermal magnetization curves, M(µ0H, T ) of Pr2Pt2In measured in the vicinity
of the Curie temperature TC = 9 K.

The magnetocaloric effect in Pr2Pt2In can be estimated from the M(µ0H,T ) data using

the Maxwell relation:

∆SM (µ0H,T ) =

∫ µ0H

0

(
∂M(µ0H

′, T )

∂T

)
µ0H

d(µ0H
′). (4.15)

Figure 4.20a shows the isothermal magnetic entropy change (−∆SM(T )) as a function

of temperature, for several values of the magnetic field changes. For the compound

investigated, magnetocaloric effect is positive in the whole temperature range covered,

consistent with the ferromagnetic ordering. Around TC, the −∆SM curves form broad

maxima, the magnitude of which gradually increases with an increase in the field change,

reaching 7.44 J/(kg.K) for a field change of 7 T. This value is similar to those of some

magnetocaloric materials with second-order ferromagnetic phase transitions such as TbCoA

having TC = 70 K, −∆SmaxM = 10.5 J/kg.K [104], Er(Co0.85Si0.15)2 with TC = 60 K,
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−∆SmaxM = 8 J/(kg.K) [118].

In order to investigate the nature of the phase transition in Pr2Pt2In, the maximum

value of −∆SmaxM at TC was plotted in figure 4.20b as a function of h2/3, where h is

the reduced field (h = (µ0H)µB/kBTC). It should be noted that magnetic materials with

second-order phase transitions generally follow the relationship [106]:

−∆SmaxM = −kMs(0)h2/3 − S(0, 0), (4.16)

where k is a constant, Ms(0) is the saturation magnetization and S(0,0) is a reference

parameter which cannot be equal to zero [106]. Fitting equation 4.16 to the −∆SmaxM data

(solid line in figure 4.20b) yielded the following values: S(0,0) = -0.5(3) J/kg.K and kMs(0)

= 2.3(1) J/kg.K. The sign of S (0,0) is negative, which is expected for a second-order phase

transition [119, 120]. Furthermore, the linear behaviour of −∆SmaxM vs. h2/3 indicates

strong localization of the magnetic moments [121].

In order to verify the value of the entropy change maximum (- ∆SmaxM ) obtained from

the isothermal magnetization, (M(µ0H,T )), the evaluation of this quantity was performed

by calculating the magnetic entropy change directly from a calorimetric measurement of

the field dependence of heat capacity by the integration:

∆SM (T, µ0H) =

∫ T

0

CM(T ′, µ0H)− CM(T ′, 0)

T ′
dT ′, (4.17)

where CM(T, µ0H) and CM(T, 0) are the value of the magnetic contribution to the total

heat capacity of Pr2Pt2In measured in field and 0 magnetic field respectively. As mentioned

earlier, this magnetic contribution was obtained by subtracting the phonon contribution

that was assumed to be the same as in the isostructural compound La2Pt2In (see section 4.4.2)

to that of Pr2Pt2In. The results of −∆SmaxM obtained from heat capacity measured

for a field change of 5 T are shown in figure 4.21. It is observed from figure 4.20a

and 4.21 that the shape of −∆SmaxM estimated from M(µ0H,T ) and CM(T, µ0H) are

similar. Furthermore, −∆SM(T ) obtained from CM(T, µ0H), reaches a maximum value of

6.45 J/mole.K at 9 K for a field change of 5 T. This value corroborated with the value of

6.93 J/mole.K observed from −∆SM(T ) curve obtained from M(µ0H,T ) for the same field
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change of 5 T.

Figure 4.20: (a) Temperature dependencies of the isothermal magnetic entropy change,
−∆SM(T ), in Pr2Pt2In measured with different field changes in steps of 0.5 T. (b) The max-
imum isothermal magnetic entropy change at TC as a function of reduced field h2/3 (see text for
definition). The solid line is the least squares fit to the experimental data using equation 4.16.

Figure 4.21: Temperature dependence of the magnetic entropy change at 5 T calculated from
CM(T, µ0H).
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4.4. Nd2Pt2In

4.4 Nd2Pt2In

4.4.1 Electrical resistivity

The temperature dependence of the electrical resistivity, ρ(T ) of the Nd2Pt2In is shown

in figure 4.22a. The compound shows metallic conductivity at high temperatures with

some bending of the ρ(T ) curves characteristic of s-d interband scattering and/or crystal-

electric-field effect. This behaviour of ρ(T ) is similar to ρ(T ) of the homologue compound

Pr2Pt2In (see section 4.3.1) and several other rare-earth intermetallic compounds such

as La3NiGe2 [122]. General for the Nd-bearing compounds, the crystal-electric-field is

predominant in the electrical resistivity [123, 124], and a simple analysis of the Bolch-

Grüneissen-Mott relationship [107, 108] of equation 4.1 is not possible. The bottom inset

of figure 4.22a displays an expanded view of the low-temperatures ρ(T ) data of Nd2Pt2In.

ρ(T ) shows a sudden drop at TC = 16 K, signalling an onset of ferromagnetically ordered

state, as confirmed by the Cp(T ) and χ(T ) results (see sections 4.4.2 and 4.4.3). Similar to

the Pr2Pt2In compound, the observed decrease of the electrical resistivity with decreasing

temperature in the magnetically ordered state in Nd2Pt2In, results from gradual reduction

of scattering conduction electrons on magnetic moments. The magnetic phase transition

in Nd2Pt2In manifest itself as a pronounced anomaly in the temperature derivative of the

resistivity dρ(T )/dT (see figure 4.23). The value of TC was estimated according to Sato

criterion [109], which is at the midpoint of the anomaly in the dρ(T )/dT curve as indicated

by the arrow in figure 4.23.

The low-temperatures ρ(T ) data of Nd2Pt2In measured in an external magnetic field

of 0.5 T and 5 T are shown in figures 4.22b and 4.22c respectively. It is observed that the

application of magnetic field shifts TC to higher temperatures as expected for ferromagnet.

Below TC, ρ(T ) behaviour is governed by the scattering of conduction electrons on ferro-

magnetic spin-wave excitations with an energy gap (∆R) in the magnon spectrum and can

be described by the equation 4.2. The values of the parameters resulting from the least

squares fits of equation 4.2 to the experimental ρ(T ) data below TC are listed in table 4.5.

The fits of ρ(T ) data are shown by the solid red curves in figures 4.22b and 4.22c and also

at the bottom inset of figure 4.22a.
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4.4.1 . Electrical resistivity

Figure 4.22: (a) Temperature variation of the electrical resistivity, ρ(T ) of Nd2Pt2In measured
in 0 magnetic field. The inset displays the low-temperatures ρ(T ) data with the red solid curve
representing the least squares fit of the spin-wave dispersion relation 4.2. The arrow indicates
the position of TC. (b) and (c) The low-temperatures ρ(T ) data measured in a magnetic field of
0.5 and 5 T, respectively the solid red curves are the least squares fits of the spin-wave dispersion
relation 4.2 and the arrows indicate the position of TC.

Table 4.5: Electrical resistivity parameters of Nd2Pt2In derived from the low-
temperatures least squares fits of equation 4.2 to the measured data.

µ0H [T] ρ0 [µΩ.cm ] A [µΩcm/K2] ∆R [K]

0 160.9(9) 0.06(2) 13(1)
0.5 160.83(5) 0.038(5) 10.9(6)
5 161.09(5) 0.031(4) 11.4(7)
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Figure 4.23: The temperature variation of the derivative of the electrical resistivity, dρ/dT .
The arrow indicates the position of the critical temperature TC taken at the midpoint of the
anomaly in dρ/dT .

4.4.2 Heat capacity

The temperature dependencies of the specific heat, Cp(T ) of Nd2Pt2In and the non-

magnetic reference compound La2Pt2In are displayed in figure 4.24 measured in the tem-

perature range 1.8 K - 300 K in 0 magnetic field. For La2Pt2In compound, Cp(T ) varies

monotonically with no anomaly down to 1.8 K, while for the magnetic Nd2Pt2In compound,

Cp(T ) exhibits a λ-type anomaly at low-temperatures characteristic of the second-order

magnetic phase transition, in line with the magnetocaloric effect analysis (see section 4.4.5).

The sharp peak amounting to 35 J/mole.K on the Cp(T ) data is found at TC = 16 K in

agreement with the value observed in the ρ(T ) data. At room temperature, Cp(T ) data

of La2Pt2In reach the value of Dulong-Petit, 3nR = 124.7 J/mole.K (n = 5 is the number

of atoms per formula unit, R stands for the gas constant), while Cp(T ) data of Nd2Pt2In

attains this value around 170 K. In the whole temperature range measured, the Cp(T ) data
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4.4.2 . Heat capacity

of La2Pt2In can be described by the Debye-Einstein model equation [125]:

Cp(T ) = γT + 9nR(1− d)

(
T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2dx+

3nRd

(
θE

T

)2
eθE/T

(eθE/T − 1)
2 , (4.18)

where d is a number of Einstein modes, the first term represents the electronic contribution

with γ being the Sommerfeld coefficient and the second and third terms are the standard

Debye and Einstein expressions for the phonon contribution with θD and θE being the

Debye and Einstein temperatures, respectively. The least squares fit of equation 4.18

to the experimental data (note the blue solid line in figure 4.24) yielded the following

parameters: γ = 0.0092(1) J/(mole.K2), θD = 190.3(5) K, θE = 69.8 (7) K and d = 0.2.

The value of θD obtained for this compound is similar to those reported for the other

members of the RE2Pt2In series [92, 126]. On the other hand, the least squares fit on

Cp(T ) data of Nd2Pt2In using the Debye equation 4.3 yielded the following parameters:

θD = 152.44(2) K; γ = 1.197(1) J/(mole.K2). The value of θD obtained for this compound

is very close to the value of 155.0(2) K obtained for Pr2Pt2In. The similarity of θD suggests

the same lattice vibration in both compounds as a result of the same order of magnitude

of their atomic masses.

The inset (a) of figure 4.24 displays the plot of Cp/T 3 vs. T for La2Pt2In which exhibits

a local maximum near Tmax of about 14 K. This maximum indicates the presence of an

Einstein contribution in the Cp(T ) data of La2Pt2In. From the relation θE ≈ 5Tmax, one

can estimate the value of θE to be about 70 K, which is in good agreement with the analysis

in terms of equation 4.18.

The low-temperatures Cp(T ) data of Nd2Pt2In measured in 0 magnetic field and 2 and

3 T, are displayed in the inset (b) of figure 4.24. Typical for ferromagnets, the specific heat

peak marking the onset of the ordered state shifts to higher temperatures with increasing

the magnetic field strength. In 3 T, the peak vanishes, similar with the behaviour of ρ(T )

measured in field above 5 T (see section 4.4.1).

Figures 4.25a and 4.25b display the magnetic 4f -electron contribution to the total

specific C4f(T ) of Nd2Pt2In measured in 0 and 2 T, obtained by subtracting the phonon

contribution that was assumed to be the same as in the isostructural compound La2Pt2In.

No mass correction was done in this process since the atomic mass of La and Nd are almost
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close relatives of each other. Similar to Pr2Pt2In compound, as shown in the figures, below

TC, the C4f(T ) data of Nd2Pt2In can be approximated using equation 4.4, that represents

a sum of the electronic term and the ferromagnetic magnon contribution with energy gap

∆C in the spin-wave spectrum (B is a constant associated with the stiffness of the sample).

The parameters obtained by least squares fitting (solid red curves) in figure 4.25a and

4.25b are listed in table 4.6. The values of ∆C are smaller than TC and roughly half the

values of ∆R obtained from the low temperatures ρ(T ) data.

Figure 4.24: (main panel) Temperature variations of the heat capacity, Cp(T ) of Nd2Pt2In and
La2Pt2In measured in 0 magnetic field. The solid blue curve is the least squares fit of the Debye-
Einstein model (equation 4.18) and the dark brown curve is the least squares fit of the standard
Debye formula (equation 4.3) to the experimental data. The arrow in the main panel indicates
the position of TC. The inset (a) shows the specific heat data of La2Pt2In plotted as Cp/T

3 vs.
T with the arrow indicating the position of a local maximum that provides an estimation of the
Einstein temperature. The inset (b) shows an expanded view of the low-temperatures Cp(T )
data. The arrows indicate the position of TC of Nd2Pt2In taken in 0 magnetic field and applied
magnetic field of 2 and 3 T.
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4.4.2 . Heat capacity

In a tetragonal symmetry, the crystal-electric-field will split the tenfold degenerate

ground-state multiplet 4I9/2 of the Nd3+ ion into three doublets with the two higher

doublets at energy separation ∆1 and ∆2 from the ground state (∆0 = 0 K). It is ob-

served from figure 4.25a that C4f(T ) exhibits a broad maximum centered around 60 K,

characteristic of a Schottky-type anomaly. This thermal dependence of the Schottky-type

anomaly ascribed to a crystal-electric-field can be described by the standard formula for

Schottky heat capacity which is given by:

CSch(T ) = R

[
g0g1

(
∆1

T

)2

e−
∆1
T + g0g2

(
∆2

T

)2

e−
∆2
T + g1g2

(
∆1 −∆2

T

)2

e−
∆1+∆2

T

]

×

[
1

g0 + g1e
−∆1

T + g2e
−∆2

T

]2

, (4.19)

where R is the constant gas, ∆1 and ∆2 are the splitting energy level between the ground

state and the first excited state and between the ground state and the second excited state.

The constants, g0, g1 and g2 represent the degeneracies of the ground state, first excited

state and the second excited states, respectively. The analysis of the Schottky peak in

C4f(T ) in the paramagnetic region based on equation 4.19 displayed in figure 4.25a (green

solid curve) using degeneracy g0 = g1 = g2 = 2. The calculated energy separation are

∆1 = 145(7) K for the first excited state and ∆2 = 195(13) K for the second excited

state. The corresponding 4f -electron magnetic entropy S4f(T ) was calculated by integrat-

ing C4f(T )/T. The plots of S4f(T ) for Nd2Pt2In compound are shown in figure 4.26 for both

0 and 2 T. The entropy attains the value of Rln2 appropriate for a well isolated doublet,

at temperature around 10 K for 0 T and 12 K for 2 T which are fairly close to TC.
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Figure 4.25: (a) The temperature variations of the 4f -electron contribution to the total heat
capacity, C4f(T ) of Nd2Pt2In measured in (a) 0 magnetic field and (b) 2 T. The solid red curves
are least squares fits of the spin-wave dispersion relation (equation 4.4) to the C4f(T ) data. The
solid dark green curve in (a) is the least square fit of the Schottky anomaly (equation 4.19) to
the C4f(T ) data with energy scheme as inset.

Table 4.6: Heat capacity data of Nd2Pt2In obtained from the low-temperatures least
square fits of equation 4.4 to the measured data.

µ0H [T] γ [J/mole.K2 ] B [J/mole.K5/2] ∆C [K]

0 0.055(6) 0.39(1) 7.6(3)
2 0.030(5) 0.32(1) 7.3(4)
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4.4.3 . Magnetic susceptibility and magnetization

Figure 4.26: The temperature variations of 4f -electron magnetic entropy S4f of Nd2Pt2In
measured in 0 magnetic field (black symbols) and in 2 T (blue symbols). The horizontal dash
line marks the value of Rln2 = 5.76 J/mole.K expected for the double ground state.

4.4.3 Magnetic susceptibility and magnetization

The temperature variation of the inverse magnetic susceptibility, χ−1(T ) measured

in an applied field of 0.1 T in the temperature range 1.7 K - 400 K for the Nd2Pt2In

compound is shown in figure 4.27. It is observed that χ−1(T ) data follow the Curie-

Weiss law (equation 4.6) above 100 K. The least squares fit of the Curie-Weiss relation

yielded the effective moment µeff = 3.61(2) µB/Nd and the Weiss temperature constant

θp = 17(1) K. The observed µeff value is very close to that expected for the free Nd3+-ion[
gJ (J(J + 1))1/2 = 3.62 µB

]
, indicating that only the localized 4f shells are contributing

towards the magnetic properties. The positive value of θp signifies the presence of

ferromagnetic exchange interactions in the compound. Deviation from the Curie-Weiss

law at lower temperatures can be attributed to magnetic ordered and/or crystal-electric-
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4.4.3 . Magnetic susceptibility and magnetization

field effects.

Figure 4.27: Temperature variation of the inverse magnetic susceptibility, χ−1(T ) of Nd2Pt2In
measured in a magnetic field of 0.1 T in the temperature range 1.7 K - 400 K. The solid red
line is the Curie-Weiss fit using equation 4.6 to the experimental data above 100 K. The inset
displays the magnetic field variation of the magnetization, M(µ0H), in Nd2Pt2In, measured at
1.7 K in increasing (blue symbols) and decreasing (red symbols) magnetic field.

The magnetic field dependence of the magnetization, M(µ0H), measured for Nd2Pt2In

at 1.7 K, is showing in the inset of figure 4.27. The shape of M(µ0H) is typical for

ferromagnetic materials. In a field stronger than 0.5 T, M(µ0H) saturates at a value

Ms = 2.12 µB/Nd-ion, which is smaller than the theoretical value for trivalent Nd (gJJ =

2.72 µB), likely due to a combined effect of crystal-electric-field and magnetic anisotropy.

Figure 4.28a displays the low-temperatures magnetic susceptibility χ(T ) data. χ(T )

exhibits a behaviour characteristic of a ferromagnet but deviates from saturation below

5 K. The phase transition temperature was estimated at the midpoint of the abrupt

rise in the χ(T ) curve that corresponds to the minimum in the dχ(T )/dT curve at

TC = 17 K. Below TC, χ(T ) data shows a broad maximum around 5 K which could be

attributed to spin reorientation at the temperature of the second magnetic transition at Tt

or to another magnetic phase to an antiferromagnetic order below Tt. This second magnetic
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4.4.3 . Magnetic susceptibility and magnetization

phase transition is accurately obtained from dχ/dT curve taken at the maximum at

Tt = 2.7 K. A similar behaviour of the low-temperatures χ(T ) data was observed in

Ho2Au2In below TC = 20(1) K [127]. This observation was ascribed to a spin reorientation

at the second magnetic transition temperature of 7.0(5) K [127]. More recently, Giovannini

et al. [128] investigated the effect of nonstoichiometry on the transition from ferromagnetism

to antiferromagnetism in the ternary indides Ce1.95Pd+2xIn1−x and Ce2+xPd1.85In1−x. They

reported that the ternary indides crystallize in the parent Mo2FeIn2 structure with space

group P/mbm and form two branches of solid solutions due to different substitutional

mechanisms which have a strong influence on the magnetic properties. Their observations

indicate that in the Pd-rich branch, indium vacancies at the 2a site are compensated by an

excess of Pd located at an additional 4e. This excess of Pd favours antiferromagnetism. On

the other hand, in the Ce-rich branch, the excess of Ce replaces indium atoms at the 2a sites

and the excess of Ce induces ferromagnetism [128]. It is likely that our sample forms two

branches of solid solutions. One branch with excess of Pt which favors antiferromagnetism

and the branch with excess of Ce which induces ferromagnetism. Such observation was

also present in Ho2Au2In compound [127] but was not present in the study of Pr2Pt2In

compound discussed in section 4.3.3.

Figure 4.28: (a) The low-temperatures χ(T ) data of Nd2Pt2In in the ferromagnetic region,
measured in field of 0.1 T. The arrow indicates the ferromagnetic transition temperature TC

taken at the midpoint of the abrupt rise in the χ(T ) curve. (b) dχ(T )/dT curve with the arrows
indicating the positions of TC and Tt taken at the minimum and maximum of dχ(T )/dT curve
respectively.
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4.4.4 Critical behaviour study around the ferromagnetic phase

transition in Nd2Pt2In

4.4.4.1 Arrott-plots

Figure 4.29 presents the standard Arrott-plots for the mean-field theory model of

Nd2Pt2In, M2 vs. µ0H/M for the magnetization isotherms taken in temperature range

6 K - 24 K in the step of 0.5 K. Similar to Pr2Pt2In, it is observed that all isotherms

deviate from linearity at high field, which also indicate that no long-range transitions are

responsible for ferromagnetic transition and the mean-field description of the exchange

interactions are not present in Nd2Pt2In. Following the Banerjee’s criterion [110], the

positive slope of the curves confirm the second order nature of the transition.

The most effective method of determining the critical temperature, and also the critical

exponents is that of the modified Arrott-plots. The same approach used for Pr2Pt2In was

used to determine the universality class of the Nd2Pt2In. In this process, both critical

exponents of the 3D-Ising and 3D-Heisenberg models was used. In both cases, there is

an apparent linearity and furthermore, the deviation of the slopes with respect to the

average value goes from -2.5% to 1.3% for the 3D-Ising model and -2.2% to 1.5% for

the 3D-Heisenberg model. This range of deviation for both models are closely similar,

suggesting that the ferromagnetic behaviour of Nd2Pt2In is between the 3D-Ising and the

3D-Heisenberg models. Thus, both the Ising and Heisenberg exponents have been used

separately as a starting point from which an iterative process has been carried out as

described previously (see section 4.3.4). The results of this approach are shown in figures

4.30a and 4.30b for 3D-Heisenberg and 3D-Ising models respectively. Following the theory

of ferromagnetism and similar to Pr2Pt2In, it is observed from figures 4.30a and 4.30b that

in weak magnetic fields the data shows a downward curvature as they are averaged over

domains which are magnetized in different directions [113].
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in Nd2Pt2In

Figure 4.29: The standard Arrott-plots for the mean-field model M2 vs. µ0H/M of isotherms
collected around TC for Nd2Pt2In.
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Figure 4.30: Modified Arrott-plots using the critical exponent of the (a) 3D-Heisenberg and
(b) 3D-Ising model. The solid black lines are the linear fits using equations 4.7.

In the next step, an iterative process was used as described earlier (see section 4.3.4).

A linear extrapolation of the isotherms at high fields in figures 4.30a and 4.30b gave

(Ms)
1/β and (χ−1

0 )1/γ as intercepts on the (M)1/β and (µ0H/M)1/γ axes respectively for

both models. These values of (Ms)
1/β and (χ−1

0 )1/γ are plotted in figures 4.31a and 4.31b

and independently fitted to equations 4.8 and 4.9 respectively to give new values of β and

γ. These values are again used to construct the modified Arrott-plots similar to figures

4.30a and 4.30b. The process is repeated until convergence is reached and the stable

values of β and γ with the best parallelism are obtained. The final values of the critical

exponents were: β = 0.366(3) and γ = 1.48(2) and β = 0.33(1) and γ = 1.22(9) for the

3D-Heisenberg and the 3D-Ising models respectively. Remarkably, these values are close

to both theoretical values of the 3D-Heisenberg and 3D-Ising models.
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Figure 4.31: Temperature variations of the spontaneous magnetization, Ms(T ) (left axis) and
the reciprocal initial susceptibility, χ−1

0 (T ) (right axis) derived from the modified Arrott-plots,
for the (a) 3D-Heisenberg and (b) 3D-Ising models. The solid curves are least squares fits using
equations 4.8 and 4.9.

4.4.4.2 Kouvel-Fisher method

The next step in the scaling analysis is the use of the Kouvel-Fisher method to obtain

more accurately the critical exponents and the critical temperature [115, 116]. The values

of Ms(T ) and χ0(T ) obtained from the modified Arrott-plots are used to fit the Kouvel-

Fisher equations 4.10 and 4.11 [115, 116]. Ms(dMs/dT )−1 and χ−1
0 (dχ−1

0 /dT )−1 have a

linear behaviour with respect to temperature with slopes 1/β and 1/γ, respectively. One

of the advantages of this method is that no prior knowledge of TC is required as the

intercept of such fitted straight lines on temperatures axis gives the value of TC. The

Kouvel-Fisher plot is shown in figures 4.32a and 4.32b for the 3D-Heisenberg and 3D-Ising

model, respectively. The straight lines fitting yielded the estimated critical exponents and

temperature values of β = 0.350(3), TC = 16.2 K, γ = 1.48(2) and TC = 16.1(2) K for the

3D-Heisenberg model and β = 0.33(1), TC = 16.0 (6) K, γ = 1.24(1) and TC = 15.9(3) K

for the 3D-Ising model respectively. From these results, it has been reasonably found that
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both methods (Arrott-plots and Kouvel-Fisher-plots) agreed with each order.
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Figure 4.32: Kouvel-Fisher plots of spontaneous magnetization Ms(T ) (left axis) and the inverse
initial susceptibility χ−1

0 (T ) (right axis) for Nd2Pt2In. The straight lines least squares fits of the
data points to equations 4.10 and 4.11 for both the (a) 3D-Heisenberg and (b) 3D-Ising models.

4.4.4.3 Critical isotherm analysis and scaling law

Similar to Pr2Pt2In, the critical exponent δ for the Nd2Pt2In can be obtained directly

from the critical isotherm given by equation 4.12. Figures 4.33a and 4.33b display the

magnetic field dependence of the magnetization in Nd2Pt2In measured at TC = 16.2 K for

the 3D-Heisenberg and at TC = 15.9 K for the 3D-Ising models. The slope of M(µ0H,TC)

in both models confirmed the ferromagnetic nature of Nd2Pt2In. As evident from the insets

of these figures, the plots log(M) vs. log(µ0H) are straight lines with the slopes being equal

to 1/δ. The straight lines fitting give δ = 4.90(9) and 4.00(2) for the 3D-Heisenberg and

3D-Ising models, respectively. Using the Widom scaling relationship relating the critical

exponents β and γ (equation 4.13), δ can also be calculated. Taking the values of β and γ

obtained from the modified Arrott-plots, one obtained δ = 5.04(9) and from the Kouvel-

Fisher plots, one obtained δ = 5.23(9) for the 3D-Heisenberg model. Using the critical
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exponent of the 3D-Ising model, one obtained for the modified Arrott-plots δ = 4.7(1) and

4.8(1) for the Kouvel-Fisher plots. All these values match reasonably well, which proves

internal consistency of all the analysis performed. Comparison of these values to the

theoretical value of the 3D-Heisenberg and 3D-Ising models, one can easily conclude that

the obtained critical exponents from various techniques are in between those theoretically

predicted for 3D-Heisenberg and 3D-Ising models.
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Figure 4.33: Field variation of the critical isotherm, (a) M(µ0H,TC = 16.2 K) and
M(µ0H,TC = 15.9 K) for Nd2Pt2In. The insets show the data with log-log representation.
The straight lines are the fits using equation 4.12.

Finally, it is useful to investigate the validity of the results by checking if the critical

exponents can reproduce the equation of states given by equation 4.14. As can be observed

from figures 4.34a and 4.34b using the critical exponents β, γ and the critical temperature

TC derived within the different methods applied for the (a) 3D-Heisenberg and (b) 3D-Ising

models, one obtains a collapse of the data representing the regions below and above TC

into two distinct curves, in line with the expected scaling behaviour. The insets of these
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figures show the same plots on a log-log scale to furthermore illustrate the collapse of the

data into two different branches, below and above TC. The critical exponents obtained in

this work for Nd2Pt2In are gathered in table 4.7 for the 3D-Heisenberg model and 4.8 for

the 3D-Ising model. It is clear that the value found for this compound does not match

with the conventional mean-field theory and are between the isotropic 3D-Heisenberg and

the 3D-Ising models.
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Figure 4.34: The renormalized magnetization in Nd2Pt2In plotted as a function of the renor-
malized field following equation 4.14 with (a) TC = 16.2 K for the 3D-Heisenberg model and (b)
TC = 15.9 K for 3D-Ising model. The plots show the collapse into two distinct separate branches
below and above TC. The insets show the same plots on a log-log scale.
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Table 4.7: (3D-Heisenberg model). Values of the critical exponents β, γ and δ as esti-
mated from the modified Arrott-plots, the Kouvel-Fisher model and the critical isotherm
for the Nd2Pt2In. The values of δ for modified Arrott-plots and the Kouvel-Fisher model
have been calculated from the Widom scaling. The theoretical values for various models
are also given for reasons of comparison.

Material Ref. Technique β γ δ

Nd2Pt2In This work Modified Arrott-plots 0.366(3) 1.48(2) 5.04(9)
This work Kouvel-Fisher 0.350(3) 1.48(2) 5.23(9)
This work Critical isotherm 4.90(9)

Mean-Field model [47] Theory 0.5 1.0 3.0
3D-Heisenberg model [47] Theory 0.365 1.386 4.80
3D-Ising model [47] Theory 0.325 1.241 4.82

Table 4.8: (3D-Ising model). Values of the critical exponents β, γ and δ as estimated
from the modified Arrott-plots, the Kouvel-Fisher model and the critical isotherm for the
Nd2Pt2In. The values of δ for modified Arrott-plots and the Kouvel-Fisher model have
been calculated from the Widom scaling. The theoretical values for various models are
also given for reasons of comparison.

Material Ref. Technique β γ δ

Nd2Pt2In This work Modified Arrott-plots 0.33(1) 1.226(9) 4.7(1)
This work Kouvel-Fisher 0.33(1) 1.24(1) 4.8(1)
This work Critical isotherm 4.00(2)

Mean-Field model [47] Theory 0.5 1.0 3.0
3D-Heisenberg model [47] Theory 0.365 1.386 4.80
3D-Ising model [47] Theory 0.325 1.241 4.82

4.4.5 Isothermal magnetization and magnetocaloric effect

The isothermal magnetization, M(µ0H,T ) in Nd2Pt2In measured in applied magnetic

fields up to 7 T in the temperature range 4 K - 30 K in a step of 2 K is displayed in figure

4.35. The compound exhibits a behaviour typical for ferromagnets in the ordered state.

In the paramagnetic state, M(µ0H,T ) curves are linear in weak fields and deviate from

linearity with a downward curvature in strong fields. In 7 T, the magnetization decreases

with increasing temperature from 2,05 to 1.25 µB.

Magnetocaloric effect refers to the change of the magnetic entropy (∆SM) that can be

calculated from the magnetization isotherm using the Maxwell relation (equation 4.15).

Figure 4.36a shows −∆SM(T ) in Nd2Pt2In as a function of temperature for different field

changes. Clearly, magnetocaloric is positive in the whole temperature range, consistent
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with the ferromagnetic ordering and strong ferromagnetic correlations in the paramagnetic

state. Around TC, the −∆SM(T ) curves exhibit broad maxima, the magnitude of which

gradually increases with an increase in the field change, reaching 6.25 J/(kg.K) for a field

change of 7 T. This value is of the same order of magnitude with the value obtained in

Pr2Pt2In compound and is comparable to those reported for various promising magnetic

refrigerant materials in this temperature range [104, 118].

Figure 4.35: Isothermal magnetization curves M(µ0H, T ) of Nd2Pt2In measured in magnetic
field up to 7 T at temperatures between 4 to 30 K with a step of 2 K.

To further investigate the nature of the phase transition in Nd2Pt2In compound, the

maximum values of −∆SmaxM at TC were plotted in figure 4.36b as a function of h2/3, where

h = (µ0HµB) / (kBTC) is the reduced field. For magnetic materials with second-order phase

transition, ∆SmaxM generally follow the relationship [106]:

∆max
M = −S(0, 1)h2/3 − S(0, 0), (4.20)
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where S(0, 1) is a parameter proportional to the saturation magnetizationMs(0) and S(0, 0)

is a non-zero reference parameter [106]. Fitting equation 4.20 to −∆SmaxM data (note the

solid black line) in figure 4.36b yielded the values: S(0,1) = 2.25(4) J/(kg.K) and S(0,0)

= - 1.6(1) J/(kg.K). Similar to the Pr2Pt2In, negative sign of S(0, 0) is expected for a

second-order phase transition [119, 120]. Furthermore, the linear behaviour of −∆SmaxM

vs. h2/3 suggest strong localization of the magnetic moment in this compound [121].

Figure 4.36: (a) Temperature dependencies of the isothermal magnetic entropy change,
−∆SM(T ), measured for Nd2Pt2In with different field changes in steps of 0.5 T. (b) The maxi-
mum isothermal magnetic entropy change at TC as a function of reduced field h2/3 (see text for
definition). The solid line is the least squares fit of equation 4.20 to the experimental data.

4.4.6 Summary

X-ray diffraction studies indicate the tetragonal Mo2FeB2-type crystal structure with

space group P4/mbm, No. 127 for Pr and Nd compounds. Studies of ρ(T ), Cp(T ) and

χ(T ) indicate ferromagnetic ordered state below TC = 9 K and 16 K for Pr and Nd

compounds, respectively. The ferromagnetic phase transition has a second-order nature
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for both compounds. Below TC, both ρ(T ) and Cp(T ) data can be well described with

the ferromagnetic spin-wave with energies gap ∆R = 8(2) K and ∆C = 6.0(3) K for Pr

compound and ∆R = 13(1) K and ∆C = 7.6(3) K for Nd compound. Cp(T ) data of

La2Pt2In can be well described by the Debye-Einstein model, while Cp(T ) of both Pr and

Nd compounds, in the paramagnetic state are described by the standard Debye formula.

Still in the paramagnetic state, ρ(T ) data of Pr2Pt2In compound can be well described

by the Bloch-Grüneisen-Mott relationship. χ(T ) data at high temperatures follow the

Curie-Weiss relation for both compounds given effective magnetic moments close to that

expected from Pr3+- and Nd3+-ion. And a positive Weiss temperature, θP confirming

the ferromagnetic exchange interactions between the Pr moments and between the Nd

moments. Critical behaviour studies for Pr2Pt2In ascribed the compound to belong to

the 3D-Ising universality class, while these studies for Nd2Pt2In ascribed the compounds

to belong between the 3D-Heisenberg and the 3D-Ising universality class. Magnetocaloric

effect and Arrott-plots confirm the second-order phase transition for both compounds. The

maximum values of the magnetocaloric effect for both compounds can be well compared

with the values obtained for the equiatomic RE2T2X compounds.
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Chapter 5

Results and Discussion:

RE8Pd24Ga (RE = Gd, Tb, Dy)

5.1 Literature review and introduction

The intermetallic REPd3, also denoted as RE8Pd24 form an isostructural series

with AuCu3-type structure [129] corresponding to space group Pm-3m. Bulk magnetic

measurements performed on this system indicate rather low ordering temperature (below

4.2 K) [130, 131, 132, 133]. In the case of RE = Ce, Tm, Yb, intermediate valence

associated with hybridization with 4d state of Pd or Kondo hybridization are possible.

The synthesis and magnetic behaviour of ternary cerium compounds with composition

Ce8Pd24M where M = In, Ga, In, Sn, Pb, Sb and Bi have been reported by Gordon et

al. [134, 135]. This series of compounds form in a cubic superstructure closely related to the

cubic AuCu3-type structure of the parent compounds CePd3. Mitra et al. [136] explored

the superstructure formation for other RE atoms and obtained isostructural single-phase

compounds RE8Pd24M for RE = La, Pr, Sm, Gd, Tb, Y, Dy, Er and Lu and M = Ga and

Ge. They reported first-order antiferromagnetic ordering and metamagnetic transition

in Tb8Pd24M, (M = Ga and Ge) [136]. The group of compounds Ce8Pd24M, where

M is p-block or d-element has been the subject of several experimental investigations

due to interesting magnetic ground state properties [134, 135, 137, 138, 139]. Several

investigations were reported on Ce8Pd24Ga and Tb8Pd24Ga in particular [134, 135, 136,

139, 140]. Ce8Pd24Ga order antiferromagnetically below TN = 3.1 K [139]. This compound

has been investigated using neutron diffraction, inelastic neutron scattering, electrical
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resistivity, magnetoresistivity, heat capacity and magnetic properties measurements [139,

140]. Inelastic neutron studies show two well-defined crystal-field excitations at 3.2 meV

and 12.8 meV [139]. The heat capacity calculated from the crystal-field level scheme shows

a Schottky-type anomaly at 15 K [139]. The resistivity exhibit a -ln(T ) behaviour at high

temperatures characteristic of incoherent single-ion Kondo scattering. This is followed by a

peak at 8 K and eventually drops at TN [139, 140]. The peak in the resistivity was attributed

to the combined effect of crystal-electric-field and Kondo interaction [139]. The resistivity

data below TN was described by the antiferromagnetic spin-wave with energy gap ∆ =

16.1 K in the spin-wave spectrum [139]. The magnetoresistivity was found to be positive

at 1.8 K and changes to a negative sign above 3 K [139]. The magnetic susceptibility

exhibits a Curie-Weiss behaviour above 20 K with an effective magnetic moment µeff =

2.33 µB [139]. The low-temperatures of the susceptibility data of Ce8Pd24Ga are distinctly

different for zero-field-cooled (ZFC) sample with field-cooled (FC) sample [140, 141]. In

the case of Tb8Pd24Ga, first-order antiferromagnetic ordering and metamagnetic transition

was reported [136]. The magnetic susceptibility above 100 K follows the Curie-Weiss

behaviour with µeff 9.63 µB and a Weiss temperature θp = - 1 K. This negative θp value

indicates antiferromagnetic exchange interactions. The antiferromagnetic state occurs at

TN = 5.2 K [136]. The resistivity results exhibits hysteresis in the transition regime for

this compound [136]. A sharp metamagnetic transition was observed at a field of 1.2 T

below the magnetic ordering TN [136]. Heat capacity data of Tb8Pd24Ga exhibit a sharp

first-order-like peak at TN which confirms the bulk nature of the magnetic ordering [136].

Despite intense investigations on the electrical and thermal transport, magnetic and

thermodynamic properties on the group of compounds RE8Pd24M for the past decades,

to the best of my knowledge, there has been no effort to investigate the magnetocaloric

effect of this group of compounds. However, several investigations on the magnetocaloric

effect were devoted to the group of compounds RE2T2X [126, 142, 143, 144, 145, 146] and

RETX [147, 148, 149, 150], where RE = rare-earth elements, T = transition elements and

X = p-block elements.

Indeed, magnetic materials with large magnetocaloric effect have potential application

in magneto-refrigeration and eco-friendly cooling industry [8, 62, 151]. Magnetic refrig-
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eration technology based on magnetocaloric effect shows superior application potential

over conventional gas compression refrigeration technology because of its environmental

friendliness, higher efficiency as well as compactness [8, 62, 152, 153, 154]. The magne-

tocaloric effect is an intrinsic thermal response of the application or removal of a magnetic

field to a magnetic material, which can be characterized by the couple variations of two

quantities such as the isothermal magnetic entropy change (∆SM) and/or the adiabatic

temperature change (∆Tad). A potential magnetic refrigerant should have large/giant

magnetocaloric effect and negligible hysteresis loop. It has been observed that compounds

with large first-order magneto-structural transition show large magnetocaloric effect [147].

The rare-earth based alloys, which exhibit large magnetocaloric effect and refrigeration

capacity with small or zero hysteresis loops, have been of great interest in the last few

years [155, 156, 157, 158, 159, 160, 161]. Among the group of compounds RE8Pd24M

(M = p-block elements), only crystal structure, transport, magnetic properties and heat

capacity have been reported. To further understand the physical properties of RE8Pd24M

compounds, in this chapter the crystal structure, electrical resistivity, magnetic properties,

heat capacity and the magnetocaloric effect have been investigated on RE8Pd24Ga with

RE = Gd, Tb and Dy.

5.1.1 Crystal structure

Figures 5.1, 5.2 and 5.3 show the results obtained from the scanning electron

microscope experiment at the working distance of 250 µm for all three compounds. The

micrograph images are characterized by smooth surfaces with regions of slightly different

darkness. Energy dispersive spectroscopy analyses indicate that the entire samples of all

three compounds were homogeneous and thus the dissimilar regions should be attributed to

crystallites with different crystallographic orientation. The quantitative energy dispersive

spectroscopy measurements over the surface areas of each sample results in the elemental

composition normalized to the RE content: Gd8Pd23.870(2)Ga0.961(1); Tb8Pd23.931(2)Ga0.925(2)

and Dy8Pd23.887(2)Ga0.953(2), which are roughly close to the 8:24:1 composition. The small

offsets of the atomic ratios result from the small weight loss that occurs during the arc-

melting process (sample synthesis).
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Figure 5.1: Cross section micrograph of scanning electron microscope done on Gd8Pd24Ga with
a scale of 250 µm.

Figure 5.2: Cross section micrograph of scanning electron microscope done on Tb8Pd24Ga with
a scale of 250 µm.

Figure 5.3: Cross section micrograph of scanning electron microscope done on Dy8Pd24Ga with
a scale of 250 µm.
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X-ray diffraction patterns of the three compounds are shown in figures 5.4, 5.5 and

5.6, together with the full-profile least squares Rietveld refinement. X-ray diffraction

analysis reveal that all compounds were single-phase material with no secondary phases

and crystallized in the cubic structure with lattice parameters and unit-cell volumes listed

in table 5.1. It is observed that the unit-cell volume satisfied the relation VGd8Pd24Ga

>VTb8Pd24Ga >VDy8Pd24Ga, consistent with the lanthanide contraction as one moves from

La to Lu. It is also noted that the lattice parameters of Gd8Pd24Ga, Tb8Pd24Ga and

Dy8Pd24Ga are nearly double the lattice parameters a = 4.0813 Å of GdPd3, a = 4.0691 Å

of TbPd3 and a = 4.0612 Å of DyPd3 [131]. This suggests the existence of a cubic supercell

in all three compounds under investigation. The value of the lattice parameter obtained

for Tb8Pd24Ga is in agreement with the value of 8.26 Å reported for the polycrystalline

sample [136]. The X-ray diffraction patterns were refined using the Rietveld refinement

method. The input space group setting was the cubic Pm-3m structure as proposed for

Ce8Pd24Sb [135]. The assumed crystal structure of AuCu3-type is depicted in figure 5.7.

In this unit cell, RE atoms occupy the crystallographic 8g sites, Pd occupy three different

types of sites, Pd1 at the 6f sites, Pd2 at the 6e sites and Pd3 at the 12h, sites and Ga

atoms occupy the 1a sites. In the refinement process, the full occupancies were assumed

and the isotropic displacement parameters of all the atoms were kept fixed, while the free

atomic coordinates were varied. The calculation gives the atomic coordinates gathered in

table 5.1 for all three compounds. These values are in agreement with previous reported

values. The resulting phase density (PD) and final discrepancy factors of the Rietveld

refinement are gathered in table 5.2. The low values obtained χ2 and R-factors indicate

the good quality of the fit. Furthermore, the low values RB indicate that the structural

model is correct.
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Table 5.1: Atomic coordinates derived for Gd8Pd24Ga from the Rietveld refinement. The
site occupancies S.O. = 1 and the isotropic displacement parameters Beq = 1 were assumed.

Atom Wyckoff site x y z a(Å) V(Å3)

Gd 8g 0.25(4) 0.254(5) 0.254(5) 8.2704(6) 565.691(2)
Pd1 6f 0.249(9) 1/2 1/2
Pd2 6e 0.255(9) 0 0
Pd3 12h 0.253(8) 1/2 0
Ga 1a 0 0 0
Tb 8g 0.25(4) 0.254(5) 0.254(5) 8.237(6) 558.87(2)
Pd1 6f 0.249(9) 1/2 1/2
Pd2 6e 0.255(9) 0 0
Pd3 12h 0.253(8) 1/2 0
Ga 1a 0 0 0
Dy 8g 0.250(4) 0.250(5) 0.254(5) 8.2070(6) 552.781(2)
Pd1 6f 0.254(9) 1/2 1/2
Pd2 6e 0.292(9) 0 0
Pd3 12h 0.259(8) 1/2 0
Ga 1a 0 0 0

Table 5.2: R-factors obtained from the Rietveld refinement methods in X-ray powder
diffraction data analysis of RE8Pd24Ga, with RE = Gd, Tb and Dy.

discrepancy
factors-Rietveld Gd8Pd24Ga Tb8Pd24Ga Dy8Pd24Ga

Rwp [%] 4.840 5.688 6.520
Rexp [%] 2.387 2.410 2.969
Rp [%] 3.683 4.267 4.942
χ2 2.028 2.360 2.196
DW 0.643 0.438 0.581
RB [%] 3.850 4.141 4.126

PD (g/cm3) 10.964(2) 11.574(3) 11.787(3)
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Figure 5.4: The X-ray diffraction pattern (green symbols) of Gd8Pd24Ga collected at room
temperature along with its Rietveld refinement (red curve). The bottom black curve is the
difference between the experimental and calculated patterns. The vertical lines are the Bragg
position.
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Figure 5.5: The X-ray diffraction pattern (green symbols) of Gd8Pd24Ga collected at room
temperature with its Rietveld refinement (red curve). The bottom black curve is the difference
between the experimental and calculated patterns. The vertical lines are the Bragg position.
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Figure 5.6: The X-ray diffraction pattern (green symbols) of Dy8Pd24Ga collected at room
temperature with its Rietveld refinement (red curve). The bottom black curve is the difference
between the experimental and calculated patterns. The vertical lines are the Bragg position.

Figure 5.7: The cubic unit cell of RE8Pd24Ga. The pink, brown and black balls represent Ga,
Pd and RE atoms, respectively.
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5.1.2 . Electrical resistivity

5.1.2 Electrical resistivity

The temperature dependencies of electrical resistivity, ρ(T ) of Gd8Pd24Ga, Tb8Pd24Ga

and Dy8Pd24Ga are depicted in figures 5.8a, 5.8b and 5.8c, respectively. It should be noted

that the high values of ρ(T ) for Tb compound are due to micro cracks and voids on the

resistivity sample. At high temperatures for all three compounds, ρ(T ) behaviour is typical

of normal metals with the resistivity varying linearly with temperature. This behaviour is

characteristic of electron-phonon scattering in the absence of crystal-electric-field and/or

s− d interband scattering.

The low-temperatures of ρ(T ) for the three compounds are shown as the insets in

figures 5.8a, 5.8b and 5.8c. It is observed that ρ(T ) data for all three compounds exhibit a

sudden drop due to the gradual loss of the spin-disorder induced scattering, associated with

antiferromagnetic anomalies at TN = 9 K, 5.8 K and 3.8 K for Gd, Tb and Dy compounds,

respectively as indicated by arrows in the insets. The magnetic phase transition in these

compounds manifest itself as a pronounced anomaly in the temperature derivative of the

resistivity dρ/dT as shown in figures 5.10a, 5.10b and 5.10c. The values of TN were

estimated according to Sato criterion [109], which is at the midpoint of the anomaly

in the dρ/dT curves as indicated by the arrows in figures 5.10a, 5.10b and 5.10c. The

obtained values of TN are agreed with the values obtained from heat capacity results (see

section 5.1.3) and magnetic susceptibility (see section 5.1.4). In the ordering region (T

≤ TN), ρ(T ) for the Gd compound decreases nearly linearly with decreasing temperature.

Such linear decrease has been observed in many Gd compounds such as Gd8Pd24Al [162],

GdCu4Au [163], GdPd3 [164].
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Figure 5.8: Temperature dependence of electrical resistivity, ρ(T ) for (a) Gd8Pd24Ga, (b)
Tb8Pd24Ga and (c) Dy8Pd24Ga obtained under 0 magnetic field. The insets show the low-
temperatures of ρ(T ) with the least squares fits (in (b) and (c), solid red curves) using the
spin-wave relationship (equation 5.1). The arrows show the position of the magnetic transition.
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5.1.2 . Electrical resistivity

For the Tb and Dy compounds, the low-temperatures (T ≤ TN), ρ(T ) are governed

by the scattering conduction electrons on antiferromagnetic spin-wave excitations with the

energy gap (∆R) in the magnon spectrum, and can be described by the formula [34]:

ρ(T ) = ρ(0) + Aρ∆
3/2
ρ T 1/2exp(−∆ρ/T )

[
1 +

2

3

T

∆ρ

+
2

15

(
T

∆ρ

)2
]
, (5.1)

where ρ(0) is the residual resistivity originating from defects, ∆ρ is the energy gap and

Aρ is a prefactor defining the stiffness of the sample. The validity of such a description is

illustrated by the solid red lines in the insets of figures 5.8b and 5.8c which are the least

squares fits of equation 5.1 to the ρ(T ) data below TN. These yielded the parameters: ρ0

= 208.198(3) µΩ.cm, ∆ρ = 29.6(1) K, Aρ = 1.5(4) µΩ.cm/K2 and ρ0 = 38.51(1) µΩ.cm,

∆ρ = 15(1) K, Aρ = 0.22(6) µΩ.cm/K2 for Tb and Dy compounds, respectively. Below

25 K shallow resistivity minima are seen for Gd, Tb and Dy compounds. The minima

are more pronounced for the Gd and Tb compounds and occurs at Tmin = 25 K and

10 K respectively. The observed resistivity minimum at 10 K for the Tb compound is

in good agreement with that reported for the same compound in the literature [136],

however, the resistivity loop reported in reference [136] was not observed in the result

shown in this thesis since the measurements were done in the cooling mode. Below Tmin,

ρ(T ) data of both Gd and Tb compounds exhibit an upturn up to TN. Such an upturn

was observed in many rare-earth compounds such as GdPd3 [164], RE8Pd24Al (RE =

Gd, Tb, Dy and Ho) [162]. It was reported that the observed minimum in GdPd3, was

likely due to the opening of antiferromagnetic superzone gap (pseudogap for T ≥ TN

= 6.5 K and gap for T < 6.5 K) at the Fermi surface, which is a manifestation of a

magnetic structure whose periodicity is incommensurate with the periodicity of the crystal

lattice [164]. On the other hand, Singh and Dhar [162] reported for RE8Pd24Al (RE = Gd,

Tb, Dy and Ho) compounds that, since the minimum occurs at temperature below TN, the

upturn in the resistivity for the temperature range TN < T < Tmin in the paramagnetic

region can not be attributed to the magnetic-superzone-induced gap effect. Since the

antiferromagnetic order is associated with large reciprocal magnetic lattice vector, typically

for temperatures above TN, the large-k (k being the wave vector) fluctuations diminish

while small-k fluctuations grow [162, 165], which should lead to a decreasing resistivity in
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antiferromagnetic metals above TN. Hence the resistivity minima arise because the phonon

contribution to the resistivity is increasing slower than the decrease of the critical resistivity

in the paramagnetic region which results in a negative temperature coefficient for the

resistivity in a certain range of temperature [162]. To further investigate the opening of an

antiferromagnetic superzone pseudogap at the Fermi surface in Gd8Pd24Ga and Tb8Pd24Ga

compounds, the plots of ρ(T ) data at low-temperature are shown in figures 5.9a and 5.9b

and are fitted to the activated behaviour [164]:

ρ(T ) = A+Bexp

(
∆

T

)
, (5.2)

where A and B are constant and ∆ is the superzone band gap. Least squares fits yielded

the values: A = 23.7(4) µΩ.cm, B = 1.1(3) µΩ.cm, ∆ = 13(2) K and A = 208.4(9) µΩ.cm,

B = 1.3(7) µΩ.cm, ∆ = 6(1) K for Gd and Tb compounds, respectively. The obtained

values of the superzone band gap are relatively smaller compared to those obtained for

GdPd3 [164]. In the present case, the resistivity minimum observed in Gd and Tb com-

pounds may or may not originate from an antiferromagnetic superzone pseudogap forma-

tion since the overall details of the Fermi surface and the magnetic structure may, however

bring qualitative changes in the thermal vibration of the resistivity above TN.

Figure 5.9: The Low-temperatures, ρ(T ) data of (a) Gd8Pd24Ga and (b) Tb8Pd24Ga depicting
an expanded view of the antiferromagnetic superzone regions. The solid red curves are the least
squares fits of equation 5.2.
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5.1.2 . Electrical resistivity

Figure 5.10: The first derivative of electrical resistivity, dρ(T )/dT data of (a) Gd8Pd24Ga,
Tb8Pd24Ga and (c) Dy8Pd24Ga. The arrows indicate the positions of TN.
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5.1.3 Heat Capacity

Figures 5.11a, 5.11b and 5.11c show the temperature dependent heat capacity of Gd,

Tb and Dy compounds, respectively measured in 0 magnetic field in the temperature

range of 1.8 K - 300 K. In the entire measured temperature range, the specific heat val-

ues of Gd8Pd24Ga and Dy8Pd24Ga compounds rach the Dulong-Petit limit, 3nR = 823.1

J/mole.K (n = 33 is the number of atoms per formula unit, R stand for the gas constant)

at room temperature, and at 180 K for Tb8Pd24Ga compound. Well above TN, in the

paramagnetic region Cp(T ) data can be described by the standard Debye formula given

by the equation 4.3 . The least squares fits of equation 4.3 to the experimental data (note

the red solid lines in figures 5.11) yielded the parameters: θD = 238.886(7) K, and γ =

1.386(1) J/mole.Gd.K2 for Gd8Pd24Ga; θD = 230.26(4) K, and γ = 3.340(4) J/mole.Gd.K2

for Tb8Pd24Ga and θD = 233.20(2) K, and γ = 2.373(3) J/mole.Gd.K2 for Dy8Pd24Ga.

The obtained values of θD are fairly similar to those reported for the members of RE8Pd24M

series [136, 137, 166]. Similar to the RE2Pt2In (RE = Pr, Nd) compounds discussed in

chapter 4, the values of θD for all three compounds are of the same order of magnitude,

signalling the similarity of the phonon vibration in the three compounds as a result of the

similarity of their atomic masses.

The low-temperature of Cp(T )/T data of all three compounds are shown in the insets

of figures 5.11a, 5.11b and 5.11c. Sharp peaks at 8.7 K, 5.6 K and 3.9 K are observed in

the Gd, Tb and Dy compounds, respectively and confirms the bulk nature of the magnetic

ordering in these compounds. These peak positions coincide nearly with TN estimated

from the resistivity data. In the inset of figure 5.11a, another maximum can be discerned

at a temperature Tt = 4 K for Gd compound and in the inset of figure 5.11c a shoulder at

Tt = 2.2 K for Tb compound. The temperature at which this maximum and a shoulder

appear coincided with the temperature at which the magnetic susceptibility of both Gd

and Dy compounds form a shoulder (see below).
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5.1.3 . Heat Capacity

Figure 5.11: Heat capacity data of (a) Gd8Pd24Ga, Tb8Pd24Ga and (c) Dy8Pd24Ga, measured
in 0 magnetic field. The red solid curves are the Debye fits to the experimental Cp(T ) data using
equation 4.3. The horizontal dashed lines are the Dulong-petit values limit. The insets are the
expanded low-temperatures region plotted as Cp/T vs. T . The arrows show the position of the
magnetic transitions.
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5.1.4 . Magnetic susceptibility and magnetization

Based on both findings, a kind of magnetic order-order transition may be anticipated.

In the case of the Tb compound, no additional peak below TN was observed from the

Cp/T data but was observed in the susceptibility data (see 5.1.4). It is worth recalling

that every similar additional feature in the ordering state was observed for the equiatomic

Tb8Pd24Ge [136] as well as for other rare earth intermetallics, such as TbCuGe [147],

GdCuSi [149], CeCuSn [167], and was attributed to spin reorientation of the rare-earth

magnetic moments. The value of TN observed from the Cp(T ) data of Tb compounds is in

good agreement with value of 5.2 K reported for the same polycrystalline sample from the

heat capacity results [136].

5.1.4 Magnetic susceptibility and magnetization

The inverse magnetic susceptibility χ−1(T ) measured in an applied magnetic field of 0.1

T and in the temperature range 1.7 K - 400 K are displayed in figure 5.12 for Gd, Tb and

Dy compounds. Above 20 K, χ−1(T ) for all three compounds follows the Curie-Weiss rela-

tionship (equation 4.6). Least squares fits (red solid lines in figures 5.12a, 5.12b and 5.12c)

yielded the susceptibility parameters: θp = -2.2(1) K, µeff = 8.004(2) µB for Gd compound,

θp = -2.29(1) K, µeff = 9.76(2) µB for Tb and θp = -2.3(5) K, µeff = 10.756 (8) µB for Dy

compound. The experimental values of the effective moment are in reasonable agreement

with the theoretical values gJ [J(J + 1)]1/2 = 7.94 µB; 9.72 µB and 10.65 µB expected for

the three Gd3+-, Tb3+- and Dy3+-ions (J = 7/2, 6 and 15/2 for Gd, Tb and Dy, respec-

tively). The negatives θp hint at the antiferromagnetic exchange interactions between the

rare-earth moments. Below 20 K, χ−1(T ) data deviate from the Curie-Weiss linear be-

haviour likely due to magnetocrystalline anisotropy. As can be inferred from figures 5.13a,

5.13c and 5.13e, χ(T ) data exhibit a maximum at TN = 8.5 K, 5.5 K and 3.9 K for Gd,

Tb and Dy compounds, respectively, characteristic of long-range antiferromagnetic phase

transition also observed in ρ(T ) and Cp(T ) results. These values of TN were accurately

estimated at the maximum of the derivative of χ(T ) curves (see figures 5.13b, 5.13d and

5.13f). Below TN, for Gd and Dy, χ(T ) data steeply decreases and exhibit a shoulder at

Tt = 3.5 K and 2.9 K, while for Tb compound, below TN, χ(T ) firstly decreases and in-

creases sharply up to a maximum. Such a feature in the ordering region of Tb compound

was not previously observed in reference [136]. The temperature at which this shoulder in

χ(T ) occurs coincides with the temperature at with the heat capacity Cp(T ) forms a max-
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5.1.4 . Magnetic susceptibility and magnetization

imum for Gd and a shoulder for Tb compounds (see above). This feature in the ordering

region confirms the spin reorientation of the rare-earth moments. To further investigate

the magnetic structure of the Gd, Tb and Dy compounds, the values of ε = χ(0)/χ(TN)

have been calculated at applied field of 0.1 T, where χ(0) is the value of the susceptibility

taken at the lowest measured temperature of 1.7 K. It should be noted that, for a collinear

antiferromagnetic structure ε = 2/3 [168, 169]. The calculated values of ε for the present

compounds are: ε = 0.898, 1.162 and 0.895 for Gd, Tb and Dy, respectively. These values

suggest a noncollinear antiferromagnetic spin arrangement of the rare-earth spins where

the ordered moments below TN are not aligned along the same axis. Such behaviour was

reported in GdPd3 [164].

Figure 5.14 shows the magnetization isotherm at 1.7 K,M(µ0H) of the three compounds

measured in magnetic field up to 7 T. For the Gd compound, M(µ0H) exhibits almost a

linear behaviour with field up to 7 T with value of the magnetic moment 6.35 µB/Gd3+

which is slightly smaller than theoretical value gJJ = 7 µB/Gd-atom. This shortfall is likely

due to magnetic anisotropy. For the Tb and Dy compounds, M(µ0H) initially increase

linearly up to a critical field, (µ0H)met that can be associated with a metamagnetic-

like singularity. These critical fields were accurately estimated at the maximum of the

derivative of M(µ0H) curves (figure 5.14b and 5.14c right axis) to be (µ0H)met = 1.5 T

and 0.5 T for Tb and Dy compounds, respectively. At high field, M(µ0H) data show a

downward curvature for both compounds. In the terminal field (µ0H) = 7 T, M(µ0H) data

reach values of 7.7 µB/Tb-atom and 8.1 µB/Dy-atom. Both magnetic moments are smaller

than the theoretical values gJJ = 9 µB/Tb-atom and 10 µB/Dy-atom. This discrepancy

likely results from effect of crystal-electric-field and magnetic anisotropy.
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5.1.4 . Magnetic susceptibility and magnetization

Figure 5.12: Temperature variation of the inverse magnetic susceptibility, χ−1(T ) of (a)
Gd8Pd24Ga, (b) Tb8Pd24Ga and (c) Dy8Pd24Ga data. The red solid lines are the Curie-Weiss
fits done above 20 K for all the data using equation 4.6.
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5.1.4 . Magnetic susceptibility and magnetization

Figure 5.13: (a) Low-temperatures χ(T ) data of (a) Gd8Pd24Ga, (c) Tb8Pd24Ga and (e)
Dy8Pd24Ga in the antiferromagnetic region measured in a magnetic field of 0.1 T. (b), (d) and
(f) display the dχ/dT calculated from χ(T ) data of all three compounds. The arrows indicate
the point of the transition temperature.
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5.1.4 . Magnetic susceptibility and magnetization

Figure 5.14: The magnetic field dependence of magnetization, M(µ0H), of (a) Gd8Pd24Ga, (b)
Tb8Pd24Ga (left axis) and (c) Dy8Pd24Ga (left axis) measured at T = 1.7 K. The derivatives of
magnetization are shown in (b) and (c) (right axis). The vertical arrows pointing at the maximum
of dM/d(µ0H) show the metamagnetic point in Tb and Dy compounds.
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5.1.5 Isothermal magnetization and magnetocaloric effect

Figure 5.15 depicted the field variations of the isothermal magnetization, M(µ0H) of

Tb8Pd24Ga and Dy8Pd24Ga measured in applied field up to 7 T and 5 T, respectively, at

several different temperatures in the range 2 K ≤ T ≤ 10 K in the step of 1 K. For both

compounds, sharp metamagnetic transitions are observed in the ordering region (T ≤ TN)

at critical fields of about 1.5 T and 0.5 T for Tb and Dy compounds, respectively. Above

TN, M(µ0H,T ) curves exhibit a downward curvature and a tendency toward saturation

above 7 T. In the terminal field µ0H = 7 T and 5 T, the magnetization reaches values

ranging from 5.33 µB to 4.78 µB and 7.13 µB to 6.31 µB, respectively at temperature from

2 to 10 K.

Figure 5.15: Isothermal magnetization curves, M(µ0H,T ) of (a) Tb8Pd24Ga and (b)
Dy8Pd24Ga measured in magnetic field up to 7 T at the vicinity of the transition temperatures
(from 2 K - 10 K with a step of 1 K).

The magnetocaloric effect has been calculated from the isothermal, M(µ0H,T ) data.

The isothermal entropy change, (−∆SM) has been estimated from the Maxwell’s relation
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5.1.5 . Isothermal magnetization and magnetocaloric effect

(equation 4.15). The resulting temperature dependence of −∆SM for various field changes

are depicted in figures 5.16a for Tb and 5.17a for Dy compounds, respectively. The

Tb compound shows positive magnetocaloric effect in the whole measured temperature

range for µ0H ≥ 4 T and positive and negative magnetocaloric effect for µ0H ≤ 3.5 T.

The negative magnetocaloric effect is observed around Tt and may be attributed to spin

reorientation, as seen in the susceptibility data. Such behaviour was also observed in

GdCuSi [149]. The negative magnetocaloric effect was not observed for Dy compound.

Since the magnetocaloric was estimated in the temperature range 3 to 10 K, above Tt of

this compound. −∆SM rises into a broad maximum for the Tb compound well above TN

value and to a sharp peak for the Dy compound close to TN value. The magnitude of this

feature increases with increasing field change and reaches a maximum of −∆SmaxM = 14.23

J/(kg.K) for a field change of 7 T for the Tb compound and −∆SmaxM = 11.20 J/(kg.K)

for a field change of 5 T. These values of −∆SmaxM may be compared to those reported for

various promising rare-earth magnetic refrigerant materials in the same field changes, such

as HoZn: −∆SmaxM = 12.1 J/(kg.K) and 15.2 J/(kg.K) for the magnetic field change 0-5

T and 0-7 T [170]; EuAuZn: −∆SmaxM = 9.1 J/(kg.K) and 11.3 J/(kg.K) for the magnetic

field change 0-5 T and 0-7 T [171]; TmZnAl: −∆SmaxM = 9.4 J/(kg.K) and 11.8 J/(kg.K)

for the magnetic field change 0-5 T and 0-7 T [172]; Tm4PtMg: −∆SmaxM = 13.4 J/(kg.K)

and 16.9 J/(kg.K) for the magnetic field change 0-5 T and 0-7 T; Er4PdMg: −∆SmaxM =

15.5 J/(kg.K) and 20.6 J/(kg.K) for the magnetic field change 0-5 T and 0-7 T; Er4PtMg:

−∆SmaxM = 17.9 J/(kg.K) and 22.5 J/(kg.K) for the magnetic field change 0-5 T and 0-7

T [173, 174].

In order to investigate the nature of the magnetic phase transition in these compounds,

the maximum value of −∆SM at TN was plotted as a function of the reduced field h2/3

(with h = (µ0HµB) / (kBTC)) and displayed in figure 5.16b and 5.17b. It should be

noted that for materials with second-order transition, −∆SmaxM usually follows the relation

defined by equation 4.16. Least squares fits of equation 4.16 to the experimental data (solid

red lines) yielded the values S(0,0) = - 5.3(3) J/(kg.K) and kMs (0) = 5.5(1) J/(kg.K)

for Tb compound and S(0,0) = - 1.3(2) J/(kg.K) and kMs (0) = 5.0(1) J/(kg.K) for

Dy compound. The negative sign of S(0, 0) corroborates with the second-order phase

transition in these compounds, while the linear dependence of −∆SmaxM vs. h2/3 indicates
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strongly localized character of Tb and Dy magnetic moments [121]. The second-order

phase transition observed for the Tb compound is in contracdiction with the first-order

reported for the same compound [136].

Figure 5.16: (a) Temperature dependencies of the isothermal entropy change, −∆SM(T ) in
Tb8Pd24Ga measured in different magnetic fields up to 7 T in the step of 0.5 T. lines are guide
to the eye. (b) The maximum isothermal magnetic entropy change (−∆SmaxM ) around TN as a
function of reduced magnetic field h2/3 (see test for the definition of h). The solid line is the least
squares fit of equation 4.16 to the calculated −∆SmaxM data.
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Figure 5.17: (a) Temperature dependencies of the isothermal entropy changes, −∆SM(T ) in
Dy8Pd24Ga measured with different field change in step of 0.5 T. (b) The maximum isothermal
magnetic entropy change (−∆SmaxM ) at TN as a function of reduced magnetic field h2/3 (see test
for the definition of h). The solid line is the least squares fit of equation 4.16 to the calculated
−∆SmaxM data.

5.1.6 Summary

X-ray diffraction studies confirm the cubic AuCu3-type structure with space group Pm-

3m, No. 221 for all compounds. Studies of ρ(T ), Cp(T ) and χ(T ) indicate antiferromagnetic

phase transition at TN = 9 K, 5.8 K and 3.8 K for Gd, Tb and Dy respectively. Below TN

spin reorientation is observed for all compounds as confirm from Cp(T ) and χ(T ) results.

In the ordering state, ρ(T ) for both Tb and Dy compounds can be well described by

the antiferromagnetic spin-wave spectrum with energy gap ∆ρ = 29.6(1) K and 15(1) K

for Tb and Dy compounds, respectively. ρ(T ) data of Gd and Tb exhibit a resistivity

minimum above TN which may due to the opening of antiferromagnetic superzone gap at

the Fermi surface, with superzone energies band gap, ∆ = 13(2) K and 6(1) K for Gd and
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Tb compounds, respectively. In the paramagnetic region Cp(T ) data for all compounds

can be well described by the standard Debye formula. χ(T ) data at high temperatures

for all three compounds follow the Curie-Weiss relationship giving an effective magnetic

moments close to that expected for the Gd3+-, Tb3+- and Dy3+-ion. Magnetization data

show metamagnetic transition for both Tb and Dy compounds. Large magnetocaloric effect

were obtained for both Tb and Dy compounds. −∆SM rises into a broad maximum for

the Tb compound well above TN value and to a sharp peak for the Dy compound close to

TN value. The magnitude of this feature increases with increasing field change and reaches

a maximum of −∆SmaxM = 14.23 J/(kg.K) for a field change of 7 T for Tb compound

and −∆SmaxM = 11.20 J/(kg.K) for a field change of 5 T. These values of −∆SmaxM may be

compared to those reported for various promising rare-earth magnetic refrigerant materials

in the same field changes, such as HoZn: −∆SmaxM = 12.1 J/(kg.K) and 15.2 J/(kg.K) for

the magnetic field change 0-5 T and 0-7 T [170]; EuAuZn: −∆SmaxM = 9.1 J/(kg.K) and

11.3 J/(kg.K) for the magnetic field change 0-5 T and 0-7 T [171]; TmZnAl: −∆SmaxM

= 9.4 J/(kg.K) and 11.8 J/(kg.K) for the magnetic field change 0-5 T and 0-7 T [172];

Tm4PtMg: −∆SmaxM = 13.4 J/(kg.K) and 16.9 J/(kg.K) for the magnetic field change 0-5

T and 0-7 T; Er4PdMg: −∆SmaxM = 15.5 J/(kg.K) and 20.6 J/(kg.K) for the magnetic field

change 0-5 T and 0-7 T; Er4PtMg: −∆SmaxM = 17.9 J/(kg.K) and 22.5 J/(kg.K) for the

magnetic field change 0-5 T and 0-7 T [173, 174]. This indicates that the presently studied

compounds belong to a class of large magnetocaloric effect materials and are potential

magnetic refrigerant materials for applications in magnetic refrigeration technology.

In order to investigate the nature of the magnetic phase transition in these compounds,

the maximum value of −∆SM at TN was plotted as a function of the reduced field h2/3 (with

h = (µ0HµB) / (kBTC)) and displayed in figure 5.16b and 5.17b. It should be noted that

for materials with second-order transition, −∆SmaxM usually follows the relation defined

by equation 4.16. Least squares fits of equation 4.16 to the experimental data (solid red

lines) yielded the values S(0,0) = - 5.3(3) J/(kg.K) and kMs (0) = 5.5(1) J/(kg.K) for Tb

compound and S(0,0) = - 1.3(2) J/(kg.K) and kMs (0) = 5.0(1) J/(kg.K) for Dy compound.

The negative sign of S(0, 0) corroborates with the second-order phase transition in these

compounds, while the linear dependence of −∆SmaxM vs. h2/3 indicates a strongly localized

character of Tb and Dy magnetic moments [121].
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Chapter 6

Conclusion and future works

Magnetic refrigeration is an active field of research, with relevant activity both in

the search of new magnetocaloric materials as well in the application of these materials

into magnetic refrigeration devices. On the materials research side, one of the mainstream

line is the discovery of new phases with significant magnetocaloric response. From a more

fundamental point of view, magnetocaloric characterization has been proven to be a reliable

method for the determination of the characteristics of the phase transition from which the

phenomenon originates.

The research project investigated in this thesis involves magnetic materials as poten-

tial magnetic refrigerant materials. These investigations have been conducted successfully

through measurements of electrical resistivity, heat capacity, magnetic susceptibility, mag-

netization, isothermal magnetization and magnetocaloric effect. Results of the isothermal

magnetization have been used to investigate the critical behaviour around the para-to-

ferromagnetic phase transition temperature in Pr2Pt2In and Nd2Pt2In compound and to

determine the universal class to which they belong. Electrical resistivity, data have been

presented as an ingredient to the magnetic properties of all the compounds investigated.

The main achievement of the research project of this thesis is summarized as follows:

The compounds RE2Pt2In (RE = Pr, Nd) crystallize with the tetragonal Mo2FeB2-type

crystal structure (space group P4/mbm-D5
4h, No.127). Both compounds order ferromag-

netically at TC = 9 K and 16 K for Pr and Nd-based phase respectively as confirmed

by ρ(T ), Cp(T ) and χ(T ) results. In the ordered state, ρ(T ) and C4f(T ) variations in
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zero field can be well described considering a gapped ferromagnetic spin-wave spectrum

with energies ∆R = 8(2) K and ∆C = 6.0(3) K for Pr compound and ∆R = 13(1) K and

∆C = 7.6(3) K for Nd compound. Cp(T ) data of the nonmagnetic reference compound

La2Pt2In is featureless down to 1.8 K and can be described by the Debye-Einstein model

given the Debye temperature ∆D = 190.3(5) K and the Einstein temperature 69.8 K. In

the paramagnetic state, Cp(T ) data of both Pr2Pt2In and Nd2Pt2In are well described by

the standard Debye formula given the Debye temperature θD = 155.0(3) K and 152.44(2)

K, respectively. In concert, the ρ(T ) variation in zero field of the Pr2Pt2In in this region

can be well described by the Bloch-Grüneisen-Mott relationship given a resistivity Debye

temperature θR = 193.8(6) K. Still in the paramagnetic region, χ(T ) data of both com-

pounds follow the Curie-Weiss relation giving effective magnetic moment values close to

that expected of the free Pr3+- and Nd3+-ions. Positive Weiss temperature constant θp was

obtained for both compounds reflecting the ferromagnetic exchange interactions and the

ferromagnetic phase transition has a second-order character in line with the results of the

magnetocaloric effect. Critical behaviour study around the ferromagnetic phase transition

in Pr2Pt2In can be well described within the 3D-Ising, while for Nd2Pt2In compound in this

study ascribed the compound to belong between the 3D-Heisenberg and 3D-Ising universal-

ity class. A maximum magnetocaloric effect value of 7.44 J/(kg.K) was obtained for a field

change of 7 T in Pr2Pt2In and 6,25 J/(kg.K) in Nd2Pt2In for the same field change. For the

Nd2Pt2In compound, the maximum value of the change of magnetic entropy (−∆SmaxM ) for

a field change of 5 T observed from −∆SM(T ) calculated from the magnetization isotherm

M(µ0H,T ) is in good agreement with that obtained from −∆SM(T ) calculated from heat

capacity. For both compounds −∆SmaxM was found proportional to h2/3 with a negative

intercept, indicating that the ferromagnetic phase transition in both compounds has a

second-order character.

For the RE8Pd24Ga (RE = Gd, Tb and Dy) compounds investigated, the studies of

X-ray diffraction confirm the cubic AuCu3-type crystal structure with space group Pm-

3m. The resulting unit cell volumes are consistent with the lanthanide contraction as

one moves from La to Lu. The resistivity results of all three compounds show normal

metallic behaviour at high temperatures with evidence of crystal-electric-field or s − d

interband scattering. The low-temperatures resistivity data indicate the onset of magnetic
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phase transition associated with antiferromagnetic ordering at TN = 9 K, 5.8 K and 3.8 K

for Gd, Tb and Dy compounds, respectively. These values of TN corroborate with values

obtained from the heat capacity and magnetic susceptibility results. In the ordering region,

the resistivity data of Tb and Dy compounds are governed by the scattering conduction

electrons on antiferromagnetic spin-wave excitations with energy gap: ∆ρ = 29.6(1) K and

15(1) K for Tb and Dy compounds, respectively. Above TN, the resistivity data of both

Gd and Tb exhibit a resistivity minimum due to the opening of an antiferromagnetic

superzone gap at the Fermi surface with the superzone band energies values of ∆ =

13(2) K and 6(1) K for Gd and Tb compounds, respectively. The heat capacity data

at high temperatures for all three compounds can be described well by the standard

Debye formula given the Debye temperature values: θP = 238.886(7) K, 230.26(4) K and

233.20(2) K for Gd, Tb and Dy, respectively, which indicate a similarity of the lattice

vibration in all three compounds. The heat capacity at low-temperature exhibits a peak

at TN. Below TN, another magnetic phase transition occurs at Tt = 4 K and 2.2 K for

the Gd and Tb compounds, respectively. This second-order phase transition is attributed

to spin reorientation of the Gd and Tb moments. The magnetic susceptibility for all

compounds above 20 K follows the Curie-Weiss relation, given effective magnetic moments:

µeff = 8.004(2) µB, 9.76(2) µB and 10.65(8) µB for Gd, Tb and Dy compounds, respectively.

These values are close to that expected for the free Gd3+-, Tb3+- and Dy3+-ion. The

magnetic susceptibility results revealed a noncollinear antiferromatic arrangement of the

rare-earth spin for all three compounds. This noncollinear structure corroborates with

the result of the magnetocaloric effect, showing a sign change for the Tb compound.

The magnetization results indicate metamagnetic transition at 1.5 T and 0.5 T for Tb

and Dy compounds, respectively. Investigation of magnetocaloric effect of both Tb and

Dy compounds indicate a second-order phase transition. Both compounds exhibit an

antiferromagnetic state below TN, and process a field-induced metamagnetic transition

around TN, resulting in a large magnetocaloric effect. Particularly, the value of −∆SmaxM

reach 14.23 J/(kg.K) for field change of 7 T for Tb compound and 11.20 J/(kg.K) for a field

change of 5 T, indicating that both Tb and Dy compounds could be a potential candidate

for low-temperatures and low-magnetic field refrigeration.

For future experimental investigations, the nature of the ordered state of RE8Pd24Ga
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compounds need to be performed through measurements of AC magnetic susceptibility.

The magnetic structures of all compounds in this thesis need to be investigated through

inelastic neutron scattering experiments. On the other hand, thermoelectric materials

attract a lot of attention since they are key for thermoelectric power generation and thermo-

electric cooling. The key to improve thermoelectric conversion efficiency of thermoelectric

generation and the coefficient of performance of thermoelectric cooling lies in high dimen-

sionless figure of merit. For these reasons, the next step of investigations are based on the

thermal transport properties measurements of the compounds investigated in this thesis

and other rare-earth intermetallic compounds. These investigations involve measurements

of thermal conductivity, thermoelectric power, the Lorentz number and the dimension-

less figure of merit. Furthermore, the new techniques for determining critical exponents,

the order of phase transitions and the identification of tricritical point separating first

and second-order phase transitions using magnetocaloric method are being applied in the

broader scope of general characterization of magnetic materials. The succesful application

of the magnetocaloric effect in magnetic refrigerators has established the seed for study of

other caloric phenomena (like elasto-caloric, electro-caloric, etc.) and this will probably

lead to alternative technologies for refrigeration.
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[127] R. Pöttgena, R.K. Kremerb, S. Rayaprola, B. Heyinga, and R.D. Hoffmanna,

Zeitschrift für Naturforschung B 62, 169 (2007).

[128] M. Giovannini, H. Michor, E. Bauer, G. Hilscher, P. Rogl, T. Bonelli, F. Fauth,

P. Fischer, T. Herrmannsdörfer, L. Keller, W. Sikora, A. Saccone, and R. Ferro,

Physical Review B 61, 4044 (2000).

[129] I.R. Harris, G.V. Raynor, and C.J. Winstanley, Journal of the Less Common Metals

12, 69 (1967).

[130] W.E. Gardner, J. Penfold, and I.R. Harris, Le Journal de Physique Colloques 32,

1139 (1971).

[131] W.E. Gardner, J. Penfold, T.F. Smith, and I.R. Harris, Journal of Physics F: Metal

Physics 2, 133 (1972).

[132] R.D. Hutchens, V.U.S. Rao, J.E. Greedan, W.E. Wallace, and R.S. Craig, Journal

of Applied Physics 42, 1293 (1971).

[133] J.M.M. da Silva, Solid State Communications 28, 857 (1978).

[134] R.A. Gordon, C.D.W. Jones, M.G. Alexander, and F.J. DiSalvo, Physica B: Con-

densed Matter 225, 23 (1996).

[135] R.A. Gordon and F.J. DiSalvo, Zeitschrift für Naturforschung B 51, 52 (1996).

[136] C. Mitra, S.K. Dhar, and S. Ramakrishnan, Journal of Applied Physics 87, 5146

(2000).

[137] C.D.W. Jones, R.A. Gordon, B.K. Cho, F.J. DiSalvo, J.S. Kim, and G.R. Stewart,

Physica B: Condensed Matter 262, 284 (1999).

[138] S. Singh and S.K. Dhar, Physical Review B 68, 144433 (2003).

[139] D.T. Adroja, B.D. Rainford, K.S. Knight, and P.C. Riedi, Journal of Physics: Con-

densed Matter 13, 459 (2001).
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