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Abstract 

Ovarian Cancer (OC) is the most common reproductive and the most lethal gynaecological 

malignant tumour. The majority of Ovarian Cancers, comprising more than 95% of cases, 

emanate from the surface epithelium of the ovary, commonly referred to as Epithelial 

Ovarian Cancer (EOC). OC is the eighth most common form of cancer in women world-wide 

and in South Africa approximately 800 women die annually from the disease without 

diagnosis. OC is located deep within the pelvic region making early diagnosis and monitoring 

of the disease challenging. A minute group of cancer cells presents itself on the surface of 

one or both of the ovaries.  

 

The current diagnostic tests for OC include pelvic examination, imaging studies, diagnostic 

imaging and a serum protein biomarker, CA-125. These diagnostic tools have low specificity, 

poor sensitivity, reduced positive predictive value and are quite invasive. Therefore, a method 

for early diagnosis is required that is less invasive and overcome the limitations regarding 

specificity, sensitivity and positive predictive value. Biomarkers are identified as feasible 

alternatives for early detection of Ovarian Cancer for example biological indicators such as 

DNA, RNA, proteins and microRNAs (miRNAs). 

 

MicroRNAs are small non-coding RNAs that play a role in various cellular processes. Studies 

have shown that miRNAs are highly stable under extreme conditions, located in bodily fluids 

such as urine and blood, and they play a  role in intracellular communication thus they can 

potentially be useful as diagnostic, prognostic and theranostic biomarkers. In this study we 

aimed to identify potential miRNA biomarkers to detect OC in its earliest stage and 
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evaluating these miRNAs in a panel of Ovarian Cancer cell lines as well as several other cell 

lines using qRT-PCR. The major objectives of the study were to identify miRNAs and their 

gene targets that play a significant role in the onset and advancement of OC using in silico 

methods. 

 

An in silico approach was employed to identify miRNA target genes (also referred to as 

target genes) and miRNAs implicated in the initiation and development of Ovarian Cancer, in 

a previous study. A total of 7 miRNA target genes and 6 miRNAs were identified. 

Bioinformatics tools were used to functionally characterize the 7 target genes through 

protein-protein interactions, transcription factor analysis and pathway analysis. It was 

observed that the seven target genes were associated with various cancer-related processes. 

The prognostic/predictive value of the candidate target genes were monitored using three 

publically available databases namely Kaplan-Meier Plotter, SurvExpress and PROGgene. 

Collectively, the data suggest that FARP1 and CILP are valuable candidate genes in Ovarian 

Cancer prognosis. The combined survival curves generated by the SurvExpress datasets 

showed the combined genes could predict the outcome of Ovarian Cancer patients pre- and 

post-treatment. 

 

The identified miRNAs were experimentally validated using qRT-PCR to generate 

expression profiles for Ovarian Cancer as well as other cancers. Ovarian cell lines utilized in 

the study include OW28 (cystadenocarcinoma) and Coav-3 (adenocarcinoma). These cell 

lines were compared to a normal, KMST-6 In the study the expression profiles for six 

potential miRNA biomarkers for the detection of Ovarian Cancer was determined using qRT-

PCR, and to distinguish OC from other cancers. 
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Expression profiling showed that the miRNAs identified through in silico methodologies 

were differentially expressed across all cell lines used in the study and the six miRNAs had a 

unique profile across all cell lines tested in the study. In addition miR1 was significantly up-

regulated in the two ovarian cell lines, OAW28 and CaoV-3 compared to the normal cell line, 

KMST-6. The qRT-PCR analysis showed that the expression ratio in OAW28 was 8.91 and 

the expression ratio for CoaV-3 was 10.51. The results suggest that miR1 may be sufficient to 

differentiate between different cancer cell lines. The data also showed that miR2 and miR4 

was under-expressed in CaoV-3 (expression rations of -7.91 and -8.67 respectively) and 

HeLa but the expression levels of the two miRNAs were lower in the OC cell line. This is an 

important finding which could have potential prognostic implications in clinical practice by 

using it in combination with the current predictive biomarkers in the clinical setting. The 

study serves as a basis for future investigations for Ovarian Cancer diagnosis and prognosis, 

as well as for other cancers. 

 

Keywords: Ovarian Cancer, miRNA, target genes, biomarker discovery, diagnostics, 

prognostics, functional genomics, prognostics, early detection, cancer, specificity, 

sensitivity, qRT-PCR, expression profiling, bioinformatics 
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Chapter 1 

Literature Review 

1.1 Cancer Overview 

Cancer is generally described as a cellular growth disorder (neoplasia), affecting different 

organs and tissues in the body (Hejmadi, 2010).  It is a group of diseases in which abnormal 

cells grow in an uncontrollable manner, disregarding the rules for normal cell division. In 

normal cells, specific signals determine when a cell should divide or undergo apoptosis 

(Hejmadi, 2010). Cancer cells are autonomous to these signals, resulting in uncontrolled 

proliferation. As these cancer cells grow, they acquire new characteristics including changes 

in cell structure, loss of contact inhibition and increased or decreased protein expression. The 

changes allow the cells to inhibit the growth of neighbouring cells and it allows the cells to 

invade other tissues (Movva, 2015). 

 

Cancer is caused by genetic and epigenetic changes that fundamentally alter the properties of 

a normal cell (DeBerardinis et al., 2008; Sadikovic et al., 2008). One mutation will not render 

the cell cancerous but as the mutations accumulate, cancer can occur. Frequently, genes that 

make proteins to repair DNA damage are themselves mutated. Subsequently, mutations will 

increase in the cell, causing further abnormalities (DeBerardinis et al., 2008). All the cells 

produced by division of the ancestral cell will display inappropriate proliferation. Cancer has 

the ability to spread through the lymphatic system and bloodstream, and grow into another 

tumour away from the site of origin. This is referred to as secondary cancer (metastasis). 

Once cancer has spread beyond the point of origin it becomes difficult to treat and the 

mortality rate of the disease increases (Evans and Roett, 2009). 
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Cancer is a disease that affects people of all ages, sex, races and socio-economic 

backgrounds. Globally, cancer is responsible for 13 % of all deaths. According to the World 

Health Organisation (WHO), there were approximately 12 million new cases of cancer and 7 

million deaths in 2011 as a result of cancer (World Health Organisation, 2011). By 2012, the 

number of new cases rose to 14 million and the death toll rose to 8.2 million. Worldwide a 75 

% increase is expected resulting in a total incidence of 22.2 million by 2030, with 17 million 

cancer-related deaths. It is suggested that South Africa could see an increase of 78 % in the 

number of cancer cases by 2030 (Economic Intelligent Unit Limited, 2009). The prevalence 

of cancer in developing countries is lower than developed countries, but this is quickly 

changing because of the westernised lifestyle being adopted (Stefan, 2015). 

 

Several cancers are specific to a particular sex, such as ovarian cancer, breast cancer and 

cervical cancer in females and prostate cancer in males. Cancer comprises of approximately 

200 different diseases, all sharing the same characteristics. Cancer is classified based on the 

type of cell, organ or tissue it originates from and are divided into six major categories 

including carcinomas, sarcomas, myelomas, leukaemias, lymphomas and mixed types (Dorak 

and Karpuzoglu, 2012). Carcinomas are the most common, accounting for 80-90 % of all 

cancers. The high prevalence of carcinomas is attributed to the fact that human epithelial cells 

are the site of cell proliferation and they are constantly exposed to carcinogenic factors. 

Sarcomas, myelomas, leukaemias and lymphomas originate from connective tissues, plasma 

cells of bone marrow, bone marrow and the lymphatic system respectively (Ceusters et al., 

2005). The majority of cancers occur as a result of multiple mutations that results in 

uncontrollable cellular growth. The cancer cells will continue to propagate and produce new 

cells until they crowd out all the normal cells. The lethality of cancer is due to the ability of 

cancer cells to spread to distant sites in the body. A primary tumour is relatively easy to 
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remove through surgery but once cancer has spread to many locations, surgery alone becomes 

impossible (Valastyan and Weinerg, 2011). For that reason, metastasis and invasion of 

normal tissue by cancer cells are the hallmarks of cancer as described by Hanahan and 

Weinerg in 2000. Tumours that are metastatic have the ability to move through the 

circulation system to other organs. As a consequence of this aggressive behaviour, secondary 

tumours far away from the primary tumour will develop that are more aggressive and difficult 

to eliminate. This process is described by the Invasion-Metastasis cascade illustrated in 

Figure 1.1 (Valastyan and Weinberg, 2011).   

 

 

Figure 1.1: The spread of cancer from origin. The invasion-metastatic process consists of 

sequential steps. Cancer cells proliferate; break through basal membranes to migrate to 

capillaries and other suitable tissue for invasion and proliferation (Valastayn and Weinberg, 

2011). 
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1.1.1 Hallmarks of cancer 

There are six hallmarks of cancer including (i) self-sufficiency in growth signals, (ii) 

insensitivity to antigrowth signals, (iii) tissue invasion and metastasis, (iv) limitless potential 

for replication, (v) sustained angiogenesis and (vi) the ability to evade apoptosis shown in 

Figure 1.2. 

 

Figure 1.2: Acquired capabilities of cancer. The figure illustrates the six hallmarks of 

cancer originally proposed in 2000 (Hanhan and Weinberg, 2011). 
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1.1.1.1 Self-sufficiency in growth signals 

According to Hanahan and Weinberg (2011), sustaining proliferative signals is arguably the 

most important trait in cancer cells. Normal cells require certain growth signals (GS) before 

proliferation can take place. Normal tissue cautiously control the production and transmission 

of these growth signals, by the transmembrane receptors. In order for cell proliferation to 

occur in a normal cell, consecutive steps, illustrated in Figure 1.3, is carefully followed. 

Based on current studies, no normal cell can evade these steps and proliferate in the absence 

of these growth stimulating signals (Witsch, Sela and Yarden, 2010). Cancer cells or tumour 

cells have the abillity to generate their own growth signals thus reducing their dependence on 

stimulation from the normal tissue microenvironment. The generation of their own growth 

stimulating signals disrupts essential homeostatic mechanisms that ensures appropriate 

behaviour of various cells (Hanahan and Weinberg, 2000; Hanahan and Weinberg, 2011).  

Strategies for achieving growth signal autonomy include alteration of extracellular growth 

signals, alteration of transcellular transducers of those signals and alteration of intracellular 

circuits that translate those signals into action. Cell surface receptors that are responsible for 

the transduction of growth-stimulatory signals are also targets for deregulation during 

pathogenesis. Growth factor receptors are often over expressed in many cancers. Cancer cells 

favour the extracellular matrix receptors that transmit progrowth signals by altering the 

normal integrins and are thus liberated from dependence on exogeneous growth factor signals 

(Hanahan and Weinberg, 2000; Hanahan and Weinberg, 2011; Groten, Borner and 

Mertelsmann, 2016). 
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Figure 1.3: Normal cell proliferation (Hanahan and Weinberg, 2011). 

 

1.1.1.2 Insensitivity to antigrowth signals 

Multiple antiproliferative signals such as soluble growth inhibitors and immobilized 

inhibitors maintain cellular quiescence and homeostasis in normal cells (Hanahan and 

Weinberg, 2011). These signals are controlled by tumour suppressors and are responsible for 

blocking cell proliferation.  Cancer cells have the ability to bypass these antiproliferative 

signals in order to proliferate. The two quintessential tumour suppressors include TP53 

(tumour protein P53) and RB (retinoblastoma-associated) proteins (Hanahan and Weinberg, 

2011; Dai et al., 2016). RB proteins govern whether or not a cell should proceed through the 

cell cycle; and TP53 halts proliferation or promotes apoptosis. Cancer cells lack these 

important factors of cell cycle control which might cause proliferation of the cells to cease 
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and enter the resting (G0) phase of the cell cycle (Hanahan and Weinberg, 2000; Hanahan and 

Weinberg, 2011; Chow, 2010; Casimiro et al., 2012). 

 

1.1.1.3 Tissue invasion and metastasis 

Cancer cells have the ability to migrate from the site of origin resulting in an invasive and 

metastatic phenotype. The invasion-metastasis cascade is a multistep process consisting of a 

distinct sequence of events illustrated in Figure 1.1. The cascade begins at a cellular level 

with reduced expression of surface adhesion molecules. This is followed by local invasion 

and intravasion of the cancer cells in the blood and lymphatic system. The cancer cells then 

move through the circulatory system into distant tissues (Hanahan and Weinberg, 2011; Dai 

et al., 2016). 

 

1.1.1.4 Limitless potential for replication 

Cancer cells require the ability to replicate infinitely in order to produce solid mass tumours 

(Movva, 2015). Normal cells only pass through a limited number of successive cell growth 

and division cycles. Normal cells have a limited amount of division before they go into 

senescence or they experience cell death as a result of “crisis”. Evidence suggests that the 

telomeres, protecting the end of chromosomes, are centrally involved in the capability of 

unlimited replication (Shay and Wright, 2000). Telomeric DNA shortens with every 

successive cell division, until the telomeres become eroded and consequently lose their 

protective function. In cancer cells specialized DNA polymerase that adds telomere repeats to 

the ends of telomeric DNA is expressed at significant levels. Cancer cells bypass this barrier 
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by manipulating telomerase, specialized DNA polymerase, thus they can divide indefinitely, 

without initiating senescence (Kelland, 2007; Hanahan and Weinberg, 2011). 

 

1.1.1.5 Sustained angiogenesis 

Angiogenesis is a process whereby new blood vessels are formed, once tissues are formed. 

All cells in the tissue require a nearby blood supply, capillary blood vessel, oxygen and 

nutrients; and the ability to remove carbon dioxide (CO2) and metabolic waste (Hanahan and 

Weinberg, 2011). Similarly, cancer cells require access to oxygen, nutrients and waste 

disposal. Cancer cells acquire the ability to initiate the production of new vasculature through 

the activation of the ‘angiogenic switch’ (Figure 1.4) (Hanahan and Weinberg, 2011, 

Hanahan and Weinberg, 2000). Cancer cells can counterbalance positive and negative signals 

that respectively encourage or block angiogenesis. The primary angiogenic growth factor is 

Vascular Endothelial Growth Factor (VEGF). VEGF promotes the survival, migration and 

replication of endothelial cells. Other angiogenic factors include endostatin, angiostatin and 

thrombospondin-1. The formation of new blood vessels is not only important in supporting 

tumour growth but also in metastasis. The newly formed capillaries are easily penetrated by 

tumour cells, providing the cancer cells the opportunity to enter the circulatory system and 

enter metastasis (Hanahan and Weinberg, 2011; Weis and Cheresh, 2011; Pezzella et al., 

2015). 
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Figure 1.4: The angiogenic switch during tumour development occurs at different stages 

in the tumour-progression pathway, depending on the nature of the tumour and the 

microenvironment (Baker, Cherry-Bohannan and Francis, 2012). 

 

1.1.1.6 Evading apoptosis 

Apoptosis is the opposite of cell growth; it is a form of programmed cell death also known as 

cellular suicide (Orrenius and Zhivotovsky, 2010). In order for a cancer cell to divide and 

grow uncontrollably, a cancer cell has to hijack and bypass normal cellular growth pathways. 

Apoptosis is required for maintaining tissues in the body and it’s initiated when cells are 

damaged or infected (Hanahan and Weinberg, 2011; Fernald and Kurokawa, 2013). 

Evidence, principally from mouse models, cultured cells and from descriptive analysis of 

biopsied stages in human carcinogenesis, shows that all types of cancer cells acquired various 
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means of resisting apoptosis (Fernald and Kurokawa, 2013; Orrenius and Zhivotovsky, 

2010).  

 

Apoptosis either occurs through intrinsic apoptotic or extrinsic apoptotic pathways. During 

the intrinsic apoptotic pathways, the signals from within the cell activate the process of 

apoptosis whereas during the extrinsic apoptotic pathway, the death signals from outside the 

cell are received and processed by the cell to activate apoptosis (Allocati et al., 2012). It is 

suggested that intrinsic apoptotic pathways are more important in cancer prevention 

compared to extrinsic apoptotic pathways. The primary regulators of apoptosis belong to the 

Bcl-2 family of proteins. These proteins are either pro-apoptotic or anti-apoptotic. Tumours 

also evade apoptosis by elevating the expression of anti-apoptotic regulators and down-

regulating the pro-apoptotic factors (Buyers et al., 2014; Hanahan and Weinberg, 2011). 

 

1.2 Ovarian Cancer: An overview 

Women have two ovaries, on either side of the uterus in the female pelvic cavity.  Each ovary 

is approximately the size of an almond, producing ova as well as the hormones, oestrogen 

and progesterone (MD Guidelines, 2010). It is the most important organ of the female 

reproductive system. The importance of these tiny glands is derived from their role in 

producing female sex hormones and female gametes that are fertilized for the production of 

embryos (Agarwal et al., 2011). The development of the ovaries is part of the prenatal 

development of the reproductive system. The ovaries are held together by fibrous tissue that 

extends from the upper uterus to the lower region of the ovary (Agarwal et al., 2011). Just 
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like any other organ, the ovary can become cancerous illustrated in Figure 1.5 (MD 

Guidelines, 2010). 

 

 

 

Figure 1.5: The female reproductive system with Ovarian Cancer in one ovary. The 

illustration shows cancerous tissue in the right ovary and normal ovary on the right (MD 

Guidelines, 2010).  

 

Ovarian Cancer is a disease that affects women only. It transpires when cells in the ovary 

become abnormal and multiplies uncontrollably, resulting in the formation of a tumour. 

Ovarian Cancer is caused by insertions, deletions and genetic recombination in the DNA of a 

normal ovarian cell (Kurman and Shih, 2010). Approximately 10-15 % of Ovarian Cancers 

are linked to inherited genetic mutations, commonly referred to as germline mutations. But, 

most cases of OC are sporadic. These cases are associated with genetic mutations known as 

somatic mutations, which are acquired during an individuals’ life-time. These sporadic 
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genetic mutations are only present in certain cells. In principle, these sporadic and germline 

mutations; result in the formation of anomalous growth in ovarian cells and tissues (Al Bakir 

and Gabra, 2014). There are different types of OC namely Epithelial Ovarian Cancer (EOC), 

borderline tumours, germ cell tumours and sex-cord stromal cell tumours. EOC is the most 

common, forming 90 % of all OC cases (Konishi, Koshiyama and Matsumra, 2014).  

 

1.2.1 Histologic sub-types of Ovarian Cancer 

The difficulty in understanding Ovarian Cancer is due to the heterogeneity of the disease. It is 

composed of different types of tumours or subsets of the disease. All these tumours differ in 

clinicopathologic, behaviour, histogenetic principles with regard to their derivation from 

surface epithelium, germ cells and mesenchyme (the stroma and the sex-cord). Sub-

classification of OC is biologically and therapeutically important. Ovarian Cancer is divided 

into two types of tumours namely Type I and Type II (Konishi, Koshiyama and Matsumra, 

2014; Kurman and Shih, 2010). Type I ovarian tumours is clinically idle and it usually 

detected at an early stage. Upon diagnosis, these tumours are usually confined to the ovary 

and it includes low-grade serous, low-grade endometrioid, low-grade clear cell and low-grade 

mucinous carcinomas. Type II ovarian tumours are more aggressive, it’s genetically unstable 

and it’s usually diagnosed at an advanced stage (Kurman and Shih, 2010). 

 

1.2.1.1 Epithelial Ovarian Cancer (EOC) 

Epithelial cells cover the ovary and 80-95 % of Ovarian Cancers emanate from these cells. 

EOC is further divided into malignant and benign tumours. EOC is further differentiated 

under the microscope as follows: serous, mucinous, endometrioid, clear cell, transitional cell 
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tumours (Brenner tumours), carcinosarcoma, mixed epithelial tumour and undifferentiated 

tumours. Serous, mucinous, endometrioid and clear cell is the most common types of EOC 

(Konishi, Koshiyama and Matsumra, 2014). Clear cell and endometrioid carcinomas are 

highly associated with endometriosis. In stage distribution (stages where tumours has spread 

from primary site), serous carcinoma is found predominantly at an advanced stage. In 

contrast, clear cell and endometrioid carcinomas tend to remain confined to the ovary. Clear 

cell and endometrioid carcinomas may be unique histological types compared with serous 

carcinomas with respect to stage distribution and association with endometriosis (Al Bakir 

and Gabra, 2014). 

 

1.2.1.2 Sex cord-stromal tumours 

Ovarian sex cord-stromal tumours (SCST) or sex cord-gonadal stromal tumours are a 

morphologically heterogeneous group of benign and malignant tumours arising from 

granulosa, theca, sertoli and leydig cells. This histopathologic ovarian tumour group is 

infrequent, presenting approximately 7 % out of all primary ovarian tumours (Al Bakir and 

Gabra, 2014; Cunha and Horta, 2015). In contrast to EOC, malignant SCST are rare, 

comprising 1.2 % of all primary Ovarian Cancers. Although sex cord-stromal tumours are 

present in a broad age group, most of these tumours are present in younger patients. 

Furthermore, most patients are diagnosed in the primary stage and majority of these tumours 

are low-grade (Cunha and Horta, 2015). 
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1.2.1.3 Germ cell tumours 

An Ovarian Germ Cell tumour (GCT) is a female specific tumour often referred to as ovarian 

tetranoma. GCT account for 20-25 % of all ovarian tumours and constitute the second largest 

group of ovarian neoplasms; but it accounts for only 5 % of all malignant ovarian neoplasms. 

GCT derives from primitive germ cells of the embryonic gonad, principally affecting 

teenagers and young women. Approximately one-third of germ cell tumours are malignant. 

Germ cell tumours tend to affect only one ovary, and most are curable even if diagnosed 

during advanced stages (Isaacs, 2013). 

 

1.2.2 Burden of disease in South Africa 

Every year, approximately 8.2 million people die of cancer word-wide. Scientists suggest the 

number will double by 2050 which can be attributed to the changes in life-style. In most 

countries cancer falls in the top three causes of death, but according to South African 

statistics cancer don’t even fall in the top ten. The westernized life-style being adopted by 

many South Africans is rapidly changing these statistics (Stefan, 2015). The statistics in 

South Africa is not currently up to date even though recording all cases of cancer became 

obligatory in 2011. The incompleteness is caused by a lack of funding and many people are 

reluctant to disclose information because it could be regarded as a breach of privacy. Also, 

various other diseases such as HIV/AIDS and TB occur more frequently in South Africa 

(Stefan, 2015). In South Africa, the latest statistics according to the National Cancer Registry 

was done in 2009. The National Cancer Registry estimated that 425 women were diagnosed 

with Ovarian Cancer. The highest percentage of individuals diagnosed between 50-60 years 

of age. The lowest percentage of women diagnosed was between 0-20 and above 80 years of 

age. This is evident that OC is a post-menopausal disease (National Cancer Registry, 2009). 
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The Burden of Disease Estimates for Comparative Risk Factor Assessment estimated that OC 

was the 15th cause of cancer-related death in 2000, in both men and women. Ovarian Cancer 

is ranked 9th when comparing all cancer-related deaths in women (Bradshaw et al., 2006). 

 

1.2.3 Genomic alterations in Ovarian Cancer histological subtypes 

Molecularly the alterations in gene expression profiles in OC histological types associate with 

their counterparts in normal tissue. High Grade Serous ovarian tumours are generally 

categorized by loss of heterozygosity or mutations in p53. Alternatively, Low Grade Serous 

ovarian tumours are characterized by mutations in K-ras, BRAF and HER-2 genes. Mutations 

occuring in CTNNB1 (38-50 % of cases), PTEN (20 % of cases) and microsatellite instability 

(19 % of cases) are commonly seen in Endometriod carcinomas (Croce and Di Leva, 2013; 

Birrer et al., 2013). In mucinous carcinomas, K-ras is commonly mutated and it is associated 

to early events in tumouringenesis. Over-expression of HER-2 is linked to 15-20 % of 

mucinous tumours. Clear-cell carcinomas are characterized by a high frequency of mutations 

in PI3KCA. Mutation in the PI3KCA gene promotes the activation of the PI3K/AKT 

pathway, resulting in improved cell survival and invasion. Various histological subtypes have 

been associated with alterations in homeobox genes (HOX). The production of HOX genes 

are stimulated in the production of gyneocalogical organs. Homeobox 9  (HOX9), homeobox 

10 (HOX10) and homeobox 11 (HOX11) is highly expressed in serous, endometriod and 

mucinous correspondingly (Croce and Di Leva, 2013; Dong, Lu and Lu, 2016).  
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1.2.4 Etiology of Ovarian Cancer 

All women have some risk of getting Ovarian Cancer but some women have a higher risk 

than others. It is suggested that approximately 1 in every 72 women will be diagnosed with 

Ovarian Cancer in their lifetime (American Cancer Society, 2014). There are multiple factors 

that is associated with increased and decreased risk of getting Ovarian Cancer, illutrated in 

Table 1.1. Some of the risk factors or suggested causes of Ovarian Cancer include age, 

familial history and genetics, reproductive and hormonal factors, diet and life-style and 

environmental factors.  

 

Table 1.1: Increased and decreased risk factors associated with Ovarian Cancer 

(American Cancer Society, 2014).  

Increased risk factors Decreased Risk factors 

Delayed child bearing/Low parity Breastfeeding for more than 18 months 

Early menstruation/ Late menopause Early menopause 

Endometriosis  Multiparity pregnancy  

Eostrogen replacement therapy Hysterectomy/ Tubal ligation 

Genetic predisposition Late menstruation 

Genetic syndromes Oral contraceptives 
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1.2.4.1 Age 

Ovarian Cancer can occur in women at any age but studies have shown that the risk increases 

with age. Approximately 2 in every 3 women diagnosed with Ovarian Cancer are between the 

ages 50-69 years old. The mean age of women diagnosed is 63 years of age (Correia et al., 

2002). 

 

1.2.4.2 Familial history and genetics 

Approximately 5-10 % of women diagnosed with OC have an inherited increased risk of 

developing the disease, therefore in many cases Ovarian Cancer runs in the family. This is 

indicated by an increased incidence of OC among women with a familial history and by the 

observation of some families where multiple family members have/had OC (Mutch and Prat, 

2014). Estimates of 10-15 % of all women diagnosed with OC are due to genetic factors. An 

inherited genetic mutation in one or both of the breast cancer genes (BRCA1 and BRCA 2) is 

one of the major genetic traits that increase the risk of women developing OC. Women that 

inherit genetic mutations in one or both of these genes, risk increases by 25-54 % (Mutch and 

Prat, 2014). Other mutated genes that can be inherited include PMS1 Homolog 1, mismatch 

repair system component (PMS-1), PMS1 Homolog 2, Mismatch Repair System Component 

(PMS-2) and MutL Homolog 1 (MLH-1) (Correia et al., 2002).  

 

1.2.4.4 Reproductive factors and hormonal factors 

The connotation between OC and reproductive and hormonal factors differ by histological 

types. The most consistently described OC risk factors related to reproduction and hormones 
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include low parity and no oral contraceptives. There are multiple hypotheses postulated 

namely the ‘incessant ovulation theory’, the ‘pituitary gonadotropin hypothesis’, the 

‘inflammation hypothesis’ and ‘the ovarian stromal hypothesis’ (Berchuck et al., 2008). The 

‘incessant ovulation theory’ states that the risk of OC is increased through the number of 

times a women ovulates in her life-time. Ovulation increases the rate of cellular division 

associated with repair of the epithelial cells therefore increasing the risk of spontaneous 

mutations. The ‘pituitary gonadotropin hypothesis’ postulates that an increased level in 

progesterone and oestrogen is linked to an increased proliferation and malignant 

transformation of ovarian cells. The ‘inflammation hypothesis’ protists that inflammatory 

conditions such as endometriosis stimulates OC formation. The ‘ovarian stromal hypothesis’ 

suggests that following ovulation there may be failure of apoptosis thereby stimulating the 

formation of OC (Berchuck et al., 2008). 

 

1.2.4.5 Diet and life-style 

Diet and life-style are also major risk factors in the development of Ovarian Cancer. These 

factors are modifiable unlike inherited factors. Recent studies shows that smoking, obesity 

and an unhealthy diet increase the risk of women getting the disease (Sidaway, 2015).  

 

1.2.4.6 Environmental factor 

Exposure to talcum powder may increase the risk of OC but the  evidence is contraversial. A 

study done by Harvard Medical School showed that constant exposure to talcum powder 

doubled the risk of an individual getting OC, but other studies showed no relation between 

OC and talcum powder (Huncharek and Muscat, 2008; Sidaway, 2015). Talcum powder 
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contains particles of asbestos, a known carcinogen of OC, therefore researches believe it may 

be carcinogenic. Women that are exposed to asbestos on a daily bases have an increased 

chance of getting the disease than normal (Sidaway, 2015). 

 

1.2.5 Staging of Ovarian Cancer 

Ovarian Cancer is staged according to the extent the disease has spread from its origin. 

Doctors assign the stage of Ovarian Cancer to the Tumour Node Metastasis (TNM) or the 

Federation Internationale de Gynecologie et d'Obstetrique (FIGO) classification system. OC 

is divided into four stages illustrated in Figure 1.6 (Nordqvist, 2015). These systems are used 

to determine how far the cancer has spread; from the primary site and it’s extremely 

important because it aids in providing the patient with the appropriate treatment required. In 

stage I, the cancer cells can either be present in one or both of the ovaries or it can be present 

on the surface layers of one or both of the ovaries. In stage II, the cancer cells have spread to 

the lymph nodes and into the pelvic region. In stage III, the cancer cells have spread to the 

abdominal cavity. In stage IV, also referred to as the advanced stage, the cancer cells has 

metastazied. The cancer cells have spread to distant organs and tissues (KK Women’s and 

Children’s Hospital, 2014). 
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Figure 1.6: Four stages of Ovarian Cancer. From left to right. Stage I: Cancer cells located 

inside or on the surface of the ovary. Stage II: Cancer has spread to other tissues in the ovary. 

Stage III: Cancer has spread to tissues outside the pelvis and reginal lymph nodes. Stage IV: 

Cancer has spread to tissues outside the abdomen and pelvis (Cancer Research UK, 2016). 

 

1.2.6 Signs and symptoms of Ovarian Cancer 

OC is challenging to diagnose because the symptoms are commonly experienced by women 

from time to time. It often resembles that of benign conditions such as irritable bowel 
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syndrome (IBS) or pre-menstrual syndrome (PMS). The most common symptoms include 

persistent abdominal bloating as the tumour creates pressure on the bladder and rectum; and 

fluid begins to form, early satiety (20 % of cases) and urinary frequency (Figure 1.9) (Cancer 

Research UK, 2016; Cho and Shih, 2010). Other symptomes include fatigue, upset stomach 

or heartburn (16 % of cases), back pain, pain during sex, menstrual changes, nausea (13 % of 

cases) and abnormal vaginal bleeding (Cho and Shih, 2010).  

 

 

Figure 1.7: The most common symptoms of Ovarian Cancer (Cancer Research UK, 

2016). 

 

1.2.7 Current screening and diagnostic tools for Ovarian Cancer 

The current diagnostic tools for Ovarian Cancer have very little success in early detection. 

There isn’t one specific test that gives a definitive result as to whether or not an individual 

has OC. Diagnostic accuracy is important if it’s being used for further tests and treatment of a 

disease. The two most important measures of diagnostic accuracy include specificity and 

sensitivity. Test sensitivity is defined as the ability to positively diagnose an individual with 

the disease, whereas test specificity is defined as the ability of a test to accurately identify 

those patient’s without the disease (Simundic, 2009). An efficient diagnostic tool requires a 
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specificity of at least 99.6 %, a sensitivity of 75 % and a positive predictive value of at least 

10 %. Ideally, it should be non-invasive and cost effective. The current diagnostic tools for 

Ovarian Cancer include pelvic examination, transvaginal ultrasonography, imaging studies 

and serum protein biomarker, CA-125; none of which is performed on its own (Cardenas-

Goicoechea et al., 2013). 

 

1.2.7.1 Pelvic examination 

A pelvic examination can be useful for the detection of some of the reproductive cancers but 

in most cases, OC is not detected during a routine pelvic exam because ovarian tumours are 

difficult or sometimes impossible to feel, even for a skilled practitioner. A pelvic exam is a 

physical exam done by a doctor to check for abnormalities such as enlarged ovaries. The 

doctor will exert pressure on a women’s abdomen and insert his/her fingers into the vagina to 

feel the ovaries illustrated in Figure 1.8. If any masses are detected a needle will be passed 

through the skin to extract a fluid sample. This process is called paracentesis (Gajjar et al., 

2012). The major disadvantage of this diagnostic tool is that it’s invasive. Many women feel 

uncomfortable during this procedure. Additionally, the sensitivity and specificity is below the 

requirement for an effective test for early diagnosis. It has been shown to be 40 % sensitive 

and 90 % specific for this procedure (Cardenas-Goicoechea et al., 2013). 
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Figure 1.8: Pelvic examination by a doctor. The doctor inserts two fingers into the vagina 

and exerts pressure on the abdomen to determine if irregularities exist within the ovaries. 

(KK Women’s and Children’s Hospital, 2014). 

 

1.2.7.2 Transvaginal ultrasonography 

A transvaginal ultrasound uses sound waves to examine the uterus, fallopian tubes, and 

ovaries (Hoff and van Nagell Jr., 2013). Different sound waves are emitted by healthy tissue, 

fluid-filled cyst and solid mass tumours. During this test, a long thin transvaginal transducer, 

covered with a latex sheath and lubricant will be inserted into the vagina illustrated in Figure 

1.9. The transducer will be angled to bring the areas of study into focus. Images of organs and 

structures will be displayed on a computer screen called a sonogram (Hoff and van Nagell Jr., 

2013). The disadvantages of this diagnostic tool include low specificity and sensitivity for a 

conclusive diagnosis. Most women find the procedure very uncomfortable but not painful. 
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Also, it is suggested that the procedure should be done annually as a screening mechanism 

but it’s not cost effective. The procedure is between R4000-R17 600, which is not feasible for 

most South Africans (Lockwood and Ritzert, 2013). 

 

 

 

 

Figure 1.9: Transvaginal ultrasosnography The medical technician inserts a transducer 

into a women’s vagina. The transducer emits sound waves generating an image of the pelvic 

organs (as shown in the top right hand corner) (KK Women’s and Children’s Hospital, 2014). 

 

1.2.7.3 Imaging studies 

Imaging studies include ultrasound (Figure 1.10), computed tomography (CT) scans, 

magnetic resonance imaging (MRI) scans and a positron emission tomography (PET) scan. 

These tests are conducted to determine whether or not a pelvic mass is present and if the 
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cancer has spread to distant tissues and organs. The disadvantage of these tests is that it will 

not confirm that the solid mass is a tumour. For definitive diagnosis, further studies are 

required (Ohmichi and Tanaka., 2012). 

 

 

Figure 1.10: Ultrasound of the abdomen A small probe is placed on the surface of a 

women’s abdomen which releases sound waves. This translates into a picture (National 

Cancer Institute, 2016). 

 

1.2.7.4 Image guided Biopsy 

A biopsy (Figure 1.11) is commonly done to remove the tumour in the ovary. In rare cases, a 

patient suspected of OC may be biopsied by taking tissue samples from the ovaries or from a 

sheet of fatty tissue inside the abdomen since OC may spread there (Cancer Research UK, 

2016). During this procedure an ultrasound or a CT scan is used to guide the biopsy 

procedure. The procedure takes approximately 10-20 minutes under local anaesthetic. 

Multiple samples may be taken from different locations thus there may be several needle 
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punctures. The tissue samples extracted will be examined in the laboratory to check for OC. 

Following the procedure, the patient pulse and blood pressure will be monitored whilst 

resting in bed. The patient may be hospitalized overnight for further monitoring (National 

Cancer Institute, 2016; Ohmichi and Tanaka., 2012). As a result of the limitations of the 

current diagnostics tools biomarkers were investigated. 

 

 

 

Figure 1.11: Biopsy to detect Ovarian Cancer. The doctor inserts a special needle to 

extract cells and tissues from the ovary to be viewed under a microscope by a pathologist to 

detect for signs of cancer (National Cancer Institute, 2016).  

 

1.3 Biomarkers 

According to the National Cancer Institute (2016), a biomarker is a biological marker found 

in blood, other bodily fluids, or tissues that is a sign of a normal or abnormal process, or a 

condition or disease, such as cancer. It is used as an index of the intensity of a disease or 
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other physiological states in an organism. A biomarker has an important role in medical 

research and practice providing insight into the mechanism and course of a disease (Hayes 

and Henry, 2012). Biomarkers are used for various purposes such as diagnostics, screening 

and prognostics. Regardless of the function of the biomarkers it’s clinical significance is 

dependent on their sensitivity, specificity, predictive value, precision, reliability, 

reproducibility and the posibility of easy use and wide spread application. It is important for 

all biomarkers, according to their purpose, to posses certain characteristics, meet certain 

requirements and answer certain questions such as ‘is it an optimal drug for the disease’, 

‘what is the optimal dosage’ and ‘what is the likelihood of developing the disease’ (Hayes 

and Henry, 2012 and Singh, 2011). 

 

1.3.1 Serum protien biomarker: Human Epididymis Protein 4 (HE4) and 

Cancer Antigen 125 (CA-125)  

HE4, a member of the wey acidic protein gene family, is expressed in the reproductive tract 

and its over expressed in ovarian cancer cells, especially in serous and endometriod ovarian 

carcinoma (Amant et al., 2011). It has been suggested to be a  serological marker of OC 

(Amant et al., 2011). A study done by Moore et al., (2008, 2009) evaluated nine potential 

biomarkers, of which HE4 was most effective in detecting OC. They observed a sensitivity of 

72.9 % and a specificity of 95 %. The average level of serum HE4 in malignant lesions were 

248.7 Pm whereas in normal contol and benign lesions a lower concentration was observed 

(Moore et al., 2009). Moore and associates (2008, 2009) went further by combining HE4 and 

CA-125 which yielded a higher sensitivity of 76.4 % and a specifity of 95 % (Area Under the 

Receiver Operating Characteristic curve (AUROC) of 0.91); suggesting that using these 

biomarkers in combination predicts OC more accurately than either alone.  Regardless of 

http://etd.uwc.ac.za



 

 

 

 

31 
 

these positive results, HE4 as a diagnostic biomarker is still controversial. Conversely, a 

study done by Kristjansdottir et al. (2013) suggested a reduction in the sensitivity (48.3 %) 

and specificity (75 %) with a AUROC of 0.73 thus the diagnostic accuracy of HE4 is 

contradicting and require further assessment (Gupta, Rastogi and Sachan, 2016; Moore et al., 

2008; Moore et al., 2009; Kristjansdottir et al., 2013).  

 

Cancer Antigen-125 (CA-125) is a glycoprotein, tumour biomarker commonly used for 

ovarian tumours. It is expressed by OC cells and it’s expressed in tissue derived from 

Müllerian and coelomeric epithelia. It circulates in the blood therefore it can be measured 

with a blood test (Goy et al., 2012). According to Bray-Ward et al (2005), a single protein 

cannot be used to distinguish an individual that has cancer from a healthy control. There are 

many challenges related to this biomarker but so far no other serum biomarker has 

outperformed, CA-125. Some other benign conditions of the womb such as endometriosis, 

pregnancy and pelvic inflammatory disease also produce high levels of CA-125 therefore the 

test gives false positive result (Agarwal et al., 2011). The specificity, sensitivity and positive 

predictive value is lower than required for an effective diagnostic tool for early diagnosis. 

The sensitivity is between 50-60 %, specificity 90 % and positive predictive value is 7 %. 

The CA-125 biomarker has been used in combination with other protein biomarkers to 

improve its specificity and sensitivity (Goy et al., 2012).  

 

The OVA1 blood test, approved by the Food and Drug Administration (FDA), is designed to 

be a highly sensitive tool. It tests for all types of OC and determines if the tumour is low risk 

OC or high risk OC. The OVA1 blood test measures the level of CA-125 in the blood, in 

combination with four other proteins namely beta-2 microglobulin, transferrin, apoliprotein 
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A1 and transthyretin (prealbumin). The OVA1 blood test has an approximate sensitivity of 96 

%, specificity of 35 % and a positive predictive value of 40 %. Regardless of the increased 

specificity, sensitivity and positive predictive value, the test is still not performed on its own. 

It is used in addition to, not in place of, other diagnostic tools (Bristow et al., 2014). 

 

1.3.2 Classification of cancer biomarkers 

The use of biomarkers were first described in 1980 by Isaakson. However, all biomarkers 

don’t share all the same characteristics and are classified based on their characteristics and 

their application. There are multiple types of biomarkers, which fulfills various roles (Corella 

and Ordovas, 2015). Biomarkers are generally defined into 6 categories, namely (i) 

biomarkers of risk prediction; whether an individual is predisposed to developing any 

disorder, (ii) screening/detection biomarkers are real time indicators of the presence of a 

disease (iii) diagnostic or trait biomarkers; are measurable characteristics reflecting the 

presence of the disease state, (iv) state or acuity biomarkers reflect the severity of the disease 

and the probability of recurrence (v) predictive biomarkers predict a patients response to 

treatment, determine the optimum dosage or the efficiency of the drug and (vi) monitoring 

biomarkers predict and monitor a patients recurrence of the disease following treatment. 

Collectively, these biomarkers provide information about a patient at virtuallly every stage of 

the disease (Berk, 2015; Mishra and Verma, 2010). 

 

1.3.3 Methods for Biomarker discovery in cancer 

Biomarkers are the cornerstone of medical care. The discovery of novel biomarkers is 

imperative because it provides a dynamic and powerful approach to understanding the 
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prediction, cause, diagnosis, progression, regression or the outcome following treatment of a 

disease (Mayeux, 2004). In essence it aids in reflecting the entire continuum of a disease 

from it’s earliest stage to the terminal stage (Mayeux, 2004). Biomarkers can be detected in 

all parts of the body including bodily fluids. These biomarkers include mRNA, DNA, protein, 

metabolites and miRNA biomarkers. The evolution of ‘omics’ technologies have been 

dedicated to identify large numbers of candidate biomarkers. This explosion in ‘high-

throughput’ technologies led to an  increased interest in the discovery and validation of 

molecular biomarkers (Diamandis and Kulasingam, 2008; Ghosh and Poisson, 2008). These 

methods of discovery include genomics, proteomics and transcriptomics; and prompted a 

large amount of data that led to the need for computerised databases to store, organise and 

analyse generated data. The field of bioinformatics, a discipline of computational and 

biological sciences, has become vital in the organisation and analyses of this vast amount of 

biological data (Lewis, 2008). 

 

1.3.3.1 Genomic approach 

Genomics is a discipline in genetics that concerns function and structure of an organisms 

genome. The Human Genome Project (HGP) has a major impact on molecular diagnostics 

and the discovery of biomarkers. The widely used genomic technologies include micoarray 

technologies and single nucleotide polymorphism (SNP) array and next generation 

sequencing (NGS) technologies (Chen et al., 2007). These technologies are used to discover 

and identify biomarkers related to genome alterations caused by cancer, including 

chromosomal rearrangements, epigenetic modification and copy number aberrations. Several 

of these technologies produce a massive amount of data per experiment. As a result elaborate 

computational tools are required for the analysis of these huge datasets. Nevertheless, there 
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has been tremendous growth in genomic applications (Chen et al., 2007; Pollack, 2007; 

Quackenbush, 2006). This growth has contributed to the discovery of a highly promising 

diagnostic biomarkers for example cell migration-inducing and hyaluronan-binding protein 

(CEMIP) gene was identified through oligonucleotide microarray analysis as a biomarker for 

colorectal cancer (Sung and Wu, 2013).  

  

1.3.3.2 Proteomic approach 

For decades proteins have been an integral part  of the field of clinical chemistry. Recent 

advances in the technology and the completion of the HGP gave rise to new opportunities for 

analyising proteins for clinical diagnostic purposes. Proteomics aims to interogate extremely 

complex protein mixtures in blood and tissues. Blood contains approximately 100 000 

different proteins. Several proteomics approaches have been use to identify novel biomarkers 

for example mesothelin (Diamandis and Kulasingam, 2008).   

 

Mesothelin is a cell surface protein overexpressed in OC. A study done by Huang et al (2009) 

used preoperative mesothelin levels from patients with benign ovarian tumours and patients 

with ovarian carcinomas. A direct Enzyme-linked immunosorbent assay (ELISA) was used to 

determine the measurement of mesothelin in the serum. Higher levels of mesothelin were 

found in OC patients compared to benign ovarian tumours. Additionally, mesothelin was 

significantly increased from early to advanced stages and revealed a poorer overall survival 

for OC patients. Therefore, mesothelin was presented as a novel tumour marker for diagnosis 

as well as prognosis for Ovarian Cancer (Huang et al., 2009; Tinalli et al., 2007). 
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Regardless of the advances in the technologies, proteomics has limited ability to identify and 

quantify proteins in complex mixtures. Also, only 10 % of the proteins in human serum can 

be detected with currently available approaches. There is still potential for further discovery 

of novel biomarkers but only a selected few available applications are suiteable for analysis 

of biomarker discovery (Diamandis and Kulasingam, 2008; Sallam, 2015; Srivastava et al., 

2005). 

 

1.3.3.3 Transcriptomics approach 

Transcriptomics is a technique used to determine the differential expression of RNA 

transcripts over-time and/or between cells and diseases (Chen et al., 2007). It is one of the 

oldest and widely used high throughput technologies in biomarker discovery. The main aim 

of this technique is to discribe and quantify RNAs; and to determine their variations in 

response to stimuli or disease. Expression profiling by microarray has been very successful in 

biomarker discovery however direct sequencing offers a greater potential for the detection of 

more transcripts and their variants (Chen et al., 2007). 

 

1.3.3.4 Bioinformatics approach 

Bioinformatics is a discipline in computational and biological sciences, also referred to as 

computational biology. It is important in the sorting and analysis of the enormous amount of 

biological information generated by other ‘omics’ technologies (Ghosh and Poisson, 2013). 

The focal purpose of bioinformatics is to identify significant biological information within a 

pool of raw data eventually leading to the discovery of novel biomarkers. Various pipelines 

can be used to simulate complex disease physiologies and generate a list of valuable targets 
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such as miRNAs, genes or proteins that can be validated as potential biomarkers for diseases 

(Calvert-Joshua, 2013 and Ngcoza, 2013). 

 

1.3.4 Classification of cancer biomarkers 

The use of biomarkers were first described in 1980 by Isaakson. However, all biomarkers 

don’t share all the same characteristics and are classified based on their characteristics and 

their application. There are multiple types of biomarkers, which fulfills various roles (Corella 

and Ordovas, 2015). Biomarkers are generally defined into 6 categories, namely (i) 

biomarkers of risk prediction; whether an individual is predisposed to developing any 

disorder, (ii) screening/detection biomarkers are real time indicators of the presence of a 

disease (iii) diagnostic or trait biomarkers; are measurable characteristics reflecting the 

presence of the disease state, (iv) state or acuity biomarkers reflect the severity of the disease 

and the probability of recurrence (v) predictive biomarkers predict a patients response to 

treatment, determine the optimum dosage or the efficiency of the drug and (vi) monitoring 

biomarkers predict and monitor a patients recurrence of the disease following treatment. 

Collectively, these biomarkers provide information about a patient at virtuallly every stage of 

the disease (Berk, 2015; Mishra and Verma, 2010). 

 

1.4 MicroRNAs as biomarkers in cancer 

1.4.1 Biogenesis and function of microRNAs 

MicroRNAs were first discovered in the nematode, Caenorhabditis elegans by Lee, 

Feinbaum and Ambros in 1993 (Chauhan et al., 2012). They are a highly conserved class of 
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small (~ 22 nucleotides) non-coding RNA molecules. The mature microRNA molecule is 

produced through a series of steps (Chen et al., 2014). Mature microRNAs are derived from 

stem-loop precursors, pri-miRNA, transcribed by RNA polymerase II. The pri-miRNA has a 

3’ poly-A-tail and a 7-methylguanosine cap at the 5’ end. It is cleaved by Drosha and its co-

factor producing pre-miRNA. The pre-miRNA is transported into the cytoplasm from the 

nucleus by the nuclear transport receptor, Exportin-5 and the nuclear protein, Ran-GTP. The 

exported pre-miRNA is further processed, producing a small duplex miRNA molecule, ~22 

nucleotides, by the enzyme Dicer. The duplex miRNA further assembles into a 

ribonucleoprotein complex known as RNA-induced silencing complex (RISC). The RISC 

complex is responsible for the induction of unwinding the double-stranded molecule into a 

single-stranded miRNA thereby degrading the complementary strand. The single-stranded 

miRNA remains in the RISC complex and become functional. This process is shown in 

Figure 1.12 (Barca-Mayo and Lu, 2012). 

 

The ‘seed’ sequence, located at the 5’ end of the mature miRNA is complementary to the 3’ 

untranslated region (3’ UTR) of the target mRNA. The complementarity doesn’t have to be 

perfect, therefore, a single miRNA can regulate multiple mRNA targets and multiple 

miRNAs can regulate one mRNA (Barca-Mayo and Lu, 2012). The level of complementarity 

of the miRNA controls the mode of inhibition. When the complementarity is perfect, the 

mRNA is degraded whereas if the complementarity is imperfect, translational suppression 

occurs (Chauhan et al., 2012). 
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Figure 1.12: Biogenesis of microRNAs. The microRNA gene is transcribed in the nucleus 

by RNA polymerase II to produce pri-miRNA. The pri-miRNA is processed by Drosha and 

its cofactor producing pre –miRNA. The pre-miRNA is transported into the cytoplasm by the 

Exportin 5/Ran-GTP complex where it is further processed by the endoribonuclease Dicer, 

generating a duplex miRNA-miRNA. The miRNA-miRNA duplex assembles into a RNA 

induced silencing complex (RISC). Within the complex, the duplex unwinds and the one 

strand is degraded. The single-stranded miRNA strand which is complementary to the target 

mRNA remains within the complex, RISC. The miRNA-RISC complex binds to the 3’ UTR 

of the target mRNA resulting in mRNA degradation or translation silencing (Calore and 

Fabbri, 2011). 
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1.4.2 Circulating microRNAs 

A Large amount of miRNAs has been identified outside of cells including bodily fluids such 

as urine and blood (Allegra et al., 2012). Many of these miRNAs are quite stable and show 

distinctive expression profiles, therefore, these miRNAs can potentially be an infinite supply 

of a non-invasive biomarkers for OC diagnosis (Allegra et al., 2012). Recently, miRNAs 

have been identified in two types of cell-derived lipid vesicles, microvesicles and exosomes. 

The circulating miRNAs are most commonly found in exosomes. These exosomes don’t only 

contain miRNAs; it also contains proteins, mRNA and enzymes. It is of an endosomal origin 

and it serves as a bioactive shuttle vesicle by mediating cell-cell communication (Cardenas-

Goicoechea et al., 2013). 

 

According to literature, exosomes are secreted by various cells including B cells, T cells, 

mast cells, dendritic cells, macrophages and cancer cells (Allegra et al., 2012). A large bulk 

of these exosomes are secreted by OC cell compared to normal cells. The secretion of 

exosomal miRNAs in non-malignant disorders is also significantly different compared to 

miRNA profiles from OC patients (Goy et al., 2012). This inappropriate release of exosomal 

miRNAs result in a modification, in biological pathways which affect the development of the 

disease (Enomoto et al., 2012). Other than the increased specificity of circulating miRNAs to 

the disease, it is also very stable which is a prerequisite for an effective biomarker. According 

to a study done by Chen and associates in 2008, after treating miRNAs with RNAse A, more 

than half of the microRNAs remained intact after three hours following exposure. These 

circulating miRNAs also remained stable under harsh conditions, including boiling, high or 

low pH and an extended storage period (Allegra et al., 2012). Considering all these 

advantages of circulating miRNAs, they have many characteristics of an ideal biomarker for 
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early diagnosis of OC, most notably related to specificity, sensitivity, non-invasiveness and 

stability (Allegra et al., 2012). 

 

1.4.3 The role of microRNAs in the process of Epithelial-to-Mesenchymal 

Transition (EMT) in Ovarian Cancer 

The Epithelial-to-Mesenchymal Transition (EMT) is defined as a biological process that 

allows the conversion of polarized epithelial cobblestone phenotype to acquire a mesenhymal 

phenotype. The epithelial cells ordinarily interrelate with the basement membrane via its 

basal surface to undergo these biochemical changes. This biochemical change also includes 

enhanced migratory capacity that is required for the metastatic process, increased production 

of extracellular matrix components and elevated resistance to apoptosis (Kalluri and 

Weinberg, 2009). Cancer cells lose epithelial cell-cell junction which associates with a 

decrease in the expression of epithelial proteins and an increase in expression of 

mesenchymal markers during EMT (Ahmad et al., 2010). These changes are related to 

augmented activity of matrix metalloproteinases (MMPs) which leads to an invasive 

phenotype. All of these processes lead to an increased invasion and migration of tumours in 

many cancers such as OC (Ahmad et al., 2010). It has been suggested that multiple miRNA 

families play significant roles in controlling the EMT biochemical change (Creighton, Chang 

and Rosen, 2010). 
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Table 1.2: Epithelial-Mesenchymal-Transition related miRNAs and their target genes 

(Kim, Kim and Wang, 2014). 

MicroRNAs Targets Effect on rumour metastasis 

MiR-20a PTEN Enhances EMT process 

MiR-34  Inhibit EMT process 

MiR-125a ARID3B Inhibit EMT process 

miR-138 SOX4 and HIF-1alpha Inhibit EMT process 

miR-141  Inhibit EMT process 

miR-200b  Inhibit EMT process 

miR-429  Inhibit EMT process 

 

The role of most microRNAs in regulating EMT is still not clear with just a few microRNAs 

being evaluated for their role in cancer, specifically Ovarian Cancer (Guo et al., 2011). The 

microRNAs 125a and 138 are two microRNAs that seem to play a significant role in EMT in 

Ovarian Cancer. MicroRNA-125a is a tumour suppressor that has been shown to inhibit the 

EMT process. Overexpression of this microRNA induces the reversal of EMT in highly 

invasive Ovarian Cancer cells. Other microRNAs that play a role in the transitioning process 

are illustrated in Table 1.2 (Kim, Kim and Wang, 2014). 

 

1.4.4 The specific role of microRNAs in Ovarian Cancer 

Ovarian Cancer is a complex disease with regards to its multiple histological subtypes 

documented. Since 2006, there has been an influx in the number of studies demonstrating the 
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significance of microRNAs in OC. Dysregulation of miRNAs has been document in several 

human disease including OC. MiRNA profiling studies suggest that they associated with 

various aspects of OC including tumor histological type, stage, histological grade, prognosis, 

and therapy resistance. Also, it points to the critical role of miRNAs in OC pathogenesis, 

tumorigenesis and progression (Croce and Di Leva, 2013; Miska, 2005). 

 

The dysregulation of miRNAs in OC was first described in 2007 by Iorio and associates. In 

the study the authors examined the dysregulation of miRNAs in OC compared to normal 

ovaries. They found that mir-141 and miR-200a was upregulated in OC, whereas miR-140, 

miR-125b, miR-145 and miR-199a was downregulated. They also determined that specific 

deregulated miRNAs in OC can be used to differentiate the numerous histological subtypes 

of ovarian carcinoma. For example the miR-200 family is upregulated in mucinous, clear cell 

and endometriod subtypes; miR-203, miR-21 and miR-205 is upregulated in endometriod 

carcinomas. Whereas, miR-145 is downregulated in serous and clear cell carcinomas, whilst 

miR-222 is downregulated in both endometriod and clear cell carcinomas (Croce and Di 

Leva, 2005; Zhang et al., 2008). One of the most influential studies intergrating miRNAs and 

Ovarian Cancer was done by Zhang et al (2008). In the study the authors utilized an array 

comparative genomic hybridization approach to identify deregulation in OC. They found that 

all tumour suppressor miRNA alterations were related to down regulation in late stage 

ovarian tumours. Also, they showed that down regulation of miRNAs are linked to the loss in 

DNA copy number and epigenetic silencing. In the case of upregulated miRNAs the 

chromosomal regions were significantly amplified in multiple cancer samples. Moreover, 

epigenetic alterations resulted in down regulation of 16 out of 44 miRNAs in late stage 

Ovarian Cancer (Chauhan et al., 2012; Li et al., 2010; Zhang et al., 2008).  
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Since then, there have been multiple studies addressing miRNA deregulation in the initiation 

and progression of OC, using microarray profiling or massive parralel pyrosequencing at the 

transcriptional level. These studies have shown up- and down regulation in miRNA patterns 

but down regulated miRNAs were prominent in tumour initiation and progression, especially 

in high grade OC (Chauhan et al., 2012). During the progression of OC, miRNAs facilitate 

tumour growth by promoting infiltration of inflammatory cells and inducing tumour 

angiogenesis or promoting cell adaptation during hypoxia (Chauhan et al., 2012). The most 

common route of OC metastasis is by means of the transcoelomic route. During the 

transcoelomic process, the cancer cells undergo EMT, detach from primary tumour, form 

spheroids and the implant on the peritoneum. The miR-200 plays an important role in this 

process for example miR-200c mediates cell-cell adhesion and intitiate the production of 

other miR-200 abrogates to commence metastasis (Zhang et al., 2008). 

 

1.5 Problem identification 

The development of Ovarian Cancer involves a sequential progression from normal ovarian 

epithelial cell to preneoplasmic ovarian intraepithelial neoplasia and finally invasive Ovarian 

Cancer. A number of biomarkers have been under investigation for diagnosing OC. 

Currently, the gold standard for diagnosis is CA-125. However, it’s non-specific and it’s not 

sensitive enough. It has moved from being a diagnostic biomarker to a prognostic biomarker. 

The FDA approved OVA1 test is now used for diagnosis of OC. Regardless of the increased 

specificity, sensitivity and positive predictive value, its still not performed on its own. It is 

used in addition to, not in place of, other diagnostic tools. Other diagnostic tools including 

diagnostic imaging, are invasive or too expensive. The failure of convential diagnostic 

approaches to detect OC from an early onset has revealed the need for a novel diagnostic tool 
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that will enable the detection of OC at its initial stages therefore ensuring a better prognostic 

outcome. Considering the importance of the issue, the current study was employed to identify 

potential miRNA biomarkers that can aid in early OC diagnosis, with high specificity and 

sensitivity using both an in silico and molecular approach. 

 

1.6 Aims  

The first aim of the research is to characterize the putative miRNA-gene targets identified in 

a previous study using an in silico approach to clearly define their role in cancer, apoptosis 

and cell differentiation; through gene ontology clustering, transcription factor analysis, co-

expression analysis, determining interacting proteins and pathway analysis. 

 

The second aim of the research will be to determine the prognostic significance of the 

putative genes previously identifed through various in silico alogorithms. 

 

The third aim is to validate which of the six miRNAs – shortlisted by the in silico approach – 

to be specific to OC by generating expression profiles across an array of ovarian cell lines, 

non cancer cell lines and other cancer cell lines. This will be done using various molecular 

techniques including cell culture, total RNA extraction, cDNA synthesis and qPCR. 
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Chapter 2 

Characterization of putative microRNA target genes 

2.1 Introduction 

Cancer is a class of diseases characterized by uncontrollable cell division. There are more 

than 200 different types of cancer, classified by the site of origin (Movva, 2015). For the 

purpose of this research we will focus on Ovarian Cancer (OC). OC is the most common 

reproductive and the most lethal gynaecologic cancer in women around the world (Movva, 

2015). OC is the eighth most common form of cancer in women world-wide and in South 

Africa approximately 800 women die annually without diagnosis. OC follows a natural 

course ultimately resulting into a mature tumour. In some women if OC is not detected while 

the cancer is localized it might spread to distant tissue and organs, leading to the death of the 

individual (Movva, 2015).  

 

Presently, OC is diagnosed trough pelvic examination, transvaginal ultrasonography, imaging 

studies and serum protein biomarkers. However, these methods are invasive, lack sensitivity, 

specificity and positive predictive value and some are expensive (Goy et al., 2012). 

Therefore, a less invasive method for early detection is required, with the ability to overcome 

the shortcomings of the current diagnostic tools. Biomarkers which act as biological 

indicators of the disease have emerged as a viable option for the early detection of the disease 

including DNA, RNA, proteins and microRNAs (miRNAs) (Goy et al., 2012; Kartha, 

Subramanian and Sundarbose, 2013). MicroRNA activity has been reported in various 

diseases including cancer; and studies have shown that miRNAs are often deregulated. These 

small non-coding RNAs bind to target sequences in mRNAs, generally resulting in repressed 
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gene expression. The involvement of miRNAs in key cellular processes such as cell death 

and their negative control over the expression of numerous oncoproteins make them prime 

candidates as cancer biomarkers (George and Mittal, 2010). Reports have described a one-to-

one, one-to-multiple or multiple-to-multiple association between the miRNAs and its target 

genes in most human cancers (Hashimoto et al., 2013). Characterizing these target genes 

functionally includes; finding biological processes, pathways, intersection modules or 

causative network signatures within the onset and progression of a disease and will add 

function to the miRNAs that could potentially be a candidate biomarker (Hashimoto et al., 

2013; Missiaglia et al., 2017). 

 

2.1.1 Functional genomics 

Functional genomics is a field of molecular biology, typically described as the study of genes, 

their resulting proteins, and the role played by these proteins within the bodies’ biochemical 

processes. It integrates a vast wealth of data produced by various molecular methodologies 

such as genomic and transcriptomic techniques to describe genes/proteins (illustrated in 

Figure 2.1). The vast amount of data is compiled in databases to ease the increase in genomic, 

proteomic and transcriptomic data (Cui et al., 2016). Functional genomics enable the 

understanding of complex relationships between genotype and phenotype on a genome-wide 

scale. A range of processes such as transcription, translation and epigenetic regulation is 

investigated in an attempt to answer biological questions including (i) when and where genes 

are expressed? (ii) how do gene expression levels differ in various cell types and states? (iii) 

what are the functional roles of different genes and in what cellular processes do they 

participate? (iv) how genes are regulated and where the active gene promoters are in a 

particular cell type? (v) how do genes/proteins interact with one another? and (vi) how does 
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gene expression change in various diseases or following a treatment? (Boehm and Hahn, 

2011; Hu et al., 2014).  

 

Functional genomics experiments typically utilize large-scale, high-throughput assays to 

measure and track many genes and proteins in parallel under different experimental or 

environmental conditions such as microarray technology (Cui et al., 2016). This ‘genome-

wide’ approach allows the function of different parts of the genome to be discovered by 

combining information from genes, transcripts and proteins (Cui et al., 2016). Various 

bioinformatics’ visualisation techniques are vital to infer genes/proteins function(s). 

Functional characterization using bioinformatics enables investigators to simultaneously 

examine changes in expression, regulation and biological conditions. Functional analysis 

enables a ‘large’ interesting gene list to be further analysed with the aim of achieving a 

‘smaller’ priority gene list; and research of gene functions whereby the miRNAs that target 

the genes can be indirectly linked to the specific classifications identified (Cui et al., 2016; 

Masters, McAteer and Merlin, 2002). 

 

 

Figure 2.1: The integration of various molecular techniques of how DNA sequence is 

translated into complex information in a cell ( Masters, McAteer and Merlin, 2002). 
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2.1.2 Previous study 

Previously, an in silico approach was employed to identify a list of miRNAs potentially 

implicated in Ovarian Cancer using the mir2disease database (Lottering, 2015). The targets of 

the miRNAs were identified using databases such as TargetScan Human and miRDB. 

Furthermore, cell surface microRNA target genes were implicated in the initiation and 

progression of Ovarian Cancer through various biological databases such as TargetScan 

Human and MiRDB. TargetScan Human (http://www.targetscan.ord/) searches for the 

presence of conserved 7mer and 8mer sites that match the seed region of each miRNA 

thereby predicting biological targets of miRNAs whilst miRDB (http://www.mirdb.org/cgi-

bin/search.cgi) searches for conserved and non conserved gene targets, based on the 3’-UTR, 

by treating target site conservation as an important but not-required sequence feature. Further 

in silico analysis was done including functional annotation, intense literature mining, tissue 

expression analysis, co-expression analysis and pathway analysis; to identify six miRNAs  

and seven miRNA target genes not inferred or proven as Ovarian Cancer biomarkers (Table 

2.1) at the time of the study as potential biomarkers for the sensitive, accurate and early 

detection of OC as well as to manage the disease outcomes following treatment(s) (Lottering, 

2015). The sequence or ID’s of the miRNA’s won’t be disclosed in the thesis to protect the 

Intellectual Property (IP) generated through the research as well as future patent applications.  
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Table 2.1:  MicroRNAs and their gene specific targets. 

MicroRNAs Gene targets Gene description 

MIR1, MIR2 CILP Cartilage Intermediate Layer Protein 

MIR3 CRTAP Cartilage Associated Protein 

MIR3 P2RX1 Purinergic Receptor P2X1 

MIR4 NPR3 Natriuretic Peptide Receptor 3 

MIR3, MIR6 FARP1 FERM, ARH/RhoGEF And Pleckstrin Domain Protein 

1 

MIR3 STAB2 Stabilin 2 

MIR5 NDEL1 NudE Neurodevelopment Protein 1 Like 1 

 

 

2.1.3 Aim 

The aim of the chapter is to functionally annotate the seven identified miRNA target genes 

for their involvement in the onset and progression of OC using several in silico approaches. 

The genes implicated in OC will be related back to the miRNAs that regulate those genes 

subsequently implicating the related miRNAs in OC management.   
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2.1.4 Objectives 

 Gene Ontology (GO) clustering of the target genes to identify molecular and 

biological processes the genes are involved in 

 Protein-protein interaction analysis of the candidate genes to identify association(s) 

with known cancer causing genes and specifically genes already implicated in OC 

 Transcription factor binding analysis of candidate genes to identify the underlying 

regulatory networks controlling transcription of these genes 

 Gene pathway analysis of the candidate genes to place the genes in very specific 

cancer causing pathways and more specific OC related pathways 
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2.2 Methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: The flow chart representing the in silico methodologies employed to 

functionally characterize the miRNA target genes during this study/chapter. 

Protein-protein interaction analysis 

using STRING and GeneMANIA 

Transcription factor binding site 

analysis using GeneCards and 

TfactS® 

Pathway analysis using Reactome 

Functional analysis using Gene 

Ontology Consortium  

 

MiRNA target gene list 
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2.2.1 Gene Ontology (GO) clustering 

Gene Ontology Consortium is a publically available database, available at 

http://www.geneontology.org/.  It is a collaborative effort to address two aspects of 

information integration including (i) providing consistent descriptors for gene products in 

different databases and (ii) standardizing classifications for sequences and sequence features 

in different databases (Coulibaly and Page, 2008).  Gene Ontology Consortium describes 

gene products in terms of their associated Biological Processes (BPs), Cellular Components 

(CCs) and Molecular Functions (MFs) in a species-independent manner. BPs is a series of 

events accomplished by one or more assemblies of MFs. CCs include the classification of 

genes in sub-cellular structures and locations. MFs describe activities that occur at a 

molecular level such as catalytic or binding activities (Coulibaly and Page, 2008). For the 

purpose of this research, the MFs and the BPs were the focus. The Gene Ids for the seven 

target genes were used as an input on the homepage of the database 

(http://www.geneontology.org/). ‘Homo sapiens’ was selected as the species of interest and 

the query was submitted. The BPs and MFs identified were retrieved for further analysis in a 

Word document. 

  

2.2.2 Protein-protein interaction analysis using STRING and GeneMANIA 

Gene IDs for the seven genes, targeted by six miRNAs inferred to be implicated in Ovarian 

Cancer were used as an input for the generation of a gene network using the Search Tool for 

the Interacting Gene/Proteins (STRING) database (Bork et al., 2005) and GeneMANIA 

(Mostafavi et al., 2008). 
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2.2.2.1 STRING database 

STRING is an online database available at http://string-db.org/ which provides a 

comprehensive collection of protein-protein interactions for more than 2000 organisms 

including Homo sapiens, Saccharomyces cerevisiae and Escherichia coli K12 MG1655. 

These interactions are important for the understanding of Molecular Functions and Biological 

Processes. The associations between proteins are derived from high throughput experimental 

data, from the mining of databases and literature; and from predictions based on genomic 

context analysis (Bork et al., 2005). The bioinformatics tool was used to generate a network 

of protein-protein interactions between the genes of interest and important proteins 

implicated in the onset and progression of OC that were grouped according to their Biological 

Processes, Molecular Functions and Cellular Components (Bork et al., 2005).  

 

The 7 target genes/proteins identified were used to produce expression networks. The url 

http://string-db.org/ was launched using the Google search engine. On the homepage, 

‘multiple proteins’ was selected and the 7 prioritised target genes IDs were uploaded. Once 

the genes were uploaded multiple species were identified and ‘Homo sapiens’ were selected 

from which a biological expression network were generated for the seven target genes. To 

produce the expression networks the parameters were set as follows: (i) a confidence interval 

of 0.9 and (ii) a limit of 20 interactions shown. The biological expression network generated 

was exported and saved in a Word document for further analysis. 
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2.2.2.2 GeneMANIA 

GeneMANIA available at http://pages.genemania.org/ uses a heuristic algorithm derived 

from ridge regression to predict the function of a set of input genes. It functions by finding 

directly interrelated/interacting genes and uses functional association from multiple genomics 

and proteomics network data to link genes/proteins of interest in real-time (Mostafavi et al., 

2008). Two genes are linked if their expression levels are similar across a specific condition 

in a gene expression study. The data is collected from publications within Gene Expression 

Omnibus (Mostafavi et al., 2008). The url http://pages.genemania.org/ was launched on the 

Google homepage. The 7 target gene ID’s were uploaded collectively and ‘Homo sapiens’ 

were selected as the species of interest. The expression network generated was exported into 

a Word document and saved for further analysis. 

 

2.2.3 Transcription factor binding site analysis 

Two publically available databases were used to determine the Relevant Transcription 

Factors (TFs) for each gene namely GeneCards available at http://www.genecards.org/ and 

TfactS® available at http://www.tfacts.org/. These TFs were validated for their association 

with OC through published literature following their identification.  

 

2.2.3.1 GeneCards 

GeneCards is a publically available database that describes the query genes in terms of 

proteomics, genetics, transcriptomics, disease and functional information providing a 

summary of a specific gene. The information is integrated from various data sources in this 
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database to provide a coherent picture regarding underlying regulatory networks of a subset 

of genes thus inferring functions to the subset of genes under investigation (Dalah, Stein and 

Stelzer, 2011). In the Google search engine, http://www.genecards.org/ was launched. Each 

of the 7 genes previously identified were individually uploaded using the gene name under 

‘search term’ and ‘genomics’ was selected as the analysis type. Transcription factor binding 

sites were selected and the relevant transcription factors were saved as a Word document for 

further analysis. 

 

2.2.3.2 TfactS® 

TfactS® predicts the regulation, inhibition or activation of the TFs in a biological system 

based on a list of genes that are up-regulated and down-regulated in microarray experiments 

(Essaghir et al., 2010). In the TfactS® database, each miRNA target gene was uploaded as 

TF query using the gene name. The default settings of the software were used. The list 

containing the regulated TFs was extracted for further analysis. The relevant transcription 

factors that overlapped in the two databases were subjected to literature mining to determine 

its regulatory importance in OC for their associated genes.  

 

2.2.4 Pathway analysis using Reactome 

Reactome pathway database available at http://www.reactome.org/ is an open-source, curated 

and peer reviewed biological pathway database. There are various reactomes that focus on 

different organisms of which the largest is focused on human biology. Pathway annotations 

are authored by expert biologists, in collaboration with Reactome editorial staff and cross-

referenced to many bioinformatics databases. These include NCBI Gene, Ensembl and 
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UniProt databases, the UCSC Genome Browser, the KEGG Compound and ChEBI small 

molecule databases, PubMed, and Gene Ontology (Croft et al., 2011). Reactome provides an 

intuitive website to navigate pathway knowledge and a suite of data analysis tools to support 

the pathway-based analysis of complex experimental and computational data sets. 

Visualisation of Reactome data is facilitated by the Pathway Browser, a Systems Biology 

Graphical Notation (SBGN)-based interface. It exploits the PSIQUIC web services to overlay 

molecular interaction data from the Reactome Functional Interaction Network and external 

interaction databases such as IntAct, ChEMBL, BioGRID and iRefIndex (Croft et al., 2011). 

The rationale behind the Reactome database is to convey the rich information in a visual 

representation of biological pathways in a detailed, computationally accessible format (Croft 

et al., 2011).  

 

On the homepage (http://www.reactome.org/), ‘Browse pathway’ was selected. The 7 target 

gene ID’s were uploaded under search and ‘Homo sapiens’ were selected. The networks 

generated were exported to a Word document for further analysis. Furthermore, the pathways 

identified were subjected to literature mining to determine the relevant pathways involved in 

the initiation and progression of cancer including OC. 
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2.3 Results 

2.3.1 Gene Ontology (GO) clustering using Gene Ontology Consortium  

The genes of interest previously identified were used to determine Molecular Functions and 

Biological Processes that the genes play a role in. The seven target genes were associated 

with Biological Processes such as ‘negative regulation of insulin like growth factor receptor 

signalling pathway’ and ‘negative regulation of post translational protein modification’ 

depicted in Figure 2.3. Furthermore, the target genes were associated with Molecular 

Functions including ‘hormone binding’, ‘protein binding’ and ‘cation binding’ illustrated in 

Figure 2.3. These terms have been linked to cancer specifically Ovarian Cancer (Smith, 

Steffen and Williams, 2003; Bach, Fu and Yang, 2013; Harris and Terry, 2016). 
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Figure 2.3: Graphical representations of Gene Ontology (GO) clustering of the seven 

candidate miRNA targeted genes based on their Biological Processes (BPs) and 

Molecular Functions (MFs). The bars represent the genes associated with specific MF and 

BP terms. 
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2.3.2 Co-expression analysis using STRING and GeneMANIA 

2.3.2.1 STRING  

According to STRING, NDEL1 is present in the main expression network illustrated in 

Figure 2.4. There are 1 out of the 7 candidate miRNA target genes that are not in the main 

network but the genes are connected to smaller networks shown in Figure 2.4.  Two of the 

target genes (P2RX1 and FARP1) in the left-hand corner of Figure 2.4 are not present in any 

of the networks generated by the database (Box B). Networks were generated based on the 

evidence indicated by the interacting coloured lines decoded by the figure legend in the right-

hand corner. 

 

2.3.2.2 GeneMANIA 

The 7 candidate genes identified in a previous study were used to produce expression 

networks shown in Figure 2.5. In Figure 2.5, 5 out of the 7 genes are co-expressed in one of 

the expression networks and 2 out of the 7 genes are depicted in the second network (right). 

Based on the networks presented, there is a strong probability that the candidate genes are co-

expressing in the same biological/disease processes.  
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Figure 2.4: The seven candidate genes and their interacting genes produced by (STRING, 2017). STRING analysis shows the interactions 

of the seven miRNA target genes clustered together using MCL clustering. The nodes represent the genes and the lines joining them represent 

the evidence available for the connection between the genes as decoded in the legend in the right-hand corner. Box A shows the two target genes 

not present in the expression network and the 5 out of the 7 target genes were associated with various cancer-related proteins (shown in red 

ovals). 
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Figure 2.5: Co-expression analysis displaying the expression network of the putative genes and other genes linked to the network 

(generated by GeneMANIA, 2017). The network includes the predicted miRNA target genes (highlighted in black) and co-expressed genes 

(shown in grey).  
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2.3.3 Transcription factor analysis 

The seven target genes were used to determine the transcription factors that are linked to their 

promoter regions, to confirm that the putative genes have a connection to cancer through their 

underlying regulatory networks and how the function (s) of these transcription factors relates 

to cancer, specifically Ovarian Cancer. All possible transcription factors regulating the 

candidate target genes were extracted from GeneCards and TfactS® illustrated in Table 2.2.  
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Table 2.2: Transcription Factors associated with the seven putative Ovarian Cancer 

genes produced by GeneCards and TfactS® 

Gene Regulatory Transcription Factor 

CILP PPAR-gamma1, PPAR-gamma2, c-Myc, ER-alpha, AhR 

CRTAP ER-alpha, Elk-1, MEF-2, MEF-2A, AhR 

P2RX1 P53, PPAR-gamma1, PPAR-gamma2, TBP, NF-kappaB, NF-kappaB1, c-Myc, 

ER-alpha, MEF-2, MEF-2A, deltaCREB 

NPR3 P53, TBP, NF-kappaB, NF-kappaB1, c-Myc ER-alpha, MEF-2, MEF-2A, AhR, 

FOXD1, FOXI1, FOXJ2, FOXO1a, FOXO3, FOXO3a, FOXO3b, FOXO4 

FARP1 STAT5, c-Fos, c-Jun, c-Myc, Elk-1, deltaCREB, FOXJ2 

STAB2 NF-kappaB, NF-kappaB1, c-Fos, c-Jun, deltaCREB, FOXD1, FOXF2, FOXI1, 

FOXJ2, FOXO1a 

NDEL1 P53, PPAR-gamma1, PPAR-gamma2, STAT5, c-Fos, c-Jun, c-Myc, deltaCREB, 

FOXD1, FOXF2, FOXJ2, FOXO1a, FOXO3, FOXO3a, FOXO3b, FOXO4 
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2.3.4 Pathway analysis 

Pathway analysis were done using the Reactome database, an in silico pathway analysis tool. 

In total 19 pathways were identified that were associated with the seven target genes shown 

in Table 2.3. Significant pathways associated with these candidate target genes and Ovarian 

Cancer include RHO GTPase effectors, mitotic pathway and Hyaluronan uptake and 

degradation pathway. This is further evidence linking the target genes and indirectly linking 

the miRNAs to cancer, specifically OC. 
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Figure 2.6: Pathways identified associated with the miRNA target genes. The enrichment terms are the columns, the input genes are the rows 

and the cells (green) in the matrix indicate if a gene is associated with an enrichment term.  
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2.4 Discussion 

Ovarian Cancer remains one of the most common malignant gynaecologic cancers. The 

lethality and mortality of the disease is attributed to the fact that more than 85 % of patients 

are diagnosed in advanced stages (Chen et al., 2013). Many proteins, genes and molecular 

processes are involved in cancer. These different factors work in conjunction with one 

another to perform various Biological Processes and Molecular Functions. Modification of 

these factors could lead to the development of a particular cancer phenotype including OC. 

The introduction of bioinformatics in the biomarker discovery process will aid in 

understanding diseases such as cancer in the preliminary stages of development as well as 

advanced stages; and fast-track the discovery process (Angel et al., 2013)  

 

2.4.1 Gene Ontology 

In silico methods were employed to functionally characterize the miRNA target genes 

previously identified through functional genomics (Lottering, 2015). The ontologies explored 

consist of Molecular Functions, Biological Processes and Cellular Components. Gene 

Ontology represents important attributes of genes/proteins across all functionalities. 

Additionally, the data generated further promotes the understanding of a gene in a disease, 

based on their associated ontologies. This analysis might assist in the identification of novel 

diagnostic, prognostic and therapeutic considerations for cancer care (Huntley et al., 2014; 

Ande et al., 2007). Figure 2.3 shows the target genes clustered into various functional groups 

using the Gene Ontology Consortium database, as described in Section 2.2.1. Functional 

annotation using GO terms including Biological Processes and Molecular Functions showed 

that the gene targets of the miRNAs selected were implicated in processes associated with 

cancer. The target genes were found to be associated with protein binding, hormone binding, 
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post-translational modification and cation activity shown in Figure 2.3. The transition from a 

normal cell to a tumour cell requires the deregulation of internal and external factors 

promoting cell survival, proliferation and tumorigenesis (Ande et al., 2007; Smith, Steffen 

and Williams, 2003). An example of external factors includes ionized radiation. It causes 

gene mutations or chromosome aberration and it triggers steps involved in multistage 

carcinogenesis. An epidemiological survey of carcinogenesis for the atomic bomb victims of 

Hiroshima showed an increased incidence of leukemia and lung cancer within the population. 

The incidence of lung cancer is still high in Hiroshima and Nagasaki (Goodman et a., 1994; 

Listwa, 2012). Another example is hepatitis B virus that results in chronic hepatitis and 

hepatic cirrhosis. It has been epidemiologically proven to be related to the occurrence of liver 

cancer. The hepatitis B virus is a DNA virus known to incorporate its DNA into hepatocyte 

genomes (Saeki and Sugimachi, 2001).  

 

In Figure 2.3 it shows that NPR3 was associated with hormone binding. Hormone binding 

imbalances are an important risk factor for Ovarian Cancer initiation. Multiple hormonal 

conditions such as polycystic ovary syndrome and endometriosis associated with OC is 

directly correlated to hormonal imbalances (Daniilidis and Dinas, 2009; Harris and Terry, 

2016). The disease is generally considered as a hormone-dependent cancer as the main 

function of the ovaries is the production of reproductive hormones namely oestrogen and 

progesterone. There are several hormonal hypothesis including the progesterone, oestrogen 

and insulin-like growth factor theories (Huang and Jan, 2014; Kaaks and Lukanova, 2005). 

Figure 2.3 shows that CILP is involved in the negative regulation of insulin-like growth 

factor. This growth factor emerges as a hormone directly involved in the pathogenesis of 

Ovarian Cancer (Huang and Jan, 2014). Studies suggest it has mitogenic and anti-apoptotic 

properties. Deregulation of the insulin-like growth factor binding proteins has been directly 
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related to various cancers including cancer of the breast and ovary (Lukanova, 2005; Bach 

and Yang, 2013; Huang and Jan, 2014). Furthermore, over expression of insulin-like growth 

factor can induce malignant transformation of ovarian epithelial cells (Lukanova et al., 2002; 

Li et al., 2017). These hormones play a central role in regulating cell proliferation, 

differentiation and apoptosis thus deregulation of insulin-like growth factor binding protein 

may allow mutated proto-oncogenes and tumour suppressor genes to survive (Kaaks and 

Lukanova, 2005; Ho, 2003; Bach, Fu and Yang, 2013). 

 

Furthermore, Figure 2.3 indicates that NPR3, P2RX1 and STAB2 is associated with the 

Molecular Function, cation binding. This finding is significant as many diseases including 

cancer are associated with cation binding. Cations play a major role in many cellular 

processes thus the deregulation of cations feature in a variety of diseases including important 

processes in cancer such as proliferation and migration (Davis, Monteith and Roberts-

Thomas, 2012).  

 

2.4.2 Protein-protein network generation 

Studies on protein interactions have become exceedingly important in an effort to understand 

human diseases on a system-wide level (Moore and Pattin, 2009). Protein-protein interactions 

are very important in understanding the functions of proteins and their behaviour, 

understanding biological processes that provides insight into the function of the proteins, we 

may assume ‘guilt by association’ for example proteins with unknown function may associate 

with a protein of known function therefore these proteins should cluster together in network 

maps; and proteins of unknown function (s) can be characterized based on these network 
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interactions produced. Additionally, it has been shown that proteins within an expression 

network regulate and support each other (Arga and Sevimoglu, 2014; De Las Rivas and 

Fontanillo, 2009). Two search tools were used to determine the interacting genes/proteins of 

our seven putative target genes.   

 

2.4.2.1 STRING 

STRING analysis illustrated in Figure 2.4 showed that  2 target genes (FARP1, P2RX1) are 

not in the expression network generated (Figure 2.4) based on the criteria used in STRING to 

establish the interacting network. The database might not contain enough information 

regarding the link between these proteins at the time of analysis. It has been reported that a 

set of genes for a particular disease including cancer may not directly interact with one 

another, thus they may not be placed within the same expression network or their 

intermediary protein may not yet been identified (Barabasi et al., 2011; Barabasi and Oltvai, 

2004). The target genes (CILP, NDEL1, NPR3, STAB2, CRTAP) that showed strong 

association with one another in the expression network (Figure 2.4) were associated with cell 

proliferation, mitotic cell cycle, the apoptotic pathway and cyclin-dependent protein 

serine/threonine kinase activity (Barabasi et al., 2011).  

 

One of the target genes, CILP, is associated with BMP-2 and FURIN (Figure 2.4). NPR3 is 

also associated with FURIN. Both proteins have been linked to multiple cancers including 

Ovarian Cancer. A study done by Le Page and associates (2009) observed up-regulation of 

BMP-2 in Ovarian Cancer cell lines compared to normal cell lines (Le Page et al., 2009). 

They went further to investigate the effect of the over-expression on the tumorigenesis on the 
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disease by treating OC cell lines with BMP-2 and assaying it to test for cell signalling events, 

cell migration and cell adhesion. They found that BMP-2 induced mitogenic signalling 

through the activation of extracellular signal-regulated kinase-mitogen-activated protein 

kinase (Erk-MAPKs). Additionally, BMP-2 also induced the SMAD signalling pathway (Le 

Page et al., 2009). Ovarian Cancer is often referred to as a signalling pathway disease 

because diverse signalling pathways are triggered during the initiation and progression 

process, depending on the histological subtype of the disease. Furthermore, BMP-2 increases 

motility and cell proliferation (Le Page et al., 2009; Smolle et al., 2013). Studies indicate that 

increased expression of BMP-2 as well as FURIN results in a poor prognostic outcome of 

Ovarian Cancer patients (Page et al., 2007; Le Page et al., 2009; Ma et al., 2010; Jaaks and 

Bernasconi, 2017). 

 

NDEL1 showed associations with CDK5 and with CDK1; and an indirect association with 

CDK6. The association suggests that NDEL1 could potentially be key regulators of the cell 

cycle and regulate tumour growth because CDK5, CDK1 and CDK6 are important protein 

kinases involved in the cell cycle (Figure 2.4) (Cho et al., 2016; Xi et al., 2015). One target 

gene (CRTAP) is not part of the main expression network but it is associated with LEPRE1 

(also referred to as P3H1). LEPRE1 has not been experimentally linked to Ovarian Cancer 

but it has been associated with other cancers including breast cancer (Shah et al., 2009). The 

result (Figure 2.4) also suggests that some of the miRNA target genes (P2RX1, FARP1) may 

not directly modulate cancer-related pathways and processes because these proteins are 

absent in expression network generated by the STRING database. The proteins (FARP1 and 

P2RX1) may interact with intermediary proteins in cancer thus catalyzing reactions in 

metabolic pathways, regulate important MFs and BPs on a transcriptional level or contribute 
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through structural assemblies without any direct interactions to the disease (Kulikowski, 

2012).  

 

2.4.2.2 GeneMANIA 

According to Figure 2.5, all of the putative target genes are present in the two main 

expression networks produced by GeneMANIA. Therefore, it can be deduced that there is a 

strong probability that the candidate genes co-function in the same biological and molecular 

networks. Additionally, CRTAP associates with NDEL1 and FARP1; and NPR3 and CILP 

are linked. This contrasts with the expression network provided by the STRING database 

which showed that CILP and P2RX1 had no association with the other miRNA target genes. 

Also, the proteins weren’t directly linked to one another (Figure 2.5). As mentioned above, 

the STRING database might not contain sufficient information regarding the association 

between these proteins (Barabasi et al., 2011; Barabasi and Oltvai, 2004). The two databases 

also used different algorithms to predict the protein-protein interactions to generate a 

biological/expression network. STRING database uses experimental data, computational 

prediction methods and public text collections whereas GeneMANIA uses data from Gene 

Epression Omnibus, BioBRID, Pathway Commons, I2D as well as organism-specific 

functional genomics data sets (Bork et al., 2005; Mostafavi et al., 2008; Warde-Farley et al., 

2010). 

 

According to Figure 2.5, P2XR1 is directly linked to TSHR. The expression of TSHR in 

cancer correlates with the state of differentiation of tumours, with loss of differentiation 

resulting in the loss of mRNA expression. In 2014, Gyftaki and associates showed that TSHR 
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is abundantly expressed in several other tissues apart from the thyroid (Gyftaki et al., 2014). 

Additionally they studied the alterations of TSHR expression in OC on a protein level, where 

they found that the TSHR protein expression was significantly increased compared to normal 

ovarian tissues. Epidemiological studies have proposed that patients with over expressed 

TSHR have an 80 % increased risk of OC, thus implying that the deregulation of TSHR is a 

contributing factor to ovarian tumorigenesis (Huang et al., 2016). A study done by Huang 

and associates (2016) demonstrated that the deregulation of TSHR in OC is involved in 

multiple signalling pathways important in the onset and progression of the disease. The study 

further showed that TSHR interacts with G alpha proteins, which in turn activates adenylate 

cyclase, activating the cAMP-dependent pathway. This crosstalk then induces activation of 

the epidermal growth factor receptor (EGFR), extracellular signal-regulated kinases (ERKs) 

and Protein kinase B (AKT) pathways which results in an increase in phosphorylation of the 

G alpha proteins. Additionally they showed that deregulation of TSHR is also linked to the 

activation of the phosphatidylinositol 3-kinase/Protein kinase B (PI3K-AKT) 

cascade/signalling pathway, which is known to coordinate a complex signalling network 

involved in cell proliferation in various cancer types (Huang et al., 2016; Goel et al., 2011). 

TSHR has also been reported to be involved in other proliferative pathways including Wnt 

and MAPK pathways (Goel et al., 2011; Garcia-Jimenez and Santisteban, 2007).  

 

Other candidate genes have also been linked to the initiation and progression of cancer 

including Ovarian Cancer such as TP53INP1, FOXH1 and ABCC4. It’s suggested that genes 

that show similar expression patterns, generally are controlled by the same regulatory 

systems (Heyer et al., 1999; Goel et al., 2011).  
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2.4.3 Transcription factor analysis 

Transcription factors are proteins that control the expression of genes by binding to specific 

DNA sequences within promoters and thereby control the transcription of the genes via up- or 

down-regulation of RNA polymerase or other regulatory proteins (Sirotkin, 2014). 

Understanding the transcription factors that directly and/or indirectly interact with a 

particular gene/protein one can confirm if the putative genes are connected to cancer through 

their regulatory network. It would also provide insight into cellular mechanisms and 

functions of these putative genes. Bajic et al., (2010) hypothesized that transcription factors, 

especially those mediating the expression of disease causing genes, could be a key factor in 

understanding the genesis of the particular disease (Bajic et al., 2010). Transcription factor 

analyses were performed using the Qiagen regulatory elements and epigenetic data from the 

GeneCards database and TfactS®. The relevant transcription factors identified were validated 

for their association with cancer especially OC through published literature as described in 

Section 2.2.3. A total of 89 transcription factors were identified for the seven candidate genes 

of which multiple transcription factors were implicated in OC.  

 

The relevant transcription factors identified, Table 2.2, have been reported in the initiation 

and progression of cancer; and cell growth and differentiation of Ovarian Cancer. One of 

these genes includes p53, a tumour suppressor that has been found to play a critical role in 

multiple cancers. Deregulation of this TF is one of the most frequent genetic lesions in human 

tumours as p53 plays a role in regulating cell cycle progression, DNA repair and cell death 

(Berchuck, 1994; Daemen et al., 2005). This transcription factor shows association with two 

of the putative target genes namely NPR3 and NDEL.  
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Table 2.2 showed three of the seven genes (NPR3, STAB2 and NDEL1) to be associated with 

transcription factors of forkhead transcription factor (FOX) family. The superfamily controls 

a wide range of Biological Processes thus their loss of function can alter cell fate and promote 

tumorigenesis as well as cancer progression. The FOX family is evolutionary conserved and; 

play a critical role in the development and progression of cancer including Ovarian Cancer 

(Myatt and Lam, 2007). FOXO is a family member of the FOX family. It has been found to 

be involved in tumour suppression (Auguste, Cheaib and Leary, 2015). FOXO’s are regulated 

in response to the activation of the PI3K/AKT signalling pathway. PI3K/AKT signalling 

pathway is deregulated in more than 70 % of ovarian cancers. Additionally, the pathway 

contributes to the development and tumouringensis of the disease (Auguste, Cheaib and 

Leary, 2015; Pavlidou and Vlahos, 2014).  

 

The transcription factor c-Jun (associated with FARP1, STAB2, NDEL1) play an important 

role in the regulation of cell proliferation and progression, carcinogenesis, apoptosis and 

angiogenesis. The TF play an important role in the carcinogenesis and progression of several 

tumour types. According to Eckhoff et al., (2013) c-Jun influence carcinogenesis and tumour 

progression of human ovarian carcinoma thus it plays a significant role in OC prognosis 

(Eckhoff et al., 2013). The transcription factor, c-Myc was linked to CILP, P2RX1, NPR3, 

FARP1, NDEL1 (Table 2.2). It is a multifunctional nuclear phosphoprotein that plays a role 

in cell cycle progression, cell differentiation, apoptosis and cellular transformation. It is often 

over expressed in cancer as a result stimulating gene expression. The over-expression of c-

myc are found in 37.3 % of all ovarian tumour tissues and in 63.5 % of serous 

adenocarcinoma tissues. However, c-myc over-expression is commonly found in advanced 

stage OC (Baker et al., 1990; Reyes-Gonzalez et al., 2015). 
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Table 2.2 shows c-Fos (a transcription factor associated with NDEL1, STAB2) which is a 

proto-oncogene and plays an important role in many cellular functions. It has been shown to 

be over-expressed in various cancers including Ovarian Cancer (Hein et al., 2009). It plays a 

role in cell proliferation and differentiation of normal tissue as well as malignant 

transformation and tumour progression (Hein et al., 2009). A study done by Mahner et al., 

(2008) investigated the function of the c-Fos transcription factor in OC. It was determined 

that the loss of function of the TF is associated with tumour progression in ovarian carcinoma 

thus it plays a critical role in the prognosis of OC by changing the adhesion of ovarian 

tumour cells (Mahner et al., 2008; Oliveira-Ferrer et al., 2014).  

 

Other transcription factors associated with the target genes include AhR, PPAR-gamma1, 

deltaCREB and STAT5; all of which play a role in the initiation and progression of various 

cancer types including Ovarian Cancer (Hein et al., 2009). Multiple transcription factors 

identified associate with more than one target gene. These shared transcription factors were 

annotated to regulate two of the candidate genes, both of which were not in the expression 

network in Figure 2.4 generated by STRING database. The association of these various 

transcription factors to the putative miRNA target genes further implicates the identified 

miRNAs and the target genes in cancer-related processes. 

 

2.4.4 Pathway analysis 

Determining the pathways biological molecules are involved in, enables characterization of 

the candidate target genes at a molecular level. Pathway analysis has become a powerful tool 

for understanding the biology of differentially expressed genes and proteins (Khatri et al., 
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2012). Pathway analysis performed using Reactome as described in Section 2.2.4 and 

presented in Figure 2.6 represents the target genes with their associated pathways. From the 

pathway analysis result in Figure 2.6, some of the seven target genes showed no 

direct/specific link to Ovarian Cancer pathways. However, some of the genes are involved in 

RHO GTPase, immune responses, metabolism of carbohydrates and hyaluronan and 

extracellular matrix organization. These pathways have been linked to cancer specifically 

Ovarian Cancer. One of the target genes namely NPR3 were not associated with any 

pathways in the Reactome database. The database may not contain sufficient information 

regarding the pathways associated with these target genes (Khatri et al., 2012). 

 

From Figure 2.6, NDEL1 was specified to be involved in cell cycle related pathways namely 

mitotic prometaphase, mitotic anaphase, M Phase and resolution of sister chromatid cohesion. 

Cancer is frequently referred to as a disease of the cell cycle. Alteration of the regulatory 

mechanisms of the cell cycle including cyclins, CDKs and CDK inhibitors; resulting in 

uncontrolled cell proliferation which is a significant characteristic of human cancers 

(Bocicelli, D’Andrilli and Giordano, 2008; Kim and Nam, 2008). Most of the cell cycle 

regulatory genes play a role in Ovarian Cancer tumorigenesis and/or development. Thus 

deregulation of these pathways should enhance tumour growth, hence the probable role of the 

target gene NDEL in the onset/progression of Ovarian Cancer (D’Andrilli et al., 2004; 

Bocicelli, D’Andrilli and Giordano, 2008).  

 

The metabolic processes in cancer cells differ from those in normal cells. Activated 

oncogenes and loss of tumour suppressors’, result in altered metabolism and an induction of 

aerobic glycolysis (Dang, 2012). There are metabolic adaptations observable including an 
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increased expression of all enzymes associated with cell division and DNA synthesis and an 

inability to transcribe genes coding for apoptotic proteins. More resources are used such as 

nitrogen and glucose; triggering angiogenesis and often stimulating a local anaerobic 

environment. More energy is consumed and normal cellular functions such as the urea cycle 

are not executed. Basically all of the normal cells metabolic processes are hijacked for cell 

division and the evasion of cell death (Dang, 2012). 

 

According to Figure 2.6, STAB2 is involved in metabolic pathways including 

glycosaminoglycan metabolism and metabolism of carbohydrates. Glycoaminoglycans play 

an important role in the physiological and pathological conditions of cancer. They are key 

macromolecules that affect cell properties and functions, acting directly on cell receptors via 

interactions with growth factors (Annibaldi and Widmann, 2010). Therefore these 

macromolecules play an important role in cancer progression and treatment. Glucose is a 

major energy source thus abnormalities of carbohydrate metabolism may be important in the 

development and progression of cancer. The Warburg effect is the best studied metabolic 

process observed in cancer cells. In tumour cells, rather than utilizing glucose in the oxidative 

phosphorylation pathway, glucose is used for aerobic glycolysis thus conferring a selective 

growth advantage to the tumour cells (Annibaldi and Widmann, 2010; Holroyde and 

Reichard, 1981; Gevers and Levin, 1981). This suggests that STAB2 potentially play a role in 

sustaining cancer cells (Kizuka and Taniquchi, 2015; Afratis et al., 2011).  

 

The target gene, CRTAP, is involved in extracellular matrix organization shown in Figure 

2.6. The local microenvironment of a cancer cell plays a significant role in its development. 

A major component of the tumour environment includes the extracellular matrix. 
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Reorganization of the extracellular matrix is associated with cancer development and 

progression of cancer (Mouw, Pickup and Weaver, 2014). Recent studies suggest that tumour 

cells play an essential role in extracellular matrix organization and remodelling. Although the 

extracellular matrix development is tightly controlled during embryonic development and 

organ homeostasis, the process of extracellular matrix organisation development is 

deregulated and disorganized in a disease such as cancer. Additionally, these cancer cell-

derived extracellular matrix proteins enhance the survival and promote cell colonization at 

distant tissues and organs (Lu, Weaver and Werb, 2012; Xiong and Xu, 2016). Cell 

proliferation and invasion require the physical, biochemical and biomechanical properties 

elicited from the extracellular matrix. It has also been found that extracellular matrix proteins 

are highly expressed in cancer cells. These factors suggest that extracellular matrix 

organization is important in cancer growth, invasion and metastasis (Xiong and Xu, 2016). 

Furthermore, this suggests that CRTAP (Figure 2.6), being in the same class as the 

extracellular matrix proteins, could play a significant role in cancer. Thus it could serve as a 

useful biological marker for the disease.  

 

These findings in combination with protein-protein interactions, transcriptional analysis and 

pathway analysis further implicates the identified candidate miRNAs and their target genes in 

the initiation and progression of cancer including Ovarian Cancer by virtue of the fact that 

they are miRNA regulated thus implicating the regulatory miRNAs. 
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2.5 Conclusion 

Signature biomarkers are urgently required for Ovarian Cancer diagnosis, prognosis and 

therapeutics to improve management of the disease. Currently, all the diagnostic tools for OC 

lack sensitivity, specificity and a positive predictive value; and are quite invasive. Therefore, 

focus has been shifted to biomarkers such as miRNAs. For the purpose of this study, a list of 

candidate target genes, previously identified were functionally characterized using in silico 

methodologies. The results observed suggest that the seven target genes are associated with 

various processes involved in the onset and progression of cancer including Ovarian Cancer. 

Furthermore, this subsequently links the miRNAs that target these genes to processes 

implicated in cancer. To further validate the genes, their prognostic value will be analysed 

using various bioinformatics tools. Also, the miRNAs will be molecularly validated in 

subsequent chapters. 
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Chapter 3 

Prognostic studies of candidate genes 

3.1 Introduction 

Ovarian Cancer (OC) remains the most lethal gynaecological cancer, regardless of the 

advances in diagnosis and treatment, in part due to the advanced stage presentation in most 

patients (National Cancer Institute, 2016). OC has the lowest survival rate of all gynaecologic 

cancers. According to the National Cancer Institute (2016), approximately 1 in every 57 

women contracts Ovarian Cancer and 60 % of these women already have advanced stage 

Ovarian Cancer. For effective cancer treatment, validated prognostic biomarkers are required 

to predict the course of the disease and the response to specific treatments. Currently, 

research focuses on identifying novel biomarkers for Ovarian Cancer diagnostics and 

prognostics. Previously, cancer antigen 125 (CA-125) was identified as a diagnostic 

biomarker but due to its limited specificity and sensitivity, less than half of cases are 

diagnosed successfully (Hu, Huang and Sood, 2010). Other biomarkers have been identified 

as prognostic markers such as glycoprotein human epididymis protein 4 (HE4), transthyretin, 

apolipoprotein A-1, beta2-microglobin, transferrin and CA-125 but it presented sub-standard 

predictive values. Due to the inefficacious nature of the protein biomarkers identified, 

microRNAs (miRNAs) became the area of interest for research (Gao and Wu, 2015).  

 

MiRNAs are a class of non-coding RNAs approximately 17-22 nucleotides in length (Gao 

and Wu, 2015). It regulates gene expression through post-translational alterations involving 

sequence-specific interactions with the 3’ untranslated region (3’ UTR) of the target 

messenger RNA (mRNA). MiRNAs have emerged as important regulators of cell 
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differentiation and proliferation processes. Deregulation of these molecules has been 

implicated in the pathogenesis of multiple cancers including Ovarian Cancer. MiRNAs can 

either be classified as oncogenic- or tumour suppressor miRNAs depending on their functions 

in regulating tumour phenotypes and they are important regulators in several facets of 

tumoringenesis including proliferation, metastasis and cancer cell functions (Shapira et al., 

2014; DiFeo, Joseph and Nagaraj, 2015). MiRNAs are classified as candidate biomarkers for 

diagnosis and prognosis in cancer because of their inimitable characteristics including (i) 

tissue-specific expression; (ii) stability in formalin-fixed tissues; and it’s (iii) presence in 

bodily fluids. Due to its practicality for clinical settings, miRNA as prognostic entities in 

predicting survival outcome in Ovarian Cancer is evolving. Various technologies are 

available to explore the use of miRNAs as prognostic markers including in silico methods 

(bioinformatics) (Cramer and Elias, 2016) through understanding the prognostic significance 

of the target genes. Various bioinformatics tools are available to analyse the candidate target 

gene biomarkers, identified in Section 2, such as Kaplan- Meier Plotter, PROGgene and 

SurvExpress (Coticchia, Yang and Moses 2008; Goswami and Nakshatri, 2012). 

 

3.1.1 Prognostic markers/factors in Ovarian Cancer 

Despite years of research of new tumour biomarkers, the amount of clinically validated 

prognostic markers is pitifully small. There are many prognostic biomarkers investigated 

each year and published in cancer journals, however, few find a role in clinical practice. This 

is due to the complex nature of the biomarkers and the lack of acceptable standards for 

effectively evaluating and incorporating the newly identified biomarkers in the clinical 

setting (Mehta et al., 2010). In oncology, prognostic biomarkers aim to predict a patient’s 

outcome prior to treatment. Also, it is used to elicit an individual patient’s risk of a future 
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outcome such as recurrence of the disease post-primary treatment. Prognostic markers play a 

significant role in clinical practice, distinguishing patients into different risk groups, 

treatment strategies and patient counselling especially in cancer (Riley, Sauerbrei and 

Altman, 2009).  

 

Ovarian Cancer is characterised by unambiguous clinical and pathological features for 

ovarian carcinogenesis including: (i) pre-invasive and even-invasive lesions are difficult to 

detect, (ii) familial predisposition is significant for the heredity model of carcinogenesis; and 

(iii) morphological borderline ovarian tumours pose unanswered questions (Friedlander, 

1998). Prognostic factors have been defined as phenotypes that correlate to the overall 

survival of a disease. Generally prognostic factors in Ovarian Cancer include intrinsic factors 

such as histological subtype, disease extent, age, grade, performance status and residual 

disease. Other factors that may impact the outcome include the treatment received by the 

patient and the effect of treatment on the tumour or the patient.  Understanding the prognostic 

factors that result in a poor prognosis can potentially help individualise treatment for patients 

(Friedlander, 1998). 

 

As previously mentioned, CA-125 is the gold standard marker and it’s the most extensively 

studied molecular marker in Ovarian Cancer (Gupta and Christopher, 2009). CA-125 is 

expressed in more than 80 % of ovarian cancers and it correlates with the risk of malignancy, 

stage of disease and histology. The serum level of CA-125 is currently used to monitor 

response to chemotherapy, relapse and disease progression in OC patients (Gupta and 

Christopher, 2009). Multiple studies demonstrated that following chemotherapy, serum CA-

125 level is a good predictor of overall and progression-free survival of Ovarian Cancer. 
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Furthermore, these studies suggested that patients with serum CA-125 values within the 

normal range post-chemotherapy had a significantly longer overall disease-free survival than 

the patients whose CA-125 levels remained high post chemotherapy (Gupta, 2009).  

 

A potential prognostic biomarker in Ovarian Cancer is human kallikrein 8 (also referred to as 

KLK8). KLK8 is over expressed in the serum of 62 % of OC patients suggesting its 

prognostic significance. A study done by Borgono and associates (2006) demonstrated that 

patients with higher KLK8 mRNA levels are associated with lower grade disease, lower 

residual tumour left following surgery and they have a longer disease-free survival compared 

to those patients that have low expression levels of KLK8 based on the Cox regression 

model. This was confirmed by a Kaplan-Meier survival curve for progression-free survival 

(PFS) and overall survival (OS) for KLK8-positive and KLK8-negative patients (Figure 3.1). 

Notably, KLK8 is not expressed in normal ovarian tissue Therefore, it can be concluded that 

KLK8 is an independent biomarker of favourable prognosis in Ovarian Cancer (Borgono et 

al., 2006; Magklara et al., 2011). 

 

http://etd.uwc.ac.za



 

 

 

 

107 
 

 

Figure 3.1: Kaplan-Meier plot presenting the association between the expression of 

KLK8 and Progression-free survival and Overall Survival (Magklara et al., 2011). 

http://etd.uwc.ac.za



 

 

 

 

108 
 

3.1.2 Kaplan-Meier plot 

The Kaplan-Meier estimator is one of the best options used to estimate empirical hazard, 

survival and cumulative distribution functions over a period of time. It is defined as a non-

parametric statistic and it’s one of the simplest ways to compute the survival over-time. The 

survival curves (Kaplan-Meier survival curves) take into account the patients that withdrew 

from the study, the subjects that may not experience the same event or die before the end of 

the study, labelled as right- censored observations, by calculating the occurrences of the event 

at a certain point in time and multiplying these successive probabilities to get the final 

estimate. This can be calculated for two groups of subjects and the statistical difference in the 

survival of these subjects can be compared. The patients are split into groups based on the 

parameters for the given scenario (Goel, Khanna and Kisshore, 2010).  

 

3.2 Aims and Objectives 

3.2.1 Aims 

The aim of this chapter is to evaluate the prognostic value of the identified target genes as 

biomarkers using in silico methodologies.  

 

3.2.2 Objectives 

 Prognostic analysis of miRNA target genes using Kaplan-Meier Plotter  

 Prognostic validation of miRNA target genes using two datasets from SurvExpress 

 Prognostic analysis of the miRNA target genes for Ovarian Cancer using two datasets 

from PROGgene 
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3.3 Methodology 

3.3.1 Kaplan-Meier Plotter database 

Kaplan-Meier Plotter (KM plotter), available at http://www.kmplot.com was used to 

determine the prognostic value of the target genes in the recurrence of Ovarian Cancer. The 

statistical tool has the ability to assess an individual gene or a combination of genes on the 

survival in breast, ovarian, lung, gastric, colon and prostate cancer patients (Szasz et al., 

2016). The KM plotter is capable of assessing the effect of 54 675 genes on survival using 

10 461 cancer samples. Gene expression data and relapse free and overall survival 

information is downloaded from Gene Expression Omnibus (Affymetrix microarrays only), 

European Genome-phenome Archive and The Cancer Genome Atlas. Gene expression and 

clinical data are simultaneously integrated using the PostgreSQL server (Szasz et al., 2016).  

 

In the Google search engine, http:// www.kmplot.com/ovar/  was launched. Each gene 

symbol for the target genes was used as an input into the gene space provided. The default 

settings were used and ‘draw Kaplan-Meier plot’ was selected. The output was downloaded 

in pdf format for further analysis. 

 

3.3.2 SurvExpress database 

SurvExpress, a online database (http://bioinformatica.mty.itesm.mx/SurvExpress) was 

implemented in JSP, JavaScript, MySQL and R. SurvExpress is a cancer-wide gene 

expression database with clinical outcomes providing survival analysis and risk assessment of 

cancer datasets. The database contains more than 20 000 samples and 130 datasets; covering 
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more than 20 tissues. The data is mainly obtained from Gene Expression Omnibus (GEO) 

and TCGA (Aquirre-Gamboa et al., 2013). SurvExpress facilitate performance comparisons 

and validations of the prognostic biomarkers for cancer outcomes using various cancer 

datasets. SurvExpress output include a Kaplan-Meier plot for risk groups, clinical 

information available for risk groups, heat map representation of the gene expression values, 

a box plot across risk groups and tables with the summary of the Cox fitting and prognostic 

indices (Aquirre-Gamboa et al., 2013). 

 

The seven target gene symbols were used as an input in the space provided for the gene list 

and ‘ovarian’ was selected as the tissue type. The genes were then analyzed using the 

SurvExpress dataset containing 784 samples and TCGA dataset containing 578 samples. The 

dataset contains meta-analysis clinical data and recurrence. The analysis button was clicked 

and the result summaries, Kaplan-meier plots, box plots of gene expression by risk groups 

and heat maps were exported in a pdf format for further analysis. 

 

3.3.3 PROGgene database 

PROGgene is a web-based application available at http://www.compbio.iupui.edu/proggene 

used for studying the prognostic implication of mRNA biomarkers in a variety of cancers. 

The tool generates prognostic (Kaplan-Meier, KM) plots for mRNA of interest using R 

library ‘Survival’ (Goswami and Nakshatri, 2013). The web application is created using a 

PHO5 and R Programming environment (v2.15.2), MySQL (v 5.0.95) server at the backend. 

The database compiles data from various repositories including Gene Expression Omnibus 

(GEO), EBI Array Express and The Cancer Genome Atlas (TCGA). PROGgene consists of 
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64 unique patient series accounting for approximately 11 800 samples profiled over a 

maximum of approximately 24 000 markers in 18 cancer types, providing the most 

comprehensive resource available for survival analysis. The web based application provides a 

list of datasets available for analysis of interest and it enables researchers to choose the most 

pertinent datasets for their study design (Goswami and Nakshatri, 2013). 

 

The online cancer survival tool was accessed at http://www.compbio.iupui.edu/proggene. The 

seven gene symbols were used as queries in the space provided for the genes and ‘ovarian’ 

option was selected as the cancer type. For the survival measure ‘death’ was selected and the 

queries were submitted. Two datasets were used to analyse the prognostic value of the seven 

target genes namely (a) GSE9891 and (b) GSE14764. The output results (Kaplan-Meier 

plots) were saved in a Word document for further analysis. 
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3.4 Results 

3.4.1 Kaplan-Meier Plotter database 

To determine the prognostic significance of the candidate target genes, Kaplan-Meier plotter 

was used as described in Section 3.3.1. High expression levels were significantly correlated 

to poor outcome of Ovarian Cancer for all the genes except for FARP1 illustrated in Figure 

3.2. However, FARP1 seems to be a statistically significant prognostic marker for survival 

outcome of Ovarian Cancer (p-value=0.0015). 
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CILP CRTAP FARP1 

NPR3 P2RX1 STAB2 

Figure 3.2: Survival curves for the target genes CILP, CRTAP, FARP1, NPR3, P2RX1 and STAB2 using the Kaplan-Meier 

Plotter database. Low risk is drawn in black and high risk is drawn in red. The p-value is shown in the right-hand corner for each gene 

(p-value <0.05 is significant). http://etd.uwc.ac.za
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3.4.2 SurvExpress database 

The prognostic significance of the candidate target genes were determined using two broad 

datasets in the SurvExpress database. The two broad datasets used were (i) Ovarian Meta-

base comprising of 6 datasets consisting of 784 samples and (ii) TCGA comprising of 578 

samples. From the results, one significant gene out of the seven target genes showed promise 

as a good prognostic marker based on the p-value (p < 0.05) in the SurvExpress dataset while 

in the TCGA dataset there were two significant genes (Figure 3.3). Figure 3.4 shows a 

Kaplan-Meier plot for risk groups, concordance index, and p-value of the log-rank testing 

equality of survival curves. In combination, the biomarkers seem like good prognostic 

markers for Ovarian Cancer based on the difference in higher- and lower risk groups for both 

datasets (SurvExpress dataset: p-value=0.001093; TCGA dataset: p-value=0.003799).  

 

Figure 3.5 shows box plots of gene expression values across gene groups together with the p-

value of the corresponding difference using a t-test. The results depicted in the SurvExpress 

dataset, illustrates that 3/7 target genes where differentially expressed and in the TCGA 

dataset shows that 5/7 target genes are differentially expressed. Figure 3.6 illustrates a heat 

map of the target gene (rows) expression values along samples (columns) in the risk groups. 

Low expression is represented in the green grades and high expression is represented in the 

red grades. 
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SurvExpress dataset 

 

TCGA dataset 

 

 

Figure 3.3: The result summaries showing the significant target genes based on the p-

values of the individual genes from the two datasets namely (a) SurvExpress dataset and 

(b) TCGA dataset using the SurvExpress database. 
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Figure 3.4: Kaplan-Meier analysis of the miRNA target genes for Ovarian Cancer 

prognostic outcome. 
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Figure 3.5: Gene expression values across gene groups represented by box plots 

together with the p-value of the corresponding difference comparing risk groups. 

SurvExpress dataset 

TCGA dataset 
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Figure 3.6: Expression profile and gene ranking based on prognostic index. (a) 

Expression profile from the dataset compiled by SurvExpress comprising 784 samples. (b) 

Expression profile from TCGA dataset comprised of 578 samples.  

SurvExpress dataset 

TCGA dataset 
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3.4.3 PROGgene database 

The PROGgene database was used to determine the prognostic value of each target gene as 

described in Section 3.3.3. Low levels of expression of all the genes were correlated to poor 

prognostic outcome compared to high expression levels illustrated in Figure 3.7 and 3.8 for 

the dataset GSE9891 and; figure 3.9 and 3.10 for the dataset GSE14764. 
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 Figure 3.7: Survival curves for the target genes CILP, CRTAP and FARP using the GSE9891 dataset comprising of 285 ovarian 

tumour samples. 
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Figure 3.8: Survival curves for the target genes NDEL, NPR3, P2RX1 and STAB2 using the GSE9891 dataset comprising of 285 

ovarian tumour samples. http://etd.uwc.ac.za
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Figure 3.9: Survival curves for the target genes CILP, CRTAP and NDEL1 using the GSE14764 dataset. High expression is represented 

in red and low expression is represented in green. 
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Figure 3.10: Survival curves for the target genes FARP1, NPR3, P2RX1 and STAB2 using the GSE14764 dataset. High 

expression is represented in red and low expression is represented in green. http://etd.uwc.ac.za
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3.5 Discussion 

In oncology, prognosis plays a vital role in management and clinical decision making for a 

patient. Prognosis is presented as the time period between the start and the end of the clinical 

observation in combination with binary status information. Determining prognostic markers 

are important because it provides insight into the biology and natural history of a particular 

disease such as cancer (Chen et al., 2014; Halabi and Owzar, 2010). In this study, the miRNA 

target genes were used to determine the prognostic or predictive value using various 

prognostic databases, as described in Section 3.3.  

 

3.5.1 Kaplan-Meier plotter database 

To determine the prognostic value of the individual target genes in the recurrence of Ovarian 

Cancer, the Kaplan-Meier plotter database was used. The database uses gene expression 

microarray data from Gene Expression Omnibus (GEO). Figure 3.2 showed the difference in 

the survival rate of risk groups based on the expression of the individual target genes. From 

the survival curves FAPR1 (p-value = 0.0015) have a significant p-value in predicting the 

prognostic outcome based on the differential value of these biomarkers in Ovarian Cancer 

patients (Figure 3.2). A recent study by Schwaid and colleagues (2015) revealed that the 

phosphorylation of FARP1 contributes to cytoskeletal rearrangement/disorganization via 

Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4). Furthermore, 

disorganized cytoskeletal architecture was accompanied by altered patterns of 

serine/threonine and tyrosine kinase phosphorylation as well as changed expression and 

enhanced focal adhesion (Crawford et al., 2011; Schwaid et al., 2015).  Weichert and 

associates (2004) further reported that serine/threonine kinase (Polo-like kinases) correlates 

to poor prognosis of patients with Ovarian Cancer. Additionally, over expression of focal 
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adhesion kinases (FAK) have also been described as predictors of poor survival in OC 

patients. These kinases are over expressed in most invasive ovarian cancers and they play a 

pivotal role in OC progression and invasion (Sood et al., 2004). Given the correlation, 

FARP1 may be a potential prognostic marker for Ovarian Cancer. 

 

The target gene P2RX1 was not present in the database. The target gene might not be in the 

database because the database focuses on a particular Affymetrix gene expression platform 

eventhough there are more probe sets available to analyse additional genes. Another reason 

for its absence in the database could be because of the number of samples used in Kaplan-

Meier plotter (Aguirre-Gamboa et al., 2013; Chen, Sun and Hoshida, 2014). 

 

3.5.2 SurvExpress database 

To further determine the prognostic/predictive value of the set of candidate target genes two 

broad datasets were used: Ovarian Meta-base comprising of 6 datasets consisting of 784 

samples (SurvExpress dataset) and (ii) TCGA comprising of 578 samples (TCGA dataset). 

As shown in Figure 3.3, one out of the seven target genes were found to be significant as a 

prognostic marker based on its p-value (p <0.05). The target gene that showed promise was 

CILP (p < 0.001092936). In the TCGA dataset two genes were deemed of prognostic 

significance based on their p-values (Figure 3.3). CILP is common in both datasets. 

Interestingly, Table 2.3 (Section 2.2.4) shows the target gene is associated with the insulin-

like growth factors (IGF’s). This hormone is directly involved in the pathogenesis of Ovarian 

Cancer and over expression is associated with poor prognosis of the disease (Kaaks and 

Lukanova, 2005; Beauchamp et al., 2010).  
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A study done by Gu, Shigemasa and Ohama (2004) using 59 epithelial ovarian tumours (8 

adenomas, 5 low malignant potential ovarian tumours and 46 adenocarcinomas and 7 normal 

ovarian tumours examined the expression of IGF-II in epithelial ovarian tumours and 

identified its’ association with a patient’s survival. They revealed that the over expression of 

IGF variants significantly correlated with poor prognosis of patients’ (p value=0.0398). Other 

studies had similar conclusions particularly a study done by Sayer (2005) where they used 

microarray expression analysis to demonstrate over expression of the insulin-like growth 

factor is associated with advanced stage Epithelial Ovarian Cancer (EOC). Additionally, they 

measured IGF in 109 Epithelial Ovarian Cancers and 8 Normal Ovarian Surface Epithelial 

(NOSE) samples using quantitative real-time polymerase chain reaction (qRT-PCR). The 

group concluded that IGF expression is significantly higher in ovarian tumours compared to 

normal surface epithelium. Furthermore, based on multivariante analysis, IGF is an 

independent predictor of poor prognosis in patients with EOC (Gu et al., 2004; Sayer et al., 

2005; Qian et al., 2011). Additionally, CILP has been associated with two proteins (FURIN 

and BMP-2) that result in a poor prognostic outcome of Ovarian Cancer described in Section 

2.4.2.1 (Figure 2.4). Taken together, evidence from this study and other studies supports the 

hypothesis that CILP might be a potential prognostic marker for Ovarian Cancer (Mahner et 

al., 2013; Hein et al., 2009; Oliveira-Ferrer et al., 2014). 

 

The survival curves in Figure 3.4 shows the plots by risk group, the log-rank test of 

differences between risk groups, the hazard-ratio estimate and the concordance index which 

estimates the probability that subjects with a higher risk prediction (red) and a lower risk 

prediction (green) will experience the event (death). As shown in Figure 3.3 when combining 

the miRNA target genes for prediction of prognostic outcome of Ovarian Cancer the 

prognostic value is more significant for SurvExpress than the TCGA datasets based on the p-
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values. The p-value for the panel of biomarkers in the SurvExpress dataset is p < 0.001093 

and for the TCGA dataset the p-value is 0.003799. In Section 2.3 and Section 2.4 (Chapter 2) 

the target genes were linked to various cancer-related Molecular Functions (MF’s), 

Biological Processes (BP’s), Transcription Factors (TF’s) and pathways (Section 2). These 

different elements have been implicated in poor prognostic outcome of the disease such as 

variants in the cell cycle, c-Jun and c-Fos. This evidence further supports the hypothesis that 

the panel of miRNA target genes identified in a previous study (Lottering, 2015) can 

potentially be prognostic biomarkers for Ovarian Cancer. The Kaplan-Meier plots generated 

for these two datasets might be different because of the different approaches used when it 

was compiled. Also, it could be because of the difference in clinical information, populations, 

probe sets, sample size and gene expression technology used (Aguirre-Gamboa et al., 2013). 

However, both of these datasets generated a significant output shown by the survival curve 

for the combined target genes (Figure 3.3). Thus, the miRNA target genes potentially serve as 

a good prognostic/predictive marker for Ovarian Cancer. 

 

The SurvExpress database provides additional output results, the box plot and the heat map, 

which shows the expression levels for each of the candidate target genes (Figure 3.4 and 

Figure 3.5). In the box plot the gene expression of each gene is plotted along the risk groups 

obtained in the analysis using t-test. Additionally, it indicates whether the gene expression 

levels are different between the risk groups based on the visual difference. The high risk 

group is represented in red and the low risk group is represented in green. The heat map 

enables visualisation of the level of expression (by colour) of each gene and is ranked by their 

prognostic index (Aguirre-Gamboa et al., 2013).  
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In the box plots the t-test is used to evaluate the difference between risk groups. In Figure 3.4 

the box plot confirmed differential expression of most of the candidate target genes in both 

datasets. From the SurvExpress dataset three of the seven miRNA target genes were 

differentially expressed whilst in the TCGA dataset, five of the seven target genes were 

differentially expressed (p <0.05) between the high and low risk groups.  

 

In Figure 3.5, the heat map ranked the genes based on their prognostic ability. For both of the 

datasets, the main target genes that are highly differentially expressed in the high risk group 

(p < 0.05) are NDEL and FARP1. This is an indication that the high expression of these 

genes will result in poor prognosis in Ovarian Cancer patients. Interestingly, based on 

pathway analysis (Table 2.3) NDEL1 is involved in cell cycle related pathways such as the 

mitotic pathway. Deregulation of various factors in these pathways has been linked to poor 

prognosis of the disease (Andrilli, Giordano and Bovicelli, 2008). An example includes 

CDK1 which is well known to be associated with dysregulation of cancer causing 

processes/factors. CDK1 promotes the cell cycle alone and is essential for cell cycle 

progression and cell division. Yang and associates (2016) showed that cytoplasmic CDK1 (p 

< 0.001) is significantly elevated in EOC compared to normal cells and in the nucleus. 

Furthermore, based on the survival analysis done, over expression of CDK1 correlated with 

poor prognosis in 5-year overall survival (Log-rank: p-value = 0.028, hazard ratio = 2.016; 

95% CI = 1.097 to 4.635) (Yang et al., 2016; Xi et al., 2015).  

 

Additionally, in the SurvExpress dataset two of the seven candidate genes were not present in 

the dataset. The data might be missing from the  
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dataset because of the sample size and the patient group (Andrilli et al., 2008; Sanders et al., 

2012). The differences in the outputs of these datasets could be due to Ovarian Cancer 

histological subtypes used prognostic factors such as age of the patients used, tumour size 

and pathological grade. As previously mentioned it could also be because of clinical 

information, populations, probe sets, sample size, gene expression technology and statistical 

methods used for analysis (Aguirre-Gamboa et al., 2013).  

 

3.5.3 PROGgene database 

PROGgene database produces Kaplan-Meier plots for mRNAs using datasets for different 

cancers. Two datasets were used namely GSE9891 and GSE14764 (Figure 3.7- Figure 3.10). 

The high expression levels are represented in red whilst low expression levels are shown in 

green. In the GSE9891 dataset (Figure 3.7 and Figure 3.8) there were two significant target 

genes (the candidate target genes are STAB2 and FARP1) based on the p-value (p < 0.05). 

Interestingly, FARP1 was also rendered as a significant prognostic marker in Ovarian Cancer 

based on Figure 3.2 (Section 3.5.1). STAB2 hasn’t been implicated as a significant 

prognostic biomarker in any of the other databases used however in Table 2.3 (Section 2.4.4) 

STAB2 is involved in various metabolic pathways suggesting the role of the miRNA target 

gene in sustaining cancer cells. A recent study done by Lamkin and associates (2009) 

investigated the hypothesis that higher pre-surgical glucose levels predict shorter disease-

specific survival and recurrence time in OC patients. Based on univariante analysis as well as 

multivariante analysis, over expression of glucose correlates to poor survival times (p-value = 

0.04) for individuals with the disease (Lamkin et al., 2009).  
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Figure 3.9 and Figure 10 showed no target genes that were significant. However, it showed 

that two candidate target genes were marginally significant (p-value < 0.10). The 

contradictive results in the two datasets could be due to the limited sample size, patient 

cohorts, statistical methods employed and the database uses study specific prognostic plots 

instead of pooled prognostic plots. Also, the database focuses on transcriptomic profiling 

technology and thus gene expression profiles cannot be merged with this technology 

(Goswami and Nakshatri, 2013; Goswami and Nakshatri, 2014)  

 

3.6 Conclusion 

Currently the amount of clinically validated prognostic/ predictive biomarkers is pitifully 

small in cancer especially Ovarian Cancer. Prognostic biomarkers are important because they 

enables the prediction of a patients outcome or recurrence prior to or post clinical treatment. 

For the purpose of this study, a list of miRNA target genes, previously identified was used to 

determine their prognostic significance in Ovarian Cancer. Various bioinformatics tools were 

used to determine the significance. The results suggest that most of the seven target genes 

showed prognostic significance. Notably, FARP1 and CILP are common in multiple 

databases used in the study. These genes have been linked to various factors that result in 

poor prognosis of the disease as shown in Chapter 2. In the subsequent chapter, the miRNAs 

regulating the target genes will be molecularly validated using quantitative real-time PCR. 

 

 

 

 

http://etd.uwc.ac.za



 

 

 

 

131 
 

3.7 Reference List 

1. Aguirre-Gamboa, R., Gomez-Rueda, H., Martinez-Ledesma, E., Martinez-Torteya, 

A., Chacolla-Huaring, R., Rodriguez-Barrientos, A., Tamez-Pena, J. G. And Trevino, 

V. (2013) SurvExpress: An Online Biomarker Validation Tool and Database for 

Cancer Gene Expression Data Using Survival Analysis. Plos One, 8.  

2. Andrilli, G. D., Giordano, A. and Bovicelli, A. (2008) Epithelial Ovarian Cancer: The 

Role of Cell Cycle Genes in the Different Histotypes. The Open Clinical Cancer 

Journal, 2. P. 7-12. 

3. Beauchamp, M., Yasmeen, A.,Knafo, A. and Gotlieb, W. H. (2010) Targeting Insulin 

and Insulin-Like Growth Factor Pathways in Epithelial Ovarian Cancer. Journal of 

Oncology, 10. P. 1-11. 

4. Borgono, C. A., Kishi, T., Scorilas, A., Harbeck, N., Dorn, J., Schmalfeldt, B., 

Schmitt, M. And Diamandis, E. P. (2006) Human Kallikrein 8 Protein Is a favourable 

Prognostic Marker in Ovarian Cancer. Clinical Cancer Research, 12. P. 1-8. 

5. Crawford SM, Peace J. (2005) Does the nadir CA125 concentration predict a long 

term outcome after chemotherapy for carcinoma of the ovary? Ann Oncol, 16. P. 47–

50. 

6. Creek, A. L., Silkworth, W. T., Cimini, D., Jensen, R. V., Roberts, P. C. And 

Schmelz, E. A. (2011) Changes in Gene Expression and Cellulat Architecture an 

Ovarian Cancer Progression Model. PLoS One, 6. P,1-16. 

7. Chen, X., Sun, X. and Hoshida, Y. (2014) Survival analysis tools in genomics 

research. Human Genomics, 8. P 1-5. 

8. Coticchia, C. M., Yang, J. And Moses, M. A. (2008) Ovarian Cancer Biomarkers: 

Current Options and Future Promise. Journal of National Comprehensive Cancer 

Network, 8. P. 795-802. 

http://etd.uwc.ac.za



 

 

 

 

132 
 

9. Eckhoff, K., Flurschutz, R., Trillsch, F., Mahner, S., Milde-Langosch, K. (2013) The 

prognostic significance of Jun transcription factor in ovarian cancer. Journal of 

Cancer Research and Clinical Oncology, 139. P. 1673-1680. 

10. Friedlander, M. L. (1998) Prognostic factors in ovarian cancer. Seminars in Oncology, 

25. P. 305-314. 

11. Goswami, C. P. and Nakshatri, H. (2013) PROGgene: gene expression based survival 

analysis web application for multiple cancers. Journal of Clinical Bioinformatics, 22. 

P. 1-9. 

12. Goswami, C. P. and Nakshatri, H. (2014) PROGgeneV2: enhancements on the 

existing database. Biomed Central, 22. P. 1-6. 

13. Gupta, D. (2009) Role of CA125 in predicting ovarian cancer survival-Areview of the 

epidemiological literature. BioMed Central, 2. P. 1-21. 

14. Gupta, D. And Christopher, G. (2009) Role of CA125 in predicting ovarian cancer 

survival-Areview of the epidemiological literature. BioMed Central, 2. P. 1-20. 

15. Gu, L., Shigemasa, K. and Ohama, K. (2004) Increased expression of IGF II mRNA-

binding protein 1 mRNA is associated with an advanced clinical stage and poor 

prognosis in patients with ovarian cancer. International Journal of Oncology, 10. P. 

671-678. 

16. Halabi, S. and Owzar, K. (2010) The importance of identifying and validating 

prognostic factors in oncology. Seminar Oncology, 37. P. 9-18. 

17. Hein, S., Mahner, S., Kanowski, C., Loning, T., Janicke, F. And Milde-Lanosch, K. 

(2009) Expression of Jun and Fos proteins in ovarian tumours of different malignant 

potential and in ovarian cancer cell lines. Oncology Reports, 22. P. 177-183. 

18. Hu, W., Huang, J. And Sood, A. K. (2010) Prognostic Biomarkers in Ovarian Cancer. 

Cancer Biomarkers, 8. P. 231-251. 

http://etd.uwc.ac.za



 

 

 

 

133 
 

19. Lamkin, D. M., Spitz, D. R., Shahzad, M. M. K., Zimmerman, B., Lenihan, D. J., 

DeGeest, K., Lubaroff, D. M., Shinn, E. H., Sood, A. K. and Lutgendorf, S. K. (2010) 

Glucose as a prognostic factor in ovarian carcinoma. Cancer, 115. P. 1021-1027. 

20. Lottering, S (2015) Identification of miRNAs as biomarkers for early diagnosis of 

Ovarian Cancer: An in silico approach. Honours thesis. University of the Western 

Cape. 

21. Magklara, A., Scorilas, A., Katsaros, D., Massobrio, M., Danese, S. and Diamandis, 

E. P. (2001) The human KLK8 (Neurospin/ Ovasin) Gene: Identification of Two 

Novel Splice Variants and Its Prognostic Value in Ovarian Cancer. Clinical Cancer 

Research, 7. P. 806-811.  

22. Mehta, S., Shelling, A., Muthukaruppan, A., Lasham, A., Blenkiron, C., Laking, G. 

And Print, C. (2010) Predictive and prognostic molecular markers for cancer 

medicine. Therapeutic Advances in Medical Oncology, 2. P. 125-148. 

23. Oliveira-Ferrer, L., Robler, K., Haustein, V., Schroder, C., Wicklein, D., Maltseva, 

D., Khaustova, N., Samatov, T., Tonevitsky, A., Mahner, S., Janicke, F., Schumacher, 

U. And Milder-Langosch, K. (2014) c-Fos suppresses ovarian cancer progression by 

changing adhesion. British Journal of Cancer, 4. P. 753-763. 

24. Riley, R. D., Sauerbrei, W. And Altman, D. G. (2009) Prognostic markers in cancer: 

the evolution of evolution from single studies to meta-analysis, and beyond. British 

Journal of Cancer, 100. P. 1219-1229. 

25. Sayer, R. A., Lancaster, J. M., Pittman, J., Gray, J., Whitaker, R., Marks, J. R. And 

Berchuck, A., (2005) High insulin-like growth factor-2 (IGF-2) gene expression is an 

independent predictor of poor survival for patients with advanced stage serous 

epithelial ovarian cancer. Gynecologic Oncology, 96. P. 355-361. 

http://etd.uwc.ac.za



 

 

 

 

134 
 

26. Schwaid, A. G., Chunyan, S., Loos, P., Wu, J., Nguyen, C., Stone, K. L., Kanyo, J., 

Geoghagan, K. F., Bhattachrya, S. M., Dow, R. L., Buckbinder, L. And Carpino, P. A. 

(2015) MAP4K4 Is a Threonine Kinase That Phosphorylates FARP1. American 

Chemical Society, 10. P. 2667-2671. 

27. Shapira, I., Oswald, M., Lovecchio, J., Khalili, H., Menzin, A., Whyte, J., Dos Santos, 

L., Liang, S., Bhiuya, T., Keogh, M., Mason, C., Sultan, K., Budman, D., Gregersen, 

P. K. and Lee, A. T. (2014) Circulating biomarkers for detection of ovarian cancer 

and predicting cancer outcomes. British Journal of Cancer, 110. P. 976-983. 

28. Sood, A. K., Coffin, J. E., Schneider, G. B., Fletcher, M. S., DeYoung, B. R., 

Gruman, D. M., Gershenson, D. M., Schaller, M. D. And Hendrix, M. J. (2004) 

Biological significance of focal adhesion kinase in ovarian cancer: role in malignant 

and invasion. The America Journal of Pathology, 4. P. 1087-1095. 

29. Szasz, A. M., Lanczky, A., Nagy, A., Forster, S., Hark, K., Green, J. E., Boussioutas, 

A., Busuttil, R., Szabo, A., Gyoryffy, B. (2016) Cross-validation of survival 

associated biomarkers in gastric cancer using transcriptomic data of 1065 patients. 

Oncotarget, 2. 322-333. 

30. Qian, B., Katsaros, D., Lu, L., Canuto, E. M., Benedetto, C., Beeghly-Fadiel, A. and 

Yu, H. (2011) IGF-II promoter specific methylation and expression in epithelial 

ovarian cancer and their associations with disease characteristics. Oncology Reports, 

25. P. 203-213. 

31. Weroha, S. J. And Haluska, P. (2012) IGF system on Cancer. Endocrinology and 

metabolism clinics of North America, 41. P. 335-350. 

32. Weichert, W., Denkert, C., Schmidt, M., Gekeler, V., Wolf, G., Kobel, M., Dietel, M. 

And Hauptmann, S. (2004) Polo-like kinase isoform expression is a a prognostic 

factor in ovarian carcinoma. British Journal of Cancer, 4. P. 815-821. 

http://etd.uwc.ac.za



 

 

 

 

135 
 

33. Xi, Q., Huang, M., Wang, Y., Zhong, J., Liu, R., Xu, G., Jiang, L., Wang, J., Fang, Z. 

And Yang, S. (2015) The expression of CDK1 is associated with proliferation and can 

be a prognostic factor in epithelial ovarian cancer. Tumour Biology, 36. P. 4939-4948. 

34. Yang, W., Cho, H., Shin, H., Chung, J., Kang, E. S., Lee, E. And Kim, J. H. (2016) 

Accumulation of cytoplasmic CDK1 is associated with cancer growth and survival 

rate in epithelial ovarian cancer. Oncotarget, 31. P. 49481-49497. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za



 

 

 

 

136 
 

Chapter 4 

Molecular validation of identified miRNAs as biomarkers for early diagnosis of Ovarian 

Cancer (OC) 

4.1 Introduction 

4.1.1 Quantitative real-time PCR (qPCR) 

4.1.2 Quantitative Strategies in qRT-PCR 

4.2 Molecular methodologies 

4.2.1 Cell culture 

4.2.1.1 Thawing of cells 

4.2.1.2 Trypsinization 

4.2.1.3 Freezing down of cells 

4.2.2 Total RNA extraction 

4.2.3 Primer design 

4.2.4 Poly (A) tailing and Reverse transcription 

4.2.5 The validation of miRNA expression levels in Ovarian Cancer and other cell lines using 

qRT-PCR 

4.3 Results 

4.3.1 Analysis of amplification curves 

4.3.2 Melting curve analysis 

http://etd.uwc.ac.za



 

 

 

 

137 
 

4.3.3 Analysis of qRT-PCR expression profiling data 

4.4 Discussion 

4.4.1 Analysis of Amplification curve and Melting curve 

4.4.2 Expression profiling plot analysis 

4.5 Conclusion 

4.6 Reference List 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za



 

 

 

 

138 
 

Chapter 4 

Molecular validation of identified miRNAs as biomarkers for early 

diagnosis of Ovarian Cancer (OC) 

4.1 Introduction 

MicroRNAs (miRNAs) are a class of short (~22 nucleotides long), single-stranded 

evolutionary conserved RNA molecules responsible for post-translational modification, either 

by translational repression or mRNA degradation (Jansson and Lund, 2012). The importance 

of miRNAs has been long dismissed until its initial discovery in Caenorbabditis elegans 

(Lima and Pasquinelli, 2014). Following its initial discovery, a vast number of miRNAs have 

been identified through computational and molecular studies in plants, animals and viruses 

(Jansson and Lund, 2012). Currently, miRNAs have been recognized to play a pivotal role in 

cell proliferation, apoptosis, neuronal cell fate, stem cell division and metabolism. It has been 

shown that miRNAs are differentially expressed and play a role in the pathogenesis of 

various diseases ranging from autoimmune diseases to cancer. The significance of these 

molecules in diseases such as Ovarian Cancer has prompted research into their diagnostic, 

prognostic and theranostic value (Ardekani and Naeini, 2010).  

 

The current diagnostic methods for early detection of Ovarian Cancer include pelvic 

examination, transvaginal ultrasonography, imaging studies and CA-125 (cancer antigen-125 

or carbohydrate antigen 125) testing (KK Women’s and Children’s Hospital, 2014). CA-125 

is expressed in most OC tumours but it’s also expressed in the normal epithelium of the 

female reproductive system and in the presence of other benign conditions such as Urinary 

Tract Infections (UTI), thus its non-specific. The addition of new tumour markers such as 
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Human Epididymis Protein 4 (HE4) and mesothelin combined with CA-125, have presented 

an increased specificity and sensitivity (Husseinzadeh, 2011). Studies done by Bast et al 

(2004) and Farias-Eisner et al (2005) showed that combining biomarkers, resulted in an 

improved detection for early stage OC and the specificity and sensitivity increased from 65 % 

to 74 % and 52 % to 63 % respectively. 

 

The OVA1 blood test, cleared by the FDA, is designed to be a highly sensitive tool (Bristow 

et al., 2014). It tests for all types of Ovarian Cancers and determines if the mass is low risk 

Ovarian Cancer or high risk Ovarian Cancer. The OVA1 blood test measures the level of CA-

125 in the blood in combination with four other proteins namely beta-2 microglobulin, 

transferrin, apoliprotein A1 and transthyretin (prealbumin). The OVA1 blood test has an 

approximate sensitivity of 96 %, specificity of 35 % and a positive predictive value of 40 %. 

Regardless of the increased specificity, sensitivity and positive predictive value, the test is 

still not performed on its own. Another new biomarker for OC includes Risk of Ovarian 

Malignancy Algorithm (ROMA), approved by the FDA in 2011. The test is used to estimate 

the risk of OC in women that present a pelvic mass. The ROMA test is preferred over the 

OVA1 blood test because of its specificity and its cost-effectiveness. The specificity of the 

ROMA test is 92 % and the specificity is 76 % (Li, 2012). 

 

These tests are used in addition to, not in place of, other diagnostic tools (Bristow et al., 

2014). However, the current biomarkers are mostly based on proteins and the major 

limitations of these proteins include low specificity, sensitivity and positive predictive value. 

Also, these proteins tend to degrade rapidly; therefore, tumour-specific molecules such as 
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miRNAs are under investigation for early detection, prognosis and therapy of Ovarian Cancer 

because of the miscellaneous nature of the disease (Kurman and Shih, 2010). 

 

MicroRNAs are endogenous, naturally abundant, relatively stable non-coding RNA 

molecules and it is responsible for post translational regulation of gene expression in a 

sequence-specific manner (Makunin and Mattick, 2006). It is estimated that a 
1
/3 of the 

protein-coding genes in the human genome is controlled/regulated by miRNAs (Makunin and 

Mattick, 2006). More than 1000 miRNAs have been discovered in humans to date. Many of 

these miRNAs have been implicated in common human diseases such as cancer (Kowdley 

and Li, 2012). All cancer types share certain characteristics described in Section 1.1.1. It has 

been suggested that miRNAs have the ability to regulate these processes signifying its 

involvement in the initiation and progression of various human cancers. Therefore, these 

miRNAs can potentially be used as biomarkers in cancer diagnosis (Slack and Stahlhut 

Espinosa, 2006). 

 

In this study, miRNA expression profiling was performed using quantitative real-time 

polymerase chain reaction (qRT-PCR/qPCR) analysis on the miRNAs identified through 

computational biology (bioinformatics), in a previous study (Lottering, 2015). Quantitative 

RT-PCR is a sensitive technique utilized for the estimation of circulating miRNA expression 

levels (Baiet al., 2012). This quantitative technique has numerous benefits including (i) high 

sensitivity (ii) low amount of starting material is required (iii) high repeatability (iv) high 

throughput method (iv) it’s less time-consuming and (v) quantitation can be performed over 

several orders of magnitude. Other methods for miRNA quantitative studies include 
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microarray hybridization and massively parallel/next-generation sequencing (NGS), but these 

techniques are time-consuming compared to qPCR (Bertone et al., 2010). 

 

4.1.1 Quantitative real-time PCR (qRT-PCR) 

Real-time polymerase chain reaction (RT-PCR), commonly referred to as quantitative 

polymerase chain reaction (qPCR) is a laboratory technique based on the standard 

polymerase chain reaction (PCR) method (Lai, Rao and Huang, 2013; Guescini et al., 2008). 

Currently, qRT-PCR is regarded as the gold standard in the quantitative analysis of nucleic 

acid including DNA, RNA and microRNA molecules, in all areas of molecular biology. The 

main reason for the success includes the high sensitivity to the single cell level, robustness, 

high specificity to the disease of interest, good reproducibility, broad dynamic quantification 

range, not requiring large amount of samples and most importantly, its affordability (Repa 

and Valasek, 2005; van Rooij, 2011; Bremnes et al., 2014). The assay and primer design can 

often be automated. Additionally, this method is less time consuming compared to 

microarrays and NGS and the results do not require analysis or processing by biostatisticians 

(Bremnes et al., 2014). 

 

Quantitative PCR analysis is typically illustrated using an amplification plot (Figure 4.1). The 

technique can be broken down in four major phases: linear ground phase, early exponential 

phase, log linear phase and plateau phase (Mendrano and Wong, 2005). During the first 10-

15 cycles, known as the linear ground phase, the PCR is in the initial stage and fluoresence 

emission at each cycle hasn’t risen above background. During this phase the baseline 

fluorescence is calculated. During the early exponential phase, the amount of fluorescence 
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has reached a threshold where it is higher than the background levels. At the log linear phase, 

optimal amplification is reached with PCR product doubling after every cycle in an ideal 

reaction. Finally, during the plateau phase, the raction components become limited and the 

fluoresence intensity is no longer useful for data calculation (Mendrano and Wong, 2005; 

Pabinger et al., 2014). 
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Figure 4.1: The graph illustrates the amplification curve produced following amplification using qPCR (Mendrano and Wong, 2005).
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4.1.2 Quantitative Strategies in qRT-PCR 

Absolute quantification and relative quantification are the two strategies employed to 

quantify gene expression in qRT-PCR (Mendrano and Wong, 2005; Yuan et al., 2006). 

Absolute quantification determines the expression levels in absolute number of copies. 

It relies on a standard curve which is generated by using a serially diluted sample of a 

known concentration. The standard curve generates a linear relationship between the 

cycle threshold (CT) and the initial amounts of total RNA or cDNA in the sample, 

enabling the determination of the concentration based on their CT values (Mendrano and 

Wong, 2005; Yuan et al., 2006). Relative quantification determines fold exchange in 

expression between two samples. The changes in gene expression is analysed in a given 

sample relative to a reference sample. This method depends on the comparison between 

expression of a target gene versus a reference gene and the expression of the same gene 

in target sample versus reference samples (Mendrano and Wong, 2005; Yuan et al., 

2006).  

 

Expression profiling of the candidate miRNAs was performed in 2 Ovarian Cancer cell 

lines, 1 non-cancer cell line and an additional 3 non OC cancer cell lines namely (i) 

OWA28, Caov3, (ii) normal control (KMST-6) and (iii) other cancer cell lines (the cell 

lines include MCF-7, H157 and Hela). Our main aim is to establish which of the 

identified miRNA were specific to Ovarian Cancer and whether a definitive expression 

profile for OC could be established from the rest of the cancer cell lines using qRT-

PCR. This was accomplished by using various molecular techniques including cell 

culture, mRNA extraction cDNA synthesis and qRT-PCR. It is expected that each 
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cancer cell line will have a unique expression profile thus it can be used to differentiate 

cancer type from each other and it can potentially be used for diagnostics.
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4.2 Molecular methodologies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Flow diagram representing the molecular validation of miRNA’s identified 

through bioinformatics analysis. 
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4.2.1 Cell culture 

The panel selected (Table 4.1) contains 2 ovarian cell lines, 1 non-cancer cell line and 3 other 

cancer cell lines. The cell line, KMST-6 served as a control cell line against which expression 

of the miRNAs will be compared. These cell lines were selected to denote various types of 

ovarian tissue and to determine if miR1-miR6 were differentially expressed in Ovarian 

Cancer. The other cell-types (Table 4.1) was selected to assess the differential expression of 

the five miRNAs. Each cell line was cultured in specific media illustrated in Table 4.1 and 

supplemented with appropriate concentrations of Fetal Bovine Serum (FBS) and penicillin-

streptomycin (Penstrep).  
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Table 4.1: A list of cell lines used to investigate miR1-miR6. 

Name Description Status Cell type Media 

used 

Supplement Reference 

OAW28 Ovarian 

adenocarcinoma 

Cancer  Ovarian 

adherent 

DMEM FBS, Penstrep Hills et al., 

1989 

CaOV-3 Ovarian 

adenocarcinoma 

Cancer Ovarian 

adherent 

DMEM FBS, Pensrep Karlan et al., 

1994 

MCF-7 Mammary gland, 

metastatic site 

Breast Breast 

adherent 

DMEM FBS, Penstrep Soule et al., 

1973 

Hela Cervix epithelial Cervix Cervix 

adherent 

DMEM FBS, Penstrep Scherer, 

Syverton and 

Gey, 1953 

KMST-6 Embryonic 

fibroblasts 

Skin Skin 

adherent 

DMEM FBS, Penstrep Kawashima 

et al., 1995 

H157 Oral carcinoma/ 

Buccal mucosal 

Oral Oral 

adherent 

DMEM FBS, Penstrep Prime et al., 

1990 
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4.2.1.1 Thawing of cells 

Cryovials containing frozen cells were removed from the -150 
o
C freezer and allowed to thaw 

in a 37 °C water bath, until only a small piece of ice remained in the vial. The cryovial was 

sprayed with 70 % ethanol and transferred to a laminar flow hood. The cells were transferred 

to a 15 ml tube containing 3 ml of the appropriate complete media. The cell suspension was 

centrifuged at 3000 xg for 3 minutes. Following centrifugation, the 15 ml tube was sprayed 

with 70 % ethanol and transferred to the laminar flow hood. The supernatant was aseptically 

decanted and the pellet was re-suspended in 5 ml of the appropriate complete media, which 

was then transferred into a 25 cm
2 

cell culture flask and incubated at 37 °C in 5 % CO2. The 

cells were cultured with regular media changes until the cells were 90 % confluent. 

 

4.2.1.2 Trypsinization 

Once the cells have reached 90 % confluency, the cells were trypsinized. This was 

accomplished by decanting the media from the cell culture flask. The cells were then washed 

with 5 ml Phosphate Buffered Saline (PBS) to remove any remaining media. After the PBS 

was decanted, 3 ml of 1 X Trypsin was added to the flask. The flask was then placed into the 

incubator for approximately 2-5 minutes. Following incubation, the flask was taken to the 

microscope to assess the detachment process. When the cells were completely detached, 5 ml 

of appropriate complete media was added to the flask, to inactivate the trypsin. The cell 

suspension was transferred to a 15 ml tube and centrifuged for 3 minutes at 3000 xg.  
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4.2.1.3 Freezing down of cells 

When the cells reached the desired confluency, the cells were detached through a process 

known as trypsinization as described in Section 4.2.1.2. The pellet generated after 

centrifugation, following trypsinization, was re-suspended in the appropriate complete media 

and 10 % dimethyl sulfoxide (DMSO). The suspension was aliquoted into 2 ml cryovials and 

stored at -150 
o
C. 

 

4.2.2 Total RNA extraction 

Using the miRNeasy kit from QIAGEN, the RNA extraction process was carried out as 

follows:      

 

Confluent cells were detached through a process known as trypsinization as described in 

Section 4.2.1.2. Following centrifugation, the cell pellet was washed with PBS and then 

collected by centrifugation at 3000 xg for 3 minutes. This step was repeated twice. The cells 

were then re-suspended in 200 ul of PBS to make sure all the media was removed and then 

collected by centrifugation at 3000 xg for two minutes. The cells were lysed by adding 700 ul 

of lysis/binding buffer to the pellet. The sample was incubated for 5 minutes at 15-25 
o
C. 

Thereafter, 140 ul of chloroform was added and the sample was vortexed for 15 seconds. The 

sample was incubated at room temperature for 2-3 minutes after which the sample was 

centrifuged at 12 000 xg for 15 minutes. The upper aqueous phase was transferred to a new 

collection tube. Thereafter, 1.5 volumes of 100 % ethanol was added to this phase and mixed 

by pipetting. A high pure filter tube was combined with a collection tube and 700 ul of the 

sample was transferred to the upper reservoir of the high pure filter tube. The sample was 
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spun down at 8000 xg for 15 seconds and the flow through was discarded. The remainder of 

the sample was transferred to the high pure filter tube and then the filter tube was spun down 

at 8000 xg for 15 seconds. Following centrifugation, 500 ul of RPE buffer was added to the 

column, the sample was centrifuged for 15 seconds at 8000 xg and the flow through was 

discarded. Thereafter, 500 ul of RPE buffer was added and it was centrifuged for 2 minutes at 

8000 xg. The flow-through was subsequently discarded. The high pure filter tube was 

transferred to a sterile 1.5 ml microcentrifuge tube. The RNA was eluted by adding 35 ul 

RNAse free water to the column. The sample was centrifuged at 8000 xg for 1 minute. 

Following the completion of RNA extraction, the quality and quantity of the RNA was 

assessed using the Qubit (according to manufacturers’ instructions) and a 1 % agarose gel.  

 

4.2.3 Primer design 

Mirbase is a publically available database accessed at www.mirbase.org/, described in 

(Griffiths-Jones and Kazomara, 2013). For the purpose of this experiment, the database was 

used to extract the miRNA sequences for primer design. The miRNA ID was used as an input 

for this database. The miRNA sequence was extracted and saved into a Word document for 

further analysis. The primers against the miRNAs to be analyzed using qRT-PCR were 

designed using freely available software (miRprimer) that is able to work in the MS Windows 

platform and in a developer version written in the Ruby programming language. MiRprimer 

identifies primers specific for the sequences uploaded by using an algorithm that is based on 

an implementation of previously published rules. It also evaluates the susceptibility of the 

formation of secondary structures and primer dimers (Busk, 2014). The miRNA sequences 

obtained from miRBase were used as an input and the best primer pairs generated against 

each miRNA was selected and saved in a Word document for further analysis.  
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4.2.4 Poly (A) tailing and Reverse transcription 

In a total volume of 10 ul, 100 ng of total RNA, prepared in Section 4.2.2, was mixed with 

reaction buffer E. coli poly (A) polymerase, ATP, RT primer, dNTP mixture, M-MuLV 

reverse transcriptase and E. coli polymerase as described in Table 4.2. The reaction was 

incubated at 42 °C for 1 hour followed by an inactivation step for 5 minutes at 95 °C. The 

concentration of the cDNA synthesized was determined using the Qubit system and the 

quality was determined by conventional PCR and a 4 % agarose gel electrophoresis. 
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Table 4.2: Poly (A) tailing and reverse transcription reagents used for cDNA synthesis 

Reagents Final concentration Volume required 

Reaction buffer E. coli poly (A) polymerase 10 X 2 ul 

ATP 1 mM  2 ul 

RT primer 5’-

CAGGTCCAGTTTTTTTTTTTTTTTVN (V 

is A, C and G; and N is A, C, G, T) 

10 uM  2 ul 

dNTP mix 1 mM dATP, 1 mM 

dCTP, 1 mM dGTP, 

1 mM dTTP 

2 ul 

M-MuLV reverse transcriptase 200 U/ul 1 ul 

E.coli poly (A) polymerase 5 000 U/ml 0.4 ul 

Total RNA 100 ng variable 

RNase free water  variable 
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4.2.5 The validation of miRNA expression levels in Ovarian Cancer and 

other cell lines using qRT-PCR 

A 2 X LightCycler FastStart SYBR Green I master mix was prepared (Kappa SYBR fast 

Master Mix) according to the manufacturer’s instructions. For all qRT-PCR reactions a 

standard reaction was prepared, containing 2 X KAPA SYBR FAST qRT-PCR master mix, 

forward and reverse primers (10 uM); and nuclease free water to a final volume of 9 ul as 

described in Table 4.3. Experiments were set containing decreasing concentrations starting 

with 250 ng of cDNA to 0.0025 ng. The reactions were prepared on ice. A 96 well Real Time 

PCR plate was placed on ice and 9 ul of the master mix and 1 ul of cDNA was aliquoted 

respectively to each well. Internal controls were prepared by adding nuclease free water 

instead of cDNA for each of the cell lines assessed (Table 4.3). The Real Time PCR plate 

was covered with a clear foil seal and centrifuged to make sure all the samples were at the 

bottom of the wells of the 96 well plate. The PCR plate was transferred to the Light Cycler 

480 instrument and incubated at 95 °C for 5 minutes, followed by 40 cycles of 95 °C for 15 

seconds and 60 °C for 15 seconds. For melting curve analysis, the samples were denatured at 

95 °C, and then cooled to 65 °C at 20 °C per second. Fluorescence signals were collected at a 

wavelength of 530 nm.  
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Table 4.3: Reaction prepared for qRT-PCR 

Reagents Final concentration Volume required 

Forward primer 10 uM  0,5 ul 

Reverse primer 10 uM  0,5 ul 

PCR master mix (SYBR 

Green) 

2 X 5 ul 

Nuclease free water  variable 

 

 

The standard or calibration curves were generated by the LightCycler software using serially 

diluted cDNA standards (250 to 0.0025 ng). Data on expression levels were obtained in the 

form of crossing points or cycle threshold. The expression levels were determined relative to 

the reference miRNA using the Livaks method (Livak and Schmittgen, 2008): 

 

Step 1: Normalise ∆CT (target miRNA) to ∆CT (reference miRNA) 

1. ∆CT (control calibrator) = CT (target calibrator) – CT (reference calibrator) 

2. ∆CT (tumour test) = CT (target test) – CT (reference test) 

 

Step 2: Normalise ∆CT (tumour test) to ∆CT (reference test) 

Change in expression = ∆CT (tumour test) - ∆CT (reference test/ control calibrator) 

 

http://etd.uwc.ac.za



 

 

 

 

156 
 

Step 3: Fold difference in expression between the tumour test and the reference test 

Normalise expression ratio = 2
-∆∆CT

 

 

If the first ∆CT is greater than the second ∆CT then the value of 2
-∆∆Ct

 will be less than 1, 

implying that there is a reduction in expression. Therefore, the negative inverse of 2
-∆∆Ct

 will 

give the fold change reduction in expression. 

 

4.3 Results 

4.3.1 Analysis of amplification curves 

Internal controls (Let7a) were selected to normalize the relative quantification of the 

candidate miRNAs. This was done through the Roche LightCycler 480 using the melting 

curve analysis software. The x-axis depicts the number of cycles while the y-axis shows the 

fluorescence of the reference dye (SYBR green). Typically, CT values below 29 cycles show 

abundant nucleic acids and the CT values above 39 cycles indicate minimal amounts, and 

possibly contamination. The amplification plot for the reference miRNA (Let7a) is shown in 

Figure 4.3. Figure 4.4 shows the amplification plot of miR 1. The optimum dilution is 25 ng 

at approximately 28 cycles for both Let 7a and miR 1. 
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Figure 4.3: Amplification curve of Let7a in KMST-6 cell line. The various amplification curves represent various concentrations of KMST-6 

cDNA ranging from 250 ng to 0.0025 ng. 
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Figure 4.4: Amplification of miRNA 1 in KMST-6 cell line. The various amplifications curves represent different KMST-6 cDNA 

concentrations ranging from 250 ng to 0.0025 ng. 
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4.3.2 Melting curve analysis 

Melting curve analysis was performed to determine the homogeneity of the PCR product 

investigated. The melting curves generated were used to determine if there was (a) mis-

priming, (b) contamination (c) or any other inconsistencies relating to the amplification 

process. The curves were generated by plotting the rate of change of the fluorescence units 

(RFU) with time (T) (-d(RFU)/dT) versus the temperature. The output is a single peak 

occurring at the desired melting temperature.  The melting curve for the reference miRNA 

and miR1 is shown in Figure 4.5 and Figure 4.6. From the Figures it is evident that only one 

peak was present for the reference miRNA as well as the target miRNA (miR1) thus the 

single peak observed presents a pure, single target product (amplicon).  
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Figure 4.5: Let7a in KMST-6. A prominent peak is seen at Tm of 73
o
C.
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Figure 4.6: MiR1 in KMST-6 cells. A prominent peak is seen at Tm of 72
o
C. 
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4.3.3 Analysis of qRT-PCR expression profiling data 

Expression profiling was performed to determine the specificity of the candidate miRNAs 

identified using in silico methodologies (Lottering, 2015). Various cancer cell lines were used 

including Ovarian Cancer cell lines and a normal cancer cell line illustrated in Figure 4.7 to 

Figure 4.12. The KMST-6 cell line, normal fibroblast, was used for sample normalisation. 

Differential expression of the six miRNAs was observed across all cancer cell lines shown in 

Figure 4.12. MiR1 is significantly highly expressed in both Ovarian Cancer cell lines 

compared to other cancer cell lines investigated (OAW28 and CoaV-3), indicating a unique 

expression profile. The expression ratios were 8.9 and 10.5 respectively (Figure 4.10 and 

Figure 4.11). Elevated expression of miR1 was also observed in HeLa and H157 but it wasn’t 

significant. Furthermore, two miRNAs (miR2 and miR4) were under expressed in CoaV-3 

(Figure 4.11), however, it was also down regulated in the HeLa (Figure 4.7). The expression 

ratio was down regulated more in the ovarian cell line thus by combining it with the current 

prognostic biomarkers it could be used for prognostics. 
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Figure 4.7: Relative expression ratio plot comparing the expression of the six candidate miRNAs in the HeLa (cervical epithelial) cell 

line.  
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Figure 4.8: Relative expression ratio plot comparing the expression of the six candidate miRNAs in the H157 (oral carcinoma/ buccal 

mucosal) cell line. 
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Figure 4.9: Relative expression ratio plot comparing the expression of the six candidate miRNAs in the MCF7 (mammary gland, 

metastatic site) cell line. 
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Figure 4.10: Relative expression ratio plot comparing the expression of the six candidate miRNAs in the OAW28 (ovarian 

adenocarcinoma) cell line.  
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Figure 4.11: Relative expression ratio plot comparing the expression of the six candidate miRNAs in the CaOV-3 (ovarian 

adenocarcinoma) cell line. 
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Figure 4.12: Relative expression ratio plot of the six miRNAs in various cancer cell lines including Ovarian Cancer (OAW28 and CaoV-

3) cell lines. The bars indicate up-regulation (above 0) and down-regulation (below 0) of the miRNAs. 
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4.4 Discussion 

The aim of the chapter was to determine the relative expression of the six candidate 

miRNAs identified through in silico methodologies in a previous study (Lottering, 

2015). Based on the strong association of these miRNAs with Ovarian Cancer, they 

were selected as potential diagnostic biomarkers for early detection of the disease. An 

array of tumour cell lines including Ovarian Cancer cell lines were selected to 

molecularly validate the putative miRNAs using qRT-PCR as described in Section 4.2. 

Normalization using an internal reference miRNA (Let7a) was used to compensate for 

the variations in expression patterns that could occur as a result of sample preparation 

and cDNA synthesis to increase the fidelity of the quantification process (Ling and 

Salvaterra, 2011). 

 

During the course of the study one control was selected namely Let7a because of its 

stability in all cell lines (Kinose et al., 2014). Let7a precursor miRNA is widely viewed 

as a tumour suppressor miRNA. A vast majority of its targets tend to have oncogenic 

properties. It was determined that Let7a target Caspase-3, a pivotal protease activated 

during apoptosis in many cell lines including OC cell lines. Furthermore, it has been 

suggested that Let7a regulates various factors that play a role in the cell cycle and cell 

proliferation which in turn functions as regulators of the initiation and progression of all 

cancer types (Boyerinas et al., 2010; Kinose et al., 2014 and Rouch and Slack, 2008).  
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4.4.1 Analysis of Amplification curves and Melting curves 

An amplification curve and melting curve was constructed to differentiate between the 

specific amplicon compared to primer-dimers. The amplification curves demonstrated in 

Figure 4.3 and Figure 4.4 were obtained from a dilution series (250 ng to 0.0025 ng) of 

miR1 and the reference miRNA (Let7a). Upon examination of Figure 4.3 and Figure 

4.4, clustering of the amplification curves at the respective dilutions was evident. 

However in Figure 4.4, at lower concentrations reproducibility of the triplicates were 

not consistent. The inconsistencies could be a result of random errors including 

variations in template input due to pipetting. This is indicated by a higher CT values in 

one triplicate compared to the others. Thus, sample normalisation is important to 

compensate for inter- and intra-kinetic qRT-PCR variations including sample variations, 

RNA extraction and quality and cDNA synthesis efficiency (Reboucas et al., 2013; 

Turabelidze, Guo and DiPietro, 2011; Banda et al., 2008).  

 

Melting curve analysis was performed to check the specificity of the system. It is 

generated by plotting the rate of change of the relative fluorescence units (RFU) with 

time (T) (-d(RFU)/dT) versus the temperature. The output is a melting curve with a 

peak signal occurring at the melting temperature (Tm). Strand complementarity, product 

length, sequence and GC content are responsible for the Tm of a particular sample 

(Blake, 2006; Lando et al., 2015). Therefore, non-specific amplification products, mis-

priming, primer-dimer artefacts and inhibitor binding will result in alterations of the 

melting temperature and curve of the particular sample. As indicated by Figure 4.5 and 

Figure 4.6, only one prominent peak was amplified using miR1 and Let7a respectively. 
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However, in Figure 4.5 there is a small peak at 78.5 
O
C, in one of the triplicates. One 

explanation for the two peaks could indicate the presence of contaminating or off-target 

products (Lando et al., 2015).  Furthermore, prominent peak is seen at Tm 72 
O
C in 

Figure 4.5 and at Tm 73 
O
C in Figure 4.6. This corresponds to the melting temperatures 

calculated from the miRNA sequence obtained from mirBase, indicating that only the 

target products amplified (Griffiths-Jones and Kazomara, 2013). Hence, it can be 

concluded that there was no interference in the PCR reactions with regards to non-

specific products or primer dimers for all miRNA gene targets (data not shown). 

 

4.4.2 Expression profiling plot analysis 

The comparative CT method (also referred to as the 2
-∆∆CT

 method) was used to 

calculate relative changes in expression between two samples using a mathematical 

model. The data generated was imported into an Excel spreadsheet to create a graph 

illustrating the relative expression ratios of the candidate miRNAs in various cell lines 

described in Section 4.2.5. The target miRNA was normalized to a reference miRNA 

(Let7a) to minimise sample to sample variations (Roa et al., 2014; Schmittgen and 

Livak, 2008). Analysis was performed to evaluate the specificity of the putative 

miRNAs identified as potential biomarkers for early detection of the disease in two OC 

cell lines, a non-cancerous cell line and other cancer cell types (illustrated in Table 4.1). 

This study aimed to identify which miRNAs were differentially expressed during the 

development of the disease. The six candidate miRNAs were relatively measured in all 

cancer types against the non-cancer cell line, KMST-6.  
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Differential expression was observed in all cancer cell lines (Figure 4.7 to Figure 4.12), 

with miR1 being significantly up-regulated in the two Ovarian Cancer cell lines: 

OWA28 and CaoV-3 (neoplasia/primary ovarian tumour) (Figure 4.10 and Figure 4.11) 

in comparison to other cell lines tested (Hills et al., 1989; Karlan et al., 1994).  MiR1 

was up-regulated with a factor of 8.90 and 10.51 respectively. The qRT-PCR analysis 

showed that miR1 was over-expressed in Hela and H157 with a factor of 4.40 and 2.45 

respectively. However, it was more significantly over expressed in the Ovarian Cancer 

cell lines thus it could be a good diagnostic indicator for Ovarian Cancer. From the in 

silico studies, miR1 was predicted to regulate Cartilage Intermediate Layer Protein 

(CILP), illustrated in Table 2.1. The miRNA target gene has been linked to processes, 

functions and pathways known to be involved in the initiation and progression of 

Ovarian Cancer (Section 2.4). CILP has been found to have decreased expression in 

tumour tissue (46.42 digital expression units, DEU) compared to normal tissue (112.33 

DEU) in the GeneHub database. Also, in TiGER database, CILP was found to be 

preferentially expressed in normal ovarian tissue (Lottering, 2015). This suggests that 

over expression of miR1 results in a decreased expression of the target gene. However, 

further analysis is required to definitively conclude the association. 

 

Through fluorescence microscopy assay Seki and associates (2005) showed that CILP is 

co-localized with Transcription Growth Factor beta (TGFβ) receptors suggesting that 

these genes/proteins have a significant statistical biological relationship. CILP may act 

by antagonizing TGFβ1 functions. Furthermore; deregulation of TGFβ receptors was 

strongly associated with Ovarian Cancer. TGFβ has the ability to transform from a 

tumour suppressor (in normal ovarian surface epithelial cells) to a tumour promoter. 
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When TGFβ acts as a tumour promoter, it enhances tumour cell proliferation and 

promotes metastasis through the induction of the Epithelial- Mesenchymal-Transition 

(EMT) process. Thus, over expression of the TGFβ receptors in human ovarian tumours 

results in a poor prognostic outcome of the disease (Cheng et al., 2012; Hirashima et al., 

2003; Yeung et al., 2013).  

 

Additionally, as shown in Section 2.4.1, CILP is strongly associated with Insulin-Like 

growth factor-1 (IGF-1) and Insulin-Like growth factor-2 (IGF-2) signalling. IGF-1 has 

a significant role in cellular proliferation, cell metabolism, differentiation and survival. 

Moreover, deregulation of IGF-1 is involved in carcinogenesis of various tumour 

entities including ovarian tumours (Rohr et al., 2016; Li et al., 2016). Endometriosis in 

the ovary confers a hormonal imbalance and triggers an up-regulation of growth factors 

such as IGF-1 to which Ovarian Cancer cells have demonstrated dependency. 

Moreover, IGF-1 levels are higher in severe cases of endometriosis (Nezhat et al., 2008; 

Koshiyama, Matsumura and Konishi, 2014; Gianuzzi et al., 2016). A study conducted 

by Kuroda et al., (2001) showed that over-expression of IGF-1inhibit apoptosis in 

normal ovarian surface epithelial cells following a 72 hour exposure to human chorionic 

gonadotropin (hCG) hormone. They also investigated the effect of IGF-1 independently 

on apoptosis of normal ovarian surface epithelial cells using Cell Death Detection 

ELISA (Kuroda et al., 2001). Treatment with 0.1 ug/ml and 0.5 ug/ml IGF-1 decrease 

apoptosis in ovarian surface epithelial cells by 65.9 % and 70.4 % respectively 

compared to the control. These findings indicate that deregulation of IGF-1 is 

significant in the inhibition of apoptosis. Additionally, endometriosis and Ovarian 

Cancer has shown common genetic alterations suggesting a possible malignant genetic 

http://etd.uwc.ac.za



 

 

 

 

174 
 

transition spectrum, from endometriosis to OC (Kuroda et al., 2001; Nezhat et al., 2008; 

Gianuzzi et al., 2016).  

 

A study done by Dong and associates (2015) investigated the significance of IGF-2 in 

clinical outcome of Ovarian Cancer patients with regards to overall survival (OS) and 

progression-free survival (PFS) using a Kaplan-Meier test. They showed that there was 

a statistical significance of groups with elevated IGF-2 expression levels compared to 

low expression levels in relation to OS (HR=1.44; p=0.000). Additionally, patients with 

high IGF-2 expression also had a poorer PFS compared to the low expression group 

(HR=1.35; p=0.000) (Dong et al., 2015). They also investigated the expression levels of 

the gene in normal tissue compared to OC tissue; and the prognostic significance in OC 

patients at different stages, histological grades and following treatment. The expression 

of IGF-2 was increased in Ovarian Cancer compared to normal tissue at the mRNA and 

protein level (Dong et al., 2015). The analysis also revealed that elevated expression of 

IGF-2 results in poor prognostic patient outcome at clinical stages I, II and III, 

histological grade 2 and 3; and those patients treated with chemotherapy containing 

platin and Taxol (Dong et al., 2015). This further supports the result that miR1 is over-

expressed in both Ovarian Cancer cell lines illustrated in Figure 4.9 and Figure 4.10 

respectively. 

 

Additionally, miR2 (CILP) and miR4 (NPR3) were significantly down-regulated in 

Coav-3, with expression ratios of -9.85 and -10.78 respectively (Figure 4.11). These 

miRNAs were also under expressed in HeLa as shown in Figure 4.7. The expression 
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levels were -7.91 and -8.67 respectively. Regardless of these miRNAs being under 

expressed in HeLa it is more under expressed in the ovarian cell lines. Clinical and basic 

research investigated the use of multiple biomarkers to overcome the drawbacks of the 

current diagnostic and prognostic biomarkers. Using a combination of biomarkers has 

produced promising results and it could further increase the prognostic significance of 

the current biomarker, CA-125 (Huang, Hu and Sood, 2014; Nozaki et al., 2009).  

 

According to Section 3.5 the genes (CILP and NPR3) these miRNAs target are good 

prognostic markers in Kaplan-Meier plotter database (Figure 3.2) and SurvExpress 

database (Figure 3.3) as described in Section 3.5. CILP is associated with various 

mechanisms involved in the initiation and progression of Ovarian Cancer as previously 

described (Hirashima et al., 2003; Cheng et al., 2012; Yeung et al., 2013; Rohr et al., 

2016; Li et al., 2016). However, the molecular mechanisms underlying NPR3 in the 

development of cancer is not well defined. Studies have suggested the role of NPR3 in 

anti-apoptosis via breast cancer type 1 susceptibility protein (BRCA1) and tumour 

necrosis factor α (TNF-α) (Lin et al., 2016). Numerous studies indicate the 

dysregulation of these genes in the commencement of cancer, specifically OC. 

Additionally; studies indicated the involvement of NPR3 in hormone binding, 

transferrin endocytosis, cAMP biosynthetic process, adenylate cyclase activity, 

metabolic and growth processes; all of which have been previously described in cancer 

processes in Chapter 2. 
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Furthermore, reduced levels of mature miRNAs have been reported in many tumours, 

including ovarian tumours. It is often associated with poor prognosis of various cancer 

types. Under-expression is a consequence of genomic copy number loss, epigenetic 

silencing, and deregulation of their biogenesis pathway as well as transcriptional 

repression. Reduced DICER and DROSHA expression levels are well documented in an 

array of cancer types (Jansson and Lund, 2012; Rupaimoole et al., 2016). In 2008, 

Merritt and associates investigated the effects of deregulated DICER and DROSHA 

expression in Ovarian Cancer. They measured the mRNA levels of the components in 

OC patients using qRT-PCR and compared the result to clinical outcomes. Validation 

was performed using published microarray data from cohorts of OC patients. Their 

findings indicated that decreased levels of DICER and DROSHA are associated with 

poor patient survival. Similarly, Rupaimoole and associates (2014) showed that 

deregulation of the miRNA biogenesis pathway as a consequence of decreased DICER 

and DROSHA, results in a poor clinical outcome of Ovarian Cancer patients. MiR-503 

and its target genes are down regulated by DICER in high grade Ovarian Cancer. The 

miRNA induces cancer cell growth and migration, ultimately resulting in poor 

prognostic patient outcome (Park et al., 2013; Li et al., 2015). Moreover, elevated 

DICER and DROSHA mRNA levels are associated with an increased median survival 

(Peng and Croce, 2016). 

 

Furthermore, we also examined the expression of miR3, miR5 and miR6 in the 6 cancer 

cell lines in comparison to the normal cell line as seen in Figure 4.7-Figure 4.11. The 

data as depicted in the above mentioned figures showed no significant elevation as well 

as under expression. MiR5 which targets NDEL1 as seen in Table 2.1 was found to be 
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up-regulated in H157 and OWA28 (Figure 4.8 and Figure 4.10). It was also found to be 

down regulated in MCF7 (Figure 4.9). NDEL1 functions by anchoring the centrosome. 

Centrosome aberrations were postulated to cause cancer by promoting genome 

instability. During mitosis this presents a paradox.  Cancer cells possessing extra 

chromosomes utilize multipolar mitosis to escape death by clustering of supernumerary 

centrosomes into bipolar arrays. Supernumerary centrosomes are frequently found in 

cancer cells (Godinho, Kwon and Pellman, 2009; Zyss and Gergely, 2009; Gonczy, 

2015). In addition, miR3 and miR6 shows differential expression in the cancer cell lines 

investigated but the results weren’t significant in any of the cell lines. A given miRNA 

may only be expressed in some cancer tissues but not in others. It may also be present at 

different stages of cancer development or under certain circumstances (Yue and Tigyi, 

2006; Wijnhoven, Michael and Watson, 2007). This suggests that the two miRNAs are 

dysregulated and regulate the identified target genes (Table 2.1) at different stages of 

cancer and cancer cell lines, other than the cell lines used for this study illustrated in 

Table 4.1. 

 

4.5 Conclusion 

Molecular validation is a crucial step in biomarker discovery. There are arrays of 

methodologies that can be employed for biomarker discovery but they have their 

limitations. In this study we evaluated the expression profiles of the six miRNAs that 

were predicted via in silico methodologies. It is evident that the miRNAs in the study 

are differentially expressed across all cancer cell lines investigated. MiR1 showed 

significant up-regulation in the two Ovarian Cancer cell lines used, OWA28 and CoaV-
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3, compared to the normal cell line (KMST-6). Also, the miRNA was more over 

expressed in the OC cell line compared to the other cancer cell lines used in the study. 

The expression ratio of miR1 was found to be 8.91 and 10.51 in OWA28 and CoaV-3 

respectively. This makes it a good candidate biomarker for OC diagnosis. However, 

additional cell lines and patient samples are required to predict accuracy of the 

biomarker in the disease. The study also showed that miR2 and miR4 could be a 

potential prognostic biomarker for Ovarian Cancer. Nonetheless, these miRNAa were 

also under expressed in HeLa. The expression ratios were -7.91 and -8.67 respectively. 

Using these miRNAs in combination with the current prognostic tool, CA-125, could 

improve the predictive accuracy in Ovarian Cancer. The study serves as a basis for 

future investigations to determine if the candidate miRNAs can be used as potential 

biomarkers for diagnosis of Ovarian Cancer as well as prognostic markers. 
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Chapter 5 

General discussion and future directions 

 

5.1 General discussion 

Cancer is a complex disease where cells in a specific part of the body such as the ovary begin 

to reproduce uncontrollably. It is one of the leading causes of morbidity and mortality in 

women, worldwide. In 2015, there were 8.8 million cancer-related deaths globally. The 

number of cancer cases is expected to increase by 70 % over the next decade (World Health 

Organization, 2016). Cancer mortality cases can be reduced or avoided through early 

diagnosis and treatment. However, the lack of specific symptoms in the early stages of the 

disease and the limited understanding of the disease development and progression at a 

molecular level makes early diagnosis difficult (National Cancer Institute, 2015; Bristow et 

al., 2014).  

 

Another reason for the increased mortality rates in cancer patients is due to the lack of 

clinically available diagnostic tools with adequate sensitivity and specificity for early 

detection (National Cancer Institute, 2015). Also, some of the diagnostic tools are invasive, 

ineffective and expensive. In Ovarian Cancer, if detected and treated while the cancer cells 

are still localized (Stage IA and B), the 5-year survival rate is above 92 %. However, if the 

cancer cells have spread to different organs and tissues, the 5-year survival rate is less than 17 

% (Cancer Research UK, 2016). Therefore, adequate diagnostic tools are required for early 

diagnosis of cancer specifically Ovarian Cancer (Konishi, Koshiyama and Matsumura, 2014). 
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The purpose of the study was to discover biomarkers for Ovarian Cancer to aid in the early 

diagnosis of the disease and overcome the limitations of the current diagnostic tools. 

Previously in silico methodologies were employed to identify candidate microRNAs that 

have not previously been described nor showed association to Ovarian Cancer as well as 

microRNA target genes associated with the initiation and progression of Ovarian Cancer 

(Lottering, 2015). The study identified six miRNAs and seven miRNA target genes from a 

large number of miRNAs and target genes that were verified through subsequent steps of 

elimination using in silico methods and thus were confidently selected for further 

bioinformatics analysis and molecular validation.  

 

In the present study, the microRNA target genes identified were functionally characterized 

using various in silico analysis. Most of the genes were predicted to be involved in cancer-

related processes (especially Ovarian Cancer processes) by Gene Ontology (Gene Ontology 

Consortium), protein-protein interactions (STRING and GeneMANIA), transcription factor 

analysis (GeneCards and TFactS®) and pathway analysis (Reactome) (Chapter 3). This 

section of the study successfully implicated the miRNA target genes in cancer, based on their 

regulatory elements (TFs), interacting proteins and specific pathway involvement analysis. 

Furthermore, this subsequently linked the miRNAs that target those genes to processes 

implicated in cancer specifically Ovarian Cancer.  

 

Furthermore, in silico prognostic/predictive analysis of the miRNA target genes was done 

(Chapter 4). Predictive validation showed that most of the target genes showed prognostic 

significance based on the Kaplan-Meier plots generated and the p-values (p value < 0.05) 

obtained for analysis. Two out of the seven target genes (CILP and FARP1) were common in 
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multiple databases used for the prognostic studies. These genes have also been linked to 

various factors and processes that result in poor prognosis of Ovarian Cancer as described in 

Section 2.4.  

 

In essence, computational biology in conjunction with molecular biology provides a powerful 

combination in completely understanding the potential biomarkers identified. Our study 

shows a unique expression profile for each miRNA across various cancer and non-cancer cell 

lines investigated. In this study, a panel of cancer cell lines were investigated to determine a 

unique miRNA expression profile for each miRNA. The study revealed that the miRNAs 

were differentially expressed across all cancer cell lines compared to the non-cancerous cell 

line (KMST-6). One miRNA was shown to be a potential diagnostic biomarker in Ovarian 

Cancer (miR1) based on the expression profile, though it has been suggested that one 

biomarker is not sufficient to diagnose such a complex disease (Agarwal et al., 2011). This 

miRNA targets CILP as shown in Table 2.1. In Section 3.5, CILP has been linked to poor 

prognostic patient outcome in various databases. Also, in a previous study, it was shown that 

the target gene was preferentially expressed in the ovary compared to other tissues (Lottering, 

2015). However, it is expressed at lower levels in tumour tissue. It can be postulated that the 

miRNA down-regulates CILP in ovarian tumours. However, further analysis is required to 

determine the relationship between miR1 and CILP. MiR2 and miR4 were down regulated in 

Ovarian Cancer (CoaV-3) as well as in Cervical Cancer (HeLa). However, to increase the 

predictive accuracy of the candidate biomarkers, it could be used in combination with the 

current predictive biomarkers or known biomarkers used within the clinical setting (Huang, 

Hu and Sood, 2014; Nozaki et al., 2009). 
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5.2 Future work 

Further bioinformatics analysis should be done between the identified miRNA targets and 

known clinical biomarkers for Ovarian Cancer. Also, bioinformatics should be employed to 

further understand the identified target genes and identify other relations it might have to 

cancer, specifically Ovarian Cancer. Using in silico methods to discover novel biomarkers 

should be a continuous process as databases are regularly updated. Also, further prognostic 

analysis using both in silico and molecular approaches will be evaluated to conclusively 

determine the prognostic significance of the miRNA target genes. The prognostic 

significance of the miRNAs can also be determined using various molecular processes and 

statistical analysis including multivariable logistic regression models and multivariable Cox 

proportional hazards models (Schwind et al., 2010; Wei et al., 2013) 

 

The study recognized the need for additional cell lines to confirm the specificity of the 

miRNAs identified. Future experiments can be done on urine, saliva and tissue samples to 

determine their efficiency in biological samples as potential biomarkers in Ovarian Cancer. A 

molecular approach can be employed to evaluate the gene expression patterns of the 

candidate target genes identified in cancerous and non-cancerous cell lines. The objective 

would be to compare the expression profiles of the miRNAs and the target genes to determine 

deregulation in a specific miRNA and its target gene. Experimental validation will be done 

on the deregulated miRNA and target gene such as the luciferase assay to determine if the 

miRNA do target the predicted target gene (s). 
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Further studies could include the exploration of nano-diagnostics by using nano-devices. 

Biomarkers present in biological fluids exist in small quantities therefore it might be masked 

by other proteins. Nanotechnology can ensure the detection of these miRNA biomarkers at a 

nano-scale by enhancing the throughput and sensitivity of the identification and screening of 

the potential biomarkers (Hu et al.,2011). Therefore, the combination of nanotechnology in 

the form of gold nanoparticles could be used in the development of a lateral flow device for 

the early detection/diagnosis of Ovarian Cancer as shown in Figure 6.1. This has the potential 

to be developed into a diagnostic test that is cost effective, non-invasive and it can be rapidly 

adapted into clinical practice (Sharma et al., 2015; Sajid, Kwade and Duad, 2014). 

 

 

 

Figure 5.1: An example of a lateral flow device that can be developed for the detection 

of Ovarian Cancer using the discovered miRNAs (Sajid, Kwade and Duad, 2014). 
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