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Abstract  

 
Glycine max (soybean) is an important crop species globally as it is used as a protein-rich food 

and feed crop and as a source of oils used in the food and biofuel industry. However, the 

growth and yield of soybean is adversely affected by drought. Exposure of soybean to drought 

leads to accumulation of reactive oxygen species (ROS) and cell membrane instability. Sterols 

are membrane components that regulates membrane fluidity and permeability. Besides being 

major components of the cell membranes, sterols such as lanosterol appear to play a role in 

the regulation of ROS scavenging and some are precursors to brassinosteroids that act as 

signaling molecules with hormonal function that regulate growth, development and 

responses to abiotic stresses such as drought and salinity. In this study, the involvement of 

plant sterols, also known as phytosterols, in the regulation of soybean responses to drought 

stress was investigated in Glycine max by determining the effects of drought on the 

expression of a candidate lanosterol synthase gene (Glyma08g24160) and the content of a 

subset of phytosterols in soybean. The effects of inhibition of sterol synthesis on ROS 

production and on superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) 

and dehydroascorbate reductase (DHAR) were investigated. The concentration of hydrogen 

peroxide (H2O2) as well as superoxide (O2˙-) increased in response to drought and sterol 

synthesis inhibition, however, O2˙- concentration and sterol contents declined under drought 

stress and sterol synthesis inhibition.  Furthermore, drought stress altered the expression of 
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a gene encoding a lanosterol synthase, suggesting that lanosterol and phytosterols could be 

involved in regulating soybean responses to drought.  
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Aims and objectives  

 To examine the effect of water deficit on soybean by measuring seedling fresh 

weight and length. 

 To determine the effect of drought on expression of a sterol biosynthesis gene. 

 To determine the impact of drought on sterol content in soybean leaves. 

 To determine the impacts of changes in sterol content as a result of drought and 

inhibition of sterol synthesis on production of reactive oxygen species (ROS) and the 

activity of antioxidant enzymes. 

Hypothesis  

 Drought stress leads to increased expression of a candidate lanosterol biosynthesis 

gene and low sterol content of soybean leaves mediate ROS production and 

antioxidant enzyme activities. 
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CHAPTER 1 

 LITERATURE REVIEW 

1.1 introduction  

The Fabaceae, commonly known as the legumes, constitute the third largest family of 

economically important flowering plants (Lewis et al., 2005). The legume family is unique due 

to its ability to fix atmospheric nitrogen, using specialized organs nodules on their roots, to 

ammonia in symbiosis with nitrogen fixing bacteria ‘rhizobia’. This makes legumes essential 

components of agricultural ecosystems as it reduces the need for nitrogen in synthetic 

fertilizers which cause land and water pollution (Varshney et al., 2009). Glycine max (soybean) 

is amongst the important legume crops, as it is an excellent source of dietary protein, 

carbohydrate, vitamins and minerals for both human food and animal feed (Sakai and Kogiso, 

2008). This makes soybean an important crop relevant for food security and significant in 

nutrition for developing countries. Soybean also has health benefits as it has been shown to 

contain compounds that have protective effects against cancer, menopause, diabetes and 

various chronic renal diseases (Friedman and Brandon, 2001). Soybean is also used in the 

production of biodiesel (Pimentel and Patzek, 2005). 

However, the growth and development of plants is negatively affected by various biotic and 

abiotic stresses such as salinity, drought, fungi, bacteria and high temperatures. Drought is 

one of the major environmental factors that cause crop yield loss.  One-third of the world’s 

population lives in water-deficient regions and it is estimated that drought will continue being 

the major problem for global crop yield as it is estimated to become more frequent and severe 

(Cutforth et al., 2007). Drought negatively affects soybean production worldwide and 

threatens food and protein security (Kunert et al., 2016). Drought can reduce soybean yield 

 

 

 

 

http://etd.uwc.ac.za/



2 
 

by approximately 40% (Specht et al., 2001). Various physiological, morphological and 

biochemical changes are induced by drought stress in plants, and as a result normal plant 

growth and development is disturbed (Manavalan et al., 2009). The symptoms of water deficit 

are generally suppressed growth, reduced photosynthetic rate, reduced transpiration rate, 

and leaf senescence (Chaves et al., 2003). 

Plants respond to drought stress using numerous mechanisms like gene expression, protein 

expression and accumulation of osmoprotectants (Gill and Tuteja, 2010). Reactive oxygen 

species (ROS) such as hydrogen peroxide (H2O2), Superoxide (O2˙-), singlet oxygen (1O2) and 

the hydroxyl radical (˙OH) form in plant cells as a result of normal metabolism (Ahmad et al., 

2008). ROS play an important  role as signalling molecules  in plants by controlling processes 

such as growth, development, response to biotic and abiotic environmental stimuli and 

programmed cell death (Mittler et al., 2004). Furthermore, under physiological steady state 

conditions ROS can be scavenged by the plant’s antioxidant defense system (Foyer and 

Noctor, 2005). However, the balance between ROS production and scavenging may be 

disturbed by several abiotic and biotic stresses such drought, salinity, pathogens and high 

temperatures; leading to overproduction of ROS. High levels of ROS in cellular components 

are toxic (Scandalios, 1997). ROS at these high levels can react with unsaturated fatty acids, 

nuclei acids and proteins and lead to peroxidation of essential membrane lipids, DNA lesions 

and site specific amino acid modifications (Choudhury et al., 2013). Drought-induced ROS 

accumulation is counteracted by enzymatic antioxidant systems that include enzymes such as 

superoxide dismutase (SOD), ascorbate peroxidase and catalase (CAT). The antioxidant 

defense system protects plants cells from oxidative damage (Tang et al., 2006). 
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 Recently, plant sterols have been implicated in drought stress tolerance by regulating ROS 

production (Pose et al., 2009, Kumar et al., 2015). Plant sterols are important components of 

the membrane in eukaryotic organisms. They control membrane fluidity and permeability 

(Piironen et al., 2000) and play an essential role in plant growth and development. Mutants 

that were defective in a sterol biosynthesis gene precursor had reduced sterol content and 

ROS production (Cao et al., 2005; Pose et al., 2009; Wang et al., 2012). Additionally, 

Arabidopsis plants defective in lanosterol synthesis have an albino phenotype and have poor 

cell viability (Babiychuk et al., 2008). There is thus a possibility that sterol biosynthesis genes 

may be involved in signalling processes that regulates plant responses to drought, possibly 

involving ROS scavenging. Therefore, in this study, we used semi-quantitative polymerase 

chain reaction (semi-qPCR) and quantitative polymerase chain reaction (qPCR) to determine 

if exposure of soybean plants to drought alters the expression of a gene encoding a candidate 

lanosterol synthase. This would be indicative of a potential role of the gene in regulating 

soybean responses to drought stress. To further understand responses of soybean to drought 

stress, we studied changes in sterol content on ROS accumulation and antioxidant enzyme 

activities. 

1.2 Phytosterols 

Plant sterols, also called phytosterols, include over 250 different sterols and related 

compounds in various plant species and marine organisms (Akihisa et al., 1991). They are 

either synthesized in vivo or taken up from the environment (Piironen et al., 2000). The most 

common phytosterols are sitosterol (which contains an ethyl group at C-24), campesterol 

(which contains a methyl group at C-24) and stigmasterol (an unsaturated phytosterol 

because of the double bond at C-22) (Suzuki et al., 2006; Babiychuk et al., 2008) as shown in 
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Figure 1.1 Although plant sterols are found in various forms, few of them are found 

abundantly in nature. Approximately 65% of total plant sterols is β-sitosterol, followed by 

campesterol at approximately 30% of the total plant sterol content (Moghadasian, 2000). 

Phytosterols can be found in both saturated (sterols) and unsaturated (stanols) chemical 

forms and occur in significant amounts in seeds, fruits and vegetable oils (Weihrauch 

and Gardner, 1978).   

 

Figure 1.1: The chemical structures of cholesterol and phytosterols. Phytosterols (b) and cholesterol (a) 

have similar chemical structure, but differ at C-24 side chain. (c) Chemical structure of ergosterol, 

Brassicasterol and stigmasterol with unsaturation at C-22 in their side chains. Picture adapted from Calpe-

Berdiel et al., 2009 

 
 

In both animals and plants, sterols are highly concentrated in the plasma membrane but occur 

at low concentrations in the endoplasmic reticulum and mitochondria (Hartmann and 

Benveniste, 1987). Sterols are essential compounds in all eukaryotes (Schuler et al., 1990), 

because they are structural components of cell membranes (Schaller, 2003; Thimmappa et 

al., 2014). Animal cholesterol (figure 1.1 a) and plant phytosterols (figure 1.1 b) have a 
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common tetracylic carbon skeleton but they differ in the side chain, although their role is 

similar (Suzuki et al., 2006). Phytosterols always contain some addition to the C-24 position 

on the aliphatic side chain of the sterol (Hennessey, 1992).  In mammals, insects, and higher 

plants, sterols are converted to steroidal hormones (Ohyama et al., 2009). Plant cells have 

distinct features when compared to fungal and animal cells. During sterol biosynthesis, plant 

cells consist of several pathway end-products (figure 1.2 and 1.3) such as campesterol, 

stigmasterol, sitosterol and isofucosterol (Corey et al., 1996), whereas the sterol profile of 

animals is made up of cholesterol only (Suzuki et al., 2006). In addition, the sterol biosynthesis 

scheme emanating from squalene to ergosterol in fungi and cholesterol in animals differ from 

the one from squalene to phytosterols in plants. In addition, the structures of sexual 

hormones, such as aldosterone and testosterone, biosynthesized from cholesterol in animals, 

differ from those of brassinosteroids (plant steroidal hormones) biosynthesized from 

campesterol in plants (figure 1.2) (Suzuki et al., 2006).   

Phytosterols are used clinically as they have been reported to  interfere with cholesterol 

absorption by reducing total serum and low-density lipoprotein cholesterol levels and have 

been used in hypercholesterolemic patients since the early 1950s (Ikeda and Sugano, 1983).  

The human diet contains about 200-300 mg per day of plant sterols. Therefore, the higher the 

intake of plant sterols, the higher the inhibition of cholesterol absorption and the lower the 

serum cholesterol levels (Ikeda et al., 1988)  

1.2.1 Biosynthesis of phytosterols 

Plant sterols have been extensively studied in past years, with major focus on biosynthetic 

and biochemical aspects (Schaller, 2003). Sterol biosynthesis from acetyl-CoA have been 

characterized in great detail (Bach et al., 1997). Most of the genes that are involved in the 
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biosynthetic pathway have been isolated and characterised using metabolic interference, 

functional complementation of yeast sterol mutants, expression in bacteria, protein 

purification and sequencing of the encoding genes (Lecain et al., 1996; Bak et al., 1997; 

Bouvier et al., 1997; Klahre et al., 1998). Some of these genes have been cloned and identified 

mostly in Arabidopsis, while most have been identified in other plant species including 

soybean, rice and maize (Schaller, 2004). The synthesis of sterols takes place in the cytoplasm 

and occurs after the germination of seeds, with a gradual reduction in their synthesis as the 

seedlings matures (Guo et al., 1995). In plants, the sterol biosynthesis pathway consists of a 

sequence of more than 30 enzyme-catalysed reactions involving plasma membrane-localized 

proteins (Piironen et al., 2000). Sterols are initially synthesized through the mevalonic acid 

pathway, which takes place in the cytosol (Figure 1.2). The mevalonic acid pathway produces 

isopentenyl diphosphate (IPP), which serves as the central building block for the biosynthesis 

of all the terpenoids, including sterols, which are C30 triterpenoids (Clouse, 2002). Isopentenyl 

pyrophosphate is further converted to squalene, the linear 30-carbon intermediate that is 

considered as the first committed precursor of all cyclic triterpenoids. This is followed by 

oxidation of squalene to 2,3-oxidosqualene by squalene epoxidase (Pose et al., 2009). 
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Figure 1.2: The sterol biosynthesis pathway in Arabidopsis. The biosynthesis consist of 17 enzymes and 22 

steroid structures. HMG-CoA (black) is the precursor for sterol biosynthesis and brassinosteroids (Blue) are 

the synthesized from campesterol. Image source: DeBolt et al., 2009 

From 2,3-oxidosqualene, plant cells use a sterol biosynthetic pathway that is different from 

that of animals and fungi. Animals and fungi use lanosterol synthase to cyclize 1,2-

oxidosqualene into lanosterol, a tetracyclic sterol precursor which is also further metabolized 

into cholesterol and ergosterol. However, plants use cycloartenol synthase to cyclize 1,2-

oxidosualene into cycloartenol, the first cyclic intermediate of plant sterol biosynthesis  

(Suzuki et al., 2006; Babiychuk et al., 2008). The pathway is linear until it reaches 24-

methylene lophenol (figure 1.2). After formation of 24-methylene lophenol, there is a 

divergence that leads to either 24-methyl sterols which include campesterol and the 

brassinosteroids, or 24-ethyl sterols, which include sterols such as sitosterol and stigmasterol 

(Clouse, 2002).  
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1.2.2 Lanosterol biosynthesis in plants. 

Until about a decade ago, it was believed that plant phytosterols are synthesised via the 

cycloartenol route only (Giner and Djerassi, 1995).  However, as early as four decades ago, 

lanosterol was detected in higher plants (Toshihiro et al., 1977; Giner et al., 2000), suggesting 

that plants also have a biosynthetic pathway to produce lanosterol. The genes that encode 

lanosterol synthase in plants have been identified in dicotyledonous plants such as 

Arabidopsis thaliana (Kolesnikova et al., 2006), Panax ginseng (Suzuki et al., 2006), and lotus 

japonica (Sawai et al., 2006) (figure 1.3).  

 

Figure 1.3: The cyclization step of oxidosqualene in yeasts, mammals and plants.  Biosynthesis of 

phytosterols via lanosterol has been demonstrated in several plants as lanosterol genes were identified in 

plant species such as Arabidopsis thaliana, Panax ginseng and Lotus japonica. CAS, cycloartenol synthase; 

LAS, Lanosterol synthase. Diagram adapted from Ohyama et al., 2008 
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An Arabidopsis thaliana gene, At3g45130, was described to encode the first functional 

lanosterol synthase in plants (Kolesnikova et al., 2006; Suzuki et al., 2006). In a study 

conducted by Suzuki et al., (2006), they showed that Arabidopsis expresses the At3g45130 

gene but the expression of the gene was different in each tissue, with high expression in 

siliques and stems and low levels in seedlings and leaves. However, accumulation of 

lanosterol was low in all tissues that express At3g45130. Transgenic Arabidopsis 

overexpressing At3g45130 showed higher accumulation of lanosterol than in the control 

clones, suggesting that At3g45130 directly cyclized oxidosqualene to lanosterol in plant cells. 

Based on this evidence, it was concluded that At3g45130 is actually lanosterol synthase 1 

(LAS1).  

 Sawai et al. (2006) also proved the existence of lanosterol in Lotus japonicus. In their study 

they showed that the cDNA for OSC7 (oxidosqualene cyclase 7) encodes lanosterol synthase 

(LAS) by the complementation of a LAS-deficient mutant yeast and structural identification of 

the accumulated lanosterol. Small amounts of phytosterols that are synthesized via lanosterol 

were observed in Arabidopsis seedlings (Ohyama et al., 2009). Overexpression of LAS1 

enhanced the levels of phytosterols and there were no phytosterols that are derived from 

lanosterol observed in LAS1-knockout plants. This proved the existence of pathway for 

lanosterol in plant cells.  

Phylogenetic reconstruction has shown that only eudicots possess both LAS1 and CAS1, but 

plant lanosterol synthases evolved independently from those in animals and fungi 

(Kolesnikova et al., 2006; Sawai et al., 2006). According to Kolesnikova et al. (2006), plant 

lanosterol synthases consist of a third catalytically distinct class of lanosterol synthases. 

Furthermore, a phylogenetic tree based on the coding sequences suggested that LAS is more 
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likely to have diverged from the ancestral CAS, mainly because of capability of CAS to be 

converted to LAS by substitution of two amino acids (Lodeiro et al., 2005; Sawai et al., 2006). 

Therefore, Sawai et al. (2006) confirmed that there is no study that contradicts the idea that 

cycloartenol is actually the principal cyclic triterpene intermediate for sterol biosynthesis, and 

lanosterol in plants may act as an alternative intermediate for the sterols or a precursor of 

other important metabolites. Thus, the Identification of lanosterol metabolizing enzymes may 

be the answer in understanding the physiological roles of lanosterol in plants. 

1.2.3 Biological functions of sterols in plants. 

The biological functions of sterols in plant growth and development have been revealed. 

Sterols are recognised as important structural components of eukaryotic cell membrane that 

regulate membrane fluidity and permeability (Schuler et al., 1990; Schaller, 2003; Thimmappa 

et al., 2014). Although all phytosterols have an ability to regulate membrane fluidity, their 

efficiency in carrying this function differs. Sitosterol and campesterol are the most efficient in 

comparison with stigmasterol because stigmasterol possesses a trans-oriented double bond 

at C-22 that has a reduced ordering effect (Piironen et al., 2000).  

Sterols are also the biosynthetic precursors of steroid hormones in animals, insects and plants 

(Suzuki et al., 2006; Ohyama et al., 2009). Furthermore, some sterols are involved in 

controlling membrane-associated metabolic processes and  some  are precursors to 

brassinosteroids, which act as a signalling molecule with hormonal function that regulate 

growth, developmental and cellular processes (Wang et al., 2009)  and the accumulation of 

reactive oxygen species (Gong et al., 2013). Sterols can also act as substrates for a variety of 

secondary metabolites such as the glycoalkaloids, cardenolides and saponins. They also play 

a role in cellular differentiation and proliferation (Pirronen et al., 2000). Plant sterols play a 
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role in maintaining proper bulk membrane structure and may mediate cellular responses to 

plant hormones since they have an ability to inhibit abscisic acid-stimulated plant cell 

membrane permeability and ABA-induced vesicle fusion (Stillwell et al., 1990). 

Several lines of studies on the molecular genetics and biochemical analysis of sterol-deficient 

mutants in Arabidopsis have shown abnormalities in plant development, which includes post-

embryonic seedling lethality (Kim et al., 2005), dwarfism caused by deficiency in 

brassinosteroids (Klahre et al., 1998; Choe et al., 1999; Suzuki et al., 2004) and plant size 

variation (Schaeffer et al., 2001; Rasbery et al., 2007). These studies have shown that 

membrane sterols are crucial for physiological functions in plants and also act as precursors 

to brassinosteroids phytohormones (Clouse, 2002). A previous study conducted by Babiychuk 

et al. (2008) revealed the biological functions of sterols in plant cells. CAS1 is thought to be 

the major 2,3-oxidosualene cyclase that initiates post-squalene sterol biosynthesis in plants 

(Piironen et al., 2000; Thimmappa et al., 2014). The role of cycloartenol has been studied to 

better understand the biological functions of sterols in plant cells (Babiychuk et al., 2008). 

This was achieved by analysing the allelic series of cas1 mutations in Arabidopsis thaliana. It 

was observed that plants that carry the weak mutant allele cas1–1 were viable but they 

developed albino inflorescence shoots because of photo-oxidation of plastids in stems that 

contained low amounts of carotenoids and chlorophylls. They also discovered the role of CAS1 

in male gametophyte development through cas1-2 and cas1-3 mutant alleles which are non-

transmissible through male gametes. The induced loss-of-function in cas1-2 seedlings caused 

abnormal growth of leaves, arrest of development of shoot as well as root meristems. 

Therefore, the phenotypes observed was a result of structural defects in cellular membrane 

networks caused by depletion of sterols. Thus, CAS1 is crucial for plant cell viability.  
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However, the function of lanosterol synthases and lanosterol metabolites in plants is still 

unclear. Some physiological functions of lanosterol in plants have been investigated. These 

studies showed that there were no significant differences in sterol profiles and no visible 

morphological phenotypes observed between Arabidopsis overexpressing LAS1 and LAS1 

mutant Arabidopsis plants under normal growth conditions (Suzuki et al., 2006; Ohyama et 

al., 2009). Moreover, overexpression of the LAS1 gene did not compensate for a CAS1 knock-

out mutation allele, which was identified to be male gametophyte-lethal (Ohyama et al., 

2009). Based on these findings, the lanosterol pathway may not be essential for the 

biosynthesis of membrane sterols for cell maintenance under normal conditions. 

Nonetheless, these enzymes appear to be involved to a small extent in the synthesis of 

phytosterols and potentially steroid-derived metabolites (Kolesnikova et al., 2006; Suzuki et 

al., 2006; Ohyama et al., 2009). However, methyl jasmonate and Pseudomonas syringae 

infection enhanced the expression of LAS1 (Zimmermann et al., 2004), suggesting that 

secondary metabolites that are metabolised through lanosterol pathways may be involved in 

defence responses.  

1.2.4 Role of sterols in regulation of reactive oxygen species (ROS) 

Besides being major components of the cell membrane, plant sterols appear to play a role in 

the regulation of ROS scavenging under abiotic stresses such as drought and salinity. The 

application of brassinosteroids (BRs) induced plant tolerance to diverse abiotic stresses by 

triggering H2O2 generation in cucumber leaves (Cui et al., 2011). In addition, the exogenous 

application of brassinolide (BL) on Zea mays seedlings subjected to water stress caused 

elevation  of activity of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate 

peroxidase (APX), catalase (CAT)  and also ascorbic acid and carotenoids  (Li and Van Staden, 
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1998). Nunez et al. (2003) also showed that rice seedlings treated with BR and exposed to 

salinity stress had altered activity of antioxidant enzymes. Under osmotic stress, BRs 

increased the activity of CAT and reduced the activity of peroxidase and ascorbic acid oxidase 

in Sorghum vulgare (Vardhini and Rao, 2003).  

According to the study by Pose et al. (2009), sterols appear to play a role in drought tolerance 

and regulation ROS. In the study they identified the Arabidopsis drought 

hypersensitive/squalene epoxidase 1-5 (dry2/sqe1-5) mutant to be hypersensitive to drought 

stress.  The mutant was affected by mutation in the squalene epoxidase 1 (SQE1) gene, 

reducing its activity (squalene epoxidase catalyses the first oxygenation step in sterol 

biosynthesis). Due to reduced activity of SQE1 in the mutant, developmental defects such as 

reduced shoot development, poor root architecture and short root length were observed. 

The reduced activity of SQE1 altered the sterol composition in shoots and roots and induced 

the enzymatic activity of NADPH oxidases, thus enhancing ROS production. This suggests that 

sterols have a role in the regulation of NADPH oxidases and ROS production. 

The role of sterols in regulating ROS production is further supported by a study of seedling 

lethality in the sterol-deficient Arabidopsis thaliana cyp51a2 mutant, which is defective in the 

14a-demethylation step of the early sterol pathway. This study showed that the expression 

levels of genes involved in ethylene biosynthesis/signalling and detoxification of reactive 

oxygen species (ROS) increased in the mutant compared with the wild type. As a result, high 

levels of accumulation of ethylene in the sterol-deficient mutant were observed. The study 

also showed that the sterol-deficient mutant was under oxidative stress due to excessive 

production of ROS, a key factor that triggers programmed cell death (PCD) and is associated 

with ethylene production. The results of this study thus suggest that changes in membrane 
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sterol contents and composition in the cyp51A2 mutant trigger the generation of ROS and 

ethylene and induces premature seedling senescence through potentiation of PCD (Kim et al., 

2010). 

Several other studies have also revealed that phytosterols, especially β-sitosterol, are 

involved in plant responses to oxidative stress as they show high antioxidant activity (Weng 

and Wang, 2000; Wang et al., 2002; Vivancos and Morena, 2005; Li et al., 2007).  According 

to Wang et al. (2012)  overexpression of the enzyme 3-hydroxy-3-methylglutaryl-CoA 

synthase (HMGS), the positive  regulator of the sterol synthesis, caused up-regulation of sterol 

biosynthesis genes enhancing sterol content and reducing hydrogen peroxide-induced cell 

death, which led to stress tolerance in Arabidopsis. 

1.3 The production of reactive oxygen species (ROS) under drought stress 

Aerobic organisms use atmospheric oxygen (O2) during cellular respiration as a terminal 

electron acceptor to yield high energy (Dismukes et al., 2001). Oxygen is generally unreactive 

when it is in its ground state. However, it can rise to a reactive state such as ROS during normal 

metabolic activity and under various environmental factors (figure 1.5) (Takahashi and Asada, 

1988; Mittler, 2002). About 1 % of O2 consumed by plants is estimated to contribute to the 

production of ROS (figure 1.4) (Asa and Takahashi, 1987; Blokhina et al., 2003).  The 

generation and the protection against ROS is an essential characteristic of plant cells. ROS are 

localised in organelles such as chloroplasts, mitochondria and peroxisomes because these 

organelles possess a high rate of electron flow and highly oxidising metabolic activity (Mittler, 

2002; Asada, 2006). ROS are formed as a result of reduction of one, two or three electrons in 

molecular oxygen (Halliwell, 2006). ROS can exist as free radicals such as superoxide (O2˙-), 
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hydroxyl (˙OH), hydroperoxyl (HO2
-) ions or as non-radicals such as hydrogen peroxide (H2O2) 

and singlet oxygen (1O2) (Gill and Tuteja, 2010; Karuppanapandian et al., 2011).  

 

Figure 1.4: The generation of reactive oxygen species (ROS) in plants. The reduction of molecular oxygen 

(O2) leads to formation of O2
•−, Hydrogen peroxide (H2O2) and hydroxyl (•OH). Moreover, the energy 

transferred to O2 also leads to formation of 1O2. Superoxide is then dismutated to H2O2 by superoxide 

dismutase. H2O2 is detoxified by ascorbate peroxidase (APX), catalase (CAT), and guaiacol peroxidase (GPX) 

to form H2O. Diagram adapted from Sharma et al., 2012. 

However, ROS are recognised for playing a crucial role in plants, depending on their 

concentration in the plant cell (Apel and Hirt, 2004). At low concentrations, ROS act as 

secondary messengers involved in signal transduction pathways that regulate plant responses 

to stress and developmental cues (Suzuki and Mittler, 2006) and they influence expression of 

several genes (Miller et al., 2010). Some of the ROS that are generated by plants, mainly H2O2, 

are useful in plant developmental processes such as formation of lignin or strengthening of 

walls in epidermal cells, regulation of physiological processes such as photosynthesis, 

senescence and photorespiration (Srivalli et al., 2003; Peng et al., 2005; Jubany-Marí et al. 

2009).  
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Figure 1.5: Some of the initiators (stressors) of reactive oxygen species (ROS) production and the biological 

consequences that can lead to cell death. Diagram adapted from Scandalios, 2002. 

Furthermore, under physiological steady state conditions, ROS can be scavenged by the 

antioxidative defense system of the plant (Foyer and Noctor, 2005). However, the equilibrium 

between production and scavenging of ROS in cellular components may be disturbed by 

several abiotic and biotic stresses such drought, salinity, pathogens and high temperatures 

(Sharma et al., 2012). These factors cause excessive accumulation of ROS, commonly called 

‘’oxidative burst’’. This excessive accumulation of ROS causes oxidative damage to lipids, 

nucleic acids and proteins, leading to cell death and low yield as shown in figure 1.5 (McCord, 

2000; Karuppanapandian et al., 2011).  Damage to lipids occurs when ROS react with 

unsaturated fatty acids, causing leakage of cellular contents and resulting in cell death (Abreu 

et al., 2001).  The oxidative damage by ROS on proteins can result in site specific amino acid 

modifications, peptide chain modifications, aggregation of cross-linked reaction products and 

elevated susceptibility to proteolysis (Srivalli et al., 2003). ROS has also negatively impacts 

DNA as it causes lesions that cause deletions, mutations and lethal genetic effects (Srivalli et 

al., 2003;Karuppanapandian et al., 2011). 
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1.3.1 Production of the superoxide radical (O2
˙-) 

The superoxide radical is regarded as the first ROS to be generated (figure 1.4) and is a 

moderately reactive ROS with a half-life of approximately 2-4 µs (Gechev et al., 2006).  

Superoxide is produced mainly in the thylakoid membrane-bound primary electron acceptor 

of PSI. Due to drought stress, abscisic acid stimulates stomatal closure to reduce further water 

loss. Closure of stomata decreases CO2 concentration in leaf mesophyll tissue and results in 

an accumulation of NADPH. Under such conditions, where NADP+ is a limiting factor, oxygen 

acts as an alternate acceptor of electrons from the thylakoid electron transport chain, 

resulting in the formation of superoxide radical (O2˙-) in a reaction catalysed by NADPH 

oxidase. Superoxide is produced as result of transfer of one electron as part of the electron 

transport chain components with O2 (Dat et al., 2000). Various essential metabolic enzymes 

containing Fe-S clusters can be inactivated by O2˙-, leading to alteration of catalytic activities 

(Halliwell, 2006). The generation of O2˙- can trigger the formation of more reactive ROS such 

˙OH and 1O2, which may cause membrane lipid peroxidation and loss of cellular integrity (Van 

Breusegem et al., 2001). 

1.3.2 Production of hydrogen peroxide (H2O2) 

Hydrogen peroxide occurs mainly in the peroxisomes and can also be produced from β-

oxidation of fatty acids as a by-product (Ahmad et al., 2008). H2O2 is moderately reactive and 

has relatively long half-life (1 ms) compared to other ROS such as O2˙- and 1O2, which have 

much shorter half-lives in the 2-4 µs range (Henzler and Steudle, 2000). The production of 

H2O2 occurs during the dismutation of O2˙- by SOD. It has been confirmed that excessive 

production of H2O2 in plant cells leads to oxidative stress. Since H2O2 travels freely across 
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membranes, it is able to diffuse and may inactivate enzymes such as those that are 

components of the Calvin cycle by oxidizing their thiol groups (Halliwell, 2006).  However, 

H2O2 can possibly act as a messenger in that mediates stress responses (Halliwell, 2006; 

Moller et al., 2007).  

1.3.4 Production of the hydroxyl (˙OH) radical 

Hydroxyl (˙OH) is one of the highly reactive ROS. This ROS can be produced from the reaction 

of O2
˙- and H2O2 at neutral pH in the presence of metal ions such as Fe as part of the Haber-

Weiss reaction (Kehrer, 2000).  

 

In the reaction, O2˙- donates an electron to iron (Fe3+), producing a reduced form of iron (Fe2+).  

(Fe2+) then reduces H2O2, produced as a result of dismutation of O2˙- to ˙OH by SOD.  The final 

step, which involves the oxidation of Fe2+ by H2O2 is referred to as the Fenton reaction (Rigo 

et al., 1977). Since ˙OH is a highly reactive ROS, it can react with many constituents of the cell 

(including proteins, DNA and lipids) because cells do not possess efficient enzymatic 

mechanism for the detoxification of ˙OH but rely on prevention of the formation of this highly 

reactive ROS, which includes elimination of O2˙-/ H2O2 and possible the metals ions that are 

involved in the catalyses of Haber-Weiss reaction (Mittler et al., 2004; Halliwell, 2006; Hintze, 

and Theil, 2006). Therefore, the excess production of ˙OH in the cell leads to cell death  

1.4 production of singlet oxygen (1O2) 

The production of singlet oxygen (1O2) occurs mainly in the chloroplasts when energy 

transferred to ground state triplet oxygen (3O2) from chlorophyll triplet excited states under 
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light intensities.    (Laloi et al., 2006).  1O2 is very reactive, with a half time of 3 µs, and it has 

damaging effects on PSI, PSII and the rest of the photosynthesis machinery (Foyer and 

Harbinson, 1994). It also reacts with proteins, nucleic acids and lipids, leading to cell death 

(Wagner et al., 2004). Abiotic stresses such as drought also trigger the formation of 1O2 due 

limitation of the CO2 concentration in chloroplast as a result of stomatal closure (Hatz et al., 

2007). 1O2 can activate a genetic programme that causes growth inhibition and cell lethality 

through the EXECUTER1 and EXECUTER2 pathways. EXECUTER1 and EXECUTER2 acts together 

to transfer stress-related signals from the plastid to the nucleus (Wagner et al., 2004; Lee et 

al., 2007)) 

 1.4 Detoxification of ROS 

In order to reduce the oxidative damage caused by ROS, plants have developed non-

enzymatic and enzymatic antioxidant defenses. The non-enzymatic defenses include the 

cellular redox buffers glutathione (γ-glutamyl-cysteinyl-glycine, GSH) and ascorbic acid (AsA) 

as well as phenolic compounds, tocopherols and carotenoids (Sharma et al., 2012). These 

non-enzymatic defenses play a crucial role in defenses, act as enzyme cofactors and also have 

influence for plant growth and development by controlling processes such as cell elongation, 

mitosis, senescence and cell death (De Pinto and De Gara, 2004). It has been shown that 

mutants perturbed in the biosynthesis of non-enzymatic antioxidants are hypersensitive to 

stress (Gao and Zhang, 2008).  

The enzymatic antioxidative defense network includes several antioxidant enzymes such as 

superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase CAT), guaiacol peroxidase 

(GPX) and enzymes for the ascorbate-glutathione (AsA-GSH) cycle, glutathione reductase 
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(GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), 

as shown in Figure 1.6  (Noctor and Foyer, 1998; Smirnoff, 2005). SOD is one of the major 

antioxidant enzymes because it serves as the frontal defense against oxidative stress and is 

the only enzyme that can scavenge superoxide (O2
˙-) (Dat et al., 2000). It is found in most 

subcellular compartments that generate ROS and belongs to a group of metalloenzymes that 

use either Cu/Zn, Mn or Fe as a co-factor to catalyze their reactions to convert O2˙- to H2O2 

(Gill and Tuteja, 2010). There are three forms of SOD found in plants, copper/zinc SOD (Cu/Zn-

SOD), manganese SOD (Mn-SOD), and iron SOD (Fe-SOD). These isozymes are located in 

different cellular compartments, with Fe-SOD localized in chloroplasts, MnSOD is localized in 

mitochondria and Cu/Zn-SOD existing in three sub-cellular localizations (namely the cytosol, 

peroxisomes, chloroplast and mitochondria) (Mittler, 2002). Copper/Zinc SOD is sensitive to 

cyanide, whereas both MnSOD and Fe-SOD are insensitive to cyanide but Fe-SOD is sensitive 

to H2O2 (Scandalios, 1993; del Rio et al., 1998). SOD catalyses the dismutation of O2˙− to O2 

and H2O (Moller, 2001; Arnholdt-Schmitt et al., 2006). 
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Figure 1.6: Reactive oxygen species (ROS) scavenging mechanism in plants. SOD (superoxide dismutase); 

APX (ascorbate peroxidase; CAT (catalase); GPox (glutathione peroxidase); MDHA 

(monodehydroascorbate); MDHAR (monodehydroascorbate reductase); DHA (dehydroascorbate); GSH 

(glutathione); GR (glutathione reductase); GSSG (glutathione oxidized.  Picture Adapted from Gill and 

Tuteja, 2010. 

 

Since high concentration of H2O2 are also toxic to plants, any excessive H2O2 produced should 

then be scavenged by CAT and several other classes of peroxidases. These peroxidases, 

however, have different affinities for H2O2 and have different cellular roles in scavenging H2O2 

(Willekens et al., 1997). Catalase is localized in the cytosol, peroxisomes and mitochondria 

and it catalyzes the dismutation of two molecules of H2O2 into H2O and O2 (Scandalios, 2002). 

It has been shown that catalases have weak activity against organic peroxides but have high 

specificity for H2O2. They are only active at high levels of H2O2 because of their rather low 

affinity for H2O2.  Nonetheless, their catalysis rate, once they bind H2O2, is very fast. In 

essence, CATs have a very fast turnover rate but lower affinity for H2O2 than APX (Mittler, 
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2002; Gill and tuteja, 2010). Therefore, at lower levels only APX and other peroxidases remove 

H2O2. However, amongst other H2O2-scavanging enzymes, CATs are considered as unique as 

they do not require cellular reducing agents, unlike APX (which needs ascorbate as a reducing 

agent) to catalyze their reaction (Mittler, 2002).    

Peroxidases such as APX and GPox are located throughout the cell and catalyze the reduction 

of H2O2 to H2O. GPox is less specific for electron donor substrate and oxidizes aromatic 

electron donors such as guaiacol and pyragallol by decomposing H2O2 (Schuller, 1996). GPoxX 

uses glutathione (GSH) to reduce H2O2 to H2O resulting in an oxidized form of glutathione 

(glutathione disulphide (GSSG)) which must be regenerated back to GSH by glutathione 

reductase (GR) using NADPH as an electron donor. GPox also plays an important role in 

biosynthetic processes such as ethylene biosynthesis, lignification of cell wall and wound 

healing (Kobayashi et al., 1996).  APX is the major plant peroxidase in the scavenging of H2O2 

because isoforms of APX have higher affinity for H2O2 than CAT (Wang et al., 1999). Unlike 

other peroxidases, APX requires ascorbate as an electron donor in the first step of the 

ascorbate–glutathione cycle (AsA-GSH cycle), which is also referred to as the Halliwell-Asada 

pathway (Figure 1.4.1) to break down H2O2 into water and two molecules of 

monodehydroascorbate (MDHA). This process occurs in the cytosol and chloroplasts in plants.  

In higher plants, there are five isozymes of APX that have been found in different subcellular 

localizations. These include thylakoidal, stromal, cytosolic, mitochondrial and peroxisomal 

APX isozymes (Apel and Hirt, 2004). Each APX isoform scavenges H2O2 found within the 

organelle where it is localized, except for the cytosolic APX which removes H2O2 produced in 

the apoplast and cytosol (Mittler and Zilinskas, 1992). Monodehydroascorbate reductase 
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(MDHAR) and dehydroascorbate reductase (DHAR) are involved in the regeneration of 

ascorbate (de Azevedo Neto, 2006).  

1.5 Drought 

Drought is one of the most devastating environmental conditions for plants and is associated 

with climate change. Drought is the term that describes water shortages over an extended 

period of time (Dracup et al., 1980). It occurs when precipitation is below average in a given 

region within a given season, leading to shortages of water (Wilhite and Glantz, 1985).  In 

many cases, drought commonly occurs together with high temperatures, increased soil 

salinity and elevated irradiance while associated with reduced soil nutrients and damage to 

plant roots in hard and hot soils (Zhu, 2002; Al-Kaisi et al., 2013). Drought affects about 60 % 

of the world’s population with about 630 million living in arid and semi-arid areas (Figure 

1.5.1). A large portion of these populations depends mostly on farming for their livelihood 

(Ngaira, 2005). Drought has devastating economic, environment and social impacts in terms 

of loss of human life caused by water and food-borne diseases, food insecurity caused by 

reduced agricultural productivity and degradation of natural resources (Patz et al., 2005; 

Devereux, 2007; Kang et al., 2009). Drought contributes significantly to famine and is  the 

major limitation to rain-fed agricultural production, especially in arid and semi-arid lands 

(Falkenmark and Widstrand, 1992). In the 1970s and 1980s, rainfall was below average in 

most parts of the world and this severely affected crop production (Parry, 1990). Due to 

increasing temperatures, climate change is estimated to increase the occurrence of drought 

globally, particularly in the tropics and subtropics, resulting in reduced food and feed supplies 

globally (Schmidhuber and Tubiello, 2007). 
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Figure 1.7: Incidents of Drought in 2009 which Impacted Global Food Production. The food producing 

countries affected by drought, resulting in destruction of crops and death of animals. Picture adapted from  

deCarbonnel, 2009 

 It has been estimated that from 1970 to 2000, land areas affected by drought has doubled 

worldwide (Isendahl and Schmidt, 2006). This occurrence has raised extensive concern on 

food supply for the increasing population worldwide, which by 2050 is estimated to reach 

about 9.1 billion (Sto, 2011). In 2009, countries such as China, Australia, the majority of 

countries in Africa and South America, together with the US, that made up two thirds of 

agricultural output of the world were affected by drought (figure 1.7). This resulted in 

destruction of crops and livestock (deCarbonnel, 2009). It has also been predicted that the 

world will experience a decrease of 20% to 40% in agricultural production depending on the 

severity and length of the current global droughts (Adhikari et al., 2015). In recent years, 

drought has become more frequent and severe, and more areas are being affected.  
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1.5.1 The impacts of drought on agriculture and food security in South Africa 

The South African landmass is considered to have 12 % arable land and only 3% of the land is 

regarded as truly fertile.  Only 1.5% of the land is under irrigation produces 30% of the crops 

in country (AgriSA, 2016 a; Drought Task Team, 2016). This means that the agricultural land 

in South Africa is limited in terms of availability for crop production, although the agricultural 

sector plays a significant role in the South African economy as it directly contributes up to 4% 

per year to the national gross domestic product (GDP) and indirectly contributes almost 25% 

to the GDP if agro-processing and downstream industries are considered (Agri Western Cape, 

2015).  South African agricultural performance is affected by changes in climatic conditions, 

causing a decline in its contribution to the country’s GDP (Grain SA, 2016). The contribution 

of South African agriculture to national GDP decreased by 18.5% from 1910 to recent years 

(Grain SA, 2016).  

South Africa is the major producer of agricultural products in Africa as it produces a wide 

range of food commodities. The country produces an exportable excess of food to the Middle 

East, Africa and Europe (Grain SA, 2016).  Approximately 60% of the country’s water resources 

is used mainly in agriculture (Baleta and Pengram, 2014). About a quarter of the country’s 

water supply is obtained from Lesotho because Lesotho receives 60 % more rainfall than 

South Africa (DWAF, 2014). Therefore, drought is one of the major consequences of climate 

change that cause constraints on water availability and agricultural production in South 

Africa. Southern Africa has recently experienced the worst drought in at least the last three 

decades in the 2015/2016 production year due to El Nino phenomenon that occurred since 

mid-2015 (FAO, 2016). El Nino generally brings drier conditions to Southern Africa. The 

2015/16 El Nino phenomenon is considered the strongest since the past 50 years, leading to 
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the 2015/16 drought being the worst in Southern Africa since 1992 (Food and Agriculture 

Organisation of the United Nations a, 2015). In South Africa, 2015 had the lowest national 

annual rainfall since 1904 in all nine provinces (Agri SA b, 2016). In the past years rainfall was 

averaged 608 mm per annum, while in 2015 South Africa received 403 mm of rainfall, which 

is 66% of the annual average rainfall. The lowest rainfall received previously in the country 

was in 1945, with 437 mm rainfall (Agri SA b, 2016). The worst affected provinces which were 

declared disaster areas in 2015 are the Free State, KwaZulu Natal, North West, Limpopo and 

Northern Cape, as indicated in the map below (figure 1.8) (Bureau for Food and Agricultural 

Policy, 2016). It was reported that drought affected the level of water in the storage dams, 

which dropped from an average of 70% in 2015 to less than 40% in 2016 (Agri SA a, 2016). 

Due to current droughts, most parts of the county are experiencing water shortages in 2017 

as well because the water in the storage dams has decreasing rapidly. 

Drought consequently resulted in significant delays of up to 60 days in planting and poor 

conditions for early crop development and growth, which resulted in extensive crop failure 

(FAO , 2015; Agri SA a, 2016).  In addition, drought resulted in reduced planting areas for 

summer/spring crops such as maize, soybean and wheat, leading to lower yields in many 

areas. Farmers that grow agricultural commodities such as maize, soybean and sunflower 

have consequently suffered severe losses (Agri SA a, 2016). Furthermore, the decline in grain 

yield resulted in increased import of maize to approximately 3-5 million tons (Agri SA a, 2016). 

Due to drought conditions, the total summer crop in South Africa was estimated to decrease 

by 24% year-on-year and production of soybean was expected to decrease by 72% year-on-

year in 2016 (Grain SA, 2016).  
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Figure 1.8: Area in South Africa in which drought has been declared disastrous in the 2015/16 growing 

season. Source: (Tau, 2016) 

The  Crop Estimate Committee has estimated the area of maize planted for the 2016 season  

to be at 1,95 million ha, which is the  smallest area planted to maize since the 1928 season 

(1,926 million ha) (FAO, 2016). According to United Nations Food and Agriculture 

Organisation b (2015), the 2015 harvest was estimated to be 22.6 % lower than the previous 

season’s harvest in 2014. It was not just maize growers who suffered lower harvest, instead 

other commodity growers such as soybean, wheat, sugar cane and livestock producers 

experienced similar losses (Mail and Guardian, 2015).  Therefore, in 2015 the agricultural 

sector as a whole experienced a 14% decline and drought caused 16 billion Rand loss of profits 

in this sector. As a result, some foods prices such as bread and cereals increased with 

consumer price inflation increase of up to 4.8% (Mail and Guardian, 2015). 

Since the El Niño conditions are predicted to occur more often in the upcoming decades, this 

will cause more frequent droughts in Southern Africa when compared to long-term historical 
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trends (Food and Agriculture Organisation of the United Nations b, 2015). It is also estimated 

that by 2025, water demand in the South Africa will exceed supply (Ashton et al., 2008). This 

will have a negative impact on agricultural productivity including crop losses, lower yields and 

increased livestock deaths. This will threaten food security in terms of food availability, 

access, utilization and stability. Livestock farmers will experience loss of income as the animals 

will be deprived of grazing resources and therefore, farmers will not be able to maintain stock, 

and thus forced to sell and slaughter their livestock to sell meat prematurely. Meat will be 

cheaper in the first instance but become more expensive due to production costs, and further 

into the future it will have a negative impact as there will be limited livestock for meat 

(Shabelle, 2011). In this most likely assured scenario, South Africa will have to import meat, 

resulting in extremely high prices for meat. Southern African countries such as Botswana, 

Namibia, Lesotho, Zimbabwe, Mozambique and Zambia depend mostly on agricultural 

imports from South Africa and up to 40% of their food is imported from South Africa (Food 

and Agriculture Organisation of the United Nations a, 2015). Importantly, South African 

agricultural commodities considered to be the staple food in Southern Africa are the key 

sources of calorie and protein intake for lower income households, therefore, the reduction 

in production of these commodities could pose a major threat on food security (Mail and 

Guardian, 2015).  Before the recent droughts, all of these Southern African countries were 

already estimated to have about 14 million people who were food-insecure (FAO, 2015). 

Therefore, the upcoming droughts will have a devastating impact as these countries will 

require more imports and there will be insufficient accessible supply to meet the demands.  

Drought does not affect the agricultural sector only, but has other secondary effects where 

several other sectors can be affected. Since drought will decrease exports of food crops, while 
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increasing the need for food imports to meet local needs, this could result in increased 

economic pressure on the national budget. This has a severe effect on consumers, especially 

the poorest and more vulnerable, as food supply becomes limited. Such impact   leads to a 

rise in food prices. In 2016 food prices in South Africa increased by 6.4%, which contributed 

to a sharp increase in the national inflation rate, which increased to 7% year-on-year (Grain 

SA, 2016). The rise in food prices will affect the majority of South African (and in deed African) 

homes, especially the poorest because they will not afford the food. This can impact their 

health and increase the risk of malnutrition (FNSWG, 2015).  The impacts of drought can affect 

several other sectors such as food producing sectors. This will lead to income losses in many 

homes as the companies will be forced to retrench employees as there will be no work for 

them, especially those who work in farms. At a time when prices of other commodities are 

low, there will be increased skill shortages in the country (FAO a,b, 2015). Therefore, the 

development of drought-resistant crops is crucial to address this forthcoming threat to food 

security. 

1.6 Soybean 

The history of soybean is known to a limited extent due to the lack of record keeping in the 

early centuries. Historians suggested that the soybean plant originated from the Eastern part 

of the hemisphere and was introduced as a crop in Western part of the hemisphere (Hymowit 

et al., 1984). Historical evidence showed that soybean was domesticated in the eastern half 

of north China during the Zhou dynasty around 11th century (Hymowitz, 1970; Guo et al., 

2010). The whole bean was fermented into products like paste for human consumption while 

also being used as treatment for swelling and wounds. The use of this crop then spread to 

countries such as Korea, Japan and other Southeast Asian countries. Soybean was introduced 
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in Europe by a German botanist, Englebert Kaempfer in 1712 (Gibson and Benson, 2005). The 

first scientific study on soybean plants was conducted by Carl von Linne, a Swedish botanist. 

In the 19th century, soybean was introduced to America by trading ships and was grown by 

farmers there (Hymowitz and Harlan, 1983). They used it to produce soy sauce and later used 

it for animal feed. In 1896, researcher George Washington Carver found new uses of soybean. 

He discovered soybean’s ability for nitrogen fixation and potential for vegetable protein, 

edible oil and meal (Gibson and Benson, 2005). The United States imported about 40% of its 

edible oil and fats prior to World War II (American Soybean Association, 1998). When the war 

took place, the oil supply line was cut and, as a result, it was crucial for Americans to produce 

soybean to meet the need for their oil demands. This resulted in an increase in soybean 

production. In the 1950’s, the cost of the soybean meal was very low, which in turn triggered 

an additional demand for soybean production (American Soybean Association, 1998). The US 

produced approximately 75% of the world’s soybean from the 1950’s through the 1970’s. 

Soybean production in other nations, like Brazil and Argentina, also increased with increase 

in demand (Hartman et al., 2011). 

The United States ranks first in soybean production, supplying two thirds of global soybean 

needs. Soybean crop production has expanded and resulted in the emergence of Brazil and 

Argentina as major producers. These countries are regarded as the second and third most 

important soybean-producing countries in the world. The USA, Brazil and Argentina dominate 

global soybean production (Hartman et al., 2011). The production of soybean in China 

decreased despite the fact that it is the country that domesticated the crop (Hymowitz, 1970).   

In South Africa, the first record of soybean appeared in 1903 in the Cedara Memoirs. The 

soybean was imported from China, but it did not germinate properly. Soybean was planted in 
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the Research Centre in Potchefstroom in early fifties and it was often called ‘Geduld’ which 

means patience (Du Toit, 1942; DAFF, 2010). In the 1970s, South African production was 10 

000 tonnes and rose to 190 000 tonnes by 2001. In recent years, South Africa has become one 

of the leading countries in soybean production in Africa (Grain SA, 2016). Currently soybean 

production ranges from 450 000-500 000 tons per annum with an average yield of 2.5 to 3 

tons per hector (DAFF, 2010). It is grown throughout the country but mainly in Mpumalanga 

and the Free State province.  Amongst other provinces, Mpumalanga produces the highest 

quantities of soybean (42%), followed by Free State at 22%, 15 % in KwaZulu-Natal, Limpopo 

at 8%, North West at 5% and Gauteng at 5% (DAFF, 2010) 

  

Figure 1.9: South African soybean production.  Source: Grain SA, 2016 

 The report by Grain SA (2016) showed that soybean production between 2011/2012 to 

2014/2015 production seasons increased by 63% and the area planted increased by 57% 

because of high demand (figure 1.9). However, soybean demand exceeded production from 

the 2013/2014 production season. Moreover, the current drought resulted in a decrease in 
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the area planted as well as production (Grain SA, 2016).  On the other hand soybean 

production increased significantly in the past few years when compared to other crops such 

as sunflower, maize, and groundnuts.  South Africa exports some of soybean oil to African 

markets. However, SA also imports significant volumes of soybean oil from Spain, Argentina, 

Netherlands, Romania and Brazil (Grain SA, 2016). This illustrates that soybean is significant 

for the South African economy. 

1.6.1 The importance of soybean 

Among other legumes, soybean is one of great importance worldwide and the leading oilseed 

crop that boosts world economy (Toorchi et al., 2009). Soybean is of such extraordinary 

economic importance that it is used to settle oil import prices. This is due to the chemical and 

mineral composition of the grain (Raghuvanshi and Bisht, 2010).  The first soy food products 

produced from soybean fermentation include sauce, tempeh, miso, and natto (Gibson and 

Garren Benson, 2005). 

In recent decades, soybeans have become popular and regarded as an important crop 

because of the advanced popularity of soy foods, such as soy milk and textured vegetable 

protein (Phang et al., 2011). Presently, about 85% of soybean globally is used as a protein-rich 

food and feed crop and as a source of oils used in food (Phang et al., 2011). This is particularly 

relevant for world food security and has specific significance to nutrition in developing 

countries where protein deficiency is rampant. The oil extracted from soybean is used to 

produce some food products such as margarine, salad dressings, shortenings and cooking oil. 

The high-protein fibre that remains after the extraction of the oil is toasted and prepared into 

animal feed for livestock (Ali, 2010). 
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Soybean is also considered as one of the richest source of plant-based protein among other 

crops, equivalent to meat in terms of quality (Nwokolo, 1996). The wide variety products 

derived from soybean has created a huge market. The protein extracted from soybean has 

been rated number one by the World Health Organisation (WHO) and Food and Drug 

Administration (FDA) for its nutritional quality for both adults and children (Medindia, 2016). 

Most crops, like corn and wheat, consist of proteins that have a low percentage of essential 

amino acids such as tryptophan, lysine, and sulphur-containing amino acids at levels which 

are not sufficient for human nutritional requirements. Soybean proteins assist in balancing 

this nutrient deficiency of other grains. Soybean produces the essential eight amino acids than 

other beans and is, therefore, sufficient for animal and human nutritional requirements 

(Barrett, 2006). Soybean proteins can substitute meat as it contains sufficient amount of 

proteins (Hartman et al., 2011). This is beneficial for people that do not eat meat and those 

that have health problems concerning meat. Soybean proteins are found in baby formula, 

weight-loss and sport drinks, and as a low-fat component in hamburger (Friedman and 

Brandon, 2001; Barrett, 2006). 

Extracts of soybean are also used in the manufacture of pharmaceutical products such as 

antioxidants and vitamin E capsules (Barrett, 2006). Soybeans have a wealth of health benefits 

as they have been shown to contain compounds with ability to improve the metabolism,  

heart health, defend against cancer, reduce the effects of menopause,  protect against birth 

defects, increase circulation, and decrease the risk of diabetes (Friedman and Brandon, 2001).  

Soybean is not only important for food and health purposes. It is also used for industrial 

applications such as the production varnishes, paints, inks, soaps, lubricants and other 

products (Cahoon, 2003). As a legume plant, it is also recognised for its ability to enrich soil 
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with nitrogen (Vlahović et al., 2013). Soybean has a symbiotic relationship with nitrogen-fixing 

bacteria Bradyrhizobium japonium in its roots (Marino et al., 2007; Toorchi et al., 2009; 

Sanchez et al., 2011). This symbiotic nitrogen fixation plays a significant role by improving soil 

fertility (Zahran, 1999). This nitrogen fixation reduces the need for use of synthetic nitrogen 

fertilizers, thus providing an environmentally friendly crop production system since synthetic 

fertilizers lead to land and water pollution. It is also used in the production of biodiesel 

(Pimentel and Patzek, 2008; Phang et al., 2011), an environmentally friendly fuel that replaces 

non-renewable fossil fuel products. This makes this legume crop an important agricultural 

commodity with direct significance on food security and environmental sustainability. 

1.6.2 Soybean responses to drought stress 

Drought is one of the major abiotic stresses that have devastating effects on crop yield as it 

affects the growth, reproduction and development of plants. Prolonged drought can cause 

permanent cell death, resulting in crop failure (Farooq et al., 2009). In several parts of the 

world, impacts of water deficit can reduce crop productivity by 50% (Lisar et al., 2012). 

Soybean is one of the crops that is negatively affected by drought. Soybean is mostly planted 

in rain-fed agricultural regions and is considered as one of the most susceptible crops to yield 

loss due to water deficit (Liu et al., 2004).  Soybean is considered more sensitive to water 

deficit during germination, flowering and seed development (Ohashi et al., 2006). Like other 

plants, when soybeans are exposed to drought, numerous physiological, morphological and 

biochemical changes are induced, as a result the normal growth and development is disturbed 

(Manavalan et al., 2009). The symptoms of water deficit include suppressed growth, reduced 

photosynthetic rate, reduced transpiration rate and leaf senescence (Chaves et al., 2003). 

According to Specht et al. (2001), drought reduced soybean yield by about 40%. The 
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decreased photosynthetic rate, stomatal conductance and transpiration rate caused by water 

deficit in soybean reduced yield by 20% at seedling stage and by 46% at flowering stage. 

Under drought stress, the dry mass was reduced by 30 % when compared to well-watered 

control plants, with drought causing significantly decreased photosynthetic rate, stomatal 

conductance and transpiration rate (Ohashi et al., 2006). 

Under drought conditions, soybean adopts various mechanisms in order to cope with water 

deficit stress. This includes three mechanisms, namely drought avoidance, drought escape 

and drought tolerance (Verslues et al., 2006). Drought avoidance is when the plant maintains 

tissue water during stress conditions by reducing water loss (evapotranspiration) and 

absorbing water as much as possible by improving uptake of water by roots (Araus et al., 

2002). Soybean adapts to water deficiency by stimulating growth of roots and reducing shoot 

growth because shoots are very sensitive to growth inhibition due to low cell turgor when 

compared to roots. Roots become thick in order to penetrate hard soils to absorb water at 

different depths of the soil. Plants also develop long taproots to absorb water located deeper 

in the soil. In case of severe droughts, the growth of roots may be inhibited due to low water 

availability. Therefore, instead of developing long taproots, the plants reduce root length 

growth by developing root hairs (O'toole and Bland, 1987; Manavalan et al., 2009). The 

second mechanism, drought escape, occurs when the plant develops rapidly to complete its 

life cycle before drought occurs. Drought tolerance is when the plant is able to withstand 

drought with low water potential, by maintaining cell turgor (osmotic adjustment) and 

reducing evapotranspiration in leaves by accumulation of compatible solutes (Zlatev et al., 

2012). 
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During periods of drought, relative water content (RWC), water potential and turgor are 

reduced in the cell of the plant and this causes a rise in the concentrations of solutes 

(osmolytes/osmotic adjustment) such as proline, mannitol and sorbitol the in cytosol and 

extracellular matrices (Serraj and Sinclair, 2002).  Plants accumulate these osmolytes in order 

to protect themselves against dehydration. When the osmolytes accumulates in plant cells, 

they result in decline of water loss, reduced osmotic potential and maintenance of cell turgor 

pressure that contributes to maintenance of physiological processes and this reduces wilting 

in plants.  Drought decreases cell expansion and causes inhibition of growth (Serraj and 

Sinclair, 2002; Lisar et al., 2012). Drought also causes accumulation abscisic acid (ABA). 

Abscisic acid is induced under drought stress conditions and acts as a signalling molecule. 

Abscisic acid plays a significant role in regulation of water status in plants by regulating 

stomatal closure in order to maintain leaf water content and water potential and inducing 

expression of stress-related genes that encode proteins and enzymes involved in combating 

water deficit stress in cells (Davies, and Zhang, 1991; Zhu, 2002). Stomatal closure can result 

in the limitation of gaseous exchange in terms of CO2 assimilation. This disrupts electron 

requirements for photosynthesis and leads to a greater susceptibility to photo-oxidative 

damage. In soybean, the photosynthetic rate and water potential is decreased under drought 

stress in leaves, pods and leaves (Liu et al., 2004). This is followed by high accumulation of 

ROS, which inhibits photochemical functions and activates antioxidant enzyme activities such 

as APX and SOD (Mittler et al., 2004). Drought also causes synthesis of new proteins and 

mRNAs involved in water deficit stress defence (DuPont and Altenbach, 2003). Drought may 

also affect nutrient uptake and transport in plant organs (Al-Kaisi et al., 2013). In addition, 

nitrogen fixation in soybean is very sensitive to drought (Sinclair et al., 2007).  The reduction 

in nitrogen fixation disrupts metabolism and causes reduction of soybean yield due to 
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inadequate nitrogen fixation required for production of proteins that are essential for seed 

production (Serraj et al., 1999; Streeter, 2003; Sinclair et al., 2007) and reduction of 

photosynthetic activity due to insufficient nitrogen accumulation in leaves (Salvagiotti et al., 

2008). Therefore, understating the physiological and molecular responses associated with 

drought tolerance in soybean is crucial to overcome the challenges of drought on soybean 

production and yield. Focus on breeding technologies and genetic engineering approaches in 

developing drought-tolerant soybean lines to improve soybean yield under drought is of 

importance. To achieve such desired tolerance, understanding the contribution of genetically 

determined metabolic components to the regulation of drought responses is crucial. For this 

reason, this study investigated the possible contribution of a sterol biosynthetic gene to soybean 

responses to drought. 
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CHAPTER 2 

MATERIALS AND METHODS 

Table 2.1: List of suppliers and chemicals  

  

Chemicals  Suppliers  

L-Ascorbic acid Sigma- Aldrich 

Agarose 
 

Whitehead Scientific 

Ammonium persulphate 
 

Sigma- Aldrich 

Evans blue  
 

Sigma- Aldrich 

Terbinafine  
 

Sigma- Aldrich 

Calcium sulphate 
 

Sigma- Aldrich 

Promix 
 

Windell Hydroponics 

Sodium dodecyl sulphate (SDS) 
 

BIO-RAD 

Hydrogen peroxide 
 

Sigma- Aldrich 

NBT 
 

Sigma- Aldrich 

TCA 
 

Sigma- Aldrich 

Thiobarbituric acid 
 

Sigma- Aldrich 

Potassium iodide 
 

Sigma- Aldrich 

K2HPO4 
 

Sigma- Aldrich 

EDTA 
 

Sigma- Aldrich 

PVP 
 

Sigma- Aldrich 

Bovin serum albumin 
 

Sigma- Aldrich 

Bradford reagent 
 

Bio-Rad 

Glycine Sigma- Aldrich 
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Tris base 
 

Sigma- Aldrich 

TEMED 
 

Bio-Rad 

Ferric chloride 
 

Sigma- Aldrich 

Potassium ferricynide 
 

Sigma- Aldrich 

Riboflavin 
 

Sigma- Aldrich 

Potassium cynide  
 

Sigma- Aldrich 

DHA (bis (dehydro-l-ascorbic acid) 
 

Sigma- Aldrich 

GSH  
 

Sigma- Aldrich 

L-methionine 
 

Sigma- Aldrich 

cDNA synthesis kit 
 

New England Biolabs 

RNA mini prep kit 
 

Zymo Research 

DNase treatment kit 
 

Thermo Fisher scientific 

GelRed™ nucleic acid  
 

Biotium 

Hot start 
 

Thermo Fisher scientific 

Luminaris color HiGreen qPCR master mix 
 

Thermo Fisher scientific 

Potassium hydroxide 
 

Sigma- Aldrich 

Hexane 
 

Sigma- Aldrich 

Pyridine 
 

Sigma- Aldrich 

N,O-bis (trimethylsilyl)trifluoroacetamide 
(99% BSTFA) 

Sigma- Aldrich 

Dimethylsulfoxide (DMSO) 
 

Pierce 

KH2PO4 
 

Sigma- Aldrich 

Bis acrylamide 
  

Bio-Rad 
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2.1 Seed germination and plant growth 

Soybean (LS 6150R cultivar) seeds were surface sterilised with 10% commercial bleach for 10 

min and washed with dH2O six times. The seeds were soaked in sterile dH2O for 10 min 

followed by imbibing of the seeds in 10 mM CaSO4 for 16 hours.  The seeds were inoculated 

with Bradyrhyzobium japonicum bacteria and were germinated for 3 days in paper towel 

soaked with dH2O.  

When the germinated seeds had radicles approximately 1.5 cm long, they were transplanted 

into 20 cm plastic pots (two plants per pot) containing 3 L of moist Promix Organic (from 

Windell Hydroponics; a medium made of mixture of perlite and coconut peat, formulated 

with an organic fertilizer that provides nutrients to growing plants, and has an ability to retain 

water for a longer periods than soil or other growth media). Before the seedlings were 

transplanted to pots, the Promix Organic had been dried at 80C for 48 hours to remove the 

moisture. For control plants (WW) and 50 µM terbinafine (WWT) (sterol synthesis inhibitor) -

treated plants, water was added to maintain a water potential of -0.03 MPa in both 

treatments. For water-deficit plants (WD) and the combination of water-deficit and 50 µM 

terbinafine (WDT) -treated plants, water was added to maintain a water potential of -0.41 

MPa. The seedlings were grown in a growth room at 25C during the day and 19C at night 

under 16/8 hours light/dark at a photosynthetic photon flux density of 200 µmol.m-2.s-1 during 

the light phase.  

2.2 Treatment of plants 

At the VC stage (when unifoliate leaves fully opened) of plant growth, plants were treated 

with either water or terbinafine. Control plants were supplied with 50 ml of water (containing 
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methanol at a final concentration of 1%) for each pot every third day whereas terbinafine 

treatments were done by watering with 50 ml of water containing terbinafine (from a stock 

solution made in methanol) at a final concentration of 50 µM terbinafine such that the final 

methanol concentration is 1%. Plants were irrigated with the terbinafine solution every third 

day. Untreated and Water Deficit plants were supplied with water containing 1% methanol 

since the terbinafine is dissolved in methanol and the Terbinafine treatments thus contain 

methanol at a final concentration of 1%.  

2.3 Measurements of growth parameters 

Plants were harvested at V stage after 32 days of growth.  Ten plants from each treatment 

were carefully removed from the Promix Organic. Shoots were excised and weighed as soon 

as possible after their excision and the length of the shoot was also measured. Leaves were 

harvested for further analysis and the remaining plant material was quickly frozen in a liquid 

nitrogen and stored at -80C. 

2.4 Measurement of cell viability 

A modified method followed for the cell viability assay (Sanevas et al., 2007) was performed 

of freshly harvested leaf tissue. Fresh leaf tissue from the second youngest trifoliate was 

harvested from three different plants of each treatment and stained for 30 min with 0.25% 

(w/v) Evans Blue dye at room temperature. To remove surface bound dye, leaves were 

washed for 45 min in distilled water, followed by incubation for 1 hour at 55oC. The Evans 

blue stain taken by dead leaf cells was extracted using 1% (w/v) SDS. The absorbance for the 

level of Evans Blue up-take by the leaf tissue was measured spectrophotometrically at 600 

nm. 
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2.5 Measurement of superoxide (O2
˙-) 

A modified method of Russo et al. (2008) was used to determine superoxide content. 

Superoxide concentrations were determined by submerging fresh leaf tissue from three 

different plants in a solution containing either 10 mM KCN (to inhibit Cu/Zn SOD) or 10 mM 

H2O2 (to inhibit Mn and Cu/Zn SOD) or 2% (m/v) SDS (to inhibit Mn and Fe SODs) or no 

inhibitors; together with 80 mM nitro blue tetrazolium chloride (NBT) and 50 mM potassium 

phosphate (pH 7.0). The leaves were incubated for 20 min within the solution after which 

they were homogenized and centrifuged at 10,000 × g for 5 min and the supernatant was 

spectrophotometrically analysed by reading absorbance at 600 nm. The superoxide 

concentration was calculated using the NBT extinction coefficient of 12.8 mM cm−1. 

2.6 Determination of lipid peroxidation (MDA) and Hydrogen 

peroxide (H2O2) content 

2.6.1 Metabolite extraction (TCA extraction) 

Metabolites were extracted using a modified method of Khan and Panda (2008). Extracts 

were isolated from soybean leaves by grinding them into a fine powder in liquid nitrogen. The 

frozen powder (100 mg) was directly homogenized in 5 volumes of 6% TCA. The resulting 

homogenates were centrifuged at 13,000 x g for 20 min at 4oC.  The supernatants were used 

to assay for malondialdehyde (MDA) and hydrogen peroxide (H2O2) content. 
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2.6.2 Measurement of lipid peroxidation 

Lipid peroxidation was determined by measuring the amount of MDA produced by the 

thiobarbituric acid reaction as described by Terzi and Kadioglu (2006). The TCA extract was 

mixed with the same volume of a 0.5% (w/v) thiobarbituric acid solution prepared in 20% 

(w/v) tricholoroacetic acid. The mixture was heated at 90C for 30 min and then quickly cooled 

in an ice-bath for 10 min. The mixture was centrifuged at 13000 × g for 5 min and the 

absorbance of the supernatant was monitored at 532 and 600 nm. After subtracting the non-

specific absorbance (600 nm), the MDA concentration was determined by its molar extinction 

coefficient (155 mM−1 cm−1). 

2.6.3 Measurement of hydrogen peroxide (H2O2) 

Hydrogen peroxide content was determined using a method modified from Velikova et al. 

(2000). For this method, 50 µl of the supernatant from the TCA extracts was added to 50 µl 

of 100 mM potassium-phosphate buffer (pH 5.0) and 100 µl of 0.5M KI. The mixture was 

incubated at room temperature for 20 min. H2O2 concentration in the supernatant were 

evaluated by comparing its absorbance at 390 nm wavelength to a standard calibration curve. 

The concentration of H2O2 was calculated from a standard curve.  

2.7 Determination of antioxidant enzyme activity 

2.7.1 Native PAGE activity assays 

2.7.1.1 Protein isolation for analysis of Antioxidant Enzyme activity assays 

Total soluble protein was isolated from soybean leaves by grinding the leaf tissue into a fine 

powder in liquid nitrogen. The frozen powder (100 mg) was homogenized with homogenizing 
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buffer [40 mM K2HPO4, pH7.4, 1 mM EDTA, 5% (w/v) polyvinylpolypyrrolidone (PVPP) 

(molecular weight = 40 000]. The resulting homogenates were centrifuged at 13,200 rpm for 

20 min at 4oC and the supernatants were used to determine protein concentration using the 

Bradford assay method (Bradford, 1976) with Bovine Serum Albumin as a standard. The 

supernatant fractions were used as crude extract for enzyme activity assays. 

2.7.1.2 Ascorbate peroxidase (APX) Activity assay 

The activity of APX isoforms was determined with native polyacrylamide gel electrophoresis 

(PAGE) as described by Rao et al. (1996). The gel (5% stacking, 12% resolving) was equilibrated 

with a running buffer containing 2 mM ascorbate, 192 mM glycine and 24 mM Tris base (pH 

7). Total protein extracts of 50 µg were loaded and the native PAGE was performed at 4oC for 

4 hours at 70 V. The APX activity was detected by incubating the gel in the dark with a solution 

containing 50 mM potassium phosphate buffer (KPO4, pH 7.0) and 2 mM ascorbic acid for 10 

min, followed by incubation with a solution containing 50 mM potassium phosphate buffer 

(pH 7.8), 2 mM H2O2 and 4 mM ascorbic acid for 10 min in a shaker in the dark. The gel was 

washed with 50 mM potassium phosphate buffer (pH 7.8) for 1 min in darkness.  The gel was 

then stained with a solution containing 50 mM potassium phosphate buffer (pH 7.8), 28 mM 

N,N,N′,N′- Tetramethylethylenediamine (TEMED) and 0.5 mM nitro blue tetrazolium chloride 

(NBT) for 10 min in the dark. After the staining, the gel was exposed to light with shaking until 

APX isozymes were visible. 

2.7.1.3 Catalase (CAT) activity assay 

A native PAGE (7.5% resolving gel and 5% stacking) gel with a thickness of 1.5 mm was 

prepared. The gel was equilibrated with a running buffer containing 192 mM glycine, and 24 
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mM Tris base (pH 7). Protein extracts (50 µg each) were loaded onto the native PAGE gel. Gel 

electrophoresis was performed at 4oC for 10 hours at 60 V. Catalase isozymes were visualised 

by firstly washing the gel with distilled water 3 times for 10 min in shaker. After washing, the 

gel was incubated for 10 min in a solution containing 0.003% H2O2 (V/V).  After the incubation, 

the gel was rinsed twice with distilled water for 5 min. Then the gel was stained 

simultaneously with 2% ferric chloride (w/v) and 2% potassium ferricynide (w/v) as decribed 

in Yamashita et al. (2007). When achromatic bands begin to form, the stain was discarded and 

the gel rinsed with water.   

2.7.1.4 Superoxide dismutase (SOD) Activity assay 

The activity of SOD isoforms was analysed using a procedure modified from Beauchamp and 

Fridovich, (1971). A native PAGE (12% resolving and 5% stacking gel) with a thickness of 1.5 

mm was prepared. The gel was equilibrated with a running buffer containing 192 mM glycine 

and 24 mM Tris base (pH 7). Protein extracts (80 µg each) were loaded onto the native PAGE 

gel. Electrophoresis was performed at 4oC for 6 hours at 70 V until the dye reached the bottom 

of the gel. The gel was then washed with 50 mM KPO4 (pH 7.8) for 15 min in shaker. After 

washing, the gel was incubated for 10 min in a solution containing 50 mM KPO4 (pH 7.8) and 

0.5 mM NBT in the dark. This was followed by incubation for 10 min in a solution containing 

50 mM KPO4 (pH 7.8), 35.5 mM TEMED and 0.5 mM riboflavin in the dark. The gel was rinsed 

with distilled water and exposed to light to visualise the bands.  In order to identify the 

different isozymes of SOD, 2 mM potassium cyanide (KCN) (inhibitor of Cu/ZnSOD) and 5 mM 

H2O2 (inhibitor of Cu/ZnSOD and FeSOD) were used in separate gels.  MnSOD activity is 

resistant to both KCN and H2O2. 
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2.7.1.5 Dehydroascorbate Reductase (DHAR) activity assay  

The activity of DHAR isoforms was determined by native polyacrylamide gel electrophoresis 

(PAGE) as described by Sgherri et al. (2000) with some modifications. A native PAGE gel (7.5% 

resolving and 5% stacking) with a thickness of 1.5 mm was prepared for the electrophoresis, 

together with a running buffer containing 192 mM Glycine and 24 mM Tris base (pH 7). To 

detect the change in activity of DHAR isozymes, total protein extracts of 50 µg from each 

treatment were loaded on the gel. Native PAGE was performed at 4oC for 7 hours at 70 V. 

After electrophoresis, the gel was incubated for 20 min at room temperature in in 0.1 M 

potassium phosphate buffer (pH 6.4) containing 2 mM dehydro-L-ascorbate (DHA) and 4 mM 

glutathione (GSH). The gel was then washed with distilled water and stained with a solution 

of 0.125 N HCI containing 0.1 % potassium ferrocyanide and 0.1 % ferric chloride (w/v). When 

dark blue band were visible, the stain was discarded and the gel was rinsed with distilled 

water.  

2.8 Transcript profiling of Glyma08g24160 

Semi-quantitative RT-PCR and quantitative RT-PCR were used to assess expression levels of a 

soybean gene Glyma08g24160, which encodes lanosterol synthase, in control plants versus 

treated plants. The protein sequence of Glyma08g24160 was obtained using the key word 

search on Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html), with “lanosterol 

synthase” as the search word. This gene is predicted to encode a lanosterol synthase in 

soybean. Lanosterol synthase catalyses the conversion of oxidosqualene to lanosterol. To 

determine if glyma08g24160 is involved in soybean responses to drought stress and 

investigate the changes sterol content under drought stress,   semi-quantitative reverse 
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transcription PCR (semi-qRT-PCR) was used as a tool to detect the expression levels of this genes 

in response to water deficit, sterol inhibition (terbinafine) and combination of water deficit and 

terbinafine.  

2.8.1 RNA extraction and first strand cDNA synthesis 

Total RNA was extracted from soybean leaves of control and treated plants using the ZR Plant 

RNA MiniPrep kit (Zymo Research, USA) as described in the manufacturer’s manual. RNA was 

quantified using a spectrophotometer (NanoDrop) at 260 nm and run on 1% agarose gel 

electrophoresis to confirm its quality. Two micrograms of total RNA were treated with RNase-

free DNase I according to the manufacturer’s instructions to digest contaminating DNA. RNA 

(300 ng) was reverse-transcribed into first strand cDNA using ProtoScript® First Strand cDNA 

Synthesis Kit (New England Biolabs) as per manufacturer’s instructions and an Oligo dT(23) 

primer was used to produce the cDNA.  

2.8.2 Semi-quantitative R-T PCR analysis 

PCR amplifications were performed in 0.2 ml thin-walled tubes using a T100™ Thermal Cycler (Bio-

Rad). PCR amplifications were performed in a 25 µl reaction mixture containing 2 µl of cDNA 

as a template, 10 X Hot Start PCR buffer, 0.2 mM each of dNTPs, 0.5 μM of each gene-specific 

primer and an appropriate amount of Maxima Hot Start Taq DNA Polymerase that gave 1.25 

U (Thermo Fisher Scientific). The PCR conditions for Glyma08g24160 were as follows: 95 °C 

for 2 min, 95 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s, and 25 amplification cycles. Soybean 

18S rRNA was used as an internal control with the following PCR conditions; 95 °C for 2 min, 

95 °C for 30 s, 58 °C for 30 s and 72 °C for 30 s, and 30 amplification cycles. The primers used 

are given in Table 2.2. Equal amount of PCR products were mixed with 1X GelRed™ nucleic 
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acid stain (Biotium, USA) and run on 1 % TAE agarose gel at 70 V for 1h30. The sizes of the 

products were estimated using a 100 bp molecular weight marker and the gel was visualized 

and photographed under the UV light on an AlphaEase Gel Documentation System (Alpha 

Innotech Inc.).  

 

Table 2.2: Primers used in Semi-RT PCR and Quantitative RT-PCR for determination of Glyma08g24160 

expression. 

 

Primer Name Primer set  

Sequence (5’-3’) 

Amplicon 

size (bp) 

Species 

 Glyma08g24160 

 

F: ACTTTCAACACAGAGGGAAGACGGT 

R: TTAGGGTCTCTATCCGCCTGTCCAG 

 

159 

 

Glycine max 

18S rRNA  

 

F: CTGTGAAACTGCGAATGGCTC 

R: CTGCCTTCCTTGGATGTGGT  

 

350 Glycine max 

 

 

 

2.8.2.1 Densitometry analysis 

Densitometry analysis of PCR gels and native PAGE was conducted using AlphaEase FC 

Imaging software V4 (Alpha Innotech Corporation). The densitometry Software was used as 

described in the manufacture’s manual. 

0000 
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2.8.3 Quantitative R-T PCR analysis 

Real-time PCR amplifications were performed in a 10 µl reaction mixture using Luminaris 

Color HiGreen qPCR Master Mix (Thermo Fisher Scientific) according to manufacturer’s 

instructions. The master mix includes Hot Start Taq DNA polymerase, uracil-DNA glycosylase 

(UDG), double-stranded DNA (dsDNA)-binding dye SYBR® Green I and dNTPs in an optimized 

PCR buffer. The thermal cycling was performed using the following conditions: 95oC for 10 

min, 95oC for 10 s, 58oC for 10s, 72oC for 10s, with 40 amplification cycles.  The cycling 

conditions of Glyma08g24160 were the same as of 18S rRNA and the primers used are 

provided in Table 2.2.   

The SYBR Green dye used in the real-time PCR reaction to detect amplification of 

glyma08g24160, binds to any double-stranded DNA, including non-specific PCR amplification 

products. Therefore, to exclude the detection of no-specific PCR amplification, a melting curve 

was run after the real-time PCR with the following thermal conditions: 95oC for 5 sec and 58oC 

for 1 min. Relative gene expression quantification was analyzed using the Delta (2−ΔΔ𝐶t) 

method (Livak & Schmittgen, 2001). The Delta delta method requires the use of internal 

control which is uniformly expressed in all samples. In this study 18S rRNA were used since 

their expression does not change in response to variety of treatment conditions (Nicot et al., 

2005). The amplification of glyma08g24160 between the control and treated plants was 

performed three times. The mean Cp values were determined and the expression of 

glyma08g24160 was compared relative to the internal control 18S rRNA gene.  
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2.9 Determination of sterol content in soybean 

2.9.1 Extraction of soybean sterols 

Sterol profiles of soybean leaves and roots was determined using the method described by 

Du and Ahn, (2002) with some modifications. Leaves and roots of soybean (100 mg each) were 

ground into fine powder in liquid nitrogen and carefully weighed into a 2ml screw-cap 

microcentrifuge tube, then 1 mL of saponification reagent [prepared by mixing absolute 

ethanol and 33% (w/v) KOH solution at a ratio of 94:6, 0.5 ml of 20% ascorbic acid (to prevent 

oxidation of tocopherols during saponification)] and 50 µl of 5-α-cholestane solution (1 µg/µl 

in hexane) were added immediately. The sample was homogenized for 5s at full speed, 

capped, and then incubated for 1 hour at 50oC. After cooling on ice water for 10 min, 0.5 mL 

of hexane was added. Tubes were capped tightly and then the contents were mixed 

thoroughly by shaking. After 15 hours for phase separation, the hexane layer containing 

unsaponifiables was carefully transferred to a centrifuge tube and dried using centrifugation 

under vacuum (SpeedVac) for 1h. To the dried sample, 200 µl of pyridine and 100 µl N,O-

bis(trimethylsilyl) trifluoroacetamide (99% BSTFA) were added. The sample was derivatized 

at 50oC in an oven for 1 hour, and then analysed using a GC-MS (6890N gas chromatograph, 

Agilent). External standards of sterols were prepared the same way as the samples for 

calibration. 

2.9.2 Gas- Chromatography Mass Spectrophotometry analysis 

Compounds were identified by GC-MS as described in Rahier and Benveniste, (1989) using a 

6890N gas chromatograph (Agilent) equipped with a  DB-225 MS column (J&W 122-2232 

model ; 30 m length; 250 µm diameter; 0.25 µm thickness) and coupled to a CTCPAL mass 
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analyser (Agilent). The injection volume was 1 µl, using a 10 µl syringe. The temperature 

program of ovens was a gradual 7°C/min increase from 200°C to 325°C. The inlet to the 

column was set to splitless mode, at an initial temperature of 250oC, 131.1 kPa pressure and 

the purge flow was 50.0 mL/min. The flow rate at the column was set to 1.2 mL/min (constant 

flow), the pressure was at 131.2 kPa and the speed at 42 cm/sec. Sterols were unequivocally 

identified by coincidental retention time and identical EI-MS spectra at 70 eV like reference 

compounds. 

2.10 Statistical analyses 

Eight plants were used from each treatment for growth parameters; and for molecular and 

biochemical analysis, the plants were pooled into one sample per treatment and each 

experiment was repeated 3 times. Statistical analysis was performed using the Duncan’s 

multiple range test, with a significance represented by a P value < 0.05. 
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CHAPTER 3 

RESULTS 

3.1 Physiological and morphological responses of soybean to drought 

stress and inhibition of sterol biosynthesis. 

3.1.1 Drought and sterol biosynthesis inhibition causes reduction in growth of 

soybean. 

 

The effect of water deficit and inhibition of sterol biosynthesis on soybean growth was 

evaluated by looking at physiological responses including size of the trifoliate leaves (figure 

3.2), shoot fresh weights (figure 3.1 a) and shoot lengths (figure 3.1 b). The shoot fresh 

weights and shoot length were measured at V4 stage of growth. Terbinafine reduced the 

weight of the shoots significantly by approximately 20% when compared to well-watered 

plants (figure 3.1 a).  However, shoot fresh weight was 2 times lower in water deficit 

conditions when compared to well-watered shoot weights. The combination of drought and 

terbinafine treatment decreased the shoot weight by 40% when compared to water deficit 

shoots. The shoot length (figure 3.1 b) showed a similar trend as shoot weight, albeit with less 

pronounced decrease in lengths than in weights. The lengths of soybean shoots under 

drought stress were approximately 40% lower than shoot lengths under well-watered 

conditions. Both terbinafine treatment and combination of terbinafine and drought also 

decreased the length of shoot length. 
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Figure 3.1: The effect of water deprivation on shoot weights (a) and shoot length (b) of soybean at the 

V4 stage of vegetative growth. Values are means ± SE of 10 plants from three independent experiments, 

p ≤ 0.05. WW (Well-watered); WWT (terbinafine treatment); WD (water deficit); WDT (Water deficit and 

terbinafine). 

 

In addition, plants that were subjected to drought and terbinafine treatment have been 

shown to have decreased  growth in terms of size and area of trifoliate leaves (figure 3.2). 

Terbinafine treatment (WWT) decreased the growth of soybean leaves when compared to 

well-watered plants. In addition, Drought stress (WD) decreased the growth of soybean, and 

the combination of drought with terbinafine treatment (WDT) caused much lower growth 

when compared to drought treated plants without terbinafine.   

 

 

 

 

 

http://etd.uwc.ac.za/



54 
 

 

Figure 3.2: The effect of water deficit and terbinafine on soybean growth. The trifoliate leaves of the 

second youngest leaves were captured at the V4 stage of vegetative growth.  Black bar = 2 cm. WW (Well-

watered); WWT (terbinafine treatment under WW conditions); WD (water deficit); WDT (Terbinafine 

treatment under Water deficit conditions). 

  

 

3.2 The effects of drought and inhibition of sterols on H2O2, O2
.-, MDA and Cell 

viability. 

This part of the study investigated the effects of changes in sterol content caused by 

terbinafine on lipid peroxidation and cell viability. Drought and terbinafine treatment caused 

high accumulation of H2O2. Hydrogen peroxide content in terbinafine-treated plants was 

approximately 50% higher than the well-watered plants, and similar trend was discovered 

between the water deficit and the combination of water deficit and terbinafine treatment 

(Figure 3.3 a).  

 

 

 

 

http://etd.uwc.ac.za/



55 
 

 

Figure 3.3: The effects of drought stress and terbinafine on lipid peroxidation (MDA), H2O2 and O2
.- 

content. Hydrogen peroxide (H2O2) (a) and O2
.-  ( b) were measured as the indication of  ROS accumulation, 

and lipid peroxidation (c) and cell viability (d) were measured as the indication of oxidative stress. Error 

bars represent the means ± SE; n= 3.. Different letters indicate the difference between means at p<0.05.  

WW (Well-watered); WWT (terbinafine treatment); WD (water deficit); WDT (Water deficit and 

terbinafine).        

Superoxide produced contrasting results in terbinafine-treated plants when compared to 

hydrogen peroxide (Figure 3.3b). High accumulation of O2
.- was observed in the presence 

water deficit plants.  Superoxide content in water deficit plants was approximately 175% 

higher than well-watered plants. Terbinafine treatment caused reduction of O2
.- content  by 

approximately 25% when compared to well-watered plants. A similar trend was observed 

under water deficit when it was compared to water deficit in the presence of terbinafine. The 

combination of drought and terbinafine treatment caused a decrease in superoxide content 

when compared to accumulation of superoxide under water deficit, but it was increased by 

approximately 100% when compared to well-watered plants. The oxidative damage to leaves 

of soybean was determined by measuring levels of lipid peroxidation and cell viability. The 
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level of lipid peroxidation was determined by measuring MDA content (Figure 3.3c), a major 

reactive aldehyde formed as result of peroxidation of lipids. Terbinafine treatment had no 

effects in terms of lipid peroxidation as there was no change in the level of MDA content 

between the well-watered leaves and terbinafine treated leaves. However, there was a high 

level of MDA content in leaves of drought-treated plants and in the combination of 

terbinafine and drought-treated plant leaves.  The levels of MDA content in the combination 

treatment of water deficit and terbinafine was significantly higher by approximately 20% 

when compared to MDA content under water deficit. Cell death was determined by 

measuring the level of Evans Blue up-take by dead leaf cells. Cell death showed similar results 

as in lipid peroxidation (Figure 3.3 d). The level of cell death in terbinafine-treated plants was 

the same as in control plants (well-watered plants). Nevertheless, under water deficit 

conditions, cell death was 50% higher than under well-watered conditions. The combination 

of water deficit and terbinafine treatment increased cell death by approximately 40% 

compared to water deficit only, and 2 times higher when compared to control and terbinafine 

treated plants.  
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3.3 The effects of water deficit and sterol synthesis inhibition on the activity of 

antioxidant enzymes in soybean leaves. 

 

3.3.1 The effects of water deficit and terbinafine on activity of superoxide 

dismutase  isozymes 

In the study, we examined the effects of water deficit and sterol inhibition (terbinafine 

treatment) on the activity of SOD isozymes. There were 7 SOD isozymes detected in the leaves 

of soybean. The SOD isozymes were then identified by using inhibitors.  There was one 

MnSOD, two Fe-SOD, and three Cu/Zn SOD isoforms detected. The enzymatic activity of 

MnSOD was enhanced by both the treatment of terbinafine and water deficit, however, the 

combination of water deficit and terbinafine inhibited the activity of MnSOD. Enzymatic 

activity detected for Fe-SOD 1 and Fe-SOD2 increased in response to terbinafine treatment. 

On the other hand, Fe-SOD1 and Fe-SOD2 activity was inhibited by water deficit, just as it was 

in the combination of water deficit and terbinafine. The enzymatic activity of Cu/Zn SOD was 

undetectable in control plants; however, terbinafine slightly activated the activity of Cu/Zn 

SOD1, 2, 3 and water deficit activated all four Cu/Zn SOD (Figure 3.4a). Cu/Zn SOD 1 and Cu/Zn 

SOD2 were down-regulated by combination of water deficit and terbinafine compared to 

water deficit alone, and there was no difference between Cu/Zn SOD 3 and Cu/Zn SOD 4 in 

response to combination of water deficit and terbinafine, when compared to water deficit 

treated plants.  
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a) 

 

b) 

c)  

 

Figure 3.4: In-gel assay for SOD activity in response to water deficit and terbinafine in leaves of soybean. 

Assays were done on leaves of soybean plants that were harvested at V4 stage of vegetative growth. The 

in-gel assays show the types of SOD isoforms present in leaves of soybean (a) with no inhibitors, (b) in the 

presence of 6 mM H2O2 and (c) with 5 mM KCN. Different letters indicate the difference between means 

at p<0.05. Values are means ± S.E (N=3). WW (Well-watered); WWT (terbinafine treatment); WD (water 

deficit); WDT (Water deficit and terbinafine). 
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3.3.2 Water deficit and terbinafine alters the activity of ascorbate peroxidase 

isozymes in soybean leaves. 

On native PAGE activity gels, only two APX isozymes were detected in the leaves of soybean 

(Figure 3.5 a).  The activity of APX isozymes was increased and decreased in response to 

various treatments. APX 1 showed a slight increase in intensity in the water deficit leaves 

when compared to control plants. The addition of terbinafine caused a decrease in APX1 

activity both in the absence drought (WWT) and in the presence of drought (WDT) when 

compared to control plants and drought treated plants. There was no change in the intensity 

of APX 2 under water deficit and in the combination of water deficit with terbinafine when 

compared to control plants. However, there was a slight increase in APX 2 activity in 

terbinafine-treated plants and a slight decrease in a combination of water deficit and 

terbinafine.  
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Figure 3.5: In-gel activity assays for APX activity in response drought and terbinafine treatment. Soybean 

leaves that were treated with 50 µM terbinafine and combination of water deficit with terbinafine were 

harvested at V4 stage of vegetative growth. The in-gel activity assay of APX isoforms in response various 

treatments is shown (A), from which pixel intensities of APX1 (B) and APX2 (C) were determined. Different 

letters indicate the differences between means at p < 0.05. Values are means ± SE (N=3). Abbreviations in 

the figure are as follows: WW (Well-watered); WWT (terbinafine treatment); WD (water deficit); WDT 

(Water deficit and terbinafine). 

Densitometry analysis showed that terbinafine treatment decreased the activity of APX 1 by 

approximately 10% when compared to control plants (figure 3.5b).  However, water deficit 

caused an increase of approximately 10% when compared to control plants. There was no 

change in APX 1 activity between terbinafine-treated plants and the combination of 

terbinafine with water deficit. However, the combination of water deficit with terbinafine 

reduced APX 1 activity by approximately 20% when compared to plants exposed to water 

deficit. Densitometry analysis (b) showed no significant change in the activity of APX2 in 

response all treatments.  
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3.3.3 Catalase activity in soybean leaves is differentially regulated by water 

deficit and terbinafine treatment. 

Changes in catalase isozyme activities were determined and only one catalase isozyme was 

detected (zones of clearing in a green background) in response to various treatments. 

However, there were also dark bands detected and these dark bands could be non-specific 

peroxidase activity (Figure 3.6).  

The enzymatic activity of catalase was inhibited in response to terbinafine treatment and 

water deficit. Terbinafine decreased catalase activity by 40% when compared to control 

plants. However, water deficit decreased the activity of catalase by 20% when compared to 

control plants. Nonetheless, the inhibition caused by water deficit and terbinafine was 

reversed by the combination of water deficit with terbinafine as the activity of catalase was 

enhanced in this combination treatment when compared to other treatments.  
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Figure 3.6: In-gel activity assays for catalase in response water deficit and terbinafine treatment.  The 

assay was done on soybean leaves that were treated with 50 µM terbinafine, water deficit and combination 

of water deficit and 50 µM terbinafine. The activity of APX isoforms in response to various treatments are 

shown for in-ge- assay (A) and pixel intensity (B) of soybean. The different letters indicate the difference 

between means at p<0.05. Values are means ± S.E (N=3). WW (Well-watered); WWT (terbinafine 

treatment); WD (water deficit); WDT (Water deficit and terbinafine). 

 

3.3.4 Terbinafine and water deficit causes changes in dehydroascorbate 

reductase activity in the leaves of soybean. 

Dehydroascorbate reductase (DHAR) is involved the regeneration of ascorbate, the electron 

donor for APX. Therefore, changes in enzymatic activity of DHAR isozymes in response to 

various treatments were investigated. One DHAR isozyme was detected in response to the 

various treatments (Figure 3.7 a and b). Enzymatic activity of DHAR in the terbinafine 

treatment increased by approximately 25% when compared to control plants. However, 
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water deficit and the combination of drought inhibited the activity of DHAR. Water deficit 

decrease the activity of DHAR by approximately 25% when compared to the control plants. 

Nonetheless the combination of water deficit and terbinafine caused a significant decrease 

when compared to all other treatments.  

 

Figure 3.7: In-gel activity assays for dehydroascorbate reductase in response water deficit and 

terbinafine treatment.  The assay was done on soybean leaves that were treated with 50 µM terbinafine, 

water deficit and combination of water deficit with 50 µM terbinafine. The activity of APX isoforms in 

response to various treatments are shown for soybean leaves using an in-gel assay (A), from which pixel 

intensities (B) were determined. Different letters indicate the differences between means at p < 0.05. 

Values are means ± SE (N=3). The abbreviations used are as follows: WW (Well-watered); WWT (terbinafine 

treatment); WD (water deficit); WDT (Water deficit with terbinafine). 
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3.4 The effect of drought on the expression of a candidate lanosterol 

synthase gene (Glyma08g24160) 

The results for gene expression quantification from semi-quantitative PCR are shown in Figure 

3.8. The 18S rRNA gene was used as reference gene because its expression does not change 

significantly in response to a variety of treatment conditions. The results obtained from semi-

qRT-PCR showed that the expression of glyma08g24160 was increased and decreased  by the 

various treatments (Figure 3.8 a) and all the amplicons produced the same size of the gene on 

agarose gel as the predicted size based on the sequence of the PCR product that in generated 

from the designed primers.  

A slight up-regulation of glyma08g24160 was observed in water deficit and terbinafine 

treated plants, but there was no significant difference between the expression levels in 

terbinafine treated leaves and in water deficit leaves (Figure 3.8 b). The combination of water 

deficit with terbinafine caused a significant down-regulation of the gene. To validate the 

results obtained from the semi-quantitative RT-PCT, quantitative PCR (qPCR) was conducted 

because qPCR is sensitive that semi-quantitative PCR. Quantitative PCR (Figure 3.9) showed a 

similar trend for gene expression as in semi-PCR although there were some differences in the 

level of the expression of the gene in different treatments.  The level of gene expression 

between water deficit and terbinafine was different when compared to the semi quantitative 

PRC. The up-regulation of the gene was 2 times higher than in the well-watered leaves. 

Although gene expression was ± 20% higher in terbinafine-treated plants than in the well-

watered leaves. Drought and terbinafine treatments caused the up-regulation of the gene, 
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but the combination of water deficit with terbinafine down-regulated the gene to the same 

level as in well-watered leaves.  

 a) 

 

   b) 

 

 

 

Figure 3.8: Semi-quantitative R-T PCR for gene expression levels of Glyma08g24160 in response to water 

deficit and terbinafine in the leaves of soybean. The effects of water deficit and terbinafine on the 

expression of the sterol biosynthesis gene (glyma08g24160; 159 bp in size) expression was measured in 

the leaves of soybean plant using semi-quantitative RT-PCR (a). Soybean 18S rRNA (350 bp) was used as a 

reference gene. All PCR products were size-fractionated with a DNA size marker (M) on a 1% agarose gel. 

The intensity of the PCR bands (b) was analysed using densitometry (expressed as relative pixel intensity). 

Error bars represent the means (± SE; n= 3) of three independent experiments. Different letters above the 

bars indicate means that are statistically different at p < 0.05.  Abbreviations used are as follows: C; control.  

WW (Well-watered); WWT (terbinafine treatment); WD (water deficit); WDT (Water deficit with 

terbinafine treatment).       
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Figure 3.9: Quantitative R-T PCR for gene expression levels of Glyma08g24160 t in response to water 

deficit and terbinafine in the leaves of soybean. The effects of water deficit and terbinafine on sterol 

biosynthesis gene (glyma08g24160) expression was measured in the leaves of soybean plant using 

quantitative RT-PCR. Soybean 18S rRNA was used as a reference gene. Error bars represent the means (± 

SE; n= 3) of three independent experiments. The different letters indicate the difference between means 

at p<0.05. WW (Well-watered); WWT (terbinafine treatment); WD (water deficit); WDT (Water deficit and 

terbinafine).     

 

3.5 The effects of water deficit and terbinafine treatment on sterol 

content of soybean leaves 

This part of the study investigates the role of phytosterols in drought responses in soybean 

and the effects of terbinafine on changes in sterol content. The amount of stigmasterol, 

sitosterol and cycloartenol was reduced in response to terbinafine treatment (table 3.1). 

However, lanosterol statistically remained the same as in well-watered leaves but water 

 

 

 

 

http://etd.uwc.ac.za/



67 
 

deficit reduced the amount of lanosterol. Water deficit resulted in more significant reduction 

of sitosterol, stigmasterol, cycloartenol and lanosterol when compared to terbinafine 

treatment. The combination of water deficit and terbinafine reversed the effect of water 

deficit by increasing the amount of stigmasterol, cycloartenol and lanosterol, but there was 

no significant change in sitosterol levels when compared to water deficit. Nevertheless, the 

amount of sitosterol, stigmasterol, cycloartenol and lanosterol was lower than in well-

watered leaves and terbinafine leaves.  

 

Table 3.1: Sitosterol, stigmasterol, cycloartenol and lanosterol responses to water deficit and sterol 

inhibition    

 

 Well-watered 
leaves 

Well-watered 
leaves and 
terbinafine 

Water deficit in 
leaves 

Water deficit in 
leaves treated 

with terbinafine 

Sitosterol 
(µg.mg-1 FW) 

0.33 ± 0.025 a 0.27 ± 0.022 b 0.18 ± 0.019 c 0.21 ± 0.023 c 

Stigmasterol 
(µg.mg-1 FW) 

0.26 ± 0.021 a 0.21 ± 0.019 b 0.14 ± 0.013 d 0.18 ± 0.013 c 

Cycloartenol 
(µg.mg-1 FW) 

0.18 ± 0.014 a 0.15 ± 0.012 b 0.08 ± 0.006 c 0.09 ± 0.008 c 

Lanosterol 
(µg.mg-1 FW) 

0.13 ± 0.016 a 0.12 ± 0.009 a 0.04 ± 0.003 b 0.11 ± 0.008 a 

Data represent means ± standard error of three biological replicates (± SE; n= 3). Different 

letters indicate statistically different means at p < 0.05.  Abbreviations in the table refer to 

the following: WW (Well-watered); WWT (terbinafine treatment); WD (water deficit); WDT (Water deficit 

and terbinafine). 
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Chapter 4 

4. Discussion  

4.1 Drought reduced growth of soybean 

The growth of the plants is achieved through cell division, enlargement and differentiation 

and these processes involve the physiological, genetic and morphological events and their 

complex interactions. Cell growth is one of the physiological processes that is mostly sensitive 

to drought due to reduction of turgor pressure. Water deficit can inhibit cell elongation and 

expansion, and damage mitosis; resulting in reduced plant height and leaf area, accompanied 

by poor quality and quantity of plant growth (Nonami, 1998; Anjum et al., 2011) as observed 

in this study.  

The goal of this study was to investigate the role of a candidate lanosterol biosynthesis gene 

(which acts as a precursor to phytosterols synthesis) and phytosterols in soybean responses 

to drought stress.   The effects of drought on soybean growth were determined based on the 

size of the trifoliate leaves, shoot fresh weights and shoot lengths between the control plants 

and water deprived plants (Figure 3.1 and Figure 3.2). The plants that were grown under 

water deficit had small leaves and reduced leaf area. Shoot length and shoot weight were also 

reduced by drought. These findings are in agreement with the results of Zeid and Shedeed 

(2006), where drought stress reduced the fresh and dry masses of shoots in alfalfa (Medicago 

sativa L.). Drought stress reduced shoot length, shoot weight and leaf area in Gossypium 

hirsutum L. (Pace et al., 1999) and Zea mays (Khan et al., 2001; Kamara et al., 2003). The 

reduction of leaf area, shoot length and weight observed in this study may be associated with 

reduction in cell division and cell elongation due to a reduced water potential gradient 
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between the xylem and the growing cells, which prevents the movement of water into the 

growing area, limiting leaf water potential and growth of plants. This may be because of the 

fact that, under water deficit conditions, roots induce signal cascades, such as ABA, to the 

shoots via the xylem (Davies, and Zhang, 1991). ABA stimulates the efflux of K+ ions from 

guard cells and results in loss of turgor pressure, leading to stomatal closure, which is an 

adaptation strategy of the plant to limited water supply to reduce leaf water loss through 

transpiration (Guerrero and Mullet, 1986). The reduction in turgor pressure results in reduced 

cell growth, followed by reduction of leaf area and size and thereby reducing plant height and 

growth (Rucker et al., 1995).  

 

4.2 Drought induces oxidative stress in soybean. 

Several studies have revealed that oxidative stress is one of the main causes of reduction in 

growth and development of different plant species. Oxidative stress, defined as a disturbance 

in the balance between the production of reactive oxygen species (free radicals) and 

antioxidant defences. Oxidative stress is caused by changes in environmental conditions such 

as drought, which cause high accumulation of ROS such as O2
.- and H2O2 and these reactive 

oxygen species attack biological  molecules in cells and impair their functions, leading to cell 

death and affecting crop yield. In this study, drought caused high accumulation of H2O2 and 

O2
.-. Since ROS are toxic to plants (including soybean) high ROS content induced oxidative 

damage to lipids, as indicated by high MDA content (a marker for lipid peroxidation) in leaves 

of soybean subjected to such treatment. This was associated with increased cell death and 

reduction in growth in soybean. It can thus be suggested that drought caused overproduction 

of ROS, which led to lipid peroxidation and cell death. These findings are in agreement with 
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the study by Maraghni et al. (2014) where PEG-induced drought stress on wild jujube (Ziziphus 

lotus) increased the level of lipid peroxidation. Drought stress also increased superoxide (O2
.-

) production of leaves and hydrogen peroxide (H2O2) content of the leaves and roots of 

Kentucky bluegrass (Poa pratensis L.) which lead to increased lipid peroxidation (Bian and 

Jiang, 2009).  

4.3 Drought stress increases the activity of antioxidant enzyme activity 

During oxidative stress caused by ROS, plants induce the activity of antioxidant enzymes in 

order to scavenge ROS to prevent their destructive excessive accumulation, thus contributing 

to ensuring their survival. In this study, there was high accumulation of ROS (H2O2 and O2) 

which are toxic to plant cells. As a result activated, drought activated antioxidant enzyme 

activities. Superoxide dismutase (SOD) serves as prime major scavenger of O2
- by converting 

it to H2O2 and O2. All three forms of SOD (FeSOD, MnSOD and Cu/ZnSOD) increased in 

response to drought stress due to high accumulation of O2
-. These results are consistent with 

the other studies in rice seedlings (Sharma and Dubey, 2005), Brassica napus L. (Abedi and 

Pakniyat, 2010.) and Sesamum indicum L. cvs (Fazeli et al., 2007); where total SOD and SOD 

isoform activity increased in response to drought stress. The results presented here also 

indicate an increase in activity of APX, the scavenger of H2O2. The increase in APX activity 

under drought stress could be attributed to efforts to prevent oxidative damage as a 

protective measure in response to increased levels of H2O2 under drought conditions. Similar 

results where APX activity increased in response to drought stress were observed in a study 

by Sofo et al. (2005) on olive trees and Chugh et al. (2010) on Zea mays. 

The activity of CAT decreased in response to water deficit in comparison to well-watered 

plants. These results are in agreement with Bakalova et al. (2004) in wheat and with Abedi 
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and Pakniyat (2010) in Brassica napus, where the activity of CAT declined in response to 

drought stress. Dehydroascorbate reductase is responsible for the regeneration of ascorbate 

(AsA) (an electron donor for APX) from an oxidized state (Chen and Gallie, 2006). In this study 

the activity of DHAR also decreased in response to drought stress. Similar results were found 

in the roots of Poa pratensis L. (Bian and Jiang, 2009) and in pea nodules (Gogorcena et al., 

1995). The decrease in DHAR activity might be due to oxidation and inactivation of the enzyme 

by enhanced ROS production (Sharma and Dubey, 2005).  

4.4 Drought and sterol synthesis inhibition reduces sterol content and impacts 

on ROS production and antioxidant enzyme activity. 

 The effects of drought on sterol composition was determined in order to elucidate the role 

of phytosterols in soybean responses to drought stress. Drought stress decreased sitosterol, 

stigmasterol, cycloartenol and lanosterol content. The decrease in sterol content potentially 

resulted in membrane disruption as indicated by high levels of lipid peroxidation and 

decreased cell viability in response to inhibition of sterols biosynthesis under drought 

conditions, since sterol are also crucial for membrane integrity because plant sterols have 

been shown to maintain proper bulk membrane structure (Stillwell et al., 1990). The 

reduction in sterol content occurred concomitantly with overproduction of   ROS as indicated 

by increased production of hydrogen peroxide (H2O2) and superoxide (O2
-), which lead to 

increased lipid peroxidation and decreased cell viability. As a result, the reduction in sterol 

content could have signaled the activation of antioxidant enzymes such as APX and SOD, 

which increased in response to drought stress. Similar findings were observed in a study by 

Pose et al. (2009) where an Arabidopsis mutant that is hypersensitive to drought stress had 

reduced sterol content and excessive accumulation ROS. 
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The effects of changes in sterol content was also investigated using a sterol biosynthesis 

inhibitor under well-watered and drought conditions in order to determine the impact of 

inhibition of sterol biosynthesis on ROS production and antioxidant enzyme activities. The 

inhibition of sterol synthesis resulted in reduced sterol content. This study contradicts the 

finding of Kumar et al. (2015) where drought stress increased the accumulation phytosterols 

in rice. The reduction in sterol content increased the production of ROS. In this study, there 

was an increase in H2O2 and decrease in O2˙- content in response to the sterol biosynthesis 

inhibitor.  The high accumulation of H2O2 could be explained by decrease in APX and CAT 

activities, the scavengers of H2O2 in plants. Decreased sterol content caused by sterol 

biosynthesis inhibitor is logical since this is the function of the inhibitor. However, increased 

CAT activity when sterol biosynthesis was inhibited in the presence of drought suggests that 

the excessive H2O2 potentially triggers activation of CAT in an effort to scavenge the excessive 

H2O2. The decrease in O2˙- may be caused by high activity of SOD, although sterol synthesis 

inhibition in the presence of drought decreased the activity of SOD. The activity of CAT and 

DHAR also decreased in the presence of the sterol biosynthesis inhibitor.  This could be 

because terbinafine (the sterol synthesis inhibitor) may be interfering with activity of these 

antioxidant enzyme in response to drought in soybean. This is supported by the increase in 

lipid peroxidation and cell death which lead to decrease in soybean growth.  

Therefore, a general explanation is that there is a possibility of involvement of the 

phytosterols in the signalling network that regulates soybean responses to drought stress 

which involves ROS scavenging mediated by antioxidant enzyme activity.  

4.5 The expression of glyma08g24160 gene is altered by drought stress 
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To further examine the relationship between drought and phytosterols, we examined the 

expression of sterol biosynthesis gene, glyma08g24160, which encodes lanosterol synthase. 

Expression of this gene was investigated in response to drought stress in the leaves of soybean 

using quantitative and semi-quantitative PCR in the presence or absence of the sterol 

biosynthesis inhibitor (terbinafine).  Glyma08g24160 was up-regulated by drought stress. 

Since this gene encodes lanosterol synthase, which catalyses the production of lanosterol, the 

precursor to sterol synthesis, the reduction of lanosterol and other phytosterols could have  

triggered the up-regulation of this gene in an effort produce of more lanosterol to 

compensate for the drought-mediated suppression of sterol biosynthesis. On the other hand, 

sterol synthesis inhibition and the combination of drought and inhibition of sterol synthesis 

also caused up-regulation of the gene. However, the response pattern between the two 

treatments were different, as it was more up-regulated in sterol synthesis-inhibited plants in 

the absence of drought than in the combination of drought and sterol inhibition. This may be 

also triggered by differential decrease in sterol contents observed between these treatments.  

 4.6 Conclusions and future prospects  

The work described in this thesis explored how soybean is affected by drought by looking at 

the physiological, biochemical parameters of soybean in relation to sterol biosynthesis. We 

also determined the impacts of drought on the expression of sterol biosynthesis and then 

determined the roles of phytosterols as signaling molecules in soybean responses to oxidative 

stress. Drought stress induced the expression of Glyma08g24160, a candidate lanosterol 

synthase gene as a result of reduced sterol content in soybean leaves. The reduced sterol 

content triggered accumulation of reactive oxygen species coupled with increased lipid 

peroxidation, cell death, and reduction in growth, together with activation of the antioxidant 
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defense system. In order to make sure that the accumulation of ROS and activation of 

antioxidant enzyme activities was regulated by altered sterol content, but not drought alone, 

we used a sterol biosynthesis inhibitor in the absence and in the presence of drought to 

determine the role of phytosterols on ROS production and activities of antioxidant enzymes. 

The reduction of sterol content caused by sterol synthesis inhibition altered ROS production 

and antioxidant enzyme activities. Although the antioxidant enzymes were activated, the 

induction of these enzymes was not sufficient to efficiently scavenge ROS. The expression of 

glyma08g24160 increased with increased need for biosynthesis of phytosterols, and 

consequently with the elevated ROS production and antioxidant enzyme activities. This 

implies that sterol biosynthesis and phytosterols have a role in plant tolerance to drought 

stress. These results supports the study hypothesis. However, more studies should be done 

on other organs such roots and also determine the role of other phytosterols that were not 

included in the study, and also the role of each sterol in soybean responses to drought stress. 

It will be important to further investigate possible roles of the candidate lanosterol synthase 

gene in soybean drought tolerance through silencing/knock-out of the gene.  
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Del Rıó, L.A., Pastori, G.M., Palma, J.M., Sandalio, L.M., Sevilla, F., Corpas, F.J., Jiménez, A., 

López-Huertas, E. and Hernández, J.A., 1998. The activated oxygen role of peroxisomes in 

senescence. Plant Physiology, 116(4), pp.1195-1200. 

De Pinto, M.C. and De Gara, L., 2004. Changes in the ascorbate metabolism of apoplastic and 

symplastic spaces are associated with cell differentiation. Journal of Experimental 

Botany, 55(408), pp.2559-2569. 

Devereux, S., 2007. The impact of droughts and floods on food security and policy options to 

alleviate negative effects. Agricultural Economics, 37(s1), pp.47-58. 

Dismukes, G.C., Klimov, V.V., Baranov, S.V., Kozlov, Y.N., DasGupta, J. and Tyryshkin, A., 2001. 

The origin of atmospheric oxygen on Earth: the innovation of oxygenic 

photosynthesis. Proceedings of the National Academy of Sciences, 98(5), pp.2170-2175. 

 

 

 

 

http://etd.uwc.ac.za/

http://www.nda.agric.za/docs/brochures/soya-beans.pdf


79 
 

Dracup, J.A., Lee, K.S. and Paulson, E.G., 1980. On the definition of droughts. Water resources 

research, 16(2), pp.297-302. 

Drought Task Team.,2016. Drought Task Team Report 22 February 2016. Available at: 

www.agrisa.co.za/wp-content/uploads/2016/02/Drought-Task-Team-Report.pdf [Accessed 

August 14, 2016]. 

Du, M. and Ahn, D.U., 2002. Simultaneous analysis of tocopherols, cholesterol, and 

phytosterols using gas chromatography. JOURNAL OF FOOD SCIENCE-CHICAGO-, 67(5), 

pp.1696-1700. 

DuPont, F.M. and Altenbach, S.B., 2003. Molecular and biochemical impacts of environmental 

factors on wheat grain development and protein synthesis. Journal of cereal science, 38(2), 

pp.133-146. 

DWAF, 2004. Overview of the South African Water Sector. National water resource strategy, 

1, pp.1–35. 

Falkenmark, M. and Widstrand, C., 1992. Population and water resources: a delicate 

balance. Population bulletin, 47(3), pp.1-36. 

FAO, 2016. ‘GLOBAL INFORMATION AND EARLY WARNING SYSTEM ON FOOD AND 
AGRICULTURE ( GIEWS ) REGION: Southern Africa Delayed onset of seasonal rains in parts of 
Southern Africa raises serious concern for crop and livestock production in 2016’, (336), p. 
I5258E/1/12.15. 

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A., 2009. Plant drought stress: 

effects, mechanisms and management. In Sustainable agriculture (pp. 153-188). Springer 

Netherlands. 

Fazeli, F., Ghorbanli, M. and Niknam, V., 2007. Effect of drought on biomass, protein content, 

lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biologia 

Plantarum, 51(1), pp.98-103. 

Flores-Sánchez, I.J., Ortega-López, J., Montes-Horcasitas, M.D.C. and Ramos-Valdivia, A.C., 

2002. Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria 

tomentosa. Plant and cell physiology, 43(12), pp.1502-1509. 

Foyer, C.H. and Noctor, G., 2005. Redox homeostasis and antioxidant signaling: a metabolic 

interface between stress perception and physiological responses. The Plant Cell, 17(7), 

pp.1866-1875. 

Food and Agriculture Organization of the United Nations a., 2015. Global Information and 

Early Warning System of food and agriculture (GIEWS) region: Southern Africa Delayed onset 

of seasonal rains in parts of Southern Africa raises serious concern for crop and livestock 

production in 2016. (336), p. I5258E/1/12.15. 

 

 

 

 

http://etd.uwc.ac.za/

http://www.agrisa.co.za/wp-content/uploads/2016/02/Drought-Task-Team-Report.pdf


80 
 

Food and Agriculture Organization of the United Nations b., 2015. The impact of disasters on 

agriculture and food security, p. 76.  

Food and Nutrition Security Working Group (FNSWG)., 2015. Southern Africa Food & Nutrition 

Security Update, Famine Early Warning Systems Network (FEWS NET) Network. Available at: 

http://www.fews.net/docs/Publications/south_2009_01.pdf.[Accessed July 15, 2017]. 

Foyer, C.H. and Harbinson, J., 1994. Oxygen metabolism and the regulation of photosynthetic 

electron transport. Causes of photooxidative stress and amelioration of defense systems in 

plants, pp.1-42. 

Friedman, M. and Brandon, D.L., 2001. Nutritional and health benefits of soy proteins. Journal 

of Agricultural and Food Chemistry, 49(3), pp.1069-1086. 

Gao, Q. and Zhang, L., 2008. Ultraviolet-B-induced oxidative stress and antioxidant defense 

system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. Journal of plant 

physiology, 165(2), pp.138-148. 

Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I. and Laloi, C., 2006. Reactive oxygen 

species as signals that modulate plant stress responses and programmed cell 

death. Bioessays, 28(11), pp.1091-1101. 

Gibson, L. and Benson, G., 2005. Origin, History, and Uses of soybean (Glycine max). Iowa 

State University, Department of Agronomy, March. 

Gill, S.S. and Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic 

stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), pp.909-930. 

Giner, J.L., Berkowitz, J.D. and Andersson, T., 2000. Nonpolar Components of the Latex of 

Euphorbia p eplus. Journal of natural products, 63(2), pp.267-269. 

Giner, J.L. and Djerassi, C., 1995. A reinvestigation of the biosynthesis of lanosterol in 

Euphorbia lathyris. Phytochemistry, 39(2), pp.333-335. 

Gogorcena, Y., Iturbe-Ormaetxe, I., Escuredo, P.R. and Becana, M., 1995. Antioxidant 

defenses against activated oxygen in pea nodules subjected to water stress. Plant 

physiology, 108(2), pp.753-759. 

Gong, Y., Rao, L. and Yu, D., 2013. Abiotic stress in plants. Agricultural chemistry. InTech, 

Rijeka, pp.113-152. 

Grain SA., 2016. Drought: Agri SA leads planning and recommendations. Available at: 

http://www.grainsa.co.za/drought:-agri-sa-leads-planning-and-recommendations [accessed 

February, 19 2016]. 

 

 

 

 

http://etd.uwc.ac.za/

http://www.fews.net/docs/Publications/south_2009_01.pdf.%5bAccessed
http://www.grainsa.co.za/drought:-agri-sa-leads-planning-and-recommendations


81 
 

Guerrero, F. and Mullet, J.E., 1986. Increased abscisic acid biosynthesis during plant 

dehydration requires transcription. Plant Physiology, 80(2), pp.588-591. 

Guo, J., Wang, Y., Song, C., Zhou, J., Qiu, L., Huang, H. and Wang, Y., 2010. A single origin and 

moderate bottleneck during domestication of soybean (Glycine max): implications from 

microsatellites and nucleotide sequences. Annals of Botany, 106(3), pp.505-514. 

Guo, D.A., Venkatramesh, M. and Nes, W.D., 1995. Developmental regulation of sterol 

biosynthesis in Zea mays. Lipids, 30(3), p.203. 

Halliwell, B., 2006. Reactive species and antioxidants. Redox biology is a fundamental theme 

of aerobic life. Plant physiology, 141(2), pp.312-322. 

Hartman, G.L., West, E.D. and Herman, T.K., 2011. Crops that feed the World 2. Soybean—

worldwide production, use, and constraints caused by pathogens and pests. Food 

Security, 3(1), pp.5-17. 

Hartmann, M.A. and Benveniste, P., 1987. [58] Plant membrane sterols: Isolation, 

identification, and biosynthesis. Methods in Enzymology, 148, pp.632-650. 

Hatz, S., Lambert, J.D. and Ogilby, P.R., 2007. Measuring the lifetime of singlet oxygen in a 

single cell: addressing the issue of cell viability. Photochemical & Photobiological 

Sciences, 6(10), pp.1106-1116. 

Hennessey, T.M., 1992. Effects of membrane plant sterols on excitable cell 

functions. Comparative Biochemistry and Physiology Part C: Comparative 

Pharmacology, 101(1), pp.1-8. 

Henzler, T. and Steudle, E., 2000. Transport and metabolic degradation of hydrogen peroxide 

in Chara corallina: model calculations and measurements with the pressure probe suggest 

transport of H2O2 across water channels. Journal of experimental botany, 51(353), pp.2053-

2066. 

Hintze, K.J. and Theil, E.C., 2006. Cellular regulation and molecular interactions of the 

ferritins. Cellular and Molecular Life Sciences, 63(5), pp.591-600. 

Hymowitz, T. and Harlan, J.R., 1983. Introduction of soybean to North America by Samuel 

Bowen in 1765. Economic Botany, 37(4), pp.371-379. 

Hymowitz, T., 1970. On the domestication of the soybean. Economic Botany, 24(4), pp.408-

421. 

Ikeda, I., Tanaka, K., Sugano, M., Vahouny, G.V. and Gallo, L.L., 1988. Inhibition of cholesterol 

absorption in rats by plant sterols. Journal of Lipid Research, 29(12), pp.1573-1582. 

 

 

 

 

http://etd.uwc.ac.za/



82 
 

Ikeda, I. and Sugano, M., 1983. Some aspects of mechanism of inhibition of cholesterol 

absorption by β-sitosterol. Biochimica et Biophysica Acta (BBA)-Biomembranes, 732(3), 

pp.651-658. 

Isendahl, N. and Schmidt, G., 2006. Drought in the Mediterranean-WWF policy 

proposals. WWF Report, Madrid. 

Jubany-Marí, T., Munné-Bosch, S., López-Carbonell, M. and Alegre, L., 2009. Hydrogen 

peroxide is involved in the acclimation of the Mediterranean shrub, Cistus albidus L., to 

summer drought. Journal of experimental botany, 60(1), pp.107-120. 

Kamara, A.Y., Menkir, A., Badu-Apraku, B. and Ibikunle, O., 2003. The influence of drought 

stress on growth, yield and yield components of selected maize genotypes. The journal of 

agricultural science, 141(1), p.43. 

Kang, Y., Khan, S. and Ma, X., 2009. Climate change impacts on crop yield, crop water 

productivity and food security–A review. Progress in Natural Science, 19(12), pp.1665-1674. 

Karuppanapandian, T., Moon, J.C., Kim, C., Manoharan, K. and Kim, W., 2011. Reactive oxygen 

species in plants: their generation, signal transduction, and scavenging 

mechanisms. Australian Journal of Crop Science, 5(6), p.709. 

Karuppanapandian, T., Wang, H.W., Prabakaran, N., Jeyalakshmi, K., Kwon, M., Manoharan, 

K. and Kim, W., 2011. 2, 4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean 

(Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver 

nanoparticles. Plant Physiology and Biochemistry, 49(2), pp.168-177. 

Kehrer, J.P., 2000. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology, 149(1), 

pp.43-50. 

Khan, M.H. and Panda, S.K., 2008. Alterations in root lipid peroxidation and antioxidative 

responses in two rice cultivars under NaCl-salinity stress. Acta Physiologiae Plantarum, 30(1), 

p.81. 

Khan, M.B., Hussain, N. and Iqbal, M., 2001. Effect of water stress on growth and yield 

components of maize variety YHS 202. Journal of Research (Science), 12, pp.15-18. 

Kim, H.B., Lee, H., Oh, C.J., Lee, H.Y., Eum, H.L., Kim, H.S., Hong, Y.P., Lee, Y., Choe, S., An, C.S. 

and Choi, S.B., 2010. Postembryonic seedling lethality in the sterol-deficient Arabidopsis 

cyp51A2 mutant is partially mediated by the composite action of ethylene and reactive 

oxygen species. Plant physiology, 152(1), pp.192-205. 

Kim, H.B., Schaller, H., Goh, C.H., Kwon, M., Choe, S., An, C.S., Durst, F., Feldmann, K.A. and 

Feyereisen, R., 2005. Arabidopsis cyp51 mutant shows postembryonic seedling lethality 

associated with lack of membrane integrity. Plant physiology, 138(4), pp.2033-2047. 

 

 

 

 

http://etd.uwc.ac.za/



83 
 

Klahre, U., Noguchi, T., Fujioka, S., Takatsuto, S., Yokota, T., Nomura, T., Yoshida, S. and Chua, 

N.H., 1998. The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid 

synthesis. The Plant Cell, 10(10), pp.1677-1690. 

Kobayashi, K., Kumazawa, Y., Miwa, K. and Yamanaka, S., 1996. ε-(γ-Glutamyl) lysine cross-

links of spore coat proteins and transglutaminase activity in Bacillus subtilis. FEMS 

microbiology letters, 144(2-3), pp.157-160. 

Kolesnikova, M.D., Xiong, Q., Lodeiro, S., Hua, L. and Matsuda, S.P., 2006. Lanosterol 

biosynthesis in plants. Archives of Biochemistry and Biophysics, 447(1), pp.87-95. 

Kumar, M.S., Ali, K., Dahuja, A. and Tyagi, A., 2015. Role of phytosterols in drought stress 

tolerance in rice. Plant Physiology and Biochemistry, 96, pp.83-89. 

Kunert, K.J., Vorster, B.J., Fenta, B.A., Kibido, T., Dionisio, G. and Foyer, C.H., 2016. Drought 

stress responses in soybean roots and nodules. Frontiers in Plant Science, 7. 

Laloi, C., Przybyla, D. and Apel, K., 2006. A genetic approach towards elucidating the biological 

activity of different reactive oxygen species in Arabidopsis thaliana. Journal of Experimental 

Botany, 57(8), pp.1719-1724. 

Lecain, E., Chenivesse, X., Spagnoli, R. and Pompon, D., 1996. Cloning by metabolic 

interference in yeast and enzymatic characterization of Arabidopsis thaliana sterol 7-

reductase. Journal of Biological Chemistry, 271(18), pp.10866-10873. 

Lee, K.P., Kim, C., Landgraf, F. and Apel, K., 2007. EXECUTER1-and EXECUTER2-dependent 

transfer of stress-related signals from the plastid to the nucleus of Arabidopsis 

thaliana. Proceedings of the National Academy of Sciences, 104(24), pp.10270-10275. 

Lewis, G., Schrire, B., Mackinder, B. and Lock, M. eds., 2005. Legumes of the World (Vol. 577). 

Richmond, UK: Royal Botanic Gardens, Kew. 

Li, C.R., Zhou, Z., Lin, R.X., Zhu, D., Sun, Y.N., Tian, L.L., Li, L., Gao, Y. and Wang, S.Q., 2007. β-

sitosterol decreases irradiation‐induced thymocyte early damage by regulation of the 

intracellular redox balance and maintenance of mitochondrial membrane stability. Journal of 

cellular biochemistry, 102(3), pp.748-758. 

Li, L. and Van Staden, J., 1998. Effects of plant growth regulators on the antioxidant system in 

callus of two maize cultivars subjected to water stress. Plant Growth Regulation, 24(1), pp.55-

66. 

Lisar, S.Y., Motafakkerazad, R., Hossain, M.M. and Rahman, I.M., 2012. Water stress in plants: 

causes, effects and responses. In Water stress. InTech. 

 

 

 

 

http://etd.uwc.ac.za/



84 
 

Liu, F., Jensen, C.R. and Andersen, M.N., 2004. Drought stress effect on carbohydrate 

concentration in soybean leaves and pods during early reproductive development: its 

implication in altering pod set. Field crops research, 86(1), pp.1-13. 

Livak, K.J. and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-

time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), pp.402-408. 

Lodeiro, S., Schulz-Gasch, T. and Matsuda, S.P., 2005. Enzyme redesign: two mutations 

cooperate to convert cycloartenol synthase into an accurate lanosterol synthase. Journal of 

the American Chemical Society, 127(41), pp.14132-14133. 

Mail and Guardian., 2015. Drought stalks SA crops and economy. Available at: 

http://mg.co.za/article/2015-09-03-drought-stalks-sa-crops-and-economy [accessed August 

12, 2016]. 

 

Manavalan, L.P., Guttikonda, S.K., Tran, L.S.P. and Nguyen, H.T., 2009. Physiological and 

molecular approaches to improve drought resistance in soybean. Plant and Cell 

Physiology, 50(7), pp.1260-1276. 

Maraghni, M., Gorai, M., Neffati, M. and Van Labeke, M.C., 2014. Differential responses to 

drought stress in leaves and roots of wild jujube, Ziziphus lotus. Acta physiologiae 

plantarum, 36(4), pp.945-953. 

Marino, D., Frendo, P., Ladrera, R., Zabalza, A., Puppo, A., Arrese-Igor, C. and González, E.M., 

2007. Nitrogen fixation control under drought stress. Localized or systemic?. Plant 

Physiology, 143(4), pp.1968-1974. 

McCord, J.M., 2000. The evolution of free radicals and oxidative stress. The American journal 

of medicine, 108(8), pp.652-659. 

Medindia, 2016. Health Benefits of Soybean. Available at: 

http://www.medindia.net/patients/lifestyleandwellness/health-benefits-of-soybean.htm 

[accessed June 13, 2016]. 

Miller, G.A.D., Suzuki, N., CIFTCI‐YILMAZ, S.U.L.T.A.N. and Mittler, R.O.N., 2010. Reactive 

oxygen species homeostasis and signalling during drought and salinity stresses. Plant, cell & 

environment, 33(4), pp.453-467. 

Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F., 2004. Reactive oxygen gene 

network of plants. Trends in plant science, 9(10), pp.490-498. 

Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant 

science, 7(9), pp.405-410. 

 

 

 

 

http://etd.uwc.ac.za/

http://mg.co.za/article/2015-09-03-drought-stalks-sa-crops-and-economy
http://www.medindia.net/patients/lifestyleandwellness/health-benefits-of-soybean.htm


85 
 

Moghadasian, M.H., 2000. Pharmacological properties of plant sterols: in vivo and in vitro 

observations. Life sciences, 67(6), pp.605-615. 

Møller, I.M., Jensen, P.E. and Hansson, A., 2007. Oxidative modifications to cellular 

components in plants. Annu. Rev. Plant Biol., 58, pp.459-481. 

Nakano, Y. and Asada, K., 1981. Hydrogen peroxide is scavenged by ascorbate-specific 

peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), pp.867-880. 

Ngaira, J.K., 2005. Hydrometeorological disasters and their impact on development: The 

Kenya experience. Maseno journal of education, arts and sciences, 5(1). 

Nicot, N., Hausman, J.F., Hoffmann, L. and Evers, D., 2005. Housekeeping gene selection for 

real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of 

experimental botany, 56(421), pp.2907-2914. 

Nonami, H., 1998. Plant water relations and control of cell elongation at low water 

potentials. Journal of Plant Research, 111(3), pp.373-382. 

Nunez, M., Mazzafera, P., Mazorra, L.M., Siqueira, W.J. and Zullo, M.A.T., 2003. Influence of 

a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with 

NaCl. Biologia plantarum, 47(1), pp.67-70. 

Noctor, G. and Foyer, C.H., 1998. Ascorbate and glutathione: keeping active oxygen under 

control. Annual review of plant biology, 49(1), pp.249-279. 

Nwokolo, E., 1996. Soybean (Glycine max (L.) Merr.). In Food and Feed from Legumes and 

Oilseeds (pp. 90-102). Springer US. 

Ohashi, Y., Nakayama, N., Saneoka, H. and Fujita, K., 2006. Effects of drought stress on 

photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean 

plants. Biologia Plantarum, 50(1), pp.138-141. 

Ohyama, K., Suzuki, M., Kikuchi, J., Saito, K. and Muranaka, T., 2009. Dual biosynthetic 

pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis. Proceedings of the 

National Academy of Sciences, 106(3), pp.725-730. 

O'toole, J.C. and Bland, W.L., 1987. Genotypic variation in crop plant root systems. Advances 

in Agronomy, 41, pp.91-145. 

Pace, P.F., Cralle, H.T., El-Halawany, S.H., Cothren, J.T. and Senseman, S.A., 1999. Drought-

induced changes in shoot and root growth of young cotton plants. J. Cotton Sci, 3(4), pp.183-

187. 

Patz, J.A., Campbell-Lendrum, D., Holloway, T. and Foley, J.A., 2005. Impact of regional climate 

change on human health. Nature, 438(7066), pp.310-317. 

 

 

 

 

http://etd.uwc.ac.za/



86 
 

Peng, C.L., Ou, Z.Y., Liu, N. and Lin, G.Z., 2005. Response to high temperature in flag leaves of 

super high-yielding rice Pei’ai 64S/E32 and Liangyoupeijiu. Rice Sci, 12(3), pp.179-186. 

Phang, T.H., Li, M.W., Cheng, C.C., Wong, F.L., Chan, C. and Lam, H.M., 2011. Molecular 

responses to osmotic stresses in soybean. In Soybean-Molecular Aspects of Breeding. InTech. 

Piironen, V., Lindsay, D.G., Miettinen, T.A., Toivo, J. and Lampi, A.M., 2000. Plant sterols: 

biosynthesis, biological function and their importance to human nutrition. Journal of the 

Science of Food and Agriculture, 80(7), pp.939-966. 

Pimentel, D. and Patzek, T., 2008. Ethanol production using corn, switchgrass and wood; 

biodiesel production using soybean. In Biofuels, solar and wind as renewable energy 

systems (pp. 373-394). Springer Netherlands. 

Pimentel, D. and Patzek, T.W., 2005. Ethanol production using corn, switchgrass, and wood; 

biodiesel production using soybean and sunflower. Natural resources research, 14(1), pp.65-

76. 

Posé, D., Castanedo, I., Borsani, O., Nieto, B., Rosado, A., Taconnat, L., Ferrer, A., Dolan, L., 

Valpuesta, V. and Botella, M.A., 2009. Identification of the Arabidopsis dry2/sqe1‐5 mutant 

reveals a central role for sterols in drought tolerance and regulation of reactive oxygen 

species. The Plant Journal, 59(1), pp.63-76. 

Raghuvanshi, R.S. and Bisht, K., 2010. 18 Uses of Soybean: Products and Preparation. The 

Soybean: Botany, Production and Uses, p.404. 

Rahier, A. and Benveniste, P., 1989. Mass spectral identification of phytosterols. Analysis of 

sterols and other biologically significant steroids, pp.223-250. 

Rao, M.V., Paliyath, G. and Ormrod, D.P., 1996. Ultraviolet-B-and ozone-induced biochemical 

changes in antioxidant enzymes of Arabidopsis thaliana. Plant physiology, 110(1), pp.125-136. 

Rasbery, J.M., Shan, H., LeClair, R.J., Norman, M., Matsuda, S.P. and Bartel, B., 2007. 

Arabidopsis thaliana squalene epoxidase 1 is essential for root and seed development. Journal 

of Biological Chemistry, 282(23), pp.17002-17013. 

Rigo, A., Stevanato, R., Finazzi-Agro, A. and Rotilio, G., 1977. An attempt to evaluate the rate 

of the haber-weiss reaction by using· OH radical scavengers. FEBS letters, 80(1), pp.130-132. 

Rucker, K.S., Kvien, C.K., Holbrook, C.C. and Hook, J.E., 1995. Identification of peanut 

genotypes with improved drought avoidance traits 1. Peanut Science, 22(1), pp.14-18. 

Sakai, T. and Kogiso, M., 2008. Soy isoflavones and immunity. The journal of medical 

investigation, 55(3, 4), pp.167-173. 

 

 

 

 

http://etd.uwc.ac.za/



87 
 

Salvagiotti, F., Cassman, K.G., Specht, J.E., Walters, D.T., Weiss, A. and Dobermann, A., 2008. 

Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops 

Research, 108(1), pp.1-13. 

Sánchez, C., Tortosa, G., Granados, A., Delgado, A., Bedmar, E.J. and Delgado, M.J., 2011. 

Involvement of Bradyrhizobium japonicum denitrification in symbiotic nitrogen fixation by 

soybean plants subjected to flooding. Soil Biology and Biochemistry, 43(1), pp.212-217. 

Sanevas, N., Sunohara, Y. and Matsumoto, H., 2007. Characterization of reactive oxygen 

species‐involved oxidative damage in Hapalosiphon species crude extract‐treated wheat and 

onion roots. Weed biology and management, 7(3), pp.172-177. 

Sawai, S., Akashi, T., Sakurai, N., Suzuki, H., Shibata, D., Ayabe, S.I. and Aoki, T., 2006. Plant 

lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in 

eukaryotes. Plant and cell physiology, 47(5), pp.673-677. 

Scandalios, J.G., 2002. The rise of ROS. Trends in biochemical sciences, 27(9), pp.483-486. 

Scandalios, J.G., 1997. Molecular genetics of superoxide dismutases in plants. Cold Spring 

Harbor Monograph Archive, 34, pp.527-568. 

Scandalios, J.G., 1993. Oxygen stress and superoxide dismutases. Plant physiology, 101(1), 

p.7. 

Scebba, F., Sebastiani, L. and Vitagliano, C., 1999. Protective enzymes against activated 

oxygen species in wheat (Triticum aestivum L.) seedlings: responses to cold 

acclimation. Journal of Plant Physiology, 155(6), pp.762-768. 

Schaeffer, A., Bronner, R., Benveniste, P. and Schaller, H., 2001. The ratio of campesterol to 

sitosterol that modulates growth in Arabidopsis is controlled by STEROL 

METHYLTRANSFERASE 2; 1. The Plant Journal, 25(6), pp.605-615. 

Schaller, H., 2003. The role of sterols in plant growth and development. Progress in lipid 

research, 42(3), pp.163-175. 

Schmidhuber, J. and Tubiello, F.N., 2007. Global food security under climate 

change. Proceedings of the National Academy of Sciences, 104(50), pp.19703-19708. 

Schuler, I., Duportail, G., Glasser, N., Benveniste, P. and Hartmann, M.A., 1990. Soybean 

phosphatidylcholine vesicles containing plant sterols: a fluorescence anisotropy 

study. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1028(1), pp.82-88. 

Schuller, D.J., Ban, N., van Huystee, R.B., McPHERSON, A. and Poulos, T.L., 1996. The crystal 

structure of peanut peroxidase. Structure, 4(3), pp.311-321. 

 

 

 

 

http://etd.uwc.ac.za/



88 
 

Serraj, R. and Sinclair, T.R., 2002. Osmolyte accumulation: can it really help increase crop yield 

under drought conditions?. Plant, cell & environment, 25(2), pp.333-341. 

Serraj, R., Sinclair, T.R. and Purcell, L.C., 1999. Symbiotic N2 fixation response to 

drought. Journal of Experimental Botany, 50(331), pp.143-155. 

Sgherri, C.L.M., Maffei, M. and Navari-Izzo, F., 2000. Antioxidative enzymes in wheat 

subjected to increasing water deficit and rewatering. Journal of Plant Physiology, 157(3), 

pp.273-279. 

Shabelle, L., 2011. Drought‐related food insecurity: A focus on the Horn of Africa, Drought 

Emergency, pp. 1–7. 

Sharma, P., Jha, A.B., Dubey, R.S. and Pessarakli, M., 2012. Reactive oxygen species, oxidative 

damage, and antioxidative defense mechanism in plants under stressful conditions. Journal 

of Botany, 2012. 

Sharma, P. and Dubey, R.S., 2005. Drought induces oxidative stress and enhances the 

activities of antioxidant enzymes in growing rice seedlings. Plant growth regulation, 46(3), 

pp.209-221. 

Sinclair, T.R., Purcell, L.C., King, C.A., Sneller, C.H., Chen, P. and Vadez, V., 2007. Drought 

tolerance and yield increase of soybean resulting from improved symbiotic N 2 fixation. Field 

Crops Research, 101(1), pp.68-71. 

Smirnoff, N., 2005. Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering 

and functions. Antioxidants and Reactive Oxygen Species in Plants, pp.53-86. 

Sofo, A., Dichio, B., Xiloyannis, C. and Masia, A., 2005. Antioxidant defences in olive trees 

during drought stress: changes in activity of some antioxidant enzymes. Functional Plant 

Biology, 32(1), pp.45-53. 

Specht, J.E., Chase, K., Macrander, M., Graef, G.L., Chung, J., Markwell, J.P., Germann, M., Orf, 

J.H. and Lark, K.G., 2001. Soybean response to water. Crop Science, 41(2), pp.493-509. 

Srivalli, B., Chinnusamy, V. and Khanna-Chopra, R., 2003. Antioxidant defense in response to 

abiotic stresses in plants. JOURNAL OF PLANT BIOLOGY-NEW DELHI, 30(2), pp.121-140. 

Stillwell, W., Cheng, Y.F. and Wassall, S.R., 1990. Plant sterol inhibition of abscisic acid-induced 

perturbations in phospholipid bilayers. Biochimica et Biophysica Acta (BBA)-

Biomembranes, 1024(2), pp.345-351. 

Sto, C., 2011. Population the deMography of food. Hungry for justice, 73. 

Streeter, J.G., 2003. Effects of drought on nitrogen fixation in soybean root nodules. Plant, 

Cell & Environment, 26(8), pp.1199-1204. 

 

 

 

 

http://etd.uwc.ac.za/



89 
 

Suzuki, N. and Mittler, R., 2006. Reactive oxygen species and temperature stresses: a delicate 

balance between signaling and destruction. Physiologia plantarum, 126(1), pp.45-51. 

Suzuki, M., Xiang, T., Ohyama, K., Seki, H., Saito, K., Muranaka, T., Hayashi, H., Katsube, Y., 

Kushiro, T., Shibuya, M. and Ebizuka, Y., 2006. Lanosterol synthase in dicotyledonous 

plants. Plant and Cell Physiology, 47(5), pp.565-571. 

Suzuki, M., Kamide, Y., Nagata, N., Seki, H., Ohyama, K., Kato, H., Masuda, K., Sato, S., Kato, 

T., Tabata, S. and Yoshida, S., 2004. Loss of function of 3‐hydroxy‐3‐methylglutaryl coenzyme 

a reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, 

and reduced sterol levels. The Plant Journal, 37(5), pp.750-761. 

Takahashi, M. and Asada, K., 1988. Superoxide production in aprotic interior of chloroplast 

thylakoids. Archives of biochemistry and biophysics, 267(2), pp.714-722. 

Tang, L., Kwon, S.Y., Kim, S.H., Kim, J.S., Choi, J.S., Cho, K.Y., Sung, C.K., Kwak, S.S. and Lee, 

H.S., 2006. Enhanced tolerance of transgenic potato plants expressing both superoxide 

dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high 

temperature. Plant Cell Reports, 25(12), pp.1380-1386. 

Tau, S., 2016. Recent rainfall a blessing before winter. The Citizen. Available at: 

http://citizen.co.za/951314/951314/ [Accessed January 26, 2016]. 

Terzi, R. and Kadioglu, A., 2006. Drought stress tolerance and the antioxidant enzyme 

system. Acta Biologica Cracoviensia Series Botanica, 48, pp.89-96. 

Toorchi, M., Yukawa, K., Nouri, M.Z. and Komatsu, S., 2009. Proteomics approach for 

identifying osmotic-stress-related proteins in soybean roots. Peptides, 30(12), pp.2108-2117. 

Toshihiro, I., Jeong, T.M., Yutaka, H., Toshitake, T. and Taro, M., 1977. Occurrence of 

lanosterol and lanostenol in seeds of red pepper (Capsicum cannuum). Steroids, 29(5), 

pp.569-577. 

Van Breusegem, F., Vranová, E., Dat, J.F. and Inzé, D., 2001. The role of active oxygen species 

in plant signal transduction. Plant Science, 161(3), pp.405-414. 

Varshney, R.K., Close, T.J., Singh, N.K., Hoisington, D.A. and Cook, D.R., 2009. Orphan legume 

crops enter the genomics era!. Current opinion in plant biology, 12(2), pp.202-210. 

Velikova, V., Yordanov, I. and Edreva, A., 2000. Oxidative stress and some antioxidant systems 

in acid rain-treated bean plants: protective role of exogenous polyamines. Plant 

Science, 151(1), pp.59-66. 

Vidya Vardhini, B. and Seeta Ram Rao, S., 2003. Amelioration of osmotic stress by 

brassinosteroids on seed germination and seedling growth of three varieties of 

sorghum. Plant Growth Regulation, 41(1), pp.25-31. 

 

 

 

 

http://etd.uwc.ac.za/

http://citizen.co.za/951314/951314/


90 
 

Vivancos, M. and Moreno, J.J., 2005. β-Sitosterol modulates antioxidant enzyme response in 

RAW 264.7 macrophages. Free Radical Biology and Medicine, 39(1), pp.91-97. 

Vlahović, B., Ilin, S. and Puškarić, A., 2013. Status and Perspectives of Soybean Production 

Worldwide and in the Republic of Serbia. Petroleum-Gas University of Ploiesti Bulletin, 

Technical Series, 65(1). 

Wagner, D., Przybyla, D., op den Camp, R., Kim, C., Landgraf, F., Lee, K.P., Würsch, M., Laloi, 

C., Nater, M., Hideg, E. and Apel, K., 2004. The genetic basis of singlet oxygen–induced stress 

responses of Arabidopsis thaliana. Science, 306(5699), pp.1183-1185. 

Wang, L., Wang, Z., Xu, Y., Joo, S.H., Kim, S.K., Xue, Z., Xu, Z., Wang, Z. and Chong, K., 2009. 

OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. The Plant 

Journal, 57(3), pp.498-510. 

Wang, J., Zhang, H. and Allen, R.D., 1999. Overexpression of an Arabidopsis peroxisomal 

ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant and 

Cell Physiology, 40(7), pp.725-732. 

Wang, H., Nagegowda, D.A., Rawat, R., Bouvier‐Navé, P., Guo, D., Bach, T.J. and Chye, M.L., 

2012. Overexpression of Brassica juncea wild‐type and mutant HMG‐CoA synthase 1 in 

Arabidopsis up‐regulates genes in sterol biosynthesis and enhances sterol production and 

stress tolerance. Plant biotechnology journal, 10(1), pp.31-42. 

Wang, T., Hicks, K.B. and Moreau, R., 2002. Antioxidant activity of phytosterols, oryzanol, and 

other phytosterol conjugates. Journal of the American Oil Chemists' Society, 79(12), pp.1201-

1206. 

Weihrauch, J.L. and Gardner, J.M., 1978. Sterol content of foods of plant origin. Journal of the 

American Dietetic Association, 73(1), pp.39-47. 

Weng, X.C. and Wang, W., 2000. Antioxidant activity of compounds isolated from Salvia 

plebeia. Food chemistry, 71(4), pp.489-493. 

Wilhite, D.A. and Glantz, M.H., 1985. Understanding: the drought phenomenon: the role of 

definitions. Water international, 10(3), pp.111-120. 

Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, 

M., Inzé, D. and Van Camp, W., 1997. Catalase is a sink for H2O2 and is indispensable for stress 

defence in C3 plants. The EMBO journal, 16(16), pp.4806-4816. 

Yamashita, K., Shiozawa, A., Banno, S., Fukumori, F., Ichiishi, A., Kimura, M. and Fujimura, M., 

2007. Involvement of OS-2 MAP kinase in regulation of the large-subunit catalases CAT-1 and 

CAT-3 in Neurospora crassa. Genes & genetic systems, 82(4), pp.301-310. 

 

 

 

 

http://etd.uwc.ac.za/



91 
 

Yates, P.J., Haughan, P.A., Lenton, J.R. and Goad, L.J., 1991. Effects of terbinafine on growth, 

squalene, and steryl ester content of a celery cell suspension culture. Pesticide Biochemistry 

and Physiology, 40(3), pp.221-226. 

Zahran, H.H., 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe 

conditions and in an arid climate. Microbiology and molecular biology reviews, 63(4), pp.968-

989. 

Zeid, I.M. and Shedeed, Z.A., 2006. Response of alfalfa to putrescine treatment under drought 

stress. Biologia Plantarum, 50(4), pp.635-640. 

Zhu, J.K., 2002. Salt and drought stress signal transduction in plants. Annual review of plant 

biology, 53(1), pp.247-273. 

Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. and Gruissem, W., 2004. 

GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant 

physiology, 136(1), pp.2621-2632. 

Zlatev, Z. and Lidon, F.C., 2012. An overview on drought induced changes in plant growth, 

water relations and photosynthesis. Emirates Journal of Food and Agriculture, 24(1), p.57. 

 

 

 

 

 

http://etd.uwc.ac.za/


	Title page
	Key words
	Abstract
	Acknowledgements
	Contents
	CHAPTER 1 - LITERATURE REVIEW
	CHAPTER 2 - MATERIALS AND METHODS
	CHAPTER 3 - RESULTS
	CHAPTER 4 - DISCUSSION
	References



