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ABSTRACT 

This study describes the synthesis and characterisation of Cu(II) and V(IV) complexes of 

tri- and quadridentate ligands L1 and L2 formed by condensation of ethylenediamine with 

acetylacetonate in 1:1 and 1:2 molar ratio, respectively. Encapsulation of these metal 

complexes in the nanocage of zoilite-Y generates new heterogeneous catalysts. These 

catalysts were synthesized employing the flexible ligand method encapsulation technique. 

The structures of these encapsulated complexes were established on the basis of various 

physico-chemical and spectroscopic studies. The results indicated that the complexes did 

not hinder or modify the framework or structure of the zeolite, confirming successful 

immobilization of Schiff-bases through the voids of zeolite Y.  

These encapsulated complexes were screened as heterogeneous catalysts for various 

oxidation reactions such as such as phenol, benzene, styrene and cyclohexene using a 

green oxidant (H2O2).  

For comparison, the corresponding neat complexes were screened as potential 

homogeneous catalysts for these oxidation reactions. The results proved that the 

corresponding homogeneous systems described here represent an efficient and inexpensive 

method for oxidation of phenol, benzene, styrene and cyclohexene, having advantages over 

heterogeneous catalysis are its high activity and selectivity and short reaction times. Its 

major problem is its industrial application regarding principally the separation of the 

catalyst from the products. 

The size of the substrate has a significant effect on the conversion by encapsulated 

complexes such as in styrene oxidation. Therefore, it was established that steric effects of 

the substrates play a critical role in the poor reactive nature of the encapsulated complexes.  

In general, the percentage conversion decreased upon encapsulation of complexes in 

zeolite Y.  All catalysts studied proved to be potential catalysts for the various oxidation 

reactions.   

It has been shown in this study that encapsulation can effectively improve product 

selectivity but requires a longer reaction time in most cases for maximum activity. 

Furthermore, oxovanadium complexes were more reactive than copper-based catalysts in 

all oxidation reactions tested in this study.  

 

 

 

 



 

 

A reaction mechanism study revealed that the activity of the encapsulated and neat 

complexes occurs through either formation of peroxovanadium (V) or hydroperoxide-

copper(II) intermediate species.       

The studies in this thesis, therefore, conclude that the Cu(II) and V(IV) complexes 

encapsulated in Y-zeolite are active heterogeneous catalysts for the selective oxidation of 

various substrates. Encapsulation of the metal complexes in the super cages (-cages) of 

the zeolite matrix has the advantages of solid heterogeneous catalysts of easy separation 

and handling, ruggedness, thermostability, reusability (regeneration of the deactivated 

catalysts) as well as share many advantageous features of homogeneous catalysts. 
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CHAPTER 1 

 

1. INTRODUCTION AND OBJECTIVES 

1.1 Introduction  

Over the years many researchers have devoted intensive attention to the studies of various 

reactions and different catalytic complexes, especially transition metals or complexes 

encapsulated inside a solid matrix such as mesoporous materials and zeolites [1, 2]. 

The attractiveness of encapsulating metal complexes in nanoporous materials such as 

zeolite-Y and MCM-41 are important for the petroleum industry because they are good 

heterogeneous and redox catalysts and are also used for the production of chemicals for 

various types of shape selective conversion and separation reactions
 
[3]. The advantages of 

using these materials are that they are cheaper, more efficient and more environment 

friendly for carrying out chemical reactions.  

These materials have recently attracted considerable attention as they have a wide variety 

of applications because of their potential use in shape or size-selective catalysis [4], photo 

[5, 6] and/ or electrocatalysis [7] and electroanalysis [8 - 10]. The main focus of transition 

metal complexes encapsulated in molecular sieves with aluminosilicate frameworks viz., 

zeolites is their catalytic ability in industrially important reactions, which will be 

investigated in this study. These materials display potential catalytic activity in a wide 

variety of synthetically useful oxidative transformation reactions using different oxidants 

under mild reaction conditions. They have more advantages over their homogeneous liquid 

phase catalysts [11 – 16]. 

In this work, the encapsulated complexes were Schiff-base ligands as these systems can be 

easily prepared and form complexes with almost any metal ion. There have been many 

reports on their applications in homogeneous and heterogeneous catalysts. An advantage of 

Schiff-base complexes is that most of these complexes show excellent catalytic activity in 

various reactions such as polymerization reactions, oxidation, decomposition of hydrogen 

peroxide, carbonylation reactions, Heck reactions, Diels-Alder reactions and Lewis acid 

assisted organic transformations even at high temperatures above 100 
o
C [17].  

The chemical industry has a strong demand for phenolic compounds. In recent years, this 

has led to the need for development of improved catalysts for selective and efficient 
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conversion of phenol. The hydroxylation of phenol to commercially important products 

viz., hydroquinone and catechol has wide applications in many fields
 
[18]. 

The selective one-step hydroxylation of phenol using oxidants such as H2O2 is a research 

topic of high industrial importance [19] from an economical and environmental point of 

view. The products, catechol and hydroquinone are important for manufacturing 

petrochemicals, agrochemicals and plastics [20]. They are also used as photographic 

chemicals, antioxidants, pesticides, flavouring agents and medicine. Catechol was also 

used for organic synthesis in the photoelectrochemical cell [21].  

Phenol is normally produced from benzene employing the cumene-process but this method 

is rather undesirable from an economic and environmental point of view [22]. 

The reason is that in the cumene method, one of the most common industrial methods, 

consists of three-steps and although each step gives high selectivity, it is energy intensive, 

producing considerable waste and leads to a 1:1 mixture of phenol and acetone [23 - 26].  

A one-step process would require less energy and produce only phenol. This represents an 

attractive method not only for its economic advantage but also from a chemical 

transformation point of view. Therefore in this research topic, benzene oxidation was 

studied under a direct-one step protocol to produce phenol in a manner that serves to be 

economically favourable.    

Two other industrially important reactions investigated were styrene and cyclohexene 

oxidation. The products of these respective reactions were studied due to their potential use 

in commercial products [27, 28]. 

The oxidation of styrene draws interest from academics and industry, mainly in the 

production of fine chemicals such as benzaldehyde [29]. Benzaldehyde is important for 

cosmetics as it is used as denaturant, flavouring agent and as a fragrance [30]. Another 

important product of this reaction, phenylacetaldehyde, is practically useful for the 

production of drugs, perfumes, artificial sweeteners, and agricultural chemicals such as 

insecticides, fungicides and herbicides [31]. 

The catalytic oxidation of cyclohexene has been investigated with the view of obtaining 

high yields of industrially important products such as cyclohexene oxide and cyclohexenol. 

Catalytic oxidation of cyclohexene is attracting attention because its oxidation products 

(e.g., 2-cyclohexen-1-one, 2-cyclohexen-1-ol, epoxide) are very useful synthetic 

intermediates [32]. Cyclohexenol is an important raw material for the production 
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cyclohexadiene which finds application in nylon and perfumery industries, respectively 

[33]. Cyclohexene oxide is a highly reactive and selective organic intermediate widely 

used in the synthesis of enantioselective drugs, epoxy paints and rubber promoters [33].  

The aim for this research programme is to synthesize catalysts that display both high 

catalytic activity and good selectivity for industrially important oxidations that will be of 

benefit to the industry.  

 

 

1.2 Objectives 

The objectives of this study were as follows: 

1.2.1 To prepare two Schiff-base ligands derived from β-diketones and ethylene diamine 

using different molar ratios and thereafter synthesizing transition metal Cu(II) and 

OV(IV) complexes of these ligands respectively.    

1.2.2 To heterogenize the homogeneous Cu(II) and OV(IV) Schiff-base complexes by 

encapsulation inside the supercages of Y-type zeolite using the flexible ligand 

encapsulation technique. 

1.2.3 Investigating the catalyst‟s activity for the liquid-phase hydroxylation of phenol, 

benzene, styrene and cyclohexene using H2O2 as oxidant. Thereafter, determining 

the selectivity of each catalyst for the products of their respective oxidation 

reactions.  

1.2.4 To test the optimized reaction conditions at which maximum % conversion will be 

obtained by varying the reactions conditions only for phenol hydroxylation. 

1.2.5 To compare the activity of the “neat” versus the encapsulated complexes.  

1.2.6 To establish the possible reaction pathway of the catalysts using UV/Vis. 
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1.3 Thesis Outline 

Chapter 1 serves as a summary regarding the problem identification for the various 

oxidation reactions, heterogenization of homogeneous catalysts studied and gives the aims 

and objectives for this research topic. 

Chapter 2 gives a very detailed description of the historical and theoretical background for 

this research topic and focuses on the role of zeolites in catalysis, heterogenization of 

homogeneous catalysts and the application of Schiff-base complex systems especially in 

oxidation reactions. The applications of encapsulated complexes as catalysts are also 

discussed.   

Chapter 3 is the experimental section and details the synthesis and of the series of zeolite 

encapsulated Cu(II) and OV(IV) complexes, their “neat” analogues and the series of 

Schiff-base ligands.  

 

Chapter 4 represents the characterization of all the Schiff-base ligands synthesized, their 

respective Cu(II) and OV(IV) transition metal complexes and their encapsulated 

analogues. 

The results for the possible reaction pathway of the catalysts are also discussed in this 

chapter.  

Chapter 5, describes the catalytic activity of both the encapsulated and neat copper 

catalysts for the oxidation of phenol, benzene, styrene and cyclohexene. The optimized 

reaction conditions are also described in this chapter. 

Chapter 6 describes the catalytic activity of the neat and encapsulated oxovanadium 

complexes as potential catalysts in the oxidation of phenol, benzene, styrene and 

cyclohexene. The results for these catalysts were discussed. 

 A final conclusion is given regarding the results and findings and is summarized in the 

final chapter, Chapter 7 regarding this thesis and recommendations for future work on this 

research topic are also discussed in this chapter. 
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CHAPTER 2 

 

2. LITERATURE  REVIEW  

2.1 Introduction  

This section will review the literature describing encapsulation of metal complexes using 

zeolites as supports, their selectivity in catalytic reactions and methods of encapsulating 

metal complexes inside zeolites.   

The problem areas normally identified in homogeneous catalytic systems are introduced and 

how these problems are solved by “heterogenizating” the homogeneous catalyst on solid 

supports. A very detailed description and purpose for the heterogenizing of homogeneous 

catalysts and different methods of immobilizing are also presented.    

 

2.2 Concept of heterogenization of homogeneous catalysts 

Over the past decades, various transition metal complexes of Schiff base ligands have been 

employed in homogeneous catalysis [1-3]. The reason is, these catalytic systems enjoy 

success in various oxidation reactions offering high activity, homogeneity, reproducibility, 

selectivity under mild conditions and thus affirms their usage in organic synthesis [4, 5]. 

Unfortunately, homogeneous catalytic systems are plagued by various difficulties. Firstly, 

the catalyst, reactants and products are in one phase, making catalyst-product separation, 

catalyst recovery, recycling and reuse difficult [6-11]. Another drawback is leaching of the 

active metal into the solvent and the insufficient stability of the catalyst. This is because 

during the workup of the reaction to obtain the reaction products, the catalyst are normally 

destroyed making its recovery difficult [12].  Moreover, formation of oxo-dimers and other 

polymeric species are always possible in homogeneous catalytic systems and will lead to 

irreversible catalyst deactivation [13]. Solvent and catalyst losses that occur during 

separation can lead to unacceptable amounts of wastage [14]. Thus, heterogeneous catalysts 

[15-21] were developed to overcome these drawbacks and environmental hazards and have 

become an important active field of research. Notably, the advantages of immobilized 

catalysts are their high activity, selectivity and recoverability, but also to simplify the 

separation and purification processes, and thus, decrease the formed impurities. Recovery 

and reuse of a catalyst is especially desired when expensive or toxic catalysts are involved. 
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Recyclable catalysts offer higher total turnover numbers and less (toxic) waste, which is 

essential, both from an environmental and commercial point of view. Development of 

recyclable catalysts has, therefore, become a key issue in the field of homogeneous catalysis 

[21-23].  

This can provide the ideal method for combining the advantages and also avoid the 

disadvantages of homogeneous and heterogeneous catalysts [24-26]. The aim of these 

catalysts, clearly, is to improve the stability of the transition metal complex under the 

reaction conditions by preventing the catalytic species from dimerizing or aggregation and to 

tune the selectivity of the reaction using the walls of the pores of the solid via steric effects 

[27].  

The process of immobilization of homogeneous catalysts on a solid support is termed 

“heterogenization”.  

 

2.3 Methodologies for heterogenization of homogeneous catalysts 

In general, three concepts for the heterogenization of homogeneous metal complexes can be 

distinguished:  

 

2.3.1 Liquid-liquid two-phase system 

The first immobilization technique does not require a solid support, but involves use of a 

liquid–liquid (biphasic) two-phase system [28, 29].  In the biphasic system, the catalyst is 

soluble in one solvent, whilst the substrates and products are soluble in the other solvents, 

which are immiscible with each other. This methodology allows the separation of reaction 

products from homogeneous catalyst phase usually by simple phase separation after the 

reaction is complete in order to recycle the catalyst. The reaction products are extracted into 

non-polar solvent leaving behind the catalyst [30]. An example is the Ruhrchemie/ Rhone-

Poulenc oxo-process [30] and Shell Higher Energy Olefin Process (SHOP) [31].  

 

2.3.2   Supported liquid-phase catalysis  

The idea of using supported liquid-phase catalysis (SLPC) was proposed by Davis and his 

co-workers [32]. In their work, they prepared a thin aqueous phase containing rhodium 

complexes over the surface of porous silica and its good performance was proven for 

hydroformylation, as reviewed by Davis. The liquid (solvent and dissolved catalyst) is 
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dispersed in a porous solid support to produce a large gas–liquid interface. SLPCs are, 

therefore, particularly suited for catalysts with a low diffusion rate in the liquid phase. The 

reaction takes place throughout the liquid phase in a homogeneous SLPC. The distribution 

of the liquid inside the porous support is of great importance [33]. The SLPC is used in a 

solvent that does not dissolve the film liquid and could easily separate by simple filtration 

and recycle. A disadvantage of SLPC catalysts is that they are usually restricted to the 

synthesis of low boiling compounds [34]. Another specific problem usually occurring in 

SLPC is the loss of liquid phase by conveyance of vapour with the reaction gas flow due to 

the small, but still perceptible, vapour pressure of the liquid [35]. 

After a certain time, the solvent in which the catalyst is dissolved vapourises. This causes 

anchoring of the catalyst onto the solid surface resulting in a tremendous loss in yield and 

reduction in selectivity [33].  

 

2.3.3 Fixation on/in solid supports 

The most common and used method of heterogenization of homogeneous catalysts is the 

fixation of complexes to solid supports in various ways, e.g. on polymers, on metal oxides, 

by covalent or co-ordinative linkage or electrostatic attraction, via functionalized ligands, by 

adsorption on porous supports or by inclusion of metal complexes into molecular sieves, 

sol–gel matrices or other materials [36 - 39]. This is the type of heterogenization which will 

be discussed in more detail as this method will be the encapsulation of complexes in 

inorganic supports. The immobilization methods discussed here are only fixation of catalysts 

on/in solid supports.  There are different approaches to immobilize metal complexes onto 

solid supports. The most common way to classify them is the type of interaction between the 

molecular species and support. Three different groups can according to support-molecule 

interactions be identified as: (a) covalent bonding, (b) non-covalent interactions and (c) 

encapsulation [40, 41].   

 

2.3.3.1 Covalent bonding 

In covalently supported catalysts, the ligand or catalyst is covalently anchored or 

immobilized to a soluble or insoluble support. The immobilization involves either reaction 

of a functional resin with a suitably functionalized catalytic species or copolymerization of a 

derivative of the organocatalyst with other monomers [42]. 

 

 

 

 



Chapter 2: Literature review  

11 

 

It can be accomplished, either directly by reaction of the metal complex with the support 

surface groups or mediated through a spacer previously grafted to the support or reacted 

with the support. 

One of the most important advantages of this technique is that the molecular species are 

linked to the support via chemical bonds and experience almost no leaching as far as all 

bonds are stable in the reaction media [43 – 45]. The drawback of this method, however, is 

the large preparative effort which involves a multi-step procedure and not only the 

functionalization of the ligands coordinate to the metal, but also the grafting of the spacers 

onto the support [46]. Scheme 2.1 is an example of covalent bonding between an inorganic 

support and a metal complex.  

 

 

Scheme 2.1: Rhodium complex covalently anchored to mesoporous silica, SBA-15 [47]. 

 

Furthermore, covalent bonding of metal complexes, directly or via spacers, can alter, to 

different extents, the electronic density within the metal which in turn can modify the 

performance of the catalyst in a way that may be difficult to foresee [41].  

 

2.3.3.2 Non-covalent interactions 

Alternatively, transition metal complexes can also be immobilized by non-covalent bonding 

through hydrogen bridges, hydrophobic, florous interactions, electrostatic interaction (e.g. 

ion-exchange material) via functionalised ligands or or by adsorption on porous supports to 

combine the good activities and selectivities of the homogeneous catalysts and the simplicity 

of recycling and recovery of the heterogeneous ones or entrapment within several supports 

such as sol-gel matrices [47 - 49].  

Non-covalent interactions between the support and metal complex include two 

methodologies, for complex immobilization, namely, physical adsorption [50] and 

electrostatic interaction [51, 52]. Physical adsorption involves π-π, Van der Waals 
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interactions, hydrogen bonds, hydrophobic-hydrophilic interactions between the support and 

the complex. The second approach consists of electrostatic interactions between the support 

and the complex, and therefore, charges of opposite signals are required between them 

(Scheme 2.2). These catalysts are created by first synthesizing the solid support and then 

contacting it with the catalytic complex. An example of hydrophobic interactions between 

support and catalyst is presented in Scheme 2.3.  

 

 

Scheme 2.2: Schematic illustration of electrostatic immobilisation of a copper(I)pybox 

catalyst on silica [53]. 
                

 

 

Scheme 2.3: Cyclodextrins immobilized proline catalysts via hydrophobic interactions [54]. 
 

 

The catalyst can be weakly bound via physisorption or more strongly electrostatic 

interaction or through metal coordination [40]. The non-covalent interaction can also occur 

between the support and complex, or through spacers, in the latter case, interaction between 

the spacer and the complex can be of a different nature, covalent or non-covalent. The major 

advantage over non-covalent interactions is there easy separation.  

A disadvantage rather, is their sensitivity to solvents which are an important weakness as 

this may cause leaching of the active phase by simple manipulation of the experimental 

conditions used in the preparations of the immobilized complexes or during the catalytic 

reactions, therefore, these catalysts may be relegated for use involving mild reaction 

conditions [41].  
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2.3.3.3 Encapsulation/entrapment 

A special type of immobilization of homogeneous catalysts involves an encapsulation 

principle and characterized as „host guest‟ structures, „ship-in-the-bottle‟ constructions in 

zeolites or by entrapment in sol–gel structures.  

Generally, there are two different types of encapsulated complexes. The first methodology 

of encapsulation involves the synthesis of the support with the catalyst present in the 

reaction mixture. Two well-known examples are sol-gel and polymeric materials. In both 

cases, the polymerizable unit (usually alkoxysilanes or sodium silicates with sol-gels or 

olefins or other polymerizable monomers in the polymers) are mixed together in one-pot 

while the solid support forms which will be discussed in more detail in this section [56]. 

Another method to entrap metal complex catalysts is the intercalation of metal complexes 

into layered structures.  

 

2.3.3.3.1 Entrapment in sol-gel 

One of the most recent methods for encapsulation of homogeneous catalysts was described 

by Gelman et al involving entrapment of rhodium and ruthenium complexes in sol gel [56]. 

The sol-gel process consists of the following general steps: sol formation, gelation, drying 

and densification. The preparation starts with an appropriate metal alkoxide which is mixed 

with a suitable solvent. Firstly, a colloidal sol forms from hydrolysis and condensation of the 

metal alkoxide precursor. The liquid sol then becomes a gel as hydrolysis and condensation 

proceeds and the solid phase forms a network that extends throughout the container having 

nanosized pores. The liquid phase is removed causing the aged gels to become xerogels [57].  

Two different types of sol-gel processes can be distinguished, namely, non-aqueous and 

aqueous. 

In non-aqueous sol-gel, the transformation of the precursor to an inorganic solid takes place 

in the organic solvent in the absence of water. The list of potential precursors involved is 

longer in non-aqueous systems and includes in addition to inorganic metal salts and metal 

oxides, metal acetates and metal acetyleacetonates. The condensation steps in the non-

aqueous process are presented in Scheme 2.4.   
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Scheme 2.4: The condensation steps in non-aqueous sol-gel process, alkyl halide 

elimination (Eq.1), ether elimination (Eq.2), ester elimination (Eq.3), and aldol-like 

condensation (Eq.4) [58]. 
 

Aqueous sol-gel process involves the conversion of a precursor solution into an inorganic 

solid via inorganic polymerization reactions which are induced by water. The precursor is 

normally an inorganic, metal salt or an organic metal compound such as alkoxide. In most 

cases, metal alkoxide precursors are widely used. Unfortunately, this process is quite 

complex, due to the high reactivity of metal precursors towards water and the double role of 

water as both ligand and solvent and due to a large number of parameters viz., hydrolysis 

and condensation rate of the metal oxide precursors, pH, temperature, method of mixing and 

rate of oxidation.  The parameters have to be strictly controlled in order to provide good 

reproducibility of the synthesis protocol [59]. Scheme 2.5 illustrates the condensation and 

hydrolysis steps in aqueous sol-gel process.    

 

 

Scheme 2.5: Hydrolysis (Eq.1) and condensation (Eq. 2 and 3) steps in aqueous sol-gel 

process [60].  
        

Overall, studies on heterogenization of homogeneous transition metal catalysts revealed that 

physical entrapment of a wide range of mono- and homobimetallic complexes in SiO2 sol-

gel matrices does not only permit facile recycling of the entrapped catalysts, but also 

increases their stability and enhances their catalytic properties [61]. The sol-gel method is 

particularly useful for the synthesis of binary and multinary metal oxides and for ceramic 

composite materials [62]. 
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On the other hand, this type of encapsulation of complexes suffers from various difficulties. 

A drawback is the active catalyst may diffuse out of the swollen solid support, reducing 

recyclability and also leading to product contamination. These materials are also prone to 

leaching as the sol-gel and polymer may be subject to swelling in certain solvents. This 

swelling could also cause problems in fixed volume reactors, leading to increase pressure 

differentials across the reactor [56]. 

 

2.3.3.3.2 Ship-in-the-bottle 

The second strategy is the encapsulation process which involves heterogenization of 

transition metal complexes having potential catalytic activity in porous materials such as 

zeolites, MCM - 41 or any other molecular sieves and requires no bonding between the 

catalyst and support [63 – 66]. In other words, it involves physical entrapment of the metal 

complex within the pores of the support and it is assumed that no other interaction should 

exist besides the physical confinement. This methodology depends on the size of the 

complex and therefore, the catalyst should be larger than the pore of the zeolite. This smaller 

pore keeps the metal complex encapsulated in the zeolite framework in order to prevent the 

metal complex from leaching out of the zeolite (Fig.2.1) [67]. In the molecular sieve host, 

the metal complex should be free to move within the confines of the cavities but be 

prevented from leaching by restrictive pore openings. Therefore, the term zeolite “ship-in-

the-bottle” complex may be applied [68]. Scheme 2.6 demonstrates how leaching occurs 

when the encapsulated complex is smaller than the zeolites pores resulting in leaching out of 

the zeolite.  

 

 

 

Figure 2.1 Manganese Schiff-base complex physically entrapped in zeolite Y [69]. 
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Scheme 2.6 : The pathway of intrazeolitic complexes when the complex size is smaller than 

zeolite pores leading to the complex leaching out of the zeolite [70]. 
 

 

 

Two variables in the preparation of a redox molecular sieve having an encapsulated complex 

are the nature of the molecular sieve such as its pore size, hydrophobicity and acidity and the 

method of confinement. Molecular sieves are categorised into small pore (< 4 Å), medium 

pore (4 - 6 Å), large pore (6 - 8 Å), extra-large pore (8 -14 Å) and mesoporous (15-100 Å) 

[71]. Encapsulation causes no change in the chemical properties of an entrapped catalyst 

except for the steric confinement of the porous supports whilst three dimensional supports 

may also provide site isolation of the catalyst [72]. Encapsulation within inorganic supports 

can be further subdivided into encapsulation within layered and porous supports, and within 

the latter, between microporous (free diameter 2 nm) and mesoporous (2nm < free diameter 

< 50 nm) materials. Encapsulation of transition metal complexes relies either on 

intercalation, or synthesis of the complex into or within the pores or entrapment of the metal 

complex [73].   

In most reactions studied, heterogenization of homogeneous catalysts through encapsulation, 

high selectivity in competitive reactions is observed that is correlated to molecular sieving 

effects and a better regioselectivity is obtained [74 - 76]. 

While these materials do allow for simple recycle of a truly homogeneous catalyst, these 

materials also present some disadvantages viz., decreased activity due to slow diffusion of 

reactants and products into and out of the porous material and difficult characterization of 

the catalyst which might be due to the  low catalyst loadings [55].  
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2.3.3.3.3 Entrapment in silicate layers 

Encapsulation of metal complexes through intercalation occurs  when the cationic catalyst is 

introduced as such between the silicate layers of swelling clays, such as smectites [77], 

layered double hydroxides [78] or pillard clays [79, 80] by an ion-exchanged procedure. An 

important factor of clays is their high surface area, with the consequence that ion-exchange 

sites on the surface of the clay are well dispersed.  These considerations suggest that clays 

might be suitably employed as supports for those homogeneous metal complex catalysts 

which are prone to undergo deactivation in solution [81]. Examples of complexes entrapped 

in silicate layers are illustrated in Fig.2.2.  

 

 

      

Figure 2.2 A model structure of intercalated catalysts (i) whereby the catalyst is located 

between sheets of clay [82] or between interlayer spaces of (ii) Mg/Al layered double 

hydroxide (LDH) [83]                                                                                        

 

 

The advantage of ion-exchange methods of catalyst immobilization on layered silicates is 

simple in comparison to the multistep procedures for covalent attachment of complexes to 

polymers or amorphous metal oxide supports. Moreover, the catalysts exhibit potentially 

controllable selectivity effects when exchanged into the structures of these ubiquitous 

minerals. However, under certain conditions, the layered silicate systems can exhibit 

undesirable properties. For instance, desorption of a catalytically active, presumably 

uncharged species, occurs during reactions when certain silicate-supported cationic 

complexes are employed as hydrogenation, or hydroformylation catalysts.  In addition, the 

lack of numerous, well-studied, cationic homogeneous catalysts limits the range and type of 

complexes that might be supported [84].  In order to avoid the drawbacks of encapsulation 

of catalysts in sol-gels or in clays, regular and ordered materials were used for this research 

programme.  
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2.4 Types of support used in heterogenization of homogeneous catalysts 

When immobilizing homogeneous catalysts on supports, these usually fall into two broad 

categories: organic and inorganic.  The organic supports used for immobilization are 

generally soluble or insoluble polymers or dendrimers. Inorganic supports are the most 

widely used supports in the immobilization of homogeneous catalysts. Inorganic supports 

are porous materials with discrete surface areas, which are exemplified by alumina and 

silica. The advantages of using inorganic materials over organic supports are that they are 

mechanically rigid, chemically stable, not affected by temperature and solvent. Therefore 

they can withstand high temperatures which are usually used in industry and resisting the 

oxidative conditions. The relatively high surface area and appropriate pore sizes of inorganic 

supports also maintain their competitive advantages over other supports.  

Polymer supports in contrast, suffer from various difficulties. Organic polymers are not rigid 

materials and their shape and structures are strongly influenced by the solvent, temperature 

and pressure. These supports are also vulnerable to some chemicals. Solvents cause 

polymers to swell, which results in greater accessibility to inner surfaces of the support 

increasing the mass transport. In general, inorganic supports do not tend to swell, as in the 

case for organic supports which make them ideal supports for use in continuous reactors [42, 

85 - 88]. The most common reported organic supports used are insoluble polymeric 

materials, which are used with great success in solid phase organic synthesis. The 

difficulties of these materials are their restricted loading capacity, the often restricted 

accessibility of active sites, the wettability issues, their reactivity towards reactive reagents, 

such as organometallics and their polydispersity [89]. These drawbacks have prompted 

many research groups to explore the use of soluble polymers such as poly ethylene oxide 

polymers, linear polystyrene and dendrimers as supports [90, 91]. Therefore, in order to 

avoid the difficulties of organic supports only inorganic supports will be discussed in this 

section as this is the choice of support that will be studied in this investigation.  

 

2.4.1 Inorganic Supports 

Inorganic supports such as zeolites, glass and metal oxides (e.g. MCM - 41) have also been 

observed as highly promising supports in solid-phase assisted synthesis, mainly as catalysts 

[30]. Among inorganic supports, silica and alumina are easily and readily available and are 

used by various researchers for immobilization of different catalysts by direct reaction of 
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surface hydroxyl groups with reactive species [92 – 96]. Inorganic molecular sieves such as 

MCM-41, SBA-15 and FSM-16 have free hydroxyl groups on their surface and also have 

tiny channels and windows at the nanometer scale. Therefore these mesoporous materials 

can be employed for immobilization of macro cycles and metal complexes (Fig.2.3). 

Immobilized complexes of these materials show unique properties in adsorption and 

catalysis [97, 98]. Zeolites, with their crystalline framework and well-defined cavities are 

usually used in the encapsulation of homogeneous catalysts. Among inorganic supports, they 

tend to be the most promising and are widely used for immobilization of metal complexes. 

The distinct advantage of these materials over other supports is that the metal complex can 

be physically entrapped in the super cages without aggregation [99].     

Other commonly used supports are negatively charged layered double hydroxides (LDH) 

that immobilize anionic metal complexes, crystalline microporous aluminophosphates and 

hydroxyapatites, alumina and titania. Mesoporous and microporous materials have become 

very important in recent years. Typically, micropores have an inner radius of < 1.5 nm, 

whilst mesopores range between 1.5 and 15 nm and macropores are larger than 15 nm. 

Another important group of supports are the sol-gels which are characterized by high 

porosity and a large specific surface [38].  

 

 

               

Figure 2.3 Illustrating immobilization of catalysts on various mesoporous silica supports, 

MCM-41, SBA-15 and FSM–16 [100]. 
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2.5 Zeolites as supports for immobilization of homogeneous catalysts 

2.5.1 Structure  

Zeolites are crystalline aluminosilicates that have  natural or synthetic origin and have 

shown promising potential as selective heterogeneous catalysts, adsorbents and ion 

exchange media in certain industrial and commercial areas, especially in petroleum refining. 

They are made up of TO4 (T = Si, Al) tetrahedra that are linked through oxygen atoms 

leading to a three dimensional network through which long channels run. Water molecules 

and alkali metal ions are located in the interior of these channels, which can be exchanged 

with other cations. The interior of the pore system, having atomic scale dimensions, is the 

catalytically active surface of the zeolite [101, 102].  The geometry of the cavities and 

channels formed by the rigid framework of SiO4 and AlO4
-
 tetrahedra distinguishes zeolites 

from one another.  

The aluminosilicate structure incorporating Si
4+

, Al
3+

 and O
2-

 are ionic. When Si
4+ 

ions are 

replaced in the SiO4 tetrahedra in the framework with Al
3+

 ions, an excess negative charge is 

generated. These non-framework cations play a central role in determining the catalytic 

nature of zeolites [103].  

Sodalite (SOD, a cubooctahedron), Faujasite (FAU) and Linde Type A (LTA) which are 

three types of zeolites are built from a SOD cage formed by connected single four and six 

rings. These different zeolites are distinguished by the connection of the SOD cages. The 

differences in their structures are presented in Fig.2.4 (a). The FAU zeolite structure (zeolite 

X, Y, and natural Faujasite) is characterized by double six ring (D6R, a hexagonal prism), 

SOD cavity and supercage. A unit cell consists of eight sodalite supercages (16D6Rs), 16 

12-rings and single 6-rings (S6Rs) [104]. The SOD-cage is connected to four nearest 

neighbouring SOD-cages through double T6-rings (T6 = tetrahedral six membered ring), 

D6R.  In LTA zeolite, each SOD-cage is connected to six nearest neighbouring SOD-cages 

through double T4-rings (T4 = tetrahedral four membered ring) [105]. 
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        (a)         (b) 

Figure 2. 4 (a) Different types of zeolites (b) various units Faujasite zeolite [106, 107]. 

          

2.5.2 Supported materials in catalysis 

Zeolites tend to be excellent supports for catalysts due to their stability, regularity of their 

pore structure and their high surface area. It is thus important that as little active material 

ends up on the external surface of the zeolite when preparing the supported catalyst.  An 

advantage of zeolites over other supports is their ability to isolate metal atoms in the pores 

and therefore prevent sintering of the metal atoms that would greatly reduce the surface area 

of the catalyst. The cationic sites in zeolites can be substituted with metal cations, and thus 

could potentially introduce potentially new catalytic species into the structure [108]. In this 

work, zeolites were chosen as suitable supports due to their high thermal and chemical 

stability as well as their good crystalline structures [74].   

The possibility of employing zeolites as supports for transition metal complexes was first 

demonstrated by Lunsford‟s and Ben Taarit‟s groups in the 1970‟s [109 - 112]. Herron, 

Meyer and co-workers further developed this work by incorporating organometallic complex 

into the zeolite host [113, 114].  

There are strong similarities between zeolites and the protein portion of natural enzymes. 

The zeolites and protein protect the active site from side reactions, sieves the substrate 

molecules and provide a stereochemically demanding void. As a result of these similarities, 

it induced research in the field of metal complexes encapsulated in zeolites which would 

mimic metalloenzymes for oxidation reactions [115, 116].    

The advantage of using zeolites as supports for transition metal complexes, are the 

restrictive pore openings of the zeolite which could enable the catalysts to retain their high 

activity and selectivity in homogeneous catalysis. Zeolites also have a stabilizing effect on 

the metal complex as a result of the site isolation of the metal complex. The multimolecular 

deactivation pathways such as the formation of μ-oxo- or peroxo-bridge species that usually 
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occur in homogeneous complexes causing the catalyst to become inactive are also reduced 

[117 – 123].  

The well-defined pore structure of zeolites means that when they are employed as supports 

for catalysts, they can impose selectivity on the reaction products. 

Shape-selectivity by zeolites occurs by differentiating reactants, products, and/or reaction 

intermediates according to their shape and size in the sterically restricted environments of 

the zeolite structure. Because zeolite structures contain different pore window and channels 

sizes in the range 4 – 13 Å, they are able to recognize, discriminate and organize molecules 

with precisions that can be less than 1 Å [124]. Early work demonstrated that zeolites act as 

molecular sieves by excluding molecules too large to enter or preventing the production of 

molecules too large to exit (i.e. high-mass transfer limited products). Therefore, only 

molecules having dimensions less than the pore size of the zeolite can enter the channels and 

react at internal catalytic sites thereby limiting formation of products larger than the pore 

size of the zeolite [125, 126]. Therefore, only smaller molecules are able to diffuse out as 

observed products when the product mixture is formed in zeolite pores. These considerations 

are evident that exclusion of bulky molecules from the zeolite channels is a key factor for 

shape-selective catalysis by zeolites [127].   

Both reactant and product shape selectivity have their origins in mass transfer limitations, in 

the hindered diffusion of product and reactant molecules in the zeolite pores [128, 129]. 

Most shape-selective catalysts used today are molecular sieve zeolites [130-132]. 

Smaller molecules will thus exhibit higher conversion when compared to bigger molecules 

in oxidation reactions. For a number of catalytic reactions, the site of the pores control the 

size of the products formed. The restricted spaces in the pores of zeolite.  

 

               

Figure 2.5 A schematic model for illustrating how the pores of zeolites controls shape 

selectivity [138]. 
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2.6 Encapsulation strategies 

In general, three routes are known for preparation of metal complexes inside zeolites, viz., 

flexible ligand method, zeolite synthesis method and template synthesis method. In addition, 

the adsorption and ion-exchange method may also be considered. Scheme 2.7 illustrates the 

encapsulation methods of complexes in zeolites.  

The prefered method and the one chosen for this investigation, is the flexible ligands 

method.  

 

Scheme 2.7: Methods for encapsulating metal complexes within zeolites: Ion exchange (A), 

flexible ligand (B), ligand adsorption (C), „ship in a bottle‟ (D) and zeolite synthesis 

methods (E) [139]. 
 

 

2.6.1 Flexible Ligand method 

This method is based on the principle that the free ligand guests can easily enter into the 

zeolite pores because of their flexibility to pass through the restricted zeolite voids. Once the 

ligand enters the zeolite cage, it has the advantage to chelate with a previously exchanged 

metal ion to form a complex. The formed complex becomes too large and rigid and unable 

to escape from the zeolite cage due its larger size than the zeolite pore diameter. The flexible 

ligand method is one of the more extensively studied methods as it involves a 

straightforward and simple strategy [140 – 142]. This method is commonly employed for 

encapsulation of metal salen complexes (Salen = N,N’-bis (salicylaldehyde)ethylene 

 

 

 

 



Chapter 2: Literature review  

24 

 

diimine), since the Salen ligand provide the desired flexibility. A large variety of cobalt 

[143], manganese [144], iron [145], rhodium [142] and palladium [118] Salen complexes 

was prepared according to this approach within the zeolite Y supercages.  

 

2.6.2 Zeolite synthesis method 

This method is based on the building of the bottle around the around the ship by 

crystallization of the zeolite around the metal complex which serves as a template for zeolite 

synthesis [146 -148]. Therefore, the metal complex is trapped in the cage of the zeolite, 

while it is being built up [149]. The advantage is that the nature of the intrazeolitic complex 

is well-defined and removal of excess ligand can be ignored. On the other hand it possess 

the disadvantage that there is a heterogeneous distribution of metal complex in the precursor 

gel and these complexes are not evenly distributed within the crystals, thereby effecting the 

% metal content of the intrazeolitic species [150].   

 

2.6.3 Template (Ship-in-the-bottle) synthesis method  

The template synthesis method involves the diffusion of ligand precursors into zeolite pores 

where they assemble around an intrazeolite metal ion that acts as a template and forms a 

complex [151 - 153]. The main problem results from the fact that uncomplexed metal 

species or free ligand may block diffusion pathways. Therefore, characterization of the 

intrazeolitic complex may also be poorly defined even with the use of various spectroscopic 

techniques and physical methods used in combination [70].  

 

2.6.4 Adsorption method 

The adsorption method could be illustrated by the reaction of metal exchange zeolite-Y with 

CO/H2O or CO/H2 to form metal carbonyls in the cavity of zeolite-Y. Several metal 

carbonyls, such as Ni(CO)4, Rh4(CO)12,Rh6(CO)16, Ir4(CO)12, [Fe2Rh4(CO)16]  have been 

encapsulated in the cavities of zeolite-Y employing this methodology [154 – 157].     

 

2.6.5 Ion-exchange strategy 

The ion-exchange strategy involves, example, the exposure of a sodium-ion charge balanced 

Faujasite zeolite to a solution containing other cations, facilitating an exchange of the 

sodium ions. This method has been used for encapsulating metal–amino acid complexes 
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inside a zeolite structure and an example of this is encapsulated Cu–histidine complex [158]. 

The Na
+ 

ion present in the zeolite cavity could also be exchanged with a complex, e.g. 

[Cu(en)2]
2+

, allowing the complex to pass through the pore opening of zeolites [159]. 

Several other types of zeolite encapsulated complexes have been synthesized and 

characterized in the voids of zeolites under this method [160]. 

 

2.7 Schiff-bases and their complexes 

2.7.1 General Overview  

Schiff-base ligands have been in the chemistry catalogue for over 150 years [161]. H. Schiff 

was the first to report the synthesis of Schiff-base metal complexes as early as in the 1860‟s 

[162]. It was not until the 1950‟s that intensive studies and rapid advances in this field 

became evident.  

In recent studies, Schiff-base ligands have shown to play a huge role in the chemistry of 

transition metal complexes. The literature clearly shows that the study of this diverse ligand 

system is linked with many key advances made in inorganic chemistry [163 - 170]. They are 

usually formed by condensation between amines and aldehydes. The resulting imine 

(R1HC=N-R2) can participate in binding to metal ions through the nitrogen atom with its 

lone pair electrons. Ketones can also form Schiff-base ligands (R1R2C=N-R3) but aldehydes 

are more reactive than ketones [171].  

This ligand system has not only played a seminal role in the development of modern co-

ordination chemistry, but  can  be found at key points in the development of inorganic, 

biochemistry, catalysis medical imaging, optical materials and thin films [172]. Advantages 

of these ligands in catalysis show that they enhance the solubility and stability of either 

homogeneous or heterogeneous catalytic complexes. Catalysts in homogeneous medium 

with Schiff-base containing transition metals such as Cu(II), Ni(II) and Co(II) were also 

employed for the hydroxylation of phenol to specific products [173-175]. An advantage of 

Schiff-base transition metal complexes is they are attractive oxidation catalysts for different 

kinds of organic substrates as these ligands are cheap and convenient to synthesize, and are 

thermally and chemically stable. They are also several reports on different catalysts for the 

transformation of various simple organic substrates to functionalized derivatives which are 

of commercial interest [176 - 179]. Figure 2.6 represents some examples of Schiff-base 

ligand structures.   

 

 

 

 



Chapter 2: Literature review  

26 

 

 

 

              

                I                                         II                                               III          IV 

Figure 2.6 Examples of different types of Schiff-base ligands with its characteristic C=N 

group [180 - 182]. 

 

 

Schiff-base transition metal complexes are now also employed as catalysts for Suzuki-

Miyaura cross coupling reactions as they were found to display high catalytic activity under 

mild reaction conditions [183]. Schiff-base metal complexes are important systems in 

asymmetric catalysis and they often mimic biological sites [184]. A wide range of different 

ligands can be prepared and complexed to transition metals to form transition metal 

complexes which find wide application in catalysis. Metal complexes of these ligands are 

widely reported in the literature and find application as catalysts for numerous chemical 

transformations [168, 185-191]. These complexes could also be immobilized on polymeric 

organic materials such as resins, or polystyrene [192], supported on inert porous solid such 

as alumina [193] and silica or encapsulated in the pores of zeolite-Y [194]. Schiff-base 

complexes encapsulated inside zeolite Y form chelate complexes which could be considered 

as the most extensively studied as this type of complex has a flexible conformation 

consisting of various geometries namely planar, umbrella-type and stepped configurations.  

As a result, they could generate active-site environments for different oxidation reactions 

[191, 195].  

Numerous studies on the hydroxylation of phenol have been published using different Schiff 

base transition metal complexes such as encapsulated complexes in zeolite-Y, alumina-

supported [196-198].  

It is clear from the review of the literature that zeolite encapsulated metal complexes have 

provided opportunities to explore effective catalysts for various industrial processes. For the 

oxidation reactions, specifically, contributions of these types of catalysts are widely 

documented. The present study is aimed to describe the syntheses of zeolite-Y encapsulated 
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metal complexes of Cu(II) and OV(IV) with the following ligands: 7-amino-5-aza-4-methyl-

hept-3-en-one and bis(acetylacetone)ethylenediamine, for the first time. Previous studies on 

oxovanadium and copper complexes indicate their uses as potential catalysts to influence the 

yield and selectivity in chemical transformations [199, 200]. As we go through various 

oxidation reactions viz. benzene, phenol, cyclohexene and styrene oxidation, we observe 

that, in spite of considerable research, catalytic activity studies of these reactions using the 

above mentioned encapsulated synthesized complexes have not been investigated. It was, 

therefore, reasonable to undertake systematic study of the synthesis and characterization of 

these catalysts and test their catalytic potential under optimized reaction conditions towards 

the oxidation of these substrates.  
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CHAPTER 3 

3.  EXPERIMENTAL 

3.1 Materials 

The chemicals were used as received without any further purification. Absolute ethanol 

(99%) purchased from Saarchem, copper(II) chloride and glacial acetic acid were bought 

from Merck. Hydrochloride acid (32%): C&L. H-Y zeolite was purchased from Zeolyst. 

Carbon tetrachloride purchased from Riedel- de Haen. Dichlormomethane, phenol (99%), 

hydrogen peroxide (29-32%), cyclohexene, ethylenediamine, vanadyl acetylacetonate, 

ethyl acetate, acetonitrile, acetylacetone were purchased from Sigma Aldrich.  

 

3.2 Synthesis of Schiff-base ligands (L1 – L2) 

The structures of ligands and complexes where shown in Scheme 3.1. 

3.2.1 7-Amino-5-aza-4-methyl-hept-3-en-one, L1 

7-amino-5-aza-4-methyl-hept-3-en-one was synthesized according to a method described 

by Styring et.al with slight modifications [1]. A cooled solution of ethylenediamine (0.3g, 

0.005mol) in (25 ml) DCM was added dropwise to a cooled solution of acetylacetone (0.5 

g, 0.005mol) in (25 ml) DCM at 0 °C under stirring conditions at ambient temperature. The 

solution was stirred for 5 min and refluxed for an additional 5 minutes at 40 °C. 

Afterwards, the solvent was removed in vacuo to give viscous oil. Yield = 0.97 g (68 %).  

 

3.2.2 Bis(acetyleacetone-ethylene) diamine, L2   

Bis(acetylacetone)ethylenediamine was synthesized according to literature procedure [2]. 

A solution of acetylacetone (2 g, 0.02mol) in 25 ml DCM was added dropwise to a solution 

of ethylenediamine (0.6g, 0.01mol) in 25 ml DCM under stirring conditions. After 

addition, the pH of the solution was adjusted to 6 with a few drops glacial acetic acid. The 

yellow solution was refluxed for 3-4h at 40 °C. Afterwards, the solvent was removed in 

vacuo and gave a yellow solid. The solid product was recrystallized by dissolving it in a 

1:1 mixture of ethylacetate and DCM by heating. After recrystallization two times from the 

same solvent and two times from CCl4 the product was filtered and air dried to give straw 

like crystals. Yield = 2.07 g (55.6 %); m.p. = 111-113 °C. (Lit. 111-111.5° C [2]) 
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3.3 Synthesis of Cu(II) and OV(IV) complexes 

3.3.1 Preparation of Cu(II) complexes (1 – 2) 

3.3.1.1 Cu(L1)Cl, (1)  

Cu(L1)Cl were prepared according to a method described by Kwiatkowski et.al [3]. To a 

metal solution of CuCl2.2H2O (0.85g, 0.005 mol) in 10 ml ethanol was added a solution of 

L1 (0.714g, 0.005 mol) in 10 ml ethanol under stirring conditions. The reaction mixture 

was stirred at room temperature for 1h. The needle-like complex immediately separated 

out of the violet filtrate from which it was filtered and recrystallized from EtOH: MeCN 

(1:3) twice and dried in air to give violet solid.  

Yield = 0.35g (34.3 %); m.p = 162-165 ºC  

 

3.3.1.2 Cu(L2), (2)  

The general methodology of McCathy et.al was used to prepare Cu(L2) [2]. The ligand L2 

(0.142g, 0.001mol) were dissolved in 10ml absolute ethanol. To this yellow mixture, a 

solution of CuCl2.2H2O (0.17 g, 0.001mol) in 10 ml absolute ethanol was added dropwise 

under stirring conditions. The reaction mixture was refluxed for 4 h at 78.5 ºC. The dark 

purple filtrate was kept overnight and purple needle-like crystals slowly separated out 

which was filtered, washed with cold ethanol. The product was recrystallized from EtOH: 

MeCN (1:3) twice and dried in air to give analytically pure products then dried at 100 °C 

for 1 h. Yield = 0.162g (56.8 %); m.p = 137-139 ºC   (Lit. 137 °C  [2]) 

 

3.3.2 Preparation of oxovanadium(IV) complexes (5 - 6) 

Both oxavanadium(IV) complexes were synthesized using a general methodology 

described by Alsalim et.al with slight modifications [4]. An hot solution of VO(acac)2 

(0.265g, 0.001 mol) in ethanol (10ml) was added dropwise to ethanolic solution (10 ml) of 

L1or L2 (0.001 mol). The reaction mixture was heated and stirred under reflux for 5 h. 

After keeping the green filtrate in the flask at ambient temperature for a week, the complex 

slowly separated out, which was filtered, washed with hot water then ethanol and dried at 

100 °C. Recrystallization from MeCN gave analytically pure products.  

VO(L1)(acac), (5): light green solid, yield = 0.20g (65.5 %); m.p > 300 °C and  

VO(L2), (6): green powder, yield = 0.18g; (61.7 %;) m.p = 235-238 °C (Lit. 236 ° C [5]) 
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Scheme 3.1 Structures of Ligands and Cu(II) and OV(IV) complexes. 
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3.4 Preparation of zeolite encapsulated Cu(II) and OV(IV) complexes 

The synthetic route of encapsulated complexes is presented in Scheme 3.2. 

The synthesis was carried out in two steps employing the general flexible ligand method:  

1. Preparation of metal exchanged zeolite, M-Y (M = Cu(II) and OV(IV)) 

2. Synthesis of zeolite-Y encapsulated metal complexes (3 - 4 and 7 - 8) 

 

3.4.1 Preparation of metal exchanged zeolite, M-Y (M = Cu(II) or OV(IV)) 

Cu(II)
 
and V(IV)-exchanged–H-Y zeolites were synthesized according to the method 

described by Titinchi et.al [6]. To 1.0 g H-Y suspended in 50 ml deionized water was 

added CuCl2.2H2O (0.34 g, 2 mmol) or VO(acac)2 (0.53 g, 2 mmol,) in order to exchanged 

H-ions of H-Y with Cu(II) or OV(IV) ions. The reaction mixture was stirred gently at 90° 

C for 24 h, filtered, precipitate washed with copious amount of hot deionised water 

followed by Soxhlet extraction with acetonitrile for 1 h till the filtrate contained no copper 

or vanadium ions. The resulting precipitate was dried at 150 ° C in air for 24 h. 

 

3.4.2 Synthesis of zeolite-Y encapsulated metal complexes 

General procedure for encapsulation:  All encapsulated complexes were prepared using the 

flexible ligand method (Scheme 3.2). An amount of 0.3 g of Cu-H-Y or OV(IV)-H-Y and 

0.70 g of ligand were mixed 30 ml MeCN in a round bottom flask. The reaction mixture 

was refluxed and stirred in an oil bath for overnight. After cooling, the resulting material 

was subjected to Soxhlet extraction in acetonitrile for 48 h to remove excess uncomplexed 

ligand that remained in the cavities of the zeolite as well as any free metal complex located 

on the surface of the zeolite. The solid products obtained were dried at 150 °C for several 

hours to constant weight. 
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Scheme 3.2 A schematic description for the synthesis of neat and encapsulated copper(II) 

and oxovanadium(IV) complexes. 
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3.5 Analytical techniques and instruments used 

Various kinds of analytical and spectroscopic techniques were used to determine the 

composition of the ligands and complexes and the catalytic activity and selectivity of the 

reaction products. The physical and analytical methods applied here are given below.  

 

3.5.1 Nuclear Magnetic Resonance (NMR) spectroscopy  

Proton nuclear magnetic resonance (
1
H NMR) and carbon nuclear magnetic resonance (

13
C 

NMR) spectroscopy were used for structural determination of all ligands. 
1
H and 

13
C NMR 

spectra were recorded in CDCl3 using a Varian Gemini 2000 spectrometer and chemical 

shifts are indicated in ppm. Sample signals are relative to the resonance of residual protons 

on carbons in the solvent. Samples were prepared weighing out between 30 – 60 mg of 

sample and dissolved in deuterated chloroform (CDCl3).  

 

3.5.2 Fourier - Transform Infrared (FT-IR) spectroscopy   

FT-IR measurements were used to determine the presence of functional groups in the 

spectrum of Schiff base ligands and complexes. The ATR-IR measurements were carried 

out on a Perkin-Elmer Spectrum 100 FTIR spectrometer. This technique is also used to 

confirm complex formation in the zeolite cavities by comparing their spectral patterns with 

their parent zeolites. The presence of new peaks in the encapsulated complexes correspond 

to the complex confirming the encapsulation of Schiff-base metal complexes in zeolite Y.  

 

3.5.3 Inductively Coupled Plasma – Optical Emission Spectrometry (ICP – OES) 

Inductively Coupled Plasma – Optical Emission Spectrometry (ICP – OES) Varian 710-

ES, was employed to determine the % metal content of Cu(II) and OV(IV) in the 

encapsulated complexes. The sample was prepared by dissolving 10 mg complex in a conc 

mixture of 3 ml HNO3 and 1 ml HCl. The mixture was evaporated until complete dryness 

on a hot plate. The solid obtained was dissolved in deionized water and filtered. The 

filtrate was made up to a 50 ml solution of 2 % HNO3.  
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3.5.4 Scanning Electron Microscopy (SEM) 

Scanning Electron Micrographs (SEM) is an effective technique and was used to study the 

shape, particle size and surface structure of the catalysts were recorded on Hitachi X-650 

EM. The samples were dusted on alumina and coated with a thin film of gold to prevent 

surface changing and to protect the surface material from thermal damage by the electron 

beam. In all analyses, a uniform thickness of about 0.1 mm was maintained. This technique 

was used to obtain images of zeolite encapsulated metal complex ZEMC‟s and to 

determine their particle size and morphology. 

 

3.5.5 Ultraviolet-Visible spectroscopy (UV-Vis)  

This technique was used to determine the transitions in the ligands, neat and encapsulated 

complexes. The electronic spectra of ligands and complexes were studied at a 

concentration of 10
-4

 M in methanol in the UV region and at a concentration 10
-3

 M in 

methanol in the visible region. In case of encapsulated complexes, Nujol was used to 

prepare the paste by layering in the mull of the sample to the inside of one of the cuvette 

while keeping another one layered with nujol as reference. This technique was also 

employed to determine the reaction mechanism of these catalysts and the intermediate 

species formed during the oxidation of the substrates.  Methanolic solution of neat complex 

was treated with a methanolic solution of 30 % H2O2 and the progress of the reaction was 

monitored employing UV-Vis spectrophotometer. The Electronic spectra of the 

encapsulated complexes were recorded on a GBC UV/VIS 920 UV–Visible 

spectrophotometer.  

 

3.5.6 Gas Chromatography (GC)  

Chromatography is a technique used for separating and analyzing compounds that can be 

vaporized without decomposition. The organic compounds are separated due to differences 

in their partitioning behaviour between a flowing the mobile gas phase and the stationary 

phase in the column to separate the components in a mixture (the relative amounts of such 

components can also be determined). The retention time of all peaks was compared with 

authentic samples. 

Agilent 7890 gas chromatograph fitted with flame ionization detector fitted with HP-5 

(phenylmethylsilicon) capillary column (30 m x 330 pm x 0.25 µm film thickness, Agilent 
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technologies) was used to monitor the reaction process and determine conversion and 

chemoselectivity. 

 

3.5.7 X-Ray Powder Diffraction (XRPD) 

This technique was used to study the structure of the zeolite, identify the crystallinity of 

these catalysts and test the stability of the zeolite framework after metal ion exchange and 

encapsulation of complexes. This technique indicates the insertion of transition metal 

complexes and ion-exchanged metals, M-Y in the cavities of the zeolite Y. New diffraction 

lines could be located in the XRD pattern of the encapsulated zeolites corresponds to the 

metal complex and ion-exchanged metals. These observations clearly suggest the presence 

of metal complexes in zeolite matrix. The samples was recorded by Bruker AXS D8 

Advance, High – Resolution diffractometer with Cu K Radiation (λ = 1, 5406 Å) fitted to a 

PSD Vantec gas detector at Ithemba labs, Cape Town, South Africa. 

X-ray spectrometry is suitable for all elements in periodic table.  The intensity of the 

radiation of each wavelength is proportional to the corresponding element and the amount 

of each element present can be determined by quantitative analysis. 

 

3.5.8 Brunauer-Emmett-Teller (BET) Surface Area Analysis  

BET theory aims to explain the physical adsorption of gas molecules on a solid surface. 

This technique serves as the basis for an important analysis for the measurement of the 

specific surface area of a material. BET analysis provides specific external surface area and 

pore volume evaluation of materials yielding important information in studying the effects 

of surface porosity and particle size in many applications. This technique characterises the 

pore size distribution independent of external area due to particle size of the material. 

However, in the field of solid catalysis, the surface area of catalysts is an important factor 

in catalytic activity. Porous inorganic materials such as mesoporous silica and layered 

materials exhibit high surface areas, indicating the possibility of application for efficient 

catalytic materials. This type of analysis is used to determine the change in surface area, 

pore volume and pore size after the encapsulation process to confirm the presence of 

complexes in zeolite-Y.   
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CHAPTER 4 

 

4. CHARACTERIZATION 

Synthesis of metal complexes encapsulated in zeolite was carried out by a stepwise method 

adopted by Ratnasamy, Bowers and Balkus et al. [1] who described this process as a 

“flexible ligand method”. The metal exchanged M-Y zeolite [M = Cu(II), and V(IV)] was 

prepared by exchanging H
+
 of an H-Y molecule with a 0.001M  solution of copper nitrate  

or vanadium acetylacetonate, respectively, in aqueous solution.  Heating of the M-Y 

zeolite in excess of ligand at 90 
o
C for about 20 h effected insertion of the ligand in the 

cavity followed by complex formation with metal ions. The crude mass was finally 

purified by Soxhlet extraction in acetonitrile.  

     An attempt was made to characterize these complexes by comparing their physico-

chemical properties with that of the simple complexes prepared by the reaction of L1 or L2 

with the respective metal salts. The formulation of the encapsulated complexes is, thus, 

based on the respective simple complex.  

 

4.1 Characterization of ligands  

4.1.1 1H and 
13

C NMR spectroscopic studies of Schiff-base ligands 

The 
1
H NMR spectrum of Schiff base ligand L1 shows a sharp singlet at 1.48 ppm 

assigned to the two methyl groups and corresponds to six protons. Two methylene groups 

are observed and centred at 2.46 and 3.42 ppm, respectively, and both appear as multiplets 

corresponding to two protons each. The peak at 3.42 ppm is assigned to methylene protons 

at position 6. This peak it is more downfield than the methylene group at position 7 due to 

deshielding by the azomethine group as shown in Table 4.1 and Fig 4.1. The 
1
H NMR 

spectrum for L1 is similar to that reported [2].  

The 
13

C NMR spectrum of L1 exhibited seven peaks as shown in Fig.4.2 and Table 4.2. 

The signal observed at 162.89 ppm is due to the azomethine carbon.  

The proton NMR spectrum for L2 (Fig 4.3 and Table 4.3) shows two methyl groups as 

singlets at 1.95 and 1.88 ppm corresponding to three protons each. The methyl groups at 

position 5,5‟ are more deshielded than the methyl groups at position 1 since they are 

attached to the azomethine moiety. The methyl signal at 1.88 ppm is assigned to protons at 

position 3,3‟.  The methylene protons are located in the region 3.35 – 3.42 ppm 

 

 

 

 



Chapter 4: Charcterization  

54 

 

corresponding to four protons. No peaks were observed for NH2 protons indicating 

condensation with the carbonyl of acetylacetone had occurred.  

13
C NMR (Fig 4.4 and Table 4.4) spectrum illustrates the presence of six carbon signals 

which further supports the structure of the ligand.  

The 
1
H and 

13
C-NMR data are fully consistent with the values previously reported [3].  
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Figure 4.1 
1
H NMR of 7-amino-5-aza-4-methyl-hept-3-en-one, L1  

 

 

Table 4.1 
1
H NMR data of 7-amino-5-aza-4-methyl-hept-3-en-one, L1 
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Figure 4.2 
13

C NMR spectra of 7-amino-5-aza-4-methyl-hept-3-en-one, L1 

 

 

Table 4.2 
13

C NMR data of 7-amino-5-aza-4-methyl-hept-3-en-one, L1 
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Figure 4.3 
1
H NMR of bis(acetylacetone ethylene diamine), L2 

 

 

Table 4.3 
1
H NMR data of bis(acetylacetone ethylene diamine), L2 
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Figure 4.4 
13

C NMR spectra of bis(acetylacetone ethylene diamine), L2  

 

 

 

Table 4.4 
13

C NMR data of bis(acetylacetone ethylene diamine), L2 
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4.1.2  FT-IR spectroscopic studies of Schiff-base ligands 

Three bands at 1602, 1559 and 1515 cm
-1

 for L1 are assigned to ν(C=O), ν(C=N) and 

ν(C=C), respectively. A weak broad band observed at 3358 cm
-1

 is due to ν(OH) stretching 

vibrations. L1 further shows two sharp weak bands at 2920 and 2862 cm
-1

, which is 

attributed to the free NH2 group [4].  

The IR spectrum of L2 exhibits two bands at 1599 and 1518 cm
-1

, which are assigned to 

ν(C=O) and ν(C=C), respectively. The disappearance of the NH2 band and the carbonyl 

group  bands of the starting materials and the appearance of new peak at 1570 cm
-1 

corresponds to ν(C=N) band confirms  formation of Schiff base ligand L2.  

These data support the NMR assignment for the formation of the respective Schiff-base 

ligands, L1 and L2 as reported previously [3,5].  

 

4.1.3  UV/Vis spectroscopic of Schiff-base ligands 

Fig.4.5 illustrates the spectra of the ligands viz. L1 and L2. Both ligands exhibit a band at 

ca 320 nm and a shoulder at ~300 nm. These bands are assigned to n → π* transitions due 

to the azomethine chromophore in these ligands. The shoulder band at higher energies is 

associated with benzene → * transitions. These results confirm previously reported data 

[9].  

 

 

 

Figure 4.5  Electronic spectra in methanol of (a) L1 and (b) L2  
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4.2 Characterization of Cu(II) complexes 

4.2.1 FT-IR spectroscopy 

IR spectral data of the neat and encapsulated complexes are presented in Fig. 4.6 and Table 

4.5. The intensity of the peaks of the encapsulated complexes are essentially similar to that 

of the free metal complexes. However, a significant change in some important bands 

compared to the free ligand is identified.  

The IR spectra of Cu(L1)Cl and Cu(L2) show that the ν(C=N) band has shifted downwards  

to 1504 cm
-1

 and 1560 cm
-1

, respectively  due to the coordination of the metal ion to the 

nitrogen atom which reduces the electron density of the azomethine group and therefore 

lowers  the ν(C=N) frequency [7-8]. The metal complexes exhibit a new weak-medium 

peaks in the far IR region (400 - 600 cm
-1

) which are assigned to v(M-O) and v(M-N) 

modes indicating coordination of metal to nitrogen and oxygen atom of the respective 

ligands [9]. The coordination of the NH2 group in L1 to the metal centre results in a shift in 

N-H stretching and bending bands to 2916 cm
-1 

[10,11] upon complexation.  In Cu(L1)Cl 

where an NH2 group is still present  coordination occurs through the NH2 to the metal 

centre and normally results in a upward or downward shift in N-H stretching and bending 

bands [10,11]. This N-H band shifted to 2916 cm
-1 

in Cu(L1)Cl. The broad band assigned 

to ν(OH) stretching vibration in the L1 and L2 disappeared in the spectra of the complexes 

indicating  coordination  of the metal ion to the ligand after deprotonation (Fig.4.6).   In 

addition, Cu(L1)Cl exhibits a new peak at 310 cm
-1

 due to ν(M-Cl) bond (Fig 4.7) [12]. 

 

 

Table 4.5 FT-IR vibrations of the ligands and Cu(II) complexes 

Compound ν (cm
-1

) 

  ν(C=N) ν(M-O)/(M-N) ν(M-Cl)         

L1 

L2 

Cu(L1)Cl 

Cu(L2) 

1559(s) 

1570(s) 

1504(s) 

1560(s) 

- 

- 

385(w),455(s), 521(str),607(m) 

418(w), 568 (w), 456 (s) 

- 

- 

310 

- 
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Figure 4.6 FT-IR spectra of L1, Cu(L1)Cl, L2 and Cu(L2). 

 

 

 

 

Figure 4.7 FT-IR spectra of L1, Cu(L1)Cl and Cu(L2). 
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From the IR spectra (Fig.4.8), it is evident that the framework vibrational band of zeolite Y 

dominates the spectra of all samples. These characteristic bands corresponding to the 

zeolite framework in all samples are found at 1040, 450, 780 and 394 cm
-1 

[13,14]. No 

shift or broadening in the structure sensitive band around 1050 cm
-1

 (due to asymmetric T-

O stretch) occurred which indicates that little changes in the zeolite framework upon 

encapsulation or ion exchange took place. This indicates that there is no significant 

expansion of zeolite cavity or dealumination and proving that the metal complex fits in the 

cavity of the zeolite and the zeolite matrix remain unchanged [15].  

The presence of several bands of medium intensity in 2700-2900 cm
-1 

region correspond 

ethylene groups of the ligand.  Thus, IR data indicates the encapsulation of the complexes 

in the zeolite cavity. 

 

 

 

Figure 4.8 FT-IR spectra of H-Y, Cu-exchanged zeolite and their zeolite encapsulated 

metal complexes  
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4.2.2    UV/Vis spectroscopy  

The electronic spectral data of the complexes viz. Cu(L1)Cl and Cu(L2) were recorded in 

methanol over the range 200-900 nm (Fig.4.9). 

Three distinctly different bands are observed in Cu(L1)Cl  at 204, 305 and 324 nm. The 

first two bands are assigned to φ → φ
* 

and π → π
*
 transitions, respectively. The shoulder 

band present at 324 nm is as a result of a ligand to metal charge transfer (LMCT) band 

assigned  as an n → π
*
 transition[16]. In Fig.4.9, Cu(L2) five adsorption bands are 

observed at 204, 226, 276, 322 and 342 nm in the UV region. The first bands can be 

assigned to φ → φ
* 

and π → π
* 

transitions. The broad band at 342 nm is probably due to 

a symmetry forbidden ligand to metal charge transfer (LMCT) transition [17].  

The UV-visible spectrum of Cu-Y does not show any absorption band above 300 

nm, while the spectra for both complexes display one broad band around 300 nm, 

which is probably due to a symmetry forbidden ligand  metal charge transfer 

transition.  A very weak but broad absorption 610-650 nm is also observed in both 

encapsulated complexes when highly concentrated sample in nujol mull was used to 

record the spectrum and this is due to d-d transition in the complex (Fig.4.10). 

These data compare closely with that of pure complexes and is indicative of a 

square planer structure present in the cavity of the zeolite [17,18].   

 

 

 

  

Figure 4.9  Electronic spectra of (a) Cu(L1)Cl and (b) Cu(L2) 
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Figure 4.10  Electronic spectra of (a) Cu(L1)Cl-Y and (b) Cu(L2)-Y 

 

 

Table 4.6 Electronic spectral data of the ligands (L1-L2) and Cu(II) complexes. 

Complex λm/nm (ε/M
-1

 cm
-1

) 

L1 

L2 

Cu(L1)Cl 

Cu(L1)Cl-Y 

Cu(L2) 

Cu(L2)-Y 

320  

322, 304 (sh)                                         

224, 305, 324 (sh), 540 

200,280, 602, 589 

204, 226 (sh), 278, 322, 342(sh), 546 

200, 274(sh), 309, 616 

 

 

4.3 Characterization of VO(IV) complexes 

 4.3.1.  FT-IR spectroscopy  

The major spectral data of ligands, neat complexes and encapsulated complexes are 

presented in Table 4.7.  

The FT-IR spectra of VO(L1)(acac) and VO(L2) complexes show a shift in ν(C=N) to 

lower frequency  from 1559 and 1570 to 1517 and 1560 cm
-1

, respectively. The 

disappearance of the weak broad band, ν(OH), in both vanadium complexes indicates the 

coordination of metal ion to the enolic oxygen atom after deprotonation.  
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The appearance of new weak to sharp bands in the far IR region  600 - 400 cm
-1

 is assigned 

to v(M-O) and v(M-N) modes which further indicates the coordination of metal ion to 

nitrogen and oxygen atoms of the respective ligands [9]. 

Complexes, VO(L1)(acac) and VO(L2) exhibit a medium sharp band at 978 and 970 cm
-1

 

respectively, due to ν(V=O) stretch. This is evidence of the presence of oxovanadium 

complexes [19, 20].  

In the spectra of the encapsulated vanadyl complexes the band due to ν(V=O) stretching 

vibration was not observed due to the presence of a strong and broad band of the zeolite 

framework in the ~1000 cm
-1

 region.  

From Fig. 4.11, it is evident that the framework vibrational bands of zeolite Y dominate the 

spectra of all samples. These characteristic bands corresponding to the zeolite framework 

in all samples are found around at 1050, 450, 780 and 394 cm
-1 

[13,14]. No shift or 

broadening in the structure sensitive band at 1050 cm
-1

 (due to an asymmetric T-O stretch) 

occurred which indicates that little change in the zeolite framework upon encapsulation or 

ion exchange took place. This indicates that there is no significant expansion of the zeolite 

cavity or dealumination and proving that the metal complex fits in the cavity of the zeolite 

and the zeolite matrix remains unchanged [15]. In the case for VO(L1)(acac)-Y and 

VO(L2)-Y the bands in this region were  rather  weak. The FT-IR spectra of encapsulated 

complexes in comparison with their neat complexes are rather weak and this is as a result 

of the low loading of complexes present in the zeolite matrix. 

Thus, IR and UV–vis data indicate the encapsulation of complexes in the super cages of 

zeolite-Y. 

 

 

Table 4.7 FT-IR vibrations of the ligands and VO(IV) complexes 

Compound ν(cm
-1

) 

(C=N) ν(M-O)/(M-N) ν(V=O) 

L1 

L2 

VO(L1)(acac) 

VO(L2) 

1559(s) 

1570(s) 

1517(s) 

1560(s) 

- 

- 

485, 408(w), 386(m), 418(w), 453(s) 

482(w), 554(w), 520 

- 

- 

978(m) 

970(m) 
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Figure 4.11 FT-IR spectra of VO(L1)(acac)-Y, VO(L2)-Y and their parent compound in 

the range 380 - 1800 cm-
1
. 
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4.3.2. UV/Vis spectroscopy  

In Fig. 4.12, there are four distinctly different adsorption bands observed in VO(L1)(acac) 

in the UV region at 200, 241 (sh), 318 and a weak shoulder at 342 nm. The first two bands 

are assigned to φ → φ* whilst the band at 318 nm is due to π → π* transitions. The 

azomethine chromophore‟s n→ π* transition shifted to higher energy and is located at 342 

nm in VO(L1)(acac). VO(L2) exhibits three absorption bands at 200, 295 and a weak 

shoulder at 312 nm as presented in Table 4.8 and Fig.4.13. These bands are assigned to φ 

→ φ*, π → π* and n→ π* transitions. In VO(L2), the azomethine chromophore transition  

n→ π* shifted to lower wavelength.  This shift in azomethine chromophore indicates 

coordination of the metal ion to the nitrogen atom of the azomethine group.  It is known 

that oxovanadium complexes normally display three d-d transitions in the 330 - 470, 690-

520 and 625-900 nm regions [21]. These neat complexes show only two d-d bands located 

at 562-573 and 750-773 nm. This is in agreement with a previously reported analysis on 

similar oxovanadium Schiff-base complexes [22-24]. It is noted that the UV patterns of the 

encapsulated complexes displayed the same bands, confirming the presence of metal 

complex inside zeolite cage. 

 

 

 

 

 

 

 

 



Chapter 4: Charcterization  

68 

 

 

 

 

 

Figure 4.12 Electronic spectra: UV (top) and vis. region (bottom) of (a) VO(L1)(acac) and (b) 

VO(L2). 
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Fig.4.13 Electronic spectra: UV (top) and vis. region (bottom) of VO(L1)(acac)-Y and 

VO(L2)-Y 
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The zeolite encapsulated oxovanadium complexes viz. VO(L1)(acac)-Y and VO(L2)-Y  

exhibit a broad asymmetric band in the region 600–650 nm ascribed to a d–d transition that 

was slightly blue shifted from the corresponding free metal complex suggesting square 

pyramidal geometry around the metal ion of VO(IV) ions (Fig.4.15). 

This confirms the formation of vanadium complexes in the cavity of the zeolite matrix. 

 

Table 4.8 Electronic spectral data of ligands and VO(VI) complexes 

Complex λm /nm (ε/M
-1

 cm
-1

) 

L1 

L2 

VO(L1)(acac) 

VO(L1)(acac)-Y 

VO(L2) 

VO(L2)-Y 

320 

322, 304 (sh)                                         

200, 241(sh),318, 347(sh), 573, 773 

203, 231(sh),315, 373(sh), 633 

200, 295, 312 (sh), 562, 750 

201, 315, 598  

 

4.4. X- Ray Powder diffraction of Cu (II) and VO(IV) encapsulated complexes  

The powder X-ray diffractograms of the respective encapsulated copper complexes, Cu-H-

Y and the parent H-Y are presented in Fig.4.14.  

The comparison of encapsulated oxovanadium complexes are illustrated in Fig.4.15.  

It can be seen that the XRD patterns observed in H-Y, M-H-Y and encapsulated complexes 

are similar, although a slight change in intensity of these typical lines in the encapsulated 

complexes was noticed. This indicates that the zeolite framework was not affected when 

introducing Cu(II),VO(IV)-ions or intrazeolitic complex formation inside the zeolite 

framework.  

Therefore, the crystallinity of zeolite Y was preserved and remained intact and can 

accommodate these complexes [25,26]. This finding is also in agreement with the FT-IR 

results. The diffraction pattern for the metal or the metal complexes could not be detected 

in the diffractograms of the encapsulated complexes [27]. This could possibly be due to 

low loading of metal complexes present in the zeolite. 
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Figure 4.14 XRD patterns of  (a) H-Y, (b) Cu-H-Y, (c) Cu(L2)-Y and (d)   Cu(L1)(Cl)-Y  
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Figure  4.15  XRD of (a) H-Y, (b) VO-H-Y, (c) VO(L2)-Y and (d) VO(L1)(acac)-Y 
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4.5.  Scanning electron microscopy of Cu(II) and OV(VI) encapsulated complexes   

The Scanning Electron Micrograph (SEM) of the metal-exchanged zeolite and their 

respective encapsulated complexes indicate the presence of well-defined zeolite crystals 

without any shadow of metal ions or complexes present on their external surface. This 

confirms that the zeolite preserves its morphology and structure upon encapsulation of 

complexes [28]. This indicates that Soxhlet extraction was an excellent way of removal of 

uncomplexed ligand and complexes. The representative photographs of Cu-Y and 

Cu(L1)Cl-Y are reproduced in Figure 4.16. 

 

      

Figure 4.16 Scanning electron micrograph of Cu-Y (left) and Cu(L2)-Y (right) 

 

4.6.  Surface textural studies of Cu(II) and OV(VI) encapsulated complexes  

The surface textural properties for the zeolite encapsulated complexes are presented in 

Table 4.9. A considerable reduction in the surface area and pore volume was observed for 

the zeolite encapsulated complexes when compared to their parent compounds, H-Y, Cu-

H-Y and VO-H-Y.  

 

Figures 4.17 - 4.19 shows the surface textural parameters (surface area, pore volume and 

pore sizes) of Cu-H-Y and VO-H-Y and their respective encapsulated catalysts, which are 

typical type I according to the IUPAC classification and are characteristics of the 

microporous nature of the materials. The surface area, pore volume and pore size of the 

encapsulated metal complex, along with that of the parent H-Y zeolite, are presented in 

Table 4.9. The surface area and pore volume were decreased due to the presence of the 

complex in the zeolite-Y cavities [29, 30] and not as a result of the presence of complexes 

on the external surface due to the removal of the ions and complexes attached the zeolite‟s 
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surface by soxhlet extraction. This supports the observation that the complexes are present 

within the zeolite cages and not on the external surface since the zeolite crystallinity was 

retained. However, the decreasing values in the surface area, pore volume and adsorption 

capacity depends on the amount of incorporated complexes as well as their molecular size 

and geometrical conformation inside the zeolitic host [31]. 
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Figure 4.17 N2 adsorption/desorption isotherms of Cu-H-Y, Cu(L1)Cl-Y and Cu(L2)-Y. 
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Figure 4.18 N2 adsorption/desorption isotherms VO-H-Y, VO(L1)(acac)-Y and VO(L2)-Y 
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Figure 4.19 Pore size distribution of VO-H-Y, VO(L1)(acac)-Y and VO(L2)-Y. 

 

 

 

Table 4.9 Physical, analytical data and surface area and pore volume data for the catalysts 

Catalyst Colour Metal 

Content 

(% wt) 

Langmuir 

Surface area 

(m
2
/g) 

Pore Volume 

(mL/g) 

Average 

Pore size 

(Å) 

H-Y 

Cu-H-Y 

OV-H-Y 

[Cu(L1)Cl]-Y 

[VO(L1)(acac)]-Y 

[Cu(L2)]-Y 

[VO(L2)]-Y 

White 

Light blue 

Light green 

Pale brown 

Pale green  

Pale blue 

Pale green  

- 

0.17 

0.28 

0.13 

0.11 

0.18 

0.12 

780 

476 

535 

452 

518 

439 

524 

0.48 

0.36 

0.41 

0.33 

0.40 

0.34 

0.40 

42.5 

31.33 

31.01 

30.43 

30.47 

30.06 

30.46 
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4.7. Possible reaction pathway of catalysts 

4.7.1. Cu(II) system 

To understand reaction pathway and  intermediate species formed during  oxidation of the 

substrates, a methanolic solution of neat copper(II) complexes were treated with a 

methanolic solution of H2O2 (dropwise) and the progress of the reaction was monitored by 

electronic absorption spectroscopy.  

A shown in Figs. 4.20 and 4.21, addition of one drop of 30 % H2O2 in methanol to a 

solution of Cu(L1)Cl or Cu(L2) (10
-4

 M solution) dissolved in methanol resulted in a 

considerable increase in the intensity of the band appearing at ~220 nm. Simultaneously, 

the other bands between 278-340 nm experienced a slight increase in their intensities. On 

the other hand, the intensities of the d–d bands in the region between 550-880 nm were 

decreased. Further addition of H2O2 did not reduce the peak‟s intensity. The spectral 

changes in the UV-Vis region indicate formation of an intermediate peroxo species and the 

interaction of peroxo intermediate species with the Cu(II) metal centre in the complex. 

These intermediates are expected to transfer the oxygen atoms to the substrates to give the 

products [23, 32]. 
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(a) 

 

 

(b) 

Figure 4.20 Kinetic studies of Cu(L1)Cl in (a) UV and (b) visible region. 
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(a) 

 

 

(b) 

Figure 4.21 : Kinetic studies of Cu(L2) in (a) UV and (b) visible region. 

 

0

1

2

3

4

5

6

200 300 400 500

A
b

so
rb

a
n

ce
  

Wavelength (nm) 

204 

344 
278 

226 

316 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

500 600 700 800 900

A
b

so
rb

a
n

ce
 

Wavelength (nm) 

546 

 

 

 

 



Chapter 4: Charcterization  

78 

 

4.7.2. VO(IV) systems 

Similarly, the stepwise addition of aqueous H2O2 to a 10
-4

 M methanolic solution of 

oxovanadium complexes resulted in increase in the intensities of the bands at UV region 

without changing their position.  

Addition of 30 % H2O2 dropwise to a 10
-4

 M methanolic solution of VO(L1)(acac) resulted 

in slight increase of the intensities for the bands at 202, 241, 318 and 347 nm without 

changing their position (Fig 4.22).   

Addition of H2O2 solution to a methanolic solution of VO(L2) resulted in an immediate 

shifting of the strong band at 295 nm to 283 nm. This shifted band slowly increased in 

intensity upon addition of H2O2. The shoulder at 312nm becomes more distinguishable 

from the other band after the addition of further H2O2. Gradual addition of dilute H2O2 

results in a slight increase in the intensity of this band (Fig.4.23). 

The intensity of the d-d transition band at 562 nm is slowly broadens and finally 

disappeared whereas the other d-d transition band at 750 nm decreased with increasing the 

addition of H2O2 without changing its position.  Further addition of H2O2 did not reduce 

intensity of this band. 

These spectral changes observed, indicate the oxidation of V(IV) yielding 

oxoperoxovanadium(V) species [33].  Oxoperoxovanadium (V) complexes are very active 

intermediate species and participate in oxidation reaction by transferring one of its oxygens 

to the substrate [34, 35]. This is supported by the spectral changes with disappearance of d-

d bands present in VO(L1)(acac) at 573 and 773 nm. The same pattern in the visible region 

was also observed with VO(L2). These spectral changes and the presence of isosbestic 

point at ~550 nm which indicates the presence of equilibrium between two substances and 

they have the identical absorbance. This suggests the oxidation of oxovanadium(IV) 

complex to give oxoperoxovanadium(V) species.   
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(a) 

 

 

(b) 

Figure 4.22  Kinetic studies of VO(L1)(acac) in (a) UV and (b) visible region 
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(a) 

 

 

(b) 

Figure 4.23 Kinetic studies of VO(L2) in (a) UV and (b) visible region. 
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CHAPTER 5 

5. CATALYTIC ACTIVITY STUDIES OF CU(II) CATALYSTS FOR 

OXIDATION REACTIONS 

5.1 Introduction  

Copper(II) complexes have been found to show excellent catalytic activity towards various 

oxidation reactions and have occupied a major place in oxidation chemistry due to their 

abundance in natural and biological media [1,2]. In recent years, considerable research has 

been dedicated to the preparation of different solid heterogeneous copper catalysts and 

their application in the oxidation of different organic substrates [3-8].  

The Cu(II) complexes encapsulated in zeolite Y has also attracted considerable attention 

due to their remarkable activity in catalysis. Recent studies have shown that encapsulated 

zeolite Y copper(II) based catalytic systems displayed good activity and selectivity for the 

oxidation of styrene, phenol and various substrates when using H2O2 as oxidant [9-13].  

The most typical oxidant used in oxidation reactions is hydrogen peroxide and alkyl 

hydroperoxides [14,15]. Advantages of hydrogen peroxide over other oxidants is its 

relative stability and being a relatively strong oxidant [16] and also provides an efficient 

route for epoxide preparation because it is easy to handle and the only by-product is water 

thus satisfying green chemistry requirements [17]. In zeolitic systems, hydrogen peroxide 

and oxygen are the preferred oxidants as they are highly mobile in the pores due their 

smaller size. They are also cheaper and sufficiently environment-friendly to be used on a 

commercial scale. However, aerobic oxidation is expected to occur at a slower rate as a 

result of the inability of molecular oxygen to be activated in comparison to peroxides 

which are highly reactive species [18]. The drawbacks of organic peroxides are that they 

may be explosive, corrosive, toxic and present extreme fire hazards. Many organic 

peroxides also give off flammable vapours when decomposing [19].   

Results of the investigation of catalytic activity of Cu(L1)Cl and Cu(L2) complexes 

encapsulated in zeolite Y in the oxidation of phenol, benzene, styrene and cyclohexene 

using H2O2 as an oxidant are presented. The catalytic activity of neat complexes is also 

compared. 
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To find suitable reaction conditions in order to obtain maximum conversion of substrates, 

the effect of temperature, amount of catalyst, volume of solvent, concentration of H2O2 and 

the nature of solvent was investigated using Cu(L2)-Y as a representative catalyst. The 

optimized reaction conditions studied were only controlled to hydroxylation of phenol.  

  

5.2 Oxidation reactions 

5.2.1 Hydroxylation of phenol  

The catalytic oxidation of phenol usually gives two products: catechol (CAT) and 

hydroquinone (HQ). In some cases, further oxidation may occur to form para-

benzoquinone (Scheme 5.1). Numerous factors influence the catalytic activity of a reaction 

viz, H2O2/phenol molar ratio, temperature, amount of catalyst, type of solvent and volume 

of solvent.  

OH

Catalyst

H2O2

OH

OH

+

OH

OH

O

O

Phenol                                   CAT                              HQ                                       p-BQ

 

Scheme 5.1 Oxidized products for the hydroxylation of phenol 

 

 

 

The general reaction parameters discussed for phenol hydroxylation are: 

5.2.1.1 Effect of H2O2/phenol molar ratio 

5.2.1.2 Effect of temperature  

5.2.1.3 Effect of solvents  

5.2.1.4 Effect of volume of solvent  

5.2.1.5 Effect of amount of catalyst  
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The percent substrate conversion and product selectivity were calculated from GC using 

the following formulae: 

% Conversion of substrate =    100
 productsofAmountsubstrateAmount

productsofAmount
  

 % Selectivity of a product =   100
productsofamountTotal

productaofAmount
 

The quantifications were made on the basis of the relative peak area of the substrate and 

their corresponding products. 

 

5.2.1.1 Effect of H2O2/phenol molar ratio 

In order to determine the effect of H2O2/phenol molar ratio on the oxidation of substrate, 

three different molar ratios (0.3:1, 1:1 and 2:1) were studied, whilst keeping a fixed 

amount phenol (0.025 mol) and catalyst (0.01g) in 3 ml MeCN at 70°C and running the 

reaction for 24h (Fig.5.1). It was found that on increasing the H2O2/ phenol ratio from 

0.3:1 to 1:1, the conversion increased ~4 folds from 5.1 to 19.2 % and lead to a drop in 

catechol selectivity after 6h, yielding 75.3 %. The poor activity of the catalyst at low molar 

ratio could be as a result of significantly decreasing hydroxyl radicals generated from H2O2 

that can react with excess of phenol to generate the intermediate [20]. 

 

 

Figure 5.1 % Phenol conversion using different H2O2/PhOH molar ratios 
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When the amount of H2O2 was doubled, % conversion was increased by almost by 8 % but 

% catechol selectivity increased [9]. While, the effect of oxidant concentration had no 

influence on product selectivity. For this reason and in order to reduce oxidant 

consumption, it was decided that the best ratio to work with was 1:1. High selectivity to 

produce catechol was obtained for all ratios used (Table 5.1).  

 

Table 5.1 Effect of H2O2/PhOH molar ratio on phenol hydroxylation
a
 and product 

selectivity  
 

H2O2/ PhOH 

(molar ratio) 

% Phenol 

Conversion 

% Product selectivity 

CAT HQ 

0.3 : 1 

1 : 1 

2 : 1 

5.1 

19.2 

27.1 

100 

75.3 

78.1 

- 

24.7 

21.9 

a 
Reaction conditions : phenol  2.35 g, Cu(L2)-Y  0.010 g, MeCN 3 ml, 70 °C, 6h 

 

5.2.1.2 Effect of reaction temperature 

The performance of the catalysts was investigated at three different temperatures, viz. 60, 

70 and 80 °C whilst keeping all the other parameters constant over a period of 24h. Fig.5.2 

illustrates the effect of temperature on the oxidation of phenol. At low temperature (60° C) 

the reaction show a very low activity with high selectivity to catechol formation.  On 

increasing temperature to 70°C the % conversion increased 4-folds with a drop in CAT 

(75.3 %) selectivity. Further increasing the reaction temperature to 80 °C maximum 

conversion for phenol hydroxylation was observed. However, % catechol selectivity was 

decreased but still the predominant product.  

It can be concluded that at higher temperature the reaction reached a maximum conversion, 

but with a decrease in product selectivity (Table 5.2).  

A drawback at working at higher reaction temperatures the possibility of thermal 

degradation of the oxidant i.e. H2O2 [21]. This is as a result of H2O2 that is consumed in 

the parallel reaction of decomposition (H2O2 → H2O + 1/2 O2) [22]. For this reason and in 

order to work at lower temperature, it was decided that the best temperature to work with 

was 70°C.  
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Figure 5.2 Effect of reaction temperature on % phenol conversion over time  

 

Table 5.2 Effect of reaction temperature on phenol conversion
 a
 and product selectivity.  

Reaction 

Temperature (°C) 

% Phenol 

Conversion 

% Product selectivity 

 CAT HQ              

60 

70 

80 

5.0 

19.5 

24.7 

100 

75.6 

66.7 

- 

24.4 

33.3 

a 
Reaction conditions : Phenol 2.35 g, H2O2 2.83 g, Cu(L2)-Y 0.010 g, MeCN 3 ml, 6h 

 

5.2.1.3 Effect of solvents 

It is known that the nature of solvent has an important influence on the result of a reaction, 

i.e. on yields, products formation and reaction kinetics [23]. The influence of solvent on 

the catalytic activity for the hydroxylation of phenol was investigated using five different 

solvents ranging from polar, MeCN, ethanol and ethyl acetate to non-polar, i.e. DCM and 

n-hexane whilst keeping all the other reaction conditions constant.  

Solvents influence reaction rates by competitive sorption/adsorptions in the supercages of 

zeolite, polarity, solvation power and the size of the solvent molecule [24]. The effect of 

different solvents on the oxidation of phenol is illustrated in Figure 5.3. From Table 5.3, it 

is clear that the nature of the solvent affects the rate of the reaction as well as the 

selectivity. Relatively low conversions were observed in n-hexane (1.81 %) and ethyl 
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acetate (2.90 %). Amongst all solvents, phenol conversion was the highest in MeCN, as it 

gave 19.45 % conversion after 6h reaction time. This could be explained that MeCN can 

coordinates better to the complex, hence, forming a five-coordinated complex with MeCN, 

where MeCN occupies one site [25]. 

 

 

Figure 5.3 Effect of different solvents on the % phenol conversion over time at 70°C 

 

 

 

In DCM and n-hexane, the reaction mixture formed a non-homogeneous two-phase 

(bilayer) system and reaction occurred at the interface moving phenol to the organic layer 

whilst the catalyst caused the reaction to occur at the interface.  

From these experiments for maximum % phenol conversion, the solvents can be 

rearranged as follows: MeCN >> DCM > ethanol > ethyl acetate > n-hexane. It can be 

concluded that MeCN was the best suited solvent for maximum % phenol conversion. 
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Table 5.3 Effect of solvents on phenol hydroxylation 
a
, and product selectivity  

 

 

 

 

 

 

 

 

 

 

a 
Reaction conditions: phenol 2.35g, 30 % H2O2 2.83g, 0.010g [Cu(L2)]-Y, Solvent 3 

ml,70°C, 6h 

 

5.2.1.4 Effect of volume of solvent 

The volume of solvent plays an important role in the performance of a catalyst as 

represented in Fig.5.4 and Table 5.4. Three different volumes of MeCN 3, 5 and 7 were 

investigated to obtain the % conversion over time. An increase in volume of solvent by 2 

ml (3 to 5 ml) led to a significant reduction in the overall catalytic performance by 11.59 % 

after 6h. Further increase by another 4 ml of solvent led to a considerable drop by 17.73 % 

in catalytic activity. It can be concluded that an increase in volume did not further improve 

the % phenol conversion.  

 

Solvent % Phenol 

Conversion 

Product selectivity 

CAT HQ 

MeCN 

CH3COOEt 

n-hexane 

DCM 

EtOH 

19.5 

2.9 

1.8 

11.0 

5.9 

75.6 

80.9 

90.7 

100 

96.2 

24.4 

19.2 

9.3 

- 

3.8 
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Figure 5.4 Catalytic performance under different volumes of solvent for phenol oxidation  

 

 

This may be due to that increasing solvent volume will decrease reactant concentration in 

the reaction mixture which causes poor catalytic performance [26]. It was also noted that 

increasing the volume, leads to an increase in selectivity towards the formation of catechol. 

After 6h, no significant change in conversion and selectivity occurred for all reactions. Of 

the three different volumes of MeCN tested, the best volume to obtain maximum 

percentage conversion was 3 ml.   

 

Table 5.4 Effect of volume of solvent on phenol conversion 
a
 and product selectivity  

 

 

 

 

 

 

 

a 
Reaction conditions : phenol 2.35 g, H2O2 2.83 g, 0.010 g Cu(L2)-Y, MeCN, 70 °C, 6h 
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5.2.1.5 Effect of amount of catalyst  

The effect of the amount of catalyst on the catalytic performance for hydroxylation of 

phenol is represented in Fig.5.5. Three different amounts of catalyst were studied, 0.005, 

0.01 and 0.02 g, whilst keeping the other parameters constant i.e. phenol (0.025 mol) and 

H2O2 (0.025 mol) in 3 ml MeCN at 70 °C.  

Results indicate that additional amounts of catalysts enhanced the effect of phenol 

conversion.  

As expected, increasing the amount of catalyst from 0.005g to 0.01g increased the 

conversion from 3.41 to 19.45 % after 6h giving an increase of 16 %. Further increment of 

amount of catalyst to 0.02 g, % conversion was increased to 26.94% i.e. the % conversion 

is increased only by 7 % (Table 5.5).  

 

 

 

Figure 5.5 % Phenol conversion with increasing the amount of catalyst 

 

 

The reason for the increase is due to the availability of large surface area and the acid sites, 

which favours the dispersion of more active species. Therefore, accessibility of large 

numbers of reactant molecules to the catalyst is favoured [28]. 

The enhancement of phenol conversion as a result of catalyst addition is due to the increase 

in efficiency of the decomposition rate of H2O2 in the presence of increased catalysts. 

Therefore, higher activity of organic substrates is expected [29].  
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The very slight increase in activity at higher amount of catalyst may possibly be due to 

adsorption or chemisorptions of two reactants on separate catalyst particles, thereby 

reducing the chance to interact [28]. 

Increasing the amount of catalyst also influenced the selectivity towards catechol. 

Selectivity of catechol was at a maximum at 0.005 g catalyst giving a yield of 100 % 

catechol whilst increasing the amount catalyst to 0.01g caused a drop in catechol 

selectivity (75.62 %). Upon further increase of catalyst to 0.02 g a further drop in catechol 

was noticed giving 68.34 %.     

In order to reduce the amount of catalyst used and to accomplish higher catechol 

selectivity, it was decided that 0.01g catalyst was the appropriate amount for maximum 

conversion.  

 

Table 5.5 Effect of volume of solvent on % phenol conversion 
a
 and selectivity  

 

 

 

 

 

 

 

a 
Reaction conditions : phenol 2.35 g, 30 % H2O2 2.83 g, Cu(L2)-Y, MeCN, 70 °C, 6h 

 

5.2.1.6 Comparison studies of different copper catalysts  

Under the optimized reaction conditions, phenol (0.025 mol), H2O2/phenol molar ratio is 

1:1, catalyst (0.01 g), CH3CN (3 ml) and temperature (70 °C), the encapsulated copper 

complexes, ion exchanged zeolite along with its neat complexes were tested and the results 

are illustrated in Fig.5.6 and Table 5.6.  

It was observed that the reaction was slow in the first 3h using the encapsulated Cu-

catalysts (< 10 %) and improved afterwards. The neat Cu-complexes displayed a higher 

activity than their respective encapsulated analogues achieving maximum % conversion 

(22 - 23 %) after 1h. This can be attributed to the presence of more active metal centres 

than in encapsulated complexes using same amount of catalyst [35].  

Catalyst 

weight (g) 

% Phenol 

Conversion 

% Product selectivity 

CAT HQ BQ 

0.005 

0.01 

0.02 

3.4 

19.5 

27.0 

100 

75.6 

68.3 

- 

24.4 

8.5 

- 

- 

23.2 
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Figure 5.6 % Phenol conversion for catalysts over time 

 

It is clear from Table 5.6 both encapsulated Cu-catalysts show higher % selectivity towards 

catechol that the corresponding neat complexes. Upon increasing the reaction time from 6 

to 24h, only negligible change in % phenol conversion and product selectivity was 

observed.A blank reaction was carried out under the same optimum conditions which show 

no activity. On the other hand, the ion exchanged catalyst, Cu-H-Y, show a moderate 

activity compared to the respective encapsulated complexes, however, leaching of the 

Cu(II)-ion is always more likely for ion exchanged zeolite [36]. It can thus be concluded 

that the new encapsulated catalysts are more active and display almost similar selectivity 

when compared to the respective ion-exchange catalyst. The activity of these copper 

catalysts can be arranged in the following order: Cu(L1)Cl > Cu(L2) > Cu(L1)Cl-Y > 

Cu(L2)-Y.  
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Table 5.6 % phenol conversion
 a
 and product selectivity  

 

 

 

 

 

 

 

 

 

 

 

 

a 
Reaction conditions : Phenol 2.35 g, H2O2 2.83 g, 0.010 g catalyst, Solvent 3 ml, 70°C, 6h 

5.2.2 Hydroxylation of benzene  

Hydroxylation of benzene was carried out under the same optimized conditions for phenol. 

The oxidation products for this reaction are presented in Scheme 5.2. Table 5.7 show under 

these reaction conditions, encapsulated complexes Cu(L1)Cl-Y  and Cu(L2)-Y gave very 

low conversion (6.7 % and 5.6 %) after 6h respectively, yielding only phenol as product. 

The catalytic activity of the homogeneous complexes, Cu(L1)Cl and Cu(L2) was also 

tested under the same reaction conditions as the encapsulated complexes. It is observed 

that homogeneous Cu(II) complexes displayed higher activity in comparison to their 

encapsulated analogues. Fig.5.7 presents the catalytic comparison of the encapsulated and 

neat Cu(II) complexes as a function time. 

Catalyst

H2O2

OH OH

OH

+

OH

OH

Benzene       Phenol                         Catechol               Hydroquinone 
 

Scheme 5.2 Oxidized products for the oxidation of benzene 

Catalyst % Phenol 

Conversion  

Selectivity (%) 

CAT HQ BQ 

Cu(L1)Cl 

Cu(L2) 

Cu(L1)Cl-Y 

Cu(L2)-Y 

Cu-H-Y 

H-Y 

Blank 

28.2 

25.0 

20.9 

19.5 

12.4 

3.9 

0.6 

61.9 

62.5 

73.1 

75.6 

73.9 

95.8 

94.2 

38.1 

37.5 

19.1 

24.4 

26.9 

4.2 

5.8 

- 

- 

7.9 

- 

- 

- 
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Figure 5.7 Benzene conversion for catalysts over time. 

 

 

 

Table 5.7 % Benzene conversion
a
 and product selectivity  

 

 

 

 

 

 

 

 

 

 

 

a 
Reaction conditions : benzene 1.93 g, H2O2 2.83 g, catalyst 0.010 g, CH3CN 3 ml, 70°C, 

6h 
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Catalyst %  Benzene         

   conversion 

% Selectivity 

PhOH CAT HQ 

Cu(L1)Cl 

Cu(L2) 

Cu(L1)Cl-Y 

Cu(L2)-Y  

Cu-H-Y 
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Blank 

9.6 

7.0 

6.7 

5.6 

2.6 

1.0 

0.5 

78.0 

73.8 

100 

100 
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100 

100 
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Table 5.7 shows % benzene conversion and product selectivity of the Cu-catalysts. It was 

observed that the neat complexes, Cu(L1)Cl and Cu(L2), further oxidation of phenol 

occurred i.e. formation of catechol and hydroquinone. This is due to the selectivity of the 

product (phenol) is more reactive than benzene [37]. It can be also concluded from the 

table that hydroxylation of benzene using the encapsulated complexes was less effective in 

comparison to their neat analogues.  Other possible reasons that could contribute for the 

differences in the reactivity of the encapsulated complexes are steric effects, weak 

electrostatic interactions and the synergism as a result of the interactions with the zeolite 

framework [38]. 

Although, neat complexes displayed higher activity than encapsulated catalysts, the one-

step hydroxylation conversion of benzene was still very low. This demonstrates the 

difficulty of C-H bond activation due to the resonance stability of benzene [39, 40]. 

Therefore, the one-step oxidation of benzene under Cu(II) systems showed low activity as 

exemplified by the low yield of phenol. Oxidation under Cu-H-Y, H-Y and blank (no 

catalyst) yielded very low conversion.  

5.2.3 Oxidation of styrene 

The catalytic oxidation of styrene using hydrogen peroxide (H2O2) as an oxidant can lead 

to various reaction products, depending on the catalyst and reaction conditions. The major 

products of the reaction are benzaldehyde, styrene oxide, phenylacetaldehyde, 1-

phenylethan-1,2-diol and other unidentified oxidized products (Scheme 5.3). 

The neat complexes and the encapsulated complexes analogues were also used and studied 

in the oxidation of styrene under the optimized reaction conditions. Fig.5.8 presents the 

profiles of conversion percentage of styrene as a function of time for these catalysts. It is 

clear from Table 5.8, that the performance of encapsulated catalysts, Cu(L1)Cl-Y and 

Cu(L2)-Y, were slightly lower than their neat analogues, Cu(L1)Cl and Cu(L2).  
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OH

O

Phenylacetaldehyde (Phacetal)

Catalyst
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O H
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        (Phediol)

 

 

 

Scheme 5.3 The oxidized products for the oxidation of styrene 

 

 

Figure 5.8 Styrene conversion for catalysts over time  
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Amongst products formed, benzaldehyde was the highest yield obtained (70-82%). This is 

possibly due to the conversion of most of the styrene oxide formed in the first step to 

benzaldehyde, which occurred via nucleophilic attack of H2O2 to styrene oxide followed 

by the cleavage of the intermediate hydroperoxystyrene (Scheme 5.4) [41]. Formation of 

benzaldehyde may also occur through direct oxidative cleavage of the styrene side chain 

double bond via the radical reaction mechanism [42]. The yields of all the other products 

are in low quantities and comparable. The formation of phenylacetaldehyde is very low for 

all catalysts and its formation is possible through isomerization of styrene oxide [43]. 

 

 

 

Scheme 5.4 Mechanism for the formation of benzaldehyde from styrene oxide [44]. 

 

 

The high amount of water present in H2O2 is partially responsible for the possible 

hydrolysis of styrene oxide to form 1-phenylethane-1,2-diol. The other unidentified 

products formed could be due further oxidation of benzaldehyde to form other oxidized 

products [45].  The neat complexes, Cu(L1)Cl and Cu(L2), show a conversion of between 

18-20 % in the first 3h (Fig.5.8), whereas the activity of the encapsulated analogues was 

still very low (< 10 %) conversion. % Styrene conversion was improved after 3h using the 

encapsulated catalysts. The poor activity of Cu(L1)Cl-Y and Cu(L2)-Y may be understood 

to have originated from the diffusional resistance faced by styrene molecules in reaching 

the isolated catalytic centres in the cages of zeolite Y [46]. Therefore, less conversion is 

expected as one goes from smaller molecules to substrates having bulkier substituents 

making their entrance through the zeolite pore opening more difficult and ultimately 

resulting in lower activity [47,48]. From the results presented in Table 5.8, the percentage 

styrene conversion follows the order: Cu(L1)Cl > Cu(L2) > Cu(L1)Cl-Y > Cu(L2)-Y. The 
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selectivity of all Cu-systems are similar in trend for most cases and can be arranged as 

follows: benzaldehyde >> styrene oxide > 1-phenylethane-1, 2-diol >  phenylacetaldehyde.  

Cu-H-Y, H-Y and blank were also tested under the same operating conditions but yielded 

poor activity.  

 

 

Table 5.8 The styrene conversion
a
 and product selectivity  

Catalysts %  Styrene      

conversion  

% Product selectivity 

Bal Phacetal Sto Phediol Other 

Cu(L1)Cl 

Cu(L2) 

Cu(L1)Cl-Y 

Cu(L2)-Y 

Cu-H-Y 

H-Y 

Blank 

23.3 

19.7 

17.5 

14.2 

6.5 

3.2 

2.1 

70.6 

72.9 

79.8 

80.6 

73.1 

82.8 

89.7 

6.7 

4.9 

3.7 

3.6 

4.3 

3.0 

3.1 

7.7 

8.2 

8.5 

4.2 

2.8 

0.6 

4.0 

7.5 

7.2 

5.6 

5.0 

4.3 

3.3 

3.6 

7.6 

7.1 

2.5 

6.6 

15.4 

10.3 

0.4 

a 
Reaction conditions: Styrene 2.60g, H2O2 2.83g, 0.010 g catalyst, CH3CN 3ml, 70°C, 6h 

 

 

5.2.4 Oxidation of cyclohexene  

Cyclohexene oxidation using H2O2 as an oxidant gives cyclohexene oxide, cyclohexene-1-

ol, 2-cyclohexene-1-one and 1,2-cyclohexanediol as main products (Scheme 5.5). Fig.5.9 

presents the conversion details as a function of time for these catalysts.  
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O +

OH

+

O

Catalyst

H2O2

OH

OH

+

Cyclohexene                               Cyclohexne oxide      2-Cyclohexene-1-ol      2-Cyclohexene-1-one     1,2-Cyclohexanediol

     Cy      CyO            CyOl         CyONE      CydiOl   

  

 

Scheme 5.5 The oxidized products for the oxidation of cyclohexene 

 

 

The oxidation of cyclohexene was carried out under the same operating conditions 

optimized for phenol. Under these reaction conditions, the encapsulated complexes, 

Cu(L1)Cl-Y and Cu(L2)-Y gave ~67 and 65 % conversion, respectively, after 6h reaction 

time. The % conversion and product selectivity of the catalysts are represented in Table 

5.9. In the first 4h, the % conversion for Cu(L1)Cl-Y and Cu(L2)-Y was very slow but 

gradually increased after longer reaction time. In contrast, neat analogues, Cu(L1)Cl and 

Cu(L2) were more reactive under the same operating conditions reaching maximum 

conversion after 5h. 

In term of selectivity, % cyclohexene oxide obtained was good (29-43 %). This is may be 

due to the oxidation reaction occurs mainly on the double bond giving high yields of 

cyclohexene oxide [49]. 
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Figure 5.9 Cyclohexene conversion for catalysts over time 

 

 

The two allylic products formed, cyclohexene-1-ol, 2-cyclohexene-1-one arises from the 

preferred attack of the activated C-H bond over the C-C bond. It was suggested by 

Valentine and co-workers [50] that the species responsible for cyclohexene oxidation is the 

product formed from the cleavage of the O-O bond, whereas the epoxide product is formed 

via the direct reaction of olefin with the coordinated HO2
-
 ion. It is also known that the O-

O bond of H2O2 is stronger than other oxidants (e.g. THBP) and an HOO
-
 complex is 

normally expected to having higher activation energy and ultimately has a long lifetime 

and higher probability of forming cyclohexene oxide [52].  

The selectivity for the different reaction products for neat copper catalysts follows the 

order: cyclohexene-1-ol > cyclohexene oxide > 2-cyclohexene-1-one > cyclohexane-1,2-

diol, while the encapsulated catalysts follow the order: cyclohexene oxide > cyclohexene-

1-ol > 2-cyclohexene-1-one > cyclohexane-1,2-diol.  From the results presented in Table 

5.9, the percentage cyclohexene conversion using these catalysts decreases in the following 

order: Cu(L1)Cl > Cu(L2) > Cu(L1)Cl-Y > Cu(L2)-Y. 
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Table 5.9 The cyclohexene conversion 
a
 and product selectivity  

Catalyst % 

Cyclohexene 

conversion 

% Product selectivity 

CyO CyOl CyONE CydiOl         Other 

Cu(L1)Cl 

Cu(L2) 

Cu(L1)Cl-Y 

Cu(L2)-Y 

Cu-H-Y 

H-Y 

Blank 

66.9 

64.9 

48.2 

43.2 

27.1 

10.3 

7.8 

29.3 

27.9 

32.1 

43.1 

33.1 

39.9 

33.1 

45.5 

50.8 

28.6 

30.7 

20.1 

12.9 

20.1 

10.2 

12.2 

19.3 

18.2 

8.9 

16.5 

8.9 

1.0 

0.5 

13.2 

4.2 

2.9 

6.1 

2.9 

13.9 

8.6 

6.7 

3.8 

35.1 

24.7 

35.1 

a 
Reaction conditions : Cyclohexene 2.06 g, H2O2 2.83 g, catalyst 0.010 g, CH3CN 3 ml, 

70°C, 6h 

 

In Fig.5.9, Cu-H-Y and H-Y under the same experimental reaction conditions exhibit far 

lower conversions towards oxidation of cyclohexene. So it is quite evident that the 

presence of N and O donor ligands is relevant to improve conversion of cyclohexene. This 

also substantiates the presence of transition metal complexes that is the active site and not 

the copper ions in zeolite. Therefore, these results suggest these encapsulated and neat 

Cu(II) catalytic systems catalyses the conversion of cyclohexene very good giving high 

yield of cyclohexene oxide and cyclohexene-1-ol. 
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CHAPTER 6 

6. CATALYTIC ACTIVITY STUDIES OF OV(IV) CATALYSTS FOR 

OXIDATION REACTIONS 

6.1 Hydroxylation of phenol  

The coordination chemistry of vanadium is of great current interest due to its application of 

biological systems [1], catalytic [2], inhibitory [3], medicinal [4,5] and structural properties 

[6-8]. The catalytic efficiency of the neat oxovanadium complexes, the zeolite 

encapsulated complexes as well the ion-exchanged zeolites, was also tested for the 

hydroxylation of phenol. The catalytic results obtained for phenol hydroxylation under 

optimized conditions (Chapter 5 Section 5.2.1.6) are summarized in Table 6.1. Fig.6.1 

compares the catalytic activity for phenol oxidation for these catalysts as well as in the 

absence of catalyst (blank). Fig.6.1 shows that % phenol conversion for the encapsulated 

catalysts, VO(L1)(acac)-Y and VO(L2)-Y, increases considerably within 2h reaching 

steady state after 3h reaction time. Under these reaction conditions, catalysts 

VO(L1)(acac)-Y and VO(L2)-Y gave ~ 24 and 21 % conversion, respectively, suggesting 

moderate activity. For comparison, their respective neat metal complexes, VO(L1)(acac) 

and VO(L2) have also been examined for their catalytic activities. However, conversion 

was considerably higher in comparison to that of encapsulated ones. VO(L1)(acac) was 

found to be more active giving ca. 35 % conversion, followed by VO(L2) which gave 30 

%. In both homogeneous and heterogeneous catalysts, catechol was the major product. 

However, in terms of selectivity, the VO(L1)-Y is more selective for catechol formation 

(65%). Other oxidized product was also observed (p-benzoquinone) using all catalysts due 

to further oxidation of the products, viz. catechol and hydroquinone [9].  

It was important to run proper blank experiments to establish the role of host and guest 

molecules in catalysis. Oxidation reactions carried out over parent H-Y zeolite exhibited 

only negligible conversion (~3%), showing the inability of zeolite framework to catalyze 

the reactions [10]. The V-exchanged zeolite shows distinctly higher catalytic activity than 

the parent H-Y zeolite. The results illustrated in Table 6.1, show that the neat and the 

encapsulated vanadium catalysts exhibit much higher activity in comparison to VO-H-Y. 

This confirms the role of the ligand which is an important factor to enhance the catalytic 
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activity over the activity of VO-H-Y alone. Also it confirms that the changes in electronic 

environment about the central vanadium ions drastically influences the catalytic 

performance. This also serves as another piece of evidence for the successful complexation 

of VO(IV) ions with the L1 or L2 ligands inside the zeolitic host [11]. 

 

 

  Figure 6.1 Phenol conversion for catalysts over time 

 

The enhanced activity of the encapsulated catalysts could be due to the synergy between 

the catalytic behaviour of the metal complexes and the zeolite via the lattice oxygen of the 

zeolitic host [12,13]. A disadvantage of VO-H-Y, is leaching of the VO(IV)-ion which is 

always more likely [14]. Increasing the reaction time from 6 to 24 h does not show any 

significant change in either phenol transformation or catechol and hydroquinone formation. 

The activity of the catalysts may be arranged in the following sequence: VO(L1)(acac) > 

VO(L2) > VO(L1)(acac)-Y > VO(L2)-Y.   
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Table 6.1 % phenol conversion
 a
 and product selectivity  

Catalyst % Phenol 

Conversion 

Product selectivity (%) 

CAT HQ Other 

VO(L1)(acac) 

VO(L2) 

VO(L1)(acac)-Y 

VO(L2)-Y 

VO-H-Y 

H-Y 

Blank 

34.7 

30.4 

23.6 

20.8 

8.5 

3.9 

0.6 

50.7 

53.0 

65.2 

59.6 

81.0 

95.8 

94.2 

43.9 

33.2 

21.6 

30.1 

16.3 

4.2 

5.8 

5.4 

13.8 

13.2 

10.4 

2.7 

- 

- 

a 
Reaction conditions : phenol 2.35 g, 30 % H2O2 2.83 g, catalyst 0.010 g, Solvent 3 ml, 70°C, 6h 

6.2 Hydroxylation of benzene 

The catalytic activity results for the catalysts for benzene hydroxylation under the 

optimized conditions are shown in Fig.6.2 while Table 6.2 provides conversion and 

selectivity details. Only 10 - 12 % transformation of benzene has been achieved with the 

neat complexes and poor activity was observed for corresponding encapsulated ones. The 

catalytic performance of H-Y and reaction under no catalyst show no activity at all.  

As can be concluded from Fig.6.2, VO(L1)(acac) and VO(L2) demonstrate a similar 

behaviour in oxidative transformations, suggesting that despite the differences in their 

structures, they have quite the same reactivity. In term of selectivity, these catalysts show 

100 % phenol formation.   
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Figure 6.1 Benzene conversion for catalysts over time  

 

Higher conversion with homogeneous catalysts should always be expected when compared 

to heterogeneous catalysts. This is in part due to the insolubility of the heterogeneous 

catalysts in acetonitrile which reduces their dispersion in solvent and thus availability of 

low surface area to interact with the oxidant [15]. Thus, VO(L1)(acac) and VO(L2) are 

better catalyst than their encapsulated analogues for the oxidation of benzene with high 

selectivity towards phenol.  

 

Table 6.2 The % benzene conversion and product selectivity
 a
  

Catalyst % Benzene 

Conversion 

% Product selectivity 

PhOH 

VO(L1)(acac) 

VO(L2) 

VO(L1)(acac)-Y 

VO(L2)-Y 

VO-H-Y 

H-Y 

Blank 

12.2 

10.8 

7.4 

6.5 

4.3 

1.0 

0.6 

100 

100 

100 

100 

100 

- 

- 

a 
Reaction conditions : benzene 1.93 g, H2O2 2.83 g, catalyst 0.010 g, Solvent 3 ml, 70°, 6h 
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6.3 Oxidation of styrene 

The catalytic efficiency of VO(L1)(acac)-Y, VO(L2)-Y, VO(L1)(acac), VO(L2) and VO-

H-Y was also tested for the oxidation of styrene under the optimized conditions. Results 

are illustrated in Fig.6.3 and Table 6.3. Under these optimized reaction conditions, 

VO(L1)(acac)-Y and VO(L2)-Y catalysts show a maximum of 12 - 15 % conversion after  

6h. The low reaction rates obtained for the oxidation of styrene with the encapsulated 

complexes are probably due to diffusion resistance of styrene molecules through the 

porous support structure and the electronic changes induced in the metal centre through 

chemical modifications as a consequence of the ligand/metal centre of the immobilization 

methods employed.  In term of selectivity, benzaldehyde (78 – 75 %) was observed as a 

major product. This may be due to the acidic nature of zeolite matrix that plays and leads 

to epoxide ring opening of styrene oxide [12].  

The results also clearly indicate that neat oxovanadium complexes efficiently catalyse 

conversion of styrene giving 75-81 % conversion. The % selectivity towards the formation 

of benzaldehyde was (~ 50 %). The mechanism for formation of benzaldehyde and other 

products has already been discussed earlier (Chapter 5 Section 5.2.3).  

The activity of the catalysts is as follows: VO(L1)(acac) > VO(L2) > VO(L1)(acac)-Y > 

VO(L2)-Y > VO-H-Y > H-Y counterparts. Therefore, the neat catalysts are better than 

their encapsulated analogues for the oxidation of styrene but with lower selectivity towards 

benzaldehyde 
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Figure 6.2 Styrene conversion for catalysts over time 

 

The selectivity towards the products using the encapsulated and the neat VO(IV) catalytic 

systems are similar in the following order of: benzaldehyde >> styrene oxide > 1-

phenylethane-1, 2-diol > phenylacetaldehyde.   

 

Table 6.3 The styrene conversion
 a
 and product selectivity  

Catalyst   % Styrene      

 Conversion 

% Product selectivity 

Bal Phacetal Sto Phediol Other 

VO(L1)(acac) 

VO(L2) 

VO(L1)(acac)-Y 

VO(L2)-Y 

VO-H-Y 

H-Y 

Blank 

81.5 

75.4 

15.4 

12.6 

8.0 

3.2 

2.1 

51.7 

51.0 

75.9 

78.3 

89.6 

82.8 

89.7 

12.2 

11.1 

6.1 

3.6 

- 

3.0 

3.1 

16.5 

14.1 

6.7 

6.2 

10.4 

0.6 

4.0 

11.0 

12.7 

6.2 

2.3 

- 

3.3 

3.6 

10.6 

11.1 

5.2 

2.6 

- 

10.3 

0.4 

a 
Reaction conditions : styrene 2.60 g, H2O2 2.83 g, 0.010 g catalyst, Solvent 3 ml, 70°C, 

6h 
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6.4 Oxidation of cyclohexene 

Fig.6.4 presents the % cyclohexene conversion details as a function of time in presence of 

various catalysts viz. VO-H-Y, H-Y, VO(L1)(acac)-Y, VO(L2)-Y, VO(L1)(acac), VO(L2) 

as well as in the absence of any catalyst. Table 6.4 illustrates the % conversion and 

selectivity after 6h reaction time.  

These catalysts were tested under the optimized reaction conditions and both 

VO(L1)(acac)-Y and VO(L2)-Y gave nearly similar activity. As depicted in Fig.6.4, the 

cyclohexene conversion was very slow in the first three hours but gradually increased with 

time.  On the other hand, the neat complexe, VO(L1)(acac), shows 87 % conversion 

followed by VO(L2) yielding 82 %, whereas, VO(L1)(acac)-Y and VO(L2)-Y recorded 

conversions of about 64 and 58 %, respectively. It is clear that the homogeneous catalysts 

are more active than the heterogeneous ones.  

After 6h, only small difference in the conversion and selectivity for the different reaction 

products was observed for all catalysts. The product selectivity of neat complexes follows 

the order : cyclohexene-1-ol > cyclohexene oxide > cyclohexene-1-one > cyclohexane-1,2-

diol. The selectivity towards cyclohexene epoxide formation was high and the mechanism 

for the formation of reaction products was discussed earlier (Chapter 5 Section 5.2.4).   

The oxidation of cyclohexene is negligible in the absence of catalysts, confirming that 

under the conditions of the experiments, the oxidation is indeed catalytic in nature 

whereas, the parent and ion-exchanged zeolites, H-Y and VO-H-Y, show poor activity.  

Results in Table 6.4 illustrates that an enhancement in the conversion percentages in the 

presence of the neat and the encapsulated catalysts which confirm the determining role is 

played by metal complexes encapsulated in the zeolite [16].  

It can be concluded that the vanadium based catalysts are more reactive than copper based 

catalytic systems in the oxidation reactions studied. This could be deduced due to the ready 

formation of peroxo complexes which transfers oxygen to substrates [17]. 
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Figure 6.3 Cyclohexene conversion for catalysts over time 

 

Table 6.4 Cyclohexene conversion 
a
 and product selectivity  

Catalyst % 

Cyclohexene 

conversion 

% Product selectivity 

CyO CyOl CyONE CydiOl   Other 

VO(L1)(acac) 

VO(L2) 

VO(L1)(acac)-Y 

VO(L2)-Y 

VO-H-Y 

H-Y 

Blank 

87.23 

82.57 

64.59 

58.38 

27.73 

10.30 

7.76 

28.41 

28.95 

25.44 

32.63 

25.44 

39.91 

33.06 

46.03 

34.62 

24.77 

26.22 

24.77 

12.87 

20.10 

18.74 

24.39 

48.29 

35.15 

48.29 

16.47 

8.85 

0.54 

1.29 

1.65 

6.00 

1.65 

6.05 

2.85 

6.28 

10.75 

0.15 

- 

0.15 

24.70 

35.14 

a 
Reaction conditions : Cyclohexene 2.06 g, H2O2 2.83 g, catalyst 0.010 g, Solvent 3 ml, 

70°C 
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CHAPTER 7 

7. CONCLUSION AND RECOMMENDATIONS 

7.1 Conclusion  

In this work, the encapsulation of copper(II) and oxovanadium(IV) complexes in zeolite-Y 

supercages was  successful.  The complexes derived from the ligands, L1 and L2 derived 

from acetylacetone and ethylene diamine in 1:1 and 2:1 molar ratios, respectively were 

synthesized and their structures established by various physico-chemical techniques. FT-IR 

and XRD confirmed that the zeolite framework was not affected upon encapsulation of the 

complex inside the zeolite cage. With the development of these complexes their catalytic 

activity and selectivity for various oxidation reactions was demonstrated.  Results allowed 

one to conclude that these catalysts were successfully synthesised for oxidation reactions 

of, benzene, phenol, cyclohexene and styrene. The homogeneous catalysts proved to be 

more favourable with higher conversions with shorter reaction times than the 

heterogeneous catalysts. However, the high selectivity and stability of encapsulated 

catalysts make them more feasible for the industry. In this study it was found that the 

differences associated with the use of bulky substrates by zeolite encapsulated complexes 

are rather unfavourable giving poor catalytic activity. This can be ascribed to a large extent 

as being caused by shape selective effects in zeolite pores making diffusion of larger 

substrates through the zeolite pores difficult. Therefore, the smaller cyclohexene molecules 

exhibited higher conversion rates as compared to bulkier styrene molecules.  In general, 

the oxovanadium(IV) encapsulated and neat catalytic systems were more active than the 

corresponding copper-based systems.  The activity of the encapsulated complexes was only 

improved over longer reaction time.  

The activity of the oxovanadium based catalysts is as follows: VO(L1)(acac) > VO(L2) > 

VO(L1)(acac)-Y > VO(L2)-Y > VO-H-Y > H-Y counterparts. While the activity of copper 

based catalysts follow the order: Cu(L1)Cl > Cu(L2) > Cu(L1)Cl-Y > Cu(L2)-Y. 

Although homogeneous catalysts gave higher activity, in certain cases there were only 

small differences in catalytic activity for specific reactions between homogeneous and 

heterogeneous catalysts thus showing the potential activity of the heterogeneous catalysts. 

The possible reaction pathway of the catalysts in the oxidation reactions was determined 
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by UV-vis spectroscopy studies of the neat complexes which proved the generation of 

peroxovanadium(IV) or hydroperoxide-copper(II) intermediate species. These 

intermediates were found to be the active species for the various catalytic oxidation 

reactions responsible for transfer of oxygen atom to the substrates. This finding explains 

the reaction mechanism in free metal and zeolite encapsulated complexes.  

 

7.2 Future work and recommendations  

The future work is to investigate the effect of different -diketones with electron 

withdrawing or electron rich groups on the catalyst activity. This will be a step towards 

understanding how certain substituents influence the catalytic activity and selectivity. The 

study can be extended using different metals to study the effect of the active sites on the 

catalytic activity. Also the catalysts prepared in this study could be tested for other 

important oxidation reactions, such as benzoin and methyl phenyl sulphide oxidation 

reactions.  
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