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ABSTRACT 
INTRODUCTION: Breast cancer is a highly heterogeneous disease. The 

complexity of achieving an accurate diagnosis and an effective treatment regimen 

lies within this heterogeneity. Subtypes of the disease are not simply molecular, 

i.e. hormone receptor over-expression or absence, but the tumour itself is 

heterogeneous in terms of tissue of origin, metastases, and histopathological 

variability. Accurate tumour classification vastly improves treatment decisions, 

patient outcomes and 5-year survival rates. Gene expression studies aided by 

transcriptomic technologies such as microarrays and next-generation sequencing 

(e.g. RNA-Sequencing) have aided oncology researcher and clinician 

understanding of the complex molecular portraits of malignant breast tumours. 

Mechanisms governing cancers, which include tumorigenesis, gene fusions, gene 

over-expression and suppression, cellular process and pathway involvement, have 

been elucidated through comprehensive analyses of the cancer transcriptome. 

Over the past 20 years, gene expression signatures, discovered with both 

microarray and RNA-Seq have reached clinical and commercial application 

through the development of tests such as Mammaprint®, OncotypeDX®, and 

FoundationOne® CDx, all which focus on chemotherapy sensitivity, prediction of 

cancer recurrence, and tumour mutational level.  

The Gene Expression Barcode (GExB) algorithm was developed to allow for easy 

interpretation and integration of microarray data through data normalization with 

frozen RMA (fRMA) preprocessing and conversion of relative gene expression to 

a sequence of 1's and 0's. Unfortunately, the algorithm has not yet been developed 

for RNA-Seq data. However, implementation of the GExB with feature-selection 

would contribute to a machine-learning based robust breast cancer and subtype 

classifier. 

METHODOLOGY: For microarray data, we applied the GExB algorithm to 

generate barcodes for normal breast and breast tumour samples. A two-class 

classifier for malignancy was developed through feature-selection on barcoded 

samples by selecting for genes with 85% stable absence or presence within a 

tissue type, and differentially stable between tissues. A multi-class feature-

selection method was employed to identify genes with variable expression in one 

subtype, but 80% stable absence or presence in all other subtypes, i.e. 80% in n-1 
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subtypes.  

For RNA-Seq data, a barcoding method needed to be developed which could 

mimic the GExB algorithm for microarray data. A z-score-to-barcode method was 

implemented and differential gene expression analysis with selection of the top 

100 genes as informative features for classification purposes. 

The accuracy and discriminatory capability of both microarray-based gene 

signatures and the RNA-Seq-based gene signatures was assessed through 

unsupervised and supervised machine-learning algorithms, i.e., K-means and 

Hierarchical clustering, as well as binary and multi-class Support Vector Machine 

(SVM) implementations.  

RESULTS: The GExB-FS method for microarray data yielded an 85-probe and 

346-probe informative set for two-class and multi-class classifiers, respectively. 

The two-class classifier predicted samples as either normal or malignant with 

100% accuracy and the multi-class classifier predicted molecular subtype with 

96.5% accuracy with SVM. 

Combining RNA-Seq DE analysis for feature-selection with the z-score-to-

barcode method, resulted in a two-class classifier for malignancy, and a multi-

class classifier for normal-from-healthy, normal-adjacent-tumour (from cancer 

patients), and breast tumour samples with 100% accuracy. Most notably, a 

normal-adjacent-tumour gene expression signature emerged, which differentiated 

it from normal breast tissues in healthy individuals. 

CONCLUSION: A potentially novel method for microarray and RNA-Seq data 

transformation, feature selection and classifier development was established. The 

universal application of the microarray signatures and validity of the z-score-to-

barcode method was proven with 95% accurate classification of RNA-Seq 

barcoded samples with a microarray discovered gene expression signature. The  

results from this comprehensive study into the discovery of robust gene 

expression signatures holds immense potential for further R&F towards 

implementation at the clinical endpoint, and translation to simpler and cost-

effective laboratory methods such as qtPCR-based tests.  
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Chapter 1 
Literature Review 

 

The pairing of biological data and computational algorithms has contributed to 

new classification models of cancer. Past and current high throughput analysis of 

cells and tissues is revolutionizing biomedical and biological research. 

Completion of the whole human genome, discoveries of gene sequence and 

annotation along with the development of microarray technology, and more 

recently, next-generation sequencing (NGS) technologies, over the past 15 years 

has seen characterization of cells and tissues in greater depth. Although our 

knowledge of the human genome has improved vastly, genomic data does not 

provide enough information on the differentiation of cell types, while 

Transcriptomic data has proven to be more informative. Despite these 

advancements, there have been little to no big advances in diagnosis or treatment 

(McCall, Uppal, Jaffee, Zilliox, & Irizarry, 2011; Zilliox & Irizarry, 2007a). 

 

The vast amount of publicly available gene expression data has seen a move 

towards classification models for cancer from gene expression profiling. The 

profiling entails examination of the differential expression of genes and their 

unique combinations in different states of the cancerous tissues and healthy tissue. 

Gene signatures have been developed which can predict cancer subtype and 

prognosis, such as Mammaprint® and Oncotype® DX. The robust nature of 

machine learning algorithms has accelerated and assisted the design of such 

signatures through application of the mathematical and data sciences to 

biomedical questions. 

 

1.1 Machine Learning 
Machine learning encompasses the design and application of algorithms that 

enable the use of existing data to establish models for pattern recognition, 

classification and prediction (Alpaydin, 2010). The aim of automatic model 

construction approaches is to minimize human biases and errors that could skew 

selection and performance of the algorithm, while enabling the discovery of subtle 
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patterns and associations between data points. Over the years, machine learning 

techniques have become more pliable and have been expanding together with 

mathematical frameworks for measuring reliability. The coupling has led to 

improving the efficiency and accuracy of discoveries made in biology and 

understanding complex biological data (Sommer & Gerlich, 2013; Tarca, Carey, 

Chen, Romero, & Drǎghici, 2007).  

 

Within machine learning, two exemplars exist; supervised and unsupervised 

learning. Supervised learning entails a sample or group using a feature set of 

attributes such as genes. The resultant classification scheme is a set of rules that 

designate objects based on the values of the features. The primary objective of 

supervised learning is to construct a system capable of accurately predicting the 

class “membership” of an object. Other than accurate classification of unknown 

objects, supervised machine learning also aims to be able to predict possible 

outliers in data; those instances that do not specifically match any of the 

predefined classes according to the features selected by the algorithms designed. 

An example of object-to-class assignments, in a biological setting, would be 

classification of tissue gene expression profiles to disease group (Libbrecht, 

Noble, & Genome, 2017).  

 

Unsupervised learning, conversely, has no predefined class labels for the data to 

be studied. The aim instead is to simultaneously analyse the data and observe 

similarities between objects. The similarities observed, called clusters would 

define groups of objects. Hence, unsupervised learning's intention is to reveal 

naturally occurring groupings of objects based on the measurements of specific 

features in data (Yip, Cheng, & Gerstein, 2013) 

 

1.1.1 Different Machine Learning classifiers and algorithms 
1.1.1.1 K-means clustering 

Clustering algorithms are considered to be a form of unsupervised learning. Data 

instances that share similarities are grouped together. The algorithm can only 

access data about the features describing each object. However, in real 
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applications of clustering, the scientist usually has some knowledge about the 

dataset (Wagstaf, Cardie, Rogers, & Schroedl, 2001). Data clustering can be 

separated into two types, namely hierarchical and partitional clustering.  

 

K-means clustering is classified as a partitional clustering algorithm. The method 

finds a partition that separates data (Jain & Dubes, 1988) by minimizing the 

squared error between the emperical mean of a cluster and the data instances, 

called points, of the said cluster. The main aim of the K-means algorithm is to 

minimize the squared error of all the clusters specified for a given dataset being 

investigated for classification (Drineas, Frieze, Kannan, Vempala, & Vinay, 

2004). 

 

The algorithm first selects k initial clusters, then for a specific data instance, x, 

assigns it to the closest related cluster centers. Every time a new data instance is 

added to the dataset, the cluster center is re-computed to be the average (mean) of 

its constituent data instances. K-means converges when there are no changes 

made to the clusters formed; the squared error of the cluster's mean is minimized 

and the cluster is centred (MacQueen, 1967).  

 

Distance metrics are used to compute the distance between related samples or data 

instances in a cluster and also the distance between the different clusters. 

Euclidean distance, a metric based on the Pythagoras theorem of points in a 

dimensional plane, is applied in K-means clustering (Mao & Jain, 1996).  

 

1.1.1.2 Hierarchical Clustering 

Hierarchical clustering is based on variants of primarily three algorithms; single-

link (King, 1967), complete-link (Sneath & Sokal, 1962), and multi-variance 

(Murtagh, 1984; Ward, 1963). The two most broadly used algorithms in 

hierarchical clustering are single-link and complete-link, however, the two 

algorithms are distinctive in the manner in which they separate and characterize 

clusters of similarity. The hierarchy of clusters formed from the single-link 

algorithm can easily be used to construct dendograms; allowing the easy 
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visualization of clusters formed. The visualization of hierarchical clustering is 

depicted in a tree-like format, a dendogram, and branches correlate to the data 

instances being clustered (D’haeseleer, 2005), with closely related data clustering 

together as one big branch. Dendograms are particularly useful for classification 

applications within biological settings. 

 

Nested clusters, data instances or samples branching from the main branches of 

the dendogram, are found either in an agglomerative or a divisive manner. The 

agglomerative mode entails starting with each data point in its own cluster and 

merging the most similar clusters in successive order to form a hierarchy. The 

divisive mode separates and organizes all data points from a single large cluster 

into smaller clusters (Jain, 2010).  

 
Figure 1. 1: An example of K-means clustering where k = 3 (Jain, 

2009.
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Figure 1. 2: An example of a dendogram generated from hierarchical clustering. (Jain, 

2009). 

 

1.1.1.3 Neural Networks 

Artificial Neural Networks (ANNs) are essentially mathematical models that were 

developed based on how biological nervous systems function and transmit signals 

and impulses. ANNs are a form of supervised learning, which is commonly 

categorised as semi-supervised learning. It uses a feed forward network; signals 

which can be represented by variables such as genes which are either mutated or 

gene expression levels of a specific cell, are inseminated through the layers of 

units. The units referred to mimic neurons, and are referred to as nodes (Abraham, 

2005). 

 

Usually three units make up the network; (1) an input layer, which is in most 

cases fed with gene expression data, (2) a hidden layer(s) of units, and (3) an 

output layer, one for each classification of tissue, in a biological instance 

(Mitchell, 1997). The connections formed between the layers are assigned 

weights, which are adjusted during the training phase of machine learning. With 
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back-propagation neural networks, the algorithm adjusts the weights by back-

propagating the error between the units until the best fit for the training data is 

found (Statnikov, Aliferis, Tsamardinos, Hardin, & Levy, 2005). The weights are 

modelled on neuronal synapses and input signals are disseminated in a non-linear 

fashion as to simulate how signals are transmitted by neurons (Abraham, 2005). 

 

Commonly used NN algorithms include Forward Propagation, Back Propagation, 

and Probabilistic Neural Networks (Mitchell, 1997). 

 

1.1.1.4 Self-Organizing Maps (SOMs) 

SOMs can be viewed as a derivative of Artificial Neural Networks. Data 

dimension reduction is the main objective of SOMs and is primarily a qualitative 

data visualization tool. The algorithm learns the classification, topology and 

distribution of input vectors. Neurons or nodes are assigned according to the 

amount of input vectors. Nodes in close proximity to each other learn to respond 

to similar input data.  

 

The algorithm is designed such that data regularities and correlations are detected; 

resulting in future response being adapted accordingly. Data visualization aims to 

solve humans' inability to visualize high-dimensional data through mapping data 

in a 1- or 2-dimensional space. SOMs generate maps that plot data instance 

similarities into clusters (Abraham, 2005). The machine learning application itself 

is unsupervised. 

 

1.1.1.5 Support Vector Machines (SVMs) 

Support Vector Machines (SVM) was initially developed for two-class 

classification problems. The aim was to develop an algorithm capable of robust 

pattern recognition that would have high generalization ability with minimal 

errors in the training datasets. Polynomial and radial basis function equations were 

used to obtain optimal margins that would separate two classes within a training 

set (Cortes & Vapnik, 1995).  SVM has been shown to classify data with superior 

accuracy to other supervised machine learning algorithms like early ANN's and 
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ensemble classification methods (Statnikov et al., 2005). The applications of 

SVM's vary from text-categorization technologies (Joachims, 1998), to facial 

recognition software (Osuna, Freund, & Girosit, 2000), to biological 

implementation in disease classification like cancer and bacterial infections (Su et 

al., 2001).  

 

1.1.1.5.1 Binary SVMs 

Support Vector Machines are considered one of the most reliable forms of 

machine learning (Furey et al., 2000). Initially designed for binary, or two-class 

classification, the algorithm maps data instances to a dimensional space. A 

maximum-margin margin hyperplane is then identified to separate training 

instances (Vapnik, 1998). The set of training instances used to construct the 

boundary or hyperplane, are referred to as support vectors. When an unknown 

data sample is introduced, the algorithm will classify it based on the side of the 

hyperplane it falls into (Statnikov et al., 2005). 

 

 

Figure 1. 3: An example of a binary, two-class SVM with hyperplane construction 
(Statnikov et al., 2005). 
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1.1.1.5.2 Multi-class SVMs 
Multi-class SVMs arose as the need for multi-category classification for disease 

and industry arose. The most commonly used amendments of the binary SVM 

algorithms are the One-versus-Rest (OVR) and the One-versus-One (OVO) 

adaptations (Ulrich, 1999). The OVR method constructs k binary SVM classifiers: 

class 1 (positive) versus all the other classes and proceeds to do the same for all k 

classes in the experiment. The combined decision function would correlate to the 

maximum value of k binary decision functions. The OVO method, builds binary 

classifiers for all pairs of classes. Subsequently, a binary problem is solved: a 

decision function assigns an instance to a class with the largest number of votes. 

Recent studies have revealed that the OVR multi-class SVM algorithm has 

superior classification performance which is further enhanced when feature-

selection methods are applied to data preceding SVM classification (Statnikov et 

al., 2005). 
 

1.2 Application of Machine Learning (ML) in Biomedical Scenarios 
Machine learning has the ability to solve classification problems in real world 

medical diagnosis. The development of algorithms such as Artificial Neural 

Networks (NN), Decision Trees, k-Nearest Neighbour (kNN), and Support Vector 

Machines (SVM) have assisted in both disease diagnosis and classification but 

also the interpretation of biological data from technologies like PCR, Microarray 

assays, and DNA- and RNA-sequencing data (Kourou, Exarchos, Exarchos, 

Karamouzis, & Fotiadis, 2015). 

 

Bioinformatics has been able to make progress in fields relating to disease 

diagnosis and mechanism through genomic and proteomic function prediction. 

Applications of machine learning to systems biology include: protein-coding 

genes, protein function prediction, protein-RNA interactions (Caragea & Honavar, 

2009), and the impact of these genetic factors on cell regulation and function.  

 

Machine learning has been applied extensively in cancer classification from gene 

expression profiles (Kourou et al., 2015). 
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Artificial intelligence has been used in cancer prediction and prognosis for more 

than 25 years; predominantly with applications of NN's and decision trees 

(Cichetti, 1992). The diagnosis of cancers is not only achieved through gene 

expression analysis, but also from tumour biopsy histopathological examinations, 

X-rays and CRT images. Machine learning algorithms have contributed to 

accurate classification of tumours using data from all of these technologies (Liotta 

& Petricoin, 2000; Zhou, Liu, & Wong, 2004). The accurate prediction of cancer 

susceptibility and diagnosis, which integrates both macro (physical) and 

microscopic (genetic) data, has vastly improved through the application of 

machine learning algorithms. Furthermore, ML has assisted in the identification of 

novel disease biomarkers and drug targets (Cruz & Wishart, 2006). 

 

1.3 Feature Selection 
Irrelevant information is part of raw data generated from biological studies 

(Guyon, Weston, Stephen, & Vapnik, 2002). The need for Feature Selection (FS) 

techniques in bioinformatics has therefore grown in recent years, as it is now a 

requirement in the building of models for real-world applications. Originally, the 

designs for pattern recognition software were not built to manage large amounts 

of data. Due to the high dimensionality of biological data used in computational 

biology, dimension reduction is implemented to facilitate the interpretation of 

data. Feature selection offers dimension reduction without the loss of the original 

data representation, and merely selects a subset of the definitive properties of a 

data instance, e.g. genes expressed. FS can be applied to both supervised and 

unsupervised machine learning algorithms and classifiers (Liu & Yu, 2005). 

 

The three main aims of FS approaches include: (1) to avoid over-fitting and 

improve model performance, (2) to provide faster and more cost-effective models, 

and (3) to gain deeper insight into the underlying processes that generated the 

data. Selection of features cannot be dependent of the parameters of the optimized 

machine learning algorithm applied or classification model under investigation. 

Idealistically, the optimal model parameters and optimal feature set are paired  
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(Daelemans & Hoste, 2002). Within classification schemes, there are three 

categories of FS methods; filter, wrapper and embedded methods. Each differ in 

how they are implemented with the construction of the classification model 

(Saeys, Inza, & Larrañaga, 2007).  

 

1.3.1 Feature Selection techniques 
Filter techniques evaluate the relevance of features by taking only intrinsic 

properties of the data into account. The approach calculates a feature relevance 

score, and low-scoring features are removed from the original feature set (Saeys et 

al., 2007). Features selected must be relevant for prediction, but redundant 

features should be minimized. Relevance criteria measures how well a feature, 

e.g. a gene expressed or microarray chip probe, distinguishes between classes of 

data. Criteria like  Symmetric Uncertainty (SU), Spearman rank correlation 

coefficient (CC), Value Difference Metric (VDM), Fit Criterion (FC) measure 

how useful a variable is for predicting the class of a data instance (Auffarth, 

2010). Thereafter, the set of features selected are presented as input to the 

classification algorithm.  

 

Wrapper techniques embed the model hypothesis search within the feature subset 

search. With wrapper methods, a search protocol in the space of possible feature 

subsets is defined, and various subsets of features are generated and evaluated. 

The evaluation of a specific subset of features is obtained by training and testing a 

specific classification model, rendering this approach tailored to a specific 

classification algorithm. To search the space of all feature subsets, a search 

algorithm is then ‘wrapped’ around the classification model.  

 

With embedded techniques, the search for an optimal subset of features is built 

into the classifier construction itself, and can be seen as a search in the combined 

space of feature subsets and hypotheses. This method interacts with the classifier 

and is better computationally when compared to wrapper methods. The embedded 

approach is also capable of modelling feature dependencies. As with wrapper 

approaches, embedded approaches are thus specific to a given learning algorithm 

http://etd.uwc.ac.za/



11 
 

(Saeys et al., 2007). 

 

1.3.2 Dimension reduction of expression microarray data using feature 

selection 

Univariate filter techniques are most favoured in dimension reduction of 

microarray data. The method is fast and efficient, yet simple. In comparative 

studies of different classification algorithms paired with feature selection, the 

filter method is most prevalent in evaluation and investigation of DNA and 

mRNA microarray datasets  (Dudoit, Fridlyand, & Speed, 2002; J. W. Lee, Lee, 

Park, & Song, 2005; Li, Zhang, & Ogihara, 2004). Reasons for this include; the 

output of feature ranking is easy to understand, the gene-ranking output fulfils the 

objectives of bio-domain experts that want to validate results in laboratories, and 

short computation time for data analysis (Saeys et al., 2007). 

 

However, univariate approaches have restrictions, and in some instances lead to 

less accurate classifiers as they ignore gene-gene interactions. FS techniques using 

wrapper or embedded methods, can offer a way to perform multivariate gene 

subset selection  (Saeys et al., 2007). Hybrid methods that incorporate univariate 

pre-selection with multivariate altered wrapper methods have also been proposed 

in the case of cancer classification (Ruiz, Riquelme, & Aguilar-Ruiz, 2006). 

 

1.4 Microarrays and Gene-expression signatures 
1.4.1 Microarray Technology 

Microarray chips are designed to generate gene expression measures from cell and 

tissue samples by using cellular mRNA to elucidate gene up-regulation and down-

regulation in different tissues; ranging from biological to agricultural settings. 

Nucleic acid microarrays make use of short oligonucleotides (15-25 nt), long 

oligonucleotides (50-120 nt), and PCR-generated complimentary DNA (cDNAs) 

(100-3000 base pairs) as array elements (Miller & Tang, 2009; Stears, Martinsky, 

& Schena, 2003).  

 

Short oligonucleotides and cDNAs have both been shown to perform well for 
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expression analysis. However, each has its own drawback. Short oligonucleotides 

can lack single-gene specificity in complex hybridizations. On the other hand, 

PCR-generated cDNAs produce strong signals and high specificity (Schena, 1996; 

Lockhart et.al., 1996; Yuen et.al., 2002). Long oligonucleotides produce strong 

hybridization signals, good specificity and the ability to unambiguously identify 

transcripts within samples; but are dependent on the availability of genomic 

sequence information for each species under study (Kane et.al., 2000).  

 

Expansion of traditional microarrays into exon arrays has allowed for larger 

coverage of exon regions of genes, and has been termed as whole transcript 

arrays. This is also largely due to an increase in array features, by decreasing the 

number of probes (Okoniewski & Miller, 2008). Gene alternative splicing through 

hybridization of variant transcript isoforms is detectable by exon arrays, along 

with expression levels of each exon independently (Bemmo et al., 2008; Kapur, 

Xing, Ouyang, & Wong, 2007).  

 

1.4.2 Expression Profiling 

Quantitative gene expression data is generated by transcript profiling. In order for 

profiling to take place, one- or two-colour fluorescent schemes are implemented 

(R. J. Cho et al., 1998), and the most broadly used and easily interpreted scheme 

is two-colour fluorescence. Each RNA sample is labelled with two different 

fluorescent tags prior to hybridization with cDNA. Visualization of genes that are 

“activated” or “repressed” is produced from two-colour graphical 

superimposition. The two-colour graphic representation of probes expressing 

genes at different levels, allows the separation and comparison of various tissues 

based on their respective expression profiles. This process allows for the 

throughput of high quality gene expression data (S. M. Y. Lee et al., 2002). 

 

Detection of fluorescent probes (tags attached to oligonucleotides/genes) is 

achieved with instruments that contain confocal optics, photomultiplier tubes, and 

charge-coupled devices. The detection instruments render graphical images in 

tagged-image file format (TIFF), which are two-dimensional, 16-bit numerical 
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representations of microarray surfaces with intensity values assigned. These 

numerical values are then interpreted as expression values of genes (Carr, 

Somogyi, & Michaels, 1997). The data collected is raw data, and sequentially 

further data analysis which includes transformation and normalization of data is 

necessary for extrapolation of biologically significant knowledge from machine 

learning algorithm applications and microarray analysis software (Stears et al., 

2003). 

 

1.4.3 Microarray data analysis 

In order for microarray data to become useful in biological settings, a wide range 

of data analysis and processing is required. The two most important components 

of the analysis are design and pre-processing. Both are necessary steps preceding 

the classification of genes, cells and tissues, as well as validation of data (Allison, 

Cui, Page, & Sabripour, 2006).  

 

Design: How the microarray experiments and the relevant study is designed 

impacts efficiency and validity of experiments. Within the design of a study, there 

are certain optimization steps that can be employed (Kerr, 2003). Firstly, 

biological replication is imperative. There are two forms of replication which can 

be applied to microarray experiments, which include technical and/or biological 

replication (Churchill, 2002; Yang, Buckley, & Speed, 2001). Secondly, the 

pooling of biological samples may further assist design optimization. This is due 

to the fact that when trying to ascertain and identify differential gene expression, 

high data variability can be eliminated from a study (Kendziorski, Irizarry, Chen, 

Haag, & Gould, 2005). And thirdly, avoiding confounding by extraneous factors 

is vital. When such factors vary with the independent variable of the experiment, 

it may yield confusing and erroneous conclusions of a study (Kerr, 2003). 

 

Preprocessing: Image analysis and data normalization and transformation form 

part of pre-processing. These steps are required in order to remove systematic 

variation in the data. Normalization of data from different experiments and chip 

platforms is necessary to account not only for background noise (mismatched 
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probes), but also technical variance of fluorescence readings, which infer up- and 

down-regulation of gene expression, of microarray chips. Data transformation 

typically describes mathematical formulas being applied to data to change the 

format. Most often, log2 is applied to numerical values produced from micro-array 

detection technologies (Allison et al., 2006). 

 

The most broadly applied micro-array data normalisation algorithm used is called 

robust multi-array average (RMA), designed for use on Affymetrix and 

Nimblegen microarray platforms (Irizarry, Bolstad, et al., 2003). The algorithm 

corrects data for background noise by transforming the data. Normalization by the 

algorithm is performed with a formula that uses normal distribution and a linear 

model to estimate expression values on a log scale). An alteration to RMA is 

GCRMA, which corrects for the GC content of the oligonucleotides used in the 

initial microarray chip experiment (Bolstad, Irizarry, Åstrand, & Speed, 2003).  

 

1.4.4 Frozen Robust Microarray Analysis (fRMA) 

The use of gene expression microarray experiments has become broadly used for 

research in biological studies. Methods for data analysis have had to adapt to the 

various aspects that affect micro-array data, such as batch effects, noise and 

reproducibility of experiments. Micro-array analysis consists firstly, of 

preprocessing the probe-level fluorescent readings to gene-level expression 

estimates. This initial step requires algorithms to resolve multiple or batches of 

arrays together (Bolstad et al., 2003). Despite the robust nature of the RMA 

algorithm, the multi-array processing complicates and limits inquiry  (Ramasamy, 

Mondry, Holmes, & Altman, 2008). To process individual array experiments is 

computationally expensive, and introducing data from single arrays cannot be 

combined without introducing noise. This is a real dilemma for applying 

microarray technologies to clinical settings; the requirement is to extract 

actionable information from a single sample as opposed to a batch set of samples 

from an isolated experiment. 

 

The frozen Robust Micro-array Analysis (fRMA) algorithm was hence designed, 
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as it presented a method to pre-process individual array experiments, while 

retaining the advantages of batch array pre-processing (McCall, Bolstad, & 

Irizarry, 2010a). The basis of fRMA is simple; the parameter estimates are pre-

computed on a massive and biologically diverse database of micro-array 

experiments, after which these parameters are frozen. This is then used to pre-

process individual or low sample batches and later condensed for analysis.  

 

1.4.5 The Gene Expression Barcode algorithm 

The complexity of distinguishing tissues based on transcriptomic or microarray 

data is due to the use of relative expression of genes when reporting data, i.e. 

which genes are differentially expressed in one condition compared to others 

(Parkinson et al., 2009). Probe effects and noisy data obfuscate the correlation 

between observed probe intensity and actual expression of a transcript. Knowing 

absolute expression of genes, i.e. whether a gene is expressed or not, instead of 

relative expression of a gene in a tissue type would improve our understanding of 

systems and cellular biology, and provide a starting point for research targeting 

drug discovery and personalized medicine (McCall et al., 2011). 

 

For the above reasons The Gene Expression Barcode project was established. The 

initial barcode algorithm, referred to as Barcode 1.0 (McCall et al., 2011) was 

based on a basic detection method and distance calculation. The rationale behind 

the algorithm was to develop the first method that could clearly demarcate 

expressed from silenced genes; and in so doing, denominate a specific or unique 

gene expression barcode for each tissue type. Vast numbers of raw microarray 

data was curated from publicly available datasets in the Gene Expression 

Omnibus (GEO) and ArrayExpress data repositories and pre-processed with the 

same algorithm. Clinical data from three cancer studies and one Alzheimer’s 

disease study was also collected. The aim was to evaluate which probe intensity 

relates to expression. Thereafter, the intensity distribution for each gene needed to 

be determined. Genes that are shown to be expressed would be classified as ones 

and silenced genes, as zeros. The sequence generated is referred to as the gene 

expression barcode (Zilliox & Irizarry, 2007a).  
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Due to the original barcode methodology only being able to provide absolute 

expression measures for a limited number of genes, the algorithm was extended to 

estimate transcriptomes (McCall et al., 2011). This is motivated by the fact that 

transcriptome data allows insight into what discriminates cell and tissue types, 

hence contributing to the classification of unknown biological samples. In order to 

clearly classify genes as silenced or expressed, one needs clear separation between 

high and low expression values. This is not the case in the majority of genes. The 

original barcode algorithm was further developed to determine a more extensive 

estimate of cell-type transcriptomes by calculating expression calls for all genes 

represented on the array. This was achieved by firstly, establishing a set of 

negative control experiments; secondly, by mass curation of publicly available 

microarray data from  the Affymetrix Human Genome U133A (HGU133a), U133 

Plus 2.0 (HGU133plus2) and Mouse Genome 430 2.0 (Mouse4302) platforms; 

and thirdly, applying the probability of expression (POE) model in a novel setting 

(Parmigiani, Garrett, Anbazhagan, & Gabrielson, 2002). 

 

A new version of the algorithm resulted which produced standardized values; 

allowing for comparison across all genes. The standardized values may be 

translated into absolute expression calls; silenced or expressed genes by 

designation of a single threshold value. The resultant binary values correlating to 

expression calls is called the “barcode” (McCall et al., 2011). Although the Gene 

Expression Barcode Version 3.0 has been extended to include other sequencing 

platforms, a method for barcoding RNA-Seq expression or raw count data has not 

yet emerged (McCall et al., 2014).   

 

One of the other differences in methodology that separates the Gene Expression 

Barcode from other absent/present call algorithms is the approach to microarray 

raw data pre-processing. The common analysis tool for micro-array data is RMA; 

Robust Micro-array Analysis, but the barcode algorithm implements an altered 

algorithm, called frozen Robust Micro-array Analysis (fRMA) (Mccall, Bolstad, 

& Irizarry, 2009). 
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1.4.6 Gene expression profiling in Breast Cancer 

DNA-microarray technologies have provided researchers with the ideal tools and 

opportunities to perform comprehensive molecular and genetic profiling of breast 

cancer (Trevino, Falciani, & Barrera-Saldaña, 2007). Microarray techniques 

provide insights into cell biology as well as developing clinically useful 

classification models. This has allowed clinicians to predict, amongst others, 

disease recurrence and response to different treatments, which promises to 

improve disease management of cancer patients (Cooper, 2001). 

 

1.4.7 Prognostic gene expression profiling 

Over the past years, several breast cancer research groups have conducted gene-

expression profiling studies with the objective of improving on traditional 

prognostic markers. Researchers from the Netherlands Cancer Institute in 

Amsterdam (NKI) reported a 70-gene prognostic signature (Mammaprint™) 

developed on the Agilent platform (Straver et al., 2010).   

 

The sample size consisted of 78 systemically untreated lymph-node-negative 

breast cancers of patients younger than 55 years of age. A year later, 

Mammaprint™ was validated on a larger set of 295 young patients, this time with 

a mixed sample set. The NKI provided proof that the 70-gene signature was the 

strongest predictor for distant metastasis-free survival, independent of adjuvant 

treatment, tumour size, histological grade and age, both in node-negative and 

node-positive cohorts.  

 

A similar study was done by a group in Rotterdam; generating a 76-gene signature 

that was able to determine the development of distant metastases in untreated 

patients of all age groups with node-negative breast cancer (Y. Zhang et al., 

2009). The main difference between the Amsterdam and Rotterdam studies was 

the microarray platform used and the study design used in the development of the 

classifiers. Both classifiers appeared to be good predictors of the development of 

distant metastases within the first 5 years, but showed a decreased prognostic 

ability with the increasing number of follow-up years. 
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1.5 Next-Generation Sequencing 
Sanger sequencing emerged as a “first-generation” sequencing method, and was 

soon widely adopted (Sanger & Coulson, 1975).  Next-generation sequencing 

(NGS) refers to second and third generation sequencing platforms which are able 

to simultaneously sequence millions to billions of sequence reads for 

transcriptome assemblies and analyses (Figueroa, Tang, & Taur, 2014). The past 

ten years has seen the rapid development of various platforms, with slightly 

differing techniques, for the high-throughput sequencing of genomes and 

transcriptomes (Levy & Myers, 2016).  

 

1.5.1 RNA-Seq Technology 

RNA-sequencing (RNA-Seq) is an NGS technique which directly sequences RNA 

transcripts present within a cell or sample (Kukurba & Montgomery, 2015).  The 

exploratory capabilities of RNA-Seq allows for the quantification and detection of 

not only protein-coding RNAs, but also non-coding RNA, miRNA, siRNA, and 

small RNA classes involved in RNA stability, protein translation, or chromatin 

state modulation (Han, Gao, Muegge, Zhang, & Zhou, 2015; Trapnell, Pachter, & 

Salzberg, 2009). As a whole RNA-Seq has allowed for whole transcriptome 

sequencing and analysis, but may also be applied to differing extents depending 

on the objectives of the research question.  

 

Library preparation and sequencing comprises of multiple steps, which rely on 

biochemical interactions of synthetic nucleotides, and enzymes typically involved 

in in vivo DNA replication and/or RNA transcription and translation. Different 

technologies (different companies) achieve this through different techniques: (a) 

Illumina HiSeq/MiSeq technologies incorporate reversible terminator chemistry -  

sequencing by synthesis is achieved through reversible terminator nucleotides 

labelled with a different fluorescent dye, and subsequent imaging detects the 

positioning of these synthetic nucleotides to infer DNA sequence (Ansorge, 

2009). (b) Life Technologies SOLiD sequencing utilises ligation of dinucleotide 

probes with DNA ligase enzymes – 16 different dinucleotide probes (labelled by 

four different colours) are hybridized to a template sequence (RNA fragment), 
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with ligation cycles resetting the primer end to successfully add the correct 

nucleotide complementary to the template (Ku & Roukos, 2013).  

 

Third-generation sequencing (TGS) emerged 5 years ago in the form of Pacific 

Biosciences (PacBio) Single Molecule Real Time (SMRT) platform, and Oxford 

Nanopore technologies (ONT) following closely (Weirather et al., 2017).  Both 

sequencing platforms use a similar technique of detecting clonally amplified 

DNA, as the Illumina platform (Levy & Myers, 2016). (a) PacBio differs from 

Illumina in that it captures a single DNA molecule, and uses circular DNA 

templates with hairpin adapters ligated so that the polymerase reaction synthesises 

a complementary circular strand (Rhoads & Au, 2015). (b) ONT implements a 

nanopore-based single molecule. Single-stranded DNA (ssDNA) is directly 

sequenced, and uses a similar circular DNA template as PacBio.  Sequencing 

occurs by “threading”  of the DNA template through the nanopore, addition of a 

ligated hairpin adaptor, and a complementary strand built via molecular motor 

proteins (Laver et al., 2015). Both PacBio and ONT produce continuous long 

reads (CLR) attributed to the use of circular DNA templates (Rhoads & Au, 

2015). 

 

1.5.2 RNA-Seq Data Analysis 

RNA-Seq produces thousands-to-millions of reads, i.e. sequence fragments, of 

varying lengths. Numerous Python and R packages have been developed 

specifically for the analysis of sequencing data. Prior to any biological 

investigation of the transcriptomic data generated, data pre-processing is 

performed. Quality assessment is the first step in bioinformatics RNA-Seq 

pipelines followed by mapping of the transcript fragments to a reference genome 

in order to ascertain the identity, location, and functions of the sequences (Han et 

al., 2015).   

 

Following alignment of transcripts, gene expression is quantified by counting the 

number of transcript reads mapped to the respective reference genome location 

(Conesa et al., 2016). The gene counts generated from software like HTSeq-count 
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(Anders, Pyl, & Huber, 2015), or featureCounts (Liao, Smyth, & Shi, 2014) can 

be implemented for gene expression analysis, following normalization of raw 

count data. Furthermore, analysis of the aligned transcriptome can be employed to 

identify alternative splicing of genes, variant detection, pathway analysis through 

gene enrichment and discovery of gene co-expression networks (Han et al., 2015; 

Pereira, Imada, & Guedes, 2017).  

 

1.5.3 Application of RNA-Seq within Cancer Studies 

Due to the ability of RNA-Seq to reveal a cell or tissue's entire transcriptome, 

integrative studies into cancer physiology have become possible. There exists a 

strong correlation between a tumour's transcriptome and phenotypic presentation. 

Deep sequencing permits a full view of the genetic regulatory and expression 

mechanisms governing tumorigenesis and pathophysiology of cancer (L. Wan, 

Pantel, & Kang, 2013). NGS has enabled the identification of gene mutations, 

oncogenic gene fusions (Byron, Van Keuren-Jensen, Engelthaler, Carpten, & 

Craig, 2016), methylation abnormalities, chromosomal rearrangements, and gene 

expression alterations within diseases (Ashwag Albukhari, Fawzi F. Bokhari, 

2015). Interrogation of these genetic and transcriptomic cancer-specific traits may 

aid in the diagnosis and prognosis of different cancers and subtypes.  

 

1.5.4 Prognostic and Diagnostic Gene Expression Profiling 

Gene expression profiling for diagnostic biomarker discovery has been 

successfully applied to a number of different cancers. Utilising RNA-Seq data, 

prognostic signatures for invasive lobular breast cancer (Ciriello et al., 2015) , 

pancreatic adenocarcinoma (Kirby et al., 2016), lung adenocarcinoma (Shukla et 

al., 2017), as well as biomarker signatures for cancers of unknown origin (Wei, 

Shi, Jiang, Kumar-Sinha, & Chinnaiyan, 2014). The Cancer Genome Atlas 

consortium has also employed comprehensive analysis with integrative 

transcriptomic studies, through the application of different RNA-Seq and DNA-

Seq platforms, for the discovery of molecular portraits of breast tumours (Koboldt 

et al., 2012), and lung adenocarcinomas (Collisson et al., 2014).  
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1.6 Breast Cancer: Molecular Subtyping through Gene Expression Analysis 
Breast cancer is most frequently diagnosed in women in Western countries and 

accounts for approximately 30% of all cancers diagnosed and 16% of cancer 

deaths (F. Bray et al., 2018). Breast cancer is a clinically, molecularly and 

pathologically heterogeneous disease. Gene expression profiling has allowed the 

identification of molecular breast cancer subtypes. Clinically, the disease has been 

categorized into three basic therapeutic groups. Estrogen positive (ER) breast 

cancer is the most diverse in presentation (Paik et al., 2004). The HER2 subtype, 

is characterized by the presence of HER2 gene, which implicates that the tumour 

is stimulated by elevated levels of growth hormones (Moasser, 2007). Triple-

negative breast cancer tumours do not express any hormonal receptors and are 

essentially progesterone, estrogen and HER2 negative. Triple-negative cancers are 

viewed as the most difficult to treat with the poorest patient survival outcomes 

(Sorlie et al., 2003). 

 

Various clinical and pathological factors, such as age, menopausal status, tumour 

size, histological grade, lymphovascular invasion, oestrogen receptor have been 

implicated as prognostic indicators of clinical course (Perou et al., 2000). Primary 

treatments consist of tumour excision and radiation or mastectomy with or 

without radiotherapy. Adjuvant therapies have been shown to improve the long-

term survival of patients (Dinh, Sotiriou, & Piccart, 2007). 

 

1.7 Research Rationale 
The burden of breast cancer incidence and prevalence in both developed and 

developing countries has motivated the continual research on treatment 

biomarkers and more accurate classification models. Heterogeneous diseases like 

breast cancer require investigation into the genetic differences between diseased 

and healthy states through gene expression profiling. Large public repositories 

exist, such as NCBI, GEO and Array express, containing thousands of mRNA and 

cDNA microarray data samples. This provides researchers with an abundance of 

reusable data from which novel biological insights and predictive diagnostics can 

be developed in a cost-effective manner. The key and associated challenge to 
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optimally exploiting the diversity of data available, however, is in integrating 

breast cancer microarray samples from different microarray platforms and study 

population. Studies have shown that increased sample numbers and diversity 

should increase statistical power and discovery of population-independent 

predictive signatures (Nevins et al., 2003; Rung & Brazma, 2013). In the current 

era, the advent of large-scale next-generation sequencing, and the advantages of 

RNA-Seq in complete cancer transcriptomic profiling, holds immense promise for 

more accurate diagnostic and prognostic signature discovery (Cieślik & 

Chinnaiyan, 2018).  

Prognostic and predictive gene signatures like Mammaprint™ and Oncotype 

DX™ (Buyse et al., 2006; Toole, Kidwell, & Van Poznak, 2014), using gene 

expression profiling with large microarray datasets indicates that gene-expression 

profiling has great potential for improving breast cancer management and 

increasing our understanding of disease biology. To date, only one clinically 

available gene signature is available developed using RNA-Seq data, 

FoundationOne Heme (Doebele et al., 2015), and focuses on gene fusion detection 

in soft tissue sarcomas (Byron et al., 2016).  

Machine learning has been broadly applied to building breast cancer classifiers 

from gene expression data (Yue, Wang, Chen, Payne, & Liu, 2018). The 

simplicity of the Gene Expression Barcode (GExB), allows the integration of data 

from a diversity of experiments to develop accurate classifiers using machine 

learning algorithms. The absolute measures of expression, 1's and 0's, generated 

by the GExB, make implementation of a filter feature selection technique 

attractive; setting parameters for relevant variable (gene/probe) identification of 

differentiating features between diseased and healthy breast tissues. Applying 

these features to sophisticated algorithms, like SVM, holds promise for 

identifying robust and accurate gene signatures and the absence-presence nature 

of the signals would allow any finding to be easily migrated to simpler technology 

platforms such as RT-PCR. 

1.8 Aims and Objectives 
This study was split into two parts: 1) The application of the GExB to Micro-array 

data and 2) The development of a barcoding method for RNA-sequencing data, 
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comparable to the GExB algorithm 

 

1.8.1 The application of the GExB to Micro-array data 

Hypothesis: Integrating existing breast cancer microarray expression data using 

the Gene Expression Barcode concept will enable the discovery of easily 

assayable signatures for classifying breast cancer samples into subtypes. 

Main aim: Develop a feature selection method to identify predictive signatures in 

simplified expression datasets and test classification accuracy on “real” clinical 

datasets. 

The following objectives were identified for achieving the main aim: 

(1)  Production of gene expression barcodes for breast cancer subtypes and 

development of a method for integrating barcodes from different chips.  

(2)  Development of an automated feature selection pipeline for identifying a 

minimal set of expression features based on (1). 

(3)  Evaluation and optimisation of the feature-selection method using a simple 

classifier. 

(4)  Derivation of a variation of the feature-selection method for development 

of a multi-class classifier. 

 

1.8.2 The development of a barcoding method for RNA-sequencing data, 

comparable to the GExB algorithm 

Main aim: To discover a novel method to convert gene counts in RNA-Seq data to 

absolute calls of expression, i.e. 1's and 0's, and therefore creating a “barcoding” 

method for NGS data 

Objectives: 

(1) Development of a method for barcoding RNA-Seq data and application 

on breast cancer data from The Cancer Genome Atlas (TCGA) 

(2) Development of a two-class classifier for TCGA normal and tumour 

samples with feature selection based on best differentially expressed 

genes 

(3) Integration of RNA-Seq data from normal breast tissue samples, from 

the Genotype-Tissue Expression (GTEx) project to discover a 
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signature for multi-class classification capable of distinguishing 

between normal, normal-from-cancer-patient, and primary tumour 

samples. 
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Chapter 2 
A Two-Class Breast Cancer Classifier for Malignancy 

 

ABSTRACT 
INTRODUCTION: 

Breast cancer is a heterogeneous disease with an ever-growing increase in the 

biological subtypes being recognized. Along with molecular subtypes, are 

metastatic and primary cancers, where molecular profile, tumour histology and 

grade collectively contribute to subtype diversity.  Accurate subtype classification 

has been shown to coincide with improved diagnosis, prognosis and aetiology; 

imparting a comprehensive patient status with strong correlation to clinical and 5-

year survival outcomes. Histopathological examinations of tumours, which are 

mostly inaccurate, is unfortunately still the classification method of choice. 

The use of gene expression profiling has been studied extensively for 

implementation in breast cancer subtyping. These profiles include classification, 

prognosis and in the case of MammaPrint™, chemotherapy sensitivity, and breast 

cancer recurrence with Oncotype DX™. Despite the success of MammaPrint™ 

and Oncotype™ DX, significant advances in diagnosis and treatment by gene 

expression profiling, diagnostic gene signatures need to be further explored. 

The Gene Expression Barcode was developed to overcome the constraints of 

microarray expression data, such as probe effects, noisy data and the relationship 

between intensity and actual expression. The algorithm shows clear demarcation 

of low and high expression measurements to classify genes as silenced and 

expressed by means of a binary ‘barcode’. As signatures derived from absolute 

expression calls would simplify implementation in a laboratory setting, we 

explored the potential of expression barcodes as features for machine learning 

based classification. We present a simple method, which combines biologically 

relevant feature selection with the K-means clustering algorithm to accurately 

classify breast tissue samples as being normal or malignant.  

METHODOLOGY: 

Carefully selected and curated normal and tumour samples were obtained from 

the NCBI’s Gene Expression Omnibus database. We developed a filter to produce 

a minimal discriminating feature set/barcode by selecting probes which were 
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stably expressed within tissue types, yet differentially expressed between the two 

tissue types. K-means clustering of tissues based on the minimal feature set was 

performed to ensure that the barcode signature was able to correctly classify the 

training set. Unseen samples from both the original and unrelated experiments 

were then classified to ascertain the predictive accuracy of the signature and its 

ability to generalize to the classification of unseen samples. 

RESULTS: 

The optimized feature selection filter of binary data reduced the feature set from 

22215 to 85 informative probes. K-means clustering showed clear separation of 

normal epithelial breast tissue and primary tumour samples. A 100% accuracy in 

tissue classification was observed, even for samples from tumour classes not 

represented in the training set. 

DISCUSSION: 

With a simplistic filtering and clustering technique, we were able to classify 

unseen normal breast and tumour samples with 100% accuracy based on gene 

expression data that has been converted to ‘absence/presence calls’. We propose 

that such signatures, which may be easily translated to a PCR- or hybridization-

based laboratory test, shows promise for reliable classification of tissues of 

ambiguous malignancy status. Furthermore, we predict that pairing our barcode 

and filtering approach with more powerful classification techniques such as multi-

category support vector machines could produce robust expression-based 

classifiers that have potential for clinical application. 

 

2.1 Introduction 
The prevalence of breast cancer incidence has risen to 8 million cases globally 

between 2007 and 2015, making it the leading cause of cancer deaths among 

women internationally and in South Africa (Ferlay et al., 2015; Siegel et al., 

2012). This highlights the importance of early-detection and accurate 

classification of a biopsied tissue prior to any treatment decisions being made.  

 

2.1.1 Breast Cancer Classification 

The development of prognostic and predictive breast cancer gene expression 
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signatures has been a decade-long aim of many gene-expression profiling and 

bioinformatics studies. Diagnosing a patient with breast cancer accurately from 

the molecular portrait of the biopsy cells improves the treatment choices made for 

the patient, and also the survival outcomes (Henderson & Patek, 1998). The 

complexity of making accurate diagnostic decisions, however, lies in the 

heterogeneous nature of the disease; which is comprised of distinct subtypes 

having varied clinical, pathological and molecular presentations. Initial diagnosis 

of breast cancer heavily relies upon histopathology examination of biopsied 

tissues; immunohistochemical (IHC) staining of biopsied cells which reveal the 

presence or expression of hormone receptors estrogen, progesterone and human 

epidermal growth factor 2 (Her2) (Patnayak et al., 2015). However, these 

examinations are poorly reproduced for a given breast cancer case, and thus 

cannot always be relied upon as informative enough for clinicians to make a 

diagnosis (Haibe-Kains, 2010). In a recent study on the reliability of IHC 

examinations, 83% of the molecular subtypes were shown to be misinterpreted 

(Jorns, Healy, & Zhao, 2013). This demonstrates that even though IHC in terms of 

hormone receptor presence is reliable, misinterpretation still negatively impacts 

the treatment decisions of clinicians, with far-reaching consequences.  

 

2.1.2 Gene Expression Profiling 

Advances in microarray technology have granted biologists the ability to measure 

and assess the expression levels of thousands of genes in a single assay. Using the 

data and knowledge obtained, the discovery of molecular breast cancer subtypes 

has emerged. Gene expression profiling has been used to develop clinically 

relevant and implemented signatures for diagnostics and prognostics (Sotiriou & 

Piccart, 2007). The development of predictive and prognostic gene signatures 

such as Mammaprint™ has assisted clinicians with informed treatment decisions. 

Mammaprint™ is a 70-gene signature predictor of chemotherapy sensitivity of a 

patient. This clinical assay however has limitations in application, as only 

adjuvant drug therapy choices and consequent treatment course decisions, are 

informed. Oncotype DX™ is a PCR assay used in breast cancer prognostics; 

consisting of a 21-gene signature, which assigns a score for the likelihood of 
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recurrence of breast cancer in lymph-node negative, estrogen-positive patients. 

The assay is however limited to application in estrogen-positive breast cancer 

subtype cases (Toole et al., 2014). Despite the efforts of molecular biologists and 

bioinformaticians to discover a generically, globally applicable gene expression 

assay which can assess the multiple facets of the disease, the constraints of using 

traditional microarray raw data analysis has impacted the discovery of such 

signatures (Nevins et al., 2003).  

 

2.1.3 Microarray Data Analysis simplified with The Gene Expression 

Barcode (GExB) algorithm 

The development of Frozen Robust Microarray Analysis (fRMA) and the Gene 

Expression Barcode (GExB) has addressed the difficulty in using integrated 

microarray data from different experimental cohorts and different micro-chip 

platforms to generate molecular profiles of tissues (McCall et al., 2011). Robust 

Microarray Analysis (RMA), a broadly used normalization tool for raw data, is 

restricted to application of the experiment set under investigation (Irizarry, Hobbs, 

et al., 2003). Normalization parameters and threshold values for assigning up- or 

down-regulation of genes’ expression are relative measures across the microchip 

signals being interpreted (McCall et al., 2011). fRMA conversely, has 

precomputed generalised values, from thousands of microarray samples, for data 

normalization, which allows raw data to be preprocessed identically. The meta-

analysis of healthy and diseased tissues of the body has standardized parameters 

that mitigate the clouding factors of gene expression level values; probe effects, 

mismatched probes, noisy data(McCall, Bolstad, & Irizarry, 2010b). The GExB 

algorithm takes this continuous data, i.e. expression values, and assigns an 

absolute measure of gene presence or absence, represented by a “1” or “0” 

respectively (McCall et al., 2011; Zilliox & Irizarry, 2007b). The resultant 

sequence, or barcode, is similar to the Affymetrix MAS 5.0 absent-present 

algorithm, but is more robust and not limited to a single experiment set due to the 

fRMA preprocessing phase.  

 

http://etd.uwc.ac.za/



29 
 

2.1.4 Feature Selection for Classification 

Beyond the analysis of continuous data is discovering genes and/or microarray 

probes that are informative as distinct features to separate subtypes of a tissue. 

Feature selection is an integral part of designing a classifier; predominantly paired 

with a machine-learning algorithm. K-means clustering, an unsupervised 

clustering algorithm and Support Vector Machines (SVM) paired with feature-

selection has proven to build efficient and accurate classifiers. SVM in particular 

has been used in classification systems for medical diagnosis (Akay, 2009). The 

success of the SVM, however, relies upon an optimal feature set and training 

dataset size. Finding a balance between informative features, microarray probes in 

this instance, and too many restrictions is key to avoid an overfitted classification 

model, which is still accurate (Domingos & Pedro, 2012). 

 

2.1.5 Study Aims and Objectives 

We therefore propose an integrated approach to develop a two-class signature that 

can accurately distinguish healthy breast tissue from malignant breast tumours, as 

a way to assess the utility of expression barcodes in tissue classification, and as a 

step towards developing a multi-class classifier. Public biomedical databases 

contain millions of dollars’ worth of potentially reusable gene expression data that 

can be used to derive novel biological insights or to develop predictive 

diagnostics. The key lies in integrating and normalizing data from different 

technology platforms to make them comparable. Increased sample numbers and 

diversity is expected to increase statistical power and discovery of population-

independent predictive signatures. The GExB data transformation procedure 

allows data integration, since data from different chip platforms is made 

numerically comparable. Feature selection is also simplified due to absolute calls 

being compared versus continuous data i.e. relative expression. Provided the 

feature set is small enough, the simplicity of “on/off” expression signals of the 

GExB allows any identified signature to be easily migrated to and assayed on 

simpler technology platforms such as real-time multiplex PCR. 

 

We hypothesized that integrating existing breast cancer microarray expression 
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data using the Gene Expression Barcode concept will enable the discovery of 

easily assayable signatures for classifying breast cancer samples into subtypes. 

Our main aims included: 

1) Developing a method for integrating barcodes from different 

Affymetrix chips/platforms into a 'meta-dataset' with as many 

samples as possible.  

2) Developing a feature selection pipeline for identifying a minimal 

set of discriminating expression features based on (1).  

3) Producing gene expression signatures for normal and cancer breast 

tissue types  

4) Development of a variation of the optimized feature-selection 

method for multi-class classification. 

 

2.2 Methods and Materials 
2.2.1 Data Curation 

In order to build large and diverse training and test datasets with machine learning 

algorithms, data integration was imperative. Integrated datasets not only offer 

biological diversity to the classifier, but improves the likelihood of discovering 

informative microarray probe sets that can be generically applied to any of the 

Human Genome Array platforms and to many population groups.  

 

During data collection from the Gene Expression Omnibus (GEO) repository, 

labelled samples were hand-curated. The GEO annotation of the sample file was 

very important, as the initial classification of the tissue has to be reliable in order 

to assemble a training set which was accurate and biologically correct. In 

particular, the healthy breast tissue samples were collected from cancer-free 

patients, so as to ascertain a true molecular portrait of normal breast tissue. 
 

Raw micro-array data was curated from the NCBI Gene Expression Omnibus. 

Table 2.1 shows the variability of the data sources. Samples used as training data 

came from different experiment sets than data samples used for validation of the 

two-class classifier. Most notably, Her2-positive breast cancer samples were 
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obtained for validation, but were not included in the training set data and were 

instead intended to serve as a very difficult test case for the predictor. 

 

Further sample source variability was introduced by integrating data from 

different Affymetrix Human Genome Array Platforms; GPL96* ([HG-U133A] 

Affymetrix Human Genome U133A Array) and GPL570* ([HG-U133_Plus_2] 

Affymetrix Human Genome U133 Plus 2.0 Array). 
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Table 2. 1: Summary of Breast Cancer Samples curated 

Dataset Tissue Type GEO Series GEO Platform 

(Affymetrix) 

Training Normal Epithelium GSE20437 GPL96* 

Normal Duct GSE5764 GPL570* 

Normal Lobe GSE5764 GPL570 

Triple Negative Breast Tumour GSE25065 GPL96 

Estrogen-Positive Breast 

Tumour 

GSE25065 GPL96 

Primary Breast Tumour GSE2990 GPL96 

Inflammatory Breast Cancer 

Tumour 

GSE5847 GPL570 

    

Test/ 

Validation 

Normal Epithelium GSE9574 GPL96 

Triple Negative Breast Tumour GSE31519 GPL96 

Her2-Positive Breast Tumour GSE42822 GPL96 

Estrogen-Positive Breast 

Tumour 

GSE23988; 

GSE22093 

GPL96 

Primary Breast Tumour GSE21217; GSE5462 GPL96 

Inflammatory Breast Cancer 

Tumour 

GSE22597 GPL96 

*GPL96 - [HG-U133A] Affymetrix Human Genome U133A Array 

*GPL570 - [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 

 

2.2.2 Gene Expression Barcode (GExB) implementation and data 

integration 

The raw microarray data collected was pre-processed with the fRMA algorithm. 

This ensured that the samples were identical with regard to the expression calls 

rendered from the varied experiment sources. Batches of micro-array samples 

were pre-processed according to tissue type (Normal or Tumour) and allocation to 
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either Training set or Validation/Test set.  

 

The Gene Expression Barcode (GExB) algorithm was then applied to the pre-

processed data to convert the raw expression calls rendered from the micro-array 

chips to an absolute call for probe, 1 or 0. Figure 1 shows how the algorithm 

converts the raw data to a barcoded sequence for each sample. The data from 

different platforms were then merged/integrated so as to form a training set of 

each tissue type with only absolute calls, a 1 or a 0 to represent the absence or 

presence of a gene expressed.  
  

 

Figure 2.1: Example of expression calls from a micro-array (left side) converted to an 
absolute call of gene expression (right side) by use of the Gene Expression Barcode 
algorithm. 
 

2.2.3 Feature selection 

Feature selection was the first step in the protocol towards finding informative 

probes that reliably discriminate normal breast tissue from tumour (malignant) 

tissues. Using the GExB algorithm, along with a filter-feature selection approach, 
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the discovery of informative probes was a two-step method. 

 

Phase I: Signature discovery 

To ascertain if the approach validity for further exploration, 30 samples per tissue 

subtype, 60 in total were used as the training set. Criteria for filtering included: 

1) 90% stable expression of a gene/probe within each tissue type (1 or 0) and;  

2) Differential expression between the two tissue types, e.g. “1” in class A 

and “0” in class B.  

 

60 unseen samples for every subtype within the two classes was used to validate 

whether the features selected were informative. 

Phase II: Method Optimization 

Once the results from Phase I proved the GExB-FS method capable of producing 

an informative probe set that could accurately discriminate between normal and 

tumour breast tissue samples, the next step was to optimize the informative probe 

set with a larger training data set. Feature selection required the criteria of the 

filter criteria to be adjusted. The training set now included 100 samples, 50 

samples per tissue subtype, and 120 unseen test samples for validation of the two-

class classifier. The main differences included: 

1) 85% stability of a probe being absent or present in a tissue subtype; 

2) Differential expression between subtypes; present (“1”) in class and absent 

(“0”) in class B or vice versa. 

 

When the samples numbers were increased for the training set, the 90% stability 

parameter applied in Phase I proved restrictive, and too few informative probes 

were produced. Thus, the within-class stability was lowered to allow for slight 

variability in expression of genes/probes, yet still yielding a small and informative 

probe set capable of discriminating between the tissue subtypes. Although the 

second criteria remained the same with regard to differential expression between 

the subtypes, due to the variability of probe presence/absence permitted by the 

85% stability parameter, the new features discovered would add a new dimension 

to how informative the probes selected would be by: 
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1) Probe “expressed” in A and “not-expressed” in B; or 

2) Probe “expressed” in B and “not-expressed” in A; or 

3) Probe “expressed” in A and “unstable” in B, and vice versa 

 

2.2.4 Machine learning classifier based evaluation of the signatures 

Machine learning algorithms were used to evaluate the ability of the features 

selected to successfully discriminate between healthy/normal and 

tumour/malignant breast tissues.  

 

2.2.4.1 K-means and Hierarchical clustering 

K-means clustering was employed as an initial unsupervised machine learning 

algorithm (performed with R, and visualized in RStudio) to assess if the 

feature selected to separate the tissue types into two clusters successfully. The 

algorithm was run at 1000 iterations for both the preliminary and final training 

sets. Hierarchical clustering (performed with R, and visualized in RStudio) 

was employed consequently to visualize how the samples were classified 

based on their relation to each other, i.e. how similar the barcodes of each 

sample were to one another, and if based upon these similarities within a class, 

could be separated from another class. This part of classifier design was part 

of the initial validation of the feature selection paired GExB protocol. 

 

2.2.4.2 Support Vector Machines (SVM) 

Subsequent to K-means clustering, the robustness of the features selected was 

further evaluated using a more sophisticated machine learning algorithm, in 

this case SVM. The e1071 R package, which contains libraries for support 

vector machines (libsvm), was implemented. The training sets were used to 

train the machine to recognise a sample based on the pattern of probe absence 

or presence within a tissue subtype. Validation of the predictive capacity of 

the features selected was completed with unseen samples. Additionally, 

samples of a malignant breast tissue subtype not included in the training sets 

was also tested on the classifier, as a very difficult test case not usually 

performed in such research. 
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2.3 Results 

2.3.1 Phase I: Preliminary Method Design 

2.3.1.1 Gene Expression Barcode-Feature Selection paired method (GExB-

FS) 

The filter approach to selecting features using the barcode processed samples 

produced 64 informative probes. The 90% stability parameter was strict 

enough to rule out excessive variability between samples of the same tissue 

type. Differential expression analysis proved that there are definite differences 

of gene expression in diseased tissue compared to healthy tissue. The filter 

applied minimised the data significantly – from more than 22000 probes to 

just 64 informative probes. Reducing the high dimensionality of the data was 

achieved as less than 1% of the original data was used to discriminate between 

breast tissue subtypes. 

 

2.3.1.2 Machine Learning: K-means, Hierarchical clustering, SVM 

The dendogram in Figure 2.2 shows a clear separation of Normal from 

Tumour breast tissue using the 64 informative probes. The two distinct 

branches within the dendogram illustrate the robustness of the feature 

selection method applied alongside the GExB protocol in identifying probe 

signatures that can discriminate between tissue 

types.
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Figure 2. 1: Hierarchical clustering of Training Data Set using 64 informative probe set 
 

Validation of the two-class classifier was confirmed when unseen samples were 

tested alongside the training data. Table 2.2 shows that both K-means clustering 

and SVM had a high classification accuracy of 95% and 100% respectively. Most 

notable was the unseen subtype of breast cancer, Her2-positive, which despite not 

being part of the training set, classified 100% accurately with the rest of the breast 

cancer samples. 
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Table 2. 2: Validation of Preliminary Two-class Classifier 

Tissue Type No. samples 

tested 

Classification 

accuracy 

(K-means) 

Classification 

accuracy 

 (with SVM) 

Normal 10 100% 100% 

Primary Tumour 10 100% 100% 

Estrogen Receptor 

Positive 

10 100% 100% 

Triple Negative 10 80% 100% 

Inflammatory Breast 

Cancer 

10 90% 100% 

Her2-positive 10 100% 100% 

Total: 60 95% 100% 

 

2.3.2 Phase II: Method Optimization 

2.3.2.1 Gene Expression Barcode-Feature Selection paired method (GExB-

FS) 

From the results obtained in the preliminary phase, the classifier was further 

developed to ensure true validity and to assess the generic nature of the feature 

selection GExB paired method. However, when samples numbers were increased 

within the training set, the initial 90% stability (of gene expressed/unexpressed) 

parameter became restrictive. Too few informative probes were rendered to 

clearly demarcate tissue subtypes. 

 

When the stability parameter was lowered to 85%, 85 informative probes 

remained after filtering. The lowered criteria did not compromise on the stable 

absence or presence of expression of a gene, but did permit slight variability of 

expression to be included. The new parameters brought about a new dimension to 

the features selected. An additional criterion was introduced to feature selection 

during method optimization. The differential expression of probes was no longer 

limited to the scenario of “on” in class A and “off” in class B, but allowed for a 

stable-but-varied expression measure to be introduced. Within a larger dataset, 

tumour heterogeneity would factor in, due to tumour stages and grading, and 
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molecular subtype. Lowering the stability criteria to 85% allowed probes which 

had a slight variance (15%) in expression due to the mixed nature of the samples 

within this study, to still be considered as the general up- or down-regulation of 

that gene. Probes which were expressed or not expressed less than 90% of the 

time were previously excluded in Phase I, lowering the stability cut-off parameter 

allowed a more informative probe set to be produced during Phase II.  

 

2.3.2.2 Machine Learning: K-means, Hierarchical clustering, SVM 

Figure 2.3 showed that when hierarchical clustering was applied to the data 

subsequent to K-means clustering, a clear separation of tissue types was clear. The 

dendogram illustrates that the new parameters gave similarly high-accuracy 

results to that of the preliminary phase. 

 

Figure 2. 2: Hierarchical clustering of Training Data Set using 85 informative probe set 

http://etd.uwc.ac.za/



40 
 

Unseen data confirmed that the selected probe signature was robust and 

informative enough to enable exceptionally accurate classifications. The accuracy 

of the two-class classifier with K-means clustering improved from 95%, in the 

preliminary phase, to 100% (Table 2.3). Both K-means and SVM classified 

unseen microarray samples 100% accurately. The Her2-positive breast cancer 

samples, not initially part of the training set, classified 100% accurately again. 
 

The new minimised 85 informative probe set thus proved to improve the accuracy 

of the two-class classifier with regard to both K-means and SVM classification. 

The improved accuracy could be attributed to the optimised probe set being more 

informative as it allowed for previously excluded probes which were not always 

present or absent in 90% of samples, but were discriminative between the two 

breast tissue subtypes. 

Table 2. 3: Validation of Optimized Two-class Classifier 

Tissue Type Classification accuracy 

(K-means) 

n = 10 

Classification accuracy 

 (with SVM) 

n = 20 

Normal 100% 100% 

Primary Tumour 100% 100% 

Estrogen Receptor Positive 100% 100% 

Triple Negative 100% 100% 

Inflammatory Breast 

Cancer 

100% 100% 

Her2-positive 100% 100% 

Total: 100% 100% 

 

2.4 Discussion 
GExB-FS method showed significant promise for classification with a small 

dataset. 

The results yielded in the preliminary phase proved that the Gene Expression 

Barcode (GExB) shows promise in classification, even when using a small 

training dataset. The binary expression measures simplified feature selection of 

informative probes that could reliably separate the healthy/normal breast cancer 
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samples from the malignant samples. When implementing a simple filter based 

purely on the stability of a probe's presence, a 1 or a 0 as allocated by the GExB 

algorithm, the features found do not require further analyses. This is due to 

biological and pathological relevance of the genes linked to the probes not being 

taken into account to avoid assumptions that may prematurely discard relevant 

features. The criteria for filtering raw microarray data to discover an informative 

feature set by minimisation of probes thus did not include biological measures; 

and the association of a probes to genes involved in disease, cancer, known 

biological pathways were ignored. Instead, the filter criteria purely selected for 

parameters related to stable expression and differential expression. In so doing, 

the informative probe set may include genes not yet associated with breast cancer, 

cancer, apoptosis or any of the known malignancy pathways. Thus, unknown 

genes may also be included in the informative feature set which would ordinarily 

be excluded. While not the aim of this study, these genes could be further 

explored as potentially being involved in tumorigenesis. 

 

Method optimization justified by preliminary phase results 

The credibility of the GExB-FS method applied to a machine learning training set 

has been proven by the results rendered from validation testing with both SVM 

and K-means algorithms. The SVM algorithm, originally designed to solve binary 

classification problems outperformed the K-means clustering algorithm trained 

with the same data and tested with the same validation set. The true measure of 

the protocol design was in testing the machine-learning algorithms with 

completely unseen samples in the form of Her2-positive breast cancer tissue, i.e. 

not part of the training tumour set at all. Surprisingly, both K-means and SVM 

classified the Her2-positive class as malignant with 100% accuracy, and SVM 

performed with 100% accuracy for all tissue types. 

 

The compelling results of the preliminary phase gave justification towards further 

developing and optimizing the discovery of a barcode signature that could classify 

a tissue as healthy or malignant with a larger data set. Research has shown that 

larger datasets, trimmed with informative feature sets and  applied to sophisticated 
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machine learning algorithms like SVMs produce more robust predictive gene 

signatures (Domingos & Hulten, 2003; Domingos & Pedro, 2012). 

 

Larger training set improves classification 

The positive effect of training a machine-learning algorithm with a larger dataset 

was illustrated when comparing Tables 2.2 and 2.3. The larger dataset yielded 

100% accuracy for both the unsupervised and supervised machine-learning 

algorithms, proving that the features selected were informative in that they were 

distinctive to which genes are differently expressed between healthy and tumour 

tissues.  

 

The improved accuracy of the two-class classifier can be partially attributed to 

two main differences in the feature-selection phase of the protocol. Firstly, the 

stability parameters were lowered to 85%, allowing variability within the 

differentiating features; although stable in “A”, varied stability in “B”, instead of 

stable in both but differential. This allowed for a more informative probe set to be 

discovered. Secondly, there are 21 more probes selected as features with the larger 

training set, and these extra probes found, offer more tissue-discrimination 

potential. This was expected, as previous insights into machine-learning imply 

that more data the algorithm has to “learn” from, the easier it is to recognise an 

instance of similarity (Domingos & Pedro, 2012). An unsupervised machine 

learning algorithms ability to correctly classify samples and discriminate between 

different classes is boosted with more samples to train from; thereby finding 

similar features between samples to form distinct data clusters.   

 

The Her2-positive breast tumour subtype, initially not part of the tumour training 

set continued to classify with 100% accuracy with both K-means clustering and 

SVM algorithms. Validation with an unseen sample and tissue subtype 

demonstrates the discriminative ability of the 85 informative probe set in correctly 

classifying healthy and malignant tissues. This strongly suggests that there is 

potential to identify and classify ambiguous breast tissue samples or apparently 

benign tumours that have as yet unexpressed malignancy potential and would 
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require higher-priority interventions. 

 

SVM accurately discriminates GExB-FS processed data  

The GExB-FS method was shown to be a reliable discriminator between healthy 

and malignant breast tissues when training data, containing only the discovered 

features, is used to train an SVM. This is due to the absolute calls made by the 

GExB algorithm. Training a sophisticated supervised machine-learning algorithm, 

like SVM, on distinct discriminative features distilled from a large training set, 

achieves two of the prerequisites for optimal machine-learning classification; 

more training examples with distinctive features allows the machine, SVM, to 

make better informed decisions (Akay, 2009). Traditional methods of differential 

gene expression analysis of microarray are largely impacted by technical variance 

in datasets, specifically of the same tissue type, in the form of noise and batch 

effects. Batch effects are caused when samples are processed in different batches, 

resulting in experimental bias linked to the array and probe fluorescence readings 

(Scherer, 2009). This has previously been shown in studies finding molecular 

signatures of breast cancer having similar aims and approaches but yielding 

different outcomes despite using  machine learning algorithms for classification 

(Ransohoff, 2005). The GExB algorithm addresses these biases as samples are 

preprocessed with fRMA, and barcoding may be executed on single samples, or 

for batches. Integration of samples from different platforms, and experiments is 

possible through comparative gene expression calls in the form of 1’s and 0’s.  

 

GExB-FS method is reproducible 

Data integration is complex due to experiment cohorts utilizing different raw data 

preprocessing methods; i.e. Robust Microarray Analysis (RMA), Log2 intensities, 

Affymetrix MAS 5.0 Suite. Improving classification models and deriving gene 

expression signatures that are robust and accurate, however, relies upon data 

integration. The 85 informative probe set was developed by integrating raw 

microarray data from 5 experiment sets and validated with data from 8 experiment 

sets. To ensure data comparability, the data had to be processed identically (Table 

2.1). As the GExB uses Frozen Robust Microarray Analysis (fRMA) to normalize 
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and pre-process data, this in itself ensures that each sample used it processed 

identically, regardless of which original experiment it was used in, and the data 

normalization method initially used. Thus, the GExB calls related to absence and 

presence are not only reproducible, but also integrative. The SVM can thus be 

trained on a diversity of samples and be validated by unseen samples, including 

those not included in the initial training set. 

 

2.5 Conclusion 
By applying a novel paired method, the Gene Expression Barcode and Feature 

Selection (GExB-FS method), data from 13 different Affymetrix experiment sets 

processed 2 different chip platforms. The result was a set of more than 300 

samples integrated to develop a two-class breast tissue classifier. Application of 

the GExB-FS led to the discovery of a minimised feature set which accurately 

discriminated between healthy and malignant breast tissue samples. An 85 

informative probe set was produced as a signature for breast tissue subtype 

classification, with 100% accuracy. 

 

The implications for such a reliable signature, is ease of translation into a simple 

laboratory testing protocol, such as RT-PCR. The small feature set, 85 probes, can 

also be assayed on a standard 96-well PCR plate, without the expense or 

complications of designing a new technology. Absolute calls, absence and 

presence of a probe or gene expressed, are much easier to assess and implement in 

a laboratory set up. Moreover, the importance of being able to classify a sample as 

malignant or normal is crucial in identifying cancers, since tissues may look 

normal according to microscopic and histopathological studies, but may in fact be 

cancerous (K. Graham et al., 2010). Clear and accurate classification of a tissue is 

the first step towards an accurate and informative diagnosis. 

 

We have shown in this chapter that the GExB-FS method has the potential for use 

in developing a multi-class breast cancer classifier. As the method could identify 

discriminating features between healthy and diseased tissues with as yet 

unprecedented accuracy, it thus may be able to identify features that separate 
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multiple subtypes of a disease, which is the primary aim of the next chapter. 
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Chapter 3 
A Multi-Class Breast Cancer Classifier for Molecular Subtyping 

 

ABSTRACT 
INTRODUCTION: The Gene Expression Barcode (GExB) method, which 

converts continuous expression levels into binary calls signifying genes as 

silenced or expressed, was previously employed as a way to enable integration of 

data from multiple experiments and across chip platforms for the purposes of 

machine-learning based classification of tumour samples. In combination with a 

simplistic feature selection method, a gene signature for the identification of 

malignant breast tissue samples was discovered in Chapter 2. Following the 100% 

accuracy of our two-class classifier for identification of healthy and/or malignant 

breast tissue, we explored whether our GExB + Feature Selection (GExB-FS) 

approach can be used to develop a multi-class classifier for breast cancer 

subtyping. 

METHODOLOGY: We implemented a multi-class feature selection variation and 

tested it on samples from normal and several subtypes of malignant tumours. The 

85-90% stability criteria was adjusted to 80% stable in n-1 subtypes to identify a 

signature which could accurately classify healthy breast tissue and three molecular 

subtypes; Estrogen-Positive, Her2-Positive, and Triple Negative. The training set 

for the optimized multi-class classifier included 200 samples, with 80 samples for 

validation with k-Nearest Neighbour (kNN) and multi-class Support Vector 

Machines (MC-SVM).  

RESULTS: The feature-selection filter yielded an expression barcode of 346 

probes, which enabled clear separation of malignant breast tumour subtypes and 

unseen samples from entirely different origin than the training set, and classified 

with 90% accuracy using simple K-means clustering. Optimized classifier 

development, with implementation of the 346 –gene signature, classified unseen 

samples with 96% accuracy (MC-SVM).  

DISCUSSION: The generated binary calls enabled us to develop a simple yet 

biologically-relevant feature selection/minimization method that simultaneously 

addressed the 'curse of dimensionality' and the sparsity of training samples, which 

are significant problems when using microarray data in machine-learning 
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applications. The ability of the GExB-FS approach to enable identification of 

signatures able to discriminate between breast cancer subtypes is illustrated with 

the high accuracy of MC-SVM classification results. We were able to derive an 

optimized variation of the feature selection method applied in two-class 

classification to identify a gene/probe signature capable of reliably classifying 

molecular breast cancer subtypes. While the 346 probe set can be probably be 

further trimmed to a much smaller core feature set, which was beyond the scope 

of this study, it would still be easy to implement the signatures on a mini-array or 

in a PCR array. This would enable, for example, assessment of the clinical 

validity in a trial across multiple population groups and of its potential for further 

development into “real-world” applications. 

 

3.1 Introduction 
3.1.1 Breast Cancer and Personalized Medicine 

The accurate classification of breast cancer greatly improves the survival 

outcomes of the patient. Correct diagnosis and insights into prognosis allow 

the clinicians to make informed decisions regarding treatment and tumour 

resection (Olopade, Grushko, Nanda, & Huo, 2008). Diagnostics and 

prognostics based on the molecular and gene expression profile of breast 

cancer subtypes translates into personalized cancer treatment. Personalized 

medicine greatly enhances the survival of the patient as treatments are tailored 

to the disease case presented (S.-H. Cho, Jeon, & Kim, 2012).  

 

The classification of a breast cancer tumour varies on molecular, 

pathophysiology and clinical presentation of the disease. The cancer in itself 

can be either in situ (localized) or metastatic (spreading) in nature and can also 

be a primary, originating in the breast tissue, or secondary to another cancer 

site. Underlying biology of the tumour includes: tumour size, lymph node 

involvement & lymphovascular invasion, tumour grade. Molecular status, 

related to hormone receptor expression is the basis of molecular subtyping of 

breast cancer, namely, estrogen receptor (ER+), human epidermal growth 

factor receptor 2 (HER2), and Triple Negative which does not express 
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estrogen, progesterone or HER2 receptors (Alanko, Heinonen, Scheinin, 

Tolppanen, & Vihko, 1985; Chia et al., 2012; Kennecke et al., 2010). 

 

The variation in hormone receptor status of breast cancer molecular subtypes 

indicates a difference in gene expression of proteins (hormone receptors) 

involved in the pathophysiology of the cancer subtypes. Studies aimed at 

assessing the expression of hormone receptors, estrogen, progesterone, and 

human epidermal growth factor (Her2), has led to gene expression profiling of 

breast cancer molecular subtypes (Kapp et al., 2006; Perou et al., 2000). In a 

2008 study, gene expression data obtained either from cDNA or mRNA 

microarray chips was processed and analysed to ascertain if a pattern of gene 

expression, a signature exists for a specific breast cancer subtype and can be 

used a predictive measure for breast cancer diagnostics. Through integrating 

previously identified subtype signatures, they discovered that subtype 

prediction and prognosis were linked (Wirapati et al., 2008).  

 

MammaPrint™ and Oncotype DX are two prognostic gene expression 

signatures which have been implemented in breast cancer diagnosis. 

MammaPrint™ is a 70-gene signature, developed on Agilent microarray data 

which classifies a patient as chemotherapy suitable or unsuitable. The 70-gene 

signature was validated with the MINDACT trial, the signature is able to 

assess chemotherapy sensitivity with genes associated with disease outcome 

and distant metastasis within 5 years (Mook, Van’t Veer, Rutgers, Piccart-

Gebhart, & Cardoso, 2007). The limitations of this signature include that the 

tumour tested needs to be a stage I or II cancer with no lymph node or 

metastases involved (Buyse et al., 2006). The Oncotype DX 21-gene signature 

assesses the prognosis of ER+ and DCIS (ductal carcinoma in situ) using a 

recurrence score on RT-PCR data (Toole et al., 2014). These two clinically 

implemented gene signatures, which predict the prognostic outcome of a 

patient with breast cancer and allow clinicians to make a more holistic 

diagnosis and informed treatment decisions (Marchionni et al., 2008; Sotiriou 

& Piccart, 2007). The same principle has been applied to other cancers 
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including prostate and colon cancers (Cruz & Wishart, 2006).  

 

3.1.2  Multi-class Classification and predictive modelling 

Due to population genetics and dynamics, epigenetics and different breast 

cancer stages, validated breast cancer subtypes present with variable gene 

expression profiles within a particular subtype. Thus tumour subtype 

classifiers need to be as generically applicable as possible (Burrell, 

McGranahan, Bartek, & Swanton, 2013). Multi-class cancer classification 

based on molecular subtypes is vastly complex due to the predominant 

difference between the subtypes being hormone receptor expression. 

Genetically, this is based on the differential expression of a small set of genes 

and can make the discovery of signatures related to differential expression 

difficult. Feature selection approaches have aimed to solve the classification 

dilemma by filtering samples in a univariate manner using genes known to be 

involved in cancer pathophysiology and hormone receptor expression 

(Statnikov et al., 2005). Machine learning algorithms would then be used to 

confirm predictive capability of the signatures identified. Although the 

identification of clinically applicative gene signatures have been successful, 

these have been shown to be limited in application and population dependent, 

and are not generically applicable due to lack of data diversity (Creighton et 

al., 2006). 

 

The analysis of gene expression data from cDNA and mRNA microarray 

experiments has led to class discovery in cancers (Golub et al., 1999) and 

subsequent subtype classification of leukaemia and other cancers. A classifier 

for leukaemia genetic subtype classification, based on classes identified by 

Golub and colleagues, was developed by applying an intrinsic gene set for 

feature selection and classification with the k-Nearest Neighbours algorithm 

(Andersson et al., 2007). Advances made in breast cancer subtype 

identification (Perou et al., 2000) and validation (Sorlie et al., 2003) has led to 

hierarchical clustering models developed for the classification of breast cancer 

based on the estrogen receptor status of a tumour (Sorlie et al., 2003).  
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3.1.3  Implementing Frozen Robust Multi-array Analysis (fRMA) and the 

Gene Expression Barcode (GExB) algorithm for microarray gene 

expression data 

Microarray data is considered to be highly dimensional (Hira & Gillies, 2015). 

Transcriptomic data generated for a single sample may include gene 

expression readings for more than 7000 genes, represented by 11 probes each 

(McCall et al., 2010b). When applied to gene expression studies to profile a 

particular tissue type or disease state, the data produced becomes exceedingly 

voluminous, given that often hundreds of samples are used in comprehensive 

transcriptomic analyses. Furthermore, expression data is continuous, and 

requires analysis of relative expression and relative differential measures. 

Studies based on relativity do not often perform well on other populations and 

are not easily reproduced (Haibe-Kains, 2010).  

 

The Gene Expression Barcode (GExB) algorithm, which integrates frozen 

RMA (fRMA) pre-processing of microarray data, provides an easily 

implementable solution to high-dimensional continuous microarray data. The 

ability to assign a discrete value, 1 or 0, to infer up- (“on”) or down-regulation 

(“off”) simplifies differential gene expression analysis for classification of 

biological samples (McCall et al., 2014).   

 

3.1.4 Machine Learning and Feature selection for Breast Cancer 

Classification 

Machine learning algorithms have been extensively used in research studies to 

develop breast cancer multi-class classifiers and discovery of gene expression 

signatures (Hu et al., 2006). A comparison of machine learning algorithms has 

revealed the one-versus-one (OVO) and one-versus-rest (OVR) 

implementations of multi-class SVM (MC-SVM) to be most efficient and 

accurate (Saeys et al., 2007). However as robust ML algorithms are, when 

applied to microarray data, they are still struck by the “curse of 

dimensionality” (Bolón-Canedo, Sánchez-Maroño, & Alonso-Betanzos, 
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2016). This implies that the highly-dimensional data is too complex, with too 

many similarities between biological samples for the ML algorithm to 

differentiate between, thus hampering the development of robust classifiers. 

 

In order to optimize ML-based classifiers, feature selection is employed. 

Feature selection may be defined as the process of eliminating non-relevant, 

redundant, or non-informative features in a data set (Blum & Rivest, 1992). 

Within microarray studies, this would translate to selecting genes or probes 

which are capable of differentiating between samples or tissues.  

 

Gene selection filtering, has been shown to improve the accuracy of cancer 

classification when applied to different machine learning algorithms including 

Support Vector Machines (SVM), and artificial neural networks (ANN) 

(Golub et al., 1999). The most discriminating features (informative genes or 

probes) used when training an ML algorithm, will produce the most accurate 

classifier (Libbrecht et al., 2017).  

 

3.1.5 Aims and Objectives 

Feature selection (FS) and machine learning (ML) have been paired in the 

development of classifiers for cancer, including breast cancer (Akay, 2009; Lu 

et al., 2005). As illustrated in Chapter 2, implementing fRMA for data pre-

processing and the Gene Expression Barcode (GExB) simplifies both the 

integration and filtering of data to select for easily identifiable and 

discriminatory microarray probes. The combining of this approach for feature 

selection with well-established ML algorithms capable of handling multiple 

sample categories, holds the potential for the development of a robust multi-

class breast cancer subtype classifier. 

 

The multi-class phase of this project therefore aimed to:  

1) Develop an automated feature selection pipeline for identifying a 

minimal set of expression features based on Expression Barcoded 

data from multiple tissue types. 
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2) Evaluate and optimise feature-selection method using simple 

machine learning classifier; K-means clustering, k-Nearest 

Neighbour. 

3) Produce multi-class gene expression signatures for normal breast 

tissue and carcinoma subtypes. 

4) Derive a variation of the optimized feature-selection method 

presented in Chapter 2, with Support Vector Machines (SVM), for 

breast cancer molecular subtype classification.  

 

3.2 Materials and Method 
3.2.1 Data Curation 

Raw microarray data for building a multi-class classifier was collected in a 

similar manner to the two-class classifier (Chapter 2). 320 breast tissue 

samples were curated from NCBI Gene Expression Omnibus (GEO), varying 

in experiment sets and Affymetrix microarray platforms. Samples were 

curated for the four breast tissue subtypes by collecting data from annotated 

samples, with previous immunohistochemical identification of tissue subtype, 

or hormone receptor status (Table 3.1).  

 

Most notably, in the Training dataset, the normal breast tissue set was curated 

from three different experiment sets, and the Her2-positive breast cancer 

subtype was curated from two different experiment sets. This would ensure 

diversity of data on two levels; 1) Different microarray assay platforms, and 2) 

Raw data samples from seven completely independent experiment sets for the 

Training dataset.  
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Table 3. 1: Summary of Breast Cancer Samples curated 

Dataset Tissue Type Number of 

Samples 

GEO Series GEO Platform 

(Affymetrix) 

Training Normal (Epithelium, 

Duct, Lobe) 

57 GSE20437; 

GSE5764 

GPL96*; 

GPL570* 

Triple Negative Breast 

Tumour 

50 GSE25065 GPL96 

Estrogen-Positive 

Breast Tumour 

77 GSE25065 GPL96 

Her2-Positive Breast 

Tumour 

53 GSE37946; 

GSE42822 

GPL96 

 

Test/ 

Validation 

Normal Epithelium 20 GSE9574 GPL96 

Triple Negative Breast 

Tumour 

21 GSE31519 GPL96 

Her2-Positive Breast 

Tumour 

20 GSE22597 GPL96 

Estrogen-Positive 

Breast Tumour 

22 GSE22093; 

GSE23988 

GPL96 

*GPL96 - [HG-U133A] Affymetrix Human Genome U133A Array 

*GPL570 - [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 
 

3.2.2 Gene Expression Barcode (GExB) implementation and data 

integration 

The raw data samples were preprocessed with the fRMA algorithm prior to 

gene expression barcode generation to ensure comparability of data from 

different experiment sets and different chip platforms. Absolute calls for 

gene expression continuous values were computed for each sample in batch 

form for each breast tissue and breast cancer subtypes. Thereafter, the 

barcodes generated were merged into an integrated dataset. 
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3.2.3 Feature selection and application to datasets 

Feature selection for multi-class classification proved more complex, as 

expected, since molecular subtypes, Estrogen Positive, Her2-Positive, and 

Triple Negative are closely related. Identifying differentiating features, i.e. 

probes or genes that are differently expressed, is challenging due to the three 

molecular subtypes sharing similar core gene expression profiles.  

 

During the development of the two-class breast cancer classifier, stability 

parameters of 90% and 85% absence or presence of a probe was used as 

feature selection criteria, in Phase I and II of classifier development, 

respectively. Here, the 85-90% stability criterion was too stringent to identify 

an informative feature set containing probes which were stable (absent or 

present) and differentially expressed between all the breast cancer subtypes. 

The parameters implemented during two-class classifier development were 

therefore adjusted to address the similarities between the molecular breast 

cancer subtypes.  

 

3.2.3.1 Phase I: Preliminary Phase - Method Development 

Using a training set of 120 samples; 30 samples per breast tissue subtype, the 

following feature extraction criteria were applied: 

1) 80% expression or non-expression stability in n-1 subtypes; 

A probe would have to be either absent or present 80% of the time in at least 

3 of the 4 subtypes.  

2) Differential expression between subtypes. 

 

The 80% stable in n-1 subtypes allowed probes that were absent or present at 

stable rate in 3 subtypes, but unstable in 1 of the subtypes to be accepted as 

informative. A probe that was stable in one subtype but unstable in another 

subtype could be regarded as a feature that distinguishes the two subtypes. 

Permutations of probe presence, absence, and varied absence/presence 

allowed an informative probe set to be identified that could separate subtypes 

from one another.  This signature was then applied to filter the barcoded 
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training and test sample data.  

 

3.2.3.2 Phase II: Method Optimization 

During Phase II, the training set was increased to include 200 samples, 50 

samples per tissue subtype. Feature selection with a larger training set, using 

the same stability parameters of 80% in n-1 proved challenging due to 

extreme variability in the data. Thus the predictive performance of the initial 

346-gene signature was tested on a larger training set. 

 

During two-class classifier development, a larger training dataset produced a 

signature which improved classification accuracy from 95% to 100%; the 

more samples the learning algorithms K-means and SVM had to train on, the 

more efficiently an unseen sample could be labelled as healthy or malignant 

correctly. This motivated the application of the multi-class gene signature set 

to a larger dataset. 

 

By applying the feature set discovered with a small training set to a larger 

training and validation set we aimed to: 

1) Train the machine learning algorithms, k-Nearest Neighbour (kNN) and 

Multi-class Support Vector Machine (MC-SVM), with a larger set of data 

samples which would, 

2) Provide the learning algorithms with a more heterogeneous gene 

expression barcode profile for each subtype. 

 

3.2.4 Machine Learning classifier evaluation 

Three different machine learning methods were used to assess the ability of 

the gene signature to successfully separate four different breast tissue 

subtypes. The test dataset included 10 samples per subtype, 40 samples in 

total, for Phase I and 20 samples per subtype, 80 samples in total, for Phase 

II.   
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3.2.5 K-means and Hierarchical clustering 

K-means and hierarchical clustering (performed with R, and visualized in 

RStudio) was applied to both the training set and validation set in Phase I 

only. The unsupervised machine learning algorithms were applied to 

ascertain an initial indication of how well the signature could cluster 

samples into their respective known breast tissue subtypes. While the K-

means clustering algorithm was initially applied to the larger set; however 

known constraints within the algorithm (Raykov, Boukouvalas, Baig, & 

Little, 2016), proved it to be unsuitable to accurately cluster the four breast 

tissue subtypes.  

 

3.2.6  k-Nearest Neighbour classification 

k-Nearest Neighbour (kNN) clustering was introduced as the initial 

machine learning algorithm to test the optimized multi-class classifier with 

the larger training set of 200 samples. kNN is a supervised instance-based 

learning algorithm, which places a sample closest to other samples that are 

similar based on the specified-identity features (Lopez de Mantaras & 

Armengol, 1998). Default kNN algorithms employ 5kNN – whereby 

Euclidean distance is used to measure the relation of a single sample to five 

other similar samples, and consequently place them in the same class 

(Coomans & Massart, 1982). Leave-Out-One Cross Validation (LOOCV) 

can be paired with kNN classification, where with each training iteration of 

algorithm, one sample is left out, which in turn verifies the correct 

allocation of a sample to its correct class (Saligan, Fernández-Martínez, de 

Andrés-Galiana, & Sonis, 2014).  

 

The chosen classification parameters were that data be separated into four 

clusters, where each sample was related to five neighbouring samples, i.e. 

data instances within that specific cluster. LOOCV was performed on the 

training set, to ascertain if the signature was robust enough to separate the 

four tissue subtypes with reasonable accuracy. 
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3.2.7 Multi-class Support Vector Machines (SVM) classification 

Although SVM was designed to solve binary classification problems, 

multi-class SVM (MC-SVM) derivatives of the algorithm exist. The two 

most commonly used algorithms being One-versus-One (OVO) and One-

versus-Rest (OVR) MC-SVM. OVO-SVM recognises each class separately 

from one another, and thus k > 2. OVR-SVM requires multiple iterations of 

a binary-SVM, with each class versus all other classes in various 

combinations.  

 

Phase I used the OVR implementation of the algorithm, to ascertain if an 

SVM trained on the signature classified unseen samples correctly. OVR 

required four iterations, as each subtype had to classify against the three 

other subtypes, i.e. four combinations of the binary SVM classifier where 

subtype A versus BCD, B versus ACD, C versus ABD and, D versus ABC. 

The OVR classifier used default parameters and tested all of the learning 

kernels: linear, radial basis function (RBF), polynomial and sigmoid. 

 

LIBSVM (Library for Support Vector Machines) (Chang & Lin, 2011) has 

a built in OVO MC-SVM module which simplified the implementation of 

the algorithm with the larger filtered dataset of 200 samples and validation 

with 80 samples. The polynomial kernel was chosen as it best fit the 

variability of the data and had previously performed well in Phase I. 

 

3.3  Results 
3.3.1  Phase I: Preliminary Method Development 

346 informative probes that could distinguish between closely related 

molecular breast cancer subtypes and healthy breast tissue, and classify 

unseen samples correctly were discovered. 

 

The dendogram in Figure 3.1 shows the clear separation of Normal and 

Tumour breast cancer samples, using the 346-gene signature. Within the 

Tumour branch, there are three nested clusters; Estrogen-Positive and Her2-
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Positive clusters branching from the Triple Negative clusters, as though two 

nested clusters are found within a larger cluster. This was expected as the 

three breast cancer tumour subtypes known to be molecularly similar.  

 

The results illustrated below reveal that signatures derived from microarray 

data transformed using the GExB-FS method to be reliable and accurate in 

multi-class classification, when filtered data is applied to unsupervised 

machine learning algorithms, like hierarchical clustering. Disease subtype 

tissues that have slight differences are successfully grouped in their own 

clusters.  

 
Figure 3. 1. : Hierarchical clustering of Training Data Set using 346-gene signature 
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During Phase I, a small set of samples was used to validate the ability of the 

346-probe set to separate tissues of four different subtypes. K-means 

clustering performed well under a multi-class scenario, with 90% accuracy. 

SVM improved the accuracy of classification, with 95% accurate 

classification of validation data. The two subtypes, Estrogen- and Her2-

Positive breast tumours, both had improved classification accuracy from 80% 

to 90%, with the implementation of the OVR MC-SVM algorithm (Table 

3.2). 
 

Table 3. 2: Validation of Preliminary Multi-class Classifier 

Tissue Type No. samples 

tested 

Classification 

accuracy 

(K-means clustering) 

Classification 

accuracy 

 (with SVM) 

Normal 10 100% 100% 

Estrogen Receptor 

Positive 

10 80% 90% 

Triple Negative 10 100% 100% 

Her2-Positive 10 80% 90% 

Total: 40 90% 95% 

 

 

3.3.2 Phase II: Method Optimization 

As K-means clustering rendered poor clustering results with the larger 

training set, Leave-Out-One Cross Validation of the kNN algorithm was 

applied to ascertain if the informative feature set was still able to accurately 

separate samples into their four respective groups. LOOCV-kNN classified 

training data with 87% accuracy. 
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Table 3. 3: kNN Leave-Out-One Cross-Validation classification of Training dataset 

Tissue Type No. samples tested Classification accuracy 

Normal 50 100% 

Estrogen Receptor Positive 50 78% 

Triple Negative 50 90% 

Her2-Positive 50 80% 

Total: 200 87% 

 

In Table 3.4, the number of unseen samples used to validate the informative 

probe set as features for a multi-class classifier, were double in comparison 

to Table 3.2. The LIBSVM implementation OVO MC-SVM was trained on 

200 samples filtered with the 346-gene signature. Multi-class SVM improved 

classification of unseen samples for the 4 breast cancer and tissue subtypes 

from 95% during the preliminary phase, to 96.25%. 
 

Table 3. 4: One-versus-one Multi-Class SVM classification of Unseen Validation dataset 

Tissue Type No. samples tested Classification accuracy 

Normal 20 100% 

Estrogen Receptor 

Positive 

20 90% 

Triple Negative 20 95% 

Her2-Positive 20 100% 

Total: 80 96.25% 
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3.4 Discussion 

Constraints of Multi-Class Classifier Development 

During the preliminary phase of the multi-class classifier development, 

discovering an informative probe set capable of clearly distinguishing 

between different breast cancer molecular subtypes (Triple Negative, Her2-

Positive and Estrogen-Positive) became a challenge. Although 

implementation of the GExB algorithm simplified the discovery of 

differentially expressed genes through generating 0's and 1's as an absolute 

measure for gene expression, the barcode expression profile of the three 

breast cancer subtypes remained largely similar.  

 

The 85% stability parameter (absent or present 85% of the time) 

implemented with two-class classification, on the basis of differential 

expression, was too restrictive to identify a large enough probe set capable of 

discriminating between four classes (three subtypes and normal) of breast 

tissue. Taking this into account, the parameters for feature-selection of 

barcoded samples were relaxed. 80% stable in n-1 subtypes satisfied two of 

the initial classification criteria of the two-class classifier, while it introduced 

an additional distinguishing criterion. Essentially, a probe was allowed to 

have varied absence or presence, below 80%, if it was absent or present 80% 

of the time in the other three subtypes/tissue types.  

 

GExB-FS method shows promise for developing a multi-class breast 

cancer classifier 

The results depicted in Figure 3.1 and Table 3.2 show that the GExB-FS 

approach, with a relaxed filtering criteria, identified 346 informative probes 

capable of discriminating four different breast tissues with 90-95% accuracy, 

despite biological and pathological relevance of the genes not being taken 

into account. This was achieved with a training set of 120 samples, 30 per 

subtype, and performance measured on a small validation set of 40 samples. 

The results obtained during this preliminary phase of classifier development, 

suggested that increasing the training data set, may yield either a more 
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discriminatory probe set, or improve the multi-class classifier accuracy. A 

larger dataset was expected to provide the learning algorithms with a 

heterogeneous portrait of the breast cancer subtypes to create a generic 

pattern against which to classify an unseen sample. 

 

Application of the feature-selection criteria to a larger dataset (n = 200), 

yielded an probe set which was not able to discriminate between the four 

classes as accurately as the initial 346 probe set, as only 79 informative 

probes were generated. This may have been due to expression profile 

similarities between the molecular subtypes, as although breast cancer 

tumours are highly heterogeneous, the intrinsic gene set which separates 

subtypes is still less than 500 genes (Perou et al., 2000). Similarly, when 

adjusting the criteria to 80% stable in n-2 subtypes, thus still permitting 

variation of stable gene expression in at least one of the four subtypes, 2518 

informative probes were identified. Although eight times the number of 

probes initially identified, the now larger feature set was too large for the 

machine learning algorithms to train effectively, and too unstable to allow 

accurate separation of different breast tissues. If a classification model's 

features are manipulated too much, the classifier becomes over fitted. 

Conversely, if the feature set is too large or too variable, the classifier is not 

discriminative enough to identify new samples accurately (Golub et al., 

1999; Sima & Dougherty, 2006).  

 

Larger training set improves classification 

The high accuracy of the multi-class classifier in the preliminary phase 

(Table 3.2) motivated further optimization with a larger training and 

validation dataset. Training a classifier on a larger dataset with limited 

discriminating features has been shown to improve the accuracy and 

reliability of a classifier (Yu & Liu, 2004). Indicated by Tables 3.3 and 3.4, 

the larger dataset, trained on the initial 346 informative probes generated in 

the preliminary phase, yielded a 87% and 96% accurate classification of 

validation samples by LOOCV kNN of the Training set and MC-SVM, 
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respectively. The signature identified in the preliminary phase thus proved to 

be robustly discriminative of multi-class data, in congruence with the theory 

that greater training data numbers yield better classification results on proven 

and validated discriminatory features (Fan & Fan, 2008).  

 

We hypothesise that finding informative feature sets that differentiate 

between two subtypes at a time, and then combining signatures non-

redundantly may be the key to discovering more informative features that 

offer more information regarding diagnostic criteria such as tumour staging 

and prognosis.  

 

Robust Gene Signature discovered with GExB-FS Approach 

The particular feature selection filter technique was applied as a model-free 

method. Feature selection was performed completely independent of the 

machine learning algorithms and ignored feature dependencies. Although 

considered a disadvantage of univariate filter models (Saeys et al., 2007), the 

approach was beneficial when developing a multi-class classifier. The 

model-free approach has been considered attractive in microarray based gene 

expression profiling, as it is less stringent than making expression-

distribution assumptions in complex biological scenarios where the 

underlying physiology is not yet fully understood  (Troyanskaya, Garber, 

Brown, Botstein, & Altman, 2002).  

 

The GExB-FS approach was able to perform with 96.25% accuracy with 

OVO MC-SVM classification. The result was beyond expectation due to the 

complexity and known difficulty of solving multi-class cancer scenarios 

where subtypes are so closely related. A previous study on multi-category 

classification methods for gene expression-based cancer diagnosis that used  

MC-SVM algorithms could not classify cancer samples above 95% accuracy 

(Statnikov et al., 2005). This proves that the GExB component of signature 

discovery has a positive effect on identifying features that strongly 

discriminate between tissue subtypes, when filtered data is classified with 
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MC-SVMs. 

3.5 Conclusion 
The feature selection and classifier development approach we employed, the 

GExB-FS method, and the validation of the discovered gene signature, with 

unseen microarray gene expression data has proven the 346-gene signature 

effective and accurate in classifying breast tissue subtypes. The probes would 

be easily translated into a laboratory test, as standard RT-PCR 384 well 

plates would be able to replicate and ascertain the absence and presence of 

transcripts. Future investigations into the overlap of the two-class and multi-

class gene signatures may allow the development a single signature capable 

of not only identifying the malignant status of a tumour, but also its the 

molecular subtype. This is already indicated by our ability to separate healthy 

breast tissue samples analysed in this chapter from the three known 

molecular breast cancer subtypes.  
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Chapter 4 
A Multi-Class Classifier for RNA-Seq Breast Cancer Data 

 

ABSTRACT 
INTRODUCTION:  

The advent of Next-Generation Sequencing (NGS) technologies has endowed 

cancer researchers with the ability to delve deeper into the genomics and 

transcriptomics governing cancer pathophysiology. RNA sequencing (RNA-Seq) 

is one such NGS platform which sequences a partial or complete transcriptome of 

a single cell or clusters of cells (tissue) and reveals the abundance and presence of 

absence of transcripts within a specific physiological state. Given the complex 

nature of breast cancer, with various molecular presentations of the disease, deep 

transcriptomic analysis allows for applications in gene expression studies, 

biomarker discovery, gene fusion and gene insertion-deletion events with 

potential to guide treatment and diagnosis.  

Projects such as The Cancer Genome Atlas and The Genotype-Tissue Expression 

project, have aimed to use RNA-Seq to comprehensively examine gene 

expression in different healthy and cancerous human tissues with their data being 

publicly available. Potential gene expression signatures have also emerged from 

these studies for breast, prostate, colorectal, ovarian and endometrial cancers, 

amongst others. 

The Gene Expression Barcode (GExB) algorithm introduced a sophisticated 

method for gene expression studies in microarray data, by assigning 1's and 0's as 

absent-present calls for genes in a sample. As demonstrated in Chapters 2 and 3, 

application of this algorithm enables successful integration of breast cancer 

microarray data originating from different studies and development of disease 

state and subtype classifiers when used alongside machine learning algorithms. 

However, no equivalent of the barcoding method exists for RNA-Seq data as yet. 

We thus aimed to develop a statistics-driven GExB-like method for RNA-Seq and 

to apply it in the discovery of a multi-class gene signature for classifying normal, 

normal-adjacent-tumour, and primary breast tumour samples from different public 

data repositories.  
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METHODOLOGY: 

We used a two-prong approach, which included first discovering highly 

differentially expressed genes (DEG's) in TCGA normal-adjacent-tumour (NAT) 

and primary tumour breast samples, as well as between normal samples from 

women that did not have breast cancer in GTEx and TCGA tumour samples. 

Secondly, in parallel, a we developed and applied “z-score-to-barcode” method to 

raw RNA-Seq gene count data to i) calculate relative gene expression levels for 

transcriptomic data, and ii) convert these values to 1's and 0's in a GExB fashion.  

Following the establishment of the methods for RNA-Seq informative gene set 

discovery and barcoding of gene count data, the study was extended to compare 

top DEG's from TCGA and integrated dataset analysis, to determine whether 

GTEx normal tissues could be classified as distinct from TCGA tumour and NAT 

samples. 

RESULTS: 

Barcoding of RNA-Seq data and application of a discovered expression signature 

enabled unseen samples in a test set to be labelled as the correct tissue type with 

above 95% accuracy when K-means clustering, Hierarchical Clustering and 

Support Vector Machines were employed for classification. In addition, we found 

that indicated that normal breast tissue from healthy women had a pattern of gene 

expression that is distinct from NAT tissues from breast cancer patients. 

DISCUSSION: 

A potentially novel and robust method for barcoding and classification of breast 

cancer RNA-Seq samples was established as demonstrated by the accuracy of the 

two-class and multi-class classifiers built using our unique approach. This method 

also has the potential to be applied to other cancers and diseases. The detection of 

a unique transcriptomic portrait of NAT tissues suggest that the similarities 

between NAT and tumour tissues and the differences between NAT and healthy-

normal tissues need to be taken into account during biomarker/diagnostic gene 

signature research. Possible insights into tumorigenesis and cancer metastases, 

along with robust discriminatory genes may be obscured or not revealed at all if 

NAT tissues are not considered a tissue subtype during cancer gene expression 

studies.  
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4.1 Introduction 

4.1.1 RNA-Sequencing and Cancer 

Next-generation sequencing (NGS) has allowed further exploration of the 

genomic and transcriptomic portraits of cells and tissues through high-

throughput DNA and RNA sequencing technologies (Ng & Kirkness, 2010). 

DNA-Seq uncovers genomic aberrations via detection of genetic lesions, 

while RNA-Seq reveals the downstream consequences of these lesions, i.e. 

mutations, nucleotide insertions and deletions, exon-skipping and gene fusion 

(M. Wan, Wang, Gao, & Sklar, 2014). RNA-Seq achieves this by taking a 

snapshot of a cell or tissue's transcriptome for a given physiological state, and 

is capable of capturing all RNA's of the cell.  

 

Transcriptomics allows for elucidation of the cellular state at the transcript 

level, and therefore the genes which are expressed or not, in a physiological 

condition. This has provided insight into those genes' involvement in a 

particular disease state (George, Ashokachandran, Paul, & Girijadevi, 2017), 

as it allows for the analysis of a continuously changing cellular environment.  

 

In recent years, optimization and reduction in costs of RNA sequencing have 

provided researchers a deeper understanding of a cell or tissue's mechanisms 

of gene expression and genetics underlying diseases (A. Desai & Jere, 2012). 

The application of NGS to various cancers, including breast cancer (Koboldt 

et al., 2012), lung adenocarcinomas (Shukla et al., 2017)), and colorectal 

cancer (Cancer Genome Atlas Network, 2012) , have revealed gene expression 

signatures not previously detected with array technologies. The verification of 

these signatures can be achieved through targeted RNA sequencing of the 

relevant transcripts (Tewhey et al., 2009). 

 

4.1.2 Breast Cancer Transcriptomics 

Breast cancer is a complex disease, with a multiplicity of clinical presentations 

differing in their histopathological and molecular portraits. The heterogeneity 
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of breast cancer, or cancer as a whole, can be attributed to differences in cell 

type origin, gene mutations, gene isoform expressed, indels, SNPs, or 

hormone receptors expressed (Turashvili & Brogi, 2017).  

 

Predictive and prognostic gene expression signatures have arisen and been 

applied clinically, e.g. Mammaprint® and Oncotype DX®, however, they 

were designed using microarrays and the resultant laboratory assays report 

expression at “gene level”. The emergence of NGS, and its application in 

cancer research, now affords researchers the opportunity to look beyond these 

established gene signatures. Transcriptome profiling of the cancer cell can 

sequence deeper to the isoform level (A. N. Desai & Jere, 2015), as well as 

detect transcripts of mRNA's, non-coding RNA's , differences in gene isoform 

expression, lending distinct advantages in understanding breast cancer 

progression, metastasis, potentially leading to better and more accurate 

classification and diagnosis.  

 

4.1.3 Public Transcriptomic Data 

Due to the biomedical advantages of RNA sequencing, coupled with the 

biological complex landscape of cancer, and understanding it’s genomic and 

transcriptomic position in relation to healthy tissues, several large projects and 

consortia arose to address these needs by producing data for analysis by the 

scientific community.   

 

4.1.4 The Cancer Genome Atlas (TCGA) 

In order to accelerate an extensive understanding of the cancer genome, The 

Cancer Genome Atlas (TCGA) was launched by the National Institute of 

Health (NIH) in 2005, with the International Cancer Genome Consortium 

(ICGC) launched in 2008 (Chin, Andersen, & Futreal, 2011). TCGA is a vast 

catalogue, containing thousands of RNA-Seq samples, with more than 30 

malignant tumour types as well as normal tissue control samples. The TCGA 

network has executed large-scale studies on breast cancer, lung 

adenocarcinoma, glioblastoma, colorectal cancer, ovarian and endometrial 
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cancer, and pan-cancer studies to fully elucidate the comprehensive molecular 

portraits of these cancers (Tomczak, Czerwińska, & Wiznerowicz, 2015).  

 

The available data types include RNA-Seq, microRNA sequencing 

(miRNAseq), DNA-Seq, SNP-based platforms, array-based DNA methylation 

sequencing, amongst others. 

 

4.1.5 The Genotype-Tissue Expression (GTEx) project 

The Genotype-Tissue Expression project was launched by the NIH in 2010. 

The aim of the project was to establish a database that would allow the study 

of differences in gene expression in human tissues (Lonsdale et al., 2013). 

Since its inception, the project has sequenced more than 10 000 samples 

(spanning 53 different tissues) from 714 donors. This in-depth analysis of 

multi-tissue transcriptomes has allowed molecular portraits for healthy or 

normal tissues to emerge, which can now aid the assessment of diseased 

tissues (Ardlie et al., 2015; Keen & Moore, 2015).   

 

4.1.6 Research Aims and Objectives 

The Gene Expression Barcode (GExB) for microarray data proved robust in 

developing a multi-class breast cancer subtype classifier. Unfortunately, since 

the release of the GExB version 3.0 in 2014 (McCall et al., 2014), a GExB 

algorithm for RNA-Seq data has not yet been developed. Owing to the 

accuracy of the microarray breast cancer classifiers developed using GExB for 

feature selection and data transformation; we aimed to develop a similarly 

applicable method for RNA-Seq breast cancer data. 

 

Aided with the differential gene expression package for RNA-Seq data, 

edgeR, we aimed to develop a simplified method for discovering a possible 

gene expression signature for breast cancer classification. In order to achieve 

this, the following objectives have been established: 
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1) Discover method to convert gene counts in RNA-Seq data to absolute 

calls of expression, i.e. 1's and 0's, and therefore creating a “barcoding” 

method for NGS data 

2) Applying the method of barcoding to RNA-Seq cancer data from The 

Cancer Genome Atlas (TCGA) 

3) Develop a two-class classifier for TCGA normal and tumour samples 

with feature selection based on best differentially expressed genes 

4) Integrate RNA-Seq normal breast tissue samples, from GTEx project to 

discover a signature for multi-class classification capable of distinguishing 

between normal, normal-from-cancer-patient, and primary tumour 

samples. 

4.2 Materials and Methods 
4.2.1 Data Curation 

RNA-Seq data (raw gene counts) from breast tissue samples from The Cancer 

Genome Atlas (TCGA) repository was manually curated. The dataset shown 

in Table 4.1 is in whole or part based upon data generated by the TCGA 

Research Network (“The Cancer Genome Atlas Program - National Cancer 

Institute,” n.d.). The individual samples were curated using their assigned 

TCGA sample ID’s from the Genomic Data Commons Data Portal (“GDC 

Data Portal,” n.d.). Individual sample ID’s may be viewed in Appendix II, 

Table 7.3. Both normal-adjacent-tumour breast and primary breast tumour 

samples were curated. The correct molecular subtypes of tumour samples 

according PAM50 classification were obtained from supplementary materials 

of a TCGA research paper (The Cancer Genome Atlas Network, 2012).  

 

For the purpose of discovering a robust set of differentially expressed genes in 

breast cancer, 40 paired normal/primary tumour samples were collected as a 

priority, but unpaired samples were also collected for downstream analysis. In 

Table 4.1, the tumour sample set in both paired and unpaired analysis 

consisted of the triple negative, estrogen-receptor positive and Her2-receptor 

positive molecular subtypes. The paired dataset was analyzed independently 

of the unpaired dataset to avoid bias in classification models. 
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Normal breast tissue RNA-Seq samples (raw gene counts) from healthy 

individuals were curated from the GTEx project’s data portal (“The Genotype-

Tissue Expression (GTEx) project Data Portal,” n.d.) on 07/13/2018, to be 

integrated with the TCGA dataset. These samples were selected from version 

7 of GTEx publicly available gene count data; which includes a total of 11688 

samples which cover 53 different tissue types. The same dataset, with patient 

information can be obtained from dbGaP (“dbGaP | phs000424.v7.p2 | 

Common Fund (CF) Genotype-Tissue Expression Project (GTEx),” n.d.). 

Individual sample ID’s may be viewed in Appendix II, Table 7.2. 
 

Table 4. 1: Summary of breast tissue samples curated from The Cancer Genome Atlas 

Data Repository 

Dataset Tissue Type Data type Data 
Repository/Project 

Paired samples Normal-Adjacent-
Tumour Breast 
Tissue 

Raw RNA-Seq 
counts 

TCGA* 

Triple Negative 
Primary Tumour 
Her2-Positive 
Primary Tumour 
Estrogen-Positive 
Primary Tumour  

 
Unpaired samples Normal-Adjacent-

Tumour Breast 
Tissue 

Raw RNA-Seq 
counts 

TCGA* 

Triple Negative 
Primary Tumour 
Her2-Positive 
Primary Tumour 
Estrogen-Positive 
Primary Tumour  

 
Integrated samples Normal (Healthy) 

Breast Tissue 
Raw RNA-Seq 
counts 

GTEx** 

* TCGA – The Cancer Genome Atlas 

** GTEx – The Genotype-Tissue Expression project 
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4.2.2 Discovery of Differentially Expressed Genes (DEGs) 

4.2.3 Paired TCGA Samples 

The R package, edgeR (Law, Alhamdoosh, Su, Smyth, & Ritchie, 2016; 

Robinson, McCarthy, & Smyth, 2010), was applied for the discovery of 

differentially expressed genes between normal and tumour samples. An initial 

set of 40 paired samples (1 normal-adjacent-tumour and 1 primary tumour 

sample from a single patient, from 20 different patients) was used. This was 

done to ensure that a differential gene expression signal was indeed present, 

and to ensure correct implementation and application of the edgeR package, 

which was central to subsequent analyses. 

 

The paired sample dataset was filtered to remove any genes which 

consistently had a zero value across both normal and tumour samples, which 

deemed ±14% of the genes to be as non-informative. Data was then 

normalized using the “upper-quartile” normalization method, allowing the 

distribution of the data to be less skewed.  

 

The generalized linear model (GLM) model, built into the edgeR package for 

more complex experimental designs of paired tissue samples, was 

implemented to identify differentially expressed genes.  

 

Once the method for discovering DEG's was established, the same protocol 

was then applied to a larger dataset: 80 paired samples – 1 normal-adjacent-

tumour and 1 primary tumour sample from 40 different patients. Although a 

slightly different output of DEG's was to be expected, the informative genes 

would later be evaluated with cluster analysis to ascertain which set of DEG's 

best discriminate between unpaired normal-adjacent-tumour and primary 

tumours. To this end, signatures representing the top 100, 75, 50, and 25 

differentially expressed genes were selected to test their ability to classify 

unpaired samples. 

 

http://etd.uwc.ac.za/



73 
 

4.2.4 Integrated GTEx and TCGA datasets 

Before the edgeR package could be implemented for the discovery of DEG's 

between GTEx normal samples (from healthy individuals) and TCGA primary 

tumour samples, the RNA-Seq files needed to be comparable, considering 

their different gene library sizes. A shared gene library of 53197 genes that 

overlapped between the two different datasets was then used to filter the data 

prior to downstream analysis. 

 

A similar protocol for the discovery of DEG's was implemented for the 

integrated datasets consisting of 100 GTEx normal samples and 100 TCGA 

primary tumour samples. Trimming of zero's discarded ±6% of genes as non-

informative. The resultant DEG's were extracted and the top 100, 75, 50, and 

25 differentially expressed genes were selected for evaluation in classification. 

 

4.2.5 Separation of GTEx normal from TCGA normal-adjacent-tumour 

TCGA normal breast tissue samples are labelled as normal-adjacent-tumour 

(NAT), meaning that they are collected from patients who already have breast 

cancer. In an effort to elucidate if there were differences between normal 

breast tissue samples from healthy individuals (GTEx) versus from cancer 

patients (TCGA NAT), we extracted the top 500 and top 1000 DEG's from the 

two different DEG analysis iterations (TCGA normal versus tumour and 

GTEx normal versus TCGA tumour), and extracted the overlapping genes. 

 

This was done to ascertain if there was indeed a difference between normal 

breast tissue (from healthy individuals) and normal breast tissue (adjacent-

tumour) gene expression, and possibly discover a set of DEG's which could 

firstly characterize normal-adjacent-tumour samples, and secondly evaluate 

the ability of the discovered signature to accurately discriminate between 

normal, normal-adjacent-tumour, and primary tumour samples using a multi-

class classification. 
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4.2.6 Z-Score Barcoding of RNA-Seq count data 

Negative and positive z-scores represent normalized relative gene expression 

level, and can be used to substitute mRNA level (Siegfried et al., 2015) or raw 

HTSeq counts. In order to generate these z-scores for the normal and tumour 

RNA-Seq samples, the scale( ) command was used in R, which would convert 

raw gene counts to a z-scores within an individual sample. For each gene (of 

each sample), where the raw count of a gene (of a sample) = x, the mean of 

gene counts within that sample = mean, and standard deviation of that 

sample's gene counts = sd, then the z-scores for each gene within a sample 

could be calculated as: z = (x – mean)/sd. 

 

The extracted z-scores could thus now be 'barcoded', where a '0' would be 

assigned to a negative z-score and a '1 to a positive z-score. The ability of the 

RNA-Seq barcode to definitively classify normal and tumour samples was 

evaluated and once confirmed, could then be applied to other tissue types or 

experimental designs. 

 

4.2.7 Z-score Barcoding of unpaired TCGA and GTEx samples 

As with the TCGA paired sample dataset, RNA-Seq gene counts of unpaired 

TCGA primary tumour and normal-adjacent-tumour samples, along with 

GTEx normal samples were converted to z-scores using the scale( ) method in 

R.  The z-scores were then converted to barcodes as described above.  

 

Prior to assessment of the barcode for classification of breast tumour samples, 

the informative genes (Top DEG's) were extracted to simplify feature 

selection. 

 

For each of the classification scenarios the following filtering method was 

applied:  

1) For TCGA normal-adjacent-tumour versus TCGA tumour, the Top 100, 

75, 50 and 25 differentially expressed genes (DEG's), discovered using 

paired samples, and were extracted.  
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2) For GTEx normal versus TCGA tumour, the Top 100, Top 100, 75, 50 and 

25 differentially expressed genes (DEG's) were extracted. 

3) For the integrated GTEx-TCGA dataset (to discover a set of DEG's which 

could firstly characterize normal-adjacent-tumour samples), the overlap of 

the Top 500 and Top 1000 DEG's of each DEG analysis iteration was 

extracted from GTEx, and TCGA datasets. 
 

4.2.8 Unsupervised Machine Learning: Hierarchical and K-means 

Clustering 

Machine learning algorithms like Hierarchical clustering and K-means 

clustering are heuristic in nature and allow for initial evaluation of the strength 

and/or accuracy of a classification model.  

 

Hierarchical clustering uses agglomerative clustering – where each sample is 

initially assigned to its own cluster, two neighbouring clusters (of 1 sample 

each) are then linked to each other based on similarities. Each iteration 

continues to link similar samples to each other until distinctive clusters are 

formed – the merged clusters creating a binary tree or hierarchy.  

 

K-means clustering uses partitional clustering. The goal of the algorithm is to 

group similar samples together into k partitions (clusters). The Euclidean 

distance between samples is used to cluster similar samples together, where 

Euclidean distance inversely correlates to similarity. For each iteration of 

clustering, a sample is assigned to the closest cluster center. Each resulting 

group or partition will include samples of mutual similarity. 

 

Hierarchical clustering was first applied to the gene sets detailed in 2.4.1, and 

once the feature sets were assessed as being informative enough to accurately 

classify barcoded RNA-Seq breast tissue samples (normal, normal-adjacent-

tumour, and primary tumour),  K-means clustering was applied all datasets for 

each of the informative gene sets.  

http://etd.uwc.ac.za/



76 
 

4.2.9 Supervised Machine Learning: Support Vector Machines 

Support Vector Machines (SVM) was employed as a supervised machine 

learning algorithm after initial evaluation of the feature sets discovered. SVMs 

allow the user to input a training set of data where class, or tissue type can be 

specified. The algorithm then calculates a “margin” or hyperplane of 

separation between samples of two different classes.  

 

Unseen validation datasets consisting of TCGA normal-adjacent-tumour and 

primary tumour, and GTEx normal samples that had been “barcoded” were 

classified using SVMs to assess if the feature sets could accurately assign 

samples to their correct known classes. The “e1071” R package was used for 

SVM classification, with the linear kernel selected for binary (two-class) and 

the radial basis function kernel selected for one-versus-one (multi-class OVO-

SVM) C-classification. 

 

The SVM classifiers (training dataset - initial datasets used in DEG analysis) 

were tested with a validation dataset of “unseen” samples for iterations as 

detailed in 2.4.1. 

 

4.3 Results 
4.3.1 Feature set discovery in a paired TCGA normal-tumour dataset 

The filtering of genes that were consistently lowly expressed lowered the number 

of genes from 60483 down to ±52 000 genes. Following DE analysis, the top 100, 

75, 50 and 25 differentially expressed genes were found to have fold changes 

greater than 2, with very low adjusted p-values (Table 4.2), suggesting that these 

feature set(s) would likely be able to definitively differentiate between normal-

adjacent-tumour and tumour samples. 

 

Prior to machine learning classification of unpaired normal-adjacent-tumour 

(NAT) and primary tumour samples was performed, hierarchical clustering was 

applied to the top 100 DEG's from each of the DEG analyses iterations; Figure 4.1 

shows 140 unpaired samples clustered with informative genes discovered using 40 
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paired samples, and Figure 4.2 shows the same 140 unpaired samples clustered 

with informative genes discovered using 80 paired samples. The DEG's extracted 

from the 80 paired sample analysis was used in subsequent, downstream analyses 

and classification, as these genes were able to distinguish between tissue types 

more accurately.  
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Table 4. 2: Top 50 DEG's extracted from differential expression analysis of 80 paired 
TCGA NAT and Primary Tumour samples. 

Differentially 

Expressed Genes 
Log Fold-Change p-Values 

FDR  

(adjusted p-

Values) 

ENSG00000249669.6 -4.434694263 1.8373E-117 9.9443E-113 

ENSG00000123500.8 7.434499304 7.8473E-113 2.1236E-108 

ENSG00000230838.1 6.210239154 1.31508E-77 2.37259E-73 

ENSG00000099953.8 6.134165335 3.41309E-77 4.39418E-73 

ENSG00000167900.10 3.161174788 4.05936E-77 4.39418E-73 

ENSG00000169241.16 2.370218283 1.2027E-75 1.08492E-71 

ENSG00000269936.3 -3.774200534 4.38549E-75 3.39086E-71 

ENSG00000137225.11 -2.864682714 1.28804E-73 8.71421E-70 

ENSG00000203805.9 5.995143604 6.09783E-71 3.6671E-67 

ENSG00000077152.8 3.345475916 1.15564E-70 6.25478E-67 

ENSG00000154736.5 -2.880787494 1.07524E-67 5.2906E-64 

ENSG00000122641.9 3.871265606 6.11414E-66 2.75768E-62 

ENSG00000119771.13 -2.675690579 7.13479E-63 2.97049E-59 

ENSG00000143549.18 1.842349082 5.66739E-61 2.19101E-57 

ENSG00000123975.4 2.538594917 1.14512E-57 4.13191E-54 

ENSG00000241684.4 -3.285083983 4.73071E-57 1.5936E-53 

ENSG00000179796.10 -4.122695034 5.00539E-57 1.5936E-53 

ENSG00000172318.5 -3.629498652 6.0258E-56 1.81189E-52 

ENSG00000148053.14 -3.526384565 8.78702E-56 2.5031E-52 

ENSG00000179094.12 -1.776648312 7.30914E-55 1.978E-51 

ENSG00000158850.13 1.648201487 1.22839E-53 3.06004E-50 

ENSG00000198932.11 -2.169099127 1.24383E-53 3.06004E-50 

ENSG00000170312.14 3.356942048 2.78003E-53 6.54201E-50 

ENSG00000083067.21 -2.926262212 3.887E-53 8.76582E-50 

ENSG00000160753.14 1.893639404 5.68973E-53 1.2318E-49 

ENSG00000117650.11 4.710060486 7.30671E-53 1.52103E-49 

ENSG00000161888.10 3.284471119 8.00579E-53 1.60483E-49 

ENSG00000090889.11 4.347664643 2.6363E-52 5.09596E-49 

ENSG00000169258.6 2.926351502 3.00573E-52 5.60973E-49 
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ENSG00000025423.10 3.256130792 6.27624E-52 1.13232E-48 

ENSG00000166803.9 3.648661362 9.33087E-52 1.58489E-48 

ENSG00000143228.11 4.067274187 9.37042E-52 1.58489E-48 

ENSG00000100526.18 3.243788354 1.04394E-51 1.71218E-48 

ENSG00000143493.11 1.56345217 1.23769E-51 1.97026E-48 

ENSG00000208035.1 -4.785676044 1.28835E-51 1.99231E-48 

ENSG00000136158.9 -2.274222562 1.49651E-51 2.24992E-48 

ENSG00000013810.17 2.436535656 2.07864E-51 3.04066E-48 

ENSG00000134690.9 3.076288541 3.65671E-51 5.20831E-48 

ENSG00000076382.15 2.646701137 8.46716E-51 1.17507E-47 

ENSG00000108924.12 -3.178286978 9.55405E-51 1.29276E-47 

ENSG00000188486.3 1.90014401 4.91226E-50 6.48467E-47 

ENSG00000065534.17 -1.953704813 5.7853E-50 7.45533E-47 

ENSG00000127564.15 4.258846765 6.82836E-50 8.59484E-47 

ENSG00000154263.16 -3.702210309 7.62125E-50 9.37484E-47 

ENSG00000079462.6 2.61127339 1.05422E-49 1.26797E-46 

ENSG00000177628.14 1.662281779 1.78839E-49 2.06772E-46 

ENSG00000168497.4 -3.659070393 1.79556E-49 2.06772E-46 

ENSG00000135094.9 3.120126981 2.35637E-49 2.657E-46 

ENSG00000149923.12 1.542231541 3.98288E-49 4.39937E-46 

ENSG00000254986.6 1.755083595 6.51367E-49 7.05092E-46 
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Figure 4. 1: Hierarchical clustering of “barcoded” TCGA Normal-Adjacent-Tumour 
(NAT) and TCGA Primary Tumour (Tumour) Unpaired RNA-Seq samples (n = 100) 
yielded 98% accuracy when classified using the Top 100 DEG's discovered using 40 
paired Normal-Adjacent-Tumour and Tumour samples. 

 

 

http://etd.uwc.ac.za/



81 
 

 

Figure 4. 2: Hierarchical clustering of “barcoded” TCGA Normal-Adjacent-Tumour 
(NAT) and TCGA Primary Tumour (Tumour) Unpaired RNA-Seq samples (n = 100) 
yielded 100% accuracy when classified using the Top 100 DEG's discovered using 80 
paired Normal-Adjacent-Tumour and Tumour samples. 
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4.3.2 Feature set discovery in an integrated GTEx-TCGA dataset 

Integration of GTEx and TCGA RNA-Seq gene count data resulted in a ±6% 

and ±12% data loss due to a difference in GTEx and TCGA library sizes; 

GTEx consisting of 56203 genes and TCGA consisting of 60843 genes – 

with a resulting overlap of 53196 genes. Filtering of lowly expressed genes 

resulted in a further reduction of uninformative data, decreasing the number 

of genes to 50758.  

 

Although there was a 17% loss of TCGA primary tumour data, and 7% loss 

of GTEx normal data, the resultant top 100, 75, 50, and 25 DEG's, had very 

low adjusted p-values, and large log-fold changes (Table 4.2), suggesting 

that these DEG's could be used for feature selection prior to machine learning 

classification. 

 

4.3.3 Feature set discovery for multi-class classification of a GTEx normal, 

TCGA normal-adjacent-tumour and TCGA primary tumour 

integrated dataset 

Subsequent to discovering informative genes (DEG's) capable of discerning 

between a) TCGA normal-adjacent-tumour and primary tumour samples, and 

b) GTEx normal (healthy) and TCGA primary tumour samples, the overlap 

of these two DEG analyses experimental designs yielded only 1 gene in 

common when comparing the top 100 DEG's.  

 

Intersecting the top 500 and top 1000 statistically significant DEGs of each 

analysis yielded 59 and 216 genes, respectively.  

 

These sets were used as features for multi-class classification modelling to 

determine the presence of a distinct gene expression signature for normal-

adjacent-tumour samples from cancer patients when compared to normal 

breast from healthy women. 
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4.3.4 Z-scores and “Barcoding” RNA-Seq gene counts 

The heatmap in Figure 4.3 indicates that the top 100 DEG's discovered with 

edgeR accurately separate normal samples from tumour samples. The z-

scores generated to produce the map allow the differences in relative gene 

expression levels between the two tissue types to be easily visualized. The 

TCGA normal-adjacent-tumour samples appear on the left-side of the 

heatmap, with TCGA primary tumour samples appearing on the right-side of 

the image. This indicated that these z-scores could be converted to 1's and 0's 

to generate a barcode for normal and tumour samples. In order to mimic the 

Gene Expression Barcode's (GExB) single sample algorithm (barcoding of a 

single microarray sample) (McCall et al., 2014, 2011), which would produce 

statistically derived absolute gene expression calls, the R scale()function was 

applied to each sample independently of other samples from the same tissue 

type, i.e. normal-adjacent-tumour or primary tumour, unlike typical 

application of z-score to cancer genomic data which scales the raw gene 

count data across the tissue (Colaprico, Olsen, supervisor, & Bontempi 

Biopark Charleroi, 2016).  Scaling of data with similar statistical methods, 

has been shown to improve classification of TCGA data (Rahman et al., 

2015). We hypothesized that z-scores and their conversion to 

absence/presence calls would perform similarly, as they were previously 

applied in RNA-Seq data to infer gene expression (Siegfried et al., 2015). 
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Figure 4. 3: Z-Score Heatmap of Paired Normal-Tumour Samples using Top 100 DEGs 

as a feature set 

 

4.3.5 Machine Learning classification 

4.3.5.1 Clustering and SVM classification of TCGA data 

K-means clustering was able to use the expression barcode generated from 

DEG's discovered on paired TCGA samples to classify 140 unpaired TCGA 

normal-adjacent-tumour and primary tumour samples with above 95% 

accuracy.  Hierarchical clustering and SVM binary classification improved 

the accuracy to 100% (Table 4.3). 
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Table 4. 3: Classification results of TCGA Normal-Adjacent-Tumour (NAT) and TCGA 
Primary Tumour (Tumour) Unpaired RNA-Seq samples (n = 140) 

 K-means 
Hierarchical 

Clustering 
SVM 

 NAT Tumour NAT Tumour NAT Tumour 

Top100 DEG 100% 98% 100% 100% 100% 100% 

Top75 DEG 99% 98% 100% 100% 100% 100% 

Top50 DEG 100% 97% 100% 100% 100% 100% 

Top25 DEG 100% 98% 100% 100% 100% 100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.5.2 Clustering and SVM classification of GTEx-TCGA integrated data 

K-means clustering, hierarchical clustering and SVM were all able to use the 

barcode discovered using the dataset of 200 samples to classify 100 unseen GTEx 

normal and TCGA primary samples with 100% accuracy (Table 4.4). 

 

Table 4. 4: Classification results of GTEx Normal (Normal) and TCGA Primary Tumour 
(Tumour) Test RNA-Seq samples (n = 100) 

 K-means 
Hierarchical 

Clustering 
SVM 

 Normal Tumour Normal Tumour Normal Tumour 

Top100 DEG 100% 100% 100% 100% 100% 100% 

Top75 DEG 100% 100% 100% 100% 100% 100% 

Top50 DEG 100% 100% 100% 100% 100% 100% 

Top25 DEG 100% 100% 100% 100% 100% 100% 

 

4.3.5.3 Multi-class classification of healthy breast, normal-adjacent-tumour 

(NAT) and primary tumour tissues 

Clustering analysis using the barcodes generated for the 59 gene and 216 gene 

signatures described in 3.1.3 on 300 samples of GTEx normal, TCGA NAT, and 

TCGA primary tumour revealed that both were discriminatory features to 

accurately separate the three tissue types (Figures 4.4 and 4.5). NAT tissue was 

also shown to be a “subtype” of normal samples, distinct from breast tissue from 

the healthy individuals in GTEx.  
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Figure 4. 4: Barcode-based hierarchical clustering of 300 GTEx and TCGA samples, 
yielded 98% accuracy when classified with the Top 59-overlapping DEG’s (described in 
Sections 4.2.5 and 4.3.3). 
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Figure 4. 5: Barcode-based hierarchical clustering of 300 GTEx and TCGA samples, 
yielded 100% accuracy when classified with the Top 216-overlapping DEG’s (described 
in Sections 4.2.5 and 4.3.3). 
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Validation of these gene sets to correctly characterize a sample as normal 

(healthy), normal-adjacent-tumour (from a cancer patient), or primary breast 

tumour (cancer) was performed with a test dataset of unseen samples. K-means 

and hierarchical clustering results (Table 4.5) showed that unsupervised machine 

learning methods could classify samples with above 85% accuracy.   

 

Table 4. 5: Classification results of GTEx Normal (Normal), TCGA Normal-Adjacent-
Tumour (NAT) and TCGA Primary Tumour (Tumour) RNA-Seq samples with Validation 
dataset 

 K-means 
Hierarchical 

Clustering 

 
GTEx 

Normal 

TCGA 

NAT 

TCGA 

Tumour 

GTEx 

Normal 

TCGA 

NAT 

TCGA 

Tumour 

59 DEG 100% 92% 90% 100% 92% 100% 

216 DEG 100% 85% 86% 100% 92% 100% 

 

A multi-class one-versus-one support vector machine (multi-class OVO-SVM) 

trained on the 300 samples hierarchically clustered in figures 4.4 and 4.5 above, 

and tested with 113 unseen samples (classified with K-means and hierarchical 

clustering in table 4.4 above) was able to distinguish between the three different 

tissue types with above 99% accuracy (Table 4.6). 

 

Table 4. 6: Overlap of Top DEG’s: SVM classification with Validation dataset 

Tissue Type No. samples tested Classification accuracy 

  59 DEG's 216 DEG's 

GTEx Normal 50 98% (49) 100% (50) 

TCGA Normal-

Adjacent-Tumour 
13 100% (13) 100% (13) 

TCGA Primary 

Tumour 
50 100% (50) 100% (50) 

    

Total: 113 99.12% 100% 
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Figure 4. 6: Heatmap of 59 DEG's separating GTEx normal, TCGA NAT, and TCGA 

tumour tissues 

4.4 Discussion 
RNA-Seq DE analysis and sample-level Z-Score data transformation 

produced phenotypically accurate segregating expression portraits  

The edgeR package, when applied to TCGA paired normal-adjacent-tumour and 

tumour samples, as well as GTEx-TCGA integrated data reported robust sets of 

differentially expressed genes (DEG's), as evidenced by their very high log-fold 

changes and small adjusted p-values. Our application of the R scale() function to 

each sample independently of other samples from the same tissue type revealed a 

“transcriptomic portrait” of genes switched on and off in that sample, which could 

be integrated with other samples  of the same type for feature selection. 
 

The suitability of our strategy is illustrated by a heatmap of scaled data, i.e. z-
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scores, in Figure 4.3, which shows mostly uniform within-class up or down 

regulation of extracted DEG's signatures across the tissue types.  

 

RNA-Seq Barcodes of DEG’s produces powerful classification signatures 

The conversion of these z-scores to a “barcode”, 1's and 0’s proved robust for 

classification of TCGA data. Figure 4.2 and Table 4.2 demonstrated that using 

multi-tissue RNA-Seq barcodes of pre-identified DEG's as classification features 

was remarkably accurate in identifying a samples as malignant (primary tumour) 

or normal. 

 

The degree of classification accuracy (Table 4.6) attained when applying the 

approach to the integrated RNA-Seq data from GTEx (breast tissue from healthy 

women) and TCGA (tumour and adjacent normal) was still more notable, given 

that multi-class classification is inherently more difficult and the fact that data was 

lost during integration. Thus our approach of DEG discovery coupled with z-

score-to-barcode data transformation, proved to be a reliable way of identifying 

robust predictive gene signatures in integrated data from multiple sources. 

 

In recent years, the emergence of in-depth transcriptome profiling has led to a few 

diagnostic and prognostic gene expression signatures being developed from RNA-

Seq data. Most notably, a lung adenocarcinoma 4-gene prognostic signature 

(Shukla et al., 2017), and a colorectal cancer 12-gene prognostic signature (Sun et 

al., 2018), developed with TCGA RNA-Seq data and survival analysis algorithms. 

Studies which were aimed at building classifiers for subtyping and staging of 

cancers, with SVM implementation however, are more closely comparable to this 

study. A cancer diagnostic classifier based on gene expression (RNA-Seq data) of 

blood platelets was able to classify cancer subtypes with above 75% accuracy 

with SVM implementation (Y.-H. Zhang et al., 2017). A breast cancer staging 

classifier which could determine early or late stage cancer, implemented SVM  

recursive feature elimination (SVM-RFE) and was able to classify with tumours 

with above 98% accuracy (Yao, Zhang, Du, Liu, & Xu, 2015). In contrast, the 

two-class (normal versus tumour) and the multi-class classifiers developed were 
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able to classify unseen samples with 100% accuracy.  

 

We thus propose that our method of sample-level z-score based barcoding of 

RNA-Seq data is analogous to the Gene Expression Barcode algorithm designed 

specifically for microarray data and has likely future utility in discovery of 

predictive signatures in other study scenarios. As several of the signature genes 

were previously described as novel RNA-Seq derived biomarkers (Wang, 

Gerstein, & Snyder, 2009), we further propose that the signatures may have 

potential for breast cancer diagnostics R&D, since the absence-presence calls can 

be readily and simply assessed using qtPCR.  

 

NAT tissues classify separately from healthy and tumour tissues 

When overlapping the top 500 and top 1000 DEG's from TCGA and GTEx-

TCGA analysis, barcode signatures of 59 and 216 genes emerged which were able 

to distinguish between the three different tissue types, respectively. NAT tissue 

presents with a distinctly different transcriptome portrait when compared to 

normal samples acquired from healthy individuals (GTEx) and primary breast 

tumours from TCGA, as represented in Figure 4.6.  

 

These observations are strongly supported by previous studies geared towards the 

elucidation of the molecular profiles of histologically normal tissues adjacent to 

malignant breast tumours. A study undertaken by Boston University School of 

Medicine revealed that 25-53% of the genes over-expressed or under-expressed in 

estrogen-receptor positive or negative breast tumours were shared with normal-

adjacent-tumour tissue samples (Kelly Graham, Ge, de Las Morenas, Tripathi, & 

Rosenberg, 2011). These findings were echoed in a 2015 study which revealed 

that intrinsic tumour subtypes (PAM50 subtypes) were reflected in histologically 

normal-adjacent-tumour tissues, and suggested that the shared molecular 

portrait(s) may account for cancer recurrence and the derivation of biomarkers 

may be plausible (Casbas-Hernandez et al., 2015).  

Aran and colleagues took the above into account and investigated the NAT 

transcriptome.  Their analysis spanned a few different cancers and included the 
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integration of normal tissues from healthy individuals (GTEx project). It was 

revealed that not only did NAT tissue share a partial molecular profile with 

tumour samples, and a partial molecular profile with healthy tissues, but also 

possessed its own gene expression signatures (Aran et al., 2017). Furthermore, 

they hypothesize that the distinct molecular portrait of NAT tissues may in fact be 

attributed to the tumour's effect on the adjacent tumours due to particular genes 

being up-regulated in NAT tissues which are linked to molecular subtypes, and 

immune response pathways. Upon closer examination of Figure 4.5, within the 

216 informative gene set, NAT tissues appear as a “subtype” of normal in relation 

to GTEx normal, but are more closely related to tumour samples. This is and can 

be deduced from Figure 4.6, where some genes of NAT tissues begin to exhibit.    

 

The experimental design of cancer studies aimed at gene signature discovery thus 

needs to takes these findings into account. More expansive research is required 

with larger sample numbers, to discover a “universal” signature which can 

definitively distinguish between normal and normal-adjacent-tumour samples. 

Although Table 4.3 reveals a possible robust gene signature to classify tumour 

samples accurately, there was no overlap between the Top 100 DEG's from 

TCGA normal versus tumours and the Top 100 DEG's from GTEx normal versus 

TCGA tumour. Researchers may be missing possible biomarkers/gene signatures 

which are more discriminative in cancer classification due to the overlap of genes 

expressed between NAT and tumour tissues (Figure and Table 4.6). In order to 

build true multi-class classifiers which can distinguish between normal, normal-

adjacent-tumour (pre-cancer), and different molecular or intrinsic subtypes of 

breast cancer, NAT tissues must be treated as separate class from healthy-normal 

samples, and an integration of the two in biomarker discovery may prove 

beneficial in robust and accurate cancer classifier development.   

 

Limitations to integrative RNA-Seq data analysis 

Comprehensive studies which can reveal novel insights into tumorigenesis, 

metastases, and progression of cancers, including breast cancer, is limited by not 

only the amount of data available for normal-adjacent-tumour tissues and normal 
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(healthy) samples but also by the steps necessary to integrate such data.  

 

The integration of data from The GTEx and TCGA projects resulted in the loss of 

potentially informative genes due to differences in study designs, and gene 

definitions used. Although publicly available data from NCBI GEO may aid in 

increasing dataset size for DEG discovery and serve as validation sets, this too 

possesses constraints due to difference in sequencing platforms – Illumina HiSeq 

2000 for GTEx and TCGA data, Illumina HiSeq 2500, 3000 & 4000 for the 

majority of transcriptomic data published in NCBI GEO. A possible solution to 

integrating RNA-Seq data generated on different platforms may also require 

accessing raw data, post assembly and alignment of transcripts, and generating 

HTSeq counts prior to differential expression analysis may better normalize the 

expression counts used.   

4.5 Conclusions 
The integration of GTEx and TCGA data allowed for the discovery of a very 

distinct NAT tissue gene expression profile. Each iteration of differential 

expression analysis revealed three different classifiers that all classified unseen 

data with 100% accuracy. Although a distinctly different molecular portrait of 

TCGA NAT tissues was revealed, the 10,000 genes not present in the GTEx gene 

library, contributed to a set of informative genes still capable of segregating 

tumour samples from normal samples. Thus NAT tissues may still serve as a 

control in cancer transcriptomic studies, along with the additional advantages of 

easy biospecimen accessibility during tumour biopsy collection.  

 

The development of a barcoding method for RNA-Seq gene count data proved 

robust in transforming continuous data and enabled an “ease” of tissue 

discrimination to classifier development. The results obtained, albeit convincingly 

validated on an unseen dataset, could be further assessed with samples from other 

study consortia. Further investigation of NAT differentiating genes through 

function and pathway enrichment analysis may also ascertain their molecular roles 

in tumorigenesis and potential as both early breast cancer detection biomarkers 

and candidate drug targets. 
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CHAPTER 5 
Conclusions and Future Work 

 

The primary aim of our study was to integrate breast cancer microarray expression 

data using the GExB algorithm to discover easily assayable signatures for breast 

cancer subtypes. We also aimed to extend this to RNA-Seq data, with the 

implementation of our own RNA-Seq barcode method.   

 

5.1 Conclusion 
Transformation of expression data into barcodes simplifies discovery of 

features that are able to discriminate between sample types. Used in 

combination with machine learning and customised feature selection, gene 

expression barcodes produced signatures that clearly separate breast cancer 

subtypes.  

 

Enrichment analysis of both the microarray and RNA-Seq gene signatures 

revealed that unbiased approaches to FS can greatly enhance the biologically 

relevant discoveries made in bioinformatics. Within both gene signatures, 306 

known genes from microarray and 213 known genes from RNA-Seq, diseases 

in which these genes were involved included cancers of the skin (melanoma), 

lung, liver, kidneys, breast, endometrium (uterine), leukaemia, as well as 

illnesses with a known inflammatory nature such as arthritis, lupus 

erythematosus, and Crohn's disease. Moreover, the both sets were found to be 

statistically enriched for biological pathways and processes relevant to cancer, 

including: apoptosis, p53 signalling, and signalling pathways regulating 

pluripotency of stem cells. 

 

The barcoding method developed for RNA-Seq data holds promise for 

implementation in biomarker discovery for cancer in the NGS era. The NAT 

specific profile discovered was easily detectable and visualized with data 

transformation from continuous data to discrete data. Interrogation of the 

informative gene sets, in particular GTEx normal versus TCGA primary 
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tumour, 36 novel genes were involved in an accurate classifier being 

developed. These results pose various questions to cancer researchers 

surrounding not only differential expression analysis of tumours' experimental 

design, but also the very nature of normal tissues surrounding tumours and the 

possible biological insights into cancer metastases (Pietras & Östman, 2010). 

Mechanisms of tumorigenesis and the tumour's interaction with its 

surrounding environment needs to be closely investigated to fully elucidate the 

unique portrait of NAT tissues (Grivennikov, Greten, & Karin, 2010; Terzić, 

Grivennikov, Karin, & Karin, 2010).  

 

Haibe-Kains speculated in an article about classification models for breast 

cancer using gene expression could, “if widely used in a standardized fashion, 

could dramatically change the way in which patients are managed in a clinical 

setting and, hopefully, could lead to substantial improvements in outcome and 

survival” (Haibe-Kains, 2010). The potential to design and implement clinical 

assays, e.g. qtPCR, from RNA-Seq discovered biomarkers is clearly illustrated 

through the methods developed, implemented and validated throughout this 

research study. 

 

5.2 Discovered signatures are applicable across technologies  
As a final step in validating both the gene expression signatures discovered on 

microarray data, as well as the RNA-Seq z-score-to-barcode method, 

classification of RNA-Seq barcoded samples was performed with the two-

class microarray feature set. The 85 microarray probes were mapped to 

Ensembl gene ID's used in Illumina HiSeq 2000 sequencing data. This 

resulted in 75 genes, which were then extracted from 300 barcoded RNA-Seq 

breast tissue samples – 100 GTEx normal, 100 TCGA NAT and 100 TCGA 

Tumour. Hierarchical clustering resulted in 95.33% accurate classification of 

barcoded RNA-Seq samples.  
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5.3 Future Work 
To discover a more informative and probe/gene set for multiclass breast 

cancer classification, data slicing should be considered. This would entail 

analysing the classes of breast cancer in a one-versus-one (OVO) rather than 

OVR fashion to identify genes or probes that distinguish one subtype from 

another. Intersecting the OVO-FS discovered probes could allow a smaller but 

more informative probe set to be determined.  

 

Data curation, however extensive, was limited and could be extended to a far 

larger dataset. The poorly labelled samples and mislabelled samples could be 

considered as ambiguous and be further explored using the original 346-gene 

signature, then using those assigned classes to build a larger training dataset. 

While further evaluation of the RNA-Seq barcoding technique is necessary, 

our results point to its potential for application to other cancers, as well as 

other diseases or R&D applications that could benefit from accurate 

classification of clinical phenotypes, therapeutic responses and expected 

survival times, etc. 
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7 Appendices 
Appendix I 

Table 7. 1: Microarray breast tissue samples curated 

Tissue Type GEO* Series GEO Accession 

Numbers 

GEO Platform 

(Affymetrix™) 

Normal Epithelium GSE20437 GSM512539 

GSM512540 

GSM512541 

GSM512542 

GSM512543 

GSM512544 

GSM512545 

GSM512546 

GSM512547 

GSM512548 

GSM512549 

GSM512550 

GSM512551 

GSM512552 

GSM512553 

GSM512554 

GSM512555 

GSM512556 
 

GPL96** 

GSE9574 GSM241999 

GSM242000 

GSM242001 

GSM242002 

GSM242003 

GSM242004 

GSM242005 

GSM242006 

GSM242007 

GSM242008 
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GSM242009 

GSM242010 

GSM242011 

GSM242012 

GSM242013 

GSM242014 

GSM242015 

GSM242016 

GSM242017 

GSM242018 
 

Normal Duct GSE5764 GSM134584 

GSM134588 

GSM134687 

GSM134690 

GSM134693 

GSM134696 

GSM134699 

GSM134702 

GSM134705 

GSM134708 
 

GPL570*** 

Normal Lobe GSE5764 GSM134586 

GSM134589 

GSM134688 

GSM134691 

GSM134694 

GSM134697 

GSM134700 

GSM134703 

GSM134706 

GSM134709 
 

GPL570 

Triple Negative Breast 

Tumour 

GSE25065 GSM615637 

GSM615639 

GSM615640 

GSM615644 

GPL96 
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GSM615650 

GSM615651 

GSM615657 

GSM615658 

GSM615660 

GSM615661 

GSM615666 

GSM615667 

GSM615668 

GSM615671 

GSM615672 

GSM615674 

GSM615677 

GSM615680 

GSM615681 

GSM615687 

GSM615689 

GSM615691 

GSM615694 

GSM615696 

GSM615699 

GSM615707 

GSM615712 

GSM615714 

GSM615715 

GSM615716 

GSM615727 

GSM615733 

GSM615739 

GSM615742 

GSM615744 

GSM615746 

GSM615757 

GSM615762 

GSM615764 
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GSM615766 

GSM615769 

GSM615773 

GSM615776 

GSM615780 

GSM615784 

GSM615785 

GSM615823 

GSM615824 

GSM615827 
 

GSE31519 GSM782523 

GSM782524 

GSM782525 

GSM782526 

GSM782527 

GSM782528 

GSM782529 

GSM782530 

GSM782531 

GSM782532 

GSM782533 

GSM782534 

GSM782535 

GSM782536 

GSM782537 

GSM782538 

GSM782539 

GSM782540 

GSM782541 

GSM782542 

GSM782543 
 

Estrogen-Positive 

Breast Tumour 

GSE25065 GSM615638 

GSM615648 

GSM615656 

GPL96 
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GSM615669 

GSM615688 

GSM615701 

GSM615702 

GSM615703 

GSM615708 

GSM615709 

GSM615718 

GSM615725 

GSM615728 

GSM615730 

GSM615732 

GSM615736 

GSM615737 

GSM615741 

GSM615748 

GSM615754 

GSM615761 

GSM615767 

GSM615774 

GSM615782 

GSM615783 

GSM615796 

GSM615809 

GSM615819 

GSM615822 
 

GSE23988 GSM590841 

GSM590843 

GSM590844 

GSM590845 

GSM590846 

GSM590847 

GSM590849 

GSM590854 
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GSM590856 

GSM590857 

GSM590859 

GSM590861 
 

 GSE22093 GSM549241 

GSM549247 

GSM549258 

GSM549259 

GSM549261 

GSM549264 

GSM549266 

GSM549269 

GSM549270 

GSM549272 
 

 

Her2-Positive Breast 

Tumour 

GSE42822 GSM105051 

GSM105051 

GSM105060 

GSM105068 

GSM105068 

GSM105062 

GSM105064 

GSM105065 

GSM105068 

GSM105062 

GSM105065 

GSM105067 

GSM105069 

GSM105060 

GSM105063 

GSM105064 

GSM105065 

GSM105067 
 

GPL96 

GSE37946 GSM930525 

GSM930526 
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GSM930527 

GSM930528 

GSM930530 

GSM930531 

GSM930533 

GSM930534 

GSM930535 

GSM930539 

GSM930541 

GSM930542 

GSM930543 

GSM930544 

GSM930546 

GSM930547 

GSM930549 

GSM930551 

GSM930552 

GSM930555 

GSM930557 

GSM930558 

GSM930559 

GSM930560 

GSM930561 

GSM930563 

GSM930564 

GSM930566 

GSM930568 

GSM930569 

GSM930571 

GSM930574 
 

Primary Breast 

Tumour 

GSE21217 GSM530556 

GSM530557 

GSM530558 

GSM530559 

GPL96 

http://etd.uwc.ac.za/



124 
 

GSM530560 

GSM530561 

GSM530562 

GSM530563 

GSM530564 

GSM530565 

GSM530566 
 

GSE5462 GSM125123 

GSM125125 

GSM125127 

GSM125129 

GSM125131 

GSM125133 

GSM125135 

GSM125137 

GSM125139 

GSM125141 
 

Inflammatory Breast 

Tumour 

GSE5847 GSM136373 

GSM136374 

GSM136375 

GSM136376 

GSM136377 

GSM136378 

GSM136379 

GSM136380 

GSM136381 

GSM136382 

GSM136383 

GSM136384 

GSM136385 
 

GPL570 

GSE22597 GSM560663 

GSM560664 

GSM560665 

GSM560666 

GPL96 
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GSM560667 

GSM560668 

GSM560669 

GSM560670 

GSM560671 

GSM560672 

GSM560673 

GSM560674 

GSM560675 

GSM560676 

GSM560677 

GSM560678 

GSM560679 

GSM560680 

GSM560681 

GSM560682 

GSM560683 
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Appendix II 

GTEx Data Curated 

Table 7. 2: Normal breast tissue samples filtered from GTEx Version 7 Gene Counts file 

Training Data – GTEx Sample ID Sample Name 

GTEX-1117F-2826-SM-5GZXL GTEx-Norm1 

GTEX-111YS-1926-SM-5GICC GTEx-Norm2 

GTEX-1122O-1226-SM-5H113 GTEx-Norm3 

GTEX-117XS-1926-SM-5GICO GTEx-Norm4 

GTEX-117YX-1426-SM-5H12H GTEx-Norm5 

GTEX-1192X-2326-SM-5987X GTEx-Norm6 

GTEX-11DXW-0626-SM-5N9ER GTEx-Norm7 

GTEX-11DXY-2326-SM-5GICW GTEx-Norm8 

GTEX-11DXZ-1926-SM-5GZZL GTEx-Norm9 

GTEX-11DZ1-0326-SM-5N9BN GTEx-Norm10 

GTEX-11EI6-0626-SM-5985T GTEx-Norm11 

GTEX-11EM3-1326-SM-5N9C6 GTEx-Norm12 

GTEX-11EMC-2026-SM-5A5JV GTEx-Norm13 

GTEX-11EQ9-1826-SM-5Q5AJ GTEx-Norm14 

GTEX-11GS4-2126-SM-5A5KR GTEx-Norm15 

GTEX-11GSO-1926-SM-5A5K3 GTEx-Norm16 

GTEX-11I78-2226-SM-5PNYA GTEx-Norm17 

GTEX-11LCK-2426-SM-5HL5F GTEx-Norm18 

GTEX-11NSD-0926-SM-5N9DR GTEx-Norm19 

GTEX-11NV4-2026-SM-5N9DG GTEx-Norm20 

GTEX-11O72-2126-SM-5N9FO GTEx-Norm21 

GTEX-11OF3-1926-SM-59889 GTEx-Norm22 

GTEX-11ONC-2126-SM-5HL6E GTEx-Norm23 

GTEX-11P7K-0726-SM-5EGKX GTEx-Norm24 

GTEX-11P81-1926-SM-5BC53 GTEx-Norm25 

GTEX-11P82-1326-SM-5HL62 GTEx-Norm26 

GTEX-11PRG-0826-SM-5EQ6A GTEx-Norm27 

GTEX-11TT1-2126-SM-5GU5Y GTEx-Norm28 

GTEX-11TUW-1826-SM-5BC5D GTEx-Norm29 

GTEX-11WQC-1726-SM-5GU4W GTEx-Norm30 

GTEX-11WQK-2426-SM-5GU5C GTEx-Norm31 

GTEX-11ZTT-2326-SM-5EQLG GTEx-Norm32 

GTEX-11ZUS-0826-SM-5FQUY GTEx-Norm33 
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GTEX-1211K-1926-SM-5EQLB GTEx-Norm34 

GTEX-1269C-2426-SM-5FQSN GTEx-Norm35 

GTEX-12BJ1-1826-SM-5HL9N GTEx-Norm36 

GTEX-12KS4-0126-SM-5Q5A5 GTEx-Norm37 

GTEX-12WSK-2226-SM-5GCO5 GTEx-Norm38 

GTEX-12WSM-1726-SM-5BC6J GTEx-Norm39 

GTEX-12WSN-1326-SM-5GCNT GTEx-Norm40 

GTEX-12ZZX-1126-SM-5EGKB GTEx-Norm41 

GTEX-13113-1726-SM-5GCOO GTEx-Norm42 

GTEX-1313W-0826-SM-5EQ4T GTEx-Norm43 

GTEX-1314G-1226-SM-5BC6D GTEx-Norm44 

GTEX-131XW-0726-SM-5EGK3 GTEx-Norm45 

GTEX-131YS-0626-SM-5EGKL GTEx-Norm46 

GTEX-132AR-0826-SM-5EGK6 GTEx-Norm47 

GTEX-132NY-0826-SM-5K7Y7 GTEx-Norm48 

GTEX-133LE-1726-SM-5K7VQ GTEx-Norm49 

GTEX-1399U-1826-SM-5PNZ1 GTEx-Norm50 

GTEX-139T6-1626-SM-5PNYZ GTEx-Norm51 

GTEX-139T8-0826-SM-5L3DE GTEx-Norm52 

GTEX-139TU-0626-SM-5KM3X GTEx-Norm53 

GTEX-13CF2-2026-SM-5K7VI GTEx-Norm54 

GTEX-13CF3-2126-SM-5IFJP GTEx-Norm55 

GTEX-13D11-1026-SM-5IJFB GTEx-Norm56 

GTEX-13FHO-0826-SM-5L3E8 GTEx-Norm57 

GTEX-13FTW-1426-SM-5LZWZ GTEx-Norm58 

GTEX-13FTX-1126-SM-5N9EN GTEx-Norm59 

GTEX-13FTY-2226-SM-5J1ND GTEx-Norm60 

GTEX-13N11-1726-SM-5J1OJ GTEx-Norm61 

GTEX-13N1W-0626-SM-5MR4U GTEx-Norm62 

GTEX-13NZ8-0126-SM-5IJCT GTEx-Norm63 

GTEX-13NZ9-1026-SM-5MR5K GTEx-Norm64 

GTEX-13NZB-2126-SM-5MR4Y GTEx-Norm65 

GTEX-13O3O-0826-SM-5K7WE GTEx-Norm66 

GTEX-13O3P-0826-SM-5L3DH GTEx-Norm67 

GTEX-13O3Q-2226-SM-5KM4O GTEx-Norm68 

GTEX-13O61-1826-SM-5KM4I GTEx-Norm69 

GTEX-13OW5-2226-SM-5L3HC GTEx-Norm70 
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GTEX-13OW8-0226-SM-5K7UP GTEx-Norm71 

GTEX-13PL6-2926-SM-5L3I2 GTEx-Norm72 

GTEX-13PVQ-1026-SM-5KM3M GTEx-Norm73 

GTEX-13PVR-2226-SM-7DHKP GTEx-Norm74 

GTEX-13QIC-2326-SM-5LU5N GTEx-Norm75 

GTEX-13QJ3-0826-SM-7DHKK GTEx-Norm76 

GTEX-13SLW-2526-SM-62LDQ GTEx-Norm77 

GTEX-13SLX-2326-SM-5ZZWE GTEx-Norm78 

GTEX-13VXU-2826-SM-664MA GTEx-Norm79 

GTEX-13W3W-1226-SM-5LU4H GTEx-Norm80 

GTEX-13W46-0826-SM-5LU3H GTEx-Norm81 

GTEX-144GL-2026-SM-5LU3O GTEx-Norm82 

GTEX-144GM-0926-SM-5O994 GTEx-Norm83 

GTEX-145LT-0726-SM-5S2VM GTEx-Norm84 

GTEX-145ME-1526-SM-5Q5F2 GTEx-Norm85 

GTEX-145MF-2226-SM-7EPIR GTEx-Norm86 

GTEX-145MN-1926-SM-5SIAI GTEx-Norm87 

GTEX-145MO-0826-SM-5NQBL GTEx-Norm88 

GTEX-146FH-0826-SM-5SI8T GTEx-Norm89 

GTEX-14753-2426-SM-5LU8U GTEx-Norm90 

GTEX-147F4-2826-SM-5NQBN GTEx-Norm91 

GTEX-14A5I-0726-SM-5TDEB GTEx-Norm92 

GTEX-14AS3-1626-SM-5S2OY GTEx-Norm93 

GTEX-14B4R-1226-SM-5TDDT GTEx-Norm94 

GTEX-14BMU-1626-SM-5TDE7 GTEx-Norm95 

GTEX-14BMV-0626-SM-793AU GTEx-Norm96 

GTEX-14DAR-1326-SM-7DUEG GTEx-Norm97 

GTEX-14E6C-1326-SM-62LEQ GTEx-Norm98 

GTEX-14E6E-1326-SM-5S2NR GTEx-Norm99 

GTEX-14E7W-0826-SM-62LEJ GTEx-Norm100 

  

Test Data – GTEx Sample ID Sample Name 

GTEX-14H4A-2526-SM-5YYAY GTEx-Norm101 

GTEX-14ICK-2426-SM-6EU27 GTEx-Norm102 

GTEX-14LLW-0626-SM-62LFC GTEx-Norm103 

GTEX-14PHY-1926-SM-5YY95 GTEx-Norm104 

GTEX-14PJ4-2126-SM-6ETZJ GTEx-Norm105 
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GTEX-14PJO-0726-SM-69LO8 GTEx-Norm106 

GTEX-14PKU-0426-SM-6EU1P GTEx-Norm107 

GTEX-14PN4-0626-SM-62LFP GTEx-Norm108 

GTEX-15DCZ-0726-SM-69LOV GTEx-Norm109 

GTEX-15EOM-5019-SM-793DK GTEx-Norm110 

GTEX-15ER7-1626-SM-6PAMZ GTEx-Norm111 

GTEX-15ETS-0626-SM-7KUMX GTEx-Norm112 

GTEX-15FZZ-0726-SM-7KUFZ GTEx-Norm113 

GTEX-15G19-2126-SM-6M48J GTEx-Norm114 

GTEX-15RJE-2626-SM-7KFT1 GTEx-Norm115 

GTEX-15SHW-1326-SM-6PAL8 GTEx-Norm116 

GTEX-15UF6-0126-SM-6PAMB GTEx-Norm117 

GTEX-15UF7-0726-SM-6M46D GTEx-Norm118 

GTEX-16BQI-1026-SM-7KUEA GTEx-Norm119 

GTEX-16NGA-0826-SM-718AF GTEx-Norm120 

GTEX-16YQH-2826-SM-6PAMY GTEx-Norm121 

GTEX-17EUY-1926-SM-7DUF6 GTEx-Norm122 

GTEX-17EVP-0226-SM-79OND GTEx-Norm123 

GTEX-17EVQ-0426-SM-7LG57 GTEx-Norm124 

GTEX-17F96-2426-SM-7IGLN GTEx-Norm125 

GTEX-17F97-2526-SM-7EWDV GTEx-Norm126 

GTEX-17F98-0526-SM-79OK5 GTEx-Norm127 

GTEX-17GQL-0326-SM-7LG5U GTEx-Norm128 

GTEX-17HG3-0126-SM-7IGNH GTEx-Norm129 

GTEX-17HGU-1326-SM-79OKB GTEx-Norm130 

GTEX-17HHE-1426-SM-7EPH4 GTEx-Norm131 

GTEX-17HHY-0926-SM-793C1 GTEx-Norm132 

GTEX-17JCI-0726-SM-7EPH1 GTEx-Norm133 

GTEX-17KNJ-2026-SM-7LG53 GTEx-Norm134 

GTEX-17MF6-0326-SM-7EPH5 GTEx-Norm135 

GTEX-17MFQ-0926-SM-7LG4S GTEx-Norm136 

GTEX-183FY-1126-SM-7DHLJ GTEx-Norm137 

GTEX-183WM-0726-SM-7LTAA GTEx-Norm138 

GTEX-18465-2026-SM-718AP GTEx-Norm139 

GTEX-18A6Q-0926-SM-7LG4N GTEx-Norm140 

GTEX-18A7A-0726-SM-7LTAI GTEx-Norm141 

GTEX-18A7B-2626-SM-7LG55 GTEx-Norm142 
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GTEX-18D9A-1526-SM-7LG4J GTEx-Norm143 

GTEX-18QFQ-0826-SM-718AX GTEx-Norm144 

GTEX-1A3MV-1626-SM-731C1 GTEx-Norm145 

GTEX-1A3MX-2726-SM-718B6 GTEx-Norm146 

GTEX-1A8G7-2426-SM-731AK GTEx-Norm147 

GTEX-1AMEY-1026-SM-718AA GTEx-Norm148 

GTEX-1AX8Z-0926-SM-731AW GTEx-Norm149 

GTEX-1AX9I-0726-SM-73KWV GTEx-Norm150 

GTEX-1AX9J-1126-SM-731B7 GTEx-Norm151 

GTEX-1B8KE-1226-SM-73KWK GTEx-Norm152 

GTEX-1B8KZ-1526-SM-7DUG7 GTEx-Norm153 

GTEX-1B932-0826-SM-73KXG GTEx-Norm154 

GTEX-1B933-2526-SM-7IGO5 GTEx-Norm155 

GTEX-1B97I-0426-SM-79OL7 GTEx-Norm156 

GTEX-1B97J-0426-SM-79OLQ GTEx-Norm157 

GTEX-1BAJH-0826-SM-7EWEF GTEx-Norm158 

GTEX-1C64O-0726-SM-7DUFU GTEx-Norm159 

GTEX-1C6VQ-0426-SM-79OOX GTEx-Norm160 

GTEX-1C6VS-0726-SM-7EPHF GTEx-Norm161 

GTEX-1CAMR-1426-SM-793BO GTEx-Norm162 

GTEX-1CAMS-1426-SM-7IGPM GTEx-Norm163 

GTEX-1CB4E-0226-SM-79OLW GTEx-Norm164 

GTEX-1CB4G-2326-SM-79OOI GTEx-Norm165 

GTEX-1CB4J-1826-SM-7EWF9 GTEx-Norm166 

GTEX-1E2YA-2726-SM-7IGPW GTEx-Norm167 

GTEX-1EKGG-2626-SM-7IGPY GTEx-Norm168 

GTEX-1EU9M-2826-SM-7EWFH GTEx-Norm169 

GTEX-PSDG-1626-SM-48TCQ GTEx-Norm170 

GTEX-Q2AG-0326-SM-48U1O GTEx-Norm171 

GTEX-QDT8-0626-SM-48TYW GTEx-Norm172 

GTEX-QEG5-0726-SM-4R1JQ GTEx-Norm173 

GTEX-QEL4-2126-SM-447AE GTEx-Norm174 

GTEX-QMRM-1626-SM-4R1KV GTEx-Norm175 

GTEX-QVJO-1826-SM-447C9 GTEx-Norm176 

GTEX-R3RS-0626-SM-48FE1 GTEx-Norm177 

GTEX-R53T-1526-SM-48FEK GTEx-Norm178 

GTEX-R55D-0826-SM-48FEA GTEx-Norm179 
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GTEX-REY6-2426-SM-48FF5 GTEx-Norm180 

GTEX-RU1J-0626-SM-4WAWY GTEx-Norm181 

GTEX-RU72-0626-SM-46MUI GTEx-Norm182 

GTEX-RUSQ-2026-SM-4GIAK GTEx-Norm183 

GTEX-RWS6-1926-SM-47JXY GTEx-Norm184 

GTEX-S32W-2026-SM-4AD6E GTEx-Norm185 

GTEX-S33H-0326-SM-4AD6N GTEx-Norm186 

GTEX-S341-1526-SM-4AD6K GTEx-Norm187 

GTEX-S4P3-1326-SM-4AD6V GTEx-Norm188 

GTEX-S4Q7-1126-SM-4AD6R GTEx-Norm189 

GTEX-S4UY-0726-SM-4AD6X GTEx-Norm190 

GTEX-S7SE-0826-SM-4AT4D GTEx-Norm191 

GTEX-SE5C-2126-SM-4BRUJ GTEx-Norm192 

GTEX-T2IS-1526-SM-32QPR GTEx-Norm193 

GTEX-T2YK-2226-SM-32QPT GTEx-Norm194 

GTEX-T5JC-2126-SM-32PMO GTEx-Norm195 

GTEX-T5JW-2026-SM-4DM63 GTEx-Norm196 

GTEX-T6MN-0726-SM-32PML GTEx-Norm197 

GTEX-T6MO-0326-SM-32QOK GTEx-Norm198 

GTEX-TKQ1-0226-SM-33HB5 GTEx-Norm199 

GTEX-TKQ2-1826-SM-33HB2 GTEx-Norm200 

GTEX-TML8-1226-SM-32QON GTEx-Norm201 

GTEX-TMMY-0726-SM-33HBE GTEx-Norm202 

GTEX-U3ZH-1426-SM-4DXSR GTEx-Norm203 

GTEX-U3ZN-1926-SM-4DXSG GTEx-Norm204 

GTEX-U412-1826-SM-4DXTJ GTEx-Norm205 

GTEX-U8XE-0826-SM-4E3J1 GTEx-Norm206 

GTEX-UJHI-1426-SM-3DB9C GTEx-Norm207 

GTEX-UPK5-2326-SM-3P5Z8 GTEx-Norm208 

GTEX-UTHO-1026-SM-3GAF7 GTEx-Norm209 

GTEX-V955-2026-SM-3GAFA GTEx-Norm210 

GTEX-VJWN-0726-SM-3GIJ8 GTEx-Norm211 

GTEX-VUSG-2226-SM-4KKZO GTEx-Norm212 

GTEX-W5X1-2326-SM-3GIL6 GTEx-Norm213 

GTEX-WFON-1826-SM-3GILG GTEx-Norm214 

GTEX-WI4N-1426-SM-3LK7H GTEx-Norm215 

GTEX-WOFL-0826-SM-3MJG1 GTEx-Norm216 
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GTEX-WRHU-0326-SM-3MJFY GTEx-Norm217 

GTEX-WXYG-2226-SM-4E3IM GTEx-Norm218 

GTEX-WY7C-2726-SM-3NB3P GTEx-Norm219 

GTEX-WYBS-0926-SM-3NM94 GTEx-Norm220 

GTEX-WYJK-1326-SM-3NB2T GTEx-Norm221 

GTEX-WYVS-1726-SM-3NMAY GTEx-Norm222 

GTEX-X15G-1626-SM-3NMB3 GTEx-Norm223 

GTEX-X261-0626-SM-3NMD9 GTEx-Norm224 

GTEX-X4EP-2926-SM-3P5YQ GTEx-Norm225 

GTEX-X4XY-0926-SM-4E3JD GTEx-Norm226 

GTEX-XBED-1626-SM-47JYN GTEx-Norm227 

GTEX-XGQ4-0926-SM-4AT4U GTEx-Norm228 

GTEX-XMD1-0826-SM-4AT52 GTEx-Norm229 

GTEX-XMD2-0926-SM-4WWEF GTEx-Norm230 

GTEX-XMK1-1126-SM-4IHJ8 GTEx-Norm231 

GTEX-XOT4-0726-SM-4GIAW GTEx-Norm232 

GTEX-XQ3S-1326-SM-4BOPQ GTEx-Norm233 

GTEX-XQ8I-2426-SM-4WAXY GTEx-Norm234 

GTEX-XUW1-2326-SM-4BOO5 GTEx-Norm235 

GTEX-XUZC-1626-SM-4BRVP GTEx-Norm236 

GTEX-XV7Q-2326-SM-4BRVZ GTEx-Norm237 

GTEX-XYKS-1326-SM-4BRUN GTEx-Norm238 

GTEX-Y111-2026-SM-4SOJA GTEx-Norm239 

GTEX-Y114-2026-SM-4TT7L GTEx-Norm240 

GTEX-Y3I4-1526-SM-4TT7K GTEx-Norm241 

GTEX-Y3IK-2326-SM-4WWDT GTEx-Norm242 

GTEX-Y5LM-1726-SM-4VDSX GTEx-Norm243 

GTEX-Y5V5-2126-SM-4WWFO GTEx-Norm244 

GTEX-Y5V6-2126-SM-4WWFX GTEx-Norm245 

GTEX-Y8E4-1626-SM-5S2MW GTEx-Norm246 

GTEX-Y8LW-1626-SM-5IFHX GTEx-Norm247 

GTEX-Y9LG-1426-SM-5IFJZ GTEx-Norm248 

GTEX-YB5E-1726-SM-5IFJ3 GTEx-Norm249 

GTEX-YB5K-1626-SM-5IFIN GTEx-Norm250 

GTEX-YEC3-1026-SM-5IFI5 GTEx-Norm251 

GTEX-YFC4-1426-SM-5IFJG GTEx-Norm252 

GTEX-YFCO-1826-SM-4W1YH GTEx-Norm253 
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GTEX-YJ8O-2226-SM-5IFHW GTEx-Norm254 

GTEX-ZA64-1526-SM-5CVMD GTEx-Norm255 

GTEX-ZAB4-2526-SM-5HL8M GTEx-Norm256 

GTEX-ZAJG-0626-SM-5HL8X GTEx-Norm257 

GTEX-ZC5H-2626-SM-5J2MG GTEx-Norm258 

GTEX-ZDTT-2126-SM-5S2OJ GTEx-Norm259 

GTEX-ZDXO-0126-SM-5S2ND GTEx-Norm260 

GTEX-ZDYS-1126-SM-5K7UB GTEx-Norm261 

GTEX-ZEX8-2226-SM-57WC6 GTEx-Norm262 

GTEX-ZF29-1926-SM-5S2P1 GTEx-Norm263 

GTEX-ZF2S-2026-SM-5E461 GTEx-Norm264 

GTEX-ZF3C-2326-SM-5S2MZ GTEx-Norm265 

GTEX-ZLFU-2126-SM-4WWEV GTEx-Norm266 

GTEX-ZLV1-1426-SM-4WWES GTEx-Norm267 

GTEX-ZPIC-1126-SM-5BC7F GTEx-Norm268 

GTEX-ZQG8-0726-SM-5P9H9 GTEx-Norm269 

GTEX-ZQUD-1926-SM-51MSA GTEx-Norm270 

GTEX-ZT9W-2026-SM-51MRA GTEx-Norm271 

GTEX-ZTTD-1026-SM-51MRD GTEx-Norm272 

GTEX-ZTX8-1226-SM-4YCE9 GTEx-Norm273 

GTEX-ZU9S-1926-SM-5NQBP GTEx-Norm274 

GTEX-ZUA1-1526-SM-59HLS GTEx-Norm275 

GTEX-ZV6S-1826-SM-5NQ8D GTEx-Norm276 

GTEX-ZV7C-1826-SM-5NQ83 GTEx-Norm277 

GTEX-ZVE2-1226-SM-5NQ8R GTEx-Norm278 

GTEX-ZVT2-1826-SM-5NQ8W GTEx-Norm279 

GTEX-ZVT4-1026-SM-57WC4 GTEx-Norm280 

GTEX-ZVTK-0326-SM-51MRR GTEx-Norm281 

GTEX-ZVZQ-0826-SM-51MRF GTEx-Norm282 

GTEX-ZWKS-2826-SM-5NQ74 GTEx-Norm283 

GTEX-ZXES-0826-SM-5E43C GTEx-Norm284 

GTEX-ZY6K-1626-SM-5GZWV GTEx-Norm285 

GTEX-ZYFC-0826-SM-5E44K GTEx-Norm286 

GTEX-ZYT6-0126-SM-5E45J GTEx-Norm287 

GTEX-ZYW4-0826-SM-5GIDG GTEx-Norm288 

GTEX-ZZ64-1226-SM-5E43R GTEx-Norm289 

GTEX-ZZPU-0626-SM-5E43T GTEx-Norm290 
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Appendix III 

TCGA Data Curated 

Table 7. 3: Paired TCGA NAT and Primary Tumour Samples 

Complete TCGA 

ID 

Sample Name Sample Name Molecular 

Subtype 

TCGA-BH-A18V Norm1_NAT Tum1_TN Triple Negative 

TCGA-BH-A1EV Norm10_NAT Tum10_ER Estrogen Positive 

TCGA-BH-A18P Norm11_NAT Tum11_ER Estrogen Positive 

TCGA-BH-A1ET Norm12_NAT Tum12_ER Estrogen Positive 

TCGA-BH-A0DP Norm13_NAT Tum13_ER Estrogen Positive 

TCGA-BH-A0E1 Norm14_NAT Tum14_ER Estrogen Positive 

TCGA-BH-A0BJ Norm15_NAT Tum15_ER Estrogen Positive 

TCGA-BH-A0H7 Norm16_NAT Tum16_ER Estrogen Positive 

TCGA-BH-A0BC Norm17_NAT Tum17_ER Estrogen Positive 

TCGA-BH-A0BA Norm18_NAT Tum18_ER Estrogen Positive 

TCGA-BH-A0DH Norm19_NAT Tum19_ER Estrogen Positive 

TCGA-BH-A18Q Norm2_NAT Tum2_TN Triple Negative 

TCGA-BH-A0H9 Norm20_NAT Tum20_ER Estrogen Positive 

TCGA-BH-A0BV Norm21_NAT Tum21_ER Estrogen Positive 

TCGA-BH-A0B8 Norm22_NAT Tum22_ER Estrogen Positive 

TCGA-BH-A0AZ Norm23_NAT Tum23_ER Estrogen Positive 

TCGA-BH-A0BM Norm24_NAT Tum24_ER Estrogen Positive 

TCGA-BH-A0BQ Norm25_NAT Tum25_ER Estrogen Positive 

TCGA-BH-A0BT Norm26_NAT Tum26_ER Estrogen Positive 

TCGA-BH-A0DG Norm27_NAT Tum27_ER Estrogen Positive 

TCGA-BH-A0DO Norm28_NAT Tum28_ER Estrogen Positive 

TCGA-BH-A0DT Norm29_NAT Tum29_ER Estrogen Positive 

TCGA-BH-A0E0 Norm3_NAT Tum3_TN Triple Negative 

TCGA-BH-A0H5 Norm30_NAT Tum30_ER Estrogen Positive 

TCGA-BH-A0HA Norm31_NAT Tum31_ER Estrogen Positive 

TCGA-BH-A18J Norm32_NAT Tum32_ER Estrogen Positive 

TCGA-BH-A18L Norm33_NAT Tum33_ER Estrogen Positive 

TCGA-BH-A1EW Norm34_NAT Tum34_TN Triple Negative 

TCGA-BH-A0AY Norm35_NAT Tum35_ER Estrogen Positive 
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TCGA-BH-A0AU Norm36_NAT Tum36_ER Estrogen Positive 

TCGA-BH-A0B5 Norm37_NAT Tum37_ER Estrogen Positive 

TCGA-BH-A1EN Norm38_NAT Tum38_Her2 Her2-Positive 

TCGA-BH-A1FU Norm39_NAT Tum39_Her2 Her2-Positive 

TCGA-A7-A0CE Norm4_NAT Tum4_TN Triple Negative 

TCGA-BH-A18K Norm40_NAT Tum40_ER Estrogen Positive 

TCGA-A7-A13E Norm5_NAT Tum5_ER Estrogen Positive 

TCGA-BH-A0B3 Norm6_NAT Tum6_TN Triple Negative 

TCGA-BH-A0BW Norm7_NAT Tum7_TN Triple Negative 

TCGA-BH-A0DL Norm8_NAT Tum8_ER Estrogen Positive 

TCGA-E2-A158 Norm9_NAT Tum9_TN Triple Negative 
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Table 7. 4: Unpaired TGCA NAT Samples 

Complete TCGA ID Sample Name Molecular Subtype 

TCGA-E9-A1RH Norm41_NAT Normal - Solid Tissue 

TCGA-BH-A0DQ Norm42_NAT Normal - Solid Tissue 

TCGA-E2-A15M Norm43_NAT Normal - Solid Tissue 

TCGA-E2-A1LS Norm44_NAT Normal - Solid Tissue 

TCGA-BH-A209 Norm45_NAT Normal - Solid Tissue 

TCGA-BH-A0DZ Norm46_NAT Normal - Solid Tissue 

TCGA-AC-A2FM Norm47_NAT Normal - Solid Tissue 

TCGA-BH-A1FR Norm48_NAT Normal - Solid Tissue 

TCGA-E9-A1RC Norm49_NAT Normal - Solid Tissue 

TCGA-A7-A0DB Norm50_NAT Normal - Solid Tissue 

TCGA-BH-A0DK Norm51_NAT Normal - Solid Tissue 

TCGA-GI-A2C8 Norm52_NAT Normal - Solid Tissue 

TCGA-E2-A15K Norm53_NAT Normal - Solid Tissue 

TCGA-E9-A1RD Norm54_NAT Normal - Solid Tissue 

TCGA-BH-A203 Norm55_NAT Normal - Solid Tissue 

TCGA-BH-A0C0 Norm56_NAT Normal - Solid Tissue 

TCGA-BH-A18U Norm57_NAT Normal - Solid Tissue 

TCGA-BH-A1FJ Norm58_NAT Normal - Solid Tissue 

TCGA-E9-A1RF Norm59_NAT Normal - Solid Tissue 

TCGA-BH-A1F2 Norm60_NAT Normal - Solid Tissue 

TCGA-E2-A15I Norm61_NAT Normal - Solid Tissue 

TCGA-BH-A0C3 Norm62_NAT Normal - Solid Tissue 

TCGA-A7-A13G Norm63_NAT Normal - Solid Tissue 

TCGA-E9-A1RI Norm64_NAT Normal - Solid Tissue 

TCGA-E9-A1RB Norm65_NAT Normal - Solid Tissue 

TCGA-A7-A0CH Norm66_NAT Normal - Solid Tissue 

TCGA-BH-A1EO Norm67_NAT Normal - Solid Tissue 

TCGA-E9-A1N5 Norm68_NAT Normal - Solid Tissue 

TCGA-A7-A13F Norm69_NAT Normal - Solid Tissue 

TCGA-E9-A1N9 Norm70_NAT Normal - Solid Tissue 

TCGA-AC-A23H Norm71_NAT Normal - Solid Tissue 

TCGA-E2-A1LB Norm72_NAT Normal - Solid Tissue 
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TCGA-E9-A1N6 Norm73_NAT Normal - Solid Tissue 

TCGA-BH-A1EU Norm74_NAT Normal - Solid Tissue 

TCGA-A7-A0DC Norm75_NAT Normal - Solid Tissue 

TCGA-E2-A153 Norm76_NAT Normal - Solid Tissue 

TCGA-BH-A0BZ Norm77_NAT Normal - Solid Tissue 

TCGA-BH-A1FE Norm78_NAT Normal - Solid Tissue 

TCGA-E9-A1R7 Norm79_NAT Normal - Solid Tissue 

TCGA-BH-A18S Norm80_NAT Normal - Solid Tissue 

TCGA-E9-A1NF Norm81_NAT Normal - Solid Tissue 

TCGA-BH-A208 Norm82_NAT Normal - Solid Tissue 

TCGA-E9-A1N4 Norm83_NAT Normal - Solid Tissue 

TCGA-E2-A1L7 Norm84_NAT Normal - Solid Tissue 

TCGA-BH-A1F8 Norm85_NAT Normal - Solid Tissue 

TCGA-BH-A18R Norm86_NAT Normal - Solid Tissue 

TCGA-AC-A2FB Norm87_NAT Normal - Solid Tissue 

TCGA-BH-A1FC Norm88_NAT Normal - Solid Tissue 

TCGA-BH-A0HK Norm89_NAT Normal - Solid Tissue 

TCGA-AC-A2FF Norm90_NAT Normal - Solid Tissue 

TCGA-E2-A1IG Norm91_NAT Normal - Solid Tissue 

TCGA-E2-A1LH Norm92_NAT Normal - Solid Tissue 

TCGA-GI-A2C9 Norm93_NAT Normal - Solid Tissue 

TCGA-BH-A0DD Norm94_NAT Normal - Solid Tissue 

TCGA-BH-A1FN Norm95_NAT Normal - Solid Tissue 

TCGA-E9-A1NG Norm96_NAT Normal - Solid Tissue 

TCGA-BH-A1FB Norm97_NAT Normal - Solid Tissue 

TCGA-A7-A0D9 Norm98_NAT Normal - Solid Tissue 

TCGA-E2-A1BC Norm99_NAT Normal - Solid Tissue 

TCGA-BH-A1FM Norm100_NAT Normal - Solid Tissue 

TCGA-BH-A1FH Norm101_NAT Normal - Solid Tissue 

TCGA-BH-A1FD Norm102_NAT Normal - Solid Tissue 

TCGA-BH-A0BS Norm103_NAT Normal - Solid Tissue 

TCGA-BH-A18M Norm104_NAT Normal - Solid Tissue 

TCGA-E9-A1ND Norm105_NAT Normal - Solid Tissue 

TCGA-BH-A0B7 Norm106_NAT Normal - Solid Tissue 
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TCGA-BH-A1F0 Norm107_NAT Normal - Solid Tissue 

TCGA-BH-A1FG Norm108_NAT Normal - Solid Tissue 

TCGA-BH-A204 Norm109_NAT Normal - Solid Tissue 

TCGA-BH-A1F6 Norm110_NAT Normal - Solid Tissue 

TCGA-BH-A0DV Norm111_NAT Normal - Solid Tissue 

TCGA-BH-A18N Norm112_NAT Normal - Solid Tissue 

TCGA-E9-A1NA Norm113_NAT Normal - Solid Tissue 
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Table 7. 5: Unpaired TCGA Tumour Samples 

Complete TCGA ID Sample Name Molecular Subtype 

TCGA-BH-A0HL Tum135 Estrogen-Positive 

TCGA-BH-A0RX Tum64 Triple Negative 

TCGA-AO-A0J4 Tum133 Triple Negative 

TCGA-A7-A0DA Tum134 Triple Negative 

TCGA-D8-A142 Tum65 Triple Negative 

TCGA-BH-A0HN Tum41 Estrogen-Positive 

TCGA-A2-A0T0 Tum66 Triple Negative 

TCGA-A2-A0YE Tum67 Triple Negative 

TCGA-A2-A0YJ Tum68 Estrogen-Positive 

TCGA-A2-A0D0 Tum69 Triple Negative 

TCGA-A2-A04U Tum70 Triple Negative 

TCGA-AO-A0J6 Tum71 Triple Negative 

TCGA-A2-A0YM Tum72 Triple Negative 

TCGA-A2-A04Q Tum73 Triple Negative 

TCGA-A2-A0D2 Tum74 Triple Negative 

TCGA-A2-A0SX Tum75 Triple Negative 

TCGA-AO-A0JL Tum76 Triple Negative 

TCGA-AO-A12F Tum77 Triple Negative 

TCGA-BH-A0B9 Tum78 Triple Negative 

TCGA-A2-A04T Tum79 Triple Negative 

TCGA-B6-A0RT Tum80 Triple Negative 

TCGA-AO-A128 Tum81 Triple Negative 

TCGA-AO-A129 Tum82 Triple Negative 

TCGA-AO-A124 Tum83 Triple Negative 

TCGA-B6-A0RU Tum84 Triple Negative 

TCGA-B6-A0IQ Tum85 Triple Negative 

TCGA-B6-A0IJ Tum86 Estrogen Positive 

TCGA-B6-A0X1 Tum87 Triple Negative 

TCGA-B6-A0RE Tum88 Triple Negative 

TCGA-A2-A0ST Tum89 Triple Negative 

TCGA-AR-A0TP Tum42 Estrogen Positive 

TCGA-A1-A0SO Tum90 Triple Negative 
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TCGA-A8-A07C Tum91 Triple Negative 

TCGA-A8-A07O Tum92 Triple Negative 

TCGA-A8-A08H Tum93 Triple Negative 

TCGA-A8-A08R Tum94 Triple Negative 

TCGA-AN-A04D Tum95 Triple Negative 

TCGA-AN-A0AL Tum96 Triple Negative 

TCGA-AN-A0AR Tum97 Triple Negative 

TCGA-AN-A0AT Tum98 Triple Negative 

TCGA-AN-A0FJ Tum99 Estrogen Positive 

TCGA-AN-A0FL Tum100 Triple Negative 

TCGA-AN-A0FX Tum101 Triple Negative 

TCGA-AN-A0G0 Tum102 Triple Negative 

TCGA-AN-A0XU Tum103 Triple Negative 

TCGA-AR-A0TS Tum104 Triple Negative 

TCGA-AR-A0TU Tum105 Triple Negative 

TCGA-AR-A0U0 Tum106 Triple Negative 

TCGA-AR-A0U4 Tum107 Triple Negative 

TCGA-AR-A1AH Tum43 Estrogen Positive 

TCGA-AR-A1AI Tum108 Triple Negative 

TCGA-AR-A1AJ Tum109 Estrogen Positive 

TCGA-AR-A1AQ Tum110 Triple Negative 

TCGA-AR-A1AY Tum111 Triple Negative 

TCGA-BH-A0AV Tum112 Triple Negative 

TCGA-BH-A0BG Tum113 Triple Negative 

TCGA-BH-A0BL Tum114 Triple Negative 

TCGA-BH-A0WA Tum115 Triple Negative 

TCGA-BH-A18G Tum116 Triple Negative 

TCGA-C8-A12K Tum117 Triple Negative 

TCGA-C8-A12V Tum118 Triple Negative 

TCGA-C8-A131 Tum119 Triple Negative 

TCGA-C8-A134 Tum120 Triple Negative 

TCGA-D8-A147 Tum121 Triple Negative 

TCGA-E2-A14N Tum122 Triple Negative 

TCGA-E2-A14R Tum123 Triple Negative 
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TCGA-E2-A14X Tum124 Triple Negative 

TCGA-E2-A150 Tum125 Triple Negative 

TCGA-E2-A159 Tum126 Triple Negative 

TCGA-E2-A1AZ Tum127 Triple Negative 

TCGA-E2-A1B5 Tum128 Estrogen Positive 

TCGA-A8-A08L Tum44 Estrogen Positive 

TCGA-B6-A0IK Tum129 Triple Negative 

TCGA-A8-A08J Tum130 Estrogen Positive 

TCGA-A2-A0T1 Tum137 Her2-Positive 

TCGA-AO-A0J2 Tum131 Triple Negative 

TCGA-BH-A0EE Tum138 Her2-Positive 

TCGA-A2-A0CY Tum45 Estrogen Positive 

TCGA-AO-A12D Tum139 Her2-Positive 

TCGA-AO-A0JE Tum140 Her2-Positive 

TCGA-A2-A0EQ Tum141 Her2-Positive 

TCGA-AO-A03L Tum46 Estrogen Positive 

TCGA-A8-A075 Tum47 Estrogen Positive 

TCGA-A8-A081 Tum48 Estrogen Positive 

TCGA-A8-A08X Tum142 Her2-Positive 

TCGA-A8-A094 Tum49 Estrogen Positive 

TCGA-C8-A12P Tum143 Her2-Positive 

TCGA-C8-A12Z Tum144 Her2-Positive 

TCGA-C8-A137 Tum145 Her2-Positive 

TCGA-E2-A14P Tum146 Her2-Positive 

TCGA-E2-A1B0 Tum147 Her2-Positive 

TCGA-A2-A0CU Tum50 Estrogen Positive 

TCGA-BH-A18T Tum132 Triple Negative 

TCGA-B6-A0X4 Tum51 Estrogen Positive 

TCGA-BH-A0EA Tum52 Estrogen Positive 

TCGA-BH-A18N Tum53 Estrogen Positive 

TCGA-BH-A1EU Tum54 Estrogen Positive 

TCGA-BH-A1EO Tum63 Estrogen Positive 

TCGA-B6-A0WS Tum62 Estrogen Positive 

TCGA-BH-A1ES Tum55 Estrogen Positive 
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TCGA-B6-A0X0 Tum56 Estrogen Positive 

TCGA-BH-A0DS Tum57 Estrogen Positive 

TCGA-AO-A0JA Tum58 Estrogen Positive 

TCGA-AO-A0JF Tum59 Estrogen Positive 

TCGA-A7-A0CD Tum60 Estrogen Positive 

TCGA-D8-A145 Tum61 Estrogen Positive 

TCGA-AN-A0XW Tum136 Estrogen Positive 

TCGA-B6-A1KF Tum148 Her2-Positive 

TCGA-A2-A1G1 Tum149 Her2-Positive 

TCGA-AR-A24U Tum150 Her2-Positive 

TCGA-C8-A1HK Tum151 Her2-Positive 

TCGA-E2-A1LB Tum152 Her2-Positive 
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