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ABSTRACT
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Department: SANBI

Degree: Master of Science
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Plant genome analysis is currently experiencing a boost due to reduced costs associated with the
development of next generation sequencing technologies. Knowledge on genetic background can be
applied to guide targeted plant selection and breeding, and to facilitate natural product discovery and
biological engineering. In medicinal plants, secondary metabolites are of particular interest because they
often represent the main active ingredients associated with health-promoting qualities.

Plant polyphenols are a highly diverse family of aromatic secondary metabolites that act as antimicrobial
agents, UV protectants, and insect or herbivore repellents. Most of the genome mining tools developed
to understand genetic materials have very-seldom addressed secondary metabolite genes and biosynthesis
pathways. Little significant research has been conducted to study key enzyme factors that can predict a
class of secondary metabolite genes from polyketide synthases.

The objectives of this study were twofold:—Primarily, it aimed to identify the biological properties of
secondary metabolite genes and the selection of a specific gene, naringenin-chalcone synthase or
chalcone synthase (CHS). The study hypothesized that'data science approaches in mining biological data,
particularly secondary metabolite, genes, would enable the compulsory disclosure of some aspects of
secondary metabolite (SM).

Secondarily, the aim was to propose a proof of concept for classifying or predicting plant genes involved
in polyphenol biosynthesis from data science techniques and convey these techniques in computational
analysis through machine learning algorithms and mathematical and statistical approaches.

Three specific challenges experienced while analysing secondary metabolite datasets were: 1) class
imbalance, which refers to lack of proportionality among protein sequence classes; 2) high
dimensionality, which alludes to a phenomenon feature space that arises when analysing bioinformatics
datasets; and 3) the difference in protein sequences lengths, which alludes to a phenomenon that protein
sequences have different lengths.

Considering these inherent issues, developing precise classification models and statistical models proves
a challenge. Therefore, the prerequisite for effective SM plant gene mining is dedicated data science
techniques that can collect, prepare and analyse SM genes.

PCA and TSNE were implemented to visualise the behavior of the SM datasets. Three feature sets were
developed: i) Amino acid frequency-based features, ii) Value-based features, and iii) frequency-based
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features. Eight features were engineered from ii and iii. Feature selection was then performed on these
later two feature sets and it was found that all the eight features were significant, to which data
visualisation was applied to visualise their significance levels. These eight features were further
transformed into 8-Selected feature matrix (8SFM), and the feature set in i) was transformed into a twenty
relative frequency feature matrix (20RFFM).

Both matrices were then used to conduct inferential statistical analysis with ANOVA and Chi-squared
models with their post hoc tests (Tukey’s HDS and Bonferroni respectively) and a boxplot, and to train
eight binary classification models: Logistic Regression (LR), Decision Tree (DT), Random Forest with
100 trees (RF100), Support Vector Machine (SVM), K-Nearest Neighbor (4NN and 2NN), Naive Bayes
(NB), Single Perceptron (SLP), and Multilayer Perceptron (MLP) neural network.

The hypotheses were tested on these learned models, producing positive results, with a performance of
94.2% as the highest average accuracy of the 2NN binary classifier. Furthermore, the statistical models
used inferential statistics to make judgments of the distribution of SM genes and reveal interesting
inferential statistics among the three SM datasets under observation. The statistical analysis conducted
for this study resulted in a 95% confidence that the labeled class of reviewed chalcone synthase (RCHS)
and the labeled class of unreviewed chalcone synthase (UCHS) within each dataset held similar properties
as opposed to the labeled class of Not chalcone synthase (NCHS).

In summary, the proof of concepts, and techniques developed as part of this study hold the prospective
revolution of the preparation, analysis and.-understanding of SM genes involved in polyphenol
production, but can be extended to.other-metabolomics, proteomics and genomics studies.

Keywords: Medicinal plants, Secondary metabolites, Polyphenols, Chalcone Synthase, feature
engineering, feature selection, data visualisation, machine learning techniques, mathematic-statistical
approaches.
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Preface:

The focus of the thesis is on the development of exploratory proof of concept computational models
which use feature engineering and predictive modelling techniques to produce outputs which mimic the
results of traditional biological studies. It is important to note that computational modeling is based on
mathematical and statistical estimated approaches which interrogate the properties of data and draw
inferences. It is not intended to explain the biological properties of the data under review, but rather to
apply computational models to draw conclusions about the data. Therefore, although the development
of the model may be informed, on some level, by biological theory, it is not intended to follow the exact
theory and methodology of traditional biological enzyme analysis, but to merely produce the same
outcome in a faster, cost-efficient manner.

XV



Chapter One: Introduction

1.1 Introduction and Problem Statement

World-wide, six floral kingdoms exist, and South Africa is home to one of these kingdoms. Over 9000
species belong to the Cape floral kingdom, 6200 of which are endemic and occur nowhere else in the
world. More than 3000 plants in South Africa with medicinal properties are known. These plants
represent a tremendous, yet untapped biological resource for bioprospecting towards development of
novel drugs (Yadav, Khare, & Singhal, 2017, Lui et al., 2004). Genome analysis of South African
medicinal plants has been initiated through the Aspalathus linearis (rooibos) genomics programme at the
University of the Western Cape, which encompasses the sequencing of the rooibos genome (150x
genome coverage) as well as six diverse transcriptomes. It was funded by the NRF in 2016 (project
numbers RTF150421117446 and CSUR150714125961) with the aim to:

1) Improve rooibos production through the development of genomic markers for agronomically
important traits (e.g. nodulation, stress tolerance, production of medicinal compounds) to target plant
selection.

2) Open the rooibos genome for biotechnological exploration.
3) Enhance our understanding of the biology-ef-fynbos-plants:
4) Develop biocomputational approaches for future medicinal plant genome analyses.

Plant genome analysis is currently increasing due to the reduced sequencing costs associated with the
development of improved next.generation sequencing-technologies. Knowledge on the genetic
background of plants can be applied to guide targeted selection and breeding, and to facilitate natural
product discovery and biological engineering. Medicinal-plants are of particular interest, as their genomes
encode diverse metabolic pathways for pharmacologically active compounds.

The prerequisite for effective plant genome mining is dedicated biocomputational tools that can be used
to identify gene pathways involved in the production of natural plant products. To date, only one tool has
been developed, called PlantiSMASH. PlantiSMASH applies comparative genomics and transcriptomics
analyses to pinpoint clusters of metabolic gene loci within the plant kingdom (Kautsar, Suarez Duran,
Blin, Osbourn, & Medema, 2017). However, the genes for secondary metabolite production are not
always co-localized across plant genomes. Furthermore, plant enzyme classification is still in progress
with the current protein domain library of PlantiSMASH limited to 62 entries.

As part of this programme, this study aims to implement biocomputational approaches through data
science techniques to study genes involved in the biosynthesis of secondary metabolite production. This
research project lays the foundation for the development of new and innovative solutions for
biocomputational mining of medicinal and crop plant genomes.

1.2 Data Science

Traditional statistics has been around for centuries, and for just as long researchers have been plugging
away at trying to build models that aid us to extract information from data. Until recently, many of these



studies were unobserved by the public, as their rationales seldom offered practical solutions to problems
that involve the often noisy data that exists in real world. Through the data science revolution currently
underway, a recent new wave of development in computer hardware and software has been the engine
fueling the field of mathematical statistics to touch almost every type of dataset. For many years, different
machine learning algorithms have cast a long shadow over statistical models that have been so crucial in
helping statisticians in predicting and interpreting data, such as ANOVA, Chi-square and so on.

In this study, data science is introduced to infer different disciplines that are practically concerned with
inference (the relationship between independent variables and dependent variables, i.e., mathematical
statistics) and prediction (statement about future behaviors, i.e., machine learning). Consequently, we
make use of data science (inference and prediction) approaches to utilize statistics and machine learning
as two interconnected forces.

1.3 Research Questions

The following research questions arise, and constitute the main pillars of the research conducted in this
study:

1. Can machine learning algorithms be trained to recognize plant secondary metabolite genes
involved in the production of medicinally active compounds (e.g. polyphenols)?

2. Can mathematic statistical estimated approaches be carried out pertaining to the preparation,
analysis and interpretation of secondary-metabolite genes?

1.4 Research Objectives
The objectives of this study were:

Q) To develop a baseline dataset and data science computational pipeline.

(i)  To develop novel feature sets for 'secondary ‘metabolite genes and protein sequences in
general.

(i)  To develop inferential statistical models for secondary metabolite genes and protein
sequences analysis using the novel feature set derived in (ii).

(iv)  To develop machine learning supervised binary classifiers and multi classifiers with an
appropriate feature set derived in (ii) for secondary metabolite gene classification using
reviewed secondary metabolite genes i.e., chalcone synthase, and to test the model on
available secondary metabolite data.

1.5 Research Aim

The challenge in classifying SM genes lies in profiling a set of identified plant SM genes. To accomplish
the goal understanding of SM genes, this study uses data science (mathematics and statistics, and machine
learning) approaches, to make new predictions, or infer new biological statistical insights. The aim of
this study is therefore to apply data science techniques to gain a good understanding of plant SM genes
and present a computational dynamic technique to mine plant SM genes.



1.6 Contributions

This thesis involves the exploration of different aspects related to the analysis of secondary metabolite
plant genes and proposes a data science computational pipeline that introduces;

1) data preparation steps that help in dealing with bioinformatics data noise, high
dimensionality, and class imbalance, and
i) data analysis procedures for machine learning classification models and statistical models

Three feature sets were developed, and best practice guidelines are provided. These guidelines allow for
development of improved statistical analysis models for the discovery of new biological insights, and,
machine learning classifiers for the prediction of secondary metabolite genes involved in polyphenols
biosynthesis.

The key research contributions are listed below:

1. Evaluation on three exploratory proof of concept sets of feature engineering when learning
from high dimensional bioinformatics datasets with varying length sequences (heterogeneous
data) is introduced.

2. The study provides the first comprehensive use of relative frequency feature matrix (RFFM)
and 8-Selected feature matrix (8SFM) as a proof of concept model trained and as a data
preparation tool, in the context of-data-quality and the alleviation of sequence unevenness.
These matrices have proven to boost the predictive power and inferential analysis in a
computational cost-efficient manner.

3. This study presents the-effectiveness of statistical approaches on bioinformatics datasets
which are empirically addressed in Chapter 7.

4. Different approaches for developing feature engineering and examining feature selection are

presented through data visualisation, in the context of data quality, to determine best practices

(Chapter 5).

The development of a baseline dataset and data science computational pipeline.

6. The building of a biocomputational ‘program that handle all the processes of biological data
preparation, machine learning classification analysis and statistical analysis.

o

1.7 Dissertation Structure
The Thesis is organized as follows:

Chapter 1 presents an introduction to this study and the departmental project from which this study is
part of. Chapter 2 provides a deep sight of the literature tracked in experiments performed throughout
different works. This chapter elaborates first on medicinal plants, biological and biochemical properties
of plant genes and specifically secondary metabolite genes. Second, it discusses the computational
biology approaches, and mathematical and statistical approaches in bioinformatics. Lastly, it elaborates
on major aspects of machine learning techniques in bioinformatics. Chapter 3 introduces a computational
pipeline, materials, method motivation needed for the implementation of the study and evaluation of
computational result. This chapter presents an overview of the tools used for the computation of
secondary metabolite genes. Chapter 4 provides, to our knowledge, the first development of three sets of
feature extraction and feature selection techniques when learning from high dimensional bioinformatics
datasets with varying lengths of data quality, through mathematical and statistical approaches. Chapter 5
provides the first comprehensive data visualisation for secondary metabolite gene features, examination
of feature engineering, and feature selection, when learning from bioinformatics secondary metabolite
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gene datasets with varying lengths of amino acid sequences. Chapter 6 assesses the effectiveness of eight
supervised machine learning classification techniques as well as classification models when learning
from bioinformatics secondary metabolite gene datasets, by applying data sampling for classification
problems. This chapter addresses the first question of our research and present the machine learning
output on predicting SM genes. Chapter 7 Presents different statistical models, combining feature
selection and data sampling in the context of inferential statistical analysis. These statistical models
provide an empirical analysis to give practitioners guidance on best practices when analysing
bioinformatics data to retrieve meaningful, important and reliable information from biological datasets.
Chapter 8 presents conclusion of the work and suggestions for future work.



Chapter Two: Literature Review

2.1 Medicinal Plants

The World Health Organization (WHO) has calculated that globally, around 60,000 plant species are
utilized for their remedial, dietary or aromatic properties (Robinson & Zhang, 2011). It is estimated that
over 500,000 tons of material from these plant species are exchanged per year. Worldwide trade in plants
for medicinal purposes is exponentially increasing and estimated at more than 2.5 billion USD
(Dushenkov, 2016). Currently, pharmacopoeia records worldwide contain medicinal drugs extracted
from indigenous plants (Yadav et al., 2017) and as such, medicinal plants have remained the most
prominent natural source of medicines.

One of the oldest traditional techniques employed by humans for treating maladies is the use of
therapeutic plants (Geethangili & Tzeng, 2011). Medicinal plants have been utilized remedially around
the world, forming a critical component of different customary medication schemes Forms of
phytotherapy have been used as the basis of treatment regimes in a variety of traditional medical systems,
from Ayurveda to Unani, and various pharmacological drugs are derived from plant products (Van Wyk
& Wink, 2017).

Plant parts contain some chemical compounds and phytochemicals that are used as active ingredients in
the biosynthesis of secondary metabolites-within-the-plant-metabolism. The nature of the active
ingredients may necessitate subsequent regulation of the use of phytomedicines. The parts of medicinal
plants that contain natural chemical compounds are called phytochemicals. They provide the most
important sources for the treatment of many diseases (Lui et al., 2004). Phytochemicals present in plants
are responsible for a multitude of plant properties, such as plant colour, odour and flavor these
phytochemicals are responsible for different plant properties, such as the organoleptic properties of the
plant and plant colour (Yadav et al., 2017, Lui et al., 2004). The consumption of the whole plant with
phytochemicals can produce potential -health, benefits and could be used as dietary supplements.
Phytochemicals in foods have diverse and complex chemical structures and are classified into
polyphenols, terpenoids, alkaloids:and other nitrogen compounds, carbohydrates and lipids (Slimestad et
al., 2005) (figure 1).

The presence of phytochemicals in a plant, as well as the combinations of the active compounds that
yield specific physiological action on the health of humans, can have an influence on the value of a
medicinal plant (Saxena, Saxena, Nema, Singh & Gupta, 2013). Some phytochemicals found in
indigenous medicinal plants, such as flavonoids, phenolic compounds, alkaloids, and tannins, can be of
greater importance for medicinal purposes than the other compounds (Yadav et al., 2017).

2.2 Secondary Metabolites

Plants possess many phytochemicals, with approximately 10 000 being identified (Zhang et al., 2015).
These compounds are produced to help plants fight against predators or pathogens (Upadhyay,
Upadhyaya, Kollanoor-Johny, & Venkitanarayanan, 2014). However, not all phytochemicals are
beneficial to health and some are considered to be poisonous and detrimental to human health (Francisco
etal., 2017).



Medicinal plants are the source of secondary metabolites (SM). As opposed to the primary metabolites
of plants, SM of plants are organic compounds that do not directly contribute to the reproduction, growth
or development of plants (Kaul, Gupta, Sharma, & Dhar, 2017). However, these SM do indirectly impact
plant health in that they can serve as a protective mechanism against herbivory, facilitate interactions in
plant species, and impact plant fertility (Stevenson, Nicolson, & Wright, 2017, Clemensen et al., 2017).

Secondary metabolites are used by humans for flavoring, medicinal and recreational purposes. Many are
known to exhibit antioxidant, antimicrobial, anticoagulant, anti-inflammatory, antidiabetic,
anthelminthic and lipid-lowering properties (Kaul et al., 2017). One group of these chemical compounds
are toxic to living cells (cytotoxic) which can help prevent the spread of tumors and angiogenesis by
boosting the immune system to fight against cancer cells. Another group of these chemical compounds
can protect nerve cells against chemicals and strokes (oxygen deprivation), used in a way that promotes
nerve cell regeneration. Another group of chemical compounds is employed to protect the skin from
ultraviolet damage, to protect the liver against poisons such as carbon tetrachloride, to thwart calcium
loss from bone and increase fetal lung maturation (Stevenson et al., 2017).

The specificity of SM has been well studied and can be characterized to individual medicinal plant
species. Their specificity has been mostly restricted to a narrow set of plant species found in a
phylogenetic group (Francisco et al., 2017; Clemensen et al., 2017). Many secondary metabolite sources
that have been studied such as, flavonoids, phenolic compounds, alkaloids, tannin, etc. are commonly
found in specific medicinal plants (Francisco et al., 2017). The presence of these SM in plants gives a
plant a high potential healthful benefit (Clemensen-et al., 2017).
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The healthful benefits of SM are enormous and very essential for human resistance against diseases.
There is an estimate of 250,000 secondary metabolites in plants (Rehman, 2016). Their classification is
determined by their biosynthetic pathways, derived from primary metabolites, where a chemical is
derived. The four major classes of secondary metabolites are: Terpenoids; Alkaloids; Phenolics; and
Glycosides.



2.2.1 Terpenoids

Terpenes are generally 5-carbon unit polymers of isoprene and are promoters of scent, flavor and colors.
Some plant hormones (phytohormones) that influence plant physiology are produced during the terpenoid
pathway (Cseke et al., 2016).

2.2.2 Alkaloids

Alkaloids are nitrogenous compounds primarily found in plants and include classes such as morphine,
nicotine and caffeine (Hussain et al., 2018). These bitter tasting compounds are derived from amino acids
such as phenylalanine, tyrosine, tryptophan, histidine, anthranilic acid, lysine and ornithine (Krechmer et
al., 2015; Bodi et al., 2014).

2.2.3 Phenolics

Phenolic secondary metabolites are ubiquitous in plants, having an influence on plant reproduction
strategy, plant defenses against biotic and abiotic stress and even plant-plant interaction (Heleno, Martins,
Queiroz, & Ferreira, 2015). Phenolics contain a core formed by at least one phenol ring and are derived
from aromatic amino acids such as phenylalanine, tyrosine (although generally grouped as neutral), and
tryptophan (Heleno et al., 2015; Dziato et al., 2016). Some examples of plant phenolics include
coumarins (antimicrobial agents, feeding deterrents, and germination inhibitors) and lignin (abundant in
secondary cell wall, and resistant to extraction-or-many degradation reagents, such as anthocyanins,
flavones, flavanols).

2.2.4 Glycosides

Glycosides assume various vital roles in many living organisms. Glycosides molecules are formed when
a sugar group (glycone) binds to a different functional group (aglycone) via a glycosidic bond. There are
four main glycosidic bonds that allow glycosides to link:an O-(an O-glycoside), N- (a glycosylamine),
S- (a thioglycoside), or C- (a C-glycosyl). In plants, which store glycosides in non-active form, enzyme
hydrolysis is required for their activation by hydrolyzing the sugar moiety and exposing the rest of the
molecule, which can be used in.medicines. Some.plants are also utilizing these secondary metabolite
compounds as a chemical defense system against their predators. These secondary metabolite classes
lead to the production of polyphenols.

2.3 Polyphenols

Polyphenols are micronutrients with antioxidant activity and are naturally occurring compounds that are
usually found in vegetables, fruits, cereals, green tea, black tea, red wine, coffee, chocolate, olives, and
extra virgin olive oil (Figure 2.2). Generally, plant-based foods carry a complex mixture of polyphenols.
This large heterogeneous group of phytochemicals contains more than one phenolic hydroxyl group.
Increasing scientific evidence is emerging on the potential healthful benefits of nutritional plant-based
polyphenols. In vitro and in vivo studies have demonstrated that polyphenols possess anti-inflammatory,
antioxidative, chemo preventive and neuroprotective activities and that the consumption of foods rich in
polyphenols is associated, to a great extent, with lowered risk of major chronic diseases.


https://en.wikipedia.org/wiki/Glycosylamine

(https://www.thesynergycompany.com/blog/why-a-diet-rich-in-polyphenols-is-good-for-you/)

Generally, polyphenols are divided into four diverse groups (figure 2.3):

1. Flavonoids
2. Phenolic Acids
3. Lignans
4. Stilbenes
Polyphenols
[ l )
Phenolic Acids Flavonoids Stilbenes Lignans
eg eg
Hydroxyb acids Hydroxyci ic acids
eg vanilic acid eg caffeic acid

! ! ! ! ! l

Flavonols Flavones Flavanones Flavanols Isoflavones Anthocyanidins
eg quercetin eg apigenin eg naringenin eg catechin eg genistein eg cyanidin
myricetin luteolin hesperidin epicatechin daidzein malvidin
kaempferol eriodictyol glycitein delphinidin
pelargonidin

Figure 2. 3 Types of Polyphenols. Taken from
(https://edurankessay.bid/?p=UG9seXBoZW5vbhHM%3D)
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2.3.1 Flavonoids

Flavonoids are an assorted family of hydroxylated polyphenolic structures found in secondary plant
metabolites (Panche, Diwan, & Chandra, 2016). Flavonoids are the largest group of phytonutrients in
plant-based food products, with more than 5,000 identified compounds (Hosseini, Gholami, & Haghgu,
2016). Flavonoid compounds have been demonstrated to have antioxidant and anti-inflammatory activity
(Zhang & Tsao, 2016). Furthermore, diets rich in flavonoids play a substantial role in cardiovascular
health and assist in prevention of diseases such'as cancer, which is caused by free-radical damage
(Farzaneh & Carvalho, 2015).

However, in order to determine whether flavonoids alone are responsible for these beneficial effects on
health, further studies are required (Manach et al., 2017).

2.3.2 Phenolic Acids

Phenolic acids (phenolcarboxylic) are aromatic secondary plant metabolites and are found in a variety of
plant-based foods (Toldra, 2017; Saltveit, 2017). They are produced via the shikimic acid through the
phenylpropanoid pathway (Lynch et al., 2017). Phenolic acids are a by-product of the monolignol
pathway and a breakdown product of lignin and cell wall polymers in vascular (higher) plants (Saltveit,
2017). Phenolic acids in plant cell walls and lignin present a unique chemical structure of C6-C3
(phenylpropanoid type), in contrast to C6-C1 (Phenylmethyl type), which is of microbial origin (Lin et
al., 2016; Jang, Gang, Kim, & Choi, 2017). Hydroxybenzoic acids and Hydroxycinnamic acids (Lynch
et al., 2017; Demirbas, 2017) are the two significant naturally occurring types of phenolic acids (See
figure 2.4).



The highest concentrations of phenols are found in plant seeds and skins of fruits and the leaves of
vegetables (Lin et al., 2016; Jang et al., 2017). As seen in figure 2.4, phenolic acids are generally
classified into two categories:

1. Benzoic acid with its derivatives, such as gallic acid (diet sources: tea and grape seeds)

2. Cinnamic acid and its derivatives, as well as caffeic acid (diet sources coffee, blueberries, kiwis,
plums, cherries and apples) and ferulic acid (outer covering of cereal grains, corn flour, whole
grain wheat, rice, and oat flours).

Phenolic acids are easily absorbed through the walls of our intestinal tract. They work as antioxidants
and promote anti-inflammatory conditions and help to prevent diseases caused by oxidative damage such
as coronary heart disease, stroke, and cancers (Smith, 2015).

2.3.3 Lignans

Lignans are non-flavonoid polyphenols (Panche et al., 2016) and occur at highest concentration in
flaxseed and bakery products containing flaxseed (secoisolariciresinol diglucoside) (Saltveit, 2017).
They are widely available in drinks such as tea, coffee or wine, and in whole grains, nuts, legumes, fruits,
cruciferous vegetables such as broccoli and cabbage, and seeds. In addition to these are cereals, soybeans,
apricots and strawberries. Lignans are one of the largest groups of chemical compounds (polyphenols)
found in plant-based foods (Lin et al., 2016; Jang et al., 2017).

Lignans, being antioxidants, support the-immune system-and-contribute to balancing hormone levels in
the body (Smith, 2015). Lignans and-lignin biosynthesis source materials are byproducts of shikimic-
phenylpropanoid-monolignols pathway (Calvo-Flores, Dobado, Isac-Garcia, & Martin-Martinez, 2015).
Monolignols are phytochemicals whose starting material for production is the aromatic amino acid
phenylalanine (Lynch et al., 2017; Calvo-Flores et al., 2015). Figure 2.1 shows that the first reaction in
biosynthesis is shared via the phenylpropanoid pathway. They (lignans) are classified as phytoestrogens
which are estrogen-like, beneficial-for the-health-of menopausal women and possess antioxidant activity
that help protect against breast cancer (Lynch et al., 2017; Saltveit, 2017).

2.3.4 Stilbenes

Stilbenes are a small family of nonflavonoid phytochemicals produced via the phenylpropanoid pathway
(figure 2.1 and figure 2.4) (Calvo-Flores et al., 2015, Jang et al., 2017). They are polyphenolic
compounds, structurally characterized by the presence of a 1,2-diphenylethylene nucleus and constitute
a unique chemical scaffold in the search for bioactive molecules (Smith, 2015). Stilbenes are found in
various plant families, such as Vitaceae (Lin et al., 2016; Smith, 2015), but are less abundant in foods
when compared to flavonoids, phenolic acid or Lignans (Zamora-Ros et al., 2016). Food sources of
Stilbene resveratrol include grape skins, red wine, peanuts, blueberries, cranberries, while stilbene
pterostilbene can be found in food sources such as blueberries and grapes (Reinisalo, Karlund, Koskela,
Kaarniranta, & Karjalainen, 2015; Calabriso et al., 2016). Many plant scientists have studied stilbenes to
highlight their health benefits in treating chronic diseases and inflammation in aging-related diseases
such as obesity, macular degeneration, Alzheimer’s disease, cancer, diabetes (type 2), and heart disease.

2.4 Effect of Polyphenols on Human Diseases

Scientific biomedical research conducted in several studies has demonstrated that the consumption of
polyphenols decreases the incidence of coronary heart diseases (Wang et al., 2014; Clauss et al., 2017,
Goetz et al., 2016, Reinisalo et al., 2015; Lynch et al., 2017; Calvo-Flores et al., 2015).
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Recent research by Clauss and co-authors (2017) confirmed strong anti-cancer effects of polyphenols on
human cancer. Studies have reported the effects of polyphenols on human cancer cells are most often
protective, and induce a reducation of the number of tumors and their growth (Clauss et al., 2017; Wang
et al., 2014; Goetz et al., 2016). The mechanisms of polyphenol underlying actions are estrogenic
activity, anti-proliferation, prevention of oxidation, and anti- inflammatory activity (Wang et al., 2014).

In addition, polyphenols influence the metabolism of pro-carcinogens by simultaneously modulating the
expression of cytochrome P450 enzymes involved in their activation to carcinogens (Clauss et al., 2017;
Wang et al., 2014). Studies have also shown that onion polyphenols, especially quercetin (flavonoids-
flavanols) are known to possess strong anti-diabetic activity, significantly protecting the lipid
peroxidation system in diabetics (Kumar et al., 2015; Cheetham & Katz, 2013). Polyphenol quercetins,
particularly in red onion, have shown to be efficient against mortality from coronary thrombosis heart
disease (Tresserra-Rimbau et al., 2014; Tedesco, Carbone, Spagnuolo, Minasi, & Russo, 2015).

2.5 Chalcone Synthase

Chalcone synthase or naringenin-chalcone synthase (CHS) is a key enzyme in the family of type IlI
polyketide synthase enzymes (PKS) (Shimizu, Ogata, & Goto, 2017). The specificity of type 111 PKS is
based on its association with the production class of organic compounds, found mainly in plants as a
natural defense, known as chalcones (Shimizu et al., 2017; Ratnam, Choong, & Javed, 2017). CHS
catalyzes the first step of flavonoid biosynthesis by directing carbon flux from general phenylpropanoid
metabolism to the flavonoid pathway (lbdah, -Martens, & Gang, 2017). Naringenin-chalcone
synthase produces chalcone in the-phenylpropanoid pathway and.flavonoid pathway by condensing one
p-coumaroyl- and three malonyl-coenzyme A thioesters into a polyketide reactive intermediate that
cyclizes (Yu et al., 2015; Ibdah et al.;2017). The CHS enzyme-catalyzes the first committed step for the
biosynthesis of flavonoid antimicrobial phytoalexins and anthocyanin pigments (pathway) in plants, by
administering carbon flux from wide phenylpropanoid metabolism to flavonoid pathway (lbdah et al.,
2017). In addition to being part of plant growth, development and adaptation, the CHS gene expression
is induced in plants under stress conditions such-as-UV light, bacterial or fungal infection (Ibdah et al.,
2017; Yu et al., 2015).

Chalcones, or chalconoids, are an aromatic ketone and an enone that forms the central scaffold found in
a variety of important biological compounds (Abbot et al., 2017). Chalcones possess a broad spectrum
of interesting biological activities such as insecticidal, antioxidative, antibacterial, antiulcer, anticancer,
amoebicidal, anthelmintic, antifungal, antitumor, antiprotozoal, antiviral and anti-inflammatory
properties (Ibdah et al., 2017; Ratnam et al., 2017).
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In plants, chalcone synthase is a key enzyme ubiquitous to higher plants and was first observed in barley
leaves (Han et al., 2016). CHS proteins are found in various plant organs hence, CHS flavonoids are
found in the core of diverse plant species such as arabidopsis thaliana, rice, grapes, medusa, tsuga
canadensis etc.

Studies show that CHS enzyme produces flavonoids (i.e. lignin, suberin) and isoflavonoids (i.e. genistein,
wighteone and lutein) which possess the power to absorb UV light radiation and hence can protect plant
DNA from being damaged and from the attack ok pathogens (Shimizu et al., 2017; Ibdah et al., 2017).

2.6 Chalcone Synthase Catalytic Activity

The phenylpropanoid pathway is regulated by the activity of CHS: 3 malonyl-CoA + 4-coumaroyl-CoA
= 4 CoA +naringenin chalcone + 3 CO2 (Sun et al., 2015; Gill et al., 2017). CHS catalytic activity was
first described in 1972 in extracts of parsley (Petroselinum crispum) (Sun et al., 2015). CHS catalytic
activity is controlled through the following mechanisms (Sun et al., 2015; Gill et al., 2017):

e Metabolic control
e Control of CHS turnover
e Control of CHS through trans-genes

The phenylpropanoid pathway is*known: to be the producer of many types of secondary metabolite
polyphenolic compounds such as stilbenes, phenolic compounds, lignin, flavonoids, isoflavones and
flavones (see figure 2.5 and 2.4) (Yu et al., 2015; Ibdah et al., 2017). The flavonoids consist of various
groups of plant SM such as chalcones, aurones, flavanones, 'isoflavonoids, flavones, flavanols, and
anthocyanins (Yu et al., 2015). Thus, the flavonoid pathway produces polyphenolic compounds such as
naringenin, naringenin chalcone and the other end products of CoA esters that inhibit the activity of CHS
in several crops (Sun et al., 2015; Yuet al., 2015).

2.7 The Shikimate Pathway and the Phenylpropanoid Pathway

The shikimic acid pathway (shikimate pathway) is known for its seven-step metabolic path (see appendix
A.1) in the biosynthesis of folates and aromatic amino acids (phenylalanine, tyrosine, and tryptophan)
used to synthesize some protozoan, bacterial, fungal, algal, and plant metabolites (Tullius, 2017; Pfister
etal., 2014).

The shikimate pathway initializes the phenylpropanoid biosynthesis from the shikimate aromatic
compound phenylalanine (Phe), via the intermediate chorismic acid (Haslam, 2014; Tullius, 2017). The
chorismic acid acts as a substrate to produce quinones and tocopherols which are important electron
acceptors in photosynthesis and aerobic respiration (Gomes, Carbonari, Velini, Trindade, & Silva, 2015).
The shikimate pathway as a core unit, produces SM through some of its intermediates via general
phenylpropanoid metabolism (Haslam, 2014; Gomes et al., 2015). The metabolic pathway of the
phenylpropanoid involves several enzymes which serve as a strong foundation of plant SM (Gomes et
al., 2015; Kaul et al., 2017).
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Plants allocate a large percentage-of their fixed-carbon into synthesizing phenylpropanoids. The
biosynthesis of phenylpropanoids starts with the amino acids phenylalanine and tyrosine (Tullius, 2017;
Haslam, 2014). The branch point enzyme; PAL (also known as phenylalanine or tyrosine ammonia-lyase)
is the enzyme responsible for the biosynthesis of L-phenylalanine or tyrosine into trans-cinnamic acid or
p-coumaric acid and ammonia respectively (Tullius; 2017). Hence, phenylpropanoids are a group of plant
SM sourced from phenylalanine which have a large diversity of functions in terms of structural classes
and signaling molecules (Gomes ‘et al., 2015). While' phenylpropanoids and their byproducts have
routinely been characterized as SM, some studies show their relevance to the survival of plants through
different experiments in Arabidopsis and other plant species (Krivoruchko & Nielsen, 2015; Tullius,
2017). These studies have provided additional knowledge on various aspects of the phenylpropanoid
pathway, its enzymes, molecules and the interrelationship of the pathway with the entire plant metabolism
(Haslam, 2014, Pfister et al., 2014).

2.8 Computational Biology

Innovative advances in the field of biology such as genomics, proteomics, imaging, biophysics, cell
biology, biochemistry, and evolution have resulted in exponential increases in molecular and cell
profiling information derived from substantial quantities of biological data (Boudreau & Lakhani, 2015).
Developed data-analytical and theoretical methods, mathematical modeling and computational
simulation techniques have been applied to the field of computational biology (Buettner et al., 2015;
Angermueller, Pd&rnamaa, Parts, & Stegle, 2016). These computational methods, when applied to the field
of biology allow for the analysis of large collections of biological data in an attempt to make new
predictions, or discover new biological insights (Angermueller et al., 2016; Huber et al., 2015).

The rapidly increasing rate of biological data generation is creating highly dimensional datasets which
are challenging to analyses using conventional data analysis methodology. Current computational and
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machine learning techniques are demonstrating promise in leveraging the vast datasets to find concealed
information within the datasets and attempt to make precise classifications or predictions. In this part of
Literature review these novel types of analytical approaches for the analysis of plant SM genes involved
in polyphenol biosynthesis, is explored. An overview of mathematical-statistical and machine learning
approaches is presented, and the settings in which these approaches can be successfully applied to profile
biological insights of SM genes are discussed.

2.9 Mathematical and Statistical Approaches

The biological data of organisms may be represented as different types of data, e.g., a protein may be
represented in two dimensional images, three dimensional structures or one-dimensional sequences
(Robert & Gouet, 2014). In addition, biological data is often applied in comparing the behavior of one
organism, gene or sequence with the behavior of another biological unit (Kanehisa, Sato, Kawashima,
Furumichi, & Tanabe, 2015), resulting in even more dimensional data points to be analyzed.
Mathematical and statistical approaches have helped to provide an understanding of some of the complex
aspects of biological systems (Anderberg, 2014) such as comparing the behavior of known infectious
disease epidemics with the behavior of an unknown, new disease epidemic (Zelditch, Swiderski, &
Sheets, 2012). Different studies have conducted analyses and simulations of deterministic and stochastic
models (Wilkinson, 2011; Gnauck & Straskraba, 2013), with the sole objective of establishing the
epidemiological and social conditions behind the distribution and determinants of health and disease
conditions in defined populations (Buettner et al., 2015). These studies have enriched the field of
biomedical research, placing a major focus on the relationships between models, and disease data by
putting a significant importance on the application of mathematical and statistical techniques that
compute model and data veracity (Anderberg, 2014; Wilkinson, 2011).

Statistics is a broad mathematical discipline which focuses on the organisation, collection, presentation,
interpretation, and analysis of data. The value of statistics lies on its ability to recognize a pattern,
summarize, and draw conclusions from sample data (Wang & Peng, 2014). Statistics has become relevant
to many other disciplines that are scientific, industrial, or social in nature. In relation to biology, statistics
is being used to model, process and study biological problems with a view to decipher and decode the
issue at hand (Wilkinson, 2011). Biological data can produce meaningful information when subjected to
statistical objective concepts (Fowler, Cohen, & Jarvis, 2013; Anderberg, 2014).

Mathematical concepts, approaches, formulas, models, and techniques are used in statistical analysis to
provide an explicit way of understanding a given problem, and present possible solutions. Biological data
tends to be highly complex, as not all data characteristics in biology are known (Fois, Fenu, Lombrana,
Cogoni, & Bacchetta, 2015; Brauer, Castillo-Chavez, & Castillo-Chavez, 2012). Fowler et al. (2013)
have shown that statistical approaches can be used on the representative selection drawn from a given
biological dataset, to uncover a number of hidden biological properties.

Complex biological processes coupled with the noisy nature of experimental data (e.g., cellular
heterogeneity, microarray data, sequence data) create data uncertainty. Mathematical and statistical
approaches are largely analytical methods where the general objective is to find a small number of shape
functions (interpolation) or sinusoidal functions (function produced by shifting, stretching or
compressing the sine function), or a small number of eigenvectors (characteristic vector), etc. that
determine with sufficient accuracy the spatial and temporal properties of the biological data (Brauer et
al., 2012; Fowler et al., 2013; Fois et al., 2015). This section will discuss a number of statistical
approaches that can be applied, in order to make sense of biological data.
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2.9.1 Data Quality

The qualities of the results obtained in many studies rely heavily on the quality of the data being analyzed.
In general terms, data quality refers to the assessment of the data’s fitness for its intended uses in a given
context. Data quality commonly includes the core following dimensions: accuracy, completeness,
consistency, integrity, reasonability, timeliness, uniqueness, validity, and accessibility (Cai & Zhu,
2015).

Accuracy is the degree to which data correctly describes the "real world" object or event being described.
Consistency is the absence of difference, when comparing two or more representations of an attribute
against a definition. Integrity is the maintenance of, and the assurance of the accuracy
and consistency of, data. Timeliness is the degree to which data represents reality from the required point
in time. Completeness indicates that the proportion of all data fields necessary for an observation unit is
captured. Uniqueness means nothing is recorded more than once based upon how a specific element is
identified. Validity indicates that the data conforms to the syntax (type, format, range) of its definition.
Reasonability indicates ease of understanding and concise representation of data. Accessibility represents
the data source trustworthiness.

2.10 Statistical Analysis on Biological Data

A biological data experiment aims to prove, or disprove, a hypothesis. This can be answered by the
significance of the results obtained. As such, “significance”, has a high level of importance in biology
(Fowler et al., 2013; Anderberg, 2014). Statistical analysis of biological data can assign “statistical
significance” to the experiment and may elaborate on the result obtained in a given study (Anderberg,
2014).

In many biological studies, a null hypothesis can be generated based on the expected result, before any
experiment is undertaken (Fowler et al., 2013; Fitzgerald et al., 2015). The proposed null hypothesis can
either be substantiated by the biological data or not, leading to the approval of statistical alternative
hypothesis. For example, one of the statistical tests used most frequently to determine Mendelian ratios
is the chi-square test (Burgess & Smith, 2017). Pearson’s chi-square test examines if the production of
deviations between observed and expected values happens by chance (null hypothesis) or by a significant
factor (alternative hypothesis). In the case that the probability obtained from Pearson’s chi-square
happens to be high, the null hypothesis is accepted, otherwise the alternative hypothesis is accepted
(Burgess & Smith, 2017; Williams, Trejo, & Schwartz, 2017).

2.10.1 Chi-square Hypothesis Testing

The chi-square formula is given by:

= YOG

X? = The test statistics,0 = Observed frequencies ,E = Expected frequencies

The Null Hypothesis (HO) stated that there is no relationship between two variables, while the Alternative
Hypothesis (H1) stated that there is a relationship between two variables.

The chi-square assumptions ensure the validity of the chi-square test results include:
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«  The cells of the data are counts

« The classes of the variables being tested are mutually exclusive

- Each observation contributes to only one cell within the chi-square table

« The classes tested are collected independently

- The value of the expected cells is greater than five (5). If a cell had an expected frequency less
than 5, it would have used Fisher’s Exact test to overcome this problem.

The chi-square tests if there is an association between target and variables. If the hypothesis results in
a very small chi-square test statistic, this means that the observed data fits the expected data extremely
well. In other terms, there is a relationship between the categorical variables. However, if the hypothesis
results in a very large chi-square test statistic, this means that the data does not fit very well. In other
terms, there is no relationship between the categorical variables (Burgess & Smith, 2017).

Chi-square hypothesis testing, tests for independence as it is for other tests like Analysis of Variance
(ANOVA), where a least a test statistic is computed and compared to a critical value. The critical value
for the chi-square statistic is determined by the level of the significance (usually 0.05) and the degrees of
freedom. The degrees of freedom for the chi-square are calculated through the formula:

Df= (R-1) x (C-1)

Where R is the number of rows and C is the number of columns. If the observed chi-square test statistic
is greater than the critical value, the null hypothesis is rejected (Williams et al., 2017).

2.10.2 Bonferroni Correction test

A post hoc test, Bonferroni correction (Armstrong, 2014), can be conducted to determine where exactly
the relationship is between the different groups (Williams et al., 2017). The Bonferroni correction is a
method used to counteract the problem of inflated type I errors while engaging in multiple pairwise
comparisons between subgroups. That is, it corrects for multiple trials by lowering the threshold of the
significant p-value.

The Bonferroni correction is carried out to locate the exact association between the classes. This in
practice leads to the implementation of multiple 2x2 chi-square tests using the Bonferroni-adjusted p-
values. The advantage of the Bonferroni correction method lies in its capability to adjust the p-values
based on planned pairwise comparisons being conducted (Armstrong, 2014). The formula is p/N,
Where:

«  p =the original tests p-value and N = (k) (k-1)/2 possible pairs
Where:

-k =the number of classes

Pearson’s chi-square test is largely used in genetic data, where the biological data possess enough
expected values in each set (Burgess & Smith, 2017). By employing the chi-square approach, some
studies have predicted plant genome size by examining whether the production of deviations between
observed plant tissues and expected plant tissue values happens by chance or by a significant factor
(Zhang & Finer, 2016). Other studies which have performed statistical evaluations on plant genetics,
amino acids, polyphenol content and antioxidant activities of plant genes, use personal component
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analysis (PCA) and cluster analysis (CA) (Merel & Zwiener, 2016; Sochor et al., 2011; Heller, Tripp,
Turk-Kubo, & Zehr, 2014; Martinez, 2011).

A study by Sochor et al., (2011) focused on detection of primary and secondary metabolites in a selection
of apricot cultivars and combined the two methods of PCA and CA to evaluate the biological activity of
different apricot cultivars. This study demonstrates the power of combining the two methods, where CA
appears useful as a control method for PCA, in which some information goes astray. In this study, the
authors performed a normalisation of parameters based on mathematical mean to maintain the majority
of the information contained in the original data. This was followed by a selection of a K-matrix of the
principal components in terms of the distribution of the original data, and the selection of the parameter
P expressing the degree of dispersion of the original data.

Due to the expected size of biological data sets, and the multidimensional data analysis required, these
statistical approaches are largely aimed at establishing suitable bioinformatics tools for retrieving hidden
biological information or predicting or classifying biological properties (Merel & Zwiener, 2016; Sochor
etal., 2011).

Statistical cluster analysis has been utilized in the field of genetics, and clustering approaches have been
used to comprehend the diverse nature of a data set. CA has been beneficial in understanding the levels
of diversity, similarity or dissimilarity in plant genes, providing a crucial understanding for the
development of plant biosynthetic gene cluster (BGC) techniques used by the biocomputational tool
PlantiSMASH (Kautsar et al., 2017). CA can be designed to select a main group from plant metabolites,
combining important biological compounds of both primary and secondary metabolites as parameters.
One approach for this selection of a main group consists of splitting the plant metabolites into determined
biological classes, combining them with statistical parameters to create a robust approach (Sochor et al.,
2011; Heller et al., 2014; Kautsar et al., 2017). The expected size and number of clusters is determined
by the size of the data and the various biological attributes, and defined by their statistical significance
(Sochor et al., 2011; Fowler et al., 2013; Anderberg, 2014). In this sense, CA provides an understanding
of the relationships among plant metabolite classes and the biological compounds which they are made
up of. The CA approach is based on the method of projection of objects to be analysed onto a
multidimensional space as seen in figure 2.7. The number of dimensions is defined by the number of
determined parameters, and the hierarchical interlinking of objects are structured upon their communal
distance. Mathematically, objects of similar nature can be evaluated based on their similarities and placed
into clusters. The standardized Euclidian distance among these distinct objects is the straight line between
two points (Madzarov & Gjorgjevikj, 2010).

Experiment 2

Figure 2. 7 Gene Clustering Analysis. In these graphs, seed genes are the genes given as input, while output genes
are differentially represented according to their importance in terms of degree. Taken from ‘Integrating multi-omic
features exploiting Chromosome Conformation Capture data,” by I. Merelli et al., 2015, Frontiers in Genetics 6 (40)



With this distance, Euclidean space becomes a metric space calculated as:

(X, X)) = /Z(X"f - Xy
j=1

The above Euclidean distance presents k and | as two different objects, whose distance is defined and
represent the vertices of a triangle at the hypotenuse. The third vertex j defines the length of the sides,
Xy and X, ;, of a right-angled triangle, which is defined for all objects j € (1; m) . Where, m is the number
of dimensions. The advised approach is to standardize the distance outputs before projecting the objects
onto space. This is performed with respect to high degree of variability, for the simple reason that they
have a major impact on the degree of similarity (Madzarov & Gjorgjevikj, 2010; Sochor et al., 2011).

Another method of CA is hierarchical cluster (HC) dendrogram (a tree diagram showing taxonomic
relationships). Hierarchical cluster illustrates the relationships among instances based on morphological
traits and distance similarity. In Figure 2.7, the HC dendrogram illustrates the distance between groups
as proportional to the height of the horizontal line that joins two groups. As seen in figure 2.7, the distance
between groups 1 and 2 is shown to be approximately 15. The HC also orders the sub-tree in terms of
cluster tightness, with the tighter clusters positioned on the left and the wider clusters positioned on the
right (Van Verk Bol & Linthorst, 2011).
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Figure 2. 8 Hierarchical cluster analysis dendrogram using Euclidean distance and the link between the
groups by War method for agronomic traits: Plant height, stem diameter, number of primary branches, seed
weight, seed width, seed length etc. Modified from ‘Image segmentation by histogram thresholding using
hierarchical cluster analysis,” by A.Z. Arifin and A. Asano, 2006, Pattern Recognition Letters 27(13)

Cluster analysis does however have a few limitations, as it is only suitable for examination of a data set.
CA’s applicability to a data set is highly dependent on the subjective choice of methods for calculating
distances and cluster. For example, with proteins that are clustered based on their similarity to one
another, those represented in the same cluster are potentially considered to be interacting partners
(Franceschini et al., 2012). However, CA may fail to properly cluster proteins that are ubiquitous, but are
not necessarily functionally linked (Nepusz, Yu, & Paccanaro, 2012).

In addition, with CA one cannot tell the significance levels of instances from the observed structure (Cole
et al., 2013). Therefore, to understand the statistical significance of instances in clusters, additional
methods such as posterior tabulation, ordination and regression, are required (Kautsar et al., 2017; Cole
et al., 2013; Franceschini et al., 2012; Nepusz et al., 2012).
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Principal Component Analysis (PCA) is a statistical approach used to identify variations, emphasize
patterns in the data set, and bring out strong expressions of the data in such a way as to highlight their
differences and similarities (Sochor et al, 2011; Buettner et al., 2015; Anders, Pyl, & Huber, 2015). This
approach is based on an orthogonal transformation of original observed variables to new uncorrelated
values, which are defined as principal components. PCA converts a given set of observed variables of
probably correlated instances, into a set of values of linearly uncorrelated instances. Studies show that
since patterns in data are not easily found in high dimensional data (Buettner et al., 2015; Anders et al.,
2015) and graphical representation is not always possible, PCA can be used to mechanically analyse the
data (Sochor et al, 2011).

Often data of high dimensions produce several linear cross-correlations of the observed variables,
providing a more extensive understanding which is necessary for data description. Reduction in the
number of linear cross-correlations is the primary benefit of PCA (Buettner et al., 2015; Sochor et al,
2011). Studies show that the advantages of PCA are that it can be used to rank the principal components
according to their decreasing distribution, and once patterns in the data have been identified, the data can
then be compressed by reducing the number of dimensions, without loss of information (Candeés, Li, Ma,
& Wright, 2011, Sochor et al, 2011).

2.11 Statistical Model

Statistical modeling is a branch of mathematical modeling in which a mathematically formalized set of
assumptions (a process that may have given rise to observed data) is used to approximate reality using
sample data from a larger population to make predictions, classifications and interpretations (Fowler et
al., 2013; Fitzgerald et al., 2015). Statistical modeling represents a set of probability distributions which
estimate the population distribution from which the collected data is sampled. The assumptions
embodied in the probability distributions of statistical models differentiate statistical models from other
non-statistical and mathematical models (Wang & Peng, 2014).

In addition, statistical models are fundamental constituents of statistical inference, often embodying
mathematical equations that relate random variables (and occasionally non-random variables) to drive a
formal representation of a given data set (Brauer et al., 2012, Fitzgerald et al., 2015). This is often defined
through natural transformations, functions, algebraic terms and morphisms (Fitzgerald et al., 2015).
Through these concepts, units, time points, instances, subjects and variables can be used to infer
prediction, classification or interpretation of the data set (Wang & Peng, 2014; Fitzgerald et al., 2015).

2.11.1 Analysis of Variance Hypothesis Testing

In bioinformatics, choosing the correct statistical model is not a straightforward approach. A biological
dataset does not come with its own adapted model. Assumptions need to be made in relation to the desired
statistical modeling (Sochor et al., 2011; Fowler et al., 2013; Fois et al., 2015). Every statistical
modelling approach is specific to the research question and to the type of data at hand (Fois et al., 2015).
For example, a biological study shows that glycaemia related to a distinct type of diabetes can be
elucidated by a qualitative variable such as sex. Because the study was conducted on a single qualitative
variable, a selection of Analysis of Variance (ANOVA) was an appropriate statistical model to analyse
the biological data (Hertroijs et al., 2018). However, with the same biological data, age could be selected
as a quantitative variable to depict any linearly increasing or decreasing trend of glycaemia based on the
age of the patients (Hertroijs et al., 2018). In such a situation it is appropriate to make used of linear
regression analysis to explain the data.
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The analysis of variance hypothesis test compares the means of a condition between two classes. Similar
to chi-square, ANOVA is an omnibus test which reviews the dataset as a whole. However, the ANOVA
test does not identify where the difference is between the classes. To locate these differences in
relationship between the classes, a post-hoc test can be conducted (Sochor et al., 2011; Fowler et al.,
2013; Fois et al., 2015).

For this specific ANOVA test the null hypothesis (Ho) state that there is no difference between the means
of the classes, while the alternative hypothesis (H1) state that a difference between the means exists
somewhere between the classes.

The ANOVA assumptions that are applied to ensure the validity of the results of the ANOVA test include
(Fowler et al., 2013; Fois et al., 2015):

» The variables are normally distributed in each group that is being compared in the one-
way ANOVA.

» There is homogeneity of variances. This means that the population variances in each class
are equal.

» There is an independence of observations.

« A caveat to these assumptions is that if the class sizes are equal, the F- statistic is robust
to violations of normality and homogeneity of variance.

2.11.2 Tukey’s Honest Significant Difference test

The Tukey’s Honest Significant Difference test is a post-hoc test based on the studentised range
distribution (Dominguez-Bello et al., 2016). An ANOVA test can tell if the results are significant overall,
but it will not tell us exactly where those differences lie. After an ANOVA test has been conducted and
found significant results, then the Tukey’s HSD can be computed to find out which specific groups’
means (compared with each other) are different. The test compares all possible pairs of means
(Dominguez-Bello et al., 2016).

The Tukey HSD, calculates: HSD for .each ' pair. of ‘meansusing the following formula:

M, -M;
HSD = :
MS

Where: n,

« |[Mi—Mj| is the (absolute) difference between the pair of means.

«  MSy is the Mean Square Within, and n is the number in the group or treatment.
The confidence coefficient for the set, when all sample sizes are equal, is exactly 1—a. For unequal
sample sizes, the confidence coefficient is greater than 1—a. In other words, the Tukey method is
conservative when there are unequal sample sizes.

Assumptions for the test:

«  Observations are independent within and among groups.
«  The groups for each mean in the test are normally distributed.
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- There is equal within-group variance across the groups associated with each mean in the test
(homogeneity of variance).

The ANOVA test must be performed. Assuming the F value is significant, and then the post hoc test can
be computed. If the HSD statistic value for the Tukey test is greater than the critical value, it can be
concluded that the two means are significantly different (Dominguez-Bello et al., 2016).

Choosing a statistical model which can be applied to biological data may be inferred by the shape of the
relationships between the dependent and the independent instances. This can happen through a graphical
representation of these relationships, and in the situation where the shapes happen to be curved,
polynomial or other nonlinear models may be more convenient over single regressions (Kleinbaum,
Kupper, Nizam, & Rosenberg, 2013). Another study (Goli¢nik, 2011) has closely linked the choice of a
statistical model to the precise question raised in the research. One of these approaches can be seen in
studies which estimate the Vmax and Km (concentration of substrates when the reaction reaches half of
Vmax) parameters of Michaelis-Menten enzyme kinetics. Enzyme Kinetic studies which use the
Michaelis - Menten equation relate reaction rate (dependent variable) to substrate concentration
(independent variable) in a nonlinear fashion (Goli¢nik, 2011).

Similarly, when the main purpose of the study is to make predictions from a large dataset with many
variables, the correct approach would be to employ a model other than a parametric model. For example,
in chemometrics, where outputs are usually predicted by a wide band of wavelengths, the Partial Least
Square regression (PLS) approach may be used to infer prediction of a dependent variable from multiple
independent variables which may possibly be correlated (Menden et al., 2013; Kelley, Snoek, &
Rinn, 2016).

2.12 Machine Learning

This section of the literature review discusses some of the main computational methods for gene and
genome analysis, and biological context of proteins in complete genomes, through machine learning.
Applications of machine learning to analyse approaches in regulatory genomics and genetic data are
outlined. Recurring challenges associated with machine learning analysis are also discussed and a
practical guideline is presented for applying machine learning to extract novel and meaningful biological
insights of SM genes involved in polyphenol production.

The analysis of biological data often requires rigorous and laborious experimental techniques, and there
is a significant cost associated with laboratory work. In the past decade, different computational methods
have been developed to analyse biological data on both small and large scale, replacing some of the
traditional lab methods used. These different computational methods (Goli¢nik, 2011; Sochor et al.,
2011; Brauer et al., 2012; Fowler et al., 2013; Mendenetal.,, 2013; Wang & Peng, 2014;
Eduati et al., 2015; Kelley et al, 2016; Kautsar et al., 2017; Hertroijs et al., 2018) have been used to
examine biological aspects of protein structure, phylogeny, molecular interactions, and gene expression.
The field of machine learning holds promises to enable bioinformaticians and computational biologists
to make sense of very large and complex datasets and identify patterns (Menden et al., 2013,
Kelley et al., 2016). There are several machine learning applications in bioinformatics that can assist
computational biologist in the construction of classification models to characterise new attributes using
the previous known attributes (Menden et al., 2013; Kelley et al., 2016).

The advantage of machine learning is its ability to learn functional relationships from data with or without
the need to define them a priori (Murphy, 2012; Michalski, Carbonell, & Mitchell, 2013). In machine
learning, an algorithm that is developed improves with experience and becomes ‘smarter’ with time

21



(Murphy, 2012). In bioinformatics, where underlying mechanisms of an instance are inadequately defined
or unknown, machine learning promises to derive predictive models without a need for strong
assumptions about these underlying mechanisms (Michalski et al., 2013). Several studies have
demonstrated the predictive capability of machine learning that has been successfully applied in
genomics research (Libbrecht & Noble, 2015; Kelley et al., 2016).

In genomics, machine learning has been used through the development of algorithms that have the
capability to learn how to predict the locations or the positions of transcription start sites in a genome
sequence (Libbrecht & Noble, 2015; Murphy, 2012; Michalski et al., 2013). The dataset, which includes
a collection of true and false transcription start sites, is then fed into the algorithm to build the model
(Libbrecht & Noble, 2015). Once the algorithm has learned from the original data set, new annotated
sequences are passed through the algorithm and the model can predict which sequences are transcription
start sites and which are not (Michalski et al., 2013). In the case that the built model has learned
successfully, many or most of the predicted annotated transcription start sites (TSS) for every sequence
will be accurate. If not, the outputs must be tested independently in the lab (Libbrecht & Noble, 2015).

Machine learning is a very labor-intensive process, with the typical canonical machine learning workflow
consisting of three phases discussed below;

2.12.1 Data Cleaning

Data cleaning, is an essential part of statistical analysis and is the process of altering data in a given
storage resource by detecting and correcting corrupt, or inaccurate records from a record set, table, or
database (Murphy, 2012). In practice it is often more time-consuming than the statistical analysis itself
(Michalski et al., 2013). In machine learning, data cleaning refers to identifying incomplete, incorrect,
inaccurate or irrelevant parts of the data and then replacing, modifying, or deleting the data (Michalski
etal., 2013; Kelley et al., 2016). This process helps a machine learning researcher to maintain consistent
and accurate datasets by identifying and/or correcting data that may impact on the study results
(Menden et al., 2013).

A multitude of existing data cleaning techniques focus on removing data noise which is caused by data
objects that are irrelevant or insignificant, but which can significantly hinder most of data type analysis
(Murphy, 2012). In bioinformatics, data noise is one of the main data quality challenges that impact the
analysis of bioinformatics datasets (Angermueller et al., 2016) and addressing missing or insignificant
values is a process that contributes to the data quality in terms of consistency, accuracy, completeness,
and cleanness. A study by Angermueller et al (2016) on deep learning for computational biology
demonstrated that inappropriately addressed data noise can result in low quality data and recommends
that data noise be evaluated and corrected prior to any statistical analysis. Even though data noise remains
a prevalent problem in bioinformatics datasets, there are continuous studies being undertaken in this field
to explore different approaches or techniques of data cleaning that can address this issue (Wald,
Khoshgoftaar, & Shanab, 2012).

2.12.2 Data Pre-Processing

Data preprocessing is an important step in the data mining process. It is commonly used as a preliminary
data mining technique that involves transforming raw data into an understandable format that can be
more easily and effectively processed for the purpose of machine learning. Bioinformatics data is often
incomplete (sequence gaps), inconsistent (sequence length), and/or lacking in certain behaviors or trends,
and is likely to contain data noise (Wald et al., 2012; Michalski et al., 2013). Data preprocessing is a
technique proven to resolve such issues. It involves execution of five critical steps:
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1. Data cleaning; (as mentioned above) the process of filling in missing values, smoothing noisy

data, identifying or removing outliers and addressing inconsistencies.

Data integration; the process of integrating different or multiple data classes or files.

3. Data transformation; the process of data normalisation, aggregation and encoding (for example
by applying one-hot coding technique to data attributes).

4. Data reduction; the process of deriving a reduced representation in dimension or volume but
producing identical or similar analytical outputs.

5. Data discretisation; the process of discretising numerical data attributes

N

Different studies show that conducting data preprocessing techniques before analysing the data
substantially improves the overall quality of the instances mined and cuts down on the time required for
the actual data analysis (Wald et al., 2012; Kelley et al., 2016).

Furthermore, data preprocessing on bioinformatics datasets is of the utmost importance because
bioinformatics datasets exhibit high dimensionality, class imbalance and heterogeneousness. High
dimensionality (overabundance of attributes) contributes significantly to the challenges of data analysis,
producing uncertainty in classification performance and resulting in reduced predictive accuracy of
classifiers (Blagus & Lusa, 2012).

High dimensionality in bioinformatics datasets can negatively impact the computational time, as not
every feature makes the same contribution to the model. However, class imbalance in machine learning
can grossly impact classification performance due to the biasedness of the classes, yielding a very high
rate of false negatives. These biases (unequal distribution of instances between classes) can also affect
the behavior of some feature selection techniques. Lastly, the heterogeneousness of bioinformatics
datasets presents a challenge in learning from the data. For example, a large group of bioinformatics data
can include the amino acid sequence of a gene’s protein product, which can infer some evolutionary
relationships to other proteins across a wide variety of species (Blagus & Lusa, 2012; Eduati et al., 2015).

Such bioinformatics datasets are difficult to mine, since most machine learning and statistical approaches
for classification require that the datasets are of the same fixed-length vectors composed of real numbers
(Libbrecht & Noble, 2015). This assumption cannot be met in bioinformatics datasets due to the
heterogeneity of the amino acid or DNA sequences—the sequences are made up of a string of letters
which vary in length. A large number of bioinformatics gene expression datasets possess the
aforementioned challenges, rendering the construction of accurate classification models more difficult
(Angermueller et al., 2016).

2.12.3 Feature Engineering

Notwithstanding the importance of information in a data set, too much information can lessen the
efficiency of data mining. Studies show that not all the attributes assembled for building and testing a
model may meaningfully contribute necessary information to the model (Blagus & Lusa, 2012; Khalid,
Khalil, & Nasreen, 2014). Too many attributes may indeed weaken the model’s accuracy and quality.

In machine learning, feature engineering is the process of compacting attributes into features, starting
from an initial set of measured data and building derived values intended to be non-redundant and
informative. Feature engineering plays a very crucial role in many areas of data analysis and data
processing. Prior to obtaining features, data preprocessing techniques (included in the aforesaid five steps
of data preprocessing) concomitant with thresholding, resizing, binarisation, etc. are applied on the
sample data, subsequently yielding feature engineering techniques that will be important for model
building (Khalid et al., 2014).
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Feature engineering transforms the input data (attributes) into a set of features (distinctive properties of
input patterns or transformed attributes) that help distinguish the types of input patterns. The important
role of feature engineering in data mining relies on its ability to reduce attributes into features that have
a linear combination of the original attributes. In Khalid et al.,’s (2014) study, models built on extracted
features displayed a higher quality because the data is defined in a much smaller number of meaningful
attributes.

Bioinformatics datasets are described by many attributes that generally present processing challenges for
machine learning algorithms (Menden et al., 2013; Kelley et al., 2016). The attributes of the model
represent the dimensions of the processing space used by the algorithm, resulting in higher dimensionality
of the processing space. To address the challenge posed by high dimensionality, feature engineering
techniques may be applied to process the datasets into a much smaller and richer set of attributes (Khalid
etal., 2014).

This can be useful for data visualisation, as a complex dataset can be efficiently visualized when it is
reduced to two or three dimensions (Khalid et al., 2014). Dimension reduction is a desirable step in data
mining, helping to minimize the effects of noise and attribute correlation (Blagus & Lusa, 2012). Feature
engineering techniques are often used in data visualisation, latent semantic analysis, data compression,
data decomposition and pattern recognition. In addition, feature engineering enhances the speed and
effectiveness of different supervised algorithms (Khalid et al., 2014).

A study in regulatory genomics by Zhou and Troyanskaya (2015) considered predicting chromatin marks
from DNA sequence. Features were engineered based on the size of the input sequence window, where
larger windows up to one kb were used to capture sequence features at different genomic length scales.
Another study used multiple output variables (so-called multitask architectures) as a feature engineering
technique to predict multiple chromatin states in parallel (Russakovsky et al., 2015).

Zhang et al.,’s (2015) study on deep model-based transfer and multi-task learning for biological image
analysis performed feature engineering techniques by transferring model parameters in bioimage
analysis. The authors made use of feature engineering techniques on an open corpus from ImageNet
(Russakovsky et al., 2015), of more than one million diverse images, to capture rich features at different
scales (Xie, Xing, Kong, Su, & Yang, 2015), improving the prediction of Drosophila melanogaster
(common fruit fly) developmental stages from situ hybridisation (DNA or RNA) images
(Zhang et al., 2015).

These feature engineering techniques allowed learning of shared features between outputs and, in doing
so, improved generalisation performance, noticeably decreasing model learning computation cost (Dahl,
Jaitly, & Salakhutdinov, 2014).

Best practices (Murphy, 2012) show that irrelevant attributes simply contribute to data noise which
results in high computation cost and affects the accuracy of the model. The disadvantages of irrelevant
attributes are not only its negative impact on the model but, on the time and resources needed for model
building and scoring (Kelley et al., 2016). Since bioinformatics datasets possess many attributes, there is
a chance that the datasets may contain groups of attributes that are correlated, creating redundancy. In
cases where attributes measure the same underlying feature, feature engineering will discard these groups
of attributes to eliminate their presence in the model, preventing the model logic from skewing and
influencing the accuracy of the algorithm (Khalid et al., 2014).
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2.12.4 Feature Selection

Feature engineering is very different from Feature selection. The former consists of combining attributes
into a new reduced set of features or transforming arbitrary data, such as text or images, into
numerical features usable for machine learning, while the latter is a machine learning technique applied
to features to select the most relevant attributes. In other words, it ranks the existing features according
to their predictive significance (Khalid et al., 2014).

The feature selection phase links to the model learning phase. During the feature selection phase (Wald,
Khoshgoftaar & Shanab, 2013), the main goal is to obtain measures of information theory that can be
used to compute the significance of features. These measures include mutual information (Ml),
interaction information (1), conditional mutual information (CMI) and joint mutual information (JMI).

In machine learning, feature selection techniques under supervised learning rank the extracted features
according to their relevance in predicting or classifying a target (Shanab, Khoshgoftaar, & Wald, 2012).
Feature selection techniques become imperative for identifying the most significant predictors of
datasets. The objective is to seek the principal features of the datasets that can best represent the datasets
(Murphy, 2012). For learning models such as Naive Bayes or Support Vector Machine, feature relevance
is very useful as a preprocessing step in classification modeling. On the other hand, Decision Tree
algorithm possesses mechanisms that rank features as part of the model building (Michalski et al., 2013).
The output of feature selection is the features of the built data ranked by their measured predictive
influence.

Random Forest and Forest of Trees feature selection techniques are an instance of ensemble models. An
ensemble model is a model built with some combination of different underlying models. This allows
ensemble models to outperform single models because different models may distinguish diverse trends
in the data (Shanab, Khoshgoftaar, Wald, & Napolitano, 2012). For this reason, ensemble models tend to
minimise the biasedness that single models have to overfit the data. Random Forest and Forest of Trees
models assign a significance value to each feature used in the training. Features with higher significance
are more influential in building the model, expressing a stronger association with the dependent variable.
Feature importance is based on a significance level of 0.05 and this is used as a threshold that can help
identify useful features and eliminate features that do not contribute much to the model (Shanab et al.,
2012; Khalid et al., 2014).

Although, in information theory, feature selection uses techniques such as, Ml, 1I, CMI, JMI, in practice
feature selection in machine learning uses two major techniques: ranker-based techniques and subset-
based techniques (Shanab et al., 2012; Wald et al., 2013; Khalid et al., 2014). The former analyses one
feature at a time by means of statistical procedures, while the latter analyses complete subsets individually
by means of a classifier (wrapper-based feature selection) or statistical procedures (filterbased subset
selection).

The ranker-based technique usually requires very little computational power compared to other feature
selection techniques, as a feature ranker focuses only on a single score for each feature, while subsets are
built based on ranked feature lists (Shanab et al., 2012). Subset-based selection techniques analyse groups
of features (subsets) in lieu of each individual feature (Wald et al., 2012). The shortcoming of subset-
based selection is that it is computationally expensive, as the computational cost attains O (2"). O (2") is
a computational running time of often recursive algorithms that solve a dataset of size N by recursively
solving two smaller problems of size N-1 (Shanab et al., 2012).
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On the other hand, subset-based selection techniques offer the benefit of capturing highly correlated
features in a given set among features (Wald et al., 2013). This ability to detect redundancy among
features can help in dimensionality reduction and improve the classification model (Khalid et al., 2014).
As such, subset-based selection techniques are more efficient than feature rankers.

Wald et al.,’s, 2013 study and Khalid et al.,’s, 2014 study elaborate on three different feature selection
techniques: filter-based feature ranking, filter-based subset selection, and wrapper-based subset selection.
These studies show that filter-based feature ranking evaluates individual features, selecting the highest N
features. The other two subset selection-based groups (filter-based subset selection, and wrapper-based
subset selection), make use of a search approach that explores the space of any possible feature subsets
to avoid reaching an O (2") computational cost.

In practice, the machine learning researcher decides which input data to provide to the algorithm. This
requires prior data source knowledge. A study by Kelley et al., (2016) argues that prior knowledge of the
data allows the researcher to confidently decide which dataset features are likely to be significant or not
significant. The study argues that the procedure for selecting significant features can be a scientific study
in itself to consider.

Fakoor, Ladhak, Nazi, and Huber (2013) present the problem of building a multiclass classifier to
differentiate measurements of gene expression among various kinds of cancers. The study shows that the
classifier firstly helped to establish precise diagnoses in cases of atypical presentation or histopathology,
and secondly, the built learning model helped to perform feature selection through the identification of
subsets of genes whose expression patterns have specifically contributed to various kinds of cancers.

Best practices show that it is worthwhile to define the motivations for carrying out feature selections in
a specific case. Understanding the task at hand helps to guide the machine learning researcher in selecting
the most appropriate feature selection techniques (Murphy, 2012; Michalski et al., 2013).

Some tasks, such as the need to produce a low-cost approach in the identification of a disease phenotype
on the merit of the evaluated gene expression levels, may be merely concerned with the identification of
a very small set of features that offer the best possible classifier (Fakoor et al., 2013). Other tasks may
require a deeper understanding of the underlying biological mechanism (Glaab, Bacardit, Garibaldi, &
Krasnogor, 2012). In this case feature selection techniques can be performed with the knowledge of
functional annotations or biological pathways that provide insight into the etiology of disease (Glaab et
al., 2012).

In even more complex cases, where one needs to train the most accurate possible classifier (Urbanowicz,
Granizo-Mackenzie, & Moore, 2012), feature selection techniques can be applied which enable the
classifier to identify and eliminate noise or redundancy. The machine learning researcher must be able to
select the most appropriate feature selection techniques for the specific task at hand (Fakoor et al., 2013).

In the case where bioinformatics datasets, which include proteomic, epigenomic, genomic or
metabolomic data, suffer from high-dimensionality (Urbanowicz et al., 2012; Dahl et al., 2014) due to
the growing number of input dimensions (number of data features input to a machine learning classifier),
the latter application of feature selection will be deemed most appropriate. However, although this
application will improve the data training performance, the shortcoming is the poor generalisation of the
model that results, due to the training data being overfitted (Menden et al., 2013). Performing a feature
selection method (e.g., principal component analysis) that can project the data from higher to lower
dimensions may solve this problem (Buettner et al., 2015).
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2.12.5 Model building

Model building in machine learning requires a lot of experimentation and discovery. Building the most
relevant model is not always a straightforward task and is often defined by the researcher’s understanding
of the task and their prior knowledge of the datasets (Glaab et al., 2012; Kelley et al, 2016; Hertroijs et
al., 2018).

The process takes into consideration different ways of collecting data, processing data, and understanding
and discovering features and patterns that deserve the most attention (Sochor et al., 2011). Through this
process, a machine learning researcher determines the most appropriate methods for feature selection and
tests multiple algorithms in an attempt to answer the questions that are being asked (Eduati et al., 2015).
The underlying mechanisms of machine learning model building are the disciplines of statistics,
mathematics, information theory, and computer science (Sochor et al., 2011; Murphy, 2012; Michalski
et al., 2013; Wang & Peng, 2014; Kautsar et al., 2017).
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Figure 2. 9 Underlying mechanism of Machine Learning Model Building

Our approach to gaining understanding of secondary metabolite genes is to make use of statistical and
mathematical approaches and draw on information theory and computer science concepts to analyse SM
gene properties. These disciplines present crucial skills that are important for model building. Chapter 3
elaborates on the scientific methods used in the study, demonstrating how these various disciplines are
drawn upon in the process of model building to develop predictions that hold true to test.

A study by Schmidhuber (2015) shows that the building of successful models in machine learning that
have the ability to generalize future data, requires thoughtful consideration of the datasets and
assumptions about existing training algorithms. This study argues that an appropriate selection and
interpretation of assessment criteria are the ultimate fuel to evaluate a machine learning model’s quality.
Machine learning consists of various algorithms with the power to automate analytical model building
(Michalski et al., 2013). These algorithms can iteratively learn from a dataset and assist researchers in
discovering hidden insights from a large set of data without being explicitly programmed on where to
look (LeCun, Bengio, & Hinton, 2015).

The process of model building includes algorithm design, learning, and testing with the objective to test
a hypothesis (Murphy, 2012; Michalski et al., 2013). For example, one bioinformatics study conducted
a hypothesis on a specific algorithm (Alipanahi, Delong, Weirauch, & Frey, 2015) that can learn to
recognize TSSs, where the algorithm is used as a hypothesis generator. In this case, the algorithm itself
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hypothesizes that given a set of sequences, sequence X is a TSS. At this point, the key research question
would be whether the resulting scientific theory is instantiated in the model produced by the learning
algorithm (Libbrecht & Noble, 2015).

2.12.6 Machine Learning Algorithms

Algorithms are fundamental in machine learning and while many machine learning algorithms exist
(Murphy, 2012; Michalski et al., 2013), this section will focus on those that are of interest in the current
study. Machine learning algorithms can be categorised into three major groups (figure 2.10); supervised
learning, unsupervised learning, and reinforcement learning. The sections below will focus on
supervised and unsupervised learning (Michalski et al., 2013).

Learning

Machine

Learning

Figure 2. 10 Three Major Groups of Machine Learning Algorithms. Taken from ‘Generative adversarial networks
for ground penetrating radar in hand held explosive hazard detection,” by C. Veal et al., 2018, Detection and
Sensing of Mines, Explosive Objects, and Obscured Targets XXI1I (Vol. 10628, p. 106280T).

Many studies in bioinformatics model their problems on their interaction with experience, environment
or input data (Eickholt & Cheng, 2013; Dahl et al., 2014; Leung, Xiong, Lee, & Frey, 2014; Sgnderby &
Winther, 2014). For this reason, the 'learning style of an algorithm is the first consideration, and may be
either supervised or unsupervised. These learning styles are the taxonomy of organising machine learning
algorithms to purposely think about the roles of the input data and the model preparation process, and the
selection of the most relevant algorithm to get the best result for the task at hand (Murphy, 2012;
Menden et al., 2013; Michalski et al., 2013).

2.12.6.1 Supervised Learning Algorithms

Supervised learning algorithms build prediction models by means of labeled data to predict either a
categorical value or a numerical value (Michalski et al., 2013). Categorical values are obtained through
classification models, while numerical values are obtained through regression models (Murphy, 2012).
Supervised learning can only be applied when a labeled training set exists (Menden et al., 2013). In
their application, supervised machine learning models intend to learn a function, from a list of training
pairs for which data are recorded.

The building function of supervised models implies the following:
f)=y

(x1,y1), (x2,2), (x3,)3), (x4,y4), etc.
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function: = f (x) where x € R™, and y € R".

In the case where the desired outcome is continuous, the model will use linear or multi-linear regression
and if the required outcome is discrete, the model will use classification, where the outputs are unordered
categories (i.e. not numerically meaningful). In both cases (regression and classification) the input data
is the training data and follows the assumption that for every Xi there exist a yi. Once the assumption is
met, the model is put through a training phase in which it learns from data patterns, begins making
predictions, and undergoes correction when those predictions are incorrect (Zhou & Troyanskaya, 2015).
The training phase continues until the model (classification or regression) reaches a significant level of
accuracy with the training data (figure 2.11).

The images below illustrate the output of a classifier model (classification-based algorithm, figure 2.11

A) which groups the data into classes, and a regression model (regression-based algorithm figure 2.11 B)
which maps the data into a linear regression.

Classification Regression

— Model

A -4 e Disease

e Healthy ee

| — Model .

& Patients . B

Gene 2
1
L]
Survived (years)
h | L

Gene 1 " ‘ Gene 1

Figure 2. 11 The difference between classification and regression algorithms

Technically, a regression model predicts a numerical output value using the training data (Murphy, 2012).
In this case, the data type is made of real or continuous numbers, yielding to a regression problem. In an
attempt to predict or forecast a future scenario, the regression model fits a straight line based on the
patterns of the data (Michalski et'al., 2013). Statistically, a'linear regression model predicts the variable
of interest from single or multiple, independent variables by means of a linear mathematical formula
(Sochor et al., 2011; Michalski et'al., 2013). The regression model can be used to analyse the correlation
between independent variables and the dependent variable, and understand the relationship between them
(Blagus & Lusa, 2012).

Machine learning can perform various parametric and non-parametric regression analysis techniques
(Michalski et al., 2013) where parametric regression models include methods such as linear regression,
and least square regression. The regression function is formulated by a finite number of unknown
parameters that are derived from the dataset. In the case of non-parametric regression models techniques
are applied that permit the regression function to lie in a defined set of functions, which may have infinite
dimensions (Michalski et al., 2013).

Linear regression models can be in the form of single or simple linear regression, multi-linear regression,
or ordinary least squares (OLS).

1. Simple Linear Regression model is based on the formula:

Population Random
Slope Independent Error

Coefficient Via"ab'e term
y v
Y =B, +B.X, + €

Linear component Random Error

Population

Y intercept
Dependent
Variable —_



*  Where ¢ is the error term value needed to correct for a prediction error between the observed and
predicted value.
» The predictor X is simple, meaning one-dimensional (X = X;). It is assumed to be linear with
variance depending on X.
2. The Multi- Linear Regression model is based on the formula:

Y=B0+ ﬂ1X1+ [;2X2+"'+ Bpo"‘ &

P
=Bo+ Zﬁixi te
i=1

={B,X)+e
Where
Bo 1
) ()

By Xp
« With several predictor variables

s azell)
« And with p + 1 parameters

(Bo 1 Br, -1 Bp)

Thus, the intercept is handled like any other parameter, for the artificial constant variable(x, = 1)

« Multiple linear simultaneous equations for a whole given dataset can be represented as,

(xl 'yl) yy (xn :yn)

Y=Xp+ ¢

Where

V1 X1 X1’1 X1,2 xl,p &1
Y = 3 ) X = Z = . . S . '5 = Z ,
In Xn Xn1 Xnz2 U Xnp én

Multiple linear regression formula is essentially the same as a simple linear regression except that there
are multiple coefficients and independent variables.

3. The Ordinary Least Squares (OLS) Regression model is based on the formula:
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Where Sminimize Iy = ?|° = ||v - x|/
« The OLS estimates 3 are computed via

XTXB =XTy

Statistically, OLS is a technique for estimating the unknown parameters in a given linear regression
model. The main concern is to minimize the sum of the differences between the explanatory variables in
a given random dataset and the responses predicted by the linear approximation of the data
(Hair Jr, Hult, Ringle, & Sarstedt, 2016). In other words, this can be seen (see figure 2.13) as the sum of
the vertical distances between each data point in the dataset and the equivalent point on the regression
model with the aim to achieve the smallest possible difference to fit the model to the data (Hair Jr et al.,
2016).

¥ =Wy + w;x

vertical offset | e
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=Ay / Ax

y (response variable)

!—1‘i’ = Ax

B —
. \
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(%, v3)

>
>

x (explanatory variable)
Figure 2. 12 Visually this is seen as the sum of the vertical distances between each data point in
the set and the corresponding point on the regression line

For purposes of this study, supervised-classification-modelswere:used as a focus in order to gain
insights into secondary metabolite gene analysis.

Classification models, unlike linear regression models, group the output into classes using the training
data (Michalski et al., 2013). In this case the data type is made of discrete, or categorical variables,
implying a classification problem. Classification models involve a two-step process (Murphy, 2012;
Michalski et al., 2013):

1. Model construction: building of a model for a defined set of pre-determined classes. Each data
point is meant to belong to a determined class, predefined by the class label instances. The training
dataset is used to construct the model, which is represented as classification rules, decision trees,
or mathematical formula.

2. Model usage: classification of unknown data points until the accuracy is accepted and the model
is used to classify data samples whose class labels are unknown. At this stage the accuracy of the
model in predicting unknown future attributes can be determined. The known label of the test
sample is compared with the classified output from the model, and the percentage of the test set
samples that are correctly classified by the model yields the test accuracy rate. Although the test
dataset is independent of the training dataset, it is good practice to ensure that both datasets follow
the same distribution.

The above two-step process outlines the learning process of the classification model to map each
independent variable x to one of the predefined class labels y. Classification models can be useful for
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predictive modeling or descriptive modeling (Murphy, 2012; Menden et al., 2013; Kelley et al., 2016).
In practice, a classification model is best fit to a dataset with binary or nominal categories, as it does not
take into consideration the implicit order among different instances (Menden etal., 2013;
Kelley et al., 2016). It is a perfect model for a set of attributes for which order does not matter (e.g.,
nucleotides, or amino acids).

1. A classification model is generally based on the Logistic Regression formula:

Where y is equal to a linear regression (single or multiple as seen by above formula 1 and 2).

Logistic regression prediction is based on a jointly exhaustive and mutually exclusive approach that
results in the partition of a set into two classes. The probability of an outcome results in only two values
(binary). Logistic regression inputs numerical and categorical variables with the aim to predict the value
of a binary variable. Figure 2.13 shows a logistic regression, producing a logistic curve, and a linear
regression, producing a linear regression line. There exists a similarity between the logistic regression
and linear regression, but the curve of the logistic regression is shaped using the natural logarithm of the
response variable in lieu of probability (Murphy, 2012), and is bound by values 0 and 1. The logistic
regression does not require the assumptions of equal variances or normal distribution among group
attributes (Michalski et al., 2013).

y = bo + blx 4= Linear Model

p Logistic Model
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X

Figure 2. 13 Logistic Model Vs. Regression Model

The constant (b,) moves the logistic regression curve left and right and the slope (b;) determines the
steepness of the curve. In the case of a logistic regression that involves any number of numerical or
categorical variables, the formula can be rewritten as,

1
p=

= 1+ e_(b0+b1x1 +b2x2+b3x3+...+bpxp)

The curve function of the logistic regression for classification is also known as the sigmoid function
which maps any input X between zero and one.

Neural Network

An artificial neural network (ANN) is a statistical learning algorithm with a group of nodes, similar to
the vast network of neurons in a brain. In an ANN, each node represents an artificial neuron and an arrow
represents a connection from the output of one artificial neuron to the input of another (Sgnderby &
Winther, 2014; Alipanahi et al., 2015). There are different kinds of ANN, however the single-
layer perceptron network (SLPN or SLP) and the multilayer feed-forward neural network (MFNN or
MLP) are the most widely used (Zhou & Troyanskaya, 2015; Kelley et al., 2016). SLPN and MFNN are
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initially trained as any other machine learning algorithms, with input data fed into these neural networks,
followed by the learning phase, which is conducted until accurate predictions occur (Bengio, Courville,
& Vincent, 2013; Schmidhuber, 2015; LeCun et al., 2015).

1 Single Layer Perceptron Network

Single layer perceptron network (SNLP, often known as perceptron) is seen as analogous to a biological
neuron which fires an impulse once the total sum inputs pass the threshold (Dahl et al., 2014;
Leung et al., 2014). Perceptron emulates the thresholding behavior by acting as a switch by means of the
classification sigmoid function (Bengio et al., 2013). Different classification problems that make use of
a perceptron algorithm (Logistic regression for classification) set a threshold at the output of the
perceptron, which classifies the outputs into two groups (Alipanahietal., 2015). However, the
supervised perceptron can represent both logistic regression (sigmoid function) and linear regression
(Zhou & Troyanskaya, 2015; Kelley et al., 2016). The outputs of the perceptron are obtained by a sum
of the weighted inputs plus a bias term which, are the parameters that define the learned behavior (Zhou
& Troyanskaya, 2015; Kelley et al., 2016).
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Figure 2. 14 Perceptron Neuron Network Supervised Learning. Modified from ‘A
learning rule for very simple universal approximators consisting of a single layer of
perceptrons,” by P. Auer, H. Burgsteiner, & W. Maass, 2008, Neural Networks, 21(5).

Figure 2.14 shows the perceptron neuron binary classification with one neuron setting a threshold at the
output of the perceptron. Supposing a binary.class (yes, and no) problem a threshold (t) could be set to
be:

i T=05
a. ify>T: output =yes
b. else output = no

While the above describes a case of one neuron class, there also exists classification where many neurons
(nodes) are put in parallel and each node processes its binary output out of N possible classes
(Alipanahi et al., 2015; Zhou & Troyanskaya, 2015; Kelley et al., 2016).

2 Multilayer Feed-Forward Neural Network

Previous research has shown that ANNSs are capable of solving complex nonlinear tasks. Multilayer Feed-
Forward Neural Network (MFNN) is the most applied ANN to model nonlinear systems
(LeCun et al., 2015; Kelley et al., 2016) MFNN (figure 24), is made of nodes that are ordered into layers.
The first layer (from the left) is called the input layer, the middle layers are called hidden layers, and the
last layer is called the output layer (Schmidhuber, 2015). The lines that connect the layers are called
weights. These weights control the transfer of signal between nodes through the activation function.
During the training, MFNN seeks to determine the optimal value of the weights.
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Figure 2. 15 Multiple Feed-forward Neural Network. Modified from ‘How transferable are features in deep neural
networks?’ by J. Yosinski, J. Clune, Y. Bengio, & H. Lipson, 2014, Advances in Neural Information Processing
Systems

For the activation function f (x), the input X»-1to node n-1 is the weighted sum of the outputs of all nodes
connected to it.

A study by Kelley et al., (2016), demonstrated that supervised classification models and gene selection
can elicit new and meaningful knowledge from bioinformatics datasets which can be applied in the
diagnosis and prognosis of a disease. Other studies demonstrate application of a supervised learning
algorithm to select genes based on the nucleotide sequence of a chromosome (Zhou &
Troyanskaya, 2015; Alipanahi et al., 2015). The above-mentioned algorithm predicted the locations and
detailed intronorexon structure of all-the protein-coding genes on the chromosome. A training set (x) of
labeled DNA sequences, consisting of all the splice sites and the locations of transcription start and
termination sites of the gene (TSS and TTS), was required as input for this model. The model was trained
to identify the genes based on their general properties such as the DNA sequence pattern near a donor or
acceptor splice site, the occurrence of in-frame stop codons within coding exons, and the expected length
distribution of 5’ and 3’ untranslated regions. These gene properties helped the model to identify novel
genes that resemble the genes in the training set (Fakoor et al., 2013; Alipanahi et al., 2015; Zhou &
Troyanskaya, 2015; Kelley et al., 2016).

Another study (Menden et al., 2013; Eduati et al., 2015), aimed to predict the viability of a cancer cell
line when exposed to a chosen drug. The input training set (x) was made of features such as somatic
sequence variants of the cell line, chemical make-up of the drug and its concentration, and the measured
viability (output label y), which were used to train classification logistic regression models (support
vector machine, random forest classifier etc.). When given a new input test set (x*), the learnt model
predicted its survival (y*) by computing the functional relationship f (x*).

Support Vector Machine

Support Vector Machine (SVM) classifier classifies each data attribute as a point in n-dimensional space
(where n is number of features), where the value of each feature represents a specific coordinate.
Classification performance is conducted by determining the hyper-plane which can differentiate two or
more classes. In other words, given labeled training data, the classifier outputs an optimal hyperplane
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which categorizes the test file into the appropriate classes. Technically, in two-dimensional space this
hyperplane separates the classes where each class lay in either side. An SVM threshold is often set to
0.5 (Zahiri et al., 2013).

g

Class A

Figure 2.16: shows an SVM trained with samples from two classes with a maximum-margin hyperplane.
Samples on the margin are called the support vectors. Support Vector Machine learned the representation
of a hyperplane, in this figure illustrated through an enclosed rectangle that best separates the two classes
(Zahiri et al., 2013).

Random Forest

Random Forest (RF) is a classifier that is built-based on a decision tree to boost the predictive power.
This random forest operates by building a-multitude-of unpruned decision trees at training time and
outputting the mode of the classes;(classification) of the individual trees (Eduati et al., 2015). Random
forest 100 (RF100) has been demonstrated.in-previous.studies'as the optimum number of trees and is
often used as the default recommended RF (Khoshgoftaar, Golawala, & Van Hulse, 2007). After the trees
are constructed, the classifier begins testing each instance passed through each tree, and based on the
majority vote of decision trees, the predicted class is thus chosen.

K-Nearest Neighbors

K-nearest neighbor (KNN) classifier is a non-parametric. method used for classification and regression,
where the input consists of the k closest training examples in the feature space built (Menden et al., 2013).
The KNN model stores all variable cases and predicts the numerical target based on a similarity measure.
The optimal value for k is best calculated by first building a cross-validation algorithm to retrospectively
determine the best k value (Eduatietal., 2015). Alternatively, a grid-search cross-validation
(searchgridCV) algorithm can be implemented to obtain the best k value (Eduati et al., 2015).

Gaussian Naive Bayes

Naive Bayes classifier uses the Bayes theorem which is computationally efficient and easy to interpret
when using binary or categorical input values. This classifier is appropriate for problems that contain a
normal distribution and are assumed to be conditionally independent given the class label. A Naive Bayes
classifier can be applied to the training data for supervised learning tasks using maximum likelihood (Liu
etal., 2012).

2.12.6.2 Unsupervised Learning Algorithms

Unsupervised learning algorithms can be used to discover possible significant, novel, and unknown
patterns or associations between covariates or sets of instances using unlabeled data
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(Menden et al., 2013). The goal in unsupervised learning is to identify rules (e.g., association rules and
clustering) that largely link various covariate values, or cluster data attributes into a selected number of
classes in such a way that each class is made of data attributes that are similar (Kelley et al., 2016).

Main approaches to unsupervised learning include: Clustering Analysis (CA), K-means, Hierarchical
clustering (HC), Personal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding
(TSNE). Unsupervised Neural Networks, Anomaly detection, Mixture models, Deep Belief Nets,
Autoencoders, Hebbian Learning, and Expectation-maximisation algorithms. In the Mathematical and
Statistical Approaches Section above CA, HA, PCA were elaborated on and are typical examples of
unsupervised algorithms applied to biological data. In the sections below, we briefly focus on two
unsupervised learning techniques that are important for our research (PCA and TSNE).

These techniques (PCA and TSNE) are executed through computational models computationally handled
and for the sake of a concise literature review we will not dive into the mathematics behind them.

Principal Component Analysis

Before conducting data analysis and inferences, it is often beneficial to develop a visual representation
of the dataset to gain a high-level view that can aid in analysis and comprehension. Principal Component
Analysis (PCA) is an unsupervised machine learning classifier that takes data of high dimensions and
produces several linear cross-correlations of the observed variables that assists in understanding the
relationships among data points (Yu et al.,.2012). Principal Component Analysis is also used for
dimensionality reduction of linear-cross-correlations-among-dataset attributes (Menden et al., 2013).
Furthermore, PCA can be used to compress-the data; reducing the number of dimensions without much
loss of information. It will then rank-the principal components according to their decreasing distributions,
revealing patterns in the data (Kelley et al., 2016).

PCA is carried out by first calculating the set of orthagonal eigenvectors of the correlation or covariance
matrix of the variable components-(\Vidal, Ma, & Sastry, 2016).-The matrix of principal components is
the product of the eigenvector matrix with the matrix of independent variables. As a result, the first
principal component accounts for! the /largest representation of /the dataset variation, and the second
principal component accounts for the second largest representation of the dataset variation, and so on.
The objective of principal components-is to explain‘the-maximum amount of variance based on fewest
numbers of components (Vidal et al., 2016).

t-distributed Stochastic Neighbor Embedding:

t-Distributed Stochastic Neighbor Embedding (TSNE) is a nonlinear dimensionality reduction technique
that is built to transfer a high-dimensional dataset into a low-dimensional space (2D) for visualisation.
This algorithm precisely models each high-dimensional data point into a two-dimensional point in such
a way that similar data points are modeled by nearby objects and unrelated data points are modeled by
distant objects with high probability (Van der Maaten & Hinton, 2008).

The method of Stochastic Neighbor Embedding (SNE) converts the high-dimensional Euclidean
distances between datapoints into conditional probabilities that characterize similarities (Van and Hinton,

2017). The similarity of datapoint X;j to datapoint X; represents the conditional probability, pjj, in a way
X;i would choose Xj as its neighbor if neighbors under a Gaussian centered at X; were chosen
proportionally to their probability density. For neighboring datapoints, Djji is comparatively high, whereas
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for widely separated datapoints, Pji will be miniscule (for reasonable values of the variance of the
Gaussian, oi). Mathematically, the conditional probability pj;i is given by:

exp (—|lxi—x;(?/267)
2 ki €XP (—||x,- —xk||2/20;2)

1. Pjli =

The aim of TSNE technique is to optimize and produce significantly better visualizations by reducing the
tendency to crowd data points together in the center of the map (Van der Maaten & Hinton, 2008; Van
and Hinton, 2017).

2.12.6.3 Model Evaluation Performance Metric

Whether implementing classification or regression modeling techniques, both have the ability to make
good predictions (Michalski et al., 2013). Selecting a model and knowing which is the right fit for the
training dataset is one thing, while knowing how to generalize the model to an unseen dataset is another
(Murphy, 2012; Menden et al., 2013). In circumstances where the selected model fits the training data, it
is ideal to ensure that this model does not simply memorize the dataset fed into it, as this will ultimately
result in a failure to predict future dataset samples (LeCun etal., 2015; Schmidhuber, 2015;
Kelley et al., 2016).

To avoid this biased estimate of the accuracy of the learned model, it is advised to feed a labeled test
dataset into the learned model, to evaluate its bias (Murphy,~2012; Menden et al., 2013). In the case
where the test dataset gives a less accurate output compared to the trained model, the accuracy estimate
of the model is deemed to be biased (Michalski et al., 2013; Schmidhuber, 2015; Kelley et al., 2016).

Thus, evaluating the selection of a learning algorithm that is suitable for the application domain is an
essential part of any machine learning project (Vehtari, Gelman, & Gabry, 2017). For the above
classification models to give satisfying results, different metrics are used to determine the performance
of the machine learning classification and compare the results. The different types of classification
performance metrics which are often used include:

1. Null Accuracy: Also known as baseline accuracy, this is achieved when the model can
consistently predict the predominant class in a dataset.

2. Classification Accuracy: This is the ratio of the number of correctly predicted instances to the
total number of sample size.

A _ Number of correct predictions
CCUracy = Number of predictions made
Note: classification accuracy works well only in a case where an equal number of attributes belong to each group.

3. Log Loss (a.k.a. Logarithmic Loss): A performance matrix that penalizes the false classifications.
In practice it works well for multi-class classification. Using Log Loss, the classifier assigns to
each class an accuracy probability for all the samples.
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4. Confusion Matrix: An evaluation metric implemented through an outputs matrix which
describes the complete performance of the model. Confusion matrix has four associated terms
(Batista, Prati, & Monard, 2004).

« True Positives (TP): The cases where the null hypothesis is an X observation and the actual
output was also an X observation.

« True Negatives (TN): The cases where the null hypothesis is Not an X observation and the actual
output was an X observation.

- False Positives (FP): The cases where the null hypothesis is an X observation and the actual
output was Not an X observation.

- False Negatives (FN): The cases where the null hypothesis is Not an X observation and the actual
output was also Not an X observation.

Classification Accuracy of confusion matrix is given by the relation:

TP + TN
TP+ TN + FP + FN

Accuracy =

However, there are problems with accuracy. It assumes equal costs for both kinds of errors. A 99%
accuracy can be excellent, good, mediocre, poor or terrible depending upon the problem.

Recall:

Recall can be defined as the ratio of the total number of correctly classified positive examples divide to
the total number of positive examples. High Recall indicates the class is correctly recognized (small
number of FN).

Recall is given by the relation:

TP

Recall = W

Precision: To get the value of precision the total number of correctly classified positive examples are
divided by the total number of predicted positive examples. High Precision indicates an example labeled
as positive is indeed positive (small number of FP). Precision is given by the relation:

P
TP + FP

Precision =

High recall, low precision: means that most ot the positive examples are correctly recognized (low
FN) but there are a lot of false positives.

Low recall, high precision: This shows that we miss a lot of positive examples (high FN) but those we
predict as positive are indeed positive (low FP)

F-measure: Since we have two measures (Precision and Recall) it helps to have a measurement that
represents both of them. We calculate an F-measure which uses Harmonic Mean in place of Arithmetic
Mean as it punishes the extreme values more. The F-Measure is always nearer to the smaller value of
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Precision or Recall (Musicant, Kumar, Ozgur, 2003).

2*Recall*Precision
F - measure= ——M—MMM——

Recall + Precision

5. Area Under the receiver operating characteristics Curve (AUC): This is a very important and
powerful metric for classifier performance, particularly for the binary classification problem. The
AUC of the learned model is equal to the probability that the learned model will rank a randomly
chosen X observation higher than a randomly chosen Not X observation (Murphy, 2012).

6. ROC and AUC are used to see how sensitivity and specificity are affected by various thresholds.
ROC helped in choosing a threshold that balances sensitivity and specificity of the classifiers.
AUC is a summary of the classifier performance (Vehtari et al., 2017).

7. F-measure: This calculates the mathematical mean between precision and recall. The domain
interval for F-measure lies between [0, 1]. Here, F-measure explains how precise the learned
model is in correctly predicting instances, as well as how robust the learned model is (i.e. it does
not miss a significant number of instances). As such, the greater the F-measure, the better the
performance of our model (Musicant, Kumar, Ozgur, 2003).

8. Mean Squared Error (MSE): There exists a similarity between MSE and MAE, with the sole
difference being that MSE calculates the average of the square of the difference between the
actual outputs and the predicted outputs. MSE presents an advantage in its easiness to compute
the gradient, whereas MAE entails a complicated linear programming approach to compute the
gradient. As the square of the error is computed, the effect of larger errors becomes more
noticeable then smaller errors; hence the MSE becomes a performance metric for the model
(Michalski et al., 2013).

2.12.6.4 Model Overfitting

One advantage of model evaluation is its ability to detect model overfitting. During the creation of the
model, the objective is to choose the model with the most appropriate hyperparameters (parameters of a
prior distribution). These hyperparameters can be grouped into four parameters: regularisation, model
size, number of passes and shuffle type (Michalski et al., 2013; Kelley et al., 2016). In certain cases, the
best model parameter settings, which produce the most significant predictive accuracy on the training
data, can result in overfitting (Michalski et al., 2013). Overfitting gives the appearance of accuracy in the
model’s prediction, while in reality this is based on the model’s capacity to memorize occurring patterns
in the training data, meaning it will fail to predict patterns on unknown datasets (Murphy, 2012).

Overfitting can be avoided by selecting an additional dataset for validating the performance of the model.
In this case, it is recommended to split the dataset into 60 percent for training, 20 percent for evaluation
and 20 percent for validation (Michalski et al., 2013). Once the selected model parameters have been
complete and have performed well for the evaluation data, the model can then run a second evaluation
on the validation dataset to see how well the learned model performs on the validation dataset. If the
learned model reaches the expected threshold on the validation dataset, it can then be deemed to not
overfit the data (Murphy, 2012; Michalski et al., 2013).

One downside of this approach is that the splitting of dataset into three sets may result in the omission of
relevant data from the training process. In an instance where the data set is small, it is advantageous to
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perform cross-validation (see below) and allow as much data as possible for training
(Menden et al., 2013; Leung et al., 2014).

2.12.6.5 Cross-validation

Cross-validation is a machine learning technique for evaluating learning models by training the models
based on input data subsets (Vehtari et al., 2017). The models are evaluated on the complementary subset
of the data to detect overfitting. If a model suffers from overfitting, it will fail to generalize a pattern. K-
fold cross-validation is a method that applies cross-validation by splitting the input data into k folds
(subsets) of data. Subsequently, the model is trained on all folds excluding one-fold, and the model is
evaluated on the one-fold that was not used in model training. The process goes on k times with a specific
fold kept aside (not included in the training) for evaluation (Vehtari et al., 2017).

2.13 Summary

The biological theory described in the literature serves to provide the context for the study. This chapter
of the literature illustrates the biological background for medicinal plants and their health and economical
benefits. Medicinal plants are known to be the source of secondary metabolites, and many of these
secondary metabolites (SM) are used by humans for flavoring, medicinal and recreational purposes.
Many SM are known to exhibit antioxidant, antimicrobial, anticoagulant, anti-inflammatory, antidiabetic,
anthelminthic and lipid-lowering properties (Kaul et al., 2017). Four classes (Terpenoids, Alkaloids,
Phenolics, and Glycosides) of SM are studied and-it-was shown that these secondary metabolite classes
lead to the production of polyphenols.-Four classes (Flavonoids, Phenolic Acids, Lignans, and Stilbenes)
of polyphenols are then explored to further understand the effect of polyphenols. Different studies have
reported the effects of polyphenols-on-human-health-and-their-ability to treat many diseases (Clauss et
al., 2017; Wang et al., 2014; Goetz et al., 2016).

Chalcone synthase or naringenin-chalcone synthase (CHS) has been shown to be a key enzyme in the
family of type I11 polyketide synthase enzymes (PKS) (Shimizu et-al., 2017). CHS catalyzes the reaction
3 malonyl-CoA + 4-coumaroyl-CoA = 4 CoA +naringenin chalcone + 3 CO2 and possess a broad
spectrum of interesting biological activities such-as insecticidal, antioxidative, antibacterial, antiulcer,
anticancer, amoebicidal, anthelmintic, -antifungal, antitumor, antiprotozoal, antiviral and anti-
inflammatory properties (Sun et al., 2015; Gill et al., 2017; Ibdah'et al., 2017; Ratnam et al., 2017).

As CHS has been well studied, we therefore use it as an exploratory proof of concept SM gene involved
in polyphenol production for our computational analysis. In the case that our computational models are
accurate in identifying chalcone synthase, this will have longer term benefits to society, as these models
can be used to learn more about genes involved in medicinal compounds.

The mathematic statistical analysis methods are explained as they key focus of the study. Different
bioinformatic studies have shown and attempted to analyse biological data and understand the inferential
relationship in the biological data. Mathematic statistical approaches have been applied in many
biological studies as seen in this section.

Goodness of fit or Chi-square has been used as a statistical model evaluation that can, in the context of
model selection, examine the accuracy of the association between categorical variables within a dataset
(D'Agostino, 2017). On the other hand, ANOVA test compared the means of a condition between two
classes. Similar to chi-square, ANOVA was an omnibus test which reviews the dataset as a whole.
However, the ANOVA test and chi-square do not identify where the difference is between the classes.
To locate these differences in relationship between the classes, a post-hoc test can then be conducted.
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The literature review also highlighted some of the studies that have used machine learning classification
models to classify biological contents, and conducted an in-depth investigation of different machine
learning models used in bioinformatics studies. Supervised classification models have proven to be of
great efficiency in addressing different research problems in bioinformatics. Once these models have
been built, model evaluation metrics can be used to determine how well a learned model classifies the
output based on a new (unknown) dataset (Menden et al., 2013; Leung et al., 2014).

This literature review describes the underlying biological theory and outlines they key computational
practices that will be used to address this study’s research questions. It has also served to highlight the
multiple disciplines that are involved in bioinformatics generally, in particular, giving insight to which
methods we can use to address our research problem.
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3.1 Contributions

The main contribution of this chapter is to outline best practice and data science techniques that were
used in this study. These methods are particularly effective in addressing bioinformatics dataset
challenges and are appropriate in their application to machine learning and statistical analysis. In this
chapter, a novel computational pipeline figure 3.1 is presented that encompasses all of the processes
involved in this study, from collecting real-world bioinformatics datasets and preparing them, to

Chapter Three: Research Process

building machine learning classifiers and statistical models.
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3.2 Introduction

The work described in the following sections of chapter 3 discusses the steps involved in each part of the
computational pipeline. Section 3.3 on Data Collection includes a description of the data collection
process. Section 3.4 on Data Preparation includes the steps that were conducted to ready the data for
analysis and includes data integration, data cleaning, data transformation, creation of a baseline database,
feature engineering, data standardisation, feature selection, experimental datasets, and data quality.
Section 3.5 on Data Analysis includes the data visualization processes that were conducted, statistical
analysis, and machine learning classification models that were used in the study.

Methods Motivation for exploratory Proof of Concept on Secondary
Metabolite genes

3.3 Data Collection

One of the largest repositories of protein sequence data is UniProtKB, which is an open access database
with large amounts of information derived from research literature. The first step was the identification
of one specific enzyme known as chalcone synthase. The identification of the N-terminus and C-terminus
domains (pf02797 and pf00195) of chalcone-synthase was obtained from the Protein family (Pfam)
website: http://pfam.xfam.org/family/.--To perform supervised binary classification on machine learning
classifiers, reviewed chalcone synthases (RCHS)-—protein sequences with known chalcone synthase
catalytic activities—were obtained by searching the Swiss-Prot-section of UniProtKB using the advanced
search options with the terms:

Terms | Options
AlL-|=Pf02797-and-Pf00195-(Chalcone synthase domains)
Taxonomy [OC] | Viridiplantae
Reviewed>Unreviewed | -Reviewed>Unreviewed

Subsequently, only the enzymes that catalyze the reaction 3 malonyl-CoA + 4-coumaroyl-CoA =4 CoA
+naringenin chalcone + 3 CO2 (i.e. chalcone synthase catalytic activity) were selected. 130 RCHS protein
sequences (enzymes) were collected and constituted the “true positive set” of the dataset. The “true
negative set” (not chalcone synthase (NCHS)) constituted of 130 reviewed protein sequences with known
catalytic activities other than RCHS’s catalytic activities. These protein sequences were gathered by
conducting two different searches.

The first search of the Swiss-Prot section of UniProtKB used the same advanced search options as above
with the terms:

Terms | Options
Family and Domains > Protein family | chalcone stilbene synthases family
Taxonomy [OC] | Viridiplantae
Reviewed | Reviewed
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This search retrieved 69 reviewed protein sequences that were confirmed to be non-chalcone synthase
(NCHS).

The second search scanned the Uniref100 section of UniProtKB using the advanced search options with
the terms:

Terms | Option
UniProt: family | chalcone stilbene synthases family
Taxonomy [OC] | Viridiplantae
Reviewed | Reviewed

Identity | 1.0

61 reviewed protein sequences that were confirmed to be non-chalcone synthase (NCHS) were gathered
from the 198 clusters found in Uniref100.

The 2961 unreviewed chalcone synthases (UCHS) that were used in this study were downloaded from
the TREMBL section of the UniProtKB using the same advanced search terms as RCHS. For these
enzymes, the catalytic activity was unknown. However, to avoid class imbalances, 130 UCHS were
randomly selected to constitute the UCHS class.

These three classes—reviewed chalcone synthase (RCHS) , reviewed non-chalcone synthase (NCHS)
and unreviewed chalcone synthase (UCHS)—each with 130 sequences, constituted the balanced
experimental datasets from which supervised multiclassification on machine learning classifiers and
statistical analysis were performed.

3.4 Data Preparation
3.4.1 Materials (Software and Hardware Specifications)

These software and hardware specifications were used for the implementation of the data preparation
and data analysis.

» Dell Computer, Intel CORE i5 7th Gen CPU @ 2.50CHz x 4, 8 GiB, 64-bit

* Xx86_64 — Machine architecture

» Xx86_64 — Processor architecture

« x86_64 — Operating system architecture

* GNU or Linux — Operating system

* Linux 4.15.0-29-generic (buildd@Ilcy0l-amd64-024) (gcc version 5.4.0 20160609 (Ubuntu
5.4.0-6ubuntul~16.04.10))

« Linux Kernel 4.15.0.29 (PC operating system)

« Anaconda: A data science Python distribution pre-loaded with all the most popular libraries and
tools. Some of the biggest Python libraries wrapped up in Anaconda include NumPy, Pandas
and Matplotlib, though the full list is over 1000 packages.

« Jupyter Notebooks (www.jupyter.org): Open source web application installed in Anaconda that
allows for creation and sharing of live coding.

44


http://www.jupyter.org/

« Jupyter kernel: A dependency of Jupyter Notebook, which is responsible for handling various
types of request (code execution, code completions, inspection), and providing a reply.
» Python 3.6.1 | Anaconda 4.4.0 (64 bit) | Gec 4.4.7 20120313 (Red Hat 4.4.7-1)

3.4.2 Data Integration

During data collection, the data of each class (RCHS, NCHS, UCHS) was downloaded separately in
Microsoft Excel, and then integrated into one worksheet. This file was then transformed into a CSV file
to form datasets for supervised binary classifications (RCHS and NCHS), supervised multiclassification
and statistical models (RCHS, NCHS, and UCHS).

3.4.3 Data Cleaning

To address data noise, which may result from the presence of ambiguous amino acid letters or non-
alphabetical characters ({, }, ,”,/, * etc.), a Python script was written to check each protein sequence and
remove any unnecessary characters. To ensure correct input data logging and avoid random error and
attribute noise during subsequent analyses, Python scripts were written that verified correct classification
of the sequences into the three defined classes (RCHS, NCHS and UCHS). The completeness of sequence
numbers and sequence labelling was also checked. The data cleaning pseudocode is explained further in
Chapter 4, and the full code is available in Appendix B.

3.4.4 Data Transformation and Feature Engineering

Data transformation and feature engineering were performed simultaneously, with a view to transforming
protein sequences into distinctive properties of-input-patterns (features) that addresses the issue of protein
sequence length. The features were engineered in order to address sequence length and to convert protein
sequences, which are categorical data, into numerical data. This contributed to converting the data into a
format that is more conducive for feature engineering in machine learning and statistical analysis. Three
novel feature sets were developed by writing Python scripts with. Biopython libraries to engineer these
feature sets:

1. Frequency-based features
2. Value-based features
3. Amino acid relative frequency feature

The first feature set (Frequency-based features) includes four features which were extracted from the
protein sequences through the identification of the amino acids involved in: Aromaticity, Beta-Sheet,
Alpha-Helix and Turn.

The second feature set (Value-based features), which was derived from specific amino acids as well,
include: Entropy, Protein-Stability, Protein-GRAVY, and Protein-Isoelectric-Point.

The third feature set (Amino acid relative frequency feature) consists of the twenty amino acids. That is,
each amino acid is defined as unique feature, and its empirical frequency is then calculated.

The rationale and explanation of these three feature sets is explained further in Chapter 4, see Section

4.2. The pseudocode for engineering these three feature sets is also presented in Chapter 4, and the full
code is available in Appendix B.
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3.4.5 Baseline Dataset

The three transformed feature datasets, along with the original raw datasets that were captured directly
from various sections of UniProtKB, make up the baseline dataset. This dataset was compiled and saved
as a Microsoft Excel workbook to ensure that all of the data collected for this study, and their derivative
datasets, are preserved and made available for future study. The complete baseline dataset is available in
Appendix B.

3.4.6 Data Standardisation

Data standardisation, since the frequency-based feature set and the amino acid relative frequency
feature set are both proportional features, whereas the value-based feature set is value based, the features
were standardised to center the data values around 0 using the standardisation mathematical formula :

XU

new o
Where Xnew IS the standardised new dataset, x the observation in the old dataset, A is the mean of old the
dataset and sigma the standard deviation of the old dataset.

3.4.7 Feature Selection

To address the significance level of features-among the-engineered features of two sets (frequency-based
feature and value-based feature), different feature selection techniques were used to rank these features
based on their predictive significance. Feature selection is also implemented in this study to counter high
dimensionality that biological datasets present and to find a ‘minimum relevant feature” from these two
feature sets to enter the model.

Different mathematical and statistical techniques used -during the implementation of feature selection
include:

« Principal Component Analysis (PCA): Used to compute the feature dataset and produce two
principal components that are used to build the models.

» Scatterplot Matrix and Spearman’s Correlation Matrix: Used to pinpoint the correlation scores
between features.

« Analysis of Variance (ANOVA): Computes the degree of linear dependency between two random
features.

« Mutual Information (MI): Used to capture any kind of statistical dependency between features.

« Stats Test Standard Deviation (Std): Used to select feature relevance based on Std score.

» Histogram Technique: Used to select features based on their frequency and distributions.

« Chi-square: Used to select features with the highest values of the Chi-squared statistical test.

« Random Forest and Forest of Trees: Used to evaluate the significance of each of the features
through a classification task.

More on the feature selection methods is found in chapters four and five.
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3.4.8 Experimental Data Quality

To provide a measurement for data quality, Area Under the Curve (AUC) was calculated for each dataset
using the numbers of sequences per class. To ensure a unique scalability of the engineered features in
these datasets, data standardisation was conducted. Lastly, to ensure data fitness, the data collection
(Section 3.3) and data preparation steps (Section 3.4) contributed to data quality in terms of accuracy,
completeness, consistency, integrity, reasonability, timeliness, uniqueness, validity, and accessibility.

3.5 Data Analysis
3.5.1 Data Visualisation

Mathematical and statistical computational methods were used in this study to visualise the datasets and
their features in such a way that information, analytics, patterns, trends and correlations could be clearly
demonstrated, and include:

+ t-distributed Stochastic Neighbor Embedding (TSNE)
 Principal Component Analysis (PCA)

* Regression Analysis (RA)

« Mutual Information (MI)

* Anova (F-test)

« Boxplot

» Histogram

» Forest of Trees

» Scatterplot and Spearman’s Correlation

3.5.2 Supervised Machine Learning Classifiers

The supervised classifiers built in this study are dependent on the same data collection and data
preparation fundamentals cited in the above Sections 3.3 and 3.4. Eight supervised classification models
(Binary and multiclassification algorithms) were implemented in this study, which were all referenced in
the literature review in Chapter 2: Logistic Regression (LR), Decision Tree (DT), Random Forest with
100 trees (RF100), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Naive Bayes (NB),
Single Perceptron (SLP), and Multilayer Perceptron (MLP). These supervised classifiers were chosen
due to their prevalence in the literature.

Further rationales and descriptions of the implementation of these above methods, procedures, and
features are illustrated in more detail in Chapters 6.

3.5.3 Statistical Analysis

Data collection (Section 3.3) and data preparation (Section 3.4), also serve as fundamentals of the
statistical analysis conducted in this study. Five mathematic statistical techniques: one-way analysis of
variance (ANOVA), Tukey's range test, Chi-square test, post hoc test Bonferroni, and Boxplot were
implemented in this study. The assumptions and formulas of these techniques are elaborated in Chapter
7.
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3.6 Limitations of the study

The main limitations of the study are laid out below.

Sample size — our sample size is made up of 390 protein sequences, because only 130 Reviewed
Chalcone Synthase (RCHS) and 130 reviewed Not Chalcone Synthase could be properly
identified as true positive and true negative datasets respectively. To ensure that all of the datasets
were balanced, 130 sequences from a batch of 2961 Unreviewed Chalcone Synthase were selected
at random. The total sample size of 390 sequences may not be considered a large enough sample
size to ensure a representative distribution of the plant enzyme population, given that the total
population size of plant enzymes is unknown. This study therefore presents an exploratory proof
of concept model. We suggest that future studies could be conducted with a larger sample size
of true positive and true negative data if they become available, to explore what further significant
relationships from the data could be found.

Lack of prior research studies on the topic — various studies have served as the basis of the
literature review and while these studies may form the foundation for framing the research
problem under investigation, a study on data science techniques (machine learning and
computational statistical models) mining chalcone synthase has not been previously reported (to
our knowledge). Therefore, we present an exploratory rather than an explanatory proof of concept
research design.

48



Chapter Four: Feature Engineering — Implementation and Result

4. Introduction

This chapter discusses the data collection processes implemented in the current study. A proof of concept
for data transformation in combined with feature engineering techniques is presented. Data
transformation, which results in engineered features, while tedious, is essential for building a statistical
or machine learning model, particularly in cases of protein sequence analysis tasks (Qu, Yu, Gong, Xu,
& Lee, 2017). Choosing appropriate data transformation techniques can assist in accelerate the mining
and analysis of bioinformatics datasets (Qu et al., 2017; Angermueller et al., 2016).

4.1 Data Collection

Section 3.3 in Chapter 3 showed the steps that were followed to collect all of the datasets for Reviewed
Chalcone Synthase (RCHS), Not Chalcone Synthase (NCHS), and Unreviewed Chalcone Synthase
(UCHS) protein sequences.

To construct proof of concept binary classification models, the true positive dataset (RCHS) consisting
of 130 curated protein sequences with known chalcone synthase catalytic activities (3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin chalcone + 3 CO2. 130) was used in combination with the true
negative dataset. The true negative dataset (NCHS) consisted of 130 different curated plant protein
sequences confirmed to not exhibit any-chalcone synthase catalytic activity, as can be seen in figure 4.1.

To construct proof of concept multi classification models and statistical models, the same true positive
and true negative datasets were used. The third dataset was constructed from Unreviewed Chalcone
Synthase (UCHS) and consisted of 130 non-curated protein sequences (with unknown chalcone synthase
activities) selected at random from a set of 2961 protein sequences.

4.1.1 Plant Protein Sequence Data Resources
As mentioned in Chapter 3, Section 3.3, the data for this study was collected from UniProtKB, an open

access database of protein sequence data curated from various studies. Data on plant protein sequences
was collected from the following UniProtKB database sections:

Table 4.1 provides a summary of the various UniProtKB database sections that were used, along with
direct hyperlinks.
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Table 4. 1 Data Collection Resources

UniProtKB Database Section Description

Swiss-Prot | Manually annotated. Records with information
extracted from literature and curator-evaluated
computational analysis.

database section stores manually curated
(reviewed) protein sequences.

https://www.uniprot.org/uniprot/

TREMBL | Computationally analyzed
Records that await full manual annotation.

database section stores non-curated
(unreviewed) protein sequences.

https://www.uniprot.org/uniprot/

UniRef100
combines identical sequences and sub-fragments

with 11 or more residues from any organism into
a single UniRef entry.

database section stores both reviewed and
unreviewed protein sequences

https://www.uniprot.org/uniref

A preview of the raw datasets (taken from the true negative, Not Chalcone Synthase dataset) can be seen
above, in figure 4.1. The column ‘Length’ indicates the number of amino acids present in each protein
sequence. Here, we note the significant differences in the length of the protein sequences, which can pose
challenges for handling the data (Qu et al., 2017; Angermueller et al., 2016). To address the challenge
that presented by the difference in sequence.length of each' protein sequence, data transformation and
feature engineering techniques were applied to resolve the discrepancies in sequence lengths (Qu et al.,
2017; Angermueller et al., 2016). The column ‘Status “indicates whether the sequences were manually
curated (reviewed). The column ‘Sequence shows the entries of different protein sequences that
constitute the various genes from each dataset. The column ‘Catalytic activity’ shows the enzyme
reactions that the protein sequences catalyze. The column ‘Entry’ simply presents the unique identifier
of each row entry in UniProtKB. The column ‘ Protein names’ shows the names of each protein sequence,
and the ‘Gene names’ column shows the name of each gene. Finally, the column ‘Organism’ shows the
name of the plant organism from which the proteins originate. Each of these dataset attributes is also
included in both the true positive dataset (Reviewed Chalcone Synthase) and the Unreviewed Chalcone
Synthase dataset as seen in Appendix B.
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Entry
QaCELS
Q38860
QOXF43
Q57084
Q8MAMI
Q5XEPS
QBsASE
Q&8VPT
Q8FGBT7
Q02323
QB4FVT
L7NCQ3
QasIxXi
BOLDUS
COsvZe
P48408
P28343
P48407
Q65677
CBLTVO
Q9sYZ0
QBZUZ0
Qasuyg
QaLzrz
Q4vacy
QOLN4S
048780
Qscasz
naasaa

Entry name Status Protein names Gens names  Organlsm Length Sequence Catalytic activity

KCS5_ARATH  reviewed 3-kmtoacyl-CoA gynthasa 5 ( KCSE5 CERE0 At Arabidopds thall 482 MSDFSSSVKLKYVE CATALYTIC ACTIVITY: A verydong-chaln acyl-CoA + malonyl-CoA = Cod + a very-long-chain 3-0y
KCS518_ARATH i 3-ketoacyl-CoA 18 FAE1 KCS18 At Arabidopsis thali 506 MTSVNVKLLYRYVL CATALYTIC ACTIVITY: A verydong-chain acyl-CoA + malonyl-CoA = Col + a very-long-chain 3-ox
KCS56_ARATH  reviewed Adetoacyl-CoA synthase 6 ( CUT1 CERE ELE Arabidopssthal 497 MPQAPMPEFSSSY CATALYTIC ACTIVITY: A verydong-chaln acyl-CoA + malonyl-CoA = CoA + a very-long-chain 3-o»
KCS10_ARATH reviewed S-etoacyl-CoA synthase 10 FDH EL4 KCS10 Arabidopsis thall 550 MGRSNEQDLLSTEI CATALYTIC ACTIVITY: A verylong-chaln acyl-CoA + malanyl-CoA = CoA + a very-long-chain 3-o»
KCS1_ARATH i d 3k -Coh h 1 (KCS1 EL1 At1gl Arabidopsis thali 528 MERTNSIEMDRERL CATALYTIC ACTIVITY: A very-ong-ch acyl-CoA + malonyl-CoA = CoA + a very-long-chain 3-o»
KCS2_ARATH reviewed 3-ketoacyl-CoA synthase 2 ( KCS2 DAISY KC Arabldopsisthall 528 MNENHIQSDHMNNIT CATALYTIC ACTIVITY: A very-long-chaln acyl-CoA + malonyl-CoA = Cod + a veiy-long-chain 3-a
TBSYN_HYPAN 24,6-rh ybenzophent BPS Hyperdcum andr 395 MAPAMEYSTQNGE CATALYTIC ACTIVITY: 3 malonyl-CoA + benzeyl-CoA = 4 CoA + 2,4 64rihydroxybenzophenone +
PCS_ALOAR reviewed 5,7-dihydroxy-2-mathylchromone synthase (E Alos arborescen 403 MSSLSNSLPLMEDY CATALYTIC ACTIVITY: & malonyl-CoA = § CoA + §,7-dihydroxy thiyl -4 H-c/ 4-ong +5C
KCS20_ARATH reviewed 3-ketoacyl-CoA synthase 20 KCS20 KCS19 A Arabidopss thall 528 MSHNQNQPHRPVP CATALYTIC ACTIVITY: A verylong-chaln acyl-CoA + malonyl-CoA = CoA + & very-long-chain 3-0p
DPSS_PINSY  reviewed Pinogylvin synthase (EC 2.4.1.146) (Dihydrop Pinus sylvesirs (¢ 383 MGGVDFEGFRKLQI CATALYTIC ACTIVITY: 3 malonyl-CoA + cinnamoyl-CaA = 4 CaA + plnasylvin + 4 CO(2), (ECO:00
BAS_RHEPA  reviewed Polyketide synthase BAS (E BAS Rheum palmatul 384 MATEEMKKLATVM CATALYTIC ACTIVITY, 4-coumaroyl-CoA + malanyl-CoA + H(2)0 = 2 CoA + 4-hydioxybenzalaceic
TBSYN_GARMA revi 24 B-trihy ybenzophent BPS Garcinia mango 381 MAPAMDSAGNGHC CATALYTIC ACTIVITY: 3 malonyl-CoA + benzoyl-Coh = 4 CoA + 2,4,6-tihydroxybenzophenone +
KCS9_ARATH  reviewed -ketoacyl-CoA synthase 9 ( KCS9 Al2g1628( Arabidopsis thall 612 MEAANEPYNGGSY CATALYTIC ACTIVITY: A very-long-chaln acyl-CoA + malanyl-Col = CoA + a very-long-chain 3-0
PKS4_RUBID  reviewed Polyketide synthase 4 (RIPK PKS4 BAS Rubusidaeus (R 383 MVTVEEVRKAQRAI CATALYTIC ACTIVITY: 4-coumaroyl-CoA + malonyl-CoA + H{2)0 = 2 CoA + d-hydroxyhenzalacete
CURS1_CURLD reviewed Curcumin synthase 1 (EC 2 CURS1 Curcuma longa | 389 MANLHALRREQRAC CATALYTIC ACTIVITY: Feruloyl-CoA + feruloylacetyl-CoA + H(2JO = 2 CoA + curcumin + CO(2). {E
DPS2_PINST  reviewed Pinosylvin synthase 2 (EC 2 STS2 Pinus strabus (Ee 396 MSVGMGVDLEAFR CATALYTIC ACTIVITY: 3 malonyl-CoA + cinnamoyl-CoA = 4 CoA + | Inasylvin + 4 CO(2), {ECO.00
THS1_VITVI reviewed Stilbene synthase 1 (EC 2.3 VINST1 STS2 ¥V Vitis vinifera (Gr 302 MASVEEFRNAQRAI CATALYTIC ACTIVITY. 3 malonyl-CoA + 4-coumaroyl-Coi = 4 Col + transtesveratrol + 4 CO(2)

DPS1_PINST  reviewed Pinosylvin synthase 1 (EC 2 §TS1 Pinus strobus (E¢ 386 MSVGMGIDLEAFRK CATALYTIC ACTIVITY: 3 malonyl-CoA + cinnamoyl-CoA = 4 CoA + pinosylvin + 4 CO(2). {ECO.00
KCS17_ARATH reviewed A-kmloacyl-Cod synthase 17 KCS17 KCS2 Ak Arabidopss thall 487 MDANGGPVQIRTQI CATALYTIC ACTIVITY: A verylong-chaln acyl-CoA + malonyl-CoA = Coh + a very-long-chain 3-0:
CURS3_CURLO reviewed Curcumin synthase 3 (EC 2 CURS3 Curcuma longa | 480 MGSLOAMRRAQRA CATALYTIC ACTIVITY: Feruloyl-CoA + feruloylacetyl-CoA + H(2)O = 2 CoA + curcumin + CO(2). {E
KCS16_ARATH reviewed 3-ketoacyl-CoA gynthase 16 KC316 EL2 Atdg Mabldopssthall 493 MODYPMKKVKIFFNY CATALYTIC ACTIVITY: A verydong-chaln acyl-Co + malonyl-Cof = Cof + a veiy-long-chain 3-0»
KCS13_ARATH reviewed 3-ketoacyl-Col synthase 13 HIC K513 At2g Arabidopsis thali 466 MFIAMADFKILLLILI CATALYTIC ACTIVITY: A verylong-chain acyl-CoA + malonyl-Col = CoA + a very-long-chain 3-03
KCS15_ARATH reviewed 3-etoacyl-CoA synthase 15 KCS15 At3g521( Arabidopsis thall 451 MEKEATKMVNGGY CATALYTIC ACTIVITY: A veryleng-chaln acyl-CoA + malenyl-CoA = Coh + a very-lang-ehain 3-03
KCS19_ARATH reviewed 3-katoacyl-CoA synthase 19 KCS19 KCS21 A Arabidopsis thali 464 MELFSLSSLLLLSTI CATALYTIC ACTIVITY: A verydong-chain acyl-GoA + malonyl-CoA = CoA + a very-long-chain 3-0»
KCSS&_ARATH  reviewed 3-ketoacyl-CoA synthase 8 | KCS8 Al2g1509 Arabidopss thali 481 MKNLKMVFFKILFIS CATALYTIC ACTIVITY: A verydong-chain acyl-CoA + malonyl-CoA = CoA + a very-long-chain 3-0r
KCS4_ARATH  reviewed A-ketoacyl-CoA synthase 4 | KCS4 Al1g19441 Arabldopss thall 618 MDGAGESRLGGDG CATALYTIC ACTIVITY: A verylong-chaln acyl-CoA + malonyl-CoA = God + a vely-long-chain 3-ox
KCS11_ARATH reviewed Sdetoacyl-CoA synthase 11 KCS11 Al2g266: Arabldopdsthall 508 MDVEQKKPLIESSD CATALYTIC ACTIVITY: A verydeng-chaln acyl-CoA + malonyl-CoA = CoA + a very-long-chain 3-0»
KCS7_ARATH  reviewed 34etoacyl-Col synthase 7 ( KCS7 At1g7116( Arabidopss thali 460 MESSFHFINEALLIT CATALYTIC ACTIVITY: A verydong-chain acyl-CoA + malonyl-Coh = Co + a very-long-chain 3-0x
Wre1d ARATH rauiawed Brrhahla latnardfnd a KOS14 M2a109] Arahidande thall ARD MEIAMAREL |11 FATAL VIR ACTIATY: A vandannrhaln ardPab + maland £ad = fab + o vandanachain 3

Figure 4. 1 Data Collection-- Different curated plant protein sequences not having any chalcone synthase catalytic activity (True Negative control

set), Excel compilation derived from information from the database

All datasets used in the construction-of our proof of concept models were downloaded from these sections
of UniProtKB as explained in Section 3:3;in:2018. More information on all three protein sequence
datasets (RCHS, NCHS, and UCHS) are found.in Appendix B.

4.2 Data Preparation Implementation and Discussion

4.2.1 Data Integration

Three classes of RCHS, NCHS, UCHS, each made of 130 sequences, constituted our balanced sample
size. To build binary classification models; the true positive (RCHS) and true negative (NCHS) datasets

were integrated to form one dataset. To build the multiclassification and statistical models, all three
datasets were integrated to form one dataset, as illustrated in figure 4.2.

l’ \I
i RCHS NCHS UCHS i
1 1
[ 1
a % J
X
Binary Classification
Model
A\ 4
Multiclassification /
" statistical Models

Figure 4. 2 Integration of Three classes for Model's building

Two datasets (binary class and multiclass) were therefore produced and used for the analysis in the
current study.
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4.2.2 Data Cleaning Implementation

Cleaning of datasets was performed by implementing cleaning steps on the multiclass dataset, followed
by deriving the binary class from this, as all classes were included in the multiclass dataset. This was
performed so that each of the two datasets would not have to be cleaned individually as, depicted in figure
4.2.

The Python pseudocode below shows the implementation of the data cleaning process as explained in
Section 3.4.3. The prerequisite Biopython libraries are very important, as they speed up the process of
writing code by providing API, libraries and functions.

# PREREQUISITES:

import csv

import sequtils

import sys

from Bio.SeqUtils.ProtParam import ProteinAnalysis, ProtParamData, IsoelectricPoint
from Bio.Seq import Seq,

from Bio.Alphabet import IUPAC

from Bio.Data import IUPACData

# CLEANING
Function to check (sequence, Amino Acids = "MVATGSLDQRPNCEFHIKWY") :
for AminoAcids in sequence:
AminoAcids = AminoAcids.rstrip().remove('any letters and characters not in Amino Acids')
if AminoAcids not in AminoAcids:
print (AminoAcids),and return False and True

# nPUT
Open the dataset as csv file
with open('path input file') as csvfile:

Protein Sequence = csv.DictReader (csvfile)

for row in Protein sequence:

dataset = Call the check function((row['Amino Acid Sequence']))
Cleaned protein sequences = ProteinAnalysis (dataset)
#OUTPUT

Write the output of the program as an csv (tab delimited) wvia stdout

# close the current CSV file
FILE HANDLE.close()

4.2.3 Data Transformation and Feature Engineering Implementation and Discussion

This section discusses the implementation of data transformation and feature engineering, as referenced
in Section 3.4.4 of Chapter 3, to address sequence length and high dimensionality of the datasets, and to
engineer features by converting protein sequences into numerical data (Libbrecht & Noble, 2015).

The objective for the data transformation and feature engineering implemented in this study was to enable
transformation of a set of sequences into a set of engineered features (Libbrecht & Noble, 2015). The
raw datasets are used as an input into the feature engineering model with the resulting output being
transformed data that is presented as the engineered features (Figure 4.4). The three feature sets that were
developed in this study are explained further below.
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Figure 4. 3 Data transformation and Feature engineering process

In light of the shortcomings of feature engineering methods identified from previous studies, elaborated
in Sections 2.12.3 and 2.12.3.1 of the literature review: data conversion, which results in feature
engineering, is very tedious work but essential for building a statistical or machine learning model in
most cases of protein sequence classification tasks. Different methods, such as n-gram approaches,
physiochemical properties-based extraction approaches, and homology-based approaches, have been
introduced in previous studies. Even though these methods work well in many cases, their resource-
intensive nature poses a practical challenge.

Three computational approaches on protein sequence data transformation are proposed as exploratory
proof of concept for feature engineering:

1. Frequency-based features
2. Value-based features
3. Amino acid relative frequency feature

The features sets were computationally calculated using the Biopython libraries. The documentation with
all necessary resources can be found at: https://biopython.org/wiki/Documentation

and http://biopython.org/DIST/docs/api/Bio.SeqUtils.ProtParam.ProteinAnalysis-class.html.

A Dbrief description of pseudocode to engineer the features is presented in the box below. Feature
engineering is performed with the assumption that data cleaning has been conducted.
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# PREREQUISITES:

import csv

import sequtils

import sys

from Bio.SeqUtils.ProtParam import ProteinAnalysis, ProtParamData,
IsoelectricPoint

from Bio.Seqg import Seq,

from Bio.Alphabet import IUPAC

from Bio.Data import IUPACData

# CLEANING
All cleaning steps are executed

# 1nPUT
Open the dataset as csv file
with open('path input file') as csvfile:

Protein Sequence = csv.DictReader (csvfile)
for row in Protein sequence:
dataset = Call the check function((row['Amino Acid Sequence']))
Cleaned protein sequences = ProteinAnalysis (dataset)

# ENGINEERED FEATURES
Frequency-based features : From Cleaned protein sequences
compute (Aromaticity (), Beta-Sheet (), Alpha-Helix (), Turn(), using built-
in functions from the # PREREQUISITES.
Amino acid relative-frequency feature : From Cleaned protein sequences
compute relative frequency of (M,V,A,T,G,S,L,D,Q,R,P,N,C,E,F,H,I,K,W,Y)
by getting amino acids percent using the # PREREQUISITES
Value-based features: From Cleaned protein sequences compute (Protein-
Molecular-Weight (), Entropy(), Protein-Stability(), Protein-GRAVY (), and
Protein-Isoelectric-Point()) using built-in functions from the #
PREREQUISITES.

#OUTPUT

Write the output of the program as an csv (tab delimited) via stdout
The columns outputted as follows:

Frequency-based features : AromaFeature | AlHydroFeature | SulphFeature
| AcidicFeature | BasicFeature | BetaFeature | AlphaFeature |
TurnFeature | and AliphaticFeature

Amino acid relative-frequency feature :
MIVIAITIGISILIDIQIRIPIN|CIE|FIHITIK|W|Y]

Value-based features : | Entropy Feature |Protein-

Stability Feature|Protein-GRAVY Feature | Isoelectric-Point Feature

# Close the current CSV file

The First Feature Set

The first feature set (Frequency-based features) includes four engineered features from the protein
sequence amino acids that, according to biological literature, are known to be involved in Aromaticity,
Sheet, Helix, and Turn. It is to be noted that the engineered features (i.e., regular structures; beta-sheet,
alpha-helix, Turn) are not meant to reflect their exact biological realities (secondary structures). Rather,
the features were engineered solely based on the presence of Amino Acids that are known to be involved
in these biological properties, without considering the position or the sequencing of the Amino Acids
within the protein. This approach served to segment different amino acids into computational features
intended to be non-redundant and statistically informative (Zhou and Troyanskaya, 2015). It can be noted
that mathematically, the relative frequency of these amino acids involved in these biological properties
can be segmented from each sequence, hence, the name frequency-based features. By doing so we can
prevent the model logic from skewing and influencing the accuracy of the statistical or machine learning
models (Khalid et al., 2014).
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Table 4. 2 First Set of Features --Frequency-based features

Amino Acids Present Name of Engineered Features
Biological
Properties
(their Alphabets)
s s AromaFeature Calculate the
Aromaticity Fwy aromaticity according to Lobry, 1994.
: HeliFeature
Alpha-Helix VIYFWL
Turn NPGS TurFeature
Beta-Sheet EMAL Sheefeature

The Second Feature Set

The second feature set (Value-based features), was engineered by computing the numerical value of four
protein features, which are not directly derived from specific amino acids. These protein features include:
Entropy, Protein-Stability, Protein-GRAVY, and Protein-Isoelectric-Point.

Entropy is associated with the number of conformations of a molecule. Protein stability refers to the
thermodynamic stability of a protein, often in terms of whether the protein is in its native, folded state,
or its unfolded state. Protein-GRAVY is a calculation of the grand average of hydropathy of a protein
sequence, and the protein-isoelectric point is the pH at which the net electrical charge of protein is neutral.

Isoelectric point same with GRAVY is a measure of hydrophobicity in a protein and is related to the
amino acids and their properties.

All of these features represent specific biological properties of the protein sequences, each of which hold
a numerical value. These value-based features were computationally computed from each protein
sequence using the Biopython methods.

Table 4.3 below lists the four functions-and-the feature-names-that were used to label each feature.

Table 4. 3 Second Set ofFeatures --Value-based features

Biological Properties Name of Engineered Features

Entropy Entropy_Feature

Protein Stability Protein Stability_Feature Calculate the instability index according
to Guruprasad et al 1990.

Protein GRAVY Protein GRAVY_Feature Calculate the gravy according to Kyte and
Doolittle, 1982.

Protein Isoelectric point Isoelectric point_Feature

These value-based features were computationally computed on each protein sequence using the
Biopython methods.

A synopsis of the two feature sets (Frequency-based features, and Value-based features), were integrated
to form one dataset with all eight features (AromaFeature, Portein_Gravy Feature,
Isoelectric_Point_Feature, Protein_Stability Feature, HeliFeature, TurFeature, SheeFeature,
Entropy_Feature) which can be seen in figure 4.5.
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Seguence

MSDFSSSVKLKY VK
MTSYNVELLYRYVL
MPQAPMPEFSSSY
MGRSNEQDLLSTEI
MERTNSIEMDRERL
MNENHIGSDHMNNT
MAPAMEYSTQNGC
MSSLENSLPLMEDY
MSHNGONQPHRPVP
MGGVDFEGFRELQI
MATEEMKKLATYM
MAPAMDSAGNGHC
MEAANEPVNGGSY
MYTVEEVRKAQRA,
MANLHALRRE QRAL
MSVGMGVDLEAFR
MASYEEFRNAQRAI
MSVGMGIDLEAFRK
MDANGGRVQIRTQl
MGSLOAMRRAQRA
MOYPMKKVKIFFNY
MEIAMADFKILLLILI
MEKEATKMVNGGY
MELFSLSSLLLLSTI
MKNLKMVFFKILFIS
MDGAGESRLGGDGE
MDVEQKKPLIESSD
MESSFHFINEALLIT
MFIAMADFKLLLLIL

The Third Feature Set

AromaFeature Protein_GRAVY_Feature

0.068
0.072
0.063
0.067
0.066
0.067
0.063
0.065
0.065
0.067
0.072
0.072
0.063
0.063
0.066
0.066
0.067
0.066
0.058
0.075
0.066
0.075
0.069
0.075
0.067
0.072
0.059

l 0.075

0.074

-0.039
-0.081
0.074
-0.086
-0.106

0.09
0.109

0.07
0.076
-0.092
-0.084
0.071
-0.068
-0.075
-0.106
-0.116
0.001
-0.011
0.016
-0.051
-0.053
0.073
0.041
0.079
-0.105
0.078
0.011
-0.052
0.057

Isoelectric_Point_Feature Protein_Stability_Feature HeliFeature

6.328
5.974
6.079
6.285
5.971
6.043
6.147
5.852
5.852
6.116
5.973
5.684
6.001
6.026
6.095
6.117
5.199
5.862
6.238

5.64
6.095
6.272
7.553
6.045
6.337
6.084
6.387
6.045
5.908

33.544
39.743
32.155
32.367
37.926
37.132
32.914

42.09
41.607
35.162
40.708
39.733
31.447
33.486
29.849
37.104
33.845
36.133
34.784
40.445
35.416
35.453
40.211

37.76
32.653
33.146
42.081
37.075
31.411

0.29
0.3059125964
0.2987341772
0.3076923077
0.3017902813
0.3059125964
0.2936708861
0.2814070352
0.2814070352
0.3051282051
0.3059125964
0.3059125964
0.2969543147
0.2962025316
0.2862025316
0.3017902813
0.2903225806
0.3053435115
0.2957393484
0.3084832905
0.3012658228
0.3084832905
0.3086734694
0.3059125964
0.3007712082
0.3213367609
0.3078880407
0.3110539846
0.3228070175

TurFeature

0.2075
0.2159383033
0.2202531646
0.2153846154
0.2173913043
0.2159383033
0.2253164557
0.2110552764
0.2110552764
0.2153846154
0.2107969152
0.2159383033
0.2233502538
0.2227848101
0.2202531646
0.2148337596
0.2084367246
0.2188295165
0.2080200501
0.2159383033
0.2227848101
0.2210796915
0.2448979592
0.2107969152
0.2236503856
0.2133676093
0.2264631043
0.2107969152
0.2245614035

Figure 4. 4 A synopsis of the 2 feature (Frequency-based feature and Value-based feature)

SheeFeature

0.2875
0.2879177378
0.2835443038
0.2897435897
0.2864450128
0.2956298201
0.2759493671
0.3015075377
0.3015075377
0.2871794872
0.2853470437
0.2879177378
0.2893401015
0.2835443038
0.2835443038
0.2890025575
0.3076923077
0.3078880407
0.313283208
0.2853470437
0.2911392405
0.2699228792
0.2780612245
0.2904884319
0.2853470437
0.264781491
0.3002544529
0.2853470437
0.2842105263

Entropy_Feature |t
1.7890177938
1.8357958606
1.8008449435
1.8315881485
1.8407645554
1.8609795829
1.8008449435

1.769529825

1.769529825
1.8410104439
1.8339665006
1.8357958606

1.790722052

1.790722052
1.8008449435
1.8379746083
1.7805974381

1.811439847
1.7754822082
1.8286136746
1.8264781825
1.8288017665
1.8849630535
1.7998942928
1.8524617165

1.870895023
1.8477380377
1.8061363075
1.7638066953

The third feature set (Amino acid relative frequency-feature) is-made up of the twenty amino acids. and
was engineered by computing the relative frequency of each amino acid in each protein sequence as seen
in figure 4.6.

Note: there are actually 22 amino acids. While the other two they arevery rare, one of them occurs in Eukaryotes.
“Selenocysteine (Sec) and pyrrolysine (Pyl) are rare amino acids that are cotranslationally inserted into proteins
and known as the 21st and 22nd amino acids in the genetic code”. Our Python code checked for these two amino
acids in the whole datasets and none of them were found. Hence we built the feature based on 20 amino acids.

In this way, each of the twenty essential amino acids are engineered as a single feature. All twenty amino

acids and their one letter codes are listed in Table 4.4.

Table 4. 4 Twenty Amino Acids and their letter code

, , One Amino One
Amino Acids Letter Acids Letter
Code Code
Alanine A glutamine Q
A glutamic
Arginine acid E
Cysteine C glycine G
Lysine K histidine H
Methionine M isoleucine I
Phenylalanine F leucine L
Proline p Serine S
Threonine T tryptophan w
Tyrosine Y valine v
aspartic acid | D asparagine | N

Figure 4.6 shows a synopsis of the final result when a set of sequences are transformed into a set of amino
acid relative frequency features. The complete dataset of the amino acid relative frequency features is

included in Appendix B.
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Figure 4. 5 A synopsis of the 20 Amino Acid feature engineered

Each column above shows a distinct amino acid letter code, which represents an engineered feature. The
frequency of each amino acid within a specific protein sequence is listed as a decimal value in the cells
below. These twenty columns, representing all twenty amino acid letter codes, become the transformed
dataset ready to be fed into machine learning and statistical models for data analysis. Each column
represents a dimension of the transformed dataset. These engineered features are also used in data
visualisation models such as PCA, and TSNE to visualise the behavior of the dataset.

4.2.4 Baseline Database -- Data Transformation -- Feature Engineering Result and Discussion

To ensure that the raw datasets and the transformed datasets, including all three of the feature sets, are
reusable, a baseline database was set up-to store-all-of the data. This baseline dataset ensures that the
transformed data is preserved and can be used for future studies. This baseline dataset can be found in
Appendix B.

4.3 Summary

This chapter presented processes related to the collection and preparation of the protein sequence
datasets. In order to address sequence length, which poses a very difficult problem in the handling of
bioinformatics data, different studies (Khalid et al., 2014; Zhou & Troyanskaya, 2015; Libbrecht &
Noble, 2015) have explored using feature engineering techniques with protein and DNA sequences of
different organisms and have been successful at converting these sequences into numerical data for
machine learning and statistical analysis. This study took the same approach of data transformation to
convert plant secondary metabolite genes (protein sequences) into numerical features. Data
transformation and feature engineering methods were applied to resolve the discrepancies in sequence
length and to address the high dimensionality of the protein sequence data.

Three feature sets were engineered based on the biological properties of the protein sequences. These
features were computationally calculated using the Biopython libraries, which is available at:
https://biopython.org/wiki/Documentation and
http://biopython.org/DIST/docs/api/Bio.SeqUtils.ProtParam.ProteinAnalysis-class.html.
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Feature engineering is a complicated and challenging process that requires in-depth literature review and
intensive computational immersion. However, once the computational processes of engineering features
are developed, these same processes can be used in future studies to engineer new features.
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CHAPTER FIVE: Data Visualisation and Feature Selection Techniques

5. Implementation and Results
5.1 Introduction

This chapter discusses the use of data visualisation techniques use for inception of the dataset for feature
selection and model building. Data visualisation tools such as PCA and TSNE were used as proof of
concept to observe the behaviour of the datasets (RCHS, NCHS, and UCHS). The chapter goes on to
discuss different proof of concept feature selection techniques that are applied on the eight engineered
features.

Once the feature engineering phase was completed as seen in Chapter 4, the next step was to examine the
eight features of the two feature sets, frequency-based and value-based features:

* AromaFeature

» Protein_Gravy_Feature

» Isoelectric_Point_Feature
« Protein_Stability Feature
» HeliFeature

» TurFeature

» SheeFeature

» Entropy_Feature

To ensure uniform treatment among these eight features, data standardisation techniques were first
applied on all eight features to center the features’ values around zero, as described in Section 3.4.6. This
was implemented using the Python pseudocode described below.

# PREREQUISITES:
From sklearn import preprocessing
import Pandas as pd

# 1npPUT
Open the datasetFeature as csv file

Get column names first
ColumNames = datasetFeature.columns

Create the Scaler object to hold the standardised
datasetFeature:
ScalerObject = preprocessing.StandardScaler ()

We then fit the data on the Scaler object
Standardised datasetFeature = scaler.fit tranform(datasetFeature)
Standardised datasetFeature = pd.Dataframe (Standardised datasetFeature,
columns =names)

#OUTPUT
Write the output of the program as an csv (tab delimited) via stdout
# close the current CSV file
FILE HANDLE.close ()

The statistical significance level of these eight features was then measured to determine which features
should be selected to enter the model. The statistical analysis revealed that all of the above eight features
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were significant. These eight features are henceforth referred to as the “eight significant features matrix
(8SFM)” throughout the remaining sections of the document.

The third feature set, amino acid relative frequency, is referred to as twenty relative frequency feature
matrix (20RFFM) in the remaining sections of the thesis. Based on the fact that each amino acid is
nominal categorical data, this implied that the twenty amino acid relative frequency features are discrete
categories which do not overlap. Based on this statistical understanding of this feature set’s data type,
feature selection was not performed on this third feature set (Amino acid relative frequency feature).

The diagram below illustrates the various data visualization techniques that were applied to each of the
feature sets. These applications are discussed in detail in the following sections.

1 Types of Datasets \
| |
1 1
i 20RFFM dataset with 3 20RFFM dataset with 2 8SFM dataset with 3 classes |
 classes (RCHS, NCHS, classes (RCHS, NCHS) (RCHS, NCHS, UCHS) |

[NTaYNTaAN

PCA, TSNE, and PCA-

TSNE PCA Feature Selection Techniques

(Random Forest, Forest of Trees,
Spearman’s Rank, Scatterplot

\

|

\

|

|

|

|

matrix, F-test, MI) J

Figure 5. 1 Graphical representation of Chapter 5 contents

This chapter is organised as follows: Section 5.2 outlines the contribution of this chapter, Section 5.3
presents Principal Component Analysis (PCA),.Section 5.4 presents t-Distributed Stochastic Neighbour
Embedding (TSNE), Section 5.5 outlines data visualisation for feature selection techniques, and lastly
Section 5.6 presents the summary.

5.2 Contribution

This chapter provides an exploratory proof of concept approach to visualising secondary metabolite gene
datasets and engineered features for feature selection. It provides a visual understanding of the data and
the features that were engineered in Chapter 4 (Frequency-based features and Value-based features) using
different feature selection techniques.

5.3 Principal Component Analysis on 20RFFM

The third feature set, referred to as twenty relative frequency feature matrix (20RFFM) dataset, was run
through PCA using sklearn.decomposition. Principal Component Analysis (PCA) is used as a statistical
approach to identify patterns in the dataset in such a way as to highlight differences and similarities in
the data (Sochor et al, 2011; Buettner et al., 2015; Anders et al., 2015).
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Figure 5. 2 First and Second Principal Components of PCA on RCHS, UCHS, and NCHS
coloured by Target

The 20RFFM dataset consisted of the three classes, RCHS, NCHS, and UCHS, which are indicated in
red, green, and blue respectively, as seen in figure 5.2. The three classes are projected onto the first two
principal components (pca-one and pca-two), to visualise the behaviour of these three classes (of
secondary metabolite genes) in terms of their differences and similarities. The visualisation shows that
the NCHS class (in green) is scattered across the graph, whereas RCHS (in red) and UCHS (in blue) tend
to cluster together around a concentrated area-within the graph. This clustering of RCHS and UCHS
indicates that these two classes (may)-have-similar-properties-(Sochor et al., 2011). This quantitative
information (finding) is important-in-demonstrating how RCHS and UCHS classes (may) possess very
similar biological functionalities. .(i.e.,.catalytic_activity). Although the RCHS class is made of
experimentally reviewed chalcone synthase (meaning that their catalytic activity is known), and that the
UCHS class is made of non-experimentally reviewed chalcone synthase (meaning that their catalytic
activity is unknown), PCA’s result suggests that these two classes’ similarities are more than their
differences. Whereas, the NCHS class’s difference is more noticeable and shows that it has very little
similarities either with RCHS or UCHS.

Furthermore, this PCA computational result suggests that the UCHS and RCHS protein sequences could
potentially yield similar statistical inferences.

We then plotted the 20RFFM dataset using only two classes, RCHS and NCHS, which can be seen from
figure 5.3. In this representation, the NCHS (blue data point) class presents the same behaviour as in
figure 5.2, where it is scattered across the area of the graph. The RCHS (red data points), on the other
hand, tends to cluster in one area of the graph. An explanation for this behaviour could lie in the fact that
the RCHS class is made up of same enzyme, chalcone synthase. The RCHS clustering is therefore a
representation of how similar and identical these enzyme sequences’ properties are. On the other hand
the NCHS class is made up of different enzymes, hence the scattered behaviour of the NCHS data points
in this visualisation.

61



© target
Chalcone
mmmm Not-Chalcone

pca-two

8
° o ¥ R pad o
(] ) > %».
» % o e o

pca-one
Figure 5. 3 First and Second Principal Components of PCA on RCHS, and NCHS
coloured by Target

Since PCA is a dimensionality reduction tool, it is important to determine the extent to which the data is
fully represented using these two components (pca-one and pca-two). A stairs plot graph was therefore
plotted, based on the PCA singular values.

10
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0z

100, 128 - 160 176, 200 228 A50 . i/ 200

Figure 5. 4 Principal Component's Steps, indicating that two pca component
can represent more than 95% of the data

The X-axis presents the singular values (principal components), and the Y-axis presents the probability
of representing the data by singular values. Figure 5.4 shows that PCA has produced three singular values,
and that using one singular value incorporates almost 50% of the data, and two singular values
incorporate almost 95% of the data. This assessment proved that the data was well represented by using
those two principal components.

5.4 t-Distributed Stochastic Neighbor Embedding on 20RFFM

t-Distributed Stochastic Neighbour Embedding (TSNE) was another data visualisation technique
performed to analyse the behaviour of the three classes (RCHS, NCHS, and UCHS). TSNE analysis
makes use of a probability distribution neighbouring embedded formula, as explained in Section 2.12.6.2
of the literature review. TSNE is a nonlinear dimensionality reduction technique that can transfer a high-
dimensional dataset into a low-dimensional space (2D) for visualisation, in such a way that similar data
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points are modelled by nearby objects and unrelated data points are modelled by distant objects with high
probability (Van der Maaten & Hinton, 2008).
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Figure 5. 5 TSNE with RCHS, NCHS, and UCHS coloured by target

TSNE was computed using Python sklearn.manifold_libraries to analyse the RCHS (navy blue data
points), NCHS (blue data points), and UCHS (light blue data points) datasets. TSNE struggled to clearly

differentiate the behaviour of the three classes. One explanation may be the fact that the dataset is not
sufficiently large enough for TSNE algorithm.

In an attempt to get a clearer visualisation, PCA and TSNE were combined using the PCA output as the
input for TSNE’s algorithm.

» Chalcone
*  NotChaicone
* UnReviewed-Chalcone

- 20 -1 0 2 2 2

Figure 5. 6 TSNE-PCA Analysis of the 3 Classes; RCHS, UCHS, UCHSC

Figure 5.6 shows the three distributions clustered by the three outlines (blue, black, yellow). Each cluster
represents the potential distribution between the three classes (RCHS, NCHS, and UCHS). In this
visualisation, the PCA-TSNE appears to have minimised the divergence between two distributions: the
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first is the distribution that measured pairwise similarities of the classes and the second is the distribution
that measured pairwise similarities of the corresponding low-dimensional data points of the three classes.
However, even this approach PCA-TSNE, did not really do justice in differentiating the behaviour of the
three classes of the dataset. Another drawback of TSNE and TSNE-PCA is that the algorithms take up
much memory, CPU power, and time, as table 5.1 presents.

Table 5. 1 Computational cost of three dimensionality reduction algorithms

Dataset (RCHS, NCHS,

Algorithms Elapsed Time UCHS)

PCA

0.36 seconds

20RFFM

TSNE

3.12 seconds

20RFFM

PCA-TSNE

55.59 seconds

20RFFM

TSNE and PCA-TSNE algorithms are computationally heavy and therefore pose some serious limitations
to the use of these techniques. Another important limitation lies in the fact that it was not possible to feed
only two classes within the dataset (RCHS and NCHS) into TSNE or PCA-TSNE, as was done with PCA,
due to the fact that the two combined classes did not constitute a sufficient dataset size for TSNE and
PCA-TSNE.

The PCA and TSNE were additionally run using the 8SFM, but the 20RFFM presented a much better
result of these methods, and for the sake of-a non-redundant study, only the performance of the 20RFFM
is included here. The full code behind-these-algorithms-is-found-in Appendix B.

5.5 Data Visualisation for Computational Feature Selectionion 8SFM

Feature selection is of utmost importance to enhance the efficiency and improve the accuracy of
supervised classifier algorithms as discussed in Section 2.12.4. Data visualisation was used in feature
selection techniques to visualise the significance level of the eight features. As stated in the introduction
section, and graphed in figure 5.1, all eight features;from 8SFM dataset were examined.

Feature selection techniques were implemented through Pythondata visualisation tools such as Pandas,
Seaborn, Matplotlib and Scikit-learn feature selection libraries. The full codes of all of the below
techniques are found in Appendix B.

5.5.1 Feature Selection using Random Forest and Forest of Trees Techniques

As stipulated in Chapter 2 of the literature review, Section 2.12.4, a threshold of 0.05 is set to evaluate
the significance of each of the eight features through a classification task, using Forest of Trees and
Random Forest. Table 5.2 presents the ranking of the Random Forest feature selection technique against
the Forest of Trees feature selection technique. It was observed that the four features of highest
significance in each of these two techniques were similar.

64



Table 5. 2 Random Forest and Forest of Trees -- Features sorted by their score

Random Forest Features and Scores Forest of Trees Features and Scores
1. Isoelectric_Point_Feature : 0.158025 1. Isoelectric_Point_Feature : 0.165458
2. TurFeature : 0.150884 2. Aromafeature : 0.153747

3. AromaFeature : 0.134756 3. TurFeature : 0.140038

4. HeliFeature : 0.133901 4. HeliFeature : 0.129198

5. Entropy_Feature : 0.114431 5. Protein_Gravy_Feature : 0.111841

6. Protein_Gravy_Feature: 0.112555 6. Entropy_Feature : 0.104701

7. Protein_Stability_Feature: 0.098784 7. Sheefeature : 0.098235
8. SheeFeature : 0.096659 8. Protein_Stability_Feature : 0.096782

However, neither of these feature selection techniques rank any feature to be two to three times higher
than any of the other features. For instance, the highest feature on both models is Protein Isoelectric
Point. This feature accounts for sixteen percent (16%), whereas the least significant feature on both
models is Protein stability and Sheet, each accounting for almost ten per cent (10%). Furthermore,
despite their rankings, all eight features are proven to be significant to the classification model, as their
significance level is above 0.05, and therefore all are important for model classification model building.

Figure 5.7 presents a visualisation of the Forest of Trees feature selection technique. The red bars indicate
the significance level of the features (their inter-trees variability). As can be confirmed in the visual, the
Forest of Trees ranked all eight features above 0.05 (default significance level).

Feafure impartances

Figure 5. 7 Forest of Trees Feature Selection Techniques
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It should be noted that these feature measurements are made possible only after the model has been
trained and the model is dependent on all the above features. As such, if the model is trained without
Isoelectric_Point_Feature, for example, it does not drop the model performance by 16 %, for the simple
reason that these features are independent of one another, and the 100 % significance level will be
distributed among the remaining features.
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Random Forest and Forest of Trees are strong methods for feature selection. However, the disadvantage
of these two cited feature selection techniques often lies in their data interpretation, especially where
correlated features are concerned. Important features can end up with low scores and the methods can be
biased toward features with many categories. This disadvantage does not apply in our case, as the features
are not highly correlated.

5.5.2 Spearman’s Rank correlation on 8SFM

Further analysis to investigate the correlation of the eight features was performed through the
implementation of Spearman’s rank correlation. Spearman’s rank correlation coefficient, often denoted
by the Greek letter p (rho), is a nonparametric measure of statistical dependence between the rankings of
two features. Through the rho scores, which vary between [-1, 1], the direction and the strength of
association between two ranked features was calculated.
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Figure 5. 9 Scatterplot matrix for features’ correlation Figure 5. 8 Spearman's correlation for features' correlation

Figure 5.9 and 5.8 show a visualisation of feature correlation performed using a matrix. The scatterplot
matrix (figure 5.9) has features presented in a distribution fashion (plot of linear correlation as, a line
plot), while Spearman’s correlation matrix (figure 5.8) has features presented through a heat map (plot
of positive and negative strongly correlated feature with a dark red and dark blue, respectively).

Both matrices present the eight features with perfect correlation from top left to bottom right in a diagonal
fashion, where identical features mirror each other. This is the resulting representation when each feature
is plotted against itself. For example, AromaFeature of figure 5.9 is plotted in the second column on the
X-axis (left to right -- horizontal axis) and seventh row on the Y-axis (bottom to top — vertical axis) of
both matrices, and HeliFeature of figure 5.9 is the sixth column (left to right) on the X-axis and third row
on the Y-axis (bottom to top). Both matrices have each feature on the X-axis mirroring eight features on
the Y-axis, displaying their correlations.
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In this regard, figure 5.8 reflects a positive correlation between HeliFeature and AromaFeature, and a
very weak positive correlation between AromaFeature and TurFeature. At the same we can see a medium
negative correlation between SheeFeature and lIsoelectric_Point_Feature. However, both matrices
indicate that many features likely have little to no correlation. Statistically, correlation does not explain
cause and effect. Therefore, the conclusion that can be drawn from this visualisation is limited to the
simple observation of feature correlation. The less these features are correlated, the better we can avoid
model skewedness.

To pinpoint the correlation scores between these eight features numerically, a statistical analysis was
performed to reveal the exact correlation scores of the eight features. These scores were taken directly
from the scatterplot and Spearman’s correlation matrices and are expressed as numerical values between
-1 and +1 (ranges of correlation).

Table 5. 3 Numerical Correlation of the Eight Features

AromaFeature | Protein_Gravy Fe Isoelectric_Point Protein_Stability_Fe HeliFeature TurFeature SheeFeature Entropy_Feat
ature _Feature ature ure

AromaFeature 1.000000 0.129037 0.762416 0.071704 0.732789 | 0.117342 | -0.502525 0.392325
Protein_Gravy_Feature 0.129037 1.000000 0.219618 -0.343029 0.528988 | 0.139373 | -0.127591 | -0.276027
Isoelectric_Point_Feature 0.762416 0.219618 1.000000 -0.001767 0.617734 0.218557 | -0.485811 0.299774
Protein_Stability_Feature 0.071704 -0.343029 -0.001767 1.000000 -0.224233 | 0.124105 0.248817 0.106563
HeliFeature 0.732789 0.528988 0.617734 -0.224233 1.000000 | 0.159825 | -0.482219 0.228762
TurFeature 0.117342 0.139373 0.218557 0.124105 0.159825 | 1.000000 | -0.333577 | -0.111618
SheeFeature -0.502525 -0.127591 -0.485811 0.248817 -0.482219 | -0.33357 1.000000 | -0.417499
Entropy Feature 0.392325 -0.276027 0.299774 0.106563 0.228762 | -0.11161 | -0.417499 1.000000

Table 5.3 presents the exact correlation between identical features in a diagonal line (scores coloured in
green), and the positive correlation (scores coloured in red) between AromaFeature and both
Isoelectric_Point_Feature and HeliFeature. The rest of scores indicate that the features are weak and
poorly correlated.

These correlation techniques sufficiently prove that the eight features are independent features, and that
removing one feature (as explained in Section 5.5.1) will not reduce model performance.

5.5.3 Data Visualisation ANOVA and Mutual Information feature Selection techniques

A visualisation of the ANOVA (F-test) and Mutual Information (MI) was also conducted to visualise the
behaviour of five features within the 8SFM and their F-scores and MI-scores. F-test score tells the degree
of linear dependency between random features, and MI-score captures any kind of statistical dependency.

) [test=0.77, MI=0.98  F-test=0.07, MI=0.86  F-test=0.61, MI=0.77  F-test=1.00, MI=1.00  F-test=0.65, MI=0.77

10 0 10 0 10

-- MI-Score

F-Score -

-10 -5 0 0 5 5 4] 5 -2 0 2 4 a 5
Entropy_Feature AromaFeature Protein_Gravy_Feature Isoelectric-Point_Feature Protein_Stability_Feature

Figure 5. 10 Five Features and their F-scores and MI-scores
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The red arrow in figure 5.10 points to F-test scores and MI-scores for five different features:
Entropy_Feature, = AromaFeature, Protein_Gravy Feature, Isoelectric_Point_Feature  and
Protein_Stability Feature. This method of feature selection uses a threshold of 0.05 significance level,
as with the Random Forest and Forest of Trees methods. The features with F-test and M1 scores of higher
than 0.05 significance level would therefore be selected to enter the model. In this case, all the five
features have a significance level score higher than 0.05. As with the previous feature selection
techniques, this technique again confirms the independence of the features under review, signifying that
they are significant for the model building.

Note: The five features were randomly chosen for this exercise and serve primarily as demonstration cases. This
same technique was applied to the other three features in the 8SFM which are not mentioned here, HeliFeature,
TurFeature, SheeFeature. Each had a significance score higher than 0.05.

5.6 Summary

This chapter has elaborated on proof of concept data visualisation tools such as PCA and TSNE, and their
application to understanding the behaviour of secondary metabolite gene dataset. These techniques can
be applied as best practice for visualising the data before analysis, and can actually provide initial insight
on how to approach the data. In this-case; the-output-of TSNE, PCA and PCA-TSNE of the 20RFFM
dataset certainly leads us to the use of classification models-over linear models. The data points tend to
cluster for RCHS and UCHS classes, and the NCHS class is widely scattered across the graph, as opposed
to a linear behaviour. Bearing this in mind, it became evident that classification models were best suited
for the secondary metabolite gene datasets.

This chapter also addressed a few-techniques-for-feature-selection. The goal here was to propose an
exploratory way of performing feature selection, in the instance where there are many engineered features
and we want to determine their significance level. These proofs. of concept feature selection techniques
have revealed that all eight features in the 8SFM dataset were significant, and that classification models
could be built on each of them. In'next chapter, we therefore present exploratory proof of concept
classification models.
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Chapter Six: Machine Learning Supervised Classifiers Implementation and
Results

6. Introduction

The data science computational pipeline displayed in Chapter 3 presented three major phases of this
study, the first being “data collection”; the second, “data preparation”; and the third, “data analysis”.
The focus of Chapter 6 is on the third phase, data analysis, using supervised machine learning classifiers.
One of the research questions for the study asks:

Can machine learning algorithms be trained to recognize plant secondary metabolite genes
involved in the production of medicinally active compounds (e.g. polyphenols)?

In this chapter we present exploratory proof-of-concept machine learning classifiers, to address our
research question. Two types of supervised machine learning classifiers (Michalski et al., 2013) are
presented: binary classification and multiclass classification (Murphy, 2012). The binary classification
consists of classifying (Menden et al., 2013; Wang et al., 2014) a protein sequence into the NCHS class
or RCHS class, whereas the multiclass classification consists of classifying a protein sequence into either
the RCHS class, NCHS class, or UCHS class.These two types of classifiers (binary classification and
multiclass classification) are trained using both the 8SFM dataset and the 20RFFM dataset, each with
two classes (RCHS and UCHS) and three classes (RCHS, NCHS, UCHS). Table 6.1 provides an
overview of the different classification - medels-applied to-each-of the datasets.

Table 6. 1 Representation of ML Supervised algorithms and their dataset types

20RFFM dataset with
2 classes

(RCHS, NCHS)

8SEFM dataset with 2
classes

(RCHS,—NCHS)

20RFFM dataset with
8 classes

(RCHS, 'NCHS, UCHS)

8SFM dataset with 3
classes

(RCHS, NCHS, UCHS)

Logistic Regression

Decision Tree

Random Forest

Support Vector

Gaussian Naive Base

K-Nearest Neighbour

Single Layer
Perceptron

Multilayer
Perceptron

Eight supervised classification models were implemented in this study: Logistic Regression (LR);
Decision Tree (DT); Random Forest with 100 trees (RF100); Support Vector Machine (SVM); K-Nearest
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Neighbor (4NN and 2NN); Naive Bayes (NB); Single Perceptron (SLP); and Multilayer Perceptron
(MLP). These supervised classifiers were chosen due to their prevalence in the literature (Murphy, 2012;
Menden et al., 2013; Michalski et al., 2013; Kelley et al., 2016). While there are recommended default
parameters for each of these algorithms, in order to boost the predictive power of some classifiers, some
parameter changes were appropriate for improving the classification models (Alipanahi et al., 2015).
Once the classifier models were built, performance evaluation metrics were used, such as classification
accuracy, AUC, recall, precision, F-measure, confusion matrix, and Cross-validation, to determine how
well the classifier models performed. The results showed that the binary KNN model outperformed all
the other binary models, whereas SVM model outperformed all the other multiclass models. This chapter
details the performance of these two models. All of these supervised models were built using Anaconda
Jupyter Notebook Python 3.6.1, and a variety of machine learning Scikit-learn and Scipy libraries as
described in Chapter 3. The Python code behind their implementation is found in Appendix B.

This chapter is organised as follows: Section 6.1 outlines the contribution of this chapter, Section 6.2
presents Machine Learning Supervised classification implementation and result, Section 6.3 Model
Accuracy of binary and multiclass models, and lastly Section 6.4 presents the summary.

6.1 Contribution

Most gene analysis tools that have been built previously to analyse gene material rarely address secondary
metabolite genes. A minuscule amount of research has been dedicated to the study of key enzyme factors
that can categorise a class of secondary metabolite-genes. The main contribution of this chapter is the
development of machine learning.classification algorithms-that classify (predict) chalcone synthase from
a set of other plant enzymes. Binary and multi classification models are presented that are trained with
two types of datasets built from two.types. of-feature engineer.techniques: 20RFFM and 8SFM. The
ultimate goal of building machine learning models to predict plant enzymes, such as chalcone synthase,
is to speed up the process of identifying plant secondary metabolite genes involved in the production of
medicinally active compounds.

6.2 Machine learning Supervised Classification Implementation and Results
6.2.1 Model Building

The datasets used for the model building constituted the three different protein sequence classes (RCHS,
NCHS, and UCHS) that were collected from UniProt database as explained in Chapters 3 and 4. For the
binary classification models, 130 RCHS (experimentally verified chalcone synthase protein sequences)
served as a true positive dataset, and 130 NCHS (experimentally verified protein sequences that are not
chalcone synthase) served as a true negative dataset. For the multi classification models, we derived an
extra class of 130 UCHS (not experimentally verified chalcone synthase protein sequences), randomly
selected from a set of 2961 UCHS.

As explained in Chapter 4, data transformation and feature engineering were performed to transform the
protein sequences of these three classes were converted into numerical feature datasets (20RFFM and
8SFM). Data standardization was then performed on the 8SFM, as explained in Chapter 5, and feature
selection techniques were conducted to determine the significance level of the eight features of the 8SFM.
All eight features were proven to be significant. Because the 20RFFM feature’s values were typically
zero-centered, we adapted this dataset (20RFFM) as such.

For the model building phase, the above rationales serve as the foundation of all classification models.
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6.2.2 Model Training

The models were then trained with the purpose to establish parameters that minimize an objective
function which measures the fit between the predicted instance and the actual instance. The parameters
that were found to minimize the objective function and increase the predictive power of the models are
described in table 6.2. The table presents the parameters within each of the different models that have
been changed from their default values to reach a higher predictive power. It should be noted that the
best parameter configuration is data driven and application-dependent (Bengio, 2012). We recommend
that models with different configuration should be trained and their performance evaluated on a validation
set. As the number of configurations grows exponentially with the number of parameters, testing them
all would not be feasible in practice (Bengio, 2012). Therefore, we only focus on few of the parameters
that were explored, while keeping all other parameters constant.

Table 6. 2 Recommended parameter settings for each model

solver warn 1bfgs
) ] . € 1,0 0.7
Logistic Regression (LR) N jobs one 7
PCA none 0.95
Decision Tree (DT) criterion gini entropy
random state none 9 or 28
criterion gini entropy
Random Forest (RF) number of estimators warn 100
cross-validation none 10
Anova none
Support Vector Machine f regression
(SVM) € 1.0 1.4
K 2 4 or 6 or 7 or 8
Gaussian Naive Base random state none 9
(GNB)
Ccv 5 10
K-Nearest Neighbour random state none 6
(KNN) number of neighbors 5 4 or 2
weights uniform [uniform, distance]
Single Perceptron (SLP) random state none 9
solver adam 1bfgs
Multilayer Perceptron alpha 0.0001 le=5
(MLP) random state none &
Hidden layer sizes (100, ) (5 , 2)

6.2.3 Performance Evaluation Metrics of Proof of Concept Binary Models
6.2.3.1 Area Under the receiver operating characteristics Curve

The area under the receiver operating characteristics curve (AUC) was used in this study to evaluate the
performance of all classification models. AUC was observed by plotting the True Positive Rate (Y-axis)
against the False Positive Rate (X-axis). The selection of this performance metric was motivated by its
common use in the literature. The experiment was conducted using our two types of datasets (20RFFM
and 8SFM), and eight binary classifiers (LR, DT, RF100, SVM, GNB, KNN, SLP, and MLP) to build
predictive classifier models. Their performance was then measured using AUC, and 10-fold cross-
validation to build and test the models. Table 6.3 presents the results of the average classification
performance in terms of AUC. The result showed that KNN outperformed all other models across the
two datasets (20RFFM and 8SFM).
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Table 6. 3 Average Binary Model Classification Performance in terms of AUC

20RFFM dataset 8SFM dataset with
with 2 classes 2 classes

(RCHS, NCHS) (RCHS, NCHS)

LR

DT

RF100

SVM

GNB

KNN

SLP

MLP

Average
Performance

.8531
.8603
.8865
.8795
.8236
.9356
.7985
.8565
.8617

.8952
.8421
.9101
.8653
.7862
.9158
.6958
.8324
.8349

olojojo|o|o|o|o|o
(=] [=] =] =} =] =] [=] =] =]

The table also shows that some models performed better with the 8SFM dataset, whereas other models
performed better with the 20RFFM dataset. For instance, RF100 achieved 0.91 average AUC
performance with the 8SFM dataset, whereas RF100 with 20RFFM achieved 0.89 average AUC
performance. DT achieved 0.86 average AUC performance with the 20RFFM, whereas it achieved 0.84
with the 8SFM. When considering SLP, the table shows that it was the worst performing model on both
datasets. The last row of the table shows the average performance of each dataset. On average, the
20RFFM dataset outperformed the 8SFM dataset.

6.2.3.2 K-Nearest Neighbor Binary-Models

For the sake of limiting the scope and content discussed.-in the study, this chapter will only explain in
detail the application of the models that had the best performance for each of the binary and multiclass
problems. As K-Nearest Neighbors (KNN) was discovered to have the best AUC performance of the
binary classification models, this section will focus on the development of the KNN model.

K-Nearest Neighbors (KNN) model was built for binary classification, where the input consisted of the
K closest training examples in the feature space.-In this study, the optimal value for K was determined
by first building a cross-validation algorithm.to retrospectively determine the best K value. Next, a grid-
search cross-validation algorithm was implemented to obtain the best K value. Both approaches used the
20RFFM dataset (since table 6.3 indicated the 20RFFM outperformed the 8SFM) to validate the optimal
K. K =4 and K = 2 where found to be the optimal K values using these two K-fold cross-validation
algorithms.

Figure 6.1 shows the output of cross-validation algorithm. The X-axis represents a value of K, and the
Y-axis represents the prediction accuracy. From this graph we can conclude that the best K value is 4, as
it yielded a 92% cross-validation predictive power.

¢ p 2 © o ©
Value af k for KNN
Figure 6. 1 Optimal Value of K using Cross-validation. Each point on the line represents a

K value, and 4 yields a higher prediction accuracy.
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Figure 6.2 shows the output of the grid-search cross-validation algorithm. This graph shows that the best
value of K from grid-search cross-validation is 2, yielding close to a 95.5% cross-validation predictive
power.
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Figure 6. 2 Optimal Value of K using Grid-search Cross-validation. Each point on the
line represents a K value, and 2 yields a higher prediction accuracy.

Both 4NN and 2NN on 10-fold cross-validation fold produced very significant accuracy rates. However,
performing a Grid-search Cross-validation algorithm increased the prediction rate by 3.5% as opposed to
a Cross-validation algorithm. It can also be seen, from both of the algorithms’ behavior (figure 6.1 and
6.2), that as the value of KNN increases, the prediction rate decreases. Therefore, we recommend building
a KNN model on a 10-fold cross-validation, with the Grid-search Cross-validation technique, to find the
optimal K for the best KNN model.

6.2.3.2 K-Nearest Neighbor Model-CanfusioniViatrix

Since 2NN model with 20RFFM dataset proved the best classifier of our proof-of-concept model, we
therefore chose to report the confusion matrix based on this madel.

Note: The confusion matrix Python code‘was-used-for-all-other-seven-classifiers as well. But for the sake of a concise study,
we chose to report on the best performing model.

As elaborated in Section 6.2.1 above, the dataset that was used for binary classification consisted of 130
RCHS, which served as a true positive set, and 130 NCHS, which served as a true negative set. Therefore,
the final binary class contained 260 sequences. The 20RFFM dataset, which consisted of the 20 amino
acid features, was used to train the 2NN proof-of-concept model and to perform 10-fold cross-validation
on the final model. Training was conducted on 80% of the dataset, and the remaining 20% of the dataset
was used to test the model, as is standard in machine learning best practice. The 2NN proof-of-concept
model achieved an average accuracy of 94.2% on 10-fold cross-validation, 96.2% on training 80% of the
20RFFM data, and 94.4% on testing 20% of the 20RFFM data.

The train or test split is useful because of it flexibility and speed. However, one limitation of the train test
split method is that it can result in a high variance estimate of out-of-sample data. To overcome this
limitation, a 10-fold cross-validation is performed by repeating the train or test split multiple times and
averaging the results. The pseudocode of the 2NN model can be found below.
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# PREREQUISITES:

From sklearn import all necessary libraries i.e.,
import numpy as np, import pandas as pd

from sklearn import metrics

from sklearn.model selection import train test split
from sklearn.neighbor import KNeighborsClassifier

from sklearn.metrics import confusion matrix

from sklearn.cross validation impofE cross val score
from sklearn.cross:validation import KFold

etc.

# 1upuT

Input the datasetFeature as csv file using pandas

Convert the pandas dataset into numpy

Split the numpy dataset with X as 20 features (Xinput) and Y as class label (Yinput)

# Model Building - Model Training -Model Evaluation
Evaluate by training and testing using data split procedure
Locate K by creating a for loop and record the testing accuracy

Training the model with Xinput and Yinput
Xtrain, Xtest, Ytrain, Ytest = train test split(Xinput, Yinput, test size =
0.20,we can use our recommended parameter in table 6.2 here)

2NN = KNeighboursClassifier (n)neighbors = 2)
2NN = knn.fit (Xinput, Yinput)
Ypredict = 2NN.predict (Xinput)

Calculate accuracy on training set:
metrics.accuracy score (Yinput, Ypred)

Calculate the mean of 10-fold cross-validation:
Scores = cross_val score (2NN, Xinput, Yinput, CV = 10 scoring=’accuracy’)

Calculate the mean accuracy of 10-fold cross-validation:
Scores.mean ()

Calculate the Confusion Matrix to describe model performance

ConfusionMatrix = metrics.confusion matrix(Ytest, Ypredict)

If confusion metrics are weak, adjust the classification threshold either below
or higher than 0.05

The classification accuracy (94.2%) does not explain the underlying distribution of response values, nor
does it reveal the type of errors that result from the classifier. Therefore, we chose to address this with
confusion matrix (figure 6.3), which best describes the performance of our classification model by
calculating a range of model evaluation metrics.

_ Predicted: Predicted:
=52 NCHS RCHS
Actual: TN =13 FP=2 15
NCHS
Actual: FN=1 TP =36 37
RCHS
14 38

Figure 6. 3 Validation confusion matrix for the binary 2NN proof-of-concept model.
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Figure 6.3 shows the validation confusion matrix, where each row represents the actual class, while each
column represents the instances in a predicted class. The advantage of using confusion matrix as a metric
evaluation tool is that the data mining analyzer is capable of detecting whether or not the classifier is
confusing two classes. Further definition of the confusion matrix terms have been explained in the

literature review under Section 2.12.6.3.

Table 6.4 describes the results in figure 6.3 in further detail.

Table 6. 4 Validation confusion matrix explained

Rate)

wrong overall

Metrics Description Rate

Accuracy of the model based on how (TP+TN) /N = 94.2%
Accuracy often the model is correct overall
Misclassification Rate (Error Based on how often the model is (FP+FN) /N = 5.77%

True Positive Rate (Sensitivity or
Recall)

The rate at which the model
predicts RCHS when the input is
actually RCHS

TP/Actual RCHS = 97.3%

False Positive Rate

The rate at which the model
predicts RCHS when the inputs is
actually NCHS

FP/Actual NCHS = 13.3%

True Negative Rate (Specificity)

The rate at which the model
predicts NCHS when the input is
actually NCHS

TN/Actual NCHS = 86.7%

Precision

The rate at which the model is
correct when predicting RCHS

TP/Predicted RCHS = 94.7%

Prevalence

The rate at which the
condition occurssin=the sample

RCHS

Actual RCHS/N = 71.1%

Null Error Rate

The rate -at which the model is
wrong 1if it always predicts the

Actual NCHS/N = 28.8%

majority ¢lass

The Null Error Rate shows that the 2NN model would be wrong only 28.8% of the time if it predicted
the majority class each time. The Misclassification Rate is shown to be very low at 5.77%. We also see
that the model achieved a recall (True positive:Rate) of 97.3%.

The confusion matrix has clearly described the performance of the 2NN proof-of-concept model, and
from this we can see that the model indicates promise for using machine learning classification models
to predict plant secondary metabolite genes.

6.2.4 Performance Evaluation Metrics of Proof-of-Concept Multiclass Models
6.2.4.1 AUC of the Multi Classification Models

The multi classification experiment was conducted using our two types of datasets (20RFFM and 8SFM),
on four multiclass classifiers (LR, DT, RF100, and SVM), following the same model building as
explained in Section 6.2.1 above. Their performance was measured using AUC, and 10-fold cross-
validation. Table 6.5 presents the results of the average classification performance in terms of AUC. The
result showed that the multiclass SVM outperformed all other models across the two datasets (20RFFM
and 8SFM).
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Table 6. 5 Average Multiclass Classification Model Performance in terms of AUC

20RFFM dataset 8SFM dataset

with 3 classes with 3 classes

(RCHS, NCHS, (RCHS, NCHS,

UCHS) UCHS)

LR 0.7631 0.6952

DT 0.8503 0.8621

RF100 0.8705 0.8581

SVM 0.9095 0.9013

Average 0.8484 0.8120
Performance

Table 6.5 also shows that some models performed better with one dataset than the other. For instance,
DT achieved 0.86 average AUC performance, whereas DT with 20RFFM achieved 0.85 average AUC
performance. On the other hand, LR achieved a 0.76 average with 20RFFM, while it achieved a 0.70
average AUC performance with 8SFM. When considering LR, the table shows that it was the worst
performing model for both datasets, whereas SVM outperformed all other models on both datasets and
achieved almost the same accuracy rate. The last row of the table shows the average performance of each
dataset, indicating that the 20RFFM dataset outperformed the 8SFM dataset.

The pseudocode of the multiclass SVM can-be seen-below,

# PREREQUISITES:

from sklearn.model selection import train test split, from sklearn.preprocessing import StandardScaler
,import pandas as pd, import numpy as np, from sklearn.svm gmport SVC, from sklearn import svm, from
sklearn import metrics, from sklearn.pipeline import make pipeline, from sklearn.metrics import
classification report, etc.

# Input:
df =pd.read csv('fielpath.csv')
#read each column of the dataset and their class label

#]Model building --Model training -Model Evaluation

# test size: what proportion of original data is used for test set

train_x, test x, train 1bl, test 1bl = train test split(x, Y1, test size=0.20, random state=0)
scaler = StandardScaler ()

#Scale the all the column values (data into one scale in case of 8SFM)

# Apply transform to both the training set and the test set.

train x = scaler.transform(train x)

test _x = scaler.transform(test x)

#
#
#
#

#

Step 3: Training the model on the data, storing the information learned from the data
Model is learning the relationship between feature values and labels

Step 4: Predict the labels of new data
Uses the information the model learned during the model training process

all parameters not specified are set to their defaults SEE “default parameter below

svmModel = svm.SVC(C=1.4, kernel='rbf',decision function shape='ovr' ,coef0=0.0 )

Figure 6.5 shows the SVM Area Under the ROC (AUC), determining each class’s predictive power when
using the 20RFFM dataset. These ROC curves (teal, blue and orange) were generated by varying the
decision threshold t used to transform the normalized features into a predicted class. The ROC curves
plot the true positive rate of the classes (RCHS, NCHS, UCHS) on the Y-axis, versus the false positive
rate of these three classes on the X-axis, where the classifier decision threshold is varied from O to 1.

Note: There is a controversy over AUC being equated to predictive power. In this study, we lean on the side of
those scientists who equate it to predictive power.
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The area under the ROC curves is then used as a single numerical metric to indicate the performance of
the SVM multi classifier: 0.91 for RCHS; 0.60 for NCHS; and 0.79 for UCHS. In the construction of the
ROC, the three classes (RCHS, NCHS, and UCHS) outputs are binarized: 0 for RCHS, 1 for NCHS, and
2 for UCHS.

ROC for the muiticlass where 0 = Chalcone, 1 = Noichalcone, 2 = Unreviewed-chalcone
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Figure 6. 4 AUC average probability the SVM multiclass classifier assigns a higher probability to
chalcone synthase Proof of Concept

The RCHS class reaches the predictive power of 0.91, the NCHS class 0.60, and the UCHS class 0.79 in
terms of AUC. However, it should be noted that RCHS class and UCHS class share the same micro-
average and macro-average ROC area. This suggests that for future work the two classes (RCHS, UCHS)
could potently be combined into one class. However, in the case where the RCHS and UCHS are
combined into one, as can be seen from the graph;-we would expect the number of false positives, along
with true positives, to increase.

Since the exploratory proof-of-concept-multiclass-model that' was built could differentiate the three
classes, this presents promise that binary classification models, which are commonly used are not the
only models suitable for predicting genes. Multi classification models could also be built to predict
different secondary metabolite genes such as chalcone synthase, stelibene synthase, aloesome synthase,
etc. which could be predicted or classified at the same time.

6.3 Average Performance Accuracy: of Binary. and Multiclass Models

Table 6. 6 Average Performance Accuracy of Binary and Multiclass Models

20RFFM dataset with 8SFM dataset with 2 20RFFM dataset with 3 8SFM dataset with 3
2 classes classes classes
classes
(RCHS, NCHS) (RCHS, NCHS) (RCHS, NCHS, UCHS)
(RCHS, NCHS, UCHS)
Model AUC Model AUC Model AUC Model AUC
Accuracy Accuracy Accuracy Accuracy
Logistic 0.881 0.85 0.905 0.89 0.794 0.76 0.678 0.69
Regression
Decision Tree 0.852 0.86 0.832 0.84 0.843 0.85 0.853 0.86
Random Forest 0.872 0.88 0.895 0.91 0.886 0.87 0.855 0.86
Support 0.898 0.88 0.887 0.86 0.904 0.91 0.891 0.90
Vector
Gaussian 0.810 0.82 0.823 0.78
Naive Base
2-Nearest 0.942 0.94 0.929 0.92
Neighbour
Single 0.812 0.80 0.732 0.69
Perceptron
Multilayer 0.881 0.86 0.848 0.83
Perceptron
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Table 6.6 shows the performance of all the binary classifiers and multi classifiers in terms of model
accuracy and AUC with their respective datasets. It can be seen that the 2NN has overall outperformed
all the other binary models, whereas SVM multiclass model has outperformed all the other multiclass
models. SLP binary model has shown a lower performance among the other binary models, and LR
multiclass model has shown a lower performance compared to the other multiclass models.

6.4 Summary

The goal of this chapter was twofold. First, it aimed to identify the best binary classification model for
prediction of RCHS. The binary 2NN model proved to be the most accurate model for predicting RCHS
in the presence of an experimentally validated true negative dataset (NCHS). The 2NN model was trained
and tested (80% and 20% respectively) on a 10-fold cross-validation with two different datasets: 20RFFM
and 8SFM. The 20RFFM dataset outperformed the 8SFM in terms of AUC. Therefore, the proof-of-
concept 20RFFM 2NN model was further evaluated using confusion matrix and delivered good results,
achieving a 94.2% average accuracy, a precision of 94.7% and a sensitivity of 97.3%.

The second aim of this chapter was to identify the best multiclass classification model for prediction of
RCHS. SVM was identified as the most accurate model for predicting RCHS, and was trained and tested
(80% and 20% respectively) on a 10-fold cross-validation with two different datasets: 20RFFM and
8SFM. Again, the 20RFFM dataset outperformed the 8SFM in terms of AUC, achieving 91% average
accuracy model. The rationale behind using a multiclass classifier to build a proof-of-concept model for
classifying chalcone-synthase in secondary metabolite genes is that there is limited RCHS and NCHS
data available, and UCHS could therefore be used to-increase-the amount of RCHS, so that the binary
model can be trained with a larger positive dataset. In addition to this, the multiclass classifier can
potentially be used in a study that is.trying to-predict different secondary metabolite genes, so that the
prediction of secondary metabolites is not limited to One vs. All (e.g. RCHS, which makes up the true
positive dataset, versus all of the not chalcone synthase genes which constitute the true negative dataset).
Instead, the predictions can include a pairwise comparison, identifying multiple classes of secondary
metabolite genes (e.g. chalcone synthase vs. stelibene synthase vs. aloesome synthase).

This exploratory proof-of-concept experiment suggests that secondary metabolite genes can be predicted

using supervised machine learning models. To_our knowledge, there is no previous work that
implemented this strategy for predicting RCHS using machine learning techniques. Therefore, we cannot
conduct a comparison of this study against previous studies. However, our exploratory proof-of-concept
model shows good results for predicting secondary metabolite genes.
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Chapter Seven: Statistical Analysis and Results
7.1 Introduction

This chapter addresses one of the key research questions stipulated in Chapter 1 Section 1.3:

Can mathematical and statistical estimated approaches be carried out pertaining to the
preparation, analysis and interpretation of secondary metabolite genes?

In this chapter, the mathematical statistical analysis and interpretation of secondary metabolite genes will
be conducted to determine the inferences between the three classes: RCHS, NCHS, and UCHS.

In Chapter 5, the application of feature selection techniques led to the conclusion that all the eight features
of the 8SFM dataset—AromaFeature, Protein_Gravy Feature, Isoelectric_Point Feature,
Protein_Stability Feature, HeliFeature, TurFeature, SheeFeature, and Entropy_ Feature—were
statistically significant. Therefore, a selection of features from the 8SFM dataset is used in this chapter
to conduct mathematical statistical analysis of reviewed chalcone synthase (RCHS), not chalcone
synthase (NCHS), and unreviewed chalcone synthase (UCHS).

This chapter is as follow: Section 7.2 explains the main contribution, Section 7.3 presents the methods
used in this work for normal distribution, Section 7.4 present the chi-square model and its post hoc test,
Section 7.5 presents the ANOVA model-and-its-post-hoe-test, Section 7.6 presents the boxplot model
and finally, Section 7.7 presents the'summary:

7.2 Contribution

This chapter presents the mathematical and statistical analysis conducted and explains the statistical tests
and probability distributions that-were-used-in-this study.-It elaborates on the rationale behind these
statistical approaches. The main contribution of this chapter is to present an empirical analysis to provide
guidance on best practices when analysingbioinformatics .data statistically (Fowler et al., 2013;
Anderberg, 2014; Burgess & Smith, 2017). In this chapter, three classes (RCHS, NCHS and UCHS) were
analysed on a balanced 8SFM dataset.: We used Python Statsmodels API, Pandas, Numpy, and Matplotlib
libraries to implement all the statistical models. All Python code written for the implementation of this
chapter is found in Appendix B.

7.3 Normal Distribution

In this chapter, statistical assumptions was observed throughout to ensure that the statistical analysis and
statistical interpretation carried out are statistically significant. Normalisation of the data was performed
on each of the three classes of the 8SFM dataset to safeguard that most values of the eight features remain
around the mean value. The normal distribution was computed as seen in table 7.1.

Table 7. 1 Normal Distribution of the Three Classes of 8SFM

Target count | Mean std min 25% 50% 75% max

RCHS 130.0 0.069643 0.004330 0.058 0.067 | 0.069 0.072 0.081

UCHSC 130.0 | 0.081414 0.014353 | 0.048 | 0.070 | 0.079 | 0.094 0.106

UCHS 130.0 | 0.068556 | 0.005692 | 0.051 0.066 | 0.069 | 0.071 0.102
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Histograms were computed, over which the probability distribution of each class was plotted, as seen in
figures 7.1, 7.2, 7.3. These histograms were plotted based on the count, mean and std. columns of table
7.1.

- s B8 B8 8 8EB

0060 0085 0070 0075  0.080 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 ) 0.04 0.05 006 007 008 009 0.10 0.11
Figure 7. 5 mean =0.069643 sigma Figure 7. 5 mean =0.068556 sigma Figure 7. 5 mean =0.081414 sigma
= 0.004330 RCHS Distribution =0.005692 UCHS Distribution =0.014353 NCHS Distribution

These figures show the range of each distribution (values on X-axis) and their steepness (yellow line).
The RCHS distribution range lies between 0.060 to 0.080, followed by the UCHS distribution range of
0.050 to 0.085, and finally the NCHS distribution range which is the largest from 0.040 to 0.110. The
distribution range of each class shows the spread of the deviation. The smaller the range, the smaller the
deviation. Therefore, it can be statistically stated that RCHS and UCHS classes have a smaller
distribution range than the NCHS class. To further infer about these three classes, hypothesis tests were
conducted.

7.4. Chi Square Hypothesis Test

In order to test if there was a significant relationship between any two of the three classes (RCHS, NCHS,
and UCHS), a chi-square test for independence was carried out by comparing one feature at a time from
the 8SFM dataset to the rest of the three classes.The-assumptions of chi-square that were followed in
this analysis are explained in Chapter 2, Section 2.10.1.

The chi-square test tested if there was an association (Zhang & Finer, 2016) between the three classes
based on a given feature.

The Null Hypothesis (Ho) stated that there is no relationship between two given classes, while the
Alternative Hypothesis (Hz) stated that there is a relationship between two given classes. Table 7.2 lists
the results of the chi-square test.

Table 7. 2 Chi-square test results of the 8SFM dataset

8SFM Features Critical Value Chi-square stat
AromaFeature 2845 47.54

Protein Gravy Feature 2845 8.59
Isocelectric Point Feature 2845 47.55

Protein Stability Feature 2845 19.40
HeliFeature 2845 8.58

TurFeature 2845 8.6

SheeFeature 2845 47.55

Entropy Feature 2845 19.39

Since the critical value of for the chi-square statistics is determined by the level of significance (typically
0.05) and the degree of freedom, the critical value for all the features will be identical (Zhang & Finer,
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2016) As it can be seen from table 7.2, the observed chi-square stats are lesser than the critical values
and we therefore accept the alternative hypothesis and conclude that there is in fact a relationship between
two given classes.

Statistically, we can add that since the hypothesis results in very small chi-square test statistic, this means
that the observed data fits the expected data extremely well (D'Agostino, 2017).

7.4.1 Bonferroni Correction test

Although the chi-square test was significant, because the analysis was 3 x 8 (number of classes times
number of features), the chi-square test could not yet illustrate where the relationship was between the
classes. A post hoc test, Bonferroni correction, as discussed in Section 2.10.2, was conducted to
determine where exactly the relationship was between the different classes (Armstrong, 2014).

In this study, k= 3 (number of classes: RCHS, NCHS, UCHS), so there are 3 x (3-1)/2 = 3 pairwise
differences to consider.

The formula was therefore: 0.05/3 = 0.017.

Hence, for the planned pairwise comparisons to be significant, the p-value must be less than 0.017. To
conduct multiple 2x2 chi-square tests, the classes were regrouped for each test, where one class was
compared against the other two:

Table 7. 3 Bonferroni Correction test result

Classes Chi-square Test P-value Degrees of Freedom
RCHS Vs. NCHS 325.0534144065055 0.1177385[75218586487 216
RCHS Vs. UCHS 235.11175243959863 0.2320208060446495e-06 216
NCHS Vs. UCHS 33[7.19344044779791 0.14608020962424864 216

Using the Bonferroni-adjusted p-value of 0.017, one of the three planned pairwise comparisons was found
to be significant—RCHS Vs. UCHS, p-valle <10.047. This result confirmed a relationship between the
RCHS class and the UCHS class.

These findings are of high importance, as there is statistical evidence which confirms that the protein
sequences labelled as unreviewed chalcone synthase (UCHS) have a relationship with those labelled as
Reviewed chalcone synthase (RCHS). In contrast, the protein sequences of the NCHS class and these
other classes differ and present no relationship. In terms of evaluating RCHS vs. NCHS, this result leads
to believe that chalcone synthase can be predicted from a class of NCHS. Biologically it would infer that
chalcone synthase do not have the same catalytic activity as the other genes in the NCHS class, and that
the constituency of chalcone synthase is different from the rest of the secondary metabolite genes in the
NCHS class.

Another hypothesis test to verify these findings was carried out with analysis of variance (ANOVA)
hypothesis testing (Sochor et al., 2011; Fowler et al., 2013; Fois et al., 2015).

81



7.5 One-way Analysis of Variance

The analysis of variance (ANOVA) hypothesis test and its assumptions were carried out to compare the
means of a condition between two classes (Fowler et al., 2013; Fois et al., 2015), as elaborated in Section
2.11.1 of Chapter 2. For this specific ANOVA test, the Null hypothesis (Ho) stated that there is no
difference between the means of the classes (RCHS, NCHS, and UCHS), while the Alternative
hypothesis (Hq) stated that a difference between the means exists somewhere between the classes.

The assumption of homogeneity of variance (Fowler et al., 2013; Fois et al., 2015):

« The variables are normally distributed in each group that is being compared in the one-
way ANOVA.

« There is homogeneity of variances. This means that the population variances in each class
are equal.

« There is an independence of observations.

« A caveat to these assumptions is that if the class sizes are equal, the F- statistic is robust
to violations of normality and homogeneity of variance.

was checked with Levene’s test (code below) for homogeneity of variance by implementing the stat-
levene-method that is a part of the Python scipy.stats library.

stats.levene(data[ 'Entropy_Feature' ][data[class] 'RCHS '],
'NCHS'],

"UCHS ' 1)

data[ 'Entropy_Feature' ][data[class]
data[ 'Entropy Feature'][data[class]

Note: The reason | prefer using these methods is that the homogeneity of variance assumption can be checked for
each feature of the 8SFM dataset as opposed to-other Stats-methods; in-this instance the feature being used for the
ANOVA analysis is ‘Entropy_Feature’. Any feature of the 8SFM dataset was checked simply by replacing, the
Entropy_Feature argument with for instance,.'HeliFeature, AromaFeature etc.’ I tested all the eight features and
they all led to the same ANOVA conclusion as elaborated below with the ANOVA conclusion reached with the
Entropy_Feature. Since this is a one'way ANOVA, we therefore only need to test for one feature as the level of
categorical variable.

The Levene result obtained was:

Test Statistic = 0.98 and P-value = 0.053.
The Levene’s test of homogeneity of variance was shown to be non-significant which indicated that the
classes (RCHS, NCHS, and UCHS) had related variances. Once the assumptions had been checked, the

ANOVA test was then conducted with Entropy_Feature being the categorical variable of the three classes
(RCHS, NCHS, and UCHS).

Table 7. 4 The Result of ANOVA Model-- Comparing the means between the 3 classes (RCHS, NCHS, UCHS)

sum_sq

Df

mean sq

F

PR (>F)

eta sq

omega sq

RCHS-NCHS-UCHS

0.013471

2.0

0.006736

76.95955

0.0001

0.28455

0.280394

Residual

0.033871

0.000086
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The first row in table 7.4 (RCHS-NCHS-UCHYS) presents the results of the ANOVA model, illustrating
the overall experimental effect. The model explains the significance level of variance, F (2387) = 76.96,
and p-value < 0.05 ( see table PR (>F = 0.0001))

Note: With p-value being less than 0.05 the H, is therefore rejected, and H; is accepted.

The sum of square (denoted by SSM) is presented in the first column of the model: SSM =0.013471. This
indicates the extent to which each class variance is explained by the model.

The residual row (second row) is the unsystematic variation in the data. The sum of square residual
(denoted by SSR) is known as the unexplained variance (0.033871). In this case, the SSR represents the
statistical individual differences in the three classes.

The total variance, SST =0.047342, is equal to the sum of SSM + SSR.

The mean-squares (mean_sq) eliminates the bias present in the SSM and SSR, and was used to calculate
the F-statistic and omega-squared. The biasedness of SSM and SSR are caused by the number of values
summed to calculate them. The mean-squares (MSM and MSR) were calculated as followed:

MSM = SSM / dfw = 0.013471/2 = 0.0067355

MSR = SSR / dfr = 0.033871 / 389 = 0.00008752

Therefore,

F-statistic = MSM/MSR = 76.96

Eta-squared (eta_sq) and omega-squared (omega_sq) indicate the level of impact that the experiment will
have in the real world. Omega-squared i$ considered a better measure of effect size than eta-squared
because it is unbiased in its calculation.-However, the results-of.these two measures, eta-squared and
omega-squared, are almost the same. This means that both measures agree that the feature in the model
(Entropy_Feature.) accounts for 28% of the variance in contributing to the analysis of the three classes
(RCHS, NCHS, UCHS).

The overall ANOVA model proved to be significant, as the Ho was rejected at P-value <0.05 (see table
7.4). This confirms that a difference in means exists (Fowler et al., 2013; Fois et al., 2015) somewhere
among the three classes. To determine where the difference in means lies, a post hoc test was then
conducted.

7.5.1 Tukey’s Honest Significant Difference Post Hoc Test

The one one-way ANOVA test was followed up with a post hoc test known as Tukey's Honest Significant
Difference test (HSD), to compare the means of each class (Dominguez-Bello et al., 2016) from
Entropy_Feature as the level of categorical variable and determine exactly where those differences lie as
elaborated in Section 2.11.2.
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Table 7.5 Tukey’s HSD Post-hoc Testing comparison

Multiple Comparison of Means - Tukey HSD,FWER=0.05

groupl group2 Meandiff lower upper Reject Ho
RCHS Vs. NCHS 1.4871 1.1926 1.7816 True
RCHS Vs. UCHS -0.0831 -0.3776 0.211 False
NCHS Vs. UCHS -1.5702 -1.8625 -1.278 True

The Tukey’s HSD post-hoc test controls for type | error and maintains the family wise error rate (FWER)
at 0.05 (Dominguez-Bello et al., 2016) as indicated on the top right corner of Table 7.5 (FWER = 0.05).
The groupl and group2 column indicates the classes that were compared. The meandiff column indicates
the difference in means of the two groups, calculated as group2 - groupl. The lower and upper columns
indicate the lower and upper boundaries of the 95% confidence interval.

Lastly, the reject column states whether or not the null hypothesis was rejected. The null hypothesis in
this case states that there is no difference in the means of the classes being compared (Fowler et al., 2013;
Fois et al., 2015; Dominguez-Bello et al., 2016). The Tukey’s HSD post-hoc test results demonstrated
that the difference in the means of the RCHS class and the UCHS class is very miniscule, whereas the
mean of the NCHS class differed significantly from the rest. This Tukey’s HSD post-hoc test provided
therefore strong evidence at 95% confidence that the sequences labelled as UCHS inferred the same
biological functionalities and properties as the protein sequences labelled RCHS, as such H, should do
not be rejected as there is no enough evidence that.the means of these two classes differ.

However, on the other hand, the Tukey’s- HSD post-hoc-test provided strong evidence at 95% confidence
that the sequences labelled NCHS do not infer the same biological properties in this case do not possess
the same catalytic activities as the sequences labelled as RCHS or UCHS. In this logic, Ho should
therefore be rejected and it can be concluded with 95% confidence that the mean of the NCHS do differ
with the means of the RCHS and UCHS class.

To further investigate the three classes, a boxplot method was used to visualise the patterns of these three
classes.

7.6 Boxplot

To graphically display the patterns (variability or spread in a data set and interquartile range) of the
classes RCHS, UCHS, and NCHS, one feature, AromaFeature, was selected from the 8SFM dataset for
the boxplot observation in figure 7.4.

AromaFeature

:

;
| ]

:
| %

RCHS NCHS UCHS
Figure 7. 7 Boxplot of the 3 classes grouped by AromaFeature
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Note: Since the eight features of the 8SFM were all found significant, any feature could be used to reach
inferential statistics of the two or three classes (RCHS and NCHS or UCHS).

Within the boxes a horizontal green line is drawn indicating the median. Two vertical blue lines, called
whiskers, extend from the top and bottom of the box. The bottom whisker goes from quartile one (Q1)
to the smallest non-outlier (separate points on the chart), and the top whisker goes from quartile three
(Q3) to the largest non-outlier in the dataset. In the boxplot above, four outliers are shown on top of Q3
of the UCHS class, and two outliers are shown on the bottom of Q1. One outlier is shown on top of Q3
of the RCHS, and two outliers on the bottom of Q1. These observed outliers are due to the slight
variability in the measurements. They indicate values that were more than the upper limit (Q3) or lesser
than the lower limit (Q1). The NCHS class did not present any outliers.

The median of the RCHS class and UCHS class are the same (0.069), in contrast to NCHS’s median
(0.079). It is noteworthy that the range (spread of the data) in figure 7.4 reflects the ranges in figures 7.1,
7.2, 7.3, confirming the distribution of the classes using two different statistical methods.

The interquartile range (IQR) of RCHS (0.072 - 0.066 =0.006) and UCHS (0.071-0.065 = 0.006) is
identical, whereas the NCHS class shows an IQR of 0.023.

In fact, the boxplot has indicated, just as the other statistical analysis carried out above, that RCHS class
and UCHS class have the same statistical skewedness patterns, as opposed to NCHS class.

7.5 Summary

In summary, all of the statistical experiments conducted. in this chapter have revealed that mathematic
statistical estimated approaches can be carried out pertaining to the analysis and interpretation of
secondary metabolite genes. The RCHS class and the UCHS class have shown to have the same statistical
distributions. These statistical approaches are therefore recommended for the analysis of plant genes
involved in the secondary metabelites-production;-as-they-are-adequate to prove the inferences among
plant genes.

Through the use of these exploratory statistical methods, we have been able to see the relatedness of the
sequences in the RCHS class and UCHS class. This despite the fact that the UCHS class was made of
randomly selected unreviewed CHS sequences, meaning that the catalytic activity of these sequences has
not been yet proven. Through this proof-of-concept statistical approach, we aimed to show that these 130
randomly chosen sequences, which constituted the UCHS class, may have the same catalytic activity as
the reviewed CHS sequence of the RCHS class, and that the sequences in the NCHS class provide
statistical evidence that they differ completely from the other two classes (RCHS and UCHS).

We therefore recommend that these 130 sequences that constituted the UCHS class be manually tested
in the lab to see whether the lab findings reflect the findings from our exploratory proof of concept
statistical approaches. In the case that 95% of these sequences of the UCHS class do present the same
catalytic activities as the sequences of the RCHS class, we can then be certain that these exploratory
proofs of concept statistical approaches can be adopted as a new method for classifying secondary genes
without the necessity of the lab. Mathematically, we can say that the confidence interval (CI) will be 1-
a, where o (alpha) is the error difference above or less than our current 95% confidence. In the case
where less than 95% of the sequences in the UCHS are found to have the same catalytic activities as the
sequences in the RCHS, then we will be less than 100% certain (1-alpha) that these proof of concept
statistical methods do work for accurately classifying secondary metabolite genes.
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To our knowledge, there is no previous work that implemented this strategy for studying RCHS using
mathematical and statistical techniques. Therefore, we cannot conduct a comparison of this study against

previous studies. However, our exploratory proof-of-concept model shows good results for analysing and
interpreting secondary metabolite genes.
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Chapter Eight Conclusion
8.1 Conclusion

Secondary metabolites are of high interest in medicinal plants because they often represent the majority
of active ingredients associated with health-promoting qualities. Very little significant research has been
conducted to study key enzyme factors that can categorize or predict a class of secondary metabolite
genes. lIdentification of approaches that are essential to understanding the mechanisms by which
secondary metabolite genes can be predicted and analysed have been lacking in the field of
Bioinformatics.

Genome analysis of South African medicinal plants has been initiated through the Aspalathus linearis
(rooibos) genomics programme at the University of the Western Cape, which encompasses the
sequencing of the rooibos genome as well as six diverse transcriptomes. One of the genomic programme’s
aims is to develop biocomputational approaches for future medicinal plant gene analyses. Analogously,
the aims of this exploratory proof-of-concept study were to develop data science techniques which
present a dynamic way of mining plant SM genes that may lead to the analysis and understanding of
plants SM genes through a different modus operandi.

The study presented data science techniques that can assess, inform and accelerate experimental
endeavours on secondary metabolite genes, and provide practitioners guidance on best practices. In the
course of this research, a number of methods were tested-in.preparing and analysing the protein sequence
data using various machine learning-and-statistical-techniques.-The following sections present the key
findings of the study and make recommendations-for future-work.

8.2 Summary of findings

This study attempted to address two key research questions related to protein sequence data of plant
secondary metabolite genes:

1. Can machine learning algorithms be trained to recognize plant secondary metabolite genes
involved in the production of medicinally active compounds (e.g. polyphenols)?

2. Can mathematical and statistical estimated approaches be carried out pertaining to the
preparation, analysis and interpretation of secondary metabolite genes?

This section will present the key findings from the study in response to these research questions.

To begin with, existing literature on plant secondary metabolite genes and the identification of chalcone
synthase was reviewed to provide the contextual basis for the study, and previous studies were drawn on
to identify the most appropriate machine learning and statistical approaches for this study. Chapter 2
presented the background of biological properties of medicinal plants, secondary metabolite genes,
polyphenols, biosynthetic pathways, and the identification of chalcone synthase which is used as true
positive set in the analysis performed in this work. Different studies on computational biology were also
investigated, along with statistical analysis in the field of plant genes and other organisms. Machine
learning techniques were explored, such as unsupervised and supervised learning techniques, which have
been used in the field of bioinformatics. A number of supervised classification models were identified as
the most appropriate machine learning techniques to address the research problem. The knowledge
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obtained from these different studies informed the design and implementation of this exploratory proof-
of-concept study.

Chapter 4 identified feature engineering techniques that were best suited to address the challenges that
bioinformatics data poses in its application to computational analysis. In this case, the protein sequence
data in its raw form presented a string of alphabetical letters with varying lengths. Previous studies have
addressed this issue by converting the protein sequences into numerical values before performing data
analysis on them. This study followed the same approach of converting amino acids into numerical
values, transforming the dataset into three exploratory proof-of-concept sets of engineered features:
Frequency-based features; Value-based features; and Amino acid relative frequency-based features. The
frequency-based features and value-based features were combined into one dataset called 8SFM, and the
Amino acid relative frequency feature dataset was labelled 20RFFM. Having converted the raw protein
sequence data of the three classes (RCHS, NCHS, and UCHS) into numerical datasets (8SFM and
20RFFM), secondary metabolite (SM) data mining then became possible.

Data visualisation techniques were then discussed in Chapter 5 as a tool to gain insight into the patterns
that exist within the datasets. With unsupervised techniques such as PCA, the SM dataset (20RFFM)
showed that RCHS and UCHS classes were clustering in a specific location, whereas the NCHS class
tended to be scattered. This foreshadowed the findings that were confirmed in the machine learning and
statistical analysis phases of the study, which found that RCHS and UCHS shared similar biological
properties. This finding of clustered classes informed the selection of supervised machine learning
classification models as an appropriate model, given the behaviour of the data set.

Chapter 5 also explored the use of data visualisation.as.a tool for feature selection. By applying feature
selection techniques such as Forest of Trees, ANOVA and Mutual Information, the features could be
presented through a visual ranking display to indicate their significance. Findings from these feature
selection techniques indicated that all eight features in the 8SFM dataset were significant. These
exploratory proof-of-concept data visualisation and feature selection techniques were shown to be helpful
in the interpretation of protein sequence data of SM genes.

Once the feature selection process was complete, two exploratory: proof-of-concept supervised machine
learning classification models were built: a binary classification model and a multi classification model.
The development and performance of these models were discussed in Chapter 6.

With the binary classification model, it was shown that the 2NN showed a very high predictive power
over the rest of the binary models. In training the model, the RCHS was used as the true positive set,
while the NCHS was used as the control dataset (true negative set). The 2NN model was trained and
tested (80% and 20% respectively) on a 10-fold cross-validation with two different datasets: 20RFFM
and 8SFM. The AUC was used as a performance evaluation metric of these two 2NN models, resulting
in the 20RFFM dataset indicating a higher predictive power over the 8SFM dataset. The proof-of-concept
20RFFM 2NN model was further evaluated using confusion matrix and presented good results, achieving
a 94.2% average model accuracy, a precision of 94.7% and a sensitivity of 97.3% at predicting RCHS in
set of diverse secondary metabolite genes (i.e. a test dataset made up of both RCHS and NCHS protein
sequences).

With the multi classification model, the SVM was shown to present a very high predictive power over

the rest of the multi classification models, achieving a 91% average accuracy model. Three classes were
used to train the multi classification models: RCHS, NCHS, and UCHS.
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The motivation behind performing a multiclass classifier to build a proof-of-concept model for
classifying chalcone-synthase in secondary metabolite genes is that curated (reviewed) secondary
metabolite genes are limited. As UCHS is a class of unreviewed chalcone synthase, it was important to
observe the treatment of this class via the multi classification model. The AUC metric showed that the
multi classifier ranked the sequences in the RCHS and UCHS classes higher than the sequences in the
NCHS class. This led to the belief that either the UCHS or RCHS class could be treated as a true positive
set. This outcome is of high importance, as it means that the UCHS and RCHS classes can ultimately be
combined to increase the size of the true positive set, therefore addressing the problem of a limited pool
of curated secondary metabolite genes. This same technique could be applied, in theory, to unreviewed
non-chalcone synthase secondary metabolite genes in order to increase the size of the true negative as
well. Increasing the true positive and true negative datasets would allow for training of the machine
learning classifiers on much larger datasets, therefore leading to improved generalisation power of the
models.

Multi classification models can also be used to classify different secondary metabolite genes where the
goal is not to only predict one type of secondary metabolite gene, but to classify a range of secondary
metabolite genes (enzyme classification) from a cluster of metabolic gene loci within the plant kingdom.
Although this study focused strictly on chalcone synthase secondary metabolite genes, this multi
classification model could be applied in future studies to classify chalcone synthase genes as well as other
types of secondary metabolite genes (e.g. stelibene synthase, aloesome synthase, etc.). These outputs
from Chapter 6 show that machine learning classification models can be effectively trained to predict and
classify plant secondary metabolite genes involved.in the production of medicinally active compounds.

Chapter 7 proposes exploratory proof-of-concept.-mathematical and statistical approaches that can be
applied to study the statistical inferences between RCHS, NCHS, and UCHS. The chi-square hypothesis
test and its post hoc test (Bonferroni Correction) indicated with 95% confidence that a relationship exists
between RCHS and UCHS. Despite the fact that the UCHS class consists of protein sequences which
have not yet been reviewed, the chi-square and the Bonferroni Caorrection tests suggest with 95% certainty
that the UCHS class presents the same biological secondary metabolite properties as the RCHS class.
The same chi-square and Bonferroni Correction tests have shown that the NCHS class does not present
a relationship with either the RCHS or the UCHS.

Further analyses were conducted with ANOVA and its post hoc test (Tukey’s HSD), which show with
95% confidence that the means of the RCHS and UCHS do not differ, whereas these means differ with
that of the NCHS class. The fact that RCHS and UCHS have the same mean implies that either of these
classes (RCHS, UCHS) could be used as a true positive set to be analysed against the NCHS class, and
the outcome would be the same.

Chapter 7 also presented the results of the boxplot method that was applied to the datasets. The results
show that UCHS and RCHS have very similar distribution, whereas the NCHS’s distribution differed
from RCHS and UCHS. The skewedness patterns that are revealed through the boxplot method
demonstrate how similar or different these classes of secondary metabolite genes are to one another.
These statistical methods (chi-square, ANOVA, boxplot) present an exploratory approach that could be
more broadly used to infer the distribution that exists among a broader range of secondary metabolite
genes.

The results of the statistical methods suggest with 95% confidence the RCHS and UCHS possess the
same biological properties. Therefore, either of these protein sequence datasets could be used as a true
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positive set, or ultimately combined into one large class, increasing the size of RCHS from 130 to 260.
This finding suggests that future work that makes use of the same dataset could start with a larger true
positive set from the outset. Moreover, the remaining sequences from the 2961 UCHS class that were
collected from UniProtKB-TREMBL could be further investigated with the same statistical approaches
outlined above to confirm their similarity (or not) to the RCHS class. In doing so, the size of RCHS class
could potentially be increased exponentially, enhancing the generalisation power of the models.

The outcomes of these five different statistical methods are very important as they are in accordance with
the outcomes of the multi classification models and binary models seen in Chapter 6, which ranked the
RCHS and UCHS classes higher than the NCHS class in multiclassification, and the RCHS higher than
the NCHS in the binary classification. As the NCHS class is made up of reviewed sequences that are
known to not involve the same catalytic activities as reviewed chalcone synthase (RCHS), these statistical
outcomes confirm that mathematical and statistical estimated approaches can be applied to analyse and
interpret secondary metabolite genes.

8.3 Future Work

This comprehensive study consisted of several components which could be expanded on in future studies
conducted in bioinformatics. Some of the possibilities for future studies include:

« Studies which attempt to establish guidelines or standards on collecting secondary metabolite
data.

+ Studies which make use of the baseline database that was built to store the data for this particular
study, to build a graph database that uses graph structures for semantic queries with nodes, edges
and properties to relate the stored-protein sequences.and their information.

 Further laboratory analysis of the class of UCHS to determine the number of protein sequences
within this class that are indeed true positive chalcone synthase, to evaluate the accuracy and real-
life application of the model. If the outcome of the lab work is positive, this would boost the
dataset size of RCHS and allow for building of classifier models trained on much larger datasets.

« Studies which attempt to predict and analyse other secondary metabolite enzymes using the
machine learning and mathematical and statistical approaches developed in this study.

« Further study as part of the Aspalathus linearis genomics programme at the University of the
Western Cape to conduct the genome analysis of Rooibos using these data science techniques.
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Appendix A.1

Source (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268504/figure/f01_01/)

Metabolic intermediates of the shikimate pathway in higher plants. The first seven steps are common to the biosynthesis of phenylalanine, tyrosine, and
tryptophan, with chorismate being the last shared precursor of the three amino acids. The phenylalanine and tyrosine pathways diverge after the biosynthesis
of arogenate. Some reactants (ATP and PEP), and products (inorganic phosphate and water), have been omitted for the sake of clarity.
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Appendix A.2

Source (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268504/figure/f02_01/)

Phenylpropanoid metabolism in Arabidopsis. Horizontal reactions correspond to ring modifications, vertical reactions correspond to side-chain modifications.
PAL, phenylalanine ammonia-lyase; C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumarate:CoA ligase; HCT, hydroxycinnamoyl-coenzyme A
shikimate:quinate hydroxycinnamoyl-transferase; C3'H, p-coumaroyl shikimate 3'-hydroxylase; CCOAOMT, caffeoyl CoA 3-O-methyltransferase; CCR,
cinnamoyl-CoA reductase; F5H, ferulate 5-hydroxylase; COMT, caffeic acid/5-hydroxyferulic acid O-methyltransferase; CAD, cinnamyl alcohol
dehydrogenase; HCALDH, hydroxycinnamaldehyde dehydrogenase. The reaction catalyzed by HCALDH leads to the synthesis of ferulate and the sinapate
esters.
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Appendix B

All Supplementary materials, meaning; the datasets RCHS, NCHS, UCHS and their converted datasets
20RFFM and 8SFM, and all the Python code of the computational pipeline for data preparation, and
data analysis were both burned into three discs that should have been brought along with the thesis.
However, I was informed by our department’s secretary that, UWC faculty of natural sciences does no
longer accept CDs or DVDs only a thesis as a single PDF. For this reason | had to insert the data and
decrease the font size for all the data and codes to fit in the appendix properly.

For a better visualization, one can simply zoom in.
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acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305}.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000269|PubMed: 10074711,

16

FKLKVKPYIPDFKLAFEHFCIHAGGRAVLDEVQKNLDLK D\
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MNENHIQS DHMNNTIHVTNKKLPNFLLSVRLKYVKLGYHYLISNAVYILILPVGLLAATSSSFSLTDLT
LLYNHLLKFHFLSSTLFAALLIFLTTLY FTTRPRRIFLLDFACY KPDSSLICTRETFMDRSQRVGIFTED
NLAFQQKILERSGLGQKTYFPEALLRVPPNPCMSEARKEAE TVMFGAIDAVLEK TGVNPKDIGILY
VNCSLFNPTPSLSAMIVNKYKLRGNVLSYNLGGMGCSAGLISIDLAKQLLQVQPNSYALVVSTENIT
LNW YLGNDRSMLLSNCIFRMGGAAVLLSNRSSDRCRSK Y QLIHTVRTHKGSDDNAFNCVY QREDN
DDNKQIGVSLSKNLMAIAGEALKTNITTLGPLYLPMSEQLLFFATLVARKVFNVKKIKPYIPDFKLAFE
HFC DEIEKNLDL ITLNRFGNTSSSSLWYELAYSEAKGRIKRGDRTW
QIAFGSGFKCNSAVWRALRTIDPSKEKKKKTNPWIDEIHEFPVPVPRTSPVTSSSESR

MAPAMEY STQNGQGEGKKRASVLAIGTTNPEHFILQEDY PDFY FRNTNSEHMTELKEKFKRICVK
SHIRKRHFYLTEEILKENQGIATY GAGSLDARQRILETEVPKLGQEAALKAIAEWGQPISKITHVVFA

65910).

CATALYTIC ACTIVITY: A \ery-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305}.

CATALYTIC ACTIVITY: 3 malonyl-CoA +
benzoyl-CoA = 4 CoA + 2,4,6-

TTSGFMMPGADYVITRLLGLNRTVRRVMLYNQGCFAGGTALRVAKDL VVCAENTA
MTFHAPNESHLDVIVGQAMFSDGAAALIGACPDVASGERAVFNILSASQTIVPGSDGAITAHFYEM
GMSYFLKEDVIPLFRDNIAAVMEEAFSPLGYSDWNSLFY SIHPGGRGIIDGVAGNLGIKDENLVATR
HVLGEYGNMGSACVMFILDELRKSSKVNGKPTTGDGKEFGCLIGLGPGLTVEAVVLQSVPILQ

MSSLSNSLPLMEDVQGIRKAQKADGTATVMAIGTAHPPHIFPQDTYADVYFRATNSEHKVELKKKF
DHICKKTMIGKRYFNYDEEFLKKYPNITSYDEPSLNDRQDICVPGVPALGTEAAVKAIEEWGRPKS
EIMHLVFCTSCGVDMPSADFQCAKLLGLHANVNKYCIYMQGCYAGGTVMRYAKDLAENNRGARVL
VVCAELTIMMLRAPNE THLDNAIGISLFGDGAAALIGSDPIIGVEKPMFEIVCTKQTVIPNTEDVIHLHL
RETGMMFYLSKGSPM LIDVFK DWNSLI DQVEAKLKLRP
EKFRAARTVLWDYGNMVSASVGYILDEMRRKSAAKGLETY GEGLEWGVLLGFGPGITVETILLHS

MSHNQNQPHRPVPVHV TNAEPNPNPNNLPNFLLSVRLKYVKLGYHY LISNALYILLLPLLAATIANL
SSFETINDLSLEYNTLRFHFLSATLATALLISLSTAY FTTRPRRVFLLDFSCYKPDPSLICTRETFMDRSQ
RVGIFTEDNLAFQQKILERSGLGQKTY FPEALLRVPPNPCMEEARKEAE TVMEGAIDAVLEKTGVK
PKDIGILVVNCSLENPTP SLSAMIVNKYKLRGNILS Y NLGGMGCSAGLISIDLAKQMLQVQPNSYAL

VVSTENITLNWYLGNDRSMLESNCIFRMGGAAVLLSNRSSDRSRSKY QLIHTVRTHKGADDNAFGC
YvOREDNNAEE ToKTEUSg TaGe S RTRELG Ly LEMSEQLLPFATL VARKVFKVKKIKE
YIPDFKLAFEHFC DEIEKNLDL! WYELAYSEAKG

RIKRGDRTWQIAFGSGFKCNSAVWKALRTIDPMDEKTNPW\DEIDDFPVQVPRITPITSS

MGGVDFEGFRKLQRADGFASILAIGTANPPNAVDQSTY PDFY FRITGNEHNTELKDKFKRICERSAL
KQRYMYLTEEILKKNPDVCAFVEVPSLDARQAMLAMEVPRLAKEAAEKAIQEWGQSKSGITHLIF
CSTTTPDLPGADFEVAKLLGLHPSVKRVGVFQHGCFAGGTVLRMAKDLAENNRGARVLVICSETT
AVTERGPSETHLDSLYGOALEGDGASALIVGADPIPQVEKACFEIVW TAQTVVPNSEGAIGGKVRE
VGLTFQLKGAVP DLISANIENCMVEAFSQFKISDWNKLFWVVHP GGRAILDRVEAKLNLDPTKLIPT
RHVMSEYGNMSSACVHFILDQTRKASLONGCSTTGEGLEMGVLFGFGPGLTIETVVLKSVPIQ

MATEEMKKLATVMAIGTANPPNGY Y QADFPDFYFRV TNSDHLINLKQKFKRLCENSRIEKRYLHVT
EEILKENPNIAAYEATSLNVRHKMQVKGVAELGKEAALKAIKEWGQPKSKITHLIVCCLAGVDMPG
ADYQLTKLLDLDPSVKRFMFYHLGCYAGGTVLRLAKDIAENNKGARVLIVCSEMTTTCFRGPSETH
LDSMIGQAILGDGAAAVIVGADPDLTVERPIFELVSTAQTIVPESHGAIEGHLLESGLSFHLYKTVPTL
ISNNIKTCLSDAFTPLNISDWNSLFWIAHPGGPAILDQVTAKVGLEKEKLKVTRQVLKDY GNMSSAT
VEFIMDEMRKKSLENGQATTGEGLEWGVLFGFGPGITVETVVLRSVPVIS
MAPAMDSAQNGHQSRGSANVLAIGTANPPNVILQEDYPDFYFKV TNSEHLTDLKEKFKRICVKSKT
RKRHEYLTEQILKENPGIATY GAGSLDSRQKILETEIPKLGKEAAMVAIQEWGQPVSKITHVVFATTS
DYSITRLLGL NQGCFAGGTALRVAKDLAENNKGARVLVVCAENTAMTF
HGPNENHLOVLVGQAMFSDGAAALIGANPNLPEERPVYEMVAAHQTIVPESDGAIVAHFYEMGM
SYFLKENVIPLFGNNIEACMEAAFKEYGISDWNSLFYSVHPGGRAIVDGIAEKLGLDEENLKATRHY
LSEYGNMGSACVIFILDELRKKSKEEKKLTTGDGKEWGCLIGLGPGLTVETVVLRSVPIA

MEAANEPVNGGSVQIRTENNERRKERNFLQSVNMKYVKLGYHYLITHLFKLCLVPLMAVLVTEISR
LTTDDLYQIWLHLQYNLVAFIFLSALAIFGSTVYIMSRRRSVYLVDYSCYLPPESLQVKYQKFMDHS
KLIEDFNESSLEFQRKILERSGLGEETYLPEALHCIPPRPTMMAAREESEQVMFGALDKLFENTKIN
PRDIGVLVVNCSLFNPTPSLSAMIVNKYKLRGNVKSFNLGGMGCSAGVISIDLAKDMLQVHRNTYA
VVVSTENITQNWYFGNKKAMLIPNCLFRVGGSAILLSNKGKDRRRSKYKLVHTVRTHKGAVEKAFN
CVYQEQDDNGKTGVSLSKDLMAIAGEALKANITTLGPLVLPISEQILFFMTLVTKKLFNSKLKPYIPD
FKLAFDHFCIHAGGRA\/IDELEKNLQLSQTHVEASRMTLHRFGNTSSSSIWVELAVIEAKGRMKKG
IDRYPVKLDF
MVT\/EEVRKAQRAEGPATVLAIGTATPPNCVGQSTYPDVVFR\TNSEHK\ELKQKFQRMCDKSMIK
KRYMYLTEEILKENPSMCEYMAPSLDARQDMVIVEIPKLGKEAATKAIKEWGQPKSKITHLVFCTT
SGVDMPGADY QLIKLFGLRPSVKRLMMYQQGCFAGGTVLRLAKDL/ VVCSEITVWT

+ 3 co@).
{ECO:0000269|PubMed: 12795704,
ECO:0000269|PubMed: 19710020,
ECO:0000269|PubMed:9459298).;
CATALYTIC ACTIVITY: 3 malonyl-CoA + 3-
hydroxybenzoyl-CoA = 4 CoA + 2,3,4,6-
tetrahydroxybenzophenone + 3 CO(2).
{ECO:0000269|PubMed: 12795704,
[ECO:0000269|PubMed: 19710020,
ECO:0000269|PubMed: 9459298}

CATALYTIC ACTIVITY: 5 malonyl-CoA =
CoA + 5,7-dihydroxy-2-methyl-aH-chromen-a-
one + 5 CO(2) + H(2)O.
{ECO:0000269|PubMed: 15686354).

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305}.

CATALYTIC AGTIVITY: 3 malonyl-CoA +
cinnamoyl-CoA = 4 CoA + pinosylin + 4
CO(2). {ECO:0000269]PubMed: 1426272}.;
CATALYTIC ACTIVITY: 3 malonyl-CoA +
diydiocinnamoy|-CoA = 4 CoA +
dihydropinosyhin + 4 CO(2).
(E0a000260lPuMed 1456272}

CATALYTIC ACTIVITY: 4-coumaroyl-CoA +
malonyl-CoA + H(2)O = 2 CoA + 4-
hydroxybenzalacetone + 2 CO(2).
{ECO0:0000269|PubMed:11389739,
[ECO0:0000269|PubMed: 17383877).

CATALYTIC ACTIVITY: 3 malonyl-CoA +
benzoyl-CoA = 4 CoA + 2,4,6-
trihydroxybenzophenone + 3 CO(2)
{ECO:0000269|PubMed: 22390826}.

CATALYTIC ACTIVITY: A \ery-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{EC0:0000305}.

CATALYTIC ACTIVITY: 4-coumaroyl-CoA +
malonyl-CoA + H(2)O = 2 CoA + 4-

+ 2 co(z)

FRGPSDTHLDCLVGQALFGDGVASIIVGADPLPEIEKPLFELVSAAQTILPD REVGLTF
HLLENVPALISKNIEKSLNE TFKPLDIMDWNSLFWIAHPGGPAILDQVEAKLGLKPEKLEATGHILSE
YGNMSSACVLFILDVVRRKSAANGVTTRILSIGQISKSLLILAWFLFSLY

MANLHALRREQRAQGPATIMAIGTATPPNLYEQSTFPDFYFRVTNSDDKQELKKKFRRMCEKTMV
KKRYLHLTEEILKERPKLCSYKEASFDDRQDIVVEEIPRLAKEAAEKAIKEWGRPKSEITHLVFCSIS
GIDMPGADYRLATLLGLPLTVNRLMIY SQACHMGAAMLRIAKDLAENNRGARVLVVACEITVLSFRG
PNEGDFEALAGQAGFGDGAGAVVVGADPLEGIEKPIY EIAAAMQETVAESQGAVGGHLRAFGWT
FYFLNQLPAIIADNLGRSLERALAPLGVREWNDVFWVAHPGNWAIIDAIEAKLQLSPDKLSTARHVF
TEYGNMQSATVYFVMDELRKRSAVEGRS TTGDGLQWGVLLGFGPGLSIETVVLRSMPL

MSVGMGVDLEAFRKSQRADGFASILAIGTANPPNVVDQSTYPDYYFRNTNNEDNTDLKDKFKRIC
ERSAIKKRHMY LTEEILKKNPELCAFLEVPSLDTRQAMLAVEVPRLGKEAAEKAIEEWGQPKSRIT
HLIFCTTTTPDLPGADFEVAKLLGLHPSVKRVGVFQHGCFAGGTVLRLAKDLA

o)
®

{ECO
EC0:0000269|PubMed: 13053110)
CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(@2).
{ECO:0000255|PROSITE-
ProRule:PRU10023,
ECO0:0000269|PubMed: 12226219,
ECO0:0000269|PubMed: 18068110}.

CATALYTIC ACTIVITY: Feruloyl-CoA +
feruloylacetyl-CoA + H(2)O = 2 CoA +
curcumin + CO(2).
{EC0:0000269|PubMed: 19258320,
ECO:0000269|PubMed:21148316}.

CATALYTIC ACTIVITY: 3 malonyl-CoA +
cinnamoyl-CoA = 4 CoA + pinosylvin + 4

Vi
ENTAVTFRGPSETHLDGLVGLALFGDGAAALIVGADPIPQVEKPCFEIVWTAQTVVPNSDGAISGK
LREVGLTFQLKGAVPDLISTNIEKCLVEAFSQFNISDWNQLFWIAHPGGRAILDQVEASLNLDPTKL.
RATRHVMSEYGNMSSACVHFILDE TRKASRQNGCSTSGGGFQMGVLFGFGPGLTVETVVLKSIPF
P
MASVEEFRNAQRAKGPATILAIGTATPDHCVYQSDYADY YFRV TKSEHMTELKKKFNRICDKSMIK
KRYIHLTEEMLEEHPNIGAYMAPSLNIRQENITAEVPRLGRDAALKALKEWGQPKSKITHLVFCTTSG
VEMPGADYKLANLLGLETSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEITVVTFR
GPSEDALDSLVGQALFGDGSSAVIVGSDPDVSIERPLFQLVSAAQTFIPNSAGAIAGNLREVGLTF
HLWPNVPTLISENIEKCLTQAFDPLGISDWNSLFWIAHPGGPAILDAVEAKLNLEKKKLEATRHVLS
EYGNMSSACVLFILDEMRKKSLKGEKATTGEGLDWGVLFGFGPGLTIETVVLHSVPTVTN

MSVGMGIDLEAFRKSQRADGFASILAIGTANPPNVVDQSTYPDYYFRVTNNEDNTDLKDKFKRICE
RSAIKKRHMVLTEE\LKKNPELCAFLEVPSLDTRQAMLAAEVPRLGKEAAEKA\EEWGQPKSRITH

CO(2). {ECO:0 ubMed: 7698342).;
CATALYTIC ACTIVITY: 3 malonyl-CoA +
dihydrocinnamoyl-CoA = 4 CoA +
dihydropinosyhin + 4 CO(2)
{ECO:0000269|PubMed: 7698342},

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
1-CoA = 4 CoA + I+

4CO(@).

CATALYTIC ACTIVITY: 3 malonyl-CoA +
cinnamoyl-CoA = 4 CoA + pinosyhin + 4

DLPGADFEVAKLLGLHPSVKRVGVFQHGCFAGGTVLRLAKDL,
NYA\/TFRGPSETHLDGLVGLALFGDGASALIVGADPIPQVEKPCFENWTAQWVPNSDGAISGKL
REVGLTFQLKGAVPDLISTNIEKCLVEAFSQFNISDWNQLFWIAHPGGHAILDQVEASLNLDPTKLR
ATRHVMSEYGNMSSACVHFILDETRKASRQNGCSTSGGGFQMGVLFGFGPGLTVETVVLKSIPFP

1%
m

MDANGGPVQIRTQNYVKLGYHYLITHFFKLMFLPLMAVLFMNVSLLSLNHLQLY YNSTGFIFVITLAI
VGSIVFFMSRPRSIYLLDYSCYLPPSSQKVSYQKFMNNSSLIQDFSETSLEFQRKILIRSGLGEETY
LPDSIHSIPPRPTMAAAREEAEQVIFGALDNLFENTKINPREIGVLVVNCSLFNPTPSLSAMIVNKYK
LRGNIKSFNLGGMGCSAGVIAVDLASDMLQIHRNTFALVVSTENITQNWYFGNKKAMLIPNCLFRV
GGSAVLLSNKPLDRKRSKYKLVHTVRTHKGSDENAFNCVY QEQDECLKTGVSLSKDLMAIAGEAL
KTNITSLGPLVLPISEQILFFATFVAKRLFNDKKKKPYIPDFKLALDHFCIHAGGRAVIDELEKSLKLSP
KHVEASRMTLHRFGNTSSSSIWYELAY TEAKGRMRKGNRVWQIAFGSGFKCNSAVWVALRNVE
PSVNNPWEHCIHRYPVKIDL
MGSLQAMRRAQRAQGPATIMA\/GTSNPPNLVEQTSVPDFVFR\/TNSDHKHALKNKFR\/ICEKTK\/
EAAE]

CO(2). {ECO:O 7698342).;
CATALYTIC ACTIVITY: 3 malonyl-CoA +
dihydrocinnamoyl-CoA = 4 CoA +
dihydropinosylin + 4 CO(2).
{ECO0:0000269|PubMed: 7698342}.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-0xoacyl-CoA + CO(2).
{ECO0:0000269|PubMed: 16765910}

CATALYTIC ACTIVITY: Feruloyl-CoA +

KRRYLHLTEEILKQRPKLCSYMEPSFDDRQDI LVFCSIS
GIDMPGADVRLATLLGLPLSVNRLMLVSQACHMGAQMLRIAKDLAENNRGARVLAVSCEITVLSFR
GPDAGDFEALACQAGFGDGAAAVVVGADPLI MQE' EIGW

0A + H(2)O = 2 CoA +
curcumin + CO(2).

TFHFFNQLF'KLIAENIEGSLARAFKPLGISEWNDVFWVAHPGNWG\MDA\ETKLGLEQGKLATARH

0 VFSEYGNMQSATVYFVMDEVRKRSAAEGRATTGEGLEWGVLFGFGPGLTIETVVLRSVPLP

493

101

MDYPMKKVKIFFNYLMAHRFKLCFLPLMVAIAVEASRLSTQDLQNFYLYLQNNHTSLTMFFLYLAL
GSTLYLMTRPKPVYLVDFSCYLPPSHLKASTQRIMQHVRLVREAGAWKQESDYLMDFCEKILERS
GLGQETYVPEGLQTLPLQQNLAVSRIETEEVIGAVDNLFRNTGISPSDIGILVVNSSTFNPTPSLSSIL
VNKFKLRDNIKSLNLGGMGCSAGVIAIDAAKSLLQVHRNTYALVVSTENITQNLYMGNNKSMLVTNC
LFRIGGAAILLSNRSIDRKRAKYELVHTVRVHTGADDRSY ECATQEEDEDGIVGVSLSKNLPMVAA

RTLKINIATL GPLYLPISEKFHRFVREVKKKFLNPKLKHYIPDFKLAFEHFCH MEKNLHL

{ECO:00! 19622354).;
CATALYTIC ACTIVITY: 4-coumaroyl-CoA +
feruloylacetyl-CoA + H(2)O = 2 CoA +
demethoxycurcumin + CO(2).
{ECO:0000269|PubMed:19622354).;
CATALYTIC ACTIVITY: 4-coumaroyl-CoA +
(4-coumaroyljacetyl-CoA + H(2)O = 2 CoA +
bisdemethoxycurcumin + CO(2
{ECO:0000269|PubMed:19622354).

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a ery-long-
chain 3-oxoacyl-CoA + CO(2).

{ECO: )

TPLDVEASRMTLHRFGNTSSS S ELAY TEAKGRMTKGDRIWQIALGSGFKCNSSVWVALRNVK

PSTNNPWEQCLHKYPVEIDIDLKE
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3-ketoacyl-CoA synthase 13

(KCS-13) (EC 2.3.1.199)

(Protein HIGH CARBON ::(2:9122:752103
DIOXIDE) (Very long- chaln fatty 0
acid condensing enzyme 13)

(VLCFA condensing enzyme 13)
3-ketoacyl-CoA synthase 15

(KCS-15) (EC 2.3.1.199) (Very  KCS15
long-chain fatty acid condensing At3g52160

enzyme 15) (VLCFA condensing F4F15.270
enzyme 15)

3-ketoacyl-CoA synthase 19

(KCS-19) (EC 2.3.1.199) (Very ngi
fong-chain fatt acid condensing RCS2%
enzyme 19) (VLCFA condensing ~e2909%%0
enzyme 19)

3ketoacyl-CoA synthase 8

(KCS-8) (EC 2.3.1.199) (Very  KCS8
long-chain fatty acid condensing At2g15000
enzyme 8) (VLCFA condensing  T15J14.13
enzyme 8)

3ketoacyl-CoA synthase 4

(KCS-4) (EC 2.3.1.199) (Very  KCS4
long-chain fatty acid condensing At1g19440
enzyme 4) (VLCFA condensing F18014.21
enzyme 4)

3-ketoacyl-CoA synthase 11

(KCS-11) (EC 2.3.1.199) (Very  KCS11
long-chain fatty acid condensing A(2926640
enzyme 11) (VLCFA condensing F18A8.1
enzyme 11)

3-ketoacyl-CoA synthase 7

(KCS-7) (EC 2.3.1.199) (Very  KCS7
long-chain fatty acid condensing At1g71160
enzyme 7) (VLCFA condensing  F23N20.15

enzyme 7)

Probable 3-ketoacyl-CoA
synthase 14 (KCS-14) (EC

2.3.1.199) (Very long-chain fatty At3g10280
acid condensing enzyme 14) ~ F14P13.12
(VLCFA condensing enzyme 14)

Probable 3-ketoacyl-CoA
synthase 21 (KCS-21) (EC
2.3.1.199) (Very long-chain fatty
acid condensing enzyme 21)
(VLCFA condensing enzyme 21)

KCS21
KCS20
At5g49070
K20J1.4

3-ketoacyl-CoA synthase 3
(KCS-3) (EC 2.3.1.199) (Very
long-chain fatty acid condensing
enzyme 3) (VLCFA condensing
enzyme 3)

At1g07720
F24B9.18

3,5,7-trioxododecanoyl-CoA
synthase (EC 2.3.1.206)
(Olivetol synthase) (Polyketide
synthase-1) (Tetraketide
synthase)

OLS CAN24.
PKS-1 TKS

Probable acridone synthase 3
(EC 2.3.1.159) (Acridone
synthase i)
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Acridone synthase 2 (EC
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3.1.159) (Acridone synthase 1) ACS2

Phioroisovalerophenone
synthase (Valerophenone
synthase) (EC 2.3.1.156) (3-
methyl-1-
(trihydroxyphenyl)butan-1-one
synthase)

vPS

3-ketoacyl-CoA synthase 12
(KCS-12) (EC 2.3.1.199) (Very ~ KCS12
long-chain fatty acid condensing At2g28630
enzyme 12) (VLCFA condensing T8O18.8
enzyme 12)

Stilbene synthase 6 (EC
2.3.1.95) (Resveratrol synthase
6) (Trihydroxystilbene synthase

& (StSy & LOC1002429

Stilbene synthase 3 (EC
2.3.1.95) (PSV368) (Resweratrol | VIT_1650100
synthase 3) (Trihydroxystilbene  g01030
synthase 3) (StSy 3)

GSVIVT0000
Stilbene synthase 4 (EC 5194001
2.3.1.95) (Resweratrol synthase  LOC1002418
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Stilbene synthase 2 (EC VITISV_0108
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60

GSVIVT0000
Stilbene synthase 5 (EC 7357001
2.3.1.95) (Resweratrol synthase  LOC1002503

5) (Trihydroxystilbene synthase 01
5) (StSy 5) VITISV_0368

Stilbene synthase 1 (EC
2.3.1.95) (Resweratrol synthase
1) (RS1) (Trihydroxystilbene
synthase 1)

Putative stilbene synthase 2
(EC 2.3.1.95) (Resveratrol
synthase 2) (RS2)
(Trihydroxystilbene synthase 2)
(Fragment)

Stilbene synthase 3 (EC

.1.95) (Resveratrol synthase
3) (RS3) (Trihydroxystilbene
synthase 3)
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SCKISSETFFNMAKGAQLVTDET\QFMTR\LNRSGLGDDTYSPRCMLTSF'PTPSMYEARHESELV\F
GALNSLFKK KLKTDVKTYNLSGMGCSAGAISVDLAT
NLLKANPNTVAVIVSTENMTLSMYRGNDRSMLVPNCLFR\/GGAAVMLSNR5QDRVRSKYEL111IV

RTHKGSSDKHYTCAEQKEDSKGIVGVALSKELTVVAGDSLKTNLTALGPLVLPLSEKLRFILFLVKS
KLFRLKVSPYVPDFKLCFKHFCIHAGGRALLDAVEKGLGLSEFDLEPSRMTLHRFGNTSSSSLWY

ELAYVEAKCRVKRGDRVWQLAI TIPANESLY DSVHKYPVHVT

MEKEATKMVNGGVKSKSPKGSPDFLGYNLRYVKLGYIYLLSLSRTFCFFLPPLLLLFIFVSRFLPILA
FPLSTFFILLIYHYLTPSSVFLLDFSCYRPPDHLKITKSDFIELAMKS GNFNE TAIELQRKVLDQSGIGE
ESYMPRVVFKPGHRVNLRDGREEAAMVIFGAIDELLAATKINVKHIKILVLNCGVLNTTPSLSAMVIN
HYKLRHNTESYNLGGMGCSAGVIAIDLAKDLLNAHQGS YALVVSTEIVSFTWYSGNDVALLPPNCF
FRMGAAAVMLSSRRIDRWRAKYQLMQLVRTHKGMEDTSYKSIELREDRDGKQGLYVSRDVMEV

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305}.

CATALYTIC ACTIVITY: A \ery-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).

ECO:

GRHALKANIATLGRLEPSFEHICVLASSKKVLDDIHKDLKLTE! RFGNT WYE
LAYLEHKAKMKRGDRV! NSVVWKALKNIDI

MELFSLSSLLLLSTLFVFYIFKFVFKRRNQRNCYMLHYECYKGMEERKLDTE TCAKVVQRNKNLGL
EEYRFLLRTMASSGIGEETY GPRNVLEGREDSPTLLDAHSEMDEIMFDTLDKLFHKTKGSISPSDIDI
LVVNVSLFAPSPSLTSRVINRYKMREDIKSYNLSGLGCSASVISIDIVQRMFETRENALALVVSTETM
GPHWYCGKDRSMMLSNCLFRAGGSSVLLTNAARFKNQALMKLVTVVRAHVGSDDEAYSCCIQM
EDRDGHPGFLLTKYLKKAAARALTKNLQVLLPRVLPVKELIRYAIVRALKRRTSAKREPASSGIGLN
LKTGLQHFCI HRFGNTSSGGLWYVLGYMEAKNRLKKG
EK\LMMSMGAGFESNNC\/WEVLKDLDDKNVWEDSVDRVF’ELSRIPNPFVEKYDWINDDTMSFVR

MKNLKMVFFKILFISLMAGLAMKGSK\NVEDLQKFSLHHTQNNLQT\SLLLFLVVFVW\LVMLTRF'KF'
VYLVDFSCYLPPSHLKVSIQTLMGHARRAREAGMCWKNKESDHLVDFQEKILERSGLGQETYIPE
GLQCFPLQQGMGASRKETEEVIFGALDNLFRNTGVKPDDIGILVVNSSTFNPTPSLASMIVNKYKLR
DNIKSLNLGGMGCSAGVIAVDVAKGLLQVHRNTYAIVVSTENITQNLYLGKNKSMLVTNCLFRVGG
AAVLLSNRSRDRNRAKYELVHTVRIHTGSDDRSFECATQEEDEDGIIGY TLTKNLPMVAARTLKINIA
TLGPLVLPLKEKLAFFITFVKKKYFKPELRNY TPDFKLAFEHFCIHAGGRALIDELEKNLKLSPLHVE
ASRMTLHRFGNTSSSSIWYELAY TEAKGRMKEGDRIWQIALGSGFKCNSSVWVALRDVKPSANS
PWEDCMDRYPVEIDI
MDGAGESRLGGDGGGDGSVGVQIRQTRMLPDFLQSVNLKYVKLGYHYLISNLLTLCLFPLAVVISV
EASQMNPDDLKQLWIHLQYNLVSHICSAILVFGLTVYVMTRPRPVYLVDFSCYLPPDHLKAPYARF
MEHSRLTGDFDDSALEFQRKILERSGLGEDTYVPEAMHYVPPRISMAAAREEAEQVMFGALDNLF
ANTNVKPKDIGILVVNCSLFNPTPSLSAMIVNKYKLRGNIRSYNLGGMGCSAGVIAVDLAKDMLLVH
RNTYAVVVSTENITQNWY FGNKKSMLIPNCLFRVGGSAVLLSNKSRDKRRSKYRLVHVVRTHRGA
DDKAFRCVYQEQDDTGRTGVSLSKDLMAIAGE TLKTNITTLGPLVLPISEQILFFMTLVVKKLFNGKYV
KPYIPDFKLAFEHFCI IDELEKNLQL ITLHRFGNT IWYELAYIEAKG
CIDKYPVTLSY

MDVEQKKPLIESSDRNLPDFKKSVKLKYVKLGYHYLITHGMYLFLSPLVLVIAAQISTFSVTDLRSL
WEHLQYNLISVVVCSMLLVFLMTIYFMTRPRPVYLVNFSCFKPDESRKCTKKIFMDRSKLTGSFTE
ENLEFQRKILQRSGLGESTYLPEAVLNVPPNPCMKEARKEAETVMFGAIDELLAKTNVNPKDIGILI
VNCSLFNPTPSLSAMVVNHYKLRGNILSYNLGGMGCSAGLISIDLAKHLLHSIPNTY AMVISMENITL
NWYFGNDRSKLVSNCLFRMGGAAILLSNKRWDRRRSKYELVDTVRTHKGADDKCFGCITQEEDS
ASKIGVTLSKELMAVAGDALKTNITTLGPLVLPTSEQLLFFATLVGRKLFKMKIKPYIPDFKLAFEHFC
DELEKNLKL RFGNTSSSSLWYELAYSEAKGRIKKGDRIWQIAF
GSGFKC KEKNPWMDI VSTI
MESSFHFINEALLITQTFITFHQFLVASACVLIAVFGY YFFKPRCIIYLIDFSCYQPPDFLRAPVSNFIE
HLTISGVFDQESLDLQQKILERSGISDDASVPATVHEIPPNASISAAREE THEILFAIVQDLFSKHEIDP
KSIDILVSNCSLFCPSPSITSMINKFGMRSDIKSFSLSGMGCSAGILSVNLVKDLMKIHGDSLALVLS
LSNRKQDSHKAKYKLQHIIRTHVGSDTESYESVMQ

© QUDEEGKVGVALSKQLVRVASKALKINVVQLGPRVLPYSEQLKYIISFIQRKWGMHKEIY TPNFKK

AFEHFCIHAGGRAIIEGVEKHLKLDKEDVEASRSTLYRYGNTSSSSLWYELQYLEAKGRMKMGDK
WQ ISEID: DRIHLYPVCGDTSSALKTELLS

MFIAMADFKLLLLILILLSLFELDLLHFHHDFFSPFPVKIGLLLISIFFYAYSTTRSKPVYLVDFSCHQPT
DSCKISSETFFNMAKGAQLY TEETIQFMTRILNRSGLGDDTY SPRCMLTSPPTPSMYEARHESELVI
FGALNSLFKKTGIEPREVGIFIVNCSLFNPNPSLSSMIVNRYKLKTDVKTYNLSGISVDLATNLLKANP
NTYAVIVSTENMTLSMYRGNDRSMLVPNCLFRVGGAAVMLSNRSQDRVRSKYELTHIVRTHKGSS
DKHYTCAEQKEDSKGIVGVALSKELTVVAGDTLK TNLTALGPLVLPLSEKLRFILFLVKSKLFRLKVS
PYVPDFKLCFKHFCIHAGGRALLDAVEKGLGLSEFDLEPSRMTLHRFGNTSSSSLWYELAYVEAK
CRVKRGDRVWQLAFGSGFKCNSIVWRALRTIPANESLVGNPWGDSVHKYPVHVT

LVVHLIYQRIRTRVKVYLLDFTCYRAPDSNRVPM
STLIETIYLDDKLDQESIDFQARILERSWLSNQTSIPRSLMEIPLKKSLSSVKIETMTTIFTSVEDLLRKN
KLSPRSIDILITNCSLHSPSPSLSAMVINKFHMRSNIKSFNLSGMGCAAGILSVNLANDLLQAHRGSL
ALIVSTEALNTHW YIGKDRSMLLTNCLFRMGAAAVLMSSNDHDRDNAK Y ELLHVVRKNKAKDDRA
YRCIVQDIDSDEKQGVSITKDVISVAGDMLKMNLTSLGPLVLPYLEQFQYVIQHILCKKLKIYESNSS
YTPNFKTAFEHFCIHTGGRAVIQAMEMNLKLTKVDIEPSKMTLHRFGNTSSSSIWYALSYLEAKRR
MKKGDRVLQIAFGS GFKENSAVWRCIRKVEPNTENKWLDFIDSYPVDVPDSTNIRPG

MDLLVMLLSLLVSYLIFKIWKRIDSKRPQNCYILDY QCHKPSDDRMVNTQFSGDIILRNKHLRLNE YK
FLLKAIVSSGIGEQTYAPRLFFEGREQRPTLQDGLSEMEEFYIDTIEKVLKRNKISPSEIDILVVNVSM
LNSTPSLSARINHYKMREDIKVENLTAMGCSASVISIDIVKNIFKTYKNKLALVVTSESLSPNWYSGN
NRSMILANCLFRS GGCAVLLTNKRSLSRRAMFKLRCLVRTHHGARDDSFNACVQKEDELGHIGVHL
DKTLPKAATRAFIDNLKVITPKILPVTELLRFMLCLLLKKLRSSPSKGSTNVTQAAPKAGVKAGINFKT
GIDHFCIHTGGKAVIDAIGY SLDLNE Y DLEPARMTLHRFGNTSASSLWYVLGYMEAKKRLKRGDRV

NSCVWEVVRDLI INQYPPKSILNPFFEKYGWIHEEEDPDTF

KMPEGFM
MNHLRAEGPASVLAIGTANPENILLQDEFP DY Y FRV TKSEHMTQLKEKFRKICDKSMIRKRNCFLNE
EHLKQNPRLVEHEMQTLDARQDMLVVEVPKLGKDACAKAIKEWGQPKSKITHLIFTSASTIDMPG

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000308).

CATALYTIC ACTIVITY: A \ery-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305}.

CATALYTIC ACTIVITY: A \ery-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2)

{ECO:0000305}.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000269|PubMed: 16765910}

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305}.

CATALYTIC ACTIVITY: A \ery-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).

{ECO:0000305}.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305}.

CATALYTIC ACTIVITY: A \ery-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305}.

CATALYTIC ACTIVITY: 3 malonyl-CoA +
hexanoyl-CoA = 3 CoA + 3,5,7-

ADYHCAKLLGLSPSVKRVMMYQLGCYGGGTVLRIAKDI AVCCDIMACLI

0A + 3 CO(2).

DLELLVGQAIFGDGAAAVIVGAEPDESVGERPIFELVSTGQTILPNSEGT! IFDLHKDV
PMLISNNIEKCLIEAFTPIGISDWNSIFWITHPGGKAILDKVEEKLHLKSDKFVDSRHVLSEHGNMSS
STVLFVMDELRKRSLEEGKSTTGDGFEWGVLFGFGPGLTVERVVVRSVPIKY
MESLKEMRKAQMSEGPAAILAIGTANPDNVY MQADYPDY Y FKMTKSEHMTELKDKFRTLCEKSMI
RKRHMCFSEEFLKANPEVCKHMGKSLNARQDIAVVE TPRLGNEAAVKAIKEWGQPKSSITHLIFC
SSAGVDMPGADY QLTRILGLNPSVKRMMIYQQGCYAGGTVLRLAKDLAENNKGSRVLVVCSELTA
PTFRGPSPDAVDSLVGQALFADGAAALVVGADPDSSIERALY YLVSASQMLLPDSDGAIEGHIRE
EGLTVHLKKDVPALFSGNIDTPLVEAFKPLGISDWNSIFWIAHPGGPAILDQIEEKLGLKEDKLRASK
HVMSEYGNMSSSCVLFVLDEMRSRSLQDGKSTIGEGLDWGVLFGFGPGLTVETIVLRSVPIEA

MESLKEMRKAQKSEGPAAILAIGTATPDNVYIQADY PDY Y FKITKSEHMTELKDKFKTLCEKSMIRK
RHMCFSQEFLKANPEVCKHMGKSLNARQDIAVVETPRIGKEAAVKAIKEWGHPKSSITHLIFCTSA
GVDMPGADY QLTRMLGLNPSVKRMMIY QQGCYAGGTVLRLAKDLAENNKGSRVLVVCSELTAPT
FRGPSPDAVDSLYGQALFADGAAALYVGADPDTSVERALY YIVSASQMLLPDSDGAIEGHIREEG
LTVHLKKDVPALFESANIDTPLVEAFRPLGISDWNSIFWIAHP GGPAILDQIEVKLGLKEDKLRASKHY
MSEYGNMSSSCVLFVLDEMRNKSLQDGKS TTGEGLDWGVLFGFGPGLTVETVVLRSVPVEA

MASVTVEQIRKAQRAEGPATILAIGTAVPANCFNQADFPDY Y FRVTKSEHMTDLKKKFQRMCEKS
TIKKRY LHLTEEHLKQNPHLCEYNAPSLNTRQDMLVVEVPKLGKEAAINAIKEWGQPKSKITHLIFCT
GSSIDMPGADYQCAKLLGLRPSVKRVMLY QLGCYAGGKVLRIAKDIAENNKGARVLIVCSEITACIF
RGPSEKHLDCLYGQSLFGDGASSVIVGADPDASY GERPIFELVSAAQTILPNSDGAIAGHV TEAGL
TFHLLRDVPGLISQNIEKSLIEAFTPIGINDWNNIFWIAHP GGPAILDEIEAKLELKKEKMKASREMLS
EYGNMSCASVFFIVDEMRKQSSKEGKSTTGDGLEWGALFGFGPGLTVETVVLHSVPTNV

MDLLFLFFSLLLS Y LFFRIWKLIDSKQDKDCYILDY QCH K TDDRMVS TOFSGEIVRNONLGLTEYK
FLLK, QTYAPRL YVDSIGKLLERNQISPKDIDILVVNVS
MLSSTPSLASRINHYKMRDDVKVFNLTGMGCSASLISVDIVKNIFKSYANKLALVATSESLSPNWY|
SGNNRSMILANCLFRSGGCAILLTNKRSLRKKAMFKLKCMVRTHHGAREES YNCCIQAEDEQGRY
GFYLGKNLPKAATRAFVENLKVITPKILPVTELIRFMLKLLIKKIKIRQNPSKGSTNLPPGTPLKAGINF
KTGIEHFCIHTGGKAVIDGIGHSLDLNEYDIEPARMTLHRFGNTSASSLWYVLAYMEAKKRLKRGDR
CNsC DL IDDY PPKSILNPYLEKFGWIQDEDPDTFK

VPDAFM
MASVEEFRNAQRAKGPATILAIGTATPDHCVYQSDYADYYFRVTKSEHMTELKKKFNRICDKSMIK
KRYIHLTEEMLEEHPNIGAYMAPSLNIRQEITAEVPRLGRDAALKALKEWGQPKSKITHLVFCTTSG
VEMPGADYKLANLLGLETSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEITVVTFR
GPSEDALDSLVGQALFGDGSSAVIVGSDPDVSIERPLFQLVSAAQ REVGLTF

{ECO! 119454282,
ECO:0000269|PubMed: 19581347,
ECO:0000269]Ref.3}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + N-
methylanthraniloyl-CoA = 4 CoA + 1,3-
dihydroxy-N-methylacridone + 3 CO(2).

CATALYTIC ACTIVITY: 3 malonyl-CoA + N-
methylanthraniloyl-CoA = + 1,3
dihydroxy-N-methylacridone + 3 CO(2)

CATALYTIC ACTIVITY: Isovaleryl-CoA + 3
malonyl-CoA = 4 CoA + 3 CO(2) + 3-methyl-
1-(2,4,6-trihydroxyphenyl)butan-1-one.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
0A = 4 CoA + +

HLWPNVPTLISENIEKCLTQAFDPLGISDWNSLFWIAHPGGPAILDAVEAKLNLEKKKLEATRHVLS
EYGNMSSACVLFILDEMRKKSLKGENATTGEGLDWGVLFGFGPGLTIETVVLHSIPTVTN

MASVEEIRNAQRAKGPATILAIGTATPDHCVY QSDYADY YFRVTKSEHMTELKKKFNRICDKSMIKK,
RYIHLTEEMLEEHPNIGAYMAPSLNIRQEITVEVPKLGKEAALKALKEWGQPKSKITHLVFCTTSGV
EMPGADYKLANLLGLETSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEITVVTFRG

4CO@).

PSEDALDSLVGQALFGDGSAAVIVGSDPDVSIERPLFQLVSAAQ REVGLTFHL
WPNVPTLISENVEKCLTQAFDPLGISDWNSLFWIAHPGGPAILDAVEAKLNLDKKKLEATRHVLSE
YGNMSSACVLFILDEMRKKSHKGEKATTGEGLDWGVLFGFGPGLTIETVVLHSIPMVTN

MASVEEIRNAQRAKGPATVLAIGTATPDNCLY QSDFADY YFRV TKSEHMTELKKKFNRICDKSMIK
KRYIHLTEEMLEEHPNIGAYMAPSLNIRQEITAEVPKLGKEAALKALKEWGQPKSKITHLVFCTTSG
VEMPGADYKLANLLGLEPSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEITVVTFR
GPSEDALDSLVGQALFGDGSAAVIVGSDPDISIERPLFQLVSAAQ REVGLTFH

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
0A = 4 CoA -
4.COQ).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
I-CoA = 4 CoA + |+

LWPNVPTLISENIENCLTKAFDPIGISDWNSLFWIAHPGGPAILDAVEAKYGLDKQKLKATRHILSEY
GNMSSACVLFILDEMRKKSLKEGKTTTGEGLDWGVLFGFGPGLTIETVVLHSVGTDSN

MASVEEIRNAQRAKGPATILAIGTATPDHCVYQSDYADY YFRV TKSEHMTALKKKFNRICDKSMIKK
RYIHLTEEMLEEHPNIGAYMAPSLNIRQEITAEVPKLGKEAALKALKEWGQPKSKITHLVFCTTSGV
EMPGADYKLANLLGLEPSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEITVVTFRG
PSEDALDSLVGQALFGDGSAAVIVGSDPDISIERPLFQLYSAAQTFIPNSAGAIAGNLREVGLTFHL
WPNVPTLISENIEKCLTQAFDPLGISDWNSLFWIAHPGGPAILDAVEAKLNLDKKKLEATRHVLSEY
GNMSSACVLFILDEMRKKSLKGERATTGEGLDWGVLFGFGPGLTIETVVLHSIPMVTN

MASVEEIRNAQRAKGPATILAIGTATPDHCVYQSDYADY YFKVTKSEHMTELKKKFNRICDKSMIKK

RYIHLTEEMLEEHPNIGAYMAPSLNIRQEITAEVPKLGKEAALKALKEWGQPKSKITHLVFCTTSGV

EMPGADYKLANLLGLETSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSETVVTFRG
REV

4CO@).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
0A = 4 CoA 1+
4co@).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
oA = -

4CoA +

PSEDALDSLVGQALFGDGSAAVIVGSDI QLVSAAQ GLTFHL
WPNVPTLISENIEKCLSQAFDPLGISNWNSLFWIAHPGGPAILDAVEAKLNLEKKKLEATRHVLSEY
GNMSSACVLFILDEMRKKSLKGEKATTGEGLDWGVLFGFGPGLTIETVVLHSVPMVTN

MVSVSGIRKVQRAEGPATVLAIGTANPPNCVDQSTYADY YFRVTNGEHMTDLKKKFQRICERTQIK
NRHMY LTEEILKENPNMCAYKAPSLDAREDMMIREVPRVGKEAATKAIKEWGQPMSKITHLIFCTT
SGVALPGVDYELIVLLGLDPSVKRYMMYHQGCFAGGTVLRLAKDLAENNKDARVLIVCSENTAVTF
RGPNETDMDSLVGQALFAD TDQQL LREVGLTF

4.CO(@).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-

YLNKSVPDIISQNINGALSKAFDPLGISDYNSIFWIAHLGGRAILDQVEQKVNLKPEKMKATRDVLSN
YGNMSSACVFFIMDLMRKKSLETGLKTTGEGLDWGVLFGFGPGLTIETVVLRSMAI

LKENPNMCAYKAPSLDAREDMMIREVPRVGKEAATKAIKEWGQPMSKITHLIFCTTSGVALPGVD
YELIVLLGLDPSVKRYMMYHQGCFAGGTVLRLAKDLAENNKDARVLIVCSENTAVTFRGPSETDM
DSLVGQALFAD 1l FEIVSTDQKL? LREVGLTFYLNKSVPDII
SQNINI PPLGISEY NSIFWIAHPGGP AL DQVEQVNLKPEKMNATRDVLSNY GNMSSAC
URPMOMEY DL £ e T TOE L OWOVLFGF Gh oL TETVVLRSVA
MVSVSMAEGF‘AWLA\GTANF‘F‘NC\DQSTYADVYFRVTNSEHMTDLKKKFQRICERTQ\KN
RHMYLTEEILKENPNMCAYKAPSLDAREDMMIREVPRVGKEAATKAIKEWGQPMSKITHLIFCTTS
GVALPGVDVELI\/LLGLDPC\/KRYMMVHQGCFAGGTVLRLAKDLAENNKDAR\/LI\/CSENTAVTFR
GPSETDMDSLVGQALFADG,

A = 4 CoA + +
4CO@).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
0A = 4 CoA +

4Co@).

CATALYTIC ACTI\/ITY 3 malonyl-CoA + 4-

LNKS\/PDIISQN\NDALNKA?DPLG\SDVNS\FWIAHPGGRA\LDQVEQKVNLKDEKMKATRDVLSNV
GNMSSACVFFIMDLMRKRSLEEGLK TTGEGLDWGVLFGFGPGLTIETVVLRSVAI

=4CoA+
4.CO@),
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Phenylnropanay\acelyl -CoA

synthase (EC bcs.
(Diketide CoA Synlhase)
4-hydroxycoumarin synthase 2
(EC 2.3.1.208) (Bipheny! BIS3
synthase 3) (SaBIS3)
BIBSY212
Bibenzyl synthase (EC 2.3.1.) Doy
0307902715
Bisdemethoxycurcumin LOC - 0s07g1
synthase (EC 2.3.1.211)
(Curcuminoid synthase) OJ]°°1 Co1.
OSJINBb0002
J01.6
Curcumin synthase 2 (EC
2.3.1.217) CURS2
Probable acridone synthase 4
(EC 2.3.1.159) (Acridone Acsa
synthase IV)
Phloroisovalerophenone
synthase (valerophenone
synthase) (EC 23.1.156) 3 o
methyl-1-
(trihydroxyphenyl)butan-1-one
synthase)
Curcumin synthase 2 (EC
23.1.217) CuRs2
Probable acridone synthase 4
(EC 2.3.1.159) (Acridone ACsa
synthase IV)
Phloroisovalerophenone
synthase (Valerophenone
synthase) (EC 23.1.156) 3 0o
methyl-1-
(rinydroxyphenylbutan-1-one
synthase)
STS
Stilbene synthase 6 (EC
2.3.1.95) (Resveratrol synthase o 1V 10000
9216001
6) (Trihydroxystilbene synthase LOC1002429
6) (StSy 6)
VINSTL
Stibene symnase 1 € ST2YSTL
2.3.1.95) (PSV25) (Resveratrol
y 5226001
synthase 1) (Trihydroxystilbene 222002
synthase 1) (StSy 1) (Vit
stilbene synthase 1) .
GSVIVTo000
Stilbene synthase 4 (EC 194001
2.3.1.95) (Resweratrol synthase LOC1002418

4) (Trihydroxystilbene synthase
4) (StSy 4) VITISV_0313
76

Qe

GSVIVT0000
Stilbene synthase 5 (EC 7357001
2.3.1.95) (Resveratrol synthase  LOC1002503
5) (Trihydroxystilbene synthase 01

5) (StSy 5) VITISV_0368.

Polyketide synthase 4 (RIPKS4)
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chalcone synthase PKS4)

PKS4 BAS

Polyketide synthase 5 (RIPKSS)
(EC 2.3.1.74) (Naringenin-
chalcone synthase PKS5)

PKSS5

Phenylpropanoylacetyl-CoA
synthase (EC 2.3.1.2
(Diketide CoA synthase)

ocs

Curcumin synthase 1 (EC

2.3.1.217) CURs1L

Curcumin synthase 2 (EC

2.3.1.217) CURS2

Curcumin synthase 3 (EC
2.3.1.217) (Demethoxycurcumin CURS3
synthase) (EC 2.3.1.219)

4-hydroxycoumarin synthase 1
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synthase 2) (SaBIS2)

BIS2

4-hydroxycoumarin synthase 2
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synthase 3) (SaBIS3)

BIS3

3,5.7-trioxododecanoyl-CoA
synthase (EC 2.3.1.206)
(Olivetol synthase) (Polyketide
synthase-1) (Tetraketide
synthase)

oLS CAN24
PKS-1TKS

2,4,6-trinydroxybenzophenone
synthase (GMBPS) (EC
2.3.1.220)

BPS.

3-ketoacyl-CoA synthase 11
(KCS-11) (EC 2.3.1.199) (Very KCS11
long-chain fatty acld condensing |At2g26640
enzyme 11) (VLCFA condensing F18A8.
enzyme 11)

Curcuma
longa
(Turmeric)
(Curcuma
domestica)

Sorbus
aucuparia
(European
mountain
ash) (Rowan)

Phalaenopsis
sp. (Moth

orchid)

Oryza sativa
ubsp.
iaponica
ice)

Curcuma
longa

(Turmeric)
(Curcuma

402

MEANGY RITHSADGPATILAIGTANPTNVVDQNAY PDFYFRVTNSE YLQELKAKFRRICEKAAIRKR
HLYLTEEILRENPSLLAPMAPSFDARQAIVVEAVPKLAKEAAEKAIKEWGRPKSDITHLVFCSASGI
DMPGSDLQLLKLLGLPPS\/NRVMLYNVGCHAGGTALRVAKDLAENNRGARVLA\/CSE\/T\/LSYR
GPHPAHIESLFVQALFGDGAAALVVGSDPV DI QVI REIGLTF
HLKSQLPSIIASNIEQSLWACSPLGLSDWNQLFWA\/HPGGRA\LDQ\/EARLGLEKDRLAATR!—NLS
EYGNMQSATVLFILDEMRNRSAAEGHATTGEGLDWGVLLGFGPGLSIETVVLHSCRLN

MAPVVKNEPQHAKILAIGTANPPNVFHQKDYPDFLFRVTKNEHRTDLREKFDRICEKSRTKKRYLH
LTEEMLKANPNIYTYGAPSLNVRQDICNIEVPKLGQEASLKAIKEWGQPISKITHLIFCTASCVDMPG
CDFQLIKLLGLDPSV TRTMIYEAGCYAGATVLRMAKDFAENNKGARVLVVCAEMTTVFFHGLTDTHL
DILVGQALFADGASAVIVGANPEPEIERPLFEIVACRQTILPNSEHGVVANIREMGFENY YLSGDVPK
FVGGNVVDFMTKTFEKVDGKNKDWNSLFFSVHPGGPAIVDQVEEKLGLKEGKLRATRHVLSEYG
NMGAPTVHFILDI TVETAVLRSEFITY

MLSLESIKKAPRADGFASILAIGRANPDNIEQSAYPDFYFRV TNSEHLVDLKKKFQRICEKTAIRKRH
FVWNEEFLTANPCFSTFMDKSLNVRQEVAISEIPKLGAKAATKAIEDW GQPKSRITHLIFCTTSGMD
LF'GADVQLTQILGLNF'NVERVMLYQQGCFAGGTTLRLAKCLAESRKGARVLVVCAETTTVLFRAPS

CATALYTIC ACTIVITY: Feruloyl-CoA +
malcnyl -CoA = feruloylacetyl-CoA + CO(2) +
A. {ECO:0000269]PubMed: 19258320} ;
CATALVTIC ACTIVITY: 4-coumaroyl-CoA +
(4-coumaroyhacetyl-CoA +

A
{ECO:0000269|PubMed: 19258320},

CATALYTIC ACTIVITY: Malonyl-CoA + 2-
hydroxybenzoyl-CoA = 2 CoA + 4-
hydroxycoumarin + CO(2).

CATALYTIC ACTIVITY: 3 malonyl-CoA + M-
A = 4 CoA

EEHQDDLVTQAI
HRD\/F’QIVSKN\/GKCLEEAF\PH;V DWNSIF DQ! KPEKLSVSRH\/LA
EYGNMSSVCVHFALDEMRKRSANEGKATTGEGLEWGVLFGFGPGLTVETVVLRSVPL

MAPTTTMGSALYPLGEMRRSQRADGLAAVLAIGTANPPNCV TQEEFPDFYFRVTNSDHLTALKDK
FKRICQEMGVQRRY LHHTEEMLSAHP EFVDRDAPSLDARLDIAADAVPELAAEAAKKAIAEWGRP
AADITHLVVTTNSGAHVPGVDFRLVPLLGLRPSVRRTMLHLNGCFAGCAALRLAKDLAENSRGARY
LVVAAELTLMYFTGPDEGCFRTLLVQGLFGDGAAAVIVGADADDVERPLFEIVSAAQTIPESDHAL
NMRFTERRLDGVLGRQVPGLIGDNVERCLLDMFGPLLGGDGGGGWNDLFWAVHPGSSTIMDQV
T

+a
trihydroxybibenzyl + 3 CO(2).

CATALYTIC ACTIVITY: 2 4-coumaroyl-CoA +
malonyl-CoA + H(2)O = 3 CoA +
+2Co)

DAALGLEPGKLAASRRVLSDYGNMSGATVIFALDELRRQRKE,
VDAMLLHATSHVN

MAMISLQAMRKAQRAQGPATILAVGTANPPNLYEQDTYPDY YFRVTNSEHKQELKNKFRLMCEKT
MVKRRYLYLTPEILKERPKLCSYMEPSFDDRQDIVVEEVPKLAAEAAENAIKEWGGDKSAITHLVF
CSISGIDMPGADYRLAQLLGLPLAVNRLMLY SQACHMGAAMLRIAKDIAENNRSARVLVVACEITVL
SFRGPDERDFQALAGQAGFGDGAGAMIVGADPVLGVERPLYHIMSATQTTVPESEKAVGGHLRE
VGLTFHFFNQLPAIIADNVGNSLAEAFEPIGIKDWNNIFWVAHPGNWAIMDAIETKLGLEQSKLATA

Ruta
graveolens
(Common
rue)

Psilotum
nudum
(Whisk fern)
(Lycopodium
nudum)

Curcuma

(Turmeric)
(Curcuma
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QSATVYFVMDELRKI TTGDGLRWGVLI TVVLQSVPL

MESLKEMRKAQMSEGPAAILAIGTATPNNVYMQADY PDY Y FRMTKSEHMTELKDKFRTLCEKSMI
RKRHMCFSEEFLKANPEVSKHMGKSLNARQDIAVVETPRLGNEAAVKAIKEWGQPKSSITHLIFC
SSAGVDMPGADY QLTRILGLNPSVKRMMVYQQGCYAGGTVLRLAKDLAENNKGSRVLVVCSELT
APTFRGPSPDAVDSLVGQALFADGAAALYVGADPDSSIERALY YLVSASQMLLPDSDGAIEGHIR
EEGLTVHLKKDVPALFSANIDTPLVEAFKPLGISDWNSIFWIAHPGGPAILDQIEEKLGLKEDKLRAS
KHVMSEYGNMSSSCVLFVLDEMRSRSLQDGKSTTGEGLDWGVLFGFGPGLTVETVVLRSVPIEA

MIQNSDSATATLLPRKKERASGPVSVLAIGSANPPNVFHQSLFPDFY FNITQSNHMAEVKAKFTRM
CAKSGIKKRRMHINEDILEAHPSIRS Y HDNSLDVRQDMLVEEVPKLGKVAADNAIAEWGQPKSNIT
HLIFCTSSGIDMPGADWALMKLLGLRPTVNRVMVY QQGCFAGCTVLRIAKDLAENNKGSRILVVCS
ELTLISFRGP TEDHPENLVGQALFGDGAAALIVGADPIPHAENASFEIHWARSSVVPDSDDAVTGNI
KENGLVLHLSKTIPDLIGQNIHTLLKDALEEMFDACNPSSFNDLFWVIHPGGPAILDAVEEELNLKSE
RTHASREILSQYGNMVSPGVLFVLDYMRKRSVDERLSTTGEGLEWGVMLGFGPGLTVETLILKSV

PTQAFKYF

MAMISLQAMRKAQRAQGPATILAVGTANPPNLYEQDTYPDY YFRVTNSEHKQELKNKFRLMCEKT
MVKRRYLYLTPEILKERPKLCSYMEPSFDDRQDIVVEEVPKLAAEAAENAIKEWGGDKSAITHLVF

CSISGIDMPGADYRLAQLLGLPLAVNRLMLY SQACHMGAAMLRIAKDIAENNRSARVLVVACEITVL
SFRGPDERDFQALAGQAGFGDGAGAMIVGADPVLGVERPLYHIMSATQTTVPESEKAVGGHLRE
VGLTFHFFNQLPAIADNVGNSLAEAFEPIGIKDWNNIFWVAHPGNWAIMDAIETKLGLEQSKLATA

uta
graveolens
(Common
rue)

Psilotum
nudum
(Whisk fern)
(Lycopodium
nudum)

Vitis vinifera
(Grape)

Vitis vinifera.
(Grape)

Vitis Mnifera
(Grape)

Vitis vinifera
(Grape)

Rubus idaeus
(Raspberry)

Rubus idaeus
(Raspberry)

Curcuma
longa

(Turmeric)
(Curcuma

domestica)

curcuma
longa
(Tumeric)
dumesll:a}

curcuma
longa

(Turmeric)
(Curcuma

ATVYFVMDELRKI GDGLRWGVLI TVVLQSVPL

MESLKEMRKAQMSEGPAAILAIGTATPNNVYMQADY PDY Y FRMTKSEHMTELKDKFRTLCEKSMI
RKRHMCFSEEFLKANPEVSKHMGKSLNARQDIAVVETPRLGNEAAVKAIKEWGQPKSSITHLIFC
SSAGVDMPGADY QLTRILGLNPSVKRMMVYQQGCYAGGTVLRLAKDLAENNKGSRVLVVCSELT
APTFRGPSPDAVDSLVGQALFADGAAALYVGADPDSSIERALY YLVSASQMLLPDSDGAIEGHIR
EEGLTVHLKKDVPALFSANIDTPLVEAFKPLGISDWNSIFWIAHPGGPAILDQIEEKLGLKEDKLRAS
KHVMSEYGNMSSSCVLFVLDEMRSRSLQDGKSTTGEGLDWGVLFGFGPGLTVETVVLRSVPIEA

MIQNSDSATATLLPRKKERASGPVSVLAIGSANPPNVFHQSLFPDFYFNITQSNHMAEVKAKETRM
CAKSGIKKRRMHINEDILEAHPSIRS Y HDNSLDVRQDMLVEEVPKLGKVAADNAIAEWGQPKSNIT
HLIFCTSSGIDMPGADWALMKLLGLRPTVNRVMVYQQGCFAGCTVLRIAKDLAENNKGSRILVVCS
ELTLISFRGPTEDHPENLVGQALFGDGAAALIVGADPIPHAENASFEIHWARSSVVPDSDDAVTGNI
KENGLVLHLSKTIPDLIGQNIHTLLKDALEEMFDACNPSSFNDLFWVIHPGGPAILDAVEEELNLKSE
RTHASREILSQYGNMVSPGVLFVLDYMRKRSVDERLSTTGEGLEWGVMLGFGPGLTVETLILKSV
PTQAFKYF

MASVEEFRNAQRAKGPATILAIGTATPDHCVYQSDYADY Y FRV TKSEHMTELKKKFNRICDKSMIK
KRYIHLTEEMLEEHPNIGAYMAPSLNIRQEIITAEVPRLGRDAALKALKEWGQPKSKITHLVFCTTSG
VEMF‘GADVKLANLLGLETSVRRVMLVHQGCVAGGTVLRTAKDLAENNAGARVLVVCSEITV\/TFR

CATALYTIC ACTIVITY: Feruloyl-CoA +
feruloylacetyl-CoA + H(2)O = 2 CoA +
curcumin + CO(2)
{EC0:0000269|PubMed: 19622354},

CATALYTIC ACTIVITY: 3 malonyl-CoA + N-
methylanthraniloyl-CoA = A+ 1,3
dihydroxy-N-methylacridone + 3 CO(2).

CATALYTIC ACTIVITY: Isovaleryl-CoA + 3
malonyl-CoA = 4 CoA + 3 CO(2) + 3-methyl-
1-(2,4,6-trihydroxyphenyl)butan-1-one.

CATALYTIC ACTIVITY: Feruloyl-CoA +

feruloylacetyl-CoA + H(2)O = 2 CoA +
urcumin + CO(:

{ECO:0000269|PubMed: 19622354}

CATALYTIC ACTIVITY: 3 malonyl-CoA + N-
methylanthraniloyl-CoA = 4 CoA + 1,3-
dihydroxy-N-methylacridone + 3 CO(2).

CATALYTIC ACTIVITY: Isovaleryl-CoA + 3
malonyl-CoA = +3 CO@) + 3-methyl-
1+(2,4,6-trihydroxyphenyl)butan-1-one.

CATALYTIC Acnvwv 3 malonyl-CoA + 4-

GPSEDALDSLVGQALFGDGSSAVIVGSDPDVSIERPLFQLYSAAQTS
HLWF'NVPTLISENIEKCLTQAFDPLGISDWNSLFWIAHF'GGPAILDA\/EAKLNLEKKKLEATRH\/LS
EYGNMSSACVLFILDEMRKKSLKGENATIGEGLDWGVLFGFGPGLTIETVVLHSIPTVTN

MASVEEFRNAQRAKGPATILAIGTATPDHCVYQSDYADYYFRV TKSEHMTELKKKFNRICDKSMIK
KRYIHLTEEMLEEHPNIGAYMAPSLNIRQEITAEVPRLGRDAALKALKEWGQPKSKITHLVFCTTSG
VEMPGADY KLANLLGLETSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEITVVTER
GPSEDALDSLVGQALFGDGSSAVIVGSDPDVSIERPLFQLY SAAQTFIPNSAGAIAGNLREVGLTF

HLWPNVPTLISENIEKCLTQAFDPLGISDWNSLFWIAHPGGPAILDAVEAKLNLEKKKLEATRHVLS
EYGNMSSACVLFILDEMRKKSLKGEKATIGEGLDWGYLFGFGPGLTIETVVLHSVPTVTN

MASVEEIRNAQRAKGPATVLAIGTATRDNCLYQSDFADY YFRV TKSEHMTELKKKFNRICDKSMIK
KRYHLTEEMLEEHPNIGAYMAPSLNIRQEITAEVPKLGKEAALKALKEWGQPKSKITHLVFCTTSG
VEMPGADYKLANLLGLEPSVRRVMLYHQGCYAGG TVLRTAKDLAENNAGARVLVVCSEMVVTFR
GPSEDALDSLVGQALFGDGSAAVIVGSDPDISIERPLFQLY SAAQTFIPNSAGAIAGNLREVGLTFH
LWPNVPTLISENIENCL TKAFDPIGISDWNSLFWIAHPGGPAILDAVEAKVGLDKQKLKATRHILSEY
GNMSSACVLFILDEMRKKSLKEGKTTTGEGLDWGVLFGFGPGLTIETVVLHSVGTDSN

MASVEEIRNAQRAKGPATILAIGTATPDHCV Y QSDYADY Y FKV TKSEHMTELKKKFNRICDKSMIKK
RYIHLTEEMLEEHPNIGAY MAPSLNIRQEITAEVPKLGKEAALKALKEWGQPKSKITHLVFCTTSGV
EMPGADYKLANLLGLETSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEMVVTFRG
PSEDALDSLVGQALFGDGS FQLVSAAQ REVGLTFHL

SQAI DAVEAKLNLEKKKLEATRHVLSEY
T SRV T TR ST SRR TG IO GV L S AP oL TIE TV L PV TN

MVTVEEVRKAQRAEGPATVLAIGTATPPNCVGQSTYPDY Y FRITNSEHKIELKQKFQRMCDKSMIK

KRYMYLTEEILKENPSMCEYMAPSLDARQDMV IVEIPKLGKEAATKAIKEWGQPKSKITHLVFCTT

Es\opeR o e CLEF S VR Y ogBCEAGISTVLRLAKDLAENNRGARYLVVCSEMVVT
LTE

CoA + trans-resweratrol +
4.CO@).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + trans-resweratrol +
coE@)

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-

coumaroyl-CoA = 4 CoA + trans-resweratrol +
4Co@)

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + trans-resveratrol +
4.CO@).

CATALYTIC ACTIVITY: 4-coumaroyl-CoA +
malonyl-CoA + H(2)O = 2 CoA +
hydroxybenzalacetone + 2 CO(2).

{ECO 12226219,

FRGPSDTHLDCLY GOALFGDGVASIVGADPL PEIEKPLFELY SAAQTILPD:
HLLENVPALISKNIEKSLNETFKPLDIMDWNSLFWIAHPGGPA\LDQ\/EAKLGLKPEKLEATGHILSE
TTRIL LILAWFLFSLY

MVTVDEVRKAQRAEGPATVLAIGTATPPNCIDQSTYPDY YFRITNSEHK TELKEKFQRMCDKSMIK
KRYMYLTEEILKENPSMCEYMAPSLDARQDMVVVEIPKLGKEAATKAIKEWGQPKSKITHLVFCTT
SGVDMPGADYQLTKLLGLRPSVKRLMMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEIXAV
TFRGPSDTHLDSLVGQALFGDGAAAINVGADPLPKIERPLFELVSAAQTILPDSDGAIDGHLREVGLT

FHLLKDVPGLISKNIEKSLNEAFKPLDITDWNSLFWIAHPGGPAILDQVETKLGLKPEKLEATRHILSE [

YGNMSSACVLFILDEVRRKSATNGLK TTGEGLEWGVLFGFGPGLTVETVVLHSVGVTA

MEANGY RITHSADGPATILAIGTANPTNVVDQNAYPDFYFRVTNSE Y LQELKAKFRRICEKAAIRKR
HLYLTEEILRENPSLLAPMAPSFDARQAIVVEAVPKLAKEAAEKAIKEWGRPKSDITHLVFCSASGI
DMPGSDLQLLKLLGLPPSVNRVMLYNVGCHAGGTALRVAKDLAENNRGARVLAVCSEVTVLSYR
GPHPAHIESLFVQALFGDGAAALVVGSDPVDGVERPIFEIASASQVMLPESAEAVGGHLREIGLTF
HLKSQLPSIASNIEQSLTTACSPLGLSDWNQLFWAVHPGGRAILDQVEARLGLEKDRLAATRHVLS
EYGNMQSATVLFILDEMRNRSAAEGHATTGEGLDWGVLLGFGPGLSIETVVLHSCRLN

MANLHALRREQRAQGPATIMAIGTATPPNLY EQSTFPDFY FRVTNSDDKQELKKKFRRMCEKTMV
KKRYLHLTEEILKERPKLCSYKEASFDDRQDIVVEEIPRLAKEAAEKAIKEWGRPKSEITHLVFCSIS
GIDMPGADYRLATLLGLPLTVNRLMIY SQACHMGAAMLRIAKDLAENNRGARVLVVACEITVLSFRG
PNEGDFEALAGQAGFGDGAGAVVVGADPLEGIEKPIYEIAAAMQETVAESQGAVGGHLRAFGWT
FYFLNQLPAIADNLGRSLERALAPLGVREWNDVFWVAHPGNWAIIDAIEAKLQLSPDKLSTARHVE
TEYGNMQSATVYFVMDELRKRSAVEGRSTTGDGLQWGVLLGFGPGLSIETVVLRSMPL

MAMISLQAMRKAQRAQGPATILAVGTANPPNLYEQDTYPDY YFRVTNSEHKQELKNKFRLMCEKT
MVKRRYLYLTPEILKERPKLCSYMEPSFDDRQDIVVEEVPKLAAEAAENAIKEWGGDKSAITHLVF
CSISGIDMPGADYRLAQLLGLPLAVNRLMLY SQACHMGAAMLRIAKDIAENNRSARVLVVACETVL
SFRGPDERDFQALAGQAGFGDGAGAMIVGADPVLGVERPLYHIMSATQTTVPESEKAVGGHLRE
VGLTFHFFNQLP AIIADNVGNSLAEAFEPIGIKDWNNIFWVAHP GNWAIMDAIE TKLGLEQSKLATA

Curcuma
longa.

(Turmeric)
(Curcuma

domestica)

Sorbus

ash) (Rowan)

Sorbus

ash) (Rowan)

Cannabis
sativa (Hemp)
(Marijuana)

Garcinia

angostana
(Mangosteen)

Arabidopsis
thaliar
(Mouse-car
cress)

390

301

ATVYFVMDELRK| GDGLRWGVLI VLQSVPL

MGSLQAMRRAQRAQGPATIMAVGTSNPPNLYEQTSYPDFYFRVTNSDHKHALKNKFRVICEKTKY

ECO:0000269|PubMed: 18068110}.;
CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2).
{ECO:0000255|PROSITE-
ProRule:PRU10023,
[ECO:0000269|PubMed: 12226219,
ECO:0000269|PubMed: 18068110}

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2).
{ECO:0000255|PROSITE-
Rule:PRU10023,
ECO:0000269|PubMed: 18068110},

CATALYTIC ACTIVITY: Feruloyl-CoA +

malonyl-CoA = feruloylacetyl-CoA + CO(2) +
0A. {ECO:0000269|PubMed: 19258320}

CATALYTIC ACTIVITY: 4-coumaroyl-Coy

malonyl- Con = @ coumaroyhacetyl-CoA +

coE)

{ECO: occozempubmen 19258320},

CATALYTIC ACTIVITY: Feruloyl-CoA +
feruloylacetyl- CQA + H()O = 2 CoA +
curcumin +

{ECO: uuuuzsg\PubMed 19258320,
ECO:0000269|PubMed:21148316).

CATALYTIC ACTIVITY: Feruloyl-CoA +
lPru\uyIa:Plyl CoA + H(@)O = 2 CoA
curcumin + CO(

{ECO: OOOOZSQ\PubMeﬂ 19622354},

KRRYLHLTEEILKQRPKLCSYMEPSFDDRQDI THLVFCSIS
GIDMPGADYRLATLLGLPLSVNRLMLY SQACHNGAQMILRIAKDLAENNRGARVLAVSCETTVLSFR

CATALYTIC ACTIVITY: Feruloyl-CoA +
)0 = 2 CoA +

curcumin + CO(2).
c

GPDAGDFEALACQAGFGDGAAAVVVGADPLI EIAAAMQE REIGW {E

TFHFFNQLF'KLIAENIEGSLARAFKPLGISEWNDVFWVAHPGNWGIMDA\ETKLGLEQGKLATARH
VFSEYGNMQSATVYFVMDEVRKRSAAEGRATIGEGLEWGVLFGFGPGLTIETVVLRSVPLP

MAPSVKDQVEPQHAKILAIGTANPPNVY Y QEDYPDFLFRV TKNEHRTDLREKFDRICEKSRTRKRY
LYLTEEILKANPCIY TY GAPSLDVRQDMLNPEVPKLGQEAALKAIKEWGQPISKITHLIFCTASCVDM
PGADFQLVKLLGLNPSVTRTMIYEAGCYAGATVLRLAKDFAENNEGARVLVVCAEITTVFFHGLTDT

19622354},
CATALYTIC ACTIVITY: 4-coumaroyl-CoA +
feruloylacetyl-CoA + H(2)O = 2 CoA +

{ECO:0000269|PubMed: 19622354},

CATALYTIC ACTIVITY: Malonyl-CoA + 2-
oA -

HLDILVGQALFAD FEIVACRQTI LSGEVP
KPVGGNVVDFLTKTFEKVDGKNKDWNSLEFSVHPGGPAVDOVEEQLGLKEGKLRATRHVLSEY
TVETAVLRSEFITC

MAPVVKNEPQHAKILAIGTANPPNVFHQKDYPDFLFRVTKNEHRTDLREKFDRICEKSRTKKRYLH
LTEEMLKANPNIYTY GAPSLNVRQDICNIEVPKLGQEASLKAIKEWGQPISKITHLIFCTASCVDMPG
CDFQLIKLLGLDPSVTRTMIYEAGCYAGATVLRMAKDFAENNKGARVLVVCAETTVFFHGLTDTHL
DILVGQALFADGASAVIVGANPEPEIERPLFEIVACRQTILPNSEHGVVANIREMGFNY YLSGDVPK
FVGGNVVDFMTKTFEKVDGKNKDWNSLFFSVHPGGPAIVDQVEEKLGLKEGKLRATRHVLSEYG
NMGAPTVHFILD! TTTGEGLEWG' TVETAVLRSEFITY

MNHLRAEGPASVLAIGTANPENILLQDEFPDY Y FRV TKSEHMTQLKEKFRKICDKSMIRKRNCFLNE
EHLKQNPRLVEHEMQTLDARQDMLVVEVPKLGKDACAKAIKEWGQPKSKITHLIFTSASTTDMPG
ADYHCAKLLGLSPSVKRVMMYQLGCYGGGTVLRIAKDIAENNKGARVLAVCCDIMACLFRGPSES
DLELLVGQAIFGDGAAAVIVGAEPDESVGERPIFELVSTGQTILPNSEGTIGGHIREAGLIFDLHKDY

hydroxycoumarin + CO(2).

CATALYTIC ACTIVITY: Malonyl-CoA + 2-
hydroxybenzoyl-CoA = 2 CoA
hydroxycoumarin + CO(2).

CATALYTIC ACTIVITY: 3 malonyl-CoA +
hexanoyl-CoA = 3 CoA + 3,5,7-
trioxododecanoyl-CoA + 3 CO(2).
(ECO:0000280/PubMed: 19454282,

PMLISNNIEKCLIEAFTPIGISDWINSIEWITHP GGKAILDKVEEKLHLKSDKFVDSRHVL

STVLFVMDELRKRSLEEGKSTTGD
MAPAMDSAQNGHQSRGSANVLAIGTANPPNVILQEDYF‘DFVFKVTNSEHLTDLKEKFKR\CVKSKT
RKRHFYLTEQILKENPGIATY GAGSLDSRQKILETEIPKLGKEAAMVAIQEWGQPVSKITHVVFATTS
SITRLLGLI CFAGGTALRVAKDLAENNKGARVLVVCAENTAMTE
HGPNENHLDVLYGQAMESDGAAALIGANPNLPEERPY Y EMVAAHQTIVPESDGAN AHFYEMGM
SYFLKENVIPL GISDWNSLFY: EKLGLDEENLKATRHV
LSEYGNMGSAG; m{;fanxKsKEEKKerGDGKEWchGLGpanvsrvvu:svpm

MDVEQKKPLIESEISRIDFKKSVKLKYVKLGYHYLITHGMY LFLSPLVLVIAAQISTFSVTDLRSL
WEHLQYNLISVVVCSMLLVFLMTIYFMTRPRPVYLVNFSCFKPDESRKCTKKIFMDRSKLTGSFTE
ENLEFQRKILQRSGLGESTYLPEAVLNVPPNPCMKEARKEAETVMFGAIDELLAKTNVNPKDIGILI
VNCSLFNPTPSLSAMVVNHYKLRGNILSYNLGGMGCSAGLISIDLAKHLLHSIPNTYAMVISMENITL
NW Y FGNDRSKLYSNCLFRMGGAAILLSNKRWDRRRSK Y ELVDTVRTHKGADDKCFGCITQEEDS
ASKIGVTLSKELMAVAGDALKTNITTLGPLVLPTSEQLLFFATLVGRKLFKMKIKPY IPDFKLAFEHEC

DELEKNLKL RFGNTSSSSLWYELAYSEAKGRIKKGDRIWQIAR

KEKNPWMDI T

GSGFKCT

1347,
ECOYOOOOZGBIRef 3}

CATALYTIC ACTIVITY: 3 malonyl-CoA +
benzoyl-CoA = 4 CoA + 2,4.6-
trihydroxybenzophenone + 3 CO(2).
{ECO:0000269]|PubMed: 22390826}

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA +

{ECO:0000269]PubMed: 16765910}
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Phloroisovalerophenone
synthase (Valerophenone
synthase) (EC 2.3.1.156) (3-
methyl-1-
(trihydroxyphenyl)butan-1-one
synthase)

Putative stilbene synthase 2
(EC 2.3.1.95) (Resveratrol
synthase 2) (RS2)
(Trihydroxystilbene synthase 2)
(Fragment)

Curcumin synthase 1 (EC

2.3.1.217) CURS1

3-oxoacyl-{acyl-carrier-protein]
reductase 5, chloroplastic (EC
1.1.1.100) (3-ketoacyl-acyl bkrl
carrier protein reductase 5)
(Fragment)
3-oxoacyl-{acyl-carrier-protein]
reductase FabG (EC 1.1.1.100)
(3-ketoacyl-acyl carrier protein
reductase) (Beta-Ketoacyl-acyl
carrier protein reductase) (Beta-
ketoacyl-ACP reductase)
3-oxoacyHacyl-carrier-protein]
reductase FabG (EC 1.1.1.100)
(3-ketoacyl-acyl carrier protein
reductase) (Beta-Ketoacyl-acyl
carrier protein reductase) (Beta-
ketoacyl-ACP reductase)
3-oxoacyl-{acyl-carier-protein]
reductase FabG (EC 1.1.1.100)
(3-ketoacyl-acyl carrier protein
reductase) (Beta-Ketoacyl-acyl
carrier protein reductase) (Beta-
ketoacyl-ACP reductase)
3-oxoacyl-{acyl-carrier-protein]
reductase 4 (EC 1.1.1.100) (3-
ketoacyl-acyl carier protein
reductase 4) (Fragment)

fabG
bbp_321

fabG SA1074

fabG
TC_0508

bkra.

3-oxoacyl-{acyl-carrier-protein]
reductase FabG1 (EC 1.1.1.100)
(3-ketoacyl-acyl carrier protein
reductase) (Beta-Ketoacyl-acyl
carier protein reductase) (Beta-
ketoacyl-ACP reductase)

fabG1 mabA
MT1530

3-oxoacyl-{acyl-carrier-protein]
reductase FabG (EC 1.1.1.100)
(3-ketoacyl-acyl carrier protein
reductase) (Beta-Ketoacyl-acyl
carrier protein reductase) (Beta-
ketoacyl-ACP reductase)
3-oxoacyl-{acyl-carrier-protein]
reductase FabG (EC 1.1.1.100)
(3-ketoacyl-acyl carrier protein
reductase) (Beta-Ketoacyl-acyl
carier protein reductase) (Beta-
ketoacyl-ACP reductase)
3-oxoacyl-{acyl-carrier-protein]
reductase FabG (EC 1.1.1.100)
(3-ketoacyl-acyl carrier protein
reductase) (Beta-Ketoacyl-acyl
carrier protein reductase) (Beta-
ketoacyl-ACP reductase)
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SACOL1245
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BQ2027_MB
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Curcumin synthase 1 (EC

23.1.217) (CURSE:

Stilbene synthase 1 (EC
2.3.1.95) (Resweratrol synthase
1) (RS1) (Trihydroxystilbene
synthase 1)

Pinosyhin synthase 1 (EC
2.3.1.146) (Dihydropinosyhin
synthase 1) (Stilbene synthase
1) (STS 1)

STS1

Pinosyhin synthase 2 (EC
2.3.1.146) (Dihydropinosyhin
synthase 2) (Stilbene synthase
2)(STS 2)

sTS2

Stilbene synthase 3 (EC
2.3.1.95) (Resweratrol synthase
3) (RS3) (Trihydroxystilbene
synthase 3)

GSVIVT0000
4047001
LOC1002461

Stilbene synthase 2 (EC VITISV_0108
2.3.1.95) (PSV21) (Resweratrol 3

@

synthase 2) (Trihydroxystilbene  GSVIVT0000

synthase 2) (StSy 2) 8253001
LOC1002591
VITISV_0242

Stilbene synthase 3 (EC

2.3.1.95) (PSV368) (Resveratrol VIT_1650100
synthase 3) (Trihydroxystilbene  g01030
synthase 3) (StSy 3)

BIBSY212
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3,5-dihydroxybiphenyl synthase
(EC 2.3.1.177) (Biphenyl BIS1
synthase 1) (SaBIS1)
3-ketoacyl-CoA synthase 18
(KCS-18) (EC 2.3.1.199)
(Protein FATTY ACID FAE1 KCS18
ELONGATION 1) (Very long-  At4g34520
chain fatty acid condensing  T4L20.100

enzyme 18) (VLCFA condensing
enzyme 18)
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MASVTVEQIRKAQRAEGPATILAIGTAVPANCFNQADFPDY YFRVTKSEHMTDLKKKFQRMCEKS
TIKKRYLHLTEEHLKQNPHLCEYNAPSLNTRQDMLVVEVPKLGKEAAINAIKEWGQPKSKITHLIFCT
GSSIDMPGADYQCAKLLGLRPSVKRVMLYQLGCYAGGKVLRIAKDIAENNKGARVLIVCSEITACIF
394 RGPSEKHLDCLVGQSLFGDGASSVIVGADPDASVGERPIFELVSAAQTILPNSDGAIAGHVTEAGL
TFHLLRDVPGLISQNIEKSLIEAFTPIGINDWNNIFWIAHPGGPAILDEIEAKLELKKEKMKASREMLS
EYGNMSCASVFFIVDEMRKQSSKEGKSTTGDGLEWGALFGFGPGLTVETVVLHSVPTNV

LKENPNMCAYKAPSLDAREDMMIREVPRVGKEAATKAIKEWGQPMSKITHLIFCTTSGVALPGVD
YELIVLLGLDPSVKRYMMYHQGCFAGGTVLRLAKDLAENNKDARVLIVCSENTAVTFRGPSETDM
313 DSLVGQALFAD NIGSDP FEIVSTDQKLY LREVGLTFYLNKSVPDII
SQNINDALSKAFDPLGISDYNSIFWIAHPGGPAILDQVEQKVNLKPEKMNATRDVLSNY GNMSSAC
VFFIMDLMRKKSLEEGLKTTGEGLDWGVLFGFGPGLTIETVVLRSVAI
MANLHALRREQRAQGPATIMAIGTATPPNLYEQSTFPDFYFRVTNSDDKQELKKKFRRMCEKTMV
KKRYLHLTEEILKERPKLCSYKEASFDDRQDIVVEEIPRLAKEAAEKAIKEWGRPKSEITHLVFCSIS
GIDMPGADYRLATLLGLPLTVNRLMIY SQACHMGAAMLRIAKDLAENNRGARVLVVACEITVLSFRG
389 PNEGDFEALAGQAGFGDGAGAVVVGADPLEGIEKPIYEIAAAMQE TVAESQGAVGGHLRAFGWT
FYFLNQLPAIIADNLGRSLERALAPLGVREWNDVFWVAHPGNWAIIDAIEAKLQLSPDKLSTARHVF
TEYGNMQSATVYFVMDELRKRSAVEGRSTTGDGLQWGVLLGFGPGLSIETVVLRSMPL

TTVAATKLTSLKATAGKLGYREICQVRQWAPLKSAMPHFGMLRCATSTVVKAQAQAQATATEQTT

EEAVPKVESPVVVVTGASRGIGKAIALSLGKAGCKVLVNYARSAKEAEEVSKQIEEYGGEAITFG
317 GDVSKEADVDSMMKTAVDKWGTIDVVVNNAGITRDTLLIRMKKSQWDEVIDLNLTGVFLCTQAATK
IMMKKRKGRIINIASVVGLIGNIGQANY AAAKAGVIGFSKTAAREGASRNINVNVVCPGFIASDMTAK
LGEDMEKKILGTIPLGRYGQPEYVAGLVEFLALSPASSYITGHTFSIHGGFAI
MKTTKKIAVITGANRGLGKGIAEELSNTNNITVIGTSTSQKGCKIINKYLKNNGIGIKLDITNPNEITKTMD
FVYKNFGRVDILINNAGIRDKLLINMK TQDWNSVLNVNLNSIFYMSKSVIRNMIKNKQGKIITIGSVIAH
IGNCGQTNY SAAKLGLVGFHKSLALELAPKGITVNMIAPGLIKTGMTNNLSQKQLSKYLSKIPMKRL

245 GTIKEISKITLFLISNDANYITGQVIHVNGGMYMP

MKMTKSALVTGASRGIGRSIALQLAEEGYNVAVNYAGSKEKAEAVVEEIKAKGVDSFAIQANVAD

ADEVKAMIKEVVSQFGSLDVLVNNAGITRDNLLMRMKEQEWDDVIDTNLKGVFNCIQKATPQMLR
246 QRSGAIINLSSVVGAVGNPGQANYVATKAGVIGLTKSAARELASRGITVNAVAPGFIVSDMTDALS

DELKEQMLTQIPLARFGQDTDIANTVAFLASDKAKYITGQTIHVNGGMYM

MNSLLVNKAAIV AQDLSDKTGSKVSFALVDV
SKNDMVSAQVQKFLAEYGTID DSLL! IDTNLGSIYNVC
KARSGAIVNISSIVGLRGSPGQTNYAAAKAGIIGFSKALSKEVGSKNIRVNCIAPGFIDTDMTKGLSD
NLKNEWLKGVPLGRVGTPEEIAMAALFLASNQSSYITGQVLSVDGGMA

248

TTTEEEEAVPKVESPVVVVTGASRGIGKAIALSLGKAGCKVLVNYARSAKEAEEVSKQIEEYGGQ
AITFGGDVSKEADVDAMMKTAVDKWGTIDVVVNNAGDTLLIRMKKSQWDEVMDLNLTGVFLCSQ
AATKIMMKKRKGRIINIASVVGLIGNIGQANYAAAKAGVIGFSKTAAREGASRNINVNVVCPGFIASD
MTAKLGEDMEKKILGTIPLGRYGQPEDVAGLVEFLALSPAASYITGQTFTIDGGIAI
MTATATEGAKPPFVSRSVLVTGGNRGIGLAIAQRLAADGHKVAVTHRGSGAPKGLFGVECDVTDS
DAVDRAFTAVEEHQGPVEVLVSNAGLSADAFLMRMTEEKFEKVINANLTGAFRVAQRASRSMQR

IQANYAASK, SKANVT/ IDTDMTRALD
247 ERIQQGALQFIPAKRVGTPAEVAGVVSFLASEDASYISGAVIPVDGGMGMGH

254

MKMTKSALVTGASRGIGRSIALQLAEEGYNVAVNYAGSKEKAEAVVEEIKAKGVDSFAIQANVAD
ADEVKAMIKEVVSQFGSLDVLVNNAGITRDNLLMRMKEQEWDDVIDTNLKGVFNCIQKATPQMLR
QRSGAIINLSSVVGAVGNPGQANYVATKAGVIGLTKSAARELASRGITVNAVAPGFIVSDMTDALS

246 DELKEQMLTQIPLARFGQDTDIANTVAFLASDKAKY ITGQTIHVNGGMYM

MQGKIALVTGSTRGIGRAIAEELSSKGAFVIGTATSEKGAEAISAYLGDKGKGLVLNVTDKESIETLL

EQIKNDFGDIDILVNNAGITRDNLLMRMKDEEW FDIMQTNLTSVYHLSKAMLRSMMKKRFGRINIGS
» VVGSTGNPGQTNYCAAKAGVVGFSKSLAKEVAARGITVNVVAPGFIATDMTEVLTDEQKAGILSN

VPAGRLGEAKDIAKAVAFLASDDAGY TGTTLHVNGGLYLS

MTATATEGAKPPFVSRSVLVIGGNRGIGLAIAQREAADGHKVAVTHRGSGAPKGLFGVECDVTDS

DAVDRAFTAVEEHQGPVEVLVSNAGLSADAFLMRMTEEKFEKVINANLTGAFRVAQRASRSMQR

IQANYAASK, SKANVT/ IDTDMTRALD
LASEDASY! GGMGMGH

7 ERIQQGALQFIPAKI

MANLHALRREQRAQGPATIMAIGTATPPNLYEQS TFPDFYFRVTNSDDKQELKKKFRRMCEKTMV
KKRYLHLTEEILKERPKLCS YKEASFDDRQDIVVEEIPRLAKEAAEKAIKEWGRPKSEITHLVFCSIS
GIDMPGADYRLATLLGLPLTVNRLMIY SQACHMGAAMLRIAKDLAENNRGARVLVVACEITVLSFRG
389 PNEGDFEALAGQAGFGDGAGAVVVGADPLEGIEKPIYEIAAAMQETVAESQGAVGGHLRAFGWT
FYFLNQLPAIIADNLGRSLERALAPLGVREWNDVFWVAHPGNWAIIDAIEAKLQLSPDKLSTARHVF
TEYGNMQSATVYFVMDELRKRSAVEGRS TTGDGLQWGVLLGFGPGLSIETVVLRSMPL

MVSVSGIRKVQRAEGPATVLAIGTANPPNCVDQSTYADY YFRVTNGEHMTDLKKKFQRICERTQIK
NRHMYLTEEILKENPNMCAYKAPSLDAREDMMIREVPRVGKEAATKAIKEWGQPMSKITHLIFCTT
SGVALPGVDYEUVLLGLDPSVKRYMMYHQGCFAGGTVLRLAKDLAENNKDARVUVCSENTAVTF

CATALYTIC ACTIVITY: Isowaleryl-CoA + 3
malonyl-CoA = 4 CoA + 3 CO(2) + 3-methyl-
1-(2,4,6-trihydroxyphenyl)butan-1-one.

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-
1-CoA = 4 CoA + trol +

4.CO@).

CATALYTIC ACTIVITY: Feruloyl-CoA +
feruloylacetyl-CoA + H(2)O = 2 CoA +
curcumin + CO(2).
{EC0:0000269|PubMed: 19258320,
ECO:0000269|PubMed: 21148316},

CATALYTIC ACTVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTVITY: (3R)-3-hydroxyacyl-
[acylcamev protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: Feruloyl-CoA +
feruloylacetyl-CoA + H(2)O = 2 CoA +
curcumin + CO(2).
{ECO:0000269|PubMed: 19258320,
ECO:0000269]PubMed:21148316).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-

389 RGPNETDMDSLVGQALFAD TDQQLY LREVGLTF
YLNKSVPDISQNINGALSKAFDPLGISDYNSIFWIAHLGGRAILDQVEQKVNLKPEKMKATRDVLSN
YGNMSSACVFFIMDLMRKKSLETGLKTTGEGLDWGVLFGFGPGLTIETVVLRSMAI

MSVGMGIDLEAFRKSQRADGFASILAIGTANPPNVVDQSTYPDYYFRVTNNEDNTDLKDKFKRICE
RSAIKKRHMYLTEEILKKNPELCAFLEVPSLDTRQAMLAAEVPRLGKEAAEKAIEEWGQPKSRITH
LIECTTTTRDLPGADFEVAKLLGLHPSVKRVGYFQHGCFAGGTVLRLAKDLAENNRGARVLVVCSE
396 NTAVTFRGPSETHLDGLVGLALFGDGASALIVGADPIPQVEKPCFEIVWTAQTVVPNSDGAISGKL
REVGLTFQLKGAVPDLISTNIEKCLVEAFSQFNISDWNQLFWIAHPGGHAILDQVEASLNLDPTKLR
ATRHVMSEYGNMSSACVHFILDETRKASRQNGCSTSGGGFQMGVLFGFGPGLTVETVVLKSIPFP

MSVGMGVDLEAFRKSQRADGFASILAIGTANPPNVYDQSTYPDYYFRNTNNEDNTDLKDKFKRIC
ERSAIKKRHMYLTEEILKKNPELCAFLEVPSLDTRQAMLAVEVPRLGKEAAEKAIEEWGQPKSRIT
HLIFCTTTTPDLPGADFEVAKLLGLHPSVKRVGVFQHGCFAGGTVLRLAKDLAENNRGARVLVVCS
396 ENTAVTFRGPSETHLDGLVGLALFGDGAAALIVGADPIPQVEKPCFEIVWTAQTVVPNSDGAISGK
LREVGLTFQLKGAVPDLISTNIEKCLVEAFSQFNISDWNQLFWIAHPGGRAILDQVEASLNLDPTKL
RATRHVMSEYGNMSSACVHFILDETRKASRQNGCSTSGGGFQMGVLFGFGPGLTVETVVLKSIPF

P
MVSVSGIRKVQRAEGPATVLAIGTANPPNCIDQSTYADYYFRVTNSEHMTDLKKKFQRICERTQIKN
RHMYLTEEILKENPNMCAYKAPSLDAREDMMIREVPRVGKEAATKAIKEWGQPMSKITHLIFCTTS

GVALPGVDYELIVLLGLDPCVKRYMMYHQGCFAGGTVLRLAKDLAENNKDARVLIVCSENTAVTFR

1-CoA = 4 CoA + trol +

4.CO().

CATALYTIC ACTIVITY: 3 malonyl-CoA +
cinnamoyl-CoA = 4 CoA + pinosyhin + 4
CO(2). {EC0:0000269|PubMed: 7698342}.;
CATALYTIC ACTVITY: 3 malonyl-CoA +
dihydrocinnamoyl-CoA = 4 CoA +
dihydropinosyln + 4 CO(2).
{EC0:0000269|PubMed: 7698342).
CATALYTIC ACTVITY: 3 malonyl-CoA +
cinnamoyl-CoA = 4 CoA + pinosylvin + 4
CO(2). {ECO:0000269|PubMed: 7698342}.;
CATALYTIC ACTIVITY: 3 malonyl-CoA +
dihydrocinnamoyl-CoA = 4 CoA +
dihydropinosyhin + 4 CO(2).
{EC0:0000269|PubMed: 7698342}

CATALYTIC ACTIVITY: 3 malonyl-CoA + A-

389 GPSETDMDSLVGQALFADGAAAIIGSDPVPEVEKPIFELVSTDQKL! LREVGLTFY
LNKSVPDIISQNINDALNKAFDPLGISDYNSIFWIAHPGGRAILDQVEQKVNLKPEKMKATRDVLSNY
GNMSSACVFFIMDLMRKRSLEEGLKTTGEGLDWGVLFGFGPGLTIETVVLRSVAI

MASVEEIRNAQRAKGPATILAIGTATPDHCVYQSDYADY YFRVTKSEHMTALKKKFNRICDKSMIKK

RYIHLTEEMLEEHPNIGAYMAPSLNIRQEITAEVPKLGKEAALKALKEWGQPKSKITHLVFCTTSGV

EMPGADYKLANLLGLEPSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEITVVTFRG

PSEDALDSLVGQALFGDGSAAVIVGSDPDISIERPLFQLVSAAQTFIPNSAGAIAGNLREVGLTFHL

WPNVPTLISENIEKCLTQAFDPLGISDWNSLFWIAHPGGPAILDAVEAKLNLDKKKLEATRHVLSEY
» GNMSSACVLFILDEMRKKSLKGERATTGEGLDWGVLFGFGPGLTIETVVLHSIPMVTN

MASVEEIRNAQRAKGPATILAIGTATPDHCVYQSDYADY YFRVTKSEHMTELKKKFNRICDKSMIKK
RYIHLTEEMLEEHPNIGAYMAPSLNIRQEITVEVPKLGKEAALKALKEWGQPKSKITHLVFCTTSGV
EMPGADYKLANLLGLETSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEITVVTFRG
392 PSEDALDSLVGQALFGDGSAAVIVGSDPDVSIERPLFQLVSAAQ REVGLTFHL

0A = 4 CoA +

4.CO().

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-
1-CoA = 4 CoA + trol +

4.CO().

CATALYTIC ACTIVITY: 3 malonyl-CoA + A»
I-CoA = 4 CoA + |+

WPNVPTLISENVEKCLTQAFDPLGISDWNSLFWIAHPGGPAILDAVEAKLNLDKKKLEATRHVLSE
YGNMSSACVLFILDEMRKKSHKGEKATTGEGLDWGVLFGFGPGLTIETVVLHSIPMVTN

MLSLESIKKAPRADGFASILAIGRANPDNIEQSAYPDFYFRVTNSEHLVDLKKKFQRICEKTAIRKRH
FVWNEEFLTANPCFSTFMDKSLNVRQEVAISEIPKLGAKAATKAIEDWGQPKSRITHLIFCTTSGMD
LPGADYQLTQILGLNPNVERVMLY QQGCFAGGTTLRLAKCLAESRKGARVLVVCAETTTVLFRAPS

4COQ).

CATALYTIC ACTIVITY: 3 malonyl-CoA + M-

390 EEHQDDLVTQALFAD DPDEAAD TSQVLLPD:
HRDVPQIVSKNVGKCLEEAFTPFGISDWNSIFWVPHPGGRAILDQVEERVGLKPEKLSVSRHVLA
EYGNMSSVCVHFALDEMRKRSANEGKATTGEGLEWGVLFGFGPGLTVETVVLRSVPL

MGGVDFEGFRKLQRADGFASILAIGTANPPNAVDQSTYPDFYFRITGNEHNTELKDKFKRICERSAI
KQRYMYLTEEILKKNPDVCAFVEVPSLDARQAMLAMEVPRLAKEAAEKAIQEWGQSKSGITHLIF
CSTTTPDLPGADFEVAKLLGLHPSVKRVGVFQHGCFAGGTVLRMAKDLAENNRGARVLVICSETT
393 AVTFRGPSETHLDSLVGQALFGDGASALIVGADPIPQVEKACFEIVWTAQTVVPNSEGAIGGKVRE
VGLTFQLKGAVPDLISANIENCMVEAFSQFKISDWNKLFWVVHPGGRAILDRVEAKLNLDPTKLIPT
RHVMSEYGNMSSACVHFILDQTRKASLQNGCS TTGEGLEMGVLFGFGPGLTIETVVLKSVPIQ

MAPLVKNHGEPQHAKILAIGTANPPNVYY QKDY PDFLFRVTKNEHRTDLREKFDRICEKSRTRKRY
LHLTEEILKANPSIYTY GAPSLDVRQDMLNSEVPKLGQQAALKAIKEWGQPISKITHLIFCTASCVDM
PGADFQLVKLLGLNPSVTRTMIYEAGCYAGATVLRLAKDFAENNEGARVLVVCAEITTVFFHGLTDT

0A =4 CoA + 4
trihydroxybibenzyl + 3 CO(2).

CATALYTIC ACTIVITY: 3 malonyl-CoA +
cinnamoyl-CoA = 4 CoA + pinosyhin + 4
CO(2). {ECO:0000269|PubMed:1426272}.;
CATALYTIC ACTIVITY: 3 malonyl-CoA +
dihydrocinnamoyl-CoA = 4 CoA +
dihydropinosylin + 4 CO(2).
{EC0:0000269|PubMed: 1426272}

CATALYTIC ACTIVITY: 3 malonyl-CoA +
benzoyl-CoA = 4 COA + 35-

390 HLDILVGQALFAD IERPLFEIVACRQTI TYYLSGEVP
KFVGGNVVDFLTKTFEKVDGKNKDWNSLFFSVHPGGPAIVDQVEEQLGLKEGKLRATRHVLSEY
GNMGAPSVHFILDDMRKKSIEEGKSTTGEGLEWGVVIGIGPGLTVETAVLRSESIPC

aNnAa
MTSVNVK L G| TNFENLCLFPLTAFLAGKASRLTINDLHNFLSYLQHNLITVTLLFAFTVFGLVLYI
VTRPNPVYLVDYSCYLPPPHLKVSVSKVMDIFY QIRKADTSSRNVACDDPSSLDFLRKIQERSGLG
DETYSPEGLIHVPPRKTFAASREETEKVIIGALENLFENTKVNPREIGILVVNSSMFNPTPSLSAMVV
NTFKLRSNIKSFNLGGMGCSAGVIAIDLAKDLLHVHKNTYALVVSTENITQGIYAGENRSMMVSNCL

506 FRVGGAAILLSNKSGDRRRSKYKLVHTVRTHTGADDKSFRCVQQEDDESGKIGYCLSKDITNVAGT

+4.CO(2).
{EC0:0000269|PubMed: 14595561,
EC0:0000269|PubMed: 17109150}.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{EC0:0000269|PubMed: 11341960,

TLTKNIATLGPLILPLSEKFLFFATFVAKKLLKDKIKHY YVPDFKLAVDHFCI IDELEKNLGL

ECO:0 12135493,

SPIDVEASRSTLHRFGNTSSSSIW YELAYIEAKGRMKKGNKAWQIALGSGFKCI RNVK
ASANSPWQHCIDRYPVKIDSDLSKSKTHVQNGRS

ECO:C 16765910},
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3-0xoacyl-{acyl-carrier-protein]
reductase FabG (EC 1.1.1.100)
(3-ketoacyl-acyl carrier protein
reductase) (Beta-Ketoacyl-acyl
carrier protein reductase) (Beta-
ketoacyl-ACP reductase)

3-oxoacyl-{acyl-carrier-protein]
reductase, chloroplastic (EC
1.1.1.100) (3-ketoacyl-acyl
carrier protein reductase)

Polyketide synthase BAS (EC
2.3.1.212) (Benzalacetone
synthase) (RPBAS)

3-ketoacyl-CoA synthase 5
(KCS-5) (EC 2.3.1.199)
(Eceriferum 60) (Very long-chain
fatty acid condensing enzyme 5)
(VLCFA condensing enzyme 5)

3-ketoacyl-CoA synthase 7
(KCS-7) (EC 2.3.1.199) (Very
long-chain fatty acid condensing
enzyme 7) (VLCFA condensing
enzyme 7)

3-ketoacyl-CoA synthase 20
(KCS-20) (EC 2.3.1.199) (Very
long-chain fatty acid condensiny
enzyme 20) (VLCFA condensing
enzyme 20)

Probable 3-ketoacyl-CoA
synthase 21 (KCS-21) (EC
2.3.1.199) (Very long-chain fatty
acid condensing enzyme 21)
(VLCFA condensing enzyme 21)

Acridone synthase 2 (EC
2.3.1.159) (Acridone synthase )

Probable acridone synthase 4
(EC 2.3.1.159) (Acridone
synthase IV)

Probable acridone synthase 3
(EC 2.3.1.159) (Acridone
synthase Ill)

3-ketoacyl-CoA synthase 3
(KCS-3) (EC 2.3.1.199) (Very
long-chain fatty acid condensing
enzyme 3) (VLCFA condensing
enzyme 3)

3-ketoacyl-CoA synthase 19
(KCS-19) (EC 2.3.1.199) (Very

long-chain fatty acid condensing <&

enzyme 19) (VLCFA condensing
enzyme 19)

3-ketoacyl-CoA synthase 1
(KCS-1) (EC 2.3.1.199) (Very
long-chain fatty acid condensing
enzyme 1) (VLCFA condensing
enzyme 1)

3-ketoacyl-CoA synthase 8
(KCS-8) (EC 2.3.1.199) (Very
long-chain fatty acid condensing
enzyme 8) (VLCFA condensing
enzyme 8)

3-ketoacyl-CoA synthase 10
(KCS-10) (EC 2.3.1.199)
(Protein FIDDLEHEAD) (Very
long-chain fatty acid condensing
enzyme 10) (VLCFA condensing
enzyme 10)

5,7-dihydroxy-2-
methylchromone synthase (EC
2.3.1.216) (Pentaketide
chromone synthase) (PCS)

3-ketoacyl-CoA synthase 2
(KCS-2) (EC 2.3.1.199)
(Docosanoic acid synthase)
(Very long-chain fatty acid
condensing enzyme 2) (VLCFA
condensing enzyme 2)

Bisdemethoxycurcumin
synthase (EC 2.3.1.211)
(Curcuminoid synthase)

2,4,6-trihydroxybenzophenone
synthase (EC 2.3.1.220)
(2,3,4,6-
tetrahydroxybenzophenone
synthase) (EC 2.3.1.151)
(Benzophenone synthase)
(HaBPS)

Stilbene synthase 5 (EC
2.3.1.95) (Resweratrol synthase
5) (Trihydroxystilbene synthase
5) (StSy 5)

3-0xoacyl-{acyl-carrier-protein]
reductase FabG (EC 1.1.1.100)
(3-ketoacyl-acyl carrier protein
reductase) (Beta-Ketoacyl-acyl
carrier protein reductase) (Beta-
ketoacyl-ACP reductase)

3-oxoacyl-{acyl-carrier-protein]
reductase (EC 1.1.1.100) (3-
ketoacyl-acyl carrier protein
reductase)

3-oxoacyl-lacyl-carrier-protein]
reductase (EC 1.1.1.100) (3
ketoacyl-acyl carrier protein
reductase)

3-oxoacyl-{acyl-carrier-protein]
reductase (EC 1.1.1.100) (3
ketoacyl-acyl carrier protein
reductase)

3-oxoacyl-lacyl-carrier-protein]
reductase FabG (EC 1.1.1.100)
(3ketoacyl-acyl carrier protein
reductase) (Beta-Ketoacyl-acyl
carrier protein reductase) (Beta-
ketoacyl-ACP reductase)
3-oxoacyl-{acyl-carrier-protein]
reductase FabG (EC 1.1.1.100)
(3ketoacyl-acyl carrier protein
reductase) (Beta-Ketoacyl-acyl
carrier protein reductase) (Beta-
ketoacyl-ACP reductase)
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Chlamydia
chomatis
(strain D/UW-
3/Cx)

Cuphea
lanceolata
(Cigar flower)

Rheum
palmatum
(Chinese
rhubarb)

Arabidopsis
thaliana
(Mouse-ear
cress)

Arabidopsis

thaliana

(Mouse-ear
ress)

Arabidopsis
thaliana,
(Mouse-ear
cress)

Arabidopsis
thaliana,
(Mouse-ear
cress)

Ruta
graweolens
(Common
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Arabidopsis
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Arabidopsis
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(Mouse-ear
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Arabidopsis
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Arab!dopsvs

cress)

Arabidopsis
thaliana,
(Mouse-ear
cress)

Aloe
arborescens
(Kidachi aloe)

Arabidopsis
thaliana,
(Mouse-ear
cress)

Oryza sativa
subsp.

japonica
(Rice)

Hypericum
androsaemu
m (Tutsan)

Vitis vinifera
(Grape)

Rickettsia
typhi (strain
ATCC VR-
144/
Wilmington)
Schizosacch
aromyces
pombe (strain
972/ ATCC
24843)
(Fission
east)
Synechocysti
s sp. (strain
PCC 6803 /
Kazusa)
Saccharomy

cerevisiae
(strain ATCC
204508 /
S288c)
(Baker's
yeast)

Aquifex
aeolicus
(strain VFS5)

Rickettsia
bellii (strain
L369-C)
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MISGLLVNKTAIV TGGSRGIGESIAKLEAC QGANVQIGINGEAGQAMQTLSEQTGROVSFALVOY
SKNDMVSAQVQNFLAEYNTID! ITNLGSIYNVC
ARSGA\IN\SSIVGLRGSFGQTNYAAAKAG\IGFSKALSKEVGSKNIRVNCIAF‘GFIDTDMTKSLNDNL
KNEWLKGVPLGRVGMPEEIAKAALFLASDGSSYITGQVLSVDGGMA

MATATAAGCSGAVALKSLGGRRLCIPQQLSPVLAGFGSHAAKSFPILSTRSIATSGIRAQVATAEKY
SAGAGQSVESPVVIVTGASRGIGKAIALSLGKAGCKVLVNY ARSSKEAEEVSKEIEAFGGQALTF
GGDVSKEEDVEAMIKTAVDAWGTVDILVNNAGTRDGLLMRMKKSQWQEVIDLNLTGVFLCTQAA
AKIMMKKKKGRIINIASVVGLVGNAGQANY SAAKAGVIGFTKTVARE Y ASRNINVNAVAPGFISSDM
TSKLGDDINKKILETIPLGRY GQPEEVAGLVEFLAINPASSYVTGQVFTIDGGMTM

MATEEMKKLATVMAIGTANPPNCY Y QADFPDFY FRVTNSDHLINLKQKFKRLCENSRIEKRYLHVT
EEILKENPNIAAY EATSLNVRHKMQVKGVAELGKEAALKAIKEWGQPKSKITHLIVCCLAGVDMPG
ADYQLTKLLDLDPSVKRFMFYHLGCYAGGTVLRLAKDIAENNKGARVLIVCSEMTTTCFRGPSETH
LDSMIGQAILGDGAAAVIVGADPDLTVERPIFELVSTAQTIVPESHGAIEGHLLESGLSFHLYKTVPTL
ISNNIKTCLSDAFTPLNISDWNSLFWIAHPGGPAILDQVTAKVGLEKEKLKVTRQVLKDYGNMSSAT
VFFIMDEMRKKSLENGQATTGEGLEWGVLFGFGPGITVETVVLRSVPVIS
MSDFSSSVKLKYVKLGYQYLINNFLTLLLIPVIATVAIELLRMGPEEILSVLNSLHFELLHILCSSFLIFV
STVYFMSKPRTVYLVDYSCYKPPVTCRVPFSSFMEHSRLILKDNPKSVEFQMRILERSGLGEETCL
PPAIHYIPPTPTMESARNEAQMVIFTAMEDLFKNTGLKPKDIDILIVNCSLFSPTPSLSAMINKYKLRS
NIKSYNLSGMGCSASLISVDVARDLLQVHPNSNAIISTEITPNY Y KGNERAMLLPNCLFRMGGAAIL
LSNRRSDRWRAKYKLCHLVRTHRGADDKSYNCVMEQEDKNGNVGINLSKDLMTIAGEALKANITTI
GPLVLPASEQLLFLSSLIGRKI DFKQAFEHFCI IDELQKNLQL!
SRMTLHRFGNTSSSSLWYELSYIEAQ DRVWQ NRTIKTPTDGA
WSDCIERYPVFIPEVVKL
MESSFHFINEALLITQTFITFHQFLVASACVLIAVFGY YFFKPRCIIY LIDFSCYQPPDFLRAPVSNFIE
HLTISGVFDQESLDLQQKILERSGISDDASVPATVHEIPPNASISAAREE THEILFAIVQDLFSKHEIDP
KSIDILVSNCSLFCPSPSITSMINKFGMRSDIK SFSLSGMGCSAGILSVNLVKDLMKIHGDSLALVLS

KSMLIAN LSNRKQDSHKAKYKLQHIIRTHVGSDTESYESVMQ
QVDEEGKVGVALSKQLVRVASKALKINVVQLGPRVLPYSEQLKYISFIQRKWGMHKEIY TPNFKK
AFEHFCIHAGGRAIIEGVEKHLKLDKEDVEASRSTLYRYGNTSSSSLWYELQYLEAKGRMKMGDK
vwaQr RIHLYPVCGDTSSALKTELLS

MSHNQNQPHRPVPVHV TNAEPNPNPNNLPNFLLSVRLKYVKLGYHYLISNALYILLLPLLAATIANL
SSFTINDLSLLYNTLRFHFLSATLATALLISLSTAYFTTRPRRVFLLDFSCYKPDPSLICTRETFMDRSQ
RVGIFTEDNLAFQQKILERSGLGQKTYFPEALLRVPPNPCMEEARKEAETVMFGAIDAVLEKTGVK
PKDIGILVVNCSLFNPTPSLSAMIVNKYKLRGNILSYNLGGMGCSAGLISIDLAKQMLQVQPNSYAL
VVSTENITLNWYLGNDRSMLLSNCIFRMGGAAVLLSNRSSDRSRSKY QLIHTVRTHKGADDNAFGC
VYQREDNNAEETGKIGVSLSKNLMAIAGEALKTNITTLGPLVLPMSEQLLFFATLVARKVFKVKKIKP
YIPDFKLAFEHFCH DEIEKNLDL TLNRFGNTSSSSLWYELAYSEAKG
RIKRGDRTWQIAFGSGFKCNSAVWKALRTIDPMDEK TNPW IDEIDDFPVQVPRITPITSS

TTLL: LVVHLIYQRIRTRVKVYLLDFTCYRAPDSNRVPM
STLIETIYLDDKLDQESIDFQARILERSWLSNQTSIPRSLMEIPLKKSLSSVKIETMTTIFTSVEDLLRKN
KLSPRSIDILITNCSLHSPSPSLSAMVINKFHMRSNIKSFNLSGMGCAAGILSVNLANDLLQAHRGSL,
ALIVSTEALNTHW YIGKDRSMLLTNCLFRMGAAAYLMS SNDHDRDNAK Y ELLHVVRKNKAKDDRA
YRCIYQDIDSDEKQGVSITKDVISVAGDMLKMNLTSLGPLVLPYLEQFQYVIQHILCKKLKIYESNSS
Y TPNFKTAFEHFCIHTGGRAVIQAMEMNLKLTKVDIEPSKMTLHRFGNTSSSSIWYALSYLEAKRR
MKKGDRVLQIAFGSGFKCNSAVWRCIRKVEPNTENKWLDFIDSYPVDVPDSTNIRPG

MESLKEMRKAQKSEGPAAILAIGTATPDNVYIQADYPDY Y FKITKSEHMTELKDKFKTLCEKSMIRK
RHMCFSQEFLKANPEVCKHMGKSLNARQDIAVVE TPRIGKEAAVKAIKEWGHPKSSITHLIFCTSA
GVDMPGADY QLTRMLGLNPSVKRMMIY QQGCYAGGTVLRLAKDLAENNKGSRVLVVCSELTAPT
FRGPSPDAVDSLYGQALFADGAAALYVGADPDTSVERALY YIVSASQMLLPDSDGAIEGHIREEG
LTVHLKKDVPALFSANIDTPLVEAFRPLGISDWNSIFWIAHPGGPAILDQIEVKLGLKEDKLRASKHY
MSEYGNMSSSCVLFVLDEMRNKSLQDGKSTTGEGLDWGVLFGFGPGLTVETVVLRSVPVEA

MESLKEMRKAQMSEGPAAILAIGTATPNNVYMQADY PDY Y FRMTKSEHMTELKDKFRTLCEKSMI
RKRHMCFSEEFLKANPEVSKHMGKSLNARQDIAVVE TPRLGNEAAVKAIKEWGQPKSSITHLIFC
SSAGVDMPGADY QLTRILGLNPSVKRMMVYQQGCYAGGTVLRLAKDLAENNKGSRVLVVCSELT
APTFRGPSPDAVDSLVGQALFADGAAALVVGADPDSSIERALY YLVSASQMLLPDSDGAIEGHIR
EEGLTVHLKKDVPALFSANIDTPLVEAFKPLGISDWNSIFWIAHPGGPAILDQIEEKLGLKEDKLRAS
KHVMSEYGNMSSSCVLFVLDEMRSRSLQDGKS TIGEGLDWGVLFGFGPGLTVETVVLRSVPIEA

MESLKEMRKAQMSEGPAAILAIGTANPDNVYMQADYPDY Y FKMTKSEHMTELKDKFRTLCEKSMI
RKRHMCFSEEFLKANPEVCKHMGKSLNARQDIAVVE TPRLGNEAAVKAIKEWGQPKSSITHLIFC
SSAGVDMPGADY QLTRILGLNPSVKRMMIY QQGCYAGGTVLRLAKDLAENNKGSRVLVVCSELTA
PTFRGPSPDAVDSLVGQALFADGAAALVVGADPDSSIERALYYLVSASQMLLPDSDGAIEGHIRE
EGLTVHLKKDVPALFSGNIDTPLVEAFKPLGISDWNSIFWIAHPGGPAILDQIEEKLGLKEDKLRASK
HVMSEYGNMSSSCVLFVLDEMRSRSLQDGKSTTGEGLDWGVLFGFGPGLTVETIVLRSVPIEA

MDLLVMLLSLLVSYLIFKIWKRIDSKRDQNCY ILDY QCHKP SDDRMVNTQF S GDILRNKHLRLNE YK
FLLKAIVSSGIGEQTYAPRLFFEGREQRPTLQDGLSEMEEFYIDTIEKVLKRNKISPSEIDILVVNVSM
LNSTPSLSARINHYKMREDIKVFNLTAMGCSASVISIDIVKNIFKTYKNKLALVV TSESLSPNWYSGN
NRSMILANCLFRS GGCAVLLTNKRSLSRRAMFKLRCLYRTHHGARDDSFNACY QKEDELGHIGVHL
KTLPKAATRAFIDNLKV ITPKILPVTELLRFMLCLLLKKLRSSPSKGSTNVTQAAPKAGVKAGINFKT
GIDHFCIHTGGKAVIDAVGVSLDLNEYDLEPARMTLHRFGNTSASSLWY\/LGYMEAKKRLKRGDR\/
INQYPPKSILNPFFEKYGWIHEEEDPDTF

KMPEGFM
MELFSLSSLLLLSTLI QRNCYMLHYECY! LDTETCAKVVQRNKNLGL
EEYRFLLRTMASSGIGEE TYGPRNVLEGREDSPTLLDAHSEMDEIMFDTLDKLFHK TKGSISPSDIDI
LVVNVSLFAPSPSLTSRVINRYKMREDIKSYNLSGLGCSASVISIDIVQRMFETRENALALVVSTETM
GPHW Y CGKDRSMMLSNCLFRAGGSSVLLTNAARFKNQALMKLY TVVRAHVGSDDEAYSCCIQM
EDRDGHPGFLLTKVLKKAAARALTKNLQVLLPR\/LPVKELIRVAIVRALKRRTSAKREPASSGIGLN
LKTGLQHI YVLGYMEAKNRLKKG
EKILMMSMGAGFESNNCVWEVLKDLDDKNVWEDSVDRYPELSRIPNPFVEKYDWINDDTMSF\/R

RIS b EREEET B SESERER S f. FOLLTSVKLKYVKLGLHNSCNVTTILFFLILPLTG
TVLVQLTGLTFDTFSELWSNQAVQLDTATRLTCLVFLSFVLTLY VANRSKPVYLVDFSCYKPEDER
KISVDSFLTMTEENGSFTDDTVQFQQRISNRAGLGDETYLPRGITS TPPKLNMSEARAEAEAVMFG
ALDSLFEKTGIKPAEVGILIVNCSLFNPTPSLSAMIVNHYKMREDIKS Y NLGGMGCSAGLISIDLANNL
LKANPNSYAVVVSTENITLNWY FGNDRSMLLCNCIFRMGGAAILLSNRRQDRKKSKYSLVNVVRTH
KGSDDKNYNCVYQKEDERGTIGVSLARELMSVAGDALKTNITTLGPMVLPLSEQLMFLISLVKRKM
FKLKVKPYIPDFKLAFEHFCI DEVQKNLDLKD RFGNTSSSSLWYE
MAY TEAKGRVKAGDRLW QIAFGSGFKENSAVWKALRPVSTEEMTGNAWAGSIDQYPVKVVQ

MKNLKMVFFKILFISLMAGLAMK GSKINVEDLQKFSLHHTQNNLQTISLLLFLVVFVWILYMLTRPKP
VYLVDFSEYLPPSHLKVSIQTLMGHARRAREAGMCWKNKESDHLYDFQEKILERSGLGQETYIPE
GLOCFPLQQGMGASRKETEEVIFGALDNLFRNTGVKPDDIGILVVNSSTFNPTPSLASMIVNKYKLR
DNIKSLNLGGMGCSAGVIAVDVAKGLLQVHRNTYAIVVSTENITQNLY LGKNKSMLVTNCLFRVGG
AAVLLSNRSRDRNRAKYELVHTVRIHTGSDDRSFECATQEEDEDGIIGV TLTKNLPMVAARTLKINIA
TLGPLVLPLKEKLAFFITFVKKKYFKPELRNY TPDFKLAFEHFCIHAGGRALIDELEKNLKLSPLHVE
ASRMTLI YELAYTE, DRIWQIALGSGFKCNSSVWVALRDVKPSANS
PWEDCMDRYPVEIDI
i RS QL TR IEP SGPNAGSFTRBVRVRRRLPOFLOSYNLKYVKLGYHYLINHAVY LA
TIPVLVLY YLIDFACYKPSD
EHKVTKEEFIELARKSGKFDEETLGFKKRILQASGIGDETYVPRS\SSSENITTMKEGREEASTVIFG
ALDELFEKTRVKPKDVGVLVVNCSIFNPTPSLSAMVINHYKMRGNILSYNLGGMGCSAGIIAIDLAR
DMLQSNPNSYAVVVSTEMVGYNWYVGSDKSMVIPNCFFRMGCSAVMLSNRRRDFRHAKYRLE
HIVRTHKAADDRSFRSVY QEEDEQGFKGLKISRDLMEVGGEALKTNITTLGPLVLPFSEQLLFFAAL
LRRTFSF'AAKTSTFTSFSTSATAKTNGIKSSSSDLSKF‘YIPDYKLAFEHFCFHAASKVVLEELQKNL
ITLHRFGN VVWKA
MRK\/KKF’TRNNF'WVDCINRYF’VPL
MSSLSNSLPLMEDVQGIRKAQKADGTATVMAIGTAHP PHIFPQDTYADVYFRATNSEHKVELKKKF
DHICKKTMIGKRYFNYDEEFLKKYPNITSYDEPSLNDRQDICVPGVPALGTEAAVKAIEEWGRPKS
EITHLVFCTSCGVDMPSADFQCAKLLGLHANVNKYCIYMQGCYAGGTVMRYAKDLAENNRGARVL
VVCAELTIMMLRAPNE THLDNAIGISLFGDGAAALIGSDPIIGV EKPMFEN CTKQTVIPNTEDVIHLHL
RETGMMFYLSKGSPMTISNNVEACLIDVFKSVGITPPEDWNSLFWIPHPGGRAILDQVEAKLKLRP
EKFRAARTVLWDYGNMVSASVGYILDEMRRKSAAKGLETY GEGLEWGVLLGFGPGITVETILLHS
LPLM
MNENHIQSDHMNNTIHVTNKKLPNFLLSVRLKYVKLGYHY LISNAVYILILPVGLLAATSSSFSLTDLT
LLYNHLLKFHFLSSTLFAALLIFLTTLY FTTRPRRIFLLDFACYKPDSSLICTRETFMDRSQRVGIFTED
NLAFQQKILERSGLGQKTYFPEALLRVPPNPCMSEARKEAE TVMFGAIDAVLEKTGVNPKDIGILY
VNCSLFNPTPSLSAMIVNKYKLRGNVLSYNLGGMGCSAGLISIDLAKQLLQVQPNSYALVVSTENIT
LNWYLGNDRSMLLSNCIFRMGGAAVLLSNRSSDRCRSKY QLIHTVRTHKGSDDNAFNCV Y QREDN
DDNKQIGVSLSKNLMAIAGEALKTNITTLGPLVLPMSEQLLFFATLVARKVFNVKKIKPYIPDFKLAFE
HFCI DEIEKNLDL: ITLNRFGNTSSSSLWYELAYSEAKGRIKRGDRTW
QIAFGSGFKCNSAVWRALRTIDPSKEKKKKTNPWIDEIHEFPVPVPRTSPVTSSSESR

MAPTTTMGSALYPLGEMRRSQRADGLAAVLAIGTANPPNCV TQEEFPDFYFRVTNSDHLTALKDK

LVVAAELTLMYFTGPDEGCFRTLLVQGLFGDGAAAVIVGADADDVERPLFEIVSAAQTIPESDHAL
NMRFTERRIDGVLGRQVPGLIGDNVERCLLDMFGPLLGGDOGGOWNDLEWAVHPGSSTIMOO.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl -carrier-protein] + NADP(+) = 3-oxoacyl-
acyl-carrier-protein] + NADPH,

CATALYTIC ACTIVITY: 4- coumamyl CoA +
malonyl-CoA + H(2)O = 2 CoA +
hydroxybenzalacetone + 2 co(z)
{ECO:0000269|PubMed: 11389739,
ECO:0000269|PubMed: 17383877).

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2)

{ECO:0000305},

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2)

{ECO:0000305}.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2)

{ECO:0000308).

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2)
{ECO:0000305}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + N-
methylanthraniloyl-CoA = 4 CoA + 1,3-
dihydroxy-N-methylacridone + 3 CO(2).

CATALYTIC ACTIVITY: 3 malonyl-CoA + N-
methylanthraniloyl-CoA = 4 CoA + 1,3-
dihydroxy-N-methylacridone + 3 CO(2).

CATALYTIC ACTIVITY: 3 malonyl-CoA + N-
methylanthraniloyl-CoA = 4 CoA + 1,3-
dihydroxy-N-methylacridone + 3 CO(2).

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2)
{ECO:0000305}.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2)
{EC0:0000305}.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2)
{ECO:0000269|PubMed: 10074711,
ECO:0000269|PubMed: 16765910},

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).

{ECO:0000308}.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305}.

CATALYTIC ACTIVITY: § malonyl-CoA = &
CoA + 5,7-dihydroxy-2-methyl-4H-chromen-4-
one + 5 CO(2) + H@)O.
{ECO:0000269|PubMed: 15686354}.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{EC0:0000305}.

CATALYTIC ACTIVITY: 2 4-coumaroyl-CoA +
malonyl-CoA + H(2)O = 3 CoA +
+2Co@).

DAALGLEPGKLAASRRVLSDYGNMSGATVIFALDELRRQRK
VDAMLLHATSHVN

MAPAME Y STQNGQGEGKKRASVLAIGTTNPEHFILQEDY PDFYFRNTNSEHMTELKEKFKRICVK
SHIRKRHFYLTEEILKENQGIATY GAGSLDARQRILE TEVPKLGQEAALKAIAEWGQPISKITHVVFA

TTSGFMMPGADYVITRLLGLNRTVRRVMLYNQGCFAGGTALRVAKDLAENNEGARVLVVCAENTA -

MTFHAPNESHLDVIVGQAMFSDGAAALIGACPDVASGERAVFNILSASQTIVPGSDGAITAHFYEM
GMSYFLKEDVIPLFRDI GVSDWNSLFY: GVAGNLGIKDENLVATR
HVLGEYGNMGSACVMFILDELRKSSKVNGKPTTGDGKEFGCLIGLGPGLTVEAVVLQSVPILQ

MASVEEIRNAQRAKGPATILAIGTATPDHCVY QSDYADY YFKV TKSEHMTELKKKFNRICDKSMIKK
RYIHLTEEMLEEHPNIGAYMAPSLNIRQEIITAEVPKLGKEAALKALKEWGQPKSKITHLVFCTTSGV
EMPGADYKLANLLGLETSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEITVWTFRG

CATALYTIC ACTIVITY: 3 malonyl-CoA +
enzoyl-CoA = 4 CoA + 2,4,6-
trihydroxybenzophenone + 3 CO(2).
ECO:0000269|PubMed: 9459298},

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-

PSEDALDSLVGQALFGDGSAAVIVGSD GLTFHL
WPNVPTLISENIEKCLSQAFDPLGISNWNSLFWIAHPGGPAILDAVEAKLNLEKKKLEATRHVLSEY
GNMSSACVLFILDEMRKKSLKGEKATTGEGLDWGVLFGFGPGLTIETVVLHSVPMVTN

MIDFTGKTSLI LLGNTLKDNYIIEVCNLANKEECNNLI
SKISNLDILVCNAGITS DTLAIRMKDQDFDKVIDINLKANFILNREAIKKMIQKRY GRIINISSIVGIAGNP
GQANYCASKAGLIGMTKSLSYEVATRGITVNAVAPGFIKSDMTDKLNEKQREANQKIPLGTY GIPE
DVAYAVAFLASNHASYITGQTLHVNGGMLMY

MRKVLITGGSSGLGKRIAQIW SQKGHQCHIVGRNEFHLKETLQSLSVAKGQQHTLTIADVQSDMKN
LKSIFESVEIDTVVHAAGVLQSSLCVRTSEKEIDSICTNLYSAIKLSKMAILEWFRNKNSERDRLILNI
SSRLSTYALPGTSVYAASKAGLESFTKVL/ VDTPMLSS
GRLASTDEIVDACTFLLDNRY TTGTILPITGGL.

MTALTAQVALVTGASRGIGKATALALAATGMKVVVNYAQSSTAADAVVAEIANGGEAIAVQANVA
NADEVDQLIKTTLDKFSRIDVLVNNAGITRDTLLLRMKLEDW QAVIDLNLTGVFLCTKAVSKLMLKQK

OA = 4 CoA +
4 co@).

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-

SGRIINITSVAGMMGNPGQANY SAAKAGVIGFTKTVAKELASRGV T MTENLNAE
PILQFIPLARY GQPEEVAGTIRFLATDPAAAY ITGQTFNVDGGMVMF
MHYLPVAIVTGATRGIGKAICQKLFQKGLSCILGS TKESIERTAIDRGQLQSGLSY QRQCAIAIDFKK
WPHWLDYESYDGIEYFKDRPPLKQKYSTLFDPCNKWSNNERRY YVNLLINCAGLTQESLSVRTTA
SQIQDIMNVNFMSPVTMTNICIKY MMKSQRRWPELSGQSARPTIVNISSILHSGKMKVPGTSVYSA
SKAALSRFTEVLAAEMEPRNIRCFTISPGLVKGTDMIQNLPVEAKEMLERTIGASGTSAPAEIAEEV
WSLYSRTALET

MEIKLQGKVSLVTGSTRGIGRAIAEKLASAGSTVIITG YGVK; L
SEESINKAFEEIYNLVDGIDILVNNAGITRDKLFLRMSLLDWEEVLK\/NLTGTFL\/TQNSLRKMIKQR
GRIVI 'GNVGQVNYSTTKAGLIGFTKSLAKELAPRNVLVNAVAPGFIETDMTAVLSEEI

MIDLSGQTAL QLHKL LKALGNDLKDNYTIKVCNLTNTEECSN
LVAQIEKLDILVCNAGITKDTLAIRMKNEDFDQVIDINLKANFILNREAIKKMMTNRY GRINITSIVGVSG
NPGQANYCASKAGLIGMTKSLAYEVATRGITVNAVAPGFIKSDMTDKLNDEQKEAITRKIPKGTYG
MPEDIANAVAFLASKQSSYITGQTLHVNGGMLMV

+ NADPH.
{EC0:0000305(PubMed:26358291)

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.

CATALYTIC ACTIVITY: (3R)-3-hydroxyacyl-
[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-
[acyl-carrier-protein] + NADPH.



QosiB2

QoSIXL

QosLX9

Q9SS39

QosuY9

QosYz0

QIXF43

QozUZ0

CaMBZ5

C4NF90

CANFO1

A2iCC6

ASAEM3

KCS12_ARA
™

KCS9_ARAT
H

VPS_PSINU

KCS14_ARA
™

KCS15_ARA
™

KCS16_ARA
™

KCS6_ARAT
H

KCS13_ARA
™

PKS3_ALOA
R

PKS4_ALOA
R

PKS5_ALOA
R

THS7_VITVI

THS4_VITVI

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

3ketoacyl-CoA synthase 12
(KCS-12) (EC 2.3.1.199) (Very  KCS12
long-chain fatty acid condensing At2g28630
enzyme 12) (VLCFA condensing T8018.8
enzyme 12)

3-ketoacyl-CoA synthase 9
(KCS-9) (EC 2.3.1.199) (Very ~ KCS9
long-chain fatty acid condensing At2g16280
enzyme 9) (VLCFA condensing F16F14.22
enzyme 9)

Phioroisovalerophenone
synthase (Valerophenone
synthase) (EC 2.3.1.156) (3-

methyl-1- vPsS
(rihydroxyphenyDbutan-1-one

synthase)

Probable 3-ketoacyl-CoA

synthase 14 (KCS-14) (EC KCS14

2.3.1.199) (Very long-chain fatty At3g10280
acid condensing enzyme 14)  F14P13.12
(VLCFA condensing enzyme 14)

3-ketoacyl-CoA synthase 15
(KCS-15) (EC 2.3.1.199) (Very  KCS15
long-chain fatty acid condensing At3g52160
enzyme 15) (VLCFA condensing F4F15.270
enzyme 15)

3-ketoacyl-CoA synthase 16

(KCS-16) (EC 2.3.1.199) (Very  KCS16 EL2
long-chain fatty acid condensing At4g34250
enzyme 16) (VLCFA condensing F10M10.20
enzyme 16)

3-ketoacyl-CoA synthase 6
(KCS-6) (EC 2.3.1.199) CUT1 CER6
(Cuticular protein 1) (Eceriferum EL6 KCS6

6) (Very long-chain fatty acid ~ At1g68530
condensing enzyme 6) (VLCFA  T26J14.10
condensing enzyme 6)
3-ketoacyl-CoA synthase 13
(KCS-13) (EC 2.3.1.199)

- HIC KCS13
(Protein HIGH CARBON A2g46720

DIOXIDE) (Very long-chain fatty %"/
acid condensing enzyme 13)
(VLCFA condensing enzyme 13)

Aloesone synthase (EC 2.3.1.-)

(Polyketide synthase 3) PKSS,

Octaketide synthase 2 (OKS 2)
(EC 2.3.1.) (Polyketide PKS4
synthase 4)

Octaketide synthase 3 (OKS 3)
(EC 2.3.1.) (Polyketide PKS5
synthase 5)

SsTS
Stilbene synthase 6 (EC csviliook
2.3.1.95) (Resveratrol synthase

9216001
6) (Trinydroxystilbene synthase

LOC1002429
6) (StSy 6)

)

GSVIVT0000
Stilbene synthase 4 (EC 5194001
2.3.1.95) (Resveratrol synthase LOC1002418

4) (Trihydroxystilbene synthase 9.
4) (Stsy 4) VITISV_0313
76

Q2

Arabidopsis
thaliana
(Mouse-ear
cress)

Arabidopsis
thaliana
(Mouse-ear
cress)

Psilotum
nudum
(Whisk ferm)
(Lycopodium
nudum)

Arabidopsis
thaliana
(Mouse-ear
cress)

Arabidopsis
thaliana
(Mouse-ear
cress)

Arabidopsis
thaliana
(Mouse-ear
cress)

Arabidopsis
thaliana
(Mouse-ear
cress)

Arabidopsis
thaliana.
(Mouse-ear
cress)

Aloe
arborescens
(Kidachi aloe)

Aloe
arborescens
(Kidachi aloe)

Aloe
arborescens
(Kidachi aloe)

Vitis vinifera
(Grape)

Vitis vinifera
(Grape)

MDLLFLFFSLLLSVLFFK\WKUDSKQDKDCVILDVQCHKPTDDRMVSTQFSGEIIVRNQNLGLTEVK

QTYAPRL YVDSIGKLLERNQISPKDIDILVVNVS
MLSSTPSL_ASRIINHYKMRDDVKVFNLTGMGCSASLISVDIVKNIFKSYANKLALVATSESLSPNWV
SGNNRSMILANCLFRSGGCAILLTNKRSLRKKAMFKLKCMVRTHHGAREESYNCCIQAEDEQGRV
GFYLGKNLPKAATRAFVENLKVITPKILPVTELIRFMLKLLIKKIKIRQNPSKGSTNLPPGTPLKAGINF
KTGIEHFCIHTGGKAVIDGIGHSLDLNEYDIEPARMTLHRFGNTSASSLWYVLAYMEAKKRLKRGDR

NSCVWEVVRDL’ IDDYPPKSILNPYLEKFGWIQDEDPDTFK
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VPDAFM
MEAANEPVNGGSVQIRTENNERRKLPNFLQSVNMKYVKLGYHYLITHLFKLCLVPLMAVLVTEISR
LTTDDLYQIWLHLQYNLVAFIFLSALAIFGSTVYIMSRPRSVYLVDYSCYLPPESLQVKYQKFMDHS
KLIEDFNESSLEFQRKILERSGLGEETYLPEALHCIPPRPTMMAAREESEQVMFGALDKLFENTKIN
PRDIGVLVVNCSLFNPTPSLSAMIVNKYKLRGNVKSFNLGGMGCSAGVISIDLAKDMLQVHRNTYA
VVVSTENITQNWYFGNKKAMLIPNCLFRVGGSAILLSNKGKDRRRSKYKLVHTVRTHKGAVEKAFN
CVYQEQDDNGKTGVSLSKDLMAIAGEALKANITTLGPLVLPISEQILFFMTLVTKKLFNSKLKPYIPD
FKLAFDHFCI IDELEKNLQLSQ TLHRFGNT IWYELAYIEAKGRMKKG
NRVWQIAFGSGFKCNSAVWVALNNVKPSVSSPWEHCIDRYPVKLDF
MIQNSDSATATLLPRKKERASGPVSVLAIGSANPPNVFHQSLFPDFYFNITQSNHMAEVKAKFTRM
CAKSGIKKRRMHINEDILEAHPSIRS YHDNSLDVRQDMLVEEVPKLGKVAADNAIAEWGQPKSNIT
HLIFCTSSGIDMPGADWALMKLLGLRPTVNRVMVYQQGCFAGCTVLRIAKDLAENNKGSRILVVCS
406 ELTLISFRGPTEDHPENLVGQALFGDGAAALIVGADPIPHAENASFEIHWARSSVVPDSDDAVTGNI
KENGLVLHLSKTIPDLIGQNIHTLLKDALEEMFDACNPSSFNDLFWVIHPGGPAILDAVEEELNLKSE
RTHASREILSQYGNMVSPGVLFVLDYMRKRSVDERLSTTGEGLEWGVMLGFGPGLTVETLILKSV
PTQAFKYF
MFIAMADFKLLLLILILLSLFELDLLHFHHDFFSPFPVKIGLLLISIFFYAYSTTRSKPVYLVDFSCHQPT
DSCKISSETFFNMAKGAQLY TEETIQFMTRILNRSGLGDDTY SPRCMLTSPPTPSMYEARHESELVI
FGALNSLFKKTGIEPREVGIFIVNCSLFNPNPSLSSMIVNRYKLKTDVKTYNLSGISVDLATNLLKANP
NTYAVIVSTENMTLSMYRGNDRSMLVPNCLFRVGGAAVMLSNRSQDRVRSKYELTHIVRTHKGSS
DKHYTCAEQKEDSKGIVGVALSKELTVVAGDTLKTNLTALGPLVLPLSEKLRFILFLVKSKLFRLKVS
PYVPDFKLCFKHFCIHAGGRALLDAVEKGLGLSEFDLEPSRMTLHRFGNTSSSSLWYELAYVEAK
CRVKRGDRVWQLAFGSGFKCNSIVWRALRTIPANESLVGNPWGDSVHKYPVHVT

@
a
Iy

4

&
)

MEKEATKMVNGGVKSKSPKGSPDFLGYNLRYVKLGYIYLLSLSRTFCFFLPPLLLLFIFVSRFLPILA

FPLSTFFILLIYHYLTPSSVFLLDFSCYRPPDHLKITKSDFIELAMKSGNFNETAIELQRKVLDQSGIGE

ESYMPRVVFKPGHRVNLRDGREEAAMVIFGAIDELLAATKINVKHIKILVLNCGVLNTTPSLSAMVIN
451 HYKLRHNTESYNLGGMGCSAGVIAIDLAKDLLNAHQGSYALVVSTEIVSFTWYSGNDVALLPPNCF
FRMGAAAVMLSSRRIDRWRAKYQLMQLVRTHKGMEDTSYKSIELREDRDGKQGLYVSRDVMEV
GRHALKANIATLGRLEPSFEHICVLASSKKVLDDIHKDLKLTEENMEASRRTLERFGNTSSSSIWYE
LAYLEHKAKMKRGDRVWQIGFGSGFKCNSVVWKALKNIDPPRHNNPWNL
MDYPMKKVKIFFNYLMAHRFKLCFLPLMVAIAVEASRLSTQDLQNFYLYLQNNHTSLTMFFLYLAL
GSTLYLMTRPKPVYLVDFSCYLPPSHLKASTQRIMQHVRLVREAGAWKQESDYLMDFCEKILERS
GLGQETYVPEGLQTLPLQQNLAVSRIETEEVIIGAVDNLFRNTGISPSDIGILVVNSSTFNPTPSLSSIL
VNKFKLRDNIKSLNLGGMGCSAGVIAIDAAKSLLQVHRNTYALVVSTENITQNLYMGNNKSMLVTNC
LFRIGGAAILLSNRSIDRKRAKYELVHTVRVHTGADDRSYECATQEEDEDGIVGVSLSKNLPMVAA
RTLKINIATLGPLVLPISEKFHFFVRFVKKKFLNPKLKHYIPDFKLAFEHFCIHAGGRALIDEMEKNLHL
TPLDVEASRMTLHRFGNTSSSSIWYELAY TEAKGRMTKGDRIWQIALGSGFKCNSSVWVALRNVK
PSTNNPWEQCLHKYPVEIDIDLKE
MPQAPMPEFSSSVKLKYVKLGYQYLVNHFLSFLLIPIMAIVAVELLRMGPEEILNVWNSLQFDLVQ
VLCSSFFVIFISTVYFMSKPRTIYLVDYSCYKPPVTCRVPFATFMEHSRLILKDKPKSVEFQMRILER
SGLGEETCLPPAIHYIPPTPTMDAARSEAQMVIFEAMDDLFKKTGLKPKDVDILIVNCSLFSPTPSLS
AMVINKYKLRSNIKSFNLSGMGCSAGLISVDLARDLLQVHPNSNAIIVSTEIITPNY YQGNERAMLLP
NCLFRMGAAAIHMSNRRSDRWRAKYKLSHLVRTHRGADDKSFYCVYEQEDKEGHVGINLSKDLM
AIAGEALKANITTIGPLVLPASEQLLFLTSLIGRKIFNPKWKPYIPDFKLAFEHFCIHAGGRAVIDELQK
NLQL: TL WYELSY DRVWQI NSAVWK
CNRTIKTPKDGPWSDCIDRYPVFIPEVVKL
MFIAMADFKILLLILILISLFELDLLHFHHDFFSPFPVKIGLLLISIFFYAYSTTRSKPVYLVDFSCHQPTD
SCKISSETFFNMAKGAQLY TDETIQFMTRILNRSGLGDDTY SPRCMLTSPPTPSMYEARHESELVIF
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CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a \ery-long-
chain 3-oxoacyl-CoA + CO(2).
{EC0:0000305).

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305).

CATALYTIC ACTIVITY: Isowaleryl-CoA + 3
malonyl-CoA = 4 CoA + 3 CO(2) + 3-methyl-
1-(2,4,6-trihydroxyphenyl)butan-1-one.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a \ery-long-
chain 3-oxoacyl-CoA + CO(2).
{EC0:0000305).

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305).

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{EC0:0000305}).

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-0xoacyl-CoA + CO(2).
{ECO0:0000269|PubMed:10330468}.

GALNSLFKKTGIEPREVGIFIVNCSLFNPNPSLSSMIVNRYKLKTDVKTYNLSGMGCSAGAISVDLAT CATALYTIC ACTIVITY: A very-long-chain

NLLKANPNTYAVIVSTENMTLSMYRGNDRSMLVPNCLFRVGGAAVMLSNRSQDRVRSKYELTHIV
RTHKGSSDKHY TCAEQKEDSKGIVGVALSKELTVVAGDSLKTNLTALGPLVLPLSEKLRFILFLVKS
KLFRLKVSPYVPDFKLCFKHFCIHAGGRALLDAVEKGLGLSEFDLEPSRMTLHRFGNTSSSSLWY
ELAYVEAKCRVKRGDRVWQLAFGSGFKCNSIVWRALRTIPANESLVGNPWGDSVHKYPVHVT

IS
3
3

MGSLSDSTPLMKDVQGIRKAQKADGTATVMAIGTAHPPHIISQDSYADFYFRVTNSEHKVELKKKF
DRICKKTMIGKRYENFDEEFLKKYPNITSFDKPSLNDRHDICIPGVPALGAEAAVKAIEEWGRPKSEI
THLVFCTSGGVDMPSADFQCAKLLGLRTNVNKYCIYMQGCYAGGTVMRYAKDLAENNRGARVLM
403 VCAELTIALRGPNDSHIDNAIGNSLFGDGAAALIVGSDPIGVEKPMFEIVCAKQTVIPNSEEVIHLHL
RESGLMFYMTKDSAATISNNIEACLVD! ITPPEDWNSLI DQVEAKLKLR
PEKFSATRTVLWDYGNMISACVLYILDEMRRKSAAEGLETYGEGLEWGVLLGFGPGMTIETILLHS
LPPV
MGSLSNYSPVMEDVQAIRKAQKADGTATVMAIGTAHPPHIFPQDTYADFY FRATNSEHKVELKKK
FDRICKKTMIGKRYFNYDEEFLKKYPNITSFDEPSLNDRQDICVPGVPALGAEAAVKAIAEWGRPK
SEIMHLVFCTSCGVDMPSADFQCAKLLGLRTNVNKYCVYMQGCYAGGTVMRYAKDLAENNRGAR
403 VLVVCAELTIGLRGPNESHLDNAIGNSLFGDGAAALIVGSDPIIGVERPMFEIVCAKQTVIPNSEDVI
HLHMREAGLMFYMSKDSPETISNNVEACLYDVFKSVGMTPPEDWNSLFWIPHPGGRAILDQVEA
RLKLRPEKFGATRTVLWDCGNMVSACVLYILDEMRRKSVADGLATYGEGLEWGVLLGFGPGMTV
ETILLHSLPPV.
MGSIAESSPLMSRENVEGIRKAQRAEGTATVMAIGTAHPPHIFPQDTYADFYFRATNSEHKVELKK
KFDRICKKTMIGKRYFNYDEEFLKKYPNITSFDEPSLNDRQDICVPGVPALGKEAALKAIEEWGQPL
SKITHLVFCTSCGVDMPSADFQLAKLLGLNTNVYNKYCVYMQGCYAGGTVLRYAKDLAENNRGSRV
405 LVVCAELTIGLRGPNESHLDNAIGNSLFGDGAAALIVGADPIVGIEKPIFEIVCAKQTVIPDSEDVIHLH
LREAGLMFYMSKDSPETISNNVEGCLVDIFKSVGMTPPADWNSLFWIPHPGGRAILDEVEARLKL
RPEKFRATRHVLWEYGNMVSACVLYILDEMRNKSAADGLGTY GEGLEWGVLLGFGPGMTVETIL
LHSLPPV
MASVEEFRNAQRAKGPATILAIGTATPDHCVYQSDYADYYFRVTKSEHMTELKKKFNRICDKSMIK
KRYIHLTEEMLEEHPNIGAYMAPSLNIRQEITAEVPRLGRDAALKALKEWGQPKSKITHLVFCTTSG
VEMPGADYKLANLLGLETSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEMVVTFR
392 GPSEDALDSLVGQALFGDGSSAVIVGSDPDVSIERPLFQLVSAAQ REVGLTF

acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{ECO:0000305}.

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-oxoacyl-CoA + CO(2).
{EC0:0000305}).

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a \ery-long-
chain 3-oxoacyl-CoA + CO(2).
{EC0:0000305).

CATALYTIC ACTIVITY: A very-long-chain
acyl-CoA + malonyl-CoA = CoA + a very-long-
chain 3-ox0acyl-CoA + CO(2).
{EC0:0000305).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
1-CoA = 4 CoA + trol +

HLWPNVPTLISENIEKCLTQAFDPLGISDWNSLFWIAHPGGPAILDAVEAKLNLEKKKLEATRHVLS
EYGNMSSACVLFILDEMRKKSLKGENATTGEGLDWGVLFGFGPGLTIETVVLHSIPTVTN

MASVEEIRNAQRAKGPATVLAIGTATPDNCLYQSDFADY YFRVTKSEHMTELKKKFNRICDKSMIK
KRYIHLTEEMLEEHPNIGAYMAPSLNIRQEITAEVPKLGKEAALKALKEWGQPKSKITHLVFCTTSG
VEMPGADYKLANLLGLEPSVRRVMLYHQGCYAGGTVLRTAKDLAENNAGARVLVVCSEITVVTFR

4Co(@)

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-

392 GPSEDALDSLVGQALFGDGSAAVIVGSDPDISIERPLFQLVSAAQTF! REVGLTFH
LWPNVPTLISENIENCLTKAFDPIGISDWNSLFWIAHPGGPAILDAVEAKVGLDKQKLKATRHILSEY
GNMSSACVLFILDEMRKKSLKEGKTTTGEGLDWGVLFGFGPGLTIETVVLHSVGTDSN

106

yI-CoA = 4 CoA + I+
4.CO().



Entry

P24825

P30074

P13114

QoFUB7

QoAULL

QBRVK9

P13417

AZEXT

Q2R3AL

BOLDU6

P30075

P51078

P17818

P13416

QOSEP2

Q9AU0Y

Q8H4L3

P51090

QUE562

Entry_name

CHS2_MAIZE

CHS2_MEDSA

CHSY_ARATH

CHSY_HYPAN

PKS1_RUBID

CHS_CANSA

CHS3_SINAL

CHS1_ORYSI

CHS1_ORYSJ

PKS5_RUBID

CHS4_MEDSA

CHS5_MEDSA

CHSY_MATIN

CHS1_SINAL

CHSY_CARAN

PKS3_RUBID

CHS2_ORYSJ

CHSY_VITVI

CHS2_HORVU

Status

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

True Positive Raw Dataset — RCHS

Protein_names Gene_names

Chalcone synthase
C2 (EC2.3.1.74)
(Naringenin-chalcone
synthase C2)

Chalcone synthase 2
(EC 2.3.1.74)
(Naringenin-chalcone
synthase 2)

CHs2

Chalcone synthase
(EC 2.3.1.74)
(Naringenin-chalcone
synthase) (Protein
TRANSPARENT
TESTA 4)

CHS TT4 At5g13930
MAC12.11 MAC12.14

Chalcone synthase
(EC 2.3.1.74)
(Naringenin-chalcone
synthase)

CHS

Polyketide synthase

1 (RIPKS1) (EC

2.3.1.74) (Naringenin- PKS1
chalcone synthase

PKS1)

Naringenin-chalcone
synthase (EC
2.3.1.74)

CHS CAN1069

Chalcone synthase 3
(EC 2.3.1.74)
(Naringenin-chalcone
synthase 3)

CHs3

Chalcone synthase 1
(OsCHS1) (EC
2.3.1.74) (Naregenin-
chalcone synthase)

CHS1 CHS
Osl_035120

Chalcone synthase 1 CHS1 CHS
(OsCHS1) (EC 051190530600
2.3.1.74) (Naregenin- LOC_Os11g32650
chalcone synthase) ~ OsJ_032788

Polyketide synthase

5 (RIPKSS) (EC

2.3.1.74) (Naringenin- PKSS
chalcone synthase

PKS5)

Chalcone synthase 4
(EC 2.3.1.74) (CHS12-
1) (Naringenin-
chalcone synthase 4)

CHs4

Chalcone synthase 4-
2 (EC23.1.7
(Naringenin-chalcone
synthase 4-2)

CHS4-2 CHSI

Chalcone synthase
(EC 2.3.1.74)
(Naringenin-chalcone
synthase)

CHS

Chalcone synthase 1
(EC 2.3.1.7
(Naringenin-chalcone
synthase 1)

CHs1

Chalcone synthase
(EC 2.3.1.74)
(Naringenin-chalcone
synthase)

CHS

Polyketide synthase

3 (RIPKS3) (EC

2.3.1.74) (Naringenin- PKS3
chalcone synthase

PKS3)

Chalcone synthase 2
(OsCHS2) (EC
2.3.1.74) (Naregenin-
chalcone synthase)

CHS2 0s07g0214900
LOC_0s07g11440
0J1116_C08.125

Chalcone synthase
(EC 2.3.1.74)
(Naringenin-chalcone
synthase)

CHS

Chalcone synthase 2
(EC 2.3.1.74)
(Naringenin-chalcone
synthase 2)

CHs2

Chalcone synthase 4-
1 (EC 2.3.1.74) o

Catalytic_activity

Secondary metabolite CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-

Organism Length  Pathway
biosynthesis;
Zea mays (Maize) 400 flavonoid

oumaroyl-CoA = 4 CoA + naringenin
chalson + 3 co(z)

PATHWAY:

Medicago sativa

389 biosynthesis;
(Alfalfa) P

biosynthesis.

PATH)

Arabidopsis thaliana

(Mouse-ear cress) 395 biosynthesis;
flavonoid
biosynthesis.
PATHWAY:

Hypericum

androsaemum 390 biosynthesis;

(Tutsan) flavonoid

biosynthesis.

PATHWAY:

Rubus idaeus

(Raspberny) 391 biosynthesis;

flavonoid
biosynthesis.

Cannabis sativa
(Hemp) (Marijuana)

PATHWAY:
Sinapis alba (White
mustard) (Brassica
hirta)

395 biosynthesis;
flavonoid
biosynthesis.

PATHWAV'

Oryza sativa subsp.

A 398 bmsynlhesxs

flavonoid,
biosynthesis.

PATHWAY:

Oryza sativa subsp.

Sec
ey s 398 biosynthesis;

flavonoid
biosynthesis.

PATHWAY:

Rubus idaeus i
391 biosynthesis;
(Raspberry) flavonoid

biosynthesis.

PATHWAY:

MA?;';B“" saja 389 biosynthesis;
(ptiage flavorioid

biosynthesis.

PATHWAY:

Medicago sativa 389 biosynthesis;
(Alfalfa) flavonoid

biosynthesis.

PATHWAY:
Matthiola incana
(Common stock) 394 biosynthesis;
(Cheiranthus incanus) flavonoid
biosynthesis.

PATHWAV'
Sinapis alba (White
mustard) (Brassica
hirta)

395 blosymhes\s
flavonoid
biosynthesis.

PATHWAY:

damine amara

(Large bitter-cress) 395 biosynthesis;
javonoid

biosynthesis.

PATHWAY:

Rubus idaeus
391 biosynthesis;
(Raspberry) flavonoid

biosynthesis.

PATHWAY:

Oryza sativa subsp.

Iaponica (RI6S) 403 biosynthesis;

flavonoid
biosynthesis.

PATH)

IWAY:
Secondary metabolite

Vitis vinifera (Grape) 393 biosynthesis;
flavonoid

biosynthesis.

107

AY:
Secondary metabolite

PATHW.

Hordeum wigare

t
(Barley) 399 biosynthesis;

flavonoid
biosynthesis.

PATHWAY:

Medicaao sativa

Secondary metabolite

IWAY:
Secondary metabolite

Secondary metabolite

Secondary metabolite

Secondary metabolite

dary-metabolite

ondary metabolite

Secondary metabolite

Secondary metabolite

Secondary metabolite

Secondary metabolite

econdary metabolite

Secondary metabolite

Secondary metabolite

Secondary metabolite

Secondary metabolite coumaroyl-CoA

{EC ITE-
ProRule PRUlOUZB)

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl- CoA = 4 CoA + naringenin
chalcone + (2).

{ECO: oooozss\pnosm;-
ProRule:PRU10023).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-

Amino_Acid_Sequence

KAQRATGPATVLAIGTATPANCY Y QADY PDY Y FRITKSEHLTOLKEKF
KRMCDKSMIRKRV MHLTEEFLAENPSIVCAY MAPSLDARQDVVVVEVPKLGKAAAQKAIKE
WGQPKSRITHLV FCTTSGV DMPGADY QLTKALGLRPSVNRLMMY QQGCFAGGTVLRVAKD
LAENNRGARVLVV CSEITAV TFRGPSESHLDSLV GQALFGDGAAAV VY GADPDDRV ERPL
FQLVSAAQTILPDSEGAIDGHLREV GLTFHLLKDV PGLISKNIGRALDDAFKPLGISDWN
SIFWVAHPGGPAILDQVEAKV GLDKARMRATRHVLSEY GNMSSACV L FILDEMRKRSAED

GQATTGEGLDWGVLFGFGPGLTVETVVLHSVPITTGAATA

MVSVSEIRKAQRAEGPATILAIGTANPANCV EQSTY PDFY FKITNSEHKTEL KEKFQRMC
DKSMIKRRY MY LTEEILKENPNY CEY MAPSLDARQDMV V'V EVPRLGKEAAV KAIKEWGQP
KSKITHLNC’WSG\/DMPGADVQLTKLLGLRWVKRVMMVQQGCFAGGTV LRLAKELAEN
NKGARVLVVCSH VGQALFGDGAAALN GSDPVPEIEK

A T\AF'DSESAIDGHLREAGLTFD—LLKDVPGNSKNVTKA LVEAFEPLGISDY! Nsu:w
JAHPGGPAILDQVEQKLALKPEKMNATREVLSEY GNMSSACV LFILDEMRKKSTQNGLKT
TGEGLEWGV LFGFGPGLTIETVVLRSVAI

DEIRQAQRADGPAGIL.
FKRMCDKSTIRKRHVHLTEEFLKENPHMCAY MAPSLDTRQDNWEV PKLGKHAVKA K
EWGQRKSKITHYVFCTTSGY DMPGADY QUTKLLGLRPSVKRLWAMY QRGCHAGGTVLRIAK

coumaroyl-CoA = 4 CoA +

chalcone + 3 CO(2).
{ECO:0000255|PROSITE-
ProRule:PRU10023}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2;
{EC0:0000255|PROSITE-
ProRule:PRU10023,

ECO:0000269|PubMed: 12795704},

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2
{ECO:0000255|PROSITE-
ProRule:PRU10023,

ECO0:0000269|PubMed: 11437245},

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2).
{EC0:0000255|PROSITE-
ProRule:PRU10023,
ECO:0000269|PubMed:15120113,
ECO:0000269|PubMed:19581347}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin

chalcone + 3 CO(2)
{EC0:0000255|PROSITE-
ProRule:PRU10023}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin

chalcone + 3 CO(2).
{EC0:0000255|PROSITE-
ProRule;PRU10023}.

CATALYTIC.ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 GoA + naringenin

halcone + 3 CO(2).
{ECO:0000255|PROSITE -
ProRule:PRU10023).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-

coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2).

{ECO:0000255|PROSITE-

ProRule:PRU10023,

EC( 00269|PubMed:18068110}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-

Goumaroyl- CoA GoA + naringenin
chalcone+ (@)

{ECO: oocozss\paosma

ProRule:PRU10023).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2).
{EC0:0000255|PROSITE-
ProRule:PRU10023}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2
{ECO:0000255|PROSITE-
ProRule:PRU10023}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2).
{ECO:0000255|PROSITE-
ProRule:PRU10023}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-

VVCSETAV DSLVGQALFSDGAAALV GSDPDTSVGEK
P\FEM\/SAAQT\LPDSDGA\DGHLREVGLTFHLLKD\/PGLISKNN KSLDEAFKPLGISD
WNSLFWIAHPGGPAILDQV EIKL GLKEEKMRATRHV LSEY GNMSSA CV LFILDEMRRKSA
KDGVATTGEGLEWGYLFGFGPGLTVETVVLHSVPL

MV TVEEVRKAQRAEGPA DQATYPD) KEKFQRMC
DKSQIKKRY MY LNEEV LKENPNMICA Y MAPSLDARQDIVV VEV PKLGKEAAV KA IKEWGQP
KSKITHLV FCTTSGV DMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSETAV TFRGPTDTHLDSLY GQALFGDGAAAIIGSDPIPEV EKPLFELY
SAAQTILPDSEGAIDGHLREV GLTFHLLKDV PGLISKNV EKSLTEAFKPLGISDWNSLFW
JAHPGGPAILDQVEAKLSLKPEKLRATRHVLSEY GNMSSACV LFILDEMRRKSKEDGLKT
TGEGIEWGVLFGFGPGLTVETVVLHSVAIN

DEVRKAQRAEGPATILAIGTATRPNCY DQSTY PDY Y FRITKSEHK TELKEKFQRMC
OXSMKKRY MY & TEDLKENPSNEY MAPSLDA RIVV V'V Kl GKEAATKAIEWG0P
KSKITHLVFCTTSGV DMPGADY QLTKLLGLRPSV KRLVMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSETAV TFRGPSDTHLDSLY GQALFGDGAAA IV GSDPLPDIERPLFELY
SAAQTILPDSDGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLNEAFKPLDITDWNSLAW
IAHPGGPAILDQV EAKLGLKPEKLEATRNILSEY GNMSSACY LFILDEVRRKSVANGHKT
TGEGLEWGVLFGFGPGLTVETVVLHSVAAST

MV TVEEFRKAQRAEGPATIMAIGTATPANCY LQSEY PDY Y FRITNSEHKTELKEKFKRMC
DKSMIRKRY MHLTEEILKENPNLCAY EAPSLDARQDMV YV EV PKLGKEAATKAIKEWGQP
KSKITHLV FCTTSGV DMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVV CSETAV TFRGPNDTHLDSLV GQALFGDGSAALN GSDPIPEV EKPIFELYV
SAAQTILPDSDGAIDGHLREV GLTFHLL KDV PGLISKNIEKSLNEAFKPLGISDWNSLFW
JAHPGGPAILDQVESKLALKTEKLRATRHVLSEY GNMSSACV L FILDEMRRKCV EDGLNT
TGEGLEWGVLFGFGPGLTVETVVLHSVAI

MVMGTPSSLDEIRKAQRADGPAGILAIGTANPANHV IQAEY PDY Y FRITNSEHMTDLKEK
FKRMCDKSTIRKRHVHLTEEFLKI MAPSLDARQDN V'V EV PKLGKEAAV KAIK
E\NGQH(SKITH\/VFCFTSG\/I:MPGADVQLTKLLGLRPSVKRLMWQQGCFAGGTV LRLAK
oy Er GQALFSDG,

PIFEMV SAAQTILS PDSDGA\DGHLRE\/GLTFHLLKWPGUSKN\EKSLDEAFKPLGBD
WNSLFWIAHPGGPAILDDV EKKLGLKAEKI HV LSEY GNMSSACV LFILDEMRRKSK
s)GVArrGEGLEWGVLFGFGPGLWErVVLHsvw

MAAAV TV EEVRRAQRAEGPATVLAIGTATPANCY Y QADY PDY Y FRITKSEHMV ELKEKFK
RMCDKSQIRKRY MHLTEEILQENPNMCA Y MAPSLDARQDIV V'V EV PKLGKAAAQKAIKEW
GQPRSRITHLVFCTTSGV DMPGADY QLAKMLGLRPNV SRLMMY QQGCFAGGTVLRVAKDL
AENNRGARVLAV CSEITAV TFRGPSESHLDSMY GQALFGDGAAAV N GSDPDEAV ERPLF
QMY SASQTILPDSEGAIDGHLREV GLTFHLLKDV PGLISKNIERAL GDAFTPLGISDWNS
IFWVAHPGGPAILDQV EAKV GLDKERMRATRHV LSEY GNMSSACV L FILDEMRKRSAEDG
HATTGEGMDWGY LFGFGPGLTVETVVLHSVPITAGAAA

EEVRRAQRAEGPATVLAIGTATPANCY Y QADY PDY Y FRITKSEHMV ELKEKFK
RMCDKsQRKRV MHLTEEILQENPNMCA Y MAPSLDARQDIV V'V EVPKLGKAAAQKAIKEW
CQPRSRITHLVFCTTSGVDIRGADY QUAKIL GLRPWNRLVUY GRGCFAGGTVLRVAKDL

AVCSEITAV GQALFGI
QMVSASQTILPDSEGAIDGHLREV GLTFHLLKDV PGLISKNIERALGDAFTPLGISDWNS
IFWVAHPGGPAILDQV EAKV GLDKERMRATRHV L SEY GNMSSA CV L FILDEMRKRSAEDG
HATTGEGMDWGV LFGFGPGLTVETVVLHSVPITAGAAA

KAQRAEGPATVLAIGTATPPNCIDQSTY PDY Y FRITNSEHK TELKEKFQRMC
DKSMKKRVWLTELKENPS EY MAPSLDARQDMV V'V EIPKLGKEAATKA KEWGQP
KSKITHLV FCTTSGV DMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRLAKDLAEN
NRGAR\/LVVCSEXA\/TFRGPSDTHLDSLVGQALFGDGAAA\NGADPLPK\E?HFELV
SAAQTILPDSDGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLNEAFKPLDITDWNSLFW
1AHPGGPAILDQV ETKL GLKPEKLEATRHILSEY GNMSSA CV LFILDEVRRKSATNGLKT
TGEGLEWGVLFGFGPGLTVETVVLHSVGVTA

MVSVSEIRKAQRAEGPATILAIGTANPANCV EQSTY PDFY FKITNSEHKTEL KEKFQRMC
DKSMIKRRY MY L TEEILKENPSY CEY MAPSLDARQDMV V'V EVPRLGKEAAV KAIKEWGQP
KSKITHLNC'H'SG\/DMPGADVQLYKLLGLRWVKRVMNNQQGCFAGGTV LRLAKII_AEN
PSDTHLDSLV GQALFGDGAAALN GSDPV PEIEK]
AQT\AF'DSE}AIDGHLREAGLTFD—LLKDVPGNSKN\D(ALVEAFQPLG\SDV e
JAHPGGPAILDQVEQKLALKPEKMRATREVLSEY GNMSSACV LFILDEMRKKSTQDGLKT
TGEGLEWGV LFGFGPGLTIETVVLRSVAI

MVSV SEIRNAQRAEGPATTLAIGTANPTNCY EQSTY PDFY FKITNSEHKTEL KEKFQRNMC
DKSMIKRRY MY L TEEILKENPSY CEIMA PSLDAWQDMV V'V EV PRLGKEAAV KAKEWGQP.
KSKI’THLNCTTSG\/DMPGADVQLTKLLGLRWVKRVMNNQQGCFAGGTV LRLAKDLAEN
EVTAV TFRGPSDTHLDSLY GQALFGOGAAALN GSDPY PEEKF
Q APOSECATON L HAGLTEH LD PO SKMMALVEA R D
JAHPGGPAI \LDQVEQKLALKHEKMKATREVLSEVGNMSSAC\/LFILDENRKKSAQDGLKT
TGEGLEWGVLFGFGPGLTIETVVLRSVAI

MVMGATSLDERKAQ) EYPDYY! EKF
QRMCDKSMIRKRHMHLTEDFLKENPNMICA Y MAPSLDARQDIVV VEV! L GREAAVRAKE
WGQPKSKITHLVFCTTSGV DMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRLAKD
LAENNRGARVLVV CSEITAV TFRGPSDTHLDSLV GQALFSDGAAAL NV GSDPDTSV GEKP.
IFEMV SAAQTILPDSDGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLEEA FKPLGISDW
NSLFWIAHPGGPAILDQV EIKLGLKAEKMRATRHVLSEY GNMSSACVLFILDEMRKKSAQ
DGVATTGEGLEWGYLFGFGPGLTVETVVLRSVAL

MVMGTPSSLDERKA QRADGPAGILAIGTANPANHVIQASY FOY Y FRITNSEMMTDLKEK
FKRMCDKSTIRKRHVIHLTEEFLKDNPNMCA Y DDARQDIVVVEVPKLGKEAAVKAK
E\NGQH(SKITH\/VFCTTSG\/DMPGADVQLTKLLGLRPSVKRLMMVQQGCFAGGTV LRLAK
DLAENNRGARVLVV CSEITAV TFRGPSDTHLDSLY GQALFSDGAAALN GSDADISAGEK
PIFEMV SAAQTILPDSDGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLDEAFKPLGISD
WNSLFWIAHPGGPAILDDV EKKLGLKAEKMRATRHV LSEY GNMSSACV LFILDEMRRKSV
EDGVATTGEGLEWGVLFGFGPGLTVETVVLHSVPY

MGDTPSLDEIRKAQRADGPAGILAIGTANPANY VIQAEY PDY Y FRITNSEHMTDLKEK
FKRMCDKSTIRKRHVIV TEEFLKENPNVICA Y MAPSLDARQDIVVV EV PKLGKEAAV KAK
EWCQPKSKITHL FCTTSGV DMPOADY QLTKLLGLRPSVKRLIMY QGCFAGTTVLRLAK

coumaroyl-CoA = 4 CoA +

chalcone + 3 CO(2;
{ECO:0000255|PROSITE-
ProRule:PRU10023}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2).
{EC0:0000255|PROSITE-
ProRule:PRU10023,
ECO:0000269|PubMed: 11437245},

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2)
{ECO:0000255|PROSITE-
ProRule:PRU10023).

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
coumaroyl-CoA = 4 CoA + naringenin
chalcone + 3 CO(2).
{EC0:0000255|PROSITE-
ProRule:PRU10023).

CATALYTIC ACTIVITY: 3 malonyl -CoA + 4-
coumaroyl-CoA = 4 CoA

LVGQALFSDGAAAL GSDPDTSV GEK
P\FEM\/SAAQT\LPDSDGA\DGHLREVGLTFHLLKD\/PGLISKN\B(SLDEAFKPLGISD
WNSLFWIAHPGGPAILDQV EIKLGL KEEKMRATRHV MREY GNMSSA CV L FILDEMRKKSA
KDGVATTGEGLEWGVLFGFGPGLTVETVVLHSVPL

MVTVDEVRKAQRAEGPATILAIGTATPPNCY DQSTY PDY Y FRITKSEHRTEL KEKFQRMC
DKSRIKKRY MY LTEEL KENPSMCEY MAPSLDARQDMV V'V EIPKLGKEAA TKAIKEWGQL
KSKITHLVFCTTSGV DMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRLAKDLAEN
NKGARVLAVCSE"'AVTFRGPSDTHLDSL\/GQALFGDGAAAII\/GSDPLPDIERPLFELV
AQTILPDSDGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLNEA FKPLDITOWNSLFW
ot ILDQVEAKLGLKPEKLEATRNILSEY GNMSSACV LFILDEV RRKSVANGHKT
TGEGLEWGVLFGFGPGLTVETVVLHSVAAST

MV TSTVKLEEVRRMQRAEGMAAV LAIGTATPANCY Y QTDY PDY Y FRV TNSEHL TNLKERF
QRMCESSQIRKRY THLTEEILQENPSMCV FTAPSLDARQDMY VAEV PKLGKAAAEEAIKE
WGQRUSAITHLY FCTTNGY DMPGADY QUAKVLGLITSVKRLVMY QQGCFAGGTVLRVAKD
DSLVGHALFGDG,
LFQNSASQT\LPGTE:\ANGHLRE\/GLTFHLPKD\/PEISDSV&ALTDAFMPLG\/HDW
DQVEEKVALL SEYGNMASATVLFVLDEMRKLSAD
:xsmrrssemwcvms;cpmwsrwmsvnmuawq

MVSVAEIRKAQRAEGPATVLAIGTATPANCY Y QADY PDY Y FRITNSEHMTEL KEKFKRMC
EXSMINKIRY MHLTEEILKEAPIW CAY MAPSLDARGON VY BV KL GKEAAAKAKEWGQP
KSKITHLVFCTTSGV DMPGADY QLTKLLGLKPSVKRLMMY QQGCFAGGTVLRLAKDLAEN
NAGSRVLVVCSETAV TFRGPSDTHLDSLV GQALFGDGAAAV IGADPOTKIEL PLFELY
SAAQTILPDSEGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLV EAFTPIGISDWNSLFW
JAHPGGPAILDQVELKL GL KEEKLRATRHV LSEY GNMSSACV LFIL DEMRKKSIEEGKGS
TGEGLEWGVLFGFGPGLTVETVVLHSVSAPAAH

MAAVRLKEVRMAQRAEGLATVLAIGTAVPANCY Y QATY PDY Y FRV TKSEHLADLKEKFQR
MCDKSMIRKRHVHL TEEILIKNPKICA HVETSLDARHA ALY EV PKLGQGAAEKAIKEWG
QPLSKITHLVI FCH'SGVDM?GADVQLTKLLGLSPWKRLMMVQQGCFGGAWLRLAKD\A

chalcone + 3 CO(2).
{ECO:0000255|PROSITE-
ProRule:PRU10023}.

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-
COA + naringenin

HALFGDGAAAAIGADPDQLDEQPV
LVSASQT\LPSBMDGI—LTEAGLTIHLLKD\/PGLEE\I\EQALEAF?LGHNWNS\
DRVEDRVGLD} FVLD\

DGL
ATTGEGKDWGV LFGFGPGLTVETLVLHSVPVPVPTAASA

MV SV SEIRQAQRAEGPATIMAIGTANPSNCY EQSTY PDFY FKITNSEHKY EL KEKFQRMC
DKSMIKRRY MY LTEEILKENPSV CEY MAPSLDARQDMV V'V EVPRLGKEAAV KAIKEWGQP
KSKITHLIFCTTSGV DMPGADY QLTKLLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSEVTAV TFRGPSDTHLDSLY GQALFGDGAAALN GSDPPEIEKPIFEMY




P51075

P49440

22924

P51088

Po8go4

22926

P22927

P51085

P51079

P51080

P51087

P51086

P24824

P26018

Quzsa1

Qozsd0

P30081

P30080

P24826

P4B406

Q43188

Q9SBL3

CHSY_BETPN

CHSY_PHAVU

CHSB_PETHY

CHS6_TRISU

CHSA_PETHY

CHSF_PETHY

CHSG_PETHY

CHS3_TRISU

CHS6_MEDSA

CHS7_MEDSA

CHSS5_TRISU

CHS4_TRISU

CHS1_MARZE

CHS1_HORVU

CHS1_DAUCA

CHS2_DAUCA

CHS7_SOYBN

CHS6_SOYBN

CHS1_SOYBN

CHS5_SOYBN

CHS2_SOLTU

CHS6_SORBI

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

reviewed

Chalcone synthase (EC
2.31.74) (Naringenin-  CHS
chalcone synthase)

Chalcone synthase 17
(EC2.3.1.74) (Naringenin- CHS17
chalcone synthase 17)

Chalcone synthase B (EC
23.1.74) (Naringenin-  CHSB
chalcone synthase B)

Chalcone synthase 6 (EC
231.74) (Naringenin-  CHS6
chalcone synthase 6)

Chalcone synthase A (EC
231.74) (Naringenin-  CHSA
chalcone synthase A)

Chalcone synthase F (EC
23.1.74) (Naringenin-  CHSF
chalcone synthase F)

Chalcone synthase G (EC
231.74) (Naringenin-  CHSG
chalcone synthase G)

Chalcone synthase 3 (EC
231.74) (Naringenin-  CHS3
chalcone synthase 3)

Chalcone synthase 6-4
(EC23.1.74) (Naringenin-

chalcone synthase 6-4) o0
(Fragment)
Chalcone synthase (EC
23179 .
317) (Narngerin-

chalcone synthase)
(Fragment)

Chalcone synthase 5 (EC
23.1.74) (Naringenin-  CHS5
chalcone synthase 5)

Chalcone synthase 4 (EC
23.1.74) (Naringenin-
chalcone synthase 4)
(Fragment)

CHs4

Chalcone synthase WHPL
(EC 2.3.1.74) (Naringenin-
chalcone synthase
WHP1) (White pollen)

WHPL

Chalcone synthase 1 (EC
2.3.1.74) (Naringenin-
chalcone synthase 1)

CHS1 CHS.

Chalcone synthase 1 (EC
23.1.74) (DeCHS1)
(Naringenin-chalcone
synthase 1)

cHs1

Chalcone synthase 2 (EC
2.3.1.74) (DeCHS2)
(Naringenin-chalcone
synthase 2)

cHs2

Chalcone synthase 7 (EC
231.74) (Naringenin-  CHS7
chalcone synthase 7)

Chalcone synthase 6 (EC
23.1.74) (Naringenin-  CHS6
chalcone synthase 6)

Chalcone synthase 1 (EC
231.74) (Naringenin-  CHS1
chalcone synthase 1)

Chaicone synthase 5 (EC
2.3.1.74) (Naringeni
chalcone synthase 5)

cHss

Chalcone synthase 2 (EC
23.1.74) (Naringenin-  CHS2
chalcone synthase 2)

Chalcone synthase 6 (EC
23.1.74) (Naringenin-  CHS6
chalcone synthase 6)

Betula pendula (European
white birch) (Betula
verrucosa)

Phaseolus vulgaris
(Kidney bean) (French
bean)

Petunia hybrida (Petunia)

Trifolium subterraneum
(Subterranean clover)

Petunia hybrida (Petunia)

Petunia hybrida (Petunia)

Petunia hybrida (Petunia)

Trifolium subterraneum
(Subterranean clover)

Medicago sativa (Allalfa)

Medicago Sativa (Alfalfa)

Tritolum subterraneum
(Subterranean clover)

Trifolium subterraneum
(Subterranean clover)

Zea mays (Maize)

Hordeum vuigare (Barley).

Daucus carota (Wid
carror)

Daucus carota (Wid
carror)

Glycine max (Soybean)
(Glycine hispida)

Glycine max (Soybean)
(Glycine hispida)

Glycine max (Soybean)
(Glycine hispida)

Glycine max (Soybean)
(Glycine hispida)

Solanum tuberosum
(Potato)

Sorghum bicolor
(Sorghum) (Sorghum
vuigare)

MASVEERKAQRAHGPATV LAIGTATPSNCITQADY PDY Y FRITKSDHMTELKEKFKRMC
DKSMIKKRY MY LNEELNENPNMCAY MAPSLDARQTIVV VEV PKLGKEAATKA KEWGQP
KSKVTHLVFCFTSGVMADVQLTKLLGLWSVKRLMMVQQGCFAGGTVLRLAKD!_AEN

\Y: Secondary  CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl- NKGARVLVV CSH

EITAV TFRGPTDTHLDSLY GQALFGDGAAAV IV GADPDTSVERPLFEL|
395 melabome biosynthesis;  CoA =4 CoA + naringenin chalcone + 3 CO(2). SAAQTILPDSDGA\DGHLREVGLTWLLKWPGI\SKNE(SLAEAFAPLG\SDWNSLFW
:PRU10023}. IAHPGGPAILDQVES| SACVLFILDEMRRNSLEGGKVT

TGESLE\NGVLFGFGPGLTVETVVLHSVPVWEASH

MVSVSERQAQRAEGPATILAIGTATPSNCY DQSTY PDY Y FRITNSEHMTDLKEKFQRMC
DKSMIKKRY MHLNEEILKENPNMCA Y MAPSLDARQDIVVVEVPKLGKEAAV KA KEWGQP
PATHWAY: Secondary aTALvnc ACTVITY: 3 malonyl-CoA + 4-coumaroyl- KSKITHLIFCTTSGV DMPGADY QLTKLLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN
389 metaboite biosynthesis; CoA - naringenin chalcone + 3 COLQ). NKGARVLVVCSETAV TFRGPSDTHLDSLY GQALFGDGAAAV N GSDPPQIEKPLFELY
flavonoid U10023). WTAQTIAPDSDGAIDGHLREV GLTFHLLKDVPG SKNIGKALFEAFNPLNISDY NSIFW
1AHPGGPAILDQV EQKLGLKPEKKATROVLSDY GNMSGACVLFILDEMRRKSAEKGLKT
TGEGLEWGVLFGFGPGLTIETVVLHSVAI
MKVENGQLQGWWAQRAEGPAKILAIGTATPFHWY DONSY PDY Y FRV TNSQHLVDLKEKFR
RICSKTMKKRHMFLTEEL LRKNPTLCSHNEPSLDIRQDILV SEPKLGKEAALKAIGEW
GQPKSTITHLVFCTRSGV DMPGADCQLVKLLGLSPSVQRLMMY QQGCFAGGTMLRLAKDL.
AENNKGARVLVVCAESSAIGFRGPSEANY DNLIAQALFGDGAAALIGSDPKPGLERPVF
EFSAAQTFVPNGDCHLALHLREMGLTFHCTKDV PPTIAKNV ESCLIKAFEPLGISDWNS
LFWILHPGGNAN DQVESTLGLGPEKLRATRNILSEY GNLSSACCLFILDEIRKKSAREG
MRTSGDGLDLGVLLSFGPGLTIETVVLRSVP

PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl-
392 metabolite biosynthesis;  CoA =4 CoA + naringenin chalcone +3 CO(2).
flavonoid {Eco: :PRU10023}.

wsvmwmqmmmmmmmmwmawm:v;xrmsa«mxm:qwc
DKS MY LTEEILKENPSLCEY MAPSLDARQDMVVVEV PRLGKEAAV KAKEWGQP
K!THL\FCTTSGVDMPGADVQLTKLLGLRWVKRV VY QQGCFAGGTVLRLAKDLAEN
PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyk-CoA + 4-coumaroyl- NKGARVLVVCSEV TAV TFRGPSDTHLDSLY GQALFGDGAAALN GSDPV PEIEKPFEMY
389 metabolie biosynthesis;  CoA = 4 CoA + naringenin chalcone + 3 CO(2). WTAQTIAPDSEGAIDGHLREAGLTFHLLKDV PGV SKNIDKALV EAFQPLNISDY NSIFW
flavonoid ECO le:PRUL0023}. 1AHPGGPAILDQV EQKLALKPEKMKATRDVLSEY GNMSSACV L FILDEMRKKSAQNGLKT
TGEGLDWGVLFGFGPGLTIETVVLHSVAI

MVTVEEY RKAQRAEGPATVMAIGTATPTNCY DQSTY PDY Y FRITNSEHKTDLKEKFKRMC
EKSMKKRY MHLTEEILKENPSMCEY MAPSLDARQDIV V'V EVPKLGKEAA QKA KEWGQP.
KSKITHLVFCTTSGVDMPGCDY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVV CSEITAV TFRGPNDTHLDSLY GQALFGDGAGAI maswpcvm;av
SAAQTLLPDSHGAIDGHLREV GLTFHLLKDV PGLISKNIEXSLEEAFKPLGISDWNSI
IAHPGGPAILDQV EKLGLKPEKLKATRNVLSDY GNMSSACVLFI LDBARKASAKBSLGT
TGEGLEWGVLFGFGPGLTVETVVLHSVAT

PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl-
389 metabolite biosynthesis; =4 CoA + naringenin chalcone + 3 CO(2).
flavonoid ECO le:PRU10023}.

MVSVEEVRRAQRREGPATILAIGTATPLNCY DQTTY PDY FFRY TNSDHKTEL KEKFKRMF

ERSMKKSY LHLTEEILKENPSICEF GKEAAQNAIKEWGQP
KSKITHLVFCTTTGY DMHGADY QLTKLLGLSPSVKRLMMY QLGCY GGGTVLRLAKDLAEN
PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + NKGARALVVC: DTDLDVLVGQALFGDG EVEKPLFELV

SAAQTLYPDCGHKIY GKTSDV GLTFHLHKDV PRLV SQNIEKSLVEVFQPLGIFDWNSIFW
DQVEL KLGLKPEKLNV TRHVMSEY GNMASACVLFVLDEMRKTSTKEGFGT
NVEGLEWGVLCSFGPGLTIETVLHSVS!

389 metabolite biosynthesis;  CoA =4 CoA + naringenin chalcone +3 CO(2).
flavonoid {Eco: :PRU10023}.

MATVEERKAQRAEGPATVLAIGTANPSNCYDQSAY PDFLFRITTSDH(TELKEFKHNC

EGSMIKKRY LHLTEEL KNNPNICEHKAPSLNARQEIAV AEAPKLGKRAA QKAIEEWSQS
KSKITHLV FC!TFSVELFGADVQLTKLLGLSPSVKFEMMVQQGCVGGGTALRLAKDLAEN

NKGARVLVV CVEITVMSFQAPSRNDTDELDVLY GQALFADGASAV IGSDPILAIEKPLF

ELVFATQTLIPDSGHVICANLTEAGLIPHLLKDAPIV ISQNIERRLV EV FKPLGISDWI

IFWV AHPGGPAILNQIEL KLGLKPEKLRAARHV LSEY GNMSSACVLFVLDEVRKGTEXG

MGTTGEGLEWGLLFGFGPGLTIETVVLHSVSIN

PATHWAY: Secondary ~ CATALYTIC ACTVITY: 3 malonyk-CoA + d-coumaroyh-
393 metabole biosynthesis;  CoA = 4 CoA + naringenin chalcone + 3 CO(2).
flavonoid ECO: :PRUL0023}.

MVSVSERQAQRAEGPATILAIGTANPANKY EQATY PDFY FKITNSEHKV EL KEKFQRMC
DKSMIKSRY MY LTEEL KENPSLCEY MAPSLDARQDMVV/VEVPRLGKEAAV KAIKEWGQP
KSKITHLIFCTTSGV DMPGADY QLTKLLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN
PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyk-CoA + 4-coumaroyl- NKGARVLVVCSEV TAV TFRGPSDTHLDSLY GQALFGDGAAALN GSDPV PEEKPIFVMY
389 metabolie biosynthesis;  CoA =4 CoA + naringenin chalcone + 3 CO(2). WTAQTIAPDSEGAIDGHLREAGLTFHLLKDV PGV SKNIDKALVEAFQPLGISDY NSIFW
flavonoid ECO le:PRUL0023}. JAHPGGPAILDQV EQKLALKPEKMKATREVLSEY GNMSSACV LFILDEMRKKSTKDGLKT
TGEGLDWGVLFGFGPGLTIETVVLHSVAI

L QPKSKITHLIFCTTS QLTKLLGLRPYVKRY MMY QQGC
FAGGTVLRLAKDLAENNKGARVLVVCSEV TAV TFRGPSDTHLDSLY GQALFGDGAAALN
GSDPPEIEKPFEMY WTAQTIAPDSEGAIDGHLREAGLTFHLLKDV PGV SKNIDKALY
EAFQPLNISDY NSIFWIAHPGGPAILDQV EQKLGLKPEKMKATREV LSEY GNMSSACVLF
ILDEMRKKSAQQGLKTTGEGLDWGVLFGFGPGLTIETVVLHSVAL

THWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl-
285 melahome biosynthesis;  CoA = 4 CoA + naringenin chalcone +3 CO(2).
flavonoid ECO :PRUI0023}.

WLNCWSVWPGAWQLTKLLGLRWV KRYMMY QQGCFAGGTVLRLAKDLAENNKGA
DSLV(

PATHWAY: Secondary... CATALYTIC ACTVITY:3malonyl-CoA + 4-coumaroyl- RVLVVCSEV TAV TFRGPSDTH GQALFGDGAAALNGSDP\/HEIEKHFEM\/WTAQ
265 metabolte biosynihesis; _ COA=4.Cop + natingenin chalcof +3 CO(2). REAGLTFHLLKE EAFEPLGISD
flavonoid U10023}. GGPAILBI!VEQKLALKPEKMKATRE\/LSEVGNMSSAO/LF\LDEIMKKSAQDGLKWGEG

LEWGVLFGFGPGLTETVVLRSVTI
MVSVABRQAQRAEGPATILAIGTANPANKV EQATY PDFY FKITNSEHKY ELKEKFQRMC
DKSMIKSRY MY LTEEILKENPSV CEY MAPSLDARQDMVV VEVPRLGKEAAV KA KEWGQP
KSKITHLIFCTTSGV DMPGADY QLTKLLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSEV TAV TFRGPSDTHLDSLY GQALFGDGAAALN GSDPV PEEKPIFEMY.
WTAQTIAPDSEGAIDGHLREAGLTFHLLKDV PGIV SKNIDKALV EAFQPLNISDY NSIFW
JAHPGGPAILDQVEQKLALKPEKMKATRDV LSEY GNMSSACV LFILDEMRKKSAQNGLKT
TGEGLDWGVLFGFGPGLTIETVVLHSVAI

PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl-
389 metabolite H ynthesis;  CoA =4 CoA + naringenin chalcone + 3 CO(2).
flavonoid i :PRUI0023}.

QRAEGPATIL/ EQATY FDF KEKFQRMC
DKSMKSRYMY LTEELKENPSV CEY MAPSLDARQDMY V'V EVPRLGKEAAVKAIKEWGQP
PATHWAY: Secondary  CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl- KSKITHLIFCTTSGV DMPGADY QLTKLLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN
ot iy firges: |l cpa + naringgnf hacore + 3 CO(2), NKGARVLVVCSEVTAV TFRGPSDTHLDSLY GQALFGDGAAALN GSDPV PEEKPIFEMY
flavonoid ProRule:PRUI0023). WTAQTIAPDSEGAIDGHLREAGLTFHLLKDV PGIVSKNIDKALVEAFQPLGISDY NSIFW
IAHPGGPALLD

MAGATVTVDEVRKGQRATGPATVLAIGTATPANCVY QADY PDY Y FRITKSDHLTDLKEKF
KRMCDKSMIRKRY MHLTEEFLSENPSMCAY MAPSLDARQDV V'V TEVPKLGKAAAQEAIKE

PATHWAY: Sacondary  CATALYTICACTVITY: 3 malony-CoA + 4-coureroyl- ) CORCTTOL IVETER R o AL AL VR A AGOCmB e Koy

400 metabolite biosynthesis;  CoA =4 CoA + naringenin chalcone +3 CO(2).
flavonoid {EcO: 010023}

QLVSAAQTLPDSEGAIDGHLREVGLAF}—LLKWPGLISKNIERALEDAFERGLSD\NNS
IFWV AHPGGPAILDQV EAKV GLDKARMRATRHVLSEY GNMSSACVLFILDEMRKRPAEDG
QSTTGEGLDWGVLFGFGPGLTVETVVLHSVPITTGAPTAA

MAATMTVEEVRNAQRAEGPATVLAIGTATPANCY Y QADY PDY Y FKITKSDHMADLKEKFK

RMCDKSQIRKRY MHLTEEIL EENPNMCA Y MAPSLDARQDIVVV EV PKLGKAAAQKAIKEW

GQPRSKVTHL\/FCH’SGVDNPGADVQLYKMLGLRPS\/ KRLMMY QQGCFAGGTVLRLAKDL
CSETAV'

LCoA + 4~ -
Y: Secondary  CATALYTIC ACTVITY: 3 malonyl-CoA + 4-courmaroyh msvmm:

PATHWA
398 meubome biosynthesis;  CoA =4 CoA+ naringenin chalcone + 3 CO(2).
:PRU10023}.

QLVSASQT\LFDSB}A IDHWNS
VFWIAHQGGPA ILDMV EAKV NLNKERMRA TRHV LSEY estsAo/n.:\wwans;«me
HATTGEGMDWGYLFGFGPGLTVETVVLHSVPISAGATA

MVTVNEFRKAQRAEGPATVLAIGTATPPNCVDQSAY ADY Y FRITNSEDKPEL KEKFRRVMC
EKSMINTRY MHLTEDLLKQNPSFCEY MASSLDARQDIVVNEV PKLGKEAALRA KEWGQP
KSK!THL\FCWSGVDMPGADFRLTKLLGLRPSVKRFNNNQQGCFAGGTVLRLAKDLAm

W x G
PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malony-CoA + 4-coumaroy| RVLVVCS: THLDSLVGQALS DPVIGIEKPLFEN

09 s bosyiness; | Co4 = o s e e 3000). S LGV AL ST
IAHPGGPAILDQV ETELSLKPEKLKSTRQVLRDY GNMSSACV LFILDEMRKA SAKDGHRT
el
MANHNA EEEIRKRQRAQGPANILAIGTATPSNCV Y QADY PDY Y FRITNSEHMSDLKLKF
KRNCE(SM\RKWMHWEVLKWWV@VMPSLMWDLVVVWPRLGKEAAAKAKE

rons - AR
eocnY: Sacomiary [ CATALYTIG AGTVIT: 3 ey + &coumarcpH Ao e T ORorL D SO IC GO S,
397 metabolite biosynthesis;  CoA =4 CoA + naringenin chalcone + 3 CO(2). FQLISAAQTILPDSDGA IDGHLREV GLTFHLLKDV PGLISKNIEKSLKEA FGPIGISDWN
flavonoid {ECO! :PRU10023}. SLFWIAHPGGPAILDQV ELKLGLKEEKMRATRQV LSDY GNMSSACV LFILDEMRKKSIEE
Pt o
MV SVAERQAQRAEGPATILAIGTANPPNRY DQSTY PDY Y FRITNSDHMTELKEKFQRMC
DT e AV AoV AN
KSKITHLIFCTTSGV DMPGADY QLTKQLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN
PATHWAY: Secondary CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl- NKGAR\/LV\/CSEWAVTFRGPSDTHLDSLVGQA LFGDGAAAVVGSDPIPQVEKPLY ELV

389 metabolite biosynthesis; A =4 CoA + naringenin chalcone +3 CO(?) 'AQTIAPDSEGA IDGHLREV GLTFHLLKDV PGIV SKNIDKA LFEA FNPLNISDY NSIFW

flavonoid ECO: U0 IAHPGGPAILDQVEQKLGLKE(MKATRENLSEVGNMSSACVLFLDEMRRKSAENGHKT

TGEGLEWGV LFGFGPGLTIETVVLHSVAI

MVSVEERKAQRAEGPATVMAIGTATPPNCY DQSTY PDY Y FRITNSDHMNEL KEKFKRMC
DKSMIKKRY MY LNEEILKENPSV CAY MEPSLDARQDMV VV EV PKLGKEAATKAKEWGQP
KSKITHLIFCTTSGV DMPGADY QLTKLLGLRPSVKRY MMY QQGCFAGGTVLRLAKDLAEN

GARVLVVCSETAV TFRGPSDTHLDSLY GQALFGDGAAAV NV GSDPLPAEKPLFELVW
TAQTILPDSEGAIDGHLREV GLTFHLLKDV PGLISKNIQKALV EAFQPLGIDDY NSIFWI
AHPGGPAILDQVEAKLGLKPEKMEATRHV LSEY GNMSSACVLFILDQMRKKSIENGLGTT
GEGLEWGVLFGFGPGLTVETVVLRSVTV

PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyk-CoA + 4-coumaroyl-
388 metabolie biosynihesis;  CoA =4 CoA + naringenin chalcone +3 CO(2).
flavonoid ECO 10023}

MVSVEEIRKAQRAEGPATVMAIGTATPPNCY DQSTY PDY Y FRITNSEHMTEL KEKFKRVC
DKSMIKKRY MY LNEEILKENPSVCAY MAPSLDARQDIMY V VEVPKLGKEAATKAKEWGQP
KSKITHLIFCTTSGV DMPGADY QLTKLLGLRPSVKRY MMY QQGCFAGGTVLRLAKDLAEN
PATHWAY: Secondary ~ CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroy- NKGARVLVVCSEITAV TFRGPTOTHLDSLV GQALFGDGAAAV IV GSDPLPV EKPLFQLVW
388 metabolie biosynthesis;  CoA = 4 CoA + naringenin chalcone + 3 CO(2). TAQTILPDSEGAIDGHLREV GLTFHLLKDV PGLISKNIEKALVEAFQPLGISDY NSIFWI
flavonoid {Eco :PRUL0023}. AHPGGPAILDQVEAKLGLKPEKMEA TRHVLSEY GNMSSACV LFILDQMRKKSIENGLGTT
GEGLDWGVLFGFGPGLTVETVVLRSVTL

MVSVEEIRQAQRAEGPATV MAIGTATPPNCV DQSTY PDY Y FRITNSEHMTELKEKFKRMC
DKSMKKRY MY LNEEILKENPSV CA Y MAPSLDARQDMVV MEV PKLGKEAA TKAKEWGQP.
KSKITHLIFCTTSGV DMPGADY QLTKLLGLRPSVKRY MY QQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSEITAV TFRGPTDTHLDSLY GQALFGDGAAAV IV GSDPLPVEKPLFQLVW
TAQTILPDSEGAIDGHLREV GLTFHLLKDV PGLISKNIEKALV EAFQPLGISDY NSIFWI
AHPGGPAILDQVEAKL GLKPEKNEATRHVLSEY GNMSSACVLFILDQMRKKSENGLGTT
GEGLDWGVLFGFGPGLTVETVVLRSVTV

PATHWAY: Secondary  CATALYTIC ACTVITY: 3 malonyk-CoA + d-coumaroyl-
388 metabolte biosynthesis;  CoA = 4 CoA + naringenin chalcone + 3 CO(2)
flavonoid biosynthesis.  {ECO:0000255|PROSITE-ProRule:PRU10023}.

MVTVEEVRKAQRAKGPATIMAIGTATPSNCY DQSTY PDY Y FRITNSEHMTELKEKFKRMC
DKSMNKRVM—{LTEEILKENPN\CEVMAPSLDARQDNVVEVPKLGKEAAQKAIKENGQP
MPGADVQLTKLLGLRBVKRLNMVQQGCFAGGTV\RLAKDLAEN
PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl- NKGAR\/LV\/CSHTAVTFSGPSDTH ILDSMV GQALFGDG/
A \AQTLLPDSEGAI \DGHLREVGLYFHLLKWPGL\SKNWSUEA FQPLG\S INSIFW

389 metabolite biosynthesis; CoA + naringenin chalcone + 3 CO(2).
flavonoid :PRUL0023}. IAHPGGPAILDQVEL KLGLKPEKLQATRQULSDY GNVSSACYLFIDEVRKASSKEGLST
TGEGLDWGYLFGFGPGLTVETVVLHSVST
ERVL0) MAGATVTVEEVRKAQRATGPATVLAIGTATPANCY HQADY PDY Y FRITKSEHMTELKEKF
KRMCDKSQIRKRY MHLTEEY LAENPNMCA Y MAPSLDARQDIV V'V EV PKLGKAAAQKAIKE
'WGQPKSKITHLV FCTTSGVDMPGADY QLTKMLGLRPSVNRLMMY QQGCFAGGTVLRVAKD
o AY: Secondary  CATALYTIC ACTVITY: 3 malonyk-CoA + 4-coumaroyl- "y 80 L0 000 0 et A P AAVNGADPDERVERPL

o~
ook osyniess: | Coh =4 G s argernchalions 1300 01O o e e kv SHARLEEATHAL O
IFWVAHFGGPA\LDQVEAKVGLKKERMRATH—NLSEVGNMSSACVLFILDEMRKRSAED

GQATTGEGFDWGV LFGFGPGLTVETVVLHSVPTTGATITA
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Chalcone synthase 1 (EC
23.1.74) (Naringenin-
chalcone synthase 1)

Chalcone synthase 4 (EC
2.3.1.74) (Naringenin-
chalcone synthase 4)

Chalcone synthase 7 (EC
2.3.1.74) (Naringenin-
chalcone synthase 7)

Chalcone synthase 18
(EC23.1.74) (Naringenin-
chalcone synthase 18)

Gwa\cune synthase 2 (EC
2.3.1.74) (Naringenin-
cha\cune synthase 2)

Cnalcone synthase 1A
(EC2:3.1.74) (Naringenin-
chalcone synthase 1A)

Chalcone synthase RIS
(EC23.1.74) (Naringenin-
chalcone synthase)
(Fragment)

Chalcone synthase 3 (EC
23.1.74) (Naringenin-
chalcone synthase 3)

Chalcone synthase 2 (EC
2.3.1.74) (Naringenin-
chalcone synthase 2)

Chalcone synthase 1 (EC
23.1.74) (Naringenin-
chalcone synthase 1)

Chalcone synthase 3 (EC
2.3.1.74) (Naringenin-
chalcone synthase 3)

Chalcone synthase 2 (EC
2.3.1.74) (Naringenin-
chalcone synthase 2)

Chalcone synthase D (EC
2.3.1.74) (Naringenin-
chalcone synthase D)

(CHs-D)

Chalcone synthase E (EC
23.1.74) (Naringenin-
chalcone synthase £)

(cHsB

Cnalcone synthase (EC
23.1.74) (Naringenin-
chalcone synthase)

Chalcone synthase 1 (EC
2.3.1.74) (Naringenin-
chalcone synthase 1)

Chalcone synthase 1 (EC
2.3.1.74) (Naringenin-
chalcone synthase 1)

Chalcone synthase 2 (EC
23.1.74) (Naregenin-
chalcone synthase 2)

Chalcone synthase 18
(EC23.1.74) (Naringenin-
chalcone synthase 18)

Chalcone synthase 5 (EC
2.3.1.74) (Naringenin-
chalcone synthase 5)

Chalcone synthase 1A
(EC23.1.74) (Naringenin-
chalcone synthase 1A)

Chalcone synthase (EC
23.1.74) (Naringenin-
chalcone synthase)

CcHsT

CcHs1B

CHS1A

CHLNCDRAFT 48950

CcHs2

cHs1

cHs3

CcHsD

CHS-1B

CHS-1A

cHs

Sorghum bicolor
(Sorghum) (Sorghum
vulgare)

Sorghum bicolor
(Sorghum) (Sorghum
vulgare)

Sorghum bicolor
(Sorghum) (Sorghum
vulgare)

Solanum tuberosum
(Potato)

Glycine max (Soybean)
(Glycine hispida)

Solanum tuberosum
(Potato)

Fragaria ananassa
(Strawberry) (Fragaria
chiloensis x Fragaria
virginiana)

Sorghum bicolor
(Sorghum) (Sorghum
vulgare)

Solanum lycopersicum
(Tomato) (Lycopersicon
esculentum)

Solanum lycopersicum
(Tomato) (Lycopersicon
esculentum)

Glycine max (Soybean)
(Glycine hispida)

Citrls sinensis (Sw eet
range) (Citrus aurantium
var, sinensis)

Ipomoea nil (Japanese.
morning glory) (Pharbitis
i)

Ipomoea nil (Japanese
morning glory), (Pharbitis
i),

Pinus sylvestrs (Scots
pine)

Cicer arietinum (Chickpea)
(Garbanzo)

Medicago sativa (Alfalfa)

Pisum sativum (Garden
P

Pisum sativum (Garden
pea)

Sorghum bicolor
(Sorghum) (Sorghum
vulgare)

Pisum sativum (Garden
pea)

Antirrhinum majus
(Garden snapdragon)

PATHWAY: Secondary
401 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
401 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
400 metablte bosyrhesis:
flavonoid

MAGATVTVEEVRKAQRATGPATVLAIGTATPANCY HQADY PDY Y FRITKSEHMTEL KEKF
KRMCD(SQ\RKRYNHLTEEVLAENPNMmVMAPSLDARQDNVVEVFKLGKAAAQKAIKE

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl- "
CoA = 4 CoA + naringenin chalcone + 3 CO(2).

{ECO10000255PROSITE: ProRue:PRUL00Z3). S\FW\/AH‘-GGPALDQVEAKVGLEKERMRATRH\/LSEVGNMSSAO/LF\LDB\/RKRSAB)
GQ

TTTGEGFDWGY LFGFGPGLTVETVVLHSVPITTGAAITA

MAAATVTVEEVRKAQRATGPATVLAIGTATPANCY HQADY PDY Y FRITKSEHMTEL KEKF
KRMCDKSQIRKRY MHLTEEY LAENPNMCA Y MAPSLDARQDIVV VEV PKLGKAAAQKAKE
WGQPKSKITHLVFCTTSGVDMPGADY QLTKMLGLRPSVKRLMMY QQGCFAGGTVLRVAKD
LAENNRGARVLVV CSEITAV TFRGPSESHLDSMV GQALFGDGAAAV N GADPDERVERPL
FQLVSASQTILPDSEGAIDGHLREV GLTFHLLKDVPGLISKNIERSLEEAFKPLGITDYN
SIPWVAHPGGPAILDQVEAKV GLKKERVRATRHVLSEY GNMSSACV LFILDEMRKRSAED
GQATTGEGLDWGVLFGFGPGLTVETVVLHSVPITTGAAITA

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyk-
CoA = 4 CoA + naringenin chalcone + 3 CO(2).
{ECO:0000255[PROSITE-ProRule:PRUL0023)

MAGATVTVEEVRKAQRATGPATVLAIGTATPANCVHQADY PDY Y FRITKSEHMTDLKEKF
KRMCDKSQIRKRY MHLTEEY LAENPNMCAY MAPSLDARQDIVV VEV PKLGKAAAQKAIKE
WGQPKSKITHLVFCTTSGV DMPGADY QLTKMLGLRPSVNRLMMY QQGCFAGGTVLRVAKD
LAENNRGARVLVV CSEITAV TFRGPSESHLDSMV GQALFGDGAAAV IV GADPDKRVECPL
FQLVSASQTILPDSEGAIDGHLREY GLTFHLLKDVPGLISKNERSLEEAFKPLGITDYN

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl-
CoA = 4 CoA + naringenin chalcone + 3 CO(2).
{ECO: U100;

PATHWAY: Secondary
389 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
388 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
389 metabolite biosynthesis;

23 SIFWVAHPGGPAILDQVEAKV GLKKERVIRATRHVLSEY GNMSSACV LFILDEMRKRSAEE

GQAT FGFGPGLTVETVVLY

EEY RKAQRAEGPATILAIGTSTPSNCVDQSTY PDY Y FRITNSEHKTELKEKFKRMC
DKSM\KKWM—{LTEEILKE‘NPM\ACA MAPSLDARQDIVVVEVPKLGKEAAQKAIKEWGQP
CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl- KSKITHLV FCTTSGVDMPGCDY QLAKLLGLRPSVKRLMMY QQGCFAGGTVLRLAKDLAEN
CoA = 4 CoA + naringenin chalcone +3 CO(2). NKGARVLVVCSEITAV TFRGPSESHLDSLV GQALFGDGAAAIMGSDRIGY ERPLFELY
{ECO:0000255|PROSITE-ProRule:PRU10023). SAAQTLVPDSEGAIDGHL REV GLTFHLLKDVPGLISKNIEKSLLEAFQPLGISDWNSLFW
IAHPGGPAILDQVEL KLGLKQEKLRATREVLSNY GNMSSACVLFILDEMRKASTKEGLGT
TGEGLEWGVLFGFGPGLTVETVVLHSVAT
MVSVEERKAQRAEGPATVMAIGTATPPNCVDQSTY PDY Y FRITNSEHMTELKEKFKRMC
K

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl- <
=4 CoA + naringenin chalcone +3 CO(2)
{ECO:0000255|PROSITE-ProRule:PRU10023).

IFCTTSGY
NKGAR\/LVVCSENAVTFRGPTDTH.DSLVGQALFGDGAAAVNGSDPLWEKPLFQLVW
TAQTILPDSEGAIDGHLREV GLTFHLLKDV PGLISKNIEKALVEAFQPLGISDY NSIFRI
AHPGGPAILDQVEAKLGLKPEKMEATRHVLSEY GNMSSACVLFLDQMRKKSIENGLGTT
GEGLDWGVLFGFGPGLTVETVVLRSVTV

EEY RKAQRAEGPATILAIGTSTPSNCV DQSTY PDY Y FRITNSEHKTELKEKFKRMC
DKSMIKKRY MHLTEEILKENPNVCAY MAPSLDARQDIV'V VEVPKLGKEAAQKA KEWGQP

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl- KSKITHLVFCTTSGY DMPGCDY QLAKLLGLRPSVKRLMMY QQGCFVGGTVLRLAKDLAEN

CoA = 4 CoA + naringenin chalcone + 3 CO(2). NKGARVLVVCSEITAV TFRGPSESHLDSLV GQALFGDGAAAIMGSDPIGY ERPLFELY

flavonoid biosynthesi

PATHWAY: Secondary
99 metabolte biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
401 metabolite biosynthesis;

ECO U10023). SAAQTLVPDSEGAIDGHLREV GLTFHLLKDVPGLISKNIEKSLLEAFQPLGISDWNSLFW
IAHPGGPAILDQV ELKLGLKQEKLRATREVLSNY GNMSSACV LFILDEMRKASTNEGLGT
TGEGLEWGVLFGFGPGLTVETVVLHSVAT

NITDWNSLFWIAHPGGPAILDQVEAKLALKPEKLEATRHILSEY GNMSSACVLFILDEVR

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroy-
o RKSAANGHKTTGEGLEWGVLFGFGPGLTVETVVLHSVSA

CoA + naringenin chalcone + 3 CO(2)
{ECO:0000255|PROSITE-ProRule:PRU10023).

MAAATVTVEEVRKAQRATGPATVLAIGTATPANCY HQADY PDY Y FRITKSEHMTDLKEKF
KRMCDKSQIRKRY MHLTEEY LAENPNMCA Y MAPSLDARQDIVVV EVPKLGKAAAQKAIKE
WGQPKSKITHLVFCTTSGV DMPGADY QLTKMLGLRPSVNRLMMY QQGCFAGGTVLRVAKD
LAENNRGARVLVVCSEITAV TFRGPSESHLDSMV GQALFGDGAAAV NV GADPDERVERPL
FQLVSASQTILPDSEGAIDGHLREVGLTFHLLKDV PGLISKNIERSLEEAFKPLGITDYN

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl-
oA = 4 CoA + naringenin chalcone + 3 CO(2).

flavonoid biosynthesi

PATHWAY: Secondary
389 metabolite musymhes\s,
flavonoid bi

ECO
10023}, SIFWVAHPGGPAILDQVEAKV GLEKERLRATRHVLSEY GNMSSACV LFILDEVRKRSAED

GQATTGEGFDWGVLFGFGPGLTVETVVLHSVPITTGAATTA

MVTVEEVRRAQRAKGPATIMAIGTATPSNCY DQSTY PDY Y FRITNSEHMTELKEKFKRMC
DKSMINKRY MHLTEEILKENPNICEY MAPSLDARQDIV V'V EVPKLGKEAAQKAKEWGQP

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl- KSKITHVVFCTTSGV DMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVIRLAKDLAEN

CoA A + naringenin chalcone +3 CO(2). NKGARVLVVCSEITAV TFRGPSDTHLDSMV GQALFGDRAAAMIGSDPLPEVERPLFELY

PATHWAY: Secondary
389 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
388 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary.
391 metabolite biosynthesis;
flavonoid biosynthess.

PATHWAY Secondary
388 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
389 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
396 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
389 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
389 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
389 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
389 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
401 metabolite biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
369 metabolte bosyrhesi:

10023). SAAQTLLPDSEGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLIEAFQPL GISDWINSIFW
IAHPGGPAILDQVELKLSLKPEKLRATRQULSDY GNMSSACY LFILDEMRKASSKEGLST
TGEGLDWGVLFGFGPGLTVETVVLHSVST

RKAQRAEGPATILAIGTSTPSNCVDQSTY PDY Y FRITNSEHKTEL KEKFKRVC
DKSMIKKRY MHLTEEILKENPNMCA Y MAPSLDARQDIV VVEV PKLGKRGTQRAIKEWGQP
KSKITHLVFCTTSGVDMPACDY QLAKLLPVRPSVKRLMMY QQGCFAGGTVLRLAKDLAEN

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-Coumaroyl- NKGARVLVV CSEITAV TFRGPSESHLDSLV GQALFGDGAAAIIGSDPIGVERPLFELY

CoA = 4 CoA + naringenin chalcone +3 CO(2) SAAQTLVPDSEGAIDGHL REVGLTFHLLKDVPGLISKNEKSLLEAFQPLGISDWNSLFW

{ECO:0000255[PROSITE: ProRule: PRU10023). IAHPGGPAILDQVELKLGLKPEKLRATREVLSNY GNMSSACVLFILDEVRKASTKEGLGT

TGEGLEWGVLFGFGPGLTVETVVLHSVAA

\VSVEERNAQRAEGPATVMAIGTATPPNCYDQSTY PDY Y FRITNSEHMTELKEKFKRMC
DKSMIKKRY MY LNEEILKENPSV CA Y MAPSLDARQDMV VVEVPKLGKEAATKAKEWGQP
KSKITHLIFCTTSGVDMPGADY QLTKLLGLRPSVKRY MMY QQGCFAGGTVLRLAKDLAEN

CATALYTIC ACTIVITY 3 malonyk-CoA + 4-coumaroy- NKGARVLVV CSEITAV TFRGPTDTHLDSLY GQALFGDGAAAY IV GSDPLPVEKPLFQLVW

CoA =4 Co +naringenin chalcane + 3 CO(2). TAQTILPDSEGAIDGHL GEVGLTFHLLKDV PGLISKNIEKALVEAFQPLGISDY NSIFWI

{ECO:0000255|PROSITE: ProRule;PRU10023). AHPGGPAILDQVEAKLGLKPEKMEATRHVLSEY GNMSSACVLFILDQMRKKSIENGLGTT
GEGLDWGVLFGFGPGLTVETVVLRSVTV

MATVQERNAQRADGPATVLAIGTATPAHSYNQADY PDY Y FRITKSEHMTELKEKFKRMC
DKSM\KKRYWLTEEILKMMTAYMAPSLDARQDN\/VE\/H(LGKEA IKEWGQP
IFCTTSGY

CATALVTK: ACTVITY: 3 melonyl CoA + 4-coumaroyl-
CoA = 4 CoA + naringenin chalcone + 3 CO(2).

L oomz55|mosrrsmme U003} IAHPGGPAILDQV ESKLGLKGEKLKATRQVLSEY GNMSSACV LFILDEMRKKSVEEAKAT

TGEGLDWGVLFGFGPGLTVETVVLHSVPKA

MVTVEEVRKAQRAEGPATILAIGTATPANCY DQSTY PDY Y FRITNSDHMTDLKQKFQRMC
DKSMITKRY MHLTEEIL KENPSFCEY MAPSLDARQDIVV VEV PKLGKEAAQSAKEWGQP
KSKITHVIFCTTSGY DMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRVAKDLAEN

GATALYTIC AGTIVITY:-3 malony-CoA -+ 4-coumaroyl- NKAAvavcssrrvvTFRGmEn-mSLVGQALFGDGAAAWGSDPWAE(PLFQLVS
CoA = 4 CoA + naringenin chalcone + 3 CO(2). AAQTLAPDSCGAIDGHLREV GLTFHLLKDVPSN SNNIEKCLSEAFNPLGISDWNSH
{ECO:0000255/PROSITE-ProRule:PRU10023). AWGGPAILD(?VEDKLGLKPE‘KLRATRFNLSEVGNMSSAC\/LF\LDEVRKASSNDGLGTT

GEGLEWGVLFGFGPGLTIETVVLHSVPA

EEVRKAQRAQGPATIMAIGTSTPQNCY DQSTY PDY Y FRITNSEHLV ELKEKFKRMC
EKSMIKKRY MY LTEEILKENPNICA Y MAPSLDARQDIVV V EVPKLGKEAAQKAIKEWGQP

CATALYTICACTIVITY: 3 malony-CoA + - KSKITHLVFCTTS QLTKLLGL ‘QQGCFAGGTVIRLAKDLAEN
CoA = 4 CoA + naringenin chalcone +3 CO(2). NKGARVLVVCSETAV TFRGPSDAHLDSLY GQALFGDGAAALIGSDPDPDLERPLFQLY
{ECOi0000255|PROSITE-ProRule: PRU10023). SAAQTILPDSGGAIDGHLREV GLTFHLLKDVPGLISKHIEKSLNEAFQPLGIHDWNSLFW

IAHPGGPAILDQVEEKLELKPEKLRATRHVLSEY GNMSSACVLFILDEMRKASSKEGLNT
TGEGLEWGVLFGFGPGLTVETVVLHSVSA
MAAGMVKDLEAFRKAQRADGPATILAIGTATPPNAV DQSSY PDY Y FKITNSEHMTELKEK
FRRVCDKSAIKKRY MY LTESILKENPKV CEY MAPSLDARQDMVV VEV PRLGKEAAAKAIK
EWGQPKSKITHVIFCTTSGVDMPGADY QLTKLLGLRPSVKRVMMY QQGCFAGGTVLRVAK
DLAENNRGARVLVV CSEITAV TFRGPSDTHLDSMV GQALFGDGAAALN GADPVPEVEKP
CFELMWTAQTILPDSDGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLV EAFQQFGISDW
NQLPWIAHPGGPAILDQVEAKLNLDPKKLSATRQULSDY GNMSSACVHFLDENRKSSKE
KGCSTTGEGLOVGVLFGFGPGLTVETVVLKSVPLLD

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyh-
CoA = 4 CoA + naringenin chalcone +3 CO(2).
{ECO:0000255PROSITE: ProRule:PRU10023),

QRAEGPATI EQSTYPDFY KQKFQRMC
DKSMIKSRY MY LTEEILKENPSV CEY MAPSLDVRQDMVV VEVPRLGKEAAV KAKEWGQP
KSKITHLIFCTTSGVDMPGADY QLTKLLGLRPY VKRY MVY QQGCFAGGTVLRLAKDLAEN
CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl- NKGARVLVV CSEV TAV TFRGPSDTHLDSLV GQALFGDGAAALV GSDPPEEKPIFEVY
CoA = 4 Co + naringenin chalcone +3 CO(2). WTAQTIAPDSEGAIDGHLREAGL TFHLLKDVPGIV SKNIDKALIEAFQPLNISDY NSIFW
{ECO:0000255|PROSITE-ProRule:PRU10023). IAHPGGPAILDQVEEKLALKPEKNRATREVLSEY GNMSSACVLFILDEMRRKSAKDGLKT
TGEGLEWGVLFGFGPGLTIETVVLHSVAI

MVSVAERQAQRAEGPATIMAIGTANPANCY EQSTY PDFY FKITNSEHKV ELKEKFQRMC
DKSMIKRRY MY LTEEILKDNPRV CEY MAPSLAARQDMAV V V'V PRLGKEAAV KAKEWGQP
KSKITHLIFCTTSGVDMPGADY QLTKLLGLRPY VKRY MVY QQGCFAGGTVLRLAKDLAEN
CATALYTIC ACTVITY : 3 malonyl-CoA + 4-coumaroyl- NKGARVLVVCSEETPV TFRGPSDTHLDSLY GQALFGDGAA AL GSDPIPEEKPIFEVV
CoA + naringenin chalcone + 3 CO(2) WTAHTIAPDSEGAIDGHLREAGLTFHLLKDV PGV SKNDKALIEAFQPLNISDY NSFW.
{ECO/0000255[PROSITE:ProRule:PRUL0023) IAHPGGPAILDQVEEKL GLKPEKMKA TREVLSEY GNMSSACV LFILDENRKKSV QAGLKT
TGEGLDWGVLFGFGPGLTIETVVLHSVAI

MVTVSEIRKAQRAESPAT\LAIGTANPANWQSTV PDFY FKITNSEHKTVLKEKFQRMC
DKSMKRRY MY LTEDILKENPSLCEY MAPSLDARQDMVVVEVPRLGKEAAV KAKEWGQP
ITHLIFCTTSGV DVPGAI EN

CATALYTIC ACTIVITY: 3 malonyl-Co + 4-coumaroyl- <K

LVGQ VGSDPVPEEKPFEMY

Con =4Con halcone +3 CO(2)

o mwzs;:;;?re\;‘:rzwa::t;oug ) WTAQTIAPDSEGAIDGHLREAGLTFHLLKDVPGV SKNIDKALV EAFKPLGISDY NSIFW
IAHPGGPAILDQUEQKLALKPEKMRATREVLSEY GNMSSACVLFILDEVRKKSTQDGLNT
TGEGLEWGVLFGFGPGLTETVVLRSVAI

MVTVDERQAQKAEGPATVLAIGTATPPNCYDQSTY PDY Y FRITNSEHKTELKEKFQRMC
DKSM\KKRYMHLTEEILKENBVCEVMAPS LDARQDMVV VEVPKLGKEAATKAKEWGQP

KSKITHLIFCTTSGVDMPGADY QLTKLLGLRPHVKRY MMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSETAVTFRGPSDTHLDSLV GQALFGDGAAAV IV GSDPLPQVEKPLFELY
WTAQTILPDSEGAIDGHLREVGLTFHLLKDVPGLISKNIEKALVEAFQPLGISDY NSLFW
IAHPGGPAILDQVEAKLSLKQRKMQATRHVLSEY GNMSSACV L FILDEVRRKSKEEQLGT
TGEGLEWGVLFGFGPGLTVETVVLHSVAT

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyh-
+naringenin chalcone +3 CO(2).
{ECO/0000255(PROSITE ProRule:PRUL0023)

MAAATVTVEEVRKAQRATGPATVLAIGTATPANCY HQADY PDY Y| FRVTKSEHMTELKEK
VEVRKI

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl- LA
Con =4 Con s rargennchakone 002 )T FOSEGADGH AEVGLTFHLKDYGL SKNERSLEEAFKRLGITOVN
N SIPWVAHPGGPAILDQV EAKV GLEKERMRATRHV LSEY GNMSSACV LFILDEMRKRSAED
‘GQATTGEGFDWGVLFGFGPGLTVETVVLHSVPITTGAAITA

NERQAQRAEGPATVFAIGTATPQNCV EQSTY PDFY FRITNSQHKTEL KEKFQRMC
DKSM\KKWWLTELKWPSL(ZV MAPSLDARQDMV V'V EVPKLGKEAATKAKEWGQP

CATALYTIC AGTVITY: 3 malony-CoA + 4-counarayl- XSKITHLIFCTTSGVDVPGADY QLTKLLGLRPY VKRY MVY QQGCFAGGTVLRLAKDLAEN

CoA = 4 CoA + naringenin chalcone + 3 CO(2).

flavonoid biosynth

109

PATHWAY: Secondary
390 metabolite biosynthesis;
flavonoid biosynihesi

ECO 10023}, FQPLNISI
IAHPGGPAILDQVEAKLGLKQRKMQATRHVLSEY GNMSSACVLFILDEMRRKSKEDGLAT

TGEGLEWGVLFGFGPGLTVETVLLHSMAT

MVTVEEVRRAQRAEGPATVLAIGTATPANCY DQSTY PDY Y FRITNSEHMTELKEKFKRMC
DKSNIKRRY MHLTEEIL KENPAMCEY MAPSLDARQDIVV VEVPRLGKEAAQKAIKEWGQP
KSKITHLVFCTTSGVDMPGADY QLTKLLGLRPSVKREMMY QQGCFAGGTVLRMAKDLAEN
NAGARVLVVCSEITAV DSLVGQALFGDG/ FQV
TAAQTLLPDSHGAIDGHLREV GLTFHLLKDV PGLISKNEKSLKEAFDPLGISDWNSVI

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl-
CoA = 4 CoA + naringenin chalcone +3 CO(2)

U10023).

IAHPGGPAILDQVEEKL GLKPEKLRSTRQVLSEY GNMSSACV LFILDEMRKSSAKEGMST
TGEGLDWGVLFGFGPGLTVETVVLHSVALN
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Chalcone synthase (EC
23.1.74) (Naringenin-
chaicone synthase)

Chalcone synthase 2 (EC
23.1.74) (Naringenin-
chalcone synthase 2)

Chalcone synthase 3 (EC
2.3.1.74) (Naringenin-
chalcone synthase 3)

Chalcone synthase (EC
23.1.74) (Naringenin-
chalcone synthase)

Chalcone synthase (EC
2.3.1.74) (Naringenin-
chalcone synthase)

Chalcone synthase (EC
1.74) (Naringenin-
chaicone synthase)

Chalcone synthase 1 (EC
2.3.1.74) (Naringenin-
chalcone synthase 1)

Chalcone synthase 1 (EC
2.3.1.74) (Naringenin-
chalcone synthase 1)

Chalcone synthase 3 (EC
2.3.1.74) (Naringenin-
chalcone synthase 3)

Chalcone synthase C (EC
23.1.74) (Naringenin-
chalcone synthase €)
(CHS-C) (Fragment)

Chalcone synthase D (EC
2.3.1.74) (Naringenin-
chalcone synthase D)

Chalcone synthase 1 (EC
2.3.1.74) (Naringenin-
chalcone synthase 1)

Chalcone synthase 1 (EC
2.3.1.74) (Naregenin-
chalcone synthase 1)

Chalcone synthase 3 (EC
2.3.1.74) (Naringenin-
chalcone synthase 3)

Chalcone synthase E(EC
2.3.1.74) (Naringenin-
chalcone synthase E)
(CHS -

Chalcone synthase (EC
2.3.1.74) (Naringenin-
chalcone synthase)

Chalcone synthase (EC
2.3.1.74) (Naringenin-
chaicone synthase)

Chalcone synthase (EC
2.3.1.74) (Naringenin-
chalcone synthase)

Chalcone synthase 7 (EC
2.3.1.74) (Naregenin-
chalcone synthase 7)

Chalcone synthase B (EC
2.3.1.74) (Naringenin-
chalcone synthase B)
(CHS-8)

Chalcone synthase (EC
23.1.74) (Naringenin-
chaicone synthase)

Chalcone synthase (EC
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chalcone synthase)

Chalcone synthase (EC
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chalcone synthase)
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Vigna unguiculata

PATHWAY: Secondary

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl-

MVSVSEIRQAQRAEGPATILAIGTATPPNCYDQSTY PDY Y FRITNSEHMTDLKEKFQRMC

#HV TEEL DARQ! QP
KSKITHLIFCTTSGV DMPGADY QLTKLLGLRPYVKRY MMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSEITAV TFRGPSDTHLDSLV GQALFGDGAAAV N GSDPPQIEKPLFELY

REVGLTFHLLI SEAFDPLNISDYNSIF
IAHPGGPA ILDQUAQKLGLKPEKMKATRDVLSDY GNMSSACY TFHLDEEKSVENGLKTT
GKDLEWGVLFGFGPGLSLETVVLHSVAI

\GATVTVEEVRKAQRATGPATVLAIGTATPANCY HQADY PDY Y FRITKSEHMTEL KEKS
KRNCD{GQ\RKRV WLTEE‘ILAMNCAVMAPSLDI\RQDNVVEVH(LGKAAAQKAKE
WOQPKSKVTHLVFCH’SG\/DMPGADVQLTKNLGLRPSVNRLM\NQQGWAOGWLR’\/AKD
ENNRGARVLVVCSEITAV TFRGPSESHLDSMV GQALFGDGAAAV IV GADPDERVERPL
QLvsAsqmmsa;Am»ma/en:uumemmmsma:xm;nwn

DQVEAKV GLEKERVRATRHVLSEY GNMSSACV LFILDEMRKRSAED
GRATTGEGFEWGVLFGFGPGLTVETVVLHSVPITTGAAITA

MATSPAVIWEHRKAQRAEGPATLAIGTATPANCVVQADVPDYVFRVTBE—(M\/H.KE
KFQRVCDKSMRKRY MHITEEFLKENPSMCKFMAPSLDARQDLY YV EVPKLGKEAATKAI
KEWGFPKSKITHLVFCTTSGV DMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRLA
KDLAENNKGARVLVV CSEITAV TFRGPNEGHLDSLY GQALFGDGAAAV IGSDPDLSVER

PLFEMY SAAQTILPDSEGAIDGHLKEV GLTFHLLKDVPALIAKNIEKALIQAFSPLNIND
EFKLG

L REEKLRASRHVLSEY GNMSSACY LFLDEMRKKS!
KDGKTTTGEGLEWGVLFGFGPGLTVETVVLHSLPATISVATQN

TILAIGTANPPNCVDQSTY PD) KEKFQRMC
DKSMIKKRY MY LTEEILKENPNMCA Y MAPSLDARQDMV V'V EV PKLGKEAATKAKEWGQP
KSKITHL\FCWSGVDNFGADVQ TKQLGLRPYVKRY MY QQGCFAGGTVLRLAKDLAEN

AV TFRGPSDTHLDSLY GQALFGDGAAAV N GSDPIPQVEKPLYELY
WTAQT\APDSESA\DGHLREVGLTF‘{LKWPGNSKNDKALFEAFNPLMSDVNS\FW
IAWGGPA\LDQVEKLGLKEKMKATRI‘NLSDVGNNSSAC\/LF\LDEMRRKSAENGLKT
TGEGLEWGY LFGFGPGLTIETVVLRSV,

WNHmAaaaamQﬁAqepAN\LAmAwstqummerrmsmwmx
FKRMCEKSMRKRY MHITEEY LKENPNV CAY EAPS RQDLV\/\IEVPRLGKEAASKAK

L.TKLLGL
DI.AwNAGAWLV\/CSEITAVTFRGPSDSHLDSLVGQALFGDGAAAV\LGSDPD\.SVEP
LFQLISAAQTILPDSDGADGHLREV GLTFHLLKDV PGLISKNIEKSLKEAFGRIGISDW
NSLFWIAHPGGPAILDQV ELKLGLKEEKMRATRQVLSDY GNMSSACVLFILDEMRKKSIE
EGKATTGEGLDWGY LFGFGPGLTVETVVLHSVPATFTH

M\/GTTSSLDEIRKAQRADGPAGILA}GTANPANHVLQAEVPDVVFRITNSE—WWDLKB(F
KRMCDKSTIRKRHVHLTEEFLKENPNMCAY MAPSLDARQDIVVVEV PKLGKEAAV KAKE
WGQRKS AP QLT G APEUKA GRECACOTVLALAKD
LAENARGARVLVVCSEITAV TFRGPSDTHLDSLVGQALFSDGAAALN GSDPDV SAGEKP
IFEMV SAAQTILPDSDGAIDGHLREV GITFHLLKDV PGLISKNIEKSLDEAFKPLGISDW
NSLFWIAHPGGPAILDDV EKKLGLKAEKVRATRHVL SEY GNMSSACVLFILDENRRKSLD
DGVATTGEGLEWGVLFGRGRGLTVETVVLHSVRY

MV TVEDIRRAQRAEGPATVMAIGTATPPNCY DQSTY PDY Y FRITNSEHKAEL KEKFKRMC
DKSMIKKRY MY LTEEILKENPQU CEY MAPSLDARQDMVVV EV PKLGKEAA TKAIKENGQP
KSKWHLVFCHSGVDM’GADVQtTKLLGLRPS\/KRLWVQQGCFAGGTVLRLAKMB\A

ETAV TFRGPSDTHLDSLV GQALFGDGAAAIN G
SAAQ'HLPDSDGA\EGHLREVGLTFHLLKDVPGUSKMEKSLAEAFQPLGISDN?\ELFW
IAHPGGPAILDQVEL KL GLKEEKLRATRHVLSEY GNMSSACV LFILDEMRKKSAADGLKT
TGEGLEWGVLFGFGPGLTVETVVLHSLST

MAAVTVEARKAQ AIGTATPANYVTQADY PDY KEXFKR
MCDKSMRKRY MHLTEDILKENPNMCA Y MAPSLDARQDIVV VEV PKLGKEAAVKAIKEWG
QPKSKITHLIFCTTSGVDVPGCDY QLTKLLGLRPSV KRFMMY QQGCFAGGTVLRLAKDLA
ENNRGARVLVVCSETAV TFRGPADTHLDSLV GQALFGDGAAAV GADPDESIERPLYQ
LVSAAQTILPDSDGAIDGHLREV GLTFHLLKDVPGLISKNEKSLKEAFGPIGISDWNS|
FWIAHPGGPAILDQVEAKL GLKEEKL RATRQVLSEY GNMSSACVLFILDEMRKNCAEEGR
ATTGEGLOWGVLFGFGPGLTVETVVLRSVPKA

YQADYPDY Y FRITKSEHLTELKEKFKRM

RQDVVTEVS
wskm—u.\R:rrssnwcADvQLmLLGLmstRFquQGcFAGGWLmAKmE
NNAGARVLVVCSEIT: LVGQALFGDGAAAINV GSDPDSATERPLFQL.

VSASQTILPESEGA \DGHLREKSLTFHLLKWPGUSKNDKCLLDAFKPLGVHDN?\S\F
WIN-PGGPA\LDQVEIKLGLKAEKLAASRN\/LAEVGNNSSA(NLF[DEMRRRSAEAGQA
TTGEGLENGVLFGFGPGLTVETNLR

( mYWWB(RFD(SmKImETAIPAWVDQWVPDFVFPITNSEHLLEVKE
KFRRK}NKSK\RKH—{LV NBLKKNNCTVNDASLNTRQD\L\/SEVPKLGKEAAMKA\

P 388 metabolte biosynthesis;  CoA =4 CoA + naringenin chalcone +3 CO(2).
Vi pea) flavonoid biosynthesis.  (ECO:0000255[PROSITE-ProRule:PRUL0023).
Sorghum bicolor PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyk-CoA + 4-coumaroyl- LA
(Sorghum) (Sorghum 401 metabolie biosynihesis;  CoA =4 CoA + naringenin chalcone + 3 CO(2).
vuigare) flavonoid biosynthesis.  {ECO: U10023).
THWAY: Secondary  CATALYTICACTVITY: 3 malonyl-CoA +4-coumaroyh
Gerbera hybrida (Daisy) 403 metabolie biosynihesis;  CoA =4 CoA + naringenin chalcone + 3 CO(2).
flavonoid biosynthesis.  {ECO: U10023).
Pueraria monana var. PATHWAY; Secondary  CATALYTIC ACTVITY: 3 malonyl-CoA + 4-couraroyl-
lobata (Kudzu vine) 389 metabolte biosynthesis;  CoA = 4 CoA + naringenin chalcone + 3 CO(2).
(Pueraria lobata) flavonoid biosynihesis.  {ECO:0000255[PROSITE-ProRule:PRUL0023).
Petroseinum crispum PATHAAY:Sccondary | CATALYTC AGTVIY: 3 elony|Gon + & oty
(Parsley) 308 = 4 Co + naringenin chalcone + 3 CO(2).
hortense) avonoidboaymiests.  (S0OH000AESIOSE Moris R 10023
Raphanus satvus PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malony-CoA + d-coumaroyl-
Py 394 metabolite biosynithesis;  CoA =4 CoA + naringenin chalcone +3 CO(2).
flavonoid biosynthesis.  (ECO:0000255[PROSITE-ProRule:PRUL0023).
PATHWAY; Secondary  CATALYTIC ACTVITY: 3 malonyl-CoA + 4-courraroyl-
Camelia sinensis (Tea) 389 metabolie biosynihesis;  CoA =4 CoA + naringenin chalcone + 3 CO(2).
flavonoid biosynihesis.  {ECO:0000255[PROSITE-ProRule:PRUL0023).
Futa graveolens (Gor THMAY: Secondary | CATALYTICACTITY: 2 oy Con + 4 cumaroy
Lta graveolens (Common 393 metabolie biosynihesis; =4 Co + naringenin chalcone + 3 CO(2).
) flavonoid biosynihesis. (B:o 0000255|PROSITE:ProRule: PRU10023}
TPMAY: Secondary | CATALYTICACTITY: 2 oy Co+ 4 coumerc
1
f"r’:':ef“‘“ rlaysoniana 394 metabolite biosynihesis; CoA + naringenin chalcone + 3 CO(2)
mvonoidbosyrbest, | (S0CH000AES DS oris R 10023
fpomoea purpureat PATHWAY? Secondary_ CATALYTIC ACTIVITY:3 melony-CoA +
( ‘GoA = 4 CoA *naringenin chalcone.+.3 CO(2).
(Phabiis purpurea) flavonoid biosynthesis.  (ECO:0000255[PROSITE-FYoRule:PRUL0023).
PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyh-GoA + 4-coumaroy-
419 i CoA = 4 Coh + nari o)
{Eco PRUI0023)
PATHWAY: Secondary | CATALYTIC ACTIVITY: 3 malonyh GoA + d-couraroyl-
Gerbera hybrida (Daisy) 250 ffloe sy, | con =« o i iy 2 oo
flavor {Eco: 1ePRUL0023).
PATAAAY: Sccondary | CATALYTC AGTVIY: 3 lony|Con + & coumary
Fisum sativum (Garden
e 389 metaboite biosynthesis: = 4 Co + naringenin chalcone + 3 CO(2).
P flavonaid biosynthesis, (anuoouzsqmsrremwe PRU10023).
AT ooy | CATALOWGT 3 gy Cogpcoumary
Canelia siensis (Tea) 389 metabolfe biosynthesis; =4 Con + naingenin chalcone +3 CO(2).
pormoea purpurea PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyh-CoA + 4-coumaroy-
(Common 380 CoA = 4 CoA + naringenin chalcone +3 CO(2).
(Pharbits purpurea) flavonoid biosynihesis.  {ECO:0000255[PROSITE-ProRule:PRUL0023).
PATHAAY: Sccondary | CATALYTC AGTVTY: 3 ekony|Gon + & comary
Dianthus. 301 CoA + naringenin chalcone + 3 CO(2)
flavonoid biosynihesis. (mo 0000255|PROSITE:ProRule: PRU10023}
Hydrangea macrophyla PATMAAY: Sccondary | CATALYTC ACTVIY: 3 lory Gon + & coumaroy
(Bigleat hydrangea) 389 metabolte biosynthesis; 4 CoA + naringenin chalcone + 3 CO(2).
(Viburnum macrophylu) ovoncidbosyrest. | (S00r000255FROSTE Pofls R 10023
Onabryehis vifol PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyh-CoA + 4-couaroy-
rayetis vellola 390 metablkts bosynhesk; | Con =4 Con» nrngeninchakons + 3 CO)
(Common sainfoin) flavonoid biosynihesis.  {ECO:0000255[PROSITE-ProRule:PRUL0023).
THWAY: Secondary  CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl-
?iacgﬁf;:s‘ﬁ':f;na) 395 metabolte biosynthesis;  CoA =4 CoA + naringenin chalcone + 3 CO(2).
P flavonoid biosynihesis.  {ECO:0000255[PROSITE-ProRule:PRUL0023).
pormoea purpurea PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyl-CoA + d-coumaroyl-
(Common [ 396 (CoA =4 CoA + naringenin chalcone + 3 CO(2).
(Pharbits purpurea) flavonoid biosynihesis.  {ECO:0000255[PROSITE-ProRule:PRUL0023).
vt coine (Algine rock PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyk-CoA + 4-coumaroy-
treegy A 391 metabolite biosynthesis;  CoA =4 CoA + naringenin chalcone + 3 CO(2).
flavonoid biosynthesis.  (ECO:0000255PROSITE-ProRule:PRUL0023).
Chrysosplenium THWAY: Secondary  CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl-
americanum (Golden 396 metabolie biosynihesis;  CoA = 4 CoA + naringenin chalcone + 3 CO(2).
saxiirage) flavonoid biosynihesis.  {ECO:0000255[PROSITE-ProRule:PRUL0023).
Eaotumarvense (e PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malony-CoA + d-coumaroyl-
horsetai) (Cor 405 metabole biosynihesis;  CoA =4 CoA + naringenin chalcone +3 CO(2).

horsetai)

flavonoid biosynthesis.

U10023).

{ECO:0000255[PROSITE: ProRule:PRU10023)

QLAKLLGLSSSVNRLVMY QQGCNAGAVMLRLA
KDLAENNKGGR\/L\/\/CSEVMLSV:RGPSLQQEDNLLAQCLFGDGSAAVNGTE’RPGLEY
PLFELVSAAQTTIPDTDSY LKLQLREMGLTFHCSKAV PSLITQNEDCLVKAFEPFGISD.
WNSIFWILHPGGNAILDGY EEKLGLEPEKLRASRDVLSQY GNLTSACVLFKP

EEVRNAQRAEGPATVLAIGTATPSNCVDQSTY FDY Y FRITDSEHKTELKEKFKRIC
DKSMIKKRY MHLTEKILKENPNICESMAPSLDARTNIY AV EVPKLGKEA AEKAEEWNQP
KSRITHLVFCHTGVSNPGADFQLTKLLGLGSSVKRFMV\NQLGCFAGGWLRLAKDLAEN
NKGARVLVVCSETVV TFRGPNDTHFDSLY GQALFGDGAAAV IGSDPPNV ERF
SAAQT[LPDSKNSKXEELREIGLTFHLLKD‘\/AEUSNNEKSLVEVFQRGISAWNSFW
VAHPGGPAILNQV ELKLGLNPEKLGATRHVLSEY GNMSSASILFVLDEMRKSSTQKGFDT
TGEGLKWGVLI TQGSFGIRDWD) vLeis

MASSV DVKAIRDAQRAEGPATILAIGTATPANCY Y QADY PDY Y FRITKSEHMY DLKEKFK
KRY MHITEEY LKQNPNMCA Y MAPSLDVRQDLYV VEV PKLGKEAAMKA KEW
FCTTSGVI

EMVSAAQTILPDSEGAIDGHLREV GLTFHLLKDV PGLISKNIEKALTTAFSPLGINDWNS
IFWIAHPGGPAILDQVEL KLGLKEEKLRATRHVLSEY GNMSSACVLFIDEVRKKSSENG
AGTTGEGLEWGVLFGFGPGLTVETVVLHSVPTTVIVAV

RAEGPATILAI EQSTYPDR TVLKEKFQRNC
DKSMIKRRY MY L TEEILKENPSLCEY MAPSLDARQDMY YV EVPRLGKEAAV KA KEWGQP
KSKITHLIFCTTSGVDMPGADY QLTKLLGLRPYVKRY MMY QQGCFAGGTVLRLAKDLAEN

NKGARVI LVVC$EVTA\/TFRGPSDTHLDSLVGQALFGDGAAALNGSDPVPEE(PFEMV

REQGL VEAFKPLGISDY NSIFW
IAHPGGPA \LDQVEQKLGLKFEKMRATREVLSEVGNMSSAO/LHLDQMRKKSTQDGLNT
TGEGLEWGVLFGFGPGLTIETVVLHSVAI

MV TVEDVWRAQRARGPATVLAIGTATPPNCVDQSTY PDY Y FRITNSEHKV ELKEKFKRMC
DKSMIKKRY MY LTEEILKENPLV CEY MAPSLDARQDMVVVEV PKLGKEAATKAIKEWGQP
KSKrrHL\/FCHSGVDY\IPGADVQtTKLLGLRPSVKRLWVQQGCFAGGTVLRLAKD_AB\I
GAI DSLVGQSLFGDGAAANIGSDPPEV EKPLFELY.
AQ“LPSsDGA\DGHLREVGLTFHLLKWm\S INVEKSLV EAFQPLGISDWNSLAW
IAHPGGPAILDQV EL KL GLKEEKLRATRHV LSEY GNMSSACV LFILDEVRKKSAEEGLKT
TGEGLEWGVLFGFGPGLTVETVVLHSLCT

i

EEVRKAQRAQGPATIMAIGTSTPQNCY DQSTY PDY Y FRITNSEHLV ELKEKFKRIVC.
EKSMKKRY MY LTEEIL TENPNICA Y MAPSLDARQDIVV VEVPKLGKEAA QKA KEWGQP
KSKITHLV FCTTSGV DMPGADY QLTKLLGLQPSVKRFMMY QQGCFAGGTVIRLAKDLAEN
NKGARVLVVCSETAV TFRGPSDAHLDSLV GQALFGDGAAALIGSDPDPDLERPLFQLY
‘SAAQTILPDSGGAIDGHLREV GLTFHLLKDV PGLISKHEKSLNEAFQPLGIRDWNSLFW
IAH’GGPA\LDQ\/EE(LELKPEKLRATRH\/LSEYGNMSSACVLF\LEEM(ASSKBSLNT
TGEGLEWGVLFGFGPGLTVETVVLHSV!

MAS\EIRQKQRAB}PAT\LAK}TATPPNAIVQADVPDYVFR\/TKSE"MTELKE(FRRMZ
DKSMIKKRY MY L TEEILKENPNLCEY MGSSLDTRQDMVV SEVPRLGKEAAV KA KEWGQP
KSKITHV SG\/MIPGADVQLTKLLGLRPSVRRFMLVQQGCFAGGTVLRLAKDLAW
NKGARVLVV CSETAICFRGPTEAALDSMV GQALFGDGAGALN GSDPDLSIERPLFQMA
IAGQTLLS REVGLTFHLLI W
IAHPGGPAILDQV EAKLGLKEEKLAATRNV LSDFGNMSSACV LFILDEVRKKSLRDGATT
TGEGLDWGVLFGFGPGLTVETVVLHSVPLNC

MV TVEEVRKAQRAEGPATILAIGTATPPNY VDQSTY POFY FRV TNSEHKKELKAKFQRVC
DNSQIKKRY MHLTEEILKENPNICAY MAPSLDARQDV V'V EIPKLGKEAA TRAKEWGQP
strmw;cnssvmAquunmmpsvKmmcoec:AoemeAKuAm
NKGARVLVVCSETAV TFRGPSDTHLDSLV GQALFGDGAAAV IGSDPVPEV EKS
SAAQT!LPDSDGA\DGHLREVGLTFHLLKD\/PGL\SKNEKSLVEAFRPLD\SDWNS\FW
IAHPGGPA ILDQV EKKLALKPEKLRATRNVLSDY GNMSSACV LFIVDENRKNSAEEGLMT
TGEGLEWGVLFGFGPGLTVETVVLHGYST

TANPPNCVEQSTY PDF KEKFQRVD
DKSMIKRRY MY LTEEILKENPNV CEY MAPSLDARQDMFV V EVPRLGKEAAV KA KEWGQP
KSKITHLIVCTTSGVDMPGADY QLTKLLGLRPHVKRY MMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSEV TAV TFRGPSDTHLDSLY GQALFGDGAAALN GSDPPEIEKPLFELI
WTAQTIAPDSEGAIDGHLREV GLTFHLLKDV PG SKNIDKALVEAFQPLGISDY NSIFW
IAHPGGPAILDQV EQKLAFKPEKMRA TREVLSEY GNNISSA CV LFILDEMRKKSAQNGLKT
TGEGLEWGVLFGFGPGLTIETVVLLRSVAI

MAGGLMADLEAFRKAQRADGPATILAIGTATPPNAV DQSTY PDY Y FKITNSEHMTELKEK

Fomms»xKKRVMVLmsLKmpchvNv«PsLDARQwvvvamesKsArKA\K
FAGGTVLRVAK

MENNRGARVLVVCSEITAVTFRGPSDTHLDSM\/GQALFGDGAAALNGADPPQVEKP

CFELMWTAQTILPDSDGAIDGHLREV GLTFHLLKDV PGLISKNEKSLY EAFQQFGIS
V‘QLFW\AHPGGPAlDQVEAKLNLD’KKLRATRQ\/LSE‘(GNvSSAC\/HFlDE\ARKSSNE
KGCSTTGEGLDVGVLFGFGPGLTVETVVLKSVALQ

TDTWSRRAKRLEGDAKILAIGTATPASWV DQTTY PDFY FRITNSQHLLEHKE.

KFRRICNKSKIRKRHLV LTEELLKKNPNLCTY NETSLNTRQDILY SEVPKLGKEAAMKAI

KEWGRPISEITHLV FCTTSGV DVPGADFQLTKLLGLNSSVKRLMMY QQGCNAGAAMLRLA
KDLA v EQDDNLLAQCLS ET

HFELVSSAQTNP!\ITDSHLKLNLREI\AGLTFK‘,SKAvPSVLAENVEDCLVKAFEPVGISD
WNSIPWY FHPGGNAIV DRV EERL GLGPEKLRASRDVLSEY GNLTSACVLFILDEMRKKSK
KDEQMTTGBSLENGVVFGFGPGLT\DT\I\RSVP\N
MAPSLEERKAQRADGPA GILGIGTANPPNHYLQAEY PDY Y FRITNSDHMTDLKEKFKRM
MSMRKRHMHLTEEFLKENPKWY MAPSLE NVVVEVPKLGKEAAVKAKENGQ
PKSKITHVVFCTTSGY DMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRLAKDLAE
nc.Am/vacsErrAvwnopsmHmsweQAL:sDeAAAwosansvcawe
MVSAAQTILPDSDGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLDEAFKPLGISDWNSL
FWIAHPGGPAILDQV BIL GLKAEKMRATRHVL SEY GNMSSACV L FILDENRKKSAKDGA
PL

MSSAALMEEIRNAQRAEGPATILAIGTATPANCY IQADY PDFY FRITNSEHKTELKEKFQ
RMCDKSMKKRY MHLTEDLLKENPKNICEY MAPSLDARQDMVVVERKLGKEAAV KAKEW
GQPKSKITHLVFCTTSGY DVPGADY QLTKLLGLRPSVKRLMMY QQGCFPGGTVLRLAKDL
AENNRGARVLVVCSETAV TFRGPSDTHLDSLY GQALFGDGAAALN GADPDTAIERPLF
E\/SAAQTILH)SDGA\DGHLREVGLTFHLLKD\/PGUSKMEKSUEAFKP\GN}WNS

REAWGDGLBNGVLFGFGPGLT\/ENVLHSVFAWA

MTVLEESADASSRRLAQRANGPATVLAIGTANPANV FEQSSY PDFY FDITNSQHMTELKL
KFSRMCQKSGIKKRY MHLNSEILKANPSLCAY WEKSLDVRQDIAVVEV PKLGKEASLKAI
KE\NGQH(SKITHLVFCWSGVDNFGADNALTKLLGLRPS\/KRLMMVQQGCFAGGTVLRVA
Kw»\mesvawvcsmcv (GPSETHLDSLV GQALFGDGAAAV ILGSDPLPEENP
SN PDSDGAIDGHLREVGLTFHLMKWPG\ISKN\GKVLNDAFRSA
NAEDRPASVND\FWIA)-PGGPA\LDQVEEKM(LAEKNRATRWLSEVGMJISSAC\/LF\M
DHVRRMSAQNKLQTTGEGLOWGY LLGFGPGLTVETVLLKSIRLAC



004111

P30077

22928

48385

P48389

QaFSBT

023730

QIZRR8

Pag387

Qo1288

P30076

QuFses

023882

023884

QoMB33

P53414

P51083

QamBaL

P53415

Qove3g

P48394

P48404

CHSY_PERFR

CHSO_MEDSA

CHSJ_PETHY

CHSY_CALCH

CHSY_DIACA

CHS3_RUTGR

CHS4_BROFI

CHS1_CASGL

CHS2_CAMSI

CHS6_PEA

CHS8_MEDSA

CHS2_RUTGR

CHS4_PEA

CHS5_PEA

cHs1_POBA

CHS1_SECCE

CHS1_TRISU

CHS2_IPOBA

CHS2_SECCE

CHS4_IPOBA

CHSB_POCO

CHSB_POTR

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

review ed

Chalcone synthase (EC

2.3.1.74) (Naringenin-
chalcone synthase)

Chalcone synthase 9 (EC

2.3.1.74) (Naringenin-
chalcone synthase 9)

Chalcone synthase J (EC

2.3.1.74) (Naringenin-
chalcone synthase J)

Chalcone synthase (EC

2.3.1.74) (Naringenin-
chalcone synthase)

Chalcone synthase (EC

2.3.1.74) (Naringenin-
chalcone synthase)

Chalcone synthase 3 (EC

2.3.1.74) (Naringenin-
chalcone synthase 3)

Chalcone synthase 4 (EC

2.3.1.74) (Naringenin-
chalcone synthase 4)

Chalcone synthase (EC

(
2.3.1.74) (Naringenin-
chalcone synthase)

Chalcone synthase 2 (EC

2.3.1.74) (Naringenin-
chalcone synthase 2)

Chalcone synthase 6
2.3.1.74) (Naregenin-
chalcone synthase 6)

(Ec

Chalcone synthase 8 (EC

2.3.1.74) (Naringenin-
chalcone synthase 8)

Chalcone synthase 2 (EC
2.3.1.74) (Naringenin-

chalcone synthase 2)

Chalcone synthase 4 (EC

2.3.1.74) (Naregenin-
chalcone synthase 4)

Chalcone synthase 5 (EC

2.3.1.74) (Naregenin-
chalcone synthase 5)

Chalcone synthase LF1

(EC2.:3.1.74) (Naringenin- CHS-LF1

chalcone synthase LF1)

Chalcone synthase 1
2.3.1.74) (Naringenin-
chalcone synthase 1)

(EC

Chalcone synthase 1 (EC
2.3.1.74) (Naringenin-

chalcone synthase 1)

Chalcone synthase LF2

(EC2.3.1.74) (Naringenin- CHS-LF2

chalcone synthase LF2)

Chalcone synthase 2 (EC

2.3.1.74) (Naringenin-
chalcone synthase 2)

Chalcone synthase LF4

(EC 2.3.1.74) (Naringenin- CHS-LF4

chalcone synthase LF4)

Chalcone synthase B
2.3.1.74) (Naringenin-
chalcone synthase B)
(CHS-B) (Fragment)

Chalcone synthase B
2.3.1.74) (Naringenin-
chalcone synthase B)
(CHS-B) (Fragment)

(¢

(EC

cHs.

cHs9

cHs

cHs1

cHs2

CcHs6

cHss

cHs2

CHs4

cHss

cHs1

cHs1

cHs2

chsB

cHsB.

Perilla frutescens
(Beefsteak mint) (Perila
ocymoides)

Medicago sativa (Alfalfa)

Petunia hybrida (Petunia)

Calistephus chinensis
(China aster) (Calistemma
chinense)

Dianthus caryophyllus
(Carnation) (Clove pink)

Ruta graveolens (Common
rue)

Bromheadia finlaysoniana
(Orchid)

Casuarina glauca
(Swarmp oak)

Camelia sinensis (Tea)

Pisum sativum(Garden
pea)

Medicago sativa (Alfalfa)

Ruta graveolens (Common
rue)

Fisum sativum(Garden
pea)

Pisum sativum (Garden
)

Ipomoea batatas (Sweet
potato) (Convolvulus
batatas)

Secale cereale (Rye)

Trifolium subterraneum
(Subterranean clover)

Ipomoea batatas (Sweet
potato) (Convolvulus
batatas)

Secale cereale (Rye)

Ipomoea batatas (Sweet
potato) (Convolvulus
batatas)

Ipomoea cordatotriloba.
(Tievine)

Ipomoea triloba (Trilobed
morning glory)

MVTVEDIRRAQRAEGPATVMAIGTATPENCY DQSTY PDY Y FRITNSEHRTDLKEKFKRMC
EKSMIRKRY MHLTEEFLKENPNMTA Y MAPSLDARQDIV V'V EV PKLGKEAA QKA KEWGQP
KSKITHLVFCYTSGVDNPGADVQLTKLLGLRPSVKRFMMVQQGCFAGGTVLRMAKDLAEN

PATIUAY: Socondary  CATALYTIC ACTIVITY: 3 o Go  -coursroy’ NAGAFY oSLVCaALEGOG Fowv
391 metabolite biosynthesis;  CoA =4 CoA + naringenin chalcone + 3 03(2) SAAQTILPDSDGA \DGHLRE\/GLTFP{LKWF’GLISKNIEKSLKEAFGPLGISWJ'\S\/FW
flavonoid U10023}. IAHPGGPAILDQV EAKLGLKPEKLRSTRHV! LGEVGNNSSACVLFILDEMRKSSAKEGMSS
TS WOVLFGFOPOLNEN VLV
MV SVSERQAQRAEGPATIMAIGTANPANCY EQSTY PDFY FKITNSEHKV ELKEKFQRMC
DKSMIKRRY MY LTEEILKENPSV CEY MAPSLDARQDMV V'V EV PRLGKEAAV KA IKEWGQP
» . KSKITHLIFCTTSGVDMPGADY QLTKLLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN
g CATIVAY: Secority | CATALYTIOACTITY 3 lony 008+ -coumaro L T o oSO D5 GOALFOBGARAL N GOOPPEEKPY DY
Twonoid Y/ g y o 10023}, WTAQTIAPDSEGAIDGHLREAGLTFHLLKDVPGIV SKNIDKALVEAFQPLNISDY NSIFW

PATHWAY: Secondary
metabolte biosynthesis;
flavonoid

"
8
8

IAHPGGPAILDQV EQKLGLKPEKMKATREV LSEY GNMSSACV LFILDEMRKKSAQAGLKT
TGEGLDWGVLFGFGPGLTIETVVLHSVAI

MV TVEERRAQRAEGPATIMAIGTATPSNCV DQSTY PDY Y FRITNSEHKTEL KEKFQRMC

DKSM\KKRVMHLTEEILKE‘NPN\CEV MAPSLDARQDIVVVEV PKLGKEAAQKAIKEWGQP
KSKITHLVFCTTSGV DMPGADY QLTKLLGLRSSVKRLMMY QQGCFAGGTVLRLAKDLAEN
GARVLVVCSEWAVTFRGPNDTHLDSLVGQALFGDGAAAHIGSDRFGVERPLFELV

SASQTLLPDSEGAIDGHLREV GLTFHLLKDVPGLISKNIQKSLY EAFQPLGISDWNSH

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl
CoA =4 CoA + naringenin chalcone + 3 OO( ).
U10

PATHWAY: Secondary
398 metabolte biosynthesis;

IAHPGGPAILDQV ELKLGLKPEKLRATRHVLS SEVGNMSSACVLF\LDEVRKASSK&LGT
TGEGLEWGVLFGFGPGLTVETVVLHSVST

MAST\D\AAIREAQRRQGPAT\LA \GTATPSNC\/VQADVH)VVFRITKSEHM\/DLKEKFK
R el

CATALYTIC ACTVITY: 3 malonyl-CoA + 4 coummy\—

CoA =4 Coh + naringenin chalcone + 3 CO(2). BVISAAQTILPDSEGAIBSHLRE/GLTFHLLKWPGL\SKN\B(A LTQAFSPLGITOWNS

flavonoid {ECO le:PRUL0023).
PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl-

391 metabolte bosynihesis; - CoA =4 CoA + naringenin chalcone + 3 CO(2).
flavonoid 10

IFWIAHPGGPAILDQVELKLGLKEEKMRA TRHV LSEY GNMSSA CV LFIDEMRKKSAEDG
AATTGEGLDWGVLFGFGPGLTVETVVLHSLPTTMAIAT

MASIEEIRQAPRADGPATILAIGTATPPNAIY QADY PDY Y FRV TKSEHMTEL KEKFRRMC
DKSMIKKRY MY LTEEILKENPNLCEY MGSSLDTRQDMV V SEVPRLGKEAAV KAIKEWGQP
KSKITHVIMCTTSGVDMPGA DY QLTKLLGLRPSVRRFMLY QQGCFAGGTVLRLAKDLAEN
NKDARVLVVCSETAICFRGPTEAALDSMY GQALFGDGAGALIV GSDPDLSIERPLFQMA
WAGQTLLPDSDGAIDGHLREV GLTFHLLKDV PGISKNITNALEDAFSPIGY SDWNNLFW

023).

PATHWAY: Secondary
metabole biosynthesis;

@
8
8

JAHPGGPAILDQVEAKLGLKEEKLAATRNV LSDFGNMSSACV LFILDEVRKKSLRDGATT
TGEGLDWGVLFGFGPSLTVETVVLHSVPLNC

MAAVTVEEIRKAQRADGFATVLAIGTATPANYVTQADV POY Y FRITKSEHMTDLKEKFKR

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-Coumaroyh

M EEILKENPNMCAY|
QPKS FTHLIFCWSGVWPGCUVQLTKLLGLRPSV KRFVMY QQGCFAGGTVLRLAKDLA
CoA =4 CoA + naringenin chalcone + 3 CO(2). o

QALFGDGAAAV VGADPDESIERPLY Q
LVSAAQT\LF‘DSDGAIDGHLRE\IGLTFHLLKWPGLISKNIEKSLKEAFGHGISDNNS\

flavonoid

010023}

PATHWAY: Secondary

FWIAHPGGPAILDQV EEKLELKEEKLRATRHV L SEY GNMSSACV LFILDEMRKKCAEEGM
ATTGEGLEWGVLFGFGPGLTVETVVLRSVPKA

MAPAMEEIRQAQRAEGPAAV LAIGTSTPPNALY QADY PDY Y FRITKSEHL TEL KEKFKRM
CDKSMIKKRY MY LTEEILKENPNICAFMAPSLDARQDIVV TEV PKLAKEAAV RAIKEWGH
PKSRITHLIFCTTSGIDMPGADY QLTRLLGLRPSVNRFWLY QQGCFAGGTVLRLAKDLAE
NNAGARVLVVCSEITAV TFRGPSESHLDSLY GQALFGDGAAAIN GSDPDSATERPLFQL
VSASQTILPESEGAIDGHLREGLTFHLLKDY PGLISKNIQKCLLDAFKPLGY HDWNSIF

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl-

304 metabolie bosynthesis; | CoA =4 CoA + naringerin chaicone + 3 CO(2),
flavonoi {Eco 10023}
PATHWAY: Secondary

389 metabolite biosynthesis;
flavonoid

WIAHPGGPAILDQVEIKLGLKAEKLAASRSVLAEY GNMSSACVLFILDEMRRRSAEAGQA
TTGEGLEWGV LFGFGPGLTVETIVLRSVPIAGAE

MVTVEEVRKAQRAEGPATVLAIGTATPPNCLDQSTY PDY Y FRITNSEHKTEL KEKFQRNC

DKSMIKKRY MY LTEEILKEHPNMCAY MAPSLDARQDMV Y VEIPKLGKEAAV KAIKEWGQP
CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl KSKITHLV FCTTSGY DMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRLAKDLAEN
CoA = 4 CoA + naringenin chalcone + 3 CO(2). NRGARVLVV CSEITAV TFRGPSDTHLDSLY GQALFGDGAAA IV GADPLPEV EKPLFEVY
{ECO 10023}

PATHWAY: Secondary
389 metabolte biosynthesis;

DWNSLFW
IAHPGGPAILDQVEEKLALKPEKLGATRHV LSEY GNMSSACVLFILDEMRRKSAEKGLKT
TGEGLDWGVLFGFGPGLTVETVVLHSLTT
MVTVEEVRRAQRAEGPATVMAIGTATPPNCV DQSTY PDY Y FRITNSEHKTELKEKFQRMC
DKSMIKKRY MY LTEEILKENPNV CAY MAPSLDARQDMV V'V EVPKLGKEAATKAIKEWGQP
KSKITHLVFCTTSGVDMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSETAV TFRGPSDAHLDSLV GQALFGDGAAA IV GSDPIPEV EKPLFELV
SAAQTILPDSDGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLNEAFQPLNITDWNSLFW

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl-
oA =4 CoA + raringenin chlcone 3 C0(2).

flavonoid

U10023).

THWAY: Secondary
389 metabole biosynthesis;
flavonoid biosynthesis.

PATHWAY: Secondary
389 metabolte biosynthesis;
flavonoid biosynthesis.

PATHWAY : Secondary
393 metabolte biosynthesis;
onoid.

JAHPGGPAILDQVELKLALKPEKLRATRHVLSEY GNMSSACV LFILDEMRKSSAKKGLKT
TGEGLDWGVLFGFGPGLTVETVVLHSVST

MVSV SEIRKAQRAEGPATILAIGTATPANCV EQSTY PDFY FKITNSEHKTV LKEKFQRMC
DKSMKRRY MY LTEEILKENPSLCEY MAPSLDARQDMY V'V EVPRLGKEAAV KAKEWGQP
KSKITHLIFCTTSGY DMPGADY QLTKLLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN

mTALvnc ACTIVATY : 3 malonyk-CoA + 4-coumaroyl- NKGARVLVVCSEV TAV TFRGPSDTHLDSLY GQALFGDGAAAL NV GSDPLPEEKPFEMY

CoA#naringerin chalcone + 3CO(2) WTAQTIAPDSEGAIDGHLREAGLTFHLLKDV PGIV SKNINKALV EAFQPLNIDDY NSIFW

(mo 0000255|PROSITE-ProRule:PRU10023}. JAHPGGPAILDQV EEKL GLKPEKMKATREV LSEY GNMSSACV LFILDEMRKKSAQQGLKT
TGEGLDWGV LFGFGPGLTIETVVLHSVAI

MVSVSEIRTAQRAEGPATILAIGTANPANCY EQSTY PDFY FKITNSEHKTEL KEKFQRMC
DKSMIKRRY MY LTEEILKENPSV CEY MAPSLDARQDMVV VEV PRLGKEAAVKAKI
KSKITHLIVCTTSGV DMPGADY QLTKLLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSEVTAV TFRGPSDTHLDSLY GQALFGDGAAALV GSDPV PEIEKPIFEMV
WTAQTIAPDSEGGIDGHLREAGLTFHLLKDV PGV SKNINKALV EAFEPLGISDY NSIFW
IAHPGGPAILDQV EQKLALKPEKMKA TREV L SEY GNMSSACVLVILDEMRKKSAQDGLKT
TGEGLEFGVLFGFGPGLTIETVVLRSVAI

CATALYTIC ACTVITY: 3 malony-CoA + 4-coumaroy-
=4CoA + naringenin chalcone + 3 CO(2).
{ECO:0000255|PROSITE-ProRule:PRU10023).

MAAV TVEEIRKAQRADGPAAVLAIGTATPANY V TQADY PDY Y FRITKSEHMTELKEKFKR
MCDKSMIRKRY MY L TEDILKENPNMCAY MAPSLDARQDIVVVEVPKLGKEAAV KAIKEWG
QPKSKITHLIFCTTSGV DMPGCDY QLTKLLGLRPSV KRFMMY QQGCFAGGTVLRLAKDLA
ETAV DSLVGQALS VGADPNESIERPLY Q
LVSAAQTILPDSDGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLKEAFGPIGISDWNS!

CATALYTIC AGTIVITY: 3 malonyk-CoA + 4-coumaroyl-
CoA = 4 CoA + naringenin chalcane + 3 CO(2).
{ECO: - ProRule:PRU10023)

PATHWAY: Secondary.
metabolite biosynihesis;

o
g
8

FWIAHPGGPAILDQVEAKLGLKEEKLRATRQULSEY GNMSSACV LFILDEMRKKCAEEGR
ATTGEGLDWGVLFGFGPGLTVETVVLRSVPINA

RAEGPATIL POFY KQKFQRMC
DKSMINRRY MY LTEEILKENPSV CEY MAPSLDARQDMV V VEV PRLGKEAAV KA KEWGQP
Vi

CATALYTIC ACTMITY : 3 malonyl-CoA + 4-coumaroyh
B2 o pnoennenfcondt fgog),

flavonoid

PATHWAY: Secondary
metabolite biosynthesis;

@
8
8

UPEE IAHPGGPAILDQV EQKLALKPEKMKATREV LSEY GNMSSA CV LFILDEMRRKSIQNGLKT

TGEGLEWGVLFGFGPGLTIETVVLHSVVI

MVSVSERKAQRAEGPATILAIGTANPANCV EQSTY PDFY FRITNSEHKTEL KQKFQRVC
DKSMINRRY MY LTEEIL KENPSV CEY MAPSLDARQDMVV VEV PRLGKEAAVKAIKEWGQP
KSKITHLIFCTTSGY DMPGADY QLTKLLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN

CATALYTIC AGTIVITY: 3 malony-CoA + 4-coumaroyl NKGARVLVVCSEV TAV TFRGPSDTHLDSLY GQALFGDGAAALN GSDPPEIEKPFEMV.

CoA =4 CoA + raringeni chalcone +3.00(2). WTAQTIAPDSEGAIDGHLREAGLTFHLLKDVPAN SKNIDKALV EAFQPLGISDY NSIFW

flavonoid

U10023). IAHPGGPAILDQV EQKLALKPEKMKA TREV LSEY GNMSSACV LFILDEMRRKSIQNGLKT

PATHWAY: Secondary
metabolite biosynthesis;

@
8
8

TGEGLEWGVLFGFGPGLTIETVVLHSVAI

M\/TVEEVRKAQRAESPA“LAK}TVTPANCVM)STVPDYVFR"NSEHKTELKEKFQRMC

flavonoid

PATHWAY: Secondary

DKSM DARQDIAVVEVPKLGKEAAQSAKEWGQP
CATALYTIC ACTIVITY: 3 malony-CoA + 4-coumaroyl- < er\/VFCTTSGIDNPGADYQLTKLLGLRF'S\/KRLMMVQQGCFAGGTV LRLAKDLAEN
CoA =4 CoA + raringeninchalcone 3 00(2). NKGARVLIVCSETVY SLVGQALFGDG FaLvs
10023). AAQTLAPNSCGA \DGHLREVGLTFHLLKD\/PSVVSNK\EKCLFEAFNPLG\SDNNSVFWI
AHPGGPAILDQVEDKLGLKPEKLRATRHVLSEY GNMSSACVLFILDEMRKASSNAGLGTT

GEGLEWGVLFGFGPGLTETVVLHSVPKPGPH

MAATMTVEEV RKAQRAEGPATVLAIGTATPANCY Y QADY PDY Y FKITKSDHMADLKEKFK
RMCDKSQIRKRY MHLTEEILQDNPNMCA Y MAPSLDARQDIVVVEV PKLGKAAAQKAIKEW

CATALYTIC ACTIVITY: 3 monyl-Co + -counaroyi- & GQPRSK"HLVFCH'SGV DMPGADY QLTKMLGLRPSV KRLMMY QQGCFAGGTVLRLAKDL

010023}

392 metabolte biosynthesis;  CoA = 4 CoA + naringenin chalcone + 3 CO(2).
flavonoid
PATHWAY: Secondar

369 metabolte bosynthesis; - Co =4 CoA  narngerin chalcone + 3
flavonoi 10

WIAHPGGPAILDMV EAKV NLNKERMRATRHV LSEY GNMSSA CV LFIMDEMRKRSAEDGHT
TTGEGMDWGV LFGFGPGLTVETVVLHSVPVTA

RAEGPATIL EQATYPDFY KEKFQRMC

DKSMIKSRY MY LTEEILKENPSV CEY MAPSLDARQDMVV VEV PRLGKEAAV KA IKEWGQP

KSKITHLIFCTTSGV DMPGADY QLTKLLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN

CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl- NKGARVLVVCSEV TAV TFRGPSDTHLDSLY GQALFGDGAAALN GSDPV PEEKPIFEMY
(2). WTAQTIAPDSEGAIDGHLREA GLTFHLLKDV PGV SKNIDKALY EAFQPLNISDY NSIFW

023). IAHPGGPAILDQV EQKLSLKPEKMKATRDVLSEY GNMSSACV LFILDEMRKKSAQDGLKT

PATHWAY: Secondary
metabolite biosynthesis;

@
8
8

TGEGLEWGVLFGFGPGLTIETVVLHSVAI

MVTVEEVRKAQRAEGPATILAIGTV TPANCYNQSTY PDY Y FRITNSEHKTEL KEKFQRMC
DKSMITKRY MHLTEEIL KENPSFCEY MAPSLDARQDIAVV EVPKLGKEAAQSAIKEWGQP
CATALYTIC ACTVITY: 3 malony-CoA + 4-couraroyl- KSKITHVVFCTTSGVDMPGADY QLTKLLGLSPSVKRLMMY QQGCFAGGTVLRLAKDLAEN
GoA =4 CoA « raringenin chlcone 3 CO(2). NKGARVLIVCSETVY DSLVGOALFGDG FaLvs
10023, AAQTLAPDSCGAIDGHLREV GLTFHLLKDVPSVV SNNIEKCLFEAFNPLGISDWNSV FWI

flavonoid

PATHWAY: Secondary
metabolte biosynthesis;
i

@
8
£

AHPGGPAILDQV EDKLGLKPEKLRATRHVLSEY GNMSSACV LFILDEMRKASSNAGLGTT
GEGLEWGVLFGFGPGLTETVVLHSVPKPGPH

MAATMTVEEV RKAQRAEGPATVLAIGTATPANCY Y QADY PDY Y FKITKSDHMADLKEKFK

RMCDKSQIRKRY MHLTEEILQDNPNMCA Y MAPSLDARQDIVVVEVPKLGKAAAQKAIKEW

GQPRSKITHLV FCTTSGV DMPGADY QLTKMLGLRPSVKRLMMY QQGCFAGGTVLRLAKDL
AENNRGARVLVV CSEITAV TFRGPHESHLDSLY GQALFGDGAAAV IGADPDESIERPLF

CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroy-
Con 2)- QLVSASQTILPDSEGAIDGHLREV GLTFHLLKDV PGLISKNIERALEDAFKPL GIl

4 CoA + naringenin chalcone +3 DD(
U10

flavonoid

PATHWAY: Secondary
metabolite biosynthesis;
flavonoid biosynthesis.

@
8
8

PATHWAY: Secondary
metabolite biosynthes

@
8
8

IDDWNS
VFWIAHPGGPAILDMVEAKY NLNKERMRATRHV LSEY GNMSSA CV LFIMDEMRKRSAEDG
HTTTGEGMDWGV LFGFGPGLTVETVVLHSVPVTA

M\/TVEEVRKAQRA&PATILAIGTVTPANC\/NQSTVPDVVFRITNSEHKYELKE?FQRMC
MAPSLDARQDIAVVEV PKLGKEAAQSAIKEWGQP
CATALYTIC ACTVITY: 3 malonyl-CoA + 4-coumaroyl- KSKITH\/VFCH’SGVDMPGADVQLTKLLGLRPSVKRLMMVQQGCFAGGTVLRLAKDLAEN
CoA = 4 CoA + naringenin chalcone + 3 CO(2). NKGARVLIVCSEITVV TFRGPSETHLDSLY GQALFGDGAAAV NV GADPTPAEKPLFQLV'S
{ECO:0000255PROSITE-ProRule:PRUL0023}. AAQNLAPDSCGAIDGHLREV GLTFHLLKDV PSVV SNNIEKCLFEA FNPLGISDWNSY FWI
AHPGGPAILDQV EDKLGLKPEKLRATRHVLSEY GNMSSACV LFILDEMRKASSNAGLGTT
GEGLEWGVLFGFGPGLTIETVVLHSVPKPGPH
TDTWSRREKRFEGHAKILAIGTATPANWY DQTTY PDFY FRITNSQHLLDHKE
KFRRICNKSK\RKH—{MILTEELLKKNPNLCTVM)ASLNTRQD\LVSEVP»(LGKEAAM(AI
EWGRPISEITHLV FCTTSGV DMPGADFQLTKLLGLNSSVKRLMMY QQGCNAGAAMLRLA

CATALYTIC ACTIVITY: 3 malony-CoA + 4- K
e 3 malonyk-CoA + 4 COUMAIOVE | 1 AENNKGARVLYV CSEVMLSV FRGPSLQQEDNLLAQCLFGDGSAAL GTDPRPGLET

flavono

Cor =4 Cor » naringenin c"a‘c°"ejlg£§ i PLFELISAAQTIPNTDSHLKLHVREMGLTFHCSKAV PTFTQNVEDCLVKAFEPY GISD
WNSIFWVLHPGGNAIV DGV EETL GLAPEKLRASRDVLSGY GNLTSACV LFILDEVRKKSK

PATHWAY: Secondary
366 metabolte biosynthesis;
flavonoid biosynthesis.

MSTTVTVLTDTWGRRAKRFEEGY AKILAIGTATPANWY DQTTY PDFY FRITNSQHLLEH
KEKFRRICNKSKIRKRHLV L TEELLQKNPSLCTY NETSLNTRQDILV SEVPKLGKEAANK

CATALYTIC AGTIVITY: 3 malonykCoA + 4-coumaroyh AIKEWGRP!SE’THLVFC‘!TSGVDMPGADFRLTKLLGLNQSCSVKRLMMVQQGGNAGAAMLR

CoA = 4 CoA + naringenin chalcone + 3 CO(2).
{ECO:0000255PROSITE-ProRule:PRU10023}.

ETPLFE.VSSAQTNPNTDSI—I.KLTLRE\AGLTFHCSRAV PSVLAENVEDCLVKAFEPY GI
ISIFWV FHPGGNA NV DRV EERLGLGA QRFRA SRDVLSEY GNLTSA CV LFILDEVRNK
SKKMEQ
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Chalcone synthase (EC
2.3.1.74) (Naringenin-  CHS
chalcone synthase)

Chalcone synthase 8 (EC
2.3.1.74) (Naringenin-  CHS8
chalcone synthase 8)

Chalcone synthase B (EC
23.1.74) (Naringenin-
chalcone synthase B)
(CHS-B) (Fragment)

cHsB

Chalcone synthase (EC
2.3.1.74) (Naringenin-  CHS
chalcone synthase)

Chalcone synthase 3 (EC
23.1.74) (Naregenin-  CHS3
chalcone synthase 3)

Chalcone synthase DIl
(EC2:3.1.74) (Naringenin- CHS-DIl
chalcone synthase DIf)

Chalcone synthase 9 (EC
2.3.1.74) (Naringenin-  CHS9.
chalcone synthase 9)

Chalcone synthase Dil (EC
23.1.74) (Naringenin-  CHS-DI
chalcone synthase DI

Chalcone synthase DIV
(EC2.3.1.74) (Naringenin- CHS-DIV
chalcone synthase DI

Chalcone synthase A (EC
23.1.74) (Naringenin-

A
chalcone synthase )
(CHS-A) (Fragment)
Chalcone synthase B (EC
23174 -

3.074) (Naringenin-

chalcone synthase B)
(CHS-B) (Fragment)

Chalcone synthase (EC
23.174) (Naregenin-  CHS
chalcone synthase)

Chalcone synthase 1 (EC
23.1.74) (Naringenin-  CHS1
chalcone synthase 1)

Chalcone synthase 2 (EC
23.1.74) (Naringenin-  CHS2
chalcone synthase 2)

Chalcone synthase LF3
(EC2.3.1.74) (Naringenin- CHS-LF3
chalcone synthase LF3)

Chalcone synthase A (EC
2.3.1.74) (Naringenin-
chalcone synthase A)
(CHS-A) (Fragment)

Chalcone synthase A (EC
2.3.1.74) (Naringenin-
chalcone synthase A)
(CHS-A) (Fragment)

Chalcone synthase A (EC
23.1.74) (Naringenin-
chalcone synthase A)
(CHS-A) (Fragmen))

CHsA

Chaloone synthase A (EC
2.3.1.74) (Naringenin-
chalcone synthase A)
(CHS-A) (Fragment)

CHSA

Chalcone synthase (EC
2.3.1.74) (Naregenin-
chalcone synthase)
(Fragment)

Chalcone synthase 3 (EC
2.3.1.74) (Naringenin-  CHS3.
chalcone synthase 3)

Catharanthus roseus
(Madagascar periwinkie)
(Vinca rosea)

Bromheadia finlaysoniana
(Orchid)

Ipomoea trfida (Morning
glory)

Pinus strobus (Eastern
white pine)

Pisum sativum (Garden
pea)

Ipomoea batatas (Sweet
potato) (Convolvulus
batatas)

Daucus carota (Wi
carro)

Ipomoea batatas (Sweet
potato) (Convolvulus
batatas)

Ipomoea batatas (Sweet
pma(u7 (Convuwulus
batat

Ipomoea trioba(Triobed
moriing glory)

Ipomoea il (Japanese.
morning glory) (Pharbifis
i)

Persea americana
(Avocado)

Gitrus sinensis (Sweet
orange) (Citrus aurantium
ensis)

Trifolium subterraneum
(Subterranean clover)

Ipomoea batatas (Sweet
potato) (Convolvulus
batatas)

Ipomoea il (Japanese
morning glory) (Pharbitis
i)

Ipomoea trfida (Morning
glory)

Ipomoea cordatotriioba
(Tievine)

Ipomoea platensis
(Morning glory)

Malus domestica (Apple)
(Pyrus malus)

Gerbera hybrida (Daisy)

PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl-
389 metabolte biosynthesis;  CoA =4 CoA + naringenin chalcone +3 CO(2)

flavonoid {ECO 010023},

PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-Coumaroyl-

o
3

metabolte biosynthesis:
flavonoid

A = 4 CoA + naringenin chalcone + 3
U0

PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl-

)
023).

366 metabolite biosynthesis;  CoA = 4 CoA + naringenin chalcone + 3 CO(2)

flavonoid {Eco U10023)
PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyh
395 metabolite biosynthesis;  CoA = 4 CoA + naringenin chalcone + 3 CO(2)
flavonoid {ECO 010023}
PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyk
389 | metabokts iosythesis; | CoA =4 oA + naingerin chakcane + 3 CO(2)
flavonoid U10023).
PATHWAY: Secondary (‘ATALYT\CACTNH’V 3 malonyl-CoA + 4-coumaroyl-
393 metabolite biosynthesis; 4 CoA + naringenin chalcone +3 CO(2).
flavonoid {ECO 010023
PATHWAY: Secondary  CATALYTIC ACTIVITY: 3 malonyl-CoA +4-coumaroyl (o
389 metabolte iosynthesis; . CoA =4 CoA + naringerin chalcone + 3 CO(2
flavonoid U10023)
PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyk
393 metabolite biosynthesis:  CoA = 4 CoA + naringenin chalcone + 3 CO(2)
Hlavonoid {ECO U10023).
PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyk
383 metabolite biosynthesis;  CoA = 4 CoA + naringenin chalcone + 3 CO(2)
flavonoid {ECO. U10023)
PATHWAY: Secondary = CATALYTICACTIVTY: 3 malonyl-CoA + 4-coumaroyk
362 metabolite CoA=4CoA + +3
flavonoid biosynthesis. ___ {ECO:0000255|PROSITE: ProRule:PRU10023).
PATHWAY: Secondary. .. CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroy
63 i is;.... CoA =4 COA + +3 CO(2).
flavonoid bi 5.  (ECO: Je:PRU10023)

PATHWAY: Secondary | CATALYTIC ACTIVITY: 3 malonyHCoA + 4-coumaroyk
302 metaholite biosynthesis; | oA = 4 CoA + naringenin chalcone + 3 CO(2).

flavonoid {ECO 010023},

PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-Coumaroyl-
metabolte biosynthesis;  CoA =4 CoA + naringenin chalcone +3 CO(2)

g
8

flavonoid {EcO; 10023}

PATHWAY: Secondary . CATALYTIC ACTIVITY: 3 malanyl-CoA + 4-coumaroy-
389 metaboite biosynthesis;  CoA =4 CoA +riaringenin chalcone + 3 CO(2)

Havonoid {ECO U10023)
PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyk
388 metabolite biosynthesis; =4 CoA + naringenin chalcone + 3 CO(2)

flavonoid biosynthesis.  {ECO:0000255PROSITE- ProRule: PRUL0023).

PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyk
metabolte bosyrihesis; . CoA = 4 CoA - naringenin chalcane + 3 CO(2)
flavonoid U10023)

@
S

PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl- "
362 metabolite biosynthesis;  CoA =4 CoA + naringenin chalcone + 3 CO(2),

flavonoid biosynthesis.  {ECO:0000255|PROSITE- ProRule: PRUL0023).

PATHWAY: Secondary  CATALYTIC ACTVITY: 3 malonyl-CoA + 4-couaroyl-
361 metabolte biosynthesis;  CoA =4 CoA +naringenin chalcone +3 CO(2)
{ECO 010023},

flavonoid

PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-Coumaroyl-
362 metabolite biosynthesis;  CoA =4 CoA + naringenin chalcone +3 CO(2)

flavonoid {ECO U10023).

PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA + 4-coumaroyl-
232 metabole biosynthesis;  CoA =4 CoA + naringenin chalcone +3 CO(2)

flavonoid {ECO U10023).

PATHWAY: Secondary ~ CATALYTIC ACTIVITY: 3 malonyl-CoA +

5
8

MVNVEEIRNAQRAQGPATVLAIGTSTPSNCY DQSTY PDY Y FRITNSEHKTELKEKFKRIMC
EKSMIKKRY MHLTEEILQENPNICAY MAPSLDARQNIVV VEV PKLGKEAAQKAIKEWGQS
KSKITHLVI FCH'SGVDNPGADVQLTKLLGLRSSVKRLMMVQQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSETAV' LV GQALFG FELV
SAAQTLLPDSHGAIDGHLREV GLTFHLLKDV PGLISKNIGKALDEAFQPL GISDWNSIFW
IAHPGGPAILDQVEEKL GLKPEKLRATRHVLSEY GNMSSACV LFILDEMRKASARDGLST
TGEGLEWGVLFGFGPGLTVETVVLHSVNV

MAPAMEEIRQAQRAEGPAAV LAIGTSTPPNALY QADY PDY Y FRITKSEHL TELKEKFKRM
CDKSMKKRY MY LTEEILKENPNICAFMAPSLDARQDIV V TEV PKLAKEAAARAIKEWGH
PKSRITHLIFCTTSGIDMPGADY QLTRLLGLRPSVNRFMLY QQGCFAGGTVLRLAKDLAE
NNAGARVLVVCSETAV TFRGPSESHLDSLV GQALFGDGAAAIN GSDPDSATERPLFQL
VSASQTILPESEGAIDGHLREGLTFHLLKDV PGLISKNIQKCLLDAFKPLGV HOWNSIF
WIAHPGGPAILDQVEILGLKAEKLAASRNVLAEY GNMSSACV LFILDEVRRRSAEAGQA
TTGEGLEWGVLFGFGPGLTVETIVLRSVPAGAE

MSTAV TMLTDTWSRRAKRFEIEGY AKILAIGTATPANWY DQTTY PDFY FRITNSQHLLEH
KEKFRRICNKSNIRKRHM\ L TEEL LKKNPNLCTY NDASLNTRQDILV SEVPKLGKEAAMK
AIKVWGRPISEITHLV FCTTSGV DMPGADFQLTKLLGLNSSVKRLMMY QQGCNAGAAMLR
LAKDLAENNKGARVLVV CSEV MLSV FRGPSLQQEDNLLAQCLFGDGSAA IGTDPRPGL
ETPLFELISAAQTIPDTDSHLKLHV REMGLTFHCSKAV PTFITQNV EDCLV KAFEPY GI
SDWNSIFWV LHPGGNAN EGV EETLGLAPEKLRASRDVLSEY GNLTSACV L FILDEVRKK
SKKDEQ

MPGGMMADLEAFRKAQRADGPATILAIGTATPPNAV DQSTY PDY Y FKITNSEHMIELKEK
FRRVMCDKSGIKKRY MY LTEEILNENPSV CAY MAPSLDARQDMVVVEVPRLGKEAAAKAK
EWGQPKSKITHV IFCTTSGV DMPGADY QMTKLLGLRPSVKRVMMY QQGCFAGGTVLRVAK
DLAENNRGARVLVV CSEITAV TFRGPSDTHLDSMY GQALFGDGARALV GADPV PEVEKP.
CFEMLWTAQTILPDSDGAIDGHLREV GLTFHLLKDV PGLISKNIEKSLV EAFQQFGISDW
NQLFWIAHPGGPAILDQVEAKLNLDPKKLRATRQVLSEY GNMSSACV HFILDEMRKSSQQ
NGCSTTGEGLDVGVLFGFGPGLTVETVVLKSVPLQ

EIRKAQRAEGPATILAIGTANPANGY EQSTY PDFY FRITNSEHKTELKQKFQRMC
EKSM\NRRVMV LTEEILKENPSV CEY MAPSLDARQDMVVVEV PRLGKEAAV KAIKEWGQP
KSKITHLIFCTTSGY DMPGADY QLTKLLGLRPY VKRY MMY QQGCFAGGTVLRLAKDLAEN
NKGARVLVVCSEV TAV TFRGPSDTHLDSLV GQALFGDGAAALN GSDPLPEENPFEMY
WTAQTIAPDSEGAIDGHLREAGLTFHLLKDVPAN SKNIDKALY EAFQPLGISDY NSIFW
IAHPGGPAILDQVEQKLALKPEKMKATREV LSEY GNMSSACV LFILDEVRRKSIQNGLKT
TGEGLEWGVLFGFGPGLTIETVVLHSVAI

MVTVEV H(AKRAEGF'AT\LAIGTATFAI\D/NQSTV POYY| FRVTNSEHKTEI.KEQ‘QRNC

MITKRY MHLTEEILKENPSFCEY MAPSLDARQDIAV V EV PKLGKEAAQSAIKEWGQS
KSKITHVFFCWSGVDNPGA mQLTKLLGLRPvaRLMMv QQGCFAGGWLRLAKmAm
GARVLIV CSEITVV TFRGPSETHLDSLV GQALFGDGAAAV N GADPTPAEKPLFQL

AAQTLAPDSOGAIDGHLRE\/GLTFHLLKD\/PS\/\/SI\N\EKCLFEAFNPLG\SD\NNSVF\M
AHPGGPAILDQVEDKLGLKPEKLRATRHVLSEY GNMSSACV LFILDEMRKASSNAGLGTT
GHELE\NGVLFGFGPGLTIET\/VLHSVP\KPGW

‘TVNEFRKAQRAEGPATVLAIGTATPPNCVDQSAY ADY Y FRITNSEDKPEL KEKFRRMC
EKSMNTRV MHLTEDLLKQNPSFCEY MASSLDARQDIVVNEV PKLGKEAALRAKEWGRP
KSKITHLIFCTTSGY DMPGADFRLTKLLGLRPSV KRFMMY QQGCFAGGTVLRLAKDLAEN

DSLVGQALFGD DPVIGIEKPLFEN

SAAQTLPDSDGAIDGHLREVGLTFHLLKD\/ PGLISKNIRKSLY EAFKPLGISDWNSIFW
IAHPGGPAILDQV ETEL SLKPDKLKSTRQVLRDY GNMSSACV LFILDEMRNASAKDGHRT
TGEGLDWGVLFGFGPGLTVETVVLHSVPT

MVTVEEVRKAQRAEGPATILAIGTATPANCVNQSTY PDY Y FRITNSEHKTEL KEKFQRMC
DKSMITKRY MHLTEEILKENPSFCEY MAPSLDARQDIAVV EVPKLGKEAAQSAIKEWGQP
KSKITHVVFCTTSGV DMPGADY QLTKLLGLRPSVKRLMMY QQGCFAGGTVLRLAKDLAEN
NKGARVLIVCSEITVV TFRGPSETHLDSLY GQALFGDGAAAV N GADPTPAEKPLFQLYS
AAQTLAPNSCGAIDGHLREV GLTFHLLKDV PSVV SNNIEKCLFEAFNPLGISDWNSV FWI
AHPGGPAILDQV EDKLGLKPEKLRATRHVLSEY GNMSSACV LFILDEMRKASSNAGLGTT
GEGLEWGVLFGFGPGLTIETVVLHSVLIKPGPH

MVTVEEV! RKAQRAS}PATLAIGT\/TPANO/NQSTVPDY 'Y FRITNSEHKTEL KEKFQRNC
DKSMITKRY MHLTEEILKENPSFCEY MAPSLDARQDIAVVEVPKLGKEAAQSAIKEWGQP

SKNWV?CWSG\DM’GADVQLTKLLGLRPS\/ KRLMMY QQGCFAGGTVLRLAKDLAEN
NKGARVLIVCSEITVV TFRGPSETHLDSLY GQALFGDGAAAV N GADPTPAEKPLFQLYS
AAQTLAPNSCGAIDGHLREV GLTFHLLKDVPSVV SNNIEKCLFEAFNPLGISDWNSV FWI
AHPGGPAILDQV EDKLGLKF‘EKLRATRHVLSEVGNNSSACVLFILDENRKASSNAGLGTT
GEGLEWGVLFGFGPGLTIETVVLHSVI

MSPTV TV QLTDDTAKRFEGHAKLLAIGTATPTNWY DQATY PDFY FRITNSERLLEHKEKF
RR\CNKSKRFRHLVLTEELLKKSPNLCWI\DASLNTRQDIL\/SE\/ PKLGKEAAMKAIKE

WGRPISH FQLTKLLGLNSSVKRL QQGCNAGAAMLRLVKD
mmNKsAWvacsarmFRGpsLso ILLAQCLFGDGSAAMN GKDPRPGLETPL
FELVSSAQTIVPNTDSHLKLTLREMGL TFHCSRAVPSVLAENVEDCLV KAFEPY GISDWN
SIFWVFHPGGY AV DRV EERLGLGPERLRASRDV LSEY GNLTSACVLFILDEMRKKSKKD
EQ

MSTILNVLTDTWSPRAKKLEGDAKWAIGTATPANWY DQTTY POFY FRITNSQHLLEHKE
KFRRICNKSKIRKRHLV LTEELLKKNPNLCTY NETSLNTRQDILV AEV PKLGKEAAMKAL
KEWGRPISEITHLV FCTTSGV DMPGADFQLTKLLGLNSSVKRLMMY QQGCNAGAAMLRLA
DDNLLAQCLF
PLFELVSSAQTIVPNTDSHLKLHLREMGLTFHCSKAV PSVLAENVEDCLV KAFEPY GISD
DRVEERLGL( SEYGNLTSACVLFTLDEMRKKSK

KDE

QRAEGPA EY D)
CEKSMIKKRY MY LTETY WKRIQMFY PTWLLPLKARQDMVV VEV PKLGKEV QPKAIKGMGQ
PKSKINPLVFCTTSGV DMPGADY QLTKVFGLPPSVKRLMMY QQGCFAGGTVLRLAKDLAE
NNKGARVLVVCSETAV TFRGPSDTHLDSLY GQALFGDGAAALV GADPV PGV ENPMFEL.
VSAGQTILPDSDGAIDGHLREV GLTFHLLKVV PGLISKNIEKSLVEAFEPLGISDWNSLF
WIAHPGGPAILDPGGDQTRPEARESCGNQACFSY SMATCQV FV CSSFSTRCEGSPKEEGL
KTTGEGIEWGVLFGFGPGLTVETVVLHSLPTH

MVTVDEVRKAQRAQGPATIMAIGTATPPNCY DQ; SWPDVVFR[TNSEHMFDLKEKFKRNC
DKSMKKRY MY LTEEILKENPNV CAY MAPSLDTRQDMVV VEV PRLGKAATEA!
SKITHLVFCTTSGVDMPGADY | RLTKLLGLRPSVKRLNMVQQGCFAGGTVLRLAKDLAE\(N
KGARVLVVCSETAV' DSLVGQALFGDG
TAQTILPDSDGSIDGHLREAGLTFHLLKDV PGLISKNIQKSL TEAFKPLGISDWNSIFWI
AHPGGPAILDQV EEKL GLKPEKLRATRHVLSEY GNMSSACV L FILDEMRKKSAEDGLETA
GEGLEWGVLFGFGPGLTVETVVLHSVAAA

RAEGPAT\Ln TYPDFY KEKFQRMC
DKSMKSRY MY LTEEILKEN PSLDARQDMYVVEVPRLGKEAAV KAIKEWGQP
KSKITHLIFCTTSGVDMPGADY QLTKLLGLRPVVKRV MWQQGGFAGGWLRLAKmAm
NKG/ VGQALFGDGAAALN GSDPVPEIEKPIF

erQTIAPDSEGADGHLREAGLTFHLLKWPGNSKNDKAL\/ EAFQPLNISDY | NS\FW
IAHPGGPAILDQVEQKLALKPEKMKA TREVLSEY GNMSSACVLFILDEMRKKSAQNGLKT
TGEGLEWGVLFGFGPGLTIETVVLHSVAI

MV TVGEVRKAQRAEGPATILAIGTATPANCVNQSTY PDY Y FRITNSEHKTEL KEKFQRMC
DKSMITKRY MHLTEEILKENPSFCEY MAPSLDARQDIAVVEVPKLGKEAAQSAKGWGQP
KSKITHVVFCTTSGV DMPGADY QLTKLLGLRPSVKRLMVY QQGCFAGGTVLRLAKDLAEN
NKGARVLIVCSEITVV TFRGPSEAHLDSLY GQALFGDGAAAV IV GADPTPABKPLFQLY'S
AAQTLAPDSCGAIDGHLREV GLTFHLLKDVPSVV SNNIEKCLFEA FNPLGISDWNSV FWI
AHPGGPAILDQV EDKLGLKPEKLRATRHVLSEY GNMSSACV LFILDEMRKASSNDGLGTT
GEGLEWGVLFGFGPGLTIETVVLHSVPT

MSTILTNTWTRREKRIEGHAKILAIGTAIPANWY DQTTY PDFY FRITNSEHLLEHKEKFR
RICNKSKIRKRHLV ITEELL KKNPNLCTY NEASLNTRQDILV SEVPKLGKEAAMKAKEW
GRPISEITHLV FCTSSGY DMPGADFQLAKLLGLSSSVNRLMMY QQGCNAGAAMLRLAKDL
ABNNKGGRVLVVCSEVMLNV FRGPSLEQEDY LLAQCLFGDGSAAV N GTEPRPGLETPLFE
ELVSAAQTTIPDTDSHLKLHLREMGLTFHCSKAV PSLITQNVEDY LVKAFEPFGISDWNS
IFWILHPGGIA ILDRV EEKL GLEPEKLRASRDVLSESGNLTSAC

MSPTATVQLTDDTAKRFEGHAKLLAIGTATPTNWY DQATY PDFY FRITNSEHLLEHKEKF

W\CNKSKH(M\/LYKELKKNMCTVNDASLNYRQDLVSE\/PKLGKEAAM(A KE
IGRPISH ADFQLTKLLGLNSSVKRLMMY ! QQGCNAGAAMLRLVKD

LAENNKGAWLVVCSE[TN\FRGPSLEQDDNLLAQCLFGDGSAAMNGKDPRPG

FELVSSAQTIVPNTDSHLKLHLREMGLTFHCSRAV PSVLAENV! mvmpawons

SIFWV FHPGGNAN DRV EERLGLGPERLRA SRDV LSEY GNLTSACV LFILDEMRKKSKKD

Q

MTPTV TVQLTDDTAKRFEGHAKLLAIGTATPTNWY DQATY PDFY FRITNSEHLLEHKEKF
RRICNKSKIRKRHLV LTEELLKENPNLCTY NDASLNTRQDILV SEV PKLGKEAAMKAKE
WGRPISEITHLV FCTTSGV DMPGA DFQLTKLLGLNSSV KRLMMY QQGCNAGAAMLRLVKG
VVCS EQDDNLLAQCL JGKDPRPGLETF'L
FELVSSAQTNH\ITDSHLKLI—LREMG ISDWN
S\FWVF!—PGGNAN DWEE?sGLGPERLRASRDVLSEVGNLTSACVLFILDEM?KKsKKD

MSTTVLPDTWSRRAKRFEGHAKILAV GTATPANWY DQTTY PDFY FRITNSEHLLEHKEKF
RRICNKSKIRKRHLV LTEELLKKNPNLCTY NETSLNTRQDTLY SEVPKLGKEAAMKAIKE
WGRPISEITHLV FCTTSGV DMPGA DFQLTKLLGLNISVKRLMMY QQGCNAGAAMLRLAKD
LAENNKGARVLVVCSEVTLSVFRGPSLQQEDNLLAQCLFGDGSAAV V GTDPRPGLETPL
FELVSSAQTIPDTDSHLKLHLLEMGLTFHCSKAV PSLITQNVEDCLY KAFEPFGISDWN
SIFWILHPGGNAILDRV EERLGLGPEKLRASRDVLSEY GNLTSACVLFILDLVRRKSKKQ
€

MMY QQGCFAGGTVLRLAKDLAENNKGARVLVV CSETAV TFRGPSDTHLDSLY GQALFGD.
GAAAV IGADPV PEV EKPLFELV SAAQTVLPDSDGAIDGHL REV GLTFHLLKDVPGLISK
NIEKSLNEAL KPIGISDWISLPWIAHPGGPAILDQV EAKLALKPEKLEATRQVLSDY GNM
SSACVLFILDEVRRKSAEKGLETTGEGLEWGV LFGFGPGLTVETVVLHSVAA

MATSPAVIDVETIRKAQRAEGPATILAIGTATPANCY Y QADY PDY Y FRV TESEHMVDLKE
KFQRMCDKSMIRKRY MHITEEFLKENPSMCKFMA PSLDARQDLV V'V EVPKLGKEAATKAI
KENGFWSKV’THLVFCY'TSGVDMPGADVQLTKLLGLRPSVKRLMMVQQGCFAGGW LRLA

DSLVGQALFGDG SVER

flavonoid

112

ry
metabolfe biosynthesis; | CoA = 4 oA + narngerin chakne +3 o)
U10023).

VCSEITAV

HPEM\/SAAQ“LH]SESAIDGHLKEVGLTFHLLKWPALIAKNIEKAUQAFSPLN\
LGLREEKLRASRHVLSEY GNMSSACV LFILDEMRKKS!

KDGKTTTGEGLEWGYLFGFGPGLTVETVVLHSLPATISVATON



Entry

G7KXB8

Q64HVO

DOEz01

DOEZ03

Q705Q9

Q705Q6

Q705Q4a

Deceks

QOSENL

QOH703

QosBUB

QoesBU7

Entry name

G7KXB8_MEDTR

Q64HVO_ARALY

DOE301_ARALL

DOE303_ARALP

Q705Q9_ARALL

Q705Q6_ARALP

Q705Q4_ARALP

D6C6EK8_NELNU

QO9SEN1_ARALL

QOH703_ARALL

Q9SBUB_ARALP

Q9SBU7 ARALP

Status

unreviewed

unreviewed

unreviewed

unreviewed

unreviewed

unreviewed

unreviewed

unreviewed

unreviewed

unreviewed

unreviewed

unreviewed

AOA1Z1N350 AOA1ZIN350_PRUP unreviewed

Qexome

Q6X0M9_SOVYBN

unreviewed

Unreviewed CHS Raw Dataset--UCHS

Protein names

Chalcone synthase
protein

Chalcone synthase
protein

Chalcone synthase
protein

Chalcone synthase
protein

Chalcone synthase
protein

Chalcone synthase
protein

Chalcone synthase
protein

Chalcone synthase
(chalcone synthase 1)
(EC 2.3.1.74)

Chalcone synthase

Chalcone synthase
(Chalcone synthase
family protein) protein

Chalcone synthase

Chalcone synthase

Chalcone synthase (EC
2.3.1.74)

Chalcone synthase (EC
2.3.1.74) (Chalcone
synthase CHS3)

Gene names Organism

Medicago truncatula
(Barrel medic:
(Medicago tribuloides) 391

11440049
MTR_7g084300

Arabidopsis lyrata (Lyre-
leaved rock-cress)
CcHs (Arabis lyrata) 375

Arabidopsis lyrata
subsp. lyrata (Lyre-
cHs leaved rock-cress) 367

Arabidopsis lyrata
sSubsp. petraca
(Northern rock-cress)
(Cardaminopsis

cHs petraea) 367

Arabidopsis lyrata
subsp. lyrata (Lyre-
chs leaved rock-cress) 391

Arabidopsis lyrata
subsp. petraca
(Northern rock-cress)
(Cardaminopsis.

chs. petraea) 391

Arabidopsis lyrata.
subsp. petraca
(Northern rock-cress)
(Cardaminopsis.

chs. petraea) 391

CHSC CHS3

CHSG Nelumbo nucifera
LOC104602160 (Sacred lotus) 389

Arabidopsis lyrata
ARALYDRAFT_48 subsp. lyrata (Lyre-
8219 leaved rock-cress) 396

Arabidopsis lyrata
subsp. lyrata (Lyre-
leaved rock-cress) 389

Arabidopsis lyrata
subsp. petraea

(Northern rock-cress)
(Cardaminopsis

petraea) 396

Arabidopsis lyrata
subsp. petraea

(Northern rock-cress)
(Cardaminopsis

petraea) 396

Prunus persica (Peach)
CcHs (Amygdalus persica) 343

100791524 CHS 1 13

GLYMA_08G10930
o
GLYMA_08G11030

o
GLYMA_08G11090 Glycine max (Soybean)
(Glycine hispida) 388

Length Pathway

Catalytic activity Sequence

MVTVEEIRKAQRSNGPATILAFGTATPSHCVTQAEY
PDYYFRITNSEHMTDLKEKFKRMCEKSMIKKRYMH
ITEEFLKENPNMCAYMAPSLDARQDLVWVEVPKLG
KDAAKKAIAEW GQPKSKITHWFCTTSGVDMPGAD
YQLTKLLGLKPSVKRLMMYQQGCFAGGTVLRLAK
DLAENNKNARVLVWWCSEITAVTFRGPSDTHLDSLY
GQALFGDG, ADPDLT\ QTILP
DSDGAIDGHLREVGLTFHLLKDVPGISKNIEKSLVE
AFAPIGISDW NSIFWVAHPGGPAILDQVEEKLRLKE
EKLRSTRHVLSEYGNMSSACVLFILDEMRKRSKEE
GKITTGEGLEW GVLFGFGPGLTVETWLHSVPVQG

MVMAAGASSLDEIRKAQRADGPAGILAIGTANPENH
VLQAE YPDYYFRITNSEHMTDLKEKFKRMCDKSMI
RKRHMHLTEDFLKENPHMCAYMAPSLDTRQDIVV
VEVPKLGKEAAVKAIKEW GQPKSKITHWFCTTSG
VDMPGADYQLTKLLGLRPSVKRLMMYQQGCFAG
GTVLRIAKDLAENNRGARVLWCSEITAVTFRGPSD
THLDSLVGQALFSDGAAALIVGSDPDTSVGEKPIFE
MVSAAQTILPDSDGAIDGHLREVGLTFHLLKDVPGL
ISKNIVKSLDEAFKPLGISDWNSLFW IAHPGGPAILD
QVELKLGLKEEKMRMTRHVLSE YGNMSSACVLFIL
DEMRRKSAKDGVATTGGGLEWG

MVMAAGASSLDEIRKAQRADGPAGILAIGTANPENH
VLQAEYPDYYFRITNSEHMTDLKEKFKRMCDKSMI
RKRHMHLTEDFLKENPHMCAYMAPSLDTRQDIMV
VEVPKLGKEAAVKAIKEW GQPKSKITHWFCTTSG
VDMPGADYQLTKLLGLRPSVKRLMMYQQGCFAG
GTVLRIAKDLAENNRGARVLWCSEITAVTFRGPSD
THLDSLVGQALFSDGAAALIVGSDPDTSVGEKPIFE
MVSAAQTILPDSDGAIDGHLREVGLTFHLLKDVPGL
ISKNIVKSLDEAFKPLGISDWNSLFW IAHPGGPAILD
QVELKLGLKEEKMRMTRHVLSEYGNMSSACVLFIL
DEMRRKSAKDGVAT

MVMAAGASSLDEIRKAQRADGPAGILAIGTANPENH
VLQAEYPDYYFRITNSEHMTDLKEKFKRMCDKSMI
RKRHMHLTEDFLKENPHMCAYMAPSLDTRQDIMV
VEVPKLGKEAAVKAIKEW GQPKSKITHWFCTTSG
VDMPGADYQLTKLLGLRPSVKRLMMYQQGCFAG
GTVLRIAKDLAENNRGARVLWCSEITAVTFRGPSD
THLDSLVGQALFSDGAAALIVGSDPDTSVGEKPIFE

SAAQTILPDSDGAIDGHLREVGLTFHLLKDVPGL
ISKNIVKSLDEAFKPLGISDWNSLFW IAHPGGPAILD
QVELKLGLKEEKMRMTRHVLSEYGNMSSACVLFIL
DEMRRKSAKDGVAT

MVMAAGASSLDEIRKAQRADGPAGILAIGTANPENH
VLQAEYPDYYFRITNSEHMTDLKEKFKRSDKSMIR
KRHMHLTEDFLKENPHMCAYMAPSLDTRQDMWVE
VPKLGKEAAVKAIKEW GQPKSKITHVWFCTTSGVD
MPGADYQLTKLLGLRPSVKRLMMYQQGCFAGGTV
LRIAKDLAENNRGARVLWWCSEITAVTFRGPSDTHL
DSLVGQALFSDGAAALIVGSDPDTSVGEKPIFEMV!
SAAQTILPDSDGAIDGHLREVGLTFHLLKDVPGLIS
KNIVKSLDEAFKPLGISDWNSLFWIAHPGGPAILDQ
VELKLGLKEEKMRMTRHVLSEYGNMSSACVLFILD
EMRRKSAKDGVATTGEGLEW GVLFGFGPGLTVET
WVWLH

MVMAAGASSLDEIRKAQRADGPAGILAIGTANPENH
VLQAEYPDYYFRITNSEHMTDLKEKFKRSDKSMIR
KRHMHLTEDFLKENPHMCAYMAPSLDTRQDMVE
VPKLGKEAAVKAIKEW GQPKSKITHWFCTTSGVD
MPGADYQLTKLLGLRPSVKRLMMYQQGCFAGGTV
LRIAKDLAENNRGARVLWWCSEITAVTFRGPSDTHL
DSLVGQALFSDGAAALIVGSDPDTSVGEKPIFEMV
SAAQTILPDSDGAIDGHLREVGLTFHLLKDVPGLIS
KNIVKSLDEAFKPLGISDWNSLFWIAHPGGPAILDQ
VELKLGLKEEKMRMTRHVLSEYGNMSSACVLFILD
EMRRKSAKDGVATTGEGLEW GVLFGFGPGLTVET
WVWLH

GASSLDEIRKAQRADGPAGILAIGTANPENH
VLQAEYPDYYFRITNSEHMTDLKEKFKRSDKSMIR
KRHMHLTEDFLKENPHMCAYMAPSLDTRQDIMWVE
VPKLGKEAAVKAIKEW GQPKSKITHWFCTTSGVD
MPGADYQLTKLLGLRPSVKRLMMYQQGCFAGGTV
LRIAKDLAENNRGARVLVWWCSEITAVTFRGPSDTHL
DSLVGQALFSDGAAALIVGSDPDTSIGEKPIFEMVS
AAQTILPDSDGAIDGHLREVGLTFHLLKDVPGLISK
NIVKSLDEAFKPLGISDWNSLFW IAHPGGPAILDQV
ELKLGLKEEKMRMTRHVLSEYGNMSSACVLFILDE
MRRKSAKDGVATTGEGLEWGVLFGFGPGLTVETV
VLH

MVTVEDIRKAQRAEGPATVMAIGTANPPNCVDQST
YPDYYFRITNSEHKTELKEKFKRMCEKSMIKKRYM
HLTEEILKENPNICE YMASSLDARQDMVWEVPKLG
KEAATKAIKEW GQPKSKITHLVFCTTSGVDMPGAD
YQLTKLLGLRPSVKRLMMYQQGCFAGGTVLRLAK
DLAENNRGARVLWCSELTAVTFRGPSDTHLDSLY
GQALFGDGAAAVIVGADPVPGVEKPLFELVSAAQTI
LPDSHGAIDGHLREVGLTFHLLKDVPGLISKNIEKSL
VEAFQPLGISDW NSIFW IAHPGGPAILDQVEEKLAL
KPEKLSATRHILSEYGNMSSACVLFILDEMRKKSIE
DGLKTTGEGLEWGVLFGFGPGLTVETWLHSIAA

MVMAAGAS SLDEIRKAQRADGPAGILAIGTANPENH
VLQAE YPDYYFRITNSEHMTDLKEKFKRMCDKSMI
RKRHMHLTEDFLKENPHMCAYMAPSLDTRQDIMV
VEVPKLGKEAAVKAIKEW GQPKSKITHWFCTTSG
VDMPGADYQLTKLLGLRPSVKRLMMYQQGCFAG
GTVLRIAKDLAENNRGARVLWCSEITAVTFRGPSD
THLDSLVGQALFSDGAAALIVGSDPDTSVGEKPIFE
MVSAAQTILPDSDGAIDGHLREVGLTFHLLKDVPGL
ISKNIVKSLDEAFKPLGISDWNSLFW IAHPGGPAILD
QVELKLGLKEEKMRMTRHVLSEYGNMSSACVLFIL
DEMRRKSAKDGVATTGEGLEW GVLFGFGPGLTV
ETWWLHSVPL

MVMAAGAS SLDEIRKAQRADGPAGILAIGTANPENH
VLQAE YPDYYFRITNSEHMTDLKEKFKRMCDKSMI
RKRHMHLTEDFLKENPHMCAYMAPSLDTRQDIMV
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VDY
PDFYFRVTKSHHLTSLKDKFRRICEKSAIRKRYMH
LTEDINKNPNLIVKAPSEFDARQEILVTEVPKLGKDA
ALKAIKEW GQPISNITHLIVCTSSGIDMP AAD HOQ LAK
LIGLKSSVORFMLYQQGCFAAGTALRLAKDLAENN
PGARVLAVCSEIMVGSFQPPSETHLDVLVGSALFS

KTAAATEGLEW GVLLAFGPGLTVETVVLRSIAADSA

MGSIDAAVL GSVKKSNPGKATILALGKAEP HQLVMQ
EYLVDGYFKTTNCDDPELKQKLTRLCKTTTVKTRY

LEFGDGAGAMIVGSDPDRICEKPLFELHTAIQNFLPD
POQIEDNVENFCKKL
IGKAGLAHKNYNQMFW AVHP GGPAILNR MEK R LNL
SPEKLSPSRRALMDYGNASSNSVYVLEYMLEESK
KVRNMNEEEDEW GLILAFGP GVTEEGIARNLDV

EVRKAQRAQGPATVLAIGTSTPPNCVDQS
TYPDYYFRITNSEHKTELKEKFKRMCEKSMIKIKRY
MYLTEEILKENPNVCEYMAPSLDARQDMANVEVPK
LGKEAATKAIKEW GOPKSKITHLVEC TTSGVDMPG
ADYQLTKLLGLRPSVKRLMMYQQGCFAGGTVLRY
AKDLAENNKGARVLWCSEITAVTFRGPSDTHLDS

KSREDGLQTTGEGLEW GVLFGFGPGLTVETWWLH
svaa

MVTVEEVRKAQRAQGPATVLAIGTSTPPNCVDQS
TYPDYYFRITNSEHKTELKEKFKRMCEKSMIKKRY
MYLTEEILKENPNVCEYMAPSLDARQDMANVEVPK
LGKEAATKAIKEW GOQPKSKITHLVECTTSGVDMPG
ADYQLTKLLGLRPSVKRLMMYQQGCFAGGTVLRY
AKDLAENNKGARVLWC SEITAVTFRGPSDTHLDS

EDGLOTTGEGLEW GVLFGFGPGLTVETWWLHSVA
A

MVSARDVDTTTAANKQQQATCLAPNPGKATILALG
HAFPQOLVMQDYWEGFMRNTNCKDPELKEKLTR

PEPEGGQECEWGLILAFGPGITFEGILARNLQARL
AN

MVTVEDIRRAQRAEGPATVMAIGTATPPNCVDQST
YPDYYFRITNSEHKAELKEKFKRMCDKSMIKKRYM
YLTEEILKENPQVCEYMAPSLDARQDNMANVEVPKL
GKEAATKAIKEW GQPKSKITHLVFCTTSGVDMPGA

LKTTGEGLEWGVLFGFGPGLTVETWWLHSLS

MVTVEEVRRAQRAEGPATVMAIGTATPPNCVDOS
TYPDYYFRITNSEHKTELKEKFQRMCDKSMIKKRY
MYLTEEILKENPNVCAYMAPSLDARQDMANVEVPK
LEGKEAATKAIKEW GQPKSKITHLVECTTSGVDMPG
ADYQLTKLLGLRPSVKRLMMYQQGCFAGGTVLRL
AKDLAENNKGARVLWCSEITAVTFRGPSDAHLDS
LVGQALFGDGAAAINGSDPIPEVEKPLFELVSAAQT
ILPDSDGAIDGHLREVGLTFHLLKDVPGLISKNIEKS
LNEAFQPLNITDWNSLFW IAHP GGPAILDQVELKLA
LKPEKLRATRHVLSE YGNMSSACVLFILDEMRKSS
AKKGLKTTGEGLDW GVLFGFGPGLTVE TWWLHSV

EVRKAQRAEGPATVLAIGTATPSNCVDQAT
YPDYYFRITNSEHKTELKEKFQRMCDKSMIKKRYM
YLTEEILKENPTVCEYMAPSLDARQDMANVEVPRL
GKEAATKAIKEW GQPKSKITHLVFCTTSGVDMPGA
DYQLTKLLGLRPYVKRLMMYQQGCFAGGTVLRLA
KDLAENNKGARVILMVVCSEITAVTFRGPSDTHLDSL
VGQALFGDGAAAVIIGAD PLPEVEKPLFELVSAAQTI
LPDSDGAIDGHLREVGLTFHLLKDVPGLISKNIEKSL
NEAFKPIGISDW NSLFW IAHPGGPAILDQVESKLAL
KPEKLEATRQVLSNYGNMSSACVLFILDEVRRKST
EKGLRTTGEGLEWGVLFGFGPGLTVETWLHSVA
A

MVTVEE YRKAQRAEGPATVMAIGTATPSNCVDQ S
TYPDYYFRITDSEHKTELKEKFKRMCDKSMIKKRY

SAKEGLGTTGEGLEWGVLFGFGPGLTVETWWLHS
N

MVNVE EIRKAQRAEGPAAILAIGTATPPNAIEQSE YP
DYYFRVTNSEDKVELKEKFKRMCEKSMIKKRYLYL
TEDILKENPNVCAYMATSLDARQDMANVEVPKLGK

NGTTGEGLEW GVLFGFGPGLTVETWLHSVEA

SESDSNGASKHCTTPSRRAPTLGKATLLAIGKAR
PSQLIPQECLVEGYIRDTKCDDASIKEKLERLCKTT
T TRy T VMSREILDKYPELATESTPTIRORLEAN
PAVVES

P OB VL ASOL LR NDYGRUML YL GO GOV
GLRVAKDIAENNPGSRVLLTTSETTILGFRPPSKAR
PYDLVGAALFGDGAAAVIIGANPVIGKESPEMELNYS
VQQFLPGTQNVIDGRLSEEGIHFKLGRDLPQKIED
NIEEFCNKLMSKAGLTDFNELFWAVHP GGPAILNR
LESKLKLNEEKLECSRRALMDYGNVSSNTIVYVLEY
MRDELKRGGGEWGLALAFGPGITFEGILLRSL

MAPAVADIRKAQRAEGPATVLAIGTATPPNCVYQK
DYPDYYFRVTNSDHMTDLKEKFRRMCEKSNIEKR
YMYLTEEILKENPNMCSYMQTSSLDTRQDMVSE
VPRLGKEAAQKAIKEW GQPKSKITHVIMCTTSGVD
MPGADYQLTKLLGLHPSVKREMMYQQGCFAGGTV
LRLAKDLAENNRGARVILMVVCSEITAICEFRGPTDTHP
DSMVGOALFGDGSGAVIGADPDLSIEKP IFELVW T
AQTILPDSEGAIDGHLREVGLTFHLLKDVPGLISKNI
EKNLTEAFSPLNVSDWNSLFW IAHP GGPAILDQVE
TKLGLKEEKLKATROQVLNDYGNMSSACVLFIMDEM
RKKSVENGHATTGEGLEW GVLFGFGPGLTVETWY
LHSVPVAN
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