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ABSTRACT
Robust computational methods to simulate slow-fast dynamical systems

governed by predator-prey models

by

Woinshet D. Mergia

PhD thesis, Department of Mathematics and Applied Mathematics,

Faculty of Natural Sciences, University of the Western Cape

Numerical approximations of multiscale problems of important applications in ecology

are investigated. One of the class of models considered in this work are singularly per-

turbed (slow-fast) predator-prey systems which are characterized by the presence of a

very small positive parameter representing the separation of time-scales between the

fast and slow dynamics. Solution of such problems involve multiple scale phenomenon

characterized by repeated switching of slow and fast motions, referred to as relaxation-

oscillations, which are typically challenging to approximate numerically. Granted with

a priori knowledge, various time-stepping methods are developed within the framework

of partitioning the full problem into fast and slow components, and then numerically

treating each component differently according to their time-scales. Nonlinearities that

arise as a result of the application of the implicit parts of such schemes are treated by

using iterative algorithms, which are known for their superlinear convergence, such as

the Jacobian-Free Newton-Krylov (JFNK) and the Anderson’s Acceleration (AA) fixed

point methods. The other class of problems considered are competition-diffusion prob-

lems in which species diffusion take place at a much slower time-scale than the rate of

competition of species. Solutions of these problems exhibit interesting spatio-temporal
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coexistence patterns and transient regimes. For their numerical approximations, a

conforming finite element method for the spatial discritization is combined with tem-

poral integration techniques in which the linear (and less dominant) diffusion parts

are treated implicitly, while, the (more dominant) nonlinear competition terms are

discretized by using novel semi-implicit schemes. Considerable attention is focused on

the formulation of the methods, and their convergence and stability analysis, needed

for their numerical realization applied to complex and nonlinear problems of multiscale

nature. A series of numerical experiments are conducted to demonstrate the effective-

ness and the capability of these methods in capturing the various essential solution

features of the multiscale problems considered in this work, with good stability be-

haviour. Also, comparisons are made between the methods developed here and related

monolithic methods (which do not make distinction on the scale differences between

the components involved), and, in some cases, the well-known solvers from literature.

September 2019.
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Chapter 1

General introduction

Complex systems of biological as well as ecological importance are the most ubiquitous

features of the world we live in. Such systems typically involve the evolution of multiple

constituent agents interacting at different time- and length-scales. Differential equa-

tions are continued to be used extensively in modelling a broad range of biological and

ecological phenomena. Particularly, those differential equations that have important

relevance to systems evolving at multiple temporal and/or spatial scales belong to the

class of singularly perturbed differential equations.

The multiscale nature of singularly perturbed models requires careful attention in

the development of numerical solutions. The standard approach for a numerical solu-

tion of multi-component problem (or systems of ordinary/partial differential equations)

is to use a single computational framework in which, regardless of scale differences

that may exist, each component are treated numerically in exactly same way spatially

and/or temporally. Such methods have either to be modified, or it becomes essential to

employ extremely small discretization parameters for the entire problem, with a con-

sequent significant increase in computational cost. The need to develop computational

procedures for problems of singularly perturbed–type that imitates the nature of the

dynamics of the continuous problem is therefore self-evident.

Differential equations modelling systems which are composed of multiple interact-

ing components with different time and/or length-scales are generally complex and

1
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nonlinear. Thus their closed form or exact solutions are rarely obtainable. Moreover,

for problems of multiscale nature, standard numerical schemes are often not adequate

due to the need for computational efficiency with desirable level of accuracy.

An alternative to standard approaches is the class of multirate methods, in which

multiple step-sizes are employed to capture the relative scale differences between the

constituent components. Multirate methods are significantly superior in terms of effi-

ciency and accuracy features than standard approaches that use a single step-size for

all components involved. However, the derivation of high-order multirate methods can

potentially be more complicated, particularly when the singularly perturbed problem

is nonlinear.

Motivated in large part by the success of multirate methods to provide efficient and

robust numerical algorithms to challenging multiscale problems in various applications,

the focus of the work presented here is the use of classes of multirate and multi-methods

for solutions of multiscale problems in ecology.

Therefore, this thesis is concerned with the formulation, analysis and implemen-

tation of high-order and robust such numerical schemes to efficiently solve multiscale

ordinary and partial differential equations arising in ecology. Various ordinary and

partial differential equations of multiscale nature that arises in predator-prey popula-

tion dynamical systems are considered, some of which are summarized in the following

section.

1.1 Some background on models of predator-prey pop-

ulation dynamical systems

Mathematical models describing the behavior of real-world problems such as popula-

tion dynamics of predator-prey systems attract the attention of many mathematicians,

ecologists as well as biologists, (see for example [16, 102, 151]). The study of predator-

prey models is a long existing discipline in mathematical biology [117].
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In this section, we present a brief survey of some important classes of predator-prey

models considered in the work presented here.

The Lotka-Volterra model

One of the most important and fundamental mathematical models in ecology is the

Lotka-Volterra equation which was named after the well-known scientists Alfred Lotka

[96] and Vitro Volterra [160]. It is a coupled model representing the nonlinear interac-

tion between different species, for instance, a predator and a prey.

The Lotka-Volterra system was originally developed to explain the oscillatory be-

haviour observed in fish catches or chemical concentrations in a chemical reaction

system [95, 161]. The Lotka-Volterra model [95, 161] for prey and predator population

densities, denoted by z and x respectively, is given as:

ż = rz − βzx,

ẋ = eβzx− dx,

 (1.1.1)

where the superimposed dots indicate derivative in time, r is the growth rate of the

prey, β the death rate of the prey due to predation, e the predator conversion efficiency

(which describes what proportion of the prey eaten by the predator yields predator

growth), and d the predator death rate.

Since the pioneering Lotka-Volterra model for the temporal evolution of interact-

ing predator and prey population densities [95], exploiter-resource interactions that

are described through coupled systems of differential equations have also provided an

adaptable modelling approach for applications other than ecology such as epidemiology

[17].

The Lotka-Volterra model (1.1.1) exhibits periodic solutions for predator and prey

populations. The phase curves form the family of closed curves, as shown in Fig-

http://etd.uwc.ac.za/



CHAPTER 1. GENERAL INTRODUCTION 4

ure 1.1.1, given by

U = eβz − d logz + βx− rlogx, (1.1.2)

around the neutrally stable steady-state (d/eβ, r/β).
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Figure 1.1.1: Phase portrait for Lotka-Volterra model (e = 0.5, r = 1.2, β = 0.8,
m = 0.6).

However, these solutions are structurally unstable, in the sense that a small pertur-

bation in the initial conditions can result in a drastic change in the dynamical system.

Although it is not that realistic, the Lotka-Volterra model (1.1.1) has been useful for

studying the mechanisms behind oscillatory population behaviour, thereby suggesting

further directions to acquire deeper understanding of the observed phenomena.

In 1963, Rosenzweig and MacArthur [131] introduced a modified version of the

Lotka-Volterra model with logistic prey growth and a saturating predation term,

ż = z

[
r(1− z

K
)− ax

b+ x

]
,

ẋ = x

[
eaz

b+ z
− d
]
,

 (1.1.3)
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whereK is the prey carrying capacity, a the maximum consumption rate, and b the half

saturation constant for consumption (i.e., the concentration of z at which the predation

rate of x reaches half of its maximum value) and d the death rate of the predator.

The Rosenzweig-MacArthur model (1.1.3) reproduces two type of behaviours: co-

existence of predator and prey at a steady state, and predator-prey stable limit cycles,

which are periodic orbits in phase plane from which small perturbations tend to zero as

time t→∞. Thus, the amplitude of the predator-prey cycles is independent of the ini-

tial conditions (unlike in the Lotka-Volterra model). This model was also reintroduced

20 years later by May [100] and Shimazu et al. [142].

1.1.1 Slow-fast systems

In ecology, some predator-prey population models exhibit oscillatory multiple scale

phenomena characterized by repeated switching of slow and fast motions, referred to

as relaxation-oscillations. Particularly, models that are considered in this work include

systems that evolve in time at two different time-scales, termed as slow-fast systems.

Mathematical models of such systems are characterized by the presence of a small

parameter ε > 0, often, multiplying the derivative of one of the constituent component,

precisely the one with the fastest dynamics.

The behaviour of a slow-fast dynamics can become unexpectedly complex as ε→ 0,

and breaks down at the limiting case, i.e., when ε = 0. Because of this singular property,

slow-fast systems fall under the class of singularly perturbed problems. In the following,

we briefly discuss some models of predator-prey population dynamics with slow-fast

dynamics considered in this work.

Competitive coexistence and exclusion of species

The theory of competition argued by Volterra in his work [160] was that the coexistence

of two or more predators competing for fewer resource of prey is not possible, which

was later referred to as the principle of competition exclusion. However, in 1974 Koch
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[84] re-examined through numerical simulations that the possibility of coexistence of

two predators competing exploitatively for a single prey species under a uniform and

constant environment, but with the assumption that the predator functional response

to the prey density was according to the Michaelis-Menten kinetics. This coexistence

is appeared to be periodic orbits in the positive octant of a three-dimensional system

rather than converging to an equilibrium state. Furthermore, Mc Gehee and Armstrong

[103] via numerical experiment showed the possibility of the coexistence of n competing

species and fewer than n resources. Unfortunately, these studies do not show clearly

the range of the prey and predator parameters guaranteeing coexistence. However,

Muratori and Rinaldi [116], using a singular perturbation argument, showed coexistence

for the case that the prey has a faster dynamics than the two predators via the reference

model,

Ṡ = γS(1− S/K)− m1

y1

x1S

a1 + S
− m2

y2

x2S

a2 + S
,

ẋi =
mixiS

ai + S
− dixi,

 (1.1.4)

where, for i = 1, 2, xi represents the time-varying population density of the ith-

predator, S the time-varying population density of the prey, mi > 0 the maximal

growth or birth rate of the ith-predator, di > 0 the death rate of the ith-predator,

yi the yield factor for the ith-predator feeding on the prey, ai the half-saturation con-

stant for the ith-predator, i.e., the prey density at which the functional response of

the predator is half maximal, and γ > 0, K > 0 are the intrinsic growth rate and the

carrying capacity of the prey, respectively. The nonlinear term

mi

yi

S

(ai + S)
,

is the functional response of the per capita rate at which the predator xi captures prey

S, for i = 1, 2.

Muratori and Rinaldi based their analysis on the non-dimensional form of (1.1.4),
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that is,

εż = z

[
r

(
1− z

K

)
− m1x

β1 + z
− m2y

β2 + z

]
,

ẋ = x

[
m1z

β1 + z
− d1

]
,

ẏ = y

[
m2z

β2 + z
− d2

]
.


(1.1.5)

Models of predator-prey with an evolutionary trait

Ecological and evolutionary changes occur simultaneously and interact with each other.

Inter-specific interactions, which take place between different species in an ecosystem,

depend not only on the population densities of the interacting species, but on their

phenotypes (which is the interaction of genotype and the environment) as well. On

one hand, ecological changes depend on the observable traits of the population, which

are directly associated with some specific genes. On the other hand, evolutionary

changes, which are mainly driven by natural selection, will change the frequencies

of the associated genes in a population from generation to generation. Furthermore,

variation in ecologically important species traits yield phenotypic change that occurs

at rates comparable to or faster than those of ecological dynamics.

Interactions of a predator and two prey populations, with the two prey species hav-

ing a limited growth rate, can coexist if they are shared by the predator. However, it

has been demonstrated by Geritz et al. [52] that, using the three-dimensional classical

Lotka-Volttera model for one predator and two prey with unlimited prey growth, al-

lowing diversity in one type of the prey population leads to extinction of the other prey

type with a smaller capacity to survive. In their work the predator-prey interaction of

Kiwi-rabbits-stoats were shown as an existing example from New-Zealand.

By considering a case consisting of a predator and multiple preys, one can explicitly

examine predator preference towards more abundant prey by constructing models in

which, in addition to the densities of the preys and the predator, the predator preference
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trait are also included in the list of system variables. It has been demonstrated that

adaptive prey switching can promote coexistence of competing prey species [152] or

decrease prey competition due to a shared predator [1].

However, adaptivity can also be expressed as an evolutionary change in traits (i.e.,

properties that affect how well an individual performs as an organism [104]) via ge-

nomic changes of a predator and/or prey. If such evolution occurs on a time-scale of

about a thousand generations and can be observed in laboratory conditions, it is in-

terpreted to be a rapid evolutionary change of traits [47]. Rapid evolutionary changes

have been observed in a wide variety of organisms, ranging from mammals [122] to

bacteria [13], and both in predators (for example, in traits that involve resource con-

sumption [58] or the ability to counteract prey defence mechanisms [62]) and in prey

(for example, in traits that involve predator avoidance [71, 166]). Understanding the

dependencies between rapid evolution and ecological interactions is fundamental for

making accurate predictions of a population’s ability to adapt to, and persist under,

changing environmental conditions [36, 138]. For example, rapid evolutionary change

of traits has been observed in a plankton predator-prey system [46, 166], which is a

good example for studying the coupling between rapid evolution and predator-prey

interaction due to its short generation times and the tractability of genetic studies [71].

Consequently, focusing only on ecological interaction without allowing properties of

the interacting populations to undergo changes, which often come with a cost in the

population density, does not give a complete picture of the dynamics of an ecosystem,

let alone its ability to adapt to changing environmental conditions [149].

One way of describing the effect of rapid evolutionary change of traits on the

predator-prey population dynamics is the assumption that ecological and evolutionary

dynamics occur on a different time-scales, that is, the situation in which evolutionary

change occurs either on a faster [29] or slower [78] time-scale than ecological interaction.

When considering the evolutionary trait as a system variables in the model dynamics,

it also increases the dimension of the system which leads the analysis of the resulting

system challenging.
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When the time-scales of the population in ecological dynamics and the evolutionary

trait differ, one may use slow-fast dynamical system [88] to exploit and introduce a

time-scale separation between them to reduce the dimension of the system of equation.

1.1.2 A competition-diffusion problem

The general Lotka-Volterra competition model representing the interaction of n-species

is given by:
dNi(t)

dt
= riNi(t)[1−

∑
j

αijNj(t)], (1.1.6)

where Ni(t) is the number of individuals in the ith population, ri the growth rate of the

ith species, αij competition coefficients measuring the extent to which the jth species

affects the growth rate of the ith.

Although the dynamics of the Lotka-Volterra competition model is quite interesting,

it is structurally unstable in the sense that a small perturbation of the equations often

results to a drastic change in the dynamical system. For this reason, the presence of

diffusion mechanism changes the behaviour of the whole model and leads to a coupled

partial differential equations termed as reaction-diffusion system. In contrast, the

Lotka-Volterra competition model for the competition of three species without diffusion

leads to the extinction of one or more species (referred to as competitive exclusion),

see, for example, [53, 101].

Durrett and Levin [32], Frean and Abraham [45], Reichenbach et al. [126] showed

coexistence of three species by considering random dispersion of the interacting species

in space. Such possibility of coexistence of three species governed by random dispersal

was also theoretically discussed by [3, 124]. In these works, the following 3-species

competition-diffusion system of Lotka-Volterra type
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u̇ = d1∆u+ u(r1 − a11u− a12v − a13w),

v̇ = d2∆v + v(r2 − a21u− a22v − a23w),

ẇ = d3∆w + w(r3 − a31u− a32v − a33w),

 in Ω× R+, (1.1.7)

was considered. Here ∆ is the Laplacian operator; the population densities are denoted

by u, v, and w; the constant di, i = 1, 2, 3, denote the diffusivities (mobility) of u, v,

w respectively.

The system (1.1.7) is supplemented with the homogeneous Neumann boundary

conditions
∂u

∂n
= 0,

∂v

∂n
= 0, and

∂w

∂n
= 0, on ∂Ω× R+, (1.1.8)

and initial conditions are of the form

u(x, 0) = u0(x), v(x, 0) = v0(x), and w(x, 0) = w0(x). (1.1.9)

Here x represents the coordinate of a point in Ω, n is a unit vector normal to the

boundary ∂Ω, and u0, v0, w0 are some prescribed positive functions defined over the

spatial domain Ω.

In the absence of the third species w, the qualitative properties of the non-negative

solutions of the system have been studied intensively [65]. Kishimoto and Weinger [82]

showed that if the domain Ω is convex, any spatially non-constant equilibrium solution

(if they exist) are unstable under the assumption that the competition between the

two species are strong, which is represented by the relation a11/a21 < r1/r2 < a12/a22.

It also means that, the interaction of the two species leads to competitive exclusion.

But Matano and Mimura [99] showed that if the domain Ω is not convex, the structure

of the solution depends on the shape of the domain. For example, if the domain has

a suitable dumb-bell shape, there will exist a stable non-constant equilibrium solution

which exhibit spatial segregation of the two competing species, in which the spatial
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CHAPTER 1. GENERAL INTRODUCTION 11

domain is divided into two where each region is nearly exclusively occupied by one

species. This in turn means that coexistence of the two species depends on whether

their habitat is convex or not.

The segregation pattern of the competitive mediated coexistence and competitive

exclusion of three competing species with a convex shaped habitat has also been studied

in [35] under the condition that all the mobility rates are very smaller and inter-specific

competition of species are larger.

1.2 An overview on geometric method of singular per-

turbation theory

The development of analytical study of slow-fast systems and the related relaxation

oscillation phenomena have been influenced by several view points from asymptotic

techniques [33, 114], for instance, matching asymptotic analysis [77, 91]. The more

recently developed theory for qualitative analysis of dynamical systems is the geometric

singular perturbation theory. It employs the concept of invariant manifold in phase

space to construct orbits with desired properties or to understand the global structure

of the phase space [66]. The foundation of the technique was laid by Fenichel [39], and

later developed in [66, 88]. For a more comprehensive exposition to applications in

biological practice, including several examples, we refer to [66].

The goal in choosing a geometric approach was to create solution trajectories for

a parameter 0 < ε � 1 by suitably glueing together segments of orbits that are

determined from the fast time-scaled and the slow time-scaled dynamics at the limiting

case ε = 0.

The general formulation of a slow-fast system of ordinary differential equations with

m fast and n slow variables (and time as the only independent variable) is expressed

as
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CHAPTER 1. GENERAL INTRODUCTION 12

εu̇ = f(u, v, ε),

v̇ = g(u, v, ε),

 (1.2.1)

where the superposed dot indicates derivative with respect to the slow time-scale t,

(u, v) ∈ Rm × Rn are variables, f and g are sufficiently smooth functions with respect

to all the three arguments. Rescaling the slow time t by ε and obtain an equivalent

system that evolves on the fast time-scale τ = t/ε. We thus write

u′ = f(u, v, ε),

v′ = εg(u, v, ε),

 (1.2.2)

where the primes indicate the derivative with respect to the faster time-scale τ .

Due to the slower time-scale t (respectively, the faster time-scale τ) used in the dy-

namics of equation (1.2.1) (respectively, (1.2.2)), these system of equations are referred

to as slow dynamics (respectively, fast dynamics). We then take the (singular) limit

ε→ 0 in slow system (1.2.1) and obtain

0 = f(u, v, 0),

v̇ = g(u, v, 0),

 (1.2.3)

which is known as the reduced problem. Note that the reduced problem is a differential-

algebraic equations (DAE), which represents a dynamical system for the slower variable

v subject to f(u, v, 0) = 0.

And, similarly taking the limiting case to the fast system (1.2.2) we obtain what is

known as the layer problem, i.e.,

u′ = f(u, v, 0),

v′ = 0,

 (1.2.4)
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CHAPTER 1. GENERAL INTRODUCTION 13

which represents a dynamic for the fast problem while the slower variable is ‘frozen’

(i.e., an n-parameter dynamics for the fast variable).

The layer and reduced problems are connected through the critical manifold C0 =

{(u, v) ∈ Rm+n : f(u, v, 0) = 0}, which is a sufficiently smooth n-dimensional sub-

manifold of Rm+n. The critical manifold C0 is the equilibrium points of the layer

problem (1.2.4).

By using geometric singular perturbation theory, one can obtain global information

about the system (1.2.1) for ε 6= 0, but very small, by joining the two systems together

in some suitable manner. The main idea here is as follows. Suppose that an n-

dimensional manifoldM0 contained in C0 is compact and normally hyperbolic, that is,

eigenvalues λ of ∂f
∂u
|M0 are Re(λ) 6= 0 and uniformly bounded away from the imaginary

axis. Then the critical manifold persists as a locally invariant slow manifold. Moreover,

suppose thatWs(M0) (respectively,Wu(M0)) is the stable manifold (respectively, the

unstable manifold) ofM0, that is, the eigenvalues λ such that Re(λ) < 0 (respectively,

Re(λ) > 0). Then they also persists as manifolds Ws(Mε) and Wu(Mε).

The theory of geometric singular perturbation is based on three fundamental theo-

rems due to Fenichel [39]. In the following we only state the first two theorems with out

proofs, and the third one is omitted as its application is out of the scope of the work

reported in this thesis. A complete discussion of the theorems with their application

in biology can be found in [66].

Theorem 1.2.1 (Fenichel, [39]). SupposeM0 ⊆ C0 is compact, possibly with boundary,

and normally hyperbolic, that is, the eigenvalues λ of the Jacobian ∂f
∂u
|M0 all satisfy

Re(λ) 6= 0. Suppose f and g are smooth. Then for ε > 0 and sufficiently small, there

exists a manifold Mε, O(ε) close and diffeomorphic to M0, that is locally invariant

under the flow of the full problem (1.2.1).

Fenichel’s first theorem only gives a very local picture of the system (1.2.1) for

small nonzero ε. It guarantees under the conditions indicated in the above theorem

the existence of the slow manifold, and gives an approximation for the flow on this slow
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manifold. However it does not give a more global picture that, in particular, addresses

the interplay between the slow manifold and the surrounding phase space. In general,

such interplay takes place via stable and unstable manifolds. Those are the objects of

concern in Fenichel’s second theorem.

Theorem 1.2.2 (Fenichel, [39]). SupposeM0 ⊆ C0 is compact, possibly with boundary,

and normally hyperbolic, and suppose f and g are smooth. Then for ε > 0 and suf-

ficiently small, there exist manifolds Ws(Mε) and Wu(Mε), that are O(ε) close and

diffeomorphic to Ws(M0) and Wu(M0), respectively, and that are locally invariant

under the flow of (1.2.1).

In the following we present a literature review on numerical methods for multiscale

methods relevant to predator-prey systems arising in ecology.

1.3 Literature review on some numerical methods for

multiscale problems

The standard approach for numerical solutions of coupled systems of differential equa-

tions is to treat the full problem using a single time integration scheme with a single

time-step length, without any consideration on the possible variation in dynamics be-

tween the involved components. Such methods applied to multiscale problems such as

singularly perturbed predator-prey models suffers from a number of issues from nu-

merical instability to computational inefficiency due to the fact that stiffness of the

problem is primarily determined by the dynamics of the fastest component.

For the last decade a range of numerical integration schemes beyond the standard

approach have been developed to efficiently solve multiscale problems from various

applications. A great deal of survey of such methods can be found in the article [153].

In the following we review some important classes of non-standard methods that have

been developed over the last decade for slow-fast problems arising in ecology.
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Multi-method schemes

Multi-method schemes are based on the idea of operator-splitting methods for initial

value problems (IVPs). For slow-fast systems, with some prior information, the prob-

lem is split into two subproblems each having a single time-scale, one with fast dynamics

which we referred to as fast subproblem, and the other with slow dynamics, referred

to as slow subproblem. Appropriate methods, based on the stiffness, stability and ac-

curacy requirements, may be employed for each subproblem, which will be combined

at each time-step to obtain an approximate solution for the full multiscale problem.

Typically, implicit schemes such as Crank-Nicholson (CN) and implicit Backward Dif-

ference Formula (BDF) are used for the fast subproblem, whereas, explicit methods

such as Leap-Frog (LF) and explicitly extrapolated BDF for the slow subproblem.

Various multi-method schemes have been developed in the literature to efficiently

solve IVPs involving different time-scales. Andrus [6] proposed a numerical method in

which the fourth-order explicit Runge-Kutta (RK4) to discretize the slow sub-system,

while the faster one is solved by any sufficiently accurate method or some closed form

solution if available. In a later paper [5], Andrus considered a numerical method which

consists of integrating the slow and the fast sub-systems with RK4 and third-order

implicit Runge-Kutta methods, respectively. He then derived the absolute stability

condition of this method and showed that the region of stability is nearly as large as

that of the embedded methods if the sub-systems are weakly coupled. Such approachs

have also been applied in various fields with varying success [68, 110, 127, 139, 156, 164].

In [164] an algorithm based on the local information of the system Jacobian for dynamic

partitioning of the system has been suggested.

A related approach which is based on similar partitioning of the full problem is

multi-order scheme. Such methods, on the other hand, use methods of same class with

same step-size but the order of the schemes considered in the partition are different.

Depending on the activity level of the subproblems, the order of the methods used for

each partition may be different. That is, the faster the activity level of the subproblem
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is, the higher the order of the method used to descretize it. Such methods are efficient

only for non-stiff problems, for example in [37] extrapolation and RK schemes are

employed.

Multirate schemes

Multirate methods are also based on the view point of treating fast and slow subprob-

lems independently. However, unlike the standard approach or the multi-method/multi-

order schemes in which discretization of both the slow and fast subproblems employ a

single time step-size, multirate methods use different step-sizes with same or different

numerical methods. The idea is that a smaller time-step is used to discretize the faster

subproblem while a bigger time-step for the slow subproblem, which leads to a con-

siderable reduction of computational cost and computer memory relative to using the

standard method with a single time-size. Furthermore, such methods exhibit a better

stability property than the standard approach in which, often, the step-size restriction

for the full problem depends on the fastest changing components. In multirate meth-

ods, the time-steps for the slow and the fast subproblems are referred to as macrostep

and microstep, respectively [61], for obvious reasons. In order to handle the coupling

between the slow and fast components on the microsteps, a multirate method incor-

porates interpolations or extrapolations which may result in a further interpolation or

extrapolation errors. Such methods can be used for both stiff (or slow-fast) and non-

stiff problems. In the work presented here, various multirate approaches have been

developed coupled with extrapolation algorithms to ensure higher-order accuracy of

the solution, moreover, fractional- step algorithms have also been employed for better

stability and efficiency. As one of major contributions in this work, we have analyzed

the linear stability of the extrapolated multirate schemes applied on a multiscale model

problem of predator-prey–type.

In the literature, various multirate methods have been developed. Rice [128] was

the first to try to use different step-sizes for each partition. Linearized multirate

schemes coupled with extrapolation algorithms have been proposed by Constantanesu
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and Sandu [25, 27] to solve multi-physics problems with multi time-scales. Multirate in-

tegration schemes based on Runge-Kutta methods have been discussed in [24, 61, 143].

Gear [51] and Socia [148] suggested multirate schemes based on BDF methods. Skel-

boe [146] also presented the stability properties of multirate schemes based on BDF.

A more recent work [10] by Bartel dealt with the coupling between sub-systems by us-

ing internal stages instead of interpolation/extrapolation to overcome stability issues

that are typical of multirate schemes. Multirate methods have been applied in various

areas which include simulations of electric circuit [60], molecular dynamics [86, 155],

vehicle models containing flexible tire [143], aero-elastic models of helicopter [146] and

planetary problems [37].

In this work, some selected models arising in ecology and evolutionary dynamics

have been used to illustrate the performance of multirate or fractional-step algorithms

in mimicing the essential qualitative property of the exact solutions of these prob-

lems. In addition, the results have revealed that these schemes can significantly reduce

the computation time with a comparable level of accuracy relative to corresponding

(standard) conventional schemes.

1.4 Outline of the thesis

The rest of this thesis is organized as follows. In Chapter 2, we consider a mathematical

model describing two slow predators competing for a single fast prey species in a quite

diversified time response. Results of qualitative analysis of the continuous model are

discussed based on local stability. The formulation of an efficient multirate scheme

based on extrapolation algorithm is detailed. Extensive numerical experiments are

produced to demonistrate the efficiency of the method by comparing with corresponding

single-rate (conventional) scheme.

In Chapter 3, classes of multirate fractional-step θ-method and multirate fractional-

step mixed implicit-explicit method (which we abbreviate them as FSTS and FS-

MIMEX, respectively) are developed for an approximate solution of slow-fast predator-
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prey model that is considered in Chapter 2. The fractional-step algorithm is developed

in such a way that, the full problem is decouple into fast and slow sub-systems, and

then we apply suitable sub-algorithms based on a class of θ-methods to discretize each

sub-system independently using different time-steps. Then the algorithm for the full

problem is obtained by utilizing a higher-order product formula by merging the sub-

algorithms at each time-step. We also present the details of the nonlinear solvers

employed to treat the resulting (implicitly) nonlinear system, such as Jacobian-Free

Newton-Krylov (JFNK) and Anderson’s acceleration methods, which are known for

their superlinear convergence. Stabilities of the discrete multirate schemes are also

analyzed. A thorough numerical experiments have been presented to demonstrate the

performance of the multirate schemes considered in this chapter by comparing them

with the monolithic-theta method (MTS) and stiff Matlab solvers.

In Chapter 4, a coupled ecological and evolutionary dynamics of a 1-predator and

2-prey species in an ecology having a slow dynamics with a fast evolution of predator-

trait is presented. Results of qualitative nature, which are obtained with the aid of

geometric singular perturbation theory, are presented. A high-order linear multistep

implicit-explicit schemes are proposed and analyzed for stability and convergence. The

method is based on splitting the model into stiff part (fast component) and non-stiff

part (slow components) and applying implicit and explicit schemes to the stiff and

non-stiff parts, respectively. The methods are then compared for stability, convergence

and efficiency with an existing conventional implicit-explicit schemes.

In Chapter 5, we formulate a high-order implicit multirate collocation methods for

the singularly perturbed model considered in Chapter 4. Here the unknown variables

are expressed as linear combination of Lagrangian interpolation polynomials which are

used as basis functions, by which slow and fast subproblems are collocated at each

macro and micro time-steps, respectively. Extensive numerical experiments are also

presented to show the superior performance of multirate collocation scheme over single-

rate scheme in terms of accuracy, efficiency and replicating the qualitative feature of

the continuous model.
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Chapter 6 presents a singularly perturbed three species Lotka-Volttera competition-

diffusion model. The model problem exhibits internal layer with spatial segregation

pattern with the condition that the mobility rate of the species is sufficiently smaller

compared to the inter-specific competition of the species. Competitive-mediated coex-

istence and competitive exclusion can also be exhibited by varying the parameters of

the growth rate and inter-specific coefficients of the model. To capture the dynami-

cal behavior of various spatio-temporal patterns, a high-order semi-implicit multistep

scheme based on Lagrange temporal interpolation coupled with high-order conform-

ing finite element methods are developed in a two spatial dimensions. Stability and

convergence of the developed scheme is analyzed both theoretically and experimen-

tally. Various numerical results have been shown to demonstrate the performance of

the scheme in predicting fine features of the solution.

Chapter 7 deals with the numerical simulation of the singularly perturbed three-

species Lotka-Volttera competetion-diffusion model considered in Chapter 6, but hav-

ing different spatial mobility rates. The model problem exhibit various interesting

spatio-temporal patterns such as droplet, stripe, spiral, glider-like patterns for dif-

ferent values of diffusion coefficients. We develop a high-order semi-implicit linear

multistep schemes based on the Crank-Nicholson and Adams-Bashforth methods for

the temporal discretization in conjuction with C0- conforming finite element method

in a 2-dimensional spatial domain. The scheme is second-order in time and have good

stability properties and captures the complex dynamics very well, as demonstrated in

the numerical experimentation.

Finally, In Chapter 8, we presented some concluding remarks and the scope for

future research.
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Chapter 2

Efficient simulation of a slow-fast

dynamical system using multirate

finite difference schemes

In this chapter, a predator-prey model that is highly susceptible to local time variations

is considered. It is a three-dimensional model consisting of one prey and two predator

species. The model exhibits coexistence in the case where the prey population grows

in a much faster rate than that of the predators in quite diversified time response. For

certain range of parameters, the solution shows a stable relaxation-oscillation behaviour

in the positive octant. The standard approach often fails to capture such important

solution features. Hence, the main objective here is to formulate and analyze a class of

extrapolated multirate time integration scheme that are capable of efficiently represent

solutions of slow-fast models such as the one considered in this chapter for a wide range

of parameters. The methods are based on splitting the full problem into fast and slow

subproblems, and then applying smaller step-size for the fast subproblem than for the

slow subproblem. We present a thorough numerical experiments to demonstrate the

efficiency and capability of the schemes in mimicking important solution features of

the model, which have been predicted from a theoretical analysis. We also show that

20
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the proposed multirate schemes substantially outperform the corresponding single-rate

schemes (which use a single time-step for all components) in CPU times.

2.1 Introduction

In some ecological systems, quantities of interest can vary according to widely differing

time-scales. For instance, a predator-prey system with a time diversified response

can be modelled as a slow-fast dynamical system. Temporal changes such as collapse

(nearly vanishing), explosion (rapid exponential growth), single or multiple stationary

states, oscillations and chaos can occur in such models [73]. As a result, mathematical

models of such systems can be understood as combinations and interactions of these

basic types.

Geometric singular perturbation theory has been continued to be used successfully

to analyze slow-fast systems in various fields including ecology. Lenbury [93] stud-

ied a model of a predator-prey system invaded by the action of a parasite. The prey

population is divided into two classes, susceptible and infected members. whereas, the

predator population is assumed to have very fast dynamics with all its members infected

by the parasite. The model is rescaled by two small positive dimensionless parameters

and the analysis is carried out through the geometric singular perturbation approach.

The method allows one to detect the limit cycle in the extreme case of very fast or very

slow dynamics and then to identify different transient and attractors which are devel-

oped in the system. In [56], Ginoux et al. studied the famous Volterra-Gauss model

and its several modifications such as Rosenzweig-MacArthur and Hastings-Powell mod-

els. Under certain conditions, these models present slow-fast dynamics which result

into singularly perturbed systems. Using geometric singular perturbation theory, they

analyzed the nature and stability of fixed points, existence of Hopf-bifurcation and

chaotic attractors. In [29], a three-dimensional eco-evolutionary model representing a

predator-prey model with fast evolution of the predator was studied using geometric

singular perturbation theory. Their work describes how slow-fast dynamical systems
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theory offers a clear viewpoint through which the effects of evolution on ecological dy-

namics can be studied. In [98], the interaction of predator-prey systems having two

slow predators competing exploitatively for the same fast prey in a constant environ-

ment was considered. By using the geometric singular perturbation theory, they gave

conditions which guarantee existence of stable relaxation-oscillations for systems within

the class. They showed coexistence in the case where the prey population grows much

faster than that of predators.

Due to the presence of different time scales, standard techniques for numerical

solutions of slow-fast systems typically lose favour due to a number of issues such as

the need for an excessively small time step-size which can quickly become uneconomical

both in terms of memory and computational time, especially, when on needs long time

simulations. Furthermore, such classical methods often generate oscillations, chaos,

and false steady states. To overcome the above mentioned difficulties, in this chapter,

we present a multirate numerical method which is based on splitting of the full slow-fast

system into two parts referred to as fast and slow sub-systems corresponding to the fast

and the slow components, respectively. Then the fast subproblem will be integrated

with a small step-size, while, the slow sub-system using a large one.

Multirate methods have been investigated and applied in various fields of science

that include modular dynamical simulation [50, 132], electrical network simulation

[89], etc. However, the lack of general theoretical results which guarantee absolute

stability of a multirate approach has been one of the major problems concerning the

use of multirate methods to solve real life problems [90]. However, many results have

appeared in the literature concerning with the analysis of absolute stability according

to the underlying differential systems to be integrated. The extrapolated multirate

method has been explored by many researchers to solve problems having different time-

scales. One of the first article to treat numerically problems of this type appears to be

by Rice in [128], who proposed multirate Runge-Kutta methods that use different time-

steps to integrate fast and slow solution components. More recent works in multirate

methods include [10, 61, 69, 134, 135, 165]. Furthermore, a multirate scheme based on
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extrapolated forward Euler methods was developed by Engstler and Lubich [37]. The

methods presented in this chapter are motivated by the work of Constantinescu and

Sandu [25], in which they constructed extrapolated multirate methods for problems

that have different dynamics. They also analyzed the linear stability properties of the

extrapolated multirate explicit and linearly-implicit methods.

In this chapter, we extend the extrapolated multirate discretization methods pro-

posed by Constantinescu and Sandu [27]) to a three-dimensional slow-fast system de-

scribing the interactions of two predators competing for one fast prey. We also present

some qualitative results which will be used as basis for the numerical tests used to

demonstrate the performance of our method in preserving qualitative property of the

continuous problem.

The rest of this chapter is organized as follows. In Section 2.2, we present the

governing mathematical model, and some theoretical results concerning it. In Sec-

tion 2.3, the class of multirate numerical base methods are formulated for solving the

model problem discussed in Section 2.3. A detailed stability analysis of these numerical

schemes is presented in Section 2.4. Extensive numerical simulations, along with a thor-

ough discussion, are presented in Section 2.5. Finally, summary and some comments

are presented in Section 2.6.

2.2 The mathematical model

We consider the mathematical model predator-prey system proposed by [98] to describe

the dynamics of two predators competing for the same prey, that is,

Ṡ = γS(1− S/K)− m1

y1

x1S

a1 + S
− m2

y2

x2S

a2 + S
,

ẋ1 =
m1x1S

a1 + S
− d1x1,

ẋ2 =
m2x2S

a2 + S
− d2x2,


(2.2.1)
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where, for i = 1, 2, xi represents the time-varying population density of the ith-

predator; S represents the time-varying population density of the prey; mi > 0 is

the maximal growth or birth rate of the ith-predator; di > 0 is the death rate of the

ith-predator, yi is the yield factor for the ith-predator feeding on the prey, ai is the

half-saturation constant for the ith-predator, i.e., the prey density at which the func-

tional response of the predator is half maximal; and γ > 0, K > 0 are the intrinsic

growth rate and the carrying capacity of the prey, respectively. The term

mi

yi

S

(ai + S)
,

is the functional response of the per capita rate at which the predator xi captures prey

S, for i = 1, 2.

To proceed with the qualitative analysis, we non-dimensionalize equation (2.2.1) so

that the scaled system contains a minimum number of parameters. Following [98], we

consider the scaling

ε =
1

γ
, β1 =

a1

K
, β2 =

a2

K
, x =

x1

γy1K
, y =

x2

γy2K
, z =

S

K
, (2.2.2)

and after some simplifications, we obtain that the governing model (2.2.1) will de-

scribed by the following nonlinear and non-dimensional system of ordinary differential

equations:

ẋ = x

[
m1z

β1 + z
− d1

]
=: f(x, y, z),

ẏ = y

[
m2z

β2 + z
− d2

]
=: g(x, y, z),

ż =
1

ε
z

[
1− z − m1x

β1 + z
− m2y

β2 + z

]
=: w(x, y, z),


(2.2.3)

where x, y, z are time-dependant unknown functions and f(x, y, z), g(x, y, z), w(x, y, z)

are smooth continuous functions describing the dynamics of the system. Furthermore,
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ε is assumed to be a very small positive number (0 < ε � 1). Earlier, this model has

been studied for one predator by Armstrong and Mc Gehee [7] for βi = 0.

In this system, the component z corresponds to the prey population and is much

faster than those corresponding to the predator ones, i.e., x, y. To exploit these local

time-scale variations, we intend to use multirate methods that use different, local time-

steps over the components. In these methods larger (macro) time-steps are used for

the slow components and smaller (micro) time-steps are used for the fast ones.

In the following we briefly present some important theoretical results in [98], con-

cerning the existence of stable relaxation oscillations in the positive octant. These

qualitative results will be used as a basis to test the performance of the multirate

scheme which will be discussed in a later section.

The equilibria of system (2.2.3) are found to be A(0, 0, 0), B(0, 0, 1), C(a1, 0, b1),

and D(0, a2, b2), where for i = 1, 2

ai = −βi(di(βi + 1)−mi)

(di −mi)2
, and bi = − βidi

(di −mi)2
,

and the Jacobian matrix for system (2.2.3) is given by

J(x, y, z) =


σ1 − d1 0 xϕ1

0 σ2 − d2 yϕ2

−ε−1σ1 −ε−1σ2 −ε−1Σ

 , (2.2.4)

where for i = 1, 2

σi =
zmi

z + βi
, ϕi =

miβi
(z + βi)2

, and Σ = 2z + xϕ1 + yϕ2 − 1.
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The Jacobian evaluated at the critical point A(0, 0, 0) gives

J |A =


−d1 0 0

0 −d2 0

0 0 ε−1,

 , (2.2.5)

with eigenvalues

λ1 = −d1, λ2 = −d2, and λ3 = ε−1. (2.2.6)

This implies that equilibrium point (0, 0, 0) is an unstable equilibrium since λ3 > 0.

The Jacobian evaluated at the critical point B(0, 0, 1) gives

J |B =


m1

β1 + 1
− d1 0 0

0
m2

β2 + 1
− d2 0

− m1

ε (β1 + 1)
− m2

ε (β2 + 1)
−1

ε

 , (2.2.7)

with eigenvalues

λ1 =
m1

β1 + 1
− d1, λ2 =

m2

β2 + 1
− d2, and λ3 = −1

ε
. (2.2.8)

This implies that the equilibrium point (0, 0, 1) is stable if,

d1 >
m1

β1 + 1
and d2 >

m2

β2 + 1
,

otherwise it is unstable. The Jacobian evaluated at the critical point C(a1, 0, b1) gives

J |C =


0 0 β1(d1(β1 + 1)−m1)

0 − d1m2β1

d̂1(β2−d̃1)
− d2 0

d1

ε
d1m2β1

εd̂1(β2−d̃1)
β1(d1(β1+1)−m1)−2d̃1−1

ε

 , (2.2.9)

where d̃i = diβi/(di −mi), i = 1, 2; and the Jacobian matrix evaluated at the critical
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point D(0, a2, b2) is given by

J |D =


− m1β2d2

d̂2(β1−d̃2)
− d1 0 0

0 0 β2(d2(β2 + 1)−m2)

d2m1β2

εd̂2(β1−d̃2)
d2

ε
−β2(d2(β2+1)−m2)−2d̃2−1

ε

 . (2.2.10)

From (2.2.9) and (2.2.10), we see that it is a highly complicated task to find eigenvalues

in a closed form. However, following [98], we consider cases for some typical parameter

values, for example, if we take

m1 = 2, d1 = 0.4, β1 = 0.2, m2 = 5, d2 = 0.5, β2 = 0.7, ε = 0.1, (2.2.11)

we see that the critical points are

A(0, 0, 0), B(0, 0, 1), C(0.1187, 0, 0.05) and D(0, 0.1435, 0.0778). (2.2.12)

All these critical points are in the first octant, and therefore are biologically accept-

able. The stability of the critical points are then obtained from the eigenvalues of the

corresponding Jacobian matrices (2.2.5), (2.2.7), (2.2.9) and (2.2.10) evaluated at the

equilibrium points. Then the corresponding eigenvalues are summarized as follows:

A(0.0000, 0.0000, 0.0000)→ {−0.4,−0.5, 10},

B(0.0000, 0.0000, 1.0000)→ {1.2667, 2.4412,−10},

C(0.1187, 0.0000, 0.0500)→ {−1/6, 7/10±
√

255/10i},

D(0.0000, 0.1435, 0.0778)→ {4/25, 13/180±
√

134291/180i},


(2.2.13)

where the entries on the right sides of the arrows are the eigenvalues.

Now, we note that the following criteria by Routh-Hurwitz [4] gives a necessary and

sufficient condition for all roots of the characteristic polynomial lie in the negative half

of the complex plane.
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Theorem 2.2.1. Given the polynomial

P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an, (2.2.14)

where the coefficients ai are real constants, i = 1, . . . , n, define the n Hurwitz matrices

using the coefficients ai of the characteristic polynomial as

H1 = (a1), H2 =

a1 1

a3 a2

 , H3 =


a1 1 0

a3 a2 a1

a5 a4 a3

 , and

Hn =



a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0
...

...
...

... . . . ...

0 0 0 0 · · · an


,

where aj = 0 if j > n. Then all roots of the polynomial P (λ) will be negative or will

have negative real parts iff the determinants of all Hurwitz matrices are positive; i.e.,

detHj > 0, j = 1, 2, . . . , n. (2.2.15)

For example, the Routh-Hurwith criteria for a polynomial of degree n = 3 is,

a1 > 0, a3 > 0, and a1a3 > a3. (2.2.16)

In view of the above criteria, we see from (2.2.13) that all the critical points do not

satisfy the conditions stated and hence they are not asymptotically stable.

In the next section, we present the construction of the multirate integration method

to solve the mathematical model considered in this section.
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2.3 Multirate base methods

Consider the initial value problem defined by

Y′(t) = F(t,Y(t)),Y(a) = Y0, (2.3.1)

where the prime ‘′’ denotes the differentiation with respect to time and F : R×RN →

RN .

Recall that, in this work, we consider the case where N = 3, i.e.,

Y′(t) =


x′

y′

z′

 =


f(t, x, y, z)

g(t, x, y, z)

w(t, x, y, z)

 ; Y(a) =


x0

y0

z0,

 , (2.3.2)

where, in view of slow-fast systems, x and y are assumed to be the slow components,

and z is a fast component; t is defined in the closed interval I = [a, b], a time interval

of interest in which we seek a solution to the problem. Also f(t, x, y, z), g(t, x, y, z),

and w(t, x, y, z) are sufficiently smooth in all of their arguments, and satisfy conditions

which guarantee a unique solution for IVP (2.3.2). In the present context, the functions

f, g and w are the right hand side function in (2.2.3). The solution will be given by

(x(t), y(t), z(t))T . We wish to approximate the solution of (2.3.2) by a multirate base

methods together with the extrapolation algorithm. The discretization of the base

methods are as follows: Let H = mh be the step-size of the slow components x, y, and

h that of the fast component z. m is a fixed positive integer termed as a multirate

factor. We are interested in an approximate solution of (2.3.2) on discrete point sets

Pslow := a+ nH; n = 0, 1, . . . ,
(b− a)

H
, (2.3.3)

Pfast := a+ nh; n = 0, 1, . . . ,
(b− a)

h
, (2.3.4)

with 0 < H ≤ b− a.
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The slow components x, y are integrated on Pslow whereas the fast component is

integrated on Pfast. Note that, Pslow and Pfast coincide at the macro nodes.

The procedure of integrating the slow components with step-size H is referred to

as a macro-stepping and the process of integrating the fast components with step-size

h is referred to as a micro-stepping.

The general base method we consider here is a θ-method

Yi+1 = Yi + `[θF(ti,Yi) + (1− θ)F(ti+1,Yi+1)], (2.3.5)

which for θ = 1, 0 and 1/2 becomes the explicit Euler, implicit Euler, and Crank-

Nicholson (CN) method, respectively.

Now the linearly-implicit Euler method (i.e., a linearization of the implicit Euler

schemes) is given by

(I− `J)(Yi+1 −Yi) = `F(ti,Yi), where J =
∂F
∂Yi

(ti,Yi). (2.3.6)

Similarly, the linearized Crank-Nicholson method is given by

(I− `

2
J)(Yi+1 −Yi) = `F(ti,Yi), where J =

∂F
∂Yi

(ti,Yi), (2.3.7)

where ` is the step-size for the general scheme.

Now the general multirate explicit Euler base method (with rate m) for (2.3.5) can

be written as
xn+1 = xn +Hf(xn, yn, zn),

yn+1 = yn +Hg(xn, yn, zn),

zn+ i
m

= zn+ i−1
m

+ hw(xn+ i−1
m
, yn+ i−1

m
, zn+ i−1

m
).

 (2.3.8)
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The general multirate linearly-implicit method (with rate m) for (2.3.6) is given by


1−Hfx(0) −Hfy(0) −Hfz(0)

−Hgx(0) 1−Hgy(0) −Hgz(0)

−Hwx(0) −Hwy(0) 1−Hwz(0)



xn+1 − xn
yn+1 − yn
zn+1 − zn

 = H


f(xn, yn, zn)

g(xn, yn, zn)

w(xn, yn, zn)


[1− hwz(0)]

[
zn+ i

m
− z

n+
(i−1)
m

]
= hw

[
xn+ i−1

m
, yn+ i−1

m
, zn+ i−1

m

]
;


(2.3.9)

where i = 1, ...,m.

Finally, the general multirate Crank-Nicholson method (with rate m) for (2.3.7) is

defined by



1− H
2
fx(0) −H

2
fy(0) −H

2
fz(0)

−H
2
gx(0) 1− H

2
gy(0) −H

2
gz(0)

−H
2
wx(0) −H

2
wy(0) 1− H

2
wz(0)





xn+1 − xn

yn+1 − yn

zn+1 − zn


= H



f(xn, yn, zn)

g(xn, yn, zn)

w(xn, yn, zn)


[
1− h

2
wz(0)

] [
zn+ i

m
− z

n+
(i−1)
m

]
=
h

2
w
[
xn+ i−1

m
, yn+ i−1

m
, zn+ i−1

m

]
;


(2.3.10)

where i = 1, ...,m.

Also note that f[j](0), g[j](0) and w[j](0); j = x, y, z denote the derivatives evalu-

ated at the previous time-step tn.

It is assumed that there is only a linear change in the output of the slow sub-

system each its macro-steps while the fast sub-system is being integrated over several

micro-steps within a macro-step. Thus, it may seem natural to interpolate, using a

polynomial of order ≥ 1, the value of the slow sub-system while integrating the fast

sub-system thus reducing the approximation error. To this end, we use a first-order

interpolation between the slow and fast components and therefore the variables of slow
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components at the fast nodes will be calculated using the formula


xn+ i−1

m

yn+ i−1
m

 =


m− i+ 1

m
xn +

i− 1

m
xn+1

m− i+ 1

m
yn +

i− 1

m
yn+1

 . (2.3.11)

2.4 Stability analysis of the numerical methods

We study the stability property of the multirate methods (2.3.8), (2.3.9) and (2.3.10)

and investigate whether

a. the fixed points of these three methods correspond to the equilibria of the con-

tinuous model, and

b. the discrete models have similar qualitative features near these fixed points as

that of the continuous model.

Here, we discuss the stability properties of the fixed points of single-rate (m = 1) and

multirate (m = 2) methods by applying these methods to solve the problem (2.2.3).

Let (x∗, y∗, z∗) be fixed point of the discrete methods, i.e.,

F (x∗, y∗, z∗) = x∗,

G(x∗, y∗, z∗) = y∗,

W (x∗, y∗, z∗) = z∗,

 (2.4.1)

where F,G andW are the discrete counter parts of the right-hand side functions of the

methods when applied to (2.2.3). These functions are obviously different for different

base methods. The general right-hand side functions of these three multirate methods

(with rate m), where h = H/m are defined as:
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(i) For m rate explicit Euler scheme:

F (x∗, y∗, z∗) = x∗ +Hf(x∗, y∗, z∗),

G(x∗, y∗, z∗) = y∗ +Hg(x∗, y∗, z∗),

W (x∗, y∗, z∗) = z∗ + hw(x∗, y∗, z∗)︸ ︷︷ ︸
z1

+w̃1

︸ ︷︷ ︸
z2

+w̃2

︸ ︷︷ ︸
...

+ · · ·+ w̃m−1

︸ ︷︷ ︸
zm−1

,



(2.4.2)

where w̃i = hw(x∗, y∗, zi) for i = 1, 2, ...,m− 1.

(ii) For m rate linearly-implicit Euler scheme:


F (x∗, y∗, z∗)

G(x∗, y∗, z∗)

W (x∗, y∗, z∗)

 =


x∗

y∗

z∗

+H (H∗I)
−1


f(x∗, y∗, z∗)

g(x∗, y∗, z∗)

w(x∗, y∗, z∗)

 ,
W (x∗, y∗, z∗) = z∗ + [ hw(x∗, y∗, z∗)︸ ︷︷ ︸

z1

+w̃1

︸ ︷︷ ︸
z2

+w̃2

︸ ︷︷ ︸
. . .

+ · · ·+ w̃m−1

︸ ︷︷ ︸
zm−1

]/Q1,



(2.4.3)

where, Q1 = [1− hwz∗(0)] and

H∗I =


1−Hfx∗(0) −Hfy∗(0) −Hfz∗(0)

−Hgx∗(0) 1−Hgy∗(0) −Hgz∗(0)

−Hwx∗(0) −Hwy∗(0) 1−Hwz∗(0)

 .
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(iii) For m-rate linearly CN scheme:


F (x∗, y∗, z∗)

G(x∗, y∗, z∗)

W (x∗, y∗, z∗)

 =


x∗

y∗

z∗

+H (H∗CN )−1


f(x∗, y∗, z∗)

g(x∗, y∗, z∗)

w(x∗, y∗, z∗)

 ,
W (x∗, y∗, z∗) = z∗ + [ hw(x∗, y∗, z∗)︸ ︷︷ ︸

z1

+w̃1

︸ ︷︷ ︸
z2

+w̃2

︸ ︷︷ ︸
. . .

+ · · ·+ w̃m−1

︸ ︷︷ ︸
zm−1

]/Q2,



(2.4.4)

where, Q2 = [1− hwz∗(0)/2] and

H∗CN =


1− H

2
fx∗(0) −H

2
fy∗(0) −H

2
fz∗(0)

−H
2
gx∗(0) 1− H

2
gy∗(0) −H

2
gz∗(0)

−H
2
wx∗(0) −H

2
wy∗(0) 1− H

2
wz∗(0)

 .

Next, we analyze the stability of the three scheme by considering particular cases, for

example, single-rate (m = 1) and multirate (m = 2).

(i) For explicit Euler method with single-rate (m = 1) where H = h, (2.4.2) becomes

F (x∗, y∗, z∗) = x∗ +Hf(x∗, y∗, z∗),

G(x∗, y∗, z∗) = y∗ +Hg(x∗, y∗, z∗),

W (x∗, y∗, z∗) = z∗ +Hw(x∗, y∗, z∗).

 (2.4.5)

A simple calculation reveals that the fixed points include the equilibrium points of

the continuous problem (2.2.3) areA(0, 0, 0), B(0, 0, 1), C(a1, 0, b1), and C(0, a2, b2).

This clearly is one of the desirable properties of the scheme.
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Now the associated Jacobian matrix J(x∗, y∗, z∗) is

J =



−Hd1 +
Hzm1

z + β1
+ 1 0

Hxm1β1

(z + β1) 2

0 −Hd2 +
Hzm2

z + β2
+ 1

Hym2β2

(z + β2) 2

− Hzm1

ε (z + β1)
− Hzm2

ε (z + β2)
J33


, (2.4.6)

where

J33 =

−2zH − xm1β1H

(z + β1) 2
− ym2β2H

(z + β2) 2
+H + ε

ε
.

Since our interest is to show the extent to which the schemes qualitatively agree

with the continuous problem, we consider those equilibrium points (which also

happen to be fixed points of the numerical scheme (2.4.5)) which correspond to

the set of parameters listed in (2.2.11). Thus, these points are

A(0, 0, 0), B(0, 0, 1), C(0.11875, 0, 0.05) and D(0, 0.14345, 0.07778). (2.4.7)

Calculating the Jacobian matrix at each fixed point, we obtain the corresponding

eigenvalues.

For A(0, 0, 0):

JA =


1− 2H

5
0 0

0 1− H
2

0

0 0 10H + 1

 , (2.4.8)

and its eigenvalues are

λ1 = 1− 0.5H, λ2 = 1− 0.4H and λ3 = 1 + 10H. (2.4.9)
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For B(0, 0, 1):

JB =



19H
15

+ 1 0 0

0 83H
34

+ 1 0

−50H
3

−500H
17

1− 10H


, (2.4.10)

and the eigenvalues are

λ1 = 1− 10H, λ2 ≈ 1 + 1.2667H and λ3 ≈ 1 + 2.44118H. (2.4.11)

For C(0.11875, 0, 0.05):

JC =



1 0 19H
25

0 1− H
6

0

−4H −10H
3

7H
5

+ 1


, (2.4.12)

and the eigenvalues are

λ1 ≈ 1− 0.166667H, (2.4.13)

λ2 ≈ 1.52(0.657895 + (0.460526− 1.05057I)H), and

λ3 ≈ 1.52(0.657895 + (0.460526 + 1.05057I)H),
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Finally, for D(0., 0.143457, 0.0777778):

JD =



4H
25

+ 1 0 0

0 1 83H
100

−28H
5

−5H 13H
90

+ 1


, (2.4.14)

and the eigenvalues as

λ1 ≈ 2.075(0.481928 + (0.0348059− 0.981144I)H), (2.4.15)

λ2 ≈ 2.075(0.481928 + (0.0348059 + 0.981144I)H), and

λ3 = 1 + 0.16H.

It can easily be shown, with the aid of symbolic calculation software, that the

spectral radius (the maximum of the modulus of the eigenvalues) of all the eigen-

values in each case (2.4.9), (2.4.11), (2.4.13), (2.4.15) are greater than unity in

magnitude. Hence, it means that the associated fixed points are not stable for

all positive step-size H.

We next analyze stability of the multirate explicit Euler scheme with m = 2, i.e.,

h = H/2, in which case, (2.4.2) becomes

F (x∗, y∗, z∗) = x∗ +Hf(x∗, y∗, z∗),

G(x∗, y∗, z∗) = y∗ +Hg(x∗, y∗, z∗),

W (x∗, y∗, z∗) = z∗ + hw(x∗, y∗, z∗)︸ ︷︷ ︸
z1

+w̃1.


. (2.4.16)

The fixed points corresponding to the chosen values of parameters are

A(0, 0, 0), B(0, 0, 1), C(0.11875, 0, 0.05), D(0, 0.14345, 0.07778), (2.4.17)
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E

(
0.00625HE

H3
, 0, 0.05

)
, (2.4.18)

F

(
0, 0,

0.1
(
5H2 ± 1

√
25H4 − 4H2 + 2H

)
H2

)
, and (2.4.19)

G

(
0,

0.000246HG

H3
, 0.0778

)
, (2.4.20)

where

HE =
(

19H3 − 26H2 ± 2
√

225H4 + 784H3 + 576H2 − 48H
)

and

HG =
(

581H3 − 54H2 ± 18
√

100H4 + 3114H3 + 9801H2 − 1782H
)
.

For m = 2, the discrete scheme has 6 more fixed points than that of the continu-

ous problem. This should not come as a surprise because the trade-off for more

accuracy in higher rate numerical schemes is a numerical artefact that merely

leads to additional fixed points. Nevertheless, what is important is that all equi-

librium points of the continuous problems are also fixed points of its discrete

counterpart. Hence, for the reminder of this chapter, attention is focused on the

common fixed points of the discrete and continuous problems. In view of this,

for the case m = 2 with explicit Euler method, the fixed points of interest are

the first four fixed points:

A(0, 0, 0), B(0, 0, 1), C(0.11875, 0, 0.05) and D(0, 0.14345, 0.07778),(2.4.21)

corresponds to the equilibria of the continuous model. Therefore we will con-
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sider only these fixed points for further analysis, and the corresponding Jacobian

matrices are

JA =



1− 2H
5

0 0

0 1− H
2

0

0 0 (5H + 1)2


, (2.4.22)

JB =



19H
15

+ 1 0 0

0 83H
34

+ 1 0

25
3
H(5H − 2) 250

17
H(5H − 2) (1− 5H)2


, (2.4.23)

JC =



1 0 19H
25

0 1− H
6

0

−1
5
H(7H + 20) −1

6
H(7H + 20) 1

100
(7H + 10)2


, (2.4.24)

and (2.4.25)

JD =



4H
25

+ 1 0 0

0 1 83H
100

− 7
450
H(13H + 360) − 1

72
H(13H + 360) (13H+180)2

32400


. (2.4.26)
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Further algebraic calculations showed that the spectral radii of the four Jacobian

matrices JA to JD (for the explicit Euler scheme with m = 2) are each greater

than unity in magnitude, and hence all the fixed points are unstable. Hence, we

have proved that

Lemma 2.4.1. The equilibrium points of (2.2.3) are also the fixed points of the

Euler explicit multirate schemes (2.3.8) with m = 1 and m = 2. Furthermore,

the dynamics of the discrete problems qualitatively behave in the same way as that

of the continuous problem near those equilibrium points.

(ii) For single-rate (m = 1), i.e., H = h, the linearly-implicit Euler scheme (2.4.3)

reads 
F (x∗, y∗, z∗)

G(x∗, y∗, z∗)

W (x∗, y∗, z∗)

 =


x∗

y∗

z∗

+H (H∗I)
−1


f(x∗, y∗, z∗)

g(x∗, y∗, z∗)

w(x∗, y∗, z∗)

 . (2.4.27)

Here, we also consider the following fixed points of (2.4.27):

A(0, 0, 0), B(0, 0, 1), C(0.11875, 0, 0.05) and D(0, 0.14345, 0.07778),(2.4.28)

which correspond to (2.2.12).

The Jacobian matrix corresponding to the fixed point A(0, 0, 0) is

JA =


5

2H+5
0 0

0 2
H+2

0

0 0 1
1−10H

 . (2.4.29)

It can be easily deduced that the spectral radius is less than unity in magnitude

forH > 0.2. This implies that the fixed point is asymptotically stable forH > 0.2

and unstable otherwise. This in turn means that for H ≤ 2, the scheme renders
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that the dynamics of the discrete solution near the fixed point A is unstable, as

expected.

The Jacobian matrix corresponding to the fixed point B(0, 0, 1) is

JB =



15
15−19H

0 0

0 34
34−83H

0

− 250H
−190H2+131H+15

− 1000H
−830H2+257H+34

1
10H+1


, (2.4.30)

in which case the spectral radius is calculated to be less than unity in magnitude

for H > 1.57895 and therefore the fixed point is asymptotically stable for these

values of H. However, for H < 1.57895, the dynamics of the discrete solution

near this fixed point is unstable, also as required

The Jacobian matrix corresponding to the fixed point C(0.11875, 0, 0.05) is

JC =



25−35H
76H2−35H+25

− 380H2

(H+6)(76H2−35H+25)
19H

76H2−35H+25

0 6
H+6

0

− 100H
76H2−35H+25

− 500H
(H+6)(76H2−35H+25)

25
76H2−35H+25


, (2.4.31)

Finally, the Jacobian matrix corresponding to the fixed point D(0, 0.1435, 0.0778)
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is

JD =



25
25−4H

0 0

20916H2

(4H−25)H̃

180−26H

H̃

747H

5H̃

25200H

(4H−25)H̃
−900H

H̃

180

H̃


, (2.4.32)

where H̃ = 747H2 − 26H + 180.

In these cases also the spectral radii of (2.4.31) and (2.4.32) are greater than unity

in magnitude for all positiveH. This implies that the fixed points C(0.11875, 0, 0.05)

and D(0, 0.1435, 0.0778) are both unstable.

Now, we analyze stability of the multirate linearly-implicit Euler scheme (with

m = 2), where h = H/2. In this case, (2.4.3) becomes,


F (x∗, y∗, z∗)

G(x∗, y∗, z∗)

W (x∗, y∗, z∗)

 =


x∗

y∗

z∗

+H (H∗I)
−1


f(x∗, y∗, z∗)

g(x∗, y∗, z∗)

w(x∗, y∗, z∗)


W (x∗, y∗, z∗) = z∗ + [hw(x∗, y∗, z∗)︸ ︷︷ ︸

z1

+w̃1]/(1− hwz(0)).


(2.4.33)

The fixed points that we consider are

A(0, 0, 0), B(0, 0, 1), C(0.11875, 0, 0.05) and D(0, 0.14345, 0.07778),(2.4.34)
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and their corresponding Jacobian matrices are

JA =



5
2H+5

0 0

0 2
H+2

0

0 0 25H2+5H+1
1−5H


, (2.4.35)

JB =



15
15−19H

0 0

0 34
34−83H

0

25H(5H−2)
15H+3

250H(5H−2)
85H+17

25H2−5H+1
5H+1


, (2.4.36)

JC =



25−35H
76H2−35H+25

− 380H2

(H+6)(76H2−35H+25)
19H

76H2−35H+25

0 6
H+6

0

2H(7H+20)
7H−10

5H(7H+20)
21H−30

49H2+70H+100
100−70H


, and (2.4.37)

JD =



25
25−4H

0 0

20916H2

(4H−25)H̃

180−26H

H̃

747H

5H̃

14H(13H+360)
65H−900

5H(13H+360)
26H−360

169H2+2340H+32400
32400−2340H


. (2.4.38)

The eigenvalue calculations in these cases imply that the spectral radii of the mul-

tirate implicit Euler scheme (with m = 2) are all greater than unity in magnitude

and therefore the fixed points are unstable.

Lemma 2.4.2. The continuous system (2.2.3) and the discrete systems of single-

rate (m = 1) and multirate (m = 2) implicit Euler scheme (2.3.9) have the same

equilibria, and the qualitative behaviour of their solutions near these equilibria is
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also similar.

(iii) For the single-rate CN scheme, where H = h, scheme (2.4.4) reads


F (x∗, y∗, z∗)

G(x∗, y∗, z∗)

W (x∗, y∗, z∗)

 =


x∗

y∗

z∗

+H (H∗CN)−1



f(x∗, y∗, z∗)

g(x∗, y∗, z∗)

w(x∗, y∗, z∗)


, (2.4.39)

whose fixed points under consideration are

A(0, 0, 0), B(0, 0, 1), C(0.11875, 0, 0.05) and D(0, 0.14345, 0.07778).(2.4.40)

The Jacobian matrices corresponding to these fixed points are

JA =



5−H
H+5

0 0

0 4−H
H+4

0

0 0 5H+1
1−5H


, (2.4.41)

JB =



19H+30
30−19H

0 0

0 83H+68
68−83H

0

− 500H
−95H2+131H+30

2000H
(5H+1)(83H−68)

1−5H
5H+1


, (2.4.42)
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JC =



−38H2−35H+50
H̄

− 760H2

(H+12)H̄
38H
H̄

0 12−H
H+12

0

−200H
H̄

− 2000H
(H+12)H̄

−38H2+35H+50
H̄


, (2.4.43)

where H̄ = 38H2 − 35H + 50 and

JD =



2H+25
25−2H

0 0

41832H2

(2H−25)H∗
−747H2−52H+720

H∗
2988H
5H∗

100800H
(2H−25)H∗

−3600H
H∗

−747H2+52H+720
H∗


, (2.4.44)

with H∗ = 747H2 − 52H + 720.

By calculating the eigenvalues of the above four matrices, we found that the

spectral radii in each case are strictly greater than unity in magnitude. Therefore

all the fixed points are unstable.

Finally„ we analyze stability of the multirate CN scheme (with m = 2), where

h = H/2. Scheme (2.4.4) in this case reads


F (x∗, y∗, z∗)

G(x∗, y∗, z∗)

W (x∗, y∗, z∗)

 =


x∗

y∗

z∗

+ h (H∗CN )−1


f(x∗, y∗, z∗)

g(x∗, y∗, z∗)

w(x∗, y∗, z∗)


W (x∗, y∗, z∗) = z∗ + [hw(x∗, y∗, z∗)︸ ︷︷ ︸

z1

+w̃1]/(1− h

2
wz(0)).


(2.4.45)

The fixed points of (2.4.45) are

A(0, 0, 0), B(0, 0, 1), C(0.11875, 0, 0.05) and D(0, 0.14345, 0.07778).(2.4.46)
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The Jacobian matrices corresponding to each fixed points are, respectively,

JA =



5−H
H+5

0 0

0 4−H
H+4

0

0 0 25H2+1
1−10H


, (2.4.47)

JB =



19H+30
30−19H

0 0

0 83H+68
68−83H

0

25H(5H−2)
30H+3

250H(5H−2)
170H+17

25H2+1
10H+1


, (2.4.48)

JC =



−38H2−35H+50
H̄

− 760H2

(H+12)H̄
38H
H̄

0 12−H
H+12

0

H(7H+20)
7H−5

5H(7H+20)
6(7H−5)

49H2+100
100−140H


, (2.4.49)

and

JD =



2H+25
25−2H

0 0

41832H2

(2H−25)H∗
−747H2−52H+720

H∗
2988H
5H∗

7H(13H+360)
65H−450

5H(13H+360)
52H−360

169H2+32400
32400−4680H


. (2.4.50)

Similarly, with the aid of symbolic calculation software, we found that for any positive

real value of H, the spectral radii of the corresponding Jacobian matrices are each

greater than unity in magnitude and hence the fixed points are unstable. Hence, we

have the following result:
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Lemma 2.4.3. The continuous system (2.2.3) and the discrete system of single-rate

and multirate (with m = 2) Crank-Nicholson scheme (2.3.10) have the same equilibria

and behave qualitatively similar near these equilibria.

In the remaining part of this section, we present a short description of extrapolation

of the methods presented above with the multirate methods discussed above used as

the basis. It is important to note that, an extrapolation method is a simple way to

obtain high-order accuracy by extrapolating lower- order solutions obtained by some

basic methods, in our case, these are the multirate methods discussed in the above.

This method is introduced in its present form by Gragg and Stetter [57]. The idea

behind the method is as follows:

Consider the initial value problem or the system of ordinary differential equations

(2.3.1) and H > 0 as the basic step-size.

Consider a sequence of positive integers ni < ni+1, 1 ≤ i ≤ M and define the

corresponding micro step-sizes h1 > h2 > h3 > ..., by hi = H/ni. Then choose a

numerical approximation of the initial value problem at x0 +H, by performing ni steps

with step-size hi to obtain,

Ti,1 := yhi(x0 +H). (2.4.51)

That is, the term defined in equation (2.4.51) comes from a numerical method which

in this chapter would be any of the basic methods described by (2.3.8)-(2.3.10). By

usingM number of approximations to (2.4.51) with different hi’s, one can eliminate the

truncation error terms by using Richardson extrapolation. As aresult, we can obtain a

high-order approximate solution of our initial value problem by using the Aitken-Neville

formula [48],

Tj,k+1 = Tj,k +
Tj,k − Tj−1,k

(nj/nj−1)− 1
, j = 1, ..., k. (2.4.52)

This formula provides a simple way of recursively generating high-order accurate ap-

proximations from those with lower-orders.
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2.5 Numerical results

In this section, we present numerical results obtained by using the proposed multirate

schemes for the model under consideration. To compare efficiency of these methods,

we also provide results obtained with their single-rate analogues. The interactions of

the three species in this model are very sensitive to parameter values and initial data,

which can lead to competitive exclusion as well as total extinction of the whole system,

coexistence in the form of steady state and coexistence in the form of an oscillatory

solution. Using the parameter values (2.2.11) and considering the initial condition

(x0, y0, z0) = (0.28, 0.001, 0.2), we demonstrate the capability of the numerical schemes

in representing the coexistance of the three species under a stable relaxation oscillation.

The simulations are performed with final time T = 100, a reasonably long time.

In tables 2.5.1, 2.5.2, and 2.5.3, we present results where comparison is made by

taking the slow or inactive component of the dynamics to use a larger time-step in mul-

tirate scheme with m = 4 (for all three basic schemes) where the fast dynamics being

four times faster than the slow dynamics. We can see that the computational costs of

the multirates of explicit Euler, implicit Euler and CN schemes are far less than their

corresponding single-rate schemes with comparative level of accuracy. Moreover, with

the same step-size, the accuracy of multirate methods is better than the corresponding

single-rate schemes, see tables, 2.5.4, 2.5.5.

To further corroborate the applicability of the proposed methods, we plotted some

results obtained with these methods. Figure 2.5.2, 2.5.4 and 2.5.6 display results in

phase space of the three species for single-ate with step-size H = 0.0025 and multirate

(m = 4) with step-size H = 0.01 of the three schemes as well as those obtained with the

extrapolated (T5,4 versions) schemes, respectively. Figure 2.5.1, 2.5.3 and 2.5.5 display

the results of the three species over time for single-rate with step-size H = 0.0025 and

multirate (m = 4) with step-size H = 0.01 of the three schemes and as well as those

obtained with the extrapolated (T5,4 versions) schemes, respectively.
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Table 2.5.1: Comparison of efficiency of single-rate explicit Euler and multirate (m = 4)
explicit Euler method

H explicit Euler (m = 1) CPU H explicit Euler (m = 4) CPU
0.025 Converges to LC 0.8145 0.1 Converges to LC 0.3020
0.005 Converges to LC 4.0424 0.02 Converges to LC 1.4628
0.0025 Converges to LC 11.2710 0.01 Converges to LC 2.9606
0.0005 Converges to LC 40.2141 0.002 Converges to LC 14.8274
0.00025 Converges to LC 83.8838 0.001 Converges to LC 29.3732

Table 2.5.2: Comparison of efficiency of single-rate linearly-implicit Euler and multirate
(m = 4) linearly-implicit Euler method.

H implicit Euler (m = 1) CPU H implicit Euler (m = 4) CPU
0.025 Converges to LC 1.6038 0.1 Converges to LC 0.5147
0.005 Converges to LC 7.9557 0.02 Converges to LC 2.4976
0.0025 Converges to LC 15.7078 0.01 Converges to LC 4.9862
0.0005 Converges to LC 79.2014 0.002 Converges to LC 24.8913
0.00025 Converges to LC 158.4473 0.001 Converges to LC 49.6068

Table 2.5.3: Comparison of efficiency of single-rate CN and multirate (m = 4) CN
method.

H Single-rate CN CPU H multirate (m = 4) CN CPU
0.025 Converges to LC 1.6009 0.1 Converges to LC 0.5100
0.005 Converges to LC 7.8744 0.02 Converges to LC 2.5066
0.0025 Converges to LC 15.8151 0.01 Converges to LC 5.0268
0.0005 Converges to LC 78.3874 0.002 Converges to LC 24.8153
0.00025 Converges to LC 158.1450 0.001 Converges to LC 49.8310
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Table 2.5.4: Comparison of the convergence profile of the single-rate (m = 1) of the
three methods: explicit Euler (M1), linearly-implicit Euler (M2) and CN (M3); LC:
Limit Cycle.

H M1 M2 M3
0.1 Diverges Converges to LC Diverges

0.05
Converges to LC
involving
negative values

Converges to LC Converges to LC

Table 2.5.5: Comparison of the convergence profile of the multirate (m = 4) of the
three methods: explicit Euler (M1), linearly-implicit Euler (M2) and CN (M3); LC:
Limit Cycle.

H M1 M2 M3
0.1 Converges to LC Converges to LC Converges to LC
0.05 Converges to LC Converges to LC Converges to LC
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Figure 2.5.1: Simulation results displaying predators and prey over time using extrapo-
lated explicit Euler method with single-rate (m = 1) (upper figures) and explicit Euler
method with multirate rate (m = 4) (lower figures) applied to the system (2.2.3).
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Figure 2.5.2: Simulation results showing trajectories in the phase space (predators over
the prey) using extrapolated explicit Euler method with single-rate (m = 1) (upper
figures) and explicit Euler method with multirate rate (m = 4) (lower figures) applied
to the system (2.2.3). The amplitude decreases towards a limit cycle.
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T1,1; m = 4; H = 0.01 T5,4; m = 4; H = 0.01
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Figure 2.5.3: Simulation results displaying predators and prey over time using extrapo-
lated implicit Euler method with single-rate (m = 1) (upper figures) and implicit Euler
method with multirate (m = 4)(lower figures) applied to the system (2.2.3).
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Figure 2.5.4: Simulation results showing trajectories in the phase space (predators over
the prey) using extrapolated implicit Euler method with single-rate (m = 1) (upper
figures) and implicit Euler method with multirate (m = 4) (lower figures) applied to
the system (2.2.3). The amplitude decreases towards a limit cycle.
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T1,1; m = 4; H = 0.01 T5,4; m = 4; H = 0.01
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Figure 2.5.5: Simulation results displaying predators and prey over time using extrapo-
lated single-rate (m = 1) Crank-Nicholson method (upper figures) and Crank-Nicholson
method with multirate (m = 4) (lower figures) applied to the system (2.2.3).
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Figure 2.5.6: Simulation results showing the trajectories in the phase space (predators
over the prey) using extrapolated Crank-Nicholson method with single-rate (m = 1)
(upper figures) and Crank-Nicholson method with multirate (m = 4) (lower figures)
applied to the system (2.2.3). The amplitude decreases towards a limit cycle.

http://etd.uwc.ac.za/



CHAPTER 2. EFFICIENT SIMULATION OF A SLOW-FAST DYNAMICAL
SYSTEM USING MULTIRATE FINITE DIFFERENCE SCHEMES 54

2.6 Summary and discussion

We have presented multirate (m > 1) methods for solving a mathematical model of

slow-fast dynamical system, described as a nonlinear system of ordinary differential

equations. Efficiency is ensured by treating the slow and the fast components in such

away that the slower (more or less inactive) component with larger (macro) step-

size, while a fraction of the macro step-size (or micro) is allocated for the fast (more

active) component in a single framework. With reference to some theoretical results,

a thorough numerical experiments confirmed that these multirate schemes outperform

the corresponding single-rate schemes substantially both in terms of computational

work and CPU times. It is also demonstrated that these methods render solutions

which have qualitatively similar behaviour as that of the continuous problem, thus

ensuring dynamical consistency.

Note that, although the multirate schemes presented in this chapter capture the dy-

namics of the multiscale model efficiently, they are only limited to first-order since they

are based on the linear Taylor series approximation. In the next chapter, we adapt the

idea of multirate method to high-order (second-order) fractional-step methods applied

to the same problem. For the nonlinearly-implicit cases, a couple of nonlinear solvers

will be assessed for efficiency and robustness.
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Chapter 3

Fractional-step θ-methods for

singularly perturbed problems in

ecology

In this chapter, we deal with the numerical simulation of the nonlinear predator-prey

model that was considered in Chapter 2. In there, a class of multirate methods aimed

at representing essential solution profiles of the model, such as relaxation oscillations,

have been presented. While these methods performed well in replicating such quali-

tative features of the continuous problem, their accuracy is only limited to first-order,

since the derivation is based on the Taylor’s linear approximation about the current

state in the time-stepping. Thus, the need to develop high-order methods to efficiently

solve such models is self-evident. In this chapter, we develop a class of high-order

algorithms based on the fractional-step (operator-splitting) θ-methods. In conjunc-

tion with the implicit schemes, nonlinearities are treated with two different iterative

methods, namely Jacobian-Free Newton Krylov (JFNK) and Anderson’s Acceleration

(AA) fixed point algorithms. The main advantage of using fractional-step or operator-

splitting based algorithms is its flexibility in applying different convenient methods

for different part of the problem in a single computational framework, depending on

55

http://etd.uwc.ac.za/



CHAPTER 3. FRACTIONAL-STEP θ-METHODS FOR SINGULARLY
PERTURBED PROBLEMS IN ECOLOGY 56

their respective dynamics. We also analyze these methods for stability and conver-

gence. Several numerical experiments are performed to demonstrate the efficiency of

the proposed methods and confirm results obtained from a theoretical investigation.

3.1 Introduction

Deterministic mathematical models are continuing to be indispensable tools for ana-

lyzing and understanding biological and ecological systems (in epidemiology, see, for

example, [119] and the references therein). However, such models are typically non-

linear and highly complex systems of ordinary differential equations (ODEs) for which

analytical study is limited to describing the underlying dynamics only qualitatively.

The topic of interest in this chapter is the formulation of efficient, high-order numeri-

cal methods for solving problems in ecology that describe complex slow-fast dynamical

systems, such as the one considered in the previous chapter. Slow-fast models are also

referred to as singularly perturbed problems [88] due to a difference in time scales, char-

acterized by the presence of a small parameter ε, that exists between the components of

the system. For example, in a predator-prey model which exhibits slow-fast dynamics,

differences in time scale arises as a result of different time scales of the species at differ-

ent trophic levels. Qualitative properties such as the existence of invariant manifolds

of slow-fast dynamical system of predator-prey models have been studied extensively

using geometric singular perturbation theory [29, 56, 66, 88, 93, 98].

In this chapter, we deal with the numerical simulation of the slow-fast system that

was considered in Chapter 2. The model which was studied in [98] consist of two

predator populations compete for a prey population, and the dynamics of the prey

population is fast relative to that of the predators. The model is nonlinear and so

complex that their solutions are difficult (usually impossible) to obtain analytically, and

hence the use of approximation numerical methods becomes significantly important.

To this end, it is worth mentioning here that various numerical schemes have been

proposed in the literature thus far for solving multiple-time scale models. For example,
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Constantinescu and Sandu [27], developed multirate time integration schemes using

extrapolation methods for efficient simulation of multiscale ODE and PDE problems.

They applied the lower-order implicit and explicit Euler methods to each component

of the problem in a sequential manner. But the time-steps were chosen according

to the activity level of each component such that larger (macro) and smaller (micro)

time-steps were used for the slow and fast components, respectively.

In [107], we extended the idea of extrapolation multirate algorithm [27] to solve a

three-dimensional predator-prey model (the same as the one considered in this chapter)

describing slow-fast dynamics. In our paper, we applied the same schemes to all the sub-

systems but with different time-steps depending on the activity levels of the dynamics

where the slow dynamics is integrated with a bigger time-step and the fast dynamics are

integrated with relatively smaller time-steps. The accuracy and efficiency of multirate

methods are found to be better than the corresponding single-rate methods where all

components in the system are advanced simultaneously in time by the same time-

stepping schemes. The qualitative properties of the dynamical system are also well

preserved by the multirate methods presented in the paper.

The origin of multirate time integration algorithms trace back to 1960 [128], where

the split explicit Runge-Kutta methods were analyzed. Multirate approaches were

applied in [51] whereas their stability analysis can be found in [5]. In [69], multirate θ-

method is used to study stiff ordinary differential equations with one level of temporal

local refinement. They used different time-steps for different solution components and

also analyzed local accuracy, propagation of interpolation error and linear stability.

In [26], extrapolation implicit-explicit time-stepping methods based on Euler method

were used. They applied their method to solve ODEs, DAEs and PDEs having both

stiff and non-stiff parts and categorized it informally as fast and slow components. In

their work, implicit and explicit schemes are used for stiff and non-stiff components,

respectively, to get advantage by gaining the desired accuracy and stability. Linear

stability of the method was also analyzed.

Our aim in this chapter is to design efficient and high-order accurate numerical
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method to solve the three-dimensional predator-prey models ([107]) which have differ-

ent time scales. The proposed method, known as fractional-step θ-method, involves

decoupling the system into slow and fast components, and at each time-step suitable

numerical sub-algorithms (θ-method) are chosen to discretize each component inde-

pendently using different time-steps. Then, the time-stepping algorithm for the full

problem is obtained by utilizing a high-order product formula for merging the sub-

algorithms at each time-step. Note that the multirate schemes developed in Chapter 2

have a little less desirable property than the fractional-step algorithms proposed in the

current work. The reason is that, although those multirate methods, like the fractional-

step algorithms, capture multiple time scale dynamics efficiently, they are only limited

to first-order, since the underlying derivation is based on linear Taylor series approxi-

mation. The fractional-step methods overcome these weaknesses. They combine same

or different integration schemes, using different time-steps within a time-stepping al-

gorithm for the subproblems into an efficient high-order product scheme for the overall

problem.

In using the θ-method, we use Jacobian-free Newton-Krylov (JFNK) method and

Anderson’s acceleration technique to solve the nonlinear system resulting from the

implicit schemes. The JFNK method uses a combination of Newton-like methods for

superlinear convergent solution of nonlinear equations, and Krylov subspace method for

solving the Newton correction equation [83, 106]. The method requires only matrix-

vector multiplication instead of direct computation of the Jacobian. In doing so, it

reduces the computational cost associated with the construction and storage of the

Jacobian resulting in an efficient solution algorithm. The latter is a fixed point iteration

method which is used to increase the convergence of the fixed point method. The

algorithm stores prior evaluation to the current step and computes the new iteration

using a linear combination of them. Regarding the Anderson’s acceleration technique,

readers may note that it is also being applied in different areas, see, e.g., [30, 38, 63,

97, 163].

As far as the fractional-step methods are concerned, we note that these are very
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powerful techniques for the numerical solution of complicated and coupled time-dependant

real-life problems. These methods are used for solving ODEs [105], DAEs [159] and

PDE’s, see for example [22, 79, 123]. The idea behind the method is based on splitting

the original system into sub-systems, apply appropriate numerical schemes for each

sub-system and piecing these schemes together by fractional-step procedure. Note

that the first splitting methods, based on the fundamental results of finite difference

methods, were developed in the 1960s and 1970s. The Lie-Trotter splitting and the

Strang splitting [150] were the most classical splitting methods. Splitting methods

have been applied (sometimes with different names) in many different fields, ranging

from parabolic and reaction-diffusion PDEs to quantum statistical mechanics, biol-

ogy, dynamical system, chemical physics and Hamiltonian dynamical systems [105].

These techniques can also be applied for autonomous and non-autonomous ordinary

differential equation.

The rest of the chapter is organized as follows. In Section 3.2, we specify the model

problem that we are studying and give a brief discussion on qualitative properties of the

model. In Section 3.3, the numerical methods are formulated in detail for the two time

scale model problem described in Section 3.2. Treatment of nonlinearities using JFNK

and Anderson’s acceleration method are given in Section 3.4. In Section 3.5, stability

analysis of the full discrete scheme is discussed. Numerical results and simulations are

presented in Section 3.6. Finally, we present some concluding remarks and scope for

further research in Section 3.7.

3.2 The mathematical model

To keep the exposition self-contained and brief, we summarize the scaled form of the

model considered in Chapter 2. We also briefly analyze the global behaviour of its

dynamics using geometric singular perturbation approach.

http://etd.uwc.ac.za/



CHAPTER 3. FRACTIONAL-STEP θ-METHODS FOR SINGULARLY
PERTURBED PROBLEMS IN ECOLOGY 60

ẋ = x

(
m1z

β1 + z
− d1

)
=: f(x, y, z),

ẏ = y

(
m2z

β2 + z
− d2

)
=: g(x, y, z),

εż = w∗(x, y, z) =: w(x, y, z),


(3.2.1)

where

w∗(x, y, z) = z

(
1− z − m1x

β1 + z
− m2y

β2 + z

)
, (3.2.2)

with appropriate initial conditions. The variables x, y, and z are time-dependant un-

known functions; f(x, y, z), g(x, y, z), and w(x, y, z) are smooth functions describing

the dynamics of the system and ε is a small positive number (0 < ε � 1), which rep-

resents the separation of time scales between the fast and slow dynamics. This model

problem is a form of standard singular perturbation problem.

This model problem have four equilibrium points A(0, 0, 0), B(0, 0, 1),

C

−β1 ((β1 + 1) d1 −m1)(
d̂1

)
2

, 0,−β1d1

d̂1

 and D

0,−β2 ((β2 + 1) d2 −m2)(
d̂2

)
2

,−β2d2

d̂2

 ,

where d̂i = di − mi, i = 1, 2. It is assumed that, d̂i are negative as the growth

rate of the predators are greater than the death rate of them for the co-existence of all

species involved in the dynamics.

3.2.1 Analysis via geometric singular perturbation theory

One can use geometric singular perturbation theory to study the global structure of

the orbits. To do so, we proceed as follows: We first observe that the derivative in

(3.2.1) is given with respect to slow time scale t. By transforming to the fast variable
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τ = t/ε, we obtain

x′ = εf(x, y, z),

y′ = εg(x, y, z),

z′ = w∗(x, y, z),

 (3.2.3)

where ′ =
d

dτ
. The two systems (3.2.1) and (3.2.3) are equivalent as long as ε 6= 0. As ε→ 0,

the above defines two limiting systems. The first one is

ẋ = f(x, y, z),

ẏ = g(x, y, z),

0 = w∗(x, y, z),

 (3.2.4)

which is the reduced system. It is a differential algebraic equation obtained from (3.2.1) where

the algebraic constraint w∗(x, y, z) = 0, defines the critical manifold.

The second system, the layer problem, obtained from (3.2.3) is defined as

x′ = 0,

y′ = 0,

z′ = w∗(x, y, z).

 (3.2.5)

The reduced problem (3.2.4) captures the slow dynamics while the layer problem (3.2.5)

represents the fast dynamics.

The orbits of system (3.2.5) are parallel to the z-axis and their directions are characterized

by the signs of w∗(x, y, z). We refer to these orbits as fast orbits of system (3.2.1).

The critical set (manifold), which is the equilibria of the layer problem, is defined as

S0 =

{
(x, y, z) : z

(
1− z − m1x

β1 + z
− m2y

β2 + z

)
= 0; x ≥ 0, y ≥ 0, z ≥ 0

}
. (3.2.6)
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This defines two critical manifolds

S1 = {(x, y, z) ∈ S0 : z = 0} , (3.2.7)

and

S2 =

{
(x, y, z) ∈ S0 : 1− z − m1x

β1 + z
− m2y

β2 + z
= 0

}
. (3.2.8)

The reduced system (3.2.4) is defined on the critical manifold S0, and the layer problem (3.2.5)

is a one dimensional system in the variable z parameterized by the slow variables x, y with

equilibria on S0.

The flow of the limiting fast system on S1 is determined by the signs of

w∗z(x, y, 0) = 1− m1x

β1
− m2y

β2
. (3.2.9)

The limiting fast dynamics, governed by system (3.2.5), has S1 as a set of equilibria. Further-

more, S−1 = ((x, y, 0) ∈ S0 : w∗z(x, y, 0) < 0) is normally stable with vertical stable fibers and

S+
1 = ((x, y, 0) ∈ S0 : w∗z(x, y, 0) > 0) is normally unstable with vertical unstable fibers. That

is, all solutions of (3.2.5) in the vicinity of S−1 move vertically toward S−1 and all solutions of

(3.2.5) in the vicinity of S+
1 move vertically away from S+

1 .

The slow dynamics on S1 reduces to

ẋ = −xd1,

ẏ = −yd2,

z = 0.

 (3.2.10)

The origin A(0, 0, 0) is the global attractor of system (3.2.10) with a vector field (−xd1, −yd2).

For the equilibrium point A(0, 0, 0) on S1, the fast flow is determined by the signs of

w∗z(x, y, 0) = 1− m1x

β1
− m2y

β2
> 0, (3.2.11)

and therefore the equilibrium point A(0, 0, 0) is normally hyperbolically unstable, that is, the

point A(0, 0, 0) is attracting point in the invariant xy−plane and repelling in the invariant
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z−axis.

The flow of the limiting fast system on S2 is determined by the signs of

w∗z(x, y, z) = 1− 2z − m1β1x

(β1 + z)2
− m2β2y

(β2 + z)2
. (3.2.12)

For the limiting fast dynamic, it is clear that all solutions of system (3.2.5) in the vicinity of

S−2 = ((x, y, z) ∈ S0 : w∗z(x, y, z) < 0) will move vertically toward S−2 and those in the vicinity

of S+
2 = ((x, y, z) ∈ S0 : w∗z(x, y, z) > 0) will move vertically away from S−2 .

For the equilibrium point B(0, 0, 1) on S2, we have

w∗z(x, y, z) = 1− 2z − m1β1x

(β1 + z)2
− m2β2y

(β2 + z)2
< 0. (3.2.13)

Hence, the equilibrium point B(0, 0, 1) is normally hyperbolically stable and is attracting

along the invariant z−axis.

The slow dynamics on S2 reduces to

ẋ = x

(
m1p(x, y)

β1 + p(x, y)
− d1

)
,

ẏ = y

(
m2p(x, y)

β2 + p(x, y)
− d2

)
,

z = p(x, y).


(3.2.14)

The point B(0, 0, 1) is repelling in the invariant xy−plane of (3.2.14). For the equilibrium

points C(0.1187, 0, 0.05) andD(0, 0.1435, 0.0778), we can see from (3.2.12) that w∗z(x, y, z) > 0

on S2 which implies that these points are normally hyperbolic with repelling in the invariant

z−axis. The point, C(0.1187, 0, 0.05) is attracting along the invariant x−axis and repelling

along the y−axis of xy−plane, whereas D(0, 0.1435, 0.0778) is repelling along xy−plane.

In the next section, we will discuss the construction and formulation of a general fractional-

step θ-method which enables us to solve the multiscale model problem (3.2.1) discussed in

this section.
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3.3 Numerical methods

The model problem (3.2.1) exhibits multiple time scales and is highly nonlinear thus difficult to

be solved analytically. To solve such complicated systems of differential equations numerically,

we use a time-stepping algorithm based on monolithic θ-method (MTS), fractional-step θ-

method (FSTS) and fractional-step mixed implicit-explicit method (FSMIMEX). Below, we

discuss the details of the construction of these methods.

3.3.1 Monolithic θ-method

Consider a general evolutionary system of the form

u̇ = F (t,u), u(0) = u0, (3.3.1)

where u : [0, T ]→ Rn and F is a vector-valued function of t and u.

We first consider a partition of the time interval [0, T ] of interest into N sub-intervals

[tn, tn+1] of length H, hence tn = nH. Here we ignore the difference in time scale that could

appear in the dynamics, and a single time step-size is considered in the numerical formulation.

The finite difference θ-method for the system (3.3.1), in a monolithic approach, is formally

defined as

un+1 = un +H[(1− θ)F (tn,un) + θF (tn+1,un+1)], (3.3.2)

with u0 = u(0) for all n = 1, · · ·N , where θ ∈ [0, 1] is the discretization parameter, and un

and un+1 denote the numerical values of u at the time-steps tn and tn+1, respectively.

Although, in monolithic θ-method, each component is treated with a single time-step

length H, it can be applied for general problems including the multiscale problem considered

in this study. The monolithic θ-method applied to the problem (3.2.1) gives the scheme


xn+1

yn+1

zn+1

 =


xn

yn

zn

+H(1− θ)


fn

gn

wn

+Hθ


fn+1

gn+1

wn+1

 , (3.3.3)
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with initial condition 
x0

y0

z0

 =


x(0)

y(0)

z(0)

 , (3.3.4)

where fk, gk, and wk denotes the values of f, g, and w, at the kth time-step tk, respectively.

For θ ∈ [0, 1], the implicit recurrence relation (3.3.3) requires to solve the nonlinear alge-

braic system of equation

G(u) = 0, (3.3.5)

at each time-step with the initial condition u0 = u(0), and the solution is the n+1st time-step

numerical value un+1, where

G(un+1) := un+1 − un −H[(1− θ)F (tn,un)− θF (tn+1,un+1)], (3.3.6)

where G refers to the residual corresponding to the monolithic scheme (3.3.3).

Note that the θ-method, as it is generally formulated in (3.3.2), includes a class of known

finite difference schemes. For example, θ = 0, 1, 1/2, leads to explicit forward Euler (EE),

implicit backward Euler (IE) and Crank-Nicholson (CN) schemes, respectively.

Despite the fact that the scheme (3.3.2) assumes a single-time scale, it can be applied for

problems exhibiting multiple-time scales. However, the accuracy of the monolithic scheme

is usually limited by the fastest changing dynamics. In other words, for such problems the

monolithic scheme does not take advantage of the multiscale nature of the problem. To this

end, we aim to use fractional-step θ-method as discussed below.

3.3.2 Fractional-step θ-method

Fractional-step θ-method is suitable for problems exhibiting multiple time scales. The idea

behind this method is to decouple the original system into simpler sub-systems in terms of

their time scale. Then each sub-system is treated using different time-step length according

to the time scale of the dynamics in each partition of the full problem.

First, recall that the singularly perturbed system of differential equations (3.2.1), with 0 <

ε � 1 represents an intrinsic time scale of the fastest component, z. The other components,
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2

tn+1

Step 1
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r

tn+ r − 1
r

Figure 3.3.1: Schematic of fractional-step r-rate algorithm. The broken arrows show
the input flow, where as, the solid arrow lines represent stepping from one compartment
to the other. The algorithmic flow reads from left to right.

x and y are assumed to have a time scale of the same order but greater than that of z. Due

to this difference in time scales, an accurate monolithic solution scheme would require a small

time-step, dictated by ε. However, an efficient and accurate time integration scheme can be

constructed by allocating different time-step length according to the time scale of each of the

components involved. To achieve such multiscale scheme, we first need to split the system

(3.2.1) into two sub-systems, each exhibiting a single time-step:

ẋ = 0

ẏ = 0

ż = w(t, x, y, z)

 (Fast phase) ,

ẋ = f(t, x, y, z)

ẏ = g(t, x, y, z)

ż = 0

 (Slow phase). (3.3.7)

In this split, note that in the fast phase the slow components (x and y) are fixed and in the

slow phase the fast component is kept fixed.

Having the time partition as in the monolithic θ-method characterized by the step-size H,

we now further subdivide each sub-interval [tn, tn+1] into r (= 2m, m ∈ N) divisions of length

h:

tn < tn+1/r < · · · < tn+1/2 < · · · < tn+(r−1)/r < tn+1. (3.3.8)

Since H = tn+1 − tn and h = tn+(i+1)/r − tn+i/r; i = 1, · · · , r, hence H = rh. We refer the

http://etd.uwc.ac.za/



CHAPTER 3. FRACTIONAL-STEP θ-METHODS FOR SINGULARLY
PERTURBED PROBLEMS IN ECOLOGY 67

time-step [tn, tn+1] as macro-step, and [tn+i/r, tn+(i−1)/r] as the micro- step.

Next, we construct a discrete algorithm for system (3.3.7) in three steps. In the first

step, the fast phase is solved over the time-steps tn, tn+1/r, · · · , and tn+1/2, while the slow

components are fixed at nth-time-step, that is, x` = xn, and y` = yn, for each ` = n, n +

1/r, · · · , n+ 1/2. Overall, in the first step, only the fast sub-system is stepped up over a time

interval of length H/2 in m-steps. The intermediate step involves solving the slow phase once

over the time macro time-step. On the other hand, the fast component is fixed at tn+1/2, that

is, zn = zn+1 = zn+1/2, during the intermediate step. Finally, in the last step, the fast system

is discretized using the θ-method to step up the fast component z from the time level tn+1/2

to tn+1, while the slow components are now fixed at the values xn+1, yn+1 (the outputs from

the middle slow sub-algorithm). The fractional-step algorithm is concisely summarized in a

flow chart, see Figure 3.3.1.

Suppose that the current (nth time-step) solutions xn, yn, and zn are known then the full

description of the 3-step fractional-step θ-method (FSTS) for computing the next ((n+ 1)th

time-step) solutions is presented as follows:

1. The inner step. During this phase only the fast component will be updated. Thus,

the output of this step are xn, yn, and zn+1/2.

We apply the θ-method for the problem in the fast phase (3.3.7)1 as follows: for each

j = n, n+ 1/r, · · ·n+ 1/2− 1/r; we evaluate

zj+1/r = zj + h
[
(1− θ)w(tj , zj) + θw(tj+1/r, zj+1/r)

]
. (3.3.9)

For notational simplicity, in this step, the explicit dependence of w on xn and yn is

omitted.

2. The intermediate step. Now, the input for this step is the output from the first step,

that is, xn, yn, and zn+1/2. The fast variable during this step is kept fixed at zn+1/2.

The θ-method applied to the problem in the slow phase (3.3.7)2, gives

xn+1

yn+1

 =

xn
yn

+H(1− θ)

f(tn, xn, yn)

g(tn, xn, yn)

+Hθ

f(tn+1, xn+1, yn+1)

g(tn+1, xn+1, yn+1)

 . (3.3.10)
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Since the fast variable is fixed in this step, we omit the explicit dependence of f and g

on zn+1/2. Solving the nonlinear implicit algebraic system (3.3.10) for xn+1 and yn+1,

we obtain the complete output from the intermediate step, that is, xn+1, yn+1, and

zn+1/2.

3. The outer step. Here only the fast phase problem is treated using the θ-method,

as we did in the inner step. The input, in this step, is xn+1, yn+1, and zn+1/2 – the

output from the intermediate step. Keeping the slow variables at xn+1 and yn+1, the

fast variable is computed using the scheme

zj+1/r = zj + h
[
(1− θ)w(tj , zj) + θw(tj+1/r, zj+1/r)

]
, (3.3.11)

for each j = (n+ 1/2), (n+ 1/2) + 1/r, (n+ 1/2) + 2/r, · · · , (n+ 1/2) + (m− 1)/r.

Here the output xn+1, yn+1, and zn+1 is the overall solution of the coupled problem

(3.2.1).

In summary, the fractional-step θ-method developed in this section can be compactly written

as

un+1 = [Aout
∆t/r]

r
2 ◦ Aim

∆t ◦ [Ain
∆t/r]

r
2un, (3.3.12)

where uk = (xk, yk, zk)
T for k = n or n + 1, the discrete operators Aout

∆t/r, A
im
∆t, and Ain

∆t/r,

represent the time-stepping algorithms constituting the outer, intermediate, and inner steps

with time-step length ∆t/r, ∆t, and ∆t/r, respectively.

3.3.3 Fractional-step mixed implicit-explicit method

The fractional-step θ-method uses the same θ ∈ [0, 1] for both the slow and the fast phases.

Since the fast phase is solved in smaller time-step (micro-step) than slow phase, the use of

implicit scheme for the fast phase is unnecessary. However, the slow phase using the larger

time-step length H (macro-step) requires an implicit scheme to retain the accuracy of the

corresponding fully implicit fractional-step θ-method for the full system. Motivated by this

argument, we construct a time-stepping algorithm based on the fractional-step technique,

which employs two θ values, one for each phase, that is, θf ∈ [0, 1/2) and θs ∈ [1/2, 1] for
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the fast and the slow phases, respectively. Thus, the global algorithm of FSMIMEX, written

in a compact form reads as

un+1 =
[
Aθf∆t/r

] r
2 ◦
[
Aθs∆t

]
◦
[
Aθf∆t/r

] r
2un, (3.3.13)

where Aθf∆t/r denotes the discrete operator for both the outer and inner steps of the fractional-

steps with θ = θf and Aθs∆t denotes the discrete operator for the intermediate step with θ = θs.

Note that in the FSMIMEX scheme, we particularly use θf = 0 which corresponds to the

forward Euler scheme.

Remark 3.3.1. The fractional-step algorithms used in this chapter are stable as long as each

of the constituent method is stable. In the present case, the constituent methods used in

the fractional-step algorithms are the basic θ-methods whose linear stability properties are

well-known. These methods are unconditionally stable for θ in the interval [1/2, 1] which is

what one would normally be encouraged to use. Furthermore, the fractional-step methods

used in this chapter have rate of convergence as 2 for r ≥ 2 (in eq. (3.3.13)) if each of the

constituent method is also convergent of order 2 or more (and the accuracy increases with

increasing r beyond 2). Such convergence rate of fractional-step algorithms are reduced to

first-order if at least one of the constituent method is first-order.

Remark 3.3.2. The advantages of the fractional-step algorithms (3.3.12) and (3.3.13) include

ease of implementation as each component is treated individually in a decoupled manner,

capability in accommodating different class of suitable solvers for different components of the

problem in a single framework and ability in capturing the time scale differences in the discrete

sense. On the other hand, their disadvantages are that they are only second-order accurate

even if the components are solved using methods whose order is higher than two, and their

performance is restricted by the strength of coupling that exists among various components.

3.4 Iterative treatment of nonlinearities

The schemes proposed above, result in fully-implicit nonlinear system of algebraic equations,

which are required to be solved at each micro/macro time-step. The traditional nonlinear
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solver is Newton’s method. Under normal conditions, the Newton method is known for

its fast (second-order) convergence, when the Jacobian of the residual function is computed

exactly. However, forming and storing the Jacobian matrix is expensive from memory point of

view. A combination of Newton-type method for superlinear convergent solution of nonlinear

algebraic system of equations and Krylov subspace methods for solving the linearized system of

equations for the Newton update has been the Jacobian-free Newton-Krylov (JFNK) method.

In JFNK method, forming the Jacobian is substituted by a Jacobian-vector product which

results in low computational cost relative to the cost of computing the full Jacobian matrix

explicitly, and will be achieved by a finite difference approximation. In view of this, in what

follows, we present a brief discussion on how we will implement JFNK method for the problems

under consideration.

3.4.1 Jacobian-Free Newton-Krylov method

The Newton’s method for approximating the roots of an algebraic nonlinear multi-valued

function of G(u) involves solving for an update δuk, that is,

J(uk)δuk = −G(uk), (3.4.1)

where J(uk) =
∂G(uk)

∂uk
. The current updated solution is obtained by

uk+1 = uk + δuk. (3.4.2)

Initialization from a suitable guess, (3.4.1) is solved iteratively in conjunction with the up-

dating (3.4.2) until a desired level of convergence in terms of the norm of G(uk) and/or

uk.

For problems with complicated nonlinearities, forming the exact Jacobian can be tedious

and error prone [83]. In JFNK method, it is only required to obtain an approximation of

matrix-vector product of Jv for some vector v. Such matrix-vector product can be carried

out by numerical differentiation by using forward difference [76]:

Jv ≈ G(u+ εv)−G(u)

ε
, (3.4.3)
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where ε is a suitably chosen small perturbation parameter. Various options for choosing the

parameter ε have been reported in [83]. In this chapter, we use ε to be of the order of the

square root of the machine epsilon (εmachine).

The linear system Ax = b obtained from (3.4.1), where A = J(uk), x = δuk, and

b = G(uk), are solved using Krylov subspace methods as a Galerkin projection over the

(Krylov) subspace Kj spanned (generated) by the vectors

{
r0,Ar0,A

2r0, . . . ,A
j−1r0

}
, or Kj = span

{
r0,Ar0,A

2r0, . . . ,A
j−1r0

}
, (3.4.4)

where r0 = Ax0 − b, and x0 is an initial estimation (typically x0 is chosen to be the zero

vector [83]). There are different types of Krylov subspace methods available in the literature

[83]. In this work, we employ the widely used Arnoldi-based method known as the Generalized

Minimal RESidual (GMRES) method to solve the linear systems at each step of Newton’s

method. The jth GMRES projection xj is approximated as an optimization problem for

finding α1, · · · , αj that minimizes the norm ‖Axj − b‖2 subject to xj in Kj , where the jth

approximation xj is given by xj = x0 +
∑j

i=1 αiA
ix0. The GMRES algorithm terminates

when the Krylov subspace Kj is large enough so that the residual norm, ‖Axj − b‖2, falls

below a prescribed tolerance. Note that JFNK involves setting two tolerances, one for the

outer iteration of the Newton’s method and the other for the inner GMRES projections. Both

tolerances can be set at the same value.

Another approach for solving (3.3.5) is to make use of Anderson’s acceleration technique

briefly described as follows.

3.4.2 Anderson’s acceleration method

Consider solving the nonlinear system of equations (3.3.5):

G(u) = 0, (3.4.5)

by an iterative process, which is equivalent to solving the fixed point iteration

u = G(u) + u. (3.4.6)
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We denote the most recent p + 1 iterates by uk−p, . . . ,uk and the corresponding output

by Gk−p, . . . ,Gk. Anderson’s method determines the next iterate uk+1 by

ūk = uk −
k−1∑
i=k−p

γ
(k)
i ∆ui = uk −∆Ukγk, (3.4.7)

Ḡk = Gk −
k−1∑
i=k−p

γ
(k)
i ∆Gi = Gk −∆Gkγk, (3.4.8)

where

∆ui = ui+1 − ui, ∆Gi = Gi+1 −Gi, γk = [γ
(k)
k−p, . . . , γ

(k)
k−1], (3.4.9)

and
∆Uk = [∆uk−p, . . . ,∆uk−1],

∆Gk = [∆Gk−p, . . . ,∆Gk−1].
(3.4.10)

Some rearrangements of the above gives

ūk =

k∑
j=k−p

δju
j , Ḡk =

k∑
j=k−p

δjG
j , (3.4.11)

with
k∑

j=k−p
δj = 1. (3.4.12)

The quantities ūk and Ḡk are weighted averages of uj′s and Gj′s.

The γ′is are determined from the minimization problem,

min
γ(k)

E(γ(k)) = min
γ(k)

< Ḡk, Ḡk >= min
γ(k)
‖ Gk −∆Gkγ(k) ‖22 . (3.4.13)

The corresponding normal equation is

((∆Gk)T∆Gk)γ(k) = (∆Gk)TGk. (3.4.14)
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Hence we obtain the updates from the above procedure as

uk+1 = ūk + βḠk,

= uk + βGk − (∆Uk + β∆Gk)γ(k),

= uk + βGk − (∆Uk + β∆Gk)((∆Gk)T∆Gk)−1(∆Gk)TGk,

(3.4.15)

where β is a positive number, known as the parameter of the Anderson’s acceleration method.

In our case, we take β = 1.

3.5 Stability analysis of the discrete schemes

In this section, we will analyze the stability of the discrete schemes to see whether the fixed

points of methods correspond to the equilibria of the continuous model, and the discrete

models have similar qualitative features near these equilibria as that of the continuous model.

To proceed, let (x∗, y∗, z∗) be fixed points of the discrete scheme (3.3.12) which we obtain by

solving

F (x∗, y∗, z∗) = x∗,

G(x∗, y∗, z∗) = y∗,

W (x∗, y∗, z∗) = z∗,

 (3.5.1)

where F,G, and W are the right-hand side functions of r−rate fractional-step θ-method

obtained from the linearized equation (3.3.12).

Stability analysis of fixed points for a single scheme using explicit and implicit Euler

method and Crank-Nicholson method is done in Chapter 2 and the results show same quali-

tative behaviour with the stability of the equilibrium points of the continuous model. In this

chapter, we consider the discussion for r = 2 for fractional-step θ-method.

For r = 2, using implicit scheme for fast dynamics and explicit scheme for slow dynamics,

the right-hand side function is defined as
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F (x∗, y∗, z∗) = x∗ +Hf(x∗, y∗, z1),

G(x∗, y∗, z∗) = y∗ +Hg(x∗, y∗, z1),

W (x∗, y∗, z∗) = z∗ + h(1− hwz(0))−1w(x∗, y∗, z∗)︸ ︷︷ ︸
z1

+ŵ1,


(3.5.2)

where, ŵ1 = h(1−hwz(0))−1w(F (x∗, y∗, z∗), G(x∗, y∗, z∗), z1), and wz(0) is the derivative of

w(x∗, y∗, z∗) with respect to z evaluated at the beginning of the current time-step (x∗0, y
∗
0, z
∗
0).

After some algebraic manipulations, we obtain the following fixed points

A(0, 0, 0), B(0, 0, 1), C(0.11875, 0, 0.05), D(0, 0.14345, 0, 0.0778), (3.5.3)

E

(
(66.875− 3.125H∗)H − 135H2 + 0.625H∗ − 7.5

100H2
, 0,
−0.025H∗ + H̃

H

)
, (3.5.4)

F

(
(66.875 + 3.125H∗)H − 135H2 − 0.625H∗ − 7.5

100H2
, 0,

0.025H∗ + H̃

H

)
, (3.5.5)

G

(
0,

(109.3− 0.5Ĥ)H − 257.32H2 + 0.11Ĥ − 11

100H2
,

H̄

100H

)
, (3.5.6)

I

(
0,

(109.3 + 0.5Ĥ)H − 257.32H2 − 0.11Ĥ − 11

100H2
,

H̄

100H

)
, (3.5.7)

and

K

(
0, 0,

0.1H ± 0.1
√
H2(10H − 1)

H2

)
, (3.5.8)

where
H∗ =

√
1865H2 − 1048H + 144,

Ĥ =
√

2142H2 − 9178H + 9801,

H̄ = 5.6(Ĥ − 475H + 99),

H̃ = −1.125H + 0.3.


(3.5.9)

The first four fixed points expressed in (3.5.3) are the same as the equilibra of the continuous

model (3.2.1). The other fixed points are the numerical artifact which comes as a trade off

more accuracy in higher rate numerical schemes.

For r = 2: The right-hand side functions using the fractional-step explicit Euler scheme
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for both slow and fast dynamics are defined as

F (x∗, y∗, z∗) = x∗ +Hf(x∗, y∗, z1),

G(x∗, y∗, z∗) = y∗ +Hg(x∗, y∗, z1),

W (x∗, y∗, z∗) = z∗ + hw(x∗, y∗, z∗)︸ ︷︷ ︸
z1

+hw(x∗, y∗, z1),


(3.5.10)

whereas the right-hand side functions corresponding to the fractional-step implicit Euler

scheme for both dynamics are defined as

F (x∗, y∗, z∗) = x∗ +H(1−Hfx(0))−1f(x∗, y∗, z1),

G(x∗, y∗, z∗) = y∗ +H(1−Hgy(0))−1g(x∗, y∗, z1),

W (x∗, y∗, z∗) = z∗ + h(1− hwz(0))−1w(x∗, y∗, z∗)︸ ︷︷ ︸
z1

+ŵ1,


(3.5.11)

where, ŵ1 = h(1 − hwz(0))−1w(F (x∗, y∗, z∗), G(x∗, y∗, z∗), z1), fx(0) and gy(0) are the

derivatives of f(x∗, y∗, z∗) and g(x∗, y∗, z∗) with respect to x and y respectively, evaluated at

the beginning of the current time-step (x∗0, y
∗
0, z
∗
0).

On the other hand, the right-hand side functions corresponding to the fractional-step

Crank-Nicholson method (for r = 2) for both slow and fast dynamics are defined as

F (x∗, y∗, z∗) = x∗ +
H

2
(1 + (1−Hfx(0))−1)f(x∗, y∗, z1),

G(x∗, y∗, z∗) = y∗ +
H

2
(1 + (1−Hgy(0))−1)g(x∗, y∗, z1),

W (x∗, y∗, z∗) = z∗ +
h

2
(1 + (1− hwz(0))−1)w(x∗, y∗, z∗)︸ ︷︷ ︸

z1

+ŵ1,


(3.5.12)

where, ŵ1 = h
2 (1 + (1− hwz(0))−1)w(F (x∗, y∗, z∗), G(x∗, y∗, z∗), z1).
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In general, we see that the fractional-step θ-method satisfies

F (x∗, y∗, z∗) = x∗ +H((1− θ) + θJx)f(x∗, y∗, zr/2),

G(x∗, y∗, z∗) = y∗ +H((1− θ) + θJy)g(x∗, y∗, zr/2),

W (x∗, y∗, z∗) = w̃0︸︷︷︸
z1

+w̃1︸ ︷︷ ︸
z2

+ · · ·+ w̃(r/2)−1

︸ ︷︷ ︸
zr/2

+ŵ(r/2)

︸ ︷︷ ︸
z(r/2)+1

+ . . .

︸ ︷︷ ︸
zr−1

+ŵr−1,



(3.5.13)

where
Jx = (1−Hfx(0))−1,

Jy = (1−Hgy(0))−1,

Jz = (1− hwz(0))−1,

(3.5.14)

w̃0 = z∗ + h((1− θ) + θJz)w(x∗, y∗, z∗),

w̃k = h((1− θ) + θJz)w(x∗, y∗, zk),

k = 1, 2, ..., r/2− 1,

(3.5.15)

ŵt = h((1− θ) + θJz)w(F (x∗, y∗, z∗), G(x∗, y∗, z∗), zt),

t = r/2, ..., r − 1.
(3.5.16)

By computing eigenvalues for the discrete schemes (3.5.10), (3.5.11), and (3.5.12), we find

that the eigenvalues obtained from the fixed points, which are also equilibrium states, are

all greater than unity in magnitude for H > 0, which implies that these fixed points are not

asymptotically stable.

In summary, we have the following result:

Lemma 3.5.1. The set of all equilibrium points of the continuous model (3.2.1) is contained

in the set of fixed points of the discrete algorithm with r = 2, and solutions of the discrete and

the continuous problems behave qualitatively in similar manner near these equilibrium points.
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3.6 Numerical results

In this section, we present numerical results demonstrating the performance of the numerical

schemes proposed in this chapter by solving the singularly perturbed problem (3.2.1). The

parameters used in the simulations arem1 = 2, d1 = 0.4, β1 = 0.2; m2 = 5, d2 = 0.5, β2 = 0.7;

and ε = 0.1. In [98, 107], it was shown, using analytical and numerical techniques, that these

set of parameter values in combination with the initial condition (x0, y0, z0) = (0.28, 0.001, 0.2)

result in a long time behaviour known as a stable relaxation oscillation or coexistence of the

predators and prey species.

In what follows, firstly, we analyze the convergence of the numerical schemes. In the

analysis, for the implicit schemes, both JFNK and Anderson’s acceleration methods were

employed with tolerance 10−6. Since there is no analytic solution available for the problem

under consideration, we studied relative errors corresponding to a decreasing sequence of step-

sizes. The effect of the parameter θ on convergence was analyzed for both MTS and FSTS

methods. We also compared the convergence of MTS, FSTS and FSMIMEX methods.

Next, we compare the efficiency of the monolithic scheme MTS and the fractional-step

scheme FSTS. Each of these schemes were implemented on MATLAB 2013a and the simu-

lations were done in a serial computation on a single core of a machine with 2.4GHz x 8,

IntelCore i7-4700MQ processor and 8GB RAM. We observed that roughly the comparable or-

der of accuracy is obtained when the MTS and the fast component of the FSTS use the same

time-step length. Furthermore, the number of iterations, at each time-step, taken by JFNK

and Anderson’s acceleration methods for each nonlinear implicit schemes of MTS and FSTS

were also compared.

Finally, the stability of the numerical schemes were investigated. Long time (T = 200)

runs were considered for the set of parameters and initial condition given above. The long

time behaviour of solutions was examined in relation to the relaxation oscillation behaviour

exhibited by the continuous problem. The relevant observations are indicated along with the

discussions in each case.

Now we present results on convergence analysis of the proposed numerical schemes for

different values of θ. To solve the implicitly nonlinear schemes at each time-step, JFNK

or Anderson’s acceleration iterations were used until the normalized residual is less than a

http://etd.uwc.ac.za/



CHAPTER 3. FRACTIONAL-STEP θ-METHODS FOR SINGULARLY
PERTURBED PROBLEMS IN ECOLOGY 78

prescribed tolerance Tol, that is,
‖Gk‖
‖G0‖

< Tol.

For the convergence analysis, we prescribed the tolerance as Tol = 10−6. It is well-known

that if the nonlinear implicit schemes are solved sufficiently accurately, then the theoretical

error estimate for the discrete schemes, as a function of the step-size H, has the form

‖u(T )− uN‖ ≤ CHq, (3.6.1)

where u(T ) is the exact solution at the final time T and uN the numerical solution at T = NH.

The constant C (known as stability coefficient) is independent of H, and q > 0 is the order

of convergence. However, there is no known analytic solution for the ODE system considered

and as a result, assuming the numerical solution converges to the true solution as the step-size

is getting close to zero, we derive an estimate for the successive relative errors corresponding

to a decreasing sequence of step-sizes

H1 > H2 > H3 · · · .

We denote the numerical solution corresponding to the step-size Hi by uiN .

Using (3.6.1), we obtain an estimate for the successive relative errors as follows:

‖ui+1
N
− ui

N
‖ = ‖u(T )− ui+1

N
− (u(T )− ui

N
)‖,

≤ ‖u(T )− ui+1
N
‖+ ‖u(T )− ui

N
‖,

≤ C(Hi+1)q + C(Hi)
q,

≤ 2Cmax{(Hi+1)q, (Hi)
q},

= 2C(Hi)
q.

Denoting the relative error ‖ui+1
N
− ui

N
‖ by EH(i), we see that the above implies

EH(i) ≤ C̄(Hi)
q, (3.6.2)

where C̄ = 2C. The estimate (3.6.2) becomes sharper for sufficiently small Hi’s. Hence, in
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this analysis we take the final time to be T = 1, and consider sequence of step-sizes such that

Hi < 0.1 (thus the corresponding N ’s are greater than 10).

Figure 3.6.1 and 3.6.2 display the rate of convergence of MTS and FSTS for various values

of the parameter θ when the nonlinear solvers JFNK and Anderson’s acceleration are used.

The results demonstrate that the rate of convergence of the schemes with θ = 1/2 is twice

faster, that is, the slope of the convergence curve corresponding to θ = 1/2 is two whereas

the same corresponding to θ = 1 and θ = 0 is only one. In addition, this scheme is more

accurate than the schemes with θ = 0 and θ = 1. However, the effects of the nonlinear solvers

are indistinguishable on the output of the solutions. To this end, first and second-order

convergence, agreeing with theory, is obtained for the schemes used for these simulations.

Figure 3.6.3 displays the effect of convergence profile of the MTS, FSTS, and FSMIMEX

by fixing θ = 1/2 and it is shown that FSTS is more accurate than the other two.
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Figure 3.6.1: Rates of convergence of the monolithic θ-methods with Anderson’s acceleration
method (left) and with JFNK method (right).
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Figure 3.6.2: Rates of convergence of the fractional-step θ-methods with Anderson’s accel-
eration method (left) and with JFNK method (right).
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Figure 3.6.3: Rates of convergence of schemes with θ = 0.5 using Anderson’s acceleration
method (left) and JFNK method (right).

http://etd.uwc.ac.za/



CHAPTER 3. FRACTIONAL-STEP θ-METHODS FOR SINGULARLY
PERTURBED PROBLEMS IN ECOLOGY 81

Now the efficiency of the time-stepping algorithm is determined by several factors including

the number of steps it takes to achieve a given level of accuracy, and the type of nonlinear

solver it uses. We particularly focused on the comparison of the efficiencies of the MTS and

FSTS methods for some values of the parameter θ, and demonstrated the effectiveness of the

multiscale FSTS method as compared to the MTS method.

We further note that the FSMIMEX method is generally first-order accurate because of the

use of explicit method for the fast dynamics. However, the simulation results corresponding

to FSMIMEX scheme are used as reference solution when θ = 0.5. As one would expect, the

FSMIMEX method compared favourably against both the MTS and FSTS when θ = 1.0. We

observe the same order of magnitude of errors when the same step-size is used for the MTS

method and the micro-step for the FSTS method.

Figure 3.6.4 and 3.6.5, display the efficiency result of the MTS, FSTS, and FSMIEX for

θ = 0.5 whereas Figure 3.6.6 and 3.6.7 display the efficiency result of these schemes for θ = 1.0.

The left plots display the level of accuracy of the schemes. All these results consistently

demonstrate comparatively same level of accuracy, though FSTS method outperforms the

MTS method.

The efficiencies of the nonlinear solvers JFNK and Anderson’s acceleration were separately

analyzed through Figure 3.6.8, 3.6.9 and 3.6.10 by comparing the number of iterations taken

by each solvers using the three schemes for θ = 1.0 and θ = 0.5. As shown in all these plots,

JFNK method generally took more number of iteration than Anderson’s acceleration method.
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Figure 3.6.4: Comparison of efficiency results of the schemes with θ = 0.5 using JFNK
method: accuracy level of the schemes (left) and CPU time (right).
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Figure 3.6.5: Comparison of efficiency results of the schemes with θ = 0.5 using Anderson’s
acceleration method: accuracy level of the schemes (left) and CPU time (right).
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Figure 3.6.6: Comparison of efficiency results of the schemes with θ = 1 using JFNK method:
accuracy level of the schemes (left) and CPU time (right).
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Figure 3.6.7: Comparison of efficiency results of the schemes with θ = 1 using Anderson’s
acceleration method: accuracy level of the schemes (left) and CPU time (right).
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Figure 3.6.8: Comparison results of number of iterations taken by the monolithic θ-schemes
with θ = 1.0 (left) and θ = 0.5 (right), using JFNK and Anderson’s acceleration methods.
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Figure 3.6.9: Comparison results of number of iterations taken by the fractional θ-schemes
with θ = 1.0 (left) and θ = 0.5 (right), using JFNK and Anderson’s acceleration methods.
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Figure 3.6.10: Comparison results of number of iterations taken by the mixed fractional
implicit-explicit θ-schemes with θ = 1.0 (left) and θ = 0.5 (right), using JFNK and Anderson’s
acceleration methods.
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Next, we discuss some stability results. In Table 3.6.1, we display comparative results

regarding stability of the numerical solution of MTS, FSTS and FSMIMEX for the rate r = 2.

The simulation is done using final time as T = 200. Different time-steps are considered for

the simulation. As shown in this table, the FSTS scheme has better stability properties than

the other two schemes. In addition, when the rate is r = 4, the FSTS converges to the limit

cycle with a bigger time-step as shown in Table 3.6.2. Readers may note that the Anderson’s

acceleration nonlinear solvers are used for results presented in both of these tables.

Through Figure 3.6.11 and 3.6.12, we present additional results to show how the method

FSTS appropriately captures the qualitative behaviour of the multiscale model describing the

coexistence of the three species under stable relaxation oscillation. For all these plots, we use

H = 0.05, T = 200 and rate factor as r = 4. Different initial conditions are used in each

case. These plot display simulation results for interaction of the three population over time

(Left) and trajectories in phase space (right). Starting with an initial condition (x0, y0, z0) =

(0.28, 0.001, 0.2) close to the unstable equilibrium point C(0.1187, 0, 0.05), the orbit in the

Figure 3.6.11 converged to a stable limit cycle over long time interval. Again starting with

another initial condition (x0, y0, z0) = (0.001, 0.2, 0.2) the periodic orbit converged to another

stable limit cycle emerging from the unstable equilibrium point D(0, 0.1435, 0.0778) as shown

in Figure 3.6.12.

Table 3.6.1: Comparison of stability profiles of MTS, FSTS and FSMIMEX methods
with rates r = 2.

H MTS FSTS FSMIEX
θ = 0.0 θ = 0.5 θ = 1.0 θ = 0.0 θ = 0.5 θ = 1.0 θ = 0.5 θ = 1.0

0.40 – – – – – – – –
0.20 – – – CLC CLC CLC CLC
0.10 – CLC CLC CLC CLC CLC CLC CLC
0.05 CLC CLC CLC CLC CLC CLC CLC CLC
∗CLC: Convergence to Limit Cycle
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Table 3.6.2: Comparison of stability profiles of MTS, FSTS and FSMIMEX methods
with rates r = 4.

H MTS FSTS FSMIEX
θ = 0.0 θ = 0.5 θ = 1.0 θ = 0.0 θ = 0.5 θ = 1.0 θ = 0.5 θ = 1.0

0.40 – – – – CLC CLC – –
0.20 – – – CLC CLC CLC CLC CLC
0.10 – CLC CLC CLC CLC CLC CLC CLC
0.05 CLC CLC CLC CLC CLC CLC CLC CLC
∗CLC: Convergence to Limit Cycle
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Figure 3.6.11: Simulation results displaying predators and prey over time (left) and tra-
jectories in the phase space (right), using r = 4; H = 0.05; T = 200 and (x0, y0, z0) =

(0.28, 0.001, 0.2).
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Figure 3.6.12: Simulation results displaying predators and prey over time (left) and tra-
jectories in the phase space (right), using r = 4; H = 0.05; T = 200 and (x0, y0, z0) =

(0.001, 0.2, 0.2).
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Figure 3.6.13: Simulation results displaying predators and prey over time (left) and tra-
jectories in the phase space (right), using MATLAB ode15s, for T = 200 and (x0, y0, z0) =

(0.28, 0.001, 0.2) (upper), (x0, y0, z0) = (0.01, 0.2, 0.2) (lower).

http://etd.uwc.ac.za/



CHAPTER 3. FRACTIONAL-STEP θ-METHODS FOR SINGULARLY
PERTURBED PROBLEMS IN ECOLOGY 88

0 1 2 3 4 5 6 7 8
−14

−12

−10

−8

−6

−4

−2

0

2
x 10

11

Time

P
o
p
u
la

ti
o
n
 s

iz
e

 

 

predator 1

predator 2

prey

0

0.1

0.2

0.3

0

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

1

predator 1predator 2

p
re

y

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

P
o
p
u
la

tio
n
 s

iz
e

 

 

predator 1

predator 2

prey

0

0.01

0.02

0.03

0.04

0

0.05

0.1

0.15

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

predator 1predator 2

p
re

y

Figure 3.6.14: Simulation results displaying predators and prey over time (left) and tra-
jectories in the phase space (right), using MATLAB ode23s, for T = 200 and (x0, y0, z0) =

(0.28, 0.001, 0.2) (upper), (x0, y0, z0) = (0.01, 0.2, 0.2) (lower).

We also illustrate results obtained by using MATLAB ODE solvers that are often used for

solving stiff problems. Figure 3.6.13 and 3.6.14 display the simulation results that we ob-

tained by using MATLAB solvers ode15s and ode23s, respectively, to illustrate the long time

behaviour of the model at T = 200 using different initial conditions. As shown in these

figures, the two MATLAB solvers failed to converge to the limit cycle for the initial condi-

tion (x0, y0, z0) = (0.28, 0.001, 0.2) and converge to the limit cycle for the initial condition

(x0, y0, z0) = (0.01, 0.2, 0.2). This indicates that these solvers are sensitive to different initial

conditions given in this chapter whereas the fractional-step θ-schemes converge to the limit

cycle as shown in the Figure 3.6.11 and 3.6.12.
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3.7 Summary and discussion

In this chapter, we have analyzed a predator-prey model that describes a slow-fast dynam-

ical system. The design of the numerical methods have been done in such a away that,

firstly, the original system is decoupled into slow and fast subproblems, and then suitable

sub-algorithms based on the class of θ-methods are constructed for each subproblem. Finally

the sub-algorithms are pieced together in some fashion to obtain an algorithm for the full

problem. The nonlinear system resulting from the use of implicit schemes have been solved

by appropriate nonlinear solvers such as JFNK and AA fixed point algorithms. We further

analyzed these methods for stability and convergence. Several numerical experiments have

confirmed our theoretical investigations.

Often, in slow-fast dynamics, the use of fractional-step algorithms that consist of implicit

method for the slow component with macro time-step and explicit scheme for the fast with

micro time-step can be highly efficient. However, such type of fractional-step methods, also

referred to as FSMIMEX methods, are only conditionally stable at best. Hence, analysis to

determine the largest possible time-step (macro or micro) such that such schemes are stable is

of great importance. Such analysis is a highly challenging undertaking when the ODE system

is as complex as the one considered in this chapter. As a result, we did not consider such

analysis in this work. However, in the future work, we would like to consider this issues in

depth.

While the schemes considered in this chapter have shown demonstrable performance in

terms of efficiency, accuracy and the capability of capturing the dynamics of the problem, they

are at most second-order accurate. In the next chapter, we formulate a class of high-order

(stable upto fourth-order) linear multistep methods based on the Lagrange interpolation for

a four-dimensional eco-evolutionary with multi-time-scale.
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Chapter 4

A class of high-order IMEX linear

multistep method for slow-fast model

In this chapter, a family of high-order multistep implicit-explicit method for a strongly-

nonlinear and coupled eco-evolutionary model of slow-fast–type is presented. It consist of

one-fast evolutionary trait of predator species and three-slow predator-prey interactions in

ecology. Proposed numerical method is based on the Lagrange interpolation procedure which

involves interpolating or extrapolating the given differential equation at a point designated

by a parameter θ ∈ [0, 1]. It is shown that the new method generalizes some of the classical

multistep methods such as (Backward Differentiation Formulas) BDF schemes and (Crank-

Nicholson–Leapfrog) CNLF schemes. The convergence and linear stability of the new family

of methods corresponding to θ = 0.5 are analyzed. An order-consistent start up scheme

based on collocation method that uses the same Lagrangian polynomials as basis functions

is proposed to approximate the starting solution for the underlying multistep method. The

singularly perturbed ecological problem is solved by using the proposed scheme in conjunction

with Anderson’s acceleration fixed point iteration procedure for the nonlinear-implicit part of

the scheme. Various numerical results are presented to confirm the theoretical convergence

and stability results. We notice that the new method corresponding to θ = 0.5 generally

performs better than the classical BDF and CNLF methods in terms of accuracy, robustness

and replicating the qualitative features of the continuous model.

90
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4.1 Introduction

Ecological and evolutionary changes may occur simultaneously and interact with each other.

On one hand, ecological changes resulting in natural selection produce change in some eco-

logical traits, on the other hand, the evolved changes in these traits cause changes in the

ecological dynamics. The evolutionary changes in the traits may occur at a rate comparable

to or faster than the interaction of the species in ecology and vice-versa. Such eco-evolutionary

interactions are typically modelled and studied using systems of ordinary differential equation

with different time-scales. For example, in [29], a three dimensional eco-evolutionary model

representing the predator-prey model with fast evolutionary trait of the predator was studied

using geometric singular perturbation theory. Their work has laid clear insight as to how slow-

fast dynamical systems theory offers a clear viewpoint through which the effects of evolution

on ecological dynamics can be studied. The reduction in dimension and the resulting analyt-

ical tractability of this methodology makes it a powerful tool for understanding the interplay

between ecological and evolutionary processes. In another work, Piltz et al. [125] developed

a one-fast and three-slow dynamical system to study the influence of evolution on ecological

systems. They considered adaptive change of diet of the predator population that switches

between the two prey population. The change of diet is continuous but it is fast compared

to the time-scale of population dynamics. It was assumed that the prey growth is unlimited

and the functional response between the predator and the prey is due to the Lotka-Volterra

model. Most importantly, by using geometric singular perturbation technique, they showed a

family of periodic orbits.

The qualitative and quantitative behaviour of interaction of ecological dynamics with a

rapid evolution has been studied by other researchers for some specific systems, see for example

[2, 166]. In [166], it was made clear that theoretical predictions of how rapid evolution can

affect ecological dynamics are inconclusive and often depend on untested model assumptions.

In this chapter we consider, a coupling of evolutionary and ecological models describing

a slow-fast dynamical system of one-fast evolution of predator trait and three-slow predator-

prey interaction in ecology [125]. This dynamics is described by a coupled system of nonlinear

ordinary differential equation with different time-scales. Due to the fast evolution of the

predator-trait, the model exhibit an interesting periodic patterns between a predator and the
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two prey population.

Multi-time-scaled systems are often nonlinear and complex for which it is challenging to

obtain explicit analytical solutions, hence one must resort to numerical approximations for

their solutions. For the systems that exhibit regular oscillations, standard time integrators

often reproduce the required qualitative feature of the solutions in long time simulations

without much difficulty [70]. However, it is well understood that some standard explicit

schemes such as forward Euler and Runge-Kutta generate some unwanted numerical artefacts

such as oscillations, bifurcations, chaos and false steady states, despite using adaptative step-

size [111, 130].

Various combinations of explicit and implicit multistep methods were first introduced in

[9, 156], and further developed in [31, 44]. Hundsdrofer and Ruuth [68] employed IMEX

multistep methods with monotonocity preserving and boundedness properties for hyperbolic

systems with stiff sources or relaxation terms. Very often, IMEX methods have been devel-

oped for the numerical simulations of singular perturbed problems. Schütz and Kaiser [139]

successfully applied multistep IMEX method for singularly perturbed systems of ordinary dif-

ferential equations. They developed a new splitting method to partition the system into stiff

and non-stiff parts. Constantinescu and Sandu [26] constructed different extrapolated IMEX

time-stepping methods based on Euler steps to solve multiscale and multiphysics problems

having both stiff and non-stiff parts and they have achieved high-order of consistency through

extrapolation. They also presented the linear stability analysis of the schemes using a suit-

ably crafted linear test problem having two time-scales. Durran and Blossey [31] proposed

two new families of IMEX multistep methods for slow-fast wave problems. They developed

the schemes based on Adams methods and backward differencing schemes and made some

comparisons with linear multistep IMEX schemes.

Unlike those IMEX schemes that combine different methods with single step-size, multirate

methods that employ implicit and explicit schemes of same family have been successfully

applied for a wide range of multiscale problems, see for example [27, 42, 51, 107]. Such

multirate methods use smaller step-size for the fastest changing components and larger one

for the slowly varying components. In such cases, the computational complexity is mainly

influenced by the fastest changing components. In the literature, some non-standard time

integrators have been successfully applied to predator-prey models and other biological models
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of slow-fast type, see for example [59, 70, 111, 167] among others.

While the standard explicit numerical schemes often require very restrictive step-size due

to stringent stability criteria when the stiffness is high, the use of high-order implicit schemes

require a large number of internal nonlinear iterations within a time-step. In order to utilize

both the lower cost of explicit schemes and the good stability properties of implicit schemes, in

this chapter, we formulate a family of high-order implicit-explicit (IMEX) multirate schemes

for the slow-fast problem considered. The mechanism allows us to combine explicit and

implicit schemes in one computational framework through partitioning the full problem into

slow sub-system (which is non-stiff) and fast sub-system (which is stiff). The method is

based on Lagrange interpolation and extrapolation procedure. It also generalizes other classes

of multistep methods such as Backward differentiation formula, Crank-Nicholson–Leapfrog

method, Adams Bashforth methods and other multistep methods. The Proposed method is

more stable and accurate.

In the next step, we employ Anderson’s acceleration fixed point iterative solver to treat

the nonlinearity that arises as a result of the implicit part of the schemes. Readers may

note that Anderson’s acceleration method is a modified Picard’s fixed point iterative method

for robust and fast convergent solutions [97, 162]. The typical nonlinear solver is Newton’s

method. Under normal conditions, the Newton method is known for its fast (second-order)

convergence, when the Jacobian of the residual is computed exactly. Forming and storing

the Jacobian matrix is expensive from storage point of view. Instead, Jacobian-free Newton-

Krylov (JFNK) method is an alternative tool since forming the Jacobian is substituted by

a numerical approximate Jacobian-vector product which results in low computational cost

than computing the full Jacobian. However, the JFNK method also requires one residual

evaluation per linear iteration, which makes it to be viewed as not that much competitive

to other methods such as the Anderson’s acceleration method, in the absence of exploiting

potentially problem specific features [12].

The rest of the chapter is organized as follows: In Section 4.2, we consider the model

problem and give a brief discussion on qualitative properties of the model. In Section 4.3,

the numerical methods are formulated and analyzed in details for a typical four-dimensional

model with two time-scales. Treatment of nonlinearities using Anderson’s acceleration method

is discussed in Section 4.5. Numerical results are presented in Section 4.6. Finally, we present
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some concluding remarks and scope for further research in Section 4.7.

4.2 The mathematical model and its qualitative anal-

ysis

In this section, we present an eco-evolutionary slow-fast system modelling the interaction

of one-predator and two-prey species with a fast predator evolutionary trait treated as one

system variables [125]. We also give an overview into the global structure of the periodic

orbits of the dynamics that is determined using geometric singular perturbation theory. More

details on the model and its theoretical analysis can be found in [125].

4.2.1 Coupled ecological and evolutionary dynamics

Consider the four-dimensional eco-evolutionary slow-fast model [125] that describes the inter-

action of one-predator and two-prey species with the a fast predator evolutionary trait,

ṗ1 = p1(r1 − qz),

ṗ2 = p2(r2 − (1− q)z),

ż = z(eqp1 + e(1− q)κp2 −m),

εq̇ = q(1− q)V e(p1 − κp2),


(4.2.1)

where, i = 1,2; pi represents the time varying population density of the ith prey, z represents

the time varying population density of the predator, and q represents predator-trait. The

constants r1 and r2 are the per capita growth rates of the prey pi, e is the proportion of

predation that goes into predator growth. Also κ ∈ [0, 1] is the non-dimensional parameter

that represents the extent of preference towards prey p2, m is the predators per capita death

rate and V is a non-dimensional constant. In this model, all the parameters are strictly

positive.

To proceed with the qualitative analysis, we non-dimensionalize (4.2.1) so that the scaled
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system contains a minimum number of parameters. Using the scaling given in [125]:

t→ t

r1
, p1 →

mr1

e
p1, p2 →

mr1

eκ
p2, z → r1z, m→ r1m, r2 → rr1, ε→ εmV,

we obtain

ṗ1 = p1(1− qz) =: f1(p1, p2, z, q),

ṗ2 = p2(r − (1− q)z) =: f2(p1, p2, z, q),

ż = z(qp1 + (1− q)p2 − 1)m =: g(p1, p2, z, q),

εq̇ = q(1− q)(p1 − p2) =: w(p1, p2, z, q),


(4.2.2)

where f1(p1, p2, z, q), f2(p1, p2, z, q), g(p1, p2, z, q), and w(p1, p2, z, q) are smooth continuous

functions describing the dynamics of the system and ε is a small positive number (0 < ε� 1),

which represents the separation of time-scales. This model problem is a singularly pertur-

bation problem due to the small parameter ε [66]. In this model, q corresponds to the

fast predator evolution trait, while (p1, p2, z) represent the slow dynamics of the predator-

prey interaction. The equilibria of system (4.2.2) are found to be A(0, 0, 0, 0), B(0, 0, 0, 1),

C(0, 1, r, 0), D(1, 0, 1, 1) and E(1, 1, 1 + r, 1
1+r ), and corresponding Jacobian matrix is given

by

J =


1− qz 0 −qp1 −zp1

0 r − z(1− q) p2(q − 1) zp2

mqz m(1− q)z m(qp1 + p2 − qp2 − 1) m(p1 − p2)z

1
ε (q − q2) −1

ε (q − q2) 0 1
ε (1− 2q)(p1 − p2)

 . (4.2.3)

We then study the local stability of each equilibrium points of the dynamic system by ex-

amining the eigenvalues of the Jacobian matrix J given by the equation (4.2.3) evaluated

at the equilibrium points. Since the eigenvalues corresponding to both equilibrium points

A(0, 0, 0, 0) and B(0, 0, 0, 1) are {0, 1,−m, r}, they are unstable saddle points, represent-

ing the total extinction of all the three species. The eigenvalues corresponding to C are

{−1
ε , 1,−i

√
mr, i

√
mr}, and to D are {−1

ε ,−i
√
m, i
√
m, r}. The non-trivial equilibrium point

E that could possibly lead to co-existence of the populations has four purely imaginary eigen-
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values which we obtain numerically by varying the parameters. This eigenvalue describes

neutrally stable center, where the periodic solutions bifurcate off from the equilibrium point

when the eigenvalues cross the imaginary axis. A complex conjugate pair of purely imagi-

nary eigenvalues of the Jacobian, at an equilibrium point in the phase plane, corresponds to

periodic orbits around this point. However, such linear analysis is insufficient to determine

the nature of the orbits for the original nonlinear system [70]. In all the cases, the result-

ing eigenvalues of the equilibrium points show that all the equilibrium points are not locally

asymptotically stable.

4.2.2 Analysis of (4.2.2) using geometric singular perturbation

theory

The eco-evolutionary slow-fast system is analyzed with the geometric singular perturbation

theory. To get more insight about the dynamics of the model problem, we use the geometric

singular perturbation theory. Here we briefly outline results concerning the global structure

of the orbits using invariant manifold in phase space.

We first note that the derivative in (4.2.2) is given with respect to slow time-scale t. By

transforming to the fast variable τ = t/ε, we obtain

p1
′ = εp1(1− qz),

p2
′ = εp2(r − (1− q)z),

z′ = εz(qp1 + (1− q)p2 − 1)m,

q′ = q(1− q)(p1 − p2),


(4.2.4)

where ′ =
d

dτ
. Note that systems (4.2.2) and (4.2.4) are equivalent as long as ε 6= 0. As

ε→ 0, the above defines two limiting systems. The first one is

ṗ1 = p1(1− qz),

ṗ2 = p2(r − (1− q)z),

ż = z(qp1 + (1− q)p2 − 1)m,

0 = q(1− q)(p1 − p2),


(4.2.5)
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which is obtained from (4.2.2), and is referred to as reduced problem. This captures the

dynamics of the slow flow. It is a differential algebraic equation obtained from (4.2.2) where

the algebraic constraint q(1− q)(p1 − p2) = 0, defines the critical manifold.

The second one is the layer problem (obtained from (4.2.4))

p1
′ = 0,

p2
′ = 0,

z′ = 0,

q′ = q(1− q)(p1 − p2),


. (4.2.6)

which captures the dynamics of the fast flow.

The two limits (4.2.5) and (4.2.6) are two different approximations of the full system when

ε > 0. The phase space of (4.2.5) is the critical manifold M0 defined by

M0 = {(p1, p2, z, q) : w(p1, p2, z, q) = 0, p1 ≥ 0, p2 ≥ 0, z ≥ 0, q ≥ 0} . (4.2.7)

It consists of three parts, M1
0 = {(p1, p2, z, q)| q = 0}, M2

0 = {(p1, p2, z, q)| q = 1} and

M3
0 = {(p1, p2, z, q)| p1 = p2}.

The orbits of system (4.2.6) are parallel to the q-axis and their directions are characterized

by the signs of w(p1, p2, z, q). We refer to these orbits as fast orbits of system (4.2.2).

The reduced system (4.2.5) is defined on the critical manifold M0, and the layer prob-

lem (4.2.6) is a one-dimensional system in the variable q parametrized by the slow variables

(p1, p2, z) with equilibria on M0.

The fast flow on the critical manifold M1
0

:

The flow of the fast limiting system on M1
0 is determined by

∂w

∂q
|M1

0
= (p1 − p2), (4.2.8)

in which the limiting fast dynamic is governed by system (4.2.6), and have M1
0 as a set of

equilibria. From equation (4.2.8), we observe that M1
0
− = ((p1, p2, z, 0) ∈ M1

0 : p1 < p2)
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is normally stable with vertical stable fibers and M1
0

+ = ((p1, p2, z, 0) ∈ M1
0 : p1 > p2) is

normally unstable with vertical unstable fibers. That is, all solutions of (4.2.6) in the vicinity

of M1
0
− move vertically toward M1

0
− and all solutions of (4.2.6) in the vicinity of M1

0
+ move

vertically away from M1
0

+.

The slow flow on the critical manifold M1
0

: The slow dynamics on the manifold M1
0 is given by

ṗ1 = p1,

ṗ2 = p2(r − z),

ż = z(p2 − 1)m.

 (4.2.9)

The equilibrium points are Ã(0, 0, 0) and B̃(0, 1, r). The origin Ã(0, 0, 0) with eigenvalues

(1,−m, r) is unstable saddle node. The semi-trivial equilibrium point B̃(0, 1, r) describe the

interaction of the predator z and the prey p2 in the absence of prey p1. The corresponding

eigenvalues are (−i
√
mr, i

√
mr), and hence it is a center. As we vary the parameters, a

Hopf-bifurcation emanates from the equilibrium point B̃(0, 1, r).

The fast flow on the critical manifold M2
0

: The flow of the fast limiting system on M2
0 is determined by

∂w

∂q
|M2

0
= (p2 − p1). (4.2.10)

Hence, for the limiting fast dynamics, it is clear that all solutions of system (4.2.6) in the

vicinity of M2
0
− = ((p1, p2, z, 1) ∈ M2

0 : p2 < p1) will move vertically toward M2
0
− and those

in the vicinity of M2
0

+ = ((p1, p2, z, 1) ∈M2
0 : p2 > p1) will move vertically away from M2

0
+.
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The slow flow on the critical manifold M2
0

: The slow dynamics on M2
0 , is defined by

ṗ1 = p1(1− z),

ṗ2 = rp2,

ż = z(p1 − 1)m.

 (4.2.11)

The equilibrium points are Â(0, 0, 0) and B̂(1, 0, 1). The eigenvalues corresponding to the

equilibrium point Â are (1,−m, r), which implies that Â is an unstable saddle node. The

semi-trivial equilibrium B̂(1, 0, 1) describes the interaction of p1 and z in the absence of p2.

Corresponding eigenvalues are (−i
√
m, i
√
m) leading to a periodic orbit.

By Fenichel theory [39], for ε sufficiently small, a normally hyperbolic subset of the critical

manifold M0 of (4.2.5) persists as a locally invariant manifold of (4.2.2) that is O(ε) close

to the critical manifold. In addition, the stable manifold W s(M0) of M0 corresponding to

M1
0
−, M2

0
− and the unstable manifold W u(M0) of M0 corresponding to M1

0
+, M2

0
+ persist

as manifolds W s(Mε) and W u(Mε) of the full system, respectively.

Typically a point of non-hyperbolicity can be a fold point of the critical manifold (4.2.7).

At a generic fold point p1 = p2, the reduced problem (4.2.5) is singular and the solutions

reaches p1 = p2 in a finite forward or backward time. This case is known as jump point and

is an ingredient necessary for the existence of a relaxation oscillator ([87]).

Remark 4.2.1. As discussed above both manifolds q = 0, and q = 1 have the attracting and

repelling pieces. If we let the trajectories to start from the repelling part p1 > p2 of q = 0,

then the trajectory immediately leaves the manifold q = 0 and stays to the attracting part of

the manifold q = 1, that is, p1 > p2 in which, the two manifolds are connected via hetroclinic

connection. The slow trajectory then moves to q = 1 manifold for some time and the time it

passes to the repelling part of the pieces, then it immediately go to the jumping point to leave

the manifold q = 1 and stays to the attracting part of q = 0. By concatenating the fast and

slow limiting orbit gives a singular periodic orbit which in turn persists the orbits when ε is

non-zero but small.

In the next section, we discuss the general construction of a high-order IMEX multistep
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method which enables us to efficiently and accurately solve the multiscale model problem

(4.2.2) discussed in this section.

4.3 High-order multistep IMEX methods for slow-

fast problems

Standard explicit numerical schemes require very restrictive time-steps to approximate solu-

tions of stiff (or singularly perturbed) problems due to stability reasons, whereas, the use of

implicit numerical schemes require large number of iterations for the convergence within a

prescribed time-step. In order to utilize both lower cost advantage of explicit schemes and a

good stability properties of implicit schemes, it makes sense to combine implicit and explicit

methods in one scheme, generally known as implicit-explicit (IMEX) methods. To this end,

in this section, we present various high-order IMEX schemes for the singularly perturbed

problem (4.2.2) written in a general evolutionary equation form as

u̇ = fF (t,u) + fS (t,u), u(0) = u0, (4.3.1)

where fF the fast component (stiff), fS the slow component (non-stiff), and u the unknown

vector. These are denoted by

u =


p1

p2

z

q

 , fF (u, t) =


0

0

0

1
εq(1− q)(p1 − p2)

 , and fS (t,u) =


p1(1− qz)

p2(r − (1− q)z)

z(qp1 + (1− q)p2 − 1)m

0

 .
(4.3.2)

In the remaining part of this chapter, we use the terminology that the sub-equations u̇ =

fF (t,u) and u̇ = fS (t,u) are termed as the fast and slow sub-system, respectively. Below in

sections 4.3.1 and 4.3.2, we present overview of two of the commonly used IMEX schemes in the

literature, namely IMEX-BDF (based on the Backward Differentiation Formula) and CNLF

(the Crank-Nicholson–Leap Frog method). Later in section 4.3.3, we discuss the formulation
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and stability of the new linear multistep IMEX method based on the Lagrange interpolation

and extrapolation, abbreviated as IMEX-LG.

4.3.1 The Crank-Nicholson–Leapfrog (CNLF)

Here the implicit Crank-Nicholson method that approximates the solution at the time-step

tn is used for the fast component, i.e.,

un+1 − un−1

2h
=

1

2

[
fn−1

F
+ fn+1

F

]
, (4.3.3)

where to avoid the notational complexity, we use fn
F
for fF (tn,u

n). This notation is adopted

in all similar circumstances throughout the rest of this chapter.

Next, the explicit Leapfrog scheme is used for approximation of the slow sub-system. Thus

the corresponding discrete equation is

un+1 − un−1

2h
= fn

S
. (4.3.4)

Note that both the implicit (4.3.3) and explicit (4.3.4) schemes are second-order accurate.

Combining the two schemes together based on the structure of the global problem (4.3.1)

formally gives IMEX scheme:

un+1 = un−1 + h
[
fn−1

F
+ fn+1

F

]
+ 2hfn

S
, (4.3.5)

which is order consistent, i.e., it is also second-order as the constituent methods.

Linear stability of CNLF scheme

The linear stability analysis of IMEX schemes, such as the CNLF scheme (4.3.5), for slow-fast

dynamical system of ODE (4.3.1) is carried out by considering a linear scalar test problem of

the form

u̇ = λu+ µu, (4.3.6)

where λ and µ represent the eigenvalues of the fast and slow components, respectively. Apply-

ing the schemes (4.3.3) and (4.3.4) to the test equation (4.3.6) gives the following characteristic
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polynomials:

ΠCN(ξ; z) = (1− z)ξ2 − z − 1, (4.3.7)

ΠLF(ξ; z) = ξ2 − 2zξ − 1, (4.3.8)

where z = h(λ+ µ).

We recall (see, for example [92]) that the stability of multistep schemes such as (4.3.3) and

(4.3.4) applied to the test problem (4.3.6) are characterized by the following two definitions:

Definition 4.3.1 (Root condition). The characteristic polynomials Π(ξ; z) of a given mul-

tistep time-stepping scheme is said to satisfy the root condition if all of its roots ξi satisfy

|ξi| < 1 for all i.

Definition 4.3.2 (Absolute stability). A multistep method is said to be absolutely stable for

some z in some region S in the complex plane if its characteristic polynomial satisfies the root

condition. The largest of such set S is said to be the absolute stability region of the multistep

method.

For the IMEX-CNLF method (4.3.5), the characteristic polynomial involves two complex

variables which reads

ΠIMEX(ξ;ω, ν) = (1− ω)ξ2 − 2νξ − ω − 1, (4.3.9)

where ω = hλ and ν = hµ. The representation of stability region on the complex plane is

presented in Section 4.3.4.

Remark 4.3.3. The combination of the implicit Crank-Nicholson scheme and the explicit

Leapfrog schemes are formally second-order accurate IMEX-CNLF scheme [8, 158]. The ab-

solute stability regions are as shown in Figure 4.3.1. It is shown that the Crank-Nicholson

scheme is Linearly stable, while Leap-Frog scheme shows linear instability. This results in

a linear instability of the IMEX-CNLF scheme. Meaning, the LF (and hence IMEX-CNLF)

scheme is not typically useful for problems whose eigenvalue is real. However, they are of great

interest in applications involving systems of ODEs, for example, semi-discretization of hyper-
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bolic problems leads to antisymmetric system of ODEs whose eigenvalues are pure imaginary

[68, 94].

CN LF IMEX-CNLF
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(a) (b) (c)

Figure 4.3.1: Stability region: (a) Crank-Nicholson scheme, (b) Leapfrog scheme and
(c) and the IMEX-CNLF scheme.

4.3.2 The Backward Differentiation Formula (BDF)

We adopt the IMEX scheme based on the Backward differentiation formula (BDF), as dis-

cussed in [139], to solve the singularly perturbed problem (4.3.1). The linear r-step BDF

scheme applied to the fast sub-system is given by

1

h

r∑
i=−1

βiu
n−i = fn+1

F
. (4.3.10)

The coefficients βi, i = −1, . . . , r are obtained by solving the (r + 2)× (r + 2) linear system

Bβ = e2, (4.3.11)
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where

B = [Bji], Bji = −(i− 1)j−1

(j − 1)!
,

β = (β−1, · · · , βr)T,

e2 = (0, 1, 0, · · · , 0)T.

The implicit scheme (4.3.10) is of order k = r + 1, and is zero-stable for r ≤ 5 (see [139]).

Next, for the slow sub-system, an explicit BDF scheme is obtained by replacing the right

hand side of (4.3.10) by an r + 1-degree polynomial extrapolation involving the values at

the previous time-step solutions un−r, . . . ,un. Hence, the explicit BDF scheme for the slow

sub-system reads
1

h

r∑
i=−1

βiu
n−i =

r∑
i=0

αif
n−i
S

. (4.3.12)

The coefficients αi are obtained by solving the (r + 1)× (r + 1) linear system

Aα = e1, (4.3.13)

where

A = [Aji], Aji = (−1)j−1 ij−1

(j − 1)!
,

α = (α0, α1, . . . , αr)
T, and e1 = (1, 0, . . . , 0)T.

The IMEX-BDF scheme for the global problem is formally obtained by combining the

schemes (4.3.10) and (4.3.12) and reads for problem (4.3.1) as

r∑
i=−1

βiu
n+1 = hfn+1

F
+ h

r∑
i=0

αif
n−i
S

. (4.3.14)

With regards to the linear stability of the IMEX-BDF scheme, we note that by applying the

linear multistep IM-BDF (4.3.10), EX-BDF (4.3.12) and IMEX-BDF (4.3.14) schemes to the
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test problem (4.3.6), we obtain the following characteristic polynomials:

ΠEX(ξ; z) =
r∑

i=−1

βiξ
r−i − zξr, (4.3.15)

ΠIM(ξ; z) =

r∑
i=−1

βiξ
r−i − z

r∑
i=0

αiξ
r−i, (4.3.16)

ΠIMEX(ξ;ω; ν) =
r∑

i=−1

βiξ
r−i − ωξr − ν

r∑
i=0

αiξ
r−i, (4.3.17)

where z = h(λ+ µ), ω = hλ, ν = hµ.

Remark 4.3.4. The IMEX scheme (4.3.14) (referred to as IMEX-BDFk) is also of order

k = r + 1 as the constituent schemes [68], and combines the favourable stability property of

the implicit scheme with the low cost of the explicit scheme.

• Some of the commonly used IMEX-BDF schemes are

IMEX-BDF1: un+1 = un + h
[
fn+1

F
+ fn

S

]
,

IMEX-BDF2: un+1 =
4

3
un − 1

3
un−1 +

2

3
h
[
fn+1

F
+ 2fn

S
− fn−1

S

]
,

IMEX-BDF3: un+1 =
18

11
un − 9

11
un−1 +

2

11
un−2 +

6

11
h
[
fn+1

F
+ 3fn

S
− 3fn−1

S
+ fn−2

S

]
.

The stability regions of the various BDF schemes are shown in Figure 4.3.2. The improved

stability of the IMEX schemes over the explicit ones is clearly evident from the plots in Fig-

ure 4.3.2 (a)-(c).

4.3.3 AMultistep Lagrange implicit-explicit (IMEX-LG) scheme

In this section we present a novel arbitrarily high-order IMEX method based on the Lagrange

interpolation for singularly perturbed problems such as the one given in (4.3.1). The multi-

step method to be presented assumes that the r-element set {un−r, . . . ,un} of approximate

solutions are known, and seeks to approximate the tn+1 time-step solution un+1.

First, we interpolate u(t), t ∈ [tn−r, tn+1], using the Lagrange polynomials Pkn−j of degree

k = r + 1 involving the known r-set of solution and including the unknown un+1. Thus, the
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Figure 4.3.2: Stability region of the BDF schemes of order two (BDF2), three (BDF3)
and four (BDF4): The shaded region in the first, second and third row indicates the
stability regions of the implicit, explicit and IMEX schemes, respectively.

interpolation function reads

u(t) =

r∑
j=−1

un−jPkn−j(t), t ∈ [tn−r, tn+1]. (4.3.18)
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Then the derivative at tn+θ, 0 < θ ≤ 1, of the interpolant becomes

u̇(tn+θ) = DT(tn+θ)U, (4.3.19)

where

D(tn+θ) =

[
d

dt
Pkn−r(tn+θ), . . . ,

d

dt
Pkn+1(tn+θ)

]T
, and U =

[
un−r, . . . ,un+1

]T
,

and the Lagrange polynomials are defined by

Pkn−j(t) =

n+1∏
i=−1
i6=j

(t − tn−i)

(tn−j − tn−i)
, j = −1, . . . , r. (4.3.20)

An implicit scheme for the fast sub-system can be obtained by substituting the derivative of

the interpolate (4.3.19) into the fast sub-system evaluated at tn+θ, that is,

DT(tn+θ)U = PT(tn+θ)FF . (4.3.21)

where

P =
[
Pkn−r(tn+θ), . . . ,P

k
n+1(tn+θ)

]T
, and FF =

[
fn−r

F
, . . . ,fn+1

F

]T
. (4.3.22)

Since the degree of interpolation is k = r+1, the order of accuracy of the multistep scheme

(4.3.21) is expected to be k. And this will be discussed in Section 4.3.4 in detail.

To find an explicit scheme for the slow sub-system based on the Lagrange scheme (4.3.21),

we first interpolate the function fS (t,u) using the r-degree Lagrange polynomials Prn−j involv-

ing only the values at the previous r time-steps, that is, fn−r
S

, · · · ,fn
S
. Thus, the interpolation

of fS is given by

fS (t,u) =

r∑
j=0

fn−j
S

Prn−j(t), t ∈ [tn−r, tn]. (4.3.23)

Next we extrapolate and evaluate (4.3.23) at tn+θ. This gives

fS (tn+θ,u) = P̃T(tn+θ)FS , (4.3.24)
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where

P̃(tn+θ) =
[
Prn−r(tn+θ), . . . ,P

r
n(tn+θ)

]T
, and FS =

[
fn−r

S
, . . . ,fn

S

]T
. (4.3.25)

An explicit scheme for the slow sub-system is obtained by replacing the right hand side

of (4.3.21) by the extrapolation (4.3.24), i.e,

DT(tn+θ)U = P̃T(tn+θ)FS . (4.3.26)

A k-order accurate IMEX scheme is thus obtained by combining the schemes (4.3.21) and

(4.3.26) for the fast and slow sub-systems, respectively, and is given by

DT(tn+θ)U = PT(tn+θ)FF + P̃T(tn+θ)FS . (4.3.27)

It is to be noted that the schemes presented here are based on similar idea that the BDF

schemes used in their derivation. The derivative u̇ in BDF schemes is replaced by a backward

differencing interpolation formula involving previous step solutions. If θ = 1, the BDF schemes

are recovered and the coefficients are listed in table 4.3.2. The coefficients that define the LG

(Lagrangian interpolation based) schemes with θ = 0.5 are also listed in Table 4.3.1. In the

following theorem an a priori error bound which estimates the one-step truncation error is of

order hr+2 implying that the LG schemes converge with order r + 1.

Table 4.3.1: Coefficient vectors of the IMEX-LG schemes as given in (4.3.27) for θ = 0.5.

LG (θ = 0.5)
r DT IM (PT) EX (P̃T)
0 1

h [−1 1] [12
1
2 ] 1

1 1
2h [ 0 −2 2] [−1

8
3
4

3
8 ] [−1

2
3
2 ]

2 1
3h [ 1

8 −3
8 −21

8
23
8 ] [ 1

16 − 5
16

15
16

5
16 ] [38 −5

4
15
8 ]

3 1
4h [−1

6
5
6 −3

2 −17
6

11
3 ] [− 5

128
7
32 −35

64
35
32

35
128 ] [− 5

16
21
16 −35

16
35
16 ]
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Table 4.3.2: Coefficient vectors of the IMEX-BDF schemes as given in (4.3.27) for
θ = 1.

BDF (LG with θ = 1)
r DT IM (PT) EX (P̃T)
0 1

h [−1 1] [0 1] 1

1 1
2h [ 1 −4 3] [0 0 1] [−1 2]

2 1
3h [−1 9

2 −9 11
2 ] [0 0 0 1] [ 1 −3 3]

3 1
4h [ 1 −16

3 12 −16 25
3 ] [0 0 0 0 1] [−1 4 −6 4]

4.3.4 Convergence and linear stability analysis of the LG schemes

Here, we present results on convergence and linear stability of the IM-, EX-, and IMEX-

LG schemes. The necessary and sufficient condition for convergence is zero-stability and

consistency. Zero-stability is the property of the scheme that involves only the left hand side

of the multistep scheme of generic form

r+1∑
j=0

αju
n−r+j = h

∑
j

βjf
n−r+j . (4.3.28)

For example, for the IM-LG scheme Eq. (4.3.21), the coefficients read

αj = h
d

dt
Pkn−r+j(tn+θ),

βj = Pkn−r+j(tn+θ),

 j = 0, 1, . . . , r + 1. (4.3.29)

The multistep scheme (4.3.28) is said to be zero-stable if all roots of the (first-)characteristic

polynomial are of modulus less than or equal to unity (provided that each root is of multiplicity

one) [92]. In case of multiple roots, strict inequality should hold. Thus, the IM-, EX-, and

IMEX-LG schemes have the same first-characteristic polynomial

Π(ξ) =
r+1∑
j=0

αjξ
j , (4.3.30)
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where the coefficients are

αj = h
d

dt
Pkn−r+j(tn+θ); j = 0, 1, . . . , r + 1. (4.3.31)

Note that the final expression of αj does not involve h since
d

dt
Pkn−r+j(tn+θ) has a factor 1/h

which cancels out in the expression (4.3.30).

For order of approximation up to r = 3, it is noted that the LG schemes for θ = 0.5 are

zero-stable (see Table 4.3.3).

Now, we examine the consistency of the LG schemes. Note that a given multistep scheme

(4.3.28) is said to be consistent if the discrete solution approaches to the exact problem in

the limit as h tends to zero. Alternatively, consistency requires that the order of accuracy be

at least one. The consistency of the LG schemes is given in the following theorem.

Table 4.3.3: Zero-stability of the LG methods for θ = 0.5.

LG methods |ξ| Zero-stability

r = 1 (order 2) 0 √
1

r = 2 (order 3)
1 √

0.2564
0.1692

r = 3 (order 4)

1
√0.6302

0.2685
0.2685

r = 4 (order 5)

1

×
0.2883
1.0539
0.3719
0.3719

In the following theorem an a priori, bound which estimates the one-step truncation error,

is of order of hr+2 leading the LG schemes to converge with order r + 1.

Theorem 4.3.5. Assume that un−r, . . . ,un are the values of the exact solution uex at the pre-

vious time-steps tn−r, . . . , tn. The IMEX-LG scheme (4.3.27) approximates uex(tn+1) within

http://etd.uwc.ac.za/



CHAPTER 4. A CLASS OF HIGH-ORDER IMEX LINEAR MULTISTEP
METHOD FOR SLOW-FAST MODEL 111

an error of order r + 1, that is, the truncation error E(tn+1) is

E(tn+1) := uex(tn+1)− un+1 = O(hr+2), (4.3.32)

where un+1 is the approximate solution at tn+1.

Proof. The interpolation error, by construction, takes the form

E(t) = uex(t)−PT(t)U =
1

(r + 1)!

r∏
i=0

(t− tn−i)
d(r+1)

dt(r+1)
uex(ξ), (4.3.33)

for some ξ ∈ (tn−r, tn). Since the maximum value of the product at the right hand side is of

order hr+1, this can also be written, in big-o notation, as

E(t) = O(hr+1). (4.3.34)

Similarly, since both of the right-hand side terms of (4.3.27) are interpolation polynomials

that agree at each r + 1 previous solutions of the exact solutions, the interpolation error in

approximating f := fF + fS is also of order r + 1, that is,

f(t)− (PT(t)FF + P̃T(t)FS ) = O(hr+1). (4.3.35)

Noting that uex satisfies the differential equation (4.3.1) exactly, hence in particular, at tn+θ

we have

u̇ex(tn+θ) = f(uex(tn+θ)). (4.3.36)

Next, subtracting the discrete equation (4.3.27) from equation (4.3.36) gives an error estimate

for the derivative of the local truncation at tn+θ, that is

Ė(tn+θ) = O(hr+1). (4.3.37)

Now, we take the differential equation into consideration. To find the order of the truncation

error at tn+1, Taylor’s theorem is employed to expand E(tn+θ) about tn (note that since the
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PT(tn)U = un is exact, then E(tn) = 0). This gives

0 = E(tn) = E(tn+θ)− θhĖ(tn+θ) +
θ2h2

2
Ë(tn+θ) + · · ·︸ ︷︷ ︸

O(hr+2)

(4.3.38)

This immediately implies that

E(tn+θ) = O(hr+2). (4.3.39)

Applying Taylor’s theorem again, and expanding E(tn+1) about tn+θ, we obtain

E(tn+1) = E(tn+θ) + (1− θ)hĖ(tn+θ) +
(1− θ)2h2

2
Ë(tn+θ) + · · ·︸ ︷︷ ︸

O(hr+2)

. (4.3.40)

Hence, the truncation error E(tn+1) is of order r + 2 as required.

The above theorem implies that the order of accuracy of an LG scheme involving r + 1

previous solutions is of order k = r + 1. Hence the LG scheme is consistent, since r ≥ 0.

Now the linear stability analysis requires us to consider a linear scalar test problem of the

form

u̇ = λu+ µu, (4.3.41)

where λ and µ represent the eigenvalues of the fast and slow components, respectively. In

what follows the readers may note that the following notations have been used consistently

for extracting characteristic polynomial of the IM and EX multistep schemes discussed in this

chapter:

αj : coefficients corresponding to the left-hand-side of the IM or EX schemes,

βj : coefficients corresponding to the right-hand-side of the IM schemes, and

γj : coefficients corresponding to the right-hand-side of the EX schemes.

We first apply, the implicit LG scheme (4.3.21) to the test problem (4.3.41) and obtain

the characteristic polynomial

ΠIM(ξ; z) =
r+1∑
j=0

αjξ
j − z

r+1∑
j=0

βjξ
j , (4.3.42)
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where z = h(λ+ µ), and the coefficient of the last sum is

βj = Pkn−r+j(tn+θ). (4.3.43)

For the IMEX scheme the resulting right-hand-side coefficient becomes (βj + γj).

In a similar manner, we obtain the characteristic polynomials corresponding to the explicit

scheme (4.3.26) and the IMEX scheme (4.3.27) as

ΠEX(ξ, z) =
r+1∑
j=0

αjξ
j − z

r∑
j=0

γjξ
j , (4.3.44)

ΠIMEX(ξ, ω, ν) =

r+1∑
j=0

αjξ
j − ω

r+1∑
j=0

βjξ
j − ν

r∑
j=0

γjξ
j , (4.3.45)

where ω = hλ, ν = hµ, and

γj = P̃rn−r+j(tn+θ). (4.3.46)

Following the standard criteria (see [92]) for stability, we say that a given time-stepping

scheme is absolutely stable if all roots of the corresponding characteristic polynomial are of

modulus strictly less than unity.

It is possible to determine the stability region S of a given multistep scheme with a

characteristic polynomial Π(r; z) without necessarily computing all of its roots. We know

that the set of complex numbers r such that |r| = 1 can be represented by the formula

r = eiϑ, 0 ≤ ϑ ≤ 2π; i =
√
−1. (4.3.47)

If the locus of points z satisfying the stability criteria is a bounded (or partially bounded)

region of the complex plane, then the boundary of such region is given by the parametric

curve in the complex plane

Π(eiϑ; z) = 0, 0 ≤ ϑ ≤ 2π. (4.3.48)

To determine the part of the complex plane bounded by the parametric curve that belongs to

the stability region S, we take a root r of the characteristic polynomial inside the unit disc for

some z. Then the part of the complex plane, bounded by the parametric curve, that contains
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the corresponding z value is the stability region.

Since the characteristic polynomials corresponding to the IMEX methods involve two

parameters ω and ν, stability regions of such methods, such as IMEX-BDF, -LG, and -CNLF,

are formed in the complex hyper-plane C×C. However, it is possible to represent this region

in the complex plane C as follows; we first take both ω and ν equal to z. Then we determine

the corresponding region from the characteristic polynomial involving only the variable z. For

the interpretation of this region, we first define the following notion: The pair (ω, ν) ∈ C×C

is said to be stable pair for the IMEX scheme under consideration if both ω and ν are in the

region of stability such that ω/λ = ν/µ. Hence the stability region of the IMEX methods in

the complex hyper-plane C× C is defined as the set of all stable pairs, that is,

{
(ω, ν) ∈ C× C :

ω

λ
=
ν

µ
, and ω, ν ∈ S

}
. (4.3.49)

The region of absolute stability of the various LG schemes are shown in Figure 4.3.3. We first

note that in contrast to the stability regions of the implicit BDF and CN schemes, shown in

Figure 4.3.3 and 4.3.1, the stability regions of that of the LG schemes are finite (bounded).

However, it is clearly evident that the stability regions of the IMEX-BDF and -LG schemes

are comparatively similar as can be seen from the shaded areas. It should also be noted that

the less stability feature of the LG schemes is favourably compensated by its better accuracy

than the respective BDF schemes, as evident in Figure 4.6.2 and 4.6.3. Moreover, numerical

experiments (not displayed in here) have shown that it takes fewer iterations per time-step to

achieve a prescribed tolerance of error with the LG scheme than that of the BDF counterparts.

4.4 An order consistent starting solution scheme

For multistep schemes that involve previous solutions at multiple time-steps, it is very crucial

to emphasize how the starting solutions are obtained. This is due to the fact that the overall

accuracy may not reflect the true accuracy of the multistep method used in the approximation

if the order of the scheme for the starting solutions does not match. For example, if the order

of the start up scheme is lower than that of the multistep method, then the order of the overall

solution will be reduced.
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Figure 4.3.3: Stability region of the Lagrange based schemes of order two (LG2), three
(LG3) and four (LG4): The shaded region in the first, second and third row indicates
the stability regions of the implicit, explicit and IMEX schemes, respectively.

The standard practice in multistep methods is to use some adaptive single step method

with a given tolerance. Unfortunately, such approach has two drawbacks: (i) it requires to

take extremely small time-steps to meet the given tolerance which makes it unnecessarily

costly in terms of computation time; (ii) when a high-order multistep method is used with

small step-size, the accuracy of the starting solution may limits the accuracy of the overall

solution even if a very small tolerance has been used for the starting scheme.
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An implicit numerical scheme for simultaneously solving the starting solution can be

constructed based on the same idea that the multistep Lagrangian used as discussed above.

It is basically a spectral collocation method which uses the same Lagrangian interpolation

functions as its basis. Consequently, the start up scheme will be consistent with the multistep

Lagrangian scheme in that both schemes are same order of accuracy.

Consider the r + 1-order Lagrangian scheme. Since it is an r-step method the initial

solutions {u0, . . . ,ur} have to be solved. For this, first we interpolate u over the interval

[t0, tr] using the Lagrange functions as

u(t) =

r∑
j=0

ujPkj (t), t ∈ [t0, tr]. (4.4.1)

Consequently, its derivative at the collocation point tj , j = 1, . . . , r, is

u̇(tj) = DT
jUfull, (4.4.2)

where

Dj =

[
d

dt
Pk0(tj), · · · ,

d

dt
Pkr (tj)

]T
, and Ufull = [u0, · · · ,ur]T. (4.4.3)

The implicit scheme is obtained by posing the initial value problems at each of r collocation

points t1, . . . , tr as

DT
1Ufull = f(u1),

...

DT
rUfull = f(ur).

(4.4.4)

Here f refers to the full problem, i.e., f = fF + fS . The matrix form of the above equation

reads

DUst = F, where Ust = [u1, · · · ,ur]T, (4.4.5)

in which the elements of the matrix D are given by

Dij =
d

dt
Pkj (ti); 1 ≤ i, j ≤ r, (4.4.6)
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and those of the right hand side vector F are given by

Fi = f(ui)− d

dt
Pk0(ti)u

0. (4.4.7)

For multivalued problem such as the one we are considering in this chapter, the matrix D can

be taken as a block diagonal matrix D̂, that is,

D̂ =


D
 0 0 0

0 D2 0 0

0 0 D3 0

0 0 0 D4

 , (4.4.8)

where D
 = D2 = D3 = D4 = D and the corresponding right hand side vector F̂ is




f1(u1)− d

dt
Pk0(t1)u0

1

...

f1(ur)− d

dt
Pk0(tr)u

0
1


...

f4(u1)− d

dt
Pk0(t1)u0

4

...

f4(ur)− d

dt
Pk0(tr)u

0
4





. (4.4.9)

The resulting system D̂Ust = F̂ is then solved to obtain the desired solution. In the next

section, we discuss how we handle the nonlinearities.

4.5 Iterative treatment of nonlinearities using Ander-

son’s acceleration method

In the IMEX framework, the slow components will be explicitly solved based on the previous

time-step solutions to obtain the current step solution of the slow components. Then the

fast discrete problem is updated based on the current values of the slow components. The
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resulting implicitly-nonlinear algebraic system can then be recasted into a fixed point problem

of the form

G(u) = u. (4.5.1)

For example, the implicit LG scheme (4.3.21) can be written as a fixed point problem

(4.5.1) in which

G(u) = u+ DTU−PTFF . (4.5.2)

Here the current unknown solution un+1 in the vector U is replaced by the variable of the

fixed point problem u. Therefore, a fixed point solution of (4.5.1) is the current solution

un+1.

The methodology adopted here to solve the nonlinear fixed point problems is a fixed point

iterative method known as Anderson’s acceleration [163]. This method is built up on the

classical Picard iteration in order to accelerate the poor convergence by employing multiple

previous iterations (upto some prescribed depth, usually < 10). At each iteration a con-

strained minimization problem involving some convex combination of the residuals on the

previous iterates need to be solved. Compared to the complexity of evaluating the fixed point

map G, the cost of solving these minimization problems is negligible [154]. Anderson’s accel-

eration has advantages over some of the most commonly used techniques to solve nonlinear

problems. It is easy to implement and has low cost per iteration as it does not require Ja-

cobian information. As all nonlinear solvers, its main drawback is the lack of globalization.

However, for initial value problems such as ODEs, this is less of an issue as the previous

time-step solution provides generally a good initial guess.

4.6 Numerical results

In this section, we present results demonstrating the performance of the numerical schemes

proposed in this chapter by applying to the singularly perturbed problem (4.2.2). Particularly,

the parameters m = 0.5, r = 0.4 and various epsilon (ε) values were used. It was shown, using

analytical and numerical techniques, that these set of parameter values in combination with

the initial condition (p1, p2, z, q) = (1.18, 0.87, 1.50, 0.99) result in a two parametric family of

periodic orbits [125].
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In what follows, firstly the numerical schemes are analyzed for convergence. For the

implicit schemes, Anderson’s acceleration was employed with tolerance 10−11 and 10−12 de-

pending on the stiffness of the problems. Since there is no known analytic solution for the

problem considered, maximum errors are computed using a double mesh principle as explained

below. For this, the final time is set to T = 1, and an initial temporal mesh with a given

step-size h is considered. The mesh is successively refined by halving the step-size of the

previous courser mesh as shown in Figure 4.6.1. Maximum error between the solutions of the

successive meshes is computed at the common nodes (marked with open dots). For example,

the maximum error between meshes with h/2 and h/4 is denoted by Eh/2. Then order of

convergence in going from a mesh with h through h/2 is calculated as

log2(Eh)

log2(Eh/2)
, (4.6.1)

d
ec
re
a
si
n
g
h

t0 tNh

h

2

h

4

Figure 4.6.1: Successive mesh refinement. The open dots denote the common nodes at
which maximum errors are computed.

Table, 4.6.1, 4.6.2, and 4.6.4 present maximum errors and order of convergence of the

implicit (IM), explicit (EX), and implicit-explicit (IMEX) versions of the three methods,

CNLF, BDF2, and LG2 methods, respectively. Table 4.6.3 and 4.6.5 present maximum errors

and order of convergence of the implicit (IM), explicit (EX), and implicit-explicit (IMEX)

versions of the methods: BDF4, and LG4, respectively. It is shown that IMEX schemes in

each of the methods replicates the good convergence behaviour of the corresponding fully

implicit method. It is also shown that the LG2 and CNLF exhibit better order of convergence

than the BDF2 in each case. Between the fourth-order schemes, the LG4 schemes shows

better accuracy than the corresponding BDF4.

http://etd.uwc.ac.za/



CHAPTER 4. A CLASS OF HIGH-ORDER IMEX LINEAR MULTISTEP
METHOD FOR SLOW-FAST MODEL 120

Table 4.6.1: Maximum errors and order of convergence of the implicit (IM-CN), explicit
(EX-LF) and the implicit-explicit (IMEX-CNLF) schemes. Here ε = 0.1, Tol = 10−12,
and final time T = 1.

N Maximum error Order of convergence
IM-CN EX-LF IMEX-CNLF IM-CN EX-LF IMEX-CNLF

10 0.0187611059 0.0044816528 0.0191058838 2.38 1.84 2.42
20 0.0036039265 0.0012545499 0.0035665635 2.10 2.02 2.10
40 0.0008431444 0.0003093285 0.0008306734 2.02 2.04 2.03
80 0.0002073687 0.0000750404 0.0002039910 2.01 2.03 2.01
160 0.0000516324 0.0000183553 0.0000507600 2.00 2.02 2.00
320 0.0000128832 0.0000045306 0.0000126739 2.01 2.01 2.00

Table 4.6.2: Maximum errors and order of convergence of the implicit (IM-BDF2),
explicit (EX-BDF2) and the implicit-explicit (IMEX-BDF2) schemes. Here ε = 0.1,
Tol = 10−12, and final time T = 1.

N Maximum error Order of convergence
IM-BDF2 EX-BDF2 IMEX-BDF2 IM-BDF2 EX-BDF2 IMEX-BDF2

10 0.0164955797 0.0038961442 0.0180150816 2.01 0.78 2.05
20 0.0040989510 0.0022695858 0.0043463790 1.93 1.38 1.93
40 0.0010779476 0.0008708676 0.0011376353 1.94 1.71 1.94
80 0.0002818532 0.0002660704 0.0002973353 1.96 1.86 1.96
160 0.0000725115 0.0000730664 0.0000764910 1.98 1.94 1.98
320 0.0000183745 0.0000191055 0.0000194331 2.00 1.97 1.99

Table 4.6.3: Maximum errors and order of convergence of the implicit (IM-BDF4),
explicit (EX-BDF4) and the implicit-explicit (IMEX-BDF4) schemes. Here ε = 0.1,
Tol = 10−12, and final time T = 1.

N Maximum error Order of convergence
IM-BDF4 EX-BDF4 IMEX-BDF4 IM-BDF4 EX-BDF4 IMEX-BDF4

10 0.0027867270 0.0028424109 0.0029678758 3.32 2.58 3.31
20 0.0002786170 0.0004769295 0.0002984421 3.65 3.40 3.64
40 0.0000221566 0.0000452193 0.0000239543 3.84 3.76 3.83
80 0.0000015448 0.0000033377 0.0000016816 3.93 3.90 3.92
160 0.0000001014 0.0000002235 0.0000001109 3.97 3.96 3.96
320 0.0000000065 0.0000000144 0.0000000071 4.00 3.97 4.00

The efficiencies of the IMEX and IM schemes are compared in terms of the CPU times

that each algorithm spends in solving the same problem. These schemes were implemented

on Matlab 2013a and the simulations were done in a serial computation on a single core of

a machine with 2.4GHz x 8, IntelCore i7-4700MQ processor and 8GB RAM. The time-scale
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Table 4.6.4: Maximum errors and order of convergence of the implicit (IM-LG2),
explicit (EX-LG2) and the implicit-explicit (IMEX-LG2) schemes. Here ε = 0.1,
Tol = 10−12, and final time T = 1.

N Maximum error Order of convergence
IM-LG2 EX-LG2 IMEX-LG2 IM-LG2 EX-LG2 IMEX-LG2

10 0.0030445566 0.0049272821 0.0033257199 2.17 1.24 2.14
20 0.0006756094 0.0020848616 0.0007539527 2.10 1.67 2.07
40 0.0001572329 0.0006554798 0.0001791964 2.05 1.86 2.04
80 0.0000378382 0.0001805156 0.0000437035 2.04 1.94 2.02
160 0.0000092321 0.0000470864 0.0000107972 2.02 1.97 2.01
320 0.0000022736 0.0000120042 0.0000026841 2.02 1.99 2.00

Table 4.6.5: Maximum errors and order of convergence of the implicit (IM-LG4),
explicit (EX-LG4) and the implicit-explicit (IMEX-LG4) schemes. Here ε = 0.1,
Tol = 10−12, and final time T = 1.

N Maximum error Order of convergence
IM-LG4 EX-LG4 IMEX-LG4 IM-LG4 EX-LG4 IMEX-LG4

10 0.0003336782 0.0020637481 0.0003873648 3.75 3.14 3.53
20 0.0000247892 0.0002345047 0.0000335620 3.66 3.68 3.58
40 0.0000019599 0.0000182928 0.0000027989 3.75 3.88 3.82
80 0.0000001460 0.0000012444 0.0000001978 3.85 3.95 3.92
160 0.0000000101 0.0000000804 0.0000000131 3.92 3.98 3.96
320 0.0000000007 0.0000000051 0.0000000008 4.04 3.98 3.94

parameter that was taken is ε = 0.1 and the simulations were done up to the final time

T = 10. As shown in Table 4.6.6, while the second-order IMEX-BDF2, IMEX-LG2, and

IMEX-CNLF have shown comparatively the same order of efficiencies (though LG schemes

consistently display fairly better performance over the other schemes), it is seen that they

show clear gain in efficiencies over their respective implicit schemes. Essentially the same

scenario is exhibited for the high-order BDF and LG schemes as shown in tables 4.6.7 and

4.6.8. However, we note that increasing the order of the methods do not seem to have effect

on the efficiency of the method, as can be seen from the results in tables 4.6.6-4.6.8.

In Figure 4.6.2, we present comparison of maximum errors obtained by second-order mul-

tistep IMEX schemes of the three methods. We notice that all the multistep IMEX schemes

gave second-order convergence with the IMEX-LG2 demonstrating high-order of accuracy

than the other two. The superior performance of the third- and fourth-order IMEX-LG

schemes are seen through their comparison with the corresponding IMEX-BDF schemes as

http://etd.uwc.ac.za/



CHAPTER 4. A CLASS OF HIGH-ORDER IMEX LINEAR MULTISTEP
METHOD FOR SLOW-FAST MODEL 122

Table 4.6.6: CPU comparison of the second-order of the IMEX-BDF2, IMEX-LG2 and
IMEX-CNLF and their corresponding implicit IM-BDF2, IM-LG2 and IM-CNLF with
parameters ε = 0.1, Tol = 10−12 and final time T = 10.

h
CPU comparison of IMEX CPU comparison of IM

IMEX-BDF2 IMEX-LG2 IMEX-CNLF IM-BDF2 IM-LG2 IM-CNLF
1× 10−3 3.7100 3.4500 4.4300 11.7000 11.3000 8.1400
5× 10−4 9.0500 7.1700 9.8900 23.5000 21.3800 15.8600
2× 10−4 33.0600 23.8900 35.5100 55.5200 49.8700 50.7300

Table 4.6.7: CPU comparison of the third-order of the IMEX-BDF3 and IMEX-LG3
and their corresponding implicit IM-BDF3 and IM-LG3 with parameters ε = 0.1,
Tol = 10−11 and final time T = 10.

h
CPU comparison of IMEX CPU comparison of IM
IMEX-BDF3 IMEX-LG3 IM-BDF3 IM-LG3

1× 10−3 3.8300 3.4600 11.8000 10.9200
5× 10−4 8.1800 7.4900 23.1600 20.4800
2× 10−4 33.2000 34.1800 54.8500 47.2200

Table 4.6.8: CPU comparison of the fourth-order of the IMEX-BDF4 and IMEX-LG4
and their corresponding implicit IM-BDF4 and IM-LG4 with parameters ε = 0.1,
Tol = 10−11 and final time T = 10.

h
CPU comparison of IMEX CPU comparison of IM
IMEX-BDF4 IMEX-LG4 IM-BDF4 IM-LG4

1× 10−3 3.8100 3.4600 12.1300 11.0100
5× 10−4 7.8300 7.1900 24.1300 20.6300
2× 10−4 33.7000 32.8900 57.0900 46.9200

shown in Figure 4.6.3. The slight reduction in the order around the right end of IMEX-LG4

may be due to the higher tolerance prescribed for the nonlinear solver.

Figure 4.6.4 shows the influence of the separation time-scale, ε between the fast and slow

components on the order and precession of the 2nd-order IMEX-CNLF, IMEX-BDF2 and

IMEX-LG2 schemes. As expected, while the schemes for various values of ε converges to

the correct order, it is clearly evident that the accuracy for fixed step-size h deteriorates as

ε becomes smaller. However, in this situation the LG scheme shows less accuracy degrada-

tion than those by other schemes. Similar observation is shown for high-order LG and BDF

implicit-explicit schemes, see, Figure 4.6.5 and 4.6.6. Notice that due to the prescribed tol-

erance (Tol = 10−11) for the nonlinear Anderson’s acceleration solver, we observe a small
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deflection for the finest mesh corresponding to the fourth-order IMEX-LG and -BDF schemes

for larger time-scale (ε = 0.5).
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Figure 4.6.2: Comparison of the maximum error obtained by the second-order schemes
IMEX-LG2, IMEX-BDF2 and IMEX-CNLF at various time-steps applied to (4.2.2).
Here ε = 0.1, and Tol = 10−12.
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Figure 4.6.3: Comparison of the maximum error obtained by the third-order schemes
IMEX-LG3 and IMEX-BDF3 (a), and fourth-order schemes IMEX-BDF4 and IMEX-
LG4 (b), at various time-steps applied to (4.2.2). Here ε = 0.1 and Tol = 10−12.
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Figure 4.6.4: Comparison of the maximum error obtained by the second-order schemes
IMEX-CNLF (a), IMEX-BDF2 (b), and IMEX-LG2 (c), at various time-steps applied
to (4.2.2). Here ε = 0.5, 0.1, 0.025, and Tol = 10−11.

In Figure 4.6.7, we display the qualitative behaviour of the model problem (4.2.2) for

various values of separation of time-scale ε to show the structure of singular periodic orbit

analyzed using geometric singular perturbation theory in section 4.2 when ε goes to zero.

The final time, T = 10 is considered here. The small value of the separation of time-scale

ε = 0.001 is detected by our numerical method which is O(ε) distance away from the singular

orbit, where as, in [125] the smaller values which is O(ε) distance away from the singular
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Figure 4.6.5: Comparison of the maximum error obtained by the third-order schemes
IMEX-BDF3 (a), and IMEX-LG3 (b), at various time-steps applied to (4.2.2). Here
ε = 0.5, 0.1, 0.025, and Tol = 10−11.
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Figure 4.6.6: Comparison of the maximum error obtained by the fourth-order schemes
IMEX-BDF4 (a), and IMEX-LG4 (b), at various time-steps applied to (4.2.2). Here
ε = 0.5, 0.1, 0.025, and Tol = 10−11.

orbit is obtained with ε = 0.025. For a relatively larger values of time-scale, periodic orbit

is also observed in Figure 4.6.7 (b), (c), (d). Other interesting behaviour of the dynamics

observed in the figures are the anti-phase oscillation between the two prey populations, and

the placement of the peaks of the predator between the peaks of the two preys. We can also
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see that the phase space of the interaction of dynamics in a long time run, T = 100 forms a

family of periodic orbit which is far from the equilibrium solution as shown in the Figure 4.6.8

for sufficiently small ε = 0.001. The constructed scheme preserves the periodicity of the model

problem, which is one of the important properties of the model. The closed trajectories also

shows the dependence of the species.
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Figure 4.6.7: Eco-evolutionary dynamics of predator-trait and predator-prey interac-
tion over time of the system (4.2.2) which is obtained at different value of separation
of time-scale ε.
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Figure 4.6.8: Phase space of the system (4.2.2) with the dynamics of predator and
the two preys interaction (a); predator, predator-trait and prey (p1) (b); predator,
predator-trait and prey p2 (c); and the interaction of the two preys with respect to the
predator-trait (d). Here the value of separation of time-scale ε is taken as 0.001 and
T = 100.

4.7 Summary and discussion

In this chapter, a novel high-order multistep implicit-explicit (IMEX) method for solving

singularly perturbed slow-fast dynamical systems is presented. The method is based on the

Lagrange interpolation and extrapolation procedure in which the discrete problem is posed

at a specific point identified with a parameter θ ∈ [0, 1]. It is shown that the new method

generalizes other classes of multistep methods such as (Backward Differentiation formulas)
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BDF and (Crank-Nicholson–Leapfrog) CNLF methods. We also established an a-priori error

estimate for the convergence of the proposed LG schemes. Furthermore, a consistent start

up scheme that uses the same Lagrange polynomials as its basis function is presented. Since

the start up scheme is similar to the underlying multistep method in construction, it is found

that the order of convergence of the overall scheme matches the theoretical error limit.

Various IMEX scheme including the new ones have been applied to solve the nonlinear

and singularly perturbed problem proposed in [125]. Extensive results have been displayed

in the form of tables and figures to demonstrate the performance and capabilities of the

proposed method. It was determined that as with other IMEX schemes for multiscale problems

commonly used in the literature, the current methods also exhibit some stability issues for

problems with very wide separation of time-scales. For such problems, a very small time-

step length of the order of or less than the smallest time-scale is required with the existing

methods.

Due to such issue identified in this chapter, in the next one, we develop another novel

high-order implicit multirate collocation method having better stability property than the

one presented in this chapter. We also consider the simulation of the multiscale coupled

evolutionary and ecological model considered in this chapter.
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Chapter 5

A family of fully implicit, high-order,

multirate collocation method

In the preceding chapter, a family of IMEX multistep methods based on the Lagrangian

interpolation for efficient numerical simulations of singularly perturbed problems with partic-

ular attention to the four-dimensional eco-evolutionary slow-fast system has been discussed.

Although, such schemes combine the efficiency of the explicit methods and the good stabil-

ity property of the implicit schemes, they fall under the class of single-rate schemes (i.e.,

schemes that use a single step-size). Alternatively, one may be interested in achieving a

high-order method with maximized stability property and better accuracy (especially for long

time simulations) by treating the faster components with smaller (micro) step-size and the

slower ones with larger (macro) step-size, in a single fully-implicit scheme. In this chapter, a

novel high-order fully-implicit multirate collocation method for singularly perturbed systems

is proposed. The Anderson’s Acceleration (AA) fixed point iteration procedure is employed

to treat nonlinearlies which arise as a result of the implicit nature of the algorithm. The

scheme is also analyzed for stability and convergence. Various numerical results are presented

to demonstrate the performance of the new methods. The multirate schemes performs better

than the corresponding single-rate schemes in terms of accuracy, efficiency, and replicating

the qualitative features of the continuous model.

129
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5.1 Introduction

It is often the case that theoretical studies, such as bifurcation analysis, of singularly perturbed

problems are aided by numerical simulations in order to obtain a unified picture of the various

solution structures of the system under consideration. Such simulations typically carried out

over a time duration which is several magnitudes larger than the largest time scale appearing

in the system. Thus, in such cases, the need for stable numerical schemes is paramount.

For numerical solutions of multiscale problems, three research directions have been sug-

gested in the last few decades: multi-method, multi-order and multirate methods [153]. All of

them are based on partitioning the full problem into two parts, namely slow subproblem and

fast subproblem, in relation to their respective time scales. The difference in each case lies on

how one treats the two subproblems numerically. For example, in multi-method schemes such

as IMEX, the fast and the slow subproblems are separately treated with different methods

with same step-size. Such schemes have been applied in different areas with some success

[9, 25, 31, 44, 68, 110, 139, 156]. Multi-order schemes on the other hand use the same method

and same step-size but the orders of the methods are different. For example, in [37], various

multi-order schemes based on the extrapolation and Runge-Kutta methods have been pro-

posed for differential equations with multiple time scales. However, Multi-order methods are

suitable for problems with mild stiffness (or weak coupling of the slow and fast sub-systems).

Unlike both multi-method and multi-order schemes that use same step-size for each sub-

system in the partition, a multirate method uses different step-sizes for different subproblems,

according to the activity level of the dynamics of the involved sub-systems, while using same

numerical method. Such multirate methods generally use smaller (micro) time-step to dis-

cretize the faster sub-system and larger (macro) time-step to the slower one. In this way, one

can significantly reduce the complexity of the solution scheme by reducing the computational

cost and memory relative to a corresponding single-rate scheme with a comparative level of

accuracy. In order to handle the coupling between the slow and fast components at the micro

time-steps, a multirate method uses interpolation or extrapolation algorithms, which lead to

further sources of error. However, such errors do not cause degradation of accuracy, since such

interpolations or extrapolation algorithms are typically of the same order as the underlying

scheme. Generally multirate methods are typically well suited for stiff (multiscale) problems,
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and can also be used for weakly coupled slow-fast problems.

Various multirate methods have been introduced in the literature over the last three

decades. The first multirate method for slow-fast problems was due to Gear and Wells [51].

In the experimental code known as MARTE, they showed that their scheme performs better

when the coupling between the slow and fast components is weak. In [10], a one-step multirate

method, in which only one previous step solution is required, has been applied for problems

in electrical networks. Other multirate versions of one-step (and lower-order methods) have

also been studied in different fields of applications, see,e.g., [27, 37, 107, 109]. Applications of

multirate method using backward Euler time-stepping scheme to circuit simulation have also

been presented in [157]. In other works such as [133, 5, 49, 51, 90, 129, 145, 144], stability of

various one-step multirate methods have been analyzed.

In this chapter a high-order fully-implicit multirate collocation time-stepping method

(MCSm) is designed for singularly perturbed problems such as the eco-evolutionary model

considered in Chapter 4. In this method, depending on the order, solutions of multiple number

of steps can be simultaneously computed per each step. It uses piecewise Lagrange polyno-

mial interpolation for the collocations of the fast subproblem at the micro-steps as well as

the slow ones at the macro-steps. For the collocation of the fast subproblem at the inte-

rior micro-steps, coupling is enforced by an internal interpolation of the slow variables. The

method is characterized by its enhanced stability property relative to similar one-step multi-

rate schemes. Collocation methods were first introduced for initial value ordinary differential

equation in the late 1960s, see [18] and the references therein. It was shown that collocation

in continuous piecewise polynomial spaces lead to an important class of implicit (high-order)

Runge-Kutta methods. Various collocation methods have also been successfully applied to

different problems, see for example, [11, 18, 34, 43, 67].

For the nonlinearities that arises as a result of the implicit nature of the scheme, iterative

techniques such as Anderson’s Acceleration fixed point algorithm are applied. The Ander-

son’s acceleration method is built upon the Picard’s fixed point iterative method for a more

robust and fast converging solution [97, 162]. Some advantages of the methods over the other

nonlinear solvers such as Newton’s method include its ease of implementation and low cost

per iteration as it does not require Jacobian information.

The rest of the chapter is as follows: In Section 5.2, we present the model problem
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considered in this chapter and give a brief discussion on theoretical results regarding the

qualitative properties of its solutions. In Section 5.3, the numerical method is formulated and

analyzed for stability and convergence in details for a typical two time-scale problem. An

overview of the Anderson’s acceleration method is presented in Section 5.4. Numerical results

and simulations are presented in Section 5.5. Finally, we present some concluding remarks in

Section 5.6.

5.2 The mathematical model and its qualitative anal-

ysis

In this section, an overview of the eco-evolutionary singularly perturbed problem describing

the interaction of one-predator and two-prey species with fast evolution of predator-trait

[125] is revisited. Furthermore, results on the linear stability analysis of the model are also

presented.

5.2.1 The eco-evolutionary model

Consider the coupled multiscale eco-evolutionary system in a non-dimensional form,

ṗ1 = p1(1− qz) =: f1(p1, p2, z, q),

ṗ2 = p2(r − (1− q)z) =: f2(p1, p2, z, q),

ż = z(qp1 + (1− q)p2 − 1)d =: g1(p1, p2, z, q),

εq̇ = q(1− q)(p1 − p2) =: w(p1, p2, z, q),


(5.2.1)

where, for i = 1,2; pi represents the time varying population density of the ith prey, z the

time varying population density of the predator, and q represents the predator-trait which is

assumed to vary between 0 and 1. When q = 0, the predator feeds only prey p1 and when

q = 1, the predator feeds only p2. Furthermore, the constant r is the per capita growth rates

of the prey p2, and d is the predators per capita death rate. In this model all the parameters

are strictly positive.

The parameter ε is a small positive number (0 < ε� 1), which represents the separation
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of time-scale between the slow and fast components. In this model, q characterizes the fast

dynamics of predator evolution and (p1, p2, z) represents the slow ecological dynamics of the

predator-prey interaction.

5.2.2 Linear stability analysis of the model

The model has five equilibrium points A(0, 0, 0, 0), B(0, 0, 0, 1), C(0, 1, r, 0), D(1, 0, 1, 1) and

E(1, 1, 1+r, 1
1+r ). The trivial steady states A(0, 0, 0, 0) and B(0, 0, 0, 1) describe total extinc-

tion of the three species. The steady state C corresponds to a biological relevant situation

in which only the prey p2 and predator survive. The steady state solution D represents a

situation in which prey p1 and the predator survive.

We analyze the linear stability of these five equilibria by calculating the eigenvalues of the

following Jacobian matrix of the system in (5.2.1) evaluated at these points:

J =



∂f1

∂p1

∂f1

∂p2

∂f1

∂z
∂f1

∂q

∂f2

∂p1

∂f2

∂p2

∂f2

∂z
∂f2

∂q

∂g
∂p1

∂g
∂p2

∂g
∂z

∂g
∂q

∂w
∂p1

∂w
∂p2

∂w
∂z

∂w
∂q



=



1− qz 0 −qp1 −zp1

0 r − z(1− q) p2(q − 1) zp2

dqz d(1− q)z d(qp1 + p2 − qp2 − 1) d(p1 − p2)z

1
ε (q − q2) −1

ε (q − q2) 0 1
ε (1− 2q)(p1 − p2)


. (5.2.2)

The eigenvalues corresponding to each of the equilibrium points are summarized in Ta-
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ble 5.2.1.

Table 5.2.1: Summary of the linear stability analysis for the system (5.2.1) (here, vi,
i = 1, 2 satisfies (5.2.4)).

Description λ1 λ2 λ3 λ4

A trivial 0 1 −d r

B p1, p2, p3 extinct 0 1 −d r

C p1 extinct −1
ε

1 −i
√
dr i

√
dr

D p2 extinct −1
ε

−i
√
d i

√
d r

E coexistence i
√
|v1| −i

√
|v1| i

√
|v2| −i

√
|v2|

Equation (5.2.1) has a non-hyperbolic equilibrium at the two steady states C andD having

positive, negative and a pair of pure imaginary eigenvalues.

Steady state E is the most interesting biological state because it represents coexistence

of the three population. However, the eigenvalues at E are all pure imaginary. With the aid

of geometric singular perturbation theory, it has been determined that the non-hyperbolic

equilibrium point E is a center and the solution near E is periodic and bifurcates off from it

when the eigenvalues cross the imaginary axis. For more detail analysis of the model using

geometric singular perturbation analysis, the readers are referred to [125].

The eigenvalues of the steady state E satisfy the characteristic equation:

λ4 +
m+ 2r +mr2

1 + r
λ2 +mr = 0. (5.2.3)

For the sake of simplification, let v = λ2, then it follows from equation (5.2.3) that

v2 +
m+ 2r +mr2

1 + r
v +mr = 0. (5.2.4)

This is a quadratic equation that has two real (negative) solutions denoted by v1 and v2.

Hence the eigenvalues corresponding to the steady state E are given by λ1,2 = ±i
√
|v1| and

λ3,4 = ±i
√
|v2|.

In the next section, we discuss the formulation of the multirate high-order implicit col-
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location method for accurate and stable solutions of slow-fast problems such as the model

(5.2.1) presented in this section.

5.3 A fully-implicit multirate collocation methods for

the slow-fast system (5.2.1)

In this section, we present a fully-implicit multirate collocation schemes for the singularly per-

turbed problems. The idea is to approximate the solution components as linear combination

of Lagrangian interpolation polynomial used as basis functions. Then the discrete problem is

collocated at certain designated points based on the relative scale of the subproblems.

Consider the general evolutionary equation of slow-fast–type,

u̇ = f(t,u,v),

v̇ =
1

ε
g(t,u,v),

 (5.3.1)

where u the slow components (non-stiff), v the fast component (stiff), ε is a small positive

parameter (0 < ε � 1) representing the time-scale difference between the fast and slow

components. The functions f , and g are sufficiently smooth functions of t, u, and v. For the

particular slow-fast system (5.2.1), the various parts of general equation (5.3.1) are,

u =


p1

p2

z

 , v =
[
q
]
, f(t,u,v) =


p1(1− qz)

p2(r − (1− q)z)

z(qp1 + (1− q)p2 − 1)d

 , and (5.3.2)

g(t,u,v) =
[
q(1− q)(p1 − p2)

]
. (5.3.3)

Consider a sub-division of the time interval I = [0, T ] into intervals In = [tn, tn+1], where

0 = t0 < · · · < tN = T . The subinterval In is referred to as macro-step. Furthermore, each

macro-step In, 0 ≤ n < N , is uniformly sub-divided into m intervals Ijn = [tjn, t
j+1
n ] (termed

as micro-steps), where tn = t0n < · · · < tmn = tn+1. The situation is depicted as shown in

Figure 5.3.1. Define the mesh parameters H and h with respect to the sub-divisions of I into
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macro- and micro-steps, respectively, by

H = max
0≤n<N

Hn, and h = max
0≤n<N

hn, (5.3.4)

where Hn = |tn+1 − tn| and hn = |tj+1
n − tjn| for any j such that 0 ≤ j < m.

tn tn+1

tjn tj+1
n

Figure 5.3.1: Sub-division of the time domain into macro- and micro-steps.

5.3.1 Collocation of the slow and fast components

For simplicity of exposition of the method, we assume that both the fast and the slow variables

are scalars, i.e., we replace the pair (u,v) by (u, v). First, we consider a set containing r + 1

equally spaced nodes {τ0, . . . , τr} in the macro-step In, where tn = τ0 < · · · < τr = tn+1. We

refer to such nodes as slow nodes. Consider also the set of r-degree Lagrange polynomials

{N0, ..., Nr} defined on the interval and corresponding to the slow nodes. These polynomials

are defined by

Ni(t) =

r∏
k=0
k 6=i

(t− τk)
(τi − τk)

, (t ∈ In). (5.3.5)

The slow variable u is thus replaced by its interpolation uH using the Lagrange polynomials

as

uH (t) =
∑
k=0

uknNk(t), (t ∈ In), (5.3.6)

where ukn is the nodal value at the slow node τk with u0
n = urn−1 (i.e., for continuity, the last

nodal value urn−1 of the previous interval In−1 equals the first nodal value u0
n of the current

subinterval In−1).

Next, in each micro-step Ijn, we also consider r + 1 equally spaced nodes, termed as fast

nodes. Hence, the total number of fast nodes over each macro-step In is rm + 1, and these
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nodes are denoted by tn = τ̂0, . . . , τ̂rm = tn+1. Note that τ̂jr = tjn for j = 0, . . . ,m (implying

that the end points of each micro-step are also fast nodes).

To define piecewise polynomial interpolatary functions corresponding to the set of fast

nodes, we first group the fast nodes as follows. The set of all fast nodes which are also end

points of micro-steps, that is, {τ̂0, τ̂r, τ̂2r, . . . , τ̂mr} is referred to as set of adjacent fast nodes.

Whereas, those fast nodes which are not adjacent are termed as interior fast nodes.

Denote the αth local Lagrange (r + 1)-degree polynomial N j
α with respect to the fast

nodes in Ijn. (Illustrations of various distribution of nodes in a micro-step are depicted in

Figure 5.3.2). The piecewise polynomial interpolatary function N̂k corresponding to the fast

node τ̂k is defined as follows:

• if τ̂k is an interior node in some micro-step Ijn and there is α = 1, . . . , r − 1 such

that N j
α is the local Lagrangian function corresponding to the node τ̂k ∈ Ijn, then (see

Figure 5.3.3 (a))

N̂k(t) =


N j
α(t) if t ∈ Ijn,

0 if t ∈ In \ Ijn,
(5.3.7)

• if τ̂k is an adjacent node and k = rj for some j = 0, . . . ,m, then (see Figure 5.3.3 (b))

N̂k(t) =


N j
r (t) if t ∈ Ijn,

N j+1
0 (t) if t ∈ Ij+1

n ,

0 if t ∈ In \ (Ijn ∪ Ij+1
n ).

(5.3.8)

Note that the function N̂k is continuous over the macro-step In and satisfies the intepolatary

condition

N̂k(τ̂j) = δkj , (0 ≤ k, j ≤ rm), (5.3.9)

where δkj is the Kronecker delta function. Thus, the fast variable v is replaced by an inter-

polation v
h
and defined as

v
h
(t) =

rm∑
k=0

vknN̂k(t), (t ∈ In), (5.3.10)

where vkn = v(τ̂k) is the exact value of v at the fast node τ̂k. Note that the error of interpolation
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of v by equation (5.3.10) is of order hr+1 and the difference in the interpolation error of the

fast and slow interpolations are of the same order r + 1.

tj+1
n

tn tn+1

tjn tj+1
n

tjn tj+2
n

tn tn+1

(a) m = 1, r = 2

(b) m = 2, r = 2

tn tn+1

tjn tj+1
n tj+2

n tj+3
n

(d) m = 2, r = 3

tjn tj+1
n tj+2

n

tn tn+1

(c) m = 3, r = 2

or Fast node

Slow node

Adjacent node

Interior node

Figure 5.3.2: Configurations and types of nodes distributed in the macro-step [tn, tn+1].

To define the problem of approximating the unknowns u and v at the slow and fast nodes

respectively, we define the collocation points as follows: the slow component of the ODE is

collocated at the slow nodes τ1, . . . , τr, and the fast component at the fast nodes τ̂1, . . . , τ̂rm.

Note that the set of slow nodes is contained in the set of fast nodes, more precisely, for each

j = 0, . . . , r we have that τj = τ̂jm. Thus the slow component of the ODE is enforced at the
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(a) Piecewise polynomial corresponding to an interior node

N̂k = N j
α

1

(b) Piecewise polynomial corresponding to an adjacent node

N j+1
0N j

r

1
N̂k

Figure 5.3.3: Piecewise polynomial interpolatary functions corresponding to interior and
adjacent fast nodes.

slow node τj as

u̇H (τj) = f(ujn, v
jm
n ); j = 1, . . . , r. (5.3.11)

The matrix form of this equation is given by

Dun = f , (5.3.12)
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where the matrix D = [Dij ] and the right-hand-side f = {fi} are defined by

Dij = Hn
d

dt
Nj(τi), fi = Hn

[
f(uin, v

im
n )− u0

n

d

dt
N0(τi)

]
, (5.3.13)

for i, j = 1, . . . , r. Here the vector of unknowns un is defined as

un =


u1
n

...

urn

 . (5.3.14)

The derivative matrix D is independent of Hn, and hence equivalent to that of the matrix

obtained when the interval In is replaced by the unit interval [0, 1].

Next, we define the discrete problem for the fast component of the ODE. Before we

proceed, we need to consider a couple of issues. The first is, as indicated from the outset,

the fast component is enforced at each of the fast nodes, and this requires to evaluate an

approximation of g(u, v) at each τ̂k, k = 1, . . . , rm. However, since the slow variables ujn are

involved as unknown only at the slow nodes, one needs to obtain an approximation of u at

each fast nodes that are not slow. Such approximation, with the correct order, is obtained

by evaluating uH at the fast node τ̂k using the equation (5.3.10). The other point that needs

to be considered is that since the interpolation function v
h
of the fast variable v is piecewise

polynomial, its derivatives at some of the fast nodes may not exist, precisely, the two sided

derivatives of v
h
at each adjacent fast nodes except τ̂0 may not be equal, hence derivatives

may not exist at such nodes. For this reason only the one sided derivatives at such fast nodes

are considered. In fact, one can understand derivatives concerning the fast interpolation v
h
as

being one sided. In this study, we choose derivatives from the left side of a node. Therefore, the

fast component of the ODE is enforced at the fast node τ̂k as (the derivatives are understood

as left-sided)

v̇
h
(τ̂k) = g(uH (τ̂k), v

k
n); k = 1, . . . , rm. (5.3.15)

Understanding derivatives of v
h
as one-sided (left-sided) facilitates the construction of the

matrix form of (5.3.15) in an element-by-element basis as it is customarily done in the finite
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element method. Hence, the contribution of the e−th micro-step Ien, in a matrix form, is

Dven = ge, (5.3.16)

where the local unknown vector ven and the right-hand-side ge are defined by

ven =



v(e−1)r+1
n

v(e−1)r+2
n

...

vern


, (5.3.17)

ge = hn



g(uH (τ̂(e−1)r+1), v(e−1)r+1
n )− v(e−1)r

n

d

dt
N e

0 (τ̂(e−1)r+1)

g(uH (τ̂(e−1)r+2), v(e−1)r+2
n )− v(e−1)r

n

d

dt
N e

0 (τ̂(e−1)r+2)

...

g(uH (τ̂er), v
er
n )− v(e−1)r

n

d

dt
N e

0 (τ̂er)


. (5.3.18)

Therefore, the matrix form of (5.3.15) becomes



D

D

. . .





v1
n

vmn

...


=



g1

gm

...


. (5.3.19)

At a glance, the block structure of the derivative matrix of equation (5.3.19) may suggest

that the set of unknowns in one micro-step are decoupled from that of the other micro-step.

However, the necessary coupling between unknowns of adjacent micro-steps is established

from the definition of the right-hand-side (5.3.18).

By combining the matrix forms of the slow component (5.3.12) and the fast component
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(5.3.19) of the ODE, we obtain the matrix form of the global discrete problem given as



D

D

D

. . .


︸ ︷︷ ︸

D̂



un

v1
n

vmn

...


︸ ︷︷ ︸

U

=



f

g1

gm

...


︸ ︷︷ ︸

F (U)

. (5.3.20)

Compactly, (5.3.20) can be written as

D̂U = F (U). (5.3.21)

To preserve the full convergence of the method (which is of r + 1 as stated in the Theo-

rem 5.3.1), the fully-implicit system (5.3.21) has to be solved by using an efficient nonlinear

solver which will be discussed in Section 5.4.

5.3.2 Convergence and stability analysis of the scheme

Noting that H = mh and the convergence and stability property of the multirate implicit

scheme (5.3.21) depend on the underlying single-rate method, hence here we focus on the

analysis of the single-rate schemes applied to the scalar ODE problem of the form

ϕ̇ = f(ϕ, t), with ϕ(t0) = ϕ0. (5.3.22)

For the sake of simplicity of notations, we ignore the explicit dependence of f on t, and

simply write f(ϕ, t). Hence, the single-rate scheme with order of interpolation r for the

scalar problem (5.3.22) is given by

d

dt
ϕh(tn+k) = f(ϕh(tn+k)), for k = 1, . . . , r (5.3.23)
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where

ϕh(t) =
r∑

k=0

Nk(t)ϕ
k
n, t ∈ In = [tn−1, tn].

Since equation (5.3.23) is satisfied at r points on the interval In, from the interpolation theory

we obtain
d

dt
ϕh(t) = f(ϕh(t)) +O(hr+1), ∀t ∈ In. (5.3.24)

The following result gives an estimation of the truncation error, denoted by e = ϕ−ϕh, that

is committed at the n−th step assuming that there is no error from the previous step, i.e.,

ϕ0
n = ϕ(tn).

Theorem 5.3.1. Suppose that ϕ0
n = ϕ(tn), and both the exact solution ϕ and f are sufficiently

smooth. Then the truncation error for (5.3.23) is

e(t) = O(hr+1). (5.3.25)

Proof. From the smoothness hypothesis, subtracting (5.3.24) from (5.3.22), we obtain that

d

dt
e(t) = f(ϕ(t))− f(ϕh(t)) +O(hr+1). (5.3.26)

By the mean value theorem, equation (5.3.26) becomes

d

dt
e(t) = G(t)e(t) +O(hr+1), (5.3.27)

where

G(t) =
∂

∂ϕ
f(η(t)), (5.3.28)

for some η(t) in the interval whose end points are ϕ(t) and ϕh(t). Note that equation (5.3.27)

is a homogeneous linear differential equation (for the error function) upto an error of order

O(hr+1). Then from (5.3.27) it follows that

e(t) = e(tn) exp(t

∫ t

tn

G(τ)dτ) +O(hr+1). (5.3.29)
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Now, by assumption, e(tn) = 0; hence equation (5.3.29) leads to the required result.

Next, we analyze the stability of the single-rate scheme. For this, we consider the scalar,

linear test problem such that f(ϕ) = λϕ. Note that, for λ < 0, the continuous problem has

stable equilibrium point at ϕ = 0.

The corresponding single-rate scheme for the linear test problem thus reads

h
d

dt
ϕh(tn+k) = hλϕkn, k = 1, . . . , r. (5.3.30)

This can be written in a block matrix equation form as

[
d D

]ϕrn−1

ϕn

 = zIϕn, (5.3.31)

where d is a column vector of size r, and D is a square matrix of size r×r, whose components

are given by

Dij = h
d

dt
Nj(tn+i), dj = h

d

dt
N0(tn+j), i = 0, . . . , r, and j = 1, . . . , r; (5.3.32)

I is the r × r unit matrix, and z = hλ.

Equation (5.3.31) can also be written as

[
O d

]
︸ ︷︷ ︸

M

ϕn−1 + Dϕn = zIϕn, (5.3.33)

where O is the r-by-(r − 1) matrix of zeros. It follows from equation (5.3.33) that

ϕn = −(D− zI)−1M︸ ︷︷ ︸
magnifying matrix

ϕn−1. (5.3.34)

Here the magnifying matrix relates the current nodal values to the previous ones. Thus for

the scheme to be stable, it requires that the spectral radius (i.e., the maximum of the modulus

of the eigenvalues) must be less than or equal to one. Regarding the stability analysis, we

note that the expressions for the calculations of the eigenvalues for the general case are very

complicated and therefore we use a numerical approach, with the aid of software for symbolic
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calculation. The results for the first few cases (i.e., r = 1, 2, 3, 4, 5, 6) are shown in the

Figure 5.3.4. As shown all the corresponding schemes are linearly stable, and similar results

(not shown here) for orders as high as r = 25 also gave the same linear stability behaviour.
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Figure 5.3.4: Stability regions of the single-rate collocation scheme.
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5.4 Iterative treatment of nonlinearities: Anderson’s

Acceleration method

The proposed multirate collocation scheme results in fully-implicit nonlinear algebraic system

of equations which requires to be solved at each time-step using some nonlinear solver. The

resulting implicit-nonlinear algebraic system can then be recasted into a fixed point problem

of the form

G(U) = U . (5.4.1)

In the present case, the implicit multirate collocation scheme (5.3.21) can be written as a

fixed point problem (5.4.1) in which

G(U) = [I + D̂]U − F(U). (5.4.2)

The methodology adopted here to solve the nonlinear fixed point problems (5.4.1) and (5.4.2)

for U is the Anderson’s acceleration fixed point method which is known for its superlinear

convergence [163]. The Anderson’s acceleration method is built upon the classical Picard’s

iteration for an accelerated convergence by employing multiple of previous iterations (upto

some prescribed depth, usually < 10). At each iteration a constrained minimization problem

involving some convex combination of the residuals on the previous iterates need to be solved.

Compared to the complexity of evaluating the fixed point map G, the cost of solving these

minimization problems is negligible [154].

5.5 Numerical results

In this section, we present numerical simulations of the coupled singularly perturbed eco-

evolutionary model (5.2.1) solved by using the multirate collocation schemes (MCSm) pro-

posed in Section 5.3, with the m referring to the rate of the scheme, and the corresponding

single-rate collocation scheme is denoted by SCS1 or, simply SCS. For the numerical simu-

lations, the non-dimensional parameters are chosen as d = 0.5, r = 0.4 with various choices

of the time-scale parameter ε. Such set of parameter values, in combination with the initial
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condition (p1, p2, z, q) = (1.18, 0.87, 1.50, 0.99), result in a two parametric family of periodic

orbits [110, 125]. We, therefore, present results demonstrating the performance of the numer-

ical schemes proposed in this chapter.

Firstly, we analyze the convergence of the numerical schemes. The Anderson’s acceleration

fixed point iterative method was employed with tolerance 10−10. Since there is no known

analytic solution for the problem considered, maximum errors are computed using a double

mesh principle (by successively doubling the time mesh, see Figure 4.6.1) in Chapter 4. The

order of convergence of the successive refinements is computed with the formula (4.6.1). For

the convergence tests, the final time is set to T = 1, and an initial temporal mesh with a

given step-size H is considered.

Table 5.5.1: Maximum error of the single-rate (SCS)and multirate (MCS4) collocation
scheme of second-order. Here ε = 0.025; T = 1; Tol = 10−10.

SCS MCS4
H Error Order H Error Order

1/80 8.474E-4 2.16 1/20 1.088E-3 2.05
1/160 1.899E-4 2.08 1/40 2.629E-4 2.03
1/320 4.48E-5 2.04 1/80 6.4272E-5 2.00
1/640 1.09E-5 2.02 1/160 1.6089E-5 2.00

Table 5.5.2: Maximum error of the single-rate (SCS)and multirate (MCS4) collocation
scheme of third-order. Here ε = 0.025; T = 1; Tol = 10−10.

SCS MCS4
H Error Order H Error Order

1/80 2.556E-5 3.02 1/20 4.062E-5 3.03
1/160 3.1414E-6 3.02 1/40 4.969E-6 3.01
1/320 3.884E-7 3.00 1/80 6.171E-7 3.00
1/640 4.87E-8 2.98 1/160 7.69E-8 3.00

Tables 5.5.1, 5.5.2 and 5.5.3 present the maximum errors of the single-rate collocation

scheme (SCS) and multirate collocation scheme (MCS4) at the final time T = 1 for second-,

third and fourth-order schemes. The results are given for SCS with time-steps of H = T/N

and for MCS4 with time-steps given by h = T/N , which in other words, the time-step

considered for SCS is to be equal to the micro time-step of the MCS. With such analysis,

it is demonstrated that, with the multirate schemes, one can obtain a comparable accuracy
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Table 5.5.3: Maximum error of the single-rate (SCS)and multirate (MCS4) collocation
scheme of fourth-order. Here ε = 0.025; T = 1; Tol = 10−10.

Tol SCS MCS4
H Error Order H, h Error Order

1/80 1.7873E-7 4.04 1/20 3.2597E-6 4.05
1/160 1.0832E-8 3.54 1/40 1.971E-7 4.03
1/320 9.3274E-10 2.31 1/80 1.210E-8 3.99
1/640 1.8835E-10 0.3 1/160 8.00E-10 3.21

relative to the corresponding SCS with less computational cost as larger time-steps H is used

for the slowly varying components.

Figure 5.5.1 displays comparison of the maximum error of SCS, the multirates MCS2 and

MCS4 of the first- (a), second- (b), third- (c) and fourth-order (d). The comparison is done

by considering the macro-step of the multirate schemes and the time-step of SCS to be the

same i.e., H = T/N . As can be seen from these figures, the multirate schemes have better

accuracy compared to the corresponding single-rate schemes.

Efficiency of the schemes are compared in terms of the CPU times that each algorithm

spends in solving the same problem in a serial computation on a machine with 2.4GHz x

8, IntelCore i7-4700MQ processor and 8GB RAM. Simulations were carried for T = 1 and

ε = 0.1. The codes were implemented on Matlab 2013a. As shown in Figure 5.5.2, while the

second-order SCS, MCS2 and MCS4 have shown comparatively the same order of accuracy,

it is seen that the multirate schemes show clear gain in efficiencies over the corresponding

single-rate scheme. Same scenario is exhibited for the high-order SCS and MCS as shown in

Figure 5.5.3 and 5.5.4.

Finally, we discuss how the schemes capture the qualitative behaviour of the model. For

the chosen parameter values and initial conditions, periodic behaviour of interactions of the

predator and the two prey species with rapid evolution of the predator-trait are captured

with the proposed method. As shown in Figure 5.5.5 and 5.5.6, the SCS and the MCS2 are

compared in terms of their performance in capturing the periodic oscillation behaviour of

the solution for different values of ε. Here, H = 0.005, Tol = 10−11. It is shown that such

dynamics of the solutions are in fact captured by both schemes, however, for smaller value

of ε = 0.001, as shown in the Figure 5.5.5 (a), the SCS is unable to capture the strongly

oscillating dynamics as compared to the solution displayed in Figure 5.5.6 for MCS2.
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Figure 5.5.1: Comparison of maximum error results of the SCS and MCS of first-order (a),
second-order (b), third-order (c) and fourth-order (d). Here T = 1; Tol = 10−10; ε = 0.1.
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Figure 5.5.2: Comparison of efficiency results (CPUtime) of the SCS and MCS of second-
order (right) and accuracy level of the schemes (left). Here T = 1; Tol = 10−10; ε = 0.1.
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Figure 5.5.3: Comparison of efficiency results (CPUtime) of the SCS and MCS of third-order
(right) and accuracy level of the schemes (left). Here T = 1; Tol = 10−10; ε = 0.1.
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Figure 5.5.4: Comparison of efficiency results (CPUtime) of the SCS and MCS of fourth-order
(right) and accuracy level of the schemes (left). Here T = 1; Tol = 10−11; ε = 0.1.

5.6 Summary and discussion

In this chapter, we have developed a new highly stable multirate collocation method for a

system of singularly perturbed eco-evolutionary model. The method is based on the piecewise

interpolation of the unknowns using the Lagrange polynomials. We proved that convergence of

the scheme and showed that it is of the same order as the underlying Lagrangian interpolation

of the variables. Through the linear stability analysis we showed that the stability property

of the proposed method and as can be seen from this analysis, this method is more stable as

compared to any conventional one-step or multistep methods and their multirate counterparts.

Extensive results have been displayed in the form of tables and figures to demonstrate the
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Figure 5.5.5: Simulation results displaying eco-evolutionary dynamics of predator-trait
and predator-prey interaction over time of the system (5.2.1) which is obtained using
second-order SCS at different value of separation of time-scale ε. Here T = 10; H =
0.005; Tol = 10−11.

performance of the proposed method. It has been obtained that the multirate scheme outper-

forms the corresponding single-rate scheme in approximating problems of multiscale nature.

The method has also been applied to the eco-evolutionary slow-fast model, to demonstrate

the superior performance in efficiently capturing the oscillatory behaviour of the solution for

a very small time-scale parameter.

The implementation of the method, however, can be highly complex for a rather high-

order of convergence scheme. However, the implementation can be facilitated by constructing

the appropriate derivative matrix a priori.

The focus of the next two chapters are slightly different from what have been dealt in

all the previous chapters; in those chapters we deal with time-dependant partial differential
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Figure 5.5.6: Simulation results displaying eco-evolutionary dynamics of predator-trait
and predator-prey interaction over time of the system (5.2.1) which is obtained using
second-order MCS2 scheme at different value of separation of time-scale ε. Here T =
10; H = 0.005; Tol = 10−11.

equations which arises in ecology. The ecological phenomena they describe is competition-

diffusion of singularly perturbed–type, in which the rate of diffusion of species occurs in

quite small order of magnitude compared to the competition/interaction of the species. The

numerical simulation of such problems will be the focus of the next two chapters.
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Chapter 6

A semi-implicit multistep methods

with finite element for

competition-diffusion problems

In this chapter, we consider the numerical approximation of a three-species fully-coupled

competition-diffusion system of Lotka-Volterra–type which is characterized by the presence

of a very small diffusion parameter. The solutions of the model problem exhibit internal

layers with various spatial segregation patterns. For such problems, it is a challenging task to

develop an efficient numerical method that is also capable of capturing the various transient

regimes and fine spatial structures of the solutions. In this chapter, we develop a high-order

semi-implicit multistep scheme based on the Lagrange temporal interpolation coupled with

the conforming finite element methods for the nonlinear competition-diffusion problem in

two spatial dimensions. A major advantage of the proposed method is that it is essentially

linear in terms of the current time-step values (no need for nonlinear iterative treatment),

while, its order of convergence is higher. Moreover, the couplings of current step values

of the unknowns are one sided, which is a very desirable property in terms of algorithmic

efficiency since each unknown is solved sequentially, thus avoiding solving for all unknowns

simultaneously. We also discussed stability and convergence of the proposed schemes are

discussed. Furthermore, various simulations are carried out to demonstrate the performance

153
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of our schemes in simulating different type of interaction patterns such as the onset of spiral-

like coexistence pattern, complex spatio-temporal patterns and competitive exclusion of the

species.

6.1 Introduction

Understanding of the formation of spatio-temporal patterns in ecologically interacting species

is a central problem in biodiversity studies. Various competitive-diffusion models have been

used in the mathematical biology community to theoretically investigate the problem of coex-

istence and exclusion in competition of interacting species. The case of two competing species

have been extensively studied by many researchers. In [80, 82], it has been theoretically shown

that two strongly competing species can never coexist in any convex habitat. However, co-

existence can be achieved when a third exotic competing species is introduced into a habitat

that holds two native and strongly competing species [28]. Such mechanism of coexistence

of competing species is referred to as competitive-mediated coexistence. Over the years quite

few works have been devoted to the study of coexistence of three or more interacting species

using competition-diffusion models [28, 35, 74, 75, 112, 113].

More and more sophisticated competition-diffusion models have been introduced in recent

years [23, 35, 72, 75, 121, 140]. The well-known Lotka-Volterra competition-diffusion model

has been extensively studied in mathematical biology community. This model has been used to

investigate various transient regimes and complex spatio-temporal coexistence patterns using

different combinations of analytical and numerical approaches, see, for example [74, 75, 113].

Through a singularly perturbation problem and a numerical approach based on an explicit

finite difference method, Mimura and Fifa [113] showed coexistence with segregated patterns

in a three-component competition-diffusion system of Lotka-Volterra–type when the mobility

rates of the two competing species are sufficiently smaller than that of the third species. A

transient regime in the form of spiral-like motion and spatial segregation coexistence pattern

with a triple junctions have been demonstrated numerically in [35, 115] when all the three

competing species were sufficiently small and had equal mobility rate.

However, a fundamental understanding of possible type of dynamical regimes and coexis-

tence patterns in well-known competition-diffusion models such as the Lotka-Volterra system
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is still lacking [20]. Numerical simulations have been playing a vital role in the research com-

munity to aid a more complete understanding of the formation of spatio-temporal patterns

and dynamical regimes. In the numerical approximation of time-dependant PDEs such as the

Lotka-Volterra system using a method-of-lines approach [136, 137], the availability of higher-

order spatial discretization schemes motivates the development of sophisticated higher-order

time integration methods. Higher-order methods usually yield more accuracy and better effi-

ciency than lower-order methods. Many modern PDE solvers are able to employ higher-order

spatial discretizations, for example, by using high degree polynomials in a Galerkin finite

element approach. There is a need to develop higher-order time-stepping formulas to be used

in conjunction with higher-order spatial discretizations [168].

Semi-implicit methods have been applied with some success in different fields involving the

study of reaction-diffusion systems type or related problems, see for example, in [14, 40, 54, 55,

64, 147, 169]. In [15], higher-order semi-implicit RK methods have been developed for time-

dependant partial differential equations such as reaction-diffusion, convection-diffusion and

nonlinear diffusion systems. However, it is shown that solving the resulting nonlinear-implicit

equations by simple fixed point iteration requires a relatively small time-step to guarantee

convergence, thus defeating the purpose of the semi-implicit method.

Recently, Cangiani et al. [20] developed an interesting computational framework to inves-

tigate various types of wave propagation and pattern formation in a cyclic competition with

spatial diffusion. To resolve moving internal boundary layers separating different patches of

relative homogeneity in which a single species dominates, they employed an adaptive finite

element method with an a posteriori error estimate in conjunction with a second-order IMEX

method for the temporal integration.

While adaptive schemes are typically efficient when the solution consists of large patches

or involves fine structures in a significantly small areas, sometimes they can be as good as a

non-adaptive scheme with global refinement if such fine structures occur over a large area. It

is observed that, in some cases, transient regimes of the competition-diffusion model involve

very small patches that are multiplying and expanding over the entire spatial domain [20].

Moreover, for problems whose nonlinear reaction terms dominating the diffusion terms such as

the one considered in this chapter, an explicit treatment for the reaction terms leads to weak

stability behaviour of the IMEX scheme. Motivated by these observations, in this chapter, we

http://etd.uwc.ac.za/



CHAPTER 6. A SEMI-IMPLICIT MULTISTEP METHODS WITH FINITE
ELEMENT FOR COMPETITION-DIFFUSION PROBLEMS 156

develop a numerical method based on the conforming finite element method in combination

with a novel semi-implicit and multistep high-order temporal integration technique to study

various spatio-temporal patterns in two spatial domain. In this method the nonlinear reaction

terms are treated using a semi-implicit scheme resulting in an increased stability behaviour

as compared to the IMEX method. The performance of the method is demonstrated in

replicating dynamical regimes complex spatio-temporal coexistence patterns that have been

found in the literature. The numerical scheme is also analyzed for stability and convergence

in space, time, and both.

The rest of this chapter is organized as follows. In Section 6.2, we give a brief description

of the model problem under consideration. The details of the proposed space and time dis-

cretization are given in Section 6.3. Discussions of stability and convergence of the method

also presented in this section. In Section 6.4, numerical experiments and results are presented

and discussed. Finally, conclusion remarks and an outline of future research are presented in

Section 6.5.

6.2 The Lotka-Volterra competition-diffusion model

Let Ω be a bounded domain, with piecewise smooth boundary ∂Ω, representing the spatial

habitat of an ecosystem in which two competing species, denoted U and V , live in and interact

with each other. One possible scenario in a biodiversity is the so-called competitor-mediated

coexistence. It refers to a phenomenon in which, in the absence of any other competing species,

these two species may never coexist. However, if an exotic species, denoted by W invades the

ecosystem and compete with them, all the three species coexist.

In this chapter, we consider the following competition-diffusion model of Lotka-Volterra–

type in which the three competing species are assumed to disperse in the ecosystem randomly

[35, 112]:

u̇ = D1∆u+ uf1(u, v, w),

v̇ = D2∆v + vf2(u, v, w),

ẇ = D3∆w + wf3(u, v, w),

 in Ω× R+, (6.2.1)
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where the superposed dot denotes time derivative and ∆ is the Laplacian operator. The

population densities of U , V , and W are denoted by u, v, and w, respectively. The constant

Di = ε2di > 0 (i = 1, 2, 3) denotes the diffusivity of the corresponding species, where ε is

a small positive constant that represents the characteristic thickness of boundary layers that

may appear as the system stabilizes. The linear factors of the growth terms are given by

f1(u, v, w) = r1 − a11u− a12v − a13w,

f2(u, v, w) = r2 − a21u− a22v − a23w,

f3(u, v, w) = r3 − a31u− a32v − a33w,

 (6.2.2)

where the parameters ri and aij
(
i, j = 1, 2, 3

)
are the intrinsic growth rates and the inter-

specific when i 6= j, or intra-specific competition rates, and it is assumed that all are positive.

The system (6.2.1) together with (6.2.2) are supplemented with the homogeneous Neumann

boundary conditions

∂u

∂n
= 0,

∂v

∂n
= 0, and

∂w

∂n
= 0, on ∂Ω× R+, (6.2.3)

and initial conditions of the form

u(x, 0) = u0(x), v(x, 0) = v0(x), and w(x, 0) = w0(x). (6.2.4)

Here x represents the coordinate of a point in Ω, n is a unit vector normal to the boundary

∂Ω, and u0, v0, w0 are some prescribed positive functions defined over the spatial domain Ω.

The system (6.2.1) together with the growth terms (6.2.2), in the absence of diffusion,

have eight equilibrium points of which A(r1/a11, 0, 0), B(0, r2/a22, 0) and C(0, 0, r3/a33) are

stable, whereas all the remaining equilibrium points are unstable. Any positive initial solution

converges to either A, B, or C. That means, if diffusion is ignored, competitive exclusion

occurs among the three species. However, in the presence of diffusion, if the diffusivity

coefficient is sufficiently small enough, a spatially segregated pattern with very thin internal

layers will occur. Detailed study on the qualitative nature of the solutions of the competitive-

diffusion system (6.2.1) can be found in the articles [35, 112].

Due to the presence of very fine spatial features as internal layers and the strongly-
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nonlinear coupling in the growth terms, numerical approximation of such competitive-diffusion

systems is very challenging. Hence, in what follows, we present a numerical method in which

finite element is employed to discretize in space resulting in a large system of ODEs, which

then will be integrated temporally using a high-order semi-implicit method based on the

Lagrange scheme.

6.3 The numerical method

In this section, we present a high-order, semi-implicit method for the competition-diffusion

system of partial differential equations (6.2.1)-(6.2.4). In the first step, we employ a Galerkin

finite element for spatial discretization. This results in a large system of nonlinear ODEs. We

then use a specially tailored high-order semi-implicit scheme based on the multistep Lagrange

methods to integrate this nonlinear system of ODEs in a sequential manner.

6.3.1 Spatial discretization: Galerkin finite element method

Considering a test function φ, we integrate (6.2.1) over the domain Ω, use integration by parts

and employ Neumann boundary conditions (6.2.3). This yields∫
Ω
u̇φdx = −D1

∫
Ω
∇u · ∇φ dx+

∫
Ω
uf1(u, v, w)φdx,∫

Ω
v̇φdx = −D2

∫
Ω
∇v · ∇φ dx+

∫
Ω
vf2(u, v, w)φ dx,∫

Ω
ẇφdx = −D3

∫
Ω
∇w · ∇φ dx+

∫
Ω
wf3(u, v, w)φdx,


(6.3.1)

where ∇ is the spatial gradient operator. The strong form (6.2.1) and the weak form (6.3.1)

are equivalent in the sense that any sufficiently smooth solution of one also satisfies the other.

Now let T = {Ωe}nee=1 be a triangulation of the spatial domain Ω into non-overlapping

simplexes covering Ω, i.e.,

Ω =
⋃
e

Ωe, (6.3.2)

where ne is the total number of elements. Let {ϕk}ndk=1 be a set of basis (shape) functions

on the mesh T , where nd is the total number of nodes in the mesh. Each shape function
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ϕk has a local support over elements that share the k-th node, and is piecewise polynomial

(usually Lagrange polynomials) whose degree is determined by the local number of nodes that

a typical element Ωe has. Moreover, they also satisfy the interpolatary condition, such that

ϕk(xj) = δkj , k, j = 1, 2, . . . , nd; (6.3.3)

where δkl is the Kronecker delta function and xj is the coordinate of the j-th node.

Now, we replace the population density functions u, v, and w by the finite element inter-

polations uh, vh, and wh, respectively, i.e.,

uh(x, t) =
nd∑
k=1

ϕk(x)uk(t),

vh(x, t) =
nd∑
k=1

ϕk(x)vk(t),

wh(x, t) =
nd∑
k=1

ϕk(x)wk(t),


(6.3.4)

where uk(t), vk(t), and wk(t) are the k-th nodal value of u, v, and w, respectively, at time t.

We also replace the test function φ by the analogues shape functions ϕj and then the discrete

form of (6.3.1) becomes

Mu̇ = D1Ku+ Mu� f1(u,v,w),

Mv̇ = D2Kv + Mv � f2(u,v,w),

Mẇ = D3Kw + Mw � f3(u,v,w),

 (6.3.5)

where � denotes component-wise product of vectors. The entries of the mass and stiffness

matrices are respectively given by

Mjk =

∫
Ω
ϕjϕk dx, and Kjk =

∫
Ω
∇ϕj · ∇ϕk dx, (6.3.6)

and the vector of nodal values u, v, and w and vector valued growth functions f1, f2, and
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f3 are given by

u = [u1, u2, . . . , und]
T, v = [v1, v2, . . . , vnd]

T

w = [w1, w2, . . . , wnd]
T, fi = [f1

i , f
2
i , . . . , f

nd
i ]T, i = 1, 2, 3

 . (6.3.7)

Here fki = fi(uk, vk, wk). Hence, by lumping or by multiplying each of the semi-discrete

equations in (6.3.5) by M−1 we obtain a more simplified form

u̇ = D1K̂u+ u� f1(u,v,w),

v̇ = D2K̂v + v � f2(u,v,w),

ẇ = D3K̂w +w � f3(u,v,w).

 (6.3.8)

The semi-discrete system (6.3.8) together with the initial conditions (6.2.4) define the

system of nonlinear ODEs which will be integrated temporally using a semi-implicit linear

multistep Lagrange based method presented below.

6.3.2 Temporal integration: a high-order semi-implicit method

Let I = [0, T ] be the interval of interest, and {In}Nn=1 be its uniform partition of non-

overlapping subintervals of the form Im = [tm−1, tm], m = 2, 3, . . . , N with step-size ∆t =

tm−tm−1. Our aim is to present a semi-implicit multistep method of order r, for r = 1, 2, 3 . . . ,

based on the Lagrange temporal interpolations.

To proceed with let θ be a scalar function defined over the space-time domain in which

the vector of its values over the spatial grid T at the time-step tm is denoted as θm, i.e.,

θm = [θm1 , · · · , θmnd]T. (6.3.9)

Hence we have a matrix of values,

• matrix of values of θ

θ[r+1] =


θn−r1 · · · θn1
...

...

θn−rnd · · · θnnd

 , θ[r] =


θn−r1 · · · θn−1

1

...
...

θn−rnd · · · θn−1
nd

 . (6.3.10)
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We denote the derivatives and extrapolation vectors

• derivative and extrapolation vectors as

Dr+1 =


d1

...

dr+1

 , Pr =


p1

...

pr

 , (6.3.11)

where Dr+1 and Pr are derived from the Lagrange temporal interpolations (see Chapter

4) and presented in Table 6.3.1.

Table 6.3.1: Derivative and extrapolation coefficient vectors.

r Dr+1 Pr

1 1
h [−1 1]T 1

2 1
2h [ 1 −4 3]T [−1 2]T

3 1
3h [−1 9

2 −9 11
2 ]T [ 1 −3 3]T

4 1
4h [ 1 −16

3 12 −16 25
3 ]T [−1 4 −6 4]T

Now, assume that the approximate values of u, v, and w over the spatial grid at the

time-steps tn−r, . . . , tn−1 are known, then the semi-implicit multistep scheme for finding the

approximate solutions at the current time-step tn is defined as

u[r+1]Dr+1 = D1K̂u
n + un � f1(u[r]Pr,v[r]Pr,w[r]Pr),

v[r+1]Dr+1 = D2K̂v
n + vn � f2(un,v[r]Pr,w[r]Pr),

w[r+1]Dr+1 = D3K̂w
n +wn � f3(un,vn,w[r]Pr).

 (6.3.12)

The scheme (6.3.12) is linearly-implicit and r-order convergent in time. The solution procedure

is to solve first for un from (6.3.12)1 and use it to solve (6.3.12)2 for vn, then finally use both

un and vn to solve (6.3.12)3 for wn. For such multistep schemes a bunch of initial solutions

are required to start the algorithm. For these we use the standard RK4 to find the first r− 1

time-step solutions after the initial step.
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6.3.3 Convergence and stability analysis

The Semi-implicit Lagrangian method based finite element discretization (SILM-FE) (6.3.12)

is comparable to an implicit-explicit finite element discretization (IMEX-FE) of multistep type

in which, as in (6.3.12), the diffusion term is discretized implicitly while the nonlinear reaction

term is treated explicitly. It is well-known that such IMEX schemes are high-order accurate

for r > 1, where r is the number of previous time-steps used in the scheme. This is also true

for the SILM-FE discretization as demonstrated in the Figs. 6.3.2 & 6.3.3. The results in

Figure 6.3.2 represent the temporal convergence of the SILM- and IMEX-FE discretization

schemes in solving the system of ODEs obtained from the finite element semi-discretization

using a fixed and uniform spatial mesh of size h = 1/8. Figure 6.3.3 shows convergence results

of the two schemes as the space-time domain is refined uniformly. The parameters used in all

convergence experiments (i.e., to produce Figs. 6.3.1, 6.3.2, and 6.3.3) are

aii = ri = di = ε = 1, (i = 1, 2, 3),

aij = 3, (i, j = 1, 2, 3 and i 6= j).

 (6.3.13)

Moreover, the computational space and time domain are Ω = [−1, 1]× [−1, 1] and I = [0, 1],

respectively. For the temporal and spatial errors, we use the L2−norm of the relative error

at the terminal time T = 1. For Figure 6.3.3, the true error is computed from an exact

solution obtained as follows: a pseudo-source term is added to each equation in (6.2.1) which

corresponds to the analytic solutions

u = v = w = sin(t) sin(πx/2) sin(πx). (6.3.14)

The source terms are then computed analytically as the residual when these exact solutions

are substituted in Eq. (6.2.1). The boundary and initial conditions are then computed from

the exact solutions (6.3.14).

The space discretization that is used in this study is the standard conforming Galerkin

finite element which is optimal in the sense that, if the exact solution is sufficiently smooth,

the finite element approximation is O(h2k) in the L2−norm, where k is the order of the local

polynomial interpolation, for example, k = 1 and 2 for the bilinear (Q1) and biquadratic (Q2)
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elements, respectively. These estimations are remarkably demonstrated in the spatial conver-

gence experimental results as shown in Figure 6.3.1. In these experiments, the convergence

of the finite element semi-discretization is determined based on the following view point on

the descretization process. The standard way of approximating solutions for time-dependant

PDEs is the method-of-lines, that is, spatial discretization is typically employed using finite

element method leading to a large system of ODEs which is often then discretized temporally

using finite difference. But this is equivalent to viewing the approach the other way around,

that is, temporal discretization leading to a semi-discrete boundary value problem (BVP)

at each time-step which is then treated using finite element in space. Assuming that, for

some fixed temporal discretization with time-step length ∆t, the BVPs at each time-steps

are well posed, we denote their exact solutions by u∆t , and the finite element approxima-

tions corresponding to mesh size h by uh
∆t
. Hence the relative error Rel. Error between the

approximations with mesh size h and h/2 is given by

Rel. Error = ‖uh/2
∆t
− uh

∆t
‖ ≤ ‖u∆t − uh/2

∆t
‖+ ‖u∆t − uh

∆t
‖,

= C(h/2)2k + C(h)2k,

= C1(h)2k,

(6.3.15)

where C is a positive constant independent of h (but it may possibly be dependant on ∆t

and other parameters in the problem), and C1 = C(1/22k + 1). Therefore, (6.3.15) implies

that Rel. Error is of O(h2k). As shown in the Figure 6.3.1, the differences between the

curves corresponding to each temporal discretization schemes (r = 1, 2, 3, 4) are very small

demonstrating that C1 is independent of the type of temporal discretization. Generally, a

fully-linear implicit scheme for a nonlinear problem cannot be high-order convergent. On

the other hand, a partially-linear implicit scheme arising from an implicit-explicit method for

problems composed of linear and nonlinear parts can be high-order if one chooses high-order

implicit discretization for the linear part while treating the nonlinear part explicitly. However,

this procedure will only result in a scheme that often has poor stability property, particularly,

when the nonlinear part is more dominant. In this work, our aim is to develop a semi-implicit

method which results in a fully-linear implicit scheme that is high-order convergent and has

better stability property than implicit-explicit methods.
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Spatial convergence
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Figure 6.3.1: Spatial convergence of SILM-FE schemes for the model problem (6.2.1) with
parameters in (6.3.13). The horizontal axis label ‘N ’ refers to the number of elements along
each side of the square spatial domain.
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Figure 6.3.2: Temporal convergence of the SILM-FE and IMEX-FE schemes applied to the
model problem (6.2.1) with same parameters in Figure 6.3.1. Here the horizontal axis label
‘N ’ refers to the number of time-steps.
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Convergence in both space and time
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Figure 6.3.3: Convergence in both space and time of SILM-FE and IMEX-FE schemes applied
to the model problem (6.2.1) with parameters same as in Figure 6.3.1. Here the space and
time meshes are simultaneously refined so that ∆t = 2hx = 2hy and the horizontal axis N
refers to the number of elements either of the sides of the spatial square domain (or twice of
the number of time-steps).

However, from 6.3.2, it appears that the second-order method is most accurate, while the

slope of the curves corresponding to the third and fourth-order approximation looks slightly

steeper than the second-methods while the others semi-implicit schemes are only condition-

ally stable. This means that one has to respect the CFL conditions for such conditionally

stable methods in order to get the theoretical convergence property. However, in our analysis

shown in 6.3.2, we only refine the temporal discretization keeping the spatial mesh constant.

This may result in violation of the CFL conditions for those schemes up to some temporal

refinement levels, which in turn degrades their accuracy.
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It is computationally challenging to approximate singularly perturbed reaction-diffusion

problems with the diffusion coefficients that are significantly smaller than that of the nonlinear

reaction terms. This is the case in ecological application of competition-diffusion models where

spatial mobility is small compared to the rate of interactions between the species. In such

cases, one of the most critical issues in the numerical approximation of such problems is the

stability. To avoid the nonlinearity as a result of the reaction term and obtain high-order

approximation, the commonly used scheme such as IMEX-finite element discretizations treat

the diffusion term implicitly and the reaction term explicitly. However, such methods may lead

to a weakened stability behavior as the dominant term is explicit. In addition to treating the

diffusion term implicitly, the proposed SILM-FE discretization described by(6.3.12) enhances

the stability property by using a semi-linearized but high-order scheme for the reaction term.

Since it is essential to analyze how the reaction term impacts the stability of the proposed

numerical scheme, we assume the following reduced problem by ignoring the v, w and the

diffusion terms,

u̇ = λu(1− u). (6.3.16)

Here we assume that r1 = a11 = −λ > 0. The ODE (6.3.16) has u = 0 and u = 1 as

equilibrium solution where only the former is stable. Applying the multistep semi-linearized

scheme (6.3.12) to the simplified model (6.3.16) leads to

∆t u[r+1]Dr+1 = ∆tλ un � (1− u[r]), (6.3.17)

where

u[r+1] = [un−r, . . . , un−1, un]T, and u[r] = [un−r, . . . , un−1]T. (6.3.18)

Following the standard procedure of stability analysis of finite difference schemes, we replace

ξr for un−r to obtain the characteristic polynomial corresponding to the scheme (6.3.17) of

the form

Π(ξ; z) =
r∑
j=0

∆t dj+1ξr−j − zξr
r−1∑
j=0

(1− pj+1ξr−j), (6.3.19)

where z = ∆tλ, and dj and pk are as in equation (6.3.11). Thus, the stability of the schemes

correspond to the region in the complex z-plane for which the roots of the characteristic
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equation are less than or equal to one. These regions are shown in Figure 6.3.4.

In addition to the use of semi-linearization of the reaction term, the solution is updated

successively based on the current time-step solutions. This process makes the method more

stable.
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Figure 6.3.4: Stability regions of the semi-linear multistep methods applied to the reduced
nonlinear problem (6.3.16).

6.4 Numerical results

In this section, we present various numerical experiments to demonstrate the performance of

our proposed schemes for simulating a number of interaction patterns such as the onset of

spiral-like shape, spatial segregation and other spatio-temporal patterns. We have examined

the capability of the schemes in representing different modes of interaction for different sets
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of parameters. In all the simulations, the spatial domain Ω is subdivided into 251 × 251

grid of four-node quadrilateral (Q1 or bilinear) elements. We first consider the completely

symmetrical case. Initially, uniform pseudo-random distribution of the species were assumed.

Then a segregation pattern of three regions each occupied by only one species is emerged

as shown in Figure 6.4.1. The regions are separated by very thin internal layers due to the

small diffusion coefficient compared to the competition (reaction) parameters. Eventually,

the internal layers separating the segregated regions stretches to almost straight lines, from

which the dynamics is shown to change more slowly.

Next, we consider a non-symmetrical case in which one species eventually dominates

and excludes the other two as shown in Figure 6.4.2 which is called competitive exclusion.

Simulation results of Figure 6.4.3, 6.4.4, and 6.4.5 each correspond to a semi-symmetric case

but due to the initial distributions and transposing, the reaction parameters different form of

spiral-like spatio-temporal coexistence patterns were observed. Such coexistence is expected

because of the cyclic competition of the species U, V and W in space as is dictated by the

reaction parameters. Finally, Figure 6.4.6 displays the complex spatio-temporal coexistence

pattern of the three species with many clustering spirals where each one is rotating in their

vicinity of triple junction.

6.5 Summary and discussion

In this chapter, we developed high-order semi-implicit linear multistep schemes based on

Lagrange interpolation for the temporal discretization in conjunction with conforming finite

element method for a nonlinear time-dependant three species competition-diffusion model

in two-dimensional spatial domain. The optimal convergence of the finite element spatial

discretization has been verified using numerical experiments. To maintain the full accuracy

and order of the multistep schemes, the classical fourth-order Runge-Kutta (RK4) has been

used to obtain the required starting solutions. It is also observed that the semi-linearized

implicit schemes are high-order in both space and time for r = 2, 3, 4. The comparison

between the temporal convergence results have revealed that the second-order SILM performs

comparatively in the same way as the other high-order schemes (i.e., for r = 3 and 4), but

outperforms them when convergence is considered in both space and time. Moreover, the
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Figure 6.4.1: Simulation of occurrence of segregation pattern of the three species U, V and
W with triple junction at different times. Parameters used for the simulation are aii = ri =

di = 1, (i = 1, 2, 3), a12 = a23 = a31 = a13 = a21 = a32 = 3, ε = 0.1, and ∆t = 1.
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Figure 6.4.2: Competitive exclusion patterns of the three species U, V and W at different
times. Parameters used for the simulation are aii = ri = di = 1, (i = 1, 2, 3), a12 = 2, a31 =

5, a13 = a21 = a23 = 3, a32 = 4, ε = 0.1, and ∆t = 1.
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Figure 6.4.3: Coexistence pattern (‘inward’ spiral-like) in the dynamics of the three species
U, V and W at different times. Parameters used for the simulation are the transpose of
aii = ri = di = 1, a12 = a23 = a31 = 2, a13 = a21 = a32 = 7, ε = 0.1, and ∆t = 0.25.
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Figure 6.4.4: Coexistence pattern (‘outward’ spiral-like) in the dynamics of the three species
U, V and W at different times. Parameters used for the simulation are aii = ri = di = 1, (i =

1, 2, 3), a12 = a23 = a31 = 2, a13 = a21 = a32 = 7, ε = 0.1, and ∆t = 0.25.
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Figure 6.4.5: Coexistence pattern in the dynamics of the three species U, V andW at different
times. Parameters used for the simulation are aii = ri = di = 1, a12 = a23 = a31 = 2, a13 =

a21 = a32 = 7, ε = 0.1, and ∆t = 0.25.
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second-order scheme displays better stability behaviour than the other high-order schemes.

We have also compared the convergence of our methods (SILM) with the corresponding IMEX

method. We notice that SILM has better stability property than the IMEX methods when

the linear diffusion behaviour is significantly less than the reaction term. Several types of

two-dimensional spatio-temporal patterns are simulated. Our method captures very well the

dynamics of the appearance of the internal layer and other behaviour of the dynamics such

as competitive-mediated-coexistence (with spiral-like patterns) and complex spatio-temporal

coexistence patterns of the model by considering all the diffusion coefficients small.

In the next chapter, we deal with the numerical simulations, using a second-order multi-

implicit scheme based on the Crank-Nicholson and Adams-Bashforth methods, of the competition-

diffusion Lotka-Volterra model with mobility rates vary among the involved species. In this

case, some interesting spatio-temporal patterns are expected which may have useful applica-

tion from the view of point of biodiversity.
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Figure 6.4.6: A spatio-temporal dynamic coexistence pattern (‘cluster’ shape) of the three
species U, V and W at different times. Parameters used for the simulation are aii = ri = di =

1, (i = 1, 2, 3), a12 = 3, a13 = 6, a21 = 6.5, a23 = 3.5, a31 = 2.9, a32 = 6.1, ε = 0.1, and
∆t = 0.5.
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Chapter 7

An asymptotically consistent

semi-implicit scheme for

competition-diffusion problems

In ecological study of pattern formation, models of competitive-diffusion–type are generally

singularly perturbed in the sense that mobility rates of species are significantly small compared

to the rate of intra- and inter-specific interaction between the involved species. This leads

to the presence of a wide range of spatial scales from regions each of which are completely

dominated by one species to thin moving internal layers separating such regions. As a result

of this, numerical approximation of such models is challenging. In this chapter, we propose a

semi-implicit nonlinear multistep scheme based on the Crank-Nicholson and Adams-Bashforth

methods, in conjunction with a C0-conforming finite element method to solve a competitive-

diffusion model involving three interacting species with different mobility rates. Stability of

the discrete scheme that is analogues to the asymptotic stability of the continuous problem is

examined, and it is shown that the scheme strictly inherits the asymptotic stability behaviour

of the continuous model without restrictions on the time step-size. A number of simulations

for various mobility rates are also carried out to demonstrate the capability of the method in

replicating different type of complex spatio-temporal patterns obtained in the literature.
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7.1 Introduction

The study of spatio-temporal pattern formation in ecologically interacting species has been

an intense research area since last few decades. Some semilar works in this field is accounted

to the famous ecologists and mathematicians such as Fisher [41], Kolomogrov et al, [85]

and Volterra [160]. It is still continuously attracting enormous research interest, see, e.g.,

[118, 120, 141].

The availability of mathematical modelling and modern computing facilities play an im-

portant role in the field of mathematical ecology. One way of mathematically describing

interaction of two or more species, such as competing for resources like food and territory,

is through competition-diffusion models. Such models have been investigated intensively by

many researchers. For example in [28, 35, 112], a three species Lotka-Volterra competition-

diffusion model with the involved species having equal and very small mobility rates compared

to the magnitude of the growth terms has been used to demonstrate some new types of spatio-

temporal patterns which have important applications in biodiversity. However, in nature it is

evident that majority of such interactions of the competing species disperse at different rates.

Furthermore, previous studies have shown that differences in the dispersal distributions of

competing species can fundamentally alter the outcome of competition [124]. In this chapter,

we consider the numerical simulation of the Lotka-Volterra cyclic competition-diffusion model

with different mobility rates [124]. This system is described by a system of time-dependant

partial differential equation of reaction-diffusion–type. The model problem exhibits new dy-

namical behavior with cyclic competition and are different from the existing patterns formed

from reaction-diffusion systems used previously [20, 124].

For problems which can be additively split into a linear and nonlinear parts, implicit-

explicit (IMEX) methods, in which the linear part is treated implicitly while the nonlinear

part explicitly, have been among the most popular choices in the research community. Various

IMEX schemes have been developed to deal with reaction-diffusion problem in different fields

of study. Boscarino et. al [15] developed higher-order semi-implicit IMEX schemes based on

Runge-Kutta (RK) methods for a general class of problems with stiff and non-stiff additive

parts, including reaction-diffusion problems. Cai and Cen [23] proposed a slightly different

second-order convergent scheme based stretched variable for the singularly perturbed two
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species predator-prey model in two space dimensions. In [20], an IMEX–type scheme with

automatic spatial adaptive capability has been developed to study various types of interaction

patterns in cyclic competition-diffusion systems of three species that have different mobility

rates. They applied the explicit Adams-Bashforth method for the nonlinear reaction term

and the implicit Crank-Nicholson’s for the diffusion term. In Chapter 6, we developed a class

of high-order semi-implicit schemes based on Lagrange collocation methods for competition-

diffusion system of three interacting species in ecology. But, the mobility rates were assumed

to be the same for all species.

The numerical method presented in this chapter takes into account a C0-conforming finite

element method for the descretization in space, which leads to a large nonlinear system of

ODEs. Then it is temporally discretized using a high-order stable finite difference method.

Due to the relative dominance of the reaction rates over the diffusion rates, the commonly

used temporal integration schemes IMEX methods lead to schemes with a very weakened

stability behaviour. This is because of the fact that, in such IMEX methods, the diffusion

(the less dominant part) is treated implicitly, whereas the reaction terms (the dominant part)

is treated explicitly, thus leading to a higher tendency of the global scheme to behave as an

explicit scheme. To overcome such restrictive nature of IMEX methods, in addition to treating

the diffusion term implicitly, we use a semi-implicit method based on the Crank-Nicholson

and Adams-Bashforth methods for the reaction term while the diffusion terms are treated

implicitly using the Crank-Nicholson method. Therefore, the resulting scheme is multistep

and nonlinear with respect to the previous time-steps. This leads to one of the desirable

property in time-stepping algorithms, referred to as asymptotic consistency, that the discrete

problem replicates the asymptotic stability behavior of the continuous problem. Interestingly,

it should be noted that the scheme is implicitly linear with respect to the current unknown

step; hence no iterative nonlinear solver is required. In addition, we demonstrate the existence

of several new complex regular spatio-temporal patterns in two dimensions which may have

important biological applications and are not available in most literature. Note that, the

cyclic competition of the three species without diffusion leads to the extinction of one or

more species and it is shown in [53, 101] however, the same model of cyclic competition with

diffusion term allow for the existence of all the three species [32, 124, 126].

The organization of rest of this chapter is as follows. In Section 7.2, we gave an overview
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of the governing mathematical model and its analysis. In Section 7.3, the proposed numer-

ical methods is formulated, and its asymptotic consistency is proved. Extensive numerical

simulations demonstrating the performance of the numerical scheme presented in Section 7.4.

Finally, we present some concluding remarks in Section 7.5.

7.2 A three-species competitive-diffusion model

Let Ω be an open and bounded subset of R2, with piecewise smooth boundary ∂Ω, representing

the habitat of an ecosystem in which three competing species, whose population densities

denoted by ui (i = 1, 2, 3), live in and interact with each other. We consider the three species

Lotka-Volterra competition-diffusion model describing the spatial interaction of the species

[101, 124],

u̇i = ∇ · (Di∇ui) + uifi(u1, u2, u3); i = 1, 2, 3, (7.2.1)

where the superposed dot denotes time derivative and ∇ is the gradient operator. Di (i =

1, 2, 3), which may possibly depend on position and time, is the (mobility) diffusivity of species

i. The linear factor of the growth term is given by

fi(u1, u2, u3) = ri −
3∑
j=1

aijuj , (i = 1, 2, 3), (7.2.2)

where the parameters ri are the intrinsic growth rates, and aij is the inter-specific (when

i 6= j), or intra-specific competition (self-limitation) rates. It is assumed that these param-

eters are also positive. The system (7.2.1) together with (7.2.2) are supplemented with the

homogeneous Neumann boundary conditions, for each

∂ui
∂n

= 0, for ∂Ω× R+; i = 1, 2, 3, (7.2.3)

and initial conditions

u1(x, 0) = u0(x), u2(x, 0) = v0(x), and u3(x, 0) = w0(x). (7.2.4)
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Here x represents the coordinate of a point in Ω, n is a unit vector normal to the boundary

∂Ω, and u0, v0, w0 are some prescribed positive functions defined over the spatial domain Ω.

Eq. (7.2.1) has 15 parameters that could make the analysis complicated, hence it is

instructive to scale densities of each species density according to their carrying capacities and

then rescale the time and space coordinates. This gives

a11 = a22 = a33 = 1, ε1 = 1,

ε2 =
D2

D1
, ε3 =

D3

D1
, x̃ =

√
1

D1
x,

a12 = a23 = a31 = a, a13 = a21 = a32 = b.


(7.2.5)

Doing so, we obtain the following simplified competition-diffusion system

u̇1 = ∆u1 + u1(1− u1 − au2 − bu3),

u̇2 = ε2∆u2 + u2(1− bu1 − u2 − au3),

u̇3 = ε3∆u3 + u3(1− αu1 − bu2 − u3),

 (7.2.6)

where, α = a31, unless stated otherwise α = a. To make the dynamics richer we sometimes

consider α 6= a; hence the total number of parameters become five. We also assume that

0 < ε1 , ε2 ≤ 1.

Now let us first consider the local behaviour of the model problem (7.2.6) without diffusion.

In this case Eq. (7.2.6), gives

du1

dt
= u1(1− u1 − au2 − bu3) := g1(u1, u2, u3),

du2

dt
= u2(1− bu1 − u2 − au3) := g2(u1, u2, u3),

du3

dt
= u3(1− au1 − bu2 − u3) := g3(u1, u2, u3).


(7.2.7)

We now analyze the local stability of the spatial homogeneous system (7.2.7) because the

dynamics of (7.2.6) is to a large extent controlled by it. In addition, the analysis provides

us a necessary information on the choice of the parameters for simulation. We obtain the

equilibrium points of (7.2.7) by equating the right hand side to zero. This results in eight
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equilibria. However, the number of equilibrium points in the positive octant can be different

for a different values of the parameters. Furthermore, we assume that

a+ b > 2, a > 1 > b. (7.2.8)

Thus, under the condition stipulated in (7.2.8), the system consists of exactly five equi-

librium points in the positive quadrants, A(0, 0, 0), B(0, 0, 1), C(0, 1, 0), D(1, 0, 0) and

E

(
1

1 + a+ b
,

1

1 + a+ b
,

1

1 + a+ b

)
.

Following the standard procedure, we analyze the linear stability of these five equilibria

by calculating the eigenvalues of the Jacobian matrix of the system in (7.2.7) evaluated at the

equilibria (u∗1, u
∗
2, u
∗
3):

J =



∂g1

∂u1

∂g1

∂u2

∂g1

∂u3

∂g2

∂u1

∂g2

∂u2

∂g2

∂u3

∂g3

∂u1

∂g3

∂u2

∂g3

∂u3


(u∗1,u

∗
2,u
∗
3)

. (7.2.9)

The trivial equilibrium state A(0, 0, 0), having the eigenvalues λ1 = λ2 = λ3 = 1, is

unstable node describing the total extinction of the three species. The one-species equilibrium

states B(0, 0, 1), C(0, 1, 0) and D(1, 0, 0) have eigenvalues λ1 = −1 , λ2 = 1−b and λ3 = 1−a;

which implies that all of them are saddle points. These equilibrium points are biologically

important in that they represent coexistence when all of them appear at the same time in

different regions of the spatial habitat.

Steady state E is the most interesting biological state because at E, all the three popula-

tion densities coexist. At E the corresponding Jacobian matrix becomes

J(E) = − 1

1 + a+ b


1 a b

b 1 a

a b 1

 , (7.2.10)
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and the associated eigenvalues are

λ1 = −(1 + a+ b),

λ2,3 = −(1− (a+ b)/2)± i(
√

3

2
)(a− b).

 (7.2.11)

Hence, this equilibrium point is asymptotically stable if a + b < 2, neutrally stable if

a+ b = 2 and unstable if a+ b > 2.

Under the restriction (7.2.8) the only coexistence pattern is always a saddle point and

the only attractor in the phase space is a hetroclinic cycle consisting of the three one-species

equilibrium points.

Dynamical behavior of complex patterns arising in the competition-diffusion model (7.2.1)

has been extensively studied, see,e.g., [3, 21, 28, 81, 108, 112, 113, 124]. Coexistence in the

form of cyclic competition patterns is one of the interesting aspect of such models in the

ecological and related applications. A cyclic competition pattern corresponds to a scenario,

in relation to a family of parameters, in which one species dominates the other in a cyclical

way, as depicted in the Figure 7.2.1. In the case where each of these species has the same

mobility rate, under cyclic competition, spiral waves occur at each triple junction (a point

where the three distinct regions, each dominated by a single species, meet) as in the case of

Chapter 6. However, when the species have different rates of mobility, the scenario is much

more complex. One of the aims of this chapter is to illustrate the capabilities of numerical

method, which will be discussed in Section 7.3, in generating some interesting complex spatio-

temporal patterns that have been studied in [3, 20, 124].

Due to the presence of strong nonlinear coupling in the growth terms and the fact that

the solutions of such competitive-diffusion system may involve very fine moving spatial fea-

tures as internal layers, numerical approximation of such competitive-diffusion systems is very

challenging. In Chapter 6, we have employed semi-linear multistep methods, coupled with

C0-conforming Galerkin finite element method (SILM-FE) to successfully approximate their

solutions. In what follows, we will be presenting following semi-implicit nonlinear multistep

method based on Method-of-Lines framework in which C0-conforming finite element method

is employed for spatial discretization.
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u2

u1
u3

Figure 7.2.1: Schematic representation of cyclic competition. The arrows indicate the direc-
tion of domination.

7.3 The numerical method

In this section, we present a high-order, semi-implicit method for the competition-diffusion

system of partial differential equations (7.2.1)-(7.2.4). Firstly, employ the Galerkin finite

element method to discretize the problem in space resulting in a large system of nonlinear

ODEs. We then use a novel high-order semi-implicit scheme based on a multistep Lagrange

method [108] to integrate the system of ODEs in a staggered way.

7.3.1 Spatial discretization: Galerkin finite element method

The first step in Galerkin finite element method for partial differential equations is to convert

the strong form into a suitable equivalent integral equation, known as a weak form. To this

end, let v be any test function in the space H1(Ω) (the set of functions on Ω whose derivatives

are square integrable). We then multiply (7.2.1) by v and integrate it over the spatial domain

Ω. Then after employing integration by parts together with the boundary conditions (7.2.3),

one obtains the weak form which reads as: find ui ∈ H1(Ω), i = 1, 2, 3 such that

〈u̇i, v〉 = −〈Di∇ui, ∇v〉+ 〈uifi(u1, u2, u3), v〉, for every v ∈ H1(Ω) (7.3.1)
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where 〈·, ·〉 denotes integral-inner product between two functions. The strong form (7.2.1)

and the weak form (7.3.1) are equivalent in the sense that any sufficiently smooth solution of

one is also a solution to the other.

Let T = {Ωe}nee=1 be a triangulation of the spatial domain Ω into total ne non-overlapping

quadrilaterals that approximately covers Ω. Let {ϕk}ndk=1 be a set of basis (shape) functions

on the mesh T , where nd is the total number of nodes in the mesh. Each shape function ϕk

has a local support over the elements that share the k-th node, and is piecewise polynomial

(usually Lagrange polynomials) whose degree is determined by the local number of nodes that

a typical element Ωe possesses. Moreover, they also satisfies the interpolatary condition

ϕk(xj) = δkj ; k, j = 1, 2, . . . , nd, (7.3.2)

where δkj is the Kronecker delta function and xj is the coordinate of the j-th node.

Now, we replace the population density function ui by the finite element interpolations

uhi which is defined by

uhi (x, t) =

nd∑
k=1

ϕk(x)ui[k](t), (7.3.3)

where ui[k](t) is the k-th nodal value of ui at time t. We also replace the test function v by

the shape functions ϕj . Then the discrete form of (7.3.1) becomes

〈u̇hi , ϕj〉 = −〈Di∇uhi , ∇ϕj〉+ 〈πh[uifi(u1, u2, u3)], ϕj〉, for all j = 1, . . . , nd, (7.3.4)

i = 1, 2, 3, and πh is the L2-projection operator from L2(Ω) onto the finite element space,

which, for v ∈ L2(Ω), is defined by

〈πhv, ϕj〉 = 〈v, ϕj〉, for all j = 1, . . . , nd. (7.3.5)

In matrix form, (7.3.4) can be written as

Mu̇i(t) = DiKui(t) + Mui(t)� fi(u1(t),u2(t),u3(t)), (7.3.6)

where ui(t) is the vector of nodal values uhi at time t, and � denotes component-wise product
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of vectors. The entries of the mass and the stiffness matrices are respectively given by

Mjk = 〈ϕj , ϕk〉, and Kjk = 〈∇ϕj , ∇ϕk〉, (j, k = 1, . . . , nd). (7.3.7)

By lumping (or multiplying the semi-discrete equations in (7.3.4) by M−1), and dropping

the time dependence, we obtain

u̇i = DiK̂ui + ui � fi(u1,u2,u3), where K̂ = M−1K. (7.3.8)

Remark 7.3.1.

1. The advantage of taking πh[uifi(u1, u2, u3)] instead of uhi fi(u
h
1 , u

h
2 , u

h
3), in the semi-

discrete form (7.3.4), is that its coefficient matrix is just the mass matrix M. Otherwise,

the matrix would have been different and its computation would be more complex (as it

involves high-order quadrature rules than what is normally needed for the computation

of the mass matrix). Nevertheless, this choice does not affect the over all convergence

of the finite element approximation.

2. The standard C0-conforming Galerkin finite element for space discretization is optimal

in the sense that if the exact solution is sufficiently smooth, the finite element approxi-

mation is O(h2k) in the L2−norm, where k is the order of the local polynomial interpo-

lation, for example, k = 1 and 2 for the bilinear (Q1) and biquadratic (Q2) elements,

respectively.

The semi-discrete system (7.3.8) together with the initial conditions (7.2.4) define the

system of nonlinear ODEs. Temporal integration will be performed using a semi-implicit

multistep scheme based on the Crank-Nicholson and Adams-Bashforth methods. In Chapter

4, we have derived these methods as a special case of the Lagrangian based methods (for

ϑ = 1/2) for singularly perturbed ODE problems.

7.3.2 Temporal integration

Let I = [0, T ] be the interval of interest, and {In}Nn=1 be its uniform partition of non-

overlapping subintervals of the form Im = [tm−1, tm], m = 2, 3, . . . , N with step-size ∆t =
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tm − tm−1.

In this section, we discuss the temporal discretization of (7.3.8) using a second-order semi-

implicit technique involving the Crank-Nicholson and Adams-Bashforth methods. From an

efficiency requirement point of view, we set up the semi-implicit scheme in stage-by-stage (in

staggered) algorithm as follows:

Suppose we have the approximate solutions at tn and all previous steps, in particular,

we have {un−1
j }3j=1 and {unj }3j=1. Then the Crank-Nicholson and Adam-Bashforth methods

read,

û
n+1/2
i =

1

2
uni +

1

2
un+1
i ,

ũ
n+1/2
i = −1

2
un−1
i +

3

2
uni ,

 (i = 1, 2, 3). (7.3.9)

We want to obtain the solution {un+1
j }3j=1 at tn+1. To do so, we proceed as follows:

Stage 1: Solve for un+1
1 from

un+1
1 − un1

∆t
= D1K̂û

n+1/2
1 + û

n+1/2
1 � f1(ũ

n+1/2
1 , ũ

n+1/2
2 , ũ

n+1/2
3 )]. (7.3.10)

Having obtained un+1
1 , we now compute ûn+1/2

1 .

Stage 2: Now, since we have un+1
1 , we compute ûn+1/2

1 . Then solve for un+1
2 from

un+1
2 − un2

∆t
= D2K̂û

n+1/2
2 + û

n+1/2
2 � f2(û

n+1/2
1 , ũ

n+1/2
2 , ũ

n+1/2
3 )]. (7.3.11)

Stage 3: We now compute ûn+1/2
2 and then solve for un+1

3 from

un+1
3 − un3

∆t
= D3K̂û

n+1/2
3 + û

n+1/2
3 � f3(û

n+1/2
1 , û

n+1/2
2 , ũ

n+1/2
3 )]. (7.3.12)

Finally, from each of the above stages we obtain a complete solution {un+1
j }3j=1 at the

current time tn+1. The stage-by-stage algorithm mentioned above is linearly-implicit and

formally second-order convergent in time. Moreover, updating the linear factor fi at stages

2 and 3 based on the already known solutions from stage 1 and 2 may enhance the stability

property without additional computational cost.
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7.3.3 Stability analysis

Numerical approximation of competitive-diffusion problems is challenging. This is particu-

larly the case in ecological application of competition-diffusion models where spatial mobility

(diffusion) is typically very small compared to the rate of interactions between the species.

Such problems are characterized by the presence of very small spatial scale as internal layers.

In such cases, one of the most critical issues in the numerical approximation of their solutions

is the stability of the associated scheme(s).

The implicit-explicit (IMEX) schemes use a high-order explicit scheme for reaction terms

and an implicit scheme of same order for the linear diffusion terms, it usually lead to a

weakened stability behavior as the dominant term (reaction) is explicit. Hence, in addition

to treating the diffusion terms implicitly, the stage-by-stage method outlined in Section 7.3.2

enhances the stability property by using a semi-linearized but high-order scheme based on the

Crank-Nicholson and Adams-Bashforth methods for the reaction term.

It is then essential to analyze how the discretization of the reaction term impacts the

stability of the proposed numerical scheme. In particular, we analyze how the discrete scheme

based on the Crank-Nicholson and Adams-Bashforth methods imitates the behavior of the

continuous problem. To this end, we consider the following reduced scalar problem, obtained

by ignoring the u2, u3 and other diffusion terms, i.e.,

u̇ = λu(1− u). (7.3.13)

Here, for simplicity, we also assume that r1 = a11 = −λ > 0, and dropped the subscript 1.

The scalar problem (7.3.13) has u = 0 and u = 1 as equilibrium solutions from which only

the former is asymptotically stable. Applying the Crank-Nicholson and Adams-Bashforth

semi-linearized scheme to the reduced model (7.3.13) leads to

un+1 = G(un−1, un; z), (7.3.14)

where

G(un−1, un; z) =
1 + 1

2z(1 + 1
2u

n−1 − 3
2u

n)

1− 1
2z(1 + 1

2u
n−1 − 3

2u
n)
un, z = ∆t λ. (7.3.15)

A discrete analogy of the equilibrium points of the continuous model (7.3.13) is a fixed point
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of its discrete version (7.3.14), that is, find u∗ satisfying

u∗ = G(u∗, u∗; z). (7.3.16)

Hence, one of the consistency implications of the discrete scheme is that any equilibrium point

is also a fixed point. Remarkably, this is verified since u∗ = 0 and u∗ = 1 are also fixed points

of the discrete problem.

What remains now is to show that in the discrete sense, these fixed points have similar

local stability property as the equilibrium points have in the continuous case. To do this we

proceed as follows, since equation (7.3.14) involves nonlinear terms in un−1 and un, we take

the partial derivatives of the right-hand-side of (7.3.15) and evaluate them at the fixed points.

This gives us a and obtain the locally linearized discrete system

un+1 =
∂G

∂un−1

∣∣∣∣
un−1=un=u∗

un−1 +
∂G

∂un

∣∣∣∣
un−1=un=u∗

un. (7.3.17)

For u∗ = 0, (7.3.17) becomes

un+1 =
2 + z

2− z
un, (7.3.18)

while for u∗ = 1, it becomes

un+1 =
1

2
zun−1 + (1− 3

2
z)un. (7.3.19)

Following the standard procedure, we replace ξk+1 for un+k, for k = −1, 0, 1; to obtain

the following characteristic polynomials corresponding to the linearized schemes (7.3.18) and

(7.3.19):

Π0(ξ; z) = ξ2 − 2 + z

2− z
ξ, and Π1(ξ; z) = ξ2 − (1− 3

2
z)ξ − 1

2
z. (7.3.20)

The stability requirement is that the roots of the characteristic polynomials should lie inside

the unit ball centred at the origin of the complex ξ-plane. Hence, as shown in the Figure 7.3.1,

the fixed point u∗ = 0 is unconditionally stable whereas u∗ = 1 is unconditionally unstable as

required.

In addition to the use of semi-linearization of the reaction term, updating each equation

successively based on the current time-step solutions of the already solved ones at the same

http://etd.uwc.ac.za/



CHAPTER 7. AN ASYMPTOTICALLY CONSISTENT SEMI-IMPLICIT
SCHEME FOR COMPETITION-DIFFUSION PROBLEMS 189

time further increases the stability even more.
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(a) Local stability when u∗ = 0 (b) Local stability when u∗ = 1

Figure 7.3.1: Stability regions of the semi-linearized scheme applied to the reduced nonlinear
problem (7.3.13).

7.4 Numerical results

In this section, we present various numerical results to demonstrate the performance of our

proposed schemes in simulating a number of cyclic competition patterns. The nonlinear com-

plex spatio-temporal structures which were recently explored in [20] are presented. These

spatio-temporal patterns include droplet-like, band-like, glider-like and regular spiral-like

structures each of which corresponds to a parameter set for which a = 1, b = 2 accord-

ing to the rescaled system (7.2.5), and with different mobility rates. In all simulations the

spatial domain is combined as Ω ∈ [−2, 2]× [−2, 2] with mesh grid 251× 251 of Q1 quadri-

lateral elements are considered, except in the case of strip-like banded patterns as shown in

Figure 7.4.2 for which we consider Ω ∈ [−8, 8] × [−8, 8] with mesh grid 291 × 291. The

time-step length used for all simulation is ∆t = 1. The initial condition is a simple segrega-

tion configuration with a single triple-junction at the top-right quarter of the domain with

separation angle for each species is 2π/3. The following color code has been used throughout

the simulations: green for u1, blue for u2, and red for u3.

We first consider the classical case of cyclic competition patterns as shown in Figure 7.4.1, 7.4.2,

and 7.4.3. The shape of the patterns is different depending on the mobility rates of the species.
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As shown in Figure 7.4.1, where ε2 = 0.1 and ε3 = 0.6 were used, an expanding triangular

droplet-like structures with complex patterns inside it is formed. A highly structured coex-

istence pattern of the three species is emerged towards the left bottom of the sharp wedge.

The other type of coexistence pattern as shown in Figure 7.4.2, where ε2 = 0.1 and ε3 = 0.9,

is a strip-like structure. It starts in the same way as Figure 7.4.1 with the inside appearing

irregular coexistence pattern, but as time goes on, the shape diverges from the droplet-like

pattern with the inside becoming more regular that involves band-like structures at the left

bottom of the envelope. The number of bands increases and the envelope expands as time

increases. Figure 7.4.3 shows the simple spiral-like dynamical coexistence pattern with the

spiral centring at the initial triple junction. The diffusion coefficients in this case are equal,

i.e., ε2 = 1 and ε3 = 1. Finally, a conditional cyclic competition of the three species is

displayed for the parameter α = 1.3 and diffusion coefficients ε2 = 0.55 and ε3 = 0.5 in

Figure 7.4.4. As shown in this figure, initially it forms a spiral tip from which a droplet shape

detached later. The dynamics move in the left corner of the domain in which some of the

structure persist for longer time and some disappear faster. At last only one species survive

in a longer time as shown in the last sub-figure of Figure 7.4.4.

7.5 Summary and discussion

In this chapter, we developed a high-order semi-implicit multistep schemes based on the

Crank-Nicholson and Adams-Bashforth methods for the temporal discretization in conjunction

with C0-conforming finite element method for the nonlinear singularly perturbed three species

competition-diffusion model in two-dimensional spatial domain. The semi-implicit scheme is

second-order accurate in time and has a very good stability property. Moreover, the proposed

scheme has better stability property than IMEX-based methods for singularly competitive-

diffusion problems in which the diffusion is significantly less dominant than the reaction

term. Several types of two-dimensional spatio-temporal patterns, arising from the fact that

the species have different mobilities, are simulated to demonstrate the performance of the

proposed scheme.
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Figure 7.4.1: Droplet-like pattern of the three species at different times. Parameters used
for the simulation are a = 1, b = 2, ε2 = 0.1, ε3 = 0.6, and ∆t = 1.
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Figure 7.4.2: Strip-like pattern in the dynamics of the three species at different times. Pa-
rameters used for the simulation are a = 1, b = 2, ε2 = 0.1, ε3 = 0.9, and ∆t = 1.
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Figure 7.4.3: Spiral-like pattern in the dynamics of the three species at different times.
Parameters used for the simulation are a = 1, b = 2, ε2 = 1.0, ε3 = 1.0, and ∆t = 1.
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Figure 7.4.4: Glider-like patterns of the three species at various times. Parameters used for
the simulation are a = 1, b = 2, α = 1.3, ε2 = 0.55, ε3 = 0.5, and ∆t = 1.
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Chapter 8

Concluding remarks and scope for

future research

The focus of the work reported in this thesis was the design, analysis and implementation

of various numerical methods for efficient and accurate numerical simulation of multiscale

problems arising in ecology. The class of models considered include (slow-fast) singularly per-

turbed predator-prey systems and competitive-diffusion problems. Various numerical methods

based on the method of additively splitting the model problems according to their temporal or

spatial scales and treating each partition differently have been explored. For comparison pur-

pose, related monolithic methods that treat the full problem in a single framework have also

been developed. A careful analysis of these solution algorithms, required for their numerical

realization applied to complex and nonlinear problems of multiscale nature, were performed.

In Chapter 2, we considered a singularly perturbed ecological model describing a slow-fast

system in which two slow predators compete for one fast prey species in a quite diversified

time response. The system exhibits coexistence of all three species in stable limit cycles for

some range of parameters. A detailed discussion on the formulation of a class of multirate

schemes based on an extrapolation algorithm has been presented. A discrete counterpart of the

local stability analysis of the fixed points of the discrete problems has also been investigated.

Through the use of these numerical schemes, it was demonstrated that computation time was

reduced by a large factor compared to the use of the corresponding single-rate schemes. It was

also obtained that, through long time simulations of problems corresponding to parametric

195
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values for which the solutions exhibit strong relaxation-oscillation character, the multirate

schemes compared favourably against the corresponding single-rate schemes. Furthermore,

extensive numerical experiments were carried out to demonstrate that the multirate schemes

outperform the corresponding single-rate schemes in terms of both accuracy and efficiency.

In Chapter 3, we dealt with the numerical simulations of the nonlinear slow-fast model

considered in Chapter 2. Although, the primary focus was on a multirate fractional-step θ-

method (denoted FSTS), the derivation also included other related methods such as monolithic

θ-method and fractional-step mixed implicit-explicit methods (denoted, respectively, as MTS

and FSMIMEX). To treat the nonlinearities arising as the result of the implicit part of these

schemes, two iterative algorithms, namely Jacobian-free Newton-Krylov (JFNK) methods

and Anderson’s Acceleration (AA) fixed point iterative algorithm were considered. While

FSMIMEX compared favourably against FSTS and MTS in terms of efficiency, it is at best

conditionally stable as it partly consist of explicit algorithms. Numerical experiments have

shown that AA method almost outperformed the JFNK method in terms of efficiency and

convergence. Long time simulation experiments, for initial values corresponding to solution

orbits of relaxation-oscillations type in the phase space, have also revealed that the FSTS

method replicated these solutions reliably well compared to the MTS and FSMIMEX, as well

as the well-known MATLAB’s built-in functions such as ode15 and ode23.

An eco-evolutionary system of singularly perturbed–type that describes a dynamical sys-

tem consisting of one fast predator evolutionary trait and a slow predator-prey system of

one predator and two prey species was considered in Chapter 4. A theoretical analysis of the

model using geometric singular perturbation theory has shown the existence of two-parametric

family of periodic orbits between the ecological and evolutionary dynamics. For the numerical

solutions of the model problem, a class of high-order linear multistep implicit-explicit meth-

ods based on the temporal Lagrange interpolation has been developed in an abstract manner.

It was revealed that standard methods such as BDF and Crank-Nicholson, Leap-Frog and

Adams-Bashforth methods and their IMEX combinations can be obtained as special cases by

simply changing the values of a parameter used in the formulation. Zero- and absolute-stability

of the methods were analyzed by applying the standard approach in which the methods are

applied to a scalar test problem with its eigenvalue used as a stiffness parameter. Based on

the observation made in Chapter 3, the AA fixed point iterative algorithm has been con-
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joined with the IMEX methods to treat nonlinearities. Various numerical experments have

been conducted to test the convergence and stability behaviours of the methods as well as

to demonstrate their capabilities in capturing the desirable solution features such as periodic

orbits reliably well. However, experience has shown that these methods perform well when

the separation of time-scales between the fast and the slow components is small to moderate.

For a highly stable numerical solutions of singulary perturbed and strongly nonlinear

problems such as the one considered in Chapter 4, a multirate collocation method based on

the piecewise Lagrangian interpolation of the unknowns corresponding to the fast and slow

components has been developed in Chapter 5. Convergence of the scheme which is of the same

order as the underlying Lagrange interpolation of the unknowns has been proved. Remarkably,

linear stability analysis demonstrated the superior stability property of the method compared

to most of the conventional one-step or multistep methods used in the literature or to those

discussed in this work. Extensive numerical results have been presented in the form of tables

and figures to demonstrate the performance of the multirate collocation method. It has been

observed that the proposed scheme outperformed the corresponding single-rate schemes in

accurately approximating singularly perturbed problems with very wide separation of time-

scale difference. However, it should be noted that the implementation of the method can

be highly complex for rather high-order of interpolation and high number of internal steps

(micro-steps) needed for the piecewise interpolation of the fast unknown. Nevertheless, this

can be facilitated by constructing the corresponding derivative matrix a priori.

In Chapter 6 and 7, we considered the numerical solutions of a three-species fully-coupled

competitive-diffusion system, in two space dimensions, characterized by the presence of a

spatial scale such that species diffusion (mobility) occur much more slowly than the rate

of competition (interaction) of species. high-order semi-implicit multistep schemes have been

developed for the large nonlinear system of ODEs which are resulted in the space discretization

using a high-order conforming FEM. In Chapter 6 it was considered that the involved species

have the same mobility rates, where as, in Chapter 7 they have different diffusion rates.

In both cases, the solutions exhibit various interesting spatio-temporal coexistence patterns

and transient regimes with complex internal boundary layers. The semi-implicit multistep

temporal integrations used in Chapter 6 were based on the Lagrange interpolation of the

unknowns, whereas, that of Chapter 7 was based the Crank-Nicholson and Adams-Bashforth
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methods. In both cases, it was shown that these numerical schemes perform better than the

corresponding IMEX schemes in terms of stability. This is the consequence of high-order

linearization of the dominant and nonlinear competition part. In contrast, the competition

part is typically treated explicitly in IMEX schemes resulting in a less stability property.

Various numerical tests have been performed in both cases to replicate those spatio-temporal

coexistence patterns. It was observed that these schemes numerically simulated the problems

considered reliably well.

Finally, in the following we list a number of avenues which need further exploration and

study.

• Even though, the multirate extrapolation methods discussed in Chapter 2 have very

good accuracy and stability properties when applied to singularly perturbed problems,

their derivations were only limited to first-order approximations. Therefore, extension

of these methods to high-order convergent ones is one of the recommended extension.

• Since the IMEX methods developed in Chapter 3 are essentially single-rate as a sin-

gle step-size is employed for both fast and slow components, they are less favourable

for singularly perturbed problems with very small time-scale parameter ε. We are ex-

ploring including some multirate features into these IMEX methods in order to obtain

asymptotically preserving behaviour (i.e., the numerical solutions behave in the same

way as the exact ones as ε approaches zero including the limiting case).

• The multrate collocation methods formulated in Chapter 4 are fully implicit and involve

determining a multiple number of unknowns simultaneously per macro-step. This is a

challenge in terms of computational efficiency. For this, it is essential to use some

preconditioning mechanisms such as multigrid methods.

• The conforming finite element methods used in Chapter 6 and 7 can be extended in order

to add some adaptivity features in space. A Discontinuous Galerkin (DG) methods can

also be another alternative extension.

• Extension of the schemes for competition-diffusion problems to three space dimension is

an area which needs future investigation. Programming environment that will facilitate
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the implementation of the above mentioned finite element extensions is a major require-

ment. Thus we are assessing the possibility of open-source programming environments.

• Proposed numerical methods in this thesis can also be extended to solve high-order

fractional order differential equations.
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