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ABSTRACT
Robust Numerical Methods to Solve Differential Equations Arising in Cancer

Modeling

by

Albert Shikongo

PhD thesis, Department of Mathematics and Applied Mathematics, Faculty of

Natural Sciences, University of the Western Cape

Cancer is a complex disease that involves a sequence of gene-environment interactions

in a progressive process that cannot occur without dysfunction in multiple systems.

From a mathematical point of view, the sequence of gene-environment interactions of-

ten leads to mathematical models which are hard to solve analytically. Therefore, this

thesis focuses on the design and implementation of reliable numerical methods for non-

linear, first order delay differential equations, second order non-linear time-dependent

parabolic partial (integro) differential problems and optimal control problems arising

in cancer modeling. The development of cancer modeling is necessitated by the lack of

reliable numerical methods, to solve the models arising in the dynamics of this dread-

ful disease. Our focus is on chemotherapy, biological stoichometry, double infections,

micro-environment, vascular and angiogenic signalling dynamics. Therefore, because

the existing standard numerical methods fail to capture the solution due to the behav-

iors of the underlying dynamics. Analysis of the qualitative features of the models with

mathematical tools gives clear qualitative descriptions of the dynamics of models which

gives a deeper insight of the problems. Hence, enabling us to derive robust numerical

methods to solve such models.
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ii

https://etd.uwc.ac.za/



DECLARATION

I declare that Robust Numerical Methods to solve Differential Equations Arising in

Cancer Modeling is my own work, that it has not been submitted before for any degree

or examination at any other university, and that all sources I have used or quoted have

been indicated and acknowledged by complete references.

Albert Shikongo September 2019

Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iii

https://etd.uwc.ac.za/



ACKNOWLEDGEMENT

First and foremost, I have to thank my mother and dad (late) for their love and support

throughout my life. My sisters, brothers, and cousins deserve my wholehearted thanks

as well. I would like to sincerely thank my supervisor, Prof. K.C. Patidar, for his

guidance, support throughout this study, especially for his confidence in me. I am also

indebted to Prof. Patidar for introducing me to epidemiology, University of Namibia

and Namibia Students Financial Assistance Fund for granting me the study leave and

the genuine financial support for this studies, respectively. I express my heartfelt grate-

fulness to my co-supervisor Dr. Kolade M. Owolabi for his support, timely assistance

and encouragement. To all my friends, thank you for your understanding and encour-

agement in my many moments of crisis. Your friendship makes my life a wonderful

experience. The space is too little to list your names here but you are always in my

mind.

iv

https://etd.uwc.ac.za/



DEDICATION

This thesis is dedicated to the congregation of Oshikuku Roman Catholic Church, which

was established in 1924 in Omusati region, Namibia. During the pre-independence pe-

riod, the church ensured that those who lived in rural villages and subsist by raising

cattle, goats, and growing some corn, barley for their own use, education was brought

closer. Today many Namibians near and around Oshikuku have graduated from in-

stitutions of higher learning through the educational infrastructures availed by this

church.

v

https://etd.uwc.ac.za/



Contents

Keywords i

Abstract ii

Declaration iii

Aknowledgement iv

Dedication v

List of Tables x

List of Figures xiv

List of Publications xvi

1 General introduction 1

1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Mathematical analysis and numerical simulation of a tumor-host model

with chemotherapy application 7

2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Mathematical analysis of the models . . . . . . . . . . . . . . . . . . . 16

2.2.1 Global stability of the equilibria . . . . . . . . . . . . . . . . . . 19

vi

https://etd.uwc.ac.za/



2.3 Construction and analysis of the numerical method . . . . . . . . . . . 30

2.4 Numerical results and discusions . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Efficient numerical method for a mathematical model arising in bio-

logical stoichiometry of tumour dynamics 55

3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Mathematical analysis of the homogeneous tumour growth model . . . 59

3.2.1 Local stability for min
(

1, gZ−αY1

Y1

)
= 1 . . . . . . . . . . . . . . 61

3.2.2 Local stability for min
(

1, gZ−αY1

Y1

)
6= 1 . . . . . . . . . . . . . . 64

3.2.3 Global stability of the uniform equilibria . . . . . . . . . . . . . 66

3.2.4 Stability of the equilibrium points and existence of Hopf bifurca-

tion for min
(

1, gZ−αY1

Y1

)
= 1 and min

(
1, gZ−αY1

Y1

)
6= 1 . . . . . . 67

3.3 Construction and analysis of the numerical method . . . . . . . . . . . 74

3.4 Numerical results and discussions . . . . . . . . . . . . . . . . . . . . . 82

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 A fitted operator for a mathematical model arising in HIV related

cancer-immune system dynamics 88

4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Mathematical analysis of the model . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Stability analysis of the equilibria when τ = 0 . . . . . . . . . . 97

4.2.2 Stability analysis of the equilibria when τ > 0 . . . . . . . . . . 98

4.2.3 Existence of Hopf bifurcation . . . . . . . . . . . . . . . . . . . 100

4.3 Derivation and analysis of the numerical method . . . . . . . . . . . . . 102

4.4 Numerical results and discussions . . . . . . . . . . . . . . . . . . . . . 110

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 A fitted operator method for solving a mathematical model describing

tumor cells dynamics in their micro-environment 114

vii

https://etd.uwc.ac.za/



5.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Mathematical analysis of the model . . . . . . . . . . . . . . . . . . . . 121

5.2.1 Local stability and Hopf Bifurcation analysis . . . . . . . . . . . 121

5.2.2 Global stability analysis . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Derivation and analysis of the numerical method . . . . . . . . . . . . . 131

5.4 Numerical results and discussions . . . . . . . . . . . . . . . . . . . . . 145

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 A fitted operator method for a mathematical model arising in vascular

tumor dynamics 161

6.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Mathematical analysis of the model . . . . . . . . . . . . . . . . . . . . 169

6.3 Construction and analysis of the numerical method . . . . . . . . . . . 173

6.4 Numerical results and discussions . . . . . . . . . . . . . . . . . . . . . 181

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7 Robust numerical solution for a problem arising in angiogenic sig-

nalling 186

7.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.2 Hamiltonian and Lagrange multipliers . . . . . . . . . . . . . . . . . . . 188

7.3 Equilibrium state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.3.1 Model having Iθ . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.3.2 Adjoint for the model having Iθ . . . . . . . . . . . . . . . . . . 193

7.3.3 Model having He . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.3.4 Adjoint for the model having He . . . . . . . . . . . . . . . . . . 196

7.3.5 Model having H1 . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.3.6 Adjoint for the model having H1 . . . . . . . . . . . . . . . . . . 201

7.4 Singular controls for the models . . . . . . . . . . . . . . . . . . . . . . 203

7.5 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.5.1 Forward-backward sweep method (FBSM) for model having Iθ . 205

viii

https://etd.uwc.ac.za/



7.6 Stability analysis of FBSM . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.7 Numerical result and discussions . . . . . . . . . . . . . . . . . . . . . . 208

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8 Concluding remarks and scope for further research 212

Bibliography 215

ix

https://etd.uwc.ac.za/



List of Tables

2.5.1 Values of the parameters used in the model (2.3.4) [49] . . . . . . . . . 41

3.5.1 Values of the parameters used in the model (3.3.5) [37] . . . . . . . . . 85

4.5.1 Values of the parameters used in the model (4.3.3) [41] . . . . . . . . . 111

5.5.1 Values of the parameters used in the model (5.3.4) [59] . . . . . . . . . 147

6.5.1 Values of the parameters used in the model (6.3.7) [11] . . . . . . . . . 182

x

https://etd.uwc.ac.za/



List of Figures

2.5.1 Numerical solution of the baseline model at t = 5 and vmax = 10−1, show-

ing the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic,

(d) apoptic, (e) endothelial, (f) extracellular matrix and (g) angiogenic

cells, for parameter values as in Table 2.5.1. . . . . . . . . . . . . . . . 42

2.5.2 Numerical solution of the baseline model at t = 15 and vmax = 10−1,

showing the spatial distributions of: (a) oxygen, (b) normoxic, (c) hy-

poxic, (d) apoptic, (e) endothelial, (f) extracellular matrix and (g) an-

giogenic cells, for parameter values as in Table 2.5.1. . . . . . . . . . . 43

2.5.3 Numerical solution of anti-angiogenic chemotherapy model at t = 5 and

vmax = 10−1, showing the spatial distributions of: (a) oxygen, (b) nor-

moxic, (c) hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix

and (g) angiogenic cells, for parameter values as in Table 2.5.1. . . . . . 44

2.5.4 Numerical solution of anti-angiogenic chemotherapy model at t = 15 and

vmax = 10−1, showing the spatial distributions of: (a) oxygen, (b) nor-

moxic, (c) hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix

and (g) angiogenic cells, for parameter values as in Table 2.5.1. . . . . . 45

2.5.5 Numerical solution of anti-cytotoxic chemotherapy model at t = 5 and

vmax = 10−1, showing the spatial distributions of: (a) oxygen, (b) nor-

moxic, (c) hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix,

(g) agiogenic and (h) cytotoxic cells, for parameter values as in Table

2.5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xi

https://etd.uwc.ac.za/



2.5.6 Numerical solution of anti-cytotoxic chemotherapy model at t = 15 and

vmax = 10−1, showing the spatial distributions of: (a) oxygen, (b) nor-

moxic, (c) hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix,

(g) agiogenic and (h) cytotoxic cells, for parameter values as in Table

2.5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.7 Numerical solution of the baseline model at t = 5 and vmax = 10, showing

the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic, (d)

apoptic, (e) endothelial, (f) extracellular matrix and (g) angiogenic cells,

for parameter values as in Table 2.5.1. . . . . . . . . . . . . . . . . . . 48

2.5.8 Numerical solution of the baseline model at t = 15 and vmax = 10, show-

ing the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic,

(d) apoptic, (e) endothelial, (f) extracellular matrix and (g) angiogenic

cells, for parameter values as in Table 2.5.1. . . . . . . . . . . . . . . . 49

2.5.9 Numerical solution of anti-angiogenic chemotherapy model at t = 5 and

vmax = 10, showing the spatial distributions of: (a) oxygen, (b) nor-

moxic, (c) hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix

and (g) angiogenic cells, for parameter values as in Table 2.5.1. . . . . . 50

2.5.10 Numerical solution of anti-angiogenic chemotherapy model at t = 15

and vmax = 10, showing the spatial distributions of: (a) oxygen, (b) nor-

moxic, (c) hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix

and (g) angiogenic cells, for parameter values as in Table 2.5.1. . . . . . 51

2.5.11Numerical solution of anti-cytotoxic chemotherapy model at t = 5 and

vmax = 10, showing the spatial distributions of: (a) oxygen, (b) nor-

moxic, (c) hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix,

(g) agiogenic and (h) cytotoxic cells, for parameter values as in Table

2.5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xii

https://etd.uwc.ac.za/



2.5.12 Numerical solution of anti-cytotoxic chemotherapy model at t = 15

and vmax = 10, showing the spatial distributions of: (a) oxygen, (b) nor-

moxic, (c) hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix,

(g) agiogenic and (h) cytotoxic cells, for parameter values as in Table

2.5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Numerical solution for the dynamics of homogeneous tumor growth

model, when a = 3, dx = 2, b1 = 6, d1 = 0.5. . . . . . . . . . . . . . . . . 85

3.5.2 Numerical solution for the dynamics of homogeneous tumor growth

model, when a = b1 = 6, dx = d1 = 1. . . . . . . . . . . . . . . . . . . . 86

3.5.3 Numerical solution for the dynamics of homogeneous tumor growth

model, when a = 6, dx = 0.5, b1 = 3, d1 = 2. . . . . . . . . . . . . . . . . 87

4.5.1 Numerical solution of the concentrations of cancer, HIV-infected and

healthy effector cells interaction model. . . . . . . . . . . . . . . . . . . 112

5.5.1 Numerical solution of the system in (5.1.2) without delay at t = 25 for

L < T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.5.2 Numerical solution of the system in (5.1.2) without delay at t = 30 for

L < T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5.3 Numerical solution of the system in (5.1.2) without delay at t = 25 for

L = T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5.4 Numerical solution of the system in (5.1.2) without delay at t = 30 for

L = T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5.5 Numerical solution of the system in (5.1.2) without delay at t = 25 for

L > T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.5.6 Numerical solution of the system in (5.1.2) with delay=5 days for L < T . 153

5.5.7 Numerical solution of the system in (5.1.2) with delay=20 days for L < T

at t = 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xiii

https://etd.uwc.ac.za/



5.5.8 Numerical solution of the system in (5.1.2) with delay=5 days for L = T

at t = 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.5.9 Numerical solution of the system in (5.1.2) with delay=5 days for L = T

at t = 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.5.10 Numerical solution of the system in (5.1.2) with delay=15 days for

L = T at t = 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.5.11Numerical solution of the system in (5.1.2) with delay=5 days for L > T

at t = 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.5.12 Numerical solution of the system in (5.1.2) with delay=20 days for

L > T at t = 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.5.1 Numerical solution obtained by using for ε = 0.001. . . . . . . . . . . . 183

6.5.2 Numerical solution obtained by using for ε = 0.01. . . . . . . . . . . . 184

6.5.3 Numerical solution obtained by using for ε = 0.1. . . . . . . . . . . . . 185

7.8.1 Numerical approximation of the model having Iθ. . . . . . . . . . . . . 209

7.8.2 Numerical approximation of the model having He. . . . . . . . . . . . . 210

7.8.3 Numerical approximation of the model having H1. . . . . . . . . . . . . 211

xiv

https://etd.uwc.ac.za/



List of Publications
Part of this thesis has been published/accepted in the form of the following research

papers submitted to international journals for publications.

1. Kolade M. Owolabi, Kailash C. Patidar and Albert Shikongo, Mathematical anal-

ysis and numerical simulation of a tumor-host model with chemotherapy applica-

tion, Communications in Mathematical Biology and Neuroscience 2018 (2018).

2. Kolade M. Owolabi, Kailash C. Patidar and Albert Shikongo, Efficient numeri-

cal method for a model arising in biological stoichiometry of tumour dynamics,

Discrete and Continuous Dynamical Systems Series S 12(3) (2019) 591-613.

3. Kolade M. Owolabi, Kailash C. Patidar and Albert Shikongo, A fitted numerical

method for a model arising in HIV related cancer-immune system dynamics,

Communications in Mathematical Biology and Neuroscience 2019 (2019).

4. Kolade M. Owolabi, Kailash C. Patidar and Albert Shikongo, A fitted operator

method for tumor cells dynamics in their micro-environment, Communications

in Mathematical Biology and Neuroscience 2019 (2019).

5. Kolade M. Owolabi, Kailash C. Patidar and Albert Shikongo, A fitted opera-

tor method for model arising in vascular tumor dynamics, Communications in

Mathematical Biology and Neuroscience 2020 (2020) 4.

6. Kolade M. Owolabi, Kailash C. Patidar and Albert Shikongo, Numerical solution

for a problem arising in angiogenic signalling, AIMS Mathematics 4(1) (2019)

43-63.

xv

https://etd.uwc.ac.za/



7. Kolade M. Owolabi, Kailash C. Patidar and Albert Shikongo, Robust numerical

method for a tumor-host model with chemotherapy application, paper to appear

in Aims: Electronic Research Announcements.

8. Kolade M. Owolabi, Kailash C. Patidar and Albert Shikongo, A fitted operator

method for an extended system of delay model of tumor cells dynamics embedded

within their modified micro-environment, paper to appear in Aims: Electronic

Research Announcements.

xvi

https://etd.uwc.ac.za/



Chapter 1

General introduction

All human societies have medical beliefs that provide explanations of birth, death, and

diseases. Often illness has been attributed to witchcraft, demons, astral influence, or

the will of the gods. These ideas still retain some powers in modern societies. With

faith, healing and shrines are still used in some places although the advancement in sci-

entific discoveries on new medications over the past millennium has altered or replaced

mysticism in most cases. However, modern medicine requires a better phenomenologi-

cal description of a disease at hand. In turn the phenomenological description depends

on the enlargement of the ideal or real microscopic understanding used by a biologist

or by a modeler [50]. This means that, to achieve an optimal success in healing a

patient, different methods of different scales could be interlaced to achieve a better

understanding of the phenomena. In view of this, in this thesis, our aim is to focus on

some key models dealing with cancer dynamics and to look at their robust numerical

simulation which may lead to sensible information through mathematical analysis.

1.1 Literature review

When a body develops a disease, the situation can be thought similar to that of predator

and prey in ecology. However, some diseases are very much complex in their formation

and the manner they reinforce their presence in a body as compare to a situation in

1
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CHAPTER 1. GENERAL INTRODUCTION 2

a physical environment. Such diseases are for example HIV and cancer. However,

the connection between HIV/AIDS and certain cancers diseases are not completely

understood, even though the link is likely to depend on a weakened immune system,

see for instance [16, 17, 32, 81, 82, 88, 89, 107]. However, it is understood that most

types of cancer begin when healthy cells change and grow out of control, forming a

mass called a tumor. Therefore when a host is affected by a tumor, the system requires

interaction with its environment. Therefore, it is not strange for the ecological system

of cancer cells to interact with surrounding healthy and malignant. This means cancer

and healthy cells compete for resources, namely, oxygen, nutrient and space. Thus

cancer cells compete against each other and against the healthy cells throughout the

body for the same resources. Such studies have led to the development of many cancer

models see for instance [45], also an optimal control for mathematical models of cancer

therapies in [116], computational modeling of interactions between multiple myeloma

and the bone micro-environment in [126], the role of the micro-environment in tumor

growth and invasion in [61] and current trends in mathematical modeling of tumor-

micro-environment interactions: a survey of tools and applications in [110] in the past

few recent years, just to mention a few in this regard.

In our views, we understand that most of the models are developed with one com-

mon goal, that is to understand how cancer cells functions. Since a cure to cancerous

diseases is still not found, this makes the study of cancer disease an ongoing process. As

a result of that, in this thesis, our contribution focuses on the study of chemotherapy,

competition among the involved cells, multiple infections, micro-environment, vascular

dynamics and optimization of treating cancer in the form of tumor cells.

Therefore, it is imperative to understand that a tumor is scientifically referred to as a

neoplasm, or an abnormal tissue area that is either fluid-filled or solid in appearance. A

tumor does not necessarily mean cancer, it can be classified into the benign type (which

means non-progressive or cannot metastasize, for example, uterine fibroids and moles),

pre-malignant (or pre-cancerous growth which include: actinic keratosis, dysplasia of

the cervix, metaplasia of the lung and leukoplakia), or malignant (cancerous), and the

https://etd.uwc.ac.za/



CHAPTER 1. GENERAL INTRODUCTION 3

malignant tumor which is a cancerous case. Record have shown that there are various

types of tumors, which are made up of specific types of cancer cells; these include the

carcinoma, sarcoma, lymphoma or leukemia, blastoma and germ cell tumor [90]. Thus,

to this end, we also understand that it requires an expert to differentiate between an

ordinary tumor and a cancerous type and that tumour treatment can be classified into

stages. These stages are from I to IV, where the first two stages is called a low-grade

tumor which can be treated by watchful monitoring or surgery. Stage III and IV are

malignant spread quickly from the affecting area to other surrounding tissues. In [55],

it is stated that tumours’ treatment include the use of radiation therapy, chemotherapy,

targeted therapy and tumor treating fields.

Based on our understanding, tumor models can either be solved numerically and/or

analytically, and such studies are undertaken with the aim of contributing towards

understanding the complexity of cancer diseases. These studies include [1, 4, 5, 6, 7,

9, 43, 66, 68, 83, 91, 99, 121, 124] just to mention some of them. However, most of

them consider a solution to a cancer model as a cure to a cancer disease, because they

are directly compared to experimental data in most cases. Since experimental result is

almost surely a case study, therefore it does not capture the mathematical meaning of

a model at hand in most cases see for instance [86].

Therefore, our first key model is derived by Hinow et al. [49]. Our second key

model focuses on the effects of biological stoichiometry in [37], where we understand

that similar considerations can be traced in [24, 28, 127]. At a worse scenario one can

be exposed to the issue of immune reaction against tumor and at the same time to HIV

dynamics. Thus, our third key model arises from the work of Foryś and Pleszczuk in

[41], in vivo. Consequently, we would like to acknowledge the contribution by Nunnari

et al. [92], Resclgnow and Delisi [111] and by Rong et al. [113], where a significant

increase in the incidence of neoplasms accompany the acquired immunodeficiency syn-

drome (AIDS), a delay in the formation of killer lymphocytes was introduced to allow

tumor development from a single cell, steps between viral infection of CD4+ t-cells

and the production of HIV−1 visions have been incorporated by an eclipse phase, an

https://etd.uwc.ac.za/



CHAPTER 1. GENERAL INTRODUCTION 4

HIV−1 dynamical model was developed which incorporate AIDS-related cancer cells

in which cancer cells, healthy CD4+ t-cells lymphocytes and infected CD4+ t-cells

lymphocytes can have six steady states, in that order.

In view of our understanding that cell types such as epithelial cells, fibroblasts, my-

ofibroblasts, endothelial cells, and inflammatory cells form an integral part of a tumor

micro-environment [59]. That is, epithelial cells, fibroblasts, myofibroblasts, endothe-

lial cells, and inflammatory cells, communicate with one another and influence each

others’ behavior by means of the cytokines and growth factors they secrete. Thus, fo-

cusing on the role of the composition of the surrounding extra-cellular matrix (ECM),

may play an essential role in confining cancer cells. Since, in [59], it is mentioned

that confinement of cancer cells, can be achieved by either modulating cell adhesion or

blocking Matrix Metalloproteinase (MMP), then, in human Ductal Carcinoma In Situ

(DCIS), it is understood that Matrix Metalloproteinase (MMP) material have shown

that several classes of MMPs are expressed in periductal fibroblasts and myofibrob-

lasts, indicating an intense stromal involvement during early invasion [59, 60]. Thus,

a situation in which a more aggressive carcinoma and tumor cells are degrading the

basal membrane and invade into the stroma [3], is therefore considered as our fourth

key model.

Further contribution done in the direction of tumor cells embedded in their micro-

environments, are for instance the establishment in [27] that as a tumor invades an

unsuspecting host and an accumulation of evidence points to the alternative paradigm,

where the tumor micro-environment is not an idle bystander, but actively participates

in tumor progression and metastasis. In fact, stromal cells and their cytokines coordi-

nate critical pathways that exert important roles in the ability of tumors to invade and

metastasize. More information regarding the actively participation of tumor micro-

environment in tumor progression and metastasis can also be traced in [20, 80]. Thus

understanding the relationship between tumor and its micro-environment may lead to

important new therapeutic approaches in controlling the growth and metastasis of can-

cer. However, tumor micro-environment includes various cell types such as epithelial,
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fibroblasts, myofibroblasts, endothelial, and inflammatory cells. These cells communi-

cate with one another and influence each other behavior by means of the cytokines and

growth factors they secrete [59].

Since, vascular tumors are a highly diverse group of aberrant growths, our fifth key

model is dealing with the inclusion of the study dynamics for the kinetics of a popula-

tion of cells differentiated by phases of the cell division cycle such as the ones presented

by Jackiewicz et al.[51]. The sixth key model deals with the optimal control problems

derived by Hahnfeldt et al. [48], where, our sixth key model deals with the case of

tumour vasculature which does not exploit tumour cell sensitivities. Thus, among oth-

ers factors, we understand that developing drug resistance all too often is the limiting

factor in conventional chemotherapy treatments as cancers have a formidable capacity

to develop resistance to a large and diverse array of chemical, biologic, and physical

anti-neoplastic agents. Hence, Kerbel [57], mentioned that it can be largely traced

to the instability of the tumour cell genome, and the resultant ability of tumour cell

populations to generate phenotypic variants rapidly. Therefore, anti-cancer strategies

should be directed at eliminating those genetically stable normal diploid cells that are

required for the progressive growth of tumours. Hence tumor anti-angiogenesis has

been called a new hope for the treatment of tumors [65]. Although these high hopes

have not been realized in practice, there still strong interest and active research on

tumor anti-angiogenesis as a method that normalizes the vasculature [53, 54]. There-

fore, when combined with traditional treatments like chemotherapy or radiotherapy,

enhances the efficiency of these procedures. Hence, more contribution in the direc-

tion of anti-cancer strategies as optimal control problems can be traced to the studies

[15, 35, 56, 58].

1.2 Outline of the thesis

The rest of the thesis is as follows. Chapter 2 deals with a spatial effects of tumour-host

interaction dynamics, whereas in Chapter 3, we consider the biological stoichiometry
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of tumour dynamics. Chapter 4 deals with the dynamics of double infection of HIV

related cancer-immune system dynamics. In Chapter 5, we deal with tumour cell prolif-

eration and migration under the influence of their micro-environment and we consider

a vascular tumour’s dynamics in Chapter 6. Chapter 7, deals with the dynamics arising

in angiogenic signaling of tumour cells and conclude the thesis with future direction in

Chapter 8.
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Chapter 2

Mathematical analysis and numerical

simulation of a tumor-host model with

chemotherapy application

In this chapter, a system of non-linear quasi-parabolic partial differential system, mod-

eling the chemotherapy application in spatial tumor-host interaction is considered. For

certain parameters, we derive the anti-angiogenic therapy, the baseline therapy and

anti-cytotoxic therapy models as well as their local stability condition. We use the

method of upper and lower solutions to show that the equilibria are globally stable.

Since the system of non-linear quasi-parabolic partial differential cannot be solved

analytically, we formulate a robust numerical scheme based on the semi-fitted finite

difference operator. Analysis of the basic properties of the method presents that it is

consistent, stable and convergent. Our numerical results are in agreement with the

stability conditions.

2.1 The model

Henow et al. in [49] presented that cancer is characterized by abnormal cells growth

and division, which eventually metastasize. Furthermore, they mentioned that the

7
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process of metastasizing disrupts the healthy balance between normal and apoptotic

cells, thus leading to the new formation of hypoxic cell. Hypoxic cell is capable of

sustaining itself with a lower nutrient level than the normal cells. The process of self-

sustainability of the hypoxic cell leads to unbiased, biased cell migration and hypoxia-

driven angiogenesis. Based on the process of angiogenesis, Hinow et al. regarded the

process of hypoxia-driven angiogenesis as the track to deliver anti-cancer drugs in the

form of chemotherapy to all regions of a tumor in effective quantities despite the higher

metabolic demands of the growing mass of cells. Hence, they were able to derive their

model and based on their findings from the dynamics of their model in [49], they were

able to deduce that when no and/or treatment is applied to their model;

• the model reproduces a dynamics of early tumor growth.

• through the release of vascular endothelial growth factor (VEGF) secreted by

hypoxic cells in the core of the tumor, the VEGF stimulates endothelial cells

to migrate towards the tumor and establishes a nutrient supply sufficient for

sustained invasion.

• when cytostatic treatment is applied in the form of a VEGF-inhibitor, the treat-

ment has the capability to reduce tumor mass.

• the inhibition of endothelial cell proliferation is more important than the two

cellular functions targeted by the drug.

• the application of a cytotoxic drug as a diffusible substance entering the tissue

from the blood vessels, can either reduces the tumor mass significantly or in fact

accelerates the growth rate of the tumor.

The above facts, motivated us to consider the model derived by Hinow et al. [49].

The model is defined as follows. Let t, x denote time and space, w, n, h, a,m, f, g, c

denote oxygen concentration, normoxic cells, hypoxic cells, apoptic cells, endothelial

cells, extracellular matrix, angiogenic factor, concentration of a drug, and the density
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of all types of cells and matrix combined is

v = h+ a+ n+ f +m.

For ease of explaining the models, we consider the dependent variables

w, n, h, a,m, f, g, c,

as components of the vector

u = [w, n, h, a,m, f, g, c]T ,

whereas, the diffusion coefficients will be taken as components of the vector

D = [Dw, Dn max{n− vc, 0}+Dm, 0, 0, Dm, 0, Dg, Dc]
T ,

respectively. Based on these intepretations, the cytotoxic chemotherapy (the drug

that affects cells in the proliferative state) and anti-angiogenic chemotherapy (also

considered as cytostatic in the sense that the drugs used are not toxic to the cells,

but instead inhibit some mechanism essential for cell division or a specific function)

the models in [49] were derived through the baseline model (i.e. the scenario when

tumor growth is only limited by intrinsic constraints such as oxygen supply and the

surrounding stromal tissue). Using the vectors introduced above, we rewrite these
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models in a vector form as

∂u
∂t

(x, t)− ∂
∂x

[
D, F

(
u, ∂u

∂x

)]
= F (u), with

u1(x, 0) = 1.0, u2(x, 0) = 0.93 exp(−200ξ2), u3(x, 0) = u4(x, 0) = 0.00,

u5(x, 0) = 0.01, u6(x, 0) = 1− u2(ξ, 0)− u3(ξ, 0)− 0.05, u7(x, 0) = 0.00,

u8(x, 0) ∈ [0, 1],



(2.1.1)

as the initial conditions, F (u) = F (w, n, h, a,m, f, g, c) and the boundary conditions for

the reaction-diffusion system in equation (2.1.1) are the no flux-boundary conditions.

Thus, for u1 in equation (2.1.1), we have

∂
∂x

[D1, F
(
u1,

∂u1

∂x

)
] = ∂

∂x

[
D1,

∂u1

∂x

]
≡ Dw

∂2w
∂x2 ,

F (u1) ≡ αwm(wmax − w)− βw(n+ h+m)w − γww,

 (2.1.2)

where, Dw, αw, wmax, βw, γw denote the coefficient of oxygen diffusion, rate of diffusabil-

ity of oxygen, maximum oxygen density, uptake rate of oxygen by normoxic, hypoxic,

endothelial cells and loss rate of oxygen. The reason for the choice of the source term

αwm(wmax−w) is that, at high environmental levels of oxygen, less oxygen is released

through the vessel walls.

For u2 in equation (2.1.1), we have

∂
∂x

[D2, F
(
u2,

∂u2

∂x

)
] = ∂

∂x

(
(Dn max{n− vc, 0}+Dm)∂n

∂x
− χnn∂f∂x

)
,

F (u2) ≡ αnn(vmax − v)− αhH(wh − w)n+ αh
10
H(w − wh)h,

 (2.1.3)

where, vc, Dn max{n − vc, 0}nx, Dm, χn, αn, vmax, wh, αh,H denote a threshold which

adds to the dispersion of these cells through crowding-driven motion, nonlinear diffu-
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sion, random motility, haptotactic movement, rate of logistic growth, maximal density,

critical value, rate of gain or loss, H stands for Heaviside function, a function which is

one for positive arguments and zero otherwise. We also see that the growth of normoxic

cells levels off in regions where the sum of all cells and matrix approaches the maximal

density vmax. In the regions where the concentration of oxygen drops below a certain

critical value wh, normoxic cells enter the hypoxic class at a rate αh and this transition

process is reversible, and the reverse transition is denoted by the reduced rate αh/10.

For u3 in equation (2.1.1) we have

∂
∂x

[D3, F
(
u3,

∂u3

∂x

)
] = 0,

F (u3) ≡ αhH(wh − w)n− αh
10
H(w − wh)h− βhH(wa − w)h,

 (2.1.4)

The first and the second terms in equation (2.1.4) are dictated by conservation of mass

and correspond to terms in equation (2.1.3). The third term in equation (2.1.4) denotes

the transition of hypoxic cells to apoptotic cells at rate βh as the level of oxygen falls

below a second threshold, which is wa < wh. In [49] it is reported that hypoxic cells

are less active in general due to reduced availability of oxygen and other nutrients and

thus, the authors assumed that the lack of energy causes them to be immobile.

For u4 in equation (2.1.1) we have

∂
∂x

[D4, F
(
u4,

∂u4

∂x

)
] = 0,

F (u4) ≡ βhH(wa − w)h,

 (2.1.5)

where, the βh denotes the transition from hypoxic class to apoptic class.

For u5 in equation (2.1.1) we have

∂
∂x

[D5, F
(
u5,

∂u5

∂x

)
] = ∂

∂x

(
Dm

∂m
∂x
−mχm ∂g

∂x

)
,

F (u5) ≡ αmmg(vmax − v),

 (2.1.6)

where, Dm denotes the random motility for endothelial cells and endothelial cells re-

spond via chemotaxis to gradients of angiogenic factor and this requires the presence

https://etd.uwc.ac.za/



CHAPTER 2. MATHEMATICAL ANALYSIS AND NUMERICAL SIMULATION
OF A TUMOR-HOST MODEL WITH CHEMOTHERAPY APPLICATION 12

of angiogenic factor for proliferation. Proliferation is capped by the total density of

cells. The proliferation constant for endothelial cells is αm.

For u6 in equation (2.1.1) we have

∂
∂x

[D6, F
(
u6,

∂u6

∂x

)
] = 0,

F (u6) ≡ −βfnf,

 (2.1.7)

where the tissue matrix is degraded by the tumor cells according to a mass-action law

with a constant rate βf .

For u7 in equation (2.1.1) we have

∂
∂x

[D7, F
(
u7,

∂u7

∂x

)
] = Dg

∂2g
∂x2 ,

F (u7) ≡ αgh− βgmg,

 (2.1.8)

where, Dg denotes the diffusion coefficient. Cognizance must be taken of the fact that,

angiogenic factor is produced by hypoxic cells (alone) at rate αg and consumed by

endothelial cells with a mass-action coefficient of βg.
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To ensure that their model is universal, Hinow et al. dimensionelise the baseline

model (see in [49]) and the dimensionless baseline model is

∂w
∂t

(x, t)−Dw
∂2w
∂x2 = αwm(1− w)− βw(n+ h+m)w − γww,

∂n
∂t

(x, t)− ∂
∂x

(
(Dn max{n− vc, 0}+Dm)∂n

∂x
− χnn∂f∂x

)
= αnn(vmax − v)

−αhH(wh − w)n+ αh
10
H(w − wh)h,

∂h
∂t

(x, t) = αhH(wh − w)n− αh
10
H(w − wh)h− βhH(wa − w)h,

∂a
∂t

(x, t) = βhH(wa − w)h,

∂m
∂t

(x, t)− ∂
∂x

(
Dm

∂m
∂x
−mχm ∂g

∂x

)
= αmmg(vmax − v),

∂f
∂t

(x, t) = −βfnf,

∂g
∂t

(x, t)−Dg
∂2g
∂x2 = αgh− βgmg.



(2.1.9)

When

αm → αm
10
,

χm → χm
10
,

in equation (2.1.9), the baseline model becomes the anti-angiogenic chemotherapy

model.
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However, when a drug that affects cells in the proliferative state is introduced,

then the normoxic cells are driven into apoptosis at a rate proportional to the drug

concentration, in which case the baseline becomes the cytotoxic chemotherapy model.

This implies that the reaction function equation in (2.1.3) becomes

F (u2) ≡ αnn(vmax − v)− αhH(wh − w)n+
αh
10
H(w − wh)h− γnnc, (2.1.10)

with a constant rate γ > 0, whereas, in order to balance the loss of normoxic cells, the

reaction function for apoptotic cells in equation (2.1.5) is amended accordingly to

F (u4) ≡ βhH(wa − w)h+ γnnc, (2.1.11)

and whenever, the concentration of the drug, denoted by c ∈ [0, 1], which is assumed to

be delivered through blood infusion and thus enters the tissue from the blood stream.

The production rate of the drug is therefore proportional to the density of endothelial

cells, which implies that regions with higher vascular density will experience a higher

concentration of the drug. Hence, it is described by a reaction-diffusion equation similar

to that of oxygen as

∂
∂x

[D8, F
(
u8,

∂u8

∂x

)
] = ∂

∂x

[
D8,

∂u8

∂x

]
≡ Dc

∂2c
∂x2 ,

F (u8) ≡ αc(t)m(1− c)− γcc− kγnnc,

 (2.1.12)

where, the drug diffuses at a constant rate Dc in the tissue and decays at a constant

rate γ, it also affects the normoxic cells in such a way that it is consumed at a rate kγn

when it kills normoxic cells. Instead of looking at a constant drug supply, Hinow et al.

in [49] included a scheduling of the drug by letting the production rate αc(t) > 0 be a

time-dependent function

αc(t) = 100
5∑

k=0

exp(−4(t− (200 + 2k))2),
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corresponding to the drug being delivered to the tissue.

Further detailed information on these models can be found in [49, 94] and the

references therein.

Apart from the contribution by Cristini et al. [31] reported that a thermodynamic

consistent mixture model for avascular solid tumor growth, takes into account the

effects of cell to cell adhesion, and taxis inducing chemical and molecular species, we

also would like to mentioned that Tuan et al. [122] studied the identification of the

population density of a logistic equation backwards in time associated with non-local

diffusion and nonlinear reaction.

In some cases, most of the solution for a dynamic models is considered as a cure to

a tumor disease, because they are compared to experimental data in most cases, see

for instance [29, 125], without their extensive mathematical dispensations.

Thus, [49] presented their results without presenting the stability analysis of the

models [49]. Therefore, we believe that they were not able to explain their results

by referring to direct mathematical analysis. This, we believe has undermined the

qualitative features of the underlying mathematical models. In this chapter, our fo-

cus is mainly on mathematical analysis of the models. Due to the non-linearities of

terms in the models we construct a reliable numerical method capable of capturing the

qualitative features of the models.

Solving the problems like (2.1.1) using the standard finite difference (SFDMs) has

limitations. That is, explicit methods finite difference (EFDMs), can solve such dif-

ferential equations with low computational cost, but with very small stability regions,

which in turn implies severe restrictions on the meshes sizes, which are required in order

to achieve the desired results. Then, one is of a view of considering the implicit finite

difference (IFDMs) to solve such differential equations, because they possess wider sta-

bility regions as compared to the EFDMs. However, their associated computational

complexity can achieve only one order of convergence as compared to EFDMs that use

the same number of stages [22].
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The rest of the chapter is organized as follows. Mathematical analysis of the models

is presented in Section 2.2 and a robust numerical scheme based on the semi-fitted

finite difference technique is formulated in Section 2.3, whereas, analysis of the basic

properties of this scheme is also examined for convergence. To show the effectiveness of

the proposed schemes, we present some numerical results in Section 2.4. We conclude

the chapter with Section 2.5.

2.2 Mathematical analysis of the models

In this work, our major attention is on the baseline, anti-angiogenic and cytotoxic

chemotherapy models. We use linear stability analysis method to discuss the general

dynamics of each model. At the steady state, the cytotoxic chemotherapy model in

equation (2.1.1), becomes

αwm(1− w)− βw(n+ h+m)w − γww = 0,

αnn(vmax − v)− αhH(wh − w)n+ 1
10
αhH(w − wh)h− γnnc = 0,

αhH(wh − w)n− 1
10
αhH(w − wh)h− βhH(wa − w)h = 0,

βhH(wa − w)h+ γnnc = 0,

αmmg(vmax − v) = 0,

−βfnf = 0,

αgh− βgmg = 0,

γcc− kγnnc = 0,



(2.2.1)
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as αc(t)→ 0 as t→∞. Solving the system of nonlinear equations in equation (2.2.1),

we obtain

w∗ =
αwm

∗

αw + βwm∗ + γw
, m∗ = vmax, n

∗ = h∗ = a∗ = f ∗ = g∗ = 0, c∗ > 0. (2.2.2)

We see that the oxygen and endothelial cells equilibria (w∗ and m∗) are positive for the

baseline, anti-angiogenic and cytotoxic chemotherapy models. Consequently, the hy-

poxic, apoptic cells’, angiogenic factor (VEGF) and the extra-cellular matrix equilibria

are zero. On the other hand, when a host is tumor free, we find that

w = 0, f = vmax, (2.2.3)

which implies that the extra-cellular matrix (f) in all three models is well and healthy.

We also see that the oxygen cells’ steady state is zero, rendering the tumor free case

unworthy for further investigation.

Therefore, for the baseline, anti-angiogenic and cytotoxic chemotherapy models, we

have the uniform equilibria as



w∗

n∗

h∗

a∗

m∗

f ∗

g∗

c∗



=



αwvmax

αw+βwvmax+γw

0

0

0

vmax

0

0

0



,



αwm∗

αw+βwvmax+γw

0

0

0

vmax

0

0

0



,



αwvmax

αw+βwvmax+γw

0

0

0

vmax

0

0

c∗ > 0



. (2.2.4)

Stability of the equilibria in equation (2.2.4) can be investigated from the correspond-

ing homogeneous baseline, anti-angiogenic and cytotoxic chemotherapy models, (the

investigation which includes spatial distribution of cells is dealt with elsewhere). Thus,
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extracting the Jacobian matrix from the system in equation (2.2.1), we find the non-

zero entries of the Jacobian matrix evaluated at the critical points as

J1,1 = −αwm∗ − βwm∗ − γw, J1,2 = J1,3 = −βww∗, J1,5 = αw(1− w∗)− βww∗,

J2,2 = αnvmax − αhH(wh − w)− γnc∗, J2,3 =
αh
10
H(w − wh), J3,2 = αhH(wh − w̄),

J3,3 = −αh
10
H(w − wh)− βhH(wa − w), J4,2 = γnc

∗, J4,3 = βhH(wa − w),

J7,3 = αg, J7,5 = −βgm∗, J8,2 = −kγnc∗, J8,8 = −γc, (2.2.5)

which leads to characteristic equation of the form

λ2 − tr(J)λ+ det(J) = 0, (2.2.6)

where,

tr(J) = αnvmax − αhH(wh − w)− γnc∗ − αh
10
H(w − wh)− βhH(wa − w),

det(J) = − (αnvmax − αhH(wh − w)− γnc∗)
(

1
10
αhH(w − wh) + βhH(wa − w)

)
−α2

h

10
H(wh − w̄)H(w − wh).


Hence, the equilibria in equation (2.2.4) are stable if

(αnvmax − αhH(wh − w̄)− γnc∗) <
αh
10
H(w̄ − wh) + βhH(wa − w̄), (2.2.7)

and

− (αnvmax − αhH(wh − w)− γnc∗)
(αh

10
H(w − wh) + βhH(wa − w)

)
−α

2
h

10
H(wh − w̄)H(w − wh) > 0,

⇒ (αnvmax − αhH(wh − w)− γnc∗) <
−α2

h

10
H(wh − w̄)H(w − wh)(

αh
10
H(w − wh) + βhH(wa − w)

) . (2.2.8)

The stability conditions in equation (2.2.7)-(2.2.8) are in agreement with the core
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transitions of tumor cells [49], because the condition in equation (2.2.7) implies that

αnvmax > αhH(wh − w̄) + γnc
∗, whereas the condition in equation (2.2.8) implies that

αnvmax < αhH(wh − w) + γnc
∗.

2.2.1 Global stability of the equilibria

In this section, we mainly prove that the equilibrium points in equation (2.2.4) are

globally asymptotically stable with the upper and lower solution method in [101, 102].

Denoting the reaction functions in equation (2.1.1) by lj(w, n, h, a,m, f, g, c) for j =

1, 2, 3, 4, 5, 6, 7, 8, then from equation (2.1.1) we let

l1 = αwm(1− w)− βw(n+ h+m)w − γww,

l2 = αnn(vmax − v)− αhH(wh − w)n+ 1
10
αhH(w − wh)h− γnnc,

l3 = αhH(wh − w)n− 1
10
αhH(w − wh)h− βhH(wa − w)h,

l4 = βhH(wa − w)h+ γnnc,

l5 = αmmg(vmax − v),

l6 = −βfnf,

l7 = αgh− βgmg,

l8 = 100
∑5

k=0 exp(−4(t− (200 + 2k))2)m(1− c)− γcc− kγnnc,



(2.2.9)
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and let U ⊂ R8
+ such that U = {u ∈ R8

+ : u ≤ 0 ≤ ū} and Kj be any positive constant

satisfying

K ≥ max{Kw,Kn,Kh,Ka,Km,Kf ,Kg, ,Kc},

≥ max

{
−∂lj
∂uj

: u = (w, n, h, a,m, f, g, c) ∈ S
}
, j = 1, 2, 3, 4, 5, 6, 7, 8,

then, we have the following results.

Lemma 2.2.1. Let

∂w
∂t

(x, t)−Dw
∂2w
∂x2 ≤ Kw,

∂n
∂t

(x, t)− ∂
∂x

(
(Dn max{n− vc, 0}+Dm)∂n

∂x
− χnn∂f∂x

)
≤ Kn,

∂h
∂t

(x, t) ≤ Kh,

∂a
∂t

(x, t) ≤ Ka,

∂m
∂t

(x, t)− ∂
∂x

(
Dm

∂m
∂x
−mχm ∂g

∂x

)
≤ Km,

∂f
∂t

(x, t) ≤ Kf ,

∂g
∂t

(x, t)−Dg
∂2g
∂x2 ≤ Kg,

∂c
∂t

(x, t)−Dc
∂2c
∂x2 ≤ Kc,



(2.2.10)
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then,

lim
t→∞

w(x, t) = Kw, lim
t→∞

n(x, t) = Kn, lim
t→∞

h(x, t) = Kh, lim
t→∞

a(x, t) = Ka,

lim
t→∞

m(x, t) = Km, lim
t→∞

f(x, t) = Kf , lim
t→∞

g(x, t) = Kg, lim
t→∞

c(x, t) = Kc.

Theorem 2.2.2. The equilibrium points in equation (2.2.4) are globally asymptotically

stable.

Proof: From the maximum principle of parabolic equations, it is known that for

any initial value

(w0(t, x), n0(t, x), h0(t, x), a0(t, x),m0(t, x), f0(t, x), g0(t, x), c0(t, x)) > (0, 0, 0, 0, 0)

the corresponding non-negative solution

(w(t, x), n(t, x), h(t, x), a(t, x),m(t, x), f(t, x), g(t, x), c(t, x)),

is strictly positive for t > 0. Since the equilibrium points in equation (2.2.4) are non-

negative, then let ε0 ∈ (0, 1). Then according to Lemma (2.2.1) and the comparison
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principle of parabolic equations, there exists t1 > t0 > 0 such that, for any t > t1,

w(x, t) ≤ Kw + ε0 := w̄(x, t),

n(x, t) ≤ Kn + ε0 := n̄(x, t),

h(x, t) ≤ Kh + ε0 := h̄(x, t),

a(x, t) ≤ Ka + ε0 := ā(x, t),

m(x, t) ≤ Km + ε0 := m̄(x, t),

f(x, t) ≤ Kf + ε0 := f̄(x, t),

g(x, t) ≤ Kg + ε0 := ḡ(x, t),

c(x, t) ≤ Kc + ε0 := c̄(x, t),



(2.2.11)
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and

w(x, t) ≥ Kw − ε0 := w(x, t),

n(x, t) ≥ Kn − ε0 := n(x, t),

h(x, t) ≥ Km − ε0 := m(x, t),

a(x, t) ≥ Ka − ε0 := a(x, t),

m(x, t) ≥ Km − ε0 := m(x, t),

f(x, t) ≥ Kf − ε0 := f(x, t),

g(x, t) ≥ Kg − ε0 := g(x, t),

c(x, t) ≥ Kc − ε0 := c(x, t).



(2.2.12)

Thus, for t > t0, it is possible to obtain

w(x, t) ≤ w(x, t) ≤ w̄(x, t), n(x, t) ≤ n(x, t) ≤ n̄(x, t),

h(x, t) ≤ h(x, t) ≤ h̄(x, t), a(x, t) ≤ a(x, t) ≤ ā(x, t),

m(x, t) ≤ m(x, t) ≤ m̄(x, t), f(x, t) ≤ f(x, t) ≤ f̄(x, t),

g(x, t) ≤ g(x, t) ≤ ḡ(x, t), c(x, t) ≤ c(x, t) ≤ c̄(x, t). (2.2.13)
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Since lj(w, n, h, a,m, f, g, c) in equation (2.2.9) is a C1 function of w, n, h, a,m, f, g, c,

where l1 is quasi-monotone non-increasing in n, h, a,m, f, g, c, l2 is mixed quasi-monotone

in w, h, a,m, f, g, c, l3 is quasi-monotone non-decreasing in w, n, a,m, f, g, c, l4 is mixed

quasi-monotone in w, n, h,m, f, g, c, h5 is mixed quasi-monotone in w, n, h, a, f, g, c,

l6 is quasi-monotone non-decreasing in w, n, h, a,m, g, c, l7 is mixed quasi-monotone

in w, n, h, a,m, f, c and l8 is mixed quasi-monotone in w, n, h, a,m, f, g, then by the

method of upper and lower solutions we know that the system in (2.1.1) has a unique

global non-negative solution w, n, h, a,m, f, g, c, [101]. Thus,

w, w̄, n, n̄, h, h̄, a, ā,m, m̄, f , f̄ , g, ḡ, c, c̄, (2.2.14)
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satisfy

αwm(1− w̄)− βw(n+ h+m)w̄ − γww̄ ≥ 0 ≥ αwm̄(1− w)

−βw(n̄+ h̄+ m̄)w − γww,

αnn̄(vmax − (h+ a+ n̄+ f +m))− αhH(wh − w)n̄

+αh
10
H(w − wh)h− γnn̄c ≥ 0 ≥ αnn(vmax − (h̄+ ā+ n+ f̄ + m̄))

−αhH(wh − w̄)n+ αh
10
H(w̄ − wh)h− γnnc̄,

αhH(wh − w̄)n̄− αh
10
H(w̄ − wh)h̄− βhH(wa − w̄)h̄ ≥ 0 ≥

αhH(wh − w)n− αh
10
H(w − wh)h− βhH(wa − w)h,

βhH(wa − w)h+ γnnc ≥ 0 ≥ βhH(wa − w̄)h̄+ γnn̄c̄,

αmm̄g(vmax − (h+ a+ n+ f + m̄)) ≥ 0 ≥

αmmḡ(vmax − (h̄+ ā+ n̄+ f̄ +m)),

−βf n̄f̄ ≥ 0 ≥ −βfnf,

αgh− βgmḡ ≥ 0 ≥ αgh̄− βgm̄g,

100
∑5

k=0 exp(−4(t− (200 + 2k))2)m(1− c̄)− γcc̄− kγnnc̄ ≥ 0 ≥

100
∑5

k=0 exp(−4(t− (200 + 2k))2)m̄(1− c)− γcc− kγnn̄c.



(2.2.15)

Therefore, (w̄, n̄, h̄, ā, m̄, f̄ , ḡ, c̄) and (w, n, h, a,m, f, g, c),

are a pair of coupled upper and lower solutions of system (2.1.1), [130], respectively.
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Thus, for any

(w, n, h, a,m, f, g, c) ≤ (w1, n1, h1, a1,m1, g1, c1),

and (w2, n2, h2, a2,m2, f2, g2, c2) ≤ (w̄, n̄, h̄, ā, m̄, f̄ , ḡ, c̄)

we have

|αwm1(1− w1)− βw(n1 + h1 +m1)w1 − γww1

−(αwm2(1− w2)− βw(n2 + h2 +m2)w2 − γww2)|

≤ K(|w1 − w2|+ |n1 − n2|+ |h1 − h2|+ |a1 − a2|),

|αnn1(vmax − v1)− αhH(wh − w1)n1 + αh
10
H(w1 − wh)h1 − γnn1c1

−(αnn2(vmax − v2)− αhH(wh − w2)n2 + αh
10
H(w2 − wh)h2 − γnn2c2)|

≤ K(|n1 − n2|+ |h1 − h2|+ |a1 − a2|+ |v1 − v2|),

|αhH(wh − w1)n1 − αh
10
H(w1 − wh)h1 − βhH(wa − w1)h1

−(αhH(wh − w2)n2 − αh
10
H(w2 − wh)h2 − βhH(wa − w2)h2)|

≤ K(|n1 − n2|+ |h1 − h2|),

|βhH(wa − w1)h1 + γnn1c1 − (βhH(wa − w2)h2 + γnn2c2)|

≤ K(|n1 − n2|+ |h1 − h2 + |c1 − c2|),

|αmm1g1(vmax − v1)− (αmm2g2(vmax − v2))|

≤ K(|m1 −m2|+ |g1 − g2 + |v1 − v2|),

|−βfn1f1 − (−βfn2f2)| ≤ K(|n1 − n2|+ |f1 − f2),

|αgh1 − βgm1g1 − (αgh2 − βgm2g2)| ≤

K(|h1 − h2|+ |m1 −m2|+ |g1 − g2|),

|100
∑5

k=0 exp(−4(t− (200 + 2k))2)m1(1− c1)− γcc1 − kγnn1c1

−(100
∑5

k=0 exp(−4(t− (200 + 2k))2)m2(1− c2)− γcc2 − kγnn2c2)|

≤ K(|n1 − n2|+ |m1 −m2|+ |c1 − c2|).



(2.2.16)
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Defining two iteration sequences (w̄, n̄, h̄, ā, m̄, f̄ , ḡ, c̄) and (w, n, h, a,m, f, g, c)

for i ≥ 1,

w̄(i) = w̄(i−1) + (αwm
(i−1)(1− w̄(i−1))− βw(n(i−1) + h(i−1)

+m(i−1))w̄(i−1) − γww̄(i−1))/K,

n̄(i) = n̄(i−1) + (αnn̄(vmax − (h+ a+ n̄+ f +m))− αhH(wh − w)n̄

+αh
10
H(w − wh)h− γnn̄c)/K,

h̄(i) = h̄(i−1) + (αhH(wh − w̄(i−1))n̄(i−1) − αh
10
H(w̄(i−1) − wh)h̄(i−1)

−βhH(wa − w̄(i−1))h̄(i−1))/K,

ā(i) = ā(i−1) + (βhH(wa − w(i−1))h(i−1) + γnn
(i−1)c(i−1))/K,

m̄(i) = m̄(i−1) + (αmm̄
(i−1)g(i−1)(vmax − (v(i−1))))/K,

f̄ (i) = f̄ (i−1) + (−βf n̄(i−1)f̄ (i−1))/K,

ḡ(i) = ḡ(i−1) + (αgh
(i−1) − βgm(i−1)ḡ(i−1))/K,

c̄(i) = c̄(i−1) + ((100
∑5

k=0 exp(−4(t− (200 + 2k))2)m(i−1)(1− c̄(i−1))

−γcc̄(i−1) − kγnn(i−1)c̄(i−1))/K,

w(i) = w(i−1) + (αwm̄(1− w)− βw(n̄+ h̄+ m̄)w − γww)/K,

n(i) = n(i−1)

+(αnn
(i−1)(vmax − (h̄(i−1) + ā(i−1) + n(i−1) + f̄ (i−1) + m̄(i−1)))

−αhH(wh − w̄(i−1))n(i−1) + αh
10
H(w̄(i−1) − wh)h− γnn(i−1)c̄(i−1))/K,

h(i) = h(i−1) + (αhH(wh − w(i−1))n(i−1)

−αh
10
H(w(i−1) − wh)h(i−1) − βhH(wa − w(i−1))h(i−1))/K,

a(i) = a(i−1) + (βhH(wa − w̄(i−1))h̄(i−1) + γnn̄
(i−1)c̄(i−1))/K,

m(i) = m(i−1)

+(αmm
(i−1)ḡ(i−1)(vmax − (h̄(i−1) + ā(i−1) + n̄(i−1) + f̄ (i−1) +m(i−1))),

f (i) = f (i−1) + (−βfn(i−1)f (i−1))/K,

g(i) = g(i−1) + (αgh̄
(i−1) − βgm̄(i−1)g(i−1))/K,

c(i) = c(i−1) + (100
∑5

k=0 exp(−4(t− (200 + 2k))2)m̄(i−1)(1− c(i−1))

−γcc(i−1) − kγnn̄(i−1)c(i−1))/K,



(2.2.17)
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where, (w̄(0), n̄(0), h̄(0), ā(0), m̄(0), f̄ (0), ḡ(0), c̄(0)) = (w̄, n̄, h̄, ā, m̄, f̄ , ḡ, c̄)

and (w(0), n(0), h(0), a(0),m(0), f (0), g(0), c(0)) = (w, n, h, a,m, f, g, c). Thus, for i ≥ 1

(w, n, h, a,m, f, g, c) ≤ (w(i), n(i), h(i), a(i),m(i), f (i), g(i), c(i))

≤ (w(i+1), n(i+1), h(i+1), a(i+1),m(i+1), f (i+1), g(i+1), c(i+1))

≤ (w̄(i+1), n̄(i+1), h̄(i+1), ā(i+1), m̄(i+1), f̄ (i+1), ḡ(i+1), c̄(i+1))

≤ (w̄(i), n̄(i), h̄(i), ā(i), m̄(i), f̄ (i), ḡ(i), c̄(i))

≤ (w̄, n̄, h̄, ā, m̄, f̄ , ḡ, c̄),

and there exist (w̃(0), ñ(0), h̃(0), ã(0), m̃(0), f̃ (0), g̃(0), c̃(0)) > (0, 0, 0, 0, 0),

and (ŵ(0), n̂(0), ĥ(0), , â(0), m̂(0), f̂ (0), ĝ(0), ĉ(0)) > (0, 0, 0, 0, 0) such that

lim
i→∞

w̄ = w̃, lim
i→∞

n̄ = ñ, lim
i→∞

h̄ = h̃, lim
i→∞

ā = ã, lim
i→∞

m̄ = m̃, lim
i→∞

f̄ = f̃ ,

lim
i→∞

ḡ = g̃, lim
i→∞

c̄ = c̃,

and

lim
i→∞

w = ŵ, lim
i→∞

n = n̂, lim
i→∞

h = ĥ, lim
i→∞

a = â, lim
i→∞

m = m̂, lim
i→∞

f = f̂ ,

lim
i→∞

g = ĝ, lim
i→∞

c = ĉ,
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and

αwm̂(1− w̃)− βw(n̂+ ĥ+ m̂)w̄ − γww̃ = 0,

αwm̃(1− ŵ)− βw(ñ+ h̃+ m̃)ŵ − γwŵ = 0,

αnñ(vmax − (ĥ+ â+ ñ+ f̂ + m̂))

−αhH(wh − ŵ)ñ+ αh
10
H(ŵ − wh)ĥ− γnñĉ = 0,

αnn̂(vmax − (h̃+ ã+ ñ+ f̃ + m̃))

−αhH(wh − w̃)n̂+ αh
10
H(w̃ − wh)h̃− γnn̂c̃ = 0,

αhH(wh − w̃)ñ− αh
10
H(w̃ − wh)h̃− βhH(wa − w̃)h̃ = 0

αhH(wh − ŵ)n̂− αh
10
H(ŵ − wh)ĥ− βhH(wa − ŵ)ĥ = 0,

βhH(wa − ŵ)ĥ+ γnn̂ĉ = 0,

βhH(wa − w̃)h̃+ γnñc̃ = 0,

αmm̃ĝ(vmax − (ĥ+ â+ n̂+ f̂ + m̃)) = 0,

αmm̂g̃(vmax − (h̃+ ã+ ñ+ f̃ + m̂)),

−βf ñf̃ = 0,

−βf n̂f̂ = 0,

αgĥ− βgm̂g̃ = 0,

αgh̃− βgm̃ĝ = 0,

100
∑5

k=0 exp(−4(t− (200 + 2k))2)m̂(1− c̃)− γcc̃− kγnn̂c̃ = 0,

100
∑5

k=0 exp(−4(t− (200 + 2k))2)m̃(1− ĉ)− γcĉ− kγnñĉ = 0.



(2.2.18)
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Since, the equilibrium points in equation (2.2.4) are the unique semi-positive constant

equilibrium of system (2.1.1), it must hold for

(w̃, ñ, h̃, ã, m̃, f̃ , g̃, c̃) = (ŵ, n̂, ĥ, â, m̂, f̂ , ĝ, ĉ)

= (
αwvmax

αw + βwvmax + γw
, 0, 0, 0, vmax, 0, 0, c

∗ > 0). (2.2.19)

Thus, by [101, 102], the solution ( αwvmax

αw+βwvmax+γw
, 0, 0, 0, vmax, 0, 0, c

∗ > 0) of system

(2.1.1) satisfies

lim
t→∞

w(x, t) = w∗, lim
t→∞

n(x, t) = n∗, lim
t→∞

h(x, t) = h∗, lim
t→∞

a(x, t) = a∗,

lim
t→∞

m(x, t) = m∗, lim
t→∞

f(x, t) = f ∗, lim
t→∞

g(x, t) = g∗, lim
t→∞

c(x, t) = c∗.

Hence, the constant equilibrium point ( αwvmax

αw+βwvmax+γw
, 0, 0, 0, vmax, 0, 0, c

∗ > 0) is glob-

ally asymptotically stable.

2.3 Construction and analysis of the numerical method

In this section, we describe the derivation of the fitted numerical method for solving

the system in equation (2.1.1). We determine an approximation to the derivatives of

the functions

w(t, x), n(x, t), h(x, t), a(x, t),m(x, t), f(x, t), g(x, t), c(x, t),

with respect to the spatial variable x as follow.

Let Sx be a positive integer. Discretize the interval [0, xf ], xf ∈ Z+ through the

points

0 = x0 < x1 < x2 < · · · < xSx = xf ,

where the step-size ∆x = xj+1 − xj = xf/Sx, j = 0, 1, . . . , Sx. Let

Wj(t), Nj(t), Hj(t), Aj(t),Mj(t), Fj(t), Gj(t), Cj(t), (2.3.1)
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denote the numerical approximations of

w(t, x), n(x, t), h(x, t), a(x, t),m(x, t), f(x, t), g(x, t), c(x, t). Then we approximate the

second order spatial derivative in the system in (2.1.1) by

∂w
∂x2 (t, xj) ≈ Wj+1−2Wj+Wj−1

φ2
w

,

∂
∂x

(
[Dn max{Nj − vc, 0}+Dm]∂n

∂x
− χnn∂f∂x

)
(t, xj)

≈ [Dn max{Nj − vc, 0}+Dm]
Nj+1−2Nj+Nj−1

φ2
n

−D+
x (χnNjD

−
x Fj) ,

∂
∂x

(
Dm

∂m
∂x
−mχm ∂g

∂x

)
(t, xj) ≈ Mj+1−2Mj+Mj−1

φ2
m

−D+(MjχmD
−Gj),

∂2g
∂x2 (t, xj) ≈ D+

x (D−Gj),
∂2c
∂x2 (t, xj) ≈ Cj+1−2Cj+Cj+1

φ2
c

,



(2.3.2)

where,

D+(·)j =
(·)i+1 − (·)i

∆x
and D−(·)i =

(·)i − (·)i−1

∆x
,

and the denominator functions

φ2
w :=

4

%2
w

sinh2

(
%w∆x

2

)
, %w :=

√
γw
Dw

, φ2
n :=

D̃n∆x

χn

[
exp(

χn∆x

D̃n

)− 1

]
,

φ2
m :=

Dm∆x

χm

[
exp(

χm∆x

Dm

)− 1

]
, φ2

c :=
4

%2
c

sinh2

(
%c∆x

2

)
, %c :=

√
γc
Dc

,

where we see that φw → ∆x, φn → ∆x, φm → ∆x, φc → ∆x, as ∆x → 0. Let St be a

positive integer and ∆t = T/St where 0 < t < T . Discretizing the time interval [0, tSt ]

through the points

0 = t0 < t1 < · · · < tSt = T,
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where

ti+1 − ti = ∆t, i = 0, 1, . . . , (tSt − 1).

We approximate the time derivative at ti by

∂w
∂t

(x, ti) ≈
W i+1
j+1−W

i
j

ψw
, ∂n

∂t
(x, ti) ≈

N i+1
j+1−N

i
j

∆t
, ∂h

∂t
(x, ti) ≈

Hi+1
j+1−H

i
j

∆t
,

∂a
∂t

(x, ti) ≈
Ai+1
j+1−A

i
j

∆t
, ∂m

∂t
(x, ti) ≈

M i+1
j+1−M

i
j

∆t
, ∂f

∂t
(x, ti) ≈

F i+1
j+1−F

i
j

∆t
,

∂g
∂t

(x, ti) ≈
Gi+1
j+1−G

i
j

∆t
, ∂c
∂t

(x, ti) ≈
Ci+1
j+1−C

i
j

ψc
,


(2.3.3)

where,

ψw = ψw(∆t) = (1− exp(−γw∆t))/γw, ψc = (1− exp(−γc∆t))/γc,

where we see that ψw → ∆t, ψc → ∆t as ∆t → 0. The denominator functions in

equations (2.3.2) and (2.3.3) are used explicitly to remove the inherent stiffness in the

central finite derivatives parts and can be derived by using the theory of nonstandard

finite difference methods, see, e.g., [84, 103, 104] and references therein.

Combining the equation (2.3.2) for the spatial with equation (2.3.3) for time deriva-
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tives, we obtain

W i+1
j+1−W

i
j

ψw
−Dw

W i+1
j−1−2W i+1

j +W i+1
j+1

φ2
w

= αwM
i
j(1−W i

j )

−βw(N i
j +H i

j +M i
j)W

i
j − γwW i

j ,

N i+1
j+1−N

i
j

∆t
− [Dn max{Nj − vc, 0}+Dm]

N i+1
j−1−2N i+1

j +N i+1
j+1

φ2
n

=

D+
x

(
χnN

i
jD
−
x F

i
j

)
+ αnN

i
j(vmax − V i

j )− αhH(wh −W i
j )N

i
j

+αh
10
H(W i

j − wh)H i
j − γnN i

jC
i
j,

Hi+1
j+1−H

i
j

∆t
= αhH(wh −W i

j )N
i
j − αh

10
H(W i

i − wh)H i
j − βhH(wa −W i

j )H
i
j,

Ai+1
j −Aij

∆t
= βhH(wa −W i

j )H
i
j + γnN

i
jC

i
j,

M i+1
j+1−M

i
j

∆t
−Dm

M i+1
j−1−2M i+1

j +M i+1
j+1

φ2
m

= D+
x (M i

jχmD
−
xG

i
j)

+αmM
i
jG

i
j(vmax − V i

j ),

F i+1
j+1−F

i
j

∆t
= −βfN i

jF
i
j ,

Gi+1
j+1−G

i
j

∆t
−Dg

Gi+1
j−1−2Gi+1

j +Gi+1
j+1

(∆x)2 = αgH
i
j − βgM i

jG
i
j,

Ci+1
j+1−C

i
j

ψc
−Dc

Ci+1
j−1−2Ci+1

j +Ci+1
j+1

φ2
c

=

100
∑5

k=0 exp(−4(tk − (200 + 2k))2)M i
j(1− Ci

j)− γcCi
j − kγnN i

jC
i
j,

W i
1 = W n

−1, N
i
1 = N i

−1, H
i
1 = H i

−1, A
i
1 = Ai−1, M

i
1 = M i

−1, F
i
1 = F i

−1,

Gi
1 = Gi

−1, C
i
1 = Ci

−1, W
i
xSx

= W i
xSx−1, N

i
xSx

= N i
xSx−1, H

i
xSx

= H i
xSx−1,

AixSx = AixSx−1, M
i
xSx

= M i
xSx−1, F

i
xSx

= F i
xSx−1, G

i
xSx

= Gi
xSx−1,

Ci
xSx

= Ci
xSx−1, W

0
j = 1.0, N0

j = 0.93 exp(−200x2
j), H

0
j = A0

j = 0.0,

M0
j = 0.01, F 0

j = 1−N0
j −M0

j − 0.05, G0
j = 0.0, C0

j ∈ [0, 1].



(2.3.4)

We refer to the scheme in (2.3.4) as a semi-fitted operator finite difference numerical
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method (FOFDM), whereas when all the denominator functions in (2.3.2) and (2.3.3)

are replaced with the uniform step sizes, the scheme becomes standard finite difference

method (SFDM).

Let the functions

w(x, t), n(x, t), h(x, t), a(x, t),m(x, t), f(x, t), g(x, t), c(x, t),

and their partial derivatives with respect to both t and x be smooth such that they

satisfy ∣∣∣∣∂i+jw(t, x)

∂tixj

∣∣∣∣ ≤ Υw,

∣∣∣∣∂i+jn(t, x)

∂tixj

∣∣∣∣ ≤ Υn,

∣∣∣∣∂i+jh(t, x)

∂tixj

∣∣∣∣ ≤ Υh,

∣∣∣∣∂i+ja(t, x)

∂tixj

∣∣∣∣ ≤ Υa,

∣∣∣∣∂i+jm(t, x)

∂tixj

∣∣∣∣ ≤ Υm,

∣∣∣∣∂i+jf(t, x)

∂tixj

∣∣∣∣ ≤ Υf ,

∣∣∣∣∂i+jg(t, x)

∂tixj

∣∣∣∣ ≤ Υg,

∣∣∣∣∂i+jc(t, x)

∂tixj

∣∣∣∣ ≤ Υc, ∀i, j ≥ 0, (2.3.5)

where,

Υw,Υn,Υh,Υa,Υm,Υf ,Υg,Υc,

are constant that are independent of the time and space step-sizes. Therefore, in view

of the FOFDM, we see that the local truncation errors

ςw, ςn, ςh, ςa, ςm, ςf , ςg, ςc,
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are given by

(ςw)ij = (Lww)ij − (Fw)ij = (Aw(w −W ))ij,

(ςn)ij = (Ln)ij − (Fn)ij = (An(n−N))ij,

(ςh)
i
j = (Lh)ij − (Fh)ij = (h−H)ij,

(ςa)
i
j = (Laa)ij − (Fa)ij = (a− A)ij,

(ςm)ij = (Lm)ij − (Fm)ij = (Am(m−M))ij,

(ςg)
i
j = (Lg)ij − (Fg)ij = (Ag(g −G))ij,

(ςc)
i
j = (Lc)ij − (Fc)ij = (Ac(c− C))ij,



(2.3.6)

where,

Aw = Tri
(
−Dw

φ2
w

,
1

ψw
+
Dw

φ2
w

,−Dw

φ2
w

)
, An = Tri

(
−D̃n

φ2
n

,
1

∆t
+
D̃n

φ2
n

,−D̃n

φ2
n

)
,

Am = Tri
(
−Dm

φ2
n

,
1

∆t
+
Dm

φ2
m

,−Dm

φ2
m

)
,Ac = Tri

(
−Dc

φ2
c

,
1

ψc
+
Dc

φ2
c

,−Dc

φ2
c

)

Ag = Tri
(
− Dg

(∆x)2
,

1

∆t
+

Dg

(∆x)2
,− Dg

(∆x)2

)
.
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Thus,

max1≤i≤tSt ,1≤j≤xSx |w
i
j −W i

j | ≤ ||(Aw)−1||max1≤i≤tSt ,1≤j≤xSx |(ςw)ij|,

max1≤i≤tSt ,1≤j≤xSx |n
i
j −N i

j | ≤ ||(An)−1||max1≤i≤tSt ,1≤j≤xSx |(ςn)ij|,

max1≤i≤tSt ,1≤j≤xSx |h
i
j −H i

j| ≤ max1≤i≤tSt ,1≤j≤xSx |(ςh)
i
j|,

max1≤i≤tSt ,1≤j≤xSx |a
i
j − Aij| ≤ max1≤i≤tSt ,1≤j≤xSx |(ςa)

i
j|,

max1≤i≤tSt ,1≤j≤xSx |m
i
j −M i

j | ≤ ||(Am)−1||max1≤i≤tSt ,1≤j≤xSx |(ςm)ij|,

max1≤i≤tSt ,1≤j≤xSx |f
i
j − F i

j | ≤ max1≤i≤tSt ,1≤j≤xSx |(ςf )
i
j|,

max1≤i≤tSt ,1≤j≤xSx |g
i
j −Gi

j| ≤ ||(Ag)−1||max1≤i≤tSt ,1≤j≤xSx |(ςg)
i
j|,

max1≤i≤tSt ,1≤j≤xSx |c
i
j − Ci

j| ≤ ||(Ac)−1||max1≤i≤tSt ,1≤j≤xSx |(ςc)
i
j|,



(2.3.7)

where

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςw)ij| ≤ ∆t
2
|wtt(ζ)|+Dw

(∆x)2

12
|wxxxx(ξ)|,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςn)ij| ≤ ∆t
2
|ntt(ζ)|

+[Dn max{Nj − vc, 0}+Dm] (∆x)2

12
|nxxxx(ξ)|,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςh)ij| ≤ ∆t
2
|htt(ζ)|,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςa)ij| ≤ ∆t
2
|att(ζ)|,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςm)ij| ≤ ∆t
2
|mtt(ζ)|+Dm

(∆x)2

12
|mxxxx(ξ)|,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςf )ij| ≤ ∆t
2
|ftt(ζ)|,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςg)ij| ≤ ∆t
2
|gtt(ζ)|+Dg

(∆x)2

12
|gxxxx(ξ)|,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςc)ij| ≤ ∆t
2
|ctt(ζ)|+Dc

(∆x)2

12
|cxxxx(ξ)|,



(2.3.8)
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for ti−1 ≤ ζ ≤ ti+1, xj−1 ≤ ξ ≤ xj+1. In view of inequalities in (2.3.5), then (2.3.8)

becomes

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςw)ij| ≤
(

∆t
2

+Dw
(∆x)2

12

)
Υw,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςn)ij| ≤
(

∆t
2

+$ (∆x)2

12

)
Υn,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςh)ij| ≤ ∆t
2

Υh,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςa)ij| ≤ ∆t
2

Υa,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςm)ij| ≤
(

∆t
2

+Dm
(∆x)2

12

)
Υm,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςf )ij| ≤ ∆t
2

Υf ,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςg)ij| ≤
(

∆t
2

+Dg
(∆x)2

12

)
Υg,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςc)ij| ≤
(

∆t
2

+Dc
(∆x)2

12

)
Υc,



(2.3.9)

for ti−1 ≤ ζ ≤ ti+1, xj−1 ≤ ξ ≤ xj+1, $ = [Dn max{Nj − vc, 0}+Dm], and by [117] we

have

||(Aw)−1|| ≤ Ξw, ||(An)−1|| ≤ Ξn, ||(Am)−1|| ≤ Ξm,

||(Ag)−1|| ≤ Ξg. ||(Ac)−1|| ≤ Ξc. (2.3.10)

Using (2.3.9) and (2.3.10) in (2.3.7), we obtain

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςw)ij| ≤
(

∆t
2

+Dw
(∆x)2

12

)
Υw,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςn)ij| ≤
(

∆t
2

+$ (∆x)2

12

)
Υn,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςh)ij| ≤ ∆t
2

Υh,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςa)ij| ≤ ∆t
2

Υa,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςm)ij| ≤
(

∆t
2

+Dm
(∆x)2

12

)
Υm,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςf )ij| ≤ ∆t
2

Υf ,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςg)ij| ≤
(

∆t
2

+Dg
(∆x)2

12

)
Υg,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςc)ij| ≤
(

∆t
2

+Dc
(∆x)2

12

)
Υc.



(2.3.11)

Hence, we obtain the following results.
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Theorem 2.3.1. Let

Fw(x, t),Fn(x, t),Fh(x, t),Fa(x, t),Fm(x, t),Ff (x, t),Fg(x, t),Fc(x, t),

be sufficiently smooth functions so that

w(x, t), n(x, t), h(x, t), a(x, t),m(x, t), f(x, t), g(x, t), c(x, t) ∈ C∞([0, xSx ]× [0, tSt ]). Let

(W i
j , N

i
j , H

i
j, A

i
j,M

i
j , F

i
j , G

i
j, C

i
j), j = 1, 2, . . . xSx , i = 1, 2, . . . tSt be the approximate so-

lutions to (2.1.1), obtained using the semi-FOFDM with W 0
j = w0

j , N
0
j = n0

j , H
0
j =

h0
j , A

0
j = a0

j ,M
0
j = m0

j , F
0
j = f 0

j , G
0
j = g0

j , C
0
j = c0

j . Then there exists

Ξw,Ξn,Ξh,Ξa,Ξm,Ξf ,Ξg,Ξc independent of the step sizes ∆t and ∆x such that

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςw)ij| ≤
(

∆t
2

+Dw
(∆x)2

12

)
Υw,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςn)ij| ≤
(

∆t
2

+$ (∆x)2

12

)
Υn,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςh)ij| ≤ ∆t
2

Υh,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςa)ij| ≤ ∆t
2

Υa,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςm)ij| ≤
(

∆t
2

+Dm
(∆x)2

12

)
Υm,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςf )ij| ≤ ∆t
2

Υf ,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςg)ij| ≤
(

∆t
2

+Dg
(∆x)2

12

)
Υg,

max1≤i−1≤tSt ,1≤j≤xSx−1 |(ςc)ij| ≤
(

∆t
2

+Dc
(∆x)2

12

)
Υc,



(2.3.12)

and conclude our analysis with the following result.

Theorem 2.3.2. (Fatunla [39], Trefethen [123]) A difference scheme is said to be

convergent if and only if it is consistent and stable.

2.4 Numerical results and discusions

The stability conditions in equations (2.2.7) and (2.2.8) present the core behaviors of

tumor cells. That is the transitions of the normoxic cells into the hypoxic class and

vice-versa. Thus, to demonstrate the robustness of our numerical method we present
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our numerical results for both stability conditions which underpin the core behaviors of

tumor cells represented by the models in equation (2.1.1). Therefore, for that reason we

adjusted the biological feasible parameter values as presented in Table 2.5.1. We present

the numerical results at times t = 5 and t = 15. Thus, for condition in equation (2.2.7),

(we let vmax = 10−1) and present the baseline model’s numerical results in Figure 2.5.1

- Figure 2.5.2, anti-angiogenic chemotherapy the numerical results are presented in

Figure 2.5.3 - Figure 2.5.4 and numerical results for anti-cytotoxic chemotherapy are

presented in Figure 2.5.5 - Figure 2.5.6, whereas for condition in equation (2.2.8) (we

let vmax = 10), then we present the baseline model’s numerical results in Figure 2.5.7

- Figure 2.5.8, for anti-angiogenic chemotherapy the numerical results are presented in

Figure 2.5.9 - Figure 2.5.10 and numerical results for anti-cytotoxic chemotherapy are

presented in Figure 2.5.11 - Figure 2.5.12. Below we discuss the numerical results for

each model.

Baseline model for stability condition in equation (2.2.7): We see the oxygen con-

centration (w) is decreasing to its low steady state. This fact is traceable from the

behavior of the normoxic cells (n) which is due to the increasing level of hypoxic cells

(h), the apoptic cells (a) and angiogenic growth factor (VEGF) (g). However, when

oxygen cells (w) are at a high level, we see that the behavior of the endothelial cells (m)

are higher too, which in turn degrades the extra-cellular matrix (f). This implies that

tumor cells are well supported during this phase. This can be seen on the behaviors of

hypoxic, the apoptic cells and angiogenic growth factor (VEGF) (g), at early stages of

the infection. At t = 15, we see that the above-mentioned behaviors are taking place

at a later stage than at t = 5. This implies that a host is infected at t = 15, because

at this time level the same behaviors as mentioned above start to take place.

Baseline model for stability condition in equation (2.2.8): We again see similar

behaviors as for stability condition in equation (2.2.7), which is in agreement with the

fact that the transitions are reversible.

Anti-angiogenic chemotherapy for stability condition in equations (2.2.7): This

model represents a therapeutically intervention after the tumor infection is detected in
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a host. Thus, we see that oxygen cells (w) decrease for some time before it increases

slightly to its steady growth. This behavior can be vividly explained by the behavior

of the normoxic cells (n) and behavior of endothelial cells (m). However, the angio-

genic growth factor (VEGF) (g) degrades the extra-cellular matrix to the extends that

it restores the survival of the tumor cells. This implies that the process of transfor-

mation of hypoxic cells into apoptic cells is again restored to ensure that tumor cells

thrives forward in the host if therapeutically intervention is delayed or stopped and/or

neglected. At t = 15, we see that the above-mentioned behaviors are taking place at

a later stage than at t = 5. This implies that tumour cells resurrect themselves once

more at t = 15, because at this time level the same behaviors as mentioned above start

to take place.

Anti-angiogenic chemotherapy for stability condition in equations (2.2.8): We again

see similar behaviors as for stability condition in equation (2.2.7), which is in agreement

with the fact that the transitions are reversible.

Cytotoxic chemotherapy for stability conditions in equations (2.2.7): The applica-

tion of a diffusible substance entering a tissue from the blood vessels presents slightly

different results as compare to the anti-angiogenic chemotherapy. This is presented

by the slight decrease in the behavior of the apoptic cells. The diffusible substance

has indeed affected the endothelial cells to decrease sharply as its presence continue

to treat a host. However, the slight change in the apoptic behavior is not enough to

completely destroy the tumor cells. As results the core behavior of a tumor cells are

not completely derailed. This, we clearly see it from the behaviour of hypoxic cells and

that of the extra-cellular matrix. At t = 15, we see that the above-mentioned behaviors

are taking place at a later stage than at t = 5. This implies that a host is infected at

t = 15 and then treated immediately, because at this time level the same behaviors as

mentioned above start to take place.

Cytotoxic chemotherapy for stability conditions in equations (2.2.8): We again see

similar behaviors as for stability condition in equation (2.1.10), which is in agreement

with the fact that the transitions are reversible.
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2.5 Conclusion

In this chapter, we examined the cytotoxic chemotherapy model mathematically, and

our numerical findings could serve as a template to examine the efficacy of low-and

high-grade tumors via drugs administering. Studies have revealed that when no treat-

ment is applied, the model which represents a tumor tissue reproduces the typical

dynamics of early growth, that is, a cytostatic treatment is administered in the form of

a VEGF-inhibitor. An experimental result of a diffusive cytotoxic drug was presented

in [49] to treat a tumor by entering the tissue via blood vessels. It was shown that

the drug can either significantly reduce the mass tumor or rather aid its growth. In

the present work, through mathematical analysis and numerical results showing the

spatial distribution of oxygen, normoxic, hypoxic, apoptic, endothelial and angiogenic

cells are presented for the baseline model, anti-angiogenic chemotherapy model and

anti-cytotoxic chemotherapy model at different time levels. We were able to determine

directly that both anti-angiogenic and cytotoxic chemotherapy can result in the reduc-

tion of the tumor cells. Though the models considered are not solvable analytically,

but our numerical findings are in good agreement with the hypotheses and what has

been reported in the literature. Hence, this should be seen as the first attempt to bring

forth some of the essential features of the application of chemotherapy to treat a tumor

that is clearly missing in the work reported by Hinow et al. [49].

Table 2.5.1: Values of the parameters used in the model (2.3.4) [49]

Dw = 0.58 αw = 0.001 βw = 0.57 γw = 0.25
βh = 0.32 wh = 0.05 wa = 0.03 βf = 0.50

Dn = 5.7600× 10−3 vc = 0.8 χn = 1.4× 10−4 Dm = 5.7600× 10−05

Dg = 0.02 χm = 2.1× 10−6 αm = 0.99 αg = 0.1
βg = 10.00 Dc = 0.5 αh = 0.160
αn = log(2) γc = 0.21 k = 10.5 γn = 0.7
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Figure 2.5.1: Numerical solution of the baseline model at t = 5 and vmax = 10−1,
showing the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic, (d) apoptic,
(e) endothelial, (f) extracellular matrix and (g) angiogenic cells, for parameter values
as in Table 2.5.1.
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Figure 2.5.2: Numerical solution of the baseline model at t = 15 and vmax = 10−1,
showing the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic, (d) apoptic,
(e) endothelial, (f) extracellular matrix and (g) angiogenic cells, for parameter values
as in Table 2.5.1.
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Figure 2.5.3: Numerical solution of anti-angiogenic chemotherapy model at t = 5
and vmax = 10−1, showing the spatial distributions of: (a) oxygen, (b) normoxic, (c)
hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix and (g) angiogenic cells,
for parameter values as in Table 2.5.1.
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Figure 2.5.4: Numerical solution of anti-angiogenic chemotherapy model at t = 15
and vmax = 10−1, showing the spatial distributions of: (a) oxygen, (b) normoxic, (c)
hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix and (g) angiogenic cells,
for parameter values as in Table 2.5.1.
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Figure 2.5.5: Numerical solution of anti-cytotoxic chemotherapy model at t = 5 and
vmax = 10−1, showing the spatial distributions of: (a) oxygen, (b) normoxic, (c) hy-
poxic, (d) apoptic, (e) endothelial, (f) extracellular matrix, (g) agiogenic and (h) cy-
totoxic cells, for parameter values as in Table 2.5.1.
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Figure 2.5.6: Numerical solution of anti-cytotoxic chemotherapy model at t = 15
and vmax = 10−1, showing the spatial distributions of: (a) oxygen, (b) normoxic, (c)
hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix, (g) agiogenic and (h)
cytotoxic cells, for parameter values as in Table 2.5.1.
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Figure 2.5.7: Numerical solution of the baseline model at t = 5 and vmax = 10, showing
the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic, (d) apoptic, (e)
endothelial, (f) extracellular matrix and (g) angiogenic cells, for parameter values as
in Table 2.5.1.
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Figure 2.5.8: Numerical solution of the baseline model at t = 15 and vmax = 10, showing
the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic, (d) apoptic, (e)
endothelial, (f) extracellular matrix and (g) angiogenic cells, for parameter values as
in Table 2.5.1.
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Figure 2.5.9: Numerical solution of anti-angiogenic chemotherapy model at t = 5
and vmax = 10, showing the spatial distributions of: (a) oxygen, (b) normoxic, (c)
hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix and (g) angiogenic cells,
for parameter values as in Table 2.5.1.
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Figure 2.5.10: Numerical solution of anti-angiogenic chemotherapy model at t = 15
and vmax = 10, showing the spatial distributions of: (a) oxygen, (b) normoxic, (c)
hypoxic, (d) apoptic, (e) endothelial, (f) extracellular matrix and (g) angiogenic cells,
for parameter values as in Table 2.5.1.
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Figure 2.5.11: Numerical solution of anti-cytotoxic chemotherapy model at t = 5 and
vmax = 10, showing the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic,
(d) apoptic, (e) endothelial, (f) extracellular matrix, (g) agiogenic and (h) cytotoxic
cells, for parameter values as in Table 2.5.1.
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Figure 2.5.12: Numerical solution of anti-cytotoxic chemotherapy model at t = 15 and
vmax = 10, showing the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic,
(d) apoptic, (e) endothelial, (f) extracellular matrix, (g) agiogenic and (h) cytotoxic
cells, for parameter values as in Table 2.5.1.
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In view of our consideration of the chemotherapy in this chapter, in the next chap-

ter we focus on the biological stoichoimetry for tumour cells arising from biological

stoichoimetry dynamics.

https://etd.uwc.ac.za/



Chapter 3

Efficient numerical method for a

mathematical model arising in

biological stoichiometry of tumour

dynamics

We extend a system of coupled first order non-linear systems of delay differential equa-

tions (DDEs) arising in modeling of stoichiometry of tumour dynamics, to a system

of diffusion-reaction system of partial delay differential equations (PDDEs). Since tu-

mor cells are further modified by blood supply through the vascularization process,

we determine the local uniform equilibria of the homogeneous tumour growth model

with respect to the vascularization process. We show that the equilibria are globally

stable, determine the existence of Hopf bifurcation of the homogeneous tumour growth

model with respect to the vascularization process. We derive, analyse and implement

a fitted operator finite difference method (FOFDM) to solve the extended model. This

FOFDM is analyzed for convergence and it is seen that it has second-order accuracy.

Some numerical results confirming theoretical observations are also presented. These

results are comparable with those obtained in the literature.

55
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3.1 The model

In [37], it is established that the qualitative dynamics of the models are essentially

unchanged whether phosphorus limits blood vessel construction or not. Thus, Elser et

al. [37] claimed that varying the supply of phosphorus continuously seems to create

no new dynamical behavior. Therefore, this motivated us to investigate the extended

homogeneous tumor growth model directly.

Therefore, when a single solid tumour is growing within an organ Elser et al. [37]

mentioned that the initial mass starts near some genetically determined carrying ca-

pacity (kh) and its vascularization process takes place at approximately 0.01kg. Since

the parenchyma cells may contain distinct cell types that differ in their nutrient use

and growth rates, then Elser et al. [37] developed the heterogeneous tumor model with

dietary regulation as

dx
dt

= x
(
amin

(
1, Pe

fnkh

)
− dx − (a− dx) x+y1+y2+z

kh

)
,

dy1

dt
= y1

(
b1 min

(
1, β Pe

fmkh

)
min (1, L)− d1 − (b1 − d1) y1+y2+z

kt

)
,

dy2

dt
= y

(
b2 min

(
1, β Pe

fmkh

)
min (1, L)− d2 − (b2 − d2) y1+y2+z

kt

)
,

dz
dt

= cmin
(

1, Pe
fnkh

)
(y1(t− τ) + y2(t− τ))− dzz,

dP
dt

= r − γ
(
n(dxx+ dzz) + (a− dx)nxx+y1+y2+z

kh

)

−γ
(∑2

i=1 midiyi + y1+y2+z
kt

∑2
i=1 mi(bi − di)

)
,

L = g z−α(y1+y2)
y1+y2

,

Pe ≡ P (t)− nx−m1y1 −m2y2 − nz,



(3.1.1)
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where, x, yi (i = 1, 2 in this case), z, f , β, Pe, P , L, n and mi denote mass of

healthy cells, tumor mass contributed by the ith parenchyma cell type, mass of tumor

micro-vessels, fraction of the total fluid within an organ, therapeutic intervention,

extracellular phosphorus within the organ, the homeostatic regulation of the total

amount of phosphorus, maximum proliferation rate of tumor cells, the mean amount

of phosphorus in healthy cells and mean amount of phosphorus in parenchyma cells in

that order. The cells proliferation and death at maximum per capita rates are denoted

by a, bi and dx, di, respectively, whereas α and g denote mass of cancer cells of which

one unit of blood vessels can barely maintain and measurements of sensitivity of tumour

tissue due to lack blood.

The model in equation (3.1.1) is a system of first order delay differential equations

(DDEs), therefore initial values are required by the system. Elser et al. [37] provided

the initial conditions as (x(0), y1(0), y2(0), z(0)) = (9.00, 0.01, 0.01, 0.001), and did not

give the initial condition for P (0).

When a tumor has only one parenchyma cell type then the system of first order

delay differential equations in equations (DDE) (3.1.1) is known as homogeneous tumor

growth model and heterogeneous tumor growth model when a tumor has more than

one parenchyma cell type.

As we see, all of the models in equation (3.1.1) did not take spatial effects into

account. In fact, cells can move around subject to many factors including diffusion.

Thus, instead of depicting the models with purely time dependent ordinary differential

equations (ODEs) with delay, it is more realistic to introduce the diffusion of the cells

into the system, and the simplest way to reach this goal is to use the concept of reaction-

diffusion equations [87, 93]. Elser et al. [37] showed that at a equilibrium, tumor

growth is no longer limited by its blood vessel infrastructure. For that reason, they

also found out that when the tumor is viewed as a single entity, the homogeneous and

heterogeneous models essentially generate the same dynamics. Thus, in this chapter

we consider the homogeneous tumor growth model. Therefore, incorporating spatial
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effects into equation (3.1.1), the homogeneous tumor growth model in (3.1.1) becomes

∂X
∂t
−Dx∆X = X

(
amin

(
1, Pe

fnkh

)
− dx − (a− dx) X+Y1+Z

kh

)
,

∂Y1

∂t
−Dy1∆Y1 = Y1

(
b1 min

(
1, β Pe

fmkh

)
min (1, L)− d1 − (b1 − d1) Y1+Z

kt

)
,

∂Z
∂t
−Dz∆Z = cmin

(
1, Pe

fnkh

)
Y1(t− τ)− dzZ, L = gZ−αY1

Y1
,

Pe ≡ P − nX −m1Y1 − nZ, on (x, t) ∈ Ω× (0,∞),

∂X
∂ν

(0, t) = ∂Y1

∂ν
(0, t) = ∂Z

∂ν
(0, t) = 0, on (x, t) ∈ Ω× (0,∞),

∂X
∂ν

(xf , t) = ∂Y1

∂ν
(xf , t) = ∂Z

∂ν
(xf , t) = 0, on (x, t) ∈ Ω× (0,∞),

Xj(x, 0) = ηj(x), on (x, t) ∈ Ω̄× [−τ, 0], j = 1, 2, 3,



(3.1.2)

where, ∆ denotes the Laplace operator, Xj(x, t) = [X, Y1, Z], Ω ∈ R3 denotes a bounded

domain with smooth boundary ∂Ω and ν denotes the outward unit normal on ∂Ω. The

initial function ηj(x, t) is Holder continuous on [−τ, 0] [106]. We imposed the no flux-

boundary conditions in order to ensure that we exclude the external effects.

Our first aim in this chapter is to investigate the qualitative features of the model

with regard to blood vessel construction and determine the possibility of the time delay

τ on the dynamics of the homogeneous tumour growth model. By applying the Poincaré

normal form and center manifold theorem [79, 128], we determine conditions on the

functions and derive formulas which determine the properties of Hopf bifurcation [118]

such as the direction of bifurcation, the period of periodic solutions and the stability

of solutions. More specifically, we show that the positive equilibrium point losses

its stability and the system exhibits Hopf bifurcation under certain conditions. Our

second aim is to solve the extended model in equation (3.1.2). Thus, to do so, we
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develop an efficient numerical method for solving the extended model with respect to

the qualitative features of the extended model. To this end, we highlight our motivation

for our numerical method. The deficiencies of the standard finite difference methods

in solving the problems like the one in equation (3.1.2) are well-known. While explicit

methods can solve such differential equations with low computational cost, they have

the drawback that their stability regions are very small. This implies severe restrictions

on the time and space step-sizes will be required in order to achieve satisfactorily

converging results. On the other hand, an implicit schemes do have wider stability

regions but the associated computational complexity is very high and they cannot

achieve more than one order as compared to explicit methods that use the same number

of stages [22].

The rest of the chapter is as follows. In Section 3.2, we analyse the equilibrium and

existence of Hopf bifurcation for two possible blood limiting cases. We derive, analyse

our numerical method in Section 3.3 and present our numerical results in Section 3.4

and conclude the chapter with Section 3.5.

3.2 Mathematical analysis of the homogeneous tu-

mour growth model

To proceed, we recall from Elser et al. [37], that in a phosphorus-rich environment,

healthy cells and tumor cells can proliferate, however, if the extracellular phosphorus

concentration drops below a threshold value, then the growth rates of both healthy

and tumor cells are impaired. Therefore, in such case we let

ϕPx := min

(
1,

Pe
fnkh

)
, ϕPy1 := min

(
1, β

Pe
fm1kh

)
,

ϕPz := min

(
1,

Pe
fnkh

)
, (3.2.1)
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to denote such possibilities of limitations. Since maximum proliferation rate of tumor

cells is dictated by the value of min
(

1, gZ−αY1

Y1

)
[37], then, at the equilibrium, the

homogeneous tumour growth model in equation (3.1.2) becomes

X
(
aϕPx − dx − (a− dx) X+Y1+Z

kh

)
= 0,

Y1

(
b1ϕPy1 min

(
1, gZ−αY1

Y1

)
− d1 − (b1 − d1) Y1+Z

kt

)
= 0,

cϕPzY1 − dzZ = 0,


(3.2.2)

which gives the trivial equilibrium point (0, 0, 0), and the system

(a−dx)
kh

(X + Y1 + Z) = aϕPx − dx,

(b1−d1)
kt

(Y1 + Z) = b1ϕPy1 − d1,

cϕPzY1 − dzZ = 0,


(3.2.3)

if min
(

1, gZ−αY1

Y1

)
= 1 and

(a−dx)
kh

(X + Y1 + Z) = aϕPx − dx,

(b1−d1)
kt

(Y1 + Z)− b1ϕPy1g
Z−αY1

Y1
= −d1,

cϕPzY1 − dzZ = 0,


(3.2.4)

if min
(

1, gZ−αY1

Y1

)
6= 1. Thus, we consider both cases in the next two sections.
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3.2.1 Local stability for min
(

1, gZ−αY1Y1

)
= 1

When min
(

1, g z−αY1

Y1

)
= 1 equation (3.2.3) is equivalent to


(a−dx)
kh

(a−dx)
kh

(a−dx)
kh

0 (b1−d1)
kt

(b1−d1)
kt

0 cϕPz −dz




X

Y1

Z

 =


aϕPx − dx
b1ϕPy1 − d1

0

 , (3.2.5)

and the determinant of the matrix in equation (3.2.5) is

(a− dx)
kh

∣∣∣∣∣∣
(b1−d1)
kt

(b1−d1)
kt

cϕPz −dz

∣∣∣∣∣∣ = −(a− dx)
kh

(b1 − d1)

kt
(dz + cϕPz) , (3.2.6)

provided that a > dx, aϕPx > dx and b1 6= d1. Thus,

X∗ =

∣∣∣∣∣∣∣∣∣
aϕPx − dx

(a−dx)
kh

(a−dx)
kh

b1ϕPy1 − d1
(b1−d1)
kt

(b1−d1)
kt

0 cϕPz −dz

∣∣∣∣∣∣∣∣∣
− (a−dx)

kh

(b1−d1)
kt

(dz + cϕPz)
, (3.2.7)
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where the determinant of the numerator in equation (3.2.7) is∣∣∣∣∣∣∣∣∣
aϕPx − dx

(a−dx)
kh

(a−dx)
kh

b1ϕPy1 − d1
(b1−d1)
kt

(b1−d1)
kt

0 cϕPz −dz

∣∣∣∣∣∣∣∣∣ = (aϕPx − dx)

∣∣∣∣∣∣
(b1−d1)
kt

(b1−d1)
kt

cϕPz −dz

∣∣∣∣∣∣
−(a− dx)

kh

∣∣∣∣∣∣ b1ϕPy1 − d1
(b1−d1)
kt

0 −dz

∣∣∣∣∣∣
+

(a− dx)
kh

∣∣∣∣∣∣ b1ϕPy1 − d1
(b1−d1)
kt

0 cϕPz

∣∣∣∣∣∣ ,
= −(b1 − d1)

kt
(aϕPx − dx)[dz + cϕPz ]

+
(a− dx)
kh

(b1ϕPy1 − d1) [dz + cϕPz ] ,

= (dz + cϕPz)

(
(a− dx)(b1ϕPy1 − d1)

kh

)
−(dz + cϕPz)

(
(b1 − d1)(aϕPx − dx)

kt

)
.

Therefore, equation (3.2.7) becomes

X∗ =
(dz + cϕPz)

(
(a−dx)(b1ϕPy1

−d1)

kh
− (b1−d1)(aϕPx−dx)

kt

)
− (a−dx)

kh

(b1−d1)
kt

(dz + cϕPz)
,

=

(
(a−dx)(b1ϕPy1

−d1)

kh
− (b1−d1)(aϕPx−dx)

kt

)
− (a−dx)

kh

(b1−d1)
kt

,

=
kh(aϕPx − dx)

(a− dx)
−
kt(b1ϕPy1 − d1)

(b1 − d1)
,

https://etd.uwc.ac.za/



CHAPTER 3. EFFICIENT NUMERICAL METHOD FOR A MATHEMATICAL
MODEL ARISING IN BIOLOGICAL STOICHIOMETRY OF TUMOUR
DYNAMICS 63

provided that kh(aϕPx−dx)

(a−dx)
>

kt(b1ϕPy1
−d1)

(b1−d1)
. For Y ∗1 , we then have from equations in

(3.2.5)-(3.2.6) that

Y ∗1 =

∣∣∣∣∣∣∣∣∣
(a−dx)
kh

aϕPx − dx
(a−dx)
kh

0 b1ϕPy1 − d1
(b1−d1)
kt

0 0 −dz

∣∣∣∣∣∣∣∣∣
− (a−dx)

kh

(b1−d1)
kt

(dz + cϕPz)
=

−dz
(a−dx)(b1ϕPy1

−d1)

kh

− (a−dx)
kh

(b1−d1)
kt

(dz + cϕPz)
,

=
ktdz(b1ϕPy1 − d1)

(b1 − d1)(dz + cϕPz)
,

provided that b1 > d1 and b1ϕPy1 > d1. Similarly for Z∗, from equations in (3.2.5)-

(3.2.6) we have

Z∗ =

∣∣∣∣∣∣∣∣∣
(a−dx)
kh

(a−dx)
kh

aϕPx − dx
0 (b1−d1)

kt
b1ϕPy1 − d1

0 cϕPz 0

∣∣∣∣∣∣∣∣∣
− (a−dx)

kh

(b1−d1)
kt

(dz + cϕPz)
=

cktϕPz(b1ϕPy1 − d1)

(b1 − d1) (dz + cϕPz)
, (3.2.8)

which requires b1 > d1 and b1ϕPy1 > d1, as anticipated. Therefore, we have two positive

equilibrium points and they are

E1 :=


kh

aϕPx−dx
(a−dx)

0

0

 and E2 :=


kh(aϕPx−dx)

(a−dx)
− kt(b1ϕPy1

−d1)

(b1−d1)
ktdz(b1ϕPy1

−d1)

(b1−d1)(dz+cϕPz )
cktϕPz (b1ϕPy1

−d1)

(b1−d1)(dz+cϕPz )

 . (3.2.9)

This gives us the following results.

Theorem 3.2.1. When min
(

1, gZ−αY1

Y1

)
= 1 and the following conditions hold

(i) a > dx,

(ii) aϕPx > dx,

(iii) kh(aϕPx−dx)

(a−dx)
>

kt(b1ϕPy1
−d1)

(b1−d1)
,
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(iv) b1ϕPy1 > d1,

the homogeneous tumor growth model in equation (3.1.2) possess the unique semi-trivial

non-negative constant solution (X∗, Y ∗1 , Z
∗) = (kh

aϕPx−dx
(a−dx)

, 0, 0) and a unique positive

constant solution

(X∗, Y ∗1 , Z
∗) =


kh(aϕPx−dx)

(a−dx)
− kt(b1ϕPy1

−d1)

(b1−d1)
ktdz(b1ϕPy1

−d1)

(b1−d1)(dz+cϕPz )
cktϕPz (b1ϕPy1

−d1)

(b1−d1)(dz+cϕPz )

 . (3.2.10)

Therefore, when the maximum proliferation rate of tumor cells greater than unity,

then the equilibria are positive as long as the genetically determined, carrying capacity

for healthy cells is bigger than that of the tumor cells.

3.2.2 Local stability for min
(

1, gZ−αY1Y1

)
6= 1

From equation (3.2.4) we have a system of non-linear equations

(a−dx)
kh

(X + Y1 + Z) = aϕPx − dx,

b1ϕPy1gZ − (gα− d1)Y1 − (b1 − d1)
Y 2

1 +Y1Z

kt
= 0,

cϕPzY1 − dzZ = 0.


(3.2.11)

From the last equation in (3.2.11), we have Z =
cϕPz
dz
Y1. Substituting Z =

cϕPz
dz
Y1 into

the first and second equation in (3.2.11), we obtain

(a−dx)
kh

X + ( (a−dx)
kh

+
cϕPz
dz

)Y1 = aϕPx − dx,

(
b1ϕPy1g

cϕPz
dz
− (gα− d1)

)
Y1 − (b1 − d1)

(1+cϕPz )

dzkt
Y 2

1 = 0,

 (3.2.12)
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from which we obtain Y ∗1 = 0 and Y ∗1 =
(b1ϕPy1 g

cϕPz
dz
−(gα−d1))

(b1−d1)
(1+cϕPz

)

dzkt

. When Y ∗1 = 0, we obtain

a trivial equilibrium solution (X∗, Y ∗1 , Z
∗) = (0, 0, 0). However, for non-zero Y ∗1 , we

find

X∗ =
kh(aϕPx−dx)

(a−dx)
− (1 +

cϕPz
dz

)
(b1ϕPy1 g

cϕPz
dz
−(gα−d1))

(b1−d1)
(1+cϕPz

)

dzkt

,

Z∗ =
cϕPz
dz
Y ∗1 .

 (3.2.13)

Thus, we see that if b1ϕPy1g
cϕPz
dz

> (gα−d1) then Y ∗1 is positive as b1 > d1. This implies

that Z∗ =
cϕPz
dz
Y ∗1 is positive too. We also see that X∗ > 0 whenever kh(aϕPx−dx)

(a−dx)
>

(1 +
cϕPz
dz

)
(b1ϕPy1 g

cϕPz
dz
−(gα−d1))

(b1−d1)
(1+cϕPz

)

dzkt

. Hence the following results.

Theorem 3.2.2. When min
(

1, gZ−αY1

Y1

)
6= 1 and the following conditions hold

(i) a > dx,

(ii) b1 > d1,

(ii) b1ϕPy1g
cϕPz
dz

> (gα− d1),

(iv) kh(aϕPx−dx)

(a−dx)
> (1 +

cϕPz
dz

)
(b1ϕPy1 g

cϕPz
dz
−(gα−d1))

(b1−d1)
(1+cϕPz

)

dzkt

,

then the homogeneous tumor growth model has a unique positive constant solution

(X∗, Y ∗1 , Z
∗) =


kh(aϕPx−dx)

(a−dx)
− (1 +

cϕPz
dz

)
(b1ϕPy1 g

cϕPz
dz
−(α−d1))

(b1−d1)
(1+cϕPz

)

dzkt

(b1ϕPy1 g
cϕPz
dz
−(α−d1))

(b1−d1)
(1+cϕPz

)

dzkt

cϕPz
dz
Y ∗1

 . (3.2.14)

Similarly, when the maximum proliferation rate of tumor cells drops below unity,

then the equilibria are positive as long as the genetically determined, carrying capacity

for healthy cells is bigger than that of the tumor cells.
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3.2.3 Global stability of the uniform equilibria

In this section, we show that the uniform positive equilibria are globally uniform.

Since the homogeneous tumor growth model is of quasi-Lotka-Vorterra type [36], we

let V : R3
≥0 → R defined by

V (X, Y1, Z) =

(
X −X∗ −X∗ log

(
X

X∗

))
+

(
Y1 − Y ∗1 − Y ∗1 log

(
Y1

Y ∗1

))
+

(
Z − Z∗ − Z∗ log

(
Z

Z∗

))
,

then we see that V (X∗, Y ∗1 , Z
∗) = 0 and V (X, Y1, Z) > 0 for all (X, Y1, Z) 6= (X∗, Y ∗1 , Z

∗).

Moreover, on R3
≥0, we have

dV (X, Y1, Z)

dt
= VxẊ + Vy1Ẏ1 + VzŻ,

=

(
1− X∗

X

)
X

(
aϕPx − dx − (a− dx)

X + Y1 + Z

kh

)
+

(
1− Y ∗1

Y1

)
Y1

(
b1ϕPy1 min

(
1, g

Z − αY1

Y1

)
− d1 − (b1 − d1)

Y1 + Z

kt

)
+

(
1− Z∗

Z

)
cminϕPzY1 − dzZ,

= (X −X∗)
(
aϕPx − dx − (a− dx)

X + Y1 + Z

kh

)
+ (Y1 − Y ∗1 )

(
b1ϕPy1 min

(
1, g

Z − αY1

Y1

)
− d1 − (b1 − d1)

Y1 + Z

kt

)
+ (Z − Z∗) (cϕPzY1 − dz (Z − Z∗)) , (3.2.15)

upon multiplying the last equation with Z. When min
(

1, gZ−αY1

Y1

)
≡ 1, then equation

in (3.2.15) becomes

dV (X, Y1, Z)

dt
= (X −X∗)

(
− (a− dx)

(X −X∗) + (Y1 − Y ∗1 ) + (Z − Z∗)
kh

)
+ (Y1 − Y ∗1 )

(
− (b1 − d1)

(Y1 − Y ∗1 ) + (Z − Z∗)
kt

)
+ (Z − Z∗) (cϕPz(Y1 − Y ∗1 )− dz (Z − Z∗)) . (3.2.16)
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Let X̄ = X −X∗, Ȳ1 = Y1 − Y ∗1 , Z̄ = Z − Z∗, then the equation in (3.2.16) becomes

dV (X, Y1, Z)

dt
= − (a− dx)X

(
X + Y1 + Z

kh

)
− (b1 − d1)Y1

(
Y1 + Z

kt

)
+ Z (cϕPzY − dzZ) ≤ 0, (3.2.17)

after dropping the bar signs. Similarly, min
(

1, gZ−αY1

Y1

)
6= 1, then equation in (3.2.15)

becomes

dV (X, Y1, Z)

dt
= − (a− dx) (X −X∗)

(
X + Y1 + Z

kh

)
−(b1 − d1)

kt
(Y1 − Y ∗1 )

(
(Y1 − Y ∗1 ) + (b1ϕPy1g − 1)(Z − Z∗)

)
+ (Z − Z∗) (cϕPzY1 − dz (Z − Z∗)) ≤ 0. (3.2.18)

Thus, we have the following results.

Theorem 3.2.3. The positive equilibria in equation (3.2.10) and (3.2.14) are globally

stable.

Thus, in this section we determine the positive solutions of both cases and found

out that similar conditions hold for the survival of tumor cells which play an integral

part in this stoichometric dynamics.

In the next sections we consider the existence of Hopf bifurcation.

3.2.4 Stability of the equilibrium points and existence of Hopf

bifurcation for min
(

1, gZ−αY1Y1

)
= 1 and min

(
1, gZ−αY1Y1

)
6= 1

In this section, we concentrate on the dynamical behavior of equation (3.1.2). Our goal

is to investigate the stability of the equilibrium points of (3.1.2) and also the existence

of Hopf bifurcation. This is achieved by taking the delay time τ as a bifurcation

parameter. Thus, we study effects of the time delay on the dynamics of (3.1.2) as

follows.
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Stability of positive equilibrium points and the existence of Hopf bifurcation

for min
(

1, gZ−αY1

Y1

)
= 1

Let (X∗, Y ∗1 , Z
∗) be an equilibrium point for the system in equation (3.1.2) and

(X̄, Ȳ1, Z̄) = (X −X∗, Y1 − Y ∗1 , Z − Z∗).

Linearizing the system in equation (3.1.2) around (X∗, Y ∗1 , Z
∗), and drop bars again,

we obtain

Xt −Dx∆X =
(
aϕPx − dx − (a− dx) 2X∗+Y ∗1 +Z∗

kh

)
X − (a− dx) X∗

kh
Y1

− (a− dx) X∗

kh
Z,

(Y1)t −Dy1∆Y1 =
(
ϕPy1 − d1 − (b1 − d1)

2Y ∗1 +Z∗

kt

)
Y1 − Y ∗1 (b1−d1)

kt
Z,

Zt −Dz∆Z = cϕPzY1(t− τ)− dzZ,

∂X
∂ν

= ∂Y1

∂ν
= ∂Y2

∂ν
= ∂Z

∂ν
= 0, on (x, t) ∈ ∂Ω× (0,∞),

Xj(x, t) = ηj(x, t) ≥ 0(x, t) ∈ Ω× (0,∞),

Xj(x, t) = ηj(x, t)−X ∗j , (x, t) ∈ Ω̄× [−τ, 0], j = 1, 2, 3.



(3.2.19)

Let 0 = µ0 < µ1 < · · · be the eigenvalues of the operator ∆ on Ω with the homogeneous

Neumann boundary condition, then the characteristic equation for equation in (3.2.19)

is given by

λ+Dxµk + aϕPx − dx −
(a−dx)
kh

(2X∗ + Y ∗ + Z∗) = 0,

λ2kt +K1λ+ Y ∗1 c (b1 − d1) ςPz exp(−λτ) +K2 = 0,

 (3.2.20)
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where,

K1 = kt(Dz +Dy1)µk + (ϕPy1 − (d1 + dz))kt − (2Y ∗1 + Z∗)( d1 − b1),

K2 = Dy1Dzktµk2 + kt(ϕPy1Dz −Dy1dz)µk +Dz(( d1 − b1)(2Y ∗1 + Z∗)− d1kt))µk

+dz(2Y
∗

1 + Z∗)(b1 − d1) + kt(d1 − ϕPy1 )dz.

Negative real parts for the first equation in (3.2.20) requires that

khdx > −(a− dx), (3.2.21)

whereas in the second equation in (3.2.20), when τ = 0, Routh-Hurwitz criteria requires

that

(ϕPy1 − (d1 + dz))kt > (2Y ∗1 + Z∗)(d1 − b1), ϕPy1Dz > Dy1dz, d1 > ϕPy1 . (3.2.22)

Therefore, we have the following result.

Lemma 3.2.4. Assume that the conditions in equation (3.2.21)-(3.2.22) holds. Then

the positive constant solution (X∗, Y ∗1 , Z
∗) of system in (3.1.2) is locally asymptotically

stable when τ = 0.

Next, we examine when equation in (3.2.20) has pure imaginary roots λ = ±iω

with ω real number and ω > 0. This is given by the following lemma.

Lemma 3.2.5. The characteristic equation associated to equation in (3.2.20) has pure

imaginary roots.

Proof: If λ = iω be a root of the characteristic equation (3.2.20) where ω > 0,

then we have

−ω2kt +K1iω + Y ∗1 c (b1 − d1) ςPz(cos(ωτ) + i sin(ωτ)) +K2 = 0. (3.2.23)
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Separating real and imaginary parts, we have the following two equations

−ω2kt + Y ∗1 c (b1 − d1) ςPz cos(ωτ) +K2 = 0,

K1ω + Y ∗1 c (b1 − d1) ςPz sin(ωτ)) = 0. (3.2.24)

Equations in (3.2.24) give possible values of τ and ω for which the characteristic equa-

tion in (3.2.20) can have pure imaginary roots. To see it we square each equation and

we obtain

(Y ∗1 c(b1 − d1)ςPz)
2 cos2(ωτ) = (ω2kt −K2)2,

(Y ∗1 c (b1 − d1) ςPz)
2 sin2(ωτ) = (K1ω)2. (3.2.25)

Adding the two equations, we obtain

2(Y ∗1 c(b1 − d1)ςPz)
2 = (ω2kt −K2)2 + (K1ω)2, (3.2.26)

which implies that

ω4 +
(K2

1 − 2ktK2)

kt
ω2 +

K2
2 − 2(Y ∗1 c(b1 − d1)ςPz)

2

kt
= 0. (3.2.27)

Hence,

ω2 =
− (K2

1−2ktK2)

kt
±
√(

(K2
1−2ktK2)

kt

)2

− 4
K2

2−2(Y ∗1 c(b1−d1)ςPz )2

kt

2
. (3.2.28)

Thus, in view of the first equation in (3.2.24) and the first equation in (3.2.25), we

obtain

τ ∗j =
1

ω
cos−1

((
(ω2kt −K2)

Y ∗1 c (b1 − d1) ςPz

)
+ 2jπ

)
, (3.2.29)

as the critical values of τ , for j = 0, 1, 2, . . . , and this complete the proves. This gives
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us the following lemma.

Lemma 3.2.6. Assume that the conditions in equation (3.2.21) and (3.2.22) hold.

Then for j ∈ N0 the following statements are true.

(i) Equation in (3.2.25) has a pair of purely imaginary roots ±iω when τ = τ ∗j and

there are no other roots of equation in (3.2.25) with zero real parts.

(ii) All the roots of equation in (3.2.25) have negative real parts when τ ∈ [0, τ ∗),

where τ ∗ = τ ∗0 .

We have verified the hypotheses for Hopf bifurcation to occur at τ ∗ = τ ∗0 except for

the transversality condition. Differentiate the second equation in (3.2.20) with respect

to τ , we have

Re
(
∂λ2

2kt +K1λ2 + Y ∗1 c (b1 − d1) ςPz exp(−λ2τ) +K2

∂τ

) ∣∣∣∣∣
λ=iω,τ=τ∗0

= Re (ωY ∗1 c (b1 − d1) ςPz sin(ωτ ∗0 )) > 0. (3.2.30)

Thus, the following results.

Lemma 3.2.7. The transversality condition

Re
(
∂λ2

2kt +K1λ2 + Y ∗1 c (b1 − d1) ςPz exp(−λ2τ) +K2

∂τ

) ∣∣∣∣∣
λ=iω,τ=τ∗0

> 0,

is satisfied.

Stability of positive equilibrium points and the existence of Hopf bifurcation

for min
(

1, gZ−αY1

Y1

)
6= 1

Similarly, after linearizing the system in equation (3.1.2) around (X∗, Y ∗1 , Z
∗), we obtain

the characteristic equation as

λ+Dxµk + aϕPx − dx −
(a−dx)
kh

(2X∗ + Y ∗ + Z∗) = 0,

λ2kt +K1λ+ cDz(b1 − d1)Y ∗1 exp(−λτ) +K2 = 0,

 (3.2.31)
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where,

K1 = (ϕPy1 − dz − d1)kt + (d1 − b1)(Z∗ + 2Y ∗1 ) + kt(Dy1 +Dz)µk,

K2 = dz((d1 − ϕPy1 )kt + (b1 − d1)(2Y ∗1 + Z∗)) + ktDy1µk
2Dz

+kt(ϕPy1Dz −DY1dz − d1Dz)µk) +Dz(d1 − b1)(2Y ∗1 + Z∗)µk.

Negative real parts for the first equation in (3.2.31) requires that

khdx > −(a− dx), (3.2.32)

whereas, in the second equation in (3.2.31), when τ = 0, Routh-Hurwitz criteria re-

quires that

(ϕPy1 − (d1 + dz))kt > (2Y ∗1 + Z∗)(d1 − b1), ϕPy1Dz > Dy1dz + d1Dz,

d1 > ϕPy1 . (3.2.33)

Therefore, we have the following result.

Lemma 3.2.8. Assume that the conditions in equation (3.2.32)-(3.2.33) holds. Then

the positive constant solution (X∗, Y ∗1 , Z
∗) of system (3.1.2) is locally asymptotically

stable when τ = 0.

Next, we examine when equation in (3.2.31) has pure imaginary roots λ = ±iω

with ω real number and ω > 0. This is given by the following lemma.

Lemma 3.2.9. The characteristic equation associated to equation in (3.2.31) has pure

imaginary roots.

Proof: If λ = iω be a root of the characteristic equation (3.2.31) where ω > 0,

then we have

−ω2kt +K1iω + Y ∗1 c (b1 − d1)Dz(cos(ωτ) + i sin(ωτ)) +K2 = 0. (3.2.34)
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Separating real and imaginary parts, we have the following two equations

−ω2kt + Y ∗1 c (b1 − d1)Dz cos(ωτ) +K2 = 0,

K1ω + Y ∗1 c (b1 − d1)Dz sin(ωτ)) = 0. (3.2.35)

Equations in (3.2.35) give possible values of τ and ω for which the characteristic equa-

tion in (3.2.31) can have pure imaginary roots. To see it, we square each equation and

we obtain

(Y ∗1 c(b1 − d1)Dz)2 cos2(ωτ) = (ω2kt −K2)2,

(Y ∗1 c (b1 − d1)Dz)2 sin2(ωτ)) = (K1ω)2. (3.2.36)

Adding the two equations, we obtain

2(Y ∗1 c(b1 − d1)Dz)2 = (ω2kt −K2)2 + (K1ω)2, (3.2.37)

which implies that

ω4 +
(K2

1 − 2ktK2)

kt
ω2 +

K2
2 − 2(Y ∗1 c(b1 − d1)Dz)2

kt
= 0. (3.2.38)

Hence,

ω2 =
− (K2

1−2ktK2)

kt
±
√(

(K2
1−2ktK2)

kt

)2

− 4
K2

2−2(Y ∗1 c(b1−d1)Dz)2

kt

2
. (3.2.39)

Thus, in view of the first equation in (3.2.36) and equation in (3.2.39), we obtain

τ ∗j =
1

ω
cos−1

((
(ω2kt −K2)

Y ∗1 c (b1 − d1)Dz

)
+ 2jπ

)
, (3.2.40)

as the critical values of τ , for j = 0, 1, 2, . . . , and this complete the proves. This gives

us the following lemma.
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Lemma 3.2.10. Assume that the conditions in equation (3.2.32) and (3.2.33) hold.

Then for j ∈ N0 the following statements are true.

(i) Equation in (3.2.31) has a pair of purely imaginary roots ±iω when τ = τ ∗j and

there are no other roots of equation in (3.2.31) with zero real parts.

(ii) All the roots of equation in (3.2.31) have negative real parts when τ ∈ [0, τ ∗),

where τ ∗ = τ ∗0 .

We have verified the hypotheses for Hopf bifurcation to occur at τ ∗ = τ ∗0 except for

the transversality condition. Differentiate the second equation in (3.2.31) with respect

to τ , we have

Re
(
∂λ2

2kt +K1λ2 + Y ∗1 c (b1 − d1)Dz exp(−λ2τ) +K2

∂τ

) ∣∣∣∣∣
λ=iω,τ=τ∗0

= Re (ωY ∗1 c (b1 − d1)Dz sin(ωτ ∗0 )) > 0. (3.2.41)

Thus, the following results.

Lemma 3.2.11. The transversality condition

Re
(
∂λ2

2kt +K1λ2 + Y ∗1 c (b1 − d1) ςPz exp(−λ2τ) +K2

∂τ

) ∣∣∣∣∣
λ=iω,τ=τ∗0

> 0,

is satisfied.

In the next section, we derive our efficient numerical method.

3.3 Construction and analysis of the numerical method

In this section, we describe the derivation of the fitted numerical method for solving

the system in equation (3.1.2). We determine an approximation to the derivatives of

the functions X(t, x), Y1(x, t) and Z(t, x) with respect to the spatial variable x.
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Let Nx be a positive integer. Discretize the interval [0, xf ] through the points

0 = x0 < x1 < x2 < · · · < xNx = xf ,

where the step-size ∆x = xj+1−xj = xf/Nx, j = 0, 1, . . . , xNx . Let Xj(t), (Y1)j(t),Zj(t)

denote the numerical approximations of X(t, j), Y1(t, j), Z(t, j), then we approximate

the second order spatial derivatives by

∆X(t, xj) ≈
Xj+1 − 2Xj + Xj−1

(φX)2
, ∆Y1(t, xj) ≈

(Y1)j+1 − 2(Y1)j + (Y1)j−1

(φY1)2
,

∆Z(t, xj) ≈
Zj+1 − 2Zj + Zj−1

(φZ)2
, (3.3.1)

where,

(φX)2 =
4

(σX)
sin2

(
(σX)j∆x

4

)
, (φY1)2 =

(1− exp ((σY1)∆x)

(σY1)
,

(φZ)2 =
(1− exp ((σZ)∆x)

(σZ)
,

and

(σX) =

√
(dx − aϕPx)
Dx

, (σY1) =

√
d1

Dy1

, (σZ) =

√
dz
Dz
. (3.3.2)

It is obvious that all the φX → ∆x, φY1 → ∆x, φZ → ∆x as ∆x→ 0.

Let Nt be a positive integer and ∆t = T/Nt where 0 < t < T . Discretizing the time

interval [0, T ] through the points

0 = t0 < t1 < · · · < tNt = T,

where,

tn+1 − tn = ∆t, n = 0, 1, . . . , (tNt − 1).
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We approximate the time derivatives at tn by

dXj(tn)

dt
≈
X n+1
j −X n

j

ψX
,
d(Y1)j(tn)

dt
≈

(Y1)n+1
j − (Y1)nj
ψY1

,

dZj(tn)

dt
≈
Zn+1
j −Znj
ψZ

, (3.3.3)

where,

ψX = (exp((dx − aϕPx)∆t)− 1)/(dx − aϕPx), ψY1 = (1− exp(−d1∆t))/d1,

ψZ = (1− exp(−dz∆t))/dz, (3.3.4)

where we see that all the ψX → ∆t, ψY1 → ∆t, ψZ → ∆t as ∆t→ 0.

The denominator functions in (3.3.1) and (3.3.3) are used explicitly to remove the

inherent stiffness in the central finite derivatives parts and are derived by using the

theory of nonstandard finite difference methods, see, e.g., [84, 103, 104] and references

therein.

Combining the equation (3.3.1) with equation (3.3.3) for time derivatives, we obtain

Xn+1
j −Xnj
ψX

= Dx
Xn+1
j+1 −2Xn+1

j +Xn+1
j−1

(φX)2 + X n
j

(
aϕPx − dx − (a− dx)

Xnj +(Y1)nj +Znj
kh

)
,

(Y1)n+1
j −(Y1)nj
ψY1

= Dy1

(Y1)n+1
j+1−2(Y1)n+1

j +(Y1)n+1
j−1

(φY1
)2

+(Y1)n1

(
b1ϕPy1 min

(
1, g

Znj −α(Y1)nj
(Y1)nj

)
− d1 − (b1 − d1)

(Y1)nj +Znj
kt

)
,

Zn+1
j −Znj
ψZ

= Dz
Zn+1
j+1 −2Zn+1

j +Zn+1
j−1

(φZ)2 + cϕPz(HY1)nj − dzZnj ,

X n
1 = X n

−1, (Y1)n1 = (Y1)n−1, Zn1 = Zn−1,

X n
xNx

= X n
xNx−1, (Y1)nxNx = (Y1)nxNx−1, ZnxNx = ZnxNx−1,

X 0
j = 9.00, (Y1)0

j = 0.01, Z0
j = 0.001,



(3.3.5)
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where, the no-flux boundary conditions are discretised by means of the central finite

difference [21], j = 1, 2, . . . , xNx − 1, n = 0, 1, . . . , tNt − 1 and

(HY1)nj ≈ Y1(tn − τ, xj), (3.3.6)

is denoting the history functions corresponding to the equation in Y1.

The system in equation (3.3.5) can further be simplified as

− Dx
(φX)2X n+1

j−1 +
(

1
ψX

+ 2Dx
(φX)2

)
X n+1
j − Dx

(φX)2X n+1
j+1

= X n
j

(
1
ψX

+ aϕPx − dx − (a− dx)
Xnj +(Y1)nj +Znj

kh

)
,

− Dy1
(φY1

)2 (Y1)n+1
j−1 +

(
1
ψY1

+
2Dy1

(φY1
)2

)
(Y1)n+1

j − Dy1
(φY1

)2 (Y1)n+1
j+1

= (Y1)n1

(
1
ψY1

+ b1ϕPy1 min
(

1, g
Znj −α(Y1)nj
Y1)nj

)
− d1 − (b1 − d1)

(Y1)nj +Znj
kt

)
,

− Dz
(φZ)2Zn+1

j−1 +
(

1
ψZ

+ 2Dz
(φZ)2

)
Zn+1
j − Dz

(φZ)2Zn+1
j+1

= cϕPz(HY1)nj +
(

1
ψZ
− dz

)
Znj ,



(3.3.7)

which can be written as a tridiagonal system given by

(A)xX n+1
j = X n

j

(
1
ψX

+ aϕPx − dx − (a− dx)
Xnj +(Y1)nj +Znj

kh

)
,

(A)y1(Y1)n+1
j

= (Y1)nj

(
1
ψY1

+ b1ϕPy1 min
(

1, g
Znj −α(Y1)nj
Y1)nj

)
− d1 − (b1 − d1)

(Y1)nj +Znj
kt

)
,

(A)zZn+1
j = cϕPz(HY1)nj +

(
1
ψZ
− dz

)
Znj ,


(3.3.8)
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where, j = 1, . . . , xNx − 1, n = 0, . . . , tNt − 1 and

(A)x = Tri
(
− Dx

(φX)2 ,
1
ψX

+ 2Dx
(φX)2 ,− Dx

(φX)2

)
,

(A)y1 = Tri
(
− Dy1

(φY1
)2 ,

1
ψY1

+
2Dy1

(φY1
)2 ,−

Dy1
(φY1

)2

)
,

(A)z = Tri
(
− Dz

(φZ)2 ,
1
ψZ

+ 2Dz
(φZ)2 ,− Dz

(φZ)2

)
.


On the interval [0, τ ], the delayed arguments tn− τ belong to [−τ, 0], and therefore the

delayed variables in equation (3.3.5) are evaluated directly from the history functions

Y 0
1 (t, x) as

(HY1)nj ≈ Y 0
1 (tn − τ, xj), (3.3.9)

and equation (3.3.8) becomes

(A)xX n+1
j = X n

j

(
1
ψX

+ aϕPx − dx − (a− dx)
Xnj +(Y1)nj +Znj

kh

)
,

(A)y1(Y1)n+1
j

= (Y1)nj

(
1
ψY1

+ b1ϕPy1 min
(

1, g
Znj −α(Y1)nj
Y1)nj

)
− d1 − (b1 − d1)

(Y1)nj +Znj
kt

)
,

(A)zZn+1
j = cϕPz(Y)0

1(tn − τ, xj) +
(

1
ψZ
− dz

)
Znj .


(3.3.10)

Let s be the largest integer such that τs ≤ τ . By using the system equation (3.3.10)

we can compute X n
j , (Y1)nj ,Znj for 1 ≤ n ≤ s. Up to this stage, we interpolate the data

(t0, (Y1)0
j), (t1, (Y1)1

j), . . . , (ts, (Y1)sj),

using an interpolating cubic Hermite spline ιj(t). Then

(Y1)nj = ιY1(tn, xj),
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for all n = 0, 1, . . . , s and j = 1, 2, . . . , xNx − 1.

For n = s+1, s+2, . . . , tNt−1, when we move from level n to level n+1, we extend

the definitions of the cubic Hermite spline ιj(t) to the point (tn + k, (Y1)nj ). Then the

history term (HY1)nj can be approximated by the functions ιj(tn − τ) for n ≥ s. This

implies that,

(HY1)nj ≈ (ιY1)j(tn − τ), (3.3.11)

and equation (3.3.10) becomes

(A)xX n+1
j = X n

j

(
1
ψX

+ aϕPx − dx − (a− dx)
Xnj +(Y1)nj +Znj

kh

)
,

(A)y1(Y1)n+1
j = (Y1)nj

(
1
ψY1

+ b1ϕPy1 min
(

1, g
Znj −α(Y1)nj
Y1)nj

)
− d1

)
−(Y1)n1

(
(b1 − d1)

(Y1)nj +Znj
kt

)
,

(A)zZn+1
j = cϕPz(ιY1)j(tn − τ) +

(
1
ψZ
− dz

)
Znj ,


(3.3.12)

where,

ιY1(tn − τ) = [(HY1)n1 , (HY1)n2 . . . , (HY1)nNx−1]′.

Our FOFDM is then consists of equations (3.3.5)-(3.3.12). Rewriting the scheme in

(3.3.12) in the form of the system of equations, we obtain

AxX = Fx,

Ay1Y1 = Fy1 ,

AzZ = Fz,


(3.3.13)
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where,

Fx = X n
j

(
1
ψX

+ aϕPx − dx − (a− dx)
Xnj +(Y1)nj +Znj

kh

)
,

Fy1 = (Y1)nj

(
1
ψY1

+ b1ϕPy1 min
(

1, g
Znj −α(Y1)nj
Y1)nj

)
− d1 − (b1 − d1)

(Y1)nj +Znj
kt

)
,

Fz = cϕPz(ιY1)j(tn − τ) +
(

1
ψZ
− dz

)
Znj .


Let the functions

X(x, t), Y1(x, t), Z(x, t),

and their partial derivatives with respect to both t and x be smooth such that they

satisfy ∣∣∣∣∂i+jX(t, x)

∂tixj

∣∣∣∣ ≤ ΥX ,

∣∣∣∣∂i+jY1(t, x)

∂tixj

∣∣∣∣ ≤ ΥY ,∣∣∣∣∂i+jZ(t, x)

∂tixj

∣∣∣∣ ≤ ΥZ , ∀i, j ≥ 0, (3.3.14)

where,

ΥX ,ΥY ,ΥZ ,

are constant that are independent of the time and space step-sizes. Then we see that

the truncation errors are (ςx)
n
j , (ςy1)nj , (ςz)

n
j are given by

(ςx)
n
j = (A)xX − Fx = (Ax(X −X ))nj ,

(ςy1)nj = (A)y1Y1 − Fy1 = (Ay1(Y1 − Y1))nj ,

(ςz)
n
j = (A)zZ − Fz = (Az(Z −Z))nj .


(3.3.15)
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Therefore,

maxj,n |(Xn
j −X n

j | ≤ ||(A)−1
x ||maxj,n |(ςx)nj |,

maxj,n |(Y1)nj − (Y1)nj | ≤ ||(A)−1
y1
||maxj,n |(ςy1)nj |,

maxj,n |(Zn
j −Znj | ≤ ||(A)−1

z ||maxj,n |(ςz)nj |,


(3.3.16)

where,

maxj,n |(ςx)nj | ≤ ∆t
2
|Xtt(ξ, xj)|+ (∆x)2

12
|Xxxxx(tn, ζ)| ,

maxj,n |(ςy1)nj | ≤ ∆t
2
|(Y1)tt(ξ, xj)|+ (∆x)2

12
|(Y1)xxxx(tn, ζ)| ,

maxj,n |(ςz)nj | ≤ ∆t
2
|Ztt(ξ, xj)|+ (∆x)2

12
|Zxxxx(tn, ζ)| ,


(3.3.17)

for tn−1 ≤ ξ ≤ tn+1, xj−1 ≤ ζ ≤ xj+1. Then by (3.3.14), inequalities in (3.3.17) implies

that

maxj,n |(ςx)nj | ≤
(

∆t
2

+ (∆x)2

12

)
ΥX ,

maxj,n |(ςy1)nj | ≤
(

∆t
2

+ (∆x)2

12

)
ΥY ,

maxj,n |(ςz)nj | ≤
(

∆t
2

+ (∆x)2

12

)
ΥZ ,


(3.3.18)

for tn−1 ≤ ξ ≤ tn+1, xj−1 ≤ ζ ≤ xj+1, and by [117], we have

||(A)−1
x || ≤ Ξx, ||(A)−1

y1
|| ≤ Ξy1 , ||(A)−1

z || ≤ Ξz. (3.3.19)

Therefore, using (3.3.17) and (3.3.18) into (3.3.16) we obtain the following results.
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Theorem 3.3.1. Let

Fx(x, t), Fy1(x, t), Fz(x, t),

be sufficiently smooth functions so that X(x, t), Y1(x, t), Z(x, t) ∈ C∞([0, tNt ]×[0, xNx ]).

Let (X n
j , (Y1)nj ,Znj ), j = 1, 2, . . . xNx , n = 1, 2, . . . tNt be the approximate solutions to

(3.1.2), obtained using the FOFDM with X 0
j = X0

j , (X1)0
j = (Y1)0

j ,Z0
j = Z0

j ,. Then

there exists Ξx,Ξy1 ,Ξz independent of the step sizes ∆t and ∆x such that

maxj,n |(ςx)nj | ≤
(

∆t
2

+ (∆x)2

12

)
ΥX ,

maxj,n |(ςy1)nj | ≤
(

∆t
2

+ (∆x)2

12

)
ΥY ,

maxj,n |(ςz)nj | ≤
(

∆t
2

+ (∆x)2

12

)
ΥZ .


(3.3.20)

This, concludes the analysis of our numerical method.

3.4 Numerical results and discussions

In this section, we present our numerical results with respect to the maximum prolifer-

ation rate of tumor cells and blood supply limitation indicator to help visualize when

there are indeed limiting healthy and tumor cells growth. In order to investigate it,

we implement our numerical method such that the stability conditions given in Theo-

rems 3.2.1-3.2.2 are satisfied. Due to the unavailability of diffusion values, we set the

diffusion constants Dx = 10−3,Dy1 = 20−4,Dx = 30−5. Following Elser et al. [37], we

present our numerical results as follows.

In Figure 3.5.1, we present the case when the birth rate of healthy cell are decreased

than that of parenchyma cell (a < b1) and death rate of healthy cell is increased than

that of parenchyma cell (dx > d1) for (a) no treatment blocking phosphorus uptake by

tumor cells, (b) lowered phosphorus P by 20%, (c) increased the time delay τ from 7
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to 11 days and in (d) blocked tumor cell uptake of phosphorus by half.

In Figure 3.5.2, we present the case when the birth and death rates of healthy

and parenchyma cells are equal (a = b1 and dx = d1) for (a) no treatment blocking

phosphorus uptake by tumor cells, (b) lowered phosphorus P by 20%, (c) increased the

time delay τ from 7 to 11 days and in (d) blocked tumor cell uptake of phosphorus by

half.

In Figure 3.5.3, we present the case when the birth of healthy cells are increased

than that of a parenchyma cell (a > b1) and increased death rate of healthy cells than

that of a parenchyma cell (dx < d1) for (a) no treatment blocking phosphorus uptake

by tumor cells, (b) lowered phosphorus P by 20%, (c) increased the time delay τ from

7 to 11 days and in (d) blocked tumor cells uptake of phosphorus by half.

The numerical solutions in Figure 3.5.1 presents a slight growth of healthy cells

and fast growth of tumor cell during the first 40 days from the infection date. We

also see that after 40 days of infection, both cells converges to their equilibria, with

a slight decrease in their growth. This is due to the competition for resources among

cells, presented by this case. After 40 days the process of vascularization starts to grow

because the tumor cell has reached some genetically size. We also see that lowered

phosphorus and blocked tumor cell uptake of phosphorus do not differ from the no

treatment blocking phosphorus uptake by tumor cells, whereas the above features are

postponed when we increased the time delay τ from 7 to 11 days.

The numerical solutions in Figure 3.5.2 presents an increase growth of healthy

cells and tumor cell during the first 40 days from the infection date. We also see

that after 40 days of infection, both cells converges to their equilibria, with a slight

increase for healthy cells and a decrease growth of tumor cells. This is due to the

competition for resources among cells presented by this case. After 40 days the process

of vascularization starts to grow because the tumor cell has reached some genetically

size. We note that lowered phosphorus and blocked tumor cell uptake of phosphorus do

not differ from the no treatment blocking phosphorus uptake by tumor cells, whereas

the above features are postponed when we increased the time delay τ from 7 to 11
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days.

The numerical solutions in Figure 3.5.3 presents an increase growth of healthy cells

as compare to the previous cases and a drastic decrease for tumor cell during the first

40 days from the infection date. After 40 days of infection, both cells converges to their

respective equilibria, with an increase of healthy cells and a decrease growth of tumor

cell. This is due to the competition for resources among cells presented by this case.

After 40 days the process of vascularization starts to grow, thus causing tumor cell to

grow gradually. We note that lowered phosphorus and blocked tumor cell uptake of

phosphorus do not differ from the no treatment blocking phosphorus uptake by tumor

cell, whereas the above features are postponed when we increased the time delay τ

from 7 to 11 days.

3.5 Conclusion

In this chapter, we have considered the biological stoichiometry of tumor dynamics,

vascularized by a single solid tumor growing within the confinement of an organ and the

environment provided by an organ. We examined the presence of positive equilibrium

solutions for all the possible limiting cases with respect to proliferation rate of tumor

cell and determine the existence of Hopf bifurcation. Thus, our numerical solutions

clearly present that the biological stoichiometry of tumor dynamics is real and can

contribute a great deal toward the development of therapeutically drugs which can

contribute toward healing tumor and tumor related diseases. Thus, our approach in

this work should serve as a first numerical attempt to incorporate the detailed effects of

healthy and tumor cells competing for both space and essentials, but limiting nutrients

within a host.
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Table 3.5.1: Values of the parameters used in the model (3.3.5) [37]

m = 20.00 n = 10.00 kh = 10.00
kt = 3.00 f = 0.6667 P = 150.00
m1 = 20.00 β1 = 1.00 c = 0.005
dz = 0.20 g = 100.00 α = 0.05
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Figure 3.5.1: Numerical solution for the dynamics of homogeneous tumor growth
model, when a = 3, dx = 2, b1 = 6, d1 = 0.5.
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Figure 3.5.2: Numerical solution for the dynamics of homogeneous tumor growth
model, when a = b1 = 6, dx = d1 = 1.

We believe that we have gathered essential facts concerning the basic understanding

of tumour cells with regard to the models considered in Chapter 1. Thus, Chapter 4,

we consider the dynamics when a host has a double infection.
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Figure 3.5.3: Numerical solution for the dynamics of homogeneous tumor growth
model, when a = 6, dx = 0.5, b1 = 3, d1 = 2.
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Chapter 4

A fitted operator for a mathematical

model arising in HIV related

cancer-immune system dynamics

The effect of disease and virus such as cancer and HIV among our societies is evident.

Thus, from the mathematical point of view many models have been developed with

the aim to contribute towards understanding the dynamics of diseases. In this chap-

ter, we begin by extending a system of delay differential equations (DDEs) model of

HIV related cancer-immune system to a system of delay partial differential equations

(DPDEs) model of HIV related cancer-immune dynamics, we are contributing toward

the understanding of the dynamics more clearly. Thus, we analyse the DPDEs and

use the qualitative features of the extended model to derive, analyse and implement

a fitted operator finite difference method (FOFDM) and present our results. This

FOFDM is analyzed for convergence and it is seen that it has has second-order accu-

racy. We present some numerical results for some cases of the the model to illustrate

the reliability of our numerical method.

88
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4.1 The model

Assuming that the cancer-immune system interactions is governed by cancer cells pro-

liferation and their interaction with the immune system, our first aim in this chapter

is to present the fact that in the absence of the cancer and HIV infections, the gov-

erning dynamics of the extended model tends to the expected physiological level and

derive the corresponding stability conditions of the extended model. Our second aim

is to develop a fitted operator numerical method, analyse, implement and present our

numerical results with regard to the governing dynamics.

Thus, as a way forward, toward understanding the connection between HIV/AIDS

and certain cancers diseases, Foryś and Poleszczuk in [41] derived a system of non-

linear delay-differential equations (DDEs) model of HIV related cancer-immune system

dynamics as

Tt = r1T (t)− k1T (t)E(t),

Et = r2T (t) + α− µ1E(t)− k1T (t)E(t) + (1− ε)k1T (t− τ)E(t− τ)

−k′2E(t)I(t)− k3E(t)V (t),

It = k′2E(t)I(t) + k3E(t)V (t)− µ2I(t),

Vt = NδI(t)− cV (t),



(4.1.1)

where, the subscript t denotes the partial derivative with respect to time t, T (t),

E(t), I(t), V (t) denote concentration of cancer cells, healthy effector cells (mainly

CD4+ t-cells), effector cells infected by the HIV virus, and free HIV viral particles

in that order. Since the dynamics of cancer cells are assumed to be governed by

cancer cells proliferation, their interactions with the immune system, then the term

describing the influence of effector cells on cancer cells is taken proportional to the

product of both concentrations [64, 81]. Thus, the parameters r2, α, µ1 denote the
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antigenicity (difference between tumor and normal tissue) of the tumor, normal rate

of the flow of mature effector cells into the region of cancer cells localization [67],

rate of elimination of effector cells, in that order. It is understood that the process

of effector cells regeneration after the injection of lytic granules into the target cells

causes the cytotoxic T -cells to kill target cells mainly using lytic granules containing

perforin, granzymes and TNF , by binding to the surface of the target cell. This trigger

the extracellular release of perforin molecules from the granules. Thus, polymerize to

form trans-membrane channels which may facilitate lysis of the target by permitting

entry of granzymes which induce apoptotic cell death through activation of the caspase

protease cascade and ultimate fragmentation of nuclear DNA [34]. As a result, effector

cells should regenerate lytic granules to this effect. Thus, the term τ denotes the time

needed by effector cells to regenerate lytic granules and the time required for some

small percentage (ε) to breach into the target T -cells.

The term describing the release of the new free viral particles by the infected cells

is multiplied by the additional parameter N to represent the number of those particles

released by the single infected cell. Furthermore, Foryś and Poleszczuk in [41] assumed

that the rate of change of the free HIV viral particles is high relative to the rate

of change of the concentration of considered cellular populations. Hence, Foryś and

Poleszczuk in [41] assumed that the rate of change of the free HIV viral particles is high

relative to the rate of change of the concentration of considered cellular populations.

Therefore, during the whole process dV/dt ≡ 0, that is V (t) ≡ Nδ/cI(t). This implies

that the system of non-linear delay differential equations (DDEs) in equation (4.1.1)
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reduces to the following system of three non-linear delay differential equations (DDEs)

Tt = r1T (t)− k1T (t)E(t),

Et = r2T (t) + α− µ1E(t)− k1T (t)E(t) + (1− ε)k1T (t− τ)E(t− τ)

−k′2E(t)I(t),

It = k2E(t)I(t)− µ2I(t),



(4.1.2)

where,

k2 = k′2 + k3
Nδ

c
.

Since their model take no spacial effects, then in this chapter we extend the system of

DDEs in equation (4.1.2) to a system of delayed partial differential equations (DPDEs)

as

Tt − d1∆T = r1T (t)− k1T (t)E(t),

Et − d2∆E = r2T (t) + α− µ1E(t)− k1T (t)E(t)

+(1− ε)k1T (t− τ)E(t− τ)− k′2E(t)I(t),

It − d3∆I = k2E(t)I(t)− µ2I(t),

∂T
∂ν

(0, t) = ∂E
∂ν

(0, t) = ∂I
∂ν

(0, t) = 0,

∂T
∂ν

(xf , t) = ∂E
∂ν

(xf , t) = ∂I
∂ν

(xf , t) = 0, on (x, t) ∈ Ω× (0,∞),

Xj(x, 0) = ηj(x), on (x, t) ∈ Ω̄× [−τ, 0], j = 1, 2, 3,



(4.1.3)
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where d1, d2, d3 denote the cancer cells, healthy effector cells, HIV-infected cells con-

stant diffusion coefficients, ∆ denotes the Laplace operator, Xj(x, t) = [T,E, I], j =

1, 2, 3, Ω ∈ R3 denotes a bounded domain with smooth boundary ∂Ω and ν denotes

the outward unit normal on ∂Ω. The initial function ηj(x, t) is Holder continuous on

[−τ, 0] and the no-flux boundary conditions are imposed to ensure the exclusion of

external effects. More details on reaction rates can be found in [41].

Many mathematical models such as those in [16, 17, 32, 81, 82, 88, 89, 107] has

been derived in order to shed more light as to how the dynamics of such virus takes

place. While the authors made the utmost efforts to include whatever we could, we

would like to apologize if there are any omissions which are totally unintentional.

In this chapter, our focus is on the model in which the issue of immune reaction

against tumor and HIV dissemination arising from the work of Foryś and Pleszczuk

in [41], in vivo. We also would like to note the work done by Nunnari et al. [92],

Resclgnow and Delisi [111] and by Rong et al. [113], where a significant increase

in the incidence of neoplasms accompany the acquired immunodeficiency syndrome

(AIDS), a delay in the formation of killer lymphocytes was introduced to allow tumor

development from a single cell, steps between viral infection of CD4+ t-cells and the

production of HIV−1 visions have been incorporated by an eclipse phase, an HIV−1

dynamical model was developed which incorporate AIDS-related cancer cells in which

cancer cells, healthy CD4+ t-cells lymphocytes and infected CD4+ t-cells lymphocytes

can have six equilibria, in that order.

Assuming that the cancer-immune system interactions dynamics is governed by

cancer cells proliferation and their interaction with the immune system, thus our first

aim in this chapter is to present the fact that in the absence of the cancer and HIV

infections, the governing dynamics of the extended model tends to the expected physi-

ological level and derive the corresponding stability conditions of the extended model.

Our second aim is to develop a fitted operator numerical method, analyse, implement

and present our numerical results with regard to the governing dynamics.

The rest of chapter is organized in the following way. In Section 4.2, we analyse
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the extended model, whereas in Section 4.3 we derive, analyse our numerical method.

We present our numerical results in Section 4.4 and conclude the chapter with Section

4.5.

4.2 Mathematical analysis of the model

First and foremost, we verify that the extended model in equation (4.1.3) reflects the

normal physiological level (α/µ1) of the healthy effector cells E, as it is determined by

Foryś and Poleszczuk in [41]. To do that, we solve equation (4.1.3) in the absence of

the cancer cells (T ≡ 0) and HIV-infected effector cells (I ≡ 0). Thus, in such absence

the system of DPDEs in equation (4.1.3) reduces to,

dE

dt
− d2∆E + µ1E = α. (4.2.1)

Following the techniques in [23], we have

E(x, t) = u(x) + w(x, t), (4.2.2)

where, u := f(x) is independent of the time t and satisfies the boundary value problem

(BVP)

−d2uxx + µ1u = α, with u′(0) = u′(xf ) = 0, (4.2.3)

and w := f(x, t), which satisfies the BVP

wt = d2wxx − µ1w, with w′(0) = w′(xf ) = 0 and w(x, 0) = −u(x). (4.2.4)
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Since the solution for the homogeneous ordinary differential equation (ODE) in equa-

tion (4.2.3) is

uc(x) = c1 exp

(
−
√
µ1

d2

x

)
+ c2 exp

(√
µ1

d2

x

)
, (4.2.5)

then we let the corresponding particular solution to the ODE in equation (4.2.3) to be

up(x) = c3x+ c4, (4.2.6)

where, c1, c2, c3, c4, are constants to be determined. Thus,

µ1(c3x+ c4) = α,⇒ µ1c3x+ µ1c4 = α. (4.2.7)

Equating terms of same coefficients in equation (4.2.7), we find c3 = 0 and c4 = α
µ1
,

which implies that the solution to the BVP in equation (4.2.3) becomes

u(x) = c1 exp

(
−
√
µ1

d2

x

)
+ c2 exp

(√
µ1

d2

x

)
+
α

µ1

. (4.2.8)

Using the boundary conditions in equation (4.2.3) we find

u′(x) = −c1

√
µ1

d2

exp

(
−
√
µ1

d2

x

)
+ c2

√
µ1

d2

exp

(√
µ1

d2

x

)
, (4.2.9)

so that at x = 0, we have

u′(0) = −c1

√
µ1

d2

+ c2

√
µ1

d2

= 0, (4.2.10)

which implies that

c1 = c2. (4.2.11)
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Similarly, At x = xf , we find

u′(xf ) = −c1

√
µ1

d2

exp

(
−
√
µ1

d2

xf

)
+ c2

√
µ1

d2

exp

(√
µ1

d2

xf

)
= 0, (4.2.12)

which is equivalent to

c2

√
µ1

d2

exp

(
2

√
µ1

d2

xf

)
= c1

√
µ1

d2

. (4.2.13)

In view of equation (4.2.11), equation (4.2.13) becomes

c2 exp

(
2

√
µ1

d2

xf

)
= c2,⇒ c2 = 0. (4.2.14)

Hence, the solution in equation (4.2.8) becomes,

u(x) =
α

µ1

. (4.2.15)

Let w(x, t) = X(x)T (t), then applying the method of separation of variables [23] to

the BVP in (4.2.3), we have

X(x)T ′(t) = T (t) (d2X
′′(x)− µ1X(x)) ,

⇒ T ′(t)

T (t)
=
d2X

′′(x)− µ1X(x)

X(x)
= −%2, (4.2.16)

where % is an arbitrary separation constant. Solving for T (t) we have

d

dt

(
T (t) exp(%2t)

)
= 0, (4.2.17)

which is equivalent to

T (t) exp(%2t) = c5, (4.2.18)
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where c5 is a constant of integration. Hence,

T (t) = c5 exp(−%2t). (4.2.19)

Solving for X(x) in equation (4.2.16), we have

X ′′(x) +
(%2 − µ1)

d2

X(x) = 0,

⇒ X(x) = c6 cos

√(%2 − µ1)

d2

x


+c7 sin

√(%2 − µ1)

d2

x

 . (4.2.20)

Thus,

w(x, t) = c5 exp(−%2t)

c6 cos

√(%2 − µ1)

d2
x

+ c7 sin

√(%2 − µ1)

d2
x

 . (4.2.21)

Applying the boundary conditions in equation (4.2.3) to the equation in (4.2.21), we

have

w′(x, t) = −c5c6

√
(%2 − µ1)

d2

exp(−%2t) sin

√(%2 − µ1)

d2

x


+c7c5

√
(%2 − µ1)

d2

exp(−%2t) cos

√(%2 − µ1)

d2

x

 . (4.2.22)

Assuming that c5 6= 0, then at x = 0, equation (4.2.22) becomes

0 = c7c5

√
(%2 − µ1)

d2

exp(−%2t),⇒ c7 = 0. (4.2.23)
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Thus, at x = xf , we see that c6 6= 0, so that

0 = −c5c6

√
(%2 − µ1)

d2

exp(−%2t) sin

√(%2 − µ1)

d2

x


= sin

√(%2 − µ1)

d2

xf

 = 0. (4.2.24)

Hence, for j = 1, 2, 3, . . . , we have from equation (4.2.24) that

√
(%2 − µ1)

d2

xf = ±jπ. (4.2.25)

This implies that

w(x, t) = cj exp(−%2t) sin (jπx) , for j = 1, 2, 3, . . . . (4.2.26)

Thus, in view of the solutions in (4.2.15) and (4.2.26) the equation in (4.2.2) clearly

present the fact that in the absence of the tumor and HIV-infected effector cells, the

solution E(t) in equation (4.2.2) of the extended model in equation (4.1.3) converges to

the normal physiological level α/µ1 as t → ∞. This implies that our extended model

in equation (4.1.3) reflects the normal physiological level (α/µ1) of the healthy effector

cells E, as reported by Foryś and Poleszczuk in [41] for the model in equation (4.1.1).

4.2.1 Stability analysis of the equilibria when τ = 0

When the regeneration of lytic granules by the effector cells and breaching of some

effector cells into T -cells happens instantaneously, Foryś and Poleszczuk in [41] es-

tablished that when there is no HIV-infected cells, the set D = R2
+ is invariant for

system (4.1.3) at the unique strictly positive steady state (T̄ , Ē) = ( µ1r1−αk1

k1(r2−εr1)
, r1
k1

),

which implies that the immune system is capable to successfully prevent further cancer

development. Therefore, for every solution in D there is E(t) ≤ max{E(0), r2
εk1
, r1
k1
},
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such that, if r1 >
αk1

µ1
,

• for ε < r2
r1
, then the unique positive steady state (T̄ , Ē) is globally stable in D,

• for ε > r2
r1

there is no positive steady state as T (t)→∞, ∀ t→∞.

Thus, the rate of tumor growth reflected by the parameter r1 and rate of cancer elim-

ination by the immune system, reflected by the parameter value k1, plays an integral

part in the investigation of the governing dynamics of our model. When the concentra-

tion of HIV-infected effector cells is present, Foryś and Poleszczuk in [41] showed that

the set D = R3
+ is invariant for system (4.1.3) at the unique strictly positive steady

state (T̄ , Ē, Ī) = ( µ1r1−αk1

k1(r2−εr1)
, r1
k1
, 0). That is, if r1 >

αk1

µ1
, then (0, αk1

µ1
, 0) is unstable. In

addition if r1 <
µ2k1

k2
,

• if ε < r2
r1

then ( µ1−αk1

k1(r2−εr1)
, r1
k1
, 0) is locally asymptotic stable,

• if α > µ1µ2

k2
, then (0, µ2

k2
, αk2−µ1µ2

µ2k2
) is locally asymptotic stable.

Thus, the above facts suggest that there is no steady state describing the coexistence

of the concentration of cancer and HIV-infected effector cells in vivo, even at the

instantaneous pace.

4.2.2 Stability analysis of the equilibria when τ > 0

In this section, we examine the case for the regeneration of lytic granules by the effector

cells and breaching of some effector cells into t-cells that require sometimes to take

place, with respect to the governing dynamics in the previous section. In view of the

governing dynamics mentioned in the previous section, we see that the equilibria for

the system in (4.1.3) is same as the equilibria of the corresponding reduced system

in equation (4.1.3). Therefore, it suffices to consider the stability for the positive

equilibria in equation (4.1.3). Thus, for the extended model in equation (4.1.3), the

jacobian matrix is

∆(λ, τ) =M+N ,
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where

M =


d1 0 0

0 d2 0

0 0 d3

 ,

N =


0 −k1T̄ 0

r2 − r1 + (1− ε)r1 exp(−λτ) −µ1 − k1T̄ + (1− ε)k1T̄ exp(−λτ) −k2Ē

0 0 k2Ē − µ2

 .

Hence, the characteristic matrix for the steady state for cancer-immune system inter-

actions with the concentration of HIV-infected effector cells is

det(∆(λ, τ)) = (d1 − λ)[(d2 − (µ1 + k1T̄ − (1− ε)k1T̄ exp(−λτ))− λ](d3 − (µ2 − k2Ē))− λ)

+k1T̄ [(r2 − r1 + (1− ε)r1 exp(−λτ)](d3 − (µ2 − k2Ē))− λ),

in which we let

W (λ, τ) = det(∆(λ, τ)) = (d3 − (µ2 − k2Ē))− λ)W2(λ, τ),

W2(λ, τ) = P (λ) +Q(λ) exp(−λτ), (4.2.27)

where, W2 denotes the characteristic quasi-polynomial for the reduced two-variable

system in (4.1.3) with I ≡ 0,

P (λ) = (d1 − λ)(d2 − (µ1 + k1T̄ )− λ) + (r2 − r1)k1T̄ ,

= λ2 + (µ1 + k1T̄ − (d1 + d2))λ+ (r2 − r1)k1T̄ + d1d2,

and

Q(λ) = k1T̄ (1− ε)(−λ+ r1),

= −k1T̄ λ+ εk1T̄ λ+ r1k1T̄ − εr1k1T̄ .
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Since exp(−λτ) > 0 for all values of λ and τ , then we have

P (λ) +Q(λ) = λ2 + (µ1 + εk1T̄ − (d1 + d2))λ+ r2k1T̄ − εr1k1T̄ + d1d2.

However, the Routh-Hurwitz criteria requires that, all the roots of (4.2.27) have nega-

tive real parts. This implies that

(d3 − (µ2 − k2Ē)) > 0, (µ1 + εk1T̄ − (d1 + d2)) > 0 and r2k1T̄ − εr1k1T̄ + d1d2 > 0,

which is equivalent to

µ2 < k2Ē − d3, (µ1 + εk1T̄ ) > d1 + d2, r2k1T̄ + d1d2 > εr1k1T̄ .

This enable us to obtain the following results.

Corollary 4.2.1. If r2k1T̄ + d1d2 > εr1k1T̄ and

• µ2 < k2Ē−d3, then if ( µ1−αk1

k1(r2−εr1)
, r1
k1

) is stable as a steady state in the two-variable

system, then ( µ1−αk1

k1(r2−εr1)
, r1
k1
, 0) is stable as a steady state for system in equation

(4.1.3),

• µ2 > k2Ē − d3, then ( µ1−αk1

k1(r2−εr1)
, r1
k1
, 0) is unstable.

Since there is no steady state describing the coexistence of the tumor cells with

the HIV infection in vivo and in view of the results in Corollary (4.2.1), we see that

the equilibria for the system in (4.1.3) under the governing dynamics are the same as

for the governing dynamics without the infection. Then in the next section it suffices

to examine the existence of Hopf bifurcation for the reduced (two-variable) system in

equation (4.1.3).

4.2.3 Existence of Hopf bifurcation

If r2k1T̄3 + d1d2 > εr1k1T̄3, then ( µ1−αk1

k1(r2−εr1)
, r1
k1

) is stable for τ = 0. Therefore, for

stability switches, we follow the ideas from Cooke and Driessche in [30], which state
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that the necessary condition for stability switches is the existence of purely imaginary

eigenvalue

λ = iω, ω > 0 for some threshold value τth.

If iω is an eigenvalue for τth, then

W2(iω, τth) = 0⇒ P (iω) = −Q(iω) exp(iωτth),

which implies

‖P (iω)‖ = ‖Q(iω)‖.

Defining

F (ω) = ‖P (iω)‖2 − ‖Q(iω)‖2,

where

F (y) = y2 + Ay +B, y = ω2,

A = ε(2− ε)k2
1T̄

2 + 2(µ1 − r2 + r1)k1T̄ + µ2
1 − 2(µ1 + k1T̄ )d1d2 + d2

1d
2
2 > 0,

B = (r2 − r1(2− ε))(r2 − r1ε)k
2
1T̄

2 > 0,

if r2 − r1ε > 0, ε < 1, and if

• r2 − r1(2− ε) > 0, then there is no positive roots of F .

• r2 − r1(2− ε) < 0, then F has exactly one positive root ȳ.

The above two facts enable us to state the following results.

Theorem 4.2.2. Assume that the steady state ( µ1−αk1

k1(r2−εr1)
, r1
k1

) exists. Then if
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• r2 − r1(2− ε) > 0, then (T̄ , Ē) is stable for any positive delay τ > 0.

• r2 − r1(2− ε) < 0, then there exists the threshold delay τth > 0 such that (T̄ , Ē)

is stable for τ < τth, loses stability at τ = τth in which Hopf bifurcation occurs.

Remark 4.2.3. From the analysis presented above it is obvious that the state

(
µ1 − αk1

k1(r2 − εr1)
,
r1

k1

, 0),

cannot recover stability for larger values of τ .

4.3 Derivation and analysis of the numerical method

In this section, we describe the derivation of the fitted numerical method for solving

the system in equation (4.1.3). We determine an approximation to the derivatives of

the functions T (t, x), E(t, x) and I(t, x) with respect to the spatial variable x.

Let Nx be a positive integer. Discretize the interval [0, xf ] through the points

x0 = 0 < x1 < x2 < · · · < xNx = xf ,

where the step-size ∆x = xj+1 − xj = xf/Nx, j = 0, 1, . . . , xf . Let Tj(t), Ej(t), Ij(t)

denote the numerical approximations of T (t, j), E(t, j), I(t, j), then we approximate

the second order spatial derivative terms by

∆T (t, xj) ≈
Tj+1 − 2Tj + Tj−1

φ2
T

, ∆E(t, xj) ≈
Ej+1 − 2Ej + Ej−1

φ2
E

,

∆I(t, xj) ≈
Ij+1 − 2Ij + Ij−1

φ2
j

,

(4.3.1)

where

φ2
T =

(exp (σT∆x)− 1)

σT
, (φE)j =

4

σ2
E

sinh2

(
σE∆x

2

)
, φI =

4

σ2
I

sinh2

(
σI∆x

2

)
,
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and

σT =

√
r1

d1

, σE =

√
µ1

d2

, σI =

√
µ2

d3

.

It is not that difficult to see that φT → ∆x, φE → ∆x and φI → ∆x, as ∆x→ 0.

Let Nt be a positive integer and ∆t = tf/Nt where 0 < t < tf . Discretizing the

time interval [0, tf ] through the points

0 = t0 < t1 < · · · < tNt = tf ,

where

tn+1 − tn = ∆t, n = 0, 1, . . . , (tf − 1).

We approximate the time derivative at tn by

dTj(tn)

dt
≈
T n+1
j − T nj
ψT

,
dEj(tn)

dt
≈
En+1
j − Enj
ψE

,
dIj(tn)

dt
≈
In+1
j − Inj
ψI

, (4.3.2)

where

ψT = (1− exp(−r1∆t)− 1)/r1, ψE = (exp(µ1∆t)− 1)/µ1, ψI = (exp(µ2∆t)− 1)/µ2,

where we see that ψT → ∆t, ψE → ∆t and ψI → ∆t as ∆t→ 0.

The denominator functions in (4.3.1) and (4.3.2) are used explicitly to remove the

inherent stiffness in the central finite derivatives parts and are derived by using the

theory of nonstandard finite difference methods, see, e.g., [84, 103, 104] and references

therein.

Combining the equation (4.3.1) for the spatial derivatives with equation (4.3.2) for
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time derivatives, we obtain

T n+1
j −T nj
ψT

= d1
T n+1
j+1 −2T n+1

j +T n+1
j−1

φ2
T

+ r1T nj − k1T nj Enj ,

En+1
j −Enj
ψE

= d2
En+1
j+1 −2En+1

j +En+1
j−1

φ2
E

+ r2T nj − µ1Enj − k1T nj Enj
+(1− ε)k1(HT )nj (HE)nj − k′2Enj Inj + α,

In+1
j −Inj
ψI

= d3
In+1
j+1 −2In+1

j +In+1
j−1

φ2
I

+ k2Enj Inj − µ2Inj ,

T n1 = T n−1, En1 = En−1, In1 = In−1,

T nxf = T nxf−1, Enxf = Enxf−1, Inxf = Inxf−1,

E0
j = 780, T 0

j = 10, I0
j = 10.



(4.3.3)

where

(HT )nj ≈ T (tn − τ, xj) and (HE)nj ≈ E(tn − τ, xj), (4.3.4)

are the history functions corresponding to the equations in T and E for j = 1, 2, . . . , xf−

1, n = 0, 1, . . . , tf − 1.

The system in equation (4.3.3) can be further be simplified as

− d1

φ2
T
T n+1
j−1 +

(
1
ψT

+ 2d1

φ2
T

)
T n+1
j − d1

φ2
T
T n+1
j+1 =

(
1
ψT

+ r1

)
T nj − k1T nj Enj ,

− d2

φ2
E
En+1
j−1 +

(
1
ψE

+ 2d2

φ2
E

)
En+1
j − d2

φ2
E
En+1
j+1 = r2T nj

+
(

1
ψE
− µ1

)
Enj − k1T nj Enj + (1− ε)k1(HT )nj (HE)nj − k′2Enj Inj + α,

− d3

φ2
I
In+1
j−1 +

(
1
ψI

+ 2d3

φ2
I

)
Inj − d3

φ2
I
In+1
j+1 = k2Enj Inj +

(
1
ψI
− µ2

)
Inj .


(4.3.5)

Consequently, the system in equation (4.3.5) can be written as a tridiagonal system
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given by

ATT n+1
j =

(
1
ψT

+ r1

)
T nj − k1T nj Enj ,

AEEn+1
j = r2T nj +

(
1
ψE
− µ1

)
Enj − k1T nj Enj + (1− ε)k1(HT )nj (HE)nj

−k′2Enj Inj + α,

AIIn+1
j = k2Enj Inj +

(
1
ψI
− µ2

)
Inj ,


(4.3.6)

where j = 1, . . . , xf − 1, n = 0, . . . , tf − 1 and

AT = Tri
(
− d1

φT )2 ,
1
ψT

+ 2d1

φ2
T
,− d1

φ2
T

)
, AE = Tri

(
d2

φ2
E
, 1
ψE

+ 2d2

φ2
E
, d2

φ2
E

)
,

AI = Tri
(
− d3

φ2
I
, 1
ψI

+ 2d3

φ2
I
,− d3

φ2
I

)
.


On the interval [0, τ ] the delayed arguments tn− τ belong to [−τ, 0], and therefore the

delayed variables in equation (4.3.6) are evaluated directly from the history functions

T 0(t, x), E0(t, x) as

(HT )nj ≈ T 0(tn − τ, xj) and (HE)nj ≈ E0(tn − τ, xj), (4.3.7)

and equation (4.3.6) becomes

ATT n+1
j =

(
1
ψT

+ r1

)
T nj − k1T nj Enj ,

AEEn+1
j = r2T nj +

(
1
ψE
− µ1

)
Enj − k1T nj Enj

+(1− ε)k1T
0(tn − τ, xj)E0(tn − τ, xj)− k′2Enj Inj + α,

AIIn+1
j = k2Enj Inj +

(
1
ψI
− µ2

)
Inj .


(4.3.8)

Let s be the largest integer such that τs ≤ τ . By using the system equation (4.3.8) we
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can compute T nj , Enj , Inj for 1 ≤ n ≤ s. Up to this stage, we interpolate the data

(t0, T 0
j ), (t1, T 1

j ), . . . , (ts, T sj ) and (t0, E0
j ), (t1, E1

j ), . . . , (ts, Esj ),

using an interpolating cubic Hermite spline ϕj(t). Then

T nj = ϕT (tn, xj) and Enj = ϕE(tn, xj),

for all n = 0, 1, . . . , s and j = 1, 2, . . . , xf − 1.

For n = s+ 1, s+ 2, . . . , tf − 1, when we move from level n to level n+ 1 we extend

the definitions of the cubic Hermite spline ϕj(t) to the point (tn + ∆t, T nj , Enj ). Then

the history terms (HT )nj and (HE)nj can be approximated by the functions ϕj(tn − τ)

for n ≥ s. This implies that,

(HT )nj ≈ (ϕT )j(tn − τ) and (HE)nj ≈ (ϕE)j(tn − τ), (4.3.9)

and equation (4.3.3) becomes

ATT n+1
j =

(
1
ψT

+ r1

)
T nj − k1T nj Enj ,

AEEn+1
j = r2T nj +

(
1
ψE
− µ1

)
Enj − k1T nj Enj

+(1− ε)k1ϕT (tn − τ)ϕE(tn − τ)− k′2Enj Inj + α,

AIIn+1
j = k2Enj Inj +

(
1
ψI
− µ2

)
Inj ,


(4.3.10)

where

ϕT (tn − τ) = [(HT )n1 , (HT )n2 . . . , (HT )nNx−1]′, ϕE(tn − τ) = [(HE)n1 , (HE)n2 . . . , (HE)nNx−1]′.

Our FOFDM is then consists of equations (4.3.3)-(4.3.10). Re-writing the scheme in
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(4.3.10) in a form of a system of equations

ATT = FT ,

AEE = FE,

AII = FI .


(4.3.11)

Let the functions

T (x, t), E(x, t), I(x, t),

and their partial derivatives with respect to both t and x be smooth such that they

satisfy ∣∣∣∣∂i+jT (t, x)

∂tixj

∣∣∣∣ ≤ ΥT ,

∣∣∣∣∂i+jE(t, x)

∂tixj

∣∣∣∣ ≤ ΥE,∣∣∣∣∂i+jI(t, x)

∂tixj

∣∣∣∣ ≤ ΥI ,∀n, j ≥ 0, (4.3.12)

where,

ΥT ,ΥE,ΥI ,

are constant that are independent of the time and space step-sizes. Then we see that

the local truncation errors (ςT )nj , (ςE)nj , (ςI)
n
j are given by

(ςT )nj = (ATT )nj − (FT )nj = (AT (T − T ))nj ,

(ςE)nj = (AE)nj − (FE)nj = (AE(E − E))nj ,

(ςI)
n
j = (AII)nj − (FI)

n
j = (AI(I − I))nj ,


(4.3.13)
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Thus,

maxn,j |T nj − T nj | ≤ ||A−1
T ||maxn,j |ςT |,

maxn,j |En
j − Enj | ≤ ||A−1

E ||maxn,j |ςE|,

maxn,j |Inj − Inj | ≤ ||A−1
I ||maxn,j |ςI |,


(4.3.14)

where

maxn,j |ςT | ≤ ∆t
2
|Ttt(ξ, xj)|+ (∆x)2

12
|Txxxx(tn, ζ)| ,

maxn,j |ςE| ≤ ∆t
2
|Ett(ξ, xj)|+ (∆x)2

12
|Exxxx(tn, ζ)| ,

maxn,j |ςI | ≤ ∆t
2
|Itt(ξ, xj)|+ (∆x)2

12
|Ixxxx(tn, ζ)| .


(4.3.15)

In view of the inequalities in (4.3.12), we see that inequalities in (4.3.15) are equivalent

to

maxn,j |ςT | ≤
(

∆t
2

+ (∆x)2

12

)
ΥT ,

maxn,j |ςE| ≤
(

∆t
2

+ (∆x)2

12

)
ΥE,

maxn,j |ςI | ≤
(

∆t
2

+ (∆x)2

12

)
ΥI .


(4.3.16)
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tn−1 ≤ ξ ≤ tn+1, xj−1 ≤ ζ ≤ xj+1 and by the result in [117], we obtain

||A−1
T || ≤ ΞT ,

||A−1
E || ≤ ΞE,

||A−1
I || ≤ ΞI .


(4.3.17)

Using (4.3.16) and (4.3.17) into (4.3.14), we obtain the following results.

Theorem 4.3.1. Let

FT (x, t), FE(x, t), FI(x, t),

be sufficiently smooth functions so that T (x, t), E(x, t), I(x, t) ∈ C∞([0, tf ] × [0, xf ]).

Let (T nj , Enj , Inj ), j = 1, 2, . . . xf , n = 1, 2, . . . tf be the approximate solutions to (4.1.3),

obtained using the FOFDM with T 0
j = T 0

j , E0
j = E0

j , I0
j = I0

j ,. Then there exists

ΞT ,ΞE,ΞI independent of the step sizes ∆t and ∆x such that

maxn,j |T nj − T nj | ≤ ΞT [∆t
2

+ (∆x)2

12
]ΥT ,

maxn,j |En
j − Enj | ≤ ΞE[∆t

2
+ (∆x)2

12
]ΥE,

maxn,j |Inj − Inj | ≤ ΞI [
∆t
2

+ (∆x)2

12
]ΥI .


(4.3.18)

Hence, we conclude our analysis with the following result.

Theorem 4.3.2. (Fatunla [39], Trefethen [123]) A difference scheme is convergent if

and only if it is consistent and stable.
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4.4 Numerical results and discussions

Taking the diffusion constants d1, d2, d3 in [10−1, 10−20], using the parameter values in

Table 4.5.1, and the fact that the regeneration of lytic granules by the effector cells and

the breaching of some effector cells into T -cells requires some time τ to happened, then

we present our numerical solutions for the case when τ 6= 0 and τ = 0 as follows. In (a)

and (b), we have the situation when a host is infected by the concentration of cancer

cells only, (c) and (d), the situation when a host is infected by the concentrations of

cancer cells, then becomes infected with HIV at a later stage, whereas in (e) and (f) we

have the case when a host is infected with HIV then at a later stage becomes infected

with cancer too.

In (a), we see the immune cells raising to their equilibrium, whereas the cancer

cells drastically being reduced to nothing. We also see similar interactions in (b) even

though the immune healthy effector healthy cells start with a slow decrease due to the

infection inflicted by the cancer cells, before it converges to its steady state.

In (c) and (d), the situation which is depicted in (a) and (b) changes, due to the

introduction of the HIV-infected effector cells. In (c), we see healthy effector cells raises

before the introduction of the HIV-infected effector cells. We also see that HIV-infected

cells raised to some magnitude which causes the healthy cells to drop drastically to a

low steady state. As soon as the healthy effector cells drops low so does the HIV-

infected cells. This, we see that it paves the way for cancer cells to raise. In (d,) we

see similar behaviors to the behaviors in (c) at a magnified pace.

In (e), we see HIV-infected cells raising causing the healthy immune cells to fluc-

tuate towards their equilibria. Such fluctuations can be seen in the behaviour of the

HIV-infected cells due to the strength of the immune healthy cells. However, the intro-

duction of cancer cells weakened the immune healthy cells which in turn subject the

HIV-infected cells to raise to a high level. The dynamics in (f) are straight forward

except that the HIV-infected cells eventual converge to their low equilibrium. This is

due to the impaired healthy immune healthy cells by both infections.

https://etd.uwc.ac.za/



CHAPTER 4. A FITTED OPERATOR FOR A MATHEMATICAL MODEL
ARISING IN HIV RELATED CANCER-IMMUNE SYSTEM DYNAMICS 111

4.5 Conclusion

In this chapter, we investigated the extended model arising in HIV related cancer-

immune system dynamics and we were able to show that the physiological level of our

extended model coincides with the original model in equation (4.1.1). Our numerical

results present a clear fact played by the inclusion of a delay term (τ) in the dynamics of

our extended model. We also see the crucial agreement of our results that the healthy

immune system is able to successfully prevent the development of the cancer infection

in a host and unable to do so when a host is infected by an additional infection, such

as HIV. However, when a host is infected with HIV our results clearly shows that the

healthy immune system is unable to prevent further development of the HIV-infected

cells. Consequently, our results also present the fact that the weakened immune system

cannot prevent the growth of the cancerous cells. Thus, our contribution in this chapter,

should be seen as the first attempt to provide an in depth information about the growth

rate of tumor cells which is relatively larger than the rate of elimination of cancerous

cells by the healthy immune system.

Table 4.5.1: Values of the parameters used in the model (4.3.3) [41]

r1[81] k1[81] r2 α/µ1[46] k′2[81] k3[32]
0.05 ∼ 0.5 10−5 ∼ 10−3 0 ∼ 0.05 800 ∼ 1200 10−5 ∼ 5× 10−4 2.4× 10−5

µ2[81] δ[107] c[107] µ1 ε[17] N [32]
0.3 0.3 ∼ 0.7 2.1 ∼ 3.8 0.03 0.1 100 ∼ 2000
r1 k1 r2[64] α/µ1 k′2 k3

0.1 10−4 0.03 800 5× 10−5 2.4× 10−5

µ2 δ c µ1[64] ε N
0.3 0.3 3.8 0.03 0.1 275
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(a) Behavior of the concentrations of cancer and
healthy effector cells with delay = 5days.
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(b) Behavior of the concentrations of cancer and
healthy effector cells without delay.
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(c) Behavior of the concentration of cancer and
healthy effector cells with the introduction of
HIV-infected effector cells with delay = 5 days.
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(d) Behavior of the concentrations of cancer and
healthy effector cells with the introduction of
HIV-infected effector cells without delay.
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(e) Behavior of the concentrations of healthy
and HIV-infected effector cells with the intro-
duction of the concentration of cancer cells with
delay = 5 days.
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(f) Behavior of the concentration of healthy and
HIV-infected effector cells with the introduction
of the concentration of cancer cells without de-
lay

Figure 4.5.1: Numerical solution of the concentrations of cancer, HIV-infected and
healthy effector cells interaction model.
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Having considered the dynamics of the double infection, we are intensifying our

consideration in the Chapter 5 by considering the dynamics of tumour cells within

their micro-environment.
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Chapter 5

A fitted operator method for solving a

mathematical model describing tumor

cells dynamics in their

micro-environment

We consider a quasi non-linear reaction-diffusion model designed to mimic tumor cells’

proliferation and migration under the influence of their micro-environment in vitro.

Since the model can be used to generate hypotheses regarding the development of

drugs which confine tumor growth, then considering the composition of the model, we

modify the model by incorporating realistic effects which we believe can shed more light

into the original model. We do this by extending the quasi non-linear reaction-diffusion

model to a system of discrete delay quasi non-linear reaction-diffusion model. Thus, we

determine the equilibria, provide the conditions for global stability of the equilibria by

using the method of upper and lower solutions and analyze the extended model for the

existence of Hopf bifurcation and present the conditions for Hopf bifurcation to occur.

Since it is not possible to solve the models analytically, we derive, analyze, implement a

fitted operator method and present our results for the extended model. Our numerical

114
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method is analyzed for convergence and we find that is of second order accuracy. We

present our numerical results for both of the models for comparison purposes.

5.1 The model

Before highlighting the system of non linear reaction-diffusion models modeling an in-

vitro situation of tumor cells in their micro-environment with regard to its growth,

metastasis derived and experimented in [63] and simulated in [42], we would like to

mention that Friedman and Kim in [42] mentioned that tumor cells proliferate at

different rates and migrate in different patterns depending on the micro-environment

in which they are embedded.

Tumor micro-environment includes various cell types such as epithelial cells, fibrob-

lasts, myofibroblasts, endothelial cells, and inflammatory cells. These cells communi-

cate with one another and influence each other behavior by means of the cytokines and

growth factors they secrete. Thus, in an effort to understand the interaction between

tumor cells, fibroblasts and/or myofibroblasts at an early stage of cancer, Friedman
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and Kim in [42] simulated the model derived in [63] an in-vitro model as

∂n
∂t

=
∂

∂x

(
Dn

∂n

∂x

)
︸ ︷︷ ︸
Random walk

− ∂
∂x

χnn
∂E
∂x√

1 + (∂E
∂x
/λE)2︸ ︷︷ ︸

Chemotaxis



+ a11
E4

k4
E + E4

n(1− n/κ)︸ ︷︷ ︸
Proliferation

, 0 < x < L/2,

∂f
∂t

=
∂

∂x

(
Df

∂f

∂x

)
︸ ︷︷ ︸
Random walk

− a21Gf︸ ︷︷ ︸
f→m

+ a22f︸︷︷︸
Proliferation

, −L/2 < x < 0,

∂m
∂t

=
∂

∂x

(
Dm

∂m

∂x

)
︸ ︷︷ ︸
Random walk

− ∂

∂x

χmm ∂G
∂x√

1 + (∂G
∂x
/λG)2


︸ ︷︷ ︸

Chemotaxis

+ a21Gf︸ ︷︷ ︸
f→m

+ a31m︸ ︷︷ ︸
Proliferation

, −L/2 < x < 0,

∂E
∂t

=
∂

∂x

(
DE

∂E

∂x

)
︸ ︷︷ ︸

Diffusion

+ a41f +Ba41m)︸ ︷︷ ︸
Production

− a43E︸︷︷︸
Decay

, −L/2 < x < L/2,

∂G
∂t

=
∂

∂x

(
DG

∂G

∂x

)
︸ ︷︷ ︸

Diffusion

+ a51n︸︷︷︸
Production

− a52G︸︷︷︸
Decay

, −L/2 < x < L/2,



(5.1.1)

where, transformed epithelial cells (TECs), fibroblasts and myfibroblasts are denoted

by n, f andm respectively, in equation (5.1.1), are placed in a trans-well, separated by a

semi-permeable membrane. The membrane has small micro-holes (≈ 0.4µm diameter)

to allow the epidermal growth factor (EGF) and transformed growth factor (TGF-β))
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to pass through the membrane from one compartment to another. These molecules are

denoted by E and G, respectively, and the length of the compartment is denoted by L

in equation (5.1.1). Friedman and Kim [42] main conclusions’ are

• fibroblasts enhance proliferation of breast cancer cell lines,

• transformed epithelial cells (TECs) population is sensitive to membrane perme-

ability and to the transformation rate from fibroblasts to myofibroblasts,

• interaction between transformed epithelial cells (TECs) and fibroblasts promotes

not only transformed epithelial cells (TECs) proliferation but also the prolifera-

tion of fibroblasts and/or myofibroblasts and the transformation from fibroblasts

into myofibroblasts.

Eventhough Friedman and Kim [42], did not present their simulation results explicitly,

we realised that their findings are in agreement with assertion in [33, 62], that when

epithelial cells are in the breast duct, they are transformed by genetic mutations, from

which they begin to form aggregates that secrete higher concentrations of transformed

growth factor (TGF-β) and this results into transformation of fibroblasts into my-

ofibroblasts. Consequently, the increased concentration of transformed growth factor

(TGF-β) also triggers the fibroblasts and myofibroblasts to secrete higher concentra-

tions of epidermal growth factor (EGF) than in a healthy tissue.

Thus, to capture the higher concentrations of epidermal growth factor (EGF), we

believe one has to consider the time required for a complete aggregation of the ep-

ithelial cells through the secretion of higher concentrations of epidermal growth factor

(EGF) than in a healthy tissue. Denoting the required time by τ , this implies that we

extend the quasi non-linear reaction-diffusion model simulated in [42] to mimic tumor

cells’ proliferation and migration under the influence the micro-environment in vitro in
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equation (5.1.1), to a discrete delay quasi non-linear reaction-diffusion model

∂n
∂t

= ∂
∂x

(
Dn

∂n
∂x

)
− ∂

∂x

(
χnn

∂E
∂x√

1+( ∂E
∂x
/λE)2

)

+a11
E4

k4
E+E4n(1− n/κ), x ∈ (0, L/2),

∂f
∂t

= ∂
∂x

(
Df

∂f
∂x

)
− a21G(x, t− τ)f(x, t− τ)

+a22f(x, t− τ), x ∈ (−L/2, 0),

∂m
∂t

= ∂
∂x

(
Dm

∂m
∂x

)
− ∂

∂x

(
χmm

∂G
∂x√

1+( ∂G
∂x
/λG)2

)
+a21G(x, t− τ)f(x, t− τ) + a31m, x ∈ (−L/2; 0),

∂E
∂t

= ∂
∂x

(
DE

∂E
∂x

)
+ a41f(x, t− τ)

+Ba41m(x, t− τ)− a43E, x ∈ (−L/2, L/2),

∂G
∂t

= ∂
∂x

(
DG

∂G
∂x

)
+ a51n(x, t− τ)− a52G, x ∈ (−L/2, L/2),



(5.1.2)

with uniform delay τ . We do not include a delay term τ , in the first equation in

equation (5.1.2) because we would like to show the sensitivity of TECs to membrane

permeability and the attraction of TECs in the direction of the concentration gradient

of the epidermal growth factor (EGF) directly. Thus, the time τ is required for the

proliferation of fibroblasts into myfibroblasts, which in turn requires some time τ for an

increased concentration of transformed growth factor (TGF-β) to triggers the fibrob-

lasts and myofibroblasts to secrete higher concentrations of epidermal growth factor

(EGF) should reflects its effects in the growth of the transformed epithelial cells, than

in a healthy tissue.

Delay differential equations (DDEs) are widely used for analysis and predictions

in various areas of life sciences, see for instance [10], epidemiology see for instance

[47], immunology see for instance [112], physiology see for instance [115], and neural
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networks see for instance [40, 52]. Since time-delays and/or time-lags, can be related to

the duration of certain hidden processes like the stages of the life cycle, the time between

infection of a cell and the production of new viruses, the duration of the infectious

period, the immune period, then introduction of such time-delays in a differential

model significantly increases the complexity of the model. Therefore, our first aim in

this chapter is to investigate how the uniform time delay τ affects the dynamics of

the models in equation (5.1.2). By applying the Poincaré normal form and the center

manifold theorem as in [79, 128] we find conditions on the functions and derive formulas

which determine the properties of Hopf bifurcation [118]. More specifically, we show

that the semi-positive equilibrium point losses its stability and the system exhibits Hopf

bifurcation under certain conditions. Considering the stiffness of system of equations

in equation (5.1.2), our second aim is therefore, to develop a fitted operator numerical

method based on the qualitative features of the models in equation (5.1.2), in such a

way that the numerical method has wider stability region despite the computational

complexities associated with it.

Therefore, the boundary conditions for the original model remain unchanged as

provided in [42]. That is the fact that the semi-permeable membrane allows concen-

trations of epidermal growth factor (EGF) and transformed growth factor (TGF-β) to

cross over, is represented by the following boundary conditions at the membrane x = 0

as (
Dn∆n − χnn ∆E√

1+(|∆E|/λE)2

)
· υ = 0 at x = 0+,

Df∆f · υ = 0

(
Dm∆m − χmm ∆G√

1+(|∆G|/λG)2

)
· υ = 0 at x = 0−,


(5.1.3)
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and

∂E+

∂x
= ∂E−

∂x
, −∂E+

∂x
+ γ(E+ − E−) = 0,

∂G+

∂x
= ∂G−

∂x
, −∂G+

∂x
+ γ(g+ − g−) = 0,

 (5.1.4)

where,

E(x) =


E+(x) if x > 0,

E−(x) if x < 0,

G(x) =


G+(x) if x > 0,

G−(x) if x < 0,

υ is the outward normal, and γ is a positive parameter which is determined by the size

and density of the holes in the membrane. The initial conditions [63] become

n(x, 0) = 1.0 exp(−40(x− 1.0)2), on [0, L/2]× [−τ, 0],

f(x, 0) = 1.0 exp(−40x2)rf , on [−L/2, 0]]× [−τ, 0],

m(x, 0) = 0.00, on [−L/2, 0]× [−τ, 0],

E(x, 0) = 1.0, on [−L/2, L/2]× [−τ, 0],

G(x, 0) = 1.0, on [−L/2, L/2]× [−τ, 0].



(5.1.5)

The rest of the chapter is organized as follow. Mathematical analysis of the main

model is presented in Section 5.2. A robust numerical scheme based on the fitted finite

difference technique is formulated in Section 5.3, analysis of the basic properties of this

scheme is also examined for convergence. To justify the effectiveness of the proposed

schemes, we present some numerical results in Section 5.4. Section 5.5 concludes the
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chapter.

5.2 Mathematical analysis of the model

In this section, we carry out the local stability and Hopf Bifurcation analysis and global

stability analysis of the equilibria.

5.2.1 Local stability and Hopf Bifurcation analysis

At the equilibria the in-vitro trans-well model in equation (5.1.2) becomes

a11
E4

k4
E+E4n(1− n/κ) = 0, 0 < x < L/2,

−a21Gf + a22f = 0, −L/2 < x < 0,

a21Gf + a31m = 0, −L/2 < x < 0,

a41f +Ba41m− a43E = 0, −L < x < L,

a51n− a52G = 0, −L < x < L.



(5.2.1)

which implies that

n∗ = 0, n∗ = κ and G∗ = a51

a52

0 if n∗ = 0,

a51

a52
κ, if n∗ = κ,

on 0 < x < L/2,

f ∗ = m∗ = 0, on − L/2 < x < 0, E∗ = 0, on − L/2 < x < L/2.


(5.2.2)

Therefore, the transwell model in equation (5.1.2) has a trivial equilibrium (0, 0, 0, 0, 0)

and a semi-positive equilibrium (κ, 0, 0, 0, a51

a52
κ). To analyze the stability of the semi-

positive equilibrium (κ, 0, 0, 0, a51

a52
κ), the first step is to linearize the in-vitro trans-well
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model in equation (5.1.2) at the equilibria (n∗, f ∗,m∗, E∗, G∗) as follow:

∂U(t)

∂t
= d∆U(t) + L(Ut), (5.2.3)

where,

d∆ =


∂
∂x

(
Dn

∂n
∂x

)
− ∂

∂x

(
χnn

∂E
∂x√

1+( ∂E
∂x
/λE)2

)
, ∂
∂x

(
Df

∂f
∂x

)
,

∂
∂x

(
Dm

∂m
∂x

)
− ∂

∂x

(
χmm

∂G
∂x√

1+( ∂G
∂x
/λG)2

)
, ∂
∂x

(
DE

∂E
∂x

)
, ∂
∂x

(
DG

∂G
∂x

)
 ,

dom(d∆) =
{

(n, f,m,E,G)T : (n, f,m,E,G) ∈ C([−L/2, L/2]),R
}
,

such that the given boundary conditions are satisfied in [−L/2, L/2] and L : C([−τ, 0], X)→

X is defined as

L(φ) =



0φ1(0)

a22φ2(0)− a21G
∗φ2(−τ)− a21f

∗φ5(−τ)

a31φ3(0) + a21G
∗φ2(−τ) + a21f

∗φ5(−τ)

−a43φ3(0) + a41φ2(−τ) +Ba41φ3(−τ)

−a52φ5(0) + a51φ5(−τ)


, (5.2.4)

for φ = (φ1, φ2, φ3, φ4, φ5)T ∈ C([−τ, 0], X). The characteristic equation of equation in

(5.2.3) is

λy − d∆− L(exp(λy)) = 0, where y ∈ dom(d∆), y 6= 0. (5.2.5)

Since the boundary conditions in equation (5.1.3-5.1.4) are of Nuemann type, then

the operator −∆ has eigenvalues 0 = µ1 ≤ µ2 ≤ µ3 ≤ µ4 . . . µi ≤ µi+1 ≤ . . . and
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limi→∞ µi =∞, with the corresponding eigenfunctions Φ(x). Substituting

y =
∞∑
i=0

Φ(x)



y1i

y2i

y3i

y4i

y5i


, (5.2.6)

into equation (5.2.5) we obtain



0φ1(0)−Dnµi

a22 −Dfµi − a21G
∗ exp(−λτ)− a21f

∗ exp(−λτ)

a31 −Dmµi + a21G
∗ exp(−λτ) + a21f

∗ exp(−λτ)

−a43 −DEµi + a41 exp(−λτ) +Ba41 exp(−λτ)

−a52 −DGµi + a51 exp(−λτ)





y1i

y2i

y3i

y4i

y5i


= λ



y1i

y2i

y3i

y4i

y5i


.(5.2.7)

The stability of the positive equilibrium can be determined by the distribution of the

roots of (5.2.7). It is locally asymptotically stable if all the roots of equation (5.2.7)

have negative real parts for all i = 0, 1, 2, 3, . . . . Obviously, zero is not a root of (5.2.7)

for all i = 0, 1, 2, 3, . . . . When τ = 0, we obtain the eigenvalues as

λ = −Dnµi, −Dfµi − a21G
∗ + a22, −Dmµi + a31, −Deµi, −Dgµi. (5.2.8)

The eigenvalues in equation (5.2.8) are unconditionally asymptotic stable for the equi-

librium point (0, 0, 0, 0, 0) and conditionally asymptotic stable for the equilibrium point

(κ, 0, 0, 0, a51

a52
κ) when a22 <

a21a51

a52
κ. Thus, the following results.

Theorem 5.2.1.

(i) The trivial (0, 0, 0, 0, 0) equilibrium is unconditional asymptotic stable.

(ii) If a22 <
a21a51

a52
κ holds, the interior equilibrium (κ, 0, 0, 0, a51

a52
κ) of the transwell

model in equation (5.1.2) is asymptotically stable.
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When τ 6= 0, we assume that λ = iω, (ω > 0). In view of equation (5.2.8), we have

iω +Dfµk + a21G
∗(cos(ωτ) + i sin(ωτ))− a22 = 0, (5.2.9)

Separating the real and imaginary parts in equation (5.2.9), we have

iω + ia21G
∗ sin(ωτ) = 0, Dfµk + a21G

∗ cos(ωτ)− a22 = 0, (5.2.10)

which implies that

τi =
1

ω
cos−1

(
a22 −Dfµk
a21G∗

+ 2iπ

)
, ∀i = 0, 1, 2, 3, . . . , (5.2.11)

and we can show that

Sign
[
Re
(
∂λ

∂τ

)]
= Sign

[
Re
(
∂λ

∂τ

)−1
]
. (5.2.12)

Squaring on both sides of equation (5.2.10), we have

ω2 + 2ωa21G
∗ sin(ωτ) + (a21G

∗)2 sin2(ωτ) = 0,

(Dfµk − a22)2 + 2(Dfµk − a22)(a21G
∗ cos(ωτ)) + (a21G

∗)2 cos2(ωτ) = 0. (5.2.13)

Adding the two equations in (5.2.13) and simplify we obtain

ω =
√

3(Dfµk − a22)2 + (a21G∗). (5.2.14)

Let τ0 = min{τi}, the we are able to state the following results.

Lemma 5.2.2.

(i) If a22 <
a21a51

a52
κ hold for i = 0, 1, 2, . . . , then the equilibrium point (κ, 0, 0, 0, a51

a52
κ)

of the transwell model in equation (5.1.2) is asymptotically stable for all τ ≥ 0.

(ii) If 0 ≤ τ0, then the equilibrium point (κ, 0, 0, 0, a51

a52
κ) of the transwell model in
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equation (5.1.2) is asymptotically stable.

(iii) If τ > τ0, then the equilibrium point (κ, 0, 0, 0, a51

a52
κ) of the transwell model in

equation (5.1.2) is unstable.

(iv) The transwell model in equation (5.1.2) undergoes a Hopf bifurcation at the equi-

librium point (κ, 0, 0, 0, a51

a52
κ) for τ = τi, where i = 0, 1, 2, . . . .

5.2.2 Global stability analysis

In this section, we mainly prove that the equilibrium point (κ, 0, 0, 0, a51

a52
κ) is globally

asymptotically stable with the upper and lower solution method in [101, 102]. Let ϑE =

E4

k4
E+E4 , then denoting the reaction functions in equation (5.1.2) by hj(n, f,m,E,G) for

j = 1, 2, 3, 4, 5, then from equation (5.2.1) we have

h1 = a11ϑEn(1− n/κ) = 0, 0 < x < L/2,

h2 = −a21Gf + a22f = 0, −L/2 < x < 0,

h3 = a21Gf + a31m = 0, −L/2 < x < 0,

h4 = a41f +Ba41m− a43E = 0, −L/2 < x < L/2,

h5 = a51n− a52G = 0, −L/2 < x < L/2,



(5.2.15)

and let S ⊂ R5
+ such that S = {u ∈ R5

+ : u ≤ 0 ≤ ū} and Kj be any positive constant

satisfying

K ≥ max{Kj} ≥ max

{
−∂hj
∂uj

: u = (n, f,m,E,G) ∈ S
}
, j = 1, 2, 3, 4, 5,

then we have the following results.
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Lemma 5.2.3. Let

∂n
∂t
− ∂

∂x

(
Dn

∂n
∂x

)
+ ∂

∂x

(
χnn

∂E
∂x√

1+( ∂E
∂x
/λE)2

)
≤ K1, 0 < x < L/2,

∂f
∂t
− ∂

∂x

(
Df

∂f
∂x

)
≤ K2, −L/2 < x < 0,

∂m
∂t
− ∂

∂x

(
Dm

∂m
∂x

)
+ ∂

∂x

(
χmm

∂G
∂x√

1+( ∂G
∂x
/λG)2

)
≤ K3, −L/2 < x < 0,

∂E
∂t
− ∂

∂x

(
DE

∂E
∂x

)
≤ K4, −L/2 < x < L/2,

∂G
∂t
− ∂

∂x

(
DG

∂G
∂x

)
≤ K5, −L/2 < x < L/2,



(5.2.16)

then

lim
t→∞

n(x, t) = K1, lim
t→∞

f(x, t) = K2, lim
t→∞

m(x, t) = K3,

lim
t→∞

E(x, t) = K4, lim
t→∞

G(x, t) = K5.

Theorem 5.2.4. If a22 <
a21a51

a52
κ for the transwell model in equation (5.1.2) implies

that the equilibrium (κ, 0, 0, 0, a51

a52
κ) is globally asymptotically stable.

Proof: From the maximum principle of parabolic equations, it is known that for any

initial value (n0(t, x), f0(t, x),m0(t, x), E0(t, x), G0(t, x)) > (0, 0, 0, 0, 0) the correspond-

ing non-negative solution (n(t, x), f(t, x),m(t, x), E(t, x), G(t, x)) is strictly positive for

t > 0 . Since a22 <
a21a51

a52
κ, then we choose ε0 ∈ (0, 1). Then, according to Lemma

(5.2.3) and the comparison principle of parabolic equations, there exists t1 > 0 such
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that, for any t > t1,

n(x, t) ≤ K1 + ε0 := n̄(x, t), 0 < x < L/2,

f(x, t) ≤ K2 + ε := f̄(x, t), −L/2 < x < 0,

m(x, t) ≤ K3 + ε := m̄(x, t), −L/2 < x < 0,

E(x, t) ≤ K4 + ε := Ē(x, t), −L/2 < x < L/2,

G(x, t) ≤ K5 + ε := Ḡ(x, t), −L/2 < x < L/2,



(5.2.17)

and

n(x, t) ≥ K1 − ε0 := n(x, t), 0 < x < L/2,

f(x, t) ≥ K2 − ε := f(x, t), −L/2 < x < 0,

m(x, t) ≥ K3 − ε := m(x, t), −L/2 < x < 0,

E(x, t) ≥ K4 − ε := E(x, t), −L/2 < x < L/2,

G(x, t) ≥ K5 − ε := G(x, t), −L/2 < x < L/2.



(5.2.18)
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Thus, for t > t0, it is possible to obtain

n(x, t) ≤ n(x, t) ≤ n̄(x, t), 0 < x < L/2,

f(x, t) ≤ f(x, t) ≤ f̄(x, t), −L/2 < x < 0,

m(x, t) ≤ m(x, t) ≤ m̄(x, t), −L/2 < x < 0,

E(x, t) ≤ E(x, t) ≤ Ē(x, t), −L/2 < x < L/2,

G(x, t) ≤ G(x, t) ≤ Ḡ(x, t), −L/2 < x < L/2. (5.2.19)

Since hj(n, f,m,E,G) in equation (5.2.15) is a C1 function of n, f,m,E,G, where h1

is quasi-monotone non-decreasing in f,m,E,G, h2 is quasi-monotone non-increasing

in n,m,E,G, h3 is quasi-monotone non-increasing in n, f, E,G, h4 is quasi-monotone

non-decreasing in n, f,m,G and h5 is quasi-monotone non-decreasing in n, f,m,E,

then by the method of upper and lower solutions we know that the system in (5.1.2)

has a unique global non-negative solution n, f,m,E,G, [101]. Thus,

n, n̄, f , f̄ ,m, m̄, E, Ē, G, Ḡ, (5.2.20)

satisfy

a11

κ
Ē4n̄(1− n̄) ≤ 0 ≤ a11

κ
En(1− n), 0 < x < L/2,

−a21Gf̄ + a22f̄ ≤ 0 ≤ −a21Ḡf + a22f, −L/2 < x < 0,

a21Gf + a31m̄ ≤ 0 ≤ a21Ḡf̄ + a31m, −L/2 < x < 0,

a41f̄ +Ba41m̄− a43Ē ≤ 0 ≤ a41f +Ba41m− a43E, −L < x < L,

a51n̄− a52Ḡ ≤ 0 ≤ a51n− a52G, −L < x < L.



(5.2.21)
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Therefore, (n̄, f̄ , m̄, Ē, Ḡ) and (n, f,m,E,G), are a pair of coupled upper and lower

solutions of system (5.1.2),[130], respectively. Thus, for any

(n, f,m,E,G) ≤ (n1, f1,m1, E1, G1),

and

(n2, f2,m2, E2, G2) ≤ (n̄, f̄ , m̄, Ē, Ḡ),

we have∣∣∣a11E4
1n1

k4
E+E4

1
(1− n1

κ
)− (

a11E4
2n2

k4
E+E4

2
(1− n2

κ
))
∣∣∣

≤ K(|E1 − E2|+ |n1 − n2|), 0 < x < L/2,

|−a21G1f1 + a22f1 − (−a21G2f2 + a22f2)|

≤ K(|G1 −G2|+ |f1 − f2|),−L/2 < x < 0,

|a21G1f1 + a31m1 − (a21G2f2 + a31m2)|

≤ K(G1 −G2|+ |m1 −m2|) = 0,−L/2 < x < 0,

|a41f1 +Ba41m1 − a43E1 − (a41f2 +Ba41m2 − a43E2))

≤ K(f1 − f2|+ |m1 −m2|),−L < x < L,

|a51n1 − a52G1 − (a51n2 − a52G2)| ≤ K(|n1 − n2|+ |G2 −G2|),−L < x < L.


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Defining two iteration sequences (n̄, f̄ , m̄, Ē, Ḡ) and (n, f,m,E,G) for i ≥ 1,

n̄(i) = n̄(i−1) + (a11

κ
Ē(i−1)n̄(i−1)(1− n̄(i−1)))/K, 0 < x < L/2,

f̄ (i) = f̄ (i−1) + (−a21G
(i−1)f̄ (i−1) + a22f̄

(i−1))/K,

m̄(i) = m̄(i−1) + (a21G
(i−1)f (i−1) + a31m̄

(i−1))/K, −L/2 < x < 0,

Ē(i) = Ē(i−1) + (a41f̄
(i−1) +Ba41m̄

(i−1) − a43Ē
(i−1))/K, −L < x < L,

Ḡ(i) = Ḡ(i−1) + (a51n̄
(i−1) − a52Ḡ

(i−1))/K, −L < x < L,

n(i) = n(i−1) + (a11

κ
E(i−1)n

(i−1)
1 (1− n(i−1)

1 ))/K, 0 < x < L/2,

f (i) = f (i−1) + (−a21Ḡ
(i−1)f (i−1) + a22f

(i−1))/K, −L/2 < x < 0,

m(i) = m(i−1) + (a21Ḡ
(i−1)f̄ (i−1) + a31m

(i−1))/K, −L/2 < x < 0,

E(i) = E(i−1) + (a41f
(i−1) +Ba41m

(i−1) − a43E
(i−1))/K, −L < x < L,

G(i) = G(i−1) + (a51n
(i−1) − a52G

(i−1))/K, −L < x < L,



(5.2.22)

where, (n̄(0), f̄ (0), m̄(0), Ē(0), Ḡ(0)) = (n̄, f̄ , m̄, Ē, Ḡ)

and (n(0), f (0),m(0), E(0), G(0)) = (n, f,m,E,G). Thus, for i ≥ 1,

(n, f,m,E,G) ≤ (n(i), f (i),m(i), E(i), G(i)) ≤ (n(i+1), f (i+1),m(i+1), E(i+1), G(i+1))

≤ (n̄(i+1), f̄ (i+1), m̄(i+1), Ē(i+1), Ḡ(i+1) ≤ (n̄(i), f̄ (i), m̄(i), Ē(i), Ḡ(i)) ≤ (n̄, f̄ , m̄, Ē, Ḡ),

and there exist (ñ(0), f̃ (0), m̃(0), Ẽ(0), G̃(0)) > (0, 0, 0, 0, 0),

and (n̂(0), f̂ (0), m̂(0), Ê(0), Ĝ(0)) > (0, 0, 0, 0, 0) such that

lim
i→∞

n̄ = ñ, lim
i→∞

f̄ = f̃ , lim
i→∞

m̄ = m̃, lim
i→∞

Ē = Ẽ, lim
i→∞

Ḡ = G̃,

and

lim
i→∞

n = n̂, lim
i→∞

f = f̂ , lim
i→∞

m = m̂, lim
i→∞

E = Ê, lim
i→∞

G = Ĝ,
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and

a11

κ
Ẽñ(1− ñ) = 0, a11

κ
Ên̂(1− n̂) = 0, 0 < x < L/2,

−a21Êf̃ + a22f̃ = 0, −a21G̃f̂ + a22f̂ = 0, −L/2 < x < 0,

a21Ĝf̂ + a31m̃ = 0, a21G̃f̃ + a31m̂ = 0, −L/2 < x < 0,

a41f̃ +Ba41m̃− a43Ẽ = 0, a41f̂ +Ba41m̂− a43Ê = 0, −L < x < L,

a51ñ− a52G̃ = 0, a51n̂− a52Ĝ = 0, −L < x < L.


(5.2.23)

Since, (κ, 0, 0, 0, a51

a52
κ) is the unique positive constant equilibrium of system (5.1.2), it

must hold for

(ñ, f̃ , m̃, Ẽ, G̃) = (n̂, f̂ , m̂, Ê, Ĝ) = (κ, 0, 0, 0,
a51

a52

κ). (5.2.24)

Thus, by [101, 102], the solution (n(x, t), f(x, t),m(x, t), E(x, t), G(x, t)) of system

(5.1.2) satisfies

lim
t→∞

n(x, t) = n∗, lim
t→∞

f(x, t) = f ∗, lim
t→∞

m(x, t) = m∗, lim
t→∞

E(x, t) = E∗,

lim
t→∞

G(x, t) = G∗. (5.2.25)

Hence, the constant equilibrium point (κ, 0, 0, 0, a51

a52
κ) is globally asymptotically stable.

5.3 Derivation and analysis of the numerical method

In this section, we describe the derivation of the fitted operator method for solving the

system in equation (5.1.2). We determine an approximation to the derivatives of the

functions n(t, x), f(x, t),m(x, t), E(x, t), G(x, t), with respect to the spatial variable x.

Let Sx be a positive integer. Discretize the interval [−L/2, L/2] through the points

−L/2 = x0 < x1 < x2 < · · · < xs−1 < xs < xs+1 · · · < xSx−2 < xSx−1 < xSx = L/2,
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where, the step-size ∆x = xj+1 − xj = (L/2 + L/2)/Sx, j = 0, 1, . . . , xSx . Let

Nj(t),Fj(t),Mj(t), Ej(t),Gj(t), (5.3.1)

denote the numerical approximations of n(t, x), f(x, t),m(x, t), E(x, t), G(x, t). Then

we approximate the spatial derivative of the system in equation (5.1.2) by

∂
∂x

(
Dn

∂n
∂x
− χnn

∂E
∂x√

1+( ∂E
∂x
/λE)2

)
(t, xj) ≈ Dn

Nj+1−2Nj+Nj−1

φ2
n

−χn(D−xNj)
(D−x Ej)√

1+

(
D−x Ej
λE

)2

−χnNj D+
x (D−x Ej)(

1+

(
D−x Ej
λE

)2
)3/2 ,

∂
∂x

(
Df

∂f
∂x

)
(t, xj) ≈ Df

Fj+1−2Fj+Fj−1

φ2
f

,

∂
∂x

(
Dm

∂m
∂x
− χmm

∂G
∂x√

1+( ∂G
∂x
/λG)2

)
≈ Dm

Mj+1−2Mj+Mj−1

φ2
m

−χm(D−xMj)
(D−x Gj)√

1+

(
D−x Gj
λG

)2

−χmMj
D+
x (D−x Gj)(

1+

(
D−x Gj
λG

)2
)3/2 ,

∂
∂x

(
DE

∂E
∂x

)
(t, xj) ≈ DE

Ej+1−2Ej+Ej−1

φ2
E

,

∂
∂x

(
DG

∂G
∂x

)
(t, xj) ≈ DG

Gj+1−2Gj+Gj−1

φ2
G

,



(5.3.2)

where,

D+(·)j =
(·)j+1 − (·)j

∆x
, D−(·)j =

(·)j − (·)j−1

∆x
,
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and the denominator functions

φ2
n :=

Dn∆x

χn

[
exp(

χn∆x

Dn

)− 1

]
, φ2

f :=
4

%2
f

sin

(
%f∆x

2

)2

, %f :=

√
a22

Df

,

φ2
m :=

Dm∆x

χm

[
exp(

χm∆x

Dm

)− 1

]
, φ2

E :=
4

%2
e

sinh

(
%e∆x

2

)2

, %e :=

√
a43

De

,

φ2
G :=

4

%2
g

sinh

(
%g∆x

2

)2

, %g :=

√
a52

Dg
.

Let St be a positive integer and ∆t = T/St where 0 < t < T . Discretizing the time

interval [0, T ], T ∈ N+ through the points

0 = t0 < t1 < · · · < tSt = T,

where,

ti+1 − ti = ∆t, i = 0, 1, . . . , (tSt − 1).

We approximate the time derivative at ti by

∂n
∂t

(x, ti) ≈
N i+1
j+1−N

i
j

∆t
, ∂f

∂t
(x, ti) ≈

F i+1
j+1−F

i
j

ψf
, ∂m

∂t
(x, ti) ≈

Mi+1
j+1−M

i
j

ψm
,

∂E
∂t

(x, ti) ≈
Ei+1
j+1−E

i
j

ψE
, ∂G

∂t
(x, ti) ≈

Gi+1
j+1−G

i
j

ψG
,

 (5.3.3)

where,

ψf = (1− exp(−a22∆t))/a22, ψE = (1− exp(−a43∆t))/a43,

ψG = (1− exp(−a52∆t))/a52, ψm = (1− exp(−a31∆t))/a31,

where we see that ψf → ∆t, ψE → ∆t, ψG → ∆t, ψm → ∆t as ∆t → 0. The

denominator functions in equations (5.3.2) and (5.3.3) are used explicitly to remove the

inherent stiffness in the central finite derivatives parts and can be derived by using the
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theory of nonstandard finite difference methods, see, e.g., [84, 103, 104] and references

therein.

Combining the equation (5.3.2) for the spatial derivatives with equation (5.3.3) for
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time derivatives, we obtain

N i+1
j −N ij

∆t −Dn
N i+1
j+1−2N i+1

j +N i+1
j−1

φ2
n

= −χn(D+
x n

i
j)

(D−x Eij)√√√√1+

(
D−x Eij
λE

)2

−χnN i
j

D+
x (D−x Eij)1+

(
D−x Eij
λE

)2
3/2

+
a11(E4)ijN ij
k4
E+(E4)ij

(1− N
i
j

κ ), x ∈ [xs, L/2],

F i+1
j −Fij
ψf

−Df
F i+1
j+1−2Fi+1

j +Fi+1
j−1

φ2
f

= −a21(HG)ij(Hf )ij

+a22(Hf )ij , x ∈ [−L
2 , xs],

Mi+1
j −Mi

j

ψm
−Dm

Mi+1
j+1−2Mi+1

j +Mi+1
j−1

φ2
m

= −χm(D+
xMi

j)
(D−x Gij)√√√√1+

(
D−x Gij
λG

)2

−χmMi
j

D+
x (D−x Gij)1+

(
D−x Gij
λG

)2
3/2

+a21(HG)ij(Hf )ij + a31Mi
j , x ∈ [−L

2 , xs],
Ei+1
j −Eij
ψE

−DE
Ei+1
j+1−2Ei+1

j +Ei+1
j−1

φ2
E

= a41(Hf )ij +Ba41(Hm)ij − a43E ij , x ∈ [−L
2 ,

L
2 ],

Gi+1
j −Gij
ψG

−DG
Gi+1
j+1−2Gi+1

j +Gi+1
j−1

φ2
G

= a51(Hn)ij − a52Gij , x ∈ [−L
2 ,

L
2 ],

F i−L
2

+1
= F i−L

2
−1
, GiL

2
+1

= GiL
2
−1

+ 2γ∆x
(

(G+)L
2
− (G−)L

2

)
,

Gi−L
2
−1

= (G−)i−L
2

+1
(1 + 2∆xγ),

Mi
−L
2

+1
=Mi

−L
2
−1

+ 2∆xχmMi
−L
2


Gi−L

2 +1
−Gi−L

2 −1

2∆x

√√√√√1+

Gi−L2 +1
−Gi−L

2 −1

2∆xλG

2

 ,

E i−L
2
−1

= (E−)i−L
2

+1
(1 + 2∆xγ), E iL

2
+1

= E iL
2
−1

+ 2γ∆x
(

(E+)L
2
− (E−)L

2

)
,

N i
L
2

+1
= N i

L
2
−1

+ 2∆xχnN i
L
2


EiL

2 +1
−EiL

2 −1

2∆x

√√√√√1+

EiL2 +1
−Ei

L
2 −1

2∆xλE

2

 , F ixs+1 = F ixs−1,

Mi
xs+1 =Mi

xs−1 − 2∆xχmMi
xs

 Gixs+1−Gixs−1

2∆x

√
1+

(
Gixs+1−G

i
xs−1

2∆xλG

)2

 ,

N i
xs−1 = N i

xs+1 − 2∆xχnN i
xs

 Eixs+1−Eixs−1

2∆x

√
1+

(
Eixs+1−E

i
xs−1

2∆xλE

)2

 ,

N 0
xj = exp(−40(xj − 1)2), F0

xj = exp(−40x2
j )rf ,M0

xj = 0.00, E0
xj = G0

xj = 1.00,



(5.3.4)
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where, the no-flux boundary conditions are discretised by means of the central finite

difference [21], j = −L/2, 2, . . . , L/2− 1, i = 0, 1, . . . , T − 1 and

(Hn)ij ≈ N(ti − τ, xj), (Hf )
i
j ≈ F (ti − τ, xj), (HG)ij ≈ G(ti − τ, xj),

(Hm)ij ≈ M(ti − τ, xj), (5.3.5)

are denoting the history functions corresponding to n, f,m,G. The system in equation

(5.3.4) can further be simplified as

−Dn
φ2
n
N i+1
j−1 +

(
1

∆t
+ 2Dn

φ2
n

)
N i+1
j − Dn

φ2
n
N i+1
j+1

= −χn(D−x n
i
j)

(D−x Eij)√√√√1+

(
D−x Eij
λE

)2
− χnN i

j

D+
x (D−x Eij)1+

(
D−x Eij
λE

)2
3/2

+a11
(E4)ij

k4
E+(E4)ij

N i
j (1−N i

j/κ) +
N ij
∆t
,

−Df
φ2
f
F i+1
j−1 +

(
1
ψf

+
2Df
φ2
f

)
F i+1
j − Df

φ2
f
F i+1
j+1

= −a21(HG)ij(Hf )
i
j + a22(Hf )

i
j +

F ij
ψf
,

−Dm
φ2
m
Mi+1

j−1 +
(

1
ψm

+ 2Dm
φ2
m

)
Mi+1

j − Dm
φ2
m
Mi+1

j+1

= −χm(D−xMi
j)

(D−x Gij)√√√√1+

(
D−x Gij
λG

)2
− χmMi

j

D+
x (D−x Gij)1+

(
D−x Gij
λG

)2
3/2

+a21(HG)ij(Hf )
i
j + a31Mi

j +
Mi

j

∆t
,

−DE
φ2
E
E i+1
j−1 +

(
1
ψE

+ 2DE
φ2
E

)
E i+1
j − DE

φ2
E
E i+1
j+1

= a41(Hf )
i
j +Ba41(Hm)ij − a43E ij +

Eij
ψE
,

−DG
φ2
G
Gi+1
j−1 +

(
1
ψG

+ 2DG
φ2
G

)
Gi+1
j − DG

φ2
G
Gi+1
j+1

= a51(Hn)ij − a52Gij +
Gij
ψG
,



(5.3.6)
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which can be written as a tridiagonal system given by

AnN i+1
j = −χn(D−x n

i
j)

(D−x Eij)√√√√1+

(
D−x Eij
λE

)2
− χnN i

j

D+
x (D−x Eij)1+

(
D−x Eij
λE

)2
3/2

+a11
(E4)ij

k4
E+(E4)ij

N i
j (1−N i

j/κ) +
N ij
∆t
,

AfF i+1
j = −a21(HG)ij(Hf )

i
j + a22(Hf )

i
j +

F ij
ψf
,

AmMi+1
j = −χm(D−xMi

j)
(D−x Gij)√√√√1+

(
D−x Gij
λG

)2
− χmMi

j

D+
x (D−x Gij)1+

(
D−x Gij
λG

)2
3/2

+a21(HG)ij(Hf )
i
j + a31Mi

j +
Mi

j

∆t
,

AEE i+1
j = a41(Hf )

i
j +Ba41(Hm)ij − a43E ij +

Eij
ψE
,

AGGi+1
j = a51(Hn)ij − a52Gij +

Gij
ψG
,



(5.3.7)

where,

An = Tri
(
−Dn

φ2
n
, 1

∆t
+ 2Dn

φ2
n
,−Dn

φ2
n

)
, Af = Tri

(
−Df

φ2
f
, 1
ψf

+
2Df
φ2
f
,−Df

φ2
f

)
,

Am = Tri
(
−Dm

φ2
m
, 1
ψm

+ 2Dm
φ2
m
,−Dm

φ2
m

)
, AE = Tri

(
−DE

φ2
E
, 1
ψE

+ 2DE
φ2
E
,−DE

φ2
E

)
,

AG = Tri
(
−DG

φ2
G
, 1
ψG

+ 2DG
φ2
G
,−DG

φ2
G

)
.


(5.3.8)

On the interval [0, τ ] the delayed arguments tn− τ belong to [−τ, 0], and therefore the

delayed variables in equation (5.3.5) are evaluated directly from the history functions

n0(t, x), f0(t, x),m0(t, x), G0(t, x),
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as

(Hn)ij ≈ n0(ti − τ, xj), (Hf )
i
j ≈ f 0(ti − τ, xj), (Hm)ij ≈ m0(ti − τ, xj),

(HG)ij ≈ G0(ti − τ, xj), (5.3.9)

and equation (5.3.7) becomes

AnN i+1
j = −χn(D−x n

i
j)

(D−x Eij)√√√√1+

(
D−x Eij
λE

)2
− χnN i

j

D+
x (D−x Eij)1+

(
D−x Eij
λE

)2
3/2

+a11
(E4)ij

k4
E+(E4)ij

N i
j (1−N i

j/κ) +
N ij
∆t
,

AfF i+1
j = −a21G

0(ti − τ, x)f 0(ti − τ, x) + a22f
0(ti − τ, x) +

F ij
ψf
,

AmMi+1
j = −χm(D−xMi

j)
(D−x Gij)√√√√1+

(
D−x Gij
λG

)2
− χmMi

j

D+
x (D−x Gij)1+

(
D−x Gij
λG

)2
3/2

+a21G
0(ti − τ, x)f 0(ti − τ, x) + a31Mi

j +
Mi

j

∆t
,

AEE i+1
j = a41f

0(ti − τ, x) +Ba41m
0(ti − τ, x)− a43E ij +

Eij
ψE
,

AGGi+1
j = a51n

0(ti − τ, x)− a52Gij +
Gij
ψG
.



(5.3.10)

Let s be the largest integer such that τs ≤ τ . By using the system equation (5.3.9) we

can compute N i
j ,F ij ,Mi

j, E ij ,Gij for 1 ≤ i ≤ s. Up to this stage, we interpolate the data

(t0,N 0
j ), (t1,N 1

j ), . . . , (ts,N s
j ), (t0,F0

j ), (t1,F1
j ), . . . , (ts,F sj ),

(t0,M0
j), (t1,M1

j), . . . , (ts,Ms
j),

(t0, E0
j ), (t1, E1

j ), . . . , (ts, Esj ), (t0,G0
j ), (t1,G1

j ), . . . , (ts,Gsj ),
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using an interpolating cubic Hermite spline ϕj(t). Then

N i
j = ϕn(ti, xj), F ij = ϕf (ti, xj), Mi

j = ϕm(ti, xj), E ij = ϕE(ti, xj) Gij = ϕG(ti, xj),

for all i = 0, 1, . . . , s and j = −L/2, 2, . . . , L/2− 1.

For i = s+ 1, s+ 2, . . . , T − 1, when we move from level i to level i+ 1 we extend

the definitions of the cubic Hermite spline ϕj(t) to the point

(ti + ∆t, (Hn)ij, ti + ∆t, (Hf )
i
j, ti + ∆t, (Hm)ij, ti + ∆t, (HG)ij).

Then the history terms (Hn)ij, (Hf )
i
j, (HM)ij, (HG)ij can be approximated by the func-

tions (ϕn)j(ti − τ), (ϕm)j(ti − τ), (ϕm)j(ti − τ), (ϕG)j(ti − τ) for i ≥ s. This implies

that,

(Hn)ij ≈ (ϕn)j(ti − τ), (Hf )
i
j ≈ (ϕf )j(ti − τ), (Hm)ij ≈ (ϕm)j(ti − τ),

(HG)ij ≈ (ϕG)j(ti − τ), (5.3.11)
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and equation (5.3.9) becomes

AnN i+1
j = −χn(D−x n

i
j)

(D−x Eij)√√√√1+

(
D−x Eij
λE

)2
− χnN i

j

D+
x (D−x Eij)1+

(
D−x Eij
λE

)2
3/2

+a11
(E4)ij

k4
E+(E4)ij

N i
j (1−N i

j/κ) +
N ij
∆t
,

AfF i+1
j = −a21(ϕG)(ti − τ)(ϕf )(ti − τ) + a22(ϕf )(ti − τ) +

Fij
ψf
,

AmMi+1
j = −χm(D−xMi

j)
(D−x Gij)√√√√1+

(
D−x Gij
λG

)2
− χmMi

j

D+
x (D−x Gij)1+

(
D−x Gij
λG

)2
3/2

+a21(ϕG)(ti − τ)(ϕf )(ti − τ) + a31Mi
j +

Mi
j

∆t
,

AEE i+1
j = a41(ϕf )(ti − τ) +Ba41(ϕm)(ti − τ)− a43E ij +

Eij
ψE
,

AGGi+1
j = a51(ϕn)(ti − τ)− a52Gij +

Gij
ψG
,



(5.3.12)

where,

ϕn(ti − τ) = [(Hn)i1, (Hn)i2 . . . , (Hn)iL
2
−1

]′, ϕf (ti − τ)

= [(Hf )
i
−L
2

, (Hf )
i
−L
2

+1
. . . , (Hf )

i
x0−1]′,

ϕm(ti − τ) = [(Hm)i−L
2

, (Hm)i−L
2

+1
. . . , (Hm)ix0−1]′,

ϕE(ti − τ) = [E i−L
2

, E i−L
2

+1
. . . , E iL

2
−1

]′, ϕG(ti − τ)

= [(HG)i−L
2

, (HG)i−L
2

+1
. . . , (HG)iL

2
−1

]′.

Our FOFDM is then consists of equations (5.3.4)-(5.3.12). Rewriting the FOFDM as
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a system of equations we have

AnN = Fn,

AfF = Ff ,

AmM = Fm,

AEE = FE,

AGG = FG,



(5.3.13)

where,

Fn = −χn(D−x n
i
j)

(D−x Eij)√√√√1+

(
D−x Eij
λE

)2
− χnN i

j

D+
x (D−x Eij)1+

(
D−x Eij
λE

)2
3/2

+a11
(E4)ij

k4
E+(E4)ij

N i
j (1−N i

j/κ) +
N ij
∆t
,

Ff = −a21(ϕG)(ti − τ)(ϕf )(ti − τ) + a22(ϕf )(ti − τ) +
Fij
ψf
,

Fm = −χm(D−xMi
j)

(D−x Gij)√√√√1+

(
D−x Gij
λG

)2
− χmMi

j

D+
x (D−x Gij)1+

(
D−x Gij
λG

)2
3/2

+a21(ϕG)(ti − τ)(ϕf )(ti − τ) + a31Mi
j +

Mi
j

∆t
,

FE = a41(ϕf )(ti − τ) +Ba41(ϕm)(ti − τ)− a43E ij +
Eij
ψE
,

FG = a51(ϕn)(ti − τ)− a52Gij +
Gij
ψG
.


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Let the functions

n(x, t), f(x, t),m(x, t), E(x, t), G(x, t),

and their partial derivatives with respect to both t and x be smooth such that they

satisfy ∣∣∣∣∂i+jn(t, x)

∂tixj

∣∣∣∣ ≤ Υn,

∣∣∣∣∂i+jf(t, x)

∂tixj

∣∣∣∣ ≤ Υf ,∣∣∣∣∂i+jm(t, x)

∂tixj

∣∣∣∣ ≤ Υm,

∣∣∣∣∂i+jE(t, x)

∂tixj

∣∣∣∣ ≤ ΥE,∣∣∣∣∂i+jG(t, x)

∂tixj

∣∣∣∣ ≤ ΥG, ∀i, j ≥ 0, (5.3.14)

where,

Υn,Υf ,Υm,ΥE,ΥG,

are constant that are independent of the time and space step-sizes. Then, we see that

the local truncation errors (ςn)ij, (ςf )
i
j, (ςm)ij, (ςE)ij, (ςG)ij are given by

(ςn)ij = (Ann)ij − (Fn)ij = (An(n−N ))ij,

(ςf )
i
j = (Aff)ij − (Ff )

i
j = Af (f −F)ij,

(ςm)ij = (Amm)ij − (Fm)ij = (Am(m−M))ij,

(ςE)ij = (AEE)ij − (FE)ij = (AE(E − E))ij,

(ςG)ij = (AGG)ij − (FG)ij = (AG(G− G))ij.



(5.3.15)
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Therefore,

maxi,j |nij −N i
j | ≤ ||A−1

n ||maxi,j |(ςn)ij|,

maxi,j |f ij −F ij | ≤ ||A−1
f ||maxi,j |(ςf )ij|,

maxi,j |mi
j −Mi

j| ≤ ||A−1
m ||maxi,j |(ςm)ij|,

maxi,j |Ei
j − E ij | ≤ ||A−1

E ||maxi,j |(ςE)ij|,

maxi,j |Gi
j − Gij| ≤ ||A−1

G ||maxi,j |(ςG)ij|,



(5.3.16)

where,

maxi,j |(ςn)ij| ≤
(∆t)

2
|ntt(ξ)| −Dn

(∆x)2

12
|nxxxx(ζ)|, x ∈ [xs, L/2],

maxi,j |(ςf )ij| ≤
(∆t)

2
|ftt(ξ)| −Df

(∆x)2

12
|fxxxx(ζ)|, x ∈ [−L

2
, xs],

maxi,j |(ςm)ij| ≤
(∆t)

2
|mtt(ξ)| −Dm

(∆x)2

12
|nxxxx(ζ)|, x ∈ [−L

2
, xs],

maxi,j |(ςE)ij| ≤
(∆t)

2
|Ett(ξ)| −DE

(∆x)2

12
|Exxxx(ζ)|, x ∈ [−L

2
, L

2
],

maxi,j |(ςG)ij| ≤
(∆t)

2
|Gtt(ξ)| −DG

(∆x)2

12
|nxxxx(ζ)|, x ∈ [−L

2
, L

2
],



(5.3.17)

for ti−1 ≤ ξ ≤ ti+1 and xj−1 ≤ ζ ≤ xj+1. In view of inequalities in (5.3.14), we see that
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inequalities in (5.3.17) are equivalent to

maxi,j |(ςn)ij| ≤
(

(∆t)
2
−Dn

(∆x)2

12

)
Υn, x ∈ [xs, L/2],

maxi,j |(ςf )ij| ≤
(

(∆t)
2
−Df

(∆x)2

12

)
Υf , x ∈ [−L

2
, xs],

maxi,j |(ςm)ij| ≤
(

(∆t)
2
−Dm

(∆x)2

12

)
Υm, x ∈ [−L

2
, xs],

maxi,j |(ςE)ij| ≤
(

(∆t)
2
−DE

(∆x)2

12

)
ΥE, x ∈ [−L

2
, L

2
],

maxi,j |(ςG)ij| ≤
(

(∆t)
2
−DG

(∆x)2

12

)
ΥG, x ∈ [−L

2
, L

2
],



(5.3.18)

for ti−1 ≤ ξ ≤ ti+1 and xj−1 ≤ ζ ≤ xj+1. Moreover by [117] we have

||A−1
n || ≤ Ξn, ||A−1

f || ≤ Ξf , ||A−1
m || ≤ Ξm, ||A−1

E || ≤ ΞE, ||A−1
G || ≤ ΞG. (5.3.19)

Using (5.3.18) and (5.3.19) in (5.3.16), we obtain the following results.

Theorem 5.3.1. Let

Fn(x, t), Ff (x, t), Fm(x, t), FE(x, t), FG(x, t),

be sufficiently smooth functions so that

n(x, t), f(x, t),m(x, t), E(x, t), G(x, t) ∈ C∞([−L/2, L/2]× [0, T ]).

Let (N i
j ,F ij ,Mi

j, E ij ,Gij), j = 1, 2, . . . L, i = 1, 2, . . . T be the approximate solutions to

(5.1.3), obtained using the FOFDM with N 0
j = n0

j ,F0
j = f 0

j ,M0
j = m0

j , E0
j = E0

j ,G0
j =

G0
j ,. Then there exists Ξn,Ξf ,Ξm,ΞE,ΞG independent of the step sizes ∆t and ∆x such
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that

maxi,j |nij −N i
j | ≤ Ξn[ (∆t)

2
−Dn

(∆x)2

12
]Υn,

maxi,j |f ij −F ij | ≤ Ξf [
(∆t)

2
−Df

(∆x)2

12
]Υf ,

maxi,j |mi
j −Mi

j| ≤ Ξm[ (∆t)
2
−Dm

(∆x)2

12
]Υm,

maxi,j |Ei
j − E ij | ≤ ΞE[ (∆t)

2
−DE

(∆x)2

12
]ΥE,

maxi,j |Gi
j − Gij| ≤ ΞG[ (∆t)

2
−DG

(∆x)2

12
]ΥG,



(5.3.20)

and this conclude the analysis of our FOFDM.

5.4 Numerical results and discussions

We set Sx = St = 80 and time (t) = 25 or t = 30. Then, using the parameter values in

Table 5.5.1 ([59]) we first take L = 5 < T = 20 and we present our numerical results

of the model without delay (5.1.1) in Figure 5.5.1 and Figure 5.5.2, respectively.

For L = T = 5 and t = 25, 30, we present our numerical results in Figure 5.5.3

(τ ≡ 0), Figure 5.5.4 and for L = 20 > T = 5, our numerical results are presented in

Figure 5.5.5 (τ ≡ 0) at t = 25.

Similarly, for L = 5 < T = 20, t = 25 and τ = 5, we present our numerical results

in Figure 5.5.6 and for τ = 20 we present our results in Figure 5.5.7.

For L = 5 = T , t = 25 and τ = 5, we present our numerical results in Figure 5.5.8,

for L = 20 = T we present our results in Figure 5.5.9, for t = 25 and τ = 15 and

L = 20 = T we present our results in Figure 5.5.10.

Finally, we present our numerical results for L = 20 > T = 5 at t = 25 for τ = 5, 25

in Figure 5.5.11 and Figure 5.5.12.

In the figures for the original model in equation (5.1.1), that is Figure 5.5.1 to Figure
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5.5.5 we see that the behaviour for the fibroblasts and myfibroblasts are zero almost

for entire portion of their compartment, but eventually rise sharply near the end of the

compartment in which they are embedded. One notable fact is that fibroblast grows

to a very high height than the myfibroblasts. However, for the Transformed epithelial

cells we see the oscillations type of behaviour near the preamble membrane when the

length (L) of the compartment is lesser than or equal to the time (T) taken for the

experiment. However, the oscillation decreases to a sharp peak when L is greater than

T. For the excreted molecules, we also see a bigger peaks as compare to the restricted

cells for the case when L is lesser, equal to T. However, when we increase L to be bigger

than T, we see the excreted molecules grow sharply with slight decrease and increase

till their turning point toward the end of the compartment.

For the modified model in equation (5.1.2), that is from Figure 5.5.6 to Figure

5.5.12 we see the following notable features. That is the oscillations behaviour of the

Transformed Epithelial cells are prominent for the case of L lesser than T required

by this experiment as compare to the behaviour of the vice versa of the length of

the compartment to time required by this experiment. However, for the fibroblasts

and myfibroblast cells their behaviours remains similar to that of the original model in

equation (5.1.1). For the excreted molecules we see that their concentration are inverted

in Figure 5.5.6, as compare to their corresponding behaviours in Figure 5.5.1. However,

when we increase the delay, we see that the concentration of the Epidermal growth

factor smooths out better than its behaviour when there is no delay. Similarly for

the concentration of the Transformed growth factor. These behaviours becomes more

prominent as we increases the delay around the specified length of the compartment

and time.

5.5 Conclusion

In this chapter, we considered a less complicated model simulated in [42] with the aim

of shedding more light into the interaction between transformed epithelial cells, fibrob-
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lasts and myfibroblasts cells at an early stage of cancer disease. A more advanced

model, in which the experiments is carried out in a tumor chamber invasion assay,

where a semi-permeable membrane, which allows EGF, TGF−β and Matrix Metallo-

proteinase (MMP) to cross it, coated by extra-cellular matrix (ECM) placed between

two chambers, one containing TECs and another containing fibroblasts and myofibrob-

lasts, has been dealt with elsewhere. Thus, we deemed it essential to incorporate some

of the crucial transformations ought to take place during the experiment carried out in

[63]. Such incorporation of some crucial transformations, led the original model to be

transformed to a system of non-linear delay parabolic partial differential equations. We

analysed the resulting system of non-linear delay parabolic partial differential equations

and determined the global stability conditions for our resulting system. Consequently,

we were able to derive a fitted operator finite difference (FOFDM) for solving the mod-

ified system in equation (5.1.2). In these experiments we see that the interaction of

the two concentrations enhances the growth of the Epidermal growth factor molecules,

while maintaining the sensitivity of the TECs to membrane permeability. However,

such dynamic is more informative when a delay term is included in the modeling, es-

pecially when it comes to the behaviours of the secreted molecules. Thus, our main

findings are more vivid, compare to those presented in [42] as well as in [33, 62]. More

essentially, the indirect role played by the incorporation of a delay term (τ) in the

extended model in equation (5.1.2) through the behaviours of the secreted molecules

are more informative than what is presented in [42].

Table 5.5.1: Values of the parameters used in the model (5.3.4) [59]

Dn = 3.6× 10−4 χn = 3.6× 10−8 λE = 1.00 a11 = 0.69
κ = 2.88× 103 kE = 3.32 Df = 6.12× 10−5 a21 = 2.61× 10−2

a22 = 1.58× 10−2 Dm = 6.12× 10−4 χm = 3.96× 10−6 a31 = 4.53× 10−3

λG = 1.00 De = 5.98× 10−1 a41 = 1.26 a43 = 2.89× 10−2

B = 5.00 Dg = 3.6× 10−1 a51 = 2.03× 10−1 a52 = 2.89× 10−2
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(e) Behaviour of the concentration of Trans-
formed Growth Factor molecules (TGF-β)

Figure 5.5.1: Numerical solution of the system in (5.1.2) without delay at t = 25 for
L < T .
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Figure 5.5.2: Numerical solution of the system in (5.1.2) without delay at t = 30 for
L < T .
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Figure 5.5.3: Numerical solution of the system in (5.1.2) without delay at t = 25 for
L = T .
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Figure 5.5.4: Numerical solution of the system in (5.1.2) without delay at t = 30 for
L = T .
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Figure 5.5.5: Numerical solution of the system in (5.1.2) without delay at t = 25 for
L > T .
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Figure 5.5.6: Numerical solution of the system in (5.1.2) with delay=5 days for L < T .
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Figure 5.5.7: Numerical solution of the system in (5.1.2) with delay=20 days for L < T
at t = 25.
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Figure 5.5.8: Numerical solution of the system in (5.1.2) with delay=5 days for L = T
at t = 25.
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Figure 5.5.9: Numerical solution of the system in (5.1.2) with delay=5 days for L = T
at t = 25.
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Figure 5.5.10: Numerical solution of the system in (5.1.2) with delay=15 days for
L = T at t = 25.
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Figure 5.5.11: Numerical solution of the system in (5.1.2) with delay=5 days for L > T
at t = 25.
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Figure 5.5.12: Numerical solution of the system in (5.1.2) with delay=20 days for
L > T at t = 25.

In view of the previous chapters, we are now at the position for considering a
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tumour cells from the cell cycle point of view. Therefore in Chapter 6, we consider the

dynamics of tumour cells from the cell cycle point of view.
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Chapter 6

A fitted operator method for a

mathematical model arising in

vascular tumor dynamics

We consider a model for the kinetics of human tumor cells in vitro, differentiated by

phases of the cell division cycle and length of time within each phase. Since it is not

easy to isolate the effects of cancer treatment on the cell cycle of human cancer lines,

during the process of radiotherapy or chemotherapy, therefore, we include the spatial

effects of cells in each phase and analyse the extended model. The extended model is

not easy to solve analytically, because perturbation by cancer therapy causes the flow

cytometric profile to change in relation to one another. Hence, making it difficult for the

resulting model to be solved analytically. In [85] it is reported that the non-standard

schemes are reliable and propagate sharp fronts accurately, even when the advection,

reaction processes are highly dominant and the initial data are not smooth. As a result,

we construct a fitted operator finite difference (FOFDM) coupled with non-standard

finite difference (NSFDM) to solve the extended model. The FOFDM and NSFDM are

analyzed for convergence and are seen that they are unconditionally stable and have

the accuracy of O(∆t + (∆x)2), where ∆t and ∆x denote time and space step-sizes,

161

https://etd.uwc.ac.za/



CHAPTER 6. A FITTED OPERATOR METHOD FOR A MATHEMATICAL
MODEL ARISING IN VASCULAR TUMOR DYNAMICS 162

respectively. Some numerical results confirming theoretical observations are presented.

6.1 The model

Vascular tumors are a highly diverse group of aberrant growths and they are rela-

tively abundant in the human population, with infantile hemangiomas being the most

common tumor in children and cavernous hemangiomas affecting approximately one in

every one hundred people see [2] and the references therein. Therefore, in view of our

contribution reported in [94, 95, 96, 97, 98] on tumors, we feel that it is essential for us

as researchers to understand that genetic differences between people lead to differences

in susceptibility. Since tumors develop in different organs and tissues of a body, then

this should imply that a genetic heterogeneity among cancer cells, the cellular het-

erogeneity of the tumor tissue underlie a phenotype heterogeneity of the disease and

cancer cells in a tumor are not all identical, but form different clones, defined as sets

of cancer cells that share a common genotype [129]. Therefore, in our views, it is also

very important to study dynamics for the kinetics of a population of cells differentiated

by phases of the cell division cycle such as the ones presented by Jackiewicz et al. [51]

as a way toward avoiding incorrect treatment decisions especially, if a biopsy sample

is not representative of other parts of the tumor.

On the other hand, it is understood that even in the simplified environment of

the laboratory with modern techniques and/or technology, it is not always possible

to isolate the effects of cancer treatment on the cell cycle of human cancer cell lines.

Therefore, it is important to mentioned some of the work done in the direction of

understanding cancer cells from the cells cycle point of view. Thus, we highlight few

studies done in this direction. These are for instance Giotti et al. [44] mentioned that

cell division is central to the physiology and pathology of all eukaryotic organisms and

in [11, 13, 14], have considered the in-vitro model of cancer therapies that target the

cellular mechanisms of growth, division and death in all or some stages of the cell cycle.

Thus, our first aim in this chapter is to include the spatial distribution of each phase
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for the model derived in [11] and presented in [51]. The model in [51] is given as follow,

∂G1(x,t)
∂t

= 4bM(2x, t)− (k1 + µG1)G1(x, t),

∂S(x,t)
∂t

= ε∂
2S(x,t)
∂x2 − g ∂S(x,t)

∂x
− µSS(x, t) + k1G1(x, t)− I(x, t, TS)),

∂G2(x,t)
∂t

= I(x, t;TS)− (k2 + µG2)G2(x, t),

∂M(x,t)
∂t

= k2G2(x, t)− bM(x, t)− µMM(x, t),



(6.1.1)

where, x,t ≥ 0, TS, G1(x, t), S(x, t), G2(x, t), M(x, t), µG1 , µS , µG2 , and µM denote

the dimensionless relative DNA content, time in hours, time in hours, density of cells

in G1phase, density of cells in DNA synthesis or Sphase, density of cells in G2phase

and metosis or Mphase, death rates in G1, S, G2, and M phases, respectively. The

parameters k1 and k2 denote the transition probabilities of cells from G1 to Sphase

and from G2 to Mphase, respectively, b, 0 < ε <<< 1, g >>> 1 denote division rate,

dispersion coefficient and average growth rate of DNA in the Sphase. The 4bM(2x, t)

term on the right hand side of the first equation in (6.1.1) arises due to a change of

variable in the derivation as cells in an interval [2x, 2x + 2∆x] are doubled in number

and transferred to the interval [x, x + ∆x] with half the DNA content [51]. The term

I(x, t;TS) denotes cells that have been TS hours in DNA synthesis and are ready to be

transferred to G2phase, which is also referred to as a delay term and its derivation is

explained in [11]. However, I(x, t;TS) denotes the solution of the diffusion equation

∂I(x, t; τS)

∂τS
+ g

∂I(x, t; τS)

∂x
− ε∂

2I(x, t; τS)

∂x2
+ µSI(x, t; τS) = 0, 0 < x <∞, t > τS > 0,

at time τS = TS, where τS is the time denoting the time spent by cells in DNA synthesis

or Sphase. The analytical solution (with appropriate initial conditions and a zero flux

boundary condition) is obtained by using Laplace transform techniques and Green’s
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functions in [51]. Thus, it reads

I(x, t, TS) =



∫∞
0
k1G1(y, t− TS)γ(TS, x, y)dy, if t ≥ TS,

I(x, t, TS) = 0, if t < TS,

(6.1.2)

where γ(TS, x, y) denotes a weight function given by

γ(TS, x, y) =
exp(−µSτ)

2
√
πετ

(
exp

(
−((x− gτ)− y)2

4ετ

))

−(1 + v(τ, x, y)) exp(−((x+ gτ) + y)2

4ετ
), (6.1.3)

with

v(τ, x, y) =
x+ y

gτ
(1 +O(τ−1)).

In equation (6.1.3) γ denotes a Greens function whereas, ν term arises due to the zero

flux boundary condition.

The system (6.1.1) is incomplete without initial and boundary conditions. These

conditions, which are chosen according to experimental evidence [51], take the form of

G1(x, 0) = a0√
2πθ2

0

exp
(
− (x−1)2

2πθ2
0

)
, 0 < x <∞,

S(x, 0) = 0, G2(x, 0) = 0, M(x, 0) = 0, 0 < x <∞,

 (6.1.4)

and the boundary condition

ε
∂S(0, t)

∂x
− gS(0, t) = 0, t > 0. (6.1.5)

The initial DNA content of cells in the G1phase is chosen as a Gaussian distribution
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with relative mean DNA content at x = 1 equal to a0, and variance θ2
0. This variance

is chosen sufficiently small so that the extension of G1(x, 0) into the in-feasible region

x < 0 is of no significance. In [51] a numerical methods are constructed to solve (6.1.1)

supplemented by the initial conditions in equation (6.1.4) and the general boundary

conditions of the form of

ε∂S(0,t)
∂x
− gS(0, t) = α, t > 0,

S(L, 0) = β, t > 0,

 (6.1.6)

with any real values α and β, where the parameter β was chosen according to the

experimental data provided in [12].

We can see that the system in equation (6.1.1) is a semi-system of integro-delayed

partial differential equation (IDPDE). Thus, in order to have a complete understanding

of the population kinetics of the human tumor cells, it is very important to include the

spatial effects of all the cells in each phase, rather only consider the spatial effects of

one phase and ignore the other effects of the other three phases. Consequently, mathe-

matical analysis of the extended model is also vital to justify the understanding of the

population kinetics of human tumor cells, when one present the experimental results.

Therefore, our main aim in this chapter, is to extend the model in equation (6.1.1) to

a system of convection-reaction-diffusion equations, investigate the qualitative features

of the model with the spatial effects of all the phases and determine the location of the

boundary layer. Since, flow cytometry is a technique where the DNA content of indi-

vidual cells is measured and binned accordingly. The resulting results present clearly

the phases which are perturbed and unperturbed by therapy. Thus, perturbation by

cancer therapy causes these peaks to change in relation to one another as it can be

seen in all the figures presented.

Since, explicit methods such as the finite difference (EFDMs), solve differential

equations with low computational cost, within very small stability regions, which in

turn implies severe restrictions on meshes sizes, which are required in order to achieve
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the desired results, then, implicit finite difference (IFDMs) are more favor to solve dif-

ferential equations, because of their wider stability regions as compared to the EFDMS

[22]. Thus, our second aim in this chapter, is to solve the extended model. Thus, we

develop an efficient numerical method for solving the extended model with respect to

the qualitative features of the original model.

Thus, extending the IDPDE in equation (6.1.1), we have

∂G1(x,t)
∂t

= DG1

∂2G1(x,t)
∂x2 + 4bM(2x, t)− (k1 + µG1)G1(x, t),

∂S(x,t)
∂t

= ε∂
2S(x,t)
∂x2 − g ∂S(x,t)

∂x
− µSS(x, t) + k1G1(x, t)− I(x, t;TS),

∂G2(x,t)
∂t

= DG2

∂2G2(x,t)
∂x2 + I(x, t;TS)− (k2 + µG2)G2(x, t),

∂M(x,t)
∂t

= DM
∂2M(x,t)
∂x2 + k2G2(x, t)− bM(x, t)− µMM(x, t),



(6.1.7)

where, DG1 , DG2 , DM denote the dispersion coefficient of G1, G2 and M cells in each

phase, 0 < x < L and t > 0, subject to the initial data as given in equation (6.1.4) and

the boundary conditions are

∂G1

∂ν
(0, t) = ∂G2

∂ν
(0, t) = ∂M

∂ν
(0, t) = χ1,

∂G1

∂ν
(L, t) = ∂G2

∂ν
(L, t) = ∂M

∂ν
(L, t) = χ2,

ε∂S(0,t)
∂x
− gS(0, t) = α, t > 0,

S(L, 0) = β, t > 0,



(6.1.8)

where, ν, χk, (k = 1, 2) denote an outward normal vector, and positive constants,

whereas the initial functions (G1)0(x, t), S0(x, t), (G2)0(x, t),M0(x, t) are assumed to
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satisfy the compatibility conditions [109],

∂G1

∂ν
(0, 0) = ∂G2

∂ν
(0, 0) = ∂M

∂ν
(0, 0) = χ1,

∂G1

∂ν
(L, 0) = ∂G2

∂ν
(L, 0) = ∂M

∂ν
(L, 0) = χ2,

ε∂S(0,0)
∂x
− gS(0, 0) = α, t > 0,

S(L, 0) = β,

∂G1(0,0)
∂t

= DG1

∂2G1(0,0)
∂x2 + 4bM(0, 0)− (k1 + µG1)G1(0, 0),

∂S(0,0)
∂t

= ε∂
2S(0,0)
∂x2 − g ∂S(0,0)

∂x
− µSS(0, 0) + k1G1(0, 0)− I(0, 0; 0),

∂G2(0,0)
∂t

= DG2

∂2G2(0,0)
∂x2 + I(0, 0; 0)− (k2 + µG2)G2(0, 0),

∂M(0,0)
∂t

= DM
∂2M(0,0)
∂x2 + k2G2(0, 0)− bM(0, 0)− µMM(0, 0),



(6.1.9)
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and

∂G1

∂ν
(L, 0) = ∂G2

∂ν
(L, 0) = ∂M

∂ν
(L, 0) = χ1,

∂G1

∂ν
(L, 0) = ∂G2

∂ν
(L, 0) = ∂M

∂ν
(L, 0) = χ2,

ε∂S(L,0)
∂x
− gS(L, 0) = α, t > 0,

S(L, 0) = β,

∂G1(L,0)
∂t

= DG1

∂2G1(L,0)
∂x2 + 4bM(L, 0)− (k1 + µG1)G1(L, 0),

∂S(L,0)
∂t

= ε∂
2S(L,0)
∂x2 − g ∂S(L,0)

∂x
− µSS(L, 0) + k1G1(L, 0)− I(L, 0; 0),

∂G2(L,0)
∂t

= DG2

∂2G2(L,0)
∂x2 + I(L, 0; 0)− (k2 + µG2)G2(L, 0),

∂M(L,0)
∂t

= DM
∂2M(L,0)

∂x2 + k2G2(L, 0)− bM(L, 0)− µMM(L, 0).



(6.1.10)

Under the assumptions in (6.1.9)-(6.1.10) the extended model in equation (6.1.7) with

the initial and boundary conditions in (6.1.4) and (6.1.8), respectively, has a unique

solution [8].

The rest of the chapter is arranged as follow. In section 6.2, we carry out mathemat-

ical analysis of the model, whereas in section 6.3, we derive and analyse the numerical

method. section 6.4 deals with the implementation of our numerical method, presen-

tation of our numerical results and we conclude the chapter with section 6.5.
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6.2 Mathematical analysis of the model

At the equilibria the model in equation (6.1.7) becomes

DG1

∂2G1(x,t)
∂x2 − (k1 + µG1)G1(x, t) = −4bM(2x, t),

ε∂
2S(x,t)
∂x2 − g ∂S(x,t)

∂x
− µSS(x, t) = I(x, t;TS)− k1G1(x, t),

DG2

∂2G2(x,t)
∂x2 − (k2 + µG2)G2(x, t) = I(x, t;TS),

DM
∂2M(x,t)
∂x2 − (b+ µM)M(x, t) = −k2G2(x, t).



(6.2.1)

From the first, third and fourth equations in (6.2.1) we obtain the following solutions

for the corresponding homogeneous part

G∗1(x) = cg11 + cg12 exp

(
DG1

k1 + µG1

x

)
,

G∗2(x) = cg21 + cg22 exp

(
DG2

k2 + µG2

x

)
,

M∗(x) = cm1 + cm2 exp

(
DM

b+ µM
x

)
, (6.2.2)

where, cg11, cg12, cg21, cg22, cm1, cm2 are non-negative constants. However, for the DNA

synthesis or Sphase steady state, we see that the null space is given by

S ′′ − g

ε
S ′ − µS

ε
S = 0, (6.2.3)

of which the auxiliary equation to the equation (6.2.3) is

r2 − g

ε
r − µS

ε
= 0, (6.2.4)
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which implies that the solution to the auxiliary equation in (6.2.4) is

r− =
1

2

(
g

ε
−
√(g

ε

)2

+ 4
µS
ε

)
, and r+ =

1

2

(
g

ε
+

√(g
ε

)2

+ 4
µS
ε

)
, (6.2.5)

which in turn, implies that the solution to the second order differential equation in

(6.2.3) is

S∗ = A exp(r−x) +B exp(r+x), (6.2.6)

where, from the given general boundary conditions in (6.1.8), we find that

A+B = S0, and S ′0 = Ar− +Br+, (6.2.7)

so that

εS ′0 + gS0 = α,

S ′0 +
g

ε
S0 =

α

ε
,

Ar− +Br+ +
g

ε
(A+B) =

α

ε
,

A(r− +
g

ε
) +B(r+ +

g

ε
) =

α

ε
,

A =
α
ε
−B(r+ + g

ε
)

(r− + g
ε
)

. (6.2.8)
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At x = L, the DNA synthesis or Sphase is prescribed as

β = A exp(r−L) +B exp(r+L),

β =
α
ε
−B(r+ + g

ε
)

(r− + g
ε
)

exp(r−L) +B exp(r+L),

β(r− +
g

ε
) =

α

ε
−B(r+ +

g

ε
) exp(r−L) +B exp(r+L)(r− +

g

ε
),

β(r− +
g

ε
)− α

ε
=

(
exp(r+L)(r− +

g

ε
)− (r+ +

g

ε
) exp(r−L)

)
B,

B =
β(r− + g

ε
)− α

ε(
exp(r+L)(r− + g

ε
)− (r+ + g

ε
) exp(r−L)

) . (6.2.9)

Substituting the value of B in (6.2.9) into equation (6.2.8) we obtain

A =
α
ε

(r− + g
ε
)
−

(β(r− + g
ε
)− α

ε
)(r+ + g

ε
)(

exp(r+L)(r− + g
ε
)− (r+ + g

ε
) exp(r−L)

)
(r− + g

ε
)
. (6.2.10)

This implies that the solution of the DNA synthesis or Sphase steady state, through

the equation in (6.2.6) is

S∗(x, ε, g) =
α
ε

(r− + g
ε
)
−

(β(r− + g
ε
)− α

ε
)(r+ + g

ε
)(

exp(r+L)(r− + g
ε
)− (r+ + g

ε
) exp(r−L)

)
(r− + g

ε
)

exp(r−x)

+
β(r− + g

ε
)− α

ε(
exp(r+L)(r− + g

ε
)− (r+ + g

ε
) exp(r−L)

) exp(r+x). (6.2.11)
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Combining the equation in (6.2.11) with the equilibria in equation (6.2.2), we have the

local stability point E = (G∗1, S
∗, G∗2,M

∗), where,

G∗1(x) = cg11 + cg12 exp
(

DG1

k1+µG1
x
)
,

S∗(x, ε, g) =
α
ε

(r−+ g
ε
)
− (β(r−+ g

ε
)−α

ε
)(r++ g

ε
)

(exp(r+L)(r−+ g
ε
)−(r++ g

ε
) exp(r−L))(r−+ g

ε
)
exp(r−x)

+
β(r−+ g

ε
)−α

ε

(exp(r+L)(r−+ g
ε
)−(r++ g

ε
) exp(r−L))

exp(r+x),

G∗2(x) = cg21 + cg22 exp
(

DG2

k2+µG2
x
)
,

M∗(x) = cm1 + cm2 exp
(

DM
b+µM

x
)
.



(6.2.12)

These equilibrium point E , enables us to present the behavior of the density of cells

in each phase. Moreover, the steady state for the DNA synthesis or Sphase enables

us to locate the boundary layer which is a result of perturbation by cancer therapy

[51]. Thus, since the singularly perturbation occurs only during the DNA synthesis or

Sphase, then it suffices to locate the layer by considering the solution to the steady

state of the DNA synthesis or Sphase in equation (6.2.11). Thus, following [105] and

the references there in, we see that

lim
x→0

lim
ε→0

S∗(x, ε, g) = lim
ε→0

lim
x→0

S∗(x, ε, g),

and

lim
x→L

lim
ε→0

S∗(x, ε, g) 6= lim
ε→0

lim
x→L

S∗(x, ε, g), (6.2.13)

then, the layer is located on the right-end of the interval, near x = L. This implies

that, we are now in the position of deriving our numerical method.
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6.3 Construction and analysis of the numerical method

In this section, we describe the derivation of the fitted operator finite difference numer-

ical (FOFDM) for solving the G1phase, G2phase and metosis or Mphase in equation

(6.1.7) and non-standard finite difference (NSFDM) for solving the DNA synthesis or

Sphase in equation (6.1.7). We first determine an approximation to the derivatives of

the functions G1(t, x), G2(x, t) and M(t, x) with respect to the spatial variable x.

Let Nx be a positive integer. Discretize the interval [0, L] through the points

x0 = 0 < x1 < x2 < · · · < xNx = L,

where, the step-size ∆x = xj+1−xj = L/Nx, j = 0, 1, . . . , xNx . Let (G1)j(t), (G2)j(t),Mj(t)

denote the numerical approximations of G1(t, j), G2(t, j),M(t, j), then we approximate

the second order spatial derivative by

∂G1

∂x2
(t, xj) ≈

(G1)j+1 − 2(G1)j + (G1)j−1

(φG1)2
j

,
∂G2

∂x2
(t, xj) ≈

(G2)j+1 − 2(G2)j + (G2)j−1

(φG2)2
j

,

∂M

∂x2
(t, xj) ≈

Mj+1 − 2Mj +Mj−1

φ2
j

,

(6.3.1)

where,

(φG1)j =
(1− exp ((σG1)j∆x)

(σG1)j
, (φG2)j =

(1− exp ((σG2)j∆x)

(σG2)j
,

(φM)j =
(1− exp ((σM)j∆x)

(σM)j
, (6.3.2)

and

(σG1)j =

√
k1 + µG1

DG1

, (σG2)j =

√
k2 + µG2

DG2

, (σI)j =

√
µM + b

DM

.

We see that φG1 → ∆x as ∆x→ 0, φG2 → ∆x as ∆x→ 0 and φM → ∆x as ∆x→ 0.
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Let Nt be a positive integer and ∆T = T/Nt where 0 < t < T . Discretizing the

time interval [0, T ] through the points

0 = t0 < t1 < · · · < tNt = T,

where,

tn+1 − tn = ∆t, n = 0, 1, . . . , (tNt − 1).

We approximate the time derivative at tn by

d(G1)j(tn)

dt
≈

(G1)n+1
j − (G1)nj
ψG1

,
d(G2)j(tn)

dt
≈

(G2)n+1
j − (G2)nj
ψG2

,

dMj(tn)

dt
≈
Mn+1

j −Mn
j

ψM
, (6.3.3)

where,

ψG1 = (exp((k1 + µG1)∆t)− 1)/(k1 + µG1), ψG2 = (exp((k2 + µG2)∆t)− 1)/(k2 + µG2),

ψM = (exp((b+ µM)∆t)− 1)/(b+ µM),

where we see that ψG1 → ∆t as ∆t → 0, ψG2 → ∆t as ∆t → 0 and ψM → ∆t as

∆t→ 0.

Next we develop the numerical method to solve the DNA synthesis or Sphase in

equation (6.1.7). Since the FOFDM and SFDM fail to capture the hyperbolic nature

of the advection-diffusion-reaction PDEs, below we follow the development in [85] to

derive the NSFDM for the equation modeling the DNA synthesis or Sphase in equation

(6.1.7). We proceed as follow. Let Sj(t) denote the numerical approximations of S(t, j),

then using the following sub-equations of the equation modeling the DNA synthesis or
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Sphase in equation (6.1.7)

∂S(x,t)
∂t

+ g ∂S(x,t)
∂x

= −µSS(x, t), a PDE,

g ∂S(x,t)
∂x

= ε∂
2S(x,t)
∂x2 , an ODE,

 (6.3.4)

then the exact finite difference schemes for the two sub-equations in equation (6.3.4)

are

Sn+1
j −Snj

(φ1)S(∆t)
+ g

Sn+1
j+1 −S

n+1
j

g(φ1)S( ∆x
g

)
= −µSSnj , a scheme for a PDE

Sj+1−Sj
∆x

= ε
Sj+1−2Sj+Sj−1
ε∆x
g

(φ2)S(∆x)
, a scheme for an ODE,

 (6.3.5)

where, (φ1)S(∆t) = (1 − exp(−µS∆t))/µS and (φ2)S(∆x) = (1 − exp(−g∆x
ε

)). Com-

bining the exact finite difference schemes in equation (6.3.5) and avoid the condition

g∆t = ∆x, we obtain the NSFDM for the DNA phase as

Sn+1
j − Snj

(φ1)S(∆t)
+ g
Sn+1
j+1 − Sn+1

j

g(φ1)S(∆x
g

)
= ε

Sn+1
j+1 − 2Sn+1

j + Sn+1
j−1

ϕ(∆x)
− µSSnj (6.3.6)

+k1(G1)nj − I(x, t;TS),

where, ϕ(∆x) = gφS(∆x
g

) ε∆x
g

(φ2)S(∆x). We see that φS → ∆x as ∆x → 0. Similarly

for ϕ(∆x). The denominator functions in equations (6.3.1), (6.3.3) and (6.3.5) are

used explicitly to remove the inherent stiffness in the central finite derivatives parts

and can be derived by using the theory of nonstandard finite difference methods, see,

e.g., [84, 103, 104] and references therein.

Combining the equation (6.3.1) for the spatial derivatives with the equation (6.3.3)

for time derivatives and with equation in (6.3.6), we obtain the system of FOFDM-
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NSFDM as

(G1)n+1
j −(G1)nj
φG1

= DG1

(G1)n+1
j+1−2(G1)n+1

j +(G1)n+1
j−1

(φG1
)2
j

+ 4bMn
2j − (k1 + µG1)(G1)nj ,

Sn+1
j −Snj

(φ1)S(∆t)
+ g

Sn+1
j+1 −S

n+1
j

(φ1)S( ∆x
g

)
= ε

Sn+1
j+1 −2Sn+1

j +Sn+1
j−1

ϕ(∆x)
− µSSnj + k1(G1)nj − I(x, t;TS),

(G2)n+1
j −(G2)nj
φG2

= DG2

(G2)n+1
j+1−2(G2)n+1

j +(G2)n+1
j−1

(φG2
)2
j

+ I(x, t;TS)− (k2 + µG2)(G2)nj ,

Mn+1
j −Mn

j

φM
= DM

Mn+1
j+1−2Mn+1

j +Mn+1
j−1

(φM )2
j

+ k2(G2)nj − (b+ µM)Mn
j ,

(G1)n1 = (G1)n−1, (G2)n1 = (G2)n−1, Sn1 = Sn−1,Mn
1 =Mn

−1,

(G1)nxNx = (G1)nxNx−1
, (G2)nxNx = (G2)nxNx−1

, SnxNx = SnxNx−1
,

Mn
xNx

=Mn
xNx−1

, (G1)0
j = a0√

2πθ2
0

exp
(
− (xj−1)2

2πθ2
0

)
, (G2)0

j = 0,

S0
j = 0, M0

j = 0.



(6.3.7)

The system in equation (6.3.7) can further be simplified as

− DG1

(φG1
)2
j
(G1)n+1

j−1 +
(

1
φG1

+
2DG1

(φT )2
j

)
(G1)n+1

j − DG1

(φG1
)2
j
(G1)n+1

j+1

=
(

1
φG1
− (k1 + µG1)

)
(G1)nj + 4bMn

2j,

− ε
ϕ(∆x)

Sn+1
j−1 +

(
1

(φ1)S(∆t)
− g

(φ1)S( ∆x
g

)
+ 2ε

ϕ(∆x)

)
Sn+1
j

+

(
g

(φ1)S( ∆x
g

)
− ε

ϕ(∆x)

)
Sn+1
j+1 =

(
1

(φ1)S(∆t)
− µS

)
Snj + k1(G1)nj − I(x, t;TS),

− DG2

(φG2
)2
j
(G2)n+1

j−1 +
(

1
φG2

+
DG2

(φG2
)2
j

)
(G2)n+1

j − DG2

(φG2
)2
j
(G2)n+1

j+1

=
(

1
φG2
− (k2 + µG2)

)
(G2)nj + I(x, t;TS),

− DM
(φM )2

j
Mn+1

j−1 +
(

1
φM

+ DM
(φM )2

j

)
Mn+1

j − DM
(φM )2

j
Mn+1

j+1

=
(

1
φM
− (b+ µM)

)
Mn

j + k2(G2)nj .



(6.3.8)
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The system in equation (6.3.8) can be written as a tridiagonal system given by

AG1(G1) = FG1 ,

ASS = FS,

AG2(G2) = FG2 ,

AMM = FM ,



(6.3.9)

where, j = 1, . . . , xNx − 1, n = 0, . . . , tNt − 1 and

AG1 = Tri
(
− DG1

(φG1
)2
j
, 1
φG1

+
2DG1

(φT )2
j
,− DG1

(φG1
)2
j

)
,

AS = Tri
(
− ε
ϕ(∆x)

, 1
(φ1)S(∆t)

− g

(φ1)S( ∆x
g

)
+ 2ε

ϕ(∆x)
,− ε

ϕ(∆x)

)
,

AG2 = Tri
(
− DG2

(φG2
)2
j
, 1
φG2

+
DG2

(φG2
)2
j
,− DG2

(φG2
)2
j

)
,

AM = Tri
(
− DM

(φM )2
j
, 1
φM

+ DM
(φM )2

j
,− DM

(φM )2
j

)
,


and

(FG1)nj =
(

1
φG1
− (k1 + µG1)

)
(G1)nj + 4bMn

2j,

(FS)nj =
(

1
φS(k)

− µS
)
Snj + k1(G1)nj − I(x, t;TS),

(FG2)nj =
(

1
φG2
− (k2 + µG2)

)
(G2)nj + I(x, t;TS),

(FM)nj =
(

1
φM
− (b+ µM)

)
Mn

j + k2(G2)nj .


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Let the functions

G1(x, t), S(x, t), G2(x, t),M(x, t),

and their partial derivatives with respect to both t and x be smooth such that they

satisfy ∣∣∣∣∂i+jG1(t, x)

∂tixj

∣∣∣∣ ≤ ΥG1 ,

∣∣∣∣∂i+jS(t, x)

∂tixj

∣∣∣∣ ≤ ΥS,

∣∣∣∣∂i+jG2(t, x)

∂tixj

∣∣∣∣ ≤ ΥZ ,

∣∣∣∣∂i+jM(t, x)

∂tixj

∣∣∣∣ ≤ ΥM ,

∀i, j ≥ 0, (6.3.10)

where,

ΥG1 ,ΥS,ΥG2 ,ΥM ,

are constant that are independent of the time and space step-sizes. Then, in view of

equation (6.3.9), we see that the local truncation errors

((ςG1)nj , (ςS)nj , (ςG2)nj , (ςM)nj ) are given by

(ςG1)nj = (AG1G1)nj − (FG1)nj = (AG1(G1 − G1))nj ,

(ςS)nj = (ASS)nj − (FS)nj = (AS(S − S))nj ,

(ςG2)nj = (AG2G2)nj − (FG2)nj = (AG2(G2 − G2))nj ,

(ςS)nj = (AMM)nj − (FM)nj = (AM(M −M))nj .



(6.3.11)
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Thus,

max1≤n≤T,1≤j≤L |(G1)nj − (G1)nj )| ≤ ||(AG1)−1|||(ςG1)nj |,

max1≤n≤T,1≤j≤L |Snj − Snj | ≤ ||(AS)−1|||(ςS)nj |,

max1≤n≤T,1≤j≤L |(G2)nj − (G2)nj )| ≤ ||(AG2)−1|||(ςG2)nj |,

max1≤n≤T,1≤j≤L |Mn
j −Mn

j | ≤ ||(AM)−1|||(ςM)nj |,



(6.3.12)

where,

max1≤n−1≤T,1≤j≤L−1 |(ςG1)nj | ≤ ∆t
2
|(G1)tt(ζ)|+DG1

(∆x)2

12
|(G1)xxxx(ξ)|,

max1≤n−1≤T,1≤j≤L−1 |(ςS)nj | ≤ ∆t
2
|Stt(ζ)|+ g∆x

2
|Sxx(ξ)|+ ε (∆x)2

12
|Sxxxx(ξ)|,

max1≤n−1≤T,1≤j≤L−1 |(ςG2)nj | ≤ ∆t
2
|(G2)tt(ζ)|+DG2

(∆x)2

12
|(G2)xxxx(ξ)|,

max1≤n−1≤T,1≤j≤L−1 |(ςM)nj | ≤ ∆t
2
|Mtt(ζ)| −DM

(∆x)2

12
|Mxxxx(ξ)|,



(6.3.13)

where, tn−1 ≤ ζ ≤ tn+1, xj−1 ≤ ξ ≤ xj+1. In view of inequalities in (6.3.10), then the

inequalities in (6.3.12) implies that

max1≤n−1≤T,1≤j≤L−1 |(ςG1)nj | ≤
(

∆t
2

+DG1

(∆x)2

12

)
ΥG1 ,

max1≤n−1≤T,1≤j≤L−1 |(ςS)nj | ≤
(

∆t
2

+ g∆x
2

+ ε (∆x)2

12

)
ΥS,

max1≤n−1≤T,1≤j≤L−1 |(ςG2)nj | ≤
(

∆t
2

+DG2

(∆x)2

12

)
ΥG2 ,

max1≤n−1≤T,1≤j≤L−1 |(ςM)nj | ≤
(

∆t
2
−DM

(∆x)2

12

)
ΥM ,



(6.3.14)
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where, tn−1 ≤ ζ ≤ tn+1, xj−1 ≤ ξ ≤ xj+1 and by [117] we have

||(AG1)−1|| ≤ ΞG1 , ||(AS)−1|| ≤ ΞS, ||(AG2)−1|| ≤ ΞG2 , ||(AM)−1|| ≤ ΞM . (6.3.15)

Using (6.3.14) and (6.3.15) in (6.3.12), we obtain

max1≤n≤T,1≤j≤L |(G1)nj − (G1)nj | ≤ ΞG1 [∆t
2

+DG1

(∆x)2

12
]ΥG1 ,

max1≤n≤T,1≤j≤L |Snj − Snj | ≤ |ΞS|[∆t
2

+ g∆x
2

+ ε (∆x)2

12
]ΥS,

max1≤n≤T,1≤j≤L |(G2)nj − (G2)nj | ≤ |ΞG2|[∆t
2

+DG2

(∆x)2

12
]ΥS,

max1≤n≤T,1≤j≤L |Mn
j −Mn

j | ≤ |ΞM |[∆t
2
−DM

(∆x)2

12
]ΥM .


Hence, we obtain the following results.

Theorem 6.3.1. Let FG1(x, t), FS(x, t), FG2(x, t), FM(x, t) be sufficiently smooth func-

tions so that G1(x, t), S(x, t), G2(x, t),M(x, t) ∈ C∞([0, L]×[0, T ]). Let (G1)nj ,Snj , (G2)nj ,Mn
j ,

j = 1, 2, . . . L, n = 1, 2, . . . T be the approximate solutions to (6.1.7), obtained using the

FOFDM-NSFDM with (G1)0
j = (G1)0

j ,S0
j = S0

j , (G2)0
j = (G2)0

j ,M0
j = M0

j . Then there

exists ΞG1 ,ΞS,ΞG2 ,ΞM independent of g, ε, the step sizes ∆t and ∆x such that

sup0<ε≤1,g>>1 max1≤n≤T,1≤j≤L |(G1)nj − (G1)nj | ≤ |ΞG1|[∆t
2

+DG1

(∆x)2

12
]ΥG1 ,

sup0<ε≤1,g>>1 max1≤n≤T,1≤j≤L |Snj − Snj | ≤ |ΞS|[∆t
2

+ g∆x
2

+ ε (∆x)2

12
]ΥS,

sup0<ε≤1,g>>1 max1≤n≤T,1≤j≤L |(G2)nj − (G2)nj | ≤ |ΞG2 |[∆t
2

+DG2

(∆x)2

12
]ΥG2 ,

sup0<ε≤1,g>>1 max1≤n≤T,1≤j≤L |Mn
j −Mn

j | ≤ |ΞM [∆t
2
−DM

(∆x)2

12
]ΥM .


This shows that our FOFDM and NSFDM are unconditionally stable.

https://etd.uwc.ac.za/



CHAPTER 6. A FITTED OPERATOR METHOD FOR A MATHEMATICAL
MODEL ARISING IN VASCULAR TUMOR DYNAMICS 181

6.4 Numerical results and discussions

Setting DG1 = 10−4, DG2 = 10−4, DM = 10−7, L = 5, T = 1, xNx = tNt = 20 and ,

we present our numerical solutions in Figure 6.5.1 (for ε = 0.001), Figure 6.5.2 (for

ε = 0.01), Figure 6.5.3 (for ε = 0.1) using the parameter values [11] in Table 6.5.1.

In Figure 6.5.1(a) we see that as time grows the density of cells are increasing within

the range of approximately of x ∈ (0, 1.5), then for the values of x ∈ (1.5, 5), the profile

presents that there are no more cells available for G1phase.

In Figure 6.5.1(b) we see that as time grows the density of cells form a peak which

is increasing within the range of approximately of the values of x ∈ (0, 1.5), then for

the values of x ∈ (1.5, 5) the density of cells converges to its low positive steady state.

In Figure 6.5.1(c) we see the contrary to the profiles of the two previous profiles.

That, as time grows the density of cells grows exponentially for x ∈ (0, 1.5), till they

reach a positive steady state for x ∈ (1.5, 5). The profile of this phase presents that all

cells are well and active for next interactions.

In Figure 6.5.1(d) we see similar development compare to the interactions in the

Mphase, that as time grows the density of cells grows exponentially for the values of

x ∈ (0, 1.5), till they reach a positive steady state for x ∈ (1.5, 5). The profile of this

phase presents that all cells are well and active for the next interaction.

The remaining two figures, Figure 6.5.2 and Figure 6.5.3, we have the same profiles

as in Figure 6.5.1, for different values of ε ∈ (0, 1).

6.5 Conclusion

In this chapter, we extended the model for population kinetics of human tumor in vitro,

with the aim to contribute toward the understanding of cells cycle in each phase. This

is very essential toward healing cancer as a dreadful disease, since [51] categorically

mentioned that even in the simplified environment of the laboratory with modern

technology it is not always possible to isolate the effects of cancer treatment on the
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cell cycle of human cancer lines. Thus, in view of our numerical results, we see that

for the values of 0 < ε <<< 1 and g >>> 1 our numerical solutions are the same,

despite the fact that cells population behave differently in each phase. As time goes,

we see that during G1phase, that the cells grow sharply to a very high height as time

increases, but for certain different positions only. During the DNA synthesis or Sphase,

we see different peaks for certain different positions only as time increases, unlike for

the G2phase and the metosis Mphase, where we see that the cells grow sharply to

their respective uniform equilibria. These growths are due to the equilibria presented

in (6.2.12). When we decrease the value for the division rate parameter (b), then the

behavior of the metosis or Mphase changes to a linear growth rate, whereas increasing

the the division rate (b), changes the growth rate a parabolic growth rate (results not

shown). Other changes in the parameter values does not bring new phenomena, except

for the fact that µS 6= 0, because we believe a small amount cells should be exiting the

phase, during this phase too. We also see an important feature in our numerical results

that notable interactions takes place at certain positions only in all the phases. This,

we believe can contribute quite a great deal toward understanding of cells cycle in each

phase, which in turn can be taken up for further cancer research on the cell cycle of

human cancer lines. Thus, our approach in this work should serve as a first attempt

to incorporate the detailed effects of population kinetics of human tumor. Hence, our

future direction is to carry out comparison with the latest reported method(s) in the

subsequent recent years chapters.

Table 6.5.1: Values of the parameters used in the model (6.3.7) [11]

k1 = 0.8 µG1 = 0.9 α = 2.4 g = 30.9
θ0 = 0.6 µS = 0.8 β = 0.1 k2 = 0.0193
µG2 = 2.00 b = 1.9296 µM = 0.01 a0 = 100.0
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Figure 6.5.1: Numerical solution obtained by using for ε = 0.001.
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Figure 6.5.2: Numerical solution obtained by using for ε = 0.01.
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Figure 6.5.3: Numerical solution obtained by using for ε = 0.1.

We believe we have covered all essentials of tumour cells in terms of our models

considered in the previous chapters as well as in this chapter. Thus, in Chapter 7

we consider some cost-effective, efficient optimization approaches for treating tumour

infection.
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Chapter 7

Robust numerical solution for a

problem arising in angiogenic

signalling

Since the process of angiogenesis is controlled by chemical signals, which stimulate both

repair of damaged blood vessels and formation of new blood vessels, then other chemical

signals known as angiogenesis inhibitors interfere with blood vessels formation. This

implies that the stimulating and inhibiting effects of these chemical signals are balanced

as blood vessels form only when and where they are needed. Based on this information,

an optimal control problem is formulated and the arising model is a system of coupled

non-linear equations with adjoint and transversality conditions. Since many of the

numerical methods often fail to capture the solution to these type of models, then, in

this chapter, we carry out equilibrium analysis of these models before implementing

the numerical computations. We analyze and present the numerical estimates as a way

of providing more insight into the postvascular dormant state where stimulator and

inhibitor come into balance in an optimal manner.

186
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7.1 The model

In [76], Ledzewicz et al. considered two mathematical models for tumour anti-angiogenesis

in which one model was originally formulated [48] whereas, the other model is a mod-

ification of the model by [38] considered as optimal control problem with the aim of

maximizing the tumour reduction achievable with an a priori given amount of an-

giogenic agents. They argued that depending on the initial conditions, the optimal

controls may contain a segment along which the dosage follows a so-called singular

control, a time-varying feedback control. Thus, the efficiency of piecewise constant

protocols with a small number of switchings is investigated through comparison with

the theoretically optimal solutions. It is also shown that these protocols provide gen-

erally excellent suboptimal strategies that for many initial conditions come within a

fraction of 1% of the theoretically optimal values. When the duration of the dosages

are a priori restricted to a daily or semi-daily regimen, still very good approximations

of the theoretically optimal solution can be achieved.

Apart from formulating a class of mathematical models for tumor anti-angiogenesis

as optimal control problems, Ledzewicz and Cardwell [77] considered the fact on how

to schedule an a priori given amount of anti-angiogenic (e.g., vessel disruptive) agents

in order to minimize the tumor volume [120, 119], they also analyzed these models for

a class of mathematical models that include, based on a model that was developed and

biologically validated by Hahnfeldt, Panigrahy, Folkman and Hlatky [48]. Thus, the

principal state variables are the primary tumor volume, p, and the carrying capacity of

the vasculature, q, where the latter is a measure for the tumor volume sustainable by the

vascular network. These dynamics describes the interactions between these variables

and the tumor volume p changes according to some growth function dependent on the

variable carrying capacity q, where the q-dynamics consists of a balance of stimulatory

and inhibitory effects. While significant modeling changes are made in the dynamics

for the vascular support of such model, the solutions to the optimal control problem

are in fact qualitatively identical.
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Thus, let p, ξ, q, γ, u, a, A, b, d, µq denote the primary tumor volume, tumor growth

parameter, endothelial support, anti-angiogenic killing parameter, treatment with an

anti-angiogenic agent, a priori set maximum dosage, positive constant, birth rate, death

rate, net balance between endothelial cell proliferation and loss to the endothelial cells

through natural causes such as death and the parameter θ ∈ [0, 1]. Then, to reduce the

volume (p) of a tumour efficiently results into the maximization of the tumour volume

reduction achievable with an apriori amount of angiogenic inhibitors [38, 69, 71, 73, 75]

∫ T

0

u(t)dt ≤ A, (7.1.1)

for a free terminal T , minimizes the value p(T ) subjects to the dynamics

ṗ = −ξp ln
(
p
q

)
,

q̇Iθ = bpθ − dp 1
3 q − q(µ+ γu),

q̇HE = bq
2
3 − dq 4

3 − q(µ+ γu),

q̇H1 = bp− dp 2
3 q − q(µ+ γu),

ẏ = u,


(7.1.2)

with initial conditions p(0) = p0 > 0, q(0) = q0 > 0, y(0) = 0 [48]. Equation (7.1.1)

together with (7.1.2) is an optimal control problem. Therefore, in the next section we

determine the Hamiltonian and Lagrange multipliers of the optimal control problem.

7.2 Hamiltonian and Lagrange multipliers

The Pontryagin maximum principle [18, 19, 108] enables us to determine the necessary

conditions for optimality of a control u. Thus, for a row-vector λ = (λ1, λ2, λ3)t ∈ R3

the Hamiltonian H := H(λ, p, q, u) is

H = −λ1ξp ln

(
p

q

)
+ λ2 (S(p, q)− I(p, q)− µq − γqu) + λ3u,
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where, S and I denote endogenous inhibition, stimulation terms. Therefore, the indi-

vidual Hamiltonians [48] corresponding to equation (7.1.2) are

HIθ = −λ1ξp ln
(
p
q

)
+ λ2

(
bpθ − dp 1

3 q − q(µ+ γu)
)

+ λ3u,

HHE = −λ1ξp ln
(
p
q

)
+ λ2

(
bq

2
3 − dq 4

3 − q(µ+ γu)
)

+ λ3u,

HH1 = −λ1ξp ln
(
p
q

)
+ λ2

(
bp− dp 2

3 q − q(µ+ γu)
)

+ λ3u,

 (7.2.1)

over all Lebesgue measurable functions u : [0, T ]→ [0, a], for which the corresponding

trajectory satisfies y(T ) ≤ A and the transversality conditions are

λ1(T ) = 1, λ2(T ) = 0 and λ3(T ) = constant. (7.2.2)

Let x̄ := (p, q, y), then, by Samaee et al. [114], we have

∂x̄f + λT (∂x̄h− ∂t∂ẋh)− λ̇∂x̄h = 0, (7.2.3)

where,

f = u,

h =



ṗ+ ξp ln
(
p
q

)
,

q̇Iθ − bpθ + dp
1
3 q + q(µ+ γu),

q̇HE − bq
2
3 + dq

4
3 + q(µ+ γu),

q̇H1 − bp+ dp
2
3 q + q(µ+ γu),

ẏ − u,


, (7.2.4)

obtained through equations in (7.1.2). Applying equation (7.2.3) to modelH1 we obtain
0

0

0

+ λ


ξ
(

ln
(
p
q

)
+ 1
)

dp2/3 + (µ+ γu)

0

− λ̇


ξ
(

ln
(
p
q

)
+ 1
)

dp2/3 + (µ+ γu)

0

 =


0

0

0

 , (7.2.5)
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which yields

λ− λ̇ = 0. (7.2.6)

Equation (7.2.6) is also obtained for other two remaining models. Solving equation

(7.2.6), we obtain

λ1,2,3(t) = C exp(t), (7.2.7)

where C, is a constant of integration. Using the transversality conditions we obtain

λ1(t) = exp(t− T ),

λ2(t) = 0,

λ3(t) = C.

 (7.2.8)

7.3 Equilibrium state

In order to develop the robust numerical methods it is necessary to analyse the equi-

librium behaviour of these models. Therefore, in the next subsections we deduce the

stability conditions of the models.

7.3.1 Model having Iθ

For this model, we let

F (p, q, u) = −ξp ln
(
p
q

)
,

GIθ(p, q, u) = bpθ − dp 1
3 q − qµ,

H(p, q, u) = 0,

 (7.3.1)
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then

∂F
∂p

= −ξ
(

ln
(
p
q

)
+ p

(
1
p
− 0
))

,

= −ξ
(

ln
(
p
q

)
+ 1
)
,

∂F
∂q

= −ξp
(

0− 1
q

)
,

= ξ p
q
,

∂F
∂u

= 0.


(7.3.2)

We see that Hp = Hq = Hu = 0, where the subscripts imply the partial derivatives

with respect to a subscript p, q and u in that order. Solving for critical point q∗ in

equation (7.3.1), we find that

bpθ − dp1/3q − qµ = 0,

bpθ − q
(
dp1/3 + µ

)
= 0,

bpθ = q
(
dp1/3 + µ

)
,

bpθ

(dp1/3 + µ)
= q∗. (7.3.3)

But we know that q∗ ≥ p∗, then this enables us to write

bpθ

(dp1/3 + µ)
≥ p∗,

⇔ p∗
(
dp∗1/3 + µ

)
≥ bp∗θ,

⇔ dp∗4/3 + p∗µ− bp∗θ ≥ 0,

⇔ p∗
(
dp∗1/3 + µ− bp∗θ−1

)
≥ 0, (7.3.4)

then, p∗ > 0 as p∗ = 0 is not admissible. Therefore,

dp∗1/3 + µ− bp∗θ−1 ≥ 0, (7.3.5)
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which we solve and obtain

p∗ ≥ −(µ− bpθ−1)3

d3
. (7.3.6)

From equation (7.3.2), we obtain the non-zero entries of the Jacobian matrix JIθ := Jij

for i = j = 1 : 3 as

J1,1 = −ξ(ln
(
p

q

)
+ 1), J1,2 = ξ

p

q
, J2,1 = θbpθ−1 − dq/3p

2
3 ,

J2,2 = −dp
1
3 − µ. (7.3.7)

Using the concept of numeric-analytic dissipativity condition [25], we obtain the char-

acteristic equation

σ2 − trace(
1

2
(J + J t))σ + det(

1

2
(J + J t)),

from 1
2
(J + J t). This implies that the model is stable if

(
ξ(ln

(
p∗

q∗

)
+ 1)

)
< 1,

(
dp∗

1
3 + µ

)
< 1,

(
θbpθ−1 − dq/3p

2
3

)
< 1, (7.3.8)

which implies that

ln

∣∣∣∣p∗q∗
∣∣∣∣ < ξ ⇔

∣∣∣∣p∗q∗
∣∣∣∣ < exp(−ξ) and |p∗| <

∣∣∣∣(µd)3
∣∣∣∣ ,

pθ−1 <
dq∗

3θbp
1
3

. (7.3.9)
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7.3.2 Adjoint for the model having Iθ

Since the Hamiltonian H = H(λ, p, q, u), where the λ’s are constants multipliers then

dHIθ
dt

=
∂HIθ
∂λ

dλ
dt

+
∂HIθ
∂p

dp
dt

+
∂HIθ
∂q

dq
dt

+
∂HIθ
∂u

du
dt
,

dHIθ
dt

=
∂HIθ
∂p

dp
dt

+
∂HIθ
∂q

dq
dt
,

 (7.3.10)

because dλ/dt = 0 and by the stationary condition we have ∂HIθ/∂u = 0. Therefore,

for the equilibrium equation in (7.3.10) becomes

∂HIθ

∂p

dp

dt
+
∂HIθ

∂q

dq

dt
= 0,

⇔ ∂HIθ

∂p

dp

dt
= −∂HIθ

∂q

dq

dt
,

⇔ ∂HIθ

∂p

dp

dt
= 0,

⇔ −∂HIθ

∂q

dq

dt
= 0. (7.3.11)

Using equation (7.3.11) we find the corresponding critical points by linearizing the

Jacobian matrices as follow

0 =
∂HIθ

∂p

dp

dt
,

=

(
−λ1ξ

(
ln

(
p

q

)
+ 1

)
+ λ2

(
bθpθ−1 − dq

3p2/3

))(
−ξp ln

(
p

q

))
,(7.3.12)

and

0 = −∂HIθ

∂q

dq

dt
,

=

(
ξλ1

p

q
− λ2

(
dp1/3 + µ

)) (
bpθ − dp1/3q − qµ

)
. (7.3.13)
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Solving for the critical point q∗ in (7.3.13) we find

q∗1 =
ξλ1p

λ2dp1/3 + µ
and q∗2 =

ξλ1p
θ

dp1/3 + µ
. (7.3.14)

The Jacobian matrix is

JIθ =


(
∂HIθ
∂p

)
p

(
∂HIθ
∂p

)
q

(
∂HIθ
∂p

)
u(

∂HIθ
∂q

)
p

(
∂HIθ
∂q

)
q

(
∂HIθ
∂q

)
u(

∂HIθ
∂u

)
p

(
∂HIθ
∂u

)
q

(
∂HIθ
∂u

)
u

 ,

=


−λ1ξ

p
+ λ2bθ(θ − 1)pθ−2 + 2dq

9p
1
3

λ1ξ
q
− λ2d

3p
2
2

0

λ1ξ
q
− λ2d

3p
2
3

−λ1p
q2 0

0 0 0

 .

Therefore, the adjoint is stable if and if and the eigenvalues are∣∣∣∣−λ1ξ

p∗
+ λ2bθ(θ − 1)p∗θ−2 +

dq∗

2p∗
1
3

∣∣∣∣ < 0,

∣∣∣∣λ1p
∗

q∗2

∣∣∣∣ < 0,

∣∣∣∣λ1ξ

q
− λ2d

3p
2
2

∣∣∣∣ < 0,

which implies that∣∣∣∣exp(t− T )
ξ

p∗
+

dq∗

2p∗
1
3

∣∣∣∣ < 1,

∣∣∣∣exp(t− T )
p∗

q∗2

∣∣∣∣ < 1,

∣∣∣∣exp(t− T )
ξ

q

∣∣∣∣ < 1,

⇒ exp(t− T )
ξ

p∗
< − dq∗

2p∗
1
3

, and ξ < 1.
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7.3.3 Model having He

Applying the same procedures as in the above section we have,

F (p, q, u) = −ξp ln
(
p
q

)
,

GE(p, q, u) = bq
2
3 − dq 4

3 − q(µ+ γu),

H(p, q, u) = 0,


then

∂F

∂p
= −ξ ∂

∂p

(
ln

(
p

q

)
+ p

(
1

p
− 0

))
,

= −ξ
(

ln

(
p

q

)
+ 1

)
,

∂F

∂q
= −ξp

(
0− 1

q

)
,

= ξ
p

q
,

∂F

∂u
= 0, (7.3.15)

and we also see that Hp = Hq = Hu = 0, where the subscripts denote the partial

derivatives with respect to p, q and u, respectively.

Then from the second equation in (7.3.15) we see that

q
(
bq−1/3 − dq1/3 − µ

)
= 0, (7.3.16)

which implies that bq−1/3 − dq1/3 − µ = 0, as q∗ 6= 0. This implies that

q∗1 =
1

2

(
−µ+

√
µ2 + 4bd

)
b+

−µ+
√
µ2+4bdµ2

d
− bµ

d2
and

q∗2 = −1

2

(
µ−

√
µ2 + 4bd

)
b− µ+

√
µ2+4bdµ2

d
− bµ

d2
, (7.3.17)
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because u∗ = 0. Take q∗ ≥ p∗ and the non-zero entries of the Jacobian matrix JE := Jij

where i = 1 : 3 and j = 1 : 3 are

J1,1 = −ξ
(

ln

(
p

q

)
+ 1

)
,

J1,2 = ξ
p

q
, J2,2 = 2bq

1
3/3− 4dq

1
3/3− µ, (7.3.18)

which implies that the model is stable if and only if

|ξ| < 1, |2b/3q∗
1
3 − 4dq∗

1
3/3− µ| < 1,

⇒ 2b/3q∗
1
3 < 4dq∗

1
3/3 + µ.

7.3.4 Adjoint for the model having He

Let H = H(λ, p, q, u), then

dHHE
dt

=
∂HHE
∂λ

dλ
dt

+
∂HHE
∂p

dp
dt

+
∂HHE
∂q

dq
dt

+
∂HHE
∂u

du
dt
,

dHHE
dt

=
∂HHE
∂p

dp
dt

+
∂HHE
∂q

dq
dt
,


as dλ/dt = 0 and by the stationary condition we see that ∂H/∂u = 0. Thus, for the

equilibrium we have

∂HHE

∂p

dp

dt
+
∂HHE

∂q

dq

dt
= 0,

⇔ ∂HHE

∂p

dp

dt
= −∂HHE

∂q

dq

dt
,

⇔ ∂HHE

∂p

dp

dt
= 0,

⇔ −∂HHE

∂q

dq

dt
= 0. (7.3.19)
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In view of equation (7.3.19) we have

0 =
∂HHE

∂p

dp

dt
= λ1ξ

2p ln

(
p

q

)(
ln

(
p

q

)
+
p

q

)
,

⇔ p∗ ≤ q∗ or q∗ = p∗ exp(
p∗

q∗
), (7.3.20)

and from

0 = −∂HHE

∂q

dq

dt
,

= −

(
λ1ξp

q
+ λ2

(
2b

3q
1
3

− 4dq
1
3

3
− µ

))(
bq2/3 − dq4/3 − qµ

)
,

which implies that

p∗ =

q∗λ2

(
2b

3q∗
1
3
− 4dq∗

1
3

3
− µ

)
λ1ξ

and q∗ =
b3

(dq∗1/3 + µ)3
.

The corresponding Jacobian matrix JHE := Jij for i = j = 1 : 3 is

JHE =


(
∂H
∂p

)
p

(
∂H
∂p

)
q

(
∂H
∂p

)
u(

∂H
∂q

)
p

(
∂H
∂q

)
q

(
∂H
∂q

)
u(

∂H
∂u

)
p

(
∂H
∂u

)
q

(
∂H
∂u

)
u

 ,

=


−λ1ξ

(
1
p

+ 1
p

)
λ1ξ

(
1
q

+ p
q2

)
0(

∂H
∂q

)
p

(
∂H
∂q

)
q

(
∂H
∂q

)
u(

∂H
∂u

)
p

(
∂H
∂u

)
q

(
∂H
∂u

)
u

 , (7.3.21)
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where, the non-zero entries are

J1,1 = −λ1ξ

(
1

p∗
+

1

q∗

)
J1,2 = λ1ξ

(
1

q∗
+
p∗

q∗2

)
, J2,1 =

λ1ξ

q∗
,

J2,2 = −
(
λ1ξp

∗

q∗2
+ λ2

(
2b− 4d

9q∗
2
3

))
.

Therefore, the adjoint of this model is stable if∣∣∣∣− exp(t− T )ξ

(
1

p∗
+

1

q∗

)∣∣∣∣ < 1, ξ < 1,
1

q∗
< − p

∗

q∗2
.

7.3.5 Model having H1

We let

F (p, q, u) = −ξp ln
(
p
q

)
,

GH1(p, q, u) = bp− dp 2
3 q − qµ,

H(p, q, u) = 0,

 (7.3.22)

so that

∂F

∂p
= −ξ ∂

∂p

(
ln

(
p

q

)
+ p

(
1

p
− 0

))
,

= −ξ
(

ln

(
p

q

)
+ 1

)
,

∂F

∂q
= −ξp

(
0− 1

q

)
,

= ξ
p

q
,

∂F

∂u
= 0, (7.3.23)
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where, see that Hp = Hq = Hu = 0. The subscripts imply the partial derivatives with

respect to p, q and u, respectively. Therefore,

∂GH1

∂p
= ∂

∂p

(
bp− dp 2

3 q − qµ
)
,

= b− 2dq/3p(1/3),
∂GH1

∂q
= ∂

∂q

(
bp− dp 2

3 q − qµ)
)
,

= −
(
dp

2
3 + µ

)
,

∂GH1

∂u
= ∂

∂u

(
bp− dp 2

3 q − qµ
)
,

= 0,



(7.3.24)

and the Jacobian matrix JH1 := Jij for i = j = 1 : 3 is

JH1 =


∂F
∂p

∂F
∂q

∂F
∂u

∂GH1

∂p

∂GH1

∂q

∂GH1

∂u

∂H
∂p

∂H
∂q

∂H
∂u

 , (7.3.25)

where, the non-zero entries are

J1,1 = −ξ
(

ln

(
p

q

)
+ 1

)
J1,2 = ξ

p

q
, J2,1 = b− 2dq/3p(1/3),

J2,2 = −
(
dp

2
3 + µ

)
.

In view of equation (7.3.22), we see that,

0 = −ξp ln
(
p
q

)
,

0 = bp− dp 2
3 q − q(µ+ γu).

 (7.3.26)
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The first equation in (7.3.26) requires that −ξp = 0 or ln (p/q) = 0. However, based

on the construction of this model, neither ξ 6= 0 nor p 6= 0, then the only choice is

ln

(
p

q

)
= 0,

⇒ exp

(
ln(

p

q
)

)
= 1⇔ p = q. (7.3.27)

However, further basic requirement on this model is such that ln (p/q) should be a

decreasing function and this is only possible if q∗ ≥ p∗. Solving for q in the second

equation in (7.3.26) we obtain

q∗ =
bp∗

dp∗2/3 − µ
, as u∗ = 0. (7.3.28)

But q∗ ≥ p∗, then in view of equation (7.3.28), we see that

bp∗

dp∗2/3 − µ
≥ p∗ ⇔ p∗

(
dp∗2/3 − µ

)
≥ bp∗,

⇔ dp∗5/3 − µp∗ ≥ bp∗,

⇔ dp∗5/3 − µp∗ − bp∗ ≥ 0,

⇔ dp∗5/3 ≥ p∗ (µ+ b) ,

⇔ p∗2/3 ≥ (µ+ b) /d,

⇔ p∗ ≥ ((µ+ b)/d)3/2 , (7.3.29)
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which enables us to rewrite equation (7.3.28) as

q∗ =
b (µ+ b)/d)3/2

d ((µ+ b)/d)− µ
,

=
b (µ+ b)3/2

d3/2((µ+ b)− µ)
,

=
(µ+ b))3/2

d3/2
. (7.3.30)

Hence, the model is stable if and only if

ξ < 1,

∣∣∣∣∣d(µ+ b)3/2

d3/2

∣∣∣∣∣ < 1,
dq

3p(1/3)
<
b

2
. (7.3.31)

7.3.6 Adjoint for the model having H1

For this model we have

dH
dt

=
∂HH1

∂λ
dλ
dt

+
∂HH1

∂p
dp
dt

+
∂HH1

∂q
dq
dt

+
∂HH1

∂u
du
dt
,

dHH1

dt
= ∂H

∂p
dp
dt

+
∂HH1

∂q
dq
dt
.


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as dλ/dt = 0 and by the stationary condition we see that (∂H/∂u) = 0. Thus, for the

equilibrium point equation (7.3.32) becomes

∂HH1

∂p

dp

dt
+
∂HH1

∂q

dq

dt
= 0,

⇔ ∂HH1

∂p

dp

dt
= −∂HH1

∂q

dq

dt
,

⇔ ∂HH1

∂p

dp

dt
= 0,

⇔ −∂HH1

∂q

dq

dt
= 0. (7.3.32)

Using equation (7.3.32) we have,

∂HH1

∂p
= −λ1ξ

(
ln
(
p
q

)
+ 1
)
,

∂HH1

∂q
= ξλ1

p
q
.

 (7.3.33)

In view of equation (7.3.32) we see that

0 = −∂H
∂q

dq

dt
= ξλ1

p

q

(
bp− dp2/3q + qµ

)
, (7.3.34)

which implies that

p∗ = (−µ
d

)3/2. (7.3.35)
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Whereas

0 =
∂HH1

∂p

dp

dt
,

= −λ1ξ
2

(
ln

(
p

q

)
+ 1

)2

, (7.3.36)

which implies that p∗/q∗ = 0, which is possible if p∗ = 0 and q∗ 6= 0. The Jacobian
matrix is

JH1
=


(
Hppλ1

λ1t +Hppλ2
λ2t

)
p

(
Hppλ1

λ1t +Hppλ2
λ2t

)
q

(
Hppλ1

λ1t +Hppλ2
λ2t

)
u(

Hqqλ1
λ1t +Hqqλ2

λ2t

)
q

(
Hqqλ1

λ1t +Hqqλ2
λ2t

)
q

(
Hqqλ1

λ1t +Hqqλ2
λ2t

)
u(

∂H
∂u

)
p

(
∂H
∂u

)
q

(
∂H
∂u

)
u

 , (7.3.37)

in which we see that

(
∂HH1

∂u

)
p

=

(
∂HH1

∂u

)
q

=

(
∂HH1

∂u

)
u

= 0,

and

pλ1 = pλ2 = qλ1 = qλ2 = 0.

Thus, the adjoint of this model is unconditional stable.

7.4 Singular controls for the models

Since the Hamiltonian (H) is linear in u, then minimizing the control requires that

u = 0 or u = a [18]. This is known as the bang controls. In view of equations in

(7.2.1), we obtain the switching function (Φ) as

Φ(t) = λ3 − λ2(t)γq(t), (7.4.1)
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such that the singular control is [18]

usin(t) =

0 if Φ(t) > 0,

a if Φ(t) < 0,

where, for the three models we have the optimal singular arcs

usinIθ = 1
γ

[
θξ
(

ln
(
p
q

)
− 1
)

+ 1
3
ξ d
b
p

1
3
−θq −

(
dp

1
3 + µ

)
+ bp

θ

q
+ ξ
]

[75],

usinHE = 1
γ

(
b−dq2/3

q1/3 + 2ξ b+dq
2/3

b−dq2/3 − µ
)

[74],

usinH1
= 1

γ

(
ξ ln

(
p
q

)
+ bp

q
+ 2

3
ξ d
b

q
p1/3 −

(
µ+ dp2/3

))
[70].


(7.4.2)

7.5 Numerical method

Not withstanding the associated optimal synthesis of the models considered in this

chapter, but it is evident from the stability structures of the continuous models that

reliable numerical method should be developed. Thus, in order to accomplish the

development of a robust numerical method for optimal problems arising as a result

of angiogenic signalling, we believe we first have to consider the existing numerical

methods for these types of models. However, in this chapter, we consider only one type

of the numerical method for the models. Thus, we sub-divide the interval [0,T] into

equal pieces with specific points of interest

0 = t0, t1, t2, · · · , tN+1 = T,

where N is a positive integer denoting the number of sub-intervals. Since the total-

enumeration methods or linear programming techniques can be used to solve optimal

control problems such the one in [15], because such methods fail to capture the as-

sociated optimality, adjoint equation and the transversality condition. Therefore the
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only applicable methods are Runge-Kutta or adaptive schemes and the boundary value

problems such as shooting method [21, 26]. Hence, following the Forward-backward

sweep method [78] then the optimal control problem is implemented as we have shown

here below.

7.5.1 Forward-backward sweep method (FBSM) for model hav-

ing Iθ

Set the flag = −1, then define the step-size h = 1/N , and initialize the controls, states

and the adjoints with their initial conditions, we have

usinIθ = 1/γ(θξ(log(p1/q1)− 1) + 1/3ξd/bp
1/3−θ
1 q1 − (dp

1/3
1 + µ) + bpθ1/q1 + ξ);

and Step:. WHILE (flag < 0) do the following steps.

Step 1a. oldu= u; oldp= p; oldq= q; oldy= y; oldlambda1=λ1;

oldlambda2= λ2; oldlambda3= λ3;

Step 2a

https://etd.uwc.ac.za/



CHAPTER 7. ROBUST NUMERICAL SOLUTION FOR A PROBLEM ARISING
IN ANGIOGENIC SIGNALLING 206

FOR i = 1, 2, · · · , N set

k11 = −ξpi log(pi/qi);

k12 = bpθi − dp
1/3
i qi − µqi − γqiui;

k13 = ui;

k21 = −ξ(pi + h2k11) log ((pi + h2k11)/(qi + h2k12)) ;

k22 = b(pθi + h2k11)− d(p
(1/3)
i + h2k11)qi − µ(qi + h2k12)

−γ(qi + h2k12)0.5(ui + ui+1);

k23 = 0.5(ui + ui+1);

k31 = −ξ(pi + h2k21) log ((pi + h2k21)/(qi + h2k22)) ;

k32 = b(pθi + h2k21)− d(p
(1/3)
i + h2k21)qi − µ(qi + h2k22)

−γ(qi + h2k22)0.5(ui + ui+1);

k33 = 0.5(ui + ui+1);

k41 = −ξ(pi + h2k31) log ((pi + h2k31)/(qi + h2k32)) ;

k42 = b(pθi + h2k31)− d(p
1/3
i + h2k31)qi − µ(qi + h2k32)

−γ(qi + h2k32)0.5(ui + ui+1);

k43 = ui+1;

pi+1 = pi + (h/6)(k11 + 2k21 + 2k31 + k41);

qi+1 = qi + (h/6)(k12 + 2k22 + 2k32 + k42);

yi+1 = yi + (h/6)(k13 + 2k23 + 2k33 + k43);

STOP

Step 3a
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FOR i = 1, 2, · · · , N and j = N + 1− i set

k11 = λ1jξ log(pj/qj) + λ1jξ − λ2j

(
bθpθ−1

j − dqj/3p2/3
j

)
;

k12 = −ξλ1jpj/qj + λ2j(dp
1/3
j + µ+ γ0.5(uj + uj−1));

k13 = C;

k12 = (λ1j − h2k11ξ log (0.5(pj + pj−1)/(0.5(qj + qj−1)))) + (λ1j − h2k11)ξ

−(λ2j − h2k12)
(
bθ((0.5(pj + pj−1))θ−1

)
−(λ2j − h2k12)

(
d(0.5(qj + qj−1))/3(0.5(pj + pj−1))2/3)

)
;

k22 = −ξ(λ1j − h2k11)0.5(pj + pj−1)/0.5(qj + qj−1)

+(λ2j − h2k12)
(
d(0.5(pj + pj−1))1/3 + µ+ γ0.5(uj + uj−1)

)
;

k23 = C;

k31 = (λ1j − h2k21)ξ log (0.5(pj + pj−1)/0.5(qj + qj−1)) + (λ1j − h2k21)ξ

−(λ2j − h2k22)
(
bθ(0.5(pj + pj−1))θ−1

)
−(λ2j − h2k22)

(
d(0.5(qj + qj−1))/3((0.5(pj + pj−1))2/3)

)
;

k32 = −ξ(λ1j − h2k21)0.5(pj + pj−1)/0.5(qj + qj−1)

+(λ2j − h2k22)(d(0.5(pj + pj−1))1/3 + µ+ γ0.5(uj + uj−1));

k33 = C;

k41 = (λ1j − h2k31)ξ log (0.5pj−1/0.5qj−1) + (λ1j − h2k31)ξ

−(λ2j − h2k32)
(
bθ(0.5pj−1)θ−1

)
−(λ2j − h2k32)

(
d0.5qj−1/3(0.5pj−1)2/3

)
;

k42 = −ξ(λ1j − h2k31)0.5pj−1/0.5qj−1

+(λ2j − h2k32)(d(0.5pj−1)1/3 + µ+ γ0.5uj−1);

k43 = C;

λ1j−1 = λ1j − (h/6)(k11 + 2k21 + 2k31 + k41);

λ2j−1 = λ2j − (h/6)(k12 + 2k22 + 2k32 + k42);

λ3j−1 = λ3j − (h/6)(k13 + 2k23 + 2k33 + k43);
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7.6 Stability analysis of FBSM

Basically the FBSM first solves the state equation with a forward in time Runge-

Kutta method, then solves the costate equation backwards in time with the Runge-

Kutta method and then updates the control. Then, stability analysis should follow the

procedures carried out when one determine the condition of the Runge-Kutta method.

Since we have impose the numeric-analytic dissipativity condition [25] to the models

eigenvalues, then FBSM is A-stable.

7.7 Numerical result and discussions

Based on the initial conditions p0 = 8.00, q0 = 4.00, u0 = 0.1, parameter values ξ =

0.084, b = 5.85, d = 0.00873, µ = 0.02; γ = 0.01, θ = 0.1, δ = 0.1 ([73]), we implemented

the Forward-backward sweep method (FBSM) for the systems in (7.1.2) and (7.2.1)

as shown up for the case of model having Iθ, where the numerical approximations are

presented in Figure 7.8.1 and for the remaining two models the results are presented

in Figure 7.8.2 and Figure 7.8.3. Our aim in this chapter is to present the numerical

solutions of the three models, we have considered. Thus, we see that the control (u)

and angiogenesis (q) increases monotonically but remain bounded, except for the model

having H1. We also see that the tumour volume (p) decreases and increases eventually.

This is due to the ever growing agiogenesis system of the tumor. Such phenomena is

also evident for model having H1. The above-mentioned behaviours remain the same,

when we perturb the initial values and for an increased values of T .

7.8 Conclusion

In view of the problem description, Hamiltonian and Lagrange multipliers, we were able

to deduce the multipliers for these models. We have also established the stability con-

ditions for each model which in turn guaranteed the stability of the Forward-backward
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sweep method. In doing so, we believe that this can enable us to attain most fea-

tures of each model which can give deeper insight of the properties of the models.

Since the authors in [70, 74, 75] were mainly interested in attaining the singular arc

of the models, it is important to combine the defining element and all the syntheses

of optimally controlled trajectories qualitatively and quantitative with the associated

solution to a problem. Therefore, this chapter should be viewed as a first attempt to

combine singular arc with their associated solutions of the optimal problems. Hence,

our future research direction is to extend the chapter to higher dimensional space, with

the inclusion of the spatial effects.
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Figure 7.8.1: Numerical approximation of the model having Iθ.
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Figure 7.8.2: Numerical approximation of the model having He.
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Figure 7.8.3: Numerical approximation of the model having H1.

In view of the previous chapters and this chapter, we are now at the stage to

conclude the thesis. Thus, in Chapter 8, we conclude the thesis and provide the scope

for future research.
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Chapter 8

Concluding remarks and scope for

further research

In this thesis, we considered different classes of system of differential equations (DEs)

models having biological applications. These biological models include a system of

mixed of (first and second) order of system differential equations, system of first order

delay differential equations (DDEs), system of parabolic differential equations (PDEs),

system of delay integro-differential equations (DIDEs) and system of optimal control

problems (OCPs). For each class of models, we have analysed the model. Due to the

similarity of most of these models, a suitable numerical methods have been designed

and analyzed. Based on our analysis of the models, we have not seen any numerical

methods in the literature for the presented hypothesis arising from our mathematical

analysis. Therefore, our quantitative work is a new contribution to both analytic

and numerical world for these problems. Moreover, these numerical methods are very

robust.

In Chapter 2, we considered the systems of semi-parabolic differential equations

modeling the dynamics of chemotherapy application of spatial tumor-host interaction.

Based on the previous experiments on the models, we realized that mathematical rigor

has not been explored, therefore, our emphasis in that chapter is on the qualitative

212
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features of the models presented. Consequently, the fitted numerical method that we

have designed and analyzed is of relatively low order, but our emphasis is mainly on

our hypothesis deduced from qualitative features of the models. This is despite the

fact that the fitted numerical method captured the qualitative features as we have

hypothesized. Currently, we are busy investigating on how how we can improve the

order of convergence of the method. Our future plans for these problems include the

construction of direct higher order numerical methods.

In Chapter 3, we have extended a system of first order delay differential equations

(DDEs) to a system of delay parabolic partial differential equations (DPPDEs), mod-

eling biological stoichiometry of tumour dynamics. Based on the work done on the

dynamics of the models, we have based our straight forward analysis with respect to

the process of vascularizations. Thus, a fitted numerical method is designed and ana-

lyzed. Even-though, the fitted numerical method is of low order, it has captured our

hypothesis as we have presented them. Hence, we are exploring ways of extending our

work to high dimensional space.

Once, again in Chapter 4, we extended a system of delay differential equations

(DDEs), to a system of delay parabolic partial differential equations (DPPDEs) mod-

eling the HIV related cancer-immune system dynamics. Our aim was to dispose the

features of extended model with respect to original model. Thus, to do so, we designed

and analysed a fitted numerical method. Our hypothesis are clearly presented from our

numerical estimate. Hence, currently, we are busy working on a numerical methods

that possesses high rate of convergence.

Chapter 5, dealt with the scrutiny of the system of parabolic partial differen-

tial equations (PPDEs), modeling the dynamics of tumour cells within its micro-

environment. To this end, we designed a fitted numerical method to present our

numerical aspirations with respect to the effects of the micro-environment. Thus, we

currently working on the implementation of the models into high dimensions.

In view of the model considered in Chapter 6, we have extended the model in order

to have a clear view of each phase emphasized by the model. Thus, our mathematical
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analysis enabled us to design a suitable fitted operator numerical method. Hence,

we believe our numerical method were able to present each phase by its own merits.

Currently, we are busy exploring ways on how to improve the rate of convergence of

our method.

Lastly, but not least, in Chapter 7, we have combined the optimal control problems

in one system of optimal control problems. Our aim was to present their qualitative

features so that one is able to develop a reliable numerical method. However, due to

the high rate of convergence of the forward-backward sweep numerical method, we de-

cided to adopt the method and implement it for each system considered. As expected,

the forward-backward sweep numerical method captured the desirable numerical re-

sults. Therefore, we are currently considering a direct method for solving the models

considered.

Finally, it should be noted that almost all the numerical methods that we have

developed for different problems in this thesis are comparable with (and in some cases

better than) the well-known solvers, like MATLAB’s ode23s and dde23.

As far as the scope for further research is concerned, we would like to mention

the following

• Some of the methods developed in this thesis can further be extended in the

optimal control set up.

• Theoretical analysis of the numerical methods in certain cases can be improved

further.

• We also aim to extend the models in higher dimensions which will be quite

challenging to solve numerically and would therefore require extensive analysis.
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