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Abstract

Ultrafilters and Compactifications

M.S. Nxumalo

MSc Thesis, Department of Mathematics, University of the Western Cape

In this thesis, we construct the ultrafilter space of a topological space using ultrafilters as

points, study some of its properties and describe a method of generating compactifications

through the ultrafilter space. As part of investigating some properties of the ultrafilter space,

we show that the ultrafilter space forms a monad in the category of topological spaces. Fur-

thermore, we show that rendering the ultrafilter space suitably separated results in a gener-

ation of separated compactifications which coincide with some well-known compactifications.

When the ultrafilter space is rendered T0 or sober, the resulting compactification is a stable

compactification. Rendering the ultrafilter space T2 or Tychonoff results in the Stone-Čech

compactification.
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Chapter 0

Introduction

Ultrafilters, compact spaces, and separation axioms play a central role in this thesis. For any

set X, a filter on X is usually contemplated as a family of subsets of X which is closed under

supersets and finite intersections. The origin of filters is traced back to Henri Cartan in 1937.

They are one of the mathematical tools used for describing convergence in topological spaces

and are ordered by set inclusion. With this order, an ultrafilter is a maximal filter.

Ultrafilters have a number of applications in mathematics such as proving the Tychonoff’s

Theorem which states that a non-empty product space is compact if and only if each factor

space is compact, defining the asymptotic cone of a group in geometric group theory, and

constructing ultraproducts and ultrapowers in model theory. For the existence of more ultra-

filters on infinite sets, we can make use of the Kuratowski-Zorn’s postulate which asserts that

each inductive set (where each ordered subset has an upper bound) has at least one maximal

element.

During mid to late nineteenth century, when mathematicians began to understand and specify

essential properties of the real line, a compact space was known as a closed and bounded

interval of the real line. The Heine-Borel Theorem states that any collection of open intervals

covering such interval has a finite subcollection of open intervals that still cover the closed

interval. This theorem can be generalized to arbitrary topological spaces by defining a compact

space as a topological space in which every open cover of has a finite subcover covering. The

duality between closed sets and open sets leads to a characterization of compact spaces with

closed sets which involves the Finite Intersection Property (FIP) - a family of subsets of a
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topological space has the FIP if and only if the intersection of any finite subcollection from

that family is non-empty. This characterization is stated as follows: A topological space is

compact if and only if each family of closed sets that has the FIP has a non-empty intersection.

Compact spaces are regarded as important spaces in general topology since they behave like

finite sets, which are way easier to understand and work with than uncountable sets which

are common in topology. In search for more compact spaces, mathematicians resorted in a

way of making non-compact spaces to be compact through a process of embedding a non-

compact space as a dense subspace of some compact space. This process is referred to as

compactification. One of the reasons to study compactification is that it is ordinarily simpler

to have a non-compact space as a subspace of a compact space, thus letting you use all of the

tools available in the compact setting.

It is widely known that a converging sequence in a metric space has a unique limit. This

is one of the nice properties missed by arbitrary topological spaces. In order to recover this

and many other properties, topologists devised various separation axioms. These axioms use

topological means to distinguish distinct points and disjoint sets, and are mostly denoted with

the letter “T” after the German Trennungsaxiom, which means “separation axioms”. Here is

the list of some of the popular separation axioms. [Wi] Let (X,T ) be a topological space.

1. (X,T ) is said to be T0 if for each distinct elements x, y of X, there is Nx not containing

y, and vice versa.

2. (X,T ) is said to be T1 if for each distinct elements x, y of X, there are Nx and Ny such

that y /∈ Nx and x /∈ Ny.

3. (X,T ) is said to be T2 or Hausdorff if for each distinct elements x, y of X, there are

disjoint Nx and Ny.

4. (X,T ) is said to be completely regular if, whenever A is a closed set in X and x /∈ A,

there is a continuous function f : X −→ [0, 1] such that f(x) = 0 and f(A) = {1}.

5. (X,T ) is said to be Tychonoff or T3 1
2

if it is T1 and completely regular.

A topological space satisfying atleast one of these separation axioms is said to be separated.
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These separation axioms are sorted as follows:

Hausdorff

$$

Tychonoff

vv ��
T1

��

Completely Regular

T0

A remarkable relationship between Hausdorff spaces and Tychonoff spaces is that each compact

Hausdorff space is Tychonoff.

Salbany, in [Sa], generated a topological space (called the ultrafilter space) using ultrafilters

as elements. This space turned out to be a compactification of an arbitrary topological space

and is seldom separated. With the fact that many compactifications are separated, Salbany

devised ways of making this space a separated compactification. He achieved this through

taking separated reflections of the ultrafilter space. He considered T0, T1 and T2 reflections.

This resulted in a number of separated compactifications which coincide with some well-known

compactifications. His work is a contribution to the study of compactifications. This thesis

is an extension of his work. We show that one can form a monad using the ultrafilter space.

We also provide a general approach to the construction of these separated compactifications

which allows one to generate more separated compactifications. Sober compactification as well

as Tychonoff compactification are some of the separated compactifications that are generated

through this approach. These compactifications coincide with some standard compactifica-

tions. In addition to these contributions, this thesis accounts for more than three quarters of

original proofs.

This thesis is organized as follows. The first chapter introduces a construction of the ultrafilter

space of a topological space using ultrafilters as points. We show that the ultrafilter space is

one of the compact topological spaces which are seldom separated. Furthermore, we give a

construction of a retraction of the ultrafilter space.

The second chapter discusses compactifications as well as separated reflections of topological

spaces. The chapter begins with a brief introduction of the notion of categories. We introduce

reflective subcategories which are important in deriving the concept of separated reflections.
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In the first section, we consider three examples of compactifications: the Alexandroff one-point

compactification, the Wallman compactification as well as the Stone-Čech compactification.

These compactifications are limited to certain topological spaces. The Alexandroff one-point

compactification is limited to locally compact Hausdorff spaces, while the Wallman compact-

ification and the Stone-Čech compactification are limited to T1 spaces and Tychonoff spaces,

respectively. The Stone-Čech compactification is of interest since it is known to be functorial

and is the compact Hausdorff reflection of a Tychonoff space. In the last section, we consider

T0, sober, T1, T2 and Tychonoff reflections and make use of quotient spaces to construct T0,

T1, T2 and Tychonoff reflections.

In the third chapter, we introduce a notion of monads and their algebras and create a monad

on Top using the ultrafilter space. This monad is called the ultrafilter space monad. The

algebras for the ultrafilter space monad are essentially bitopological Salbany stably compact

spaces.

The last chapter gives separated compactifications of topological spaces which arise through

rendering the ultrafilter space suitably separated. We show that taking the reflector for some

reflective subcategory C of Top such that the retraction constructed in Chapter 2 exists for

X ′ ∈ C, results in a number of separated compactifications. Each resulting compactification

coincides with some well-known compactification. Rendering the ultrafilter space T0 and T2

results in a stable compactification and the Stone-Čech compactification, respectively. When

the ultrafilter space is rendered sober, the resulting compactification coincides with the T0

compactification. In the case of taking the Tychonoff reflection of the ultrafilter space, the

resulting compactification coincides with the Stone-Čech compactification. Rendering the ul-

trafilter space T1 results in a compact space having some properties similar to the Wallman

compactification. It still remains unclear whether or not this compact space is always Haus-

dorff.

This thesis is meant for a reader with some knowledge of general topology and category theory.

Our chapters are numbered according to their order of appearance in the thesis. The same rule

holds for sections in chapters and for formal statements, i.e., propositions, theorems, lemmas

and definitions, in sections.
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We shall use the words space and topological space interchangeably, and we shall frequently

write X to represent a topological space whenever the underlying topology is clear from the

context.
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Chapter 1

Ultrafilters

The aim of this chapter is to construct the ultrafilter space of a topological space using ultrafil-

ters as points and find some of its properties that shall be frequently used in some parts of this

thesis. We shall begin by recalling some basic concepts from the theory of ultrafilters, then

give a construction of the ultrafilter space with its properties, and later construct a retraction

of the ultrafilter space.

1.1 Introduction to Ultrafilters

Ultrafilters are popular in the literature of general topology. We shall give some basic defini-

tions and a few simple, largely known basic results from the theory of ultrafilters. For further

readings, we advise the reader to consult [Bo, Th, Wi].

Definition 1.1.1. [MM] A non-empty family F of subsets of a non-empty set X is called a

filter on X if it satisfies the following conditions:

1. ∅ /∈ F , X ∈ F ;

2. A,B ∈ F implies A ∩B ∈ F and

3. A ⊆ B ⊆ X and A ∈ F implies B ∈ F .

Example 1.1. A. For x in a topological space X, the family Ux is a filter on X.

Filters on the same set may be compared by simple set inclusion.
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Definition 1.1.2. [MM] If F1 and F2 are filters on a set X such that F1 ⊆ F2, then we call

F2 a refinement of F1. We say that F2 is finer than F1.

For our work, the preceding definition is adequate for defining an ultrafilter on a set.

Definition 1.1.3. [Wi] Let X be a set. A filter G is called an ultrafilter on X if, whenever H

is a filter on X and H is a refinement of G, then G = H.

In transit to discussing some properties of ultrafilters, we give the following three results.

Definition 1.1.4. [ASP] An inductive ordered set is an ordered set in which every chain has

an upper bound.

Lemma 1.1.5. [Bo] Let Φ(X) be a set of all filters on a non-empty set X, and ≤ be the set

inclusion relation on Φ(X). Then Φ(X) is inductive.

Remark: A proof for the preceding lemma can be found in most books of topology such as

[ASP].

In light of the preceding lemma, we make use of the Kuratowski-Zorn’s postulate to assert

that every filter is contained in some ultrafilter.

Corollary 1.1.6. [Wi] Every filter F ∈ Φ(X) is contained in some ultrafilter.

Next, we prove some characterizations of ultrafilters which are sometimes used in defining an

ultrafilter on a set X.

Theorem 1.1.7. [Th, Wi] For a filter G on a non-empty set X, the following statements are

equivalent:

1. G is an ultrafilter on X.

2. For each A,B ⊆ X, A ∪B ∈ G implies A ∈ G or B ∈ G.

3. A ∩ F 6= ∅, for all F ∈ G, implies A ∈ G.

4. For each A ⊆ X, either A ∈ G or X\A ∈ G.

Proof: (1 ⇒ 2): [Th] Let A and B be subsets of X such that A ∪ B ∈ G, but A /∈ G and

B /∈ G. If A = ∅, then A ∪ B = B. Thus B ∈ G and we are done. Suppose that both A and
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B are non-empty. Let E = {Y ⊆ X : Y ∪ A ∈ G}. We show that E is a filter on X. Observe

that E is non-empty, since B ∈ E . Furthermore, ∅ /∈ E , otherwise ∅ ∪ A = A ∈ G which is not

possible. Let C,D ∈ E . Therefore, C ∪ A ∈ G and D ∪ A ∈ G. Because G is an ultrafilter,

(C ∪ A) ∩ (D ∪ A) ∈ G. Now, (C ∩D) ∪ A = (C ∪ A) ∩ (D ∪ A) ∈ G. Therefore C ∩D ∈ E .

Finally, if C ∈ E and C ⊆ D ⊆ X, then C ∪ A ∈ G. It follows that B ∪ A ∈ G, since G is an

ultrafilter. Thus B ∈ E . Hence E is a filter on X. Observe that G ⊆ E . However, if D ∈ E ,

then only D ∪A ∈ G, not D. So, E 6= G. Contradicting the fact that G is an ultrafilter on X.

Thus A ∈ G or B ∈ G.

(2⇒ 3): Let A,F ⊆ X and A∩F 6= ∅, for all F ∈ G. It is clear that A and F are non-empty.

Also, F ⊆ A ∪ F and A ∪ F 6= ∅. Because G is a filter on X, it follows that A ∪ F ∈ G. By

hypothesis, A ∈ G or F ∈ G.

(3⇒ 4): Let A ⊆ X. Then either A meets each F ∈ G or X\A does, it cannot be both since

∅ /∈ G. If A ∩ F 6= ∅, for each F ∈ G, then A ∈ G. If (X\A) ∩ F 6= ∅, for each F ∈ G, then

(X\A) ∈ G.

(4 ⇒ 1): [Wi] If G is not an ultrafilter on X, then there is G ′ finer than G such that G ′ 6= G,

i.e., there is A ∈ G but E /∈ G. It follows that (X\A) /∈ G otherwise (X\A) ∩ A = ∅ ∈ G ′

which is not possible since G ′ is a filter on X. Thus A /∈ G and (X\A) /∈ G. �

Some ultrafilters are generated by a single element. Enroute to the characterization of such

ultrafilters, we present the following definition.

Definition 1.1.8. [Pa] A filter F on a set X is principal if there exists a non-empty set

S ⊆ X, such that F = {A ⊆ X : S ⊆ A}. Otherwise, F is non-principal.

The preceding definition implies that
⋂
F 6= ∅, for a principal filter F . When

⋂
F = ∅, F is

usually referred to as a free filter. [Pa] A Fréchet filter Fr = {A ⊆ X : X\A is finite} on an

infinite set X is an example of a free filter since
⋂
Fr = ∅. If a filter F is free, then for each

x ∈ X there must be a set Ax ∈ F such that x /∈ Ax. Therefore, the set X\{x} contains Ax,

so X\{x} ∈ F . Any cofinite set is the intersection of sets of the form X\{x}, so all cofinite

sets must therefore be in F . Therefore, F contains the Fréchet filter. Furthermore, if a filter

F contains the Fréchet filter, then
⋂
F ⊆ Fr = ∅. Which means that F is free.

Next, we give a characterization of principal ultrafilters.
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Proposition 1.1.9. [Wi] Let X be a set and let G be an ultrafilter on X. G is principal if

and only if there is x ∈ X such that G = {S ⊆ X : x ∈ S}.

Proof: Let G be an ultrafilter on X. If G is principal, then there is a non-empty set S ⊆ X

such that G = {A ⊆ X : S ⊆ A}. It suffices to show that S is a singleton set. Suppose

that S = {x, y}, for some distinct elements x, y ∈ X. Because G is an ultrafilter, either

{x, y} ∈ G or X\{x, y} ∈ G. The latter is not possible since {x, y} ( X\{x, y}. Furthermore,

{x, y} = {x}∪{y} implies that either {x} ∈ G or {y} ∈ G, in which both cases are not possible.

Thus S must be a singleton set, say S = {x}. Thus G = {A ⊆ X : x ∈ A}. Conversely, let

G = {S ⊆ X : x ∈ S} for some x ∈ X. Then G = {S ⊆ X : {x} ⊆ S}, making G principal. �

When such G exists, we say that G is the principal ultrafilter generated by x, and denote it by

ẋ. It is clear that
⋂
ẋ 6= ∅.

[Wi] An ultrafilter containing a given filter need not be unique. Indeed, consider a filter F

of all sets containing a non-empty set A ⊆ X. Then, for each x ∈ A, the principal ultrafilter

generated by x contains F . As a result, we shall say ’an’ ultrafilter.

In the case where G is an ultrafilter on X and
⋂
G = ∅, G shall be referred to as a free ultrafilter

on X. The existence of free ultrafilters is guaranteed by the Kuratowski-Zorn’s postulate. The

following result shows that every infinite set has a free ultrafilter.

Proposition 1.1.10. Let X be an infinite set. Then there exists a free ultrafilter on X.

Proof: Because X is infinite, then X has a Fréchet filter Fr. It follows that there is an

ultrafilter G on X containing Fr. Clearly, G is free. �

Corollary 1.1.11. Every ultrafilter on a finite set X is principal.

Next, we want to characterize compact and Hausdorff spaces using ultrafilters. To achieve

this, we start by discussing the concept of convergence for an ultrafilter on a topological space.

We define converging filters and cluster points of filters from the study of filters.

Definition 1.1.12. [Wi] Let X be a topological space. A filter F on X converges to a point

x ∈ X if F is a refinement of Ux. We say that x is a limit point of F .

Definition 1.1.13. [Wi] Let X be a topological space. A point x ∈ X is a cluster point of a

filter F if x ∈
⋂
{F : F ∈ F}.

9



Ultrafilters converge to their cluster points. This is shown by the following proposition.

Proposition 1.1.14. [Bo] Let X be a topological space. An ultrafilter G on X converges to a

point x if and only if x is its cluster point.

Proof: Suppose that G converges to x ∈ X. Then F ∈ G for each F ∈ Ux. So, for all U ∈ G

and for each F ∈ Ux, F ∩ U ∈ G. This means that F ∩ U 6= ∅ for all F ∈ Ux and any U ∈ G.

Therefore x ∈ U , for each U ∈ G. Thus x ∈
⋂
U∈G U . Conversely, let F ∈ Ux. Since x ∈ U for

each U ∈ G, then U ∩ F 6= ∅ for any U ∈ G. By Theorem 1.1.5, F ∈ G and so Ux ⊆ G. �

Proposition 1.1.15. [Bo] A filter F on a topological space X converges to a point x ∈ X if

and only if every ultrafilter which is finer than F converges to x.

Proof: Let G be an ultrafilter on X and F a filter on X such that F ⊆ G. Since F converges

to x for some x ∈ X, then Nx ∈ F for each Nx ∈ Ux, implying that Nx ∈ G for every Nx ∈ Ux.

It follows that G converges to x. On the otherhand, if Nx ∈ Ux but Nx /∈ F where F is a filter

on X, then the sets of the form (X\Nx) ∩ F , for each F ∈ F , form a filterbase for some filter

V finer than F . Such a filter can be extended to an ultrafilter G which is finer than F . But

then every ultrafilter finer than F converges to x, so Nx ∈ G, which is impossible to have both

Nx and X\Nx in G. Thus Ux ∈ F . �

Proposition 1.1.16. Suppose that X is a topological space and G an ultrafilter on X. Then

each of the following holds.

1. If C is a closed subset of X and C ∈ G, then AG ⊆ C.

2. If x ∈ AG, then {x} ⊆ AG.

3. AG is closed.

Proof: (1) Let x ∈ AG, then Nx ∩ C 6= ∅ for any Nx ∈ G. So x ∈ C = C.

(2) Let y ∈ {x}. Then x ∈ Ny for each Ny ∈ Uy. Therefore each Ny ∈ Ux. Thus y ∈ AG.

(3) Let x ∈ AG. Then, AG ∩ Nx 6= ∅, for each Nx ∈ Ux. It follows that U ∩ Nx 6= ∅, for any

U ∈ G and for all Nx. Observe that U ∈ G, for each U ∈ G. Since G is an ultrafilter, each Nx

belongs to G. Thus x is a limit point of G, i.e., x ∈ AG. �
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A principal ultrafilter ẋ on X converges to x. Indeed, every set containing x must be in ẋ.

This applies to all neighbourhoods of x.

Proposition 1.1.17. Let X be a topological space. Then for each x ∈ X, Aẋ = {x}.

Proof: Let y ∈ Aẋ. Then Ny ∈ ẋ for each Ny ∈ Uy. Clearly, x ∈ Ny, i.e., y ∈ {x}. The other

way follows from statement 2 of Proposition 1.1.16. �

We explore a behaviour of ultrafilters in compact and Hausdorff spaces.

Theorem 1.1.18. [Bo, Wi] Assume X is a topological space and G an ultrafilter on X. Then

the following hold:

1. X is Hausdorff if and only if AG has at most one element.

2. X is compact if and only if AG has at least one element.

Proof: (1) [Wi] Suppose that X is Hausdorff but AG = {x, y} where x 6= y. Then Nx, Ny ∈ G,

for each Nx and for every Ny. So Nx ∩Ny 6= ∅, for all Nx and for each Ny, which is impossible

since X is Hausdorff, so we must then have x = y. Conversely, suppose that X is not Hausdorff.

Then there are points x, y ∈ X, x 6= y, such that Nx ∩Ny 6= ∅, for each Nx and any Ny. Now,

the collection {Nx ∩Ny : Nx ∈ Ux, Ny ∈ Uy} is a filterbase for some filter F . Extend this filter

to an ultrafilter G. Therefore x and y are both limit points of G. Hence AG has more than 1

elements.

(2) Suppose that AG is empty. Then, for each x ∈ X, x /∈ AG, that is, x /∈
⋂
{U : U ∈ G}.

Therefore x ∈
⋃
U∈G(X\U). Now, ⋃

U∈G

(X\U) =
⋃
x∈X

{x} = X

Put C = {X\U : U ∈ G}. Since X is compact, there are U1, U2, ., Un ∈ G such that⋃n
i=1(X\Ui) = X. Therefore

⋂n
i=1 Ui = ∅, which implies

⋂n
i=1 Ui = ∅. This is impossible

because G is an ultrafilter and ultrafilters are closed under finite intersections. Hence AG is

not empty.

[Wi] Conversely, suppose that J = {Ui : i ∈ I} is an open cover of X with no finite subcover.

Then
⋂n
i=1(X\Ui) 6= ∅. The collection {(X\Ui) : 1 ≤ i ≤ n} is a filterbase for some filter F .

Extend this filter to an ultrafilter G. By hypothesis, there is x ∈ X such that x ∈ AG. It is
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clear that x ∈ U for some U ∈ J . Since U ∈ Ux, U ∈ G. But, by construction, X\U ∈ F ⊆ G.

It is impossible to have both U and X\U belonging to G, so we have a contradiction. Thus J

must have a finite subcover. �

The following corollary is an immediate result of the preceding theorem.

Corollary 1.1.19. [Bo] A topological space X is compact Hausdorff if and only if AG has

exactly one element.

Example 1.1. B. Example of a Hausdorff but non-compact space: Consider an infinite space

X equipped with Tdis. Let G be a free ultrafilter on X. If AG 6= ∅, then there is x ∈ AG such

that Nx ∈ G for each Nx ∈ Ux. But Fr ⊆ G, so by Proposition 1.1.12, each Nx belongs to Fr.

Since X is discrete, we have that {x} ∈ Fr, i.e., X\{x} is finite, which is impossible because

X is infinite. Thus AG = ∅. This shows that X is not compact, but Hausdorff.

We close this section by looking at how ultrafilters behave in mappings.

Proposition 1.1.20. [Wi] Let f : X −→ X ′ be a function between two sets X and X ′, and G

an ultrafilter on X. Then the image of G under f is an ultrafilter on X ′.

Proof: Let G be an ultrafilter on X. If F is a filter on X ′ such that f(G) ⊆ F , but

f(G) 6= F , then there is A ∈ F such that A /∈ f(G). Therefore f−1(A) /∈ G. By hypoth-

esis, X\(f−1(A)) ∈ G . Using the fact that f(G) ⊆ F , which implies f−1(f(G)) ⊆ f−1(F), it

follows that X\(f−1(A)) ∈ f−1(F). Therefore, f(X\(f−1(A))) ∈ f(f−1(F)) ⊆ F , implying

f(X\(f−1(A))) ∈ F . But then f(X\(f−1(A))) ⊆ X ′\A, so X ′\A ∈ F , which is impossible,

otherwise ∅ ∈ F . Thus H = f(G) and f(G) is an ultrafilter on X ′. �

1.2 Construction of the Ultrafilter Space

In this section we present a construction of the ultrafilter space of an arbitrary topological

space, as it was developed in [Sa].

For a topological space X, let U(X) denote the set of all ultrafilters on X. We would like to

consider the set U(X) as a topological space, and its elements as points in that space. Thus,

it would be natural to henceforth denote points of U(X) (which happen to be ultrafilters on

X) by lowercase letters such as p, q, etc.
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Definition 1.2.1. [Sa] Let X be a topological space and suppose that A ⊆ X. Then we define

A∗ = {p ∈ U(X) : A ∈ p}.

Before we construct a topology on U(X), we outline the following properties of sets A∗.

Proposition 1.2.2. [Sa] For a topological space X, the following statements hold:

1. ∅∗ = ∅.

2. X∗ = U(X).

3. A∗ ⊆ B∗ if and only if A ⊆ B.

4. (A ∪B)∗ = A∗ ∪B∗.

5. (A ∩B)∗ = A∗ ∩B∗.

6. A ∩B = ∅ if and only if (A ∩B)∗ = ∅.

Proof: (1) We have that ∅∗ = {p ∈ U(X) : ∅ ∈ p} = ∅.

(2) Each p ∈ X∗ automatically belongs to U(X). Conversely, let p ∈ U(X). Since p is an

ultrafilter, we have that X ∈ p. Therefore p ∈ X∗. Hence X∗ = U(X), as required.

(3) Let p ∈ A∗, then A ∈ p. It follows that B ∈ p, since A ⊆ B and p is an ultrafilter. Hence

p ∈ B∗. Conversely, let x ∈ A. Then ẋ ∈ A∗, which, by hypothesis, implies that ẋ ∈ B∗. Thus

x ∈ B.

(4) Choose p ∈ (A ∩ B)∗. Then, A ∩ B ∈ p. We know that both A and B are supersets of

A∩B, so they both belong to p. Therefore, p ∈ A∗ and p ∈ B∗. Thus p ∈ A∗∩B∗. Conversely,

let p ∈ A∗∩B∗. Therefore p ∈ A∗ and p ∈ B∗. Now, A ∈ p and B ∈ p. Since p is an ultrafilter

and A ∩B ∈ p, it follows that p ∈ (A ∩B)∗. Hence (A ∩B)∗ = A∗ ∩B∗.

(5) If p ∈ (A ∪ B)∗, then A ∪ B ∈ p. Since p is an ultrafilter, it follows that A ∈ p or B ∈ p.

Therefore, p ∈ A∗ or p ∈ B∗, implying that p ∈ A∗ ∪ B∗. Conversely, if p ∈ A∗ ∪ B∗, then

p ∈ A∗ or p ∈ B∗. But A ⊆ A ∪ B and B ⊆ A ∪ B, so in either case, A ∪ B ∈ p. By (3),

p ∈ (A ∪B)∗.

(6) Let A,B ⊆ X with A ∩ B = ∅. If (A ∩ B)∗ 6= ∅, then there is p ∈ U(X) such that

p ∈ (A ∩B)∗. It is clear that (A ∩B) ∈ p. But then A ∩B = ∅, so ∅ ∈ p, which is impossible
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since p is an ultrafilter. Thus (A ∩ B)∗ = ∅. On the other hand, if (A ∩ B)∗ = ∅, then no

p ∈ U(X) contains A ∩B. Therefore A ∩B = ∅. �

Proposition 1.2.3. For a topological space X, U(X)\A∗ = (X\A)∗.

Proof: Let p ∈ U(X)\A∗, then p /∈ A∗. Clearly, A /∈ p and X\A ∈ p. Therefore p ∈ (X\A)∗.

Conversely, if p ∈ (X\A)∗, then X\A ∈ p. So, A /∈ p. Thus p /∈ A∗. Therefore p ∈ U(X)\A∗.

Hence U(X)\A∗ = (X\A)∗. �

Next, we endow the set U(X) with a topology.

Proposition 1.2.4. [Sa] Let X be a topological space. The collection B = {G∗ : G ∈ T} is a

base for some topology on U(X).

Proof: Considering the collection B = {G∗ : G ∈ T}, it can easily be seen that
⋃
G∗∈BG

∗ =

U(X) since U(X) = X∗. Furthermore, if B∗1 , B
∗
2 ∈ B, with p ∈ B∗1 ∩ B∗2 , then by statement

5 of Proposition 1.2.2, p ∈ (B1 ∩ B2)
∗. Because B∗1 , B

∗
2 ∈ B implies B1, B2 ∈ T and T being

a topology implies A ∩ B ∈ T , it follows that (B1 ∩ B2)
∗ ∈ B . Set B3 = B1 ∩ B2, we have

p ∈ B∗3 and B3 ∈ T , which implies B∗3 ∈ B and B∗3 ⊆ B∗1 ∩ B∗2 . Thus B = {G∗ : G ∈ T} is a

base for some topology on U(X). �

Remark: We shall use U(T ) to denote the topology generated by the collection B = {G∗ :

G ∈ T} and call (U(X),U(T )) the ultrafilter space of a topological space X. We shall only

use U(X) if the underlying topology is clear from the context.

Example 1.2. A. Consider the set X = {a, b, c} equipped with Tdis. The ultrafilters on X

are: p = {{a}, {a, b}, {a, c}, X}, q = {{b}, {a, b}, {b, c}, X} and r = {{c}, {a, c}, {b, c}, X}.

The collection U(X) = {p, q, r} together with

U(Tdis) = {{a}∗, {b}∗, {c}∗, {a, b}∗, {b, c}∗, {a, c}∗, X∗, ∅}

where {a}∗ = {p}, {b}∗ = {q}, {c}∗ = {r}, {a, b}∗ = {p, q}, {a, c}∗ = {p, r}, {b, c}∗ = {q, r},

X∗ = U(X) and ∅∗ = ∅, form the ultrafilter space of X.

Example 1.2. B. When X is infinite and discrete, then X has a free ultrafilter, say q.

Observe that {q} /∈ U(Tdis) since there is no basic open set containing q. So, U(T ) need not

be discrete.

14



Example 1.2. C. Endow a set X with Ttr. If G ∈ U(Ttr) and G 6= ∅, then we can choose

p ∈ G. Therefore, we can find G∗ ∈ B such that p ∈ G∗ ⊆ G. Therefore, G ∈ p, so G 6= ∅.

Since G ∈ T , we have that G = X, which implies that G∗ = X∗ = U(X) = G. Therefore,

U(Ttr) is trivial.

1.3 Properties of the Ultrafilter Space

In this section we look at some basic properties of the ultrafilter space U(X) of a topological

space X.

Proposition 1.3.1. [Sa] Let X be a topological space. In U(X), every basic open set of the

form G∗, where G ∈ T , is compact.

Proof: [Sa] Let G∗ be an open set in U(X), where G ∈ T . Consider a family F = {F ∗i : X\Fi ∈

T} such that {F ∗i ∩G∗ : i ∈ I} has the FIP. Therefore, (
⋂n
i=1 Fi)

∗∩G∗ = ((
⋂n
i=1 Fi)∩G)∗ 6= ∅.

It follows from statement 6 of Proposition 1.2.2 that (
⋂n
i=1 Fi) ∩ G 6= ∅. So, the collection

{Fi ∩ G : i ∈ I} has the FIP. The collection of sets of the form Fi ∩ G form a filterbase for

some filter F on X. Extend this filter to an ultrafilter p ∈ U(X). Therefore Fi ∩G ∈ p, for all

i ∈ I. So, p ∈ F ∗i and G ∈ p, for each i. Hence p ∈
⋂
i(Fi)

∗ ∩G∗. �

Proposition 1.3.2. Suppose that X is a topological space. Then compact open subsets of

U(X) form a basis for U(T ).

Proof: Let G ∈ U(T ) and p ∈ G. Clearly, there is B∗, where B ∈ T , such that p ∈ B∗ ⊆ G.

Because every basic open subset of U(X) is compact (Proposition 1.3.1), it follows that B∗ is

compact and open. �

The ultrafilter space U(X) is locally compact.

Definition 1.3.3. [GHK+03] A topological space X is locally compact if for each x ∈ X and

each Nx, there is an open set H and compact set Q such that x ∈ H ⊆ Q ⊆ Nx.

Examples of locally compact sets include compact Hausdorff spaces. In fact, if x ∈ X and we

consider Nx, then using the fact that every compact Hausdorff space is regular, x /∈ X\Nx

implies the existence of disjoint open sets G and H such that x ∈ G and X\Nx ⊆ H. Therefore

x ∈ G ⊆ (X\H) ⊆ Nx, and since every closed subset of a Hausdorff space is compact, we have
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that X\H is compact.

Proposition 1.3.4. [Sa] Let X be a topological space. Then U(X) is locally compact.

Proof: Let p ∈ U(X), and let O ∈ U(T ) such that p ∈ O. Then, by Proposition 1.3.2, there

is G ∈ T such that p ∈ G∗ ⊆ O, where G∗ is compact and open. �

The ultrafilter space is also compact. We show this in two steps.

Lemma 1.3.5. Let X be a topological space. If F is an ultrafilter on U(X), then {A ⊆ X :

A∗ ∈ F} ∈ U(X). Proof: Let p = {A ⊆ X : A∗ ∈ F}. We start by showing that p is a filter

on X. Observe that ∅ /∈ p since ∅ = ∅∗ /∈ F . Let A,B ∈ p. Then A∗, B∗ ∈ F . Therefore

A∗ ∩ B∗ = (A ∩ B)∗ ∈ F . Thus A ∩ B ∈ p. Finally, let A ∈ p and A ⊆ B ⊆ X. Then

A∗ ∈ F . It is clear that B∗ ∈ F . Thus B ∈ p. Now, let A,B ⊆ X such that A ∪ B ∈ p.

Then (A ∪ B)∗ = A∗ ∪ B∗ ∈ F . Therefore, A∗ ∈ F or B∗ ∈ F . Thus A ∈ p or B ∈ p, making

p ∈ U(X). �

Proposition 1.3.6. [Sa] Let X be a topological space. Then U(X) is compact.

Proof: Let F be an ultrafilter on U(X). We show that {A ⊆ X : A∗ ∈ F} ∈ AF . Let

p = {A ⊆ X : A∗ ∈ F}. Suppose that there is Np /∈ F . Then there is B ∈ T such that

p ∈ B∗ ⊆ Np but B∗ /∈ F . So, (X\B)∗ ∈ F . Therefore X\B ∈ p and B ∈ p, which is a

contradiction. Thus Np ∈ F . Hence U(X) is compact. �

The ultrafilter space is seldom separated. The following counter-example shows that U(X) is

not T0 for some topological space X.

Example 1.3. A. Consider a space (X,Ttr). We have already shown in Example 1.2. C. that

U(Ttr) is a trivial topology. Thus U(X) is not T0.

However, U(X) is Hausdorff provided that X is discrete.

Proposition 1.3.7. [Sa] If X is discrete, then U(X) is Hausdorff.

Proof: Suppose that p, q ∈ U(X) and p 6= q. Then, there is a non-empty set A ⊆ X such that

A ∈ p and A /∈ q. It is clear that X\A ∈ q. But X is discrete, so X\A and A are open in X.

Therefore, p ∈ A∗ and q ∈ (X\A)∗ where both A∗ and (X\A)∗ are open in U(X). It follows

from the statement 6 of Proposition 1.2.2. that A∗ ∩ (X\A)∗ = (A ∩ (X\A))∗ = ∅. �
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For any topological space X and x ∈ X, let ηX : X −→ U(X) be a map defined by ηX(x) = ẋ.

It is easy to see that ηX is a function. In fact, for any two elements x, y of X, if ηX(x) 6= ηX(y),

then there is A ⊆ X such that A ∈ ηX(x) but A /∈ ηX(y). Therefore, x ∈ A and y /∈ A. Thus

x 6= y.

We close this section by investigating the map ηX and further consider a relationship between

two ultrafilter spaces.

Proposition 1.3.8. Let X be a topological space. Then ηX : X −→ U(X) is injective.

Proof: Let x, y ∈ X and suppose that ηX(x) = ηX(y). Clearly {x} ∈ ηX(x) which implies

{x} ∈ ηX(y). It follows that y ∈ {x}, which implies x = y. �

Observe that, for each injective continuous map f : X −→ X ′, f(A) = f(B) implies A = B for

each A,B ⊆ X. Indeed, if x ∈ A, then f(x) ∈ f(A) ⊆ f(A) = f(B), so x ∈ f−1(f(B)) = B.

Therefore A ⊆ B. Similar calculation will show that B ⊆ A. Thus A = B. As a result, ηX

has the following property.

Proposition 1.3.9. Let X be a topological space. If for each x, y ∈ X, {ηX(x)} = {ηX(y)},

then {x} = {y}.

The map ηX is not onto for an infinite space X. This is because an infinite set X has free

ultrafilters which, in general, are not generated by a single element of X.

We show that ηX is a continuous function.

Lemma 1.3.10. Let X be a topological space. Then, for each G ⊆ X, G = η−1X (G∗).

Proof: Let x ∈ G, then G ∈ ηX(x), implying that ηX(x) ∈ G∗. Thus x ∈ η−1X (G∗). On the

other hand, if x ∈ η−1X (G∗), then ηX(x) ∈ G∗ implying that G ∈ ηX(x). Thus x ∈ G. Hence

G = η−1X (A∗). �

Proposition 1.3.11. [Sa] Let X be a topological space. Then ηX is continuous.

Proof: Let G∗ ∈ U(T ). Because η−1X (G∗) = G and G ∈ T , it follows that η−1X (G∗) ∈ T . �

We note that the equality ηX(A) = A∗ doesn’t always hold.

Example 1.3. B. Consider a free ultrafilter p on X. Let A be a cofinite subset of X. Then

A ∈ p, so that p ∈ A∗. But p is not a principal ultrafilter on X, so, p 6= ηX(x) for any x ∈ A.
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Thus p /∈ ηX(A).

We show that ηX is an embedding.

Definition 1.3.12. [Wi] For topological spaces X and X ′, X is embedded in X ′ by a function

f : X −→ X ′ if f is a homeomorphism between X and some subspace of X ′.

Lemma 1.3.13. Suppose that X is a topological space. Then ηX(A) = ηX(X) ∩ A∗ for each

A ⊆ X.

Proof: Let A ⊆ X and p ∈ ηX(A). Then, there is x ∈ A such that ηX(x) = p. It is clear

that A ∈ ηX(x) which implies ηX(x) ∈ A∗. Therefore, p ∈ A∗. Thus ηX(A) ⊆ ηX(X) ∩ A∗.

Conversely, Let p ∈ ηX(X) ∩ A∗. Since ηX(X) = {ηX(x) : x ∈ X}, we have that p = ηX(x)

for some x ∈ X. But also p ∈ A∗ which implies A ∈ p, so A ∈ ηX(x). By definition of ηX(x),

x ∈ A. Therefore, p = ηX(x) ∈ ηX(A). �

Proposition 1.3.14. [Sa] Let X be a topological space. Then ηX : X −→ U(X) is an

embedding.

Proof: Observe that η
′
X : X −→ ηX(X) induced by ηX is bijective and continuous. To show

that η
′
X : X −→ ηX(X) is open, let A ∈ T . We must show that η

′
X(A) is open in ηX(X).

Observe that ηX(A) = η
′
X(A). Because ηX(A) = ηX(X)∩A∗ and A∗ is open in U(X), we have

that ηX(A) is open in ηX(X). �

Proposition 1.3.15. Let X be a topological space. Then ηX(X) is dense in U(X).

Proof: It suffices to show that U(X) ⊆ ηX(X). Let p ∈ U(X) and choose Np. Then there is

B ∈ T such that p ∈ B∗ ⊆ Np. Therefore, B ∈ p. Clearly, B 6= ∅, so there is x ∈ B such that

ηX(x) ∈ B∗. We have that B∗ ∩ ηX(X) 6= ∅. Thus Np ∩ ηX(X) 6= ∅. �

Not only is ηX(X) a dense subset of U(X), it is also dense in the patch topology of U(X). To

prove this, we introduce the following useful concepts and results.

Definition 1.3.16. [No] Let X be a topological space. A subset K of X is saturated if

K =
⋂
{G ⊆ X : G ∈ T and K ⊆ G}.

Proposition 1.3.17. Let X be a topological space. If K ∈ (CS)U(X) and p /∈ K, then there is

G∗, where G ∈ T , such that K ⊆ G∗ and p /∈ G∗.
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Proof: [Sa] LetK ∈ (CS)U(X), and p /∈ K. Then there is an open set which containsK but not p.

By compactness of K, there are open sets Gi, 1 ≤ i ≤ n, such that K ⊆
⋃n
i=1G

∗
i ⊆ U(X)\{p}.

Let G =
⋃n
i=1Gi. Then K ⊆ G∗ and p /∈ G∗. �

Definition 1.3.18. [Sa] For a topological space X, the co-compact topology TK has as a basis

for the open sets, sets of the form X\K where K is compact and saturated.

Definition 1.3.19. [GHK+03] The patch topology TP on a topological space X is the smallest

topology containing both the original topology and the co-compact topology.

Proposition 1.3.20. [Sa] For any topological space X, ηX(X) is a dense subspace of (U(X),U(T )P ).

Proof: Let p ∈ U(X) and G be a neighbourhood of p in (U(X),U(T )P ). Then, there is

H ∈ U(T )P such that p ∈ H ⊆ G. It follows that there is H′ ∈ U(T ) ∪ U(T )K such that

p ∈ H′ ⊆ H. Now, H′ ∈ U(T ) and H′ /∈ U(T )K , or H′ /∈ U(T ) and H′ ∈ U(T )K , or H′ ∈ U(T )

and H′ ∈ U(T )K .

Case 1: H′ ∈ U(T ) and H′ /∈ U(T )K : It follows from Proposition 1.3.15 that ηX(X)
P

= U(X).

Case 2: H′ /∈ U(T ) and H′ ∈ U(T )K : Observe that there is Q, where Q = U(X)\K for some

K ∈ (CS)U(X), such that p ∈ Q ⊆ H′. Clearly, p /∈ K, so by Proposition 1.3.17, there is G∗,

where G ∈ T , such that K ⊆ G∗ and p /∈ G∗. Thus X\G ∈ p. Because X\G 6= ∅, there is

x ∈ X\G such that ηX(x) ∈ (X\G)∗ = U(X)\G∗ ⊆ U(X)\K ⊆ H′. Hence G ∩ ηX(X) 6= ∅.

Case 3: H′ ∈ U(T ) and H′ ∈ U(T )K : [Sa] Since H′ ∈ U(T ), there is H∗, where H ∈ T ,

such that p ∈ H∗ ⊆ H′. Because H′ ∈ U(T )K , there is Q, where Q = U(X)\K for some

K ∈ (CS)U(X), such that p ∈ Q ⊆ H′. Observe that p ∈ H′\K. So, by Proposition 1.3.17, there

is R∗, where R ∈ T , such that K ⊆ R∗ and p /∈ R∗. Hence X\R ∈ p, so that H ∩ (X\R) 6= ∅

since H ∈ p. Choose x ∈ H\R. Then ηX(x) ∈ H∗\R∗ ⊆ H∗\ K ⊆ H′. Thus G ∩ ηX(X) 6= ∅.

Hence ηX(X)
P

= U(X). �

We show that the converse of Proposition 1.3.7 is true. Enroute to that, we introduce the

following lemma.

Lemma 1.3.21. [Sa] If X is a finite topological space, then ηX : X −→ U(X) is a homeo-

morphism.

Proof: Observe that each p ∈ U(X) is a principal ultrafilter. Thus ηX is onto and ηX(A) = A∗,
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for all A ⊆ X, making ηX open. Hence ηX is a homeomorphism. �

Proposition 1.3.22. [Sa] Let X be a topological space. If U(X) is T1, then X is discrete.

Proof: [Sa] If X is finite and U(X) is T1, then by Lemma 1.3.21, X is homeomorphic to U(X)

under ηX . So, X is T1. Because every finite, T1 space is discrete, it follows that X is discrete.

Similar argument applies when X is finite and U(X) is T1. Furthermore, suppose that U(X) is

T1 but X is infinite and not discrete, then there is a non-empty subset A of X such that A ∈ T

and X\A /∈ T . It is clear that A 6= A, i.e., there exists x ∈ X which is in A but not in A.

Therefore, (Nx\{x}) ∩A 6= ∅, for each Nx ∈ Ux. The sets of the form (Nx\{x}) ∩A 6= ∅ form

a filterbase for some filter F which contains all such sets. Extend this filter to an ultrafilter

q. Observe that ẋ 6= q. We show that either ẋ ∈ H∗ or q ∈ G∗ for all open neighbourhoods

G∗, H∗ of ẋ and q, respectively. This will show that U(X) is not a T1 space, contradicting the

hypothesis. Let ẋ ∈ G∗ where G ∈ T , and let q ∈ H∗ where H ∈ T , then G ∈ Ux. Because

U(X) is locally compact, there is Q ∈ T and compact set K such that ẋ ∈ Q∗ ⊆ K ⊆ G∗.

If q ∈ K, then q /∈ Q∗, which implies Q /∈ q. Therefore X\Q ∈ q. But then Q ∈ ẋ, so

(Q\{x}) ∩ A 6= ∅. Therefore (X\Q) ∩ (Q\{x}) ∩ A 6= ∅ which is impossible. Thus q ∈ K so

that q ∈ G∗. Therefore U(X) is not T1. �

Proposition 1.3.23. [Sa] Suppose that X and X ′ are topological spaces, p ∈ U(X), and

f : X −→ X ′ is a continuous function. Then

1. U(f)(p) = {A ⊆ X ′ : f−1(A) ∈ p} is an ultrafilter on X ′.

2. U(f) is continuous.

Proof: The proof for (1) follows from Proposition 1.1.17. We show that U(f) is continuous. Let

A ∈ T ′. Then A∗ is open in U(X ′). Choose p ∈ (U(f))−1(A∗). Therefore, U(f)(p) ∈ A∗, which

implies A ∈ U(f)(p), i.e., p ∈ (f−1(A))∗ where (f−1(A))∗ is open in U(X). Let q ∈ (f−1(A))∗.

Then f−1(A) ∈ q, so A ∈ U(f)(q), i.e., U(f)(q) ∈ A∗. We then have q ∈ (U(f))−1(A∗).

Therefore, (f−1(A))∗ ⊆ (U(f)−1)(A∗). Thus U(f) is continuous. �

Proposition 1.3.24. [Sa] Suppose that f : (X,T ) −→ (X ′, T ′) and g : (X ′, T ′) −→ (X ′′, T ′′)

are continuous functions, then

20



1. U(g ◦ f) = U(g) ◦ U(f).

2. U(idX) = idU(X).

Proof: (1) Let q ∈ U(X). Observe that

A ∈ U(g)(U(f)(q))⇔ g−1(A) ∈ U(f)(q)

⇔ f−1(g−1(A)) ∈ q

⇔ (g ◦ f)−1 ∈ q

⇔ A ∈ U(g ◦ f)(q)

for each A ⊆ X.

(2) Consider the identity map idX of a set X, then for each p ∈ U(X), U(idX)(p) = {A ⊆ X :

(idX)−1(A) ∈ p} = {A ⊆ X : A ∈ p} = p = idU(X)(p). �

Proposition 1.3.25. Let X and X ′ be topological spaces, and f : X −→ X ′ be a continuous

function. Then the following diagram commutes:

X

ηX
��

f // X ′

ηX′
��

U(X)
U(f)

// U(X ′)

Proof: We must show that ηX′ ◦ f = U(f) ◦ ηX . Let x ∈ X, then ηX′(f(x)) = {A ⊆ X ′ :

f(x) ∈ A}. So,

U(f)(ηX(x)) = {A ⊆ X ′ : f−1(A) ∈ ηX(x)}

= {A ⊆ X ′ : x ∈ f−1(A)}

= {A ⊆ X ′ : f(x) ∈ A}

= ηX′(f(x)). �

1.4 Retraction of the Ultrafilter Space

This section serves to construct a retraction of the ultrafilter space of a topological space X.

We shall start by defining a retraction of a topological space, then give some properties of

retractions, and later find a retraction of the ultrafilter space.
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Definition 1.4.1. [GL] A retract of a topological space X is a topological space X ′ such that

there are two continuous maps s : X ′ −→ X (the section) and r : X −→ X ′ (the retraction)

such that r ◦ s = idX′.

One says that r is a retraction of X and s is a section of X.

Example 1.4. A. Consider a topological space X and a singleton set {y} ⊆ X. Define a

map r : X −→ {y} by r(x) = y. r is trivially continuous. Let s : {y} −→ X ′ be an inclusion

map (i.e., s(y) = y). Then, r(s(y)) = r(y) = y = id{y}. Thus {y} is a retract of X with s a

section and r a retraction map.

We give some properties of retraction maps.

Proposition 1.4.2. [GL] Every retraction r : X −→ X ′ is surjective.

Proof: [GL] Let s be some associated section. r is surjective, since s(x) is an element y such

that r(y) = x. �

Proposition 1.4.3. [AHS] Let f : X −→ X ′, g : X ′ −→ X ′′ be continuous maps. If

g ◦ f : X −→ X ′′ is a retraction, then so is g.

Proof: Given a continuous function h with (g ◦ f) ◦h = idX′′ , we have g ◦ (f ◦h) = idX′′ . Thus

g is a retraction. �

Proposition 1.4.4. Let e : X −→ X ′ and r : X ′ −→ X be functions such that r ◦ e = 1X ,

A ⊆ X and B ⊆ X ′. Then:

1. e(A) ⊆ r−1(A)

2. e−1(B) ⊆ r(B)

Proof: (1) Let A ⊆ X and let y ∈ e(A), then there is x ∈ A such that e(x) = y. Therefore

r(e(x)) = r(y). But then r(e(x)) = x, so x = r(y) ∈ A. Thus y ∈ r−1(A).

(2) Let B ⊆ X ′. If x ∈ e−1(B), then e(x) ∈ B, implying that r(e(x)) ∈ r(B). Because

r(e(x)) = x, x ∈ r(B). �

Corollary 1.4.5. For any A ⊆ X, A = e−1(r−1(A)).

Proof: Let A ⊆ X. It follows that e−1(r−1(A)) ⊆ r(r−1(A)) ⊆ A. The converse follows since
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r(e(A)) = A, implying that A ⊆ (re)−1(A). �

We shall make use of Salbany stably compact spaces to construct a retraction of U(X). So, it is

important to introduce the concept of Salbany stably compact spaces. We start by introducing

supersober spaces.

Definition 1.4.6. [Sa] A topological space X is supersober if it is compact and for every

ultrafilter p on X, Ap = {x} for some x ∈ X.

Example 1.4. B. Consider a space X equipped with Ttr. X is compact and for each ultrafilter

p of X, Ap = X. But X is the closure of its singleton sets, so Ap = {x} for each x ∈ X. Thus

X is supersober.

We define a Salbany stably compact space.

Definition 1.4.7. [Sa] A locally compact and supersober space is called Salbany stably compact.

Example 1.4. C. Every compact Hausdorff space is an example of a Salbany stably compact

space. Indeed, each compact Hausdorff space X is locally compact and, for p ∈ U(X), Ap =

{x} for some unique x ∈ X. Because in a Hausdorff space singleton sets are closed sets, we

have that Ap = {x}, making X supersober.

The ultrafilter space of a topological space X is an example of a Salbany stably compact space

which is not always Hausdorff.

Proposition 1.4.8. [Sa] Let X be a topological space. Then U(X) is Salbany stably compact.

Proof: [Sa] It is clear that U(X) is compact and locally compact. Let F be an ultrafilter of

U(X). It follows that p = {A ⊆ X : A∗ ∈ F} is a limit point of F . It is easy to see that

{p} ⊆ AU . We must show that AF ⊆ {p}. If q ∈ AF but q /∈ {p}, then there exists H ∈ T such

that q ∈ H∗ and H∗ ∩ {p} = ∅, i.e. p /∈ H∗. Therefore p ∈ (X\H)∗ which implies (X\H) ∈ p.

Hence (X\H)∗ ∈ F , which is a contradiction since H∗ ∈ F . Therefore AF = {p} for some

p ∈ U(X). Thus U(X) is Salbany stably compact. �

A retract of a Salbany stably compact space is Salbany stably compact.

Proposition 1.4.9. [Sa] Let e : X −→ X ′ be a continuous function and r : X ′ −→ X be

another continuous function such that r ◦ e = 1X . If X ′ is Salbany stably compact, then so is
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X.

Proof: X is locally compact: [Ju, Sa] Let x ∈ X and consider Nx. Then, there is G ∈ T

such that x ∈ G ⊆ Nx. It follows that e(x) ∈ e(G) ⊆ r−1(G). Since r is continuous, r−1(G)

is an open neighbourhood of e(x). So, by local compactness of X ′, there is an open set H

and a compact set K in X ′ such that e(x) ∈ H ⊆ K ⊆ r−1(G). Observe that r(e(x)) = x ∈

r(H) ⊆ r(K) ⊆ G and x ∈ e−1(H) ⊆ e−1(K) ⊆ G ⊆ Nx (since e−1(r−1(G)) = G). Because

e−1(K) ⊆ r(K), it follows that x ∈ e−1(H) ⊆ r(K) ⊆ G ⊆ Nx. Clearly r(K) is compact.

Thus X is locally compact.

X is supersober: [Sa] Compactness of X follows since r is surjective and continuous. Let p be

an ultrafilter on X. Then, by Proposition 1.3.23, q = {A ⊆ X ′ : e−1(A) ∈ p} is an ultrafilter

on X ′. Since X ′ is supersober, it follows that Aq = {x} for some x ∈ X ′. We show that

Ap = {r(x)}. Let y ∈ Ap, then each Ny ∈ p, so e(y) ∈ e(Ny) ∈ e(p). Since e(Ny) ⊆ r−1(Ny)

and e(p) is an ultrafilter on X ′ (by Proposition 1.1.17.), it follows that r−1(Ny) ∈ e(p). Thus

e(y) ∈ r−1(Ny) ∈ e(p). Now, we have that r−1(Ny) ∈ q since Ny = e−1(r−1(Ny)) ∈ p.

Therefore e(y) ∈ Aq, which implies r(e(y)) ∈ r({x}) ⊆ r({x}) = {r(x)}. Thus y = r(e(y)) ∈

{r(x)}. On the other hand, if y ∈ {r(x)}, then for each Ny, r(x) ∈ Ny. Now, x ∈ r−1(Ny). It

follows that r−1(Ny) ∈ q, since x ∈ Aq and r−1(Ny) ∈ Ux. Therefore, e−1(r−1(Ny)) ∈ p. But

then Ny = e−1(r−1(Ny)), so Ny ∈ p. Thus y ∈ Ap. �

We construct a retraction of U(X).

Proposition 1.4.10. [Sa] Let X be a Salbany stably compact space. Then there is a retraction

rX : U(X) −→ X satisfying rX ◦ ηX = 1X .

Proof: [Sa] Since X is supersober, for each p ∈ U(X), Ap = {x} for some x ∈ X. If p = ηX(x)

for some x ∈ X, then Ap = {x}. So, for p ∈ ηX(X), define rX : U(X) −→ X by rX(p) = x,

where p = ηX(x). For p ∈ U(X)\ηX(X), let rX(p) = x, where x is any element of X such that

{x} = Ap. Observe that rX is a function and rX(ηX(x)) = rX(p) = x, for each x ∈ X. Thus

rX ◦ ηX = 1X . For continuity, let A ∈ T and p ∈ r−1X (A). Observe that rX(p) = x for some

x ∈ X such that Ap = {x}. Now, since X is locally compact, there exists an open set G ⊆ X

and a compact set K ⊆ X such that rX(p) ∈ G ⊆ K ⊆ A. Because rX(p) is a limit point of

p, we have that G ∈ p. Therefore p ∈ G∗.To show that G∗ ⊆ r−1X (A), let t ∈ G∗. Observe that
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rX(t) = y for some y ∈ X such that At = {y}. Because t ∈ G∗ ⊆ K∗, we have K ∈ t. Since

K is compact, t converges to some point in K, say z, i.e., z ∈ At. Now, K ∩ At 6= ∅ which

implies that A ∩ At 6= ∅. Therefore A ∩ {y} 6= ∅. But y = rX(t), so A ∩ {rX(t)} 6= ∅. Now,

z ∈ A and z ∈ {rX(t)}. So, rX(t) ∈ A since A is a neighbourhood of z. Therefore t ∈ r−1X (A).

Thus rX is continuous. Hence rX is a retraction of U(X). �

Because compact Hausdorff spaces are Salbany stably compact, we have the following result.

Proposition 1.4.11. [Sa] If X is a compact Hausdorff space, then there is a unique retraction

rX : U(X) −→ X such that rX ◦ ηX = 1X .

Proof: Recall that a compact Hausdorff space is supersober and locally compact, so, it follows

that X is Salbany stably compact. By Proposition 1.4.10, there is a retraction rX : U(X) −→

X such that rX ◦ηX = 1X . Uniqueness follows from the fact that X is Hausdorff so, continuous

functions agreeing on a dense subspace ηX(X) of U(X) will also agree on U(X). �

Proposition 1.4.12. [Sa] Let f : X −→ X ′ be a continuous function from a topological space

X to a Salbany stably compact space X ′. Then there exists a continuous map, not necessarily

unique, F : U(X) −→ X ′ such that F ◦ ηX = f .

Proof : [Sa] We have U(f) : U(X) −→ U(X ′) and ηX : X −→ U(X). Let rX′ : U(X ′) −→ X ′

be such that rX′ ◦ ηX′ = 1X′ . We start by showing that the following diagram commutes:

X

ηX
��

f // X ′

U(X)
U(f)

// U(X ′)

rX′

OO

That is, we must show that r′X ◦ U(f) ◦ ηX = f . It follows that r′X ◦ U(f) ◦ ηX = r′X ◦ η′X ◦ f ,

since U(f) ◦ ηX = η′X ◦ f (by Proposition 1.3.26). Thus r′X ◦ U(f) ◦ ηX = 1′X ◦ f = f . Let

F = rX′ ◦ U(f). It follows that F ◦ ηX = f . �
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Chapter 2

Compactifications and Separated
Reflections

This chapter consists of two sections. The first section discusses the concept of compactification

which is well-known in general topology. The second section discusses some ways of making

non-separated spaces separated.

Some notions from category theory shall appear in some parts of the sections of this chapter

as well as the other chapters after this one. We start by outlining them.

Definition 2.1. [AHS] A category A is a quadruple = (O, hom, id, ◦) consisting of

1. a class O, whose members are called A-objects,

2. for each pair (A,B) of A-objects, a set homA(A,B), whose members are called A-

morphisms from A to B,

3. for each A-object A, a morphism idA : A −→ A, called the A-identity on A, and

4. a composition law associating with each A-morphism f : A −→ B and each A-morphism

g : B −→ C an A-morphism g ◦ f : A −→ C, called the composite of f and g, subject to

the following conditions:

(a) composition is associative; i.e., for morphisms f : A −→ B, g : B −→ C, and

h : C −→ D, the equation h ◦ (g ◦ f) = (h ◦ g) ◦ f holds,

(b) A-identities act as identities with respect to composition; i.e., for A-morphisms

f : A −→ B, we have idB ◦ f = f and f ◦ idA = f ,
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(c) the sets homA(A,B) are pairwise disjoint.

Definition 2.2. [AHS] A category B is said to be a subcategory of a category A provided that

the following conditions are satisfied:

1. for each B ∈ B, B ∈ A,

2. for each B,B′ ∈ B, homB(B,B′) ⊆ homA(B,B′),

3. for each B-object B, the A-identity on B is the B-identity on B,

4. the composition law in B is the restriction of the composition law in A to the morphisms

of B.

Definition 2.3. [AHS] Objects A and B on a category A are said to be isormophic if there is

an A−morphism f : A −→ B such that g ◦ f = idA and f ◦ g = idB, for some A−morphism

g : B −→ A.

When two objects are isomorphic, we say that they are the same in a sense that they share

mathematical properties. In Top, isomorphism is equivalent to homeomorphism.

Definition 2.4. [AHS] A functor F is a function between two categories A and B that assigns

to each A-object A a B-object F(A), and to each A-morphism f : A −→ A′ a B-morphism

F(f) : F(A) −→ F(A′), in such a way that

1. F preserves composition, i.e., F(f ◦ g) = F(f) ◦ F(g) whenever f ◦ g is defined, and

2. F preserves identity morphisms, i.e., F(idA) = idF(A) for each A-object A.

Definition 2.5. [AHS] Let B be a subcategory of a category A. We say that B is a reflective

subcategory of A if for each A ∈ A, there is a B-object B and a B−morphism r : A −→ B

with the following universal property: for any A-morphism f : A −→ B′ from A into some

B-object B′, there exists a unique B-morphism f ′ : B −→ B′ such that the triangle

A

f   

r // B

f ′

��
B′
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commutes.

The pair (B, r) is called the B−reflection of A. We will use the name B-reflection for the

object B rather than for the pair (B, r). Furthermore, B is called a reflective subcategory of

A provided that each A−object has a B−reflection.

Proposition 2.6. [AHS] Let B be a reflective subcategory of a category A. B-reflections are

unique up to an isomorphism.

Proof: [AHS] If C is another B reflection of A with B reflection map r′, then there is k :

B −→ C such that k ◦ r = r′, similarly there is k′ : C −→ B such that k′ ◦ r′ = r. Therefore

k ◦ (k′ ◦ r′) = (k ◦k′)◦ r′ = r′ = idC ◦ r′ so that by the uniqueness requirement in the definition

of B reflection, k ◦ k′ = idC . Analogously, one can see that k′ ◦ k = idB so that k is an

isomorphism. �

Remark: The preceding result is the reason why we speak about the B-reflection of A rather

than a B-reflection.

Definition 2.7. [AHS] Let B be a reflective subcategory of A, and for each A-object A let

rA : A −→ BA be a B-reflection morphism. A functor R : A −→ B such that

1. R(A) = BA for each A−object A, and

2. for each A-morphism f : A −→ A′, the following diagram commutes:

A

f

��

rA // R(A)

R(f)

��
A′

rA′ // R(A′)

is called a reflector for B.

2.1 Compactifications

Compact spaces are one of the most important classes of topological spaces. There are many

spaces which are not compact, and so the best we can hope for in general is that a given space

can be embedded into a compact space. It is of interest to study the process of ”compactifica-
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tion” that is, the process of embedding a given space as a dense subset of some compact space

[Wi]. It is thus the main concern of this section.

For the sake of formality, we define compactification.

Definition 2.1.1. [En] A compactification of a topological space X is a couple (X ′, c), where

X ′ is a compact space and c : X −→ X ′ is an embedding of X as a dense subspace of X ′.

Remark: For some compactifications, X is not a subspace of X ′. When we encounter that,

we shall identify X as c(X). This is because X and c(X) are homeomorphic and to topologists,

they are the same. We shall give a remark whenever this identification has occurred.

Some authors, such as [Wi], requireX ′ to be Hausdorff. This serves as a significant contribution

to the theory of compact Hausdorff spaces which are also important classes of topological

spaces. We omitted Hausdorffness because we are interested in making non-compact spaces

compact, so we treat Hausdorff compactifications as particular types of compactifications.

Among well-known compactifications of topological spaces are the Alexandroff one-point com-

pactification, the Wallman compactification and the Stone-Čech compactification. Unlike the

Alexandroff one-point compactification and the Wallman compactification, the Stone-Čech

compactification is of interest since it is functorial, [HMT]. In the first two subsections of

this section, we shall introduce the Alexandroff one-point compactification and the Wallman

compactification, respectively, and reserve a detailed construction for the Stone-Čech com-

pactification in the third subsection.

2.1.1 Alexandroff One-point Compactification

The simplest sort of compactification of a topological space is made by adjoining a single point

which doesn’t belong to that space. This procedure is familiar in analysis, for in function theory

the complex sphere is constructed by adjoining a single point, ∞, to the Euclidean plane and

specifying that the neighbourhoods of∞ are the complements of bounded subsets of the plane,

[En].

In this subsection, we introduce the Alexandroff one-point compactification for locally compact

Hausdorff spaces. For the rest of this subsection, X is assumed to be non-compact. We advise
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a reader to consult [Wy] for further readings and proofs.

Definition 2.1.1.1. [Wy] Let X and X ′ be topological spaces and f : X −→ X ′ be a continuous

function. The pair (X ′, f) is said to be a one-point compactification of X provided (X ′, f) is

a compactification of X and X ′\X is a singleton set.

Remark: In most cases, f is usually an inclusion map.

Example 2.1. A. The set [0, 1] ⊆ R together with an inclusion map i from [0, 1) to [0, 1] is

an example of one-point compactification of [0, 1).

The construction of the Alexandroff one-point compactification for a non-compact space X is

as follows: Let X be a locally compact Hausdorff space and let X+ = X ∪{∞} where∞ /∈ X.

Define the topology on X+ by T+ = T ∪{G ⊆ X+ : X+\G is a closed compact subset of X}.

The set X+ together with the inclusion map i : A −→ X+ form a compactification of a non-

compact space X. We call this compactification the Alexandroff one-point compactification of

X. This compactification is an example of a Hausdorff compactification.

2.1.2 Wallman Compactification

We devote this subsection in introducing a compactification of T1 spaces known as the Wall-

man compactification. This compactification is usually constructed using closed ultrafilters as

points. We advise a reader to consult [En] for further readings and proofs.

[En] The Wallman compactification of a T1−space was introduced, in 1938, by Wallman as

follows: Let PX be a class of subsets of a topological space X which is closed under finite

intersections and finite unions. A PX-filter on X is a collection F of non-empty elements of

PX with the following properties:

1. F is closed under finite intersections and

2. P1 ∈ F , P1 ⊆ P2 ∈ PX implies P2 ∈ F .

A PX−ultrafilter is a PX-filter F satisfying the condition that, whenever P ∈ PX and P∩F 6= ∅

for each F ∈ F , then P ∈ F . When PX is a class of closed sets of X, then the PX−filters are

called closed filters and PX− ultrafilters are called closed ultrafilters. In our text, we consider
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PX as a class of closed sets of X.

Let wX be the collection of closed ultrafilters on X. For each open set U of X, define

U• = {U ∈ wX : F ⊆ U for some F ∈ U}. The collection {U• : U ∈ T} forms a base for

open sets of some topology on wX, denoted by wT . Furthermore, the set wX together with

a map w : X −→ wX defined by w(x) = {A ∈ P : x ∈ A}, form a T1 compactification of a T1

space X. This compactification is known as the Wallman compactification.

2.1.3 Stone-Čech Compactification

We have noticed in the preceding two subsections how one can compactify locally compact

Hausdorff spaces as well as T1 spaces. In this subsection, we aim to compactify Tychonoff

spaces. We achieve this through studying the concept of the Stone-Čech compactification βX.

Definition 2.1.3.1. [AL] Let X be Tychonoff. The Stone-Čech compactification of X is

a Hausdorff compactification (βX, e) with the property that: For each continuous function

f : X −→ X ′, where X ′ is compact and Hausdorff, there is a unique continuous map g :

βX −→ X ′ such that g ◦ e = f .

The Stone-Čech compactification was first introduced in 1937 by Stone and Čech. There

are many ways of constructing βX. We consider the embedding of a Tychonoff space X into

product copies of the unit interval [0, 1] as the standard construction of βX. This construction

can be found in most standard textbooks of general topology (see e.g., S. Willard [Wi]).

The standard construction of βX is as follows: [En,Wi,Wy] Let X be a Tychonoff space.

Take the range of each f ∈ C(X) as a closed bounded interval If in R. Define a map

s : X −→ Π{If : f ∈ C(X)} by s(x) is equal to the point in Π{If : f ∈ C(X)} whose f−th

coordinate is the real number f(x).

Remark: We recall from [Wi] that, for a topological space X,

1. A map f : X −→ ΠXα is continuous if and only if πα ◦ f , where πα is a projection map,

is continuous for each α ∈ A;

2. If for each α ∈ A, fα : X −→ Xα, then the evaluation map e : X −→ ΠXα induced by

the collection {fα : α ∈ A} is defined as follows: for each x ∈ X, e(x) is the point in
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ΠXα whose α−th coordinate is the real number f(x) for each α ∈ A, and

3. The evaluation map e : X −→ ΠXα is an embedding if and only if X has the weak

topology Tweak (the topology on X for which the sets f−1α (Uα), for α ∈ A, and Uα open

in Xα, form a subbase) given by the functions fα and, whenever x 6= y ∈ X, then for

some α ∈ A, fα(x) 6= fα(y).

From this remark, we get that s is an evaluation map, and we have the following result.

Theorem 2.1.3.2. [Wy] Let X be a Tychonoff space. Then the following statements hold:

1. The map s : X −→ Π{If : f ∈ C(X)} is an embedding.

2. s(X) is compact Hausdorff.

3. The pair (s(X), s) is a Hausdorff compactification of X.

4. For each continuous map h : X −→ X ′ where X ′ is compact and Hausdorff, there is a

unique continuous map k : s(X) −→ X ′ such that k ◦ s = h.

Proof: [Wi, Wy] (1) Let x, y ∈ X such that x 6= y. Then y /∈ Nx for some Nx. Since X

is completely regular, there is f ∈ C(X) such that f(x) = 0 and f(y) = 1, implying that

f(x) 6= f(y). We must show that X has the weak topology given by elements of C(X).

Claim: The weak topology on X generated by C(X) equals the given topology T on X: Let

G ∈ T and choose x ∈ G. Observe that X\G is closed. Since X is completely regular, there

is f ∈ C(X) such that f(x) = 0 and f(X\G) = 1. Note that (−1
2
, 1) is open is R and so

f−1(−1
2
, 1) ∈ Tweak. Because f(X\G) = 1 and f(G) ⊆ [0, 1), we have that f−1(−1

2
, 1) = G.

Thus T ⊆ Tweak. On the other hand, if U ∈ Tweak and x ∈ U , then there exists f1, ..., fn ∈ C(X)

and U1, ..., Un ∈ Tus such that x ∈
⋂n
i=1 f

−1
i (Ui) ⊆ U . Because each fi is continuous, we have

that
⋂n
i=1 f

−1
i (Ui) ∈ T . Therefore U ∈ T . Thus Tweak ⊆ T . As a result, T = Tweak. Hence e is

an embedding.

(2) Because every closed subset of (R, Tus) is compact and Hausdorff, it follows that each If

is compact and Hausdorff. By the Tychonoff Theorem, the product Π{If : f ∈ C(X)} is

compact and Hausdorff. Therefore the closed subspace s(X) of Π{If : f ∈ C(X)} is compact
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and Hausdorff.

(3) This follows from (1) and (2).

(4) Let h : X −→ X ′ be a continuous map, where X ′ is compact and Hausdorff. We can

embed X ′ into Π{Ig : g ∈ C(X ′)} by an evaluation map s′. Let πf : Π{If : f ∈ C(X)} −→ If

and π′g : Π{Ig : g ∈ C(X ′)} −→ Ig be projection maps. Define a map F : Π{If : f ∈

C(X)} −→ Π{Ig : g ∈ C(X ′)} as follows: If t ∈ Π{If : f ∈ C(X)} and g ∈ C(X ′), then

define [F (t)](g) = tg◦h. Observe that (π′g ◦ F )(t) = πg◦h(t). For each g ∈ C(X ′), the map

π′g ◦ F : Π{If : f ∈ C(X)} −→ Ig◦h is continuous. It follows that F is continuous. Now, for

x ∈ X, we have

(π′g ◦ F ◦ s)(x) = (π′g ◦ F )(s(x))

= πg◦h(s(x)) = (πg◦h ◦ s)(x)

= (g ◦ h)(x) = g(h(x))

= (π′g ◦ s′)(h(x)) = (π′g ◦ s′ ◦ h)(x).

Because π′g is surjective, we have that F ◦ s = s′ ◦ h. Since s′(X ′) is compact and s′(X ′) is

Hausdorff, we have that s′(X ′) = s′(X ′). But F (s(X)) ⊆ s′(h(X)) ⊆ s′(X ′), so F (s(X)) ⊆

s′(X ′) = s′(X ′). On the other hand, because s(X) is dense in s(X) and F is continuous, we

have that F (s(X)) is dense in F (s(X)) and thus F (s(X)) ⊆ s′(X ′), implying that F maps

s(X) strictly to s′(X ′) and hence to X ′. Now, let F ′ be a restriction of F into s(X), and define

k : s(X) −→ X ′ by (s′)−1 ◦ F ′. Such a map exists since X ′ = s′(X ′) and F ′ takes values in

s′(X ′). It is clear that k is continuous. Choose x ∈ X, then (k ◦ s)(x) = ((s′)−1 ◦ F ′ ◦ s)(x) =

((s′)−1 ◦ F ◦ s)(x) = h(x), showing that k ◦ s = h. Because any two continuous functions

agreeing on a dense subspace of a Hausdorff space are necessarily equal, it follows that k is

unique. �

Remark: In some parts of the preceding theorem, we identified X as s(X).

The combination of statements (3) and (4) of the preceding theorem gives the following result.

Corollary 2.1.3.3. For a Tychonoff space X, the pair (s(X), s) is the Stone-Čech compacti-

fication of X.

From Statement (4) of Theorem 2.1.3.2, we can deduce that CHaus is a reflective subcategory
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of Tych and the Stone-Čech compactification βX is the compact Hausdorff reflection of X ∈

Tych.

2.2 Separated Reflections

The goal of this section is to construct separated reflections of topological spaces.

In the following subsections, we shall give constructions of separated reflections. Our focus

will be on T0, sober, T1, T2 and Tychonoff reflections. The concepts of quotient spaces and

quotient maps shall be frequently used in constructing some of the separated reflections.

Definition 2.2.1. [Wi] Let (X,T ) be a topological space, X ′ be any non-empty set and

f : X −→ X ′ be an onto mapping. A topology T ′ = {G ⊆ X ′ : f−1(G) ∈ T} on X ′ is called

the quotient topology induced on X ′ by f . When X ′ is given such a quotient topology, it is

called a quotient space of X and the inducing map is called a quotient map.

It follows from the preceding definition that for a quotient map f : X −→ X ′, with X ′ a

quotient space, a set A ⊆ X ′ is open(closed) in X ′ if and only if f−1(A) is open(closed) in X.

In our text, we shall omit the subscript R from each equivalence class [x]R if X is the only

space involved in a problem and an equivalence relation R is the only equivalence relation that

has been defined on X.

2.2.1 T0 Reflection

The first separated reflection to consider is the T0 reflection of a topological space. The

construction of the T0 reflection was first described in detail by Stone, [AL].

We can derive a definition of the T0 reflection of a topological space from the concept of

B−reflections given in Definition 2.5.

Definition 2.2.1.1. [CM] A continuous map r : X −→ X ′ from a topological space X to a

T0 space X ′, is a T0 reflection map if for each continuous map e : X −→ X ′′ from X to a T0

space X ′′, there is a unique continuous map f : X ′ −→ X ′′ such that f ◦ r = e. The set X ′ is

called the T0 reflection of X.
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Just like B−reflections, T0 reflection maps are unique up to a homeomorphism, so we speak

about the T0 reflection rather than a T0 reflection.

We give the following important characterization of T0 spaces.

Proposition 2.2.1.2. [Wi] A topological space is T0 if and only if for each x, y ∈ X, {x} = {y}

implies that x = y.

Proof: Let X be T0 and x 6= y, then there exists Nx not containing y or there is Ny not

containing x. For y /∈ Nx, we get that x /∈ {y}. Because x ∈ {x}, we have {x} 6= {y}.

Similarly, we can easily show that x /∈ Ny implies {x} 6= {y}. Conversely, suppose that

{x} = {y} implies x = y. If x 6= y, then there must exist Ny not containing x, or there must

exist Nx not containing y, otherwise y ∈ {x} and x ∈ {y}. Which is a contradiction. �

Proposition 2.2.1.3. [Wi] Let ∼ be an equivalence relation on X given by x ∼ y if and

only if {x} = {y}, for each x, y ∈ X. The quotient space X/ ∼ is the T0 reflection of X and

r : X −→ X/ ∼, given by x 7→ [x], is the T0 reflection map.

Proof: Let r : X −→ X/ ∼, given by x 7→ [x], denote the quotient map and X/ ∼ the quotient

space. It is clear that r is surjective and continuous. The quotient space X/ ∼ is T0: We start

by showing that r is open.

Lemma 2.2.1.4. [Sl] The quotient map r : X −→ X/ ∼ is open.

Proof: Let A be an open subset of X. It suffices to show that r−1(r(A)) = A. It is obvious

that A ⊆ r−1(r(A)). Now, let x ∈ r−1(r(A)), then [x] ∈ r(A). Therefore [x] = [y] for some

y ∈ A. We have that {x} = {y}, implying that x ∈ {y} and y ∈ {x}. Thus x ∈ A. Therefore

A = r−1(r(A)). By definition of quotient topology, r(A) is open in X/ ∼. �

Now, let x, y ∈ X with [x] 6= [y]. Then x � y which implies that there is an open set U

containing x and not y. Assume x ∈ U and y /∈ U . Then r(U) is an open set containing

[x] and not containing [y]. Thus X/ ∼ is T0. We show that X/ ∼ is the T0 reflection of X.

Choose any continuous function f : X −→ X ′ where X ′ is T0. Now, x ∼ y ⇒ {f(x)} = {f(y)}.

Because X ′ is T0, it follows that f(x) = f(y). So, f has a property that f(x) = f(y) whenever

x ∼ y in X. Define f ′ : (X/ ∼) −→ X ′ by f ′([x]) = f(x). It is clear that f ′ is a function. We

must show that f ′ is continuous and unique. For continuity: let U be an open subset of X ′.
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Then f−1(U) is open in X. Observe that

(f ′)−1(U) = {[x] : f(x) ∈ U}

= {[x] : x ∈ f−1(U)} = r(f−1(U)).

Now,

r−1(r(f−1(U))) = {x : [x] ∈ r(f−1(U))}

= {x : [x] ∈ (f ′)−1(U)} = {x : f(x) ∈ U}

= f−1(U).

Because r is a quotient map, (f ′)−1(U) is open in X/R. Thus f ′ is continuous. For uniqueness

of f ′, suppose that f ′′ is another continuous function from X/ ∼ to X ′ satisfying f ′′ ◦ r = f .

Pick [x] ∈ X/ ∼, then f ′′([x]) = f ′′(r(x)) = f(x) = f ′([x]). Thus f ′′ = f ′. �

Example 2.2. A. Consider a space (X,Ttr). The T0 reflection of X is the singleton set

X0 = {X} equipped with the trivial topology on X0.

We shall use X0 and e0X to denote the T0 reflection and the T0 reflection map of X, respectively.

Proposition 2.2.1.5. [Sl] Let X0 be the T0 reflection of a topological space X and e0X : X −→

X0 be the reflection map. Then there is a section s0X : X0 −→ X, i.e. e0X ◦ s0X = 1X0.

Proof: [Sl] Because e0X is surjective, it follows that there is an injective map, say s0X : X0 −→

X such that e0X ◦s0X = 1X0 . For continuity, let A ∈ T . Observe that A = e−10X(e0X(A)), where

e0X(A) is open in X0. Now, s−10X(A) = s−10X(e−10X(e0X(A))). By Corollary 1.4.5, s−10X(A) = e0X(A).

Thus s−10X(A) is open in X0. Clearly, s0X : X0 −→ X is a section. �

Proposition 2.2.1.6. [Sa] If X is a Salbany stably compact space, then so is X0.

Proof: [Sa] Because s0X is a section and e0X is the T0−reflection of X such that e0X◦s0X = 1X0 ,

by Proposition 1.4.9, X0 is Salbany stably compact. �

Proposition 2.2.1.7. [BEL] Let f : X −→ X ′ be a continuous function between spaces X

and X ′. Then there is a unique continuous function g : X0 −→ X ′0 satisfying g◦e0X = e0X′ ◦f .

Proof: Consider the continuous funtions e0X : X −→ X0 and e0X′ ◦ f : X −→ X ′0. By

Definition 2.2.1.1, there is a unique continuous function g : X0 −→ X ′0 such that diagram
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X

e0X
��

f // X ′

e0X′
��

X0 g
// X ′0

commutes. �

Denote X0 and the unique continuous function g described in the preceding proposition by

e0(X) and e0(f), respectively. Observe that e0(f)([x]) = [f(x)].

Proposition 2.2.1.8. e0 : Top −→ Top0 given by

X 7→ e0(X)

f 7→ e0(f)

is a reflector for Top0.

Proof: It is clear that Top0 is a reflective subcategory of Top and e0X is the Top0−reflection

morphism. Observe that e0(X) ∈ Top0 for each X ∈ Top, and for a continuous function

f : X −→ X ′ where X ′ ∈ Top, we have that e0(f) is a continuous function. Now, choose a

continuous function h : X ′ −→ X ′′, where X ′′ ∈ Top, and select x ∈ X, then

(e0(h) ◦ e0(f))([x]) = e0(h)(e0(f)([x]))

= e0(h)([f(x)]) = [h(f(x))] = e0(h ◦ f)([x]).

Moreover, e0(idX)([x]) = [idX(x)] = [x] = ide0(X)([x]), for each X ∈ Top. Thus e0 is a functor.

�

2.2.2 Sober Reflection

Related to T0 spaces are sober spaces. Our aim is to construct the sober reflection of a

topological space. We shall start by introducing the concept of sober spaces and its useful

properties, and later construct the sober reflection.

Enroute to introducing sober spaces, we define irreducible sets.

Definition 2.2.2.1. [GHK+03, Ho] An arbitrary non-empty subset A of a topological space

X is said to be irreducible provided that A ⊆ B∪C for closed subsets B and C, implies A ⊆ B

or A ⊆ C.
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We give some useful properties of irreducible sets.

Proposition 2.2.2.2. [ZH] Let X be a topological space. Then

1. A ⊆ X is irreducible if and only if A is irreducible.

2. Each closure of a singleton set is irreducible.

3. If A ⊆ X is irreducible, then each non-empty open subset of A is dense in A.

4. If X ′ is another space, f a continuous map between X and X ′, and A an irreducible

subset of X, then f(A) is an irreducible subset of X ′.

Proof: (1) Let A ⊆ X be irreducible and let B and C be closed subsets of X such that

A ⊆ B ∪ C. Then, A ⊆ B ∪ C. Because A is irreducible, it follows that A ⊆ B or A ⊆ C.

Therefore, A ⊆ B or A ⊆ C since both B and C are closed. Thus A is irreducible. Conversely,

let A1, A2 be closed sets such that A ⊆ A1∪A2. Then A ⊆ A1∪A2. It follows that A ⊆ A1 = A1

or A ⊆ A2 = A2. Thus A ⊆ A1 or A ⊆ A2.

(2) Let A and B be closed sets of X such that {x} ⊆ A ∪ B. Then x ∈ A or x ∈ B. Because

A and B are closed, we have that {x} ⊆ A or {x} ⊆ B.

(3) Let U be a non-empty open subset of A. Let x ∈ A and choose an open subset V of A

containing x. Then V = A ∩G, for some G ∈ T . If V ∩ U = ∅, then A ∩G ∩ U = ∅. Because

U = A∩H, for some H ∈ T , we have that A∩ (G∩H) = ∅. Therefore A ⊆ (X\G)∪ (X\H).

Since A is irreducible and both X\G and X\H are closed in X, it follows that A ⊆ X\G or

A ⊆ X\H. A ⊆ X\G is not possible. Furthermore, A ⊆ X\H implies H ⊆ X\A, which is

impossible since A ∩H 6= ∅. Thus V ∩ U 6= ∅, implying that U is dense in A.

(4) Let A ⊆ X be irreducible and let B and C be closed subsets of X ′ such that f(A) ⊆ B∪C.

Then, A ⊆ f−1(B)∪f−1(C). It follows that A ⊆ f−1(B) or A ⊆ f−1(C). Therefore, f(A) ⊆ B

or f(A) ⊆ C. �

Next, we define sober spaces.

Definition 2.2.2.3. [BEL] A topological space X is sober if for each closed and irreducible

set C ⊆ X, there exists a unique x ∈ X such that {x} = C.
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We show that the following implication holds:

Hausdorff ⇒ Sober ⇒ T0

Proposition 2.2.2.4. [GHK+03] For a topological space X, each of the following statements

holds:

1. If X is T2 then X is sober.

2. If X is sober then X is T0.

Proof: (1) We show that the irreducible closed subspaces are precisely the singleton subspaces.

Let C be an irreducible closed subspace of X such that C = {x, y}, where x and y are

distinct elements of X. Then, by hypothesis, there are disjoint open sets Nx, Ny. Now,

C = (C\Nx) ∪ (C\Ny) and both C\Nx and C\Ny are closed sets with C ( (C\Nx) and

C ( (C\Ny), contradicting the assumption that C is irreducible. Thus x = y. Because every

closure of a singleton set is irreducible, it follows that in T2 spaces, irreducible closed subspaces

are the singleton subspaces. Thus X is sober.

(2) Let x, y ∈ X with {x} = {y}. Because both {x} and {y} are irreducible closed sets, it

follows that x = y. �

The following example shows that not every sober space is Hausdorff.

Example 2.2. B. Let X = {0, 1} and T = {∅, X, {1}}. X is sober, but not Hausdorff.

Indeed, there are no disjoint neighbourhoods of 0 and 1 in X. However, {0} and {0, 1} are

closed and irreducible subsets of X such that {0} = {0} and {0, 1} = {1}. This makes X a

sober space.

There is a relationship between sober spaces and supersober spaces.

Proposition 2.2.2.5. [GHK+] Every T0 and supersober space X is sober.

Proof: [GHK+] Let C be a closed and irreducible subset of X. Then

G = {B ⊆ C : B is a non− empty open subset of C}

is a filterbase for some filter F . Extend this filter to an ultrafilter p on X. Since X is supersober

and T0, Ap = {x} for some unique x ∈ X. We must show that C = {x}. Clearly, Ap ⊆ C since
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C ∈ p and C is closed. Therefore {x} ⊆ C. On the other hand, let y ∈ C and consider Ny.

Then C ∩Ny 6= ∅. There is a filter G finer than p which contains sets of the form C ∩Ny. But

p is an ultrafilter, so both C and Ny must be in p. Therefore, y ∈ Ap = {x}. Hence C = {x}.

�

We focus on constructing the sober reflection of a space X.

Proposition 2.2.2.6. [BEL] Let S(X) be the collection of all irreducible closed subsets of a

space X. For each closed set F in X, set F̃ = {C ∈ S(X) : C ⊆ F}. Then the following

conditions hold:

1. ∅̃ = ∅;

2. X̃ = S(X);

3.
⋂
i F̃i =

⋂̃
i Fi;

4. Ã ∪ B̃ = ˜(A ∪B).

Proof: (1) There is no irreducible closed subset of X that contains the empty set. Thus, ∅̃ = ∅.

(2) Because every element of S(X) is a subset of X, it follows that X̃ = S(X).

(3) Let B ∈
⋂
i F̃i. Then B ∈ Ãi for each i, which implies that B ⊆ Ai for each i. Therefore,

B ⊆
⋂
iAi. So, B ∈

⋂̃
i Fi. On the other hand, if B ∈

⋂̃
i Fi, then B ⊆

⋂
iAi, which implies

that B ⊆ Ai for each i. Therefore, B ∈ Ãi for each i. Thus B ∈
⋂
i F̃i. Hence

⋂
i F̃i =

⋂̃
i Fi.

(4) Let C ∈ Ã ∪ B̃. Then C ∈ Ã and C ∈ B̃. Therefore C ⊆ A or C ⊆ B. Thus C ⊆ A ∪ B.

On the other hand, if C ∈ ˜(A ∪B), then C ⊆ A ∪ B. But C ∈ S(X) and both A and B

are closed, so C ⊆ A or C ⊆ B. Therefore C ∈ Ã or C ∈ B̃. Thus C ∈ Ã ∪ B̃. Hence

Ã ∪ B̃ = ˜(A ∪B). �

Corollary 2.2.2.7. [BEL] The collection G = {F̃ : F is closed in X} forms a topology on

S(X).

Proof: It is clear that both ∅ and S(X) belong to G. Furthermore, because every finite union

of closed sets is closed, it follows that for each Ã, B̃ ∈ G, Ã ∪ B̃ = ˜(A ∪B) ∈ G. Lastly,

because an arbitrary intersection of closed sets is closed, it follows that
⋂
i F̃i =

⋂̃
i Fi ∈ G.

Hence G = {F̃ : F is closed in X} forms a topology on S(X). �
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Remark: We denote the topology, formed by G, by S(T ), and we call (S(X), S(T )) the

sobrification of X.

Proposition 2.2.2.8. [EL] Define a map υX : X −→ S(X) by υX(x) = {x} for each x ∈ X.

Then the following statements hold:

1. υX is well-defined.

2. υX is continuous.

3. υX(X) is a dense subspace of S(X).

4. If X is sober, then υX is a homeomorphism.

Proof: (1) Let x, y ∈ X such that x = y, then {x} = {y}. Thus υX(x) = υ(y).

(2) Let Ã ⊆ S(X). We have that υ−1X (Ã) = {x : {x} ∈ Ã} = {x : {x} ⊆ A}. Because X is

closed, we have that {x : {x} ⊆ A} = A. Thus υX is continuous.

(3) Let A be a closed set containing υX(X). We must show that S(X) = A. Observe that

there is a collection Q of closed sets in X such that A =
⋂
{F̃ : F ∈ Q}. Choose A ∈ S(X).

We show that A ⊆ F for each F ∈ Q. Let x ∈ A. Then {x} ∈ υX(X) ⊆ A. Therefore

{x} ⊆ F for each F ∈ Q. Thus x ∈ F , making A ⊆ F for each F . Thus A ∈ A. Hence

S(X) = A and υX(X) is a dense subspace of S(X).

(4) υX is surjective: Let A ∈ S(X). Because X is sober, it follows that there is a unique

x ∈ X such that A = {x} = υX(x). υX is injective: Let x, y ∈ X such that {x} = {y}. Clearly

x = y. υX is closed: Let A be a closed subset of X. Because υX is bijective, we have that

Ã = {υX(x) ∈ S(X) : υX(x) ∈ Ã} = υX(A). Thus υX is closed. Continuity follows from (1).

Hence υX is a homeomorphism. �

In addition to the previous result, one can assert that A ⊆ X is irreducible, whenever Ã is.

Indeed, if B and C are closed subsets of X such that A ⊆ B ∪ C, then Ã ⊆ B̃ ∪ C̃. Because

Ã is irreducible, it follows that Ã ⊆ B̃ or Ã ⊆ C̃. Clearly, A ⊆ B or A ⊆ C. Thus A is

irreducible.

We gather our results to show that S(X) is the required sober reflection of a space X.

Lemma 2.2.2.9. [BEL] Let X be a topological space. Then S(X) is sober.
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Proof: Let Ã be an irreducible closed subset of S(X). It is clear that A ∈ S(X). Now, we

claim that Ã = {A}: Because Ã is closed, it follows that {A} ⊆ Ã. Let B ∈ Ã. Then B ⊆ A.

Suppose that A /∈ NB, for some NB. Then A ∈ S(X)\NB = F̃ , for some closed set F ⊆ X.

We have that A ⊆ F , implying that B ⊆ F . Therefore B ∈ S(X)\NB, which is impossible.

Thus B ∈ {A}. Hence Ã = {A}. If we choose a closed and irreducible set B ⊆ X such that

Ã = {B}, we get that Ã = {B} = B̃. Therefore A = B. Thus A is unique. Hence S(X) is

sober. �

Proposition 2.2.2.10. [GD] Let X be a topological space. Then the sobrification of X is the

sober reflection of X and υX is the reflection map.

Proof: Let f : X −→ X ′ be a continuous map where X ′ is sober. Define g : S(X) −→ X ′ by

A 7→ υ−1X′ (f(A)). g is well-defined: Because X ′ is sober, it follows that υX′ is a homeomorphism.

Thus the function υ−1X′ exists. Let A,B ∈ S(X) such that A = B. Then, f(A) = f(B) which

implies that f(A) = f(B). It is clear that f(A) ∈ S(X ′). Therefore, υ−1X′ (f(A)) = υ−1X′ (f(B)).

g is continuous: Let A ⊆ X ′ be a closed set. Observe that

g−1(A) = {B ∈ S(X) : g(B) ∈ A}

= {B ∈ S(X) : υ−1X′ (f(B)) ∈ A} = {B ∈ S(X) : f(B) ∈ υX′(A)}

= {B ∈ S(X) : f(B) ∈ Ã}

= {B ∈ S(X) : f(B) ⊆ A} = {B ∈ S(X) : f(B) ⊆ A}

= {B ∈ S(X) : B ⊆ f−1(A)} = f̃−1(A).

Because f̃−1(A) is closed, it follows that g−1(A) is closed. Thus g is continuous. To show that

g ◦ υX = f , let x ∈ X, then g(υX(x)) = g({x}) = υ−1X′ ({f(x)}) = f(x). For uniqueness of g,

suppose that g′ is another continuous map from S(X) to X ′ satisfying g′ ◦ υX = f . Choose

A ∈ S(X), then g(A) ∈ X ′ and g′(A) ∈ X ′. If g(A) 6= g′(A), then, without loss of generality,

g′(A) ∈ X ′\Ng(A) for some Ng(A) (this is because X ′ is T0). Therefore A /∈ S(X)\g−1(Ng(A))

and A ∈ S(X)\(g′)−1(Ng(A)). Because S(X)\g−1(Ng(A)) and S(X)\(g′)−1(Ng(A)) are closed

in S(X), S(X)\g−1(Ng(A)) = F̃ for some closed set F ⊆ X and S(X)\(g′)−1(Ng(A)) = C̃ for

some closed set C ⊆ X. Therefore A ( F and A ⊆ C. So there is x ∈ A such that x ∈ C

but x /∈ F . Now, {x} /∈ (g′)−1(Ng(A)) and {x} ∈ g−1(Ng(A)). Therefore g′({x}) /∈ Ng(A) and

g({x}) ∈ Ng(A). But g({x}) = f(x) = g′({x}), so g′({x}) ∈ Ng(A), which is a contradiction.
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Thus g(A) = g′(A), and g = g′. �

Denote the sober reflection of X by XS and the reflection map by eSX . Using an argument

similar to the argument used in Proposition 2.2.1.7, we get that for each continuous function

f : X −→ X ′ between two topological spaces X and X ′, there is a unique continuous function

eS(f) : XS −→ X ′S such that the following diagram commutes:

X

eSX

��

f // X ′

eSX′
��

XS
eS(f)

// X ′S

This leads to the following result whose proof follows the sketch of the proof provided in

Proposition 2.2.1.8, and shall be omitted.

Proposition 2.2.2.11. [GD] eS : Top −→ TopSob given by

X 7→ eS(X)

f 7→ eS(f)

is a reflector for TopSob.

The following result shows a relationship between the sobrification and the T0 reflection of a

space X.

Proposition 2.2.2.12. If X0 is sober, then X0 = XS.

Proof: We must find an isomorphism between X0 and XS. Consider the surjective continuous

functions e0 : X −→ X0 and eS : X −→ XS. It follows that there is a unique continuous

function g : X0 −→ XS such that g ◦ e0 = eS. Because X0 is sober, there is a unique

continuous function h : XS −→ X0 such that h ◦ eS = e0. Therefore h ◦ g ◦ e0 = e0. But

e0 = 1X0 ◦ e0, so h ◦ g ◦ e0 = 1X0 ◦ e0. Also, because e0 is surjective, we have that h ◦ g = 1X0 .

On the other hand, g ◦h ◦ eS = eS = 1XS
◦ eS, which implies g ◦h = 1XS

, since eS is surjective.

Clearly, g is an isomorphism. Thus X0 = XS, as required. �

2.2.3 T1 Reflection

In this section, the T1 reflection of a topological space X is constructed.
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We start by giving the following useful characterization of T1 quotient spaces.

Proposition 2.2.3.1. [Wi] Let X be a topological space and R any equivalence relation defined

on X. Then X/R is T1 if and only if each equivalence class [x] on R is closed in X.

Proof: Let r : X −→ X/R be a quotient map. We have that r−1({[x]}) = [x], for each x ∈ X.

Suppose that each equivalence class is closed in X. If x, y ∈ X such that [x] 6= [y], then x /∈ [y]

and y /∈ [x]. Therefore x ∈ X\r−1({[y]}) and y ∈ X\r−1({[x]}) and both X\r−1({[y]}) and

X\r−1({[x]}) are open inX. Observe thatX\r−1({[y]}) = r−1((X/R)\{[y]}) andX\r−1({[x]}) =

r−1((X/R)\{[x]}). Therefore [x] ∈ (X/R)\{[y]} and [y] ∈ (X/R)\{[x]}. It is clear that both

(X/R)\{[y]} and (X/R)\{[x]} are open in X/R. Thus X/R is T1. Conversely, suppose that

X/R is T1. Then each set {[x]} is closed in X/R. Because r−1({[x]}) = [x], it follows that [x]

is closed in X. �

From the definition of the T0 reflection provided in Definition 2.2.1.1, the T1 reflection can be

defined in a similar way except that both X
′

and X ′′ must be T1. In this case, X ′ is called

the T1 reflection of X and r the T1 reflection map. Just like T0 reflection maps, T1 reflection

maps are unique up to a homeomorphism.

To construct the T1 reflection of a topological space X, let

C = {S ⊆ X ×X : S is an equivalence relation and for all x ∈ X, [x]S is closed in X}

where [x]S is the class of x ∈ X under S. Observe that C is non-empty since the trivial

relation R = X ×X ∈ C. As the intersection of any family of equivalence relations is again an

equivalence relation, R =
⋂
{S ∈ C} is well-defined. We have [x]R =

⋂
{[x]S : S ∈ C}, for each

x ∈ X. Since the intersection of closed sets is closed, we get that each [x]R is closed in X.

Proposition 2.2.3.2. X/R is the T1 reflection of a topological space X and r : X −→ X/R

is the reflection map.

Proof: Because each [x]R is closed in X, it follows that X/R is T1. Let f : X −→ X ′ be a

continuous function from X to a T1 space X ′. Observe that Rf = {(x, y) ∈ X ×X : f(x) =

f(y)} is an equivalence relation. Since X ′ is T1 and f is continuous, it follows that {f(x)}

is closed in X ′, which implies f−1({f(x)}) is closed in X. As [x]R = f−1({f(x)}), Rf ∈ C.

Therefore R ⊆ Rf and if [x]R = [y]R, we have that f(x) = f(y). Thus g : X/R −→ X ′ given
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by [x]R 7→ f(x) is well defined and satisfies g ◦ r = f . The rest of the proof is similar to the

last part of the proof of Proposition 2.2.1.3 (Continuity and uniqueness of g). Thus X/R is

the T1 reflection of X with r being the T1 reflection map. �

Denote the T1 reflection map of X by e1X and the T1 reflection by X1. We have the following

result whose proof follows the sketch of the proof of Proposition 2.2.1.8.

Proposition 2.2.3.3. e1 : Top −→ Top1 given by

X 7→ X1

f 7→ e1(f)

is a reflector for Top1.

2.2.4 T2 Reflection

From Definition 2.2.1.1, we define the T2 reflection map as the continuous map r : X −→ X ′

from a topological space X to a T2 space X ′, such that for each continuous map e : X −→ X ′′

from X to a T2 space X ′′, there is a unique continuous map f : X ′ −→ X ′′ such that f ◦ r = e.

The space X ′ is called the T2 reflection of X and r the T2 reflection map. It is clear that T2

reflection maps are unique up to a homeomorphism.

Proposition 2.2.4.1. [vM] Let X be a topological space. Define ∼ on X by x ∼ y if and only

if f(x) = f(y) for each continuous map f from X to a Hausdorff space X ′. Let X/ ∼ be a

quotient space and r : X −→ X/ ∼ a quotient map. Then X/ ∼ is the T2 reflection of X and

r is the reflection map.

Proof: Observe that each continuous function f : X −→ X ′ to a Hausdorff space X ′ has a

property that, f(x) = f(y) whenever x ∼ y, for all x, y ∈ X. Following argument used in

the last part of the proof of Proposition 2.2.1.3, we get that, there is a unique continuous

function h : (X/ ∼) −→ X ′ satisfying h ◦ f = r. Now, let x, y ∈ X such that [x] 6= [y]. Then

f(x) 6= f(y) for some continuous function f : X −→ X ′, where X ′ is Hausdorff. Hausdorffness

of X ′ implies that there are disjoint Nf(x) and Nf(y). Therefore, h−1(Nf(x)) and h−1(Nf(y)) are

disjoint open subsets of X/ ∼ containing [x] and [y], respectively. Thus X/ ∼ is Hausdorff.

Hence X/ ∼ is the T2 reflection of X. �
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We denote the T2 reflection map of X by e2X and the T2 reflection by X2.

Proposition 2.2.4.2. e2 : Top −→ Haus given by

X 7→ X2

f 7→ e2(f)

is a reflector for Haus.

2.2.5 Tychonoff Reflection

The aim of this section is to construct the Tychonoff reflection of a topological space. Enroute

to our goal, we outline some useful results of zero-sets.

Definition 2.2.5.1. [St16] Let X be a topological space and let A ⊆ X. A is called a zero-set

if there is a continuous function f : X −→ [0, 1] such that A = f−1({0}).

Each zero-set is a closed set. Indeed, since {0} ⊆ [0, 1] is closed and f is continuous, we

have that, A = f−1({0}) is closed in X. As a result, zero-sets are preserved by continuous

pre-images.

Proposition 2.2.5.2. [St16] Let X be a topological space. Then X is completely regular if

and only if the zero-sets of X form a base for the closed sets of X.

Proof: [Wy] Let F be a closed subset of X. We must show that there is a collection C of zero-

sets of X such that
⋂
C = F . If F = X, then C = {F} and we are done. Let F be a proper

subset of X and let x ∈ X\F . Then there is a continuous function fx : X −→ [0, 1] such that

fx(x) = 1 and fx(F ) = {0}. Let Gx = {y ∈ X : fx(y) = 0}, and let C = {Gx : x /∈ F}.

Because for each x /∈ F , F is a zero-set of X by fx, it follows that F ∈ C. Therefore F ⊆
⋂
C.

Let y /∈ F . Then fy(y) = 1. Therefore y /∈
⋂
C, otherwise fy(y) = 0 which is not possible.

Thus C = {F} and C is a base for closed sets of X. Conversely, let x ∈ X and F be a closed

subset of X not containing x. By hypothesis, x /∈ f−1({0}) for some f ∈ C(X). Therefore,

f(x) 6= 0. Define g(y) =
f(y)

f(x)
, then g is continuous and g−1({0}) = f−1({0}), i.e., f and g

vanishes at the same points. Therefore g(F ) = {0} and g(y) = 1. Hence X is completely

regular. �
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We define the Tychonoff reflection of a topological space the same way as we have defined the

previous separated reflections except that in Definition 2.2.1.1, T0 is replaced with Tychonoff.

Our main reference for a construction of the Tychonoff reflection is [EL]. For any topological

space X, define an equivalence relation ∼ on X by x ∼ y if and only if f(x) = f(y) for any

f ∈ C(X). Denote the set of equivalence classes by XT , and let eTX : X −→ XT be the

surjective map assigning to each point of X its equivalence class. For each f ∈ C(X), define a

map eTX(f) : XT −→ [0, 1] by eTX(f)([x]) = f(x), for each x ∈ X. Equip XT with a topology

TT whose closed sets are of the form
⋂

[eTX(f)−1({0}) : f ∈ H], where H ⊆ C(X). We have

the following result.

Proposition 2.2.5.3. Let X be a topological space. Then XT is Tychonoff.

Proof: It suffies to show that the map eTX(f) : XT −→ [0, 1] is continuous. Let H ⊆ C(X)

and choose f ∈ H. eTX(f) is well-defined since [x] = [y] implies that f(x) = f(y) for each

f ∈ H and each x, y ∈ X. The proof for showing that TT is a topology relies on a careful

application of pre-images. eTX(f) is continuous: Let A be a closed subset of [0, 1]. Because

every compact Hausdorff space is completely regular, it follows that A =
⋂

[r−1({0}) : r ∈ K],

where K ⊆ C([0, 1]). Now, f−1(A) =
⋂

[(r ◦ f)−1({0}) : r ∈ K]. We have eTX(f−1(A)) =⋂
[eTX((r ◦ f)−1({0})) : r ◦ f ∈ K]. Observe that eTX(f−1(A)) = {[x] : x ∈ f−1(A)} =

eTX(f)−1(A). Similarly, eTX((r ◦ f)−1({0})) = eTX(r ◦ f)−1({0}). Thus eTX(f)−1(A) is closed

in XT . Hence eTX(f) is continuous. Now, we show that XT is Tychonoff. XT is completely

regular: Because each eTX(f)−1({0}) is a zero-set of XT , and each closed subset of XT is

an intersection of such zero-sets, it follows that XT is completely regular. XT is T1: Let

[x], [y] ∈ XT such that [x] 6= [y]. Then f(x) 6= f(y) for some f ∈ C(X). But [0, 1] is T1

so there are Nf(x), Nf(y) ⊆ [0, 1] such that f(x) /∈ Nf(y) and f(y) /∈ Nf(x). It follows that

eTX(f)−1(Nf(x)) ∈ U[x] and eTX(f)−1(Nf(y)) ∈ U[y] with [x] /∈ eTX(f)−1(Nf(y)) and [y] /∈

eTX(f)−1(Nf(x)). Thus XT is T1. Hence XT is Tychonoff. �

Proposition 2.2.5.4. Let X be a topological space. Then the map eTX : X −→ XT is

continuous.

Proof: Let A be a closed subset of XT , then A =
⋂

[eTX(f)−1({0}) : f ∈ K], where K ⊆ C(X).
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Therefore

(eTX)−1(A) = {x ∈ X : [x] ∈ A}

= {x ∈ X : [x] ∈ eTX(f)−1({0}), for each f ∈ K}

= {x ∈ X : f(x) = 0, for each f ∈ K} = f−1({0}).

Therefore (eTX)−1(A) is a zero-set of X. Clearly (eTX)−1(A) is closed in X. Thus eTX is

continuous. �

Proposition 2.2.5.5. [EL] Let X be a topological space. Then XT is the Tychonoff reflection

of X and eTX the reflection map.

Proof: Let g : X −→ X ′ be a continuous function and X ′ a Tychonoff space. Denote h :

XT −→ X ′ by [x] 7→ g(x) for each x ∈ X. h is well-defined: Let x, y ∈ X such that

h([x]) 6= h([y]). Then g(x) 6= g(y). Because X ′ is Tychonoff (particularly T1), {g(x)} and

{g(y)} are closed in X ′ and g(x) /∈ {g(y)}. It follows that there is f ′ ∈ C(X ′) such that

f ′(g(x)) = 1 and f ′({g(y)}) = {0}. Now, g(y) ∈ (f ′)−1({0}) and g(x) /∈ (f ′)−1({0}). We have

that y ∈ g−1((f ′)−1({0})) and x /∈ g−1((f ′)−1({0})). But (f ′ ◦ g) ∈ C(X) and (f ′ ◦ g)(x) 6=

(f ′ ◦ g)(y), so [x] 6= [y]. Thus h is well-defined. h is continuous: Let A be a closed subset

of X ′. It follows that A =
⋂

[k−1({0}) : k ∈ J ], where J ⊆ C(X ′). Therefore g−1(A) =⋂
[(k ◦ g)−1({0}) : k ◦ g ∈ J ]. We have eTX(g−1(A)) =

⋂
[eTX((k ◦ g)−1({0}) : k ◦ g ∈ J ].

But eTX((k ◦ g)−1({0}) = eTX(k ◦ g)−1(A) and eTX(g−1(A)) = {[x] : g(x) ∈ A} = h−1(A),

so h−1(A) is closed in XT . Thus h is continuous. Definition of h implies that h ◦ eTX = g.

For uniqueness of h, suppose that h′ is another continuous function from XT to X ′ satisfying

h′ ◦ eTX = g. Pick [x] ∈ XT , then h′([x]) = h′(eTX(x)) = g(x) = h([x]). Thus h′ = h. Hence

eTX is the reflection map and XT the Tychonoff reflection of X. �

Argument similar to that of Proposition 2.2.2.12 shows that X2 and XT coincide whenever X2

is Tychonoff.

Proposition 2.2.5.6. If X2 is Tychonoff, then X2 = XT .

Furthermore, the arguments used in Proposition 2.2.1.7 and Proposition 2.2.1.8 can easily

show that the following result holds.
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Proposition 2.2.5.7. eT : Top −→ Tych given by

X 7→ XT

f 7→ eT (f)

is a reflector for Tych.
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Chapter 3

Monad Induced by Ultrafilter Space

This chapter has two sections. In the first section, we introduce the concept of monads, in full

generality, and in the second section we introduce the ultrafilter space monad.

3.1 Monads

Monads were first introduced by Roger Godemont in 1958 who referred to them as ”standard

constructions”. They are often used to provide and explore a different view of universal

algebra. In general, any monad can be obtained as a monad associated to an adjunction,

although different adjunctions may yield the same monad [HST, AHS]. This section serves to

introduce the notions of monads and their algebras.

Definition 3.1.1. [AHS] Let A and B be categories and F : A −→ B and G : A −→ B be

functors. A natural transformation ω : F −→ G is a function that assigns to each A-object A

a B-morphism ωA : F(A) −→ G(A) in such a way that the following condition holds: for each

A-morphism f : A −→ A′, the square

F(A)

F(f)
��

ωA // G(A)

G(f)
��

F(A′) ωA′
// G(A′)

commutes.

Definition 3.1.2. [AHS] A monad on a category A is a triple (T, η, µ) consisting of a functor

T : A −→ A and natural transformations η : idA −→ T and µ : T ◦ T −→ T such that the
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following diagrams commute:

T (T (T (X)))

T (µX)

��

µT (X) // T (T (X))

µX
��

T (T (X)) µX
// T (X)

and

T (X)

idT (X) %%

ηT (X)// T (T (X))

µX
��

T (X)

idT (X)yy

T (ηX)oo

T (X)

,

for all objects X ∈ A.

We shall use T 2(X) and T 3(X) to denote T (T (X)) and T (T (T (X))), respectively.

We give some examples of monads.

For the following example, we recall that the power-set functor P is defined by

P : Set −→ Set

A 7→ P(A)

f 7→ P(f)

where P(A) is the set of all subsets of A and for each B ⊆ A, P(f)(B) is the image f(B) of

B under f .

Example 3.1. A. [AHS] In Set, the triple (P , η, µ) where P is the power-set functor and

η : idSet −→ P together with µ : P2 −→ P are given by ηX : X −→ P(X), x 7→ {x} and

µX : P2(X) −→ P(X), {Ai : i ∈ I} 7→
⋃
i∈I Ai, respectively, is a monad called the power-set

monad. In fact,

1. η is a natural transformation since ηX is well-defined for any X ∈ Set, and

(P(f) ◦ ηX)(x) = P(f)(ηX(x))

= P(f)({x}) = f({x}) = {f(x)}

= ηX(f(x))

for each x ∈ X.
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2. µX is a well-defined function for every X ∈ Set, and we have

P(f)(µX({Ai : i ∈ I})) = P(f)
(⋃
i∈I

Ai

)
= f(

(⋃
i∈I

Ai

)
) =

⋃
i∈I

f(Ai)

= µX({f(Ai) : i ∈ I})

= µX

(
P(f)({Ai : i ∈ I})

)
= µX

(
P
(
P(f)({Ai : i ∈ I})

))
= µX(P2(f)({Ai : i ∈ I})).

Thus µ is a natural transformation.

3. The diagrams

P3(X)

P(µX)
��

µP(X) // P2(X)

µX
��

P2(X) µX
// P(X)

and

P(X)

idP(X) $$

ηP(X)// P2(X)

µX
��

P(X)

idP(X)zz

P(ηX)oo

P(X)

commute. Indeed, for the diagram on the left, let {Ai : i ∈ I} ∈ P3(X), then

µX(P(µX)({Ai : i ∈ I})) = µX

(
{µX(Ai) : i ∈ I}

)
=
⋃
i∈I

µX(Ai).

But we also have µX(µP(X)({Ai : i ∈ I})) = µX

(⋃
i∈I Ai

)
=
⋃
i∈I µX(Ai). Therefore

µX ◦ µP(X) = µX ◦ P(µX). For the diagram on the right, we start by showing that the

diagram

P(X)

idP(X) $$

ηP(X)// P2(X)

µX
��

P(X)

commutes. Let A ∈ P(X), then µX(ηP(X)(A)) = µX({A}) =
⋃
A = A = idP(X)(A).

Finally, we show that the diagram

P2(X)

ηX
��

P(X)

idP(X)zz

P(ηX)oo

P(X)

,
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commutes. Let A ∈ P(A), then

µX(P(ηX)(A)) = µX(ηX(A)) = µX({A}) =
⋃

A = A = idP(X).

Example 3.1. B. [St] In Category Set, the triple (U , η, µ), where

(a) U : Set−→Set is given by:

X 7→ U(X)1

f 7→ U(f)

(b) η : idSet −→ U is described as ηX : X −→ U(X), x 7→ {A ⊆ X : x ∈ A}, and

(c) µ : U2 −→ U is given by µX : U2(X) −→ U(X), G 7→ {A ⊆ X : A∗ ∈ G}

is a monad called the ultrafilter monad. Indeed,

1. It follows from Proposition 1.3.24 that U is a functor.

2. From Proposition 1.3.25, we have that η is a natural transformation.

3. µ is a natural transformation since for each G ∈ U2(X), µX(G) = {A ⊆ X : A∗ ∈ G} is

an ultrafilter on X (by lemma 1.2.2.5), and we have that the diagram

U2(X)

U2(f)
��

µX // U(X)

U(f)
��

U2(X ′) µX′
// U(X ′)

commutes because,

U(f)(µX(G)) = {A ⊆ X ′ : f−1(A) ∈ µX(G)} = {A ⊆ X ′ : (f−1(A))∗ ∈ G}.

But,

(f−1(A))∗ = {p ∈ U(X) : f−1(A) ∈ p}

= {p ∈ U(X) : A ∈ U(f)(p)}

= {p ∈ U(X) : U(f)(p) ∈ A∗}

=
(
U(f)

)−1
(A∗),

1U(X) is the collection of all ultrafilters on a set X.
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so, U(f)(µX(G)) = {A ⊆ X ′ :
(
U(f)

)−1
(A∗) ∈ G}. On the other hand we have,

µX′(U2(f)(G)) = µX′(U((U(f)(G)))

= µX′({A ⊆ U(X ′) : U(f)−1(A) ∈ G})

= {A ⊆ X ′ : A∗ ∈ {A ⊆ U(X ′) : U(f)−1(A) ∈ G}}

= {A ⊆ X ′ : U(f)−1(A∗) ∈ G} = U(f)(µX(G)).

4. µX ◦ µU(X) = µX ◦ U(µX) since for each G ∈ U3(X), we have

µX(µU(X)(G)) = {A ⊆ X : A∗ ∈ µU(X)(G)}

= {A ⊆ X : (A∗)∗ ∈ G}

and

µX(U(µX)(G) = {A ⊆ X : A∗ ∈ U(µX(G))}

= {A ⊆ X : µ−1X (A∗) ∈ G} = {A ⊆ X : (A∗)∗ ∈ G}

= µX(µU(X)(G)).

Also, µX ◦ ηU(X) = idU(X) because for any p ∈ U(X),

µX(ηU(X)(p)) = µX({A ⊆ U(X) : p ∈ A})

= {A ⊆ X : A∗ ∈ {A ⊆ U(X) : p ∈ A}}

= {A ⊆ X : p ∈ A∗} = {A ⊆ X : A ∈ p}

= p = idU(X)(p)

We also have µX ◦ U(ηX) = idU(X). In fact,

µX(U(ηX)(p)) = {A ⊆ X : A∗ ∈ U((ηX)(p))}

= {A ⊆ X : η−1X (A∗) ∈ p} = {A ⊆ X : A ∈ p}

= p = idU(X)(p)

for each p ∈ U(X).

We close this section by introducing a notion of algebras for monads. We shall also find

algebras for each monad presented in the preceding examples.
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Definition 3.1.3. [St] Let (T, η, µ) be a monad on category A. An algebra for this monad is

an A object X, together with n A morphism v : T (X) −→ X such that the following diagrams

commute:

X

idX ""

ηX // T (X)

v

��
X

and

T 2(X)

µX
��

Tv // T (X)

v

��
T (X) v

// X

To find algebras for the power-set monad, we recall the following definitions.

Definition 3.1.4. [GL] A reflexive, antisymmetric and transitive binary relation ≤ is called

a partial order.

Definition 3.1.5. [GL] A set X together with a partial order ≤ is called a partially ordered

set.

Definition 3.1.6. [GL] A partially ordered set (X,≤) is complete if every subset of A has a

least upper bound.

Example 3.1. C. [AHS] Algebras for the power-set monad are essentially complete ordered

sets X with a given operation
∨

which takes a subset of X to its least upper bound.

Example 3.2. D. [St] The pair (X, rX) where X is a compact and Hausdorff space, is an

algebra for the ultrafilter monad on Set. Indeed, the function rX : U(X) −→ X exists.

Hausdorffness of X implies that, for each p ∈ U(X), rX(p) = x for some unique x ∈ X such

that Ap = {x}. The following diagrams commute:

X

idX ""

ηX // U(X)

rX
��
X

and

U2(X)

µX
��

U(rX) // U(X)

rX

��
U(X) rX

// X

Commutativity of the diagram on left follows from the construction of rX . For the diagram

on the right, let G ∈ U2(X). Then U(rX)(G) ∈ U(X). Because X is compact and Hausdorff,

we have that U(rX)(G) converges to a unique limit, say x. Now, Nx ∈ U(rX)(G) for each

Nx. Therefore, r−1X (Nx) ∈ G. It is true that r−1X (Nx) ⊆ (Nx)
∗. Because G is an ultrafilter on

U(X), (Nx)
∗ ∈ G. Definition of µX implies that Nx ∈ µX(G). Therefore, µX(G) converges to

x. Clearly rX(U(rX)(G)) = µX(G). Hence the diagram on the right commutes.
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3.2 Ultrafilter Space Monad

We dedicate this subsection in introducing a monad induced by the ultrafilter space. This

monad is precisely the ultrafilter monad under a new setting (which is Top).

Proposition 3.2.1. [BGJM] The ultrafilter space forms a monad on Top.

Proof: Because for each continuous function f between two topological spaces X and X ′, U(f)

is continuous and both U(X) and U(X ′) are topological spaces, we have that U : Top −→ Top

is a functor. Furthermore, η : idTop −→ U is a natural transformation since each ηX is

continuous. We show that µX is continuous: Observe that

µ−1X (A∗) = {G ∈ U2(X) : µX(G) ∈ A∗}

= {G ∈ U2(X) : A ∈ µX(G)}

= {G ∈ U2(X) : A∗ ∈ G}

= (A∗)∗

for any A ⊆ X. So, if A∗ ∈ U(T ), then µ−1X (A∗) ∈ U2(T ). Thus µX is continuous.

Hence the triple (U , η, µ) is a monad on Top. �

We shall call this monad the ultrafilter space monad.

Algebras for the ultrafilter space monad were proved in [BGJM] where they were referred to

as bitopological quasi stably compact spaces with bicontinuous maps. Our aim is to describe

the algebras for the ultrafilter space monad in terms of Salbany stably compact spaces.

Definition 3.2.2. [BGJM] A topological space X is said to be weakly sober if, for each closed

and irreducible set A ⊆ X, there is x ∈ X, not necessarily unique, such that A = {x}.

Definition 3.2.3. [BGJM] A topological space X is said to be stable if compact saturated

subsets of X are closed under finite intersections.

Definition 3.2.4. [BGJM] A topological space X is said to be quasi stably compact if it is

compact, locally compact, stable and weakly sober.

Lemma 3.2.5. For each topological space X, K ⊆ X is saturated if and only if K = {x ∈

X : {x} ∩K 6= ∅}.
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Proof: If y ∈ K but {y} ∩ K = ∅, then K ⊆ X\{y}. Since K is saturated, we have that

y ∈ X\{y}, which is impossible. Thus {y} ∩ K 6= ∅. If x ∈ X and {x} ∩ K 6= ∅, then

there is y ∈ X such that y ∈ {x} ∩ K. Therefore x ∈ Ny for each Ny ∈ Uy and y ∈ G for

each open set G containing K. We get that x ∈
⋂
{G ⊆ X : G ∈ T,K ⊆ G}. But K is

saturated, so x ∈ K. Hence K = {x ∈ X : {x} ∩ K 6= ∅}. For the converse, observe that

x ∈
⋂
{G ⊆ X : G ∈ T,K ⊆ G} implies that {x} ∩K 6= ∅, for all x ∈ X. Thus x ∈ K. �

Lemma 3.2.6. Every supersober space X is stable.

Proof: Let A,B ∈ (CS)X . A ∩ B is saturated: It suffices to show that {x} ∩ (A ∩ B) 6= ∅

implies x ∈ A ∩B, for each x ∈ X. Observe that {x} ∩ (A ∩B) 6= ∅ implies that {x} ∩A 6= ∅

and {x}∩B 6= ∅. But both A and B are saturated, it follows that x ∈ (A∩B). Thus A∩B is

saturated. A ∩ B is compact: [GHK+03] Choose p ∈ U(X) such that (A ∩ B) ∈ p. It follows

that A ∈ p and B ∈ p. Because both A and B are compact, there exists x ∈ A and y ∈ B

such that x ∈ Ap and y ∈ Ap, respectively. Since X is supersober, Ap = {z} for some z ∈ X.

It follows that {z} meets both A and B, i.e., {z} ∩ A 6= ∅ and {z} ∩ B 6= ∅. But both A

and B are saturated, so z ∈ A and z ∈ B. Thus z ∈ A ∩ B. We have just shown that every

ultrafilter containing A∩B converges to some point in A∩B. Thus A∩B is compact. Hence

X is stable. �

Proposition 3.2.7. [BGJM] A topological space X is Salbany stably compact if and only if it

is quasi stably compact.

Proof: The proof follows from the combination of Lemma 3.2.6 and Proposition 2.2.2.5. �

Definition 3.2.8. [BGJM] A topological space X is said to be stably compact if it is T0 and

quasi stably compact.

Remark: It is clear that T0 Salbany stably compact spaces are stably compact.

Definition 3.2.9. [BGJM] A continuous function f : (X,T ) −→ (X ′, T ′), between stably

compact spaces (X,T ) and (X ′, T ′), is a proper map if the inverse image, under f , of a

compact saturated subset of X ′ is compact in X.

Definition 3.2.10. [GHK+03] A bitopological space is a set X equipped with two topologies,

written (X,T, τ).
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Definition 3.2.11. [GHK+03] A function f : (X,T, τ) −→ (X ′, T ′, τ ′) is a bicontinuous

function if both f : (X,T ) −→ (X ′, T ′) and f : (X, τ) −→ (X ′, τ ′) are continuous.

Definition 3.2.12. [BGJM] Let (X,T, τ) be a bitopological space. We call (X,T, τ) a bitopo-

logical quasi stably compact space if

1. (X,T ) is quasi stably compact;

2. (X, τ) is a compact Hausdorff space;

3. T ⊆ τ ;

4. Compact saturated sets in (X,T ) are closed in (X, τ).

Proposition 3.2.13. [BGJM] If a function f : (X,T, τ) −→ (X ′, T ′, τ ′) is bicontinuous

between bitopological quasi stably compact spaces (X,T, τ) and (X ′, T ′, τ ′), then f : (X,T ) −→

(X ′, T ′) is proper.

Proof: [BGJM] Let K be a compact and saturated subset of (X ′, T ′). Then K is closed in

(X ′, τ ′), and by bicontinuity of f , f−1(K) is closed in (X, τ). Therefore, f−1(K) is compact

in (X, τ), hence compact in (X,T ). �

It was shown in [BGJM] that the algebras for the ultrafilter space monad are the bitopological

quasi stably compact spaces with bicontinuous maps.

Theorem 3.2.14. [BGJM] The algebras for the ultrafilter space monad are the bitopological

quasi stably compact spaces with bicontinuous maps.

Now, we can describe the algebras for the ultrafilter space monad in terms of Salbany stably

compact spaces.

Corollary 3.2.15. Algebras for the ultrafilter space monad are essentially Salbany stably

compact spaces (X,T ), with proper maps, such that there is a compact Hausdorff topology τ

on X satisfying the following conditions:

1. T ⊆ τ and

2. compact saturated subsets of (X,T ) are closed in (X, τ).
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Definition 3.2.16. [BGJM] A subset U of X is an upset provided x ∈ U and x ≤ y imply

y ∈ U .

Definition 3.2.17. [BGJM] Let (X,T ) be a topological space. Then the specialization order

≤ of T is given by x ≤ y iff x ∈ {y}.

Definition 3.2.18. [BGJM] Let (X, τ) be a topological space. Denote, by τu, the topology of

upsets of X with the specialization preorder (reflexive and transitive relation on X).

Proposition 3.2.19. Let X ∈ Top. Then, for each X ′ ∈ CHaus, there is a unique contin-

uous function F : U(X) −→ X ′ such that the following diagram commutes:

X

f
��

ηX // U(X)

F||
X ′

.

Proof: Let (X ′, τ ′) ∈ CHaus and let T ′ = (τ ′)u. By Lemma 5.2 and Remark 5.6 in [BGJM],

(X ′, T ′, τ ′) is a bitopological quasi stably compact space. Therefore (X ′, T ′, τ ′) is an algebra

for the ultrafilter space monad. This implies that, for each continuous function f : X −→ X ′,

where X ∈ Top, there is a unique continuous function F : U(X) −→ X ′ such that F ◦ηX = f .

�
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Chapter 4

Salbany’s Separated Compactifications

Consider a reflective subcategory C of Top. Recall that the triple (U , η, µ) is a monad on Top

and we have the following commutative diagram

X

f

��

ηX // U(X)

U(f)
��

X ′ ηX′
// U(X ′)

for X,X ′ ∈ Top and f ∈ homTop(X,X ′). If we have R : Top −→ Top as a reflector,

which may be occasionally written as R : Top −→ C, and rX : idTop −→ R as a natural

transformation, then there exists a unique continuous map f ′ : RX −→ X ′, where X ′ ∈ C,

such that the following diagram commutes

X

f !!

rX // RX

f ′

��
X ′

Because R is a functor, for any A,B ∈ Top and g ∈ homTop(A,B), we have the following

commutative diagram

A

g
��

rX // RA

R(g)
��

B rB
// RB

Therefore, the diagram
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X

f

��

ηX // U(X)
rU(X) //

U(f)
��

RU(X)

RU(f)
��

X ′ ηX′
// U(X ′) rU(X′)

// RU(X ′)

commutes. Suppose that there exists a retraction α : U(X ′) −→ X ′ (i.e., α ◦ ηX′ = 1X′). We

have that α ◦ U(f) ◦ ηX = α ◦ ηX′ ◦ f = f . If such retraction map α exists, then there is a

unique continuous map h′ : RU(X) −→ X ′ such that the following diagram commutes

U(X)

h %%

rX // RU(X)

h′

��
X ′

where h = α ◦ U(f). Consequently, we have the following commutative diagram

X

f
��

ηX // U(X)
h

||

rU(X)// RU(X)

h′

uu
X ′

We shall refer to this diagram as diagram (1).

We devote this chapter in considering some examples of reflectors giving rise to diagrams similar

to diagram (1) and show that in each example, RU(X) becomes a separated compactification.

According to the definition of compactification and the combination of Propositions 1.3.6,

1.3.14 and 1.3.15, the ultrafilter space of a topological space X is a compactification and was

referred to as Salbany compactification in [BMM]. The separated compactifications in this

chapter are named after Salbany simply because they emerged by taking separated reflections

of Salbany compactification.

4.1 Salbany’s T0 Compactification

In this section, we aim to show that making U(X) a T0 space results in a reflector giving rise

to a diagram similar to diagram (1) and we also get a T0 compactification of a T0 space X.

This compactification has appeared in a number of papers such as [BH] and [BMM], and we

shall refer to it as Salbany’s T0 compactification.
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Consider the reflector e0 : Top −→ Top0. Let X ′ be a stably compact space. Then X ′ ∈ Top0

and the retraction rX′ : U(X ′) −→ X ′ exists. It follows that there is a continuous map

h′ : e0(U(X)) −→ X ′ such that the following diagram commutes:

X

f
��

ηX // U(X)
F

||

e0U(X)// e0(U(X))

h′

tt
X ′

where F = rX′ ◦ U(f), as described in Proposition 1.4.12.

Consider the functor U : Top −→ Top. Denote e0 ◦ U and e0U(X) ◦ ηX by β0 and η0X ,

respectively. Our next task is to show that (β0(X), η0X) is a T0 compactification of a T0 space

X.

Lemma 4.1.1. The continuous function η0X is injective if and only if X is T0.

Proof: LetX be T0 and choose x, y ∈ X such that [ηX(x)] = [ηX(y)]. Then {ηX(x)} = {ηX(y)}.

It follows from Proposition 1.3.9 that {x} = {y}. But X is T0, so x = y. Thus η0X is injective.

Conversely, let x, y ∈ X such that x 6= y. Since η0X is injective, we have that η0X(x) 6= η0X(y).

Therefore, there is an open set A ⊆ β0(X) such that η0X(x) ∈ A and η0X(y) /∈ A. Clearly

x ∈ η−10X(A) and y /∈ η−10X(A), where η−10X(A) ∈ T . Thus X is T0. �

Corollary 4.1.2. For any T0 space X, η0X is an embedding.

Proof: Let (η0X)′ : X −→ η0X(X) be a map induced by η0X . It is clear that (η0X)′ is continuous

and injective. We must show that it is open. Let A ∈ T . We show that (η0X)′(A) =

η0X(X) ∩ e0U(X)(A
∗): Let [p] ∈ (η0X)′(A), then there is x ∈ A such that [ηX(x)] = [p].

Therefore ηX(x) ∈ A, implying that [ηX(x)] ∈ η0X(X) ∩ e0U(X)(A
∗). Conversely, if [p] ∈

η0X(X) ∩ e0U(X)(A
∗), then there is x ∈ X such that [ηX(x)] = [p] ∈ e0U(X)(A

∗). Therefore

ηX(x) ∈ A∗, implying that x ∈ A. Thus p = [ηX(x)] ∈ (η0X)′(A). Because e0U(X) is open, we

have that e0U(X)(A
∗) is open in β0(X). Therefore (η0X)′(A) is open in (η0X)(X). Thus (η0X)′

is open. Hence η0X is an embedding. �

Finally, we show that (β0(X), η0X) is indeed a T0 compactification of a T0 space X.

Proposition 4.1.3. [Sa] Let X be a T0 space. Then β0(X) is a T0 compactification of X.

Proof: Compactness of β0(X) follows from the facts that η0X is surjective and U(X) is compact.
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Because ηX is an embedding and η0X is onto, we have that η0X(X) is a dense subspace of β0(X).

�

Salbany’s T0 compactification is a stable compactification.

Definition 4.1.4. [BH] Let X be a T0 space. A pair (X ′, c), where X ′ is a stably compact

space and c : X −→ X ′ is an embedding, is a stable compactification of X if c(X)
P

= X ′.

Proposition 4.1.5. [Sa] For any T0 space X, (β0(X), η0X) is a stable compactification of X.

Proof: Since e0U(X) is surjective and ηX(X)
P

= U(X), we have that η0X(X)
P

= β0(X).

Also, by Proposition 2.2.1.6, β0(X) is a stably compact space. Thus (β0(X), η0X) is a stable

compactification of X. �

Proposition 4.1.6. Let X be a T0 topological space. Then X is Salbany stably compact if and

only if there is a continuous map v : β0(X) −→ X satisfying v ◦ η0X = 1X .

Proof: Suppose that X is a Salbany stably compact space. Observe that, for each p ∈ U(X),

a unique point x ∈ X exists such that Ap = {x}. Denote this point by rX(p). Define a map

v : β0(X) −→ X by [p] 7→ rX(p). Such map exists. We show that v is continuous. Let A ∈ T .

Then r−1X (A) ∈ U(T ). We have e0U(X)(r
−1
X (A)) = v−1(A). Indeed, let [p] ∈ e0U(X)(r

−1
X (A)).

Then p ∈ r−1X (A) implying that rX(p) = v([p]) ∈ A. Thus [p] ∈ v−1(A). Conversely, [p] ∈

v−1(A) implies that p ∈ r−1X (A). Thus [p] ∈ e0U(X)(r
−1
X (A)). Hence, v is continuous. Observe

that for each x ∈ X,

v(η0X(x)) = v([ηX(x)])

= rX(ηX(x)) = x

= idX(x).

Thus v is the required map. Conversely, let v : β0(X) −→ X be a continuous map such that

v(η0X(x)) = x. It follows from Proposition 1.4.9 that X is Salbany stably compact. �

Remark: From the preceding result, we deduce that every Salbany stably compact space X

is a retract of β0(X).

When we consider the reflector eS : Top −→ TopSob and choose a sober and Salbany stably

compact space X ′, we get that X ′ ∈ TopSob and a retraction rX′ : U(X ′) −→ X ′ exists. Thus
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the following diagram commutes and is similar to diagram (1):

X

f
��

ηX // U(X)
F

||

eSU(X)// eS(U(X))

h′

tt
X ′

Denote eS ◦ U by βS. Recall that a T0 supersober space is sober, so β0(X) is sober and we

have the following result.

Proposition 4.1.7. For each space X, β0(X) = βS(X).

Proof: This follows from Proposition 2.2.2.12. �

As a result of the preceding proposition, we deduce that βS(X) is a sober compactification as

well as a stable compactification of a T0 space X.

Corollary 4.1.8. βS(X) is a sober compactification of a T0 space X.

Corollary 4.1.9. βS(X) is a stable compactification of a T0 space X.

4.2 Salbany’s T2 Compactification

In this section, we shall show that taking the Hausdorff reflection of U(X) results in a diagram

similar to diagram (1) and we get the Stone-Čech compactification of a Tychonoff space X.

Recall that e2 : Top −→ Haus is a reflector. If X ′ is compact Hausdorff, then X ′ ∈ Haus

and the retraction rX′ : U(X ′) −→ X ′ exists. So, we get the following commutative diagram.

X

f
��

ηX // U(X)
F

||

e2U(X)// e2(U(X))

h′

tt
X ′

Denote the functor e2 ◦ U : Top −→ Haus and e2U(X) ◦ ηX by β2 and η2X , respectively.

Corollary 4.2.1. The continuous map h′ is unique.

Proof: Observe that η2X(X) is dense in β2(X). Using the fact that continuous functions

agreeing on a dense subspace of a Hausdorff space are necessarily equal, it follows that h′ is

unique. �
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Remark: Uniqueness of h′ can also be derived from the fact that X ′ is an algebra of the

ultrafilter space monad (by Proposition 3.2.19). This will make F a unique continuous map,

thus making h′ unique.

From the preceding proposition, we get that if X is a Tychonoff space, then β2(X) is the

compact Hausdorff reflection of X. Therefore the following result holds.

Proposition 4.2.2. [Sa] Let X be a Tychonoff space. Then β2(X) is the Stone-Čech com-

pactification of X.

Proof: This follows since a reflector to CHaus is essentially unique. �

If we consider the reflector eT : Top −→ Tych and choose a compact Tychonoff space X ′, we

get that X ′ ∈ Tych and a retraction rX′ : U(X ′) −→ X ′ exists. Thus the following diagram

commutes and is similar to diagram (1):

X

f
��

ηX // U(X)
F

||

eTU(X)// eT (U(X))

h′

tt
X ′

Denote eT ◦ U by βT . Since compact Hausdorff spaces are Tychonoff, it follows that β2(X) is

compact and Tychonoff and we have the following result.

Proposition 4.2.3. For each space X, β2(X) = βT (X).

Proof: This follows from Proposition 2.2.5.6. �

From the preceding result, we get that βT (X) is a Tychonoff compactification of a Tychonoff

space X, which in turns coincides with the Stone-Čech compactification β2(X).

Corollary 4.2.4. βT (X) is the Stone-Čech compactification of a Tychonoff space X.

4.3 Salbany’s T1 Compactification

In this section we consider the T1 reflection of U(X).

Consider the reflector e1 : Top −→ Top1. Let X ′ be a T1 Salbany stably compact space. It

follows that X ′ ∈ Top1 and the retraction rX′ : U(X ′) −→ X ′ exists. Thus, the following

diagram commutes:
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X

f
��

ηX // U(X)
F

||

e1U(X)// e1(U(X))

h′

tt
X ′

Denote e1 ◦ U and e1U(X) ◦ ηX by β1 and η1X , respectively. Observe that β1(X) is compact.

Unlike in the case of Salbany’s T2 compactification, classification of a space X such that η1X is

an embedding remains an open problem. This comes after Salbany, in [Sa], gave an example

of a T1 topological space X such that η1X is not an embedding.

Consider the following examples:

Example 4.3. A. [Sa] Consider w = {1, 2, ..} with topology T with finite subsets as basic

closed sets. Then β1(w) is a singleton set with its unique topology. Observe that (w, T ) is T1

but η1w is not an embedding.

Example 4.3. B. [Sa] Let (X,T ) be a locally compact Hausdorff space. Consider the

Alexandroff one-point compactification (X+, T+) of (X,T ). Then β1(X
+) = X+.

Example 4.3. C. [Sa] Endow the set X = [0, 1] with Tusu. Then β1(X) = X.

Despite the difficulty of characterizing spaces such that η1X is an embedding, β1(X) has the

following properties in common with the Wallman compactification: β1(X) is compact and

T1, η1X(X) is a dense subspace of β1(X) and the preceding diagram remains commutative for

X ∈ Top1 and X ′ ∈ Comp1.

In each of the examples given above, β1(X) is Hausdorff. As noted in [Sa], it still remains

unclear whether or not β1(X) is always Hausdorff. However, β1(X) has a relationship with

compact Hausdorff spaces.

Definition 4.3.1. [Sa] A topological space X ′ is said to be β1−injective if, whenever a con-

tinuous function f : X −→ X ′, where X is a topological space, is given, there is a continuous

function F : β1(X) −→ X ′ such that F ◦ η1X = f .

Lemma 4.3.2. If X is a retract of β1(X), then X is a compact Hausdorff space.

Proof: [Sa] Let F : β1(X) −→ X be the retraction map. Observe that a continuous map

F ◦ e1U(X) : U(X) −→ X exists and satisfies (F ◦ e1U(X)) ◦ ηX = 1X . Therefore, X is a retract

of U(X). It follows that X is T1 Salbany stably compact. Now, for each p ∈ U(X), there is
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x ∈ X such that Ap = {x} = {x}. Hence X is a compact Hausdorff space. �

Proposition 4.3.3. [Sa] A topological space X is β1−injective if and only if X is a compact

Hausdorff space.

Proof: [Sa] Suppose that X is β1−injective, then 1X : X −→ X determines F : β1(X) −→ X

such that F ◦ η1X = 1X . Therefore X is a retract of β1(X). It follows that X is compact and

Hausdorff. Conversely, if X is a compact Hausdorff space, then it follows from Proposition

3.2.19 that, for each f ∈ homTop(X ′, X), there is a unique continuous function F : U(X ′) −→

X such that the following diagram commutes:

X ′

f
��

ηX′ // U(X ′)

F{{
X

By uniqueness of F , we get that the continuous function h′ : β1(X
′) −→ X satisfying h′ ◦

e1U(X′) = F is a unique continuous function satisfying h′ ◦ η1X′ = f . Thus X is β1−injective.

�

Remark: The proof for the converse of the preceding proposition uses categorical notions and

differs from what is given in [Sa].
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Conclusion

The work done in this thesis can be summarized as follows:

1. A construction of the ultrafilter space of a topological space X was presented and some

properties of the ultrafilter space, including compactness and separability, were investi-

gated.

2. Compactifications and separated reflections were introduced with some examples.

3. The notion of monads and their algebras was presented, and the ultrafilter space monad

was introduced.

4. Different separated compactifications were instigated and were compared to some well-

known compactifications. These separated compactifications were developed through

rendering the ultrafilter space suitably separated.
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