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ABSTRACT 

De novo assembly of the rooibos genome 

 

A.A. Stander 

 

MSc Thesis Department of Biotechnology, University of the Western Cape  

 

 

Rooibos (Aspalathus linearis) is endemic to the Cederberg region of South Africa, and one of 

the few indigenous medicinal plants commercially cultivated in the country. International 

interest in rooibos is growing, and currently most of the rooibos harvest is exported overseas 

to more than 30 countries. Various problems hamper the growth of the rooibos industry, 

including insect pests, diseases, drought and a decreasing lifespan of the plants. The availability 

of whole-genome data for rooibos can contribute to the selection of genetically superior plants, 

facilitating not only the identification of important genes and metabolic pathways in rooibos, 

but also the establishment of breeding programs. In previous studies, the rooibos genome size 

had been estimated using flow cytometry, and the genome had been sequenced using Illumina 

sequencing technologies. In total, 331 billion reads were generated from one paired-end, small 

insert library (300 bp) and two mate pair libraries (insert sizes 3 kb and 8 kb). This thesis 

focused on the local establishment of biocomputational pipeline for plant genome analysis, 

including estimation of genome characteristics and plant genome assembly. Genome 

characteristics were investigated using five methods: GenomeScope (v1 and v2), FindGSE, 

BBNorm, KAT, and a standard formula. The results indicated a rooibos genome size of 1,03 ± 

0,05 Gb, a high heterozygosity rate (2,09 ± 0,33) and a high repeat content (56,04 ± 8,51%). 

The computationally predicted genome size was comparable to the flow cytometry estimate of 

1.24 ± 0.01 Gb, a result discussed and published in Mgwatyu & Stander et al. (2020). For 

genome assembly of the Illumina sequencing data, the following programs were evaluated in-

depth: 1) FastQC, MultiQC and KAT for data quality assessment; 2) Trimmomatic, NextClip, 

FLASH for data quality processing; 3) ABySS 2.0, Platanus, SOAPdenovo2 for data assembly; 

and 4) KAT and QUAST-LG for evaluation of assembly quality. For the rooibos sequencing 

data, the assembly program Platanus yielded the best assembly. The N50 and N75 statistics 

amounted to 10 kb and 5.5 kb, respectively, and nine scaffolds were larger than 100 kbp. 

Moreover, BUSCO analyses indicated that 84% of conserved plant genes were present in the 

assembly (70% covered to completeness). Future steps to improve the rooibos genome 

assembly are discussed. This study, therefore, contributes to the establishment of plant genome 

research in South Africa. 
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Chapter 1: Literature review 

1.1. Background 

Rooibos (Aspalathus linearis) is an important medicinal plant endemic to the Cederberg region 

of South Africa. Scientific research has proven beneficial effects of rooibos in the treatment of 

diverse ailments and diseases, including stomach pains, inflammation, diabetes, heart disease, 

HIV, and cancer (Millar et al., 2020). It is one of the few medicinal plants commercially 

cultivated in the country. Currently, 350 to 550 rooibos farms and eight large processing plants 

provide work for more than 5,000 people. These two industries represent the biggest employers 

in the Cederberg mountain region (Department of Agriculture and Forestry, 2015). Rooibos is 

best known as a herbal tea and is naturally caffeine-free and antioxidant-rich. It is widely used 

in the food, beverage, pharmaceutical and cosmetics industries. International interest in rooibos 

is growing, and currently, most of the rooibos harvest is exported overseas to more than 30 

countries (“Industry Statistics | South African Rooibos Council,” n.d.). Various problems 

hamper the growth of the rooibos industry, such as insect pests, diseases, a decreasing lifespan 

and drought stress. No selective breeding program has been applied in the rooibos industry, 

although a genetic improvement program for rooibos has been initiated (Bester et al., 2016). 

The availability of rooibos genome data could provide valuable information on genes and 

biosynthetic pathways associated with desirable phenotypic traits, which in turn could serve as 

biomarkers for targeted plant selection and rooibos breeding. In previous studies of the research 

team, the genome size of rooibos was predicted to be 1,2 Gb (estimated using flow cytometry; 

Mgwatyu et al., 2020). Based on this estimate, the genome had been sequenced using Illumina 

sequencing technologies to an approximate 259x genome coverage. 

The aims of the project were to establish all essential biocomputational methods for the 

assembly of plant genomes at the University of the Western Cape and to generate a first 

assembly of the rooibos genome. To achieve this aim, the following objectives were set: 1) 

Compare different programs to evaluate the quality of short-read Illumina sequencing data. 2) 

compare different programs with various parameter settings for quality trimming and error 

correction of short-read Illumina sequencing data; 3) determine genome characteristics and 

verify rooibos genome size using k-mer analysis of Illumina sequencing data (essential to 

assess completeness of rooibos genome assembly); 4) identify assemblers suitable for 

analysing the rooibos genome Illumina sequencing data; and 5) evaluate assembly performance 
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of three programs (ABySS 2.0, SOAPdenovo2, Platanus) using the short-read Illumina 

sequencing data. 

1.2. Plant genome sequencing 

The sequencing of plant genomes offers a wide range of applications, providing invaluable data 

resources for various research areas. Assembled plant genomes can be used to characterize 

genes involved in metabolic pathways, which produce valuable products such as secondary 

metabolites (Wang et al., 2019). These secondary metabolites, most often associated with plant 

adaptation, can be used to create pharmaceuticals, dyes, food additives, insecticides and other 

industrially relevant compounds. Knowing the biosynthetic pathway of specific metabolites 

allows us to recreate these metabolites synthetically (Hussain et al., 2012; Wang et al., 2019). 

It also allows us to genetically modify biosynthetic pathways in the plant to produce novel 

compounds. A famous example is the golden rice that produces vitamin A (Ye et al., 2000).  

Genome sequence information is also useful to study crop traits for targeted plant breeding. 

Genomes provide information on molecular markers, which can be used to map agronomically 

important traits and to identify candidate genes associated with these traits. This permits 

marker-assisted plant breeding and facilitates the management of genetic resources (M. E. 

Bolger et al., 2014). Molecular markers are also used in phylogenetic and population-level 

studies (Li and Harkess, 2018) to investigate genomic variations such as changes in copy 

numbers, insertions/deletions, single nucleotide polymorphisms (SNPs) and repeats (Ekblom 

and Wolf, 2014). In comparative and evolutionary genomics, haplotype information and 

estimates of linkage disequilibrium on a genome-wide scale can reveal population histories and 

timing of admixture events (Ekblom and Wolf, 2014). In conservation biology, genetic markers 

provide a useful resource to assess biodiversity, demography, disease resistance and outbreaks, 

and taxonomy (“Conservation Genomics,” n.d.; Ekblom and Wolf, 2014). 

1.3. Genome sequencing technologies 

Sequencing technologies have changed over time to the degree that we often speak of first-, 

second-, and now third-generation sequencing technologies. A summary is provided below. 

First-generation sequencing methods were developed in the 1970s. The Maxam-Gilbert 

sequencing method (discontinued; Figure 1) involved chemical modification of the DNA 

(radiolabeling of the 5’ end) and subsequent molecule cleavage into fragments of different 
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lengths (Kchouk et al., 2017). Fragment cleavage was performed in four tubes, each with its 

specific enzyme that cut the DNA at a particular base (tube 1: A or G, tube 2: G, tube 3: C, 

tube 4: T or C). The cleaved fragments from each tube were subsequently run side by side on 

a polyacrylamide electrophoresis gel, the gel was exposed to an X-ray film to visualize the 

radiolabeled fragments, and the sequence was determined base by base based on the staggered 

fragments. The Sanger sequencing method (Figure 2) was much preferred over the Maxam-

Gilbert method as it did not involve radioactive or toxic chemicals. It involves de novo 

synthesis of a second DNA strand and random termination of reactions using labelled 

dideoxynucleotide triphosphates (ddNTPs, which lack a 3’-OH group required to form another 

phosphodiester bond). Originally, the reactions were also performed in four tubes, each 

containing a primer, dNTPs, DNA polymerase, and one of the four ddNTPs at very low 

concentrations. Random incorporation of the ddNTP would terminate the reaction, creating a 

pool of fragments that vary in length. As before, the sequence of the fragments were determined 

using polyacrylamide gel electrophoresis and autoradiography. In modern Sanger sequencing, 

the ddNTPs are labelled with a fluorescent dye, and the reaction is completed in a single tube. 

The polyacrylamide gel electrophoresis is now replaced by capillary electrophoresis, where a 

Charged Coupled Device (CCD) reads the fluorescent signals. The Sanger sequencing method 

was used to sequence the first complete genome of an organism (bacteriophage phi 

X174;(Sanger et al., 1977)), and to generate the first draft of the human genome (International 

Human Genome Sequencing Consortium, 2001). 
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Figure 1: Maxam-Gilbert sequencing method (Wikimedia Commons, 2013). 

 

Figure 2: Sanger sequencing method (Kchouk et al., 2017). 

 

The term Next Generation Sequencing (NGS) refers to massively parallel DNA sequencing 

technologies, which permit high-throughput analyses of samples at drastically reduced costs 

and shorter processing times. Second-generation sequencing generally refers to NGS methods 

that produce short length reads (50 bp–600 bp) and typically involve the preparation of PCR-

amplified sequencing libraries before the actual sequencing of the DNA (Ambardar et al., 

2016). Third-generation sequencing technologies include methods that permit real-time single-

molecule sequencing (SMS) and produce very long reads (1 kbp–100 kbp), 
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The first commercially available NGS technology, 454 sequencing, was launched in 2005. The 

method was initially licensed by 454 Life Sciences and later purchased by Roche. It 

successfully employed pyrosequencing – a sequencing-by-synthesis approach that permits 

determination of each specific nucleotide as it is incorporated into the complementary DNA 

strand during de novo synthesis of a dsDNA molecule. Release of the pyrophosphate would 

trigger a light signal that was captured for data analysis. Thousands of amplification reactions 

were performed simultaneously using emulsion PCR (ePCR); each reaction in a separate PCR 

droplet, surrounded by a hydrophobic organic phase (Kchouk et al., 2017). A high-quality 

sequencing run would produce up to 1 Million reads of approximately 700 bp (0.7 Gb) within 

just 24 hours (Liu et al., 2012). A major disadvantage of this technology was its inability to 

correctly interpret the length of homopolymer sequence runs that were longer than 8 bp. High 

equipment costs rendered the technology noncompetitive, and the 454 sequencing platform 

was discontinued in 2013 (Slatko et al., 2018). 

The Ion Torrent is another second-generation sequencing platform, which was developed by 

Jonathan Rothberg (Slatko et al., 2018). Just like the 454 sequencing technologies, it makes 

use of pyrosequencing and ePCR. However, the method for nucleotide sequence determination 

is very different: using complementary metal-oxide-semiconductor technology (also employed 

in the manufacturing of microprocessor chips), the Ion Torrent measures differences in pH 

caused by the release of protons during DNA polymerization (“Ion Torrent Next-Generation 

Sequencing Technology,” n.d.; Slatko et al., 2018). The Ion Torrent sequencer can produce 

reads of 200 bp to 600 bp in length, and has a maximum throughput of 10 GB within 2 to 8 

hours (Kchouk et al., 2017). Similar to the 454 DNA sequencers, this technology has problems 

with the interpretation of homopolymer sequence lengths (Slatko et al., 2018). 

The currently most widely used method for DNA sequencing is Illumina sequencing, which is 

based on the Solexa method introduced in 2006. Illumina Inc. has become the market leader, 

the company holding 75% of the genetic sequencing market (Truong, 2020). The Solexa 

method involves sequencing by synthesis (Kchouk et al., 2017), which uses bridge 

amplification to generate clusters of DNA molecules on a flow cell (Figure 3A). Fluorescently 

labelled nucleotides are incorporated one-by-one, and the signal is detected by a CCD (Figure 

3B). A number of sequencing machines are available, including the MiSeq and diverse HiSeq 

sequencers. The MiSeq sequencer is considered low-throughput, producing 15 GB within 4 to 

55 hours, and achieving read lengths of 50 to 300 bp (“Illumina sequencing platforms,” 2020). 
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The HiSeq platforms are high throughput, producing up to 1 TB of sequence (read lengths vary 

between 36 and 250 bp), which can take up to 11 days (“Performance specifications for the 

HiSeq 2500 System,” 2020). Since this method was used in this study to sequence the rooibos 

genome, all associated laboratorial and biocomputational procedures are discussed in detail in 

the chapters below. 

 

 

Figure 3: A) Bridge amplification and B) Sequencing by synthesis (Westbury, 2018). 

 

The above NGS methods were cost-efficient, permitting large-scale sequencing of genomes 

from all domains of life. The following basic workflow applies to all second-generation 

sequencing platforms: 1) DNA extraction and purification; 2) fragmentation of long DNA 

molecules (either chemically, enzymatically, or physically); 3) size-selection of the DNA 

fragments; 4) two-sided fragment tagging with sequencing adapters, which contain sequences 

that permit hybridization of the fragments to the sequencing platform (454 and Ion Torrent: 

beads, Illumina: flow cell); 5) clonal amplification of the fragments, completed using either 

ePCR (454, Ion Torrent) or by cluster generation (Illumina); and finally 6) Platform-dependent 

sequencing. The resulting reads are then reassembled into genomic sequences using 

biocomputational methods. A ballpark number for genome sequencing states that for accurate 

reassembly a genome coverage of approximately 100x must be achieved (Dominguez Del 

Angel et al., 2018; Ekblom and Wolf, 2014; Schatz et al., 2012). Considering read lengths of 

150-300 bp, larger genomes (human: ~3,1 Gb, Pine: ~22 Gb), require the sequencing of billions 

of reads. Moreover, short read lengths have become a major limiting factor in correct genome 

reassembly: eukaryotic genomes (specifically those of plants) are often riddled with repeats 

that are longer than the maximum read lengths, which severely hampers correct reassembly of 

contiguous genomic sequences (Schatz et al., 2012). Diverse library preparation approaches 
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have been developed to address long distance mapping of reassembled genomic sequences (e.g. 

increasing sequencing fragment length; preparation of cosmid, fosmid or BAC libraries with 

large insert sizes and subsequent clone by clone sequencing). However, these procedures are 

very laborious and severely error-prone. Third-generation sequencing technologies address the 

read length problem. 

PacBio (Figure 4) is a third-generation sequencing platform that makes use of the single-

molecule, real-time (SMRT) sequencing technology, which was commercialized in 2011 

(Nakano et al., 2017). First, single-stranded hairpin adapters are ligated to both ends of 

linearized high molecular weight dsDNA molecules, circularizing these molecules and making 

them look like dumbbells. These sequencing templates are referred to as SMRTbells (Rhoads 

and Au, 2015; Slatko et al., 2018). The SMRTbell sample is loaded onto a SMRTcell, which 

contains 150,000 sequencing wells, called zero-mode waveguides (ZMW). The SMRTbell 

adaptor binds to a polymerase that is immobilized at the bottom of the ZMW (Rhoads and Au, 

2015). The nucleotides, added for de novo synthesis of the DNA strands, are each labelled with 

a different fluorescent dye. As the nucleotides are incorporated, the dyes are released, and the 

signal is recorded as a movie of light pulses through the glass bottom of each ZMW (Rhoads 

and Au, 2015). PacBio offers longer read lengths (average read lengths over 10 kb), but its 

drawbacks are a higher error rate, lower throughput (0.5–1 billion bases per SMRT cell), and 

higher cost per base (Rhoads and Au, 2015; Slatko et al., 2018). 

 

Figure 4: Outline of PacBio SMRT sequencing process (“NEXT GENERATION SEQUENCING,” 

n.d.). 
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Another sequencing method, introduced to the market as recently as 2015, was developed by 

Oxford Nanopore Technologies (ONT) (Slatko et al., 2018). As illustrated in Figure 5, 

sequencing is achieved while threading one strand of a double-stranded high molecular weight 

DNA molecule through a protein nanopore that perforates an electrically resistant polymer 

membrane (Slatko et al., 2018). Application of voltage induces a steady flow of ions through 

the nanopore. As the DNA strand passes through the nanopore, the nucleotides block the flow 

of ions, resulting in tiny changes in the electrical current. Since these changes are specific for 

each base, the signal can be translated back into the nucleotide sequence. Advantages of this 

method are the generation of long reads (up to 2 Mb), the ability to sequence RNA molecules 

directly, and the detection of base modifications which are important when studying gene 

expression and function (Heather and Chain, 2016). Moreover, the sequencing device is very 

small – as big as a jump-drive, weighing only 9g. However, the ONT platform shares the same 

drawback as PacBio: higher sequencing error rates and a lower throughput compared to SGS 

(Slatko et al., 2018).  

 

 

Figure 5: An example nanopore sequencer (Göpfrich and Judge, 2018). 

 

1.4. Illumina sequencing 

The Illumina sequencing method was used in this study to sequence the rooibos genome. 

Therefore, library preparation, the sequencing technology and all essential subsequent 

biocomputational data analysis methods require a more detailed review. 
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1.4.1. Library preparation 

All second-generation sequencing platforms are limited in their ability to accommodate larger 

DNA fragments in their respective sequencing reactions. The maximum molecule size varies 

between the platforms (454: 400-1000 bp; Ion Torrent: 100-600 bp; Illumina: 100-1000 bp) 

(“454 (Roche),” n.d.; “Next Generation Sequencing / Whole Genome Sequencing,” n.d.; 

Bronner et al., 2009). Depending on the size of the fragment, the essential steps for library 

preparation differ, resulting in “paired-end” and “mate pair” libraries. The Nextera library 

preparation protocols were used in this study, and will here serve as an example to explain all 

essential Illumina paired-end and mate pair library preparation steps.   

 

The paired-end library preparation kits for Illumina (e.g., Nextera XT DNA Library Preparation 

Kit, TruSeq DNA Nano) serve to sequence the 5’ and 3’ ends from DNA fragments that are up 

to 1000 bp long. In the Nextera protocol, the first step is tagmentation. An engineered 

transposome fragments the DNA molecules and simultaneously tags both ends of each 

fragment with strand-specific adapters (P7 at the 5’ end, P5 at the 3’ end) (Figure 6A and B). 

The fragment size can be adjusted as it depends on the reaction parameters (e.g. temperature) 

and the ratio of transposase to sample DNA. Subsequently, the fragments are amplified using 

limited-cycle PCR, which permits end repair and addition of sequencing adapters that contain 

short (8 bp) index sequences (Figure 6C). Those sequencing adapters are needed to bind the 

PCR fragment to the oligonucleotides on the flow cell and to tag each fragment with a sample-

specific index, which permits pooling of multiple samples on a flow cell (later, reads from any 

given sample can be recognized by their index). Subsequent steps include library purification, 

size selection, verification of the size distribution and template quantification. Different 

libraries can now be normalized and pooled together for sequencing (“Nextera DNA Library 

Prep Reference Guide,” 2016). 
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Figure 6: Steps in the Nextera paired-end library preparation protocol. A) Template DNA bound with 
Nextera transposome and adapters, B) Tagmented DNA fragment with adapters added, and C) Limited 

cycle PCR to add index adapter sequences (“Nextera DNA Library Prep Reference Guide,” 2016). 

 

Mate pair libraries permit sequencing of the 3’ and 5’ ends from DNA fragments that are 2-10 

kbp long (“Nextera® Mate Pair Library Preparation Kit: Datasheet,” 2014). Such long 

fragments cannot be sequenced directly. Therefore, the fragment ends are extracted by 

including the following additional steps into the library preparation protocols: 1) circularization 

of the large DNA fragments, 2) re-fragmentation of the circular DNA and 3) selection of sub-

fragments that contain the ends of the original DNA fragments (Figure 7). The Nextera Mate 

Pair Library Preparation kit proceeds as follows. As before, long DNA molecules are 

tagmented into smaller pieces by an engineered transposome, except that this time the side-

specific adapters are biotinylated. After size-selection, the fragments are circularized by joining 

the 3’ and 5’ ends of each fragment using biotin junction adapters. The circularized DNA is 

fragmented again, and the biotin tags are used to select those sub-fragments that include the 3’ 

and 5’ ends of the original DNA fragments (“Nextera® Mate Pair Library Prep Reference 

Guide,” 2016). Subsequent library preparation steps follow those described above. 
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Figure 7: Nextera mate pair preparation kit procedure (“Nextera® Mate Pair Library Prep Reference 

Guide,” 2016). 

In all Illumina sequencing runs, a PhiX spike-in is added to the reaction. A PhiX control is a 

concentrated Illumina library derived from the bacteriophage genome PhiX. It is added to 

Illumina sequencing runs for two main reasons: 1) To monitor the quality of the sequencing 

run and 2) to balance colour in low diversity libraries. It has an average size of 500 bp, and the 

percentage spike-in used per run depends on the sequencing platform (minimum 5% for MiSeq 

and HiSeq 2500) (“How much PhiX spike-in is recommended when sequencing low diversity 

libraries on Illumina platforms?,” 2020; “What is the PhiX Control v3 Library and what is its 

function in Illumina Next Generation Sequencing?,” 2020). 

1.4.2. Illumina cluster generation and sequencing 

Once the library is prepared, it is transferred onto an Illumina flow cell. A flow cell is a glass 

slide, about as small as a microscope slide (Figure 8). The flow cells are covered with two 
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distinct, short, single-stranded (ss) oligonucleotides (referred to as P5 and P7 grafting adapters), 

which are complementary to the sequencing adapters used during library preparation (“Indexed 

Sequencing Overview Guide,” 2020; Launen, 2017). These oligonucleotides serve to bind the 

library fragments to the flow cell. The low-throughput MiSeq flow cells have uniform 

coverage; the HiSeq flow cells are divided into eight lanes, and the grafting adapters are 

attached to the bottom of those lanes. When using HiSeq, multiple different samples can be 

accommodated on one flow cell and even in one lane, as long as the libraries contain unique 

index sequences (molecular barcodes) to distinguish between samples (“Indexed Sequencing 

Overview Guide,” 2020; “Multiplexed Sequencing with the Illumina Genome Analyzer 

System,” 2008). During clonal amplification and sequencing, dNTPs and buffers are pumped 

through small channels in the flow cell (“Illumina Sequencing Technology,” 2010).  

 

Figure 8: Illumina flow cell. A) The Illumina HiSeq flow cell is a glass slide with eight separate lanes, 

through which reagents and template DNA flow. B) Cross-section view of a flow cell and single lane 

indicating direction of flow (Bronner et al., 2009). 

 

The Illumina cluster formation and sequencing process is described in Figure 9. For cluster 

generation, the single-stranded library fragments must first be hybridized to the grafting 

adapters on the flow cell (“Indexed Sequencing Overview Guide,” 2020; Launen, 2017). At 

this stage, the distancing of fragments is essential, and libraries are diluted before hybridization. 

The ssDNA fragments attach to their complementary oligomers via the P5 or P7 primer 

sequences of the sequencing adapters (Launen, 2017; “Multiplexed Sequencing with the 

Illumina Genome Analyzer System,” 2008). Then, polymerases attach to the grafting adapters 

and extend the 3’ end, creating copies of the original fragments. The resulting double-stranded 

DNA fragments are denatured, and the initial fragment is washed away, leaving the newly 

synthesized template covalently bound to the grafting adapter on the flow cell surface. The 

template then folds over, and the other end hybridizes to an adjacent complementary grafting 
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adapter. Polymerases then extend the 3’ end of the hybridized grafting adapter, forming a 

double-stranded ‘bridge’ (Launen, 2017). The double-stranded bridge is denatured, resulting 

in two ssDNA molecules attached to the flow cell. These two molecules represent both strands 

of the original DNA fragment. Bridge amplification (bending of the ssDNA molecule, 

hybridization of the free end to adjacent complementary grafting adapter, dsDNA synthesis) is 

repeated until a cluster of ssDNA molecules that represent both strands of the original DNA 

fragment is formed. After the last round of bridge amplification and denaturation of dsDNA 

molecules, the strands attached to the P5 grafting adapters are cleaved and washed off the flow 

cell (Launen, 2017). 

 

Figure 9: Sequencing by Synthesis (Illumina Scientific Affairs, 2016). 

  

Prior to sequencing, the loose 3’ ends of the attached fragments are blocked to inhibit unwanted 

priming. Then, the first sequencing primer (i5, which matches the P5 primer sequences at the 

3’ ends of the DNA molecules), as well as DNA polymerase and the four dNTPs (labelled with 

different fluorescent dyes that terminate polymerization) are introduced into the flow cell 

(“Illumina Sequencing Technology,” 2010; “Indexed Sequencing Overview Guide,” 2020). De 

novo DNA synthesis is directed towards the plate, regenerating the forward strand of the DNA 

fragment. After incorporation of the first dNTP the reaction is terminated by the dye. 

Nonincorporated dNTPs are washed away, the clusters are excited by a light source, and the 

colours for each cluster (representing the incorporated dNTP) are determined by an optical 

detector. Base calls for each cluster are made depending on the intensity of the signal from the 
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excited fluorescent dyes. Thereafter, the dyes are enzymatically removed, permitting the next 

round of DNA synthesis (“Illumina Sequencing Technology,” 2010). Terminating the reaction 

after each single nucleotide incorporation, a method specific to Illumina, significantly 

improved precision when sequencing stretches of homopolymers. After a set number of 

sequencing rounds (e.g. 100) the dsDNA is denatured, and the unbound ssDNA molecules are 

washed off. The library-specific index is added to the recorded sequence as follows: the 

sequencing primer i7 is allowed to anneal to the 5’ end of the DNA molecules (in the P7 adapter 

region), and sequencing is resumed for up to 20 cycles, until the index and the remaining parts 

of the P7 adapter are covered (“Indexed Sequencing Overview Guide,” 2020). As a result, the 

recorded sequence (forward read) will have both, index and adapter sequences at the 3’ end 

only (Figure 10). 

 

Figure 10: Dual-indexing of the forward strand on a paired-end flow cell (“Indexed Sequencing 

Overview Guide,” 2020). 

After sequencing the forward strand, the template molecules fold over, and their 3’ ends 

hybridize to adjacent P5 grafting adapters. First, the index is sequenced using the i5 primer. 

Thereafter, the i5 primer and the product are removed, the complete strand is resynthesized 

(bridge amplification), the bridge is cleaved at the P7 adapter, the dsDNA is denatured, and the 

free ssDNA molecules are washed off (“Indexed Sequencing Overview Guide,” 2020). As a 

result, a ssDNA fragment representing the complementary molecule to the one just sequenced, 

is covalently bound to the P5 grafting adapters on the flow cell. The reverse strand can now be 

sequenced using the i7 primer, and the resulting reverse read will have the index sequence at 

the 3’ end (Figure 11).  
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Figure 11: Dual-indexing of the forward strand on a paired-end flow cell (“Indexed Sequencing 

Overview Guide,” 2020). 

 

1.4.3. Illumina sequencing data  

This section will focus on Illumina sequencing platform-specific output data, describing data 

structure and format, including Illumina quality scores.  

1.4.3.1. Flow cell tiles 

To facilitate downstream data analyses (specifically, troubleshooting of sequencing runs), flow 

cell datasets are divided into smaller subsets based on flow cell tiles. A tile is defined as a small 

imaging area on the flow cell, which can be analyzed separately (Andrews, 2016). Each tile 

contains multiple clusters of reads (generated during clonal bridge amplification). All read 

names include the tile number as well as the x:y coordinates within the tile (“File Format,” 

n.d.). For read pairs and mate pairs, these numbers are identical. MiSeq standard flow cells 

have 14 tiles (“MiSeq System Guide,” 2018). For HiSeq datasets, each lane of the flow cell is 

divided into two columns, each containing 50 (GAII) or 60 (GAIIX) tiles (“NGS data formats 

and analyses,” 2016).  

1.4.3.2. Data format 

Data derived from the sequence provider is converted from blc format to FASTQ format by 

the software program BlcToFastq (Illumina, USA). The sequence provider decides and 

programs before the run whether paired reads need to be in separate or in the same output file. 

FASTQ files include four lines. The first line contains a sequence identifier with information 

about the sequencing run, typically including the instrument name, run ID, flow cell ID, flow 
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cell lane, tile number within flow cell lane, x:y tile coordinates, forward or reverse direction, 

information on read quality, control specification on or off (0 means off, and an even number 

means on), and the index sequence (“File Format,” n.d.). The reads of a pair (read pair or mate 

pair) will have the identical tile numbers and x:y tile coordinates. The second line contains the 

actual nucleotide sequence. The third line is a plus sign (+), which is used to separate the 

nucleotide sequences from line four that includes the quality values for each base in line two 

(“File Format,” n.d.). Consequently, lines two and four should contain the same number of 

symbols. 

1.4.3.3. Illumina quality scores 

One of the most common metrics used to assess sequencing data quality is base calling 

accuracy. Base-calling accuracy is measured by the Phred quality score (Q-score), which 

indicates the probability that a given base is called incorrectly by the sequencer (“Quality 

Scores for Next-Generation Sequencing,” 2011). Q-scores are defined as a property that is 

logarithmically related to the base calling error probability (P). The lower the error probability, 

the higher the quality score, and the less likely base calling was incorrect. As an example, a 

Phred score of 10 would imply a 90% accurate base call. A Q-score of 20 is often used as a 

threshold, since the probability of an incorrect base call is only 1% (“Quality Scores for Next-

Generation Sequencing,” 2011). During an Illumina sequencing run, a quality score is assigned 

at every sequencing cycle to each base for every cluster. A quality lookup table is used to 

calculate quality scores. This quality lookup table uses a set of quality predictor values and 

relates them to corresponding quality scores (“Quality Scores for Next-Generation 

Sequencing,” 2011). Quality predictor values are observable properties of the light signal 

captured for each cluster (e.g. intensity profile and signal-to-noise ratio), which have been 

empirically determined to correlate with the quality of the base call. To estimate a quality score, 

the computed quality predictor values for a base call are compared to values in the pre-

calibrated quality table (“Quality Scores for Next-Generation Sequencing,” 2011). Quality 

scores are recorded in base call files (*.bcl) that contain the base call and quality score for each 

cycle. When generating FASTQ files (*.fastq), the quality scores are converted to an encoded 

compact form which uses only 1 byte per quality value (“Understanding Illumina Quality 

Scores,” 2014). In this encoding, the quality score is represented as the ASCII code character 

equal to its value and adding 33. It is essential that the Q-tables are updated when characteristics 

of the sequencing platform, such as new hardware, chemistry, or software versions, change 
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(“Understanding Illumina Quality Scores,” 2014). This is necessary to accurately score data 

generated from the sequencer. 

1.4.3.4. Biocomputational quality analysis of Illumina data 

Quality analysis of Illumina sequencing data usually involves several rounds of quality 

assessment and quality processing steps using dedicated tools.  

Quality assessment of Illumina sequencing data includes analysis of the overall GC content of 

the reads, as well as evaluation of the base quality scores, adapter contamination, read lengths, 

the proportion of duplicate reads, and quality loss due to position on the flow cell. Various 

software tools are available that provide summary statistics on the quality of NGS data, e.g. the 

NGS QC Toolkit (Patel and Jain, 2012) and pycoQC  (Leger and Leonardi, 2019). In this study, 

I used FastQC (Andrews, 2010) and K-mer Analysis Toolkit (KAT;(Mapleson et al., 2016)), 

two widely applied, user-friendly, open-source software available online.  

FastQC supports all NGS technologies, is continuously maintained and regularly updated by 

bioinformatics experts. It can analyze multiple input files at once, supports BAM, SAM and 

FASTQ input formats, and can be run from both the command line and through an interactive 

graphical user interface (GUI). FastQC completes a series of analysis modules which apply 

statistical tests to analyze the data. It generates an interactive HTML file which can be opened 

in a web browser. The left-hand side panel gives a quick overview of whether the results from 

each module seem normal (green tick), slightly abnormal (orange triangle) or very unusual (red 

cross). FastQC considers a sample as ‘normal’ when the statistical tests indicate randomness 

and diversity of the dataset. Biased results can be associated with genome characteristics, but 

also due to diverse laboratorial and computational steps introduced during sequencing (Ross et 

al., 2013). Coverage bias is a deviation from the uniform distribution of reads across the 

genome. For example, GC-rich and GC-poor regions are prone to be underrepresented in the 

Illumina sequencing data due to low coverage, which can be introduced during PCR 

amplification steps during library construction and cluster amplification. Error bias is a 

deviation from the expected uniform insertion, deletion, and mismatch rates in reads across the 

genome (Ross et al., 2013). FastQC facilitates assessment of these biases, permitting better 

understanding on the quality of the sequencing data. Because FastQC gives a single report per 

file, it is harder to analyze data from multiple input files. In this case, MultiQC (Ewels et al., 

2016) is a useful tool. MultiQC scans directories for results from other bioinformatics tools to 
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compile summary statistics into a single report. It is compatible with 89 tools and gives results 

in the form of graphs and tables. A list of compatible tools is available at 

https://multiqc.info/#supported-tools. 

Another approach to assessing sequencing quality is k-mer analysis. A k-mer is a DNA 

sequence with a fixed-length – a ‘word’ of length k, made up of nucleotides. Figure 12 

illustrates how a 17 bp sequence can be broken up into 11 k-mers of length 7 bp (7mers), where 

each k-mer differs from the previous one by one nucleotide. Breaking a sequence into k-mers 

reduces the complexity of the dataset: while the total number of sequences is larger, the number 

of unique sequences is much reduced. Saving only the unique k-mer sequences and the 

corresponding number of occurrences permits a more efficient approach to analyzing 

sequencing data (in terms of data volume and data structure). Consequently, k-mer counting is 

applied in many bioinformatics tools to analyze the sequencing data (evaluating sequencing 

biases, completeness of sequencing coverage, and contaminations in the sequencing datasets), 

but also to perform error correction and to assemble the sequencing data (Wright, Jon, 2016).  

 

Figure 12: An illustration of how a 17 bp DNA sequence can be broken into 7 bp k-mers (7mers) 

(“An Intuitive Explanation for Running Velvet with Varying K-mer Sizes,” 2012). 

 

The K-mer Analysis Toolkit (KAT) is a k-mer counting program that permits quality 

assessment of next-generation sequencing data, prediction of genome characteristics (including 

genome size) and evaluation of the quality of genome assemblies. A list of tools available from 

KAT, as well as their applications, is available in the KAT documentation (Wright, Jon, 2016). 

The following tools from KAT can be used on raw whole genome sequencing (WGS) data: 

hist, GCP, comp, and the two filtering tools. The hist tool takes input in the form of one or 

more FASTQ or FASTA files. The output is a histogram file with the number of distinct k-

mers and their frequencies as well as a spectra histogram plot. The tool is used to assess data 

quality parameters (including sequencing bias and error levels) and to identify genomic 
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properties of the sequenced genome. The GCP tool uses the same input as hist, and its 

application is similar, except that it is better at detecting contaminations. Sequence 

contamination is often associated with unusual GC and coverage levels. The GCP tool, 

therefore, counts the GC nucleotides for each distinct k-mer and creates a matrix relating the 

number of distinct k-mers per GC count to the k-mer coverage. The results are visualized in a 

density plot. The comp tool compares the k-mers from two or three datasets, which has a wide 

range of applications, including benchmarking of sequencing runs on a given machine, 

comparing error forward and reverse reads and in different libraries (PE vs PE or PE vs MP). 

Based on the matrix of k-mer spectra frequencies in each dataset, a number of different plots 

can be created. The density plot is a visual representation of the shared errors in the datasets. 

The spectra-mx plot visualizes shared and exclusive content from the two datasets. The spectra-

cn plot compares k-mers from input reads and assemblies, effectively revealing missing content 

(unassembled data) and multi-copy sequences in the assemblies. The two filtering tools from 

KAT (kmer and seq) allow to filter k-mers by coverage or GC count and to remove reads based 

on these filtered k-mers. KAT also provides various additional plotting tools that can be used 

on the outputs generated by the above tools to visualize the results.  

Essential quality processing of Illumina sequencing data includes filtering the datasets for PhiX 

sequences and trimming of the reads to remove library-specific sequences (e.g. adapters, 

spacers). Raw Illumina reads from paired-end libraries typically have adapter sequences at the 

3’ end (Figure 13-A). Mate pair reads can include the sequencing adapters as well as the 

junction adapters (Figure 13-B). Additional quality processing steps may include trimming of 

low-quality bases and the removal of low-quality, short and/or duplicated reads. Again, a 

number of tools are available that serve this purpose, but here I will focus on the three quality 

processing tools that were used in this study: Trimmomatic (Bolger et al., 2014), NextClip 

(Leggett et al., 2014), and FLASH (Magoc and Salzberg, 2011). Trimmomatic can process 

Illumina mate pair as well as single- and paired-end read datasets to remove adapters, trim 

bases from the ends of each read (either a set number or based on the respective quality scores), 

remove reads below a particular quality score and filter reads below a certain length. A detailed 

description of the program is available at http://www.usadellab.org/cms/?page=trimmomatic. 

NextClip is specifically designed to process Nextera mate pair libraries. The tool comprises 

two parts: The NextClip tool and the NextClip pipeline. As shown in Figure 14, sequencing of 

a mate pair results in two reads (R1 and R2) in mate-pair direction that should contain the 

junction adapter sequence at the 3’ end. However, the laboratorial step that focuses on the 
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selection of biotinylated molecules is imperfect, and nonbiotinylated DNA molecules that do 

not contain the ends of the original DNA fragment can also be sequenced. These sequences 

represent a dangerous contamination, since they severely distort scaffolding (the reads of a 

mate pair are expected to be 2-10kb apart, depending on the intended fragment size of the 

library; while the distance between these two reads would be much smaller). Therefore, any 

mate pair which is missing the adapter sequence in at least one of the two reads or where the 

adapter sequence orientation is incorrect should be filtered out. Accordingly, the NextClip tool 

investigates a pair of corresponding FASTQ files (containing the R1 and R2 reads of a Nextera 

mate pair library, respectively) for presence and relative orientation of the junction adapter 

sequences. It then assigns each mate pair to one of four categories: category A – the adapter is 

present in both reads; categories B and C – the adapter is present only in R2 or in R1, 

respectively; and category D – the adapter is missing in both reads. Subsequently, only the 

reads from category A are processed: junction adapters are removed and reads shorter than a 

user-configurable minimum length are discarded. Invoking the NextClip pipeline permits 

mapping of the mate pair reads to preassembled genome contigs of the dataset, which allows 

estimation of the insert size, finalizing the selection process of suitable mate pair sequences. 

Application of the NextClip ensures that only true mate pair reads are used in downstream 

analysis. 

 

 

Figure 13: Structure of paired-end and mate pair reads. A) paired-end reads contain adapter sequences at the ends of the 
reads. B) Mate pair sequences contain adapter sequences at the ends of the reads, as well as the middle of the reads (junction 
adapters) (Launen, 2017; “Nextera® Mate Pair Library Preparation Kit: Data sheet,” 2014). 
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Figure 14: Two junction adapters join Nextera mate pair fragments. Sequencing of the fragment 
generates R1 and R2. Use of NextClip to find and remove junction adapters generates C1 and C2 reads 

(Leggett et al., 2014). 

FLASH is a tool that is used to create longer sequences out of short, overlapping, paired-end 

reads from the small-insert Illumina sequencing libraries (Figure 15). FLASH requires FASTQ 

paired-end reads as input. It processes each read pair separately and searches for an overlap 

between the read pairs. When a correct overlap is found, the read pairs are merged into a single, 

longer, read which matches the DNA fragment from which the reads were sequenced (Magoc 

and Salzberg, 2011). Other NGS processing tools include AfterQC (Chen et al., 2017) and 

FastP (Chen et al., 2018). 

 

Figure 15: Overlapping paired-end reads merged to form a longer, single read (Lee, 2015). 

 

Another quality processing step often included in Illumina sequence data analysis for de novo 

genome assemblies is error correction. Error correction aims to decrease sequencing errors, 

thus improving downstream analysis while maintaining the data heterogeneity (Mitchell et al., 

2020). Error correction tools can be categorized into one of four classes: k-mer spectrum-based, 

suffix tree/array-based, multiple sequence alignment (MSA)-based, and hidden Markov model 

(HMM)-based (Akogwu et al., 2016). K-mer spectrum-based methods are the fastest growing 
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class of error correction tools. The idea behind k-mer spectrum-based methods is that erroneous 

bases in a DNA sequence occur infrequently and independently and can be corrected using the 

majority of reads that have the correct bases. Examples of k-mer spectrum-based error 

correction tools include Lighter (Song et al., 2014), BLESS (Heo et al., 2014) and Quake 

(Kelley et al., 2010). 

1.5. Genome characteristics  

Genome characteristics such as genome size, ploidy levels, rate of heterozygosity and repeat 

content are essential factors that need to be taken into consideration when planning a whole 

genome sequencing project. These factors will not only determine the type and amount of 

sequencing data required to reassemble a genome of desired quality, but also the approach and 

choice of programs for data preprocessing and assembly, as well as computational time and 

resource requirements (Liu et al., 2013). According to Dominguez Del Angel (2018), these 

characteristics may have a higher impact on the assembly results than the assembly software 

used. In this section, I will discuss each characteristic and its effects on genome assembly, and 

introduce k-mer analysis as a computational approach to estimate these genome characteristics. 

Genome size refers to the total amount of DNA present in one copy of a single (haploid) 

genome (Fridovich-Keil, 2019). It can be measured as a mass in picograms (pg) or in nucleotide 

base pairs (bp) (DeSalle et al., 2005). The genome size directly affects the amount of data that 

needs to be sequenced. The larger the genome, the more data is required, and the more 

computationally intensive it will be. Plant genomes are often on the larger side due to the 

presence of duplications and repeats (Michael, 2014). 

Zygosity refers to the degree to which copies of a chromosome (or locations on them) differ in 

their genomic sequence (“Zygosity,” 2020). Corresponding genome locations can be 

homozygous (have the same nucleotide sequence) or heterozygous (differ in their nucleotide 

sequence). Plant genomes generally have higher rates of heterozygosity than organisms from 

other kingdoms (Schatz et al., 2012). Genome assembly programs typically construct the final 

assembly as a haploid (single copy) genome, choosing the nucleotide in polymorphic positions 

arbitrarily (Chin et al., 2016). Reads from heterozygous regions are handled in one of two ways: 

either these allelic differences are collapsed into one consensus sequence, possibly leading to 

a more fragmented assembly; or these heterozygous regions are assembled separately, leading 

to duplicated content in the final assembly. High levels of heterozygosity can, therefore, 
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increase not only fragmentation but also loss of content in the final genome assembly, which 

in turn can lead to false conclusions on the biology of the studied organism (Schatz et al., 2012). 

Ploidy refers to the number of chromosome copies in the nucleus of a cell. Haploid and diploid 

imply one and two sets of chromosomes, respectively. Polyploidy refers to the state of an 

organism where more than two sets of chromosomes are present in each cell. It is estimated 

that up to 80% of all plant species are polyploid (Schatz et al., 2012). Genome reassembly of 

heterozygous polyploid organisms is particularly challenging since gene loci with nucleotide 

polymorphisms are present as multiple versions (depending on the ploidy level). Most genome 

assembly programs ignore ploidy when assembling sequences into contigs. Diploid-aware 

assembly programs have been created only recently. These programs use phasing and 

haplotyping to construct each haplotype separately. Examples of such pipelines include 

FALCON (Chin et al., 2016), Ranbow (Yang et al., 2017), and SDhaP (Das and Vikalo, 2015). 

Repetitive sequences, or repeats, are regions in a genome which are present multiple times, 

whether in one or (many) different locations. Plant genomes are known to have a high 

proportion of repeats (Schatz et al., 2012). Repeats can be mono or polynucleotide in their 

sequence, spanning between 1 bp (e.g. microsatellites) and thousands of base pairs (e.g. Long 

Interspersed Nuclear Elements (LINEs)) (De Roeck et al., 2019). Their presence severely 

complicates genome assembly. Since reads from these regions are very similar or even 

identical, it is hard for the assembly program to determine their location in the genome. High 

proportions of repeats in a genome may, therefore, lead to misassembled and/or highly 

fragmented genome assemblies. Repeats are best resolved using reads that span them 

completely. For long repeats, third-generation sequencing technologies, although currently still 

expensive and of lower quality, represent a solution (M. E. Bolger et al., 2014; Dominguez Del 

Angel et al., 2018).  

As discussed above, k-mer counting is used by many bioinformatics tools to analyze and error 

correct sequencing data. K-mer frequency analysis performed on second-generation 

sequencing reads can also be used to estimate genome characteristics. All that is needed are 

short-read reads that roughly amount to a 30x coverage of the investigated genome (Vurture et 

al., 2017a). Several k-mer counting programs are available, including Jellyfish (Marçais and 

Kingsford, 2011), DSK (Rizk et al., 2013), BBNorm (Bushnell, 2018) and KAT. In this study, 

KAT and BBNorm were used to count k-mers and to produce k-mer histogram files for 

estimation of genome characteristics. Figure 16 shows a k-mer spectrum generated by KAT. 
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The first peak corresponds to low-frequency k-mers derived from erroneous sequences. The 

second peak (here around ~100x genome coverage) corresponds to heterozygous genome 

content. The homozygous peak is located at double the coverage of the heterozygous peak 

(~200x). The tail of the graph (from ~350x coverage and onwards) mostly represents k-mers 

derived from repetitive regions of the genome. 

 

 

Figure 16: K-mer spectra graph generated by KAT at k=19 on quality-processed data. 

 

1.6. Genome assembly  

Genome assembly refers to the computational process of using nucleotide sequences (reads 

obtained through NGS sequencing) to reconstruct the genome of the organism under study. 

The ultimate aim is to correctly arrange the sequenced reads and determine the most likely 

consensus sequence – the sequence consisting of the most frequently observed nucleotide at 

each given position. This process is often compared to building a gigantic jigsaw puzzle made 

up of millions, or even billions of pieces. Genome assembly is divided into two categories: de 

novo (assembly without a reference genome) or reference-based (assembly using a reference 

genome). Reference genomes are currently lacking for most non-model organisms, including 

rooibos. 
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Current assembly programs (assemblers) use one of two assembly algorithms, either the 

overlap-layout-consensus (OLC) method or the de Bruijn graph (DBG) method (reviewed in 

Rizzi et al., 2019). The OLC method includes three main steps: 1) computing the overlaps 

between the reads, 2) building an overlap graph (Figure 17A), where the reads represent the 

nodes and the overlap relationships between the reads represent the arcs; and 3) inferring the 

most likely consensus sequence for each contiguous sequence stretch (contig). This algorithm 

is used in the Celera Assembler (Miller et al., 2008) and in the Maryland Super-Read Celera 

Assembler (MaSuRCA; Zimin et al., 2013)). Assemblers that use the DBG method do not use 

the complete reads. Instead, each read is converted into a set of k-mers. In the de Bruijn graph 

(Figure 17B), the nodes are the k-mers, and the arches are the last characters of the following 

node. Although this step appears to increase the dataset at first glance, the complexity of the 

dataset is actually lower: shorter sequences are less variable than longer sequences, and 

therefore the number of sequences that have to be stored is reduced. Consequently, DBG 

algorithms are computationally less demanding and less time consuming than the OLC 

algorithm. A consequential drawback, however, remains – reassembly of repeat regions 

requires additional analysis steps. A vast number of genome assemblers use the de Bruijn graph 

algorithm, and some have been successfully employed in plant genome reassembly. These 

include Platanus, ABySS, and ALLPTHS-LG (Basantani et al., 2017). However, to date not a 

single assembler dedicated to address all plant-specific genome assembly issues (such as large 

genome sizes, polyploidy and high levels of heterozygosity) has been developed. 

  

Figure 17: Example of an A) overlap graph for five reads (r1-r5), and a B) de Bruijn graph of two 

reads ccgtac and catgtg for k=3. Each one of the 13  k-mers represents a node (Rizzi et al., 2019). 

Considering the complexity of genome reassembly, an obvious question arises: how does one 

know if an assembly is of good quality? Which program and which parameter settings work 

best? This can be investigated by comparing assembler performance using the datasets at hand. 
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Essential evaluation criteria are completeness, correctness and contiguity of the assembly 

(Bradnam et al., 2013). Several ballpark numbers inform on the contiguity of a genome 

assembly: N50, NG50, and L50. N50 is the sequence length of the shortest contig at 50% of 

the total assembly length, i.e. 50% of the entire assembly is contained in contigs or scaffolds 

equal to or larger than this value (Bradnam et al., 2013). NG50 is similar to the N50 statistic, 

but considers the actual estimated genome size, i.e. 50% of the entire genome is contained in 

contigs or scaffolds equal to or larger than this value (Bradnam et al., 2013). The L50 statistics 

is the smallest number of contigs whose length sum makes up half of the assembly size (“N50, 

L50, and related statistics,” 2020). These can be calculated manually using assembly statistics 

provided by the assemblers. However, by now, a number of tools dedicated to genome 

assembly evaluation have been developed. 

In this study, QUAST-LG (Mikheenko et al., 2018) and KAT were employed. QUAST-LG 

(QUality Assessment Tool), published in 2018, is an upgraded version of QUAST, specifically 

created to evaluate large de novo genome assemblies (Mikheenko et al., 2018). QUAST-LG 

can assess the completeness and correctness of the assembled genome by calculating the 

portion of the genome that is assembled and estimating the amount of errors the assembly 

contains, respectively (Mikheenko et al., 2018). Still, without a reference genome, it is hard to 

determine how accurate these estimates are. A relatively recent approach to genome assembly 

assessment includes the prediction of genes and subsequent analysis of that dataset for core 

genes (genes that are universally present between species). QUAST-LG not only permits gene 

prediction using the programs GeneMark-ES (Ter-Hovhannisyan et al., 2008) and 

GlimmerHMM (Majoros et al., 2004), but also employs BUSCO (Benchmarking Universal 

Single-Copy Orthologs) (Simão et al., 2015) to assess core gene detection statistics for the 

assembled genome. BUSCO utilizes the OrthoDB database (www.orthodb.org) to measure 

genome completeness according to an expected gene content (single-copy orthologs). Genes 

which are present in at least 90% of the species in the OrthoDB database are included (Simão 

et al., 2015). 

The program KAT employs a very different approach to genome assembly evaluation. A 

spectra-cn graph (where k-mers from the reads are compared to the k-mers from the assembled 

genome contigs) can be generated using the comp tool. This graph permits analyses of the 

content of an assembly, including errors, homozygous content, heterozygous content and 

repeats. K-mer occurrence in the assembly dataset are shown as different colours (black implies 
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that these k-mers are missing in the assembly dataset, red indicates one appearance of the k-

mer, orange indicates two appearances (duplicated assembly content), light-green corresponds 

to three appearances (triplicated assembly content), etc.) (Wright, Jon, 2016). Figure 18A 

shows what a perfect spectra-cn plot would look like for a diploid heterozygous genome. The 

first peak is entirely black, indicating that no error k-mers are present in the assembly. The 

heterozygous content (second peak) is present exactly once (red), with some content missing 

(black). This is logical: the heterozygous peak of a diploid organism includes both copies of a 

genome location, one of which is present in the assembly. The homozygous content (third peak) 

is present exactly once (red) in the assembly. In practice, it is more common to see assemblies 

with some degree of errors included in the assembly, missing homozygous content, and content 

that is present more than once in the assembly (indicated as colours other than red or black; 

Figure 18B) (Wright, Jon, 2016). 

 

 

Figure 18: Spectra-cn plots generated by KAT. A) An example of a "perfect" spectra-cn plot generated 

for a diploid, heterozygous genome. B) An example of a spectra-cn plot which is most often observed 

for a diploid, heterozygous organism (Wright, Jon, 2016). 

 

Third-generation sequencing technologies are currently revolutionizing the field of genome 

sequencing, opening doors to analysing even the largest and most complex genomes on earth. 

Biocomputational procedures must be adapted. The revolution of this research field can be 

expected in the near future. However, this topic is beyond the scope of this study. 
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Chapter 2: Materials and Methods 

2.1. Illumina sequencing data 

This study focuses on the analysis of Illumina sequencing data from rooibos DNA that had 

been generated in a previous study. Leaf material was obtained from a commercial rooibos 

plant in Nieuwoudtville (S031˚23’0” E019˚06’0”), Northern Cape province, South Africa. It 

was flash frozen in the field using liquid nitrogen, transported on dry ice to the laboratory and 

maintained at -80˚C. DNA extraction was performed as described previously (Mgwatyu, 2019). 

Thereafter, the DNA sample (~ 5 µg) was packaged on ice and sent by DHL to the sequencing 

service provider.  

 

DNA library preparation and sequencing was performed at UKHC Genomics Core Laboratory 

(UK Chandler Hospital, Lexington, KY, 40536, USA) using reagents and equipment from 

Illumina (Illumina, San Diego, CA, USA) unless stated otherwise. Three Illumina libraries with 

average insert sizes of ~300 bp, ~3 kbp and ~8 kbp were prepared. The 300bp paired-end 

library was constructed using the Nextera DNA Library Preparation kit following the 

manufacturer’s instructions. First, this library was sequenced on an Illumina MiSeq platform 

using two single-lane MiSeq flow cells and the MiSeq reagent kit (2 x 125 bp). Thereafter, the 

library was sequenced on a HiSeq 2500 platform in high output mode using six lanes of one 

HiSeq flow cell. The remaining two lanes were used to sequence the rooibos mate pair libraries 

i.e. only the rooibos sample was investigated on this flow cell. HiSeq sequencing was 

conducted using the HiSeq PE Cluster Kit v4 cBot and the HiSeq SBS Kit v4 (125 cycles). For 

the two mate-pair libraries, the Nextera Mate Pair Library Prep Kit was used for library 

construction following the gel-plus protocol (using 4 µg of input DNA, CloneWell agarose gels 

(Invitrogen, Thermo Fisher Scientific) for fragment size selection and Dynabeads M-280 

(Invitrogen, Thermo Fisher Scientific) for purification of sheared DNA. The mate pair libraries 

were sequenced on an Illumina HiSeq 2500 platform in rapid run mode using one flow cell 

(one lane per library) and the sequencing reagents from the HiSeq PE Rapid Cluster Kit v2, 

HiSeq Rapid SBS Kit v2 (125 cycles) and HiSeq Rapid Duo cBot Sample Loading Kit. In all 

sequencing runs, Illumina PhiX v3 was used as a spike-in. 

 

The service provider also conducted data format conversion and basic data processing. The 

Illumina bcl2FASTQ2 Conversion Software v2.20 (Illumina, San Diego, CA, USA) was used 

for demultiplexing, conversion of base call (BCL) files into FASTQ files, trimming of adapter 
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sequences, as well as removing PhiX reads and separating undetermined reads (reads which 

did not contain the expected index) from determined reads (reads which contained the expected 

index). The command line used for this was: sudo bcl2FASTQ -r 8 -d 8 -p 8 -w 8 -l TRACE -

-no-bgzf-compression -R <input_folder_path -o <input_folder_path">. In this thesis, the data 

obtained from the service provider will be referred to as “raw”.  

2.2. Computational data analysis 

The computational data analyses in this study included: 1) quality assessment and quality 

processing of the Illumina sequencing data, 2) analysis of rooibos genome characteristics using 

raw and quality processed Illumina sequencing data, and 3) assessment of assemblers for 

rooibos genome assembly. Figure 19 shows the primary outlay. 

 

 

 

 

Figure 19: Schematic of the analysis pipeline. 

 

2.2.1. Illumina data quality assessment and quality processing 

Read quality was assessed using FastQC (v 0.11.5 and v 0.11.7; Andrews, 2010) and MultiQC 

(v 01.7, Ewels et al., 2016). FastQC was applied to determine read numbers, read lengths and 

%GC, and to visualize sequence quality for the forward and reverse reads in each data set. 
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MultiQC was used to calculate average read length, percent duplicates per lane, the percentage 

of reads with a mean quality score ≥ 30 (using the data from the per sequence quality scores 

plot generated by MultiQC), as well as to compile summary statistics from FastQC reports.  

 

Two quality processing methods were tested on the paired-end data (300bp library) on a lane 

per lane basis. First, the effect of hard cropping (removal of a fixed number of bases from the 

sequence ends) was investigated (PE-Method 1). To achieve this, Trimmomatic (v 0.38; Bolger 

et al., 2014) was run with the following parameters: ILLUMINACLIP:NexteraPE-

PE.fa:2:30:10 CROP:123 HEADCROP:19 MINLEN:50. This served to remove remaining 

adapter sequences, trim the bases 124 and 125 bp in reads that had them, hard-crop the first 19 

bases in all reads and, thereafter, discard reads that were less than 50bp long. This method did 

not include trimming based on sequence quality. In a second approach (PE-Method 2), paired-

end reads from each lane were first trimmed based on sequence quality using Trimmomatic (v 

0.38) and subsequently error corrected using Lighter (v1.1.1; Song et al., 2014). The following 

parameters in Trimmomatic were applied to each dataset: ILLUMINACLIP:NexteraPE-

PE.fa:2:30:10 LEADING:20 TRAILING:20 MINLEN:60. These parameters served to remove 

adapter sequences, trim bases from the 5’ and 3’ ends of reads with a Phred score below 20, 

and to discard reads shorter than 60 bp. The HiSeq Lane 3 datasets (forward and reverse) were 

processed further to improve the per-base quality of the reads: Trimmomatic was run using 

ILLUMINACLIP:NexteraPE-PE.fa:2:30:10 LEADING:20 TRAILING:20 

SLIDINGWINDOW:4:17 MINLEN:60. Thereafter, all datasets were error corrected using 

Lighter (v 1.1.1) with the following parameters: -k 31, 2200000000 0.1. Following the advice 

of the program author (personal communications), the genome size used in the Lighter analysis 

was twice the actual rooibos genome size estimate to account for high levels of heterozygosity 

predicted in this genome.  

 

Mate-pair libraries were also quality processed using two different approaches. As a first 

method (MP-Method 1), Trimmomatic (v 0.36) was run using the following parameters: 

ILLUMINACLIP:NexteraPE-PE.fa:2:30:10 LEADING:28 TRAILING:28 MINLEN:40. This 

resulted in adapter removal, trimming of bases with quality scores below 28 at the 5’ and 3’ 

ends and removal of all reads shorter than 40 bp. As an alternative approach (MP-Method 2), 

the Python (v2.7) lmp_processing script from w2rap: the WGS (Wheat) Robust Assembly 

Pipeline (Clavijo et al., 2017) was investigated. This script uses FLASH and Nextclip to 1) 

merge overlapping reads, 2) perform deduplication of reads, 3) identify reads containing the 
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Nextera adapter (i.e. identifying true mate-pairs), and 4) discarding reads not containing the 

adapter. The script was run on both mate-pair libraries (MP3 and MP8) using default settings 

on a lane-by-lane basis. To address low quality read ends of the MP8 library, it was further 

processed using Trimmomatic (v 0.36) with the following parameters: CROP:127 

LEADING:20 TRAILING:20. 

 

Due to better quality parameter statistics, only the data obtained using PE-Method 2 and MP-

Method 2 was used in subsequent analyses and is referred to as quality-processed (QP) data. 

2.2.2. Investigation of genome characteristics 

K-mer histogram analysis permits estimation of genome characteristics, such as genome size, 

level of heterozygosity and repeat content. For the rooibos data, different tools for generating 

k-mer histogram files and subsequent analysis of genome characteristics were investigated. 

 

First, 16 k-mer histogram files were generated using the khist.sh script from BBNorm. 

Histogram files were generated for four datasets (MiSeq-raw, MiSeq-QP, COMP-raw, and 

COMP-QP) and four k-mer values (19, 23, 27, and 47) per dataset, using default parameters 

with the specific k-mer value and setting the histogram length (histlen) to 900000. COMP 

represents the combined MiSeq and HiSeq datasets of the 300 bp Illumina library and QP 

implies quality filtering. Mate-pair reads were excluded from this analysis, because these 

datasets contained a high proportion of duplicated reads. Furthermore, eight k-mer histogram 

files were generated using the hist tool from KAT. Histogram files were generated for the two 

COMP datasets, testing k-mers 19, 23, 27 and 47. This tool was run using default parameters, 

specifying the k-mer value (-m) and setting the hash size (-H) to 1000000. The large hash size 

allowed KAT to analyse the data without growing the hash while running, saving time and 

reducing memory usage. Max coverage (900,000x) was set using -h 900000. 

 

The 24 k-mer histogram files were subsequently analysed using the programs GenomeScope 

v1 (Vurture et al., 2017b), GenomeScope v2 (Ranallo-Benavidez et al., 2019), FindGSE (Sun 

et al., 2018), BBNorm, and KAT to estimate rooibos genome characteristics. 

The two GenomeScope versions have different adjustable parameters. With both versions, the 

effect of three maximum k-mer coverage thresholds (1k, 10k, and 900k) was investigated. For 

GenomeScope v1, read length was set to 119 nt for raw data, and 120 nt for the quality 

processed data (based on FastQC results). For GenomeScope v2, ploidy level was set to 2, and 
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the “average k-mer coverage for polyploid genome” was left in the default setting (-1).  

FindGSE was run specifying the respective k-mer value and exp_hom (the expected k-mer 

coverage for the homozygous region). The value for exp_hom was selected following authors 

instructions (https://github.com/schneebergerlab/findGSE/blob/master/R/findGSE_v1.94.R): 

it was the k-mer coverage value, two counts, before the k-mer coverage value at the maximum 

height of the homozygous peak (satisfying the requirement that fp < VALUE < 2*fp, where fp 

is the maximum frequency of the homozygous peak). The khist.sh script from BBNorm not 

only produces the k-mer histogram files but also calculates the genome size, as well as 

heterozygosity and repeat content. The callpeaks.sh from BBNorm was used to generate 

BBNorm estimates for the KAT histogram files, specifying the k-mer size and setting ploidy=2 

(the rooibos genome is diploid). The hist tool from KAT produces k-mer histogram files and 

k-mer spectra graphs, and estimates the genome size and heterozygosity rates. Since it does not 

accept histogram files as an input, KAT was not used to analyse the BBNorm histogram files. 

 

In addition, the histogram files were used to estimate the rooibos genome size using the 

following popular, simple formula derived from equations introduced by the M.S. Waterman 

group (Lander and Waterman, 1988; Li and Waterman, 2003): 𝐺 =  
𝑁

𝐶
, where G is genome size, 

N is the total number of k-mers, and C is the k-mer frequency at the homozygous peak. Low-

frequency k-mers (corresponding to the first peak up to the lowest point of the first valley) 

likely represented sequencing errors and were excluded from the calculation of the total k-mer 

numbers. 

2.2.3. De novo genome assembly  

De novo genome assembly analysis was performed on the high-performance computing 

clusters at the South African National Bioinformatics Institute (SANBI-UWC: 32 cores, 500 

GB RAM) and the Centre for High Performance Computing (CHPC: 56 cores, 990 GB RAM) 

in Cape Town, South Africa.  

 

Initially, analyses were performed on data subsets, using either paired-end datasets from the 

two MiSeq lanes, or paired-end datasets from two HiSeq lanes plus the 3 kbp mate-pair library 

dataset (Table 7). Six genome assembly programs were tested for their performance, namely 

ALLPATHS-LG (Gnerre et al., 2011), MaSuRCA (Zimin et al., 2013), IDBA (Peng et al., 

2010), SOAPdenovo2 (Luo et al., 2012), ABySS 2.0 (Jackman et al., 2017), and Platanus 
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(Kajitani et al., 2014).  Scripts for these assemblies, specifying parameter settings, can be found 

in the Appendix. In most cases, default settings were used, changing only the k-mer value (k41, 

k53 and k71) and setting the genome size to 1,1 Gb.  

 

After successfully completing analyses of the subsets, three de novo genome assembly 

programs (SOAPdenovo 2, ABySS 2.0 and Platanus) were used to assemble the entire quality 

processed rooibos genome dataset. This dataset comprised the MiSeq and HiSeq data from the 

300 bp library (COMP-QP) and the HiSeq data from the 3 kbp mate pair library (MP3-QP). 

The 8 kbp mate pair library dataset was excluded from these assemblies as it was found to 

interfere with successful completion of the analyses: SOAPdenovo2 could not estimate the 

insert size for the 8 kbp library, stating “too few PE links” and Platanus was unable to complete 

the scaffolding step, stating “Error(6): Kmer mapping exception!! no read mapped in the same 

contig!!”. All assemblies were run with the k-mer values 41 and 71, using default settings, 

except where specified otherwise. SOAPdenovo2 was used with the -R option to resolve 

repeats by reads. The asm_flags option in the config file was set to 3 for the COMP-QP dataset 

(to use this library during contig and scaffold assembly), and 2 for the MP3-QP dataset (using 

the libraries only during scaffolding step). ABySS 2.0 was run using default settings. Platanus 

was run in three steps: First, the assembly script was run using only COMP-QP. Then, the 

scaffolding script was run using COMP-QP and MP3-QP, specifying minimum and average 

insert size for each library (-n1 200 -n2 2000 -a1 300 -a2 3000). Lastly, the Platanus gap-

closing script was run using the COMP-QP and MP3-QP datasets as well as the scaffolds 

generated in the previous analysis step. 

2.2.4. Assembly quality assessment 

For assemblies of data subsets, only completion of the assembly and computational statistics 

(number of cores, amount of RAM, and running time) were recorded. The assemblies of the 

entire dataset were further investigated for contiguity (fragmentation of assembly and fragment 

length), completeness (assembled vs predicted genome size) and correctness (how many errors 

the assembly contains). 

 

First, assemblies were investigated using QUAST-LG (QUAST version 5.0.0), which 

generates scaffold and contig statistics and permits a first screen on gene content, using 

GlimmerHMM and BUSCO. GlimmerHMM provides information on the total number of 

predicted genes (whether they are single copies or multiple copies), and BUSCO reports on 
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near-universal single-copy orthologs. Parameters used for QUAST-LG analysis were: -s -e -b 

--large --glimmer --est-ref-size 1100000000 --no-snps -m 1000 --contig-thresholds 

0,1000,5000,10000,25000,50000,100000 -t 36. QUAST-LG contig statistics were created 

using the --split-scaffolds flag, which breaks scaffolds that contain continuous fragments of 

N’s of length ≥ 10. 

 

In addition, the comp tool and the spectra-cn plotting tool from KAT were used to visualise 

missing sequences, as well as expanded and collapsed regions within the assemblies. The comp 

tool creates a matrix of k-mers shared between paired-end sequencing reads and the 

corresponding assembly file, and the spectra-cn plotting tool permits visualization the output. 

comp was run using the COMP-QP dataset with a k-mer length of 27. 
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Chapter 3: Results 

3.1. Illumina data 

In total, three libraries had been constructed by the service provider: one paired-end 300 bp 

insert library, which was subsequently sequenced using MiSeq and HiSeq, and two mate pair 

libraries with insert sizes of 3 kbp and 8 kbp, sequenced using HiSeq. All datasets, including 

the MiSeq paired-end, the HiSeq paired-end, and the HiSeq mate pair data, had been 

preprocessed by the sequencing provider, i.e., adapter sequences and the PhiX spike sequences 

had been removed. These datasets are referred to as "raw". The first task was to assess read 

quality and to investigate approaches for improving it where appropriate.  

3.1.1. MiSeq paired-end data 

Table 1 shows the results for the two MiSeq flow cells. For the raw data, a total of 608,576,970 

reads were obtained, with a target insert size of 300 nt. The average read length was 119 bp 

(ranging between 35 bp and 125 bp), and the average proportion of duplicated reads was 32%. 

Nearly 95% of the reads had a mean quality score at or above 30, and the average per-base 

quality scores were never below 30 (Figure 20A). 
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Table 1: Results for the MiSeq paired-end sequencing reads. 

Dataset Lane 
Number of 

reads 

Read length 

range (bp) 

Average read 

length (bp) 
Duplicates (%) GC (%) 

Duplicates 

F/R (%) 

Reads with 

mean quality 

score of 30 

and above 

(%) 

Raw MiSeq 1 455 045 310 35 - 125 119 37,4 36 37,7/37,0 93,5 

 MiSeq 2 153 531 660 35 - 125 119 27,0 36 27,0/26,9 95,4 

PE-Method 1 MiSeq 1 442 430 780 50 - 104 101 36,7 36 36,9/36,5 92,9 

 MiSeq 2 149 485 286 50 - 105 101 26,5 36 26,6/26,4 95,0 

PE-Method 2 MiSeq 1 446 988 504 60 - 125 120 38,2 36 38,5/37,8 93,7 

  MiSeq 2 150 862 318 60 - 125 120 27,5 36 27,6/27,4 95,5 

 

 

 

 

 

Figure 20: An example per base quality plot generated by FastQC. A) MiSeq 2, forward raw reads, B) PE-Method 1 quality processed reads, and C) PE-

Method 2 quality processed reads
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Per tile analyses of the data showed that all but very few tiles were of high quality, as indicated by the dark blue colour (Figure 21A). The average 

GC% content for the reads from the MiSeq datasets was 36,0%, as indicated by the large peak in Figure 22A. A smaller peak around 66% was 

noted.  

 

 

Figure 21: An example per tile sequence quality plot generated by FastQC. A) MiSeq 2, forward raw reads, B) PE-Method 1 quality processed reads, and C) 

PE-Method 2 quality processed reads. 

 

 

Figure 22: An example per sequence GC content plot generated by FastQC. A) MiSeq 2, forward raw reads, B) PE-Method 1 quality processed reads, and 

C) PE-Method 2 quality processed reads. 
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The average per base sequence content module failed for both flow cells as large differences in the A and T, and the G and C contents were 

determined for the first 17 bases, and again for the last two bases of reads (Figure 23A).  

 

 

 

Figure 23: An example per base sequence content plot generated by FastQC. A) MiSeq 2, forward raw reads, B) PE-Method 1 quality processed reads, and 

C) PE-Method 2 quality processed reads. 

 

After performing quality processing using PE-Method 1 (hard crop of a set number of bases from all reads), the number of read-pairs decreased 

by 16.7 million, and the average read length 
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decreased to 101 bp, now ranging from 50 bp to 105 bp (Table 1). The proportion of duplicated 

reads was reduced (on average by 0,8%). Neither the percentage of reads with a Phred score at 

or above 30 nor the average per-base quality scores (Figure 20B) were markedly affected. The 

per tile quality heatmaps of the MiSeq datasets changed only minimally (Figure 21B). As an 

example: the heatmap for the flow cell 2 forward read dataset did not show the red tile observed 

before quality processing (Figure 21A). The average per base sequence content module passed 

(Figure 23B). The average GC content remained 36,0%, and the small peak at 66% was still 

present (Figure 22B).  

 

After performing quality processing using PE-Method 2 (quality-based trimming and 

subsequent error correction), the number of reads decreased by only 10,7 million, and the 

average read length increased to 120 bp, ranging from 60 bp to 125 bp (Table 1). Here, the 

proportion of duplicates was somewhat higher (0,7%) than in the raw datasets. The percentage 

of reads with a Phred score at or above 30 increased by 0,2% for MiSeq 1, and 0,1% for MiSeq 

2 (Table 1), and the per tile quality heatmaps (Figure 21C) of the MiSeq sequences changed 

minimally. The per base sequence content plots failed for all reads, and minimal differences 

can be seen between the plots of raw and PE-Method 2 quality processed reads (Figure 23C). 

The average GC% content remained 36,0%, and the small peak at 66% was still present after 

PE-Method 2 quality processing (Figure 22C).     

3.1.2. HiSeq paired-end data 

The sequencing of the small insert library using one HiSeq flow cell (6 lanes) in paired-end 

mode generated nearly 2,3 billion read pairs (12 datasets in total). However, about 1/6th of this 

data (approximately 0,4 billion reads) did not contain the correct sequencing index, and were 

filtered out by the service provider. The statistics for the raw determined (with correct index) 

and the raw undetermined read pairs (without index) are provided in Table 2. 

 

For the determined raw reads, read lengths varied between 35 bp and 125 bp, and the average 

read length was 119 bp. The proportion of duplicated reads varied substantially between the 

lanes (ranging from 0% to 22%) and even between the forward and reverse read datasets. 

Across all lanes, forward read datasets had a five times higher proportion of duplicated reads 

(22,5%) than the reverse read datasets (4,0%) (Table 2). 
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Table 2: Results for the HiSeq paired-end sequencing reads. 

Dataset Lane 
Number of 

reads 

Read length 

range (bp) 

Average read 

length (bp) 

Duplicates 

(%) 
GC (%) 

Duplicates F/R 

(%) 

Reads with mean quality 

score of 30 and above 

(%) 

Raw Determined                

 Lane 1 284 728 634 35 - 125 119 0,0 36,5 0,0/0,0 64,1 

 Lane 2 299 563 658 36 - 125 119 20,2 36,5 28,9/11,4 70,6 

 Lane 3 311 852 326 37 - 125 119 15,1 36 30,1/0,0 76,4 

 Lane 4 355 362 948 38 - 125 119 13,1 36 26,0/0,2 78,3 

 Lane 5 374 476 482 39 - 125 119 22,5 36 32,7/12,4 77,9 

  Lane 6 321 173 550 40 - 125 119 8,6 36 17,1/0,2 80 

PE-Method 1 Determined                

 Lane 1 276 495 580 50 - 104 101 0,0 36 0,0/0,0 66,4 

 Lane 2 290 623 870 50 - 104 101 24,4 35,5 28,7/20,2 72,4 

 Lane 3 302 626 294 50 - 104 101 14,4 35,5 28,9/0,0 77,5 

 Lane 4 344 709 884 50 - 104 101 15,9 35,5 30,4/1,3 78,9 

 Lane 5 363 270 028 50 - 104 101 27,5 35,5 31,9/23,1 78,7 

  Lane 6 311 299 952 50 - 104 101 15,2 35,5 23,6/6,8 80,5 

PE-Method 2 Determined            
 Lane 1 278 778 534 60 - 125 120 1,2 36,5 2,4/0,0 64,8 

 Lane 2 292 564 436 61 - 125 120 24,3 36 31,1/17,4 71,3 

 Lane 3 304 280 282 62 - 125 120 14,7 36 29,4/0,0 77,1 

 Lane 4 347 367 568 63 - 125 120 18,9 36 30,3/7,5 79,0 

 Lane 5 366 378 088 64 - 125 120 27,7 36 34,1/21,2 78,6 

 Lane 6 314 166 814 65 - 125 120 15,6 36 24,5/6,7 80,7 

PE-Method 2 + Slidingwindow                 
 Lane 3 227 020 170 60 - 125 117 14,4 36 28,7/0,2 91,3 

Raw Undetermined                 

 Lane 1 41 552 130 35 - 125 123 0,1 40 0,2/0,0 53,7 

 Lane 2 45 072 562 36 - 125 122 17,0 39,5 24,5/9,4 60 

 Lane 3 48 471 116 37 - 125 122 12,6 38,5 25,2/0,0 65,7 

 Lane 4 53 480 014 38 - 125 122 11,0 38,5 21,9/0,1 67,5 

 Lane 5 57 858 318 39 - 125 122 19,0 38,5 27,8/10,2 67 

  Lane 6 128 159 942 40 - 125 121 7,3 37,5 14,5/0,1 72,3 
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In total, 75% of the reads had a mean quality score at or above 30. Yet, the per tile sequence 

quality modules of all datasets failed, and the heat maps indicated that the reverse reads were 

of worse quality than the forward reads (Figure 24A-B). The average per base sequence quality 

modules also failed, showing substantial differences in the A and T, and the G and C contents 

for the first 18 bases, and again for the last two bases of the reads (Figure 25A). The GC content 

plot for the determined reads showed a significant peak at 36,2%, and a smaller peak around 

66% (Figure 26A).  

 

 

Figure 24: Per tile sequence quality plots generated by FastQC for Lane 3: A) forward raw reads, B) 

reverse raw reads, C) forward PE-Method 1 processed reads, D) reverse PE-Method 1 processed, E) 

forward PE-Method 2 processed reads, F) reverse PE-Method 2 processed reads, G) forward 

SLIDINGWINDOW processed reads, and H) reverse SLIDINGWINDOW processed reads 
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Figure 25: Per base sequence content plots generated by FastQC for Lane 3: A) forward raw reads, 

B) reverse raw reads, C) forward PE-Method 1 processed reads, D) reverse PE-Method 1 processed, 

E) forward PE-Method 2 processed reads, and F) reverse PE-Method 2 processed reads. 
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Figure 26: Per sequence GC content plots generated by FastQC for Lane 3: A) forward raw reads, 

B) reverse raw reads, C) forward PE-Method 1 processed reads, D) reverse PE-Method 1 processed, 

E) forward PE-Method 2 processed reads, F) reverse PE-Method 2 processed reads, and G) forward 

raw undetermined reads. 

 

The undetermined reads were somewhat longer (on average 122 bp), but also of lower quality 

than the determined reads: only 64,4% of the undetermined reads had a quality score at or 

above 30. Interestingly, the average GC value was somewhat higher in the undetermined 

datasets (38,8%; Table 2) The undetermined datasets also had a small peak at 66% GC (Figure 

26G). Because of the missing index, the origin of the undetermined reads could not be 

established. Considering that 1) the HiSeq flow cell was used to sequence all three Nextera 

libraries (the paired-end small insert and both mate pair large insert libraries), and that 2) a 

substantial number of the undetermined reads may represent the PhiX spike, the undetermined 

read datasets were excluded from all subsequent analyses. 
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Quality processing of the determined reads using PE-Method 1 resulted in a loss of 58 million 

read pairs and reduced the average read length from 119 bp to 101 bp, read lengths now ranging 

from 50 bp to 104 bp (Table 2). Across all lanes, the proportion of duplicated reads increased 

from 13,3% to 16,3%, the forward read datasets still containing approximately three times the 

number of duplicated reads as compared to the reverse read datasets. The proportion of reads 

with a mean quality score at or above 30 increased by 1,1% (Table 2). The processing had no 

beneficial visual effect on the per tile sequence quality, and this module still failed for all lanes 

(Figure 24C-D). The per base sequence content of all lanes passed the module, as the trimming 

of the 19 first bases reduced the differences between the A and T contents and the G and C 

contents to less than 10% throughout the length of sequences (Figure 25C-D). The average GC 

content decreased to 35,5%, and the minor peak was observed at 66% (Figure 26C-D).  

 

After quality processing of the determined reads with PE-Method 2, the total number of read 

pairs decreased by 44 million (Table 2). Lane 3 was further processed using the 

SLIDINGWINDOW method, which reduced the number of reads by another 77 Million. 

However, this analysis step also substantially improved read quality, as visualized in Figure 24 

and Figure 27. The final dataset (including the additional processing step for Lane 3), 

comprised 1.8 billion read pairs with an average read length of 120 bp, ranging from 60 bp to 

125 bp. The average duplication rate amounted to 17,5% across all lanes, and forward read 

datasets still had a higher percentage of duplicated reads than the reverse read datasets (25,2% 

vs 8,8%) (Table 2). The proportion of reads with a quality score at or above 30 increased by 

3% to 77,6%. The per tile quality heat maps generated by FastQC showed some improvement, 

but this module still failed for all lanes (Figure 24E-F). The effect of the PE-Method 2 quality 

processing on the per-base sequence content plot was minimal (Figure 25E-F). The module 

failed for 8 of the 12 datasets (Figure 25E); for the reverse reads of Lanes 1, 2, 3 and 5 the 

message changed from "failed" to "warning" (implying that the difference between the A and 

T, and the G and C contents were now between 10% and 20% throughout the length of 

sequences for these reads) (Figure 25F). The average GC content was 36,1%, and the smaller 

peak was again observed at 66% (Figure 26E-F). 
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Figure 27: Comparison of the per base sequence quality plots generated by FastQC for Lane 3 before, 

and after using SLIDINGWINDOW: A) forward PE-Method 2 processed reads, B) reverse PE-

Method 2 processed reads, C) forward reads processed using PE-Method 2 plus 
SLIDINGWINDOW:4:17, D) reverse reads processed using PE-Method 2 plus 

SLIDINGWINDOW:4:17. Reads represented by C) and D) were used for downstream analysis. 

3.1.3. HiSeq mate-pair data 

Two mate pair libraries, a 3 kb library (MP3; target insert size of 3,000 bp), and an 8 kb library 

(MP8; target insert size of 8,000 bp), had been constructed by the service provider and 

sequenced using HiSeq using one lane per library. All quality evaluation analysis results are 

provided in Table 3. In total, nearly 300 million read pairs with an average read length of 92 

bp (35 bp - 101 bp) were generated. However, 73% of the reads were duplicates. Less than 4% 

of the reads in the 8 kb insert library (MP8) were unique (Figure 28). Read quality for the mate 

pair library was quite high: the proportion of reads with a quality score at or above 30 were 

91% (MP3) and 81% (MP8) (Table 3), and the per-base sequence quality ranged between a 

Phred score of 30 and 40 (Figure 29A-B). The per base sequence content module failed for all 

four datasets, although the differences in the A and T, and the G and C contents at the 

beginnings and ends of the reads were not very high (Figure 30A-B and Figure 31A-B). Only 

a small number of tiles were flagged by the per tile sequence quality module of FastQC in any 

of the datasets (Figure 32). The average GC% of both libraries was 36,0%. The GC content 

plots indicated that both libraries contained a high percentage of reads with <1% GC; and that 

the average GC content of the reads was 36,0% (Figure 33A-B). In both libraries, many reads 

still contained the Nextera transposase adapter sequence (Figure 34A-B), and had high 

proportions of undetermined bases (Ns) within the first 34 bases (7,8% for MP3 and 16% for 

MP8; Figure 35A-B). 
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Table 3: General statistics generated by MultiQC, indicating percent duplicates, percent GC, average sequence length, percentage fails and total 

sequences for forward and reverse reads for both the MP libraries. 

Dataset Lane 
Number of 

reads 

Read length 

range (bp) 

Average 

read length 

(bp) 

Duplicates 

(%) 
GC (%) 

Reads with mean quality 

score of 30 and above (%) 

Raw 3 kbp 93 213 534 35 - 101 94,5 49,8 36,0 90,5 
 8 kbp 201 478 550 36 - 101 89,2 96,1 36,0 80,9 

MP-Method 1 3 kbp 60 154 150 40 – 101 91,3 43,9 36,0 98,2 

 8 kbp 112 968 692 40 – 101 91,2 93,9 35,0 96,4 

MP-Method 2 3 kbp 30 388 300 25 - 151 67,3 10,0 36,0 99,1 

 8 kbp 51 964 340 25 - 166 67,5 17,1 35,0 97,9 

MP-Method 2 and trimmed 8 kbp 51 963 434 2 - 127 67,4 16,7 35,0 98,0 
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Figure 28: Graph generated by MultiQC shows the comparison of the number of reads from libraries 

MP3 and MP8. The unique reads are shown in blue, and the duplicate reads are shown in black.  

 

Figure 29: Results compiled using MultiQC of the mean quality value across each base position in 

the forward and reverse reads for the: A) MP3 raw reads, B) MP8 raw reads, C) MP3 MP-Method 1 

reads, D) MP8 MP-Method 1 reads, E) MP3 MP-Method 2 reads, and F) MP8 MP-Method 2 reads. 

G) MP8 MP-Method 2 + Trimmed reads. 
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Figure 30: Comparison of the per base sequence content plots of MP3 generated by FastQC : A) raw 

forward reads, B) raw reverse reads, C) MP-Method 1 forward reads, D) MP-Method 1 reverse reads, 

E) MP-Method 2 forward reads, and F) MP-Method 2 reverse reads. 

 

Figure 31: Comparison of the per-base sequence content plots of MP8 generated by FastQC: A) raw 

forward reads, B) raw reverse reads, C) MP-Method 1 forward reads, D) MP-Method 1 reverse 

reads, E) MP-Method 2 forward reads, and F) MP-Method 2 reverse reads. 
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Figure 32: Per tile sequence quality plots generated by FastQC for the raw mate pair libraries. A) 

MP3 forward reads, B) MP3 reverse reads, C) MP8 forward reads, D) MP8 reverse reads. 

 

 

Figure 33: Comparison of the per sequence GC content plots for the forward reads of MP3 and MP8, 

generated by FastQC. A) MP3 raw reads, B) MP8 raw reads, C) MP3 MP-Method 1 reads, D) MP8 

MP-Method 1 reads, E) MP3 MP-Method 2 reads, and F) MP8 MP-Method 2 reads. The blue line 

indicates the theoretical distribution, and the red line shows the actual GC count per read. 
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Figure 34: MultiQC results of the adapter content plots of each mate pair library, which show the 

presence of the Nextera transposase sequence. In each plot, the blue lines indicate forward reads and 
the black lines indicate reverse reads. A) raw MP3 reads, B) raw MP8 reads, C) MP-Method 1 MP3 

reads, and D) MP-Method 1 MP8 reads. MultiQC reported that no adapters were present for either 

MP3 or MP8 MP-Method 2 processed reads (not shown in the figure). 

 

Figure 35: MultiQC results of the percentage of base calls at each position of reads for which 

an N was called. A) raw MP3 reads, B) raw MP8 reads, C) MP-Method 1 MP3 reads, D) MP-Method 

1 MP8 reads, E) Method 2 MP3 reads, F) MP-Method 2 MP8 reads, and G) MP8 MP-Method 2 + 

Trimmed reads. 

 

Quality processing using MP-Method 1 (only Trimmomatic) resulted in a loss of 35,5% of read 

http://etd.uwc.ac.za/ 
 



51 
 

pairs from MP3, and 43,9% of the read pairs from MP8 (Table 3). The range of read lengths 

for both mate pair libraries improved (40 - 101 bp), but the average read length did not change 

(91 bp). Quality trimming decreased the proportion of duplicated reads in the datasets by 6% 

in MP3 and by 2% in MP8. The percentage of reads with a mean quality at or above 30 

increased by 8% and 16% in the MP3 and MP8 libraries, respectively. The per base sequence 

content plot changed minimally, and the last base pair position still had >20% deviation 

between the A and T content (Figure 31C-D). The per tile sequence quality remained mostly 

unchanged for both mate pair libraries. Quality processing effectively removed the low GC 

content reads without affecting the average GC content (36,0% in MP3 and 35,0% in MP8; 

Table 3). The small peak at 66% GC content was now visible in the mate pair data (Figure 

33C-D). The Nextera transposase sequence was still detected in up to 1,5% of the reads (Figure 

34C-D), but the proportion of N's decreased to 0% for all forward and reverse reads of both 

libraries (Figure 35C-D). 

 

Quality processing using MP-Method 2 (lmp_processing script from w2rap) reduced the mate 

pair datasets to 30 million mate pairs for MP3 and 52 million mate pairs for MP8. Read lengths 

were drastically reduced, now averaging only 67 bp and ranging between 25 bp to 166 bp. The 

proportion of duplicated reads decreased to 10% in MP3, and 17% in MP8 (Table 3). Nearly 

all reads had a Phred score at or above 30 throughout the entire sequence; only in the forward 

read dataset of the MP8 library the average per-base quality substantially decreased after the 

137 base (Figure 29F). The per base sequence content module failed for all four datasets: in 

both libraries, a substantial deviation between A% and T% after the 80th position in the reads 

was observed (Figure 30E-F and Figure 31E-F). The per tile sequence quality information was 

not present after processing; the reason remains unknown. The quality-filtered datasets did not 

contain low GC% reads, and the average GC content was 36,0%, with a small peak discernible 

in the 66% region (Figure 33E-F). Nextera transposase adapters were not found in the sequence 

data after processing. The proportion of N's were undetectably low at the beginning of the 

sequences (first 34 bases), but increased in the forward read dataset of MP8 after the 142 base, 

reaching a maximum of 80% at base 152 (Figure 35F). To address low quality read ends, the 

MP8 library datasets were further processed using Trimmomatic (v0.36) to trim all reads to a 

maximum length of 127 bp, which substantially improved the mean quality per base (Figure 

29G) and reduced the proportion of N's at the read ends (Figure 35G). Due to the low quality, 

and effort required from the MP8 library, these datasets were excluded in the subsequent 

analyses. The MP3 library processed using MP-Method 2 was used in downstream analysis 
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and will be referred to as MP3-QP. 

3.2. Investigation of genome characteristics 

The rooibos genome sequencing data was used to predict genome characteristics, including 

genome size, level of heterozygosity, and repeat content, computationally. BBNorm was 

employed to produce k-mer histogram files for four datasets (MiSeq-Raw, MiSeq-QP, COMP-

Raw, and COMP-QP, where COMP represents the combined MiSeq and HiSeq datasets and 

QP represents the quality filtering PE-Method 2) at different k-mer values (k19, k23, k27, k47). 

Subsequently, three programs (GenomeScope, FindGSE, BBNorm) were compared for their 

ability to estimate the above genomic parameters. Since the program KAT does not permit 

external histogram files as input, it was used to generate the histograms for the same datasets 

and to estimate genome size and heterozygosity levels. 

3.2.1. K-mer spectra graphs 

The programs KAT, GenomeScope, and FindGSE, produce k-mer spectra graphs that visualize 

k-mer frequency distributions, providing first information about sequence quality and genome 

characteristics. Figure 36 shows the results for the COMP-Raw and the COMP-QP datasets at 

k19 obtained using the programs KAT, GenomeScope2, and FindGSE (the other spectra graphs 

are provided under Supplementary Material: Supplementary Figures 1-7). All graphs 

visualized three peaks, irrespective of the dataset and k-mer value.  

 

 

Figure 36: The effect of quality processing on k-mer spectra graphs. Results from the programs KAT, 

GenomeScope2, and FindGSE at k19. Histogram files were generated by KAT using the COMP-Raw 

and COMP-QP datasets. A) KAT COMP-Raw, B) GenomeScope2 COMP-Raw, C) FindGSE COMP-

Raw. D) KAT COMP-QP, E) GenomeScope2 COMP-QP, and F) FindGSE COMP-QP. 

 

The first peak corresponds to low-frequency k-mers, which are associated with sequencing 
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errors. In the raw datasets, their numbers ranged between 24 billion and 43 billion. In the 

processed datasets, there were 14 billion to 17 billion k-mers, reflecting effective reduction of 

erroneous k-mers due to read processing. Depending on the dataset, the lowest point of the first 

valley appeared at 22x to 48x k-mer coverage. At this point, a lower coverage indicates a 

narrower first peak, which is associated with fewer erroneous k-mers. Increasing the k-value 

reduced the k-mer coverage value for the lowest point of the first valley, shifting it to the left 

of the graph (Figure 37). This was observed for both the raw and the processed datasets, 

respectively. The effect of read processing on the k-mer coverage differed depending on the k-

value: at k19, the processed reads had 5x lower k-mer coverage; at k47, the processed reads 

had 5x higher coverage than that of the raw reads. In addition to the graphs, the program 

GenomeScope2 provided numeric values: at k19, the error rate was 0,93% for raw and 0,44% 

for processed reads, and at k47 these numbers were 0,66% for raw and 0,27% for processed 

reads. These values do not correspond with the above values calculated manually. The 

maximum error rate calculated by GenomeScope2 (0,93%) was therefore below the maximum 

acceptable error rate of 2% suggested in the GenomeScope1 paper as a threshold for k-mer 

analysis (Vurture et al., 2017b). 

 

 

Figure 37: The effect of k-value on k-mer spectra graphs. Results from the programs KAT, 

GenomeScope2, and FindGSE at k19 and k47. Histogram files were generated by KAT using the 

COMP-QP dataset. A) KAT k19, B) GenomeScope2 k19, C) FindGSE k19, D) KAT k47, 

E) GenomeScope2 k47, and F) FindGSE k47. 

 

The second and third peaks in the k-mer graphs represented k-mers from the heterozygous and 

homozygous genome locations, respectively. In all graphs, the second peak was notably higher 

than the third peak, indicating that the rooibos genome is highly heterozygous. Increasing the 

k-value shifted the second and third peaks to the left of the graph, as seen in the KAT and 

FindGSE k-mer spectra graphs (Figure 37). Moreover, choosing higher k-values also increased 
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heterozygous content, simultaneously reducing homozygous content (causing peak three to 

shift towards peak two) and lowered high copy k-mer numbers in the tail of the graph. At k47, 

the second valley was basically non-existent due to the substantial overlap of peaks two and 

three. In contrast, quality processing of reads shifted the second and third peaks to the right, 

best seen in the KAT output (Figure 36A and D).  

 

In the linear graphs, no further peaks were observed, although the frequency histogram 

included k-mers at extremely high coverage (up to 900000x). GenomeScope (v1 and v2)  also 

generates a logarithmic k-mer graph, which visualized additional peaks in the high-k-mer 

coverage regions of the graphs (Figure 38). These additional peaks were observed in all 

investigated datasets at all k-mer values. Two small peaks (arrows in Figure 38) are present in 

all four graphs at k19 and k47 of processed and raw datasets. The first peak is present between 

1,000x and 10,000x, and the second peak is present around 100,000x (between 1e+04 and 

1e+06). With an increase in k-value, both peaks shift towards the left of the graph.  

 

 

Figure 38: Log-scale graphs generated by GenomeScope2 using the BBNorm-generated histogram 

files for: A) COMP-Raw at k19, B) COMP-Raw at k47, C) COMP-QP2 at k19, and D) COMP-QP2 at 

k47. 

3.2.2. Genome size estimation 

Genome size was estimated using five methods, including the four dedicated programs KAT, 

GenomeScope, FindGSE, and BBNorm, and a simple formula first introduced by the research 

group of M. S. Waterman. For each analysis method, the effects of 1) sequence subset vs 

complete dataset, 2) k-mer size, and 3) raw vs quality-filtered data were investigated. The 
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results are provided in Table 4.  

 

The performance of GenomeSope (both v1 and v2) was strongly affected by parameter settings: 

the rooibos genome size estimates varied from 0,51 Gb to 1,01 Gb. The most influential 

parameter was the cutoff threshold for maximum k-mer coverage (CovMax). Increasing the 

threshold from 1k (default setting of GenomeScope v1) to 10k or 900k resulted in average 

increases of genome size estimates by 0,14 Gb and 0,33 Gb, respectively. Genome size 

estimates also increased with increasing k-mer size. The differences were higher at the lower 

CovMax settings, ranging from 0,17 Gb at 1k to 0,01 Gb at 900k. For GenomeScope, the effects 

of using the MiSeq subsets vs complete datasets and raw vs quality processed data were small 

(<0.10 Gb). FindGSE predicted a rooibos genome size of 1,06 ± 0.03 Gb (averaged over all 

tested parameters). With this program, the differences between the MiSeq subset and 

corresponding values in the complete dataset were small (ranging from 0,01 Gb to 0,09 Gb). 

Increasing k-mer size only marginally increased genome size estimates (max by 0,04 Gb), and 

differences between raw and quality processed datasets were also small (max 0,04 Gb). 

BBNorm estimated a rooibos genome size of 1,08 ± 0,03 Gb. The differences between the 

MiSeq subset and the complete dataset were minimal (varying from 0,00 to 0,06 Gb, with 

higher estimates obtained for the MiSeq dataset). An increase in k-mer size increased genome 

size estimates by only 0,05 Gb. Differences between quality processed and raw datasets 

amounted to a maximum of 0,04 Gb. When using the formula, the rooibos genome size estimate 

amounted to 1,03 ± 0,04 Gb. The effects of dataset size, k-mer size and data quality were also 

small (at most 0,08 Gb, 0,05 Gb, and 0,04 Gb, respectively). The choice of histogram file 

(BBNorm or KAT) did not substantially affect the above results: on average, the values differed 

by 0,004 ± 0,016 (Supplementary Table 1). Therefore, the results obtained using KAT are 

comparable with those described above. When averaged across all datasets, KAT predicted the 

largest genome size, but also showed the highest standard deviation (1,18 Gb ± 0,22 Gb). This 

was mainly due to the large effect of the k-mer size: genome size estimates ranged between 

0,93 at k19 and 1,49 at k47. The effects of dataset size and quality processing were minor (0,10 

Gb and 0,05 Gb, respectively). 
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Table 4: Genome size estimates for rooibos (in Gb) using raw and quality processed Illumina data. 

  K19 K23 K27 K47     

MiSeq (0,6 Billion read pairs) Raw QP Raw QP Raw QP Raw QP Average SD 

GenomeScope v1 (CovMax 1k) 0,53 0,52 0,59 0,58 0,63 0,62 0,74 0,74 0,62 0,08 

GenomeScope v2 (CovMax 1k) 0,53 0,51 0,58 0,56 0,61 0,60 0,73 0,73 0,61 0,08 

GenomeScope v1 (CovMax 10k) 0,71 0,69 0,75 0,74 0,78 0,77 0,85 0,85 0,77 0,06 

GenomeScope v2 (CovMax 10k) 0,70 0,69 0,74 0,72 0,76 0,75 0,84 0,83 0,76 0,06 

GenomeScope v1 (CovMax 900k) 1,00 0,97 1,00 0,97 1,01 0,98 1,00 0,97 0,99 0,02 

GenomeScope v2 (CovMax 900k) 1,00 0,96 0,99 0,96 0,99 0,96 0,99 0,96 0,98 0,02 

FindGSE 1,01 1,04 1,10 1,04 1,03 1,05 1,04 1,06 1,05 0,03 

BBNorm 1,07 1,04 1,08 1,04 1,08 1,05 1,11 1,07 1,07 0,02 

Formula 1,07 1,02 1,06 1,01 1,06 1,02 1,00 0,97 1,03 0,03 

KAT* 1,00 1,01 1,14 1,13 1,22 1,13 1,59 1,57 1,17 0,23 

MiSeq + HiSeq (1,9 Billion read 

pairs) Raw QP Raw QP Raw QP Raw QP Average SD 

GenomeScope v1 (CovMax 1k) 0,60 0,60 0,64 0,64 0,67 0,67 0,74 0,75 0,66 0,06 

GenomeScope v2 (CovMax 1k) 0,59 0,59 0,63 0,63 0,66 0,66 0,74 0,74 0,66 0,06 

GenomeScope v1 (CovMax 10k) 0,76 0,76 0,79 0,79 0,81 0,81 0,84 0,85 0,80 0,03 

GenomeScope v2 (CovMax 10k) 0,76 0,76 0,79 0,79 0,80 0,80 0,83 0,84 0,80 0,03 

GenomeScope v1 (CovMax 900k) 0,97 0,97 0,97 0,97 0,97 0,97 0,95 0,95 0,97 0,01 

GenomeScope v2 (CovMax 900k) 0,97 0,96 0,97 0,96 0,96 0,96 0,94 0,94 0,96 0,01 

FindGSE 1,05 1,06 1,08 1,06 1,08 1,09 1,13 1,11 1,08 0,03 

BBNorm 1,05 1,06 1,08 1,06 1,08 1,09 1,14 1,13 1,09 0,03 

Formula 1,07 1,03 0,98 0,97 1,08 1,06 1,01 1,02 1,03 0,04 

KAT* 0,91 0,94 1,09 1,14 1,18 1,19 1,49 1,48 1,18 0,22 

K19–K47: k-mer sizes; QP: Quality Processed; CovMax: cutoff threshold for maximum k-mer coverage (varied for GenomeScope from 1k to 900k, 900k 

for FindGSE and BBNorm); SD: Standard Deviation.   

*Note: All results were generated from BBNorm files except the KAT results 
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3.2.3. Heterozygosity 

The programs GenomeScope, FindGSE, BBNorm and KAT were used to estimate 

heterozygosity in the rooibos genome sequencing data (Table 5). As indicated by the k-mer 

spectra graphs, rooibos appears to be very heterozygous: the average heterozygosity rate was 

2,28 ± 0,37 %. However, the choice of program, quality processing of the reads and k-mer size 

had an impact.  

 

The most consistent results were obtained with GenomeScope, where heterozygosity rates 

varied between 2,02% and 2,67%. The differences were mostly associated with the choice of 

the version (v1 estimates were on average 0,12% higher than v2 estimates), and with the k-mer 

size (the higher the k-mer, the lower the estimate; the difference between k19 and k47 

amounting to 0,43%). Quality filtering of the reads and increasing CovMax reduced 

heterozygosity rates at most by 0,03%. For FindGSE, heterozygosity rates ranged between 

1,15% and 2,89%. As with GenomeScope, increasing k-mer sizes decreased the estimates 

(from an average of 2,41% at k19 to an average of 1,27% at k47). With this program, quality 

processing of the reads reduced heterozygosity rate estimates by up to 0,43%. The average 

heterozygosity rate obtained using BBNorm (1,68 ± 0,10 %) was lower than with the above 

programs. In contrast to the above programs, estimates increased with increasing k-mer size. 

At k47, BBNorm predicted a haploid genome, and heterozygosity rates were not calculated. 

Quality processing of the reads had negligible effects, increasing the estimates on average by 

0,03%. The heterozygosity rates calculated by KAT were substantially lower than the rates 

calculated by the other programs, ranging between 0,00% and 0,05%. These KAT results were 

in stark contrast to the information indicated by the KAT k-mer spectra, where the height of 

the second peak indicated a high heterozygosity rate. 
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Table 5: Heterozygosity rate estimates for rooibos (in Gb) using raw and quality processed Illumina data. 

  K19 K23 K27 K47     

MiSeq + HiSeq (1,9 Billion read 

pairs) Raw QP Raw QP Raw QP Raw QP Average SD 

GenomeScope v1 (CovMax 1k) 2,67 2,58 2,64 2,58 2,55 2,51 2,25 2,34 2,51 0,15 

GenomeScope v2 (CovMax 1k) 2,57 2,54 2,53 2,49 2,42 2,39 2,04 2,03 2,38 0,22 

GenomeScope v1 (CovMax 10k) 2,62 2,55 2,60 2,54 2,51 2,47 2,22 2,29 2,47 0,15 

GenomeScope v2 (CovMax 10k) 2,57 2,53 2,52 2,49 2,42 2,38 2,03 2,02 2,37 0,22 

GenomeScope v1 (CovMax 900k) 2,60 2,54 2,58 2,53 2,50 2,46 2,20 2,27 2,46 0,15 

GenomeScope v2 (CovMax 900k) 2,57 2,53 2,52 2,49 2,42 2,38 2,03 2,02 2,37 0,22 

FindGSE 2,89 1,92 1,78 1,84 2,25 1,69 1,39 1,15 1,86 0,53 

BBNorm 1,54 1,57 1,71 1,74 1,73 1,76 N/A (0) N/A (0) 1,68 0,10 

KAT 0,00 0,03 0,01 0,00 0,03 0,05 0,03 0,02 0,02 0,02 

*Note: All results were generated from BBNorm files except the KAT results        
 

 

 

Table 6: Estimated repeat content for rooibos (in %) using raw and quality processed Illumina data. 

  K19 K23 K27 K47     

MiSeq + HiSeq (1,9 Billion read pairs) Raw QP Raw QP Raw QP Raw QP Average SD 

GenomeScope v1 (CovMax 1k) 34,20 33,96 30,76 30,01 30,15 29,28 32,15 32,20 31,59 1,72 

GenomeScope v2 (CovMax 1k) 36,44 35,03 32,23 30,83 31,23 30,00 33,52 32,74 32,75 2,04 

GenomeScope v1 (CovMax 10k) 50,96 50,98 45,88 45,36 43,82 43,07 41,28 40,82 45,27 3,67 

GenomeScope v2 (CovMax 10k) 52,66 51,83 47,10 46,09 44,77 43,76 42,52 41,37 46,26 3,86 

GenomeScope v1 (CovMax 900k) 65,25 64,96 59,77 58,71 56,67 55,19 50,16 48,51 57,40 5,73 

GenomeScope v2 (CovMax 900k) 65,67 65,60 60,72 59,33 57,47 55,80 51,26 49,04 58,11 5,66 

FindGSE 57,47 57,57 52,61 50,88 47,78 46,41 36,42 33,98 47,89 8,25 

BBNorm 69,67 69,08 64,39 63,38 60,85 59,60 50,78 48,24 60,75 7,30 

KAT* N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

*KAT does not calculate repeat content.           
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3.2.4. Repeats 

Repeats are defined as sequences within a genome that occur more than 2x (for a diploid 

organism). The repeat content of the rooibos genome was estimated using the programs 

GenomeScope, FindGSE, and BBNorm (Table 6). 

 

The average repeat content predicted by GenomeScope (across both versions) was 45,23 ± 

11,35%, version choice affecting the results by at most 0,68%. The most influential parameter 

was CovMax. Increasing the threshold from 1k to 10k and 900k increased predicted repeat 

contents by 13,60% and 25,59%, respectively. At CovMax 900k, the average repeat content 

amounted to 57,76 ± 5,54%. At CovMax 10k and 900k, k-mer size also substantially affected 

repeat content predictions. As the k-mer size increased from k19 to k47, predicted repeat 

contents decreased on average by 2,26% (1k), 10,11% (10k), and 15,63% (900k). In contrast, 

the effect of quality processing was negligible, the largest difference amounting to 1,34%. 

 

The average repeat content predicted by FindGSE was 47,89 ± 8,25%. The estimates were 

substantially affected by k-mer length: predicted repeat contents decreased from 57,52% at k19 

to 35,20% at k47. Quality processing again had little effect, reducing the values by max 1.36%. 

BBNorm predicted the highest repeat content for the rooibos genome (on average 60,75 ± 

7,81%), when compared to the other methods. As observed with GenomeScope and FindGSE, 

increasing the k-mer size decreased the estimates, the highest difference amounting to 19,87% 

(k19 vs k47). Quality processing again had only minor effects, reducing the predicted repeat 

contents by at most 1,35%. 

 

When taking into consideration only the 900k histograms, the mean predicted repeat content 

(averaged across the three programs, data processing, and k-mer lengths) for the rooibos 

genome was 56,04% ± 8,52%. The effects of quality processing of the data were negligible 

(1,27%), but the effect of k-mer length substantial (max 18,36% between k19 and k47). 
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3.3 Draft genome assembly analysis   

3.3.1 Assembler tests 

The first aim was to identify assemblers, that would complete analyses of a data subset 

(comprising one or two lanes of the HiSeq paired-end dataset and the quality processed data 

from MP3) and/or the entire quality processed Illumina sequencing dataset (including the 

MiSeq and HiSeq data from the 300 bp insert library and the HiSeq data from MP3) on the 

SANBI and/or the CHPC clusters within a suitable period. Table 7 provides an overview of the 

used programs, program requirements, and successful/unsuccessful runs. Six programs were 

tested using data subsets, namely ALLPATHS-LG, MaSuRCA, IDBA, SOAPdenovo 2, 

ABySS 2.0, and Platanus. 

Two programs, ALLPATHS-LG and MaSuRCA, did not complete the analyses. ALLPATHS-

LG had problems with allocating memory. It was using only 140 GB of RAM and 32 cores, 

although access to 500 GB of RAM and 32 cores was provided. A range of output files were 

either truncated or not created at all, leading to program termination. Even stepwise creation of 

the input files (first creating the cache libraries, then creating the cache groups, and then 

creating the input files for the program) did not alleviate the problem. Subsequently, it was 

discovered that ALLPATHS-LG only accepts overlapping read pairs, which was not 

immediately clear from the description in the manual ("paired reads of length ~100 bases from 

fragments of 180 bp" http://software.broadinstitute.org/allpaths-lg/blog/?page_id=215). With 

an insert size of 300 bp and an average read length of approximately 100 bp, few read pairs of 

the small insert library were expected to overlap. Although error and output files indicated 

which files were missing, determining the cause as to why these files were not created or why 

they were truncated was hard. Surprisingly, despite program failure, ALLPATHS-LG 

produced a large amount of output data (nearly 1 TB). Support for ALLPATHS-LG is located 

on a Google Groups page, and feedback on queries range from days to months, with some 

queries not being answered at all. An advantage of this program is that it can be rerun from 

wherever it terminated.

http://etd.uwc.ac.za/ 
 

about:blank
about:blank


61 
 

Table 7: Results from the assembler tests on a subset or complete datasets for six assembly programs. 

Subset dataset             

Program ALLPATHS-LG MaSuRCA IDBA SOAPdenovo2 AbySS 2.0 Platanus 

Server SANBI SANBI CHPC CHPC CHPC SANBI 

Dataset 

HiSeq L3 & L5, & 

MP3 

MiSeq 1 & 2, & 

MP3 L6 

HiSeq L3 & L5, & 

MP3-QP 

HiSeq L3 & L5, & 

MP3-QP 

HiSeq L3 & L5, & 

MP3-QP 

Data type QP-1 QP-1 QP 1 Raw, QP 1 and QP Raw, QP 1 and QP Raw, QP 1 and QP 

Completion of analysis No No Yes Yes Yes Yes 

Amount of data generated N/A N/A N/A 74 GB 37 GB 4,5 GB 

Time (hours) N/A 357,4 30,44 14,2 8,6 N/A 

Number of cores (CPU 

efficiency) 32 24 112 (34% efficacy) 32 (16% efficiency) 32 (71% efficiency) 32 

Memory requirements >500 GB 170,8 GB 193,8 GB 233,32 GB 252,33 GB 359,7 GB 

Complete dataset       

Program SOAPdenovo2 AbySS 2.0 Platanus       

Server CHPC CHPC CHPC    

Dataset Complete Complete Complete    

Data type QP QP QP    

Completion of analysis Yes Yes Yes    

Amount of data generated 409 GB 43 GB 15 GB    

Time (hours) 36,58 hours 22,55 hours 74 hours    
Number of cores (CPU 

efficiency) 

56 (17% 

efficiency) 

56 (69% 

efficiency) 

56 cores (64% 

efficiency)    

Memory requirements 602 GB 908 GB 747.9 GB       
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MaSuRCA was the second program that did not run to completion even with a subset of the 

data. This program requires a configuration file, and information on how to prepare the 

configuration file is available online. The input files can be submitted as multiple compressed 

paired-end FASTQ files. The subset analysis used 24 cores and 171 GB RAM, and ran for 357 

hours, generating a large number of folders and output files. The error and output files were 

not helpful in determining why the program was not completing the analyses. These files 

pointed to directories and files that would be helpful for troubleshooting, but the content in 

those files was very technical and required such extensive technical knowledge on the program 

that problems could not be addressed. MaSuRCA is available and supported on GitHub 

(https://github.com/alekseyzimin/masurca), but many of the queries on the page remain 

unanswered. MaSuRCA is able to be restarted where it was terminated. 

IDBA proved to be a very cumbersome program: it permits only one unzipped fasta-formatted 

input file. This implied 1) unzipping of all four files, 2) reformatting them to fasta format, 3) 

concatenating the complementary forward and reverse read datasets to generate one file per 

lane with interleaved read pairing, and 4) concatenating the resulting output files into one. 

Identification of this problem was difficult, because neither the manual nor the error messages 

were informative in this regard. IDBA successfully completed the analysis with one data 

subset, using 193,8G RAM and 56 cores (34% efficiency) and taking 30 hours to complete. 

However, due to the challenging requirements for data input, this program was not used to 

analyze the complete dataset. 

SOAPdenovo2 completed the analyses with all investigated datasets, requiring between 14 to 

30 hours for genome assembly. The program requires configuration of an input file, where 

certain parameters such as insert size, as well as the location and names of datasets, are 

provided. Multiple datasets can be provided, and the datasets can be left zipped. While memory 

usage was similar to that of other programs, the amount of output data was 2-30 fold higher, 

reaching 0,4 TB with the complete datasets. Output files included contig and scaffold 

sequences, as well as files which provided information on edges, read location on contigs, reads 

likely to be located in gaps (which can be used to close gaps), the position of contigs in 

scaffolds, info on contigs that form bubble structures in scaffolds, files that can be used to 

resolve short repeats, and statistics for the pre-graph step, as well as contigs. There was almost 

no support for SOAPdenovo2. Problems encountered during the use of the program were 

submitted to GitHub and emailed directly to the creator, but were never addressed. The 
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program was initially indicating segmentation fault errors with the complete dataset, and 

neither me, nor the CHPC support team could resolve the problem. Care was taken to ensure 

that the configuration file had been set up correctly. Several months later, the program was 

successfully rerun, and it worked consistently thereafter. The cause and fix of the problem were 

never identified. Another setback was that it could not be restarted where it had left off 

previously. 

ABySS 2.0 also completed assemblies with all tested datasets. This program required the most 

amount of RAM (up to 908 GB) and used the highest number of cores at high efficiency (56 

cores, 69% efficiency). This may explain the comparatively short running time. It was easy to 

understand and run the program, with clear examples given on the GitHub page. The support 

was very good, as all queries were answered. Another positive aspect of ABySS 2.0 was that 

it could be rerun from where it last terminated. The amount of output data was independent of 

the input dataset, averaging 40 GB. Descriptions for the output files generated by AbySS can 

be found on the wiki page at https://github.com/bcgsc/abyss/wiki/ABySS-File-Formats.  

Platanus was the third assembler that successfully completed analyses of all datasets. It requires 

input of decompressed, paired-end FASTQ files. The analysis is conducted in three distinct 

steps (assembly of contigs, scaffolding, and gap-closing) and is comparatively time-

consuming: assembly of the entire assembly required 74 hours. Platanus produced the least 

amount of output data (~5 GB for the subsets and ~15 GB for the whole dataset). Output data 

included the assembled contig, scaffold and gap-closed scaffold sequences, the merged and 

removed bubble sequences, a table describing contig joins, and a k-mer frequency distribution 

file. During the analysis, a log file informed on the progress of the analysis at each step, 

providing information on the memory usage. Due to the step-wise analysis, the program can 

be restarted, given the completion of a step.  

3.3.2. Comparison of genome assemblies 

For the assembly of the complete rooibos genome data, Platanus, ABySS 2.0, and 

SOAPdenovo 2 were run using two k-mer values (k41 and k71) on the quality processed 

datasets (COMP-QP and MP3-QP). Assembly quality was assessed by comparing length 

statistics, BUSCO results, QUAST-LG gene prediction results, and "assembly spectra copy 

number plots" or spectra-cn plots produced by the KAT comp tool. The results are displayed 

in Figure 39 and Table 8A and B
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Figure 39: KAT spectra-cn plots comparing the PE-QP reads to the six assembly scaffolds. Plots were generated using k=27. The colour of the plots indicate how many times 
k-mers from the reads appear in each assembly. Black indicates k-mers missing from the assembly, red indicates k-mers that are present once in the assembly, green, twice, 

etc..  
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Table 8A: Assembly scaffold statistics generated by QUAST-LG, with the minimum scaffold length set to 1 kbp 

Assembly Abyss-71 Abyss-41 Platanus-71 Platanus-41 Soapdenovo2-71 Soapdenovo2-41 

Number of scaffolds 138 266 65 664 186 411 170 125 258 027 27 349 

N50 3 257 2 539 9 470 10 568 4 092 1 444 

NG50 - - 7 304 7 766 2 393 - 

N75 2 032 1 722 4 327 4 748 2 086 1 172 

NG75 - - 1 819 1 632 - - 

Largest contig 35 754 23 448 177 918 144 124 74 616 7 692 

Number contigs > 10k bp 1 861 237 25 287 25 593 9 316 0 

Number contigs > 50k bp 0 0 221 306 4 0 

Number contigs > 100k bp 0 0 9 9 0 0 

# N's per 100 kbp 47 155 8 610 8 210 15 994 2 

Total length 387 767 872 153 762 673 922 263 025 899 383 410 784 509 931 40 604 886 

Complete BUSCO (%) 45,21 32,01 51,49 69,97 12,87 5,28 

Partial BUSCO (%) 22,11 20,13 20,46 13,86 14,19 6,6 

Complete + partial 67,32 52,14 71,95 83,83 27,06 11,88 

Missing BUSCOs (%) 32,67 47,85 28,05 16,17 72,94 88,12 

# predicted genes (unique) 114 323 51 311 229 718 217 824 126 682 18 708 

# predicted genes (>= 0 bp) 115 731 51 228 230 000 217 892 133 539 18 412 

# predicted genes (>= 300 bp) 64 831 31 854 145 268 140 307 45 875 10 788 

# predicted genes (>= 1500 bp) 16 020 9 365 29 801 31 607 6 469 1 037 

# predicted genes (>= 3000 bp) 5 300 2 836 9 048 10 837 1 484 99 
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Table 8B: Assembly contig statistics generated by QUAST-LG, with the minimum contig length set to 1 kbp. 

Assembly Abyss-71 Abyss-41 Platanus-71 Platanus-41 Soapdenovo2-71 Soapdenovo2-41 

Number of contigs 139 682 67 148 247 381 231 773 116 230 27 346 

N50 3 203 2 426 4 696 4 970 564 1 443 

NG50 - - 3 171 3 212 139 - 

N75 2 017 1 668 2 391 2 505 262 1 172 

NG75 - - 1 030 - - - 

Largest contig 35 754 21 191 69 460 65 547 17 843 7 692 

Number contigs > 10k bp 1 673 166 11 308 11 978 107 0 

Number contigs > 50k bp 0 0 8 8 0 0 

Number contigs > 100k bp 0 0 0 0 0 0 

# N's per 100 kbp 2 10 3 4 6 0 

Total length 387 367 308 151 993 878 832 658 333 811 621 596 200 796 213 40 598 836 

Complete BUSCO (%) 44,22 29,70 39,93 58,42 9,24 5,28 

Partial BUSCO (%) 22,77 20,13 25,08 20,79 10,56 6,60 

Complete + partial 66,99 49,83 65,01 79,21 19,80 11,88 

Missing BUSCOs (%) 33,00 50,17 34,98 20,79 80,20 88,12 

# predicted genes (unique) 114 898 52 164 253 145 241 463 144 217 18 707 

# predicted genes (>= 0 bp) 116 305 52 065 254 027 241 902 144 849 18 411 

# predicted genes (>= 300 bp) 64 996 32 102 149 795 144 341 43 220 10 788 

# predicted genes (>= 1500 bp) 15 936 9 091 27 697 29 754 3 520 1 037 

# predicted genes (>= 3000 bp) 5 177 2 564 6 486 8 816 721 99 
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The best assemblies were generated by the program Platanus. In comparison to ABySS 2.0 and 

SOAPdenovo2, it produced longer and more contiguous assemblies that yielded substantially 

higher BUSCO matches and numbers of predicted genes. K-mer length did not substantially 

affect contig and scaffold assembly statistics, and results were thus averaged over the two k-

values. The nearly 240,000 contigs assembled into approximately 180,000 scaffolds, 14% of 

which were larger than 10 kbp. Depending on the k-mer size, between 221 and 306 scaffolds 

were larger than 50 kbp, and the longest assembled scaffold was 178 kbp. Total assembly 

length amounted to 910 ± 16 Mbp. The average N50 and N75 values were 10 kbp and 4,5 kbp, 

respectively; and the average NG50 and NG75 values amounted to 7,535 and 1,726, 

respectively. On average, the proportion of N's per 100 kbp was 0,8%. The assembly with k71 

generated the higher number of contigs and scaffolds in total, as well as the longest contig, the 

longest scaffold, and the longest total assembly length. 

The k41 assembly produced a higher number of large scaffolds, and had higher N50 and N75 

values for both, contig and scaffold assemblies. Genome annotation statistics were also better 

for the k41 assembly: 70% of the BUSCO hits were covered to completeness, and 16% were 

missed. The assembly spectra-cn plots indicated that the Platanus assemblies might have only 

a small amount of errors (Figure 39). Both assemblies had a black heterozygous peak (at the 

100x coverage), which indicated missing heterozygous content from the assemblies. For K41, 

both the valley before this peak and the peak itself were higher than at k71, implying that more 

heterozygous content was missing at the lower k-mer value. Purple and green peaks, which 

indicate duplicated and triplicated assembly contents, were present in both assemblies. 

Although this content did not substantially differ between the k41 and k71 assemblies, the 

Platanus-71 assembly contained slightly more duplicated and triplicated content than the 

Platanus-41 assembly. 

 

ABySS 2.0 performed second-best. Interestingly, here scaffolding did not substantially affect 

assembly, although k-mer choice had a substantial effect on contig and scaffold statistics. 

Abyss-71 generated a higher number of scaffolds and contigs, larger N50 and N75 values, as 

well as the longest contig and fewer number of N's per 100 kbp. For Abyss-41, just over 67,148 

contigs were assembled into 65,664 scaffolds, and for Abyss-71, 139,682 contigs were 

assembled into 138,266 scaffolds. However, only 0,5% of the scaffolds were larger than 10 

kbp (237 at k41 and 1,861 at k71), and none were larger than 50 kbp. The longest assembled 
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contig was 35,75 kbp (Abyss-71), which could not be extended by scaffolding. The total 

assembly length of Abyss-71 was 2,5 times larger than that of Abyss-41. The N50 and N75 

values did not differ substantially between the contig and scaffold assemblies (scaffold values 

amounting to 2,539 and 1,722, respectively for Abyss-41, and 3,257 and 2,032, respectively 

for Abyss-71). The NG50 and NG75 values could not be generated due to the short total 

assembly length. Genome annotation statistics were somewhat better for the k71 assembly: the 

number of complete BUSCO hits and the number of predicted genes (≥ 3kb) were higher than 

in the k41 assembly (13% more complete BUSCOs and 2,5 k more predicted genes (≥ 3kb)), 

and the number of missed BUSCOs was lower than in the k41 assembly (15% fewer missing 

BUSCOs). However, the assembly spectra-cn plots indicated that the k71 assembly had more 

duplicated and triplicated assembly content, as visualized by the broader purple and green 

peaks for this assembly. 

 

The assembly spectra-cn plots indicated that the AbySS 2.0 assemblies might contain a number 

of errors (Figure 39). At k41, a larger amount of errors was present in the assembly, as can be 

seen from the larger red portion in the first peak of the plot. Both assemblies had a black peak 

around the 100x heterozygous peak, which indicated missing heterozygous content from the 

assemblies. The k41 assembly also contained more missing content in the homozygous region 

of the plot (thicker black line at the homozygous peak). The purple and green peaks, which 

were highest at the homozygous peak in both plots, and continued throughout the high coverage 

areas, indicated duplicated and triplicated assembly content, respectively. This content was 

present in both assemblies, but, as can be seen from the broader purple and green peaks of the 

k71 assembly, this assembly contained more triplicated and duplicated content.  

In comparison to Platanus and ABySS 2.0, SOAPdenovo2 performed the worst out of all 

assemblers. It produced the second shortest total assembly length, substantially lower BUSCO 

matches, and lower number of predicted genes. K-mer size substantially affected contig and 

scaffold statistics, as well as BUSCO content and gene predictions. The assembly that 

performed the worst of all assemblies and k-values (Soapdenovo-k41), only contained 5% 

complete BUSCOs, and had 88% of BUSCOs missing from the assembly. The k41 assembly 

also contained by far the least number of predicted genes (≥ 3kb) among all assemblies and k-

values (only 99). Soapdenovo-41 was also minimally affected by scaffolding. Although 

Soapdenovo-71 generated higher values across all length statistics, had more than twice the 

amount of complete BUSCOs than that of Soapdenovo-41, and 15 times more predicted genes 
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(≥ 3kb), it still underperformed when compared to the other assemblies. Soapdenovo-41 

produced a total assembly length of 784 Mbp, assembled from 116 k contigs into 258 k 

scaffolds, of which only 3,6% were larger than 10 kbp. The reason for the higher number of 

scaffolds than contigs in the SOAPdenovo2 assemblies, is because there was a large number 

of contigs that were shorter than 1,000 bp, and were not incorporated in the contig statistics. 

 

The assembly spectra-cn plots indicated that the SOAPdenovo2 assemblies contained a small 

amount of errors (Figure 39). Both assemblies had a black peak around the 100x 

heterozygous peak, which indicated missing heterozygous content from the assemblies. At 

k41, the peak was slightly higher and broader than at k71, which implied that the k41 

assembly has more missing heterozygous content than the k71 assembly. The k41 assembly 

also had a black peak at the homozygous content, which continued through the tail of the 

graph. This indicates that there is homozygous and repeat content missing from the assembly. 

Purple and green peaks, which indicate duplicated and triplicated assembly contents were 

higher in the k71 assembly. The highest amount of duplications and triplications was 

observed around the 200x homozygous peak; These duplications and triplications were also 

present throughout the higher coverage regions of the tail of the graph. 
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Chapter 4: Discussion 

 

Plant genome sequences are useful in a wide range of applications, providing invaluable data 

resources for various research areas. These include investigation of secondary metabolites, the 

establishment of breeding programs, and conservation biology. Next-generation sequencing 

enables the sequencing of whole genomes in a comparatively time and cost-effective way. In 

this study, a total of 2,6 billion read pairs with an average length of ~119 bp were sequenced, 

resulting in a 276X genome coverage of the 1,1 Gb rooibos genome. Reads were processed, 

and error corrected to be used in the estimation of genome characteristics, and de novo genome 

assembly. 

4.1. Quality pre-processing  

Although there is some debate whether preprocessing of sequencing reads is essential, most 

studies do preprocess raw Illumina sequencing reads before genome assembly. Yang et al. 

(2019) showed that quality processing significantly reduced the computational time necessary 

for genome assembly without affecting the number of predicted genes. Moreover, assembly of 

raw reads was found to result in less accurate and less complete genome assemblies - although 

the unprocessed datasets had longer scaffolds, these were more often associated with 

misassemblies. Therefore, in this study, two methods for quality preprocessing were tested on 

the paired-end Illumina sequencing data. Method 1 was applied based on the "per base 

sequence content" plots produced by FastQC, which indicated module failure due to substantial 

differences between the A and T and/or G and C contents at the 5' and 3' ends of the sequences. 

This method significantly reduced read length and read numbers, and therefore genome 

coverage. Considering the arguments by Andrews (2016), who showed that hard trimming of 

5’ and 3’ read end bases usually does not have a significant effect on downstream analysis, this 

method was not analysed further. Method 2, which focused on trimming the reads based on the 

quality scores of the bases, showed satisfactory retention of read pairs and higher read lengths. 

This method also included error correction, which has been shown to improve assembly quality 

and reduce computational time. Error correction reduces the number of distinct k-mers in the 

dataset, which in turn reduces the complexity of assembly graphs, speeding up the assembly 

process and lowering the RAM requirements. For error correction, choice of the program was 

based on the ability of Lighter to handle heterozygous datasets from polyploid organisms and 

technical advantage, specifically acceptance of multiple compressed input files. Subsequent 
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assembly tests showed that for our datasets read preprocessing was essential, as assembly of 

the complete set of raw reads consistently failed due to RAM and time limitations.  

 

Two methods of data size reduction not tested in the course of this study are filtering by tile 

and deduplication of reads. The per tile quality heatmaps generated by FastQC all failed for the 

HiSeq paired-end dataset. The heat map patterns (a broad loss of quality over six areas of the 

flow cell) were similar for all six lanes, both the forward and reverse reads. Quality processing 

with Trimmomatic did not have a significant effect on the heatmap. According to 

https://sequencing.qcfail.com/articles/position-specific-failures-of-flowcells/, this pattern 

suggests a very biased sequence run. The data is still usable, but considering the high genome 

coverage obtained in this study, its appears reasonable to discard all reads from the low quality 

flow cell positions, using for example the program FilterByTile, a member of the BBMap 

package (Bushnell, 2015). Deduplication of reads is suggested by many as a necessary 

preprocessing step of NGS data (Ebbert et al., 2016). It is believed to reduce computational 

resources and decrease potential biases on variant calling algorithms (Ebbert et al., 2016). 

However, Ebbert et al. (2016) shows that in deep sequenced, whole-genome data, deduplication 

has minimal effect on the accuracy of variant datasets. Because of the high coverage of the 

paired-end data in this study, deduplication of the reads should be considered in subsequent 

assemblies to decrease computational time and resources, and to compare results with the 

unduplicated assemblies. Many programs are available to perform deduplication of reads such 

as FastUniq (Xu et al., 2012). 

 

To improve continuity of the genome assembly, two mate pair libraries had been sequenced. 

However, the sequencing results indicated that both libraries had very high duplication rates 

(on average 73%) and a high proportion of low quality reads. Similar problems have been 

reported in previous studies (“Illumina Mate Pair Read Duplication Level,” 2013). In addition, 

trimming of the Nextera adapter sequence by the sequencing service provider significantly 

hampered mate pair identification. As a result, less than one-third of the nearly 300 million 

sequenced mate pairs were retained. Still, the MP3 data, amounting to 2x genome coverage, 

substantially contributed to scaffolding during genome assembly (discussed below). The MP8 

library, initially excluded from genome assembly tests, has since been successfully included in 

subsequent analyses, and will be used in future assemblies. However, considering the price of 

sequencing, the high amount of duplicate reads, and the low coverage, long-read sequencing 

using PacBio or Oxford Nanopore sequencing technologies appear preferable. 
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4.2. Rooibos genome characteristics 

GC content is an important feature describing genome organization. It is associated with 

genome size, genome organization and chromosomal structure (Šmarda et al., 2014). The GC 

for the rooibos sequencing data peaked at 36%, which is comparable to the average GC contents 

of other dicotyledonous plants (Singh et al., 2016). Interestingly, all datasets (including the two 

mate-pair libraries) showed a very small, but well-defined peak at 66% GC. It does not appear 

to represent chloroplast DNA (which has a mean GC content of 34-36%; Weihong et al., 2017), 

mitochondrial DNA (which has a GC content around 42-45%; Feng et al., 2019), or PhiX 

(which has a mean GC content of 45%; Minoche et al., 2011). Alternatively, this peak may be 

associated with sequencing bias, GC rich regions in the rooibos genome or contaminating plant 

symbiont DNA. Future analyses may include screening these reads (or assemblies of these 

reads) against specific organisms, using for example FastQ Screen (“Babraham Bioinformatics 

- FastQ Screen,” n.d.) or the reformat tool from the BBMap package.  

 

Other important genome characteristics, such as genome size, heterozygosity and repeat 

content were estimated based on k-mer histogram analyses using a number of programs 

(GenomeScope, FindGSE, BBNorm and KAT). Considering parallel studies, the combined 

results indicate that the rooibos genome is approximately 1,1 Gb large, very heterozygous and 

rich in repeats.  

 

Across all biocomputational programs, the average predicted genome size was 1,03 ± 0,05 Gb 

(when using the complete k-mer histogram with a maximum k-mer coverage of 900,000x). 

This value is very close to the genome size predicted in a parallel study where flow cytometry 

analyses of rooibos radicles indicated a genome size of 1,24 ± 0,01 Gb (Mgwatyu et al., 2020). 

Discrepancies between flow cytometry and biocomputationally derived genome size estimates 

have been reported before, even for the model plant Arabidopsis thaliana (Sun et al., 2018). 

The authors argued that such differences are likely associated with the interference of chemical 

compounds in the stoichiometric DNA content measurements in flow cytometry analyses. 

Considering that in the rooibos study equipment related restrictions in the choice of the 

fluorescent stain (DAPI) may have also led to higher flow cytometry genome size estimates, 

the k-mer based rooibos genome size estimate is considered to be closer to the true value. With 

that, the rooibos genome size is very similar to the one of Lupinus angustifolius, a close relative 

of A. linearis, which has a predicted genome size of 0,924 Gb – 1,15 Gb (Hane et al., 2017; 
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Kasprzak et al., 2006; Yang et al., 2013). However, in the current analysis chloroplast and 

mitochondrial DNA reads had not been removed, which may have impacted rooibos genome 

size estimations. With regards to the choice of program and parameter settings, the predominant 

effect on genome size prediction was found to be the k-mer coverage threshold (1k vs 900k, 

GenomeScope, parameter CovMax). At a CovMax threshold of 1k (default in GenomeScope 

v1), highly covered k-mers that mostly represented repeats were excluded from the analyses, 

which reduced genome size estimates by half. This may explain why, in studies with vanilla 

(Hu et al., 2019), cane toad (Edwards et al., 2018), and pacific oyster (Hedgecock et al., 2005; 

Vurture et al., 2017b), k-mer based GenomeScope estimates of genome sizes were only half of 

those obtained by flow cytometry analyses and considerably smaller than those obtained after 

genome assembly. Other parameters (choice of program, k-mer size, data preprocessing, 

dataset size) had only small effects on the genome size estimates. In fact, when using the same 

histogram file, the results from the commonly used simple formula was very close to those 

obtained with all tested programs (including GenomeScope, FindGSE, BBNorm and KAT).  

 

The sequenced rooibos genome is very heterozygous, as clearly visualized by the k-mer spectra 

graphs that depict k-mer frequency distributions. In all graphs, the heterozygous peak was 

notably higher than the homozygous peak. Determining the actual value, however, was 

complicated. The program KAT produced k-mer spectra graphs that were identical to the other 

programs, but predicted heterozygosity rates of 0,00% to 0,05%. For the other programs, the 

values ranged between 1,15% and 2,89%, depending not only on the choice of the program, 

but also on the k-value. For GenomeScope and FindGSE, higher k-values reduced the predicted 

heterozygosity rate, while the opposite was true for BBNorm. In fact, at k47, BBNorm reported 

a ploidy level of 1 and a heterozygosity rate of 0. This can be explained by investigating the 

effect of the k-value on the k-mer frequency distribution: higher k-values increased the height 

of the heterozygous peak, simultaneously reducing the height of the homozygous peak and 

shifting the two peaks together (Figure 37). At k47, the heterozygous and homozygous peaks 

overlapped to the degree that the valley between them was virtually non-existent. The value 

associated with this valley is of apparent importance when calculating heterozygosity rates and 

may have failed the BBNorm threshold that distinguishes between homozygous and 

heterozygous genomes. These results imply that current predictions of heterozygosity rate 

values that are based solely on k-mer frequency distributions must be considered estimates with 

substantial uncertainties.  
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For repeat content, results again largely depended on the choice of the program, but also on the 

k-mer coverage threshold (1k vs 900k; not surprising, as repeat content is associated with high 

k-mer coverage) and the k-value. The average repeat content estimated over all programs for 

the 900k histogram file was 56,04 ± 8,51%. This value is close to the estimated 50% repeat 

content of Lupinus angustifolius (Yang et al., 2013). The estimated repeat content of rooibos 

may be somewhat lower than the value estimated in this study, since reads encoding chloroplast 

and mitochondrial DNA had not been filtered. Removing these sequences from the datasets is 

expected to improve estimation accuracy. The semi-log graphs produced by GenomeScope 

visualized small peaks in the high-frequency regions of the k-mer graphs. These could 

represent high-frequency repeats in the rooibos genome, but also organelle sequences, "noise" 

and/or contamination. Identification of sequences that gave rise to these k-mers and subsequent 

blast analyses may provide insight into their origins (Vurture et al., 2017b). 

4.3. Genome assembly – technical aspects 

Initially, six assembly programs were chosen for testing based on recently published plant 

genome studies and genome assembler performance comparisons. However, getting these 

programs to work on the computational clusters (both, at SANBI and CHPC) with the rooibos 

datasets proved to be challenging. For a beginner in Linux and next-generation sequencing 

analyses, two of the most crucial aspects are the documentation of the software and the support 

provided for each program. In my experience, and at the time of writing this thesis, the 

programs that had the most useful documentation were ABySS 2.0 and SOAPdenovo2. In 

contrast, support for the programs ALLPATHS-LG, MaSuRCA, IDBA and Platanus was less 

helpful to lacking. Computational resources, such as memory and number of cores, were major 

limiting factors during this study. Despite substantial resource availability at CHPC (up to 1 

TB memory and 56 cores), MaSuRCA never completed any assemblies; and attempts to 

assemble the complete raw data using ABySS 2.0, SOAPdenovo2 or Platanus consistently 

failed as the programs ran out of memory. Runtime was another limiting factor for choosing 

an assembly program – MaSuRCA ran for 357 hours (14 days) on a subset of data without 

showing any signs of progress. In addition, the amount of data generated during an assembly 

can become very large when taking into account test runs of different programs and 

unsuccessful runs. Space is, therefore, another essential factor that has to be considered when 

conducting genome analyses.  
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A very helpful feature in assembly programs is the ability to restart from the point of 

termination. Runs can be interrupted due to various reasons: lack of memory, time restrictions 

(at CHPC, if a job uses more than 48 hours, time extension needs to be requested), power 

outages and other problems that can cause hardware failure. Therefore, the possibility to restart 

a run from the point of termination saves time and computational resources. This feature is 

available in ABySS 2.0, ALLPATHS-LG, MaSuRCA, and Platanus. Finally, input file format 

restrictions have to be considered. IDBA only accepts one single unzipped FASTA-formatted 

input file, which is cumbersome when working with several large fastq files as provided by the 

sequencing service provider.  

CPU efficiency (in %) is often used as a parameter when comparing performance of genome 

assembly programs. The value is reported by the Portable Batch System (PBS – the software 

that performs job scheduling on a cluster) whenever a job is completed. This % CPU efficiency 

is the fraction of the available CPU time that was used for a job. CPU time (or core hours) is 

calculated by multiplying the requested number of cores with the requested amount of time. If 

56-cores were requested for 41 hours, 2,296 core hours would be available. A 36% efficiency 

would imply that the actual computations only used 827 core hours. It is, however, more 

complicated than that, as CPU efficiency is affected by several factors that are not related to 

the program at hand. These factors include: 1) program-related processes which run outside of 

the PBS; 2) processes which run outside of PBS and persist after the PBS job has completed; 

3) MPI implementations that use idle time, and 4) the shared storage system.   

Processes which run outside of PBS will not be accounted for in the calculation of the CPU 

efficiency. Processes which run outside of PBS and persist after the job has completed can 

interfere with subsequent jobs, and result in an inaccurate CPU efficiency reported. So, a 

subsequent task may appear to be using 100% of a CPU core while not carrying out the 

presumed task. This happens because some MPI implementations use "idle" time to poll other 

MPI processes (which ensures that inter-process communication latency is as low as possible). 

Lastly, because a shared storage is used, the speed is variable and depends on how full the file 

system is, and how congested the Infiniband network is. Because the processes perform a lot 

of input-output (I/O), the shared storage system substantially affects efficiency and 

performance. 
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4.4. Genome assembly – assembler comparisons 

Only three assembly programs (ABySS 2.0, Platanus, and SOAPdenovo2) successfully 

completed analysis on the entire quality-processed dataset within a reasonable amount of time. 

Assembly quality was compared using QUAST-LG and KAT. As discussed in previous studies 

(Salzberg et al., 2012; Yang et al., 2019), length statistics such as the number of 

contigs/scaffolds, N50 and N75 do not necessarily imply better assembly quality. It is essential 

to take other parameters into account, such as the number of unknown bases (Ns), BUSCO 

statistics, gene prediction results and spectra-cn plot results. Soapdenovo-71 is an example of 

an assembly with good length statistics but poor BUSCO and spectra-cn results. Nonetheless, 

in this study, higher values for N50, N75, largest contig/scaffold and total contig/scaffold 

length correlated positively with the proportion of complete BUSCOs and the numbers of 

predicted genes. The gene numbers predicted in this study by QUAST-LG for the rooibos 

genome were very high (over 200,000 for the Platanus assemblies). Related plant genomes 

encode just about one-quarter of this number (Lupinus angustifolius: 57,807 [Yang et al., 

2013]; Medicago truncatula: 50,894 [Tang et al., 2014]). However, it must be kept in mind that 

essential data processing steps, including separation of chloroplast and mitochondrial 

sequences as well as repeat masking had not been performed prior to the gene prediction step. 

Moreover, GlimmerHMM had not been trained to specifically identify rooibos genes, as the 

only available training files available were from Arabidopsis thaliana. The predicted gene 

numbers must, therefore not be mistaken for the true values. The k-mer spectra-cn plots were 

found to be a useful tool to assess assembly quality. These plots visualized that in this study 

higher k-value were associated with increased duplicated and triplicated assembly contents, 

and that they may result in higher error rates (as observed for the Platanus and SOAPdenovo2 

assemblies, although the opposite was true for the AbySS assemblies). These plots can 

therefore be used to determine an appropriate k-value for a specific dataset and assembly 

program. 

 

Of the three assemblers, Platanus performed best: it produced the longest and most 

contiguous assemblies yielding substantially higher BUSCO matches and numbers of 

predicted genes, and produced the best spectra-cn plots with the least amount of duplicated 

and triplicated assembly content. Platanus was specifically developed to handle heterozygous 

genomes, and the poor performance of ABySS and SOAPdenovo2 may well be associated 

with the high heterozygosity and repeat contents predicted for the rooibos genome. Platanus 
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has recently been used to assemble the heterozygous plant genomes of Boehmeria nivea 

(Luan et al., 2018) and Calotropis gigantea (Hoopes et al., 2018). Both studies used only 

Illumina sequencing data, achieving a total genome coverage of 256X and 193X, 

respectively. Although these genome coverages were comparable to the one obtained for the 

rooibos genome in this study (269X), their N50 values and BUSCO statistics were better. 

4.5. Final note 

Previous projects investigating large genomes indicated that good assembly results were 

obtained at 100X genome coverage (Dominguez Del Angel et al., 2018; Ekblom and Wolf, 

2014; Schatz et al., 2012). Higher genome coverage, as obtained in this study, could, in fact, 

hamper genome assembly. During assembly, excessive coverage in a particular genome 

location may be seen as a sequencing error, and true sequencing errors can propagate and start 

to look like correct sequences (Dominguez Del Angel et al., 2018; Ekblom and Wolf, 2014). 

The authors suggest the use of normalization tools (e.g. BBNorm) for correction of high 

coverage areas. Considering the amount of data generated in this project, filtering by tile and 

deduplication should also be considered. However, latest technological developments open 

doors to novel approaches in plant genome assembly. Recent plant genome studies increasingly 

focus on a hybrid assembly approach combining short-read Illumina sequencing data with 

long-read data obtained using PacBio or Oxford Nanopore sequencing technologies (Li and 

Harkess, 2018). New tools are essential, that cater to this type of data analyses.   
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Chapter 5: Conclusion 

This thesis focused on the establishment of methodologies for plant genome analysis, including 

estimation of genome characteristics and evaluation of methods essential for plant genome 

assembly using Illumina sequencing data. K-mer analysis was found to be a suitable approach 

to estimate the genome size. For rooibos, the computationally predicted value of 1,03 ± 0,05 

Gb was affected little by choice of program and parameters (as long as the complete k-mer 

histogram, here with a coverage of up to 900,000x, was used), and was close to the rooibos 

genome size predicted using flow cytometry (1,24 ± 0,01 Gb). GenomeScope’s approach to 

limiting the k-mer coverage threshold is not suitable for organisms that are repeat-rich and 

should, therefore, be used with caution when working with plants. It appears that the formula 

for genome size estimation may also suffice. K-mer analysis also indicated high heterozygosity 

(2,09 ± 0,33) and repeat content (56,04 ± 8,51%) for the rooibos genome. The actual values 

varied substantially depending on the choice of program and parameter settings. They should 

therefore be used as guidelines, rather than true values.  

For genome assembly using Illumina sequencing data, the following programs were installed, 

evaluated and found suitable: FastQC, MultiQC and KAT for quality assessment, 

Trimmomatic, FLASH, and Nextclip for quality processing, Platanus for data assembly and 

QUAST-LG and KAT for evaluation of assembly quality. The first assembly of the rooibos 

genome, although reasonable, is still highly fractionated. Future work should focus on the 

removal of chloroplast and mitochondrial DNA. Considering the amount of data (genome 

coverage ~276X) additional quality filtering steps, such as filtering by tile and deduplication 

of the Illumina reads, may not only improve assembly quality but substantially speed up 

assembly and permit assembly using different programs (e.g. MaSuRCa or the ploidy 

conscious assemblers Ranbow and SDhaP). Considering the high repeat content, long-read data 

for the rooibos genome is highly desirable. 
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Supplementary Material 

 

 

Supplementary Figure 1: The effect of quality processing on k-mer spectra graphs. Results from 

the programs KAT, GenomeScope2, and FindGSE at k23. Histogram files were generated by KAT 

using the COMP-Raw and COMP-QP datasets. A) KAT COMP-Raw, B) GenomeScope2 COMP-

Raw, C) FindGSE COMP-Raw. D) KAT COMP-QP, E) GenomeScope2 COMP-QP, and F) FindGSE 

COMP-QP. 

 

 

Supplementary Figure 2: The effect of quality processing on k-mer spectra graphs. Results from 
the programs KAT, GenomeScope2, and FindGSE at k27. Histogram files were generated by KAT 
using the COMP-Raw and COMP-QP datasets. A) KAT COMP-Raw, B) GenomeScope2 COMP-
Raw, C) FindGSE COMP-Raw. D) KAT COMP-QP, E) GenomeScope2 COMP-QP, and F) FindGSE 
COMP-QP. 
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Supplementary Figure 3: The effect of quality processing on k-mer spectra graphs. Results from 
the programs KAT, GenomeScope2, and FindGSE at k47. Histogram files were generated by KAT 
using the COMP-Raw and COMP-QP datasets. A) KAT COMP-Raw, B) GenomeScope2 COMP-
Raw, C) FindGSE COMP-Raw. D) KAT COMP-QP, E) GenomeScope2 COMP-QP, and F) FindGSE 
COMP-QP. 
 

 

 

Supplementary Figure 4: The effect of quality processing on k-mer spectra graphs. Results from 

the programs GenomeScope2 and FindGSE at k19. Histogram files were generated by BBNorm 

using the COMP-Raw and COMP-QP datasets. A) GenomeScope2 COMP-Raw, B) FindGSE 

COMP-Raw, C) GenomeScope2 COMP-QP, and D) FindGSE COMP-QP. 
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Supplementary Figure 5: The effect of quality processing on k-mer spectra graphs. Results from 
the programs GenomeScope2 and FindGSE at k23. Histogram files were generated by BBNorm 
using the COMP-Raw and COMP-QP datasets. A) GenomeScope2 COMP-Raw, B) FindGSE 
COMP-Raw, C) GenomeScope2 COMP-QP, and D) FindGSE COMP-QP. 
 

 

Supplementary Figure 6: The effect of quality processing on k-mer spectra graphs. Results from 
the programs GenomeScope2 and FindGSE at k27. Histogram files were generated by BBNorm 
using the COMP-Raw and COMP-QP datasets. A) GenomeScope2 COMP-Raw, B) FindGSE 
COMP-Raw, C) GenomeScope2 COMP-QP, and D) FindGSE COMP-QP. 
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Supplementary Figure 7: The effect of quality processing on k-mer spectra graphs. Results from 
the programs GenomeScope2 and FindGSE at k47. Histogram files were generated by BBNorm 
using the COMP-Raw and COMP-QP datasets. A) GenomeScope2 COMP-Raw, B) FindGSE 
COMP-Raw, C) GenomeScope2 COMP-QP, and D) FindGSE COMP-QP 
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Supplementary Table 1: Calculated difference of estimated genome sizes (in Gb) between KAT- and BBNorm generated histogram files. The average 

difference is 0,004 ± 0,016. 

  K19 K23 K27 K47 

  Raw QP Raw QP Raw QP Raw QP 

GenomeScope 1 1k cutoff -0,05 0,00 0,00 0,00 0,00 0,00 0,01 0,01 

GenomeScope 2 1k cutoff -0,05 0,00 0,00 0,00 0,00 0,00 0,01 0,01 

GenomeScope 1 10k cutoff 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

GenomeScope 2 10k cutoff 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

GenomeScope 1 900k cutoff 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

GenomeScope 2 900k cutoff 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

FindGSE -0,01 -0,01 -0,01 -0,01 -0,02 -0,01 0,07 -0,08 

BBNorm -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 0,00 -0,01 

Formula -0,01 -0,01 -0,02 -0,01 -0,01 -0,01 0,01 -0,01 
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Appendix 

Assembly scripts 

 

Platanus K41 assembly: 

ASSEMBLE K41 EC 

 

#!/bin/bash 

#PBS -l select=1:ncpus=56:mpiprocs=56:mem=700GB 

#PBS -l walltime=48:00:00 

#PBS -q bigmem 

#PBS -W group_list=bigmemq 

#PBS -P CBBI1133 

#PBS -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/01_K41_EC/P

latanusAssembleK41_EC.out 

#PBS -e 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/01_K41_EC/P

latanusAssembleK41_EC.err 

#PBS -N PlatK41_EC 

#PBS -M 3859586@myuwc.ac.za 

 

module load chpc/BIOMODULES 

module load Platanus/1.2.4 

 

cd /home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC 

 

platanus assemble -o PlatanusAssembleK41_EC -f 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R2_p.cor.fq -k 

41 -t 56 -m 700 2>AssembleFullK41_EC.log 
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SCAFFOLD K41 EC 

 

#!/bin/bash 

#PBS -l select=1:ncpus=56:mpiprocs=56 

#PBS -l walltime=48:00:00 

#PBS -l place=excl 

#PBS -q bigmem 

#PBS -W group_list=bigmemq 

#PBS -P CBBI1133 

#PBS -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/01_K41_EC/P

latanusScaff_K71_EC_NoMP8.out 

#PBS -e 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/01_K41_EC/P

latanusScaff_K71_EC_NoMP8.err 

#PBS -N PlatK41_ScaffECNoMP8 

#PBS -m abe 

#PBS -M 3859586@myuwc.ac.za 

 

module load chpc/BIOMODULES 

module load Platanus/1.2.4 

 

cd /home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC 

 

platanus scaffold -o PlatanusScaffoldK41_EC_NoMP8  -c 

./PlatanusAssembleK41_EC_contig.fa -b ./PlatanusAssembleK41_EC_contigBubble.fa -IP1 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R2_p.cor.fq -

OP2 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_3000_

S1L1_nc_ABC_R1.fastq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_3000_

S1L1_nc_ABC_R2.fastq -n1 200 -n2 2000 -a1 300 -a2 3000 -t 56 2> 

ScaffoldK41_EC_NoMP8.log 
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GAPCLOSE K41 EC 

 

#!/bin/bash 

#PBS -l select=1:ncpus=32:mpiprocs=32:mem=300GB 

#PBS -l walltime=02:00:00 

#PBS -q bigmem 

#PBS -W group_list=bigmemq 

#PBS -P CBBI1133 

#PBS -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/01_K41_EC/P

latanusGapClose_K41_EC.out 

#PBS -e 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/01_K41_EC/P

latanusGapClose_K41_EC.err 

#PBS -N PlatK41_ScaffEC 

#PBS -m abe 

#PBS -M 3859586@myuwc.ac.za 

 

module load chpc/BIOMODULES 

module load Platanus/1.2.4 

 

cd 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/01_K41_EC 

 

platanus gap_close -o GapCloseFullStephEC_NoMP8_1 -c 

ScaffoldFullK41_1_NoMP8_scaffold.fa -IP1 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R2_p.cor.fq -

OP2 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_3000_

S1L1_nc_ABC_R1.fastq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_3000_
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S1L1_nc_ABC_R2.fastq -OP3 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/01_MP8/nextclip/M

P_8000_S2L2_nc_ABC_R1.fastq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/01_MP8/nextclip/M

P_8000_S2L2_nc_ABC_R2.fastq  -t 32 2> GapCloseK41_EC.log 

 

 

Platanus K71 assembly: 

ASSEMBLE K71 EC 

 

#!/bin/bash 

#PBS -l select=1:ncpus=56:mpiprocs=56:mem=700GB 

#PBS -l walltime=48:00:00 

#PBS -q bigmem 

#PBS -W group_list=bigmemq 

#PBS -P CBBI1133 

#PBS -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/PlatanusFullK

71_EC.out 

#PBS -e 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/PlatanusFullK

71_EC.err 

#PBS -N PlatK71_EC 

#PBS -M 3859586@myuwc.ac.za 

 

module load chpc/BIOMODULES 

module load Platanus/1.2.4 

 

cd /home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC 

 

platanus assemble -o PlatanusFullK71_EC -f 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R2_p.cor.fq -k 

71 -t 56 -m 700 2>AssembleFullK71_EC.log 
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SCAFFOLD K71 EC 

 

#!/bin/bash 

#PBS -l select=1:ncpus=56:mpiprocs=56 

#PBS -l walltime=48:00:00 

#PBS -l place=excl 

#PBS -q bigmem 

#PBS -W group_list=bigmemq 

#PBS -P CBBI1133 

#PBS -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/00_K71_EC/P

latanusScaff_K71_EC_NoMP8.out 

#PBS -e 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/00_K71_EC/P

latanusScaff_K71_EC_NoMP8.err 

#PBS -N PlatK71_ScaffEC 

#PBS -m abe 

#PBS -M 3859586@myuwc.ac.za 

 

module load chpc/BIOMODULES 

module load Platanus/1.2.4 

 

cd 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/00_K71_EC 

 

platanus scaffold -o PlatanusScaffoldK71_EC  -c ./PlatanusFullK71_EC_contig.fa -b 

./PlatanusFullK71_EC_contigBubble.fa -IP1 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R2_p.cor.fq -

OP2 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_3000_

S1L1_nc_ABC_R1.fastq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_3000_

S1L1_nc_ABC_R2.fastq -n1 200 -n2 2000 -a1 300 -a2 3000 -t 56 2> ScaffoldK71_EC.log 
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GAPCLOSE K71 EC  

 

#!/bin/bash 

#PBS -l select=1:ncpus=32:mpiprocs=32:mem=300GB 

#PBS -l walltime=04:00:00 

#PBS -q bigmem 

#PBS -W group_list=bigmemq 

#PBS -P CBBI1133 

#PBS -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/00_K71_EC/P

latanusGapClose_K71_EC_NoMP8.out 

#PBS -e 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/00_K71_EC/P

latanusGapClose_K71_EC_NoMP8.err 

#PBS -N PlatK71_GapCloseEC 

#PBS -m abe 

#PBS -M 3859586@myuwc.ac.za 

 

module load chpc/BIOMODULES 

module load Platanus/1.2.4 

 

cd 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/03_Platanus/01_EC/00_K71_EC 

 

platanus gap_close -o PlatanusGapClose_K71_EC_NoMP8 -c 

PlatanusScaffoldK71_EC_NoMP8_scaffold.fa -IP1 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R1n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R2n_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R2_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R1_p.cor.fq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R2_p.cor.fq -

OP2 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_3000_

S1L1_nc_ABC_R1.fastq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_3000_

S1L1_nc_ABC_R2.fastq -OP3 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/01_MP8/nextclip/M

P_8000_S2L2_nc_ABC_R1.fastq 
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/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/01_MP8/nextclip/M

P_8000_S2L2_nc_ABC_R2.fastq  -t 32 2> GapCloseK71_EC.log 

 

 

ABySS 2.0 K41 assembly: 

 

#!/bin/bash 

#PBS -l select=1:ncpus=56:mpiprocs=56:mem=1000gb 

#PBS -l place=excl 

#PBS -l walltime=48:00:00  

#PBS -q bigmem 

#PBS -W group_list=bigmemq 

#PBS -P CBBI1133 

#PBS -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/04_AbySS_2.1.5/Abyss41Full_EC.

out 

#PBS -e 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/04_AbySS_2.1.5/Abyss41Full_EC.

err 

#PBS -N Abyss41_EC 

#PBS -M 3859586@myuwc.ac.za 

 

module load chpc/BIOMODULES 

module add ABySS/2.1.5_sh 

 

cd /home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected 

 

export TMPDIR=/home/astander2/lustre/temporary 

 

abyss-pe k=41 G=1100000000 name=Abyss41Full_EC lib='L5 L6 S1L1 S1L2 S1L3 S1L4 

S1L5 S1L6' mp='MP3 MP8' L5='./L5R1n_p.cor.fq ./L5R2n_p.cor.fq' L6='./L6R1n_p.cor.fq 

./L6R2n_p.cor.fq' S1L1='./S1L1R1_p.cor.fq ./S1L1R2_p.cor.fq' S1L2='./S1L2R1_p.cor.fq 

./S1L2R2_p.cor.fq' S1L3='./S1L3R1_p.cor.fq ./S1L3R2_p.cor.fq' S1L4='./S1L4R1_p.cor.fq 

./S1L4R2_p.cor.fq' S1L5='./S1L5R1_p.cor.fq ./S1L5R2_p.cor.fq' S1L6='./S1L6R1_p.cor.fq 

./S1L6R2_p.cor.fq' 

MP3='/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_

3000_S1L1_nc_ABC_R1.fastq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_3000_

S1L1_nc_ABC_R2.fastq' 

MP8='/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/01_MP8/next

clip/MP_8000_S2L2_nc_ABC_R1.fastq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/01_MP8/nextclip/M

P_8000_S2L2_nc_ABC_R2.fastq' -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/04_AbySS_2.1.5 

 

 

ABySS 2.0 K71 assembly: 
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#!/bin/bash 

#PBS -l select=1:ncpus=56:mpiprocs=56:mem=1000gb 

#PBS -l place=excl 

#PBS -l walltime=48:00:00  

#PBS -q bigmem 

#PBS -W group_list=bigmemq 

#PBS -P CBBI1133 

#PBS -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/04_AbySS_2.1.5/Abyss71Full_EC

3.out 

#PBS -e 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/04_AbySS_2.1.5/Abyss71Full_EC

3.err 

#PBS -N Abyss71_EC 

#PBS -M 3859586@myuwc.ac.za 

 

module load chpc/BIOMODULES 

module add ABySS/2.1.5_sh 

 

cd /home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected 

 

export TMPDIR=/home/astander2/lustre/temporary 

 

abyss-pe k=71 G=1100000000 name=Abyss71Full_EC lib='L5 L6 S1L1 S1L2 S1L3 S1L4 

S1L5 S1L6' mp='MP3 MP8' L5='./L5R1n_p.cor.fq ./L5R2n_p.cor.fq' L6='./L6R1n_p.cor.fq 

./L6R2n_p.cor.fq' S1L1='./S1L1R1_p.cor.fq ./S1L1R2_p.cor.fq' S1L2='./S1L2R1_p.cor.fq 

./S1L2R2_p.cor.fq' S1L3='./S1L3R1_p.cor.fq ./S1L3R2_p.cor.fq' S1L4='./S1L4R1_p.cor.fq 

./S1L4R2_p.cor.fq' S1L5='./S1L5R1_p.cor.fq ./S1L5R2_p.cor.fq' S1L6='./S1L6R1_p.cor.fq 

./S1L6R2_p.cor.fq' 

MP3='/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_

3000_S1L1_nc_ABC_R1.fastq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_3000_

S1L1_nc_ABC_R2.fastq' 

MP8='/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/01_MP8/next

clip/MP_8000_S2L2_nc_ABC_R1.fastq 

/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/01_MP8/nextclip/M

P_8000_S2L2_nc_ABC_R2.fastq' -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/04_AbySS_2.1.5 

 

 

SOAPdenovo2 configuration file used in both K41 and K71 assemblies: 

 

 

max_rd_len=125  

[LIB]  

avg_ins=300  

reverse_seq=0  

http://etd.uwc.ac.za/ 
 



102 
 

asm_flags=3  

rd_len_cutoff=125 

rank=1  

map_len=32  

#L5 

q1=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R1n_p.cor.fq 

q2=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L5R2n_p.cor.fq 

#L6 

q1=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R1n_p.cor.fq 

q2=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/L6R2n_p.cor.fq 

#S1L1 

q1=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R1p.cor.fq 

q2=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L1R2p.cor.fq 

#S1L2 

q1=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R1p.cor.fq 

q2=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L2R2p.cor.fq 

#S1L3  

q1=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R1p.cor.fq 

q2=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L3R2p.cor.fq 

#S1L4 

q1=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R1p.cor.fq 

q2=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L4R2p.cor.fq 

#S1L5  

q1=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R1p.cor.fq 

q2=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L5R2p.cor.fq 

#S1L6 

q1=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R1p.cor.fq 

q2=/home/astander2/lustre/00_GenomeRooibos/01_Data/04_ErrorCorrected/S1L6R2p.cor.fq 

# 3kbp insert library  

[LIB]  

avg_ins=3000  

reverse_seq=1  

asm_flags=2  

rd_len_cutoff=101  
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rank=3 

#MP3000  

q1=/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_30

00_S1L1_nc_ABC_R1.fastq 

q2=/home/astander2/lustre/00_GenomeRooibos/01_Data/01_lmp_Processed/nextclip/MP_30

00_S1L1_nc_ABC_R2.fastq 

 

 

SOAPdenovo2 K41 job script 

 

#!/bin/bash 

#PBS -l select=1:ncpus=56:mpiprocs=56:mem=950gb 

#PBS -l walltime=48:00:00 

#PBS -q bigmem 

#PBS -W group_list=bigmemq 

#PBS -P CBBI1133 

#PBS -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/01_SOAPdenovo2/07_EC_2019/0

01_K41_EC_NoMP8/SoapK41_EC_NoMP8.out 

#PBS -e 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/01_SOAPdenovo2/07_EC_2019/0

01_K41_EC_NoMP8/SoapK41_EC_NoMP8.err 

#PBS -N SoapK41_EC 

#PBS -m abe 

#PBS -M 3859586@myuwc.ac.za 

 

module load chpc/BIOMODULES 

module load SOAPdenovo2 

 

cd 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/01_SOAPdenovo2/07_EC_2019/0

01_K41_EC_NoMP8 
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SOAPdenovo-63mer all -s ./00_ConfigFile.txt -o SOAPK41_EC_NoMP8.graph -K 41 -p 56 -

R -N 1100000000 1>SOAPK41_EC_NoMP8.log 2>SOAPK41_EC_NoMP8.err 

 

SOAPdenovo2 K71 job script 

 

#!/bin/bash 

#PBS -l select=1:ncpus=56:mpiprocs=56:mem=950gb 

#PBS -l walltime=48:00:00 

#PBS -q bigmem 

#PBS -W group_list=bigmemq 

#PBS -P CBBI1133 

#PBS -o 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/01_SOAPdenovo2/07_EC_2019/0

00_K71_EC_NoMP8/SoapK71_EC_NoMP8.out 

#PBS -e 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/01_SOAPdenovo2/07_EC_2019/0

00_K71_EC_NoMP8/SoapK71_EC_NoMP8.err 

#PBS -N SoapK71_ECNoMP8 

#PBS -m abe 

#PBS -M 3859586@myuwc.ac.za 

 

module load chpc/BIOMODULES 

module load SOAPdenovo2 

 

cd 

/home/astander2/lustre/00_GenomeRooibos/05_FullRuns/01_SOAPdenovo2/07_EC_2019/0

00_K71_EC_NoMP8 

 

SOAPdenovo-127mer all -s ./00_ConfigFile.txt -o SoapK71_EC_NoMP8.graph -K 71 -p 56 -

R -N 1100000000 1> SoapK71_EC_NoMP8.log 2> SoapK71_EC_NoMP8.err 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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