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Abstract

THE PARADOX OF ENRICHMENT IN PREDATOR-PREY

SYSTEMS

M Sogoni (Msimelelo)

MSc Thesis, Department of Mathematics and Applied Mathematics, University of the

Western Cape.

June 2012.

In principle, an enrichment of resources in predator-prey systems show prompts

destabilisation of a framework, accordingly, falling trophic communication, a phenomenon

known to as the “Paradox of Enrichment” [54]. After it was first genius postured by

Rosenzweig [48], various resulting examines, including recently those of Mougi-Nishimura

[43] as well as that of Bohannan-Lenski [8], were completed on this problem over

numerous decades. Nonetheless, there has been a universal none acceptance of the

“paradox” word within an ecological field due to diverse interpretations [51].

In this dissertation, some theoretical exploratory works are being surveyed in line with

giving a concise outline proposed responses to the paradox. Consequently, a quantity of

diffusion-driven models in mathematical ecology are evaluated and analysed.

Accordingly, piloting the way for the spatial structured pattern (we denote it by SSP)

formation in nonlinear systems of partial differential equations [36, 40].
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The central point of attention is on enrichment consequences which results toward

a paradoxical state. For this purpose, evaluating a number of compartmental models in

ecology similar to those of [48] will be of great assistance. Such displays have greater

influence in pattern formations due to diversity in meta-population.

Studying the outcomes of initiating an enrichment into [9] of Braverman’s model,

with a nutrient density (denoted by n) and bacteria compactness (denoted by b)

respectively, suits the purpose. The main objective behind being able to transform [9]’s

system (2.16) into a new model as a result of enrichment. Accordingly, n has a logistic-

type growth with linear diffusion, while b poses a Holling Type II and nonlinear

diffusion ∇2σnb2 [9, 40].

Five fundamental questions are imposed in order to address and guide the study in

accordance with the following sequence:

(a) What will be the outcomes of introducing enrichment into [9]’s model?

(b) How will such a process in (i) be done in order to change the system (2.16)’s stability

state [50]?

(c) Whether the paradox does exist in a particular situation or not [51]? Lastly,

(d) If an absurdity in (d) does exist, is it reversible [8, 16, 54]?

Based on the problem statement above, the investigation will include various matlab

simulations. Therefore, being able to give analysis on a local asymptotic stability state

when a small perturbation has been introduced [40]. It is for this reason that a bifurcation

relevance comes into effect [58]. There are principal definitions that are undertaken as

the research evolves around them.

A study of quantitative response is presented in predator-prey systems in order to

establish its stability properties. Due to tradeoffs, there is a great likelihood that the

growth rate, attack abilities and defense capacities of species have to be examined in line

with reviewing parameters which favor stability conditions. Accordingly, an investigation

must also reflect chances that leads to extinction or coexistence [7].
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Nature is much more complex than scientific models and laboratories [39]. Therefore,

different mechanisms have to be integrated in order to establish stability even when a

system has been under enrichment [51]. As a result, SSP system is modeled by way of

reaction-diffusion differential equations simulated both spatially and temporally.

The outcomes of such a system will be best suitable for real-world life situations which

control similar behaviors in the future. Comparable models are used in the main

compilation phase of dissertation and truly reflected in the literature. The SSP model

can be regarded as between (2018-2011), with a stability control study which is of an

original.
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Chapter 1

General Introduction

The so-called Paradox of Enrichment has assumed an imperative component within

species interaction resulting in transforming science of technology into a succession of

paradigms [39]. After Rosenzweig’s [48] discovery which described the outcomes in six

predator-prey models, Roy-Chattopadhyay [51] stated that, “wherein increasing food

availability to the prey would cause the predator’s population to destabilise”. Equally,

[48] used an application of ordinary differential equations to simulate predator-prey

interactions.

Definition 1.0.1. The Paradox of Enrichment basically implies that if a supplement

has been included in an environment with at least two or more connecting populations,

with the real result of moving such a framework towards an unsteady state, bringing

about uneven characters that thusly prompts termination of the species included [54].

Both in ecological and biological context, this means that increasing food available to

an ecosystem leads to instability [57]. Other ending results can be extinction, since

improving or enhancing the carrying capacity of a species notionally destabilises predator-

prey dynamics as far as mathematical ecology is concerned [48].

Regulation of population depends upon both the bottom-up and top-down forces [58].

The major role players according to earliest view being the primary producers, an

efficiency of energy and an upward intake of material across trophic levels [36].

1

https://etd.uwc.ac.za



Consequently, a construction of an ecological ecosystem had been influenced by these

views mentioned above, which holds for apex predators having a minor authority on

environmental functionality [51, 48].

Only around the mid 1960s that a focus on species interaction changed drastically

to competition [53]. The only major challenge with this approach was that all species

within trophic levels had an equivalent cause not only just predators [26]. In new research

developments, top-down procedures have again reflected the importance of predators

resulting directly to spatial structured patterns (we shall refer to it as SSP) formulation

[39]. The emphasis is more on top-down forces created by apex predators.

Notwithstanding, biodiversity requires more species interaction than bottom-up versus

top-down techniques [3].

Mathematical modeling of both qualitative and quantitative developments in predator-

prey dynamics plays a significant role in controlling biodiversity and coexistence [2]. It is

crucially along these lines that accurate representation does give a clarity on assumptions

to be used, variables and parameters to be considered. As the main focus is more on

diffusion-driven predator-prey systems, a review and recognition of the previous work

done so far in line with the paradox’s evolution is highly significant.

Interaction of various species in the field of ecology, mathematical modeling and two

dimensional spatial structured pattern formations had drawn much attention, especially

within the scientific research field and policy formulation processes [16]. In any case,

extraordinary outcomes of such interactions depend entirely on both the suitability and

character of species involved [36]. For example, reproductive rate and food intake

supplements have a direct influence on how patterns will be formed [50, 19]. It is for this

reason that the word “enrichment” in interacting predator-prey dynamics is of pertinent.

Definition 1.0.2. The term enrichment both in a biological and environmental context

has been utilised as meaning “an enhancement of species’ physical or social encompassing

environment [8, 27], successively to progress behavioral effects” [10].

2
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Example 1.0.3. Let us consider an interaction of two populations, being a bacteria

(predator) and its nutrient (prey) [16]. Bacteria depends entirely on the presence of its

nutrient for it to survive [20].

Based on this dependency, in the absence of its nutrient, bacteria will therefore die

eventually [37]. Equally, the case would totally be different when there is no bacteria

as it could enable its nutrient to grow and increase its density without any disturbance

[8]. The nutrient population decline might be associated with its normal death or other

external factors [28]. Interestingly, is “what then occurs in the presence of both species?”

Alternatively, the Paradox of Enrichment evolves as a result of a consumer-resource

system assumption with the predator’s vertical isocline presence being able to link trophic

levels and the prey-dependent functional response [48, 59]. This occurs as the predator’s

functional response is directly influenced by the prey’s abundance instead of consumers

within a prey-dependent system (the situation being that of Lotka-Volterra [54, 8]). In an

instance of a predator-dependent system, the carrying capacity at which

destabilisation takes place increases as is interference [7].

Subsequently, models of Beddington-DeAngelis, Hassell-Varley-Holling together with

that of Arditi-Ginzburgare being considered. Despite the fact that a lot of work has been

done towards [48]’s paradox, an original logistic equation (2.3) had been utilised as a

key fundamental component of population growth in predator-prey theory. Pioneers in

those circumstances, incorporate amongst others, a Thomas Malthus’s “essay on the

principle of population”. This was shortly transformed by Peirri Verhulst [12] into a

mathematical logistic equation and later followed by the modifications of Pearl-Reed [25].

Afterward, in Veilleux’s experimental work [30], an enrichment resulted in increasing both

the growth rate and carrying capacity concurrently [33, 36].

1.1 Biological background

In ecological principles, the concept of enrichment had been widely debated [39, 19]. It

has been shown to play a significant role around environmental structures and probably

3
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some behavioral patterns [5]. A well-defined meaning of the Paradox of Enrichment under

Definition (1.0.1) is therefore very crucial and also significant as it elaborates further

on some research done so far. This will enable us to extract gaps that successively will

assist in bridging biological data with mathematical modeling.

To give a brief summary with regard to the Paradox of Enrichment’s evolution, a

reference to the flow chart diagram in Figure 1.1:

PoE

$$

Conventional

Models

44

�� ))

1st Generational

Homogeneous models

��

uu
Realistic

Models

2nd generation

Heterogeneous modelshh

Figure 1.1: The flow chart diagram representing the PoE’s evolution.

1.2 Ecological and mathematical models normally used

to investigate the paradox.

The most commonly used models to the Paradox of Enrichment’s study include, amongst

others, a Levins conventional system and those of Huffaker et al [7]. Currently,

displays of Holt-Polis and Roseinzweig-McArthur take a core central lead [40]. Equally,

the second-generation models (as illustrated in Figure 1.1) which mostly supported

Rosenzweig’s paradox theory, are also used in more realistic approaches in recent times and

for future purposes [15]. Likewise, a serious discrepancy between theoretical expectations

and observations on natural predator-prey dynamics prompted investigators to propose
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a number of abstract mechanisms for the paradox’s resolution [12, 31]. These includes,

amongst others, the following accompanying factors:

(i) The presence of an inedible prey had been developed as a general class of

mechanism by expanding the original Roseinzweig-McArthur model [43]. According to

Murray [39], with its clear role being to clarify disparities between the theory and

observations. A common division was made by Roy-Chattopadhyay [51] on the

assumption that a prey class consists of two types of species only, one that is edible to the

predator and another, being inedible. The effects of a neutral inedible prey, interfering

inedible prey and nutritionally valueless prey were shown in a detailed theoretical analysis

study of Kawasaki et al. [31] as to be a resolution to the Paradox of Enrichment [32].

A different view which emerged in Rohani et al. [50] was additionally raised with

a neutrally inedible prey generally not being consumed by the predator. As a result, it

directly influenced interactions between the predator and its edible prey [54, 32]. An

inedible prey thus, exerted control over the edible producer’s nutrient content. It had been

shown in different studies of Kawasaki et al., Murray, Mougi-Nishimura [31, 40, 42] that

the presence of such an inedible prey overturned destabilisation due to nutrient’s

enrichment [43]. Experimental work of [51] also established that the presence of an inedible

prey acting as a nutrient sponge provided a plausible mechanism to resolve an ecosystem

enrichment’s paradoxical outcome [12, 31, 40].

(ii) The presence of an invulnerable prey as Vos et al. [54] mentioned, is a result

due to several reasons, namely:

(1) That some individuals among the prey population would appear to the predator in a

transitional state between the vulnerable and invulnerable classes [54].

(2) An invulnerability of an individual prey might either be due to its physiological and

behavioral state or its spatial location [31].

(3) In some situations, predators could not gain access due to a selective occupational

spatial location of immobile prey, resulting in reducing predatory risks as an individual

prey would be invulnerable [32].

Incorporating such a predator-prey system in a dynamic class of a prey population

5
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that is invulnerable due to spatial location had greatly reduced the prey’s vulnerability

to predators based on some potential survival activity associated with their physiology

[43, 12, 31].

It was further shown in [51]’s study that, enrichment did not destabilise predator-prey

dynamics. Instead, it only supplementary enhanced its steady state [12]. Hence, Bontje et

al. [32] argued that, when a predator-prey system consisting of an invulnerable prey class

had been enriched, the result was a direct increase in their population numbers.

Consequently, that brought about an enhancement in the biomass of the entire

prey’s population [41].

Nevertheless, sequentially resulted in boosting an input of individuals in a

vulnerable class by changing the predator-prey interactions to a “donor-controlled system”

[22]. The dynamics of such a system had been shown to be strongly stabilising [15, 32, 12].

Jensen-Ginzburg’s experimental work supported such previous theoretical analysis [30] by

showing that an invulnerable prey stabilised the trophic level dynamics as replacing more

vulnerable preys (similar views that also gained support in [35, 32]).

(iii) The presence of the unpalatable prey separately from a class of a profitable

edible and an inedible prey within the enrichment context in predator-prey theory had

emphasised the presence of another prey class which is less profitable but edible [32]. The

profitability of such preys emerged to be lower than a certain critical value even if they

were to be consumed at a high biomass and a predator nutritional requirement would be

unfulfilled [42]. Based on Kato-Yamamura [16]’s system (2.13) findings, such preys are

referred to as “unpalatable”. Occurrence of an unpalatable prey where a predator

exhibited optimal selective feeding resulted in an amplitude reduction of

dynamic oscillations due to enrichment [54, 16].

Moreover, an unpalatable prey in an enriched predator-prey ecosystems prevented a

minimum abundance of species from falling below certain values, resulting in

robustness boost of stability against enrichment [59, 58]. Subsequently, the findings of

Genkai-Yamamura [16] concluded that a profitability of an unpalatable prey had a vast

potential to act as a key predictor for a dynamic behavior of any predator-prey system in

6
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nature [5]. Research experiments of [32] have shown that due to physical and biological

constraints,

the quality of food in both planktonic and terrestrial ecosystems sometimes decrease at a

high biomass.

Quite recently, [51]’s study proposed a simple phenomenological relationship to

describe an energy degradation value at increased levels of a carrying capacity.

Subsequently, [51]’s discovery showed that an incorporation of a proposed relationship in

a simple predator-prey model overturned destabilisation possibility of community

dynamics due to enrichment by theoretical analysis. It was then, further assumed that

the trophic function depended on a bacteria:nutrient ratio abundance [43, 12].

Definition 1.2.1. A ratio-dependent functional response in a predator-prey

system means the functional responses which are fully dependent on the prey’s density

[57].

(iv) A ratio-dependent functional response was based on a number of empirical

observations conducted previously by the likes of Courbau et al. [7], which had

consistently supported the argument of [51] as a trophic function. With the incorporation

of such systems to an uptake function, [51] showed that enriched dynamics having an

oscillatory instability with a carrying capacity remained unchanged [57]. As a result, such

interaction systems could not rise to a simple predator-prey model [2].

Conversely, due to inappropriateness of such systems, a proposal by Kawasaki et al.

[31] was made, that, considering the time scale of population dynamics on which

models operate differed from behavioral patterns. Consequently, [51] recommended that

the uptake function is termed a ratio-dependent functional response. An argument that

received a number of support among empirical observation studies recently [43, 12].

(v) A spatial interaction or spatio-temporal chaos enabled ecologists and

researchers at large to study the effects of both space and time in interacting species [50].

Afterward, Jansen [27] extended the scope of a simple Lotka-Volterra and

Roseinzweig-McArthur model in a patchy environment with closer focus being to

7
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interpret the formation of patterns. The result analysis of both [31] and Pimms et al. [46]

correspondingly, demonstrated that spatial interactions caused fluctuations of

predator-prey dynamics and regulated its population abundance thereof [32].

Moreover, laboratory experiments of [54], [51], [52] and [27]’s theoretical work, also

confirmed that spatial patches protect predator-prey systems from collapsing due to

population extinction after enrichment. Using a standard reaction-diffusion system with

a cutoff at low population densities, it was further demonstrated theoretically that a

transition to spatio-temporal chaos prevented species extinction in an enriched ecosystem

[54].

Thus, consideration of time and space might efficiently alter the paradoxical outcome

of regular dynamics predicted by simple predator-prey models [58]. In [54]’s

investigation, many ecological studies conducted thereafter presented methods which

promoted or destroyed population stability. Consequently, [54] analysed models of bi and

tri-trophic food chains that incorporated consumer-induced polymorphism.

(vi) Induced defenses, according to Xu-Li [58] have also been shown to decelerate

a rapid population decline of Daphnia under peak fish predation. That contributed to

persistence of prey-populations in the face of high predation risk by efficient predators.

Experimental work of [51] further demonstrated that at high population density Rotifers

produced some unidentified auto-toxin that acted as a source of density-dependent

predator mortality. Consequently, the predator’s death rate increased in direct response

to an increase in its biomass [5, 42].

Later on, results in [54] have shown that intra-species heterogeneity in defense levels

overturned instability subsequently to enrichment. Essentially to that, inducible defenses

represented a predator-dependent result with an indirect interference [57]. Although the

outcomes were found to be caused by differences in handling times, conversion rate,

efficiencies between defended and undefended prey, it was later also discovered that a

stabilising result in [54] remained unchanged even if inducible defenses affected the

consumer’s attack rate. Inducible defenses promoted persistence of predator-prey species

in tri-trophic food chains by bounding the minimum abundance of population from falling

8
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below a minimum value [32].

(vii) A density-dependent predator mortality had been shown to alleviate predator-

prey dynamics as its introduction theoretically provided a stabilising effect within

enrichment [41, 24]. In [51]’s discussion, a conclusion had been drawn that such a

stability, using a predator-prey model with a Holling Type II functional response were

similar to those of Braverman’s (2.16) display [9, 58, 59]. Based on observational results

then, [51] showed that density-dependent predators could also for some other reasons be

able to stabilise predator-prey dynamics [40, 32].

A relatively case to consider was that of the Daphnia algal system, in which other

predators switched to a preferred diet in the absence of their preys’ specialised choice

[51, 58]. As a consequence of that, consideration of density-dependent predators might

then be reasonably adequate in simple predator-prey models [5, 12, 32].

As more research interest developed, many ecologists started an investigation towards

the paradox’s resolution [51].

1.3 Biological applications of the Paradox of

Enrichment and its ecological importance.

Quite recently, the Paradox of Enrichment’s relevance in aquaculture production has been

highly recognised (in the research work of [32, 31] and reference therein) for its vital

fundamental role it plays globally in food demand. The Paradox of Enrichment is

applied to establish an ecosystem’s biodiversity and continuous productivity in order to

enhance stability within population dynamics [59, 58].

In turn, biodiversity has a huge economical value chain in representing environmental

cultural heritage [46]. The Paradox of Enrichment plays a significant role in competition

colonisation trade-off as it is considered to be an important mechanism explaining

coexistence in spatial structured pattern environments [7, 25].

There has been a significant role of applying the Paradox of Enrichment in ecosystem
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conservation management along with an invasion control system of species [19]. Both in

ecosystem restoration and pest management control, respectively, the Paradox of

Enrichment has been widely applied. In natural resource exploitation which includes

amongst others hunting, fishing and forestry, the Paradox of Enrichment had been

functional practical [57]. In cases where spatial distribution of two or more population

is of interest, a passive dispersal had been modeled by the use of a diffusion-operator

[19, 26].

Other ecological importance of the Paradox of Enrichment includes amongst

others the following:

(i) A total maximum removal value on both the number and the weight harvest of species

[44, 47].

(ii) In age, sex and restriction of certain individuals within a harvested species [37].

(iii) In closed exploitation area boundaries on where individuals can be harvested [46].

(iv) In a fixed exploitation seasonal limit on when individual members of a species can

be harvested [40, 47, 43]. This strategy is often employed for both species management

and recreational purposes respectively.

(v) In predator control-culling population to enhance prey inhabitants.

(vi) In prey control-culling of competitive species to enhance population of a specific

species.

(vii) In prey enhancement-support on environmental changes to enhance harvest of a

desired species.

1.4 Descriptions of chapters

The rest of the thesis is composed as follows:

In chapter 2, biological and mathematical preliminaries are introduced as basic

fundamental important prerequisites to the Paradox of Enrichment study in predator-prey

dynamics. Systematically organised to familiarise the reader with definitions in addition

to the methods used in spatial structured pattern models. The remaining part provides
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literature review.

Firstly, representing the Paradox of Enrichment’s evolution alongside mathematical

models which are reflecting a key cornerstone of prevention, control and also providing a

direction on an analytical interpretation of ecological invasion [19]. An assessment focuses

on some previous work done regarding the Paradox of Enrichment, taking into

consideration the relevance of Braverman [9]’s system (2.16) as a spatially structured

pattern’s system (3.1) formulation foundation.

Stability analysis and bifurcation of various models are also evaluated together with

the use of a matlab simulatorin modeling [58, 11]. The outcome of this consideration

result in strongest justification of model (3.1) as a choice through which a gap analysis

along the paradox are represented.

In chapter 3, a model (3.1) has been developed by first taking into consideration [9]’s

system (2.16), which focused on a spatial homogeneous system with three different points

of equilibrium. Thereafter, the next step involves performing a stability analysis and some

numerical results for each of the three cases presented [50]. An introduction of a small

perturbation into [9]’s system (2.16) with few parameter adjustments to fit the new model

environment.

A simulation process has then being dealt with in chapter 4 by taking into account

different forms of interactions and possible likelihoods for future behavior. An

investigative gap plan is used as a benchmark to define the model and its strength. Points

of common interest have been put as a yardstick, while challenges opened for further

testing the model against all various environmental forms.

Furthermore, chapter 4 deals specifically with acquired results from the previous work.

Some of these results will be used for further publication in future. The last chapter

incorporates conclusion and a way forward.
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Chapter 2

Literature review and preliminaries

.

2.1 Introduction

In this chapter, the Paradox of Enrichment’s history is briefly evaluated along with its

evolution in predator-prey dynamics. Taking a closer look into both spatial homogeneous

systems as well as heterogeneous models, the stability analysis has been reviewed along

with matlab simulation applications much more similar to those of Colasanti [11]

in ecological modeling.

An assessment will further include the diffusion’s role and enrichment in

mathematical modeling. In addition, various strengths and weaknesses of other models

reviewed so far are highlighted. History of predator-prey dynamics with analytical

methods and ecological interpretations will also be evaluated [58, 19, 39].

Based on this reason mentioned above, future physiological behaviors and new

parameters can be drawn from predator-prey classes in order to address a paradoxical state

[59]. An optimal control strategy has been included as part a mathematical

analysis [16]. An investigative consideration will further give some details in the historical

background of using a bifurcation theory in predator-prey systems [40]. Ecological basic

surroundings are also conducted on other models describing similar two or more
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interacting populations [50].

2.2 Preliminaries.

The main purpose of this section is to briefly examine some several definitions, methods,

theorems and lastly outcomes that are essential mathematical prerequisites to an

ecological study in general. Therefore, this section serves merely as a diminutive outline

and suitable reference.

Consequently, some mathematical explanations are incorporated together with

ecological definitions. Further useful reference in this regard is a Jordan et al.’s book [29],

which explicitly reflects behavioral change effects as a result of population interactions

[50, 40].

Definition 2.2.1. An Eden model is a lattice pattern replica for the growth of cell

colonies which forms tumor-like structures with finger-like projections.

Remark 2.2.2. All neighbors of an active cluster (in Definition 2.2.1) at any given time

form a growth zone randomly, with a new point to be attached chosen amongst other

neighbors. A reference therein to Molchanov [38] for structural diagrams.

Definition 2.2.3. A dense-branching morphology is characterised on account of its

circular envelope modulated by leading branch tips with diffusion controlled cell growth.

Definition 2.2.4. A ballistic aggregation is a model whereby new particles move along

straight lines (referred to as ballistic trajectories) until they hit the cluster or disappear

completely, leaving a window of observation.

If a mobile (flying) particle contacts the growing cluster in ballistic aggregation, it sticks

at any point with its first touch.
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Remark 2.2.5. Let a system of ordinary differential equations with its associated

nonlinear structure be defined by:

x̄ = f(x) and ȳ = Ay

respectively, with the matrix A = Df(x) in the neighborhood of a point x0 ∈ Rn.

Definition 2.2.6. For all f(x0) = 0, x0 ∈ Rn is called an equilibrium point or a critical

point of the system under Remark 2.2.5.

Definition 2.2.7. If none eigenvalues of the matrix Df(x0) have zero real part, then

x0 ∈ Rn is called a hyperbolic equilibrium point.

Definition 2.2.8. Let V : Rn −→ R be a continuous scalar function. Then, V is a

Lyapunov function at a point 0 if it is a locally positive-definite function

(meaning V (0) = 0 and V (x) > 0 for all x ∈ U{0} for some U of 0).

Definition 2.2.9. Let x∗(t) be a given real or complex solution of a system. x∗(t) is

Lyapunov stable on t ≥ t0 if, for any ε > 0, there exist δ(ε, t0) such that for a solution

x(t): ‖x(t0)− x∗(t0)‖ < δ ⇒ ‖x(t)− x∗(t)‖ < ε for all t ≥ t0.

Remark 2.2.10. Otherwise, x∗(t) is said to be unstable. An observation had been made

by [29] that, if an order is satisfied for initial conditions at t0, then a similar state holds

when t1 > t0 is substituted for t0. That is, if x∗(t) is stable for t ≥ t0, it is also stable for

t ≥ t1 > t0.

Definition 2.2.11. If a solution is stable for t ≥ t0 and δ is independent of t0, then it is

said to be uniformly stable on an interval t ∈ [t0,∞).

Definition 2.2.12. Let x∗ be a stable or (uniformly stable) solution for t ≥ t0. If there

exist η(t0) > 0 such that |x(t0)− x∗(t0)| ≤ η is fulfilled whenever

limt→∞ |x(t)− x∗(t)| = 0, then x∗ is said to be asymptotically stable.

Remark 2.2.13. Solutions of a system in the form ẋ = f(x) are particularly significant

in ecology.
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Theorem 2.2.14. Let A be a constant matrix of a system ẋ = Ax having eigenvalues

λi = 1, 2, ...., n.

(i) A is stable whenever Reλi ≤ 0 for all i = 1, 2, ..., n.

(ii) A is uniformly stable when either Reλi < 0 for all i = 1, 2, ..., n. or Reλi ≤ 0 for all

i = 1, 2, ..., n, without any zero repeated eigenvalues.

(iii) A is asymptotically stable whenever Reλi < 0 for all i = 1, 2, ..., n.

(which guarantees uniformly stable by (ii)).

For the proof a reference to Hirsh-Smale’s book therein [22].

Remark 2.2.15. In the threshold phenomena, Murray [39] discussed a group of

interesting models which have a nonzero stable state. If perturbation on the threshold is

sufficiently large or of the right kind, population densities undergo large variations before

returning to steady state, exhibiting a threshold effect.

2.3 Mathematical models used in the Paradox of En-

richment.

A significant part of theoretical biological research earlier on had addressed a reality

that interactions are more than random encounters [50]. A system of partial differential

equations has been used in the past decades to model predator-prey interactions since

Lotka-Volterra’s pioneering work (see Holmes et al. [19]). Likewise, a presentation is

done for three classes around the Paradox of Enrichment’s evolution based on previous

work done.

(1) Conventional models played a significant role by ensuring that the Paradox of

Enrichment had captured innumerable ecologists [30]. Consequently, Rosenzweig [48]’s

view had been widely upheld as a classic instance of an ecological paradox ever since its

discovery. Simultaneously, Rosenzweig-MacArthur [47]’s work had been highly influenced

by the pioneering work of Lotka [51] and Ginzburg discretely [30, 40]. However, [48]

used the word “paradox” to express an apparently contradictory role of enrichment in
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ecosystems.

The original Lotka-Volterra model [47]:

dx

dt
= rx(1− x

K
)−mxy,

dy

dt
= emxy − δy (2.1)

had been broadly studied in [48, 49, 9, 18, 6, 23] and references therein. Variables x(t)

and y(t) being densities of the prey and predator respectively at time t [58]. Parameters

of system (2.1) being given by:

r as an intrinsic rate of a prey population increase,

m as a predation rate coefficient,

K as the environment’s carrying capacity. Lastly,

δy being a predation mortality rate.

Later on according to Roy-Chattopadhyay [51], system (2.1) was modified by [47] to

include a logistic growth for the prey and a functional response for its predator. It then

took the following form of equations:

dx

dt
= g(x)− f(x)y,

dy

dt
= εf(x)y −my. (2.2)

System of equations (2.2) above had been generally studied in [48, 49, 31, 32] and

references therein.

Remark 2.3.1. Let the parameters of an interacting predator-prey system be defined by:

x denotes the prey density,

a represents the predator’s attack rate (or searching efficiency),

Ttot represents the total time spent,

Ts represents the total search time,

Th represents the handling time per prey, and lastly

Cr represents the prey’s consumption rate.

Then:
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Definition 2.3.2. Holling Type I is given by the system of equations Cr = aTsx.

Noticeable is that Ts decreases as prey numbers increased.Thus, Ts is not a constant and

therefore will keep on changing. With parameters kept the same as in Remark 2.3.1:

Definition 2.3.3. Let Ts = Ttot−ThCr denote a difference between total time spent and

the product of handling time together with consumption rate. Then, Cr = axttot
1+aThx

is called

a Holling Type II functional response.

Thus, with the persuasion of Huffaker [54], Rosenzweig’s paradox popular model (2.3) [48]:

dV

dt
= rV (1− V

K
)− kP (1− e−cV ),

dP

dt
= AkP (e−cJ − e−cV ) (2.3)

was established.

Remark 2.3.4. Likewise, [48]’s system (2.3) above had been broadly extensively studied

in [48, 49] and references therein.

Later on, other examples of the Paradox of Enrichment included the following:

(2) The 1st generation models.

(i) An extension of Tilman’s competition model [53] took the form:

dR1

dt
= a1(S1 −R1),

dR2

dt
= a2(S2 −R2). (2.4)

Parameters of [53]’s system (2.4) being given as:

a1 and a2 representing rate constants,

R1 and R2 are environmental availabilities of resources. Lastly,

S1 and S2 standing for maximal amounts of all forms of each resource within a given

habitat.

Accordingly, [53]’s system (2.4) therefore accounts explicitly for resources as highly

illustrated by the given parameters above.
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(ii) A consideration that interactions may be of a mixed type, such as in case of an

intraguild predation [50], Pimm et al.’s model [46] therefore, took the form:

dXj

dt
= Xi(bi +

n∑
j=1

aijXj). (2.5)

Parameters of [46]’s system (2.5) being defined as follow:

Xj being a population size,

bi as an instantaneous rate of growth with regard to the ith species, and

aij as a per capita effect of the jth species on the ith species.

This was followed shortly by the discovery of Holt’s intraguild predation model [20]:

dP

dt
= PfP (R,RP ) + gP [α(P,N,R)N ],

dN

dt
= N [fN(R,RN)− α(P,N,R)P ]. (2.6)

Definition 2.3.5. An intraguild predation is when one predator preys on another that it

competes with for a common resource at different trophic levels.

In [20]’s system (2.6) with such interactions, dP
dt

represents an intraguild predator while

dN
dt

represents an intraguild prey respectively [20]. Parameters are defined as follow:

f is the growth rate of each consumer on a shared density R and exclusive resources

(at densities RN together with RP respectively),

α is the death rate of each intraguild prey as a result of an intraguid predator, and lastly

gP is the intraguild predator’s growth rate from consumption.

(3) The 2nd generation models included:

(iii) An incorporation of behavior into population dynamics [52].

(iv) A recognition that distribution of populations are never spatial homogeneous over

space and ecological interactions but are modified by spatial structured patterns [50].

The discovery mentioned in (iv) gave rise to a broad field of meta-population theory

and spatially structured models cooperatively [6]. This had also influenced Braverman’s

[9] work over that of Lotka-Volterra, Roseinzweig-McArthur, Rosenzweig and others, as it

utilised stability analysis for a spatial heterogeneous system [58, 57, 60].

18

https://etd.uwc.ac.za



Along lines of development, Arditi-Ginzburg [2] modified systems (2.1-2.6), as they all

fell short in satisfying condition (iii) of the paradox (reference herein given to Haque [18]

for details of the analysis). This was based on the fact that consumers do not normally

compete with each other for the same prey. Accordingly, that led to the discovery of a

classical prey-dependent predator model [2]:

dx

dt
= rx(1− x

k
)− mxy

ax+ c
,

dy

dt
=

emxy

ax+ c
− δy. (2.7)

The Holling Type II functional response system (2.7) had been short-lived as Arditi-

Ginzburg proposed that a ratio-dependent functional response was more suitable in respect

to

increasing biological and physiological facts. This was seen possible in cases where

predators had a highly competitive searching ability [18]. Afterward, further developments

then led to the discovery of Arditi et al.’s model [3]:

dx

dt
= rx(1− x

k
)− mxy

ax+ by
dy

dt
=

emxy

ax− by
− δy. (2.8)

The model (2.8) is quite similar to a system (2.7), with only one exception that a

constant c had been replaced with -by. With an introduction of intra-species competition

in predator population later on, Pieluo [45] customised model (2.1) to take the form:

dx

dt
= rx(1− x

k
)−mxy

dy

dt
= emxy − δy − hy2. (2.9)

Alternatively, Bazykin et al. [5] modified system (2.7) to take the form:

dx

dt
= rx(1− x

k
)− mxy

ax+ c
,

dy

dt
=

emxy

ax+ c
− δy − hy2. (2.10)
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Further developments afterward carried out by [5] shortly led to the discovery of a ratio-

dependent functional response system. As a result, Haque [18]’s system (2.11) of equations

took the following form:

dx

dt
= rx(1− x

k
)− mxy

ax+ by
,

dy

dt
=

emxy

ax+ by
− δy − hy2. (2.11)

The Beddington-DeAngelis model: As lot of attention was given to Rosenzweig’s

[48] paradox work, it was further extended by DeAngelis with an introduction of a

supplementary “functional response” model in classical predator-prey theory.

Beddington-DeAngelis [6] also extended system (2.10) by illustrating parasite host

interactions with a set of equations:

dx

dt
= rx(1− x

K
)− mxy

ax+ by + c
,

dy

dt
=

emxy

ax+ by + c
− δy − hy2. (2.12)

Variables of the model (2.12) above being x(t) and y(t) representing the prey and

predator’s densities respectively at time t. Parameters are thus given by:

r as a positive constant for the prey intrinsic growth rate,

K as an environmental carrying capacity,

m as the predator’s consumption rate,

a and c as the prey’s saturation constants,

b as the predator interference,

e as the conversion rate,

d as the predator death rate. Lastly,

h being the predator’s intra-species competition [6].

Quite interestingly, is the development of a simple Beddington-DeAngelis model which

excluded intra-species competition. Thus, allowing h = 0 and taking the form:

dx

dt
= rx(1− x

K
)− mxy

ax+ by + c
,

dy

dt
=

emxy

ax+ by + c
− δy. (2.13)
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All above-mentioned models have been extensively applied towards a predator-prey

interaction study, with more focus on improving understanding of the Paradox of

Enrichment’s evolution [54].

2.4 Partial differential equations in ecology.

A considerable part of theoretical ecological research over the last few decades had

addressed the fact that interactions are more than random encounters [60]. Partial

differential equations are mainly used to model a number of ecological phenomena such

as environmental invasion, dispersal of species at large [19, 58] and spatial

diffusion-driven pattern formations [1, 25].

Thus, a system (3.1) model takes the same form intended to introduce enrichment on

top of its paradox effects [54]. As needs be, the following question becomes a focal point:

“Had various predation models in the past been built on this foundation?” [4, 57]

Conversely, for questions relating to invasion or spatial patterning, partial differential

equations are ideal [4]. For instance, by their application to model invasion processes, it

had been observed that invasion rates were always consistently proportional to those of

population growth at low density and dispersal distances per generation [12, 3]. Likewise,

partial differential equations are perfect for investigating the spatial patterning formation

as they provide a mathematical tool that naturally depicts the continuous homogeneous

space as a “null model” [28, 4].

Any patterning that develops is thus clearly due to population interplay interactions

along with dispersal and not the environment itself [37]. Practical-minded ecologists might

wonder why anyone would attempt to explain spatial patterning without ecological

heterogeneity when all environments are so obviously incongruous [8, 26]. This is the

same as asking why anyone would want to explain population fluctuations in terms of

species interactions when their habitat so obviously fluctuates in time [3].

Nevertheless, much work needs to be done before partial differential equations realise

their full potential as a tool for illuminating biological processes [4, 60]. Therefore, a
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proposal has been made for the two basic primary steps to be considered:

(a) Firstly, more attention should be paid to an investigation of transient dynamics, how

rapidly are asymptotic rates of invasion obtained and departures from simple idealised

portraits of habitat shape or dispersal behavior [4].

(b) Secondly, careful comparison of many different mathematical tools available for

representation is essential [40].

From mutual interactions of Rosenzweig-MacArthur [47], some partial differential

equation’s interesting application results had been observed. From shared connections,

once again of [47], some intriguing outcomes had been observed. In research work of

Ramanantoanina et al. [24], a predation system had been developed through the

application of partial differential equations with coupled ordinary differential equations.

Accordingly, models (2.1-2.16) have all been built successfully using applications of

partial differential equations.

Consequently, that has influenced the current model (3.1)’s follow-up purpose of

continuing along the same trend.

2.5 Spatial interacting systems.

Original basic ecological components display spatial differences [40]. These include,

amongst others, an individual species’ behavior, species’ abundance, diversity, and lastly

species’ population dynamics [22]. The spatial extent at which diseases spread and

bacteria circulation, had been highly linked with reaction-diffusion models [43].

A spatial interaction is ultimately of importance in biological pattern formations [39].

Diffusion models form a reasonable basis for studying spatial interactions in predator-prey

systems [7, 10]. Species’ spatial cooperation consequently affect population dynamics [55].

Spatial interacting systems, thus provide a biological insight and are very useful in

summarising, interpreting and interpolating real data [40]. Spatial heterogeneity

generates spatial flows, with local enrichment certainly corresponding to an

impoverishment elsewhere [8].
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In matlab simulations, utilisation of spatial connections is made as they are both

collectively as well as top-down. This support diffusion process within model (3.1) having

predator-prey interacting systems. For future research, an alternative model can be used

when a predator-prey system has been subjected at the highest possible level of disag-

gregation [22]. This will sequentially give an opportunity for the study of a bottom-up

emergence in complex pattern formations [37]. Preferably, reflecting

relationships from behavior along with interactions at an individual level [32].

It was noted in Braverman’s [9] study that, strings of concentration rings were formed

as a chemotactic pull of the bacterium Escherichia coli had been immunised on a semi-

solid agar containing mixtures of amino acids or sugars. This was due to their response

towards spatial gradients as a result of attractants produced mainly by an uptake together

with catabolism [40]. Subsequently, cells drifted up the slope that had been generated

synthetically by diffusion from an incline of a capillary tube or even by assimilation [8, 10].

By changing the thickness’s surface, distribution of bacteria colonies was highly affected

with greater point of moving more towards a stronger stability state [60, 58].

Symmetrical arrays of spots and stripes that arose consecutively were formed as

bacteria cells developed in semi-solid agar on intermediates of tri-carboxylic acid cycle

[53]. More randomly, arrayed spots became visible synchronously as bacterial cells in a

thin layer of liquid culture were exposed to the same compound [52].

An evidence was that in either case, patterns were stationary [29]. Excretion of

chemical attractant which could be sensed by an aspartate receptor had been triggered by

an oxidative stress [35]. An aggregation had supplied sufficient space as a mechanism of

a collective defense in high cell density levels due to oxygen limitations [44]. A bacterium

Bacillus subtilis, when immunised on a nutrient-poor solid agar showed evidence of

fractal morphogenesis [5, 14].

For softer agar standard with a nutrient-poor semi-solid medium, bacteria colonies

showed characteristics of dense morphological structures [36]. Simple circular colonies

grew almost homogeneously in space as both the nutrient concentration and agar’s

softness were further increased [58]. This observation by Murray [40] was also relevant for
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other bacteria types. For example, Serratia, Salmonella, Escherichia coli and their mutant

strains, and references therein.

Various mathematical modeling has been developed in the past in order to explain

each characteristic colony pattern [1]. These include, amongst others:

(i) A Diffusion predator-prey model,

(ii) A Communication walker model, and lastly

(iii) A Reaction-diffusion model [10, 22].

Likewise, ecological interactions can be broadly classified as a prey-predation,

competition, and mutualism [58]. However, in the work of Li et al. [23] and Mcglade [37]

respectively, inter-specific interactions have been classified as a chief principal subject of

ecology whereby competition as well as predation are two important factors influencing

natural selection.

In Bontje et al.’s model [32], a Holling type II feeding threshold was also taken into

account for predator-prey trophic interactions in a two dimensional system.

Numerical bifurcation investigations performed with its comparative analysis given for

both [32] models had identical qualitative results, but differed quantitatively. At

whatever point an estimation of parameters were picked such that significant

predator-prey dynamics of ordinary differential equations experienced sustained

oscillations [54].

Equally, a ratio-dependent asymptote had spatially uniform oscillations with the same

amplitudes [39]. This fact was also known for ratio-dependent systems with a linear

bifurcation term [58]. A proportion reliance asymptote again had spatially uniform

motions with the same amplitudes [3]. This reality was likewise known for proportion

reliance with a straight bifurcation term [58].

Be that as it may, a nonlinear bifurcation for predators did not change the situation

in [32]. According to [40], for a prey class (denoted by u) and predator class (denoted by

v), only two possibilities for cross-terms fv and gu existed:

(1) The main confinement had been that fv.gu < 0.

(2) In that manner, fv < 0 and gu > 0 or fv > 0 and gu < 0.
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These results above must, however, correspond directly to qualitative different

reactions [4]. Consequently, it has clearly been noted in Ko-Ryu [33]’s experimental work

that reactants which promote growth in one system as an activator and another one being

an inhibitor.

Quite intriguingly is that in [40], an activator u class also involuntary the inhibitor.

While the inhibitor v class inhibited not only u class, but also itself [60]. For pattern

formation to take place, an inhibitor must diffuse more quickly than its activator [10].

However, while in [40]’conclusion, there were fundamental changes as a v class became an

activator which had still self-inhibiting and diffused more rapidly [5].

Another difference had also been noted between these two cases [39]. Patterns grew

along an unstable manifold associated with a positive eigenvalue [37]. Evidence from [40]’s

study was that two species were found to be at a high or low-density in the same region

as patterns grew instantly. On the other hand, in cases of u class were at a high density

where v class was low and contrary showed different results [40].

Qualitative features of the phase plane in vicinity of a steady state had been shown

again in [40] for two cases respectively. The fact that patterns were either in or out of

the phase had direct fundamental implications for biological applications [32, 31]. To get

an intuitive feel for these two cases, [40] considered two different ecological predator-prey

scenarios:

(a) In the first case, let u class along with v class represent the prey and predator

respectively.

(i) At high a v density, u population reduced.

(ii) At low a v density, u population increased.

(iii) Also, close to a steady state, the u class had been observed to be benefiting from

each other as an increase in their numbers was temporarily amplified.

(iv) Another important observation reflected that the v class decreased in numbers when

a v:u ratio was extremely high, but otherwise it increased.

In [40]’s comparisons above, interaction near a steady state revealed local nullclines

and qualitative growth. A necessary condition for diffusion-driven instability in such
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predator-prey situations had been that the predator dispersed faster than its prey [10, 32].

Consequently, resulting in the formation of patterns [57].

(b) Also, was to consider a second type of interactions in [40] with the predator-prey

situation where u class presented predator and v class the prey respectively.

(i) In that case, the v class had been “auto catalytic” since when densities were too

close to a steady state, there was an increase in the u class due to being temporarily

amplified.

(ii) Increased v class densities improved hunting or reproductive efficiency of a u class

[46].

(iii) Another difference between a case mentioned above and the first one is that the u

class dispersed at a faster rate compared to its v class [37].

(iv) In the event wherein there was a high u class without diffusion, their population

increased and eventually made both populations return to a steady state [10].

(v) Nevertheless, it could have happened that the u class grew and reduced its v class

to a level below a steady state value [60].

(vi) In such cases, temporary increase in the u class was enough to prompt auto-catalytic

growth of predators to kick in immediately [5].

(vii) Correspondingly, that resulted in a net-flux of the u class from neighboring regions

which in turn caused the v class to drop simultaneously [46].

(viii) As auto-catalysis worked in the opposite direction, thereby letting the u class

growing above a steady state value [29, 39].

These results mentioned above are of biological importance as it will be shown later their

significance in matlab simulations.

Therefore, the instability concept in biology is often within an ecological context,

whereby a uniform steady state becomes unstable to small perturbations [57].

Properly, predator-prey species populations typically exhibit some temporal oscillatory

behavior changes [4]. The main process driving spatial homogeneous instability being

diffusion as a mechanism which determines spatial patterns to evolve [10, 54]. How a

pattern or model is selected becomes an important aspect of research analysis as it gives
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rise to the behavior of bacteria during diffusion processes [31]. Nevertheless, an instability

taken as a concern of in a spatial structured pattern model is quite a different kind.

Quite recently, the world had been under threats with anthrax developments of Krawczyk

et al. [1], as the use of biological terrorist tools emerged again. This is the same deadly

catastrophic biological weapon investigated in [1] when studying a commonly deadly

bacteria which used the application of diffusion processes with similar matlab simulation

methods as clearly shown by Fujikawa-Matsushita’s earlier findings [14]. The results of

simulation in both [1] and [14] respectively, showed that bacteria colonies with rod-like

structures have greatest stable fitness factors and can therefore spread out on the lattice

much faster than other populations [1].

Consequently, as clearly shown in the structures of a bacterium in [1], diffusion

exhibited the most dangerous infections such as those of an anthrax. In an enrichment of

such systems, [1] further showed that population producing rod-like structures and spores

has a smaller average health factor compared to those ones where morphing is forbidden.

Thus, notwithstanding a decrease in health factor, morphing in an anthrax had shown

that there could be a chance for bacterium to survive even in extremely

hostile conditions [20].

2.6 Stability analysis, bifurcation theory and pattern

formation in predator-prey systems.

The fundamental challenges in ecological modeling involve finding ways to deal with

collective dynamics of pattern individual assembling and to scale from small to larger

spatial regions [58, 44]. A central issue is an understanding of how details at one level

makes its signature felt at other scales [40]. Also, how to relate transversely phenomena

scales that cut across scientific disciplines along with investigating the heart of algorithmic

development approaches to high-speed computation [22]. This is the case in ecology,

genetics, epidemiology, and immunology [11].
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An intention is made to investigate spreading of a two-dimensional bacterial

population system in a surface environment. Importance of a Lyapunov function on

stability includes verification and establishing local properties of such dynamical system

[60, 58, 28]. This requires an auxiliary function with specific properties [9]. By comparing

experimental results with numerical simulations, Braverman [9] found that spatial

homogeneous production of bacteria had been an actual manifestation of growth

dynamics described by Fisher’s equation.

Therefore, analytical and numerical tools are developed for equilibrium solutions of a

class of reaction-diffusion with nonlinear diffusion rates. Such equations arise from

population biology and material sciences [39]. Only around the late 1990 recent research

work, Rohani et al. [50] and Holmes et al. [19] obtained global bifurcation diagrams for

various nonlinear diffusion and several growth rate functions. Diffusion mechanism

illustrates a movement of many individuals in an environment or media [11]. Individuals

can be very small such as basic particles in bacteria or very large objects such as animals

[58].

Using a random analytical selection, numerical tools are employed to obtain

bifurcation diagrams on equilibrium solutions of reaction diffusion models with nonlinear

flow [4]. On one hand, spatial heterogeneous model’s distribution and complex spatial

patterns exhibited asynchronous dynamics which improved stability on meta-population

persistence [58, 59]. Contrary, in Li et al.’s discovery [23], migration and predation of

predator-prey systems with a host parasitoid meta-population model lead to a highly

organised spatial pattern formation.

All bifurcation points from trivial solutions had been identified and calculated in [9]’s

system (2.16). For models with a unique non-constant equilibrium, it was always

equivalent to a critical length of its habitat [46]. Accordingly, the critical length became

smaller than the one given by a bifurcation point when an Allee effect was present in such

systems [46]. The Allee effect was caused by a non-monotonic intrinsic growth rate of

biological species [34]. It can also happen as a result of nonlinear diffusion and monotone

intrinsic growth rate [27]. It must be noted that a basic premise around spatial structured
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patterns would be that on one hand the rate of predation would be different and also

directly proportional to that of its prey [37].

Currently, there is still no ecological analysis of such an interaction as this 3-D

spatial structured pattern, which opens a gap for more research. Diversely, such work

would be conducted and informed by the findings using a 2-D with two similar predator-

prey populations [19].

In other instances, as the case in [23] when oscillations of a local population had been

asynchronously, stability of predator-prey systems in meta-population and global

persistence could be highly improved [54, 58]. Otherwise, extinction becomes the most

favorable outcome when non-linear inter-specific interactions produce strong oscillations

of local populations [60].

In a follow-up study by Mougi-Nishimura [41], it was noted that two conditions for a

paradox resolution are needed. Namely:

(1) That the same prey must be preferred as a dietary item by both predators, creating

a potential for high exploitative competition between them [54], and

(2) While both predators are assumed to select their diet in accordance with an optimal

diet utilization theory, one predator must be a specialist and another a generalist [22].

In a follow-up work of Kato-Yamamura [16], system (2.14) of equations is given by:

∂dX1

∂dt
=

{
ε1(1−

∂X1

∂K1

− α∂X2

∂K1

)− r1Y
}
X1

∂dX2

∂dt
=

{
ε2(1− β

∂X1

∂K2

− ∂X2

∂K2

)− r2Y
}
X2

∂dY

∂dt
= {−ε3 +K(g1r1X1 + g2r2X2)}Y. (2.14)

Parameters of the system (2.14) are defined as follow:

ε1, ε2 represent the prey’s growth rate,

K the carrying capacity, and lastly

ε3 being the predator’s death rate respectively.

Also, for a resolution of the paradox to be met, Mougi-Nishimura [42] repeatedly

specified two other conditions that must be contented. That is:
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(i) The same prey must be ranked higher as a dietary item by both predators creating

potential for a high exploitative competition between predators [6], and lastly

(ii) Less profitable prey must be inedible, or unpalatable and close to inedible to one

predator 2 and unpalatable close palatable to another predator 1 [16].

The first condition (i) above was found not intuitively convincing [51]. However, it was

rationally speculated that the paradox would not be resolved when a two-predator-two-prey

system had different food web structures [43]. Such a system consisted a loose coupling of

Genkai-Yamamura [16] and Roseinzweig-McArthur [47] respectively, with neither of which

resolves the paradox.

In [16], stabilisation had been accomplished in the face of enrichment due to two

perspectives, namely:

(a) When an amplitude of oscillation decreased [5], and lastly

(b) When a minimum population of all species increased (as clearly shown from

Vos et al. [54]).

Several theoretical studies on the Paradox of Enrichment have focused within trophic

levels for spatial heterogeneous models of prey types [54]. These studies showed that a

difference in profitability of preys is extremely important for the local stability of

equilibrium and the paradox’s resolution in one-predator-two-prey systems [22]. This is

unmistakably shown by the studies of [42, 58, 59] and reference therein.

The same was found to be true for Kato-Yamamura’s model, which additionally showed

that within trophic levels of spatial heterogeneous systems, a predator type is

important for the stability of non-equilibrium dynamics and a paradox’s resolution [59, 58].

Equally, in [16]’s system (2.14), their outcomes suggested that biodiversity is an

important factor for ecosystem stability [58]. While an ecological invasion constitutes

a critical role to endangered species in developing countries, for decades scientists have

sought to intervene and prevent such incursions by integrating the paradox with stability

analysis [19, 59].

Mathematical modeling of the Paradox of Enrichment in predator-prey systems plays

a substantial role in determining which protection rate and time should be applied to
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control invasion or prevent further endangerment to species [19]. In Braverman’s study

[9], a complete linear stability analysis of a system (2.16) of equations was presented as

well as discussed [58]. Some numerical simulation results in [9] for an asymptotic

behavior (with the zero Neumann boundary conditions in a 2-D domain) were similar

to the relevant Lotka-Volterra system (2.1) of ordinary differential equations.

In a study of the Ko-Ryu model [33],

−δu = u(a− u− bv

βu2 +mu+ 1
),

−δv = v(c− v +
du

u2 +mu+ 1
),

k1
∂u

∂v
+ u = 0,

k2
∂v

∂v
= 0 (2.15)

had investigated sufficient and necessary conditions for coexistence states of predator-prey

interacting systems [27]. Two species with a non-monotonic functional response under the

Robin boundary conditions with −δv in Ω and k2 on ∂Ω had been considered.

Parameters of the system (2.15) are defined as follows:

a being the prey’s intrinsic growth rate,

b as the predator’s capture rate,

c as the predator’s intrinsic growth rate,

d as the conversion rate of captured prey by a predator, and lastly

Ω ∈ Rn being the bounded domain with a smooth boundary ∂Ω.

In Ko-Ryu’s view [33], a gap was discovered between two conditions, explicitly:

(1) With a multiplicity stability and some uniqueness of a coexistence state depending on

some parameters reviewed [59].

(2) Due to those reasons in (1), sufficient necessary conditions for a coexistence state by

using the index theory (we refer to it as ξ) were also established [58].

Furthermore, local uniqueness results of [33]’s studies with the prey (as a nutrient)

and the predator (as bacteria) were significantly small. Lastly, multiplicity, uniqueness

and stability of coexistent states were investigated under the conditions when β > 0 was
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large [59]. Finally, it was shown in [33] that local existence of a coexistence state by using

local bifurcation theory still uphold [58].

2.7 Matlab simulation in mathematical modeling.

A matlab simulator is a spatially explicit model frequently used in ecology to deal with

local predator-prey interactions as well as revealing spatial structures of populations to

be formed [11, 25]. A simple grid square had been employed to simulate bacteria-nutrient

interactions in the SSP model. Successive states of cells arranged on a grid are calculated

according to a set of rules [19]. State transitions depend both on a single cell state as

well as in the local neighborhood [40]. Having the ability to generate large scale pattern

formations from diffusion, local interaction application in matlab simulation is quite of

relevance and a reliability.

In the study of spatiotemporal dynamics, Zhang et al. [25] described the most

significant acceptable approach use of numerical simulation along with ratio dependence

systems. Utilisation of a spatial pattern simulation had been applied in details by Krawczyk

et al. [1], reflecting numerical analysis of a bacteria population. What is quite relevant in

[1]’s study is that a two dimensional numerical simulator had been used similarly to the

one being examined in SSP model’s study.

Certain assumptions in [1] had been made into bacteria modeling as it had been treated

as an independent agent. That is, being able to interact with its surrounding

environment while it can exponentially grow under certain sets of rules [25]. Competition

in an investigative work of Colasanti et al. [11] showed exclusion of annuals by perennials

due to recruitment happening inside the matrix empty cells.

Amalgamation models of Colasanti et al. [11], also found that it is still possible to

create a new model which has a potential to capture some of the consequences for both

competitive and ruderal traits. A note of significance was that competition had been

associated with low stress and low disturbance, while the ruderal traits with low stress

and high disturbance [4]. The product for a fully assembled physiological description of
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a plant-functional system had been accomplished with an addition of a tissue longevity

together with lifespan traits that survived in the absence of any resource allocations [11].

Hence, that lead to [11]’s results, which explained the behavior inside the matrix

protocols, whereby environment had been described at a level of an individual cell from

within. Each cell observed displayed a disconnected assessment probability of access to

resources and the plant in such a cell being destroyed. In the recent study of Molchanov

[38], a focus had been based upon an incorporation of three stochastic models for fractal

growth to a single form. The newly formed model by [38] after incorporation of the three

independent ones presented a realistic trade-off.

However, [38]’s investigation represented a theory of diffusion process which clearly

defined transition of a growing pixel cluster into Laplace equation. That took into

consideration two families of operators which were generated by a Markov’s process [37].

Observations undertaken into [38] clearly defined a basic assumption for the formation of

patterns, while conversely, it represented a good understanding of the thickness effect.

All models mentioned above have some basic rules of operations, which had been

clearly defined ecologically in details by [38] within the context of enrichment. In order to

achieve that, initial stages required substitution of the Brownian motion with a universal

stochastic process compromising jumps and long range dependency flights [38]. It had

been noted that directions of flight as an isotropic still influence the cluster’s thickness

[3]. An application of a map lattices as a strong point for constructing foundation in a

number of predation models in the past had been applied [40].

In [25]’s study, a closer look had been taken to evaluate the role of distribution

patterns in meta-population models. Two different models had been used, namely, a

Levins’s meta-population model and Probability transition model respectively [25]. Focus

closely was then on a community of three species in cyclic competition [54]. Quite

excitingly is the Levins’s model which at some point resembles that of Braverman

(the model under review.)
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In [9] of Braverman model, a system of equations is given by

∂n

∂t
= ∇2n− nb

1 + γn
+ rn(1− n

M
),

∂b

∂t
= ∇(σnb∇b) +

nb

1 + γn
− βb. (2.16)

Parameters of the system (2.16) are defined in detail in [9] (and reference therein).

Remark 2.7.1. The index of Enrichment formulation.

Definition 2.7.2. Let the index of enrichment (we refer to it as ξ(M)) be a sum

of an energy value ξ as well as the carrying capacity M defined by ξ(M) = ξ0η for all

M ≥ Mc. Then xi(M) = ξ0
1+β(Mc−M)

as M < Mc with β being the measurement of a

declining energy value in response to unit levels of an inclined carrying capacity beyond

some critical value Mc.

A realistic behavior of community response to an enrichment in which stability of

dynamics is sustained would be depicted by a suitable ξ(M) [4]. Lastly, to include a

prey’s caloric content in description of enrichment, two real parameters are introduced,

namely, a ε and η such that ε = ξη.

Hence, [25] showed the effects of colonization rates based on Levins’s model for three

non-interacting species along with distribution of dynamical behavior in predator-prey

systems. Levins’s spatially implicit assembly occurred within the mean field assumption

foundation with a potential during simulations to display three different effects,

specifically:

(i) Dynamics of damped oscillations,

(ii) Periodical fluctuations, and lastly

(iii) Stage-equilibrium.

Construction of a Probability transition model as a spatially explicit display was

simply based on Markov’s process [40]. On both [25]’s models above, a random

dispersal was allowed as well as diverse distance in spatial homogeneous patchy
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environments which demonstrated the loss of stability as a dispersal distance increase’s

result [60]. In addition to this factor, [25] also established that species diversity highly

dependent upon two factors, namely, a local distance and interactions respectively [19].

Effects of enrichment amongst interacting species had been clearly shown in [25] using

a Tilman’s multi-species model with intended results leading to the Paradox of

Enrichment. Conversely, a long distance dispersal might lead to species extinction [19, 54].

Currently, there are only two ways of dealing with the dispersal of organisms in

mathematical models, that is, a local and global dispersal respectively [22].

Recent studies toward spatial predator-prey models have revealed that limited

dispersal of organisms with a temporal, spatial heterogeneous environment encourages

stability as well as persistence [58, 59]. The results from Courbau et al. [7] have shown

that the more there is an increase in colonisation rates for a given species, it

contradictory decrease its own global occupancy. Equally so, promoting that of its superior

competitor [29].

A Probability transition model took into consideration the lattice display based on

simulations in the study of spatial dynamics and formation of patterns [12]. All patches

in two-dimensional lattice were orderly arranged with integer coordinates [25]. Taking into

consideration both the von Neumann and Moore neighborhood, respectively, migrants to

a patch arose from within neighboring patches surrounded by its dispersal kernel [19].

Outstanding challenges as a result of environmental devastation and fragmentation

throughout the world had given meta-population model a space within which it could be

used as an essential tool for conducting research based concepts targeting

conservation biology of spatial ecology [52]. A simple competitive hierarchy had classified

species into ranks ranging from the best competitor to the poorest [53]. Therefore, there

would be traces of open patches to accommodate stable coexistence basis within

competitive species [3].

Direct interactions amongst species and paradoxical diversity responses in complex

interlinked communities can affect both an existing and population growth of a given

species [19]. As it is true that evolution favors most competitive individuals within a
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given species, on the contrary, it leads to a species population decline. A voter system

with three species had shown similar contradictions [13]. All these paradoxes above, are

very comparable to [25]’s Levins model.

2.8 Main conclusions reached from above model

studies.

In this section, highlights are being given for models (2.1-2.16) that have been studied

towards the Paradox of Enrichment as far back as its evolution. Notwithstanding, despite

the fact that there are steps of advancements, all these models share some basic

fascinating findings which incorporate the accompanying:

(i) The role of enrichment in interacting predator-prey systems,

(ii) Use of partial differential equations in ecology at large,

(iii) Spatial pattern formation using reaction-diffusion driven systems in spatial

heterogeneous models [26], and lastly

(iv) The role of oscillations under unstable conditions.

A summary of the current investigate findings with regard to the Paradox of Enrichment

is also reflected in Table (2.1).

Technical and substantive concerns were raised in Lotka-Volterra’s model [47] based

on system (2.1) which undermined its empirical usefulness. To mention a few:

(a) Practical, realistic concerns occurred in [47] as each closed orbit became only weaker

along a steadiness “borderline” between stability and instability.

(b) As a result, in (a) above, following a small shock, [47]’s system (2.1) neither returned

to its original equilibrium nor continued to diverge from it.

(c) To a certain extent, the system (2.1) simply “collided with itself” onto a new closed

orbit where it remained indefinitely (unless hit by a subsequent shock).

(d) From [47]’s phase diagram, it was also noticed that trajectories spiraled around an

interior steady state.
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(e) Again, it became unclear graphically whether trajectories spiraled inward (stability)

or outward (instability).

To be more specific, starting from any initial condition in [47], trajectory eventually

returned to a cyclic point and the system (2.1) of equations continued along a “closed

orbit” forever. That result in [47] never holds for discrete-time version models where

orbits are not closed but instead spiral outward.

Hence, [47]’s system (2.1) of equations exhibited weak stability. However, in models

with a continuum of weakly stable equilibria, small specifications of dynamics can have

large qualitative effects. These, in turn, can dramatically alter a number and stability of

equilibria. In the parlance of dynamical systems, such models are not structurally stable.

This called into question the robustness of any predictions derived from systems (2.1) of

equations. Incidentally, spirals had been observed in [47] as not a unique feature of all

realistic population interactions.

Rosenzweig-MacArthur’s system (2.2) of equations included a density-dependent prey

growth with a functional response [47]. However, the model assumed fixed predator-prey

interaction links which were not realistic in nature. For this reason, Roy-Chattopadhyay

concluded that [47]’s outcomes were then limited only in the direction of both laboratory

and experimental observations respectively [51]. Enriching ecosystem’s nutrient energy

flow in most arising world’s demand had strong devastation end results [48, 49].

Application of multiple realistic models in nutritional enrichment of two-species

interactions resulted towards instability [40, 19].

In a system (2.3) of equations, Rosenzweig [48] noticed that oscillations in predator-

prey ecosystems would not last forever, hence limiting formation of spatial patterns. Not

all equilibrium points resulted in a steady state due to its position to the prey’s isocline

(also referred to as a hump). A critical value of equilibrium point, say V ∗ thus defined the

humps peak. Although [48]’s model had been well accepted as a classic example of

ecological theory, the word “paradox” in its phrase had not yet been universally

acknowledged [51]. Accordingly, Mougi-Nishimura [41] recognised that it had been

subjected to different interpretations [31].
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However, in subsequent articles, the phrasing “paradox” had been used to express

discrepancy between dynamic behavior of real simple predator-prey systems [12, 5, 32].

While Rosenzweig’s paradox work had been highly accepted on one side, [41] challenged

the extrapolation of [48]’s theoretical analysis and its universality in more complicated

mathematical interacting realistic systems [54].

To discover the Paradox of Enrichment, [48] concluded that in the effects of enriching

a system, one needs to find how an equilibrium point V ∗ changes as enrichment proceeds

and also take note on the relationship between V ∗ and V population. In addition, V ∗ = J

(predator’s isocline) meant that the system was in a steady state. If an enrichment

increases V ∗, then it is jeopardizing the system, because eventually V ∗ will be made

greater than J.

Treating species’ population as molecules in [48] had been shown to be inadequate.

Consequently, Roy-Chattopadhyay [51] argued that there was a lack of scientific

natural convincingly results in all six models tested. Once more, enrichment

unambiguously tends to weaken steady state [16]. Jensen-Ginzburg [30] reflected that

conclusion based on [48]’s outcomes did not apply to natural ecosystems, as a result

limiting parameters of setting enrichment in reality.

Limitations existed in Tilman’s model (2.4) [53] on the basis that competition

interactions were negatively summarised in the effect of each species on a growth of all

others. Hirsch [22] outlined that there was no explicit statement on the causes of such

negative effects. Competition models therefore provided no guidance as they became more

descriptive than predictive [51]. The use of measures in resource utilization overlapped to

approximate parameters of Lotka-Volterra’s equations as it lacked a theoretical basis for

making such untrue estimations [37].

Formulation of competition models that explicitly state mechanisms for a contest

amongst interacting species is needed [39]. Consequently, [53]’s model served as not a

complete, exhaustive treatment of resource based approaches to population and

community ecology. Hence, [53] concluded that limitations of mathematics in the main

text to algebra and graphic techniques were not assured in real world interaction systems.
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In Pimms’s work [46], research methodology had been limited to integrating food webs

with the rest of ecological theory. An obvious next step was to connect food web

structures and body sizes with species abundances [43]. However, Genkai-Yamamura [16]

concluded that [46]’s work left a huge gap in the field of ecological stable ecosystems.

Consequently, an alternative prey made it possible in Holt-Polis [20] for a shared prey

species to be excluded, in which case formal conditions never hold involving intraguild

predation. With both linear and nonlinear models, there had been a strong variety of

impacts upon such stability [9].

Moreover, an accumulation of weak interactions stabilised system (2.6), whereas adding

relatively strong interactions had a destabilising tendency in terms of both population

fluctuations and coexistence respectively [7]. In both linear Lotka-Volterra systems and

nonlinear intraguild predation models, with or without an alternative prey, given cycles or

chaotic dynamics, densities often reached very low values where stochastic demographics

had likely nudge species toward local extinctions [44]. Subsequently, [20] suggested that an

important direction for future work in general would be to embed analysis of community

systems into richer webs of interacting species across spatial heterogeneous models and

patchy landscapes.

An alternative ratio dependent structure in Arditi-Ginzburg [2] provided many

predictions that seem more reasonable. Such forms had also been directly supported by

many empirical observations, including the likes of [44]. Consequently, system (2.7)

described an extinction in the model by complete prey exhaustion with limitations as

being unable to generate such outcomes. In both [2]’s models, limit cycles arose when

conversion efficiency exceeded a certain critical value.

It is based on these reasons mentioned above that [2] suggested a traditional prey-

dependent form would apply to simple spatial homogeneous systems with rapid turnovers.

Those forms appeared more comparable to chemostats with predation essentially a

continuous local process. A ratio dependent system seemed more appropriate in a

complex spatial heterogeneous environment where the final large-scale outcome of

predation was a sharing process [55].
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Along those lines, [2] anticipated that future work should investigate more closely how

behavioral and physiological mechanisms must be translated to a large scale of population

dynamics. Optimistically, that accumulation of evidence will allow clear delineation areas

of applicability for two opposite idealisations [42]. Namely:

(1) Other models incorporating an assumption that the predator’s attack rate depended

upon a (predator:prey) ratio abundances [5].

(2) Henceforth, claiming that enrichment not predicted to be destabilising [2].

Spatial heterogeneous models in Arditi et al. [3] had not been given priority as it only

appeared spontaneously as a result of reaction-diffusion to a predator acceleration’s

response. Correspondingly, pure diffusive models and conventional models previously

failed to demonstrate heterogeneous regimes on a short time scale [8]. Thus, taking into

account local interactions and boundary conditions using systems (2.10) of equations [13].

Experimental work on Pieluo [45]’s display (2.9) had shown that logistic equations have

been never realistic for a food-limited population under the effects of environmental

intoxicants. Hence, [45] established a new growth function thereafter with the

dynamics of a population where growth limitations had been based on the proportion of

available resources not utilised [40]. Be that as it may, [45] concluded that pattern

formations in the case of Holling Type II predator-prey models with a ratio

dependent-functional response still remain an interesting area of research in ecology?

According to Bazykin et al. [5], multiple stability states coexisted amongst predator-

prey dynamics, resulting in a complete extinction of both species. However, [45]’s model

(2.9) lacked support on an impact of structural sensitivity due to a number of stable states

[28]. Based on this regard that [5] raised two important questions of interest along his

findings:

(i) How many complex ecological systems could be affected by sensitivity to a model

formulation?

(ii) How to deal with such uncertainties in model predictions?

This brought about a challenging way of research as [5] was concerned. That is:

(a) For a better assessment of model uncertainties, and lastly
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(b) Accurate model predictions.

The Paradox of Enrichment occurred in Haque’s [18] system (2.11) of equations for

certain parameter values while the “functional response” was of a ratio dependent. A

Turing instability arose for [18]’s modified model as well as [5]’s original model with prey-

dependent “functional response” (reference in of Appendix B of [18] in a certain parametric

space).

Unthinkingly, [18] concluded that the difference linking prey-dependent with a ratio-

dependent predator-prey model was no longer valid when the predator’s competition had

been accounted for. Finally, [18] accomplished that competition within the predator

population might be of beneficial for predator species under certain circumstances in a

deterministic environment [40].

Beddington-DeAngelis [6]’s system (2.12) of equations very similar to the well-known

Holling Type II model with an extra term “by” in the denominator which modeled a

mutual interference among predators [6]. System (2.12) had some of the same

qualitative behaviors as the classical ratio-dependent model, but is free from singular

behaviors at low densities, making such point a source of controversy.

A salient statistical evidence from nineteen predator-prey systems proved that the [6]’s

“functional response” model provided a better description of predators feeding over a

range of resource abundances. While in some cases, system (2.12) of equations performed

better than other general “functional response” models.

According to [6], all early predator-prey models demanded that a defined “searching

efficient equilibrium” should be constant. An assumption had been shown in the

application of system (2.12) of equations to be wrong in two ways, namely:

(i) With the first indication that efficiency declined as the prey density increased, and

lastly

(ii) That an equilibrium declined with increasing predator density.

In follow up developments, Genkai-Yamamura [16] showed that the Paradox of

Enrichment never occurred in experimental and natural communities. Using system

(2.14) of equations, [16] presented a theoretical model that describes a novel mechanism
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for resolving the paradox in cases of a predator with an optimal selective feeding.

According to [16], sufficient enrichment of the prey led to a destruction risk of predator-

prey system. Three noticeable findings from [16] had been that:

(i) Such enrichment firstly destabilised a stable equilibrium point, resulting in a

limit cycle.

(ii) Amplitudes of population oscillations grew rapidly, and lastly

(iii) While the minimum population abundances approached zero, enrichment further

increased, resulting in stochastic effects leading to extinction.

In spite of astonishing predictions for classic models, the paradox had seldom been

tested empirically. Ratio-dependent displays, however, were found to be less widely

accepted than prey-dependent models with an attack rate depended on an

instantaneous prey density [30]. Equally, none of these studies considered cases in which

equilibrium was unstable and the system followed a limit cycle [54].

In Beddington-DeAngelis’s extension model (2.13) applied by [16], the Paradox of

Enrichment had been reviewed to be different from other previous ones. This was based

on the conditions that switching predators that dealt with non-equilibrium dynamics of

limit cycles displaying optimal selective feeding strategy [4]. Consequently, that

maximised energy input highly dependent on the profitability as well as its prey

abundances [16]

Therefore, if enrichment increased only intrinsic growth rate, the paradox problem

would not exist in the first place [39]. This reason mentioned above enforced [16] to

confine his study to the carrying capacity effects on predator-prey dynamics.

Also taking into consideration that most real communities are more complex than ones

analysed under system (2.12) of equations [29]. Even though reviewed studies before

noticed difficulties in analysing communities incorporating species with more realistic

links, [16] suggested that it was an important and open problem to be solved

systematically.

In view of Ko-Ryu [33], a gap was discovered between two conditions in which

multiplicity, stability and some uniqueness of coexistent states depending on set
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parameters had been reviewed, namely:

(i) Due to some sufficient necessary conditions for an existence of coexistent states by

using ξ theory were also established [7].

(ii) Multiplicity, uniqueness and stability of coexistent states were investigated, under the

conditions when β was large [26].

Finally, it was also shown in [33] that local existence using a bifurcation theory still

uphold. Braverman [9] used spatial homogeneous system to test effects of enrichment.

Hence, systems (2.16) of equations had a high potential of being used for computer

environmental simulations when reviewed under spatial heterogeneous models.

2.9 An overview reflection onto knowledge gaps that

still needs to be filled in line with the Paradox of

Enrichment.

A major gap challenge noted by Roy-Chattopadhyay’s study of mathematical modeling in

ecology had been highlighted to still exist [51]. This includes amongst others:

(i) That in ecological research there is still a huge gap which needs to be filled by the

current and future planned studies [22].

(ii) There is a serious need to do more research work which fits well with real natural

challenges that the world is faced with [40].

The main focus here is to give an overall review of both empirical and theoretical

works that are directly related to the Paradox of Enrichment. Therefore, the work will

be divided into three categories, namely:

(a) Experiments and field observations on the paradox together with some fundamental

theories proposed to resolve it [54].

(b) The handful use of experiments cited by a number of authors which claimed that

enrichment causes destabilisation of ecosystems [28].
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Model Author and year Paradox of Enrichment Conditions

2.1 Lotka-Volterra 1925 Happens Conditional,

2.2 Rosenzwieg-MacArthur 1963 Happens unconditional

2.3 Rosenzwieg 1971 Happens unconditional

2.4 Tilman 1980 Happens unchanged

2.5 Pimm-Lawton 1978 Happens unconditional

2.6 Holt-Polis 1997 Happens Unconditional

2.7 Arditi-Ginzburg 1989 Happens Unconditional

2.8 Arditi-Ginzburg 1989 Does not happen

2.9 Pielou 1969 Happens Unconditional

2.10 Bazykin 1998 Happens Conditional

2.11 Haque 2009 Happens Conditional

2.12 Beddington-Deangelis 1975 Happens Conditional, when a ≤ eb

2.12 and emc ≥ ahy(ax+ by + c)

2.13 Beddington-DeAngelis 1975 Happens Conditional if a ≤ eb

2.14 Kato-Yamamura 2000 Happens Conditional

2.15 Ko-Ryu 2006 Happens Unconditional

2.16 Braverman 2007 Happens Conditional

Table 2.1: Conditions for the“Paradox of Enrichment” of the models (2.1-2.16).

(c) There is a strong argument that the Paradox of Enrichment does exist. In other

research studies reviewed, a major challenge was whether it is reversible [6].
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2.10 How will analysis be conducted using the chosen

model?

The first important step would be to look into Braverman’s system (2.16) and see how

can it be improved [9].

That would require a small disturbance and different technique tools to test stability

analysis of each equilibrium point [19, 27].

Then, the parameters of a newly transformed Spatial Structured Pattern model needs to

be adjusted in order to fit numerical simulations and establish each state of equilibria

[13].

The utilisation of Neumann’s boundary conditions where an explicit finite different

scheme in the second order of the coordinates is applied in system (3.1) simulations [58].

Stability analysis of each of those equilibrium points would be conducted using suitable

mathematical tools such as the Lyapunov function, bifurcation analysis, diffusion and

Brownian motion [28].

Finally, matlab simulations are conducted as well as parameter estimations.
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Chapter 3

The Spatial Structured Pattern

model.

The main purpose of this chapter is to introduce the spatial structured pattern model,

which is a modification of the model in [9] of Braverman and [17] of Goodnight et al.

This SSP model forms the basis of our investigation, and in particular the computational

investigation using matlab simulator. Three equilibrium points are studied very similar

to those of Bohannan [8] along with stability analysis in SSP models. We subject [9] to

enrichment as explained under Remark (2.7.1).

3.1 Representing the System.

The spatially structured pattern model that forms the basis of our study of the paradox

of enrichment is as below:

∂n(x, y, t)

∂t
= ∇2n− αgn

nb

1 + γn
+ nfn(1− n

M
),

∂b(x, y, t)

∂t
= ∇(σnb∇b) + βgn

nb

1 + γn
− θb,

for suitable functions f(n) and g(n) which we write as gn and fn respectively. We assume

that g(n) and f(n) are monotone with continuous non-zero first order derivatives.
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Parameters of System (3.1) are then as follows.

ε is the product of the predator conversion factor η along with the prey’s biomass energy

value ξ.

n(t, x, y) is the nutrient concentration at point (x, y),

b(t, x, y) is the bacterial cell’s density at point (x, y),

M is the carrying capacity of the lattice environment for the nutrient,

α is the nutrient’s diffusion coefficient,

σ is a bacteria’s diffusion coefficient,

fn is a nutrient’s population growth function in the absence of bacteria (predator),

θ is a bacteria’s population decline function in the absence of its nutrient (prey),

α, β and γ are the parameters of the Holling Type II functional response,

gn is the functional response that defines how rates of predation differ with that of prey

density.

This system has the following equilibrium points:

A zero equilibrium Q0 with n = b = 0,

A bacteria-free equilibrium Q1 with n = M and b = 0, and also

A co-existence equilibrium Q2.

47

https://etd.uwc.ac.za



In the case of gn being a constant function gn = g0, then forQ2 we have the coordinates:

n = θ
βg0−γθ and

b = fn
αg0

(1− θ
M(βg0−γθ))(1 + γθ

βg0−γθ ).

In the more general cases, coordinates of the point Q2 cannot be expressed so explicitly,

and one may have to resort to numerical solutions.

We now proceed to calculation of the Jacobian matrix which determines local stability of

the endemic points. Firstly, we write

F1 = ∇2n− αgn
nb

1 + γn
+ nfn(1− n

M
),

F2 = ∇(σnb∇b) + βgn
nb

1 + γn
− θb.

Given any non-negative value n0, we consider a small perturbation on n0 and we

express the perturbed value in the following form, with λ being a growth rate, w1 and w2

being wave numbers and ε very small.

So we consider:

n = n0 exp[ε(λt(w1x+ w2y)].

Then

∇2n = εi2n(w2
1 + w2

2) = −εn(w2
1 + w2

2),

In particular then,

∂(∇2n)

∂n
|Q0 = 0 =

∂(∇2n)

∂n
|Q1 =

∂(∇2n)

∂b
|Q0 =

∂(∇2n)

∂b
|Q1 .
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We can express b in a similar form as we did for n above. We then calculate ∇(σnb∇b)

and find that

[
∂

∂n
∇(σnb∇b)]Q0 = 0 = [

∂

∂n
∇(σnb∇b)]Q1 ,

and

[
∂

∂b
∇(σnb∇b)]Q0 = 0 = [

∂

∂b
∇(σnb∇b)]Q1 .

The Jacobian matrix J(Q) at a point Q takes the form

J(Q) =


∂F1(Q)
∂n

∂F1(Q)
∂b

∂F2(Q)
∂n

∂F2(Q)
∂b

 .

We can now calculate these partial derivatives at the two equilibrium points Q1 and Q2.

Firstly, we note that:

∂F1

∂n
= −εn(w2

1 + w2
2)− αg′n

nb

1 + γn
− αgn

b

(1 + γn)2
+ f ′n(n− n2

M
) + fn

(
1− 2n

M

)
.

and

∂F1

∂b
= αgn

n

1 + γn
.

Therefore we obtain

∂F1

∂n
|Q0 = [−ε(w2

1 + w2
2) + f0]Q0 = f0,

and

∂F1

∂b
|Q0 = 0,

∂F1

∂n
|Q1 = −fM ,

∂F1

∂b
|Q1 = αgM

M

1 + γM
.
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We also calculate

∂F2

∂n
|Q0 =

[
−βg′n

nb

1 + γn
+ βgn

n

(1 + γ)2

]
Q0

= 0,

∂F2

∂n
|Q1 = 0,

∂F2

∂b
|Q0 =

[
βgn

n

1 + γn
− θ
]
Q0

= −θ,

∂F2

∂b
|Q1 = βgM

M

1 + γM
− θ.

Thus at Q0, the eigenvalues are λ1 = f0 and λ2 = −θ. With f0 > 0, it follows that Q0 is

unstable. At the point Q1 we find that the Jacobian has the eigenvalues:

λ1 = −fM and λ2 = βgM
M

1+γM
− θ.

Consequently, we have proved the following theorem

Theorem 3.1.1. :

(a) The zero equilibrium Q0 is unstable.

(b) The bacteria-free equilibrium Q1 is locally stable if θ > βgM
M

1+γM
. Otherwise Q1 is

unstable.
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Let us now turn to endemic equilibria. We note that in the paper [9] of Braverman

and [17] of Goodnight et al, in which the model is a special case of the model above, the

stability study of the equilibrium point Q2 becomes extremely complicated. Eventually

in Bravermans’ paper the problem is restricted to certain specific numerical values of the

parameters and the stability is explained only for this special scenario. We certainly do not

attempt here to analytically solve this problem. It is best left to numerical investigation.
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Chapter 4

Numerical simulations and the

results.

In this chapter, a closer consideration and interpretation of two prominent models in

addressing the paradox of enrichment will be undertaken. In the [56] of Weide et al.

model, a positive paradox of enrichment had been attained, while in the [41] of Mougi-

Nishimura model, a combination of two different observations had been achieved in line

with resolving the paradox of enrichment.

4.1 Numerical simulations.

The main purpose of this section is to carry out some simulation runs for different values of

M using the matlab programme. An observation in to the dynamic behavioral change of

the SSP model would be highly significant. Consequently, a detailed analysis will be given

highlighting the noticeable reactions of the SSP model subject to parametric changes.

The model in [56] had been established by an extension of the Nicholson-Bailey model

[52]. The transformed [56] had an inclusion of a logistic prey growth with a type II

functional response. Nt and Pt denotes the population densities of the prey and the

predator respectively over time ranging from t to t + 1. It takes into account diverse
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sequences of events in the period (t→ t+ 1).

In consideration of the order of events, the prey per capita growth and the

introduction of dimensionless variables, a non dimensional predator-prey model of [56] is

then represented by

Nt+1 = NtF (Nt).e

(
−Pt

1+NtFNt

)
,

Pt+1 = bNtF (Nt)

[
1− e

(
−Pt

1+NtFNt

)]
.

The parameters of Weide’s model are defined in detail in [56] and references therein.

Let Xi (i = 1, 2) and Yj (j = 1,2) represent the densities of the prey and predator in

a two-predator-two-prey system. The model in [41] is thus represented by

Ẋi =

{
ri

(
1− 1

Ki

∑
k∈preytypes

γikXk

)
−

∑
j∈predatortypes

µjiYj

}
Xi,

Ẏj =

(
bj

∑
k∈preytypes

gjiµjiXi − dj

)
Yj,

with the value of µ being given by

µ =
pjiεji

1 +
∑

i∈preys pjihjiεjiXi

.

The parameters of Mougi-Nishimura’s model are defined in detail in [41] and references

therein.
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(a) (b)

(c) (d)

Figure 4.1: Underlying mechanisms that generate system stabilization with increasing

enrichment. The solid black line represent the bacteria ’s density. The dotted blue line

represents the nutrient’s density. Initial conditions and parametric values are set as

follows: (a) r = 3, M = 1.45, γ = 0.1, β = 5, δ = 2, σ = 2 = λ, N(1) = 0.4 = n and

P (1) = 0.2 = b. In (b), (c) and (d) only M changes while other parameters stay the

same.
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(e) (f)

(g) (h)

Figure 4.2: Solutions of the SSP model in time. The graph reflects different qualitative

behaviors as the carrying capacity increases. A typical time-series behaviors of the two

populations in one long-cycle period in which the paradox is resolved. In (e), (f), (g)

and (h) only M changes while other parameters stay the same.
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(i) (j)

(k) (l)

Figure 4.3: A possible behavior of two interacting species whereby extinction of the

bacteria is highly possible. While other parameters stay the same, only M changes in (i),

(j), (k) and (l).
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(m) (n)

(o) (p)

Figure 4.4: A strong possible retention of the nutrient population. The graph represents

a non uniform oscillation system with long constant maximum and minimum intervals.

In (m), (n), (o) and (p) only M changes while other parameters stay the same.
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(q) (r)

(s) (t)

Figure 4.5: Solutions of the SSP model in time. The graph represents different qualitative

behaviors as the carrying capacity M increased. (q) At M = 2, the SSP model takes two

divergent points of view, with the nutrient increasing significantly to reach a maximum

density of 1.95 when t = 10. Otherwise the nutrient population maintains a constant

growth rate for all values of t ≥ 10. The bacteria population declines to reach its lowest

peak close to 0.1 at t = 50.
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4.2 The results.

In this section, we give a general analysis of the SSP model with a positive paradox of

enrichment status. The SSP model describes population densities of two species over a

certain period of time. An observation has been made from the previous chapters as

well as clearly shown in [18] of Haque’s research studies that enrichment in interacting

predator-prey dynamics resulted in more than one way of changing behavioral patterns

completely. Thus, as Murray [40] pointed out, that would result in allowing the formation

of new colonies or losing existing ones.

Giving a summary on the stability properties just about a community equilibrium,

firstly make note that the nutrient’s slope must almost always be negative for local

stability. In [46] model, Pimms further argued that the greater the negativity of a prey

slope the better and more stable the interactions would be. Otherwise in [57], Wilson et

al. alluded that “spatial structured patterns” would move towards instability.

Quite interestingly, on one side, in [56] model, are the sequences of events, which

includes the following

(a) Reproduction and intra-specific competition followed by predation (R→ P),

(b) Predation followed by reproduction and intra-specific competition (P→ R), and

(c) Reproduction and intra-specific competition followed by predation. The last event

depends on the prey population size prior to reproduction (R→ PD).

Only in the last stage of [56], the sequence of events depended directly on the prey

population size erstwhile to reproduction.

There are some interesting findings in the [56] model. The solutions presented altered

behaviors with an increased carrying capacity K. The [56] model eventually reached a

stable coexistence equilibrium point at k = 1.4 (an observation similarly displayed in

Figure 4.1 (a) and Figure 4.3 (i) respectively). For the carrying capacity k = 2.7, the [56]

model exhibited strong oscillatory coexistence along the invariant curve.

The paradox of enrichment had been obtained in [56] of Weide et al’s model, when the

invariant curve moved closer to one or both of the axes. Consequently, the coexistence
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equilibrium in [56] lost its stability. As a result, all solutions of the system had strong

oscillations. Henceforth, any increase in the carrying capacity then guaranteed existence

of the paradox of enrichment.

However, while the [56] of Weide et al. model had a positive paradox of enrichment

behavior, it had to some extent displayed different results. In the absence of a predator,

the prey grew accordingly in line with the BevertonHolt equation. Concurrently, a non-

vertical density hump for the bacteria had been established.

Conversely, the results in [41] of Mougi-Nishimura model, had a very negative paradox

of enrichment due to a number of factors. To mention at least few such factors below:

(i) An increased density of the less profitable prey together with that of enrichment

subdued the oscillation amplitude of the predator with more profitable prey cycle.

(ii) Consequently, that led to an insufficient suppressed amplitude which could not resolve

the paradox of enrichment.

(iii) This was due to its direct decrease in line with enrichment.

(iv) Alternatively, the continued amplitude decrease was a result of the predator

population enduring to utilise most of its time with only more profitable prey within the

dynamics cycle.

An observation had been registered in [41] that for the paradox of enrichment to be

resolved, the diet of the two predators should be the same. In such a case, there would

therefore be high unfair competition that would result in an increased prey consumption

rate. As a result, few effects of such a pattern had been noted in [41] results. Primarily,

the less profitable prey functioned as a stable supplemental resource for the generalist

predator. Subsequently, that led to a density decrease due to the presence of the

specialist predator. Lastly, with high predation pressure due to two competitive species,

there had been a substantial decrease in more profitable prey.

There are two main perspective factors which had made it possible for the stabilisation

in [41] system of Mougi-Nishimura model. Namely,

(i) On one hand, there must be consistent decrease in the amplitudes of oscillations.

(ii) Contrary, an increase in all population densities of species involved must be
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attainable.

Supplementary to [41]’s findings is that heterogeneity of predator types within trophic

levels serves as a very significant factor for the resolution of paradox of enrichment. Hence,

the following factors had been identified by the study in [41] to be of relevance:

(a) Biodiversity plays an important role in the stability of ecosystems.

(b) Dynamic-food web structures of complex interactions within species result to both

the stability of system as well as resolving the paradox of enrichment.

Conversely, an increase in the carrying capacity M of the SSP model in Figure 4.1,

resulted in a direct decrease to both amplitudes of the species.

Nevertheless, such a reflection does confirm the followings observations:

(i) An existence of paradox of enrichment within the SSP model.

(ii) The findings in (i) above are similar with both those in [56] of Weide et al. model and

in [41] of Mougi-Nishimura model respectively and had been discussed in detail previously.

There were no changes in the system for all simulations when b < 2. Only when b = 2 the

entire system starts to drop the amplitudes significantly. The equilibrium points occurred

when b = 2.8 with t = 10.4 and t = 14.2 respectively. Both populations were at 0.54 and

0.43 respectively.

On the other hand, any increase in λ had no effect on the amplitude of the system,

a similar observation with other parameters mentioned previously. A decrease in λ had

high effect on the amplitude, as it shifted the system very quickly to extinction (Figure

4.4 (p)). That occurred at a point where b(1) = 0 when t = 3 and n(1) = 0 as t = 9

correspondingly.

The behavior of the SSP model above b = 3 showed a change in the amplitude, hence

reflecting more than five significant equilibrium points. Only at t ≥ 40 did the system

maintain constant oscillations, with both populations very close to 0.5 density. This

result is more likely to retain more bacteria population compared to its nutrient. Lastly,

an increase in both M and b resulted in a direct bacteria amplitude increase and a low

nutrient decrease.
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Chapter 5

Conclusion

Numerical simulation runs performed in the SSP model did confirm the linear theory. For

a diverse chosen parametric values, the relevant partial differential equations of the SSP

model displayed viable ecological oscillations. Accordingly, the reaction-diffusion system

asymptotically had uniform oscillations with different amplitudes. Hence, the SSP model

did confirm the results similar to those in [56] of Weide et al. and in [41] of Mougi-

Nishimura correspondingly.

In the SSP model, a higher enrichment level did decrease the amplitudes of the short

cycles. This is the same result that had been previously observed in [41] of

Mougi-Nishimura model. The system also had a positive state of the PoE as the prey

carrying capacity M increased. The presence of three equilibrium points in the SSP model

is also very similar to those in [9] of Braverman model, in [56] of Weide et al. model and

lastly to those in [47] of Rosenzweig-MacArthur model.

There is growing concern to institutions of conservation management as well as policy

decision makers globally over the issue of enrichment as opposed by Roy−Chattopadhyay

[51]. It is therefore based on this reason mentioned above that in [8]’ model of Bohannan−Lenski

had supported the paradox’s subsequent effects in interacting predator−prey systems.

Hence, according to Murray [39], applications of the PoE in mathematical modeling do

advance the levels of planning, risk management and formulation of policy in invasion

together with species that are at greater risk of extinction.
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Several ecological studies reviewed including those in [41] of Mougi-Nishimura model

and in [51] of Roy -Chattopadhyay model, confirmed that the paradox does really exist

and is also possible to reverse it. A key challenging factor in many studies as Haque [18]

cited, is that the paradox of enrichment had been left as unresolved effect allowing more

space for further research opportunities.

Lastly, an existence of the paradox as highlighted in Zhang et al. [23], even though, ac-

cording to Xu−Li [58], there had been counter arguments with regard to natural predation

systems.
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