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ABSTRACT

This dissertation is a presentation to generalize boundedness and pseudocom-

pactness in pointfree topology. We �rst obtain and introduce a boundedness

notion for elements of a frame. This is then further inspiration to introduce a

de�nition of bounded frame homomorphism whose domain may be any frame

E, not just the frame of open sets of the reals.

Consequently we arrive at a generalization of pseudocompactness which

we term:

( E−Pseudocompactness Of Frames )

Where a frame L is E-pseudocompact if any homomorphism with domain E

and codomain L is bounded.

After surveying pseudocompactness in both general and pointfree topol-

ogy, we give our de�nition of bounded element in a frame and study re-

lated properties before introducing bounded frame homomorphisms and E-

pseudocompact frames. Various properties of these are studied and compared

with classical result of pseudocompactness in topology and frame theory.

Key Words:

Frame, Bounded frame element, bounded frame homomorphism, Pseudocom-

pact space, Pseudocompact frame, E-pseudocompact frame
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INTRODUCTION

In the late 1940's, Hewitt [22] introduced the notion of pseudocompactness

in classical topology, founded on the relationship between two rings of real

valued continuous functions. (A space X is pseudocompact if the rings of real

valued continuous functions and the rings of bounded, real valued continu-

ous functions on X coincide.) This notion was translated into the context

of pointfree topology by Baboolal and Banaschewski [1], in a paper which

showed that the Stone-�ech compacti�cation of a completely regular frame

is locally connected if and only if the frame is locally connected and pseudo-

compact.

Already in 1989 Gilmour expressed (in private communication) that the

pseudocompactness of frames can be characterized in terms of a cover con-

dition, that is: a frame L is pseudocompact if and only if every completely

regular sequence (an) in this frame such that
∨
an = 1 terminates. This was

a central result in [5].

These concepts were developed by a number of topologists to give more

related properties and results in frame theory. These ranged from charac-

terizations of pseudocompact frames to related compactness properties and

their interaction with other topological properties such as connectedness. For

example:

• Banaschewski and Pultr [7] gave some characterizations within the cat-

egory of completely regular frames.

• In [5], Banaschewski and Gilmour systematically explored the concept

in frames, their central idea was to describe the pseudocompact frames
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without reference to the (localic) reals.

• Marcus obtained further results regarding the pseudocompactness prop-

erty, through an investigation of the relationship between pseudocom-

pactness, realcompactness and compactness. He also proved that the

compact pseudocompact frames are realcompact [29].

• Walters-Wayland [38] showed that, a completely regular frame is pseu-

docompact if and only if it admits only paracompact uniformities.

• A comparison between pseudocompactness for frames and other weaker

forms of compactness; namely, feeble compactness and countable com-

pactness was presented by Hlongwa in [23]. These ideas were extended

by Banaschewski, Holgate and Sioen in [6].

• In Dube and Matutu's studies [17] some external characterizations were

established giving necessary and su�cient conditions for a completely

regular frame to be pseudocompact.

• On the other hand, in [15] Dube and others demonstrated that not

every completely regular pseudocompact frame is spatial. In contrast

to the compact regular case, there is a non-spatial completely regular

pseudocompact frame.

Boundedness is central to the study of pseudocompactness. Classically,

boundedness is a metric but not a topological property. The de�nition of

boundedness for a subset of a topological space was introduced by Lambari-

nos in 1973 [27]. This was an inspirational idea for Dube to de�ne a bounded

quotient frame homomorphism and other variations of the concept, such as

almost bounded frames and H-quotients. He then related them to the con-

cept of compactness in pointfree topology in a number of contexts [14]. In

this direction, we will compare the bounded quotient frame homomorphism

with a new de�nition of boundedness and bounded frame homomorphism.

Why pseudocompactness?

http://etd.uwc.ac.za/ 
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Historically, the archetypal de�nition of pseudocompactness in topology is:

A topological space is pseudocompact if all of its continuous real-valued

functions are bounded.

Thus pseudocompactness is �rst and foremost about bounded maps. Nev-

ertheless, in pointfree topology the study of bounded elements in general

frames have never been de�ned before, this is one contribution of this thesis.

The main aim of this thesis is to introduce a new de�nition of bounded

element in a frame and thus provide a generalization of pseudocompactness in

terms of bounded frame homomorphisms which in turn depends on bounded

elements.

Our method relies heavily on techniques that are developed around the

above mentioned bounded elements in a general frame. This is the main

contribution which we make and it suggests a direction for future study as

well.

Thesis outline

Chapter 1 recounts the relevant de�nitions pertaining to frame theory and

outlines the required background for the ensuing chapters.

Chapter 2 is divided into two sections, the �rst section is dedicated to

pseudocompact spaces, summarising properties which for the most part ap-

peared in [34, 22]. The second section sets out to survey key results regarding

the pointfree version of pseudocompactness which has been investigated in

many of the aforementioned references .

In Chapter 3, the de�nition of a bounded element in frames is intro-

duced. In the �rst section, we start with the de�nition of bounded elements

in frames, then we give some examples and properties then end up with a

relationship between a bounded element in a Boolean frame with a �Dube

bounded� sublocale which maps this frame to the downset of the bounded

element.

In the second section, we introduce the notion of E-pseudocompact frames
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and explore some examples and properties.

Finally, we end with a brief overview of unsolved problems which we have

faced in this dissertation.
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1. PRELIMINARIES

The history of frame theory goes back to Stone [35], and Wallman in [37],

who initially studied topological concepts using lattice theory.

By the end of the 1950's, Ehresmann and Benabou ([18], [9]) considered

certain complete lattices with an appropriate distributivity property which

deserved to be studied as a generalisation of topological spaces called 'local

lattices'.

In a series of papers in the 1960's and 1970's, Dowker and Papert ([12],

[11], [13]) introduced the term frame for a local lattice and extended many

results of topology to frame theory. More historical information about the

concept of frames and their categorical dual which are called locales can be

found in Johnstone ([25], [26]) and the more recent text by Picado and Pultr

[32].

In this chapter a brief introduction to some needed background material

on frame theory is given. We concentrate on the de�nitions, results and

properties required for this thesis. Full details can be found in [32, 25] and

most of our proofs are taken from these texts.

1.1 Lattices

A binary relation ≤ on a set L is called a partial order if it is:

(1) re�exive, a ≤ a for all a ∈ L,

(2) antisymmetric, a ≤ b and b ≤ a implies a = b for all a, b ∈ L, and

http://etd.uwc.ac.za/ 
 



1. Preliminaries 6

(3) transitive a ≤ b and b ≤ c implies a ≤ c for all a, b, c ∈ L.

The set L together with the partial order ≤ is called a partially ordered

set or poset.

If A is a subset of a poset L then, an element b ∈ L is called an upper

bound (lower bound) of A if a ≤ b (a ≥ b), ∀a ∈ A. Further, the join

(meet) of A is the least upper bound (the greatest lower bound) of A. We

denote the join of A by
∨
A, and the meet by

∧
A. If A = {a, b} has only

two elements then we write
∨
A = a ∨ b and

∧
A = a ∧ b.

In addition, a poset L is:

(1) A meet-semilattice (join-semilattice) if there exists a meet (join)

for any two elements a, b ∈ L.

(2) A lattice if there is meet and a join for any two elements in L. A

lattice L is called:

(a) Modular, if the implication below holds for all elements of L,

a ≤ c⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ c.

(b) Distributive if the equality below holds for all elements of L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

(3) A bounded lattice whenever all �nite subsets of L have a meet and a

join. This means that L is a lattice which has a greatest (top) element

1L and a least (bottom) element 0L.

(4) A complete lattice if every subset of L has a meet and a join.

Note that every complete lattice L is bounded with

0L =
∨
∅ =

∧
L and 1L =

∧
∅ =

∨
L.

http://etd.uwc.ac.za/ 
 



1. Preliminaries 7

A complemented lattice is a bounded lattice, in which every element

a has a complement, i.e. an element b such that:

a ∨ b = 1 and a ∧ b = 0.

A complemented, distributive lattice is called a Boolean Algebra.

A mapping f : X −→ Y between two posets X, Y is called monotone if:

f(x) ≤ f(y) wherever x ≤ y.

It is called an isomorphism if it is bijective and its inverse is monotone as

well. Moreover, we say that f is a lattice homomorphism if X and Y are

lattices and:

f(x ∨ y) = f(x) ∨ f(y) , f(x ∧ y) = f(x) ∧ f(y), ∀x, y ∈ X.

An adjunction map is a pair of monotone maps f and g X Y
f

g

between two posets such that ∀x ∈ X and y ∈ Y the relation holds:

f(x) ≤ y if and only if x ≤ g(y).

Then f is called a left adjoint of g and g is called a right adjoint of f .

Equivalently,the pair f , g is adjoint if g ◦ f is above the identity on X and

f ◦ g is below the identity on Y . General theory tells that:

• adjoints are unique,

• a right (left) adjoint preserves all existing meets (joins),

• a monotone map f : X −→ Y has a right adjoint g i� ∀y ∈ Y the

right-hand side in the identity below exists and f preserves all such

joins:

g(y) =
∨
{x | f(x) ≤ y}.

http://etd.uwc.ac.za/ 
 



1. Preliminaries 8

• dually, a monotone map f : X −→ Y has a left adjoint g i� ∀y ∈ Y
the right-hand side in the identity below exists and f preserves all such

meets:

g(y) =
∧
{x | y ≤ f(x)}.

Remark 1.1.1. The adjunction maps in this section are a special case of

adjunctions in category theory. We will later see such an example when

dealing with frames and topological spaces in Section 1.2.5.

In a lattice L with 0, an element a in L is said to have a pseudocom-

plement if there exists a greatest element x in L such that a ∧ x = 0. We

denote such an x by a∗. Equivalently, a∗ is the pseudocomplement of a if:

x ∧ a = 0⇐⇒ x ≤ a∗, ∀x ∈ L.

More formally

a∗ =
∨
{x ∈ L | x ∧ a = 0}.

The lattice L is called pseudocomplemented if every element in L has a

pseudocomplement. For example every �nite distributive lattice is pseudo-

complemented.

Note that lattice homomorphisms do not necessarily preserve pseudocom-

plements. One has obviously f(a∗) ≤ f(a)∗ if f is monotone, but the other

inequality generally need not hold.

Pseudocomplements, if they exist, satisfy the following properties:

1. a ≤ a∗∗,

2. a∗ = a∗∗∗,

3. a ≤ b implies b∗ ≤ a∗,

4. (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

5. (a ∨ b)∗ = a∗ ∧ b∗ [De Morgan Law].

http://etd.uwc.ac.za/ 
 



1. Preliminaries 9

1.2 Frames

A frame L is a complete lattice such that for any point a ∈ L and any set

M ⊆ L the following in�nite distributive law holds:

a ∧
∨

M =
∨
{a ∧m | m ∈M}.

Example 1.2.1. Any complete Boolean algebra is a frame.

If the existence of joins and the above distributive law hold for countable

sets M ⊆ L then the bounded lattice L is called a σ-frame. This can be

generalized to subsets M ⊆ L of cardinality κ and the resulting lattices are

called κ-frames.

A subframe P of a frame L, is a subset P ⊆ L which is a frame under

the same operations (∧ and
∨
) as L, with 0L, 1L ∈ P .

An atom (co-atom) in a frame L is an element a > 0 (a < 1) such that

for each x ∈ L, a ≥ x > 0 implies that x = a (a ≤ x < 1 implies that x = a).

A Boolean algebra is atomic if each of its element is a join of atoms.

A frame L is said to be a zero-dimensional frame if every element is a

join of complemented elements, also L is called a Boolean frame if L = BL,

where BL is the set of all complemented elements of the frame L. As is noted

in [32], a frame L which is a Boolean algebra coincides with a Boolean frame.

Lemma 1.2.1. ([32] Proposition II.5.4.2) In a Boolean frame L the following

statements are equivalent.

(1) L is atomic,

(2) Each element of L is a meet of co-atoms,

(3) L is isomorphic as frame to the power set of the set X of all atoms of

L.

http://etd.uwc.ac.za/ 
 



1. Preliminaries 10

A frame homomorphism is a map h : M −→ L between two frames which

preserves:

• All �nite meets (h(x ∧ y) = h(x) ∧ h(y) for all x, y ∈M),

• All arbitrary joins (h(
∨
X) =

∨
{h(x) | x ∈ X} for any X ⊆M).

Note that such an h is automatically order preserving and preserves both

the top (h(1M) = 1L) and the bottom (h(0M) = 0L).

A frame homomorphism h is said to be:

• dense if h(a) = 0⇒ a = 0,

• codense if h(a) = 1⇒ a = 1,

• a quotient map if it is onto,

• an isomorphisim if it is onto (surjective) and one-to-one (injective).

Because a frame homomorphism h preserves arbitrary joins, h has a right

adjoint h∗ : L −→ M satisfying the property that x ≤ h∗(y) in M if and

only if h(x) ≤ y in L. For a ∈ L,

h∗(a) =
∨
{x ∈M | h(x) ≤ a}.

A homomorphism is called closed if h∗(h(x) ∨ y) = x ∨ h∗(y), ∀x ∈
M, ∀y ∈ L.

Example 1.2.2. The standard (you may say motivating) initial example of a

frame and frame homomorphism is taken from topology. If X is a topological

space then the set OX of all open subsets of X forms a frame ordered by set

inclusion. Let f : X −→ Y be a continuous map between topological spaces

X and Y , the map Of : OY −→ OX which is given by

Of(U) = f−1(U), ∀U ⊆ Y with U open,

http://etd.uwc.ac.za/ 
 



1. Preliminaries 11

is a frame homomorphism.

In fact O is a (contravariant) functor from the category Top to Frm.

Remark 1.2.1. In the category of frames, any frame homomorphism h :

M −→ L has a factorisation f ◦ g

M h[M ] L
g

h

f

via the image of M under h with surjective g and injective f described by

g(a) = h(a) and f(h(a)) = h(a) for any a ∈M . A related factorisation gives

a useful result which states that every frame homomorphism h : M −→ L

has an onto dense factorisation:

M ↑ h∗(0) L
ψ

h

h

where ↑ h∗(0) = {a ∈ M | a ≥ h∗(0)} and ψ is a quotient frame map

x 7−→ x ∨ h∗(0) and h :↑ h∗(0) −→ L is dense mapping as h.

We note the following lemma which relates surjective homomorphisms,

their adjoints and pseudocomplements.

Lemma 1.2.2. For a surjective frame homomorphism h : M −→ L with

a ∈ L and h∗(a) =
∨
{x ∈ M | h(x) = a}. If h is dense surjective, then

h∗(a
∗) = (h∗(a))∗.

1.2.3 Regular and completely regular frames

In a bounded lattice L, an element a ∈ L is said to be rather below b ∈ L,
denoted a ≺ b, if there exists a separating element c ∈ L such that

http://etd.uwc.ac.za/ 
 



1. Preliminaries 12

a ∧ c = 0 and c ∨ b = 1

If L is pseudocomplemented, then this is equivalent to:

a ≺ b⇔ a∗ ∨ b = 1L.

Then a frame L is called regular if for every b ∈ L,

b =
∨
{a ∈ L | a ≺ b}.

Regularity for frames is a conservative notion, meaning that for a topo-

logical space X, X is regular (as a space) if and only if OX is regular (as a

frame).

Further, for a, b ∈ L, a is said to be completely below b, denoted

a ≺≺ b, if there is a set of elements

{cr ∈ L | r ∈ Q ∩ [0, 1]}

such that a = c0 and b = c1 , cp ≺ cr when p < r. We say that the sequence

{cr} witnesses the relation a ≺≺ b.

A frame L is called completely regular in case every b in L is the join

of elements completely below it,

b =
∨
{a ∈ L | a ≺≺ b}.

In a frame L an element a is said to be way below b written a � b if

b =
∨
S implies a ≤

∨
F for some �nite F ⊆ S. Whenever every element a

in a frame L can be written,

a =
∨
{b | b� a},

then L is called a continuous frame.

We mention two useful results concerning the above.

http://etd.uwc.ac.za/ 
 



1. Preliminaries 13

Lemma 1.2.3. In regular frames, any dense frame homomorphism is injec-

tive.

Lemma 1.2.4. In a regular (completely regular) frame L,

a� b =⇒ a ≺ b (a ≺≺ b)

1.2.4 Filters and Ideals

A non-empty subset F of a frame L is said to be a �lter if it is:

(i) an upset (a ≤ b and a ∈ F =⇒ b ∈ F ), and

(ii) closed under �nite meets (a, b ∈ F =⇒ a ∧ b ∈ F ).

F is a �lter base if ↑F = {b ∈ L | there exists a ∈ F with a ≤ b} is a
�lter on L. (The �lter ↑{a} for a ∈ L is written as ↑ a.) A �lter (base) F is

said to:

• be (completely) regular if ∀x ∈ F there is y ∈ F such that y ≺ x

(y ≺≺ x), and

• cluster if
∨
{x∗ | x ∈ F} 6= 1.

Further, a �lter F is prime if when a ∨ b ∈ F , then either a ∈ F or b ∈ F .
It is completely prime if

∨
S ∈ F , then S ∩ F 6= ∅.

The set of all completely prime �lters on L is denoted by ΣL.

On the other hand, a non-empty subset I of a frame L is an ideal if it is:

(i') a downset (a ≤ b and b ∈ I =⇒ a ∈ I), and

(ii') closed under �nite joins (a, b ∈ I =⇒ a ∨ b ∈ I).

http://etd.uwc.ac.za/ 
 



1. Preliminaries 14

The set of all ideals of a frame L is denoted JL. This is itself a frame

ordered by set inclusion. As for downsets there is the notation ↓A = {b ∈ L |
there exists a ∈ A with b ≤ a} for A ⊆ L. The principle ideal ↓{a} for a ∈ L
is written as ↓a and ↓: L→ JL is a frame homomorphism with left inverse∨

: JL→ L given by J 7−→
∨
J .

A σ-ideal is an ideal I which is closed under countable joins, i.e, for any

countable X ⊆ I,
∨
X ∈ I. The collection of all σ-ideals of L is denoted by

HL. Like JL, HL is a frame ordered by set inclusion. In fact we can view

these as functors J : Frm→ Frm and H : σFrm→ Frm.

Moreover, if L is a σ-frame then HL is called the envelope of L. Similar

to ideals, the relation between a σ-frame L and its frame envelope is a σ-

frame homomorphism L −→ HL taking each a ∈ L to its principal ideal ↓a,
while the natural HL −→ L is given by a join map.

An ideal I in a frame L is called proper if 1L 6∈ I. It is called σ- proper

if
∨
S 6= 1L for every countable S ⊆ I, and also called completely proper

if
∨
I 6= 1L.

1.2.5 Points of frames

We assume that the reader is familiar with the basics of topological spaces.

A point in a frame L is a frame homomorphism ζ : L −→ 2. (2 is the

frame with two elements 0 ≤ 1.) The set of all points in a frame L is denoted

ΣL. This is called the spectrum of L.

We already used the notation ΣL for the set of completely prime �lters on

a frame L. This is permitted because there are several equivalent descriptions

of the points in a frame � homomorphisms, completely prime �lters and prime

elements.

By a prime element we mean an element p in a frame L which has the

property that for any a, b ∈ L, a ∧ b ≤ p implies that either a ≤ p or b ≤ p.

(Prime elements are also called meet irreducible elements.)

http://etd.uwc.ac.za/ 
 



1. Preliminaries 15

Assume ζ : L −→ 2 is a point, and put F = ζ−1(1). Then:

• a ∈ F and a ≤ b =⇒ 1 = ζ(a) ≤ ζ(b) =⇒ ζ(b) = 1.

• a, b ∈ F =⇒ ζ(a) = 1, ζ(b) = 1 =⇒ ζ(a ∧ b) = ζ(a) ∧ ζ(b) = 1.

•
∨
S ∈ F =⇒ ζ(

∨
S) = 1 =⇒

∨
s∈S ζ(s) = 1 =⇒ ∃s ∈ S, ζ(s) = 1 =⇒

S ∩ F 6= ∅.

This correspondence is easily reversed. If F is a completely prime �lter

on L then ζ : L −→ 2 is de�ned by ζ(a) = 1 i� a ∈ F .

These points can be also described as prime (meet irreducible) elements

1 6= p ∈ L. For ζ : L −→ 2 put

p =
∨
ζ−1(0).

Then a ∧ b ≤ p =⇒ ζ(a) ∧ ζ(b) = ζ(a ∧ b) = 0 =⇒ ζ(a) = 0 or ζ(b) =

0 =⇒ a ≤ p or b ≤ p. Then p is prime. This correspondence is reversed by

making ζ(a) = 0 i� a ≤ p for prime element p and a ∈ L.

We now de�ne a topology on the set ΣL. For a ∈ L de�ne

Σa = {ζ ∈ ΣL | ζ(a) = 1} ⊆ ΣL

It is easy to check that {Σa | a ∈ L} is a topology on ΣL since Σa ∩Σb =

Σa∧b and
⋃
a∈S Σa = Σ∨

S with Σ0 = ∅ and Σ1 = ΣL. (It is called the spectral

topology.)

Now, assume that h : L −→M is a frame homomorphism and:

Σh : ΣM −→ ΣL

is de�ned by:

Σh(ζ) = ζ ◦ h, ∀ζ ∈ ΣM
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1. Preliminaries 16

For each a ∈ L, (Σh)−1(Σa) = Σh(a), because ζ ∈ (Σh)−1(Σa)⇔ (Σh)(ζ) ∈
Σa ⇔ (ζ ◦ h)(a) = 1 ⇔ ζ(h(a)) = 1 ⇔ ζ ∈ Σh(a). This shows that

Σh : ΣM −→ ΣL is continuous.

In fact Σ : Frm −→ Top is a (contravariant) functor which is right

adjoint to O : Top −→ Frm sending each frame L to the space ΣL and each

frame homomorphism to the continuous map Σh : ΣM −→ ΣL.

For a topological space X de�ne εX : X −→ ΣOX by:

εX(x)(U) = 1 (U ∈ OX)⇐⇒ x ∈ U

Note that εX is continuous since:

ε−1
X (ΣU) = {x | εX(x) ∈ ΣU} = {x | x ∈ U} = U , ∀U ∈ OX

If h : L −→ OX is a frame homomorphism, de�ne h′ : X → ΣL by

h′(x)(a) = 1⇐⇒ x ∈ h(a) which is unique with the property that Σh ◦ εX =

h′.

X ΣOX

ΣL

εX

h′
Σh

On the other hand, de�ne ηL : L −→ OΣL for a frame L by ηL(a) = Σa.

Then ηL is a frame homomorphism and we get adjunction identities:

OX OΣOX OX

ΣL ΣOΣL ΣL

ηOX OεX

εΣL ΣηL

In general εX : X −→ ΣOX is not a bijective map, and if it is then X is

called a sober space. Similarly, ηL : L −→ OΣL is not generally a bijection,

if it is L is called a spatial frame.
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1. Preliminaries 17

A closed set F in a topological space X is called (join) irreducible if

F = D1 ∪D2 with D1,D2 closed implies F = D1 or F = D2.

Lemma 1.2.5. A space X is sober ⇐⇒ each closed irreducible set F is the

closure of a unique point.

Lemma 1.2.6. ([32] Propositions II.5.3, II.5.4.3, II.5.4.4)

(1) A frame L is spatial i� each of its elements is a meet of prime elements.

(2) In a Boolean algebra every prime element is a co-atom.

(3) Every element of a spatial Boolean frame is a meet of co-atoms and

consequently, a Boolean frame is spatial only if it is atomic.

1.2.6 Frames of reals

There are various equivalent ways to introduce the frame of real numbers.

We consider the description which is introduced in [4].

De�nition 1.2.1. The frame of reals, denoted L(R), is the frame generated

by all ordered pairs (p, q) where p, q ∈ Q, subject to the relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s).

(R2) (p, q) ∨ (r, s) = (p, s) where p ≤ r < q ≤ s.

(R3) (p, q) =
∨
{(r, s) | p < r < s < q}.

(R4) 1L(R) =
∨
{(p, q) | p, q ∈ Q}.

Remark 1.2.2. It follows from (R3) that if q ≤ p then (p, q) = 0.

Proposition 1.2.1. ([32] Proposition XIV.2.1) The frame L(R) is com-

pletely regular.

Proof. If p < r < s < q then (r, s) ≺ (p, q). Considering {(u, v) | p < u <

r < s < v < q in Q} it is clear that (r, s) ≺≺ (p, q), and then by (R3), it

immediately follows that L(R) is completely regular.
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1. Preliminaries 18

1.2.7 Compactness and compacti�cation of frames

A cover C of a frame L is a subset C of L such that
∨
C = 1. A subset

D ⊆ C is a subcover of C if
∨
D = 1.

A cover C is co-completely regular if for each c ∈ C, ∃d ∈ C such that

c ≺≺ d.

A frame L is compact (countably compact) if each of its covers (count-

able covers), admits a �nite subcover. Similarly, L is Lindelöf if each of its

covers admits a countable subcover.

A surjective (quotient map) dense frame homomorphism h : M −→ L is

called a compacti�cation of L if M is a compact regular frame.

For completely regular frames, a compact frame K together with a dense

frame homomorphism h : K −→ L is called the Stone-�ech compacti�cation

of the frame L if for every dense frame homomorphism with compact domain

ϕ : K ′ −→ L there is a unique frame homomorphism ϕ′ : K ′ −→ K such

that the following diagram commutes.

K ′ K

L

ϕ′

ϕ
h

The existence of such a compacti�cation for completely regular frames is

well established in point free topology.

We note the following results without proof.

Proposition 1.2.2. ([32] Propositions VII.2.2.2, VII.6.3.4)

(1) Each dense frame homomorphism h : M −→ L is injective if L is

compact and M is regular.

(2) Each compact regular frame is spatial.
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1. Preliminaries 19

Note: Compactness in frames is hereditary. This is easy to see because joins

in a subframe are exactly as in the larger frame.

1.2.8 Cozero Sets of Frames

An element a in a frame L is said to be a cozero element if there is a frame

homomorphism:

ϕ : L(R) −→ L, such that a = ϕ(−, 0) ∨ ϕ(0,−),

where (−, 0) =
∨
{(p, 0) | 0 > p ∈ Q} in L(R) and (0,−) =

∨
{(0, p) | 0 <

p ∈ Q}. We write the cozero element a above as a = coz(ϕ) and denote by

CozL the set of all cozero elements of L.

The following results show that cozero elements can be characterised with-

out requiring reference to the frame of reals, L(R).

Lemma 1.2.7. ([32] Propositions XIV 5.2.2 and 6.2.1) In a frame L, if

a ≺≺ b then there exists ϕ : L(R)→ L with a ≤ ϕ(1
2
,−) ≤ ϕ(0,−) ≤ b.

Proof. If {cr | r ∈ Q ∩ [0, 1]} witnesses a ≺≺ b then de�ne ϕ : L(R)→ L by

ϕ(x,−) =
∨

x<r≤1

c1−r if 0 ≤ x < 1

ϕ(−, x) =
∨

0≤r<x

c∗1−r if 0 < x ≤ 1

with ϕ(x,−) = 1 if x < 0, ϕ(x,−) = 0 if x ≥ 1 and ϕ(−, x) = 0 if x ≤ 0,

ϕ(−, x) = 1 if x > 1.

Similar to the proof of Proposition 2.2.1 below we can show that ϕ takes

the relations (R1) to (R4) to identities in L and is thus a homomorphism.

The inequalities a ≤ ϕ(1
2
,−) ≤ ϕ(0,−) ≤ b follow since

a ≤
∨

0≤s≤ 1
2

cs = ϕ(
1

2
,−) and ϕ(0,−) =

∨
0<s≤1

cs ≤ b.
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1. Preliminaries 20

Proposition 1.2.3. (See [5] or [32] Propositions XIV 6.2.3) For any frame

L the following are equivalent for a ∈ L:

(1) a ∈ CozL

(2) a =
∨
xn where xn ≺≺ a for all n = 1, 2, . . .

(3) a =
∨
an where an ≺≺ an+1, for all n = 1, 2, . . .

Proof. : (1⇒ 2) If a = cos(ϕ) for some ϕ : L(R) −→ L then, a = ϕ(−, 0) ∨
ϕ(0,−) =

∨
n∈N ϕ((−,− 1

n
) ∨ (

1

n
,−)). Since (−,− 1

n
) ∨ (

1

n
,−) ≺≺ (−, 0) ∨

(0,−) and any homomorphism preserves ≺≺ which concludes that xn =

ϕ((−,− 1

n
) ∨ (

1

n
,−)) ≺≺ a.

(2⇒ 3): Let a =
∨
n∈N xn as in (2). Now de�ne an inductively by:

a1 = x1, an ∨ xn+1 ≺≺ an+1 ≺≺ a,

which is possible since ≺≺ interpolates and is stable under binary joins.

(3 ⇒ 1): For each n, let {cnr | r ∈ Q ∩ [0, 1]} be an interpolating sequence

witnessing an ≺≺ an+1. For each r ∈ Q ∩ [0, 1] de�ne:

cr = cnτn(r) if
n− 1

n
≤ r <

n

n+ 1

where τn is an increasing bijection between Q∩ [0, 1] and Q∩
[n− 1

n
,

n

n+ 1

]
,

which de�nes an interpolating sequence {cr | r ∈ Q ∩ [0, 1)} between a1 and

a such that a =
∨

r∈Q∩[0,1)

cr, and an = c1− 1
n
for each n ∈ N. Then de�ne ϕ as

follows

ϕ(p, q) =
∨
{cr ∧ c∗s | p < s < r < q}}

It can then be shown that ϕ is a frame homomorphism and:

ϕ(−, 0) ∨ ϕ(0,−) = 0 ∨
∨

0<s<1

cs = a.
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The authors in [5] have also shown the following as signi�cant conse-

quences of Proposition 1.2.3 for any frame L:

• CozL is a regular sub σ-frame of L.

• A frame L is completely regular if and only if it is generated by its

cozero elements.

• In any completely regular Lindelöf frame L, a ∈ L is cozero i� it is

Lindelöf. (An element a ∈ L is Lindelöf if for any S ⊆ L, a ≤
∨
S =⇒

a ≤
∨
S ′ for some countable S ′ ⊆ S.)

In fact Coz is a functor Frm −→ RegσFrm which is right adjoint to H
restricted to RegσFrm. The unit and co-unit are ↓: L → CozHL given by

taking any element of frame L to its principle ideal, and
∨

: HCozL −→ L

is given by the join map. This adjunction and the fact that it preserves

compactness and regularity originally appeared in [33] and [8].

1.2.9 Nearness Frames

In frame theory, the set of all covers of a frame L is denoted by CovL. Let

A,B ∈ CovL then, we say that A re�nes B (written A ≤ B) if for any

a ∈ A, there exists b ∈ B such that a ≤ b.

Furthermore, we say that A star re�nes B, (written A ≤∗ B) if AA ≤ B

with:

AA = {Ax | x ∈ A} and Ax =
∨
{s ∈ A | s ∧ x 6= 0}.

LetA be a system of covers of L, the relationCA on L is called uniformly

below and is de�ned by

x CA y if and only if Ax ≤ y for some A ∈ A.
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This system of covers A is then called admissible if each x ∈ L is the

join of elements uniformly below it:

∀x ∈ L, x =
∨
{y | y CA x}

A nearness N on a frame L is an admissible �lter N in CovL. This

nearness is called a uniformity if for each A ∈ N there exists B ∈ N such

that B ≤∗ A.

If A is a uniformity on L then the pair (L,A) is called a uniform frame.

Let (L,A) and (M,B) be uniform frames. A uniform homomorphism

h : (L,A) −→ (M,B) is a frame homomorphism h : L −→M such that:

∀A ∈ A, h(A) ∈ B.

A uniform map h : M −→ L is called a surjection if it is both onto on

the underlying frames and the uniformities. A uniform frame L is said to be

complete if every dense surjection h : M −→ L is an isomorphism.

A completion of a uniform frame L is a dense surjection M −→ L with

M complete.

A nearness frame (L,N ) is totally bounded if every A ∈ N is re�ned

by some �nite B ∈ N . In other word, a nearness frame is totally bounded

i� every uniform cover has a �nite uniform subcover.

A subset S of a frame L is said to be locally �nite if there exists a cover

C such that each element c ∈ C meets �nitely many elements of S. Then

the frame is paracompact if every cover has a locally �nite re�nement.

1.2.10 Normal Frames

A frame L is said to be normal if for any a, b ∈ L, if a ∨ b = 1 then there is

c ∈ L such that:
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a ∨ c = 1 and c∗ ∨ b = 1.

A cover A of a frame L is said to be normal whenever there exists a

sequence of covers (An)n∈N such that A = A1 and An+1 ≤∗ An,∀n. Then L
is called fully normal if every cover of it is normal.

Lemma 1.2.8. In a normal frame L the relation ≺ is interpolated and coin-

cides with the ≺≺ one, which implies that regularity coincides with complete

regularity.

Lemma 1.2.9.

• For every cover {ai | i ∈ N} of a normal frame L there is a cover

{bi | i ∈ N} such that ∀i, bi ≺ ai.

• A compact regular frame is normal.

1.2.11 Metrizable Frames

A frame L is metrizable if it admits a countably generated uniformity. We

collect some useful facts about such frames. The proof of these facts can be

found in [17, 36].

Facts 1.2.1.

• Each metrizable frame is fully normal.

• Each metrizable frame is paracompact.

• A metrizable frame is compact i� it is countably compact.

• The quotient of a metrizable frame is metrizable.
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2. PSEUDOCOMPACTNESS

As indicated in the introduction, the study of pseudocompactness in a topo-

logical space was initiated by Hewitt [22]. He gave one characterisation of

the property in terms of the Stone-�ech compacti�cation, and another in

terms of the zero sets of continuous real-valued functions.

In [20] Glickberg characterised pseudocompactness via convergence prop-

erties of sequences of continuous functions and in terms of sequences of

closed neighbourhoods. For instance, a space X is pseudocompact if for

any U = {Un : n ∈ N}, a sequence of non empty open subsets in X such that

Ui ∩Uj = ∅ whenever i 6= j, then U has a cluster point in X. (Consequently

pseudocompact spaces are those spaces in which each locally �nite family of

open subsets is �nite.)

Mardes̆ic and Papic [31] obtained a very elegant characterization of pseu-

docompactness in terms of a covering property which was discussed by Iseki

and Kasahara [24] in which a completely regular space is pseudocompact if

and only if every locally �nite open covering has a �nite subcovering.

Bagley, Connell and McKnight [2] characterised pseudocompact com-

pletely regular spaces by means of a convergence property of continuous

functions. That is, a space X is pseudocompact if every locally convergent

sequence of continuous functions on X, converges uniformly on X. This hap-

pens if every sequence of continuous functions which converges uniformly at

each point of X, converges uniformly on X.

Stephenson [34] investigated whether subspaces of pseudocompact spaces

are pseudocompact, he also presented several product theorems which apply
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2. Pseudocompactness 25

to non completely regular pseudocompact spaces. (For completely regular

spaces, these properties related to pseudocompactness were investigated in

[2] as mentioned above.)

In the current chapter, we start with an introduction of pseudocompact-

ness in classical topology. Then we turn to the pointfree context and present

some results on pseudocmpactness of frames.

2.1 Pseudocompact spaces

In this section we denote the family of continuous functions between topo-

logical spaces X and Y by C(X, Y ), with C(X, R) denoted by C(X) where

R has the usual topology. Furthermore C∗(X) will denote the family of

bounded functions in C(X).

These rings of real valued continuous functions on topological spaces orig-

inally received interest because some of their algebraic properties could de-

scribe topological properties of the underlying spaces. Also, algebraic tech-

niques applied to these rings might serve as powerful tools for solving topo-

logical problems. In the case of completely regular spaces, the rings of all

continuous real valued functions are large enough to describe the topology of

base spaces.

In [22], Hewitt used a relationship between C(X) and C∗(X) to describe

a topological property called pseudocompactness. A space X is pseudo-

compact if the two rings coincide, that is if C(X) = C∗(X).

Before we continue, we establish notation and terminology that will assist

in describing such pseudocompact spaces.

If X is a topological space and f ∈ C(X), the zero set f−1(0) will

be denoted by Z(f). Put Z(X) = {Z(f) | f ∈ C(X)}. The cozero set

X −Z(f) = f−1(R−{0}) is denoted by Coz(f), put Y(X) = {Coz(f) | f ∈
C(X)}.
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2. Pseudocompactness 26

L(X) is the set of all continuous functions f such that f : X −→ [0, 1].

If B is a collection of sets, then B̂ is the notation for the set of all �nite

intersections of elements of B, and B is said to be �xed (free) if
⋂
B 6= ∅

(
⋂
B = ∅).

A �lter base F on a space X is said to be an open �lter base if and

only if every F ∈ F is open. An open �lter base F is called completely

regular if for each F ∈ F there exists F ′ ∈ F and a function f ∈ L(X) such

that f(F ′) = 0 and f(X − F ) = 1.

An open cover C of a space X is said to be cocompletely regular if for

each A ∈ C, ∃A′ ∈ C and a function f ∈ L(X) such that f vanishes on A and

equal to 1 on X −A′. (We should note that a continuous map f vanishes on

A whenever f(A) = 0.)

We refer to [34], [22] and [39] as references for this part of the thesis.

Recall that a topological space X is called countably compact if and

only if each of its countable open covers admits a �nite subcover. Countable

compactness has a number of useful characterisations, of which we mention

two:

• A space is countably compact if and only if each of its sequences has a

cluster point.

• A T1-space is countably compact if and only if every in�nite subset of

it has a cluster point.

De�nition 2.1.1. A space X is said to be pseudocompact i� every con-

tinuous real-valued function on X is bounded, i.e, if C(X) = C∗(X).

Example 2.1.1. Every countably compact space is pseudocompact accord-

ing to Theorem 17.13 in [39], which says that:

A continuous real-valued function on a countably compact space is bounded.

To see this, suppose that f : X −→ R is a continuous map on a countably

compact spaceX, then {f−1[(−n, n)] | n ∈ N} is a countable open cover ofX,
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countable compactness of X implies that f−1[(−k, k)] = X for some k ∈ N.
Thus f is bounded.

It is well known that a topological space X is called normal if and only

if whenever A and B are disjoint closed sets in X, there exist disjoint open

sets U and V such that A ⊆ U and B ⊆ V , a space Y is a completely normal

space if every subspace of Y is a normal space.

In terms of the normal space de�nition, it is easy to see that a compact

Hausdor� space is normal since every compact Hausdor� space is a T4-space.

(Theorem (17.10) in [39], where a T4- space is de�ned as a normal T1-space.)

Furthermore, if X is a metric space, then X is normal.

Urysohn's Lemma says: A space is normal if and only if whenever A1

and A2 are non-empty disjoint closed sets in X, there exists a continuous

function f :X −→[0, 1], with f(A1) = {0} and f(A2) = {1}. This leads to

Tietze's extension theorem which states:

If X is a normal topological space and f : A −→ R is a continuous map

with A a closed set in X, then there is a continuous map g : X −→ R with

g(a) = f(a), ∀a ∈ A. Furthermore g may be chosen such that sup{|f(a)| | a ∈
A} = sup{|g(x)| | x ∈ X} i.e if f is bounded then g is also bounded. Such g

is called a continuous extension of f .

The following Lemma was proved in [22] by using the idea of Tietze's

extension theorem.

Lemma 2.1.1. A normal space is pseudocompact if and only if it is countably

compact.

The equivalences in the next proposition are proved by Hewitt and Stephen-

son in [22] and [34]. The result sets out a number of characterisations of

pseudocompactness, which have served as an inspiration for many topolo-

gists to prove similar result in the point-free context as we can see in the

next section.
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Note that while pseudocompactness can be de�ned for any topological

space X, it is more meaningful for completely regular topological spaces as

these spaces have enough continuous maps to R for C(X) and C∗(X) to hold

signi�cant information about X.

Proposition 2.1.1. For any completely regular topological space X, the

following are equivalent:

(A) X is pseudocompact.

(B) For every space Y and function f ∈ C(X, Y ), f(X) is pseudocompact.

(C) For every completely normal space Y and function f ∈ C(X, Y ), f(X)

is countably compact.

(D) For every metric space Y and function f ∈ C(X, Y ), f(X) is compact.

(E) For every f ∈ C(X), f(X) is compact.

(F) For every f ∈ C∗(X), f(X) is compact.

(G) f(X) is a closed subset of R for every f ∈ C∗(X).

(H) For every f ∈ C∗(X), ∃x0 ∈ X such that f(x0) = infx∈X f(x).

(I) If B is a countable subset of Z(X) and ∅ /∈ B̂, then B is �xed.

(J) Every locally �nite subset of Y(X) is �nite.

(K) Every countable completely regular �lter base on X is �xed.

(L) Every countable co-completely regular cover of X has a �nite subcover.

Proof.

(A) ⇒ (B) Assume X is pseudocompact and f ∈ C(X, Y ). Consider the

factorisation of f through f(X) and let φ ∈ C(f(X)).

X f(X) R

Y

f ′

f

φ
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Since X is pseudocompact φ ◦ f ′ is bounded. So there exists (a, b) ⊆ R such

that (φ◦f ′)−1[(a, b)] = X =⇒ f ′−1(φ−1[(a, b)]) = X =⇒ f ′(f ′−1(φ−1[(a, b)])) =

f(X). Since f ′ is onto this implies that:

φ−1[(a, b)] = f(X).

(B) ⇒ (C) Follows from Lemma 2.1.1.

(C) ⇒ (D) Since any metric space is completely normal and countably com-

pact metric spaces are compact.

(D) ⇒ (E) Since R is a metric space.

(E) ⇒ (F) Clear, since C∗(X) ⊆ C(X).

(F) ⇒ (G) By the Heine-Borel Theorem, that is, a subset of R is compact if

and only if it is closed and bounded.

(G) ⇒ (H) Let f ∈ C∗(X) and assume there is no x0 ∈ X, such that

f(x0) = infx∈X f(x). Now put infx∈X f(x) = t then t is in the closure of

f(X) but not in f(X). This contradicts (G).

(H) ⇒ (I) Let B = {Zn | n ∈ N} be a family of zero sets such that ∅ /∈ B̂,
but

⋂
B = ∅. For each n ∈ N, put Bn =

⋂n
i=1 Zi then

. . . ⊂ Bn ⊂ . . . ⊂ B3 ⊂ B2 ⊂ B1 and
⋂
n∈N

Bn = ∅.

Note that for each n ∈ N there exists a function fn ∈ C(X) such that

Bn = f−1
n (0), where fn is the �nite product of functions corresponding to

zero sets Zi, i = 1 . . . n.

Now de�ne gn = min{f 2
n, 1} then g−1

n (0) = Bn and consider the function

ϕ =
∞∑
n=1

2−n · gn.

Since
⋂∞
n=1 Bn = ∅, for each p ∈ X there exists m ∈ N with p ∈ Bc

m. Thus

ϕ(p) ≥ 2−m · gm(p) > 0
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and ϕ is strictly positive. On the other hand, if p ∈ Bn then

g1 = g2 = . . . = gn(p) = 0

and so

ϕ(p) =
∞∑

k=n+1

2−k · gk(p) ≤ 2−n.

Since
⋂
B̂ 6= ∅ it follows that infp∈X ϕ(p) = 0 and ϕ is a function which

contradicts (H).

(I) ⇒ (J) Suppose that D = {Cn | n ∈ N} is an in�nite locally �nite system

of non empty elements of Y(X), it follows from the normality of R that, for

each i there is a function gi ∈ L(X) which equal to 1 on X−Ci and vanishes

on Ci. For each n ∈ N and x ∈ X let hn(x) = inf{gi(x) | i ≤ n}, then each

Z(hn) is non empty and contain Z(hn+1), and since D is locally �nite, each

hn ∈ L(X) and
⋂
{Z(hn)} = ∅, which contradicts (I)

(J) ⇒ (K) Let F = {Fn | n ∈ Z} be a completely regular �lter base on X

such that Fn+1 ⊂ Fn. For each F ∈ F choose a function fF ∈ L(X), which

vanishes on X − F and equals to 1 on some set in F . Then (J) implies that

there is a point x at which {Coz(fF ) | F ∈ F} is not locally �nite. Evidently
x ∈ {F | F ∈ F} =

⋂
F .

(K) ⇒ (L) Assume that there is a countable co-completely regular cover U
of X which has no �nite subcover. Then ∅ 6∈ ̂{X − U | U ∈ U}. Since for

each set U ∈ U there is a set, U ′ such that U ⊂ U ′, and also ∅ /∈ V =
̂{X − U | U ∈ U}. Thus V is a countable open �lter base on X. Consider

G =
⋂
{X −U i | i = 1, ...., s} ∈ V . For each i there is U ′i ∈ U and a function

fi ∈ L(X) such that fi vanishes on Ui and equals to 1 on X − U ′i . De�ne

G′ =
⋂
{X − U ′i | i = 1, ..., s} for some s ∈ N and f = min{fi | 1, ...., s},

and let g be the function given by g(x) = 1 − f(x). Then G′ ∈ V , g ∈
L(X), g(G′) = 0, and g(X −G) = 1. Thus V is free.

(L) ⇒ (A) For any arbitrary function f ∈ C(X). Let Un = f−1((−n, n)),
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∀n ∈ N, and de�ne U = {Un | n ∈ N}. Then U is a countable co-completely

regular cover of X, so (L) implies that there is k ∈ N such that X ⊆ Uk, thus

f ∈ C∗(X).

2.2 Pseudocompact frames

De�nition 2.2.1. [5] A frame homomorphism ϕ : L(R) −→ L is called

bounded if there exist p, q ∈ Q such that ϕ(p, q) = 1L. The frame L is said

to be pseudocompact whenever all frame homomorphisms ϕ : L(R) −→ L

are bounded.

It is well established that these properties are conservative. We give the

details of the proof below. Remember that L(R) is generated by pairs (p, q)

with p, q ∈ Q.

Proposition 2.2.1. [5] A topological space X is pseudocompact if and only

if the frame OX is pseudocompact.

Proof. For any topological space X, there is a bijective map

Frm(L(R),OX) −→ Top(X,R)

taking each ϕ: L(R) −→ OX to ϕ̄ : X −→ R, where

p < ϕ̄(x) < q ⇔ x ∈ ϕ(p, q).

First note that the points of L(R) coincide with the points of R. Any

homomorphism ζ : L(R) −→ 2 determines λ ∈ R such that p < λ < q i�

12 = ζ(p, q). This λ is given by the Dedekind cut (U, V ) where:

U = {r ∈ Q | ζ(r, q) = 12 for some q ∈ Q},
V = {s ∈ Q | ζ(p, s) = 12 for some p ∈ Q}.
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Observe that (U, V ) is an open Dedekind cut. To check that:

(1) 1L(R) =
∨
{(p, q) | p, q ∈ Q} =⇒ 12 =

∨
{ζ(p, q) | p, q ∈ Q} =⇒ ∃p,

q ∈ Q such that ζ(p, q) = 12 and so p ∈ U and q ∈ V .

(2) To show that V is a upset, let s′ ≥ s ∈ V then (p, s) ≤ (p, s′). Thus,

ζ(p, s) = 12 =⇒ ζ(p, s′) = 12 and s′ ∈ V . Similarly U is a downset.

(3) Let r ∈ U then (r, q) =
∨
n∈N(r+ 1

n
, q), since ζ(r, q) = 12 =⇒

∨
n∈N ζ(r+

1

n
, q) = 12, this implies that ∃n0 ∈ N such that ζ(r +

1

n0

, q) = 12, and

similarly for any s ∈ V .

(4) Let p ≤ q in Q, then∨
n∈N((q − n, q) ∨ (p, p+ n)) = 1L(R)

=⇒ ζ
∨
n∈N((q − n, q) ∨ (p, p+ n)) = 12

=⇒
∨
n∈N(ζ(q − n, q) ∨ ζ(p, p+ n)) = 12

=⇒ ∃n0, ζ(q − n0, q) ∨ ζ(p, p+ n0) = 12

=⇒ ∃n0, ζ(q − n0, q) = 12 or ζ(p, p+ n0) = 12

=⇒ p ∈ U or q ∈ V .

(5) Let m ∈ V ∩ U . Then there exist r and s with ζ(r,m) = 12 = ζ(m, s).

Hence ζ(r,m) ∧ (m, s) = 1 but (r,m) ∧ (m, s) = 0, a contradiction,

This shows that (U, V ) is a Dedekind cut. Taking (U, V ) to represent a

real number λ, for p, q ∈ Q we have that

p ≤ λ⇔ p ∈ U and λ ≤ q ⇔ q ∈ V if and only if λ ∈ (p, q).

We note that ζ(p, q) = 12 ⇔ p ∈ U and q ∈ V and so (U, V ) determines λ

such that λ ∈ (p, q)⇔ ζ(p, q) = 12 as claimed.

On the other hand, given λ ∈ R, de�ne ζλ : L(R) −→ 2 by

ζλ(p, q) = 12 ⇔ λ ∈ (p, q)

then using the relations R1 to R4 for the frame of reals we observe:
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(R1′) ζλ(p, q) ∧ ζλ(m,n) = 12 ⇔ ζλ(p, q) = 12 = ζλ(m,n) ⇔ λ ∈ (p, q) and

λ ∈ (m,n)⇔ λ ∈ (p ∨m, q ∧ n)⇔ ζλ(p ∨m, q ∧ n) = 12.

(R2′) Consider p ≤ r < s ≤ q. Then ζλ(p, q) = 12 ⇔ λ ∈ (p, q) ⇔ λ ∈ (p, s)

or λ ∈ (r, q)⇔ ζλ(p, s) ∨ ζλ(r, q) = 12.

(R3′) ζλ(p, q) = 12 ⇔ λ ∈ (p, q) ⇔ ∃(r, s) such that p < r < s < q with

λ ∈ (r, s) ⇔ ∃(r, s) such that p < r < s < q with ζλ(r, s) = 12 ⇔∨
{ζλ(r, s) | p < r < s < q} = 12.

(R4′) For any λ ∈ R, ∃p, q ∈ Q such that p < λ < q then ζλ(p, q) = 12. Thus

12 = ζλ(p, q) ≤
∨
{ζλ(r, s) | r, s ∈ Q} ≤ ζ(1R) = 12.

Thus we have a frame homomorphism ζλ : L(R) −→ 2 and the correspon-

dences established above ζ 7−→ λ and λ 7−→ ζλ are inverse to each other.

Hence we have a bijective map;

τ : ΣL(R) −→ R

satisfying p < τ(ζ) < q ⇔ ζ(p, q) = 1 ∀p, q ∈ Q. It remains to show that τ

is a homeomorphism.

Now, the topology of ΣL(R) is generated by the sets

Σ(p,q) = {ζ ∈ ΣL(R) | ζ(p, q) = 1}

and τ maps these to

τ(Σ(p,q)) = {τ(ζ) | ζ(p, q) = 1} = {τ(ζ) | p < τ(ζ) < q} = (p, q)

the open real intervals which generate R. This induces an isomorphism

OΣL(R) −→ OR taking each Σ(p,q) to (p, q).

Applying the observations above shows that any continuous function f :

X → R corresponds to a unique homomorphism

ϕ : L(R) −→ OX
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via:

ϕ(p, q) = {x ∈ X | p < f(x) < q}.

Clearly f is bounded (for some p, q, p < f(x) < q for all x ∈ X) if

and only if ϕ is bounded (for some p, q, ϕ(p, q) = X). Hence a space X is

pseudocompact if and only if the frame OX is pseudocompact.

Proposition 2.2.2. [17] For any pseudocompact frame L and any a ∈ L

with ^(a ∨ a∗) pseudocompact, then ^a∗ is also pseudocompact.

Proof. Assume that h and g are frame homomorphisms such that:

L(R) ↑a∗ ↑(a ∨ a∗)h g

where g maps x 7−→ x ∨ a

Since ↑ (a∨a∗) is pseudocompact, g◦h is a bounded frame homomorphism.

Thus ∃s ∈ R such that

1L = g(h(−s, s)) = h(−s, s) ∨ a.

Now, de�ne a map f : L(R) −→ L by:

f(U) =

{
h(s,∞) ∧ h(U) ∧ a , s /∈ U
h(−s, s) ∨ h(U) , s ∈ U

(2.1)

which is a frame homomorphism and the way to check that is similar to

the argument used in Proposition 3.4.3.

Now, since L is pseudocompact ∃r ∈ R with f(−r, r) = 1L. By the

de�nition of f it follows that s ∈ (−r, r). So 1L = f(−r, r) = h(−s, s) ∨
h(−r, r) = h(−r, r). Therefore h is bounded which implies that ↑ a∗ is

pseudocompact.
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Lemma 2.2.1. [3] For any compact σ-frame, its frame envelope is compact

as well.

Proposition 2.2.3. [5] For any completely regular frame L the following are

equivalent:

(1) L is pseudocompact

(2) Any sequence a0 ≺≺ a1 ≺≺ a2 ≺≺ . . . in L with
∨
an = 1L terminates,

that is ak = 1L for some k.

(3) CozL is compact

(4) The frame HCozL is compact

Proof. (1) ⇒ (2) For any sequence a0 ≺≺ a1 ≺≺ a2 ≺≺ . . . in L with∨
an = 1L, assume that cn and ϕ(p, q) are de�ned as in Proposition 1.2.3.

We have bounded ϕ : L(R) −→ L since L is a pseudocompact frame. So

∃p, q ∈ Q such that ϕ(p, q) = 1. We may assume that q < 1 and so there is

k ∈ N with q < 1− 1
k
< 1 which gives:

ak ≥
∨
{cq́ | p < q́ < q} ≥

∨
{c∗ṕ ∧ cq́ | p < ṕ < q́ < q} = ϕ(p, q) = 1

=⇒ ak = 1

(2) ⇒ (1) Assume that, ϕ : L(R) −→ L is a frame homomorphism. Put

an = ϕ(−, n) then a0 ≺≺ a1 ≺≺ a2 ≺≺ . . . in L and
∨
an = 1 ⇒ ∃k such

that ak = 1.

Similarly, put bn = ϕ(−n,−) and b0 ≺≺ b1 ≺≺ b2 ≺≺ . . . in L with∨
bn = 1. Thus ∃j such that bj = 1. Therefore:

1 = ak ∧ bj = ϕ(−, k) ∧ ϕ(−j,−) = ϕ(−j, k)

Thus L is pseudocompact since ϕ is a bounded frame homomorphism.

(2)⇒ (3) If 1L =
∨
n{an | an ∈ CozL} then by Proposition 1.2.3, for each n ∈

N we can �nd ank for all k ∈ N such that an =
∨
k∈N

ank where ank ≺≺ an(k+1).
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Put cn = a1n ∨ a2n ∨ ...... ∨ ann. Then cn ≺≺ cn+1 and
∨
cn = 1L, hence

ck = 1L for some k, then a1 ∨ a2..... ∨ ak = 1L, from which the compactness

follows.

(3) ⇒ (4) Since CozL is a sigma frame, by Lemma 2.2.1 HCozL is compact.

(4) ⇒ (1) Any ϕ: L(R) −→ L lifts through HCozL. Thus there exists

ϕ : L(R) −→ HCozL such that
∨
◦ϕ = ϕ. Since L(R) is completely regular,

as was remarked after Proposition 1.2.3, it follows that ϕ: L(R) −→ L is a

map into CozL.

Now de�ne ϕ(p, q) ∈ HCozL, for any p, q ∈ Q by

ϕ(p, q) =↓ϕ(p, q) in CozL.

L(R) HCozL

L

ϕ

ϕ

∨

Now the map

L(R) CozL HCozL L
ϕ ↓

∨

is a σ-frame homomorphism, and since∨
ϕ(p, q) =

∨
↓ϕ(p, q),

it follows that ∨
ϕ̄ = ϕ.

Because (p, q) generate L(R), and it is given that HCozL is compact, we

conclude that ϕ : L(R) −→HCozL is bounded which makes
∨
ϕ̄ = ϕ also

bounded. Thus L is pseudocompact.
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Independently, Clarke and Gilmour [10] have recently presented the pseu-

docompactness property on sigma frames, with results bearing much simi-

larity to the pseudocompactness characterizations in Proposition 2.1.1. The

main di�erence between them is that pseudocompactness is not always avail-

able in sigma frames (as it is in frames).

A related result to those above states that a pseudocompact frame is

compact if it is Lindelöf, this conclusion was evolved from the following ob-

servations:

A countably generated regular frame is pseudocompact if and only if it is

compact and then apply the fact that every frame which admits a countable

basis is a Lindelöf one [5].

Lemma 2.2.2. [17] A paracompact normal frame is pseudocompact if and

only if it is countably compact.

Proof. (⇒) Suppose {ai | i ∈ N} is a countable cover of a normal paracom-

pact frame L. Then there exists a cover {bi | i ∈ N} such that bi ≺ ai

for each i ∈ N (Lemma 1.2.9). Now since L is a normal frame, then

bi ≺≺ ai (Lemma1.2.8) and thus there is a cozero element ci such that

bi ≺ ci ≺ ai. Therefore {ci | i ∈ N} is a cover of CozL. Thus there

are �nitely many ci which have join 1L since CozL compact by pseudo-

compactness of L. So there are �nitely many ai that cover L therefore

L countably compact.

(⇐) Obvious.

Proposition 2.2.4. [17] The following are equivalent for any frame L:

(1) L is pseudocompact

(2) For any injective map h : M −→ L, M is pseudocompact.
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(3) For any injective map h : M −→ L with M normal and paracompact,

M is countably compact.

(4) If M is a metrizable frame with an injective map h : M −→ L, M is

compact.

(5) For any composition

OR M L
f h

If f is a surjective map and h is an injective map, f(OR) is compact.

Proof.

(1)⇒ (2) Assume that a0 ≺≺ a1 ≺≺ a2 ≺≺ . . . is a sequence in M with
∨
an =

1. Then h(a0) ≺≺ h(a1) ≺≺ h(a2) ≺≺ . . . is a sequence on L, and∨
h(an) = 1 and by pseudocompactness of L there exists k with h(ak) =

1. Since h is injective, ak = 1.

(2)⇒ (3) Lemma 2.2.2 shows that M is countably compact.

(3)⇒ (4) Follows since a countably compact metrizable frame M is compact.

(By facts 1.2.1.)

(4)⇒ (5) Since OR is metrizable then by facts 1.2.1, f(OR) is metrizable. Then

M is compact implies that f(OR) ⊆M is also compact.

(5)⇒ (1) Consider φ : OR −→ L factoring through its image

OR f(OR) L
f

φ

h

with surjective f and injective h. Since f(OR) is compact and the set

{f(−n, n) | n ∈ N} covers f(OR), then ∃k ∈ N such that h(f(−k, k))) =

h(1) = 1L showing that L is pseudocompact.
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Proposition 2.2.5. [17] For any frame L, the following are equivalent:

(1) L is pseudocompact.

(2) Every locally �nite subset of CozL is �nite.

(3) Every countable completely regular �lter base in L clusters.

(4) Every countable co-completely regular cover of L admits a �nite sub-

cover.

Proof.

(1)⇒ (2) Suppose that there exists a countably in�nite locally �nite set B ⊆
CozL consisting of nonzero elements. Let C be a cover of CozL that

�nitizes B, i.e. for any a ∈ C, a ∧ bn = 0 for all but �nitely many

bn ∈ B. Now for any n ∈ N de�ne an:

an =
∨
{x | x ∧ bk = 0,∀k ≥ n, x ∈ C, bk ∈ B}.

We have an < an+1,∀n ∈ N, an ∈ CozL, also A = {an | n ∈ N} is a
cover of CozL. By Proposition 2.2.3 CozL is compact which implies

that:

∃k ∈ N such that ak = 1.

so:

bk = bk ∧ 1

= bk ∧
∨
{x | x ∧ bi = 0,∀i ≥ k, x ∈ C, bi ∈ B}

=
∨
{x ∧ bk | x ∧ bi = 0,∀i ≥ k, x ∈ C, bi ∈ B}, but x ∧ bk = 0 always

and thus bk = 0 which contradicts the assumption that any element of

B is non-zero.
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(2)⇒ (3) Let F be a countable completely regular �lter base and let yn be a meet

of �nitely many elements of F , that is yn = x1 ∧ x2 ∧ ....... ∧ xn. It is
clear that yn 6= 0 and yn+1 ≤ yn. For p ∈ N �nd xn1 , xn2 . . . xnp ∈ F
such that xn1 ≺≺ x1, . . . , xnp ≺≺ xp which implies

xn1 ∧ xn1 ∧ xn2 . . . ∧ xnp ≺≺ x1 ∧ x2 ∧ . . . xp = yp,

put m = max{n1, n2....np}. Then

ym = x1 ∧ x2 ∧ . . . ∧ xm ≤ xn1 ∧ . . . ∧ xnp ≺≺ yp,

thus from yn we can get a subsequence (ymk
)k∈N such that ymk

≤ yk for

each k and :

. . . ≺≺ ym3 ≺≺ ym2 ≺≺ y1.

Therefore there exist cozero elements c1, c2 . . . and d1, d2 . . . with:

• . . . ≺ ymk
≺ ck ≺ ymk−1

≺ . . . ≺ ym1 ≺ c1 ≺ y1, and

• y∗1 ≺ d1 ≺ y∗m1
≺ . . . ≺ y∗mk−1

≺ dk ≺ y∗mk
≺ . . ..

For each n, x∗n ≤ y∗n since yn ≤ xn.

If F does not cluster, then
∨
n∈N y

∗
n = 1 and D = {dn | n ∈ N} is a

cover of CozL. To prove that C = {cn | n ∈ N} is locally �nite in CozL,

pick n(k), l(k) ∈ N with dk ≺ y∗n(k) and cl(k) ≺ yn(k) for any k ∈ N.

Since y∗n(k)∧yn(k) = 0 and cn decreases, then dk has non-zero meet with

at most c1, . . . , cl(k)−1, thus C ⊆ CozL is locally �nite and hence �nite

(by the hypothesis).

Now put C = {cq1 , . . . , cqs} with cq1 ≥ cq2 ≥ . . . ≥ cqs .

∨
i∈N c

∗
i ≥

∨
i∈N y

∗
mi

=
∨
y∗n = 1.

But
∨
c∗i = c∗qs , so c

∗
qs = 1 and then yk = 0 for some k, which contradicts

that F is a �lter base.
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(3)⇒ (4) Suppose that there exists a countable co-completely regular cover C

which has no �nite subcover, and suppose S = {
∧
x∈F x

∗ |F ⊆ C,F

�nite}.

Claim: S is a �lter base. Let c1, . . . , cm be �nitely many elements of

C, it must be shown that (
∨m
i=1 ci)

∗ 6= 0.

Let c∗1 ∧ c∗2 ∧ . . . ∧ c∗m = 0 then there are d1 . . . dm ∈ C with ci ≺≺ di

and we have:

c1 ∨ c2 . . .∨ cm ≺≺ d1 ∨ d2 . . .∨ dm, and (c1 ∨ c2 ∨ . . .∨ cm)∗ ∨ (d1 ∨ d2 ∨
. . . ∨ dm) = 1. Since (c1 ∨ c2 ∨ . . . ∨ cm)∗ = c∗1 ∧ c∗2 ∧ . . . ∧ c∗m = 0 then

d1 ∨ d2 ∨ . . . ∨ dm = 1 which means that C admits a �nite subcover,

which it does not. Thus S is a �lter base.

Now, let s = x∗1 ∧ x∗2 ∧ . . . ∧ x∗m be an arbitrary element of S. Choose

yi ∈ C such that xi ≺≺ yi for each i, then y∗i ≺≺ x∗i for each i.

Therefore y∗1 ∧ y∗2 ∧ . . . ∧ y∗m is an element of S which is completely

below s. Thus S is a completely regular countable �lter base and by

assumption S clusters. So there is contradiction against C being a

cover since for all c ∈ C, c∗ ∈ S and hence:

1 6=
∨
x∈S x

∗ ≥
∨
c∈C c

∗∗.

(4)⇒ (1) If {an} is a sequence with a1 ≺≺ a2 ≺≺ . . . with
∨
an = 1. Then

{an | n ∈ N} is a countably co-completely regular cover of L and by

the hypothesis it has a �nite subcover such that an1∨an2∨ . . .∨ank
= 1

which implies that L is a pseudocompact frame.

Lemma 2.2.3. [16] Every frame which has a dense pseudocompact quotient

is pseudocompact.

Proof. Suppose h : M −→ L is a dense surjective frame homomorphism

with L pseudocompact. If F is a countable completely regular �lter base in

M , then h(F ) is a countable completely regular �lter base in L.
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Now by Proposition 2.2.5 since L is pseudocompact it follows:∨
{h(t)∗ | t ∈ F} 6= 1.

Hence, we have h(
∨
{t∗ | t ∈ F}) 6= 1 (because dense frame homomor-

phisms preserve pseudocomplements) and therefore
∨
{t∗ | t ∈ F} 6= 1, giving

that M is pseudocompact.

Proposition 2.2.6. [16] For any completely regular frame L, the following

are equivalent:

(1) L is pseudocompact.

(2) If M is Lindelöf, for any frame homomorphism h : M −→ L, ↑h∗(0) is

compact.

(3) If M is hereditarily Lindelöf, for any frame homomorphism h : M −→
L, h[M ] is compact.

(4) If M is countably generated, for any frame homomorphism h : M −→
L, h[M ] is compact.

Proof. (1)⇒ (2) Given that M is Lindelöf and ψ (given by ψ(a) = a∨h∗(0))

is a closed quotient, ↑ h∗(0) is Lindelöf.

M ↑ h∗(0) h[M ]
ψ h

Now since L is pseudocompact then h[M ] is pseudocompact as a subframe

of L, also since h is dense onto then by Lemma 2.2.3 it follows that ↑ h∗(0)

is pseudocompact. Thus ↑ h∗(0) is compact.

(2)⇒ (3) h[M ] is a Lindelöf frame since it is a quotient of hereditarily Lindelöf

M . Now suppose ϕ : h[M ] −→ L is the inclusion map, the compactness of

↑ϕ∗(0) implies also ϕ∗(0) = 0,
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h[M ] ↑ ϕ∗(0) L
µ ϕ

and we have µ dense with ↑ϕ∗(0) compact, thus by Proposition 1.2.2 µ is an

injective map which makes h[M ] compact.

(3)⇒(4) Since any countably generated frame is hereditarily Lindelöf.

(4)⇒(1) Suppose f : L(R) −→ L is frame homomorphism. L(R) is Lindelöf

since it is a countably generated frame, then by the hypothesis, f [(LR)] is

compact. Choose the collection {(−n, n) | n ∈ N} which covers L(R). Then

{f(−n, n) | n ∈ N} is a cover of f [L(R)] which has a �nite subcover. Since

the f(−n, n) form an increasing sequence, there is a k ∈ N with f(−k, k) = 1.

Thus L is pseudocompact.
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3. BOUNDED FRAME ELEMENTS AND

E-PSEUDOCOMPACT FRAMES

In general topology, boundedness is typically understood to be a metric or

uniform property, not a topological one. In the 1970's, a variety of math-

ematicians independently presented de�nitions as candidates for a bounded

set in a general topological space. A subspace A ⊆ X of a topological space

X was termed:

• Absolutely bounded (Gagola and Gemignani 1968 [19]) if A is con-

tained in a member of any directed open cover of X.

• e-relatively compact (Hechler 1975 [21]) if any open cover C of A

contains a �nite subcover of A.

• Bounded (Lambrinos 1973 & 1976 [27], [28]) if any open cover C of X
contains a �nite subcover of A.

These de�nitions can all be interpreted as a form of relative compactness,

free from the additional constraint of closedness. In fact, it is not di�cult to

prove that the three de�nitions above are actually equivalent:

If A is absolutely bounded and C is an open cover of A, then D = {
⋃
B | B

is a �nite subset of C∪{X \A}} is a directed open cover of X. A is contained

in a member of D implies that A is contained in a �nite subcover of C and

A is e-relatively compact.

Clearly if A is e-relatively compact then it is bounded since any open

cover of X also covers A. And further, if A is bounded then it is absolutely

http://etd.uwc.ac.za/ 
 



3. Bounded frame elements and E-pseudocompact frames 45

bounded since the union of any �nite subset of a directed cover is contained

in a member of that cover.

Boundedness in the above sense has a number of natural properties, for

example the �nite unions of bounded sets are bounded; a subset of a bounded

set is bounded as well; and A is bounded if and only if A is bounded. From

our perspective it lends itself to a natural de�nition in pointfree topology

too.

Not very much has been studied about �bounded elements� in pointfree

topology. Marcus �rst studied boundedness in the pointfree context, when

he de�ned the bounded elements in continuous frames as those which are

way below the top element of the frame, i.e. a is bounded in L if a � 1L.

He then used these to de�ne the concept of bounded frame homomorphisms

in [30].

Dube followed Lambrinos' approach, introducing bounded sublocales (quo-

tient frame homomorphisms) via covers in [14]. We will see that these notions

are closely linked but not quite equivalent in any frame.

In this chapter, we now proceed to de�ne the notion of bounded elements

in frames and use it to de�ne bounded frame homomorphisms and thence

E-pseudocompactness.

3.1 Bounded frame elements

De�nition 3.1.1. An element a ∈ L is bounded if and only if every cover

of L containing a∗ has a �nite subcover.

The set of all bounded elements of a frame L is denoted by Bd(L).

Remark 3.1.1. (1) Since in any frame L, a∗ = a∗∗∗ it follows immediately

that a is bounded if and only if a∗∗ is bounded. This is in accord with

the intuition that in topology a set is bounded if and only if its closure

is bounded.
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(2) It is clear that a frame L is compact if and only if 1L is bounded.

Example 3.1.1. (1) An element a of a Boolean frame is bounded i� a is

the join of �nitely many atoms (see below).

(2) Any U ∈ OR is bounded i� U ⊆ (−a, a) for some a ∈ R.

(3) In a compact frame M , every element is bounded (since the top is

bounded). So a frame is compact if and only if every element is

bounded.

Proposition 3.1.1. For any frame L, Bd(L) is an ideal.

Proof.

(1) The bottom element is bounded for any frame L since 0∗ = 1.

(2) Bd(L) is a downset.

Assume that b ≤ a with a a bounded element in L, also let K ∈ CovL
with b∗ ∈ K. PutK ′ = K∪{a∗}, which givesK ′ ∈ CovL such that a∗ ∈
K ′ which thus has a �nite subcover. This ensures {k1, k2, . . . , kn, a

∗}
with each ki ∈ K and k1 ∨ k2 ∨ . . . ∨ kn ∨ a∗ = 1L. Since a∗ ≤ b∗, then:

k1 ∨ k2 ∨ . . . ∨ kn ∨ b∗ = k1 ∨ k2 ∨ . . . ∨ kn ∨ a∗ ∨ b∗ = 1L.

Thus {k1, k2, . . . , kn, b
∗} is a �nite subcover of K.

(3) If a, b are bounded in L then a ∨ b is bounded as well.

Assume K ∈ CovL with (a ∨ b)∗ ∈ K. Put K ′ = {k ∈ K | k 6= (a∨b)∗}

=⇒ (a ∨ b)∗ ∨
∨
K ′ = 1L

=⇒ (a∗ ∧ b∗) ∨
∨
K ′ = (a∗ ∨

∨
K ′) ∧ (b∗ ∨

∨
K ′) = 1L.

Thus there exists �nite K1 ⊆ K ′ and K2 ⊆ K ′ such that:

a∗ ∨
∨
K1 = 1L and b∗ ∨

∨
K2 = 1L.

Now, put K̃ = K1 ∪K2 which is �nite and:
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a∗ ∨
∨
K̃ = b∗ ∨

∨
K̃ = 1L =⇒ (a∗ ∧ b∗) ∨

∨
K̃ = (a ∨ b)∗ ∨

∨
K̃ = 1L.

Thus K̃ ∪ {(a ∨ b)∗} is a �nite subcover of K.

As mentioned above, Marcus introduced the notion of a bounded element

in [30] speci�cally in the case of a continuous frame L. In that setting a ∈ L
is de�ned to be bounded if a� 1L. This is closely related to our de�nition.

Proposition 3.1.2. Let L be a frame and a ∈ L.

(1) If a is bounded then a� 1L.

(2) If L is regular then a is bounded if and only if a� 1L.

(3) If
∨
Bd(L) = 1L then a is bounded i� a� 1L.

Proof. (1) If a is bounded and 1L ≤
∨
A, for A ⊆ L, then A ∪ {a∗} is a

cover of L and so there exists �nite B ⊆ A∪{a∗} which covers L. Since

a ∧ a∗ = 0L it must be that a ≤
∨

(B \ {a∗}) and so a� 1L.

(2) Let L be regular and a � 1L. Since L is regular, for any cover C of

L, C̃ = {x ∈ L | x ≺ c for some c ∈ L} also covers L. Thus if C is a

cover of L with a∗ ∈ C, then C̃ is also a cover and 1L ≤
∨
C̃. So since

a� 1L there is a �nite {c1, c2, . . . , cn} ⊆ C̃ with a ≤ c1 ∨ c2 ∨ . . . ∨ cn.
By de�nition of C̃ there are {d1, d2, . . . , dn} ⊆ C with ci ≺ di for each

i from 1 to n. This gives

a ≤
n∨
i=1

ci ≺
n∨
i=1

di.

Thus a ≺
∨n
i=1 di and so a∗ ∨

∨n
i=1 di = 1L and {d1, d2, . . . , dn, a

∗} is a
�nite subcover of C.
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(3) Assume that
∨
Bd(L) = 1L. If a � 1L then 1L ≤

∨
Bd(L) implies

that there is a �nite A ⊆ Bd(L) with a ≤
∨
A. But since Bd(L) is an

ideal,
∨
A ∈ Bd(L) and so a ∈ Bd(L) too.

Proposition 3.1.3. Let X be a topological space. U ∈ OX is bounded if

and only if U is compact.

Proof. If U is the closure of U in X, we know that U∗ = X \ U .

(⇒) Assume U is bounded in OX and let C be an open cover of U in X.

C ∪ {U∗} is an open cover of X and since U is bounded there is a

�nite subcover C ′ ⊆ C ∪ {U∗}. Then C ′ \ {U∗} ⊆ C is �nite with

U ⊆
⋃

(C ′ \ {U∗}) and U is compact.

(⇐) Assume U is compact, assume also that K is a cover of OX containing

U∗. Then {A ∩ U | A ∈ K} is a cover of U which has a �nite subcover

{Ai ∩ U | i = 1, 2, . . . , n}. Now {Ai | n = 1, 2, . . . , n}
⋃
{U∗} is a �nite

subcover of K. Therefore U is bounded.

Proposition 3.1.4. Let L be a Boolean frame. The following are equivalent

for an element a ∈ L:

(1) a is the join of �nitely many atoms;

(2) a is bounded.

(3) a is compact.

Proof.
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(1)⇒ (2) Let a =
∨
S, where S is a �nite set of atoms in L. Let K ∈ CovL with

a∗ ∈ K. Now, s ≤
∨

(K \ {a∗}) for each s ∈ S. Since s is an atom

there exists ks ∈ K \ {a∗} with s ≤ ks then:

a =
∨

S ≤
∨
{ks|s ∈ S}.

So, we have

1L = a ∨ a∗ ≤ a∗ ∨
∨
{ks|s ∈ S}

and

{ks|s ∈ S} ∪ {a∗} ⊆ K

is a �nite subcover.

(2)⇒ (3) If a ≤
∨
K then

∨
K∨a∗ = 1L, so K∪{a∗} ∈ CovL. Thus there exists

a �nite K̀ ⊆ K with a∗∨
∨
K̀ = 1L then a = a∧ (a∗∨

∨
K̀) = a∧

∨
K̀,

so a ≤
∨
K̀ and a is compact.

(3)⇒ (1) Let a be compact, then ↓ a = {x ∈ L|x ≤ a} is a compact Boolean

frame. Now, since compact Boolean frames are spatial, a is the join

of atoms (Lemma 1.2.6, Lemma1.2.1). Then it follows by compactness

that a is the join of �nitely many atoms.

We say that a �lter F on L clusters if
∨
x∈F x

∗ 6= 1 and that F is

convergent if F intersects every cover of L.

Proposition 3.1.5. Consider the following properties of a ∈ L.

(1) a is bounded.

(2) a� 1

(3) For all �lters F on L, a ∈ F ⇒ F clusters.

(4) For all �lters F on L, a∗ 6∈ F ⇒ F clusters.
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(5) For all prime �lters F on L, a ∈ F ⇒ F is convergent.

Then (1) ⇒ (2) ⇒ (3) ⇔ (4) and (2) ⇒ (5). If L is regular then (1) ⇔
(2)⇔ (3)⇔ (4) .

Proof.

(1)⇒(2) Shown above.

(2)⇒(3) Assume that a ∈ F but that F does not cluster, so
∨
x∈F x

∗ = 1. Since

a � 1 there is a �nite A ⊆ F with a ≤
∨
x∈A x

∗. But then because

a ∈ F ,
∨
x∈A x

∗ ∈ A, and because A is �nite,
∧
A ∈ F . However,

(
∧
A)∧ (

∨
x∈A x

∗) = 0 which is a contradiction. Thus
∨
x∈F x

∗ 6= 1 and

F clusters.

(3)⇒(4) If a∗ 6∈ F then x ∧ a 6= 0 for all x ∈ F . (Else x ∧ a = 0 ⇒ x ≤ a∗

giving a∗ ∈ F .) Thus F ∪ {a} is a �lter base containing a and so∨
x∈F∪{a} x

∗ 6= 1. Obviously then
∨
x∈F x

∗ 6= 1 and F clusters.

(4)⇒(3) Immediate since a ∈ F ⇒ a∗ 6∈ F because a ∧ a∗ = 0.

(2)⇒(5) Let F be a prime �lter with a ∈ F and let C be a cover of L. We have

to show that F ∩C 6= ∅. Since a� 1, 1 ≤
∨
C ⇒ a ≤

∨
D for a �nite

D ⊆ C. Then because a ∈ F it follows that
∨
D ∈ F and then since

D is �nite and F is prime, D ∩ F 6= ∅.

(3)⇒(2) Let L be regular, and assume (3). We show that a� 1L and together

with Proposition 3.1.2 the result follows. If a 6� 1L then there is a

cover C of L so that for all �nite A ⊆ C, a 6≤
∨
A. Form the set

D = {d ∈ L | d ≺
∨
A, A is �nite, A ⊆ C} and since L is regular, D

is a cover of L.

Put F = {a ∧ d∗ | d ∈ D} and we show that F is a �lter base on L.

(a) For each d ∈ D there is a �nite Ad ⊆ C with d ≺
∨
Ad, i.e.

d∗ ∨
∨
Ad = 1L. But a 6≤

∨
Ad and so a ∧ d∗ 6= 0L. (Else
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a = a∧ 1L = a∧ (d∗∨
∨
Ad) = (a∧d∗)∨ (a∧

∨
Ad) = a∧

∨
Ad ⇒

a ≤
∨
Ad.)

(b) D is closed under �nite joins. If d1, d2 ∈ D then there are �nite

subsets Ad1 and Ad2 of C with d1 ≺
∨
Ad1 and d2 ≺

∨
Ad2 . But

then (d1 ∨ d2) ≺ (
∨
Ad1 ∨

∨
Ad2) =

∨
(Ad1 ∪Ad2) and Ad1 ∪Ad2 is

a �nite subset of C, so d1 ∨ d2 ∈ D.

Thus F is closed under �nite meet since for d1, d2 ∈ D, (a∧ d∗1)∧
(a ∧ d∗2) = a ∧ (d∗1 ∧ d∗2) = a ∧ (d1 ∨ d2)∗ ∈ F .

Now a ∈ F since
∨
∅ = 0L ∈ D gives a = a∧1L = a∧0∗L ∈ F . So by (3)∨

d∈D

(a ∧ d∗)∗ 6= 1L. But for any d ∈ D, (a∧d∗)∗ ≥ a∗∨d∗∗ ≥ a∗∨d ≥ d

so it then follows that
∨
D 6= 1L contradicting that D is a cover. Hence

a� 1L and the result follows.

3.2 Bounded sublocales

A commonly adopted generalisation to frames of the topological notion of a

subspace is to use surjective frame homomorphisms, which are also termed

sublocales. Bounded subpaces are thus generalised by considering bounded

sublocales, or bounded surjective homomorphisms (quotient maps). In [14]

Dube de�nes such a bounded notion on a quotient frame map as follows.

De�nition 3.2.1. A quotient map h : L −→M of L is called bounded if for

every cover C of L there exists a �nite K ⊆ C such that h[K] is a cover of

M .

We will refer to this de�nition of bounded quotient as D-bounded to

distinguish it from our notion of bounded homomorphism given in De�nition

3.3.1 below. The next two propositions show how our de�nitions of bounded

frame elements relate to associated D-bounded closed and open sublocales.
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Proposition 3.2.1. An element a in a frame L is bounded if and only if the

quotient map − ∨ a∗ : L −→↑a∗ is a D-bounded sublocale.

Proof. (⇒) Let a be bounded and C be a cover of L. Put C ′ = C ∪ {a∗}
then there is a �nite K ′ ⊆ C ′ with

∨
K ′ = 1L. Now if K = K ′ \ {a∗}

then
∨
K ∨ a∗ = 1L = 1↑a∗ and − ∨ a∗ is D-bounded.

(⇐) Let C be a cover of L with a∗ ∈ C. By D-boundedness, there is a �nite

K ⊆ C such that
∨
K ∨ a∗ = 1↑a∗ = 1L, then K ′ = K ∪ {a∗} ⊆ C is

�nite with
∨
K ′ = 1L.

Proposition 3.2.2. An element a � 1 in a frame L if and only if the

quotient map − ∧ a : L −→↓a is a D-bounded sublocale.

Proof. (⇒) Let a � 1L and C be a cover of L. There is a �nite K ⊆ C

with a ≤
∨
K. Then

∨
K ∧ a = a = 1↓a and − ∧ a is D-bounded.

(⇐) Let C be a cover of L then by D-boundedness, there is a �nite K ⊆ C

such that
∨
K ∧ a = 1↓a = a. Thus a ≤

∨
K.

3.3 Bounded frame homomorphisms

In general topology, a map f : X −→ Y is bounded if there is a bounded

subspace B of Y with f(X) ⊆ B. Using this as our motivation we introduce

the following de�nition for bounded frame homomorphisms.

De�nition 3.3.1. A frame homomorphism f : E −→ L is bounded if and

only if f(b) = 1L for some bounded b ∈ E.

Example 3.3.1.

(1) If E is a compact frame, then every frame homomorphism h : E −→ L

is bounded, since 1E is bounded.
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(2) Let X and Y be metric space and suppose f : X −→ Y is a continuous

map then the frame homomorphism f−1(−) : OY −→ OX is bounded

if f is bounded in the usual sense.

(3) Let X and Y be sets and suppose f : X −→ Y is a function. Then

f−1(−) : P (Y ) −→ P (X) is bounded if and only if f−1(F ) = X for

some �nite subset F of Y .

(4) Let M and L be Boolean frames. Then f : M −→ L is bounded i�

f(s) = 1L where s is a join of �nitely many atoms in M .

(5) If f : R −→ R is a continuous map, the frame homomorphism:

f−1(−) : OR −→ OR is bounded i� f−1(−a, a) = R for some a ∈ Q.

An obvious option is to consider h to be bounded if when taking the

factorisation of h = f◦g through its image produces g a D-bounded sublocale.

L h[L] M
g

h

f

We call such h D-bounded too, i.e. h : L −→ M for which any cover C of

L contains a �nite K such that h[K] covers M .

Proposition 3.3.1. A frame homomorphism h : L −→ M is D-bounded if

it is bounded.

Proof. Let h : L −→ M be a bounded frame homomorphism, and assume

C ∈ CovL, then: ∨
h(C) = h(

∨
C) = h(1L) = 1M = h(b)

for some b ∈ Bd(L).

Put C̃ = C ∪ {b∗}, then there exists a �nite K̃ ⊆ C̃ with
∨
K̃ = 1. Now,

let K = {k ∈ K̃ | k 6= b∗}, so b ≤
∨
K =⇒ 1M = h(b) ≤ h(

∨
K) =

∨
h(K)

which is a cover of M .
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While in general if h : L −→ M is bounded then it is D-bounded, in the

absence of additional assumptions on the frames or on Bd(L) it is not possible

to extract a generic bounded element from a D-bounded map to show that

it is bounded. The most natural element to consider is h∗(0)∗ = (
∨
{a ∈

L | h(a) = 0})∗, the pseudocomplement of the largest element mapped by h

to 0.

Proposition 3.3.2. If h : L −→M is bounded then h∗(0)∗ is bounded.

Proof. Let h : L −→ M be bounded with b ∈ Bd(L) such that h(b) = 1M .

Then h(b∗) ≤ h(b)∗ = 1∗ = 0 ⇒ b∗ ≤ h∗(0) ⇒ h∗(0)∗ ≤ b∗∗. But since b is

bounded, b∗∗ is also bounded, and then because Bd(L) is an ideal, h∗(0)∗ is

bounded too.

Lemma 3.3.1. If h : L −→M with h(x) = 1 and x ≺ y then h∗(0)∗ ≤ y.

Proof. If h(x) = 1 then h(x∗) ≤ h(x)∗ = 0⇒ x∗ ≤ h∗(0)⇒ h∗(0)∗ ≤ x∗∗. If

x ≺ y then x∗∗∗ ∨ y = x∗ ∨ y = 1 and so x∗∗ ≺ y giving h∗(0)∗ ≤ x∗∗ ≤ y.

Proposition 3.3.3. For L a regular frame, if h : L −→ M is D-bounded

then h∗(0)∗ is bounded.

Proof. According to Proposition 3.1.2 it su�ces to show that h∗(0)∗ � 1L.

Given a cover C of L, because L is regular we form the cover C̃ = {x ∈
L | x ≺ c for some c ∈ C}. Then since h is D-bounded, there exists a �nite

K ⊆ C̃ such that h(
∨
K) = 1M .

By the construction of C̃, for each k ∈ K there is a corresponding ck ∈ C
with k ≺ ck. Then

∨
K ≺

∨
k∈K ck and by Lemma 3.3.1, since h(

∨
K) = 1M ,

h∗(0)∗ ≤
∨
k∈K ck. This shows that h∗(0)∗ � 1L.

Corollary 3.3.1. If L is Boolean, then h : L −→ M is bounded i� h is

D-bounded i� (h∗(0))∗ is bounded.

Proof. Combine Proposition 3.3.1 and Proposition 3.3.3 with the observa-

tion that in a Boolean frame h((h∗(0))∗) = 0 ∨ h((h∗(0))∗) = h(h∗(0)) ∨
h((h∗(0))∗) = h(h∗(0) ∨ (h∗(0))∗) = h(1) = 1.
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Corollary 3.3.2. In regular frames, if h : L −→ M is a bounded (hence

D-bounded) dense quotient then L is compact.

Proof. L is compact if and only if 1L � 1L. If h is D-bounded then by

Proposition 3.3.3, (h∗(0))∗ is bounded, hence by regularity (h∗(0))∗ � 1L.

But by denseness h∗(0) = 0L rendering (h∗(0))∗ = 1L and L is thus compact.

Proposition 3.3.4. If
∨
Bd(L) = 1 then h : L −→ M is bounded i� h is

D-bounded.

Proof. One direction follows from Proposition 3.3.1. For the other, assume

that h is D-bounded, then since
∨
Bd(L) = 1L there is a �nite A ⊆ Bd(L)

with h(
∨
A) = 1M . Since Bd(L) is an ideal and A is �nite,

∨
A ∈ Bd(L)

and h is bounded.

3.4 E-Pseudocompact Frames

A topological space X is pseudocompact if every real-valued continuous map

with domain X is bounded. With a more general de�nition of bounded

map (not only real-valued) we can introduce a more general de�nition of

pseudocompactness.

De�nition 3.4.1. Let E be a frame. A frame L is E-pseudocompact if and

only if every frame homomorphism f : E −→ L is bounded.

Example 3.4.1.

(1) E = OR. A completely regular frame L is an E-pseudocompact frame

precisely when L is a pseudocompact frame.

Proof. If φ : OR −→ L is a bounded frame homomorphism, then

∃(p, q) ∈ OR such that φ(p, q) = 1L, (p, q) is bounded in OR.
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(2) Consider E = ON. A zero dimensional frame L is E-pseudocompact

i� BL is �nite.

Proof.

(⇒) If L is E-pseudocompact then any frame homomorphism from

E = ON is bounded and also it is known that a zero dimensional

frame is bounded if it is �nite.

(⇐) It is clear that L is bounded which means every frame homomor-

phism h: ON −→ L is bounded.

(3) Let A be a sub σ-frame of L, and E = HA then L is E−pseudocompact

if A is compact

In general topology, the pseudocompactness property is not very well

behaved. It is closed under continuous images but not under products or

(closed) subspaces. We conclude by considering a few results of this nature

in the point-free setting.

Proposition 3.4.1. If h : L −→M is injective and M is E-pseudocompact,

then L is E-pseudocompact.

Proof. Consider f : E −→ L, then ifM is E-pseudocompact, h◦f is bounded

and there is a bounded element d ∈ E with (h ◦ f)(d) = 1M . Since h is

injective, f(d) = 1L and f is bounded showing that L is E-pseudocompact.

Proposition 3.4.2. If h : L −→ M is a co-dense quotient and M is E-

pseudocompact, then L is E-pseudocompact.

Proof. To show L is E-pseudocompact, let g : E −→ L be any frame homo-

morphism.
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E L

M

g

f
h

Since M is E-pseudocompact, then f = h ◦ g is bounded, so ∃b ∈ Bd(E)

such that h(g(b)) = 1M . Because h is codense, g(b) = 1L .

Pseudocompactness is not closed under (closed) subspaces in general

topology but we �nish with the following result in that direction.

Proposition 3.4.3. For any E−pseudocompact frame L and any a ∈ L with

^(a ∨ a∗) E−pseudocompact, then ^a∗ is also E−pseudocompact.

Proof. Assume that h and g are frame homomorphisms such that:

E ↑a∗ ↑(a ∨ a∗)h g

where g maps x 7−→ x ∨ a

We know that h(s) ∨ a = g ◦ h(s) = 1L for some bounded s ∈ E and must

show that h is bounded.

De�ne a map f : E −→ L by

f(x) =

{
h(s∗) ∧ h(x) ∧ a , s ∧ x = 0

h(s) ∨ h(x) , s ∧ x 6= 0
(3.1)

Since x ≤ s∗ if s ∧ x = 0, then:

f(x) =

{
h(x) ∧ a , s ∧ x = 0

h(s) ∨ h(x) , s ∧ x 6= 0
(3.2)

f(x) de�nes a frame homomorphism which we may prove by the following:
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• f(0) = h(0) ∧ (a) = a∗ ∧ a = 0, and f(1) = h(s) ∨ h(1) = 1

• To show f(x ∧ y) = f(x) ∧ f(y) we consider three cases:

(1) s ∧ x = 0 and s ∧ y = 0,

f(x ∧ y) =[h(x) ∧ h(y)] ∧ (a)

=[h(x) ∧ a] ∧ [h(y) ∧ a]

=f(x) ∧ f(y).

(2) s ∧ x 6= 0 and s ∧ y 6= 0 and x ∧ y 6= 0

f(x ∧ y) =h(s) ∨ h(x ∧ y)

=h(s) ∨ h(x ∧ y)

=h(s) ∨ [h(x) ∧ h(y)]

=[h(s) ∨ h(x)] ∧ [h(s) ∨ h(y)]

=f(x) ∧ f(y).

(3) s ∧ x = 0 and s ∧ y 6= 0

f(x) ∧ f(y) =[a ∧ h(x)] ∧ [(h(y) ∨ h(s)]

=a ∧ [(h(x) ∧ h(s)) ∨ (h(x) ∧ h(y))]

=a ∧ [h(x ∧ s) ∨ h(x ∧ y)]

=a ∧ [h(0) ∨ h(x ∧ y)]

=a ∧ [a∗ ∨ h(x ∧ y)]

=(a ∧ a∗) ∨ (a ∧ h(x ∧ y))

=f(x ∧ y)

• To show f(
∨
xi) =

∨
f(xi), we consider three cases:
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(1) s ∧ xi = 0, ∀i

f(
∨

xi) =h(
∨

xi) ∧ a

=[
∨

h(xi)] ∧ a

=
∨

[h(xi) ∧ a]

=
∨

f(xi)

(2) s ∧ xi 6= 0 , ∀i

f(
∨

xi) =h(s) ∨ h(
∨

xi)

=
∨

[h(s) ∨ h(xi)]

=
∨

f(xi)

(3) First consider f(x ∨ y), where s ∧ x = 0 and s ∧ y 6= 0

f(x) ∨ f(y) =[a ∧ h(x)] ∨ [(h(y) ∨ h(s)]

=[(h(x)) ∨ h(y ∨ s)] ∧ [(a ∨ h(y ∨ s)]

=[h(x ∨ y ∨ s)] ∧ [1 ∨ h(y)]

=h(x ∨ y ∨ s)

=f(x ∨ y)

• What about f(
∨
A) for A ⊆ E?

In general for A ⊆ E put A = A1 ∪ A2,
∨
A =

∨
A1 ∨

∨
A2 for∨

A1 ∧ s = 0 and
∨
A2 ∧ s 6= 0, by applying (1),(2) (3) above we

get:

f(
∨

A) =f(
∨

A1 ∨
∨

A2)

=f(
∨

A1) ∨ (f
∨

A2)(by(3))

=
∨

f(A1) ∨
∨

f(A2)(by(1), (2))

=
∨

f(A)
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Now, since L is E−pseudocompact, there exists bounded r ∈ E with

f(r) = 1L and without loss of generality we may assume that r ≥ s. Thus

f(r) = h(s) ∨ h(r) = h(r); therefore h is bounded which implies the E-

pseudocompactness of ↑ a∗.
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FINAL REMARKS

In this thesis, after recalling some classical results regarding pseudocompact-

ness, we o�ered a new de�nition of a bounded element in a frame. We have

seen many interesting properties of this boundedness notion and used it to

de�ne bounded homomorphisms. In particular these new notions are con-

servative (generalising what is known from topology) and o�er some simpler

proofs. For example:

• The relationship between a bounded element in frames with its closure

in a classical topology (Proposition 3.1.3).

• E-pseudocompact frames provide a generalization of pseudocompact

frames, making the study of bounded frame homomorphisms easier,

without requiring the frame of reals. (Compare Proposition 3.4.3 and

Proposition 2.2.2.)

However, the boundedness notion in frame homomorphisms brings about

many open problems of which we will list a few:

• Proposition 3.3.1 shows that Dube's bounded de�nition ([14]), which

is de�ned by the frame theoretic analogue of subspaces, is implied by

De�nition 3.3.1 which is de�ned via bounded elements in frames. We

contend that this is a very natural de�nition for bounded frame homo-

morphisms.

The converse of this proposition is an unsolved problem in general. It

can be obtained for Boolean frames (see Corollary 3.3.1).
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• Chapter 2 highlighted characterisations of pseudocompactness of frames,

in many instances by using the cozero part of frame. This has no im-

mediate analogue for E-pseudocompactness since a cozero set is only

associated with the reals. None-the-less linking properties of E with

properties of E-pseudocompactness will make an interesting further

study.
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