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Abstract

The history of the pursuit of uncolourable cubic graphs dates back more than a cen-
tury. This pursuit has evolved from the slow discovery of individual uncolourable
cubic graphs such as the famous Petersen graph and the Blanusa snarks, to dis-
covering infinite classes of uncolourable cubic graphs such as the Louphekine and
Goldberg snarks, to investigating parameters which measure the uncolourability of
cubic graphs. These parameters include resistance, oddness and weak oddness, flow
resistance, among others. In this thesis, we consider current ideas and problems re-
garding the uncolourability of cubic graphs, centering around these parameters. We
introduce new ideas regarding the structural complexity of these graphs in question.
In particular, we consider their 3-critical subgraphs, specifically in relation to resis-
tance. We further introduce new parameters which measure the uncolourability of
cubic graphs, specifically relating to their 3-critical subgraphs and various types of
cubic graph reductions. This is also done with a view to identifying further problems
of interest. This thesis also presents solutions and partial solutions to long-standing
open conjectures relating in particular to oddness, weak oddness and resistance.
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Chapter 1

Introduction

The question of the colourability of cubic graphs has long been the subject of major
consideration in graph theory. To this day, this question is still largely considered.
The reason is that many major theorems and conjectures in graph theory are easily
solved for graphs which are not specifically both cubic and uncolourable. That is to
say, cubic graphs which cannot have its edges assigned one of three colours such that
no two adjacent edges are assigned the same colour. Many of these conjectures are
still open, on which we will further elaborate. First we present an overview of the
proverbial hunting of the snark.

In 1880, Tait proved that the Four Colour Theorem is equivalent to the statement
that no uncolourable cubic graph is planar[41]. It was in proving this statement that
the study of these uncolourable cubic graphs was initiated. The now famous Petersen
graph, which is ubiquitous as an opportune counter-example to many seemingly true
results in graph theory, was the first such graph to be discovered. The Petersen graph
is in fact the smallest uncolourable cubic graph, with order 10. This was in 1898,
by Julius Petersen [34]. It wasn’t until 1946 that the next two known uncolourable
cubic graphs was discovered by Blanusa [4]. These are now known as the Blanusa
snarks, both of which have order 18. Descartes (a pseudonym of Tutte) [10] and
Szekeres [40] soon after discovered another uncolourable cubic graph each. Up until
1975, these were the only known uncolourable cubic graphs.

In between this time, unrelated to the pursuit of uncolourable cubic graphs,
Vizing published what we know today as Vizing’s theorem [45, 46]. The theorem
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CHAPTER 1. INTRODUCTION 9

states that any graph with maximum degree ∆, can have its edges properly coloured
with ∆ colours or ∆ + 1 colours. The terms class one graph and class two graph
are used, respectively. The term colourable is also used for class one, while the term
uncolourable is used for class two.

In 1975, Isaacs [22] discovered the first and second infinite classes of cubic class
two graphs. In fact, the previously known cubic class two graphs of Blanusa,
Descartes, and Szekeres, are members of one of these infinite classes, thereafter
dubbed the BDS class. Thus the pursuit of these seemingly rare cubic class two
graphs had evolved. Gardner then coined the term snarks in 1976 in reference to
cubic class two graphs, after the mysterious and elusive object of the poem “The
Hunting of the Snark” by Lewis Carroll. Gardner specifically used the term snarks
to refer to ‘non-trivial’ cubic class two graphs. Although, there is no clear and ob-
vious definition of what ‘nontrivial’ means, it is a discussion to which we briefly
contribute in this thesis. Therefore, some authors use the term snarks to refer to all
cubic class two graphs. Here, we will continue to use the term snark to refer to any
cubic class two graph.

The natural progression after the discovery of infinite classes of snarks then tended
towards methods of snark generation. In [13], Fiol proposed a method based on
boolean algebras. Loupekhine’s snarks [23] and Goldberg’s snarks [18, 19] can be
constructed by this method. In [27], Kochol presented a method which he called
superposition. The methods of generation and construction then lead to questions
of triviality and reduction.

A simple property of a snark to be considered trivial for example, is whether it
contains a cycle of length 3 or not. This is because such a 3-cycle can simply be
truncated to a cubic vertex, and the resultant graph would still be a snark. Such a
truncation is an example of a type of reduction. Many other types of reduction have
been considered; see for instance [6, 33, 31]. Most notably, for our purposes, are the
reductions defined in [38] by Steffen. We note also that snarks for which it is easy
to discover reductions to smaller snarks, are generally considered less complex than
snarks for which such reductions are more difficult to discover. This is because easily
reducible snarks are considered to contain more triviality.

In the greater effort to work towards finding solutions to the aforementioned
major conjectures, and deepen our understanding of snarks, researchers began to
introduce parameters which reflect the complexity of the structure of snarks, or how
far they are from being class one. These parameters have been termed measurements
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of uncolourability, and have been used to gain new insights into snark complexity,
as well as to find partial solutions to open problems. Some of these parameters
include: the resistance of a snark, defined as the minimum number of edges that
can be removed from a graph to render a colourable graph; the vertex resistance of
a snark, defined as the minimum number of vertices that can be removed from a
graph to render a colourable graph; the oddness of a graph, defined as the minimum
number of odd components in any 2-factor of the graph; and the weak oddness of a
graph, defined as the minimum number of odd components in any even factor of the
graph. Oddness and weak oddness are grouped along with these parameters since it
is not difficult to see that cubic graphs have 2-factors or even factors with no odd
components if and only if the graph is class one. Other parameters have also been
introduced, see [12] for a survey on measurements of uncolourability.

On the other hand, much research has been done regarding flows in the context of
snarks. See for example, [17, 16, 32, 36, 39]. In fact, it is relatively easy to show that
a cubic graph is colourable if and only it admits a nowhere zero 4-flow. Mác̆ajova and
Škoviera further showed that snarks coincide in terms of their criticality with regard
to 3-edge-colourings and their criticality with regard to nowhere zero 4-flows. In view
of this close relationship between 4-flows and 3-edge-colourings, another parameter
which measures uncolourability of snarks was introduced in [12] by Fiol et al. That
is, the flow resistance of a snark, defined as the minimum number of zero edges in a
4-flow of the snark. Also in [12], it was conjectured that resistance is always greater
than or equal to flow resistance. In this thesis we provide some insights on this
conjecture, and prove that the resistance is bounded by two times the flow resistance
of snark.

As alluded to above, the reason that snarks are the subject of consideration
in graph theory is due to the fact that many major open conjectures are easily
solvable for non-snarks. We present some examples of these open problems. In [42],
Tutte formulated the 5-Flow Conjecture which states that every bridgeless graph
admits a nowhere zero 5-flow. In [15], the Berge-Fulkerson Conjecture was published,
which states that every bridgeless cubic graph has six 1-factors such that every edge
is in precisely two of them. In [11], the Fan-Raspaud Conjecture was published,
which states that every bridgeless cubic graph has three 1-factors such that no edge
is in each of them. In [35], the Cycle Double Cover Conjecture was published,
which states that every bridgeless graph admits a cycle double cover. Many partial
solutions have been presented to each these problems. These partial solutions are
generally presented in terms of parameters which measure the complexity of the
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snark, as previously mentioned. In other words, a critical understanding of snarks
and uncolourability opens up an understanding of many problems.

In Chapter 2, we present preliminary definitions and results which will be used at
various points in this thesis. These include all the necessary basic graph theoretical
definitions, building towards recently introduced ideas. This chapter will also present
in general the current topography of the question of the colourability of cubic graphs,
at least in areas of relevance to this thesis. Where possible, we will present proofs,
some of which are our own.

In Chapter 3, we attempt to further our understanding of the structure of class
two cubic graphs. We do this by introducing ideas relating to their 3-critical sub-
graphs, or as we will call them, minimal conflicting subgraphs. 3-critical graphs are
subcubic graphs with edge chromatic number 4 such that the removal of any one
edge renders the graph to have an edge chromatic number of 3. We consider how
the minimal conflicting subgraphs of a graph relate to its possible minimal colour-
ings (colourings with the least number of conflicting edges). We characterise the
resistance in terms of its minimal conflicting subgraphs, and discuss ideas which are
consequent to the ones introduced. Similarly, we also characterise what we call the
critical subgraph of a snark in terms of its minimal conflicting subgraphs. Further-
more, we briefly discuss hypo-Hamiltonicity in the context of snarks. The reason
for the focus on hypo-Hamiltonicity is because hypo-Hamiltonian snarks can be con-
sidered as the closest in structure to being cubic class one. This was reasoned and
remarked by Steffen in [37]. In addition, there have been other somewhat surprising
deductions between hypo-Hamiltonicity and snarks, in particular amongst smaller
graphs in both classes. We prove a new result on hypo-Hamiltonian snarks which
may strengthen the idea that hypo-Hamiltonian snarks may be regarded as the ones
closest to being class one.

In Chapter 4, we consider vertex reductions of snarks (as defined by Steffen in
[38]). That is, the removal of two vertices and subsequent addition of edges to
restore 3-regularity. These reductions can be further classified into different types.
That is, when the two vertices in question are not adjacent, when they are adjacent,
and when they are adjacent and edges are added back in a particular manner. We
introduce new parameters using these types of reductions which can be regarded as
measurements of uncolourability of snarks, or even as measurements of triviality of
snarks given the previous comments made. Furthermore, we present new insightful
results concerning these parameters. In particular, we state one particular conjecture
relating resistance to one of the new parameters. If indeed the conjecture is true, we
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show that it can be used to prove a long-standing open conjecture regarding weak
oddness and resistance. The conjecture in question states that the weak oddness of
a cubic graph is bounded by two times the resistance. We also show that it can be
used to prove that the flow resistance of a snark is less than or equal to its resistance,
as alluded to previously.

In Chapter 5, we disprove a long standing open conjecture on cubic class two
graphs which relates resistance to oddness. The conjecture states the oddness of a
cubic graph is bounded by two times the resistance of a graph. The chapter is devoted
simply to the presentation of a class of graphs which disproves this conjecture. Across
chapters 4 and 5, we relate back to ideas introduced in Chapter 3.

In Chapter 6, we conclude with a brief discussion.



Chapter 2

Preliminaries

In this chapter, we present necessary background and preliminary results required
throughout this thesis. We begin with a few basic graph theoretic definitions, after
which the focus builds towards results and definitions specifically relating to snarks.
These include minimal edge colourings as well as measurements of uncolourability.
Definitions and results are augmented with examples where required.

2.1 Basic graph theoretic concepts

We begin with the most basic definition, that of a graph. We generalise this basic
definition to formally cater for the idea of ‘dangling edges’. The idea of edges which
are associated with just one vertex, or ‘dangling edges’, is useful for our purposes.
In this view, we define semi-graphs.

Definition 2.1.1. A semi-graph G is a pair G = (V,E) which consists of a set of
vertices V = V (G) and a set of edges E = E(G) ⊆ [V ]2 ∪ [V ]1. If E contains no
elements from [V ]1 then we call G a graph. The 2-element subsets of V in E are
called edges. The 1-element sets are called semi-edges. We denote the semi-edge {u}
as [u] and the edge {u, v} as [u, v].
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CHAPTER 2. PRELIMINARIES 14

Example 2.1.2. A semi-graph containing semi-edges.

If two edges or semi-edges share a vertex then it is said that they are adjacent.
That is, if e1, e2 ∈ E, then they are adjacent if e1∩ e2 6= ∅. Vertices u and v are said
to be adjacent if there exists an edge e = [u, v]. If a vertex is contained in an edge
or semi-edge then it is said that the vertex and edge or semi-edge are incident.

This thesis only considers graphs for which the vertex set is finite. Going forward,
we may refer to the set of edges and semi-edges together simply as the set of edges,
for convenience. This will only be done where the context is clear.

We now define various types of sequences of vertices, after which we define some
more basic graph concepts.

Definition 2.1.3. Let G = (V,E) be a semi-graph.

(a) A walk is a sequence of vertices v0, v1, ..., vk such that [vi, vi+1] ∈ E for every
i ∈ {0, 1, . . . , k − 1}. k is called the length of the walk.

(b) A trail is a walk in which every edge [vi, vi+1] is distinct for i ∈ {0, 1, . . . , k−1}.

(c) A path is a trail in which every vertex in {v0, v1, . . . , vk−1} is distinct.

(d) A cycle is a path in which vk = v0. An n-cycle is a cycle with n vertices.

Remark 2.1.4. Even though a walk is defined in terms of vertices, we may think of
it as containing edges as well. Note then that a semi-edge cannot be contained in a
walk.
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Let G = (V,E) be a semi-graph. The degree of a vertex v ∈ V is the number
of edges or semi-edges incident to v. G is regular if every vertex in V has the same
degree. If each vertex has degree d then it is said that G has degree d. G is cubic if
G has degree 3. G is subcubic if every vertex in V has degree 3 or less. The number
of vertices in G is called the order of G. The number of edges in the smallest cycle
contained in G is called the girth of G.

Let G = (V,E) be a semi-graph. Define a relation ∼ on V by x ∼ y if and only
if there exists a path from x to y. If x ∼ y then x and y are said to be connected.
It is not hard to see that ∼ is an equivalence relation. Each equivalence class [x] is
called a component of G (note that the notation [x] in this context is not referring
to a semi-edge). If a graph has more than one component then it is disconnected,
otherwise it is connected. A bridge is an edge e ∈ G such that G − e contains one
more component than G. A cut-set is a set of edges S such that G−S contains more
components than G. G is k-edge-connected if k is the minimum size of any cut-set
of G. G is cyclically k-edge-connected if k is the minimum size of any cut-set S of
G, such that each resulting component in G− S contains a cycle.

Some commonly used operations on edges and vertices will be utilised in this
thesis. These are specifically: subdivision of edges; and suppression of vertices of
degree 2.

Definition 2.1.5. Let G be a subcubic semi-graph. Let x be a vertex in G with
degree 2 and incident edges [x, y] and [x, z].

(a) A subdivision of edge [u, v] ∈ G is the removal of [u, v] and consequent addition
of vertex w, and edges [u,w] and [w, v].

(b) A suppression of vertex x ∈ G is the removal of [x, y] and [x, z], and consequent
addition of edge [y, z].

Furthermore, in this thesis we will also be dealing with the joining of two semi-
edges to form an edge, the splitting of an edge into two semi-edges, and the joining
of a semi-edge to a vertex to form an edge. Formally, we define joins and splits in
graphs as follows.

Definition 2.1.6. Let G be a semi-graph.

(a) A join between two semi-edges [u] and [v] is the removal of semi-edges [u] and
[v], and the addition of edge [u, v]. A join between semi-edge [u] and vertex v
is the removal of semi-edge [u] and the addition of edge [u, v].
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(b) The splitting of an edge [u, v] is the removal of the egde [u, v] and the addition
of two semi-edges [u] and [v].

We say that a semi-graph G′ is a subgraph of G if V (G′) ⊆ V (G), [u, v] ∈ E(G′)
implies that [u, v] ∈ E(G), [u] ∈ E(G′) implies that [u] ∈ E(G) or that there is an
edge [u, v] ∈ E(G), and for every vertex u ∈ V (G′) the degree of u in G is greater
than or equal to the degree of u in G′. For a semi-graph G, the subgraph induced by
a set of vertices V ′ ⊆ V (G) is the subgraph containing vertex set V ′ and all edges
and semi-edges in G which are incident to vertices in V ′. Similarly, the subgraph
induced by a set of edges E ′ ⊆ E(G) is the subgraph containing edge set E ′ and all
vertices in G which are incident to edges in E ′.

We note the following definition which is pertinent for our purposes: a k-factor
of a graph G is a spanning subgraph of G in which every vertex has degree k.

2.2 Definitions and concepts relating to snarks

Snarks are cubic graphs defined in terms of edge colourings.

Definition 2.2.1. Let G be a semi-graph. A k-edge-colouring, f , of G is a map
f : E −→ {1, . . . , k}. f is a proper k-edge-colouring of G if for any two adjacent
edges e1, e2 ∈ G, we have that f(e1) 6= f(e2).

In 1964, Vizing published his now famous theorem, which relates colourings to
the maximum degree of a graph. By Vizing’s theorem [5, Theorem 6.2], if G is a
graph and f is a proper colouring then the smallest possible value of k is ∆ or ∆+1,
where ∆ is the maximum degree of any vertex in G. It is easy to see that Vizing’s
theorem can be extended to semi-graphs as well, since a semi-edge never needs to be
coloured the same colour as any one of its adjacent edges in a ∆-edge-colouring. If the
smallest possible value of k is ∆, then it is said that G is class one, ∆-edge-colourable,
or colourable. Otherwise it is said that G is class two, or uncolourable.

Inevitably then, when colouring a cubic or subcubic class two graph with a 3-
edge-colouring, there will be a conflict. That is, some vertex will have incident edges
mapped to the same colour. Thus we formally define a snark.

Definition 2.2.2. A snark is an uncolourable bridgeless cubic graph.
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Any disconnected class two graph is made up of components at least one of which
is class two, and the rest of which may be class one. Each component on its own
can be thought of as either a class one graph or a class two graph. Thus for our
purposes, we need only consider connected graphs. It is worth noting at this point
that the snark with smallest order is the famous Petersen graph, with 10 vertices.
The fact that no snark has order less than 10 is used implicitly in this thesis.

In this thesis, for 3-edge-colourings and 4-edge-colourings of cubic graphs, we will
use colour sets {1, 2, 3} and {0, 1, 2, 3}, respectively. Given a k-edge-colouring f , the
set f−1(i) is called a colour class. We will always let |f−1(0)| be the minimum order
of all the colour classes.

Definition 2.2.3. Let G be a cubic semi-graph. A vertex v ∈ G is conflicting with
regard to a 3-edge-colouring f of G, if more than one of the edges or semi-edges
adjacent to v are mapped to the same colour. An edge is conflicting with regard to
a minimal 4-edge-colouring f of G if f(e) = 0.

As mentioned previously, this thesis will briefly consider hypo-Hamiltonicity in
the context of snarks. First, we present the definition of Hamiltonicity.

Definition 2.2.4. A semi-graph G is Hamiltonian if G contains a cycle C such that
C contains every vertex in G.

It is simple matter to prove that no snark can be Hamiltonian. However, closely
related to the property of Hamiltonicity is the property of hypo-Hamiltonicity. This
property is rare in itself, just as are snarks. Intriguingly, and possibly surprisingly,
these two rare properties overlap significantly, with many snarks, especially small
ones, being hypo-Hamiltonian. A formal definition of a hypo-Hamiltonian graph
follows.

Proposition 2.2.5. Let G be a snark. Then G is not Hamiltonian.

Proof. Since any cubic graph must have an even number of vertices, it is possible to
colour the edges of a Hamiltonian cycle of a Hamiltonian cubic graph alternatively
with two colours and the remaining edges with a third colour, to obtain a proper
3-edge-colouring. Thus no snark can be Hamiltonian.

Definition 2.2.6. A semi-graph G is hypo-Hamiltonian if G is not Hamiltonian, and
G− v is Hamiltonian for every vertex v ∈ G.
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There exists infinitely many hypo-Hamiltonian snarks [14]. In fact, Steffen showed
that there exists hypo-Hamiltonian snarks of every even order n ≥ 92. Even though
the proof of this result is based on an erroneous result of Fiorini [14], the result
still holds, as the mistake in [14] was fixed by Goedgebeur and Zamfirescu in [17].
Indeed, they determined all numbers n which are the order of a hypo-Hamiltonian
snark. Steffen also proved that the removal of any two vertices in a hypo-Hamiltonian
snark renders a 3-edge-colourable graph [38, 39]. Also, every such snark is cyclically
4-edge-connected and has girth 5 [33]. 4-edge-connectivity and girth 5 is generally
used as the restriction of triviality in the study of snarks. Hypo-Hamiltonian snarks
have also been studied in connection with the famous Cycle Double Cover Conjecture
[7], which as mentioned is a conjecture easily solvable for all graphs except snarks.

The connection between these two properties is in fact so evident, especially in
smaller snarks, that Steffen was prompted to suggest that hypo-Hamiltonian snarks
can be regarded as those closest to class one cubic graphs [38]. In the next chapter of
this thesis we prove a result which we feel points to the affirmation of this statement.

Let G be a strictly subcubic class one graph with no semi-edges and let f be
a proper 3-edge-colouring of G. Let H be the subgraph of G consisting of only
the edges in G which are coloured a and b by f , and their incident vertices, where
a, b ∈ {1, 2, 3}. It is easy to see that H is then a collection of disconnected cycles and
paths. Each cycle in H has even length and edges are coloured alternately with a
and b. Each path has 2 terminal vertices and edges are coloured a and b alternately.
We refer to these cycles and paths as a− b cycles and a− b paths, respectively.

These a− b cycles and a− b paths are examples of Kempe chains. Kempe chains
were first introduced by Alfred Kempe in his attempt to prove the Four Colour
Theorem [26]. Kempe chains have proven to be useful when considering problems
relating to snarks and edge colourings, and have been used extensively by previous
researchers (see for example [1, 2]).
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Example 2.2.7. The diagram depicts a subcubic class one graph G with a proper
3-edge-colouring. In the first diagram the 1-2 cycles and paths are highlighted, and
in the second diagram the 1-3 cycles and paths are highlighted.
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The Parity Lemma is another useful tool in proving whether a cubic graph is
3-edge-colourable or not. It has been used extensively by previous researchers and
has been presented in different ways. Essentially, it says that given a proper 3-edge
colouring of a graph with no semi-edges, any cut-set must have edges coloured in
parity. We present a version of the lemma. Given its significance in our discussion,
we present our own proof.

Lemma 2.2.8 (The Parity Lemma). [22, 24] Let G be a cubic semi-graph with m
semi-edges and let f be a proper 3-edge-colouring of G. If mi equals the number of
semi-edges coloured i by f for i = {1, 2, 3}, then

m1 ≡ m2 ≡ m3 ≡ m mod 2.

Proof. Let G be a 3-edge-colourable cubic semi-graph with m semi-edges. Let f be
a proper 3-edge-colouring of G. Let mi be the number of semi-edges coloured i by
f where i ∈ {1, 2, 3}. Then m = m1 + m2 + m3. If mi is even, then we join pairs
of semi-edges coloured i to form mi/2 edges each coloured i. If mi is odd, then we
join pairs of semi-edges coloured i to form (mi − 1)/2 edges each coloured i. Let
G′ be the resulting graph, for which f is a proper 3-edge-colouring. If it is not the
case that m1 ≡ m2 ≡ m3 ≡ m mod 2, then we are left with essentially two cases to
consider for G′.

(i) G′ is cubic and has one semi-edge which is coloured 1. Let v be the vertex
incident to the semi-edge. v then has two other incident edges, coloured 2 and
3. Since v is not contained in a 1 − 2 cycle, it must be a terminal vertex in a
1 − 2 path. This path must contain another terminal vertex. However, every
other vertex in G′ has three incident edges coloured 1, 2 and 3. Thus no other
vertex in G′ is a terminal vertex in a 1− 2 path, a contradiction.

(ii) G′ has two semi-edges which are coloured 1 and 2. Let u and v be the two
vertices incident to the two semi-edges coloured 1 and 2, respectively. u then
has two other incident edges, coloured 2 and 3. v then has two other incident
edges, coloured 1 and 3. Since u is not contained in a 1− 3 cycle, it must be a
terminal vertex in a 1−3 path. This path must contain another terminal vertex.
However, every other vertex in G′ either has three incident edges coloured 1, 2
and 3, or has two incident edges coloured 1 and 3. Thus no other vertex in G′

is a terminal vertex in a 1− 3 path, a contradiction.

Therefore, m1 ≡ m2 ≡ m3 ≡ m mod 2.
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As a point of interest, an immediate consequence of the Parity Lemma is that
any cubic graph containing a bridge is uncolourable. For a more general version of
this Lemma which utilises Boole colourings, see [12].

2.3 Definition of k-flows and basic results

A k-flow is an assignment of non-negative integers less than k to the edges of a
graph, combined with a direction from either vertex to the other, such that the sum
of values flowing into a vertex equals the sum of values flowing out of a vertex. A
nowhere zero k-flow is such an assignment, except that the integer 0 is not assigned
to any edge of the graph.

Often when dealing with edge colourings, numbers are used as symbols instead
of ‘colours’, a convention to which we adhere. If one thinks of a nowhere zero 4-flow
and a proper 3-edge colouring as we describe it in this thesis, both these types of
assignments of integers to edges utilise the set of integers {1, 2, 3}, suggesting that
there may be a close relationship between them. As it turns out, these two types of
assignments are indeed closely related. Specifically, it has been proven that a cubic
graph admits a nowhere zero 4-flow if and only if it admits a proper 3-edge colouring
[47].

We present formal definitions.

Definition 2.3.1. Let G be a graph. An orientation of G is an assignment of one of
two possible directions to each edge in G, denoted as D(G). If edge [u, v] is assigned
direction from u to v then it is said to have tail at u and head at v. Given D(G), we
let E−(v) and E+(v) denote the edges incident to vertex v with tail at v and with
head at v, respectively.

In diagrams, we will portray direction with an arrow, with the head of the arrow
at the head of the direction. Note also that when there is no confusion, we will
denote an orientation simply as D instead of D(G).

Definition 2.3.2. Let G be a graph.

(a) A n-flow of G is a pair (D,φ) where D is an orientation of G, φ is a function
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defined by φ : E(G) −→ N such that 0 ≤ φ(e) < n, and

∑
e∈E−(v)

φ(e) =
∑

e∈E+(v)

φ(e)

for each v ∈ G.

(b) A modular n-flow is a pair (D,φ) where D is an orientation of G, φ is a function
defined by φ : E(G) −→ Zn, and

∑
e∈E−(v)

φ(e) =
∑

e∈E+(v)

φ(e)

for each v ∈ G.

(c) The support of a (modular) n-flow (D,φ) is the set {e : φ(e) 6= 0}, denoted by
supp(D, φ). If E(G) = supp(D, φ) then we call (D,φ) a nowhere zero (modular)
n-flow. We refer to edges in G− supp(D, φ) as zero edges.

Given a nowhere zero modular n-flow, if we reverse the direction of an edge e
and replace the flow value by −φ(e), then we obtain another nowhere-zero modular
n-flow on G. Hence, if G admits a nowhere-zero modular n-flow for a given D, then
G admits a nowhere zero modular 4-flow for any other orientation D′ of G. Thus
when thinking of modular n-flows, the assignment of integers should be regarded as
more essential than the assignment of a direction. We will use this fact implicitly in
this thesis.

Due to Theorem 2.2 in [35], we also have the following results which are useful
for our purposes. Theorem 2.2 in [35] was derived from results proven in [42, 43, 44].

Theorem 2.3.3. Let G be a bridgeless graph. There exists an n-flow (D,φ) of G
with k zero edges if and only if there exists a modular n-flow (D′, φ′) of G with k
zero edges.

We present our own proof for the aforementioned result regarding 3-edge-colourings
and nowhere zero 4-flows, which utilises Theorem 2.3.3.

Proposition 2.3.4. Let G be a cubic graph. Then G admits a 3-edge-colouring if
and only if it admits a nowhere zero 4-flow.
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Proof. Let G be a cubic graph and f be a proper 3-edge-colouring of G. Consider
the 1 − 3 cycles in G with regard to f . We assign directions to these edges such
that the head of each edge is incident to the tail of another. Then for each vertex
v, the sum of integers flowing in minus the sum of values flowing out equals 2 or
-2. Since all remaining edges are coloured 2, any direction on each of these edges
results in a nowhere zero modular 4-flow of G, using the assignment of values from
the 3-edge-colouring. By Theorem 2.3.3, G admits a nowhere zero 4-flow.

Let (D,φ) be a nowhere zero 4-flow of G. Note that at every vertex in G the
number of incident edges with odd flow is even. Since the only even flow number is
2, it follows that the set of edges with flow number 2 is a 1-factor of G. Let F be
the complementary 2-factor and let C be a component of F . Considering just the
edges in C, the sum of flows at every vertex in C is either 2 or -2. Also, no two
adjacent vertices in C can have the same sum of flows. Therefore, the sum of flows
at vertices in C alternate between 2 and -2. It follows that C has even order. F is
then 2-edge-colourable. Therefore, G is 3-edge colourable.

Example 2.3.5. The diagram illustrates how a nowhere zero modular 4-flow can
be derived from a proper 3-edge-colouring, as described in the proof of Proposition
2.3.4.
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2.4 Measurements of uncolourability

The research presented in this thesis predominantly centres around parameters com-
monly known as measurements of uncolourability. Most parameters which have been
previously studied and can be grouped in this category, have been done so in the par-
ticular context of snarks. While there exists many such parameters in mathematical
literature which can be grouped in this category, our focus is predominantly on the
following: resistance, vertex resistance, oddness, weak oddness and flow resistance.

We present formal results and brief summaries of notable results involving these
parameters.

Definition 2.4.1. Let G be a subcubic semi-graph. The resistance of G, denoted
as r(G), is defined as the min{|f−1(i)| : f is a proper 4-edge-colouring of G}. That
is, the minimum number of edges that can be removed from a graph such that the
resulting graph is 3-edge-colourable.

Example 2.4.2. At least two edges need to be removed from the Petersen graph
so that it is 3-edge-colourable. The diagram displays such an example of two edges
being removed. The Petersen graph has resistance 2.
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Definition 2.4.3. Let G be a subcubic semi-graph. The vertex resistance of G,
denoted as rv(G), is defined as the minimum number of vertices to be removed from
G so that the resulting graph admits a proper 3-edge-colouring.
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Example 2.4.4. At least two vertices need to be removed from the Petersen graph
so that it is 3-edge-colourable. The diagram displays such an example of two vertices
being removed. The Petersen graph has vertex resistance 2.
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Definition 2.4.5. Let G be a bridgeless cubic graph. The oddness of G, denoted as
ω(G), is defined as the min{o(O) : O is a 2-factor of G}.

Example 2.4.6. Any 2-factor of the Petersen graph must have at least 2 odd cycles.
Such a 2-factor is represented by the thicker edges in the diagram. The Petersen
graph has oddness 2.
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Definition 2.4.7. Let G be a bridgeless cubic graph. The weak oddness of G,
denoted as ω′(G), is defined as the min{o(O) : O is an even factor of G}.

Example 2.4.8. Any even factor of the Petersen graph must have at least 2 odd
cycles or isolated vertices. Such an even factor is represented by the thicker edges in
the diagram. The Petersen graph has weak oddness 2.

Definition 2.4.9. Let G be a cubic graph. The flow resistance of G, denoted as
rf (G), is defined as the min{|E(G)− supp(D, φ)| : (D, φ) is a 4− flow on G}.

Example 2.4.10. Any modular 4-flow of the Petersen Graph must contain at least
one zero edge. Such a modular 4-flow is displayed in the figure. The Petersen graph
has flow resistance 1.

11

1

1

1

1

1

11

1

0

2

2

2 2



CHAPTER 2. PRELIMINARIES 27

The primary reason for these parameters being considered as measurements of
uncolourability, is due to the results highlighted in Proposition 2.4.11. While some
of the parameters are defined in such a way that the statement of Proposition 2.4.11
applies, for others it is a consequence of the definition.

Proposition 2.4.11. Let G be a bridgeless cubic graph. Then

(i) r(G) = 0 if and only if G is 3-edge-colourable.

(ii) rv(G) = 0 if and only if G is 3-edge-colourable.

(iii) ω(G) = 0 if and only if G is 3-edge-colourable.

(iv) ω′(G) = 0 if and only if G is 3-edge-colourable.

(v) rf (G) = 0 if and only if G is 3-edge-colourable.

Proof.

(i) This follows straight from Definition 2.4.1.

(ii) This follows straight from Definition 2.4.3.

(iii) Let ω(G) = 0. Let O be a 2-factor of G with 0 odd components. Each
component in O is then an even cycle. Each of these cycles can have their
edges coloured alternately with 1 and 2. The remaining edges in G can be
coloured 3, so that G is coloured properly with three colours. Therefore G is
3-edge-colourable. Let G instead be 3-edge-colourable and let f be a proper
3-edge-colouring. All the edges coloured 1 and 2 by f together from a collection
of even cycles which span the vertex set of G. Thus, they form a 2-factor with
0 odd components. Therefore ω(G) = 0.

(iv) Let ω′(G) = 0. Let O be an even factor of G with 0 odd components. O must
also be a 2-factor, since it cannot contain any isolated vertices. By the same
argument as (ii), G is 3-edge-colourable. Let G instead be 3-edge-colourable
and let f be a proper 3-edge-colouring. Also as in (ii), we are able to find an
even factor of G with 0 odd components. Therefore ω′(G) = 0.

(v) This follows directly from Proposition 2.3.4.
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Consequent to Proposition 2.4.11, we have that if any of the aforementioned
measurements of uncolourability equal 0, then they all equal 0. Interestingly, this
can also be said for when any of the measurements equal 2, with the proviso that we
exclude flow resistance from consideration [12]. In fact, it is impossible for a snark to
have resistance, vertex resistance, oddness or weak oddness equal to 1. This is easily
comprehendible for oddness and weak oddness, since these parameters cannot equal
any odd number at all, due to the fact that cubic graphs necessarily have even order.
However, it is not at all obvious for resistance. From our investigations, at this point
we would suggest that snarks with resistance 2 should be viewed as a special subclass
of snarks which should be the focus of their own study.

Proposition 2.4.12. Let G be a snark. Then r(G) > 1.

Proof. Assume that r(G) = 1. Then there exists a 3-edge-colouring f of G with just
one conflicting vertex, say v. Then the edges incident to v are all coloured the same
colour, or two are coloured the same and a second colour is used for the third edge.
We remove v, leaving behind the three incident edges which are now semi-edges.
Then the resultant graph has three semi-edges, essentially coloured either with 1,1
and 1, or 1,1 and 2. Either way we have a contradiction by the Parity Lemma.
Therefore, r(G) > 1.

In the next section we will be equipped to present our own proof that if one of
the measures equal 2 then they all equal 2. For now, we first present a known result
about vertex resistance and resistance. This result is perhaps counter intuitive, and
states that vertex resistance equals resistance for all subcubic graphs. This result
was proved by Kochol in [27]. Here, we present our own proof, and a useful corollary.

Theorem 2.4.13. [27] Let G be a subcubic graph. Then rv(G) = r(G).

Proof. Let f be a 3-edge-colouring of G with rv(G) conflicting vertices. There are
essentially two possibilities of the colours of the edges incident to a conflicting vertex.
In the first case, exactly two incident edges are coloured with some colour, say a, and
the other edge (if it exists) with some colour, say b. In the second case, three incident
edges are coloured with some colour, say c. For all vertices which has the first case
with regard to f , we can colour one of the two edges coloured a with 0 instead. The
vertex is then no longer conflicting. f is now a 4-edge-colouring and has conflicting
vertices only as in the second case, if any. For a vertex as in the second case, at least
one of the c − a paths which initiate from such a conflicting vertex must terminate
at some other vertex in G. The c − a path will either terminate at a vertex which
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is incident to an edge coloured with 0, or at some other conflicting vertex with all
three incident edges having the same colour. If we swap the colours on this c − a
path, then the edges incident to the terminal vertices are coloured the same as in
the first case, in which case we appropriately colour one of the edges with 0, or one
of the incident edges is already coloured with 0. We now have a 4-edge-colouring of
G with rv(G) conflicting edges. Therefore, rv(G) ≥ r(G).

Let f be a proper 4-edge-colouring of G with r(G) conflicting edges. For each
conflicting edge, which is coloured 0, we may instead colour it properly with regard to
exactly one of its incident vertices, in which case the other vertex becomes conflicting.
We now have a 3-edge-colouring of G with r(G) conflicting vertices. Therefore,
r(G) ≥ rv(G).

Therefore, rv(G) = r(G).

It is interesting that not only is rv(G) = r(G) for a snark G, but each edge in
the set of r(G) conflicting edges with regard to a 4-edge-colouring is incident to a
unique conflicting vertex in some 3-edge-colouring of G. Thus the following corollary
follows directly from the proof of Theorem 2.4.13.

Corollary 2.4.14. Let G be a bridgeless cubic graph. There exists a 3-edge-colouring
of G with r(G) conflicting vertices {v1, . . . , vr} if and only if there exists a 4-edge-
colouring of G with r(G) conflicting edges {e1, . . . , er}, such that each ei is incident
to vi, and not incident to any other vj where i 6= j and i, j ∈ {1, . . . , r}.

Due to Theorem 2.4.13 we will, for the most part, no longer make mention of
vertex resistance. Furthermore, due to Corollary 2.4.14 we will not consider 3-edge-
colourings with conflicting vertices, we will only consider proper 3-edge-colourings
or proper 4-edge-colourings. More specifically, we will only be concerned with 4-
edge-colourings where the order of the smallest colour class equals resistance. Such
a 4-edge-colouring (or possibly 3-edge-colouring if resistance equals 0) is called a
minimal 4-edge-colouring, or simply a minimal colouring, a termed coined by Steffen
in [37].

The following result relates the three measurements oddness, weak oddness and
resistance. This result is pertinent, and will be used throughout this thesis.

Proposition 2.4.15. Let G be a snark. Then ω(G) ≥ ω′(G) ≥ r(G).
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Proof. Every 2-factor of G is also an even factor of G. Therefore, ω(G) ≥ ω′(G).
Now, let O be an even factor of G with ω′(G) odd components. From each odd
component or isolated vertex in O, we remove one vertex and incident edges. Each
even component in O can have edges properly coloured alternatively with 1 and 2.
The same can be done with the odd cycles, which are now not cycles since vertices
have been removed. The remaining edges can be coloured 3, so that G is now properly
coloured. Therefore, ω′(G) ≥ rv(G) ≥ r(G).

2.5 Colourings with minimal conflicts

As mentioned, we will not consider 3-edge-colourings of snarks. We will only con-
sider proper 4-edge-colourings of snarks such that resistance equals the number of
conflicting edges. That is, as previously mentioned, minimal colourings. The fol-
lowing properties of minimal colourings are also attributed to Steffen in [37]. These
properties of minimal colourings are used throughout this thesis.

Let f be a minimal colouring of a snark G. We define the set Hi for i ∈ {1, 2, 3},
as follows.

Hi := {e ∈ G | f(e) = 0 and e has two adjacent edges coloured i by f}.

We note as well that H1 ∪ H2 ∪ H3 = f−1(0). That is, every conflicting edge in G
with regard to f is contained in exactly one of H1, H2 or H3.

Lemma 2.5.1. [38] Let f be a minimal colouring of a snark G. Then |H1| ≡ |H2| ≡
|H3| mod 2.

Proof. For each edge [u, v] ∈ H1, subdivide [u, v] with vertex w and add semi-edge
[w]. Edges [u,w] and [w, v] can then be coloured properly, so that [w] can be coloured
properly with 1. Similarly, we do the same with each edge in H2 and H3, colouring the
added semi-edges with 2 and 3 respectively. For each i ∈ {1, 2, 3}, we have that |Hi|
in G is equal to the number of semi-edges now coloured i. That |H1| ≡ |H2| ≡ |H2|
mod 2 follows directly from the Parity Lemma.

Lemma 2.5.2. [38] Let f be a minimal colouring of a snark G. Let a, b and c be
distinct elements in {1, 2, 3}. Then for each [u, v] ∈ Ha, there exists a b − c path
from u to v.
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Proof. Consider the b− c path starting from u. Assume that this path terminates at
w which is distinct from v. If we swap the colours on this b−c path, then [u, v] is now
properly colourable with one of b or c. Also, no conflict arises at any other vertex in
G. However, we now have a proper 4-edge-colouring of G with less conflicting edges
than f , a contradiction. Therefore, the b− c path initiating at u must terminate at
v.

Henceforth, for any [u, v] ∈ Ha, we will refer to the b − c path from u to v
together with [u, v] as the cycle induced by the conflicting edge [u, v], where a, b and
c be distinct elements in {1, 2, 3}.

Lemma 2.5.3. [38] Let f be a minimal colouring of a snark G. Let C1 and C2 be
two distinct cycles induced by conflicting edges in G with regard to f . Then C1 and
C2 are disjoint.

Proof. Let C1 and C2 be induced by e1 and e2 respectively and let e1, e2 ∈ Ha. Then
C1 − e1 and C2 − e2 are both b − c paths, and all the edges incident to C1 and C2

are coloured a. Therefore, C1 and C2 must be disjoint since they are distinct.

Now, let e1 ∈ Ha and e2 ∈ Hb. Assume that there exists some e ∈ C1 ∩C2. Then
f(e) = c. Let e = [u, v] and e1 = [u1, v1] and assume that e is the first such edge
contained in both induced cycles on the b− c path initiating at u1. Assume as well
that this b− c path contains vertex u. Let e2 = [u2, v2]. There exists some a− c path
which initiates at u and terminates at e, say at vertex u2. We now swap the colours
on the b − c path from u1 to u, and swap the a − c colours on the a − c path from
u to u2. Edges e1 and e2 are now properly colourable. u is now either a conflicting
vertex with 3 incident edges all coloured c, or we can colour e with 0 so that neither
u or v are conflicting vertices. We now have a colouring with less conflicts than f , a
contradiction. Therefore, C1 ∩ C2 = ∅. This completes the proof.

Remark 2.5.4. Let [u, v] ∈ H1 be a conflicting edge with regard to a minimal
colouring f of a snark G. Let C be the cycle induced by [u, v] and let [v, w] be
adjacent to [u, v] in C. If we swap the colours of [u, v] and [v, w], then G is still
properly coloured. Thereby, we note that we are able to shift the conflicting edge to
any other edge in C.
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Example 2.5.5. The diagram depicts three conflicting edges and their induced cy-
cles, in a snark G. G contains one conflicting edge in each of H1, H2 and H3,
displaying the parity described in Lemma 2.5.1. By Lemma 2.5.3, these three cycles
are all disjoint.
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To complete this chapter, we present our proof that if one of resistance, oddness
or weak oddness equals two, then they all coincide.

Proposition 2.5.6. [12] Let G be a snark such that r(G) = 2, ω(G) = 2 or
ω′(G) = 2. Then r(G) = ω(G) = ω(G) = 2.

Proof. Let ω(G) = 2. Then ω′(G) ≤ 2, and we know that ω′(G) > 1. Therefore,
ω(G) = 2 implies ω′(G) = 2.

Let ω′(G) = 2. Then r(G) ≤ 2, and by Proposition 2.4.12 we know that r(G) > 1.
Therefore, ω′(G) = 2 implies r(G) = 2.

Let r(G) = 2 and let f be a minimal 4-edge-colouring of G. By Lemma 2.5.1,
let the two conflicting edges be contained in Ha. Then the b − c cycles induced by
the two conflicting edges, and the other b− c cycles in G, form a 2-factor of G with
two odd components. Therefore, ω(G) ≥ 2 which implies that ω(G) = 2. Therefore,
r(G) = 2 implies ω(G) = 2. This completes the proof.



Chapter 3

3-Critical subgraphs of snarks

In this chapter we delve into the structure of snarks by introducing concepts relating
to their 3-critical subgraphs, or as we will call them, minimal conflicting subgraphs.
We consider how the minimal conflicting subgraphs relate to its possible minimal
colourings. We fully characterise the resistance of a snark in terms of its minimal
conflicting subgraphs. We also define what we call the critical subgraph of a snark,
and similarly characterise this subgraph in terms of the snark’s minimal conflicting
subgraphs. In addition, we introduce new parameters which can be thought of as
measuring uncolourability, as well as discuss ideas and problems which are consequent
to the concepts introduced in this chapter.

3.1 Defining minimal conflicting subgraphs

The resistance of a snark informs how many edges need to be removed from the snark
in order to render it a 3-edge-colourable graph. A natural consideration is then to
ask: which are the edges that could be removed to render 3-edge-colourability. Or
essentially, which are the edges that are contributing to the uncolourability of the
snark, and which are redundant in this regard. The Petersen graph, for example,
can be considered the most primitive snark. It is also edge-transitive. Every edge
in the Petersen graph is essentially contributing to its uncolourability. Other snarks
however may contain edges, or entire subgraphs, which if removed, do not affect the
resistance. That is to say, the removal of these subgraphs do not affect the uncoloura-

34
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bility of the graph. Other subgraphs, however, may themselves be uncolourable and
thus be contributing to the overall uncolourability of the graph. This idea was in-
troduced in [12] where the term conflicting zone was used. We opt for the term
conflicting subgraph.

Definition 3.1.1. Let G be a snark. A conflicting subgraph of G is a subgraph of
G which does not admit a proper 3-edge-colouring.

With a view to further understand what makes a cubic graph class two, we
extend on this idea by defining minimal conflicting subgraphs. The essential idea
is to isolate from the graph only that which is uncolourable, or contributing to the
graph’s uncolourability.

Definition 3.1.2. Let G be a snark. A minimal conflicting subgraph of G is a
conflicting subgraph M of G such that M − e is colourable for every e ∈ M . The
maximal conflicting subgraph of G, denoted by MG, is the subgraph of G induced by
the edge set

E(MG) =
⋃
{E(M) | M is a minimal conflicting subgraph of G}.

Definition 3.1.3. Let G be a snark. The conflict-cut set of G is the set

CG = {e ∈ E(G) | e /∈MG and e is adjacent to some edge e′ in MG}.

Definition 3.1.4. Let G be a snark. The buffer subgraph of G is the set

BG = {e ∈ E(G) | e /∈MG ∪ CG}.

It is easy to see that the definition of a minimal conflicting subgraph coincides
with the definition of a 3-critical graph (see definition below), in that a minimal
conflicting subgraph of a snark can be thought of as a 3-critical subgraph of a snark.
Many authors have studied 3-critical graphs, see for instance [8, 9].

Definition 3.1.5. A subcubic graph G is 3-critical if G is uncolourable and G − e
is colourable for every e ∈ G.

If the 3-critical subgraphs represent only that which is essentially not 3-edge-
colourable, then the buffer subgraph represents that which is essentially redundant
in contributing to the uncolourability of the cubic graph.
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We list some properties of 3-critical subgraphs, or minimal conflicting subgraphs,
of subcubic graphs. Proposition 3.1.6 refers to known properties of 3-critical graphs
in general, to some of which we provide our own proofs.

Proposition 3.1.6. Let M be a 3-critical graph. The following statements are true.

(i) r(M) = 1 and every edge e ∈ M is conflicting in some minimal colouring of
M .

(ii) M is strictly subcubic.

(iii) M is bridgeless.

(iv) Every vertex in M has degree two or three.

(v) Every vertex in M has at least two neighbours of degree three.

Proof.

(i) This follows on directly from the definition of a 3-critical graph.

(ii) By Proposition 2.4.12, any snark has resistance greater than 1. Therefore, if
M is cubic then M cannot be 3-critical, since at least two edges have to be
removed in order to render a 3-colourable graph.

(iii) Assume that M contains a bridge, say e. Let f be a minimal colouring of M
such that e is the only conflicting edge with regard to f . Let e0 and e1 be the
two edges adjacent to e in one component of M − e, and e2 and e3 be the two
edges adjacent to e in the other component of M − e. Let f(e0) = f(e2) = a,
f(e1) = b and f(e3) = c, where a, b and c are distinct in {1, 2, 3}. The b − c
path initiating with e1 must terminate in the same component of M − e as e1.
If we swap the colours on this path then e1 is coloured with c, and e can be
coloured b instead of being conflicting. We then have a proper 3-edge-colouring
of M , a contradiction. Therefore, M is bridgeless.

(iv) Assume that v ∈ M has degree one with incident edge e. Since e has only
two other adjacent edges, there exists no minimal colouring of M where e is
conflicting, a contradiction. Therefore, v has degree two or three.

(v) The is the case of Vizing’s Adjacency Lemma for the case of 3-critical graphs
[46]. The lemma states that for a vertex v with adjacent vertex u, v is adjacent
to at least 4− d(u) + 1 vertices, where d(u) denotes the degree of u.
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Proposition 3.1.7 refers to properties of minimal conflicting subgraphs which are
pertinent for our purposes.

Proposition 3.1.7. Let G be a bridgeless cubic graph. The following statements are
true.

(i) The distance between any two edge-disjoint minimal conflicting subgraphs of G
is at least one.

(ii) Every conflicting subgraph in G contains a minimal conflicting subgraph.

Proof.

(i) This follows on directly from Proposition 3.1.6 (iv).

(ii) Let M be a conflicting subgraph of G. Choose an edge e ∈ M . We check
e by considering r(M − {e}). If r(M − {e}) 6= 0 then remove e from M . If
r(M − {e}) = 0 then leave M as is and mark e as checked. Continue checking
edges in M until every edge is checked. Once every edge is checked, M is then
a minimal conflicting subgraph.

Example 3.1.8. Graph G presented here is a 3-critical graph which will feature
prominently in this thesis.
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Example 3.1.9. Graph G presented here is a 3-critical graph which will feature in
this thesis. It is the Petersen graph with one vertex removed.

3.2 Minimal conflicting subgraphs and resistance

We begin our investigation into these minimal conflicting subgraphs. We consider
their existence relative to conflicting edges in minimal colourings. Note that although
our primary interest is in cubic graphs, some results are applicable to subcubic graphs
as well, and are stated as such.

Proposition 3.2.1. Let G be a subcubic class two graph and let f be a minimal
colouring of G. For each conflicting edge e with regard to f , there exists at least one
minimal conflicting subgraph M which contains e and contains no other conflicting
edge with regard to f .

Proof. Let f be a minimal colouring of G and let R = {e1, . . . , er} be the set of
conflicting edges with regard to f . For each i ∈ {1, . . . , r} let Mi = {ei} and conduct
the following process. Choose an edge e not contained in Mi∪R which is adjacent to
some edge in Mi. Add edge e to Mi. While r(Mi) = 0, we keeping adding such edges.
Since r(G−(R−{ei})) must equal 1, we know that eventually we will have r(Mi) = 1.
If r(Mi) = 1 then Mi is a conflicting subgraph which contains no conflicting edge with
regard to f besides ei. By Proposition 3.1.7 (ii), Mi contains a minimal conflicting
subgraph. Since r(Mi − ei) = 0, this minimal conflicting subgraph must contain ei.
This completes the proof.

For convenience, we introduce a parameter which counts the number of distinct
minimal conflicting subgraphs of a snark.
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Definition 3.2.2. Let G be a subcubic class two graph. By s(G) we denote the
number of distinct minimal conflicting subgraphs contained in G.

For a snark G it is clear from Proposition 3.2.1 that r(G) ≤ s(G). Furthermore,
there exists no function of r(G) which upper bounds s(G). The flower snarks and
Louphekine snarks represent counter-examples to this idea. Each of the graphs in
each of these classes have resistance 2. However, the order of the graphs can be
arbitrarily large. Let G be some graph in one of these classes with order n. Now, the
removal of any vertex v in G leaves behind a distinct minimal conflicting subgraph
not containing v, and containing every other vertex in G. Therefore, s(G) ≥ n. Since
n can be arbitrarily large, there exists no function of r(G) which bounds s(G) for
any snark G.

While no such bound exists, there does exist an essential relationship between
resistance and minimal conflicting subgraphs. We will prove a theorem which pro-
vides much insight on this relationship, and will also equip us to formally present a
characterisation of the resistance of a graph in terms of the its minimal conflicting
subgraphs. First, we present a necessary definition.

Definition 3.2.3. Let G be a subcubic class two graph with minimal conflict-
ing subgraphs M1, . . . ,Ms. A representative conflicting subset of G is a set R =
{e1, . . . , es} ⊆ E(G) such that each ei ∈Mi for i ∈ {1, . . . , s}.

Remark 3.2.4. Since some ei may be contained in more than one minimal conflicting
subgraph, there may exist representative conflicting subsets with varying order.

A cubic graph G may have resistance r(G), but given that information there is no
way of knowing which combination of r(G) edges may be removed from G in order to
render colourability. Besides equipping us to characterise the relationship between
resistance and minimal conflicting subgraphs, the following theorem is further sig-
nificant in that it shows us that we can choose the conflicting edges of a minimal
colouring, by simply selecting a combination of edges from each minimal conflicting
subgraph, as long as this is done minimally.

Theorem 3.2.5. Let G be a subcubic class two graph and let R be a representative
conflicting subset of G. Then G−R is 3-edge-colourable. Moreover, if |R| is minimal
then r(G) = |R|.

Proof. Let M = {M1, . . . ,Ms} be the set of all minimal conflicting subgraphs in G.
Note that no Mi in M is a subgraph of G − R. Assume now that G − R is not
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3-edge-colourable. Then G − R contains some minimal conflicting subgraph M ′ by
Proposition 3.1.7 (ii). But M ′ is also contained in G, which is a contradiction since
M ′ is not contained in M. Therefore G−R is 3-edge-colourable.

Let |R| be minimal. Since G− R is 3-edge-colourable, we have that r(G) ≤ |R|.
Assume that r(G) < |R| and let f be a minimal colouring of G. Let R′ be the
conflicting vertices with regard to f . By Proposition 3.2.1, every element in R′ is
contained in some minimal conflicting subgraph of G. If R′ is not a representative
conflicting subset then there exists some minimal conflicting subgraph M ′ ⊂ G
which contains no conflicting edges with regard to f . In which case, we have a
minimal conflicting subgraph of G which is properly coloured by f using just three
colours, which is a contradiction. If R′ is a representative conflicting subset, then the
minimality of |R| is contradicted since |R′| = r(G) < |R|. Therefore, r(G) = |R|.

Remark 3.2.6. Using Theorem 3.2.5, we are now able to explicitly characterise
the relationship between the resistance of a cubic graph and its minimal conflicting
subgraphs. The resistance of a graph is equal to the minimum number of non-
empty intersections of minimal conflicting subgraphs, such that the union of these
intersections itself has nonempty intersection with each minimal conflicting subgraph.
This is because we can select one edge from each of these nonempty intersections to
form a representative conflicting subset of minimal order.

Theorem 3.2.7. Let G be a subcubic class two graph and let M = {M1, . . . ,Ms} be
the set of all minimal conflicting subgraphs in G. Let J be the set of all non-empty
intersections of one or more elements of M. Then

r(G) = min{r|there exists J1, . . . , Jr ∈ J with (J1 ∪ · · · ∪ Jr) ∩Mi 6= ∅

for every Mi ∈M}.

Proof. This result follows directly from Theorem 3.2.5 and Remark 3.2.6

3.3 Defining and characterising critical edges

With Theorem 3.2.7 we recognise that if there exists some edge e which is contained
in exactly one minimal conflicting subgraph M , but M has non-empty intersection
with some other minimal conflicting subgraph M ′, then e may not be conflicting
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in any minimal colouring of G. Another way of saying this is, if e ∈ M where
M is a minimal conflicting subgraph of G, then it is not necessarily the case that
r(G− e) = r(G)− 1. Equivalently, we could say that there does not necessarily exist
some minimal colouring of H ⊂ G which can be extended to a minimal colouring of
G. As such, it is possible to have a minimal colouring of a subgraph H ⊂ G with say,
r1 conflicting edges, such that a minimal extension has r2 further conflicting edges,
but r1 + r2 > r(G). What is also clear is that if every minimal conflicting subgraph
of G is disjoint, then r(G) = s(G). Consequent to this discussion, we define the
following.

Definition 3.3.1. Let G be a subcubic class two graph. The critical subgraph of G,
denoted by KG, is the subgraph of G induced by the edge set

E(KG) = {e ∈ G | f(e) = 0 for some minimal colouring f of G}.

As we did with resistance, we will explicitly characterise the critical subgraph in
terms of the minimal conflicting subgraphs.

Theorem 3.3.2. Let G be a subcubic class two graph and let M = {M1, . . . ,Ms} be
the set of all minimal conflicting subgraphs in G. Let J be the set of all non-empty
intersections of one or more elements of M. Then

KG =
⋃
{J1 ∪ · · · ∪ Jr(G) | J1, . . . , Jr(G) is a collection of r(G) elements of J

such that (J1 ∪ · · · ∪ Jr(G)) ∩Mi 6= ∅ for every Mi ∈M}.

Proof. For any collection of r(G) elements of J such that (J1∪ · · ·∪Jr(G))∩Mi 6= ∅
for every Mi ∈M, it is clear that every edge in J1 ∪ · · · ∪ Jr(G) is conflicting in some
minimal colouring of G, by Remark 3.2.6. Therefore, the union of all such unions
J1 ∪ · · · ∪ Jr(G) is contained in KG.

Let f be a minimal colouring of G. Let R = {e1, . . . , er(G)} be the set of conflicting
edges with regard to f . ThenR must be a representative conflicting subset of minimal
order, by Theorem 3.2.5. Therefore, we can find J1, . . . , Jr(G) ∈ J such that e1 ∈
J1, . . . , er(G) ∈ Jr(G), and (J1∪· · ·∪Jr(G))∩Mi 6= ∅ for every Mi ∈M, by Theorem
3.2.7. Therefore, KG is contained in the union of all such unions J1 ∪ · · · ∪ Jr(G).
This completes the proof.
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Example 3.3.3. Each of the Venn diagrams depict six minimal conflicting subgraphs
in a snark G with r(G) = 3. In each of the first three diagrams, we may remove
from the graph any edge contained in each shaded area, to render a 3-edge-colourable
graph, by Theorem 3.2.5. The fourth Venn diagram depicts the union of the shaded
areas of the first three diagrams. This depicts the critical subgraph of G.

G

G
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G

G

It is clear that KG ⊆ MG. We present a simple example where KG is a strict
subgraph of MG, and another where KG = MG.



CHAPTER 3. 3-CRITICAL SUBGRAPHS OF SNARKS 44

Example 3.3.4. The graph G depicted consists of two identical overlapping minimal
conflicting subgraphs M1 and M2 as in Example 3.1.8. Thus MG = G and J =
{M1,M2,M1 ∩M2}. Therefore, r(G) = 1 and KG = M1 ∩M2 by Theorem 3.3.2.
That is, KG ⊂ MG. M1 ∩ M2 is represented by the thicker edges. Any edge in
M1 ∩M2 is itself a representative conflicting subset of minimal order. Thus, even
though KG = M1 ∩M2 is itself 3-edge-colourable, any minimal colouring of G must
contain a conflicting edge in KG = M1 ∩M2.

Example 3.3.5. The snark G depicted consists of three identical non-overlapping
minimal conflicting subgraphs M1, M2 and M3 as in Example 3.1.9. Thus MG ⊂ G
and J = {M1,M2,M3}. Therefore, r(G) = 3 and KG = M1 ∪M2 ∪M3 by Theorem
3.3.2. That is, KG = MG. M1∪M2∪M3 is represented by the thicker edges. Any set
of three edges, one each from M1, M2 and M3, is a representative conflicting subset.
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3.4 Other measurements and problems

We introduce the following two parameters which we claim can be regarded as mea-
suring the uncolourability of subcubic graphs. We then briefly consider cases where
minimal conflicting subgraphs are not disjoint, which appears to be typically the
case in smaller snarks. To facilitate this, we define clusters.

Definition 3.4.1. Let G be a subcubic class two graph.

(a) The conflicting ratio of G, denoted by m(G), is defined as

m(G) =
|E(MG)|
|E(G)|

.

(b) The critical ratio of G, denoted by k(G), is defined as

k(G) =
|E(KG)|
|E(G)|

.

The conflicting ratio measures the proportion of the graph which is essentially
contributing to it being uncolourable. The critical ratio on the other hand measures
the proportion of the graph which is potentially conflicting in a minimal colouring
of the graph.

Definition 3.4.2. Let G be a subcubic class two graph. Let M = {M1, . . . ,Mm}
be a collection of minimal conflicting subgraphs in G.

(i) M is a cluster of minimal conflicting subgraphs if for every i ∈ {1, . . . ,m}
there exists some j ∈ {1, . . . ,m} such that Mi ∩Mj 6= ∅, and M ∩Mi = ∅ for
any other minimal conflicting subgraph M /∈M.

(ii) M is a dense cluster if it is a cluster and
⋂
Mi 6= ∅. If M is not dense then

we say it is sparse.

(iii) M is a densely sparse cluster if M is sparse cluster such that for every i, j ∈
{1, . . . ,m}, we have that Mi ∩Mj 6= ∅.
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Proposition 3.4.3. Let G be a snark. If m(G) = 1 then G consists entirely of one
sparse cluster of minimal conflicting subgraphs.

Proof. Since the distance between any two clusters must be at least one, that one
edge is then not in any minimal conflicting subgraph. Thus m(G) = 1 implies that G
consists entirely of one cluster of minimal conflicting subgraphs. Assume the cluster
is dense. Then there exists some e which is contained in every minimal conflicting
subgraph of G. G − {e} must then contain no conflicting subgraph. However, G is
then a cubic graph with resistance one, which is impossible. Therefore, G consists
entirely of one sparse cluster of minimal conflicting subgraphs.

The nature of sparse clusters is intriguing. In particular, the difference between
sparse clusters and densely sparse clusters. A sparse cluster, we suspect, is densely
sparse if and only if it is cubic. In Example 3.3.4 we overlapped two graphs as from
Example 3.1.8. If we similarly overlap more such graphs on either end, we would
have a sparse cluster which is not densely sparse and is not cubic. On the other hand,
the Petersen graph is a densely sparse cluster which is cubic. If a sparse cluster is
strictly subcubic, then it possibly allows for the addition of edges without adding
more minimal conflicting subgraphs so that the conflicting ratio could be less than
one. Furthermore, for any densely sparse cluster, it appears from our investigations
as if we can always find a representative conflicting subset of order 2. This leads us
to formulate the following conjectures.

Conjecture 3.4.4. Let G be a snark. If k(G) = 1 then r(G) = 2.

Conjecture 3.4.5. Let G be a snark. If m(G) = 1 then r(G) = 2.

Since k(G) = 1 implies that m(G) = 1, it is clear that Conjecture 3.4.4 is true if
Conjecture 3.4.5 is true.

3.5 Hypo-Hamiltonian snarks and critical edges

A snark G is said to be bicritical if G − {u, v} is colourable for any two vertices
u, v ∈ G. Steffen showed that if a snark G is hypo-Hamiltonian then G is bicritical
[38]. Nedela and Skoviera [33] showed further that every cubic bicritical graph has
girth at least 5 and is cyclically 4-edge-connected. Thus as Steffen remarked in [37],
we may consider hypo-Hamiltonian cubic class two graphs, to represent the cubic
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class two graphs which are in a sense closest to cubic class one graphs. We feel that
the following result on hypo-Hamiltonian snarks asserts this claim.

Theorem 3.5.1. Let G be a hypo-Hamiltonian snark. Then KG = G.

Proof. Let G be a hypo-Hamiltonian snark and let [u, v] ∈ E(G). Let C be a
Hamiltonian cycle in G− v and let w be another neighbour of v. Colour all edges in
C alternatively with 1 or 2, except at vertex w in C where one incident edge in C is
coloured 2, and the other is coloured 0. Colour every other edge in G − [u, v] with
3, except for [v, w] which can be properly coloured with 1. Thus we have a proper
colouring of G− [u, v] with just one conflicting edge (see Figure 3.1). Since r(G) = 2,
[u, v] must be conflicting in some minimal colouring of G. Therefore, KG = G.

w

u

v

1

3

0

2

2

1

1 2

Figure 3.1: A proper 4-edge-colouring of G − v with one conflicting edge. The 3-
coloured chordal edges and the alternatively coloured 1-2 edges in C are not depicted
in the diagram.

Since hypo-Hamiltonian snarks are bicritical, we note that this implies that ev-
ery minimal conflicting subgraph in a hypo-Hamiltonian snark contains all but one
vertex. We also note that this does not imply that G − v is a minimal conflicting
subgraph for every vertex v in a hypo-Hamiltonian snark G. It could be that G− v
contains an edge which is not conflicting in any minimal 3-edge-colouring of G− v.



Chapter 4

Reducing resistance in snarks

In this chapter, we introduce various related parameters, each of which can be consid-
ered as measuring the uncolourability of a cubic graph. These measures are related
to snark reductions as introduced in [38]. That is, the removal of two vertices and
subsequent addition of edges to restore 3-regularity. Vertices may or may not be
adjacent, and edges which are added back can be done so in various ways. We prove
insightful results on these parameters, as well as present a significant conjecture relat-
ing these parameters to resistance. The conjecture is significant in the consequences
of it being true. We prove that if the conjecture is true, then we are able to prove
two previously stated conjectures. The first conjecture is regarding the relationship
between weak oddness and resistance, which states that the weak oddness of a graph
is bounded by two times the resistance. The second conjecture is regarding flow
resistance, which states that resistance is greater than flow resistance.

4.1 Measures and results relating to reductions

Since many different types of snark reductions have been previously considered by
various authors, it is necessary for us to formalise our definition of a reduction. These
types of reductions were presented in [38].

Definition 4.1.1. Let G be a cubic graph.

48



CHAPTER 4. REDUCING RESISTANCE IN SNARKS 49

(i) Let u and v be vertices in G. A vertex reduction of G is a graph obtained by the
removal of vertices u and v and their incident edges, and subsequent addition
of edges to restore 3-regularity. It is said that G has been vertex reduced on u
and v.

(ii) Let [u, v] be an edge in G. A 1-reduction of G is a graph obtained by the
removal of vertices u and v and their incident edges, and subsequent addition
of edges to restore 3-regularity. It is said that G has been 1-reduced on [u, v].

(iii) Let [u, v] be an edge in G. An edge reduction of G is the graph obtained by the
removal of vertices u and v and their incident edges, and subsequent addition
of an edge between the remaining two neighbours of u and an edge between
the remaining two neighbours of v. It is said that G has been edge reduced on
[u, v].

Example 4.1.2. An example of a vertex reduction, 1-reduction and edge reduction.

(i)
u

x0

y0

z0

v

x1

y1

z1

becomes

x0

y0

z0

x1

y1

z1

(ii)
u

x0

y0

v

x1

y1

becomes

x0

y0

x1

y1

(iii)
u

x0

y0

v

x1

y1

becomes

x0

y0

x1

y1
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Remark 4.1.3. It is important to note that the addition of edges to restore 3-
regularity can be done in various ways. 1-reductions involve the adding back of
two edges in possibly three different ways, while vertex reductions which are not
1-reductions involve the adding back of three edges in possibly fifteen different ways.
It is not always possible to add back edges in three or fifteen ways for 1-reductions or
vertex-reductions respectively, as we do not consider graphs with double edges and
loops for our purposes. For example, there is only way to 1-reduce a cubic graph on
two adjacent vertices which are part of a triangle.

In [38], Steffen classifies snarks into three different categories. The classes are:
snarks that are vertex reducible to colourable graphs only; snarks that are vertex
reducible to uncolourable graphs only; and snarks that are vertex reducible to either
colourable or uncolourable graphs. In fact, Steffen strongly motivates for a conjecture
which states that the Petersen graph is the only snark which is vertex reducible only
to a colourable graph. Here, we are interested in the effect of vertex reductions not
just on colourability, but specifically on resistance as well.

Firstly, we consider whether it is always possible to reduce the resistance of a
graph via a vertex reduction. As it turns out, this is always possible. Recall that
the set Hi for i ∈ {1, 2, 3} is defined as

Hi := {e ∈ G | f(e) = 0 and e has two adjacent edges coloured i by f}.

Theorem 4.1.4. Let G be a snark. If r(G) 6= 3 then there exists a vertex reduction
G′ of G such that r(G′) = r(G)− 2. If r(G) = 3 then there exists a vertex reduction
G′ of G such that r(G′) = 2.

Proof. Let r(G) 6= 3 and let f be a minimal colouring of G. Then for some a ∈
{1, 2, 3}, |Ha| ≥ 2. Let e0, e1 ∈ Ha such that v0 and v1 are incident to e0 and e1
respectively. Let x0, y0, x1, y1, z0 and z1 be the vertices in G such that f([v0, x0]) =
f([v1, x1]) = a, f([v0, y0]) = f([v1, y1]) = b and f([v0, z0]) = f([v1, z1]) = 0. If
we remove v0 and v1 from G, we can add back edges [x0, x1], [y0, y1] and [z0, z1] to
form G′. We may then colour these edges as f([x0, x1]) = a, f([y0, y1]) = b and
f([z0, z1]) = b. f now has two less conflicting edges in G′, therefore r(G′) = r(G)−2.
See Figure 4.1. Note that if G′ contains loops or double edges, then we may opt for
adding back the edges in a different way, or if necessary, we may also opt to first
shift one or both of the conflicting edges along their induced cycles. It is clear that
we can ensure G′ contains no loops or double edges.

Let r(G) = 3. Let e0 ∈ Ha and e1 ∈ Hb. Let x0, y0, x1, y1, z0 and z1 be the
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vertices in G such that f([v0, x0]) = f([v1, x1]) = a, f([v0, y0]) = f([v1, y1]) = b
and f([v0, z0]) = f([v1, z1]) = 0. If we remove v0 and v1 from G, we can add back
edges [x0, x1], [y0, y1] and [z0, z1]. We may then colour these edges as f([x0, x1]) =
a, f([y0, y1]) = b and f([z0, z1]) = 0. f now has one less conflicting edge in G′,
therefore r(G′) = r(G) − 1. See Figure 4.1. As before, we can ensure that G′

contains no loops or double edges.

While it is always possible to reduce the resistance via a vertex reduction, it is
also clear that the resistance cannot decrease by more than two. This is since for
any minimally coloured snark, a vertex can be adjacent to at most one conflicting
edge. Thus in the class of snarks which can be reduced to colourable graphs, each
snark must have resistance 2.

Whether it is always possible to reduce resistance via a 1-reduction proves to be
much more complicated. In our investigations, this seems to always be possible even
for an edge reduction, except in cases where resistance equals 2. When resistance
equals 2, then there exists an edge reduction which is colourable if and only if there
exists a 2-factor with two odd components distance 1 apart [38]. This is similar to
saying that there exists an edge reduction which is colourable if and only there exists
a minimal colouring with conflicting edges distance 1 apart.

If we consider the case of resistance 2, defined by two disjoint minimal conflicting
subgraphs with a large buffer subgraph in between, then it is clearly impossible to
find a 1-reduction which reduces resistance. However, in our investigations we have
not found a case in which we cannot find two 1-reductions, or even edge reductions,
which reduce resistance to zero. Thus, an interesting alternate question to ask is: how
many 1-reductions (edge reductions) are necessary to reduce a snark to a colourable
graph?

As mentioned previously, there are possibly up to three different ways to add
edges back in 1-reductions. We will associate a referencing notation with each of
these three ways. Even though these notations are associated abstractly, its purpose
is that we may henceforth be able to distinguish between them. Let [u, v] ∈ G. We
assign references to the neighbours of u and v as follows. Let r0 and r1 reference
the other two vertices adjacent to u, and s0 and s1 reference the other two vertices
adjacent to v. When 1-reducing on [u, v], we first remove the vertices u and v. Now,
we use subscripts to distinguish between the different types. By 1-reducing G on
[u, v]1, we mean that an edge is added between reference points r0 and r1, and an
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Figure 4.1: The above diagram depicts the two cases referred to in the proof of
Theorem 4.1.4.

edge is added between reference points s0 and s1. As is clear, this is the same as
edge-reducing G on [u, v]. By 1-reducing G on [u, v]2, we mean that an edge is added
between reference points r0 and s0, and an edge is added between reference points
r1 and s1. By 1-reducing G on [u, v]3, we mean that an edge is added between
reference points r0 and s1, and an edge is added between reference points r1 and s0.
Similarly, in the case of vertex reductions, we may reduce on {u, v}x where instead
x ∈ {1, . . . , 15}.

Now, we may consider 1-reducing G on a set of edges. Consider the ordered set

S = {[u0, v0]x0 , [u1, v1]x1 , . . . , [um, vm]xm}

with xi ∈ {1, 2, 3} for each i, such that any two vertices from two distinct elements
in S are distance greater than 1 apart. By reducing G on S, we mean reducing G
on [u0, v0]x0 , then reducing the resulting graph on [u1, v1]x1 , continuing in this way
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until we have reduced on [um, vm]xm to get GS. Similarly, we may vertex reduce G
on a set of pairs of vertices. That is, S would be of the form

S = {{u0, v0}x0 , {u1, v1}x1 , . . . , {um, vm}xm}

with xi ∈ {1, . . . , 15}. Such a set S we call a vertex reducible set of G, or a 1-reducible
set of G as in the former case. Given the condition that any two vertices from any
two distinct elements in S are distance greater than 1 apart, it is easy to see that
the order of elements in S is in fact irrelevant to GS. That is, GS′ = GS for any
permutation S ′ of elements of S.

Henceforth, we will refer only to reductions on sets, with |S| = 1 in the single
case. We say that GS is a set vertex reduction of G on the vertex reducible set S. In
the case of 1-reductions, we say that GS is a set 1-reduction of G on the 1-reducible
set S. In the case of edge reductions we say that GS is a set edge reduction of G on
the 1-reducible set S. Where context is clear, we will sometimes use S to denote the
set of all vertices referenced in S as well.

From these set reductions, we are now able to define the following parameters.
These parameters can be thought of as measuring how far G is from being colourable.

Definition 4.1.5. Let G be a snark. We define the following notations.

(i) vr(G) = min{|S| : GS is a set vertex reduction of G and GS is colourable}.

(ii) 1r(G) = min{|S| : GS is a set 1-reduction of G and GS is colourable}.

(iii) er(G) = min{|S| : GS is a set edge reduction of G and GS is colourable}.

Following on directly from the definition, it is clear that er(G) ≥ 1r(G) ≥ vr(G).
The following theorem relates vr(G) to r(G).

Theorem 4.1.6. Let G be a snark. Then vr(G) = d r(G)
2
e.

Proof. Let S be the vertex reducible set of G such that |S| = vr(G). The result
follows directly from Theorem 4.1.4.

For any minimal conflicting subgraph of a snark, it is not difficult to prove that
there exists an edge reduction which results in that particular minimal conflicting
subgraph no longer existing. As we mentioned earlier though, reducing resistance
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via a 1-reduction is quite complicated. This is because it is possible that an edge
reduction may simultaneously create a new minimal conflicting subgraph. However,
it seems intuitive that there must be a set of edge reductions or 1-reductions, less than
resistance in total, which reduces the snark to a colourable graph. Our investigations
support this hypothesis. Thus, we conjecture the following.

Conjecture 4.1.7. Let G be a snark. Then r(G) ≥ 1r(G).

Conjecture 4.1.8. Let G be a snark. Then r(G) ≥ er(G).

Since er(G) ≥ 1r(G), Conjecture 4.1.7 is true if Conjecture 4.1.8 is true. This
conjecture has significant consequences if true, as we highlight in each of the following
two sections.

4.2 Insights on weak oddness

The first significant consequence of Conjecture 4.1.7 or Conjecture 4.1.8 being true
relates to weak oddness and resistance. First, we present a necessary result relating
weak oddness to 1-reductions, which is at the crux of the matter. As it turns out,
the weak oddness of a bridgeless cubic graph G is greater than the weak oddness of
a 1-reduction of G by at most two. The content of this section can also be viewed
in our publication in Discrete Mathematics, see [3].

Proposition 4.2.1. Let G be a snark. If a G′ is a 1-reduction of G, then ω′(G) ≤
ω′(G′) + 2.

Proof. Let O be an even factor of G′ with a minimal number of odd components.
If neither of the two added edges in G′ are contained in a cycle in O, then O along
with the two removed vertices from G as isolated vertices, form an even factor of G
with two more odd components than O in G′.

If just one of the added edges is contained in a cycle C in O, say edge [u, v], then
we may adjust O to be an even factor of G. We do this by adjusting C to contain
the path between the vertices u and v, instead of [u, v]. If the distance from u to v in
G is equal to 3, then the adjusted O in G has the same number of odd components
as O in G′. If the distance from u to v in G is equal to 2, then we need to add
an isolated vertex to the adjusted O in G (the isolated vertex would be the vertex
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removed which is not contained in the shortest path from u to v in G). In this case,
the adjusted O in G has at most two more odd components than O in G′.

Let both the added edges, say edges [u0, v0] and [u1, v1], be contained in cycles in
O. Say [u0, v0] ∈ C0 and [u1, v1] ∈ C1, where C0 and C1 are not necessarily distinct.
We may adjust O to be an even factor of G by removing [u0, v0] and [u1, v1] from
C0∪C1, and adding instead two disjoint paths of length two edges from G, such that
the adjusted C0 ∪ C1 now contains either exactly one cycle or exactly two cycles.
Thus, the adjusted O is an even factor of G with at most two more odd components
than O in G′.

Therefore, ω′(G) ≤ ω′(G′) + 2.

Theorem 4.2.3 below highlights the consequence of either Conjecture 4.1.7 or
Conjecture 4.1.8 being true. It allows us to prove a Conjecture (see [12]) relating
weak oddness to resistance which states that the weak oddness of a cubic graph is
bounded by two times its resistance. Theorem 4.2.3 only refers to Conjecture 4.1.7,
as we recall that Conjecture 4.1.8 implies Conjecture 4.1.7.

Conjecture 4.2.2. [12] Let G be a bridgeless cubic graph. Then ω′(G) ≤ 2r(G).

Theorem 4.2.3. Let G be a bridgeless cubic graph. If Conjecture 4.1.7 is true, then
ω′(G) ≤ 2r(G).

Proof. Assume that Conjecture 4.1.7 is true. If G is not a snark, then the result is
trivial. Let G be a snark. Then we can perform a sequence of 1r(G) 1-reductions on
G to get a series of graphs G1, G2, . . . , G1r(G) such that G1r(G) is colourable. Then
ω′(G1r(G)) = 0. By Proposition 4.2.1, we have that ω′(G) ≤ ω′(G1)+2 ≤ ω′(G2)+4 ≤
· · · ≤ ω′(G1r(G)) + 2(1r(G)) ≤ 2r(G). Therefore, ω′(G) ≤ 2r(G).

4.3 Insights on flow resistance

Recall that rf (G) denotes the flow resistance of a graph G. As has been alluded
to previously, 4-flows are closely related to edge-colourings in cubic graphs. This
relationship is given further credit by Conjecture 4.1.7, in that even though it has
seemingly nothing to do with 4-flows, if it is true then we are able to prove Conjecture
4.3.1 below. Conjecture 4.3.1 was stated in [12].
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in G′, in Gor or

in G′, in Gor or

in G′, in G.

in G′, in G.

in G′, in G.

Figure 4.2: A diagramatical representation of the proof of Proposition 4.2.1. The
thicker edges and vertices represent edges and vertices contained in an even factor
as part of cycles or as isolated vertices, respectively.
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Conjecture 4.3.1. Let G be a snark. Then r(G) ≥ rf (G).

We are also able to prove an upper bound of resistance in terms of flow resis-
tance as follows, further emphasising the close relationship between 4-flows and edge
colourings in cubic graphs.

Proposition 4.3.2. [Steffen, 2018] Let G be a snark. Then 2rf (G) ≥ r(G).

Proof. Let G be a snark and let (D,φ) be a 4-flow of G with rf (G) zero edges. Let
e = [u, v] be a zero edge in G. Remove e from G and suppress vertices u and v. Let
the resultant graph be G′. We prove the result by induction on rf (G).

Let rf (G) = 1. Vertices u and v are both incident to two edges with the same flow
number in G− e, with the tail of one edge meeting the head of the other edge. It is
then easy to see that G′ admits a nowhere-zero 4-flow and is thus 3-edge-colourable
by Proposition 2.3.4. Furthermore, it is easy to see that G has a 3-edge-colouring
with 2 conflicting vertices.

Let rf (G) > 1. Then rf (G′) + 1 ≤ rf (G). By induction hypothesis, 2rf (G′) ≥
r(G′). Since rv(G

′) = r(G′), G′ admits a 3-edge colouring with at most 2rf (G′)
conflicting vertices. Then G admits a 3-edge colouring with at most 2rf (G′) + 2 ≤
2(rf (G)) conflicting vertices. Therefore, 2rf (G) ≥ rv(G) = r(G).

Now, we show that for a snark, the number of 1-reductions required to render
a 3-edge-colourable graph is greater than the flow resistance of a snark. This will
equip us to prove another significant consequence of Conjecture 4.1.7 being true as
mentioned.

Proposition 4.3.3. Let G be a snark. Then 1r(G) ≥ rf (G).

Proof. Let G be 1-reduced 1r(G) times in order to render a colourable cubic graph,
G′, which now also admits a nowhere zero 4-flow.

Let (D,φ) be a nowhere zero 4-flow of G. In Figure 4.3, we cover every case of
reversing a 1-reduction in G′, while retaining the 4-flow (D,φ) by relaxing it to be a
modular 4-flow. As we can see, when we reverse any 1-reduction, we never need to
add more than one zero edge to the modular 4-flow. We can then apply Theorem 2.3.3
to get a 4-flow with the same amount of zero edges. Therefore, 1r(G) ≥ rf (G).
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In Theorem 4.3.4, we bring everything together to easily show that 2rf (G) ≥
r(G) ≥ rf (G) if Conjecture 4.1.7 is true.

Theorem 4.3.4. Let G be a snark. If Conjecture 4.1.7 is true, then 2rf (G) ≥
r(G) ≥ rf (G).

Proof. 2rf (G) ≥ r(G) by Proposition 4.3.2. By Conjecture 4.1.7 and Proposition
4.3.3, we have that r(G) ≥ 1r(G) ≥ rf (G).
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Case 13 :
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Figure 4.3: These are essentially all 13 cases which need to be considered with regard
to Proposition 4.3.3. For each case, the diagram on the left reflects graph G′ and the
diagram on the right reflects graph G. As we can see, in each case there need only
be a maximum of one more zero edge in the 4-flow in the original graph G than in
G′.



Chapter 5

Oddness to resistance ratios

This chapter is devoted to disproving a conjecture which states that ω(G) ≤ r(G) for
a snark G. We do this by presenting a class of snarks, in which each next instance of
the class has greater oddness, but each instance of the class has weak oddness 4 and
resistance 3. In presenting this class, we also answer problems posed in [12] and [29].
These problems speak to the possible existence of cyclically k-edge-connected snarks
with differing weak oddness and oddness, for k > 2. Thus far, all known snarks
for which oddness and weak oddness differ are cyclically 2-edge-connected. We also
highlight the minimal conflicting subgraphs in our class of snarks, and note that in
each instance of the class we have three disjoint minimal conflicting subgraphs and
increasing buffer subgraphs. Consequently, the problem is posed about whether the
conjectured relationship between oddness and resistance exists in snarks which do
not contain a buffer subgraph. The content of this chapter can also be viewed in our
publication in Discrete Mathematics, see [3].

5.1 Pertinent semi-graphs and their properties

The conjecture we disprove in this chapter is formally stated as follows.

Conjecture 5.1.1. [12] Let G be a bridgeless cubic graph. Then ω(G) ≤ 2r(G).

We present a class of snarks, each instance of which serves as a counter-example
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to Conjecture 5.1.1, except for the initial instances which are the smallest in size.
Furthermore, from the existence of this class of snarks, we are able to prove that the
ratio of oddness to resistance can in fact be arbitrarily large. That is to say, not only
is it not true that ω(G) ≤ 2r(G) for any bridgeless cubic graph, there in fact exists
no constant k for which it is true for all bridgeless cubic graphs that ω(G) ≤ kr(G).

Each instance of the counter-example class of snarks we will present is created
by joining particular semi-graphs which contain semi-edges. These semi-graphs are
subgraphs of the Petersen graph, and we present them below. The semi-graph in
Figure 5.1 is the Petersen graph with 2 adjacent vertices removed and has four
semi-edges, and the semi-graph in Figure 5.2 is the Petersen graph with one vertex
removed and has 3 semi-edges.

u1u0

v0 v2v1

u4

u3

u2

Figure 5.1: The Petersen graph with two adjacent vertices removed.

u1
u0

u2

Figure 5.2: The Petersen graph with one vertex removed.
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The pertinent properties of the semi-graphs in Figures 5.1 and 5.2 are listed and
proved in Lemmas 5.1.2 and 5.1.4. It is these properties which allow us to build
the aforementioned class of snarks such that it serves our purposes of disproving
Conjecture 5.1.1, and proving that the ratio of oddness to weak oddness, and thus
resistance as well, can be arbitrarily large.

Lemma 5.1.2. Let G be the semi-graph in Figure 5.1. The following statements are
true.

(i) There exists no Hamiltonian path from u0(u1) to v2(v0) nor from u0(v2) to
u1(v0).

(ii) There exists a Hamiltonian path from u0(u1) to v0(v2).

(iii) G is Hamiltonian.

(iv) The girth of G is 5.

(v) In a proper 3-edge-colouring f of G, f([u0]) = f([v0]) and f([u1]) = f([v2]).

Proof.

(i) It is easy to check every possible path from, and to, the said vertices to see
that none of them are Hamiltonian.

(ii) The paths v0, v1, v2, u2, u4, u1, u3, u0 and v2, v1, v0, u4, u2, u0, u3, u1 are Hamilto-
nian paths.

(iii) The cycle v2, v1, v0, u4, u1, u3, u0, u2 is Hamiltonian.

(iv) It is easy to check that G contains no cycle of order less than 5, and that G
contains a cycle of order 5.

(v) Suppose that f([u0]) 6= f([v0]). By the Parity Lemma we have that f([u1]) 6=
f([v2]) and that two colours are used to colour the four semi-edges. We add
vertex w and join [u0] and [v0] to w to form edges [w, u0] and [w, v0]. Similarly,
we add vertex z and edges [z, u1] and [z, v2]. Now, we add edge [w, z] and colour
it with the third colour. The resultant graph is then 3-edge-colourable and is
identical to the Petersen graph, a contradiction. Therefore, f([u0]) = f([v0])
which implies that f([u1]) = f([v2]).
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Remark 5.1.3. Let G be a graph which contains the semi-graph G′ as in Figure
5.1. Let C be a cycle in a 2-factor of G which contains from G′ the semi-edges [v0]
and [u1]. It is easy to establish through exhaustive search that it is impossible for C,
or any other cycle in the 2-factor, say C ′, to contain both the other two semi-edges
[u0] and [v2] from G′. This is because it is impossible for C alone, or C and C ′, to
contain all vertices in G′ or leave behind vertices which form a cycle. Given this, as
well as Lemma 5.1.2 (i) and 5.1.2 (iv), the only possibility for C is that it contains
exactly one other vertex from G′, so that the remaining vertices of G′ may form a
5-cycle as part of the 2-factor of G. Thus, the remaining vertices of G′ add one odd
component to the 2-factor of G. Crucially, and by the same argument, the same
applies if C contained instead semi-edges [v0] and [v2], [u0] and [v2], or [u0] and [u1].
Therefore, if a cycle from a 2-factor traverses through G′, that is, enter on the left
(right) side and exit on the right (left) side, then the 2-factor must contain an odd
component entirely contained in G′ as well.

Lemma 5.1.4. Let G be the semi-graph in Figure 5.2. The following statements are
true.

(i) There exists no Hamiltonian path from u0 to u1, from u0 to u2, or from u1 to
u2.

(ii) G is Hamiltonian.

(iii) The girth of G is 5.

(iv) G is not 3-edge-colourable.

Proof.

(i) It is easy to check every possible path from, and to, the said vertices to see
that none of them are Hamiltonian.

(ii) The Petersen graph is commonly known to be hypo-Hamiltonian. Therefore,
G must contain a Hamiltonian cycle since it is the Petersen graph with one
vertex removed.

(iii) It is easy to check that G contains no cycle of order less than 5, and that G
contains a cycle of order 5.

(iv) We know that no cubic graph can have vertex resistance exactly 1. We know
that the Petersen graph has vertex resistance greater than 0. Therefore, G is
not 3-edge-colourable.
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Remark 5.1.5. Similar to Remark 5.1.3, let G be a graph which contains the semi-
graph G′ as in Figure 5.2. Let C be a cycle in a 2-factor of G which contains from
G′ two of the three semi-edges [uo], [u1] or [u2]. Given Lemma 5.1.4 (i) and 5.1.4
(iii), C must contain exactly two other vertices of G′, so that the remaining vertices
of G′ form a 5-cycle as part of the 2-factor. Thus, the remaining vertices add one
odd component to the 2-factor. Essentially, if a cycle from a 2-factor of G traverses
through G′, then the 2-factor must contain an odd component entirely contained in
G′ as well.

Henceforth, we will refer to the semi-graph in Figure 5.1 as X and the semi-graph
in Figure 5.2 as Y . If a graph G contains X (or Y ), we will say that it contains an
instance of X (or Y ). A graph may contain a number of instances of X or Y . Note
that for convenience, we will not consider Y to contain an instance of X.

5.2 Snark with weak oddness 4 and oddness 6

The question of whether there exists a snark with weak oddness 4 and oddness 6
was posed in [29]. As the first instance of our class of graphs, we present such a
graph. The graph we present also answers another question posed in [29], about
the existence of a cyclically k-edge-connected graph with differing oddness and weak
oddness for k > 2. The graph we present is cyclically 3-edge-connected.

u1 u3

u0

u2

Figure 5.3: 3-edge-connected snark with oddness 6 and weak oddness 4.

Theorem 5.2.1. There exists a snark G such that r(G) = 3, ω(G) = 6 and ω′(G) =
4.
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Proof. Let G be the graph in Figure 5.3. G contains two instances of Y and each of
these instances on their own are uncolourable. G also contains six instances of X.
Two of these instances are adjacent to vertex u2. By the Parity Lemma and Lemma
5.1.2 (v), the combined two instances (with semi-edges joined) including vertex u2, is
another uncolourable subgraph of G. Therefore, r(G) ≥ 3. It can easily be checked
that the removal of u1, u2 and u3 renders a 3-edge-colourable graph. Thus, r(G) = 3
which implies that ω′(G) ≥ 4. Taking the Hamiltonian cycle of the combined two
instances of X adjacent to u2 along with u2 (Lemma 5.1.2 (ii)); the Hamiltonian
cycle of each other instance of X and Y ; and the singular vertex u0, we have an even
factor of G with 4 odd components. Therefore, ω′(G) = 4.

Let O be a 2-factor of G. There exists a cycle C ∈ O which contains vertex u0. C
traverses through at least one instance of Y and three instances of X. This is the case
if C contains [u0, u1] and [u0, u2], or [u0, u3] and [u0, u2]. Without loss of generality,
we assume that C contains [u0, u1] and [u0, u2]. By Remarks 5.1.3 and 5.1.5, for
each traversal of C through an instance of X or Y , O contains an additional odd
component. Thus, O has at least 4 odd components. We note that it is impossible
for C, as a component of O, to contain any vertices from the other instance of Y as
well. Thus, by Lemma 5.1.4 and Remark 5.1.5, the presence of the other instance
of Y adds at least one more odd component to O. Therefore, ω(G) ≥ 6. If we
let C traverse through exactly three instances of X and one of Y , then taking the
Hamiltonian cycle of each other instance of X and Y yields a 2-factor with exactly
6 odd components. Therefore, ω(G) = 6.

5.3 Class of cyclically 3-edge-connected snarks

Following on from this, it is simple to construct a snark with an arbitrarily large
oddness to weak oddness ratio. Consider the graph G(a, b) in Figure 5.4. This
graph is the same as the graph in Figure 5.3 except we have arbitrarily increased the
number of instances of X (a instances on the left side of the diagram and b instances
on the right side). It is easy to note that this graph is cyclically 3-edge-connected.

Theorem 5.3.1. For each integer k such that k ≥ 1, there exists a cyclically 3-edge-
connected snark G such that ω(G) ≥ kω′(G).

Proof. Consider the graph G(a, b) as in Figure 5.4. Just as in Theorem 5.2.1 for the
graph in Figure 5.3, we can see that r(G(a, b)) = 3 and ω′(G(a, b)) = 4.
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u1

. . . . . .

a instances of X

. . . . . .

b instances of X

u3

u2

u0

Figure 5.4: Graph G(a, b)

Let k be an integer such that k ≥ 1 and let O be a 2-factor of G(a, b). There
exists a cycle C ∈ O which contains vertex u0. C traverses through at least min{a, b}
instances of X. By Remark 5.1.3, O therefore has at least min{a, b} odd components.
Therefore, ω(G(a, b)) ≥ min{a, b}. We may choose a and b such that min{a, b} ≥
4k = ω′(G(a, b))k which then implies that ω(G(a, b)) ≥ ω′(G(a, b))k.

Consequently, since ω′(G) ≥ r(G) for any bridgeless cubic graph G, we are able
to disprove Conjecture 5.1.1 as follows.

Corollary 5.3.2. For each integer k such that k ≥ 1, there exists a cyclically 3-
edge-connected bridgeless cubic graph G such that ω(G) ≥ kr(G).

Proof. This follows on from Theorem 5.3.1 and the fact that ω′(G) ≥ r(G) for any
bridgeless cubic graph G.

5.4 Class of cyclically 4-edge-connected snarks

Furthermore, our graphs are easily adjustable to ensure that they are cyclically 4-
edge-connected. Thus we present a cyclically 4-edge-connected cubic graph with
resistance 3, weak oddness 4 and oddness 6 in Figure 5.5.

Also as before, we may simply increase the instances of X in order to increase
the oddness whilst keeping resistance equal to 3 and weak oddness equal to 4.
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u1

u2

u3

u0

Figure 5.5: 4-edge-connected snark with oddness 6 and weak oddness 4.

Theorem 5.4.1. For each integer k such that k ≥ 1, there exists a cyclically 4-edge-
connected snark G such that ω(G) ≥ kω′(G).

Proof. Let G′ be the graph in Figure 5.5. Similar to the proof of Theorem 5.2.1, for
each i ∈ {1, 2, 3}, ui combined with its two adjacent instances of X is an uncolourable
subgraph of G′. These three subgraphs are disjoint, therefore r(G′) ≥ 3. Also, the
removal of each ui renders a colourable graph. Thus, r(G′) = 3. Taking the Hamil-
tonian cycles of these three subgraphs, the Hamiltonian cycles of each other instance
of X, and the isolated vertex u0, we have an even factor with 4 odd components.
Thus, ω′(G′) = 4.

Let k be an integer such that k ≥ 1. It is easy to see that if we add more instances
of X to G′ as we did in Figure 5.4, then the resistance and weak oddness does not
change. Let G be the graph obtained from G′ by adding more instances of X in this
way, such that a cycle C containing vertex u0 in a 2-factor O of G, must traverse
through a minimum of 4k instances of X. As before, we then have at least 4k odd
components in O. Therefore, ω(G) ≥ 4k = ω′(G)k.

Corollary 5.4.2. For each integer k such that k ≥ 1, there exists a cyclically 4-
edge-connected snark G such that ω(G) ≥ kr(G).

Proof. This follows on from Theorem 5.4.1 and the fact that ω′(G) ≥ r(G) for any
snark G.
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5.5 Considering the minimal conflicting subgraphs

Although we have disproved Conjecture 5.1.1, it may still hold under certain con-
ditions. Given any 3-critical graph, which we recall is necessarily strictly subcubic
and has resistance equal to 1, it is always possible to join vertices of degree 2 and if
necessary add a single vertex to obtain a cubic graph with resistance 2. This graph
then has oddness 2. Therefore, we may be inclined to think that a minimal conflict-
ing subgraph in a cubic graph contributes to the oddness of the graph, but only with
one or two odd cycles in a 2-factor.

The graphs supporting the proof of Corollary 5.4.2 each have exactly 3 disjoint
minimal conflicting subgraphs. See Figure 5.6. For each instance of the class, we are
adding an instance of graph X only to the buffer subgraph. This then necessarily
increases the ratio of oddness to resistance, whilst keeping resistance constant. This
poses the question of whether it is possible to increase oddness and keep weak oddness
constant other than by adding to the buffer subgraph only. This further poses the
question of whether Conjecture 5.1.1 holds for graphs with no buffer subgraph.

u1 u3

u0

u2

Figure 5.6: Graph with oddness 6 and weak oddness 4. Each component of connected
thicker edges represents a minimal conflicting subgraph. There are three disjoint
minimal conflicting subgraphs.

Any addition to the maximal conflicting subgraph of a graph, by adding new
minimal conflicting subgraphs, would intuitively increase both the resistance and
oddness of the graph. This is in line with results presented in chapter 3. Thus we
support the following conjecture, which is a refined version of Conjecture 5.1.1.

Conjecture 5.5.1. Let G be a snark which contains no buffer subgraph. Then
ω(G) ≤ 2r(G).



Chapter 6

Conclusions

Chapter 4 of this thesis relates the much investigated idea of snark reductions with
newly presented parameters measuring edge uncolourability, with potential signif-
icant consequences in the form of Conjecture 4.1.7. Recall that Conjecture 4.1.7
states that r(G) ≥ 1r(G) for any snark G. It is our contention that ideas produced
in Chapter 3 may potentially lead to a proof of this Conjecture 4.1.7. Roughly, we
think that an edge reduction which reduces resistance should always exist in some
cluster of minimal conflicting subgraphs. Intuitively, it would be highly surprising if
this was not the case. Indeed, Conjecture 3.4.5 and Conjecture 3.4.4 also represents
a fresh new insight into snarks of resistance 2. Recall that Conjecture 3.4.4 states
that if every edge in a snark is conflicting in some minimal colouring then the snark
has resistance 2, Conjecture 3.4.5 states that if every edge in a snark is contained
in a minimal conflicting subgraph of the snark then the snark has resistance 2. As
briefly mentioned in the thesis, we feel that it may be worthwhile to research the
snarks of resistance 2 in isolation.

If Conjecture 4.1.7 proves to be true, then the contrast of outcomes regarding
the conjectures by previous authors about oddness and weak oddness proves quite
interesting and counter-intuitive. To recall, these conjectures stated that oddness
and weak oddness are bounded by two times resistance. That it is interesting and
counter-intuitive is especially true since the existence of cubic graphs with differing
oddness and weak oddness was in question for a long time. We feel that this also adds
further interest to Conjecture 5.5.1, and as such also adds interest to ideas relating
to minimal conflicting subgraphs and buffer subgraphs. Recall that Conjecture 5.5.1
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states that the oddness of a snark is bounded by two times its resistance if the snark
contains no buffer subgraph. One also wonders whether there exists other cubic
graphs with arbitrarily large ratio differences between oddness and weak oddness,
other than those presented in Chapter 5, or whether such large ratio differences
between the two said parameters are dependent on the inclusion of instances of graph
X. We raise this especially since graph X is a subgraph of the Petersen Graph, which
is always at the crux of all discussions involving snarks.

The ideas and results presented in this thesis represent a combination of differ-
ent types of developments in this line of research regarding class two cubic graphs.
Furthermore, the potential for further development by deeper research into known,
and not yet defined so-called measurements of uncolourability, is emphasised. This
emphasis is mostly by way of motivation of new conjectures, which as we have shown
represent interesting new insights and significant consequences if proved to be true.
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