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Abstract 

Numerical methods for mathematical models on warrant pricing 

M. Londani 

M.Sc thesis, Department of Mathematics, University of Western Cape. 

Warrant pricing has become very crucial in the present market scenario. See, 
for example, M. Hanke and K. Potzelberger, Consistent pricing of warrants 
and traded options, Review Financial Economics 11(1) (2002) 63-77 where 
the authors indicate that warrants issuance affects the stock price process of 
the issuing company. This change in the stock price process leads to subse­
quent changes in the prices of options written on the issuing company's stocks. 
Another notable work is W.G. Zhang, W.L. Xiao and C.X. He, Equity war­
rant pricing model under Fractional Brownian motion and an empirical study, 
Expert System with Applications 36(2) (2009) 3056-3065 where the authors 
construct equity warrants pricing model under Fractional Brownian motion 
and deduce the European options pricing formula with a simple method. We 
study this paper in details in this mini-thesis. We also study some of the 
mathematical models on warrant pricing using the Black-Scholes framework. 
The relationship between the price of the warrants and the price of the call 
accounts for the dilution effect is also studied mathematically. Finally we do 
some numerical simulations to derive the value of warrants. 
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Chapter 1 

General introduction 

Warrant is a kind of stock option which gives the holder the right but not the 

obligation to buy (if it is a call warrant) or to sell (if it is a put warrant) the 

stock or underlying asset by a certain date (for a European style warrant) or 

up until the expiry date (for an American style warrant) at a specified price 

{ or strike price). 

Warrants are classified as special options and can be divided into covered 

warrants and ~quity warrants according to the way they are issued. Covered 

warrants operate like options, only with a longer time frame and they are of 

American type. Covered warrants are typically issued by the traders and fi­

nancial sectors and are for those who do not raise the company's stock after 

the day of expiration. Equity warrants are different from covered warrants 

because only the listed companies are recommended to issue them and the 

underlying assets are the issued stock of their company. 

The warrant pricing can be affected by the supply and demand for its un­

derlying asset such as stock price, volatility of the stock price, remaining time 

to expiry, interest rate and the expected dividend payments on stock. 

Noreen and Wolfson (1981) used stock prices in companies with warrants 

to approximate the standard deviation of the return rate, since the volatility 

of the warrant pricing is higher than the assets of the company, the volatility 
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of the equity in such company is lower than that of its assets [25]. 

Different statistical and mathematical models have been. developed to take 

the price effects and probabilities into consideration to decide the fair value 

of warrants. These models decide the fair value of a warrant based on certain 

assumptions. Black and Scholes (1973) state' that their model can be used 

in many cases as an approximation to estimate the warrant pricing value and 

they used warrant pricing commonly as it was an extension of their call option 

model. 

There are many complications in warrant pricing model. Black and Scholes 

(1973) mentioned that not only warrant pricing models have complications but 

also there are limitations inherent in the option pricing models. They inves­

tigated the error occurring when warrants are mistakenly priced as standard 

options ignoring the dilution effects. Therefore, it was very crucial to modify 

Black-Scholes call option model, because warrants are not written by other 

traders, they are provided by the company. Merton (1973) showed and proved 

that the Black-Scholes model can be modified to incorporate stochastic inter­

est rates. 

The volatility of warrant is described by the warrant pricing models, but 

under the framework of the existing pricing warrants analysis, the model based 

on stochastic volatility does not have an analytical solution. To this end, nu­

merical methods such as Monte Carlo simulation or those based on Brownian 

motions (Fractional Brownian motion and Geometric Brownian motion) can 

be used to calculate the warrant pricing. 

1.1 History of warrants 

1.1.1 Warrant pricing: 1960s and before 

The long history of warrant pricing began very early. Warrant pricing was not 

usually the financial theory property. Lot of researchers were focusing on the 

option pricing because warrant pricing was complicated than option pricing. 
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Louis Bachelier's (1900) work on option pricing included warrants and it 

was based on the assumption that stock prices follow an arithmetic Brownian 

motion, saying that prices can be negative, Bachelier's work was unknown for 

a period of time in the financial · literature. Many of his models were derived 

by Osborne (1959) independently after fifty years of Bachelier's time. He de­

veloped the theory of random walks in stock prices and say that the random 

walks have two basic hypotheses in stock prices: (i) the changes in successive 

price are independent; and (ii) the changes in price follow some probability 

distributions. 

The model that Osborne derived from Bachelier (1900) proposes that the 

price changes from transaction to transaction in an independent individual 

security is identically distributed random variables. However, this normality 

was not satisfied by the majority of stock. 

Samuelson (1965) credited Bachelier's work related to warrants by consid­

ering the geometric Brownian Motion. He came with the assumption that 

warrants will only be exercised on its expiration date. 

Mandelbrot and Taylor (1967) observed that there are fractal behaviour in 

stock prices. Sidney (1949) released a warrant survey book "The Speculative 

Merits of Common Stock Warrants". It was regarded as the first book to reveal 

the common stock warrants which turn in the most spectacular performance 

of any group of securities and this common stock warrants are very huge. 

McKean (1965) and Samuelson (1965b) showed the warrant valuation which 

consider the non-negative value to the warrants holder who has the right to 

exercise a warrants at any time (being an American warrant) before its matu­

rity. 

1.1.2 Warrant pricing: 1970s and 1980s 

A crucial influence in 1970s research on warrant pricing was the work of Chen 

(1970). He gave the equation of warrants expected value on its exercising 

date. Chen (1969) derived an equation to value warrants by making use of 

dynamic programming technique. Chen (1970) defined warrant pricing differ-
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ently. His formulas for computing the future expected value of the warrants 

were preferred by other researchers. Chen's work aligned with Sidney's work 

by comparing the perpetual warrants ( warrants with indefinite length of life) 

with common stocks. Chen affirmed that the perpetual warrants cannot be 

worth more· than the common stocks because the company which owns the 

perpetual warrants are exercisable at zero exercise price which is the same as 

owning common stocks. 

The market price of the stock is always below the exercise price at the 

time of issue. The mathematical analysis of warrant evaluation to analyze the 

relationship between the prices of a warrants and common stocks are used in 

the literature. The most popular method for valuing options are based on the 

Black and Scholes (1973) and Merton (1973) models (see Bernstein (1992) for 

the full story of how they developed their model). Their models for pricing 

options have been taken into consideration to many different commodities and 

payoff structures and they have become the most popular method for valuing 

options and warrants. 

Option and warrant pricing are defined using Black-Scholes framework. 

Black and Scholes derived their formulas and assumed that the option price 

is the function of the stock price. It is noted that the changes in the option 

price are completely correlated with the changes in the stock price. Black and 

Scholes (1973) showed how their formulas can be modified to value European 

warrants. Merton's model is the same as Black-Sholes model despite that the 

maturity for default free bond which matures at the same time as the options' 

expiration date is used for the interest rate. 

Merton's model of the option pricing was not appropriate for warrant pric­

ing because he assumed that the variance of the default free bond is constant 

and the variance of bond prices may change due to long life of warrants. Eu­

ropean call option was the easiest one in the stock options. Black and Scholes 

(1973) achieved their formulas for European call option considering the call 

option. They also developed the warrant pricing formulas from the call option 

formulas. 

Schwartz (1977) used a numerical technique to value the AT & T (Amer-
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ican Telephone and Telegraph) warrants. Galai and Schneller (1978) derived 

the value of the warrants and the value of the company that issues warrants 

by discussing the equality between the value of the warrants and the value of 

the call options on a share of the company which warrants hold for any other 

financial or investment decisions of the company. Several studies on warrants 

have ignored the dilution effects and equated the warrants to the call options. 

1.1.3 Warrant pricing: 1990s and beyond 

Lot of researchers measured warrant's life comparing with option's life and 

found that warrants have a long life. Kremer and Roenfeldt (1993) used jump­

diffusion more often to price warrants. There is a high possibility that the 

stock price might jump during the life of warrants. These diffusions of the 

stock returns are more relevant for warrant pricing than for option pricing. 

Jump diffusion is listed as a"'" bias model for pricing options, but it is more 

efficient for pricing warrants. 

Schulz and Trautmann (1994) compared the warrants value resulting from 

their valuation model with the value obtained by using the Black-Scholes for­

mula and affirm that when warrants are exercised there is dilution of equity 

and dividend. 

Hanke and Potzelberger (2002) investigated the effects of warrants issuance 

on the prices of traded options bought and sold by third parties which are al­

ready outstanding at the time of warrants issuance. They said that if one use 

any dilution effect pricing model for pricing warrants and use the very same 

model (but without dilution effect) for pricing options expiring after warrants 

issuance then they are inconsistent. 

Zhang et al. (2009) used the data of Changdian warrants collected from 25 

May 2006 to 29 January 2007 (the expiration date) and considered the prob­

ability distribution. The yield series distribution of Changdian warrants are 

greater than zero, which implies that the yield series distribution of Changdian 

warrants are not normally distributed. Figures 1.1 and 1.2 show the Changdian 

warrants which are the first warrants in China. Figure 1.1 shows a bell-shaped 
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Figure 1. 1: Histogram of Changdian warrant pricing returns from 25 May 2006 
to 29 January 2007 and its probability distribution. [Programmed in MATLAB 
and reproduced by using the data from Zhang et al. (2009)] 

and symmetrical histogram with data points equally distributed around the 

middle. The graph is skewed to the right and kurtosis is greater than three 

which implies that the yield series of Changdian warrants is leptokurtic. Fig­

ure 1.2 shows the independent variable of observation times, which has high 

volatility to the percentage of yield no matter what happens. It is hard to 

see the consistent pattern in this figure. This gives the insight of using frac­

tional Brownian motion. Zhang et al. (2009) developed the fractional Browian 

motion considering the mathematical models of strong correlated stochastic 

processes. 
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Figure 1.2: Plot of Changdian warrant pricing returns from 25 May 2006 to 
29 January 2007 and its probability distribution. [Programmed in MATLAB 
and reproduced by using the data from Zhang et al. (2009)] 

1.2 Warrant pricing vs. Option pricing 

Warrant pricing and option pricing carry the right to buy the shares of an 

underlying asset at a certain price and can be exercised anytime during their 

life (if they are of American style) or on expiration date (if they are of European 

style). While the call options are issued by an individual, the warrants are 

issued by a company. Warrants proceeds increase the company's equity and 

when it is time to exercise them, new shares are always issued and the payment 

of cash increases the assets of the issuing company because of the dilution of 

equity and dividend. When options are exercised, the shares can come from 

another investor or public exchange. 

In warrant pricing, many researchers ignored the dilution effects and valued 

warrants as the call options on common stocks of the company. The valuation 

of warrants and call options involves making assumptions about the capital 

structure of the company and future dividend policy. 

The call options can uniquely be priced and the price can be independent 

in the amount of written call options, given the fact that all call options can 
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be exercised simultaneously, each call option is a separate stake. Nevertheless, 

when warrants are exceptional, they can be exercised and new shares can be 

formed and the changes in the capital structure of the company and dividend 

policy can occur. Warrant and option pricing are based on the underlying 

asset such as stocks and bonds. Researchers have used the following formulas 

for pricing options and warrants and to study the dilution effects. 

1. 2 .1 Formula for pricing options 

The Black and Scholes (1973) option pricing model specifies the following price 

for a call and put option on a nondividend-paying stock 

where 

d _ ln(S/X) + (r + o-2/2)(T- t) 
1 

- o-✓T- t ' 

C is the value of the call option, 

P is the value of the put option, 

S is the price of the underlying stock, 

X is the exercise price of the call and put option, 

r is the annualized risk-free interest rate, 

T - t is the time until expiration, 

(1.1) 

(1.2) 

a is the annualized standard deviation of the logarithmic stock return, and 

N(•) is the probability from the cumulative standard normal distribution. 
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1.2.2 Formula for pricing warrants 

Galai and Schneller (1978) presented the first solution for the warrant pricing 

problem in which they incorporated the dilution effect by deriving the following 

equation: 

N 
W= N Cw, +n 

(1.3) 

where 

Wis the value of the warrant, 

N is the number of shares outstanding, 

n is the number of new shares to be issued if warrants are exercised, 

Cw is the value of a call option written on the stock of a firm without warrants. 

The equation (1.3) is based on the assumption that the company with capital 

structure consists only equity warrants and it is defined as 

V=NS+nW, 

where 

V is the value of the company's equity, 

S is the stock price. 

(1.4) 

It is assumed in Equation (1.4) that not only the value of the company's stock 

follows the diffusion process, but also the value of the company's equity (V). 

Schulz and Trautmann (1994) have compared the outcomes of the original 

Black-Sholes model with the outcomes of the correct warrant valuation model 

and they concluded that although the high dilution effects are assumed, the 

Black-Sholes models produce small biases. Crouhy and Galai (1991) note that 

warrant prices are always calculated by multiplying the outcome from the 

option pricing model (such as the Black-Scholes model) by the dilution effects 

(N~J. 
If the standard deviation of the return in the company's equity is constant, 

9 

https://etd.uwc.ac.za/



it leads to the following equation [25]: 

where 
_ [1n(f )+(T-t)(r+½a2

) ] 

d1 - a../'fCt ' 

~ N 
N = .,...,,[(.......,Jt:..,....)+_M.....,.] ' 

S = S+(~)W-PVD, 

Wis the value warrant price, 

N is the number of outstanding shares, 

k is the number of shares that can be purchased with each warrant, 

M is the number of outstanding warrants, 

S i,g the stock price, 

(1.5) 

PVn is the present value of dividends expected over the life of the warrant, 

X is the warrant exercise price, 

r is the risk-free interest rate, 

er is the firm-value process volatility, 

T is the time to expiration on the option, and 

N(d) is the probability that a standard normal variable will take on a value 

less than equal to d. 

1.3 Outline of the thesis 

The rest of the thesis is organized as follows. We discuss some mathematical 

models on warrant ,pricing in Chapter 2. In Chapter 3 we present some nu­

merical methods which are used to price warrants in the past, in particular, 

Section 3.1 introduces background information regarding the use of Brownian 
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motion to price warrants, Section 3.2 describes the use of geometric Brow­

nian motion on warrant pricing, in Section 3.3 we used fractional Brownian 

motion to value warrant pricing by showing the equations of warrant pricing, 

in Section 3.4 we used risk-neutral valuation to price warrants, in Section 3.5 

we used lattice methods to value warrants and Section 3.6 covers 'Monte Carlo 

simulation and discusses memory requirements of the least-squares algorithms. 

Results obtained by using some of these numerical methods are presented in 

Chapter 4. Finally in Chapter 5 we give some concluding remarks where we 

also discuss the scope for future research. 
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Chapter 2 

Mathematics models on warrant 
• • pr1c1ng 

In this chapter we discuss some mathematical models on warrant pricing used 

by other researchers in the past. 

2.1 Model in the work of Chen (1970) 

Chen (1970) formulated the model of warrant pricing using the theory of ex­

pectations. If a warrant is expected to'be exercised t periods from now, the 

expected value of the warrant at time t can be expressed by the following 

equation 

EV[Wt] = J,00 

(xt - Yt)f(xt)dxt, 
Yt 

(2.1) 

where Xt is the market price of the associated stock, t periods from now, and 

is a random variable, 

Yt is the exercise price at time t, 
f(xt) is the density function of Xt, 
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<· 

Tis the expiration date of the warrant 0:::; T < oo. 

Warrants can not be exercised if the exercise price is above the market price 

of the associated stock. 

The present dis~ounted value of the expected value of the warrant c~ be 

expressed as 

PV[W(t)] = e-f3t EV[Wt] = e-f3t /
00 

(xt - ytf(xt))dxt, (2.2) 
Yt 

where 

PV[W(t)] is the present value of the expected value of a warrant to be exercised 

t periods from now, 

(J is the discount rate. 

2.2 Model in the work of Merton {1976a & b) 

Merton (1976a) introduced the occurrence of price jumps in the stock mar­

kets. He compares warrant prices computed by his model with those obtained 

by Black-Scholes model to study the jump-diffusion. He affirms that more 

accurate warrant prices can be described by jump-diffusions, since the jumps 

in warrant prices can not be hedged using traded securities. Navas (2003) 

used mathematical models to elaborate Merton's jump-diffusion model. The 

continuous trading economy with trading interval [0, r], where {Zt: t E [0; r]} 
represents the standard Brownian motion and {Nt : t E [0, Tl} represents a 

Poisson distribution with mean A. Yt is a sequence of independent identically 

distributed random numbers that follows a standard normal distribution. 

Navas defines Ft = Ff V Ff and F = Fn where ~w and Ft are the 

smallest right-continuous complete O'-algebras generated by { Z8 : s :::; t} and 

{ N 8 : s :::; t} respectively. 

Merton assumed that the warrant prices are described by following stochas-
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tic differential equation. 

dS(t) 
S(t) = (a - Ak)dt + udZt + (Yt - l)dNt, (2.3) 

·where k = E[Yt - l] is the expected relative jump of St. 
The jump sizes follows a normal distribution with parameters µ and O" with 

a normal density 

CX) 5. A 

2 2 ~ e- T(AT) ( ( ) 2 F(S(t) , T , K , O" , r; µ, O" , A) = ~ 
1 

W S t , T, K, O"n , rn), 
n. 

n=O 

(2.4) 

where W(S(t), T, K, u~, rn) is the Black-Scholes warrant price for a European 

warrant with exercise price K and maturity T on a non-dividend stock, u is 

the volatility of the stock returns, r is the risk-free interest rate, and 

r = r + .!! (µ + 62
) - Ak n T 2 l 

Unlike in the jump-diffusion case, when the warrant price changes are given 

by Equation (2.3) the stock returns are not normally distributed, because the 

distribution will have non-zero skewness and when comparing to Gaussian dis­

tribution it will be leptokurtic which is consistent with the empirical evidence. 

2.3 Model in the work of Lauterbach and Schultz 

{1990) 

Lauterbach and Schultz (1990) used the Black-Scholes model to price warrants 

after adjusting it for the dilution that occurs when warrants are exercised. 
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Their warrant pricing model is given by 

where 

d2 = d1 - CY.Jr, 
W is the warrant price, 

S is the stock price, 

X is · the exercise price, 

N is the number of outstanding shares of stock, 

M is the number of warrants, 

'Y is the number of shares that can be purchased with each warrant, 

r is the risk-free interest rate, 

T is the time until expiration, 

N ( d) is the cumulative normal distribution function, 

tds the time until the i-th dividend is paid, and 

Di is the dollar amount (per share) of the i-th dividend. 

Leemakdej et al. (1998) expanded the above model of Lauterbach and Schultz 

(1990) by their warrant pricing model in the approximated closed-form reads 

W = n"I (V N(q(4)) - Xe~nN(q(O))), 
n+m"! n 

where, for v=O or 4, 

l+h(h-l)p-lh(h-1)(2-h)(l-3h)p2 -(-z-/ 
q(v) = 2i 2p(l-(1-h)(l - 3h)p) v+ , 

h(v) = l _ 2(v+y)(v+3y) 
3(v+2y)2 

' 

15 
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- ...!:B1L p - (v+y)2' 

The model in equation (2.6) is often referred in the literature as the Cox 

square root of constant elasticity of variance ( CEV) model as it assumes return 

standard deviations which are related to the square root of the equity value. 

Leemakdej et al. (1998) mention that the option priced by the Cox Square 

Root model at-the-money will be higher than the counterpart priced by the 

Black-Scholes model. They compared the Cox Root and Black-Scholes warrant 

pricing models with the equity standard deviations by estimating for each 

warrant on a daily basis for both models. 

2.4 Model in the work of Hanke and Potzel­

berger {2002) 

Hanke and Potzelberger (2002) derived the aggregate value MWt of the war­

rant pricing at maturity. They mention that if the warrants holders exercise 

they get a share of (m/(M + N)) in the equity of the company for the aggre­

gate strike price M X. The equity of the company consists of the equity just 

before exercise plus the strike paid by the warrant holders: 

This can be simplified to 

1 (( MWt0
) ) Wr= M+N l+~ Vr - Nx e (2.8) 

16 
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and therefore the value of the warrant at time t ( t0 :::; t :::; T) is given by 

which can further be simplified to 

(2.10) 

Where 0 is equivalent martingale. 

2.5 Model in the work of Lim and Terry {2002) 

Another crucial model is of Lim and Terry (2002). They used parameter- A 

for series-A warrants and parameter B for series-B warrants. They computed 

the warrants value at TA and the expiry date of the series A warrants. When 

series-A warrants expire, the company will be left with only one series of 

warrants outstanding after TA. They used warrant pricing formula of Galai 

and Schneller (1978) to value the series-B warrants. They assumed that the 

series-A warrants are not exercised at TA. In such case, the value of each 

series-B warrants at TA will be 

(2.11) 

where 
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n is the common shares, 

ns is the series-B warrants of the company which are outstanding, 

Ks is the exercise price of series-B warrants which mature at Ts, 

r is the continuously compounded riskless interest rate, 

<7 is the instantaneous return variance on the firm, and 

N(d) represents the standard cumulative normal distribution. 

Assuming that the series-A warrants are exercised at TA, the value of the 

company will increase by nAKA and number of outstanding shares will rise to 

n + nA at that time. The value of each series B warrant will then be 

where 

de _ ln(VT4 /[(n+nA)KB-nAKAer(TB-TAl])+[r+<T2 /2](TB-TA) 

1 - <T✓TB-TA ' 

d2 = d'f - <7 J Ts -TA, and 

KA is the exercise price of series.:.A warrants which matures at TA, 

The value of each series-A warrant at time TA is given by the boundary con­

dition 

WA,TA max {O, SrA - KA}, 

= max {o, 
1 

(VrA + nAKA - ns w1 TJ - KA}' 
n+nA ' 

where St is the company's share price at time t. This is simplified to 

' 

WATA =max{o, 
1 

(VrA -nKA-nsW1rA)}. 
' n+nA ' 

(2.12) 

In equation (2.12) the series-A warrants will be exercised at TA whenever the 
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value of the company exceeds V*, and it is given by 

(2.13) 

In equation (2.13) WB,TA is shown.as an explicit function of V*. The current 

value can be determined using the risk-neutral pricing method of Cox and Ross 

(1976), if the prices of the two warrants series at TA are given. 

2.6 Model in the work of Ukhov (2003) 

Ukhov (2003) considered the valuation of conventional warrants issued by a 

company for its own risk. In his model, W(V, T) denotes the value of each 

warrant in a company of value V. When n warrants are exercised the company 

receives the amount nX and issues kn new shares of stock. According to his 

model, the value of the warrant under the Black-Scholes assumptions is 

W(V, T; X, a, r, k, N, n) 

where 

1 
N + kn C(kV, T; N X, a, r), (2.14) 

1 
k [kV•<l>(rJw) - e-rr,N X·<l>(rJw - a\f'T)], 

N+ n 

ln(kV/NX) + (r + ½o-2
) T 

rJw = r,:;: , 
<J'y T 

C(-) is the Black-Scholes call option price, 

T is the remaining time, 

V is the value of the company's assets, 

r is the continuously compounded interest rate, 

er is the annual interest rate, 

a is the annual standard deviation in (logarithmic) returns on the value pro­

cess, and 

<I{) is the cumulative normal distribution function. 
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2.7 Model in the work ofBajo and Barbi {2008) 

Bajo and Bologna (2008) used constant elasticity of variance (CEV) with the 

feasible elasticity parameter (gamma parameter),*= 1 + E:.,s to compute the 

value of warrants. The feasible elasticity parameter can allow the risk-neutral 

dynamics of the stock return to be written as 

where 

dst -y-1 _ -· = rdt + rfst dzt, 
St 

St is the value of common stocks, 

r is the risk-free rate, 

it is a risk-neutral standard Brownian motion, 

(2.15) 

1 is straightforwardly related to the elasticity of the return volatility, and 

ff is positive and constant. 

Without taking dilution and risk-shifting effect into consideration the value 

warrant can be computed. Having 

the warrant's price is calculated as 

Wt= e-r(T-t) 100 

(sT - k)f(sT)dsT , 

where f(-) is the density function of the stock price at maturity. In [66], the 

CEV warrant pricing formula is provided in terms of the non-central Chi-square 

distribution. 

- [1 2. ( )] k - r(T-t) 2 ( ) 
Wt - St - X2+a2,a3 a1 - e Xa2,a1 a3 if 0 < i < 1, 
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and 

_ [l _ 2 ( )] _ k -r(T-t) 2 ( ) 
Wt - St X-a2,a1 a3 e X2-a2 ,a3 a1 if i' > 1, 

where 

_ h 2(1-,y) 2r(l - ,y)(T-t) a3 - st e , 

h 2r 
- a-2(1--y)[e2r(l - i')(T-t) _l] l 

and x~,0(-) denotes the cumulative non-:-central Chi-square distribution with 11 

degrees of freedom and non-centrality parameter 0. 

2.8 Model in the work of Zhang et al. (2009) 

Zhang et al. (2009) priced equity warrants using fractional Brownian motion. 

They denoted company's equity by VT at time T, saying that the company 

will receive a cash inflow from the payment of the exercise price of MlX. If 

warrant holders exercise the warrants, the value of the company's equity will 

increase to VT+ MlX. This value is distributed among N + Ml shares so that 

the price of share after exercise becomes 

where 

VT+MlX 
N+Ml' 

N is the number of shares of outstanding stocks, 

M is the number of warrants issued, 

l is the number of shares of stock that can be bought with each warrant, and 

X is the strike . price of option. 

The warrants can be exercised only if the payoff is greater than minimum 
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guarantee provision, i.e., 

l ( Vr + MlX _ x) B 
N +Ml > ' (2.16) 

where B is the minimum guarantee provision. This shows that the warrants 

value at expiration time satisfies 

Wr = lmax [v~:~~ -( x + ~) ,o] +B, 

Nl [Vr N + Ml ] 
N+Mlmax N -X- NZ B,O +B. 

Letting a= ~ and X = X + N"'J:/t B, above implies 

l (VT A ) Wr = l + al max N - X, 0 + B. (2.17) 

Since Vr denotes the company's equity (including the warrants) at time T. We 

have, Vr = NSr+MWr = NSr+aNWr. Setting Sr= Sr+aWr, equation 

(2.17) implies 

l A A 

Wr = 1 + al max(Sr -X, 0) + B. (2.18) 

In the fractional Brownian motion and risk-neutral world, the price at every 

t(t E [O, Tl) of an equity warrant with strike price X and maturity Tis given 

by 

W, = l [S N(d ) - X e-r(T-t) N(d )] + Be-r(T-t) 
t l + al t . 1 2 , (2.19) 

where 

2. 

d 
_ ln i + r(T - t) + ~(T2H - t2H) 

1 - ' ov ✓T2H - t2H 
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and 

2 

d 
_ lni+r(T-t)- ~(T2H -t2H) 

2 - ' ovv T2H - t2H 

where 

r is the risk-free interest rate, 

T - t is the time to expiration of warrant, 

av is the firm-value process volatility, 

His the Hurst parameter, 

a denotes the percentage of warrants issued in shares of stock outstanding, 

and 

N(-) is the cumulative probability distribution function of a standard normal 

distribution. 
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Chapter 3 

Numerical Methods for warrant 
• • pr1c1ng 

3.1 Warrant pricing using Brownian motion 

The Brownian motion theory has been applied in many fields including physics, 

astronomy, medicine (medical imaging), robotics, and stock markets. Louis 

Bachelier (1900) was the first one to propose that the theory of Brownian 

motion can be used for option pricing. He used the same reasoning as Robert 

Brown and state that the latter follows a random walk. The previous change 

in the value of variable is unrelated to the future or past changes. Before we 

proceed, let us first discuss what do we mean by Brownian motion. 

Definition 3.1.1. A Brownian motion in /78/ is a stochastic process Kt, for 

t 2='. 0, with the following properties. 

• Every increment Kt - Ks over an interval of length t - s is normally 

distributed with mean O and variance t - s. 

• For every pair of disjoint time intervals [ti, t2] and [t3 , t4], with ti < t2 < 
t3 < t4, the increments Kt4 - Kt3 and Kt2 - Kt1 are independent random 
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variables with distributions given as in the first bullet above same applies 

for n disjoint time intervals, with n being an arbitrary integer. 

•Ko= 0. 

• For all t, Kt must be continuous. 

3.1.1 The assumptions of Brownian motion 

The three critical assumptions that underline the Brownian motion model for 

stock price as discussed by Martinelli and Neil (2006). 

(i) Statistical independence of price changes (price changes or increments 

are uncorrelated or follow a random walk). This means that the current 

change of a price is not influenced by the past changes and does not 

have any influence on the future changes. This assumption seems to 

be relevant, at least on a long enough term. From time to time, price 

changes are probably independent. It has been documented by several 

studies and constitutes the essence of the Efficient Market Hypothesis, or 

the Random Walk Hypothesis, which states that if the price changes are 

random and therefore unpredictable, it is because investors are properly 

doing their jobs. In this case, all arbitrage opportunities are exploited 

as much as possible. 

(ii) Normality of price changes (meaning that changes follow a bell shaped 

curve). This assumption provides a distribution function characterized 

by only the mean and the volatility, and implies a certain behaviour 

of the changes. It also seem realistic for stock price fluctuations but 

does not take into consideration the fact that negative stock prices could 

result from large negative changes. This problem is solved by using the 

log normal distribution from the geometric Brownian motion. 

(iii) The price-change indexes or statistics do not vary with time. In other 

words, the mean and the standard deviation of price changes do not 
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change with time. 

3.1.2 Application of the Brownian motion for warrant 
. . pr1c1ng 

In the past years, the application of the Brownian motion process to analyze 

financial time series and stock prices has been under the scrutiny of empirical 

research. Some of the works (applications) are listed below. 

• Osborne (1972) applied the Brownian motion in stock markets and showed 

that the logarithms of common stock prices and the value of the money 

can be regarded as a collection of decisions in a statistical equilibrium. 

He found that this ensemble of price changing with time is similar to 

that of the coordinates of a large number of molecules in the Brownian 

motion theory. 

• The model of Black and Scholes (1973) for pricing options and warrants 

is also based on the statistical properties of the Brownian motion. 

• The model by Smith (1994) consists of the application of the Brownian 

motion theory in the investigation of price controls. In this model, he 

analyzed the effects of price stabilization schemes on investment when 

the demand is vague, by using the method of regulated Brownian motion. 

He came up with the methods and conclusions which are applicable to 

any economic situation involving smooth costs of adjustment of stocks 

when there is uncertainty of prices. 
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3.2 Warrant pricing using Geometric Brown­

ian motion 

The geometric Brownian motion, is also called the exponential Brownian mo­

tion, is a continuous time stochastic process in which the logarithm of the 

randomly varying quantity follows a Brownian motion. It is used to model 

financial markets data, especially in option and warrant pricing (see Black and 

Scholes (1973)) because it accommodates positive values, and only fractional 

changes in the random variates are significant. Prices that follow a random 

walk, a Brownian motion, and a geometric Brownian motion meet the inde­

pendence condition, and their volatilities increase with 0 the square root of 

time. 

Samuelson (1965a) solved the option and warrant pricing problems assum­

ing that the stock price follows a geometric Brownian motion. This overcomes 

the shortcoming of the Bachelier findings of allowing the price to be negative. 

The resulting implicit valuation equation is based on modeling the equity of 

the firm (i.e. , the total value of stocks and warrants together) as a geometric 

Brownian motion. 

As an illustration, let St be a stochastic process. Then St is said to follow 

a geometric Brownian motion if the following stochastic differential equation 

is satisfied. 

(3.1) 

where Wt is a Brownian motion and µ and a are percentage drift and volatility 

parameters, respectively. The analytic solution of the equation is as follows 

2 

S - S e(µ- "2 )t+a-Wt t - 0 , (3.2) 

where S0 is an initial value of the asset under consideration. The random 

variable log(:~) is normally distributed with mean(µ- ;
2
)t and variance a 2t. 

Merton's (1976a) model modified Black and Scholes (1973) model to accom-
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modate the jumps of the warrants. Nt is the Poisson distribution with mean 

.X, Zt ~ (µs, 0'8 
2

) is the sequence of independent identically distributed random 

numbers that follows a standard normal distribution. In Black-Scholes model, 

µ is the drift parameter, a is the stock volatility and Wt is the warrant which 

follows the geometric Brownian motion. 

dSt 
St = µdt + adWt, (3.3) 

dSt ( Nt ) 
St = µdt + adWt + d ~ Zi - 1 , (3.4) 

Zi follows a normal distribution with density 

1 ( (Z - µ)
2

) 
fz(Z)~ a../iir exp - 2a ' (3.5) 

whereµ and a is the mean and standard deviation of Z. 

The stochastic differential equations in equation (3.3) and (3.4) can be used 

for the following equation which calculates the stock price at a given time t. 

(3.6) 

(3.7) 

The Equations (3.6) and (3. 7) show the solutions for stochastic differential 

Equations (3.3) and (3.4) respectively. S0 is the first stock price and St is the 

stock price in the time period t. 

The disadvantage of Merton's model is when analyzing the size of stock 

jumps Zi. He assumes that the size of stock jumps Zi follows a standard nor_­

mal distribution which is symmetric with a bell-shape. However, Kou (2008) 

disproved Merton's assumption by showing that the standard normal distri­

bution does not always represent the size of stock jumps seen in the stock 
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markets. 

3.3 Warrant pricing using fractional Brownian 

motion 

Many authors used fractional Brownian motion to avoid independence on war­

rant pricing. Kolmogorov (1940) introduced the fractional Brownian motion 

for the first time within the Hilbert Space framework. However, the name frac­

tional Brownian motion is firstly seen in the work of Mandelbrot and Van Ness 

(1968). Before we proceed, below we give the formal definition of fractional 

Brownian motion and its properties. 

Definition 3.3.1 (Biagini et al. (2008)). Let H E (0, 1) be a constant. A 

fractional Brownian motion (B(H)(t))t?.o of Hurst index H is a continuous and 

centered Gaussian process with covariance function 

E[B(H)(t)B(H)(s)] = ½t2H + s2H - It - sl 2H, Vs, t ER+. 

For H = ½, the fractional Brownian motion is a standard Brownian motion. 

By definition, a standard fractional Brownian motion B(H) has the following 

properties: 

• s(H)(o) = E[B(H)(t)] = 0, for all t :2: 0; 

• B(H) has homogeneous increments, i.e., B(H) ( t + s) - B(H) ( s) has the 

same law of B(H)(t) for s, t :2: 0; 

• B(H) is a Gaussian process and E[B(H)(t)2] = t2H, t :2: 0, for all H E 

(0, 1); 

• s(H) has continuous trajectories . 
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Parameter Hof B(H) was named by Mandelbrot after the name of the hydrol­

ogist Hurst, who made a statistical study of yearly water run-offs of the Nile 

river. Mandelbrot (1983) used this process to model some economic time se­

ries. Most recently these processes have been used to model telecommunication 

traffic [45]. 

The values of the Hurst exponent range from zero to one. In [79] it is mentioned 

that 

• H = ½ or close to that value indicate a random walk or a Brownian 

motion. In this case no correlation is present between any past, current, 

and future elements. In other words, there is no independence behaviour 

in the series. Such series is not easy to predict. 

• H < ½ indicates the presence of anti-persistence, meaning that if there is 

an increase, the decrease will automatically follow and vice versa. This 

behaviour is also called the mean reversion in the sense that the future 

values will always tend to return to a longer term mean value. 

• H > ½ indicates the presence of the persistence behaviour, meaning that 

the time series is trending. It may be a decreasing or increasing trend. 

Fractional Brownian motion has two crucial properties: self-similarity and 

long-range dependence. The self-similarity is a > 0 then (B(H)(at), t 2:: 0) if 

(a(H)s(H), t 2:: 0). The long range means that if r(n) = E[B(H)(t)(B(H)(n + 
1) - B(H)(n))] then ~~1 r(n) = oo. · These two properties make the frac­

tional Brownian motion a suitable instrument in different applications such as 

mathematical finance: 

The assumptions which are used to derive the warrant pricing formula in frac­

tional Brownian motion are as follows (see [80] for further details): 

(i) The warrant price is the function of the time and underlying stock's 

price, 
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(ii) The shorting of assets with all use of proceeds is allowed, 

(iii) There are no transactions costs or taxes and all securities are perfectly 

divisible, 

(iv) Risk less arbitrage opportunities are controlled, 

( v) The trading of the asset is continuous, 

(vi) The risk-free rate of interest and all the maturities is constant, 

(vii) The price of the stock follows fractional Brownian motion process and 

the dynamics of the risk adjusted process (St, t 2:: 0) are defined as 

where 

B(H) = B(H)(t, x), t > 0 is the Fractional Brownian motion, 

µ is the expectation of the yield rate, 

crv is the firm-value process volatility, 

T is the option expiration time, 

St is the stock price at time t. 

(3.8) 

Hu and 0ksendal (2000) made use of Ito integrals with respect to B(H) and 

showed that the fraction!:l,l Black-Scholes market presents no arbitrage oppor­

tunity. In that case, the following lemma [31] holds: 

Lemma 3.3.2. (Geometric Fractional Brownian motion) The solution of frac­

tional differential equation 

dS(t) = µS(t)dt + crS(t)dB(H)(t) where S(0) = s0 

is given by 

(3.9) 
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Using the results of Hu and 0ksendal (2000), Necula (2002) proved the fol­

lowing theorem which deals with European call option price. 

Theorem 3.3.3. (Fractional Black-Scholes formula) The price at every t E 

[O, T] of an European call option with strike price X and maturity T is given 

by 

(3.10) 

where 

In( §.t,_ )+r(T-t)+ o-2 (T2H -t2H) 
di= K 2 ' 

a ·J T2H_t2H 

and 

In( §.t,_ )+r(T-t)- 0-
2 

(T2H -t2H) d - K 2 2 - J T2H 2H ' a -t 

N(-) is the cumulative probability of the standard normal distribution. 

Proof. See Necula (2002). • 

3.4 Warrant pricing using risk-neutral valua­

tion 

The assumption of Risk-neutral valuation is a crucial concept in the warrant 

pricing theory. This risk-neutral valuation approach was first introduced by 

Cox and Ross (1976). Harrison & Kreps (1979) and Harrison_& Pliska (1981) 

applied it and stated that the theoretical price of a European-style claim is the 

discounted expected value of its future cash flows under risk-neutral valuation. 

The theory of risk-neutral valuation is crucial for warrant pricing because all 

the return assets should be equal to the risk-free interest rate and it can be 
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concluded that the expected return of the investors does not play a role in 

warrant pricing. Risk-neutral valuation theory assumed that the price of the 

stock follows the geometric Brownian motion. The resulting equation is 

(3.11) 

This shows that the expected total return on the stock equals to the risk-free 

rate. Where Et is the expected value at time t with respect to the geometric 

Brownian motion Wt. 

Necula (2002) used fractional Black-Scholes formula and a fractional risk­

neutral valuation theorem to price options. 

Theorem 3.4.1 (Necula (2002)). (fractional risk-neutral valuation) The price 

at every t E [0, T] of a bounded FrH - measurable claim FE L2 (µ) is given by 

F(t) = e-r(T-t) Et[F]. (3.12) 

Proof. We provide some basic steps for the proof of above theorem from Necula 

(2002). There is a replicating portfolio of the claim (m(t), s(t)) as the market 

is complete, and therefore 

This gives 

F(t) = m(t)M(t) + s(t)S(t). 

dF(t) m(t)dM(t) + s(t)dS(t) 

rF(t)dt + crs(t)S(t)dBH(t). 

Multiplying both sides by e-rt and integrating we obtain 

t 

e-rtF(t) = F(0) + J e-rrcrs(T)S(T)dBH(T),0~t~T. 

0 

Now from the fractional Clark-Ocone theorem [3], we have 
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T 

F(w) = E[F] + J E\[DtF]dBH(t). 
0 

Therefore 

T 

e-rTp = E[F] + e-rT J E,.[D,.F]dBH(T). 
0 

When the market is complete, we have 

This implies 

it follows that 

T 

e-rT F = E[F] + J e-rT as(T)S(T)dBH( T), 
0 

T 
Et[e-rT F] = E[F] + Et[f e-rto-s(r)S(T)dBH(r)]. 

0 

Using quasi-martingale we get 

t 

(3.14) 

Et[e-rTp] = E[F] + J e-rtas(r)S(T)dBH(T). (3.15) 

0 

Finally using equations (3.13) and (3.15) we, obtain 

F(t) = e-r(T-t)_Et[F]. 

• 

Risk-neutral valuation is not just used to price options and warrants but it 

can hold for valuing other securities, such as forward contracts. 
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3.5 Warrant pricing using lattice methods 

The lattice methods are widely used as the valuation technique for pricing 

American warrants and options. These methods are . usually categorized in 

three categories which are binomial tree method m = 2 (which means a total 

of two possible outcomes for each successive step), trinomial tree method m = 3 

(has three possible outcomes) and multinomial method for general m. The idea 

of lattice methods is to discretize the risk-neutral process and use dynamic 

programming to solve for the warrant and option prices. Below we discuss 

binomial and trinomial methods. 

3.5.1 Binomial method 

The binomial method was introduced by Cox, Ross and Rubinstein in 1979. It 

had a very profound impact on option pricing and warrant pricing ever since 

and it is widely used in option pricing model until today. The following are 

some of the features that the binomial method has: 

• It can be easily implemented and produces fairly accurate results and it 

is usually preferred for pricing easy options and warrants. 

• It is very straightforward to calculate while maintaining the clear insight 

behind it . . 

• It uses discrete-time and discrete-state approximations of differential 

equations to price American and European options. 

• It is absolutely well-established in the economic theory of option pricing 

during reproduction under no-arbitrage conditions. 

Rubinstein (1994) has extended standard binomial method into implied bino­

mial method. Some of the advantages of the binomial method are even ap­

plied in the implied binomial method while expanding applicability beyond the 
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Black-Scholes economy as they permit for arbitrary ending risk-neutral prob­

ability distributions (binomial methods are only consistent with log-normal 

distributions). 

Cox et al. (1979) define the binomial tree (see Figure 3.1) as a discretized 

description of geometric Brownian motion which is used often to describe asset 

behaviour. The up and down factors in the prices are given by 

1 
u = e"../st d = - = e-a../st 

' u 
(3.16) 

The probabilities with which these factors move up or down are given by 

ert - e-av't, 
Pu = ---=--------,,, 

ea0 _ e-av't,' 

and 

where 

u is up-factor, 

dis down-factor, 

O' is a volatility, 

t is a time step, 

Pd= 1 - pu, 

r is a yield of the underlying asset, 

Pu is the probability of an up movement, and 

Pd is the probability of a down movement. 

The binomial tree method has been used very widely. 

3.5.2 'Irinomial method 

(3.17) 

(3.18) 

The trinomial tree is more advanced than the binomial tree by allowing a stock 

price to stay the same apart from moving up or down with a certain probability .. 
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So 

Figure 3.1: A typical example of a binomial tree 

as in binomial method. 

The trinomial tree is applied to the following problems: 

• Pricing different European and American options; 

• Pricing barrier options; 

• Calculating the greeks ( various hedging parameters that can be com­

puted from the underlying option price). 

Building a trinomial tree can be similar to building the binomial tree. In the 

trinomial model the price at the next time level is given by 

{ 

S(t)u with probability Pu 

S(t) = S(t) with probability 1 - Pu - Pd 

S(t)d with probability Pd 

and matching the first two moments of the distribution according to the no­

arbitrage condition, we obtain 

(3.19) 

(3.20) 

37 

https://etd.uwc.ac.za/



where the volatility of the underlying asset a- is assumed to be constant and 

the asset price follows a geometric Brownian motion; r is the risk-free rate of 

interest. The value of u, d, Pu and Pd, for the trinomial models are 

and 

also 

where 

u is up-factor, 

d is down-factor, 

m is middle-factor 

a- is volatility, 

t is a time-step, 

Pu= 

Pd= 

Pm = 1 - Pu - Pd, 

r is the yield of underlying asset, 

Pu is the probability of an up movement, 

Pm is the probability of a middle movement, 

Pd is the probability of a down movement. 
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3.6 Warrant pricing using Monte Carlo simu­

lation 

Monte Carlo simulation was first introduced by Boyle (1976) to value options 

and warrants, in the context of claims contingent to a single underlying as­

set. The main purpose of Monte Carlo simulation was to provide a method of 

obtaining numerical solutions to option valuation problems. It has been used 

widely to price European-style claims. Only recently have there been endeav­

ors to extend the method to price American-style claims. Bossaerts (1989) and 

Tilley (1993) were the first people to attempt to price American-style claims 

using Monte Carlo simulation. Now there is a benefit of using Monte Carlo 

simulation, because it allows a continuous pricing region, which in turn can 

price American-style claims with optimal accuracy. 

Monte Carlo simulation is also used when there is a lack of continuous 

pricing region which can be a deficiency of many numerical approximation al­

gorithms. DeHaven (2007) used the discrete event simulation program namely 

Rockwell Softwares Arena 10.0 to present a Monte Carlo simulation approach. 

This simulation is a process for valuing options by making use of numerical 

probability to generate a series of prices for the underlying instrument. 

Monte Carlo simulation is different from other methods because its pricing 

region remains continuous which is the advantage of this simulation over the 

other pricing methods to produce very accurate results. Fouse (2009) com­

pared Monte Carlo simulation with the binomial method saying that there is 

an advantage of using Monte Carlo simulation when computational costs effort 

because accuracy is considered. He emphasized it by the following example. H 
generated a simulation of 200 paths and compared to a binomial method, the 

simulation has an advantage as it has 200 possible pricing nodes in the first 

period ( when comparing this to two nodes in the first period of the binomial 

method there is an enormous difference). It is straightforward that a Monte 

Carlo simulation has an advantage looking at the computational costs effort 

when comparing the accuracy. 

Longstaff and Schwartz (2001) introduced the least-squares method which 
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C 

unravel the backward-looking simulation to value warrants and options of 

American type. 

Computations in the method of Tilley (1993) dema:nd a lot of memory and 

grows in order of O(M N) for stock prices at all simulation times and paths 

where M represent the number of paths and N represent the number of time 

periods, and it was limiting the accuracy of this simulation because of storage 

requirement. Chan et al. (2003) and Longstaff and Schwartz (2001) attempted 

to reduce the large amount of storage required in Tilley's model by replacing 

the forward path simulation of a given method with the backward one. Their 

solution reduced the memory storage to O(M) by not storing all the inter­

mediate asset prices and by generating each random number twice instead of 

once. The method had biases like other methods for pricing American options 

in terms of achieving high accuracy, because of not using large Mand N. 

In general, Monte Carlo simulation generates M pricing paths of an un­

derlying asset, using the traditional valuing system to calculate the increase 

of that path ( depending on the warrant you have, whether a call or a put), it 

then finds the anticipated warrant value discounted to the initial time steps. 

The discounted present value is therefore the estimated price associated with 

the warrant. When generating M paths and finding the mean warrant value 

of these paths, Monte Carlo simulation uses a stochastic sampling technique 

to create the expected value. 

Rasmussen (2002) defined the Monte Carlo estimate using a stopping time 

TE (t, T), where 

is determined as the conditional expectation when information of time t is 

given. He used the underlying model to generate N independent paths of the 

variables determining the payoffs process { Xt} o::;ts;T and the discount process 
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{,6t}09:,sr, and gave the crude Monte Carlo estimate by 

(3.25) 

where i is the discounted payoff from the i'th path using the stopping time 

T. 

To see that the Monte Carlo estimate is unbiased, we note that the expec­

tation of the estimate is given by 

E0 [Lt)] = .l. ..... ~ E0 [SJ = Et0 [.&(JTii] _ Lt 
t f3t N LJi=l t {3~ - f3t ' 

and its variance is given by 

V arf [ Lrl] = J2 ~!1 V arf [ f] = i{ V arf [ t] , 
L(N) 

and then from the Central Limit Theorem we can see that T follows normal 

distribution as N -t oo. 

Chan et al. (2003) used an algorithm which was very similar to that of 

Longstaff and Schwartz (2001). They generated paths in the time decreasing 

direction which follow the geometric Brownian motion. Their algorithm reads: 

SN = Soe(N[r-½a2]M+avTt(eN+EN-l + ... +e1)) 

where e::::;N(0, 1) and 

S0 is the initial stock price, 

r is the risk-free interest rate, 

CY is the volatility of the stock, 

N is the number of time periods, 

M is the number of paths, 
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ot is the length of each time period, and finally 

Ei are independent identically distributed from N(0, 1) for i = 1, 2, .... , N. 

In this algorithm the benefit is that the initial starting seed value can provide 

each random number requir~d during the simulation, and this allows the initial 

seed value to generate the random number set. In such cases each random 

number is generated twice, but it does not affect memory storage needed to 

carry out the simulation because these random numbers are not required to 

be stored. 

3.6.1 The standard Monte Carlo method 

This section provides the algorithm given in Chan et al. (2003) and later on 

modified by DeHaven (2007). The algorithm is as follows: 

Step 1. Inputs: 

• Strike price ( K); 

• Length of time horizon in years (T); 

• Initial price of the call or put option. 

Step 2. Initialization: 

• Set the seed of the path to any given positive integer; 

• Randomly generate Ei~N(O, 1) for each path i = 1, 2, .... , N and compute 

their sum w N; 

w = 0; for i = 1 : N, 

w = w+randn; 

end; 
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• Compute SN ( asset price) at the expiration date T using: 

Step 3. Generate Si-l from Si for i = N, .... , 1 in the step of 1: 

• SetM = ft . 
• Extract fN-i+l and compute wi-l = wi - fN-i+l using the same seed 

sequence. 

• Extract the new seed value. 

Step 4. Compute if the warrant is in the money for each path k. For each 

path: 

• Let Y be the vector containing the corresponding cash flows received at 

i + 1 time period and X be the vector containing asset prices Si, which 

have the been discounted backward to the ith time period. 

• Determine whether to exercise the warrant immediately or hold the war­

rant until the next time period, based on which gives the higher value. 

Establish the current cash flows conditional on not exercising prior to 

time period i using: 

{ 
cash/low if cash flow~ E[YIX] 

Ci(k) = O 
otherwise 

• Compute the present value of the cash flows Pi ( k) given by: 
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3.6.2 The Least-Squares Monte Carlo method 

The Least-Squares approach was first introduced by Longstaff and Schwartz 

(2001). This approach is very useful in the use of Monte Carlo simulation for 

pricing options. This approach became more famous due to its ease to price 

options with complex payoff functions. The method of Longstaff and Schwartz 

(2001) uses backward analysis to decide if an option would be exercised in the 

given time, by comparing the immediate profit. 

Rasmussen (2002) improved the Monte Carlo valuation by applying control 

variates to the sampled payoffs which are discounted and used in the Least­

Squares approach and scattering the variables of initial state from the paths 

used in the Least-Squares approach. 

Rodrigues and Armada (2006) described the Least-Square method for the 

contingent claims on underlying assets whose prices follow a geometric Brow­

nian motion: 

(3.27) 

where Xt is greater than 0, µ and f7 are drift volatility and parameters, 8 is 

the dividend and dW is the increment of a Wiener process. Assuming market 

completeness, there is a unique risk-neutral probability measure under which 

the asset price stochastic process is 

(3.28) 

where r is the risk free interest rate. The American option value that can be 

exercised from time interval [0, Tl, or [t, T] with payoff function is TI (t, Xt)­

It can be expressed as 

(3.29) 

where T is the optional stopping time ( T E [t, Tl) and E; is the risk neutral 

expectation, conditional on the information available at t. 
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Longstaff and Schwartz (2001) suggested a Monte Carlo simulation algo­

rithm to value American options (NB. After necessary modifications, this al­

gorithm can be used to price warrants). They stated that the optimal stopping 

time can be obtained by using the following Bellman equation 

(3.30) 

The continuation value is denoted by 

(3.31) 

The continuation value equals to zero at the expiration date, because the option 

is no longer available. It is written as 

cI>(T,Xr) = 0. 

Starting from T and moving backwards, the optimal stopping time for each 

path (T(w)) is computed. i.e., 

where T(w) is optimal stopping time. At time tn, prior to T, the option holder 

must compare the payoff with the immediate exercise (cI>(tn,Xtn)), which has 

an unknown continuation value and it is the expected conditional value of 

future cash flows. When this condition holds, T(w) is updated. The value of 

the option is calculated by averaging the values of all (K) paths. 

The computation of the continuation value (cI>) is the main contribution 

of the Least-Square approach and it is the expected value of the future cash 

flows from optimal exercise. Let IT (t, s, T, w) to be the cash flows from the 

w-path. If option is exercised in an optimal manner at s(t < s ::; T) with the 

assumption that it has not been exercised at or before time t, the expected 
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.. 

value at tn would be 

<I>(tn, XtJ = E;n [ t e-r(t;-tn) II (tn, ti, T, ·)] , 

i=n+l 
(3.32) 

with 

II ( ) _ { IT (s, Xs(w)) if T(w) = s 
t,s,T,W -

0 otherwise 

In [42] <I> belongs to a Hilbert space L2
, it can be represented by a countable 

orthonormal basis. The conditional expectation can be expressed by a linear 

combination of the elements of the basis, <I>(t, Xt) = I:;~i c/>(t)Lj(t, Xt)- The 

continuation value can be calculated using the first J < oo basis: <I>J ( t, Xt) = 
I:;f=1 <jJ(t)Lj(t, Xt) with c/>(t) estimated by a least squares regression. The 

continuation value estimated by the regression is then used to compute the 

optimal stopping time 

J 

<I>J (tn, Xtn) = L efJ(t)Lj(tn, XtJ. (3.33) 
j=l 

The use of in-the-money paths in the Least-Square regression produces faster 

algorithm estimate of the option value with lower standard errors. Stentoft 

(2004) states that the standard error of the Least-Square method algorithm 

can be decomposed in to two kinds of biases: 

• An approximation error of the continuation value is estimated and it 

leads to a low bias, as a result of using finite number of basis functions, 

this bias is written as 

• The stochastic error as a result of the Monte Carlo simulation is written: 
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This chapter presented the numerical methods that are used for option and 

warrant pricing. Ip_ the next chapter we present some numerical results ob­

tained by some of these methods. 
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Chapter 4 

Numerical results and discussion 

In this chapter we illustrate some results that are calculated for warrant pric­

ing. 

Table 4.1 shows the Changdian stock price which was left out when simulat­

ing warrant pricing in [80]. This is to compare the descriptive statistics of stock 

price and warrant price using the same Changdian market. The logarithmic 

returns is defined as 

Yt+l 
Xt = ln-- = lnYt+l - lnyt, 

Yt 

where Yt is the closing quotation of Changdian stocks and warrants at time t. 

The average of Changdian warrants is 0.0042 and that of the Changdian stocks 

is 0.003. This implies that in Changdian stocks the gaps between the data are 

closer to each other than in Changdian warrants. The standard deviation for 

Changdian warrants is 0.0490 and for Changdian stocks is 0.0197. It is known 

that the smaller the standard deviation the closer they are. For skewness, kur­

tosis and Jarque-Bera, Table 4.1 is compared with Table 4.2 (from Zhang et al. 

2009). Table 4.1 is the yield series of Changdian stocks' descriptive statistics 

and Table· 4.2 is the yield series of Changdian warrants' descriptive statis­

tics. The formulas used to calculate the mean, standard deviation, skewness, 

kurtosis and Jarque-Bera are as follows: 
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Table 4.1: The yield series of Changdian stocks' descriptive statistics 
Observations Mean Standard deviation Skewness Kurtosis Jarque-Bera 
168 0.0030 0.0197 0.4393 2.2126 9.7436 

Mean= Z:::?=1 x, n , 

Standard deviation= J E':-i (x-x)
2 

n-1 ' 

Skewness=~ u3l 

Kurtosis=H u4' 

Jarque-Bera=(i)(S2 + ¼(K - 3)2). 

where n is the number of observations, µ 3 is the third moment about the mean, 

µ4 is the fourth moment about the mean, a is the standard deviation, xis the 

mean, S is coefficient of skewness and K is coefficient of kurtosis. 

Table 4.2: The yield series of Changdian warrants' descriptive statistics 
Observations Mean Standard deviation Skewness Kurtosis Jarque-Bera 
168 0.0042 0.0490 0.5773 8.6698 234.3679 

The yield distribution of Changdian stocks is greater than zero, which implies 

that the yield distribution of Changdian stocks is not a normal distribution 

like in Changdian warrants. When kutosis is greater than three, it implies 

that the yield of Changdian stocks is leptokurtic. The value of Jarque-Bera in 

Changdian stocks implies that the yield distribution is less probability group 

near the starting point and in the tails. While the value of Jarque-Bera in 

Changdian warrants implies that the yield distribution of Changdian warrants 

have more probability group near the starting point and in the tails. 

In Table 4.3 the results are obtained from the Changdian stocks and war­

rants data. We calculate the probabilities in the binomial tree and trinomial 

tree methods using the formulas from Sections 3.5.1 and 3.5.2. The results cal­

culated using Changdian warrants data are: r=0.0225, t=0.75 and a='=0.3016 

and are comparable with those seen in [80].. The second results are calculated 

from Changdian stock data: r=0.014, t=0.75 and a=0.2. In binomial method 
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we calculated up-movement and down-movement. In the trinomial method we 

calculated up-movement, down-movement and middle-movement_. 

Table 4.3: Results of warrant pricing via the Binomial and Trinomial methods 
(Probabilities) 

Binomial Tree Trinomial Tree 
u d u d middle movement 

1 0.46727 0.53273 0.22736 0.27372 0.49892 
2 0.48713 0.51287 0.24092 0.25925 0.49983 

We expanded the descriptive statistics of Changdian warrants and Changdian 

stocks and calculated a regression analysis and Anova. Letting Changdian 

warrants to be the dependent variable (Y) and Changdian stocks to be inde­

pendent variable (X) we compute the results as shown in Table 4.4. It shows 

the multiple regression of 0.8762 which is a strong ( +) correlation coefficient. 

R2 is equal to 0. 7677 which means that 77% of the variance is shared between 

Changdian warrants and stocks. We only have Changdian stocks as an inde­

pendent variable in our regression analysis. Changdian stocks are the same as 

the square of the correlation between the Changdian warrants and stocks. The 

Table 4.4: Results of regression analysis and statistical testing for the Chang­
dian warrants an stocks 

Observations Multiple R R Adjusted R Standard error 
168 0.8762 0. 7677 o. 7663 0.4335 

formulas used to calculate Multiple R, R2
, Adjusted R2 and Standard error. 

Multiple regression (r) = ~' 
SSxSSy 

where: SS = '°' xy- (~x)(Ey) SS = '°' x 2 - (I:x)
2 

and SS = '°' y2 - (I:Y)
2 

xy w n, x w n Y w n' 

R2 = 

AdJ·usted R2 = 1 - (R2)-1!.=-L n-k-1 
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where R2 is the coefficient of determination, n is the number of observations 

and k is the number of independent variables. 

Standard error (SE) = ✓-ii, 

where a is the standard deviation. Table 4.5 is the analysis of variance 

(ANOVA) obtained from the data of Changdian warrants and Changdian 

stocks. The test statistic in ANOVA is the F of 548.59. A large value of F 

indicates relatively more difference between groups than within groups. Since 

the test statistic is much larger than the critical value, and P-value is less than 

0.05 and 0.01 we reject the null hypothesis of two means (Changdian warrants 

and Changdian stocks) when it is true and conclude that there is a statistically 

significant difference among these means, where df is the degree of freedom, 

Table 4.5: ANOVA results for the Changdian warrants and stocks 
df ss MS F P-value 

Regression 1 103.09 103.09 548.59 l.7E-54 
Residual 166 31.20 0.19 - -
Total 167 134.29 - - -

SS is the sum of squares, MS is the mean square and Fis the F-value 
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Chapter 5 

Concluding remarks and scope 

for future research 

In this thesis different methods are shown for pricing warrants. The warrant 

pricing models are based on the variables used in the Black-Scholes option 

pricing formula. Mathematical models show that the better predictions of 

warrant pricing are given by a special case of the Constant Elasticity of Vari­

ance ( CEV) model, over the Black-Scholes model. 

The warrant pricing has been compared with option pricing theoretically 

and practically, showing the similarities and how they differ. The results have 

shown that the Black-Scholes model associated for dilution as the stock price 

(S) are replaced by the value of the company (V). The standard deviation of 

the stock's return (a) is replaced by the standard deviation of the value (o-v) 

and the outcome model is multiplied by the dilution factor (1/(1 + q)). 
In order to generate the initial approximation to the warrant pricing, cer­

tain numerical methods were also used. For example, we have mentioned 

fractional Brownian motion, which is used by many authors to avoid inde­

pendency. To derive warrant pricing formulas in fractional Brownian motion 

the assumptions and fractional Black-Scholes formuli were taken into consid­

eration. The warrant pricing in fractional Brownian motion is similar to the 
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European call option. 

It is shown. that if warrant prices are calculated twice using the Black­

Scholes model, they give the same results, but if using fractional Brownian 

motion they give different results because of the long memory property. 

'Another method used to price warrants is Monte Carlo simulation. The 

purpose of this simulation is to provide a method obtaining numerical solutions 

to warrant valuation problems. Monte Carlo simulation was compared with 

the binomial methods. Figure 3.1 shows that the binomial tree has only two 

nodes in the first period, while Monte Carlo simulation has 200 nodes which 

means that the Monte Carlo simulation is more accurate than the binomial 

tree and the other methods. Monte Carlo simulation calculates much higher 

prices for the American option. 

The Least-Squares approach is crucial in the use of Monte Carlo simula­

tion for pricing warrants and to estimate the expected payoff to the holder 

of American warrants. Longstaff and Schwartz (2001) suggested the use of 

in-the-money paths which improves the accuracy of warrants' valuation. 

Lattice methods are also preferred to price warrants. In this thesis it has 

been shown that the trinomial method is more advanced than the binomial 

method by allowing the stock to stay the same or to move lip or down with 

certain probability. 

This thesis has covered a wide range of methods and models for warrant 

pricing. Out of these methods, some of them are easy to implement and 

produce accurate results, such as, lattices (binomial tree and trinomial tree), 

risk-neutral valuation, Monte Carlo simulation and Least-Squares approach. 

The Monte-Carlo algorithm of reducing the storage capacity to price Ameri­

can options is shown. 

The geometric Brownian motion does not allow us to verify all the ap­

plicability of the warrant pricing. Therefore, a certain question arises: Why 

are geometric Brownian motion and random walk preferred to price warrants 

while they can not capture the stock price behaviour? Such question can be 

researched further. 

In fractional Brownian motion, we utilised the Hurst exponent, which is a 
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tool used to test the memory in time series, and therefore helps to determine 

the behaviour and efficiency of the markets. A Hurst exponent which is equal 

to ½ indicates the independence behaviour of the series, whereas the Hurst 

exponent values different from ½ show the presence of long memory or long 

range dependence which is characterised by the fractional Brownian motion 

model. 

Interesting questions that can be researched further are: 1. Why some 

pricing methods do not consider the individuality of the warrants and make 

use of the Black-Scholes formula to price warrants? 2. Why some researchers 

replaced firm-value process volatility by stock return volatility when pricing 

warrants which can lead to inaccuracy of warrant pricing results? 

In Monte Carlo simulation, Chan (2003) presented a reduced memory algo­

rithm for pricing American options that does not store all of the intermediate 

prices and values to calculate the prices; (e.g. Zi and ¼). The methods that 

store each of the prices are far more expensive than the memory requirement 

method. The cost of this method is only the computational requirements, be­

cause each seed value must be calculated twice, once for the backward pricing 

and once for the forward pricing. When pricing multiple warrants in a mul­

tidimensional domain this memory reduction technique can be used. Chan's 

(2003) reduced memory method is not utilised and as a result requires a large 

amount of memory to perform the simulation. 

As indicated earlier, some of the methods discussed above are purely for 

options but after necessary modifications, they can be used to price warrants. 

Such a modification is being done but due to time limitations, we would explore 

them further in the near future. 
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