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Abstract

Binary search trees (BSTs) are important data structures which are widely used

in various guises. Splay trees are a specific kind of binary search tree, one without

explicit balancing. Skip lists use more space than BSTs and are related to them

in terms of much of their run-time behavior.

Even though binary search trees have been used for about half a century, there

are still many open questions regarding their run-time performance and algorith-

mic complexity. In many instances, their worst-case, average-case, and best-case

behaviors are unknown and need further research. Our analysis provides a basis

for selecting more suitable data structures and algorithms for specific processes

and applications.

We contrast the empirical behavior of splay trees and skip lists with their

theoretical behavior. In particular we explore when splay trees outperform skip

lists and vice versa.

The performance of a splay tree depends on the history of accesses to its el-

ements. On the other hand, the performance of a skip list depends on an indepen-

dent randomization of the height of links that lead to specific elements. Therefore,

probabilistic methods are used to analyze the operation of splay trees and skip

lists.
Our main results are that splay trees are faster for sorted insertion, where

AVL trees are faster for random insertion. For searching, skip lists are faster than

single class top-down splay trees, but two-class and multi-class top-down splay

trees can behave better than skip lists.
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Preface

Some of the notation used in this thesis is described here.

We often refer to the size of a data structure by referring to the number of

its nodes as N, but also use N, typeset in a typewriter font to refer to a node N.

Most of the data structures used in this thesis have subfields, so we often use
a reference or pointer P to the structure and then refer to its fields using simple
dot-notation, such that P .key refers to the key field of the node pointed to by P.

It means the same as the Pascal notation P- .key or the C notation P->key.

Steering clear of 19N for 10g2N, we use logN for it.

xiv



Chapter 1

Introduction

1.1 Background and Motivation
Binary search trees (BST) are a fundamental data structure widely used for search

and update operations and have attracted the attention of researchers in the last

few decades. Many types of BST have been introduced over the years, including

balanced BSTs, such as AVL trees (Adel'son-Vel'skiï and Landis, 1962), symmetric

binary B trees (Bayer, 1972), and e: trees (Bayer and McCreight, 1972), on which

many file systems are based, and red-black trees, which are a variant of Bayer's

symmetric binary B trees, introduced by Guibas and Sedgewick in 1978 and self-

adjusting forms of BSTs, such as splay trees (Sleator and Tarjan, 1983). Skip

lists (Pugh, 1990) are an alternative representation for balanced trees. Skip lists

use a probabilistic balancing method, rather than strictly enforcing balance.

A standard BST may degenerate into a linked list. In this case the worst-

case performance is O(N) instead of O(logN).l Balanced BSTs have O(logN)

worst case performance but after each insertion and deletion the balance must be

checked and if necessary the tree must be restructured. Splay trees are a self-

adjusting variant of BST, in which the newly accessed items are moved to the root

of the tree. The next time the item is accessed the access is cheaper. Although

they behave quite differently, splay trees and skip lists are similar to one other in

the sense that neither follows strict balancing strategy but they both "self-balance"

themselves.

Even though BSTs have been used for about a half century, many questions

can be asked regarding their run time performance and algorithmic complexity.

Even a simple question about these data structures may require an unexpected

nontrivial analysis to answer. See (Jonassen and Knuth, 1978) and (Geldenhuys

and van der Merwe, 2008). The most fundamental question which is still unsolved

1In this thesis logN should always be read as log2N.
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2

is: What is the asymptotically best BST data structure? In light of this there is

much focus around splay trees (Demaine et al., 2007).

1.2 Research Problem
In this thesis we study and analyze the complexity of splay trees and skip lists and

as a benchmark we compare them to a balanced variant of binary search trees,

namely A VL trees.

Our research addresses the following questions:

1. What is the worst-case, average-case, and best-case behavior of splay trees?

2. How do splay trees compare with skip lists?

3. When do splay trees outperform skip lists and vice versa.

4. How do splay trees and skip lists compare with our benchmark for balanced

binary search trees namely AVL trees?

We analyze the behavior of splay trees theoretically and empirically, and

compare splay trees with skip lists and we identify the worst-case, average-case, and

best case behaviors of splay trees and skip lists for search and update operations.

We have identified applications for which splay trees outperform skip lists. AVL

trees are used as a benchmark to compare how classic balanced binary search trees

behave under the same circumstances.

1.3 Research Goals
Our research goals in more detail are to:

1. Analyze the performance of splay trees and skip lists theoretically and em-

pirically,

2. Use the theoretical and empirical analysis for finding the worst-case, average-

case, and best-case behavior of splay trees by applying our experiments con-

sisting of both hand written simulations of small trees and timed computer

runs of the same operations using much larger but similar data sets,

3. Compare the performance of splay trees with skip lists in order to identify

the most suitable of these data structures for specific applications, and
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4. Determine cases where splay trees outperform skip lists and vice versa.

1.4 Approach and Methodology
We initialized this research by studying and analyzing the behavior of splay trees.

Our interest was stimulated by an early version of the paper by Geldenhuys and

Van der Merwe, 2008. Their paper lead us to the idea of also investigating Bill

Pugh's skip lists (Pugh, 1990) and of using the, by now, well understood AVL

trees (Adel'son-Vel'skiï and Landis, 1962) as a benchmark to judge their perfor-

mance. We initiated our theoretical analysis by, first, hand testing many differ-

ent operations of standard balanced BSTs, splay trees, and skip lists.ê We use

data that was sorted in ascending and descending order and also in random order

to determine the required number of comparisons needed. We used probabilistic

methods to analyze the run time behavior of the skip lists. The probability of

different cases for several generically different sequences of input was studied and

analyzed. The worst-case, average-case, and best-case analyses for splay trees were

performed for different sequences of inputs. We have not seen this kind of analysis

in the literature.

The experiments were done on various machines, and the results were com-

pared with the theoretical results. This sometimes proved to be more difficult than

expected because of the unpredictable behavior of the available timers.

In these cases where the run time proved to differ from the theoretically

expected time, the reason for the difference was explored. For the experiments we

implemented the existing algorithms for various types of BSTs, and then tabulated

and evaluated their run time behavior. We used Java running on various machines

under Linux or Sun's Solaris for doing our experiments. Each program was run

for a few sequences of inputs, and for each sequence the run was repeated at least

30 times in order to attempt to achieve statistically meaningful results. When

algorithms have logarithmic behavior the data sets have to be huge-in the order

of millions-to achieve meaningful timings.

The results and statistics are programmatically generated, timed, and tabu-

lated and graphed. Run time and theoretical time are statistically compared.

2See Appendix E on Page 136 for a brief description of these manual experiments.
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1.5 Thesis Outline
This thesis contains seven chapters and an appendix with some definitions and

proofs. In Chapter 2, we discuss various types of binary search trees (ESTs) and

their performance and we describe the performance of A VL trees, splay trees, and

skip lists. Chapter 3 contains a literature review for the thesis. Chapter 4 describes

our approaches and methodology for conducting the research and answering the

thesis questions. Chapter 5 contains the theoretical analysis for the performance

behaviors of ESTs, skip lists, and splay trees where their behavior under insertion,

deletion, and search operations is theoretically analyzed. Chapter 5 also contrasts

splay trees and skip lists. In Chapter 6, we report our experimental results and

compare these with the theory. The concluding Chapter 7 contains a brief overview

of our main findings and interesting points and it details our results that we could

not find in the literature and give some pointers to future research.

1.6 Summary
In this thesis we analyze the performance of splay trees and skip lists and contrast

them with A VL trees. Standard ESTs, A VL trees, splay trees, and skip lists are

theoretically and experimentally analyzed for search and update operations. After

comparing splay trees and skip lists we identify the cases in which splay trees would

be more suitable than skip lists.



Chapter 2

Binary Search Trees
The binary search tree (EST) is a fundamental data structure, which combines

the advantages of a sorted array and a linked list. We can search a balanced EST

of N nodes, in D(1og N) time which is as quick as doing binary search in a sorted

array, and we can add and remove items as efficiently as with a linked list. ESTs

are known as binary search trees because each node holds up to two children and

has the property that the key values of all the children in the left sub-tree of a node

are less than the key of the node, and all the descendants in the right sub-tree of

a node have keys that are greater than or equal to the node's key. In Figure 2.1

Figure 2.1: Order of nodes in a EST.

the root node has the key 23 and it has a left child with a key of 17 and a right

child with key 35. So for node N we have N.left .key < N.key and N.key ::;

N. right. key. Once we have established that some tree is a BST and the actual

values of the keys are irrelevant these need not be indicated. The root is generally

assumed to be the uppermost node in the figure representing the tree. Figure 2.2

depicts a more abstract version of the tree in Figure 2.l.

ESTs are widely used for search and update operations. Their organization

allows for random and sequential access. Finding the minimum or maximum values

are easy operations with ESTs. They are dynamic data structures since memory

for their nodes may be allocated and de-allocated during run time. In addition to

the data and key, each node in a EST contains two links, which are called left and

5
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D

Figure 2.2: A more abstract depiction of a BST.

right links that may be null or point to a non null child of the node. Therefore,

BSTs with their extra pointers in each node, occupy one more pointer than a singly

linked list.

BSTs may be enhanced by adding a parent pointer which points to the

parent of a node. This has the advantages of simplifying programming and often

speeding up tree algorithms at the cost of a little wasted space. Pfaff, (2004),

claims that using parent pointers is best if space is not at a premium.

The performance of BSTs depends on the overall structure of the tree. BSTs

behave well when they are balanced. Balance means that the number of nodes in

the left sub-tree is almost equal or exactly equal to the number of nodes in the

right sub-tree. In other words, balance implies that the height of the tree is at

a minimum. Balanced BSTs allow us O(log N) worst-case search time-see the

proof in Section 4.1.3, Pages 37-39. Balanced BSTs are suitable for applications

in which search time must be minimized or in which the nodes are not necessarily

processed in sequential order.

However, update operations such as insertion and deletion, can change the

balance of the tree. Therefore, keeping the trees balanced complicates and slows the

update operations of the tree. The order in which the data items are inserted into

a BST affects the structure of the tree. Without balancing, if the data items are

inserted in ascending or descending orders the tree becomes completely unbalanced,

like a linked list. In addition to sorted insertion, there are other orders which also

generate a completely unbalanced tree. In this case the worst-case performance is

O(N). Therefore, keeping the tree balanced, is an important issue when working

with BSTs.

There are many schemes to balance BSTs such as AVL trees, B+ trees,
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red-black trees, their equivalent (2,3) trees and their generalization (n, m)-trees.

Balanced trees use update algorithms which are more complicated than the stan-

dard EST algorithms and take longer times for insertion and deletion. However,

the algorithm keeps the tree balanced in order to minimize the search time.

A balanced tree of N nodes is sometimes alternatively defined as a tree of

height logN.

We first consider AVL trees which we use as a benchmark to understand the

performance of splay trees and skip lists.

2.1 AVL Trees

AVL trees, which are also called height-balanced trees, were first considered by the

two Russian mathematicians, Adel'son- Vel'skii and Landis (1962). Each node is

arranged such that the heights of its two subtrees never differ by more than 1. Each

node in the tree holds a so-called balance condition, balance criterion, or balance

factor that indicates if a node has subtrees of equal or different heights. After

each insertion or deletion, the balance condition is checked and either the balance

condition is altered or the tree is reconstructed by a single or double rotation.

Duplicate keys are not allowed in an AVL tree. The balance criterion allows nodes

with subtrees that differ by heights of at most 1. The tree in Figure 2.3 is not

perfectly balanced but it is A VL balanced, since the left subtree of node A has

height h + 2 and its right subtree has height h+ 1, noting that each of the subtrees

TI, T2, T3 and T4 is AVL balanced. Since these heights differ by at most 1, it is

J
1

Figure 2.3: A balanced tree with the AVL property.

an AVL tree. The trees that appear in Figures 2.1 and 2.2 are also AVL trees.

By appending the node x to the bottom of subtree Tl, in Figure 2.4, the height of

the left subtree of node A becomes h + 3 and now violates the AVL property. In
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Figure 2.4: After adding x the tree has lost its AVL property.

Figure 2.5 a similar situation has arisen in the mirror of Figure 2.4, where an extra

node x in the right subtree of A causes it to become 2 higher than the left subtree

of A. We only need to assume that A, a pointer to the node where the imbalance

T
h+l

1
Figure 2.5: The mirror of Figure 2.4 is not an AVL tree.

occurs is known. So, given the pointer A to the point of imbalance, the following

operations, or so-called rotations, turn the unbalanced tree in Figure 2.5 into a

balanced one.

C = A.right;
A.right = C.left;
C.left = A;
C.parent = A.parent;
A.parent = C;

In Figure 2.6 the unbalanced tree of Figure 2.5 has been balanced.

A VL trees are BSTs under the following conditions:

The heights of the left and right sub-trees of the each node differ by at most 1.

The left and right sub-trees of the root are also AVL trees.
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This is an AVL tree

Figure 2.6: Figure 2.5 after balancing.

This is an AVL tree

Figure 2.7: The balanced version of Figure 2.4.

In other words, for all nodes, N, in the tree, the difference in height of the left and

right sub-trees of N is at most 1. These conditions ensure that the height of the

tree is O(LogN), where N is the number of elements in the tree (Foster, 1965).

Suppose that, N is a node in an A VL tree then:

If height (N .left) > height (N. right), then N is LEFT HIGH.

If height (N .left) = height (N. right), then N is EQUAL HIGH.

If height (N .left) < height (N. right), then N is RIGHT HIGH.

In addition to the data and references of the left and right sub-trees, each node

also stores a balance factor. Every node must keep track of its balance factor. The

balance factor for node N is a value such that:

If N is LEFT HIGH then the balance factor of N is -1.

If N is EQUAL HIGH then the balance factor of N is O.

If N is RIGHT HIGH then the balance factor of N is 1.

Since the A VL tree is a BST, the search operation in an A VL tree uses the standard

BST search algorithm. The guaranteed logarithmic height of an AVL tree ensures
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that searching in an A VL tree has a logarithmic worst-case time bound-see the

proof in Section 4.1.3, Pages 37-39.

Insertion and deletion algorithms differ from their corresponding standard

BST algorithms because they alter the structure of the tree and the resultant tree

may not be an AVL tree and must sometimes be re-balanced.

2.1.1 AVL Tree Insertion

To insert a new item into an A VL tree, we first search the tree to find the position

of the new item. Since duplicates are not allowed an appropriate error message is

dispatched if the item has already been entered. If the search ends at an empty

sub-tree, the new item is inserted there. After insertion, the resultant tree may

not be an AVL tree. Thus we must restore the tree balance criteria. Only the

nodes that are on the path from the insertion point to the root might have their

balance changed. Therefore, we follow the same path, back to the root, which was

followed when the new item was inserted into the A VL tree. The nodes on this

path are visited and either their balance factor is changed, or we might have to

reconstruct part of the tree. If we find a node whose new balance factor violates

the A VL tree conditions-the so-called point of imbalance-we rebalance the tree

by suitable rotation(s) (Foster, 1965).

Suppose that the node to be rebalanced is N. Since any node has at most

two children and the height imbalance in an AVL tree requires that the height of

the two sub-trees of Ndiffers by more than 1, a violation may occur in any of the

following cases:

An insertion into the:
(1) left sub-tree of the left child of N

(2) right sub-tree of the left child of N

(3) left sub-tree of the right child of N

(4) right sub-tree of the right child of N
Case (1) and case (4) are symmetric and in these two cases the insertion

occurs on the outside, that is left-left or right-right respectively. In these cases

the problem can be fixed by a single rotation. A single rotation changes the roles

of the parent and child while maintaining the search order for the tree (Foster,

1965).

A single rotation can be left or right. If the rotation occurs at node N and it
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is a left rotation, then some nodes from the right sub-tree of N move to its left sub-

tree. The root of the right sub-tree of N becomes the new root of the reconstructed

sub-tree. Similarly, if it is a right rotation at node N, some nodes from the left sub-

tree of N move to its right sub-tree and the root of the left sub-tree of N becomes

the new root of the reconstructed sub-tree. Case (2) and case (3), in which the

insertion occurs on the inside, that is, left-right or right-left, are complex and are

repaired by double rotations (Manber, 1989, pp. 75-77). Figure 2.8 illustrates a

tree requiring a double rotation and Figure 2.9 shows the result of a double rotation

that restores the "AVLness" of the tree. Assuming that we have a pointer to the

I
h

1 I
h

1
Figure 2.8: A tree requiring a double rotation.

imbalance point at node A, the following code does the rebalancing.

C A.right;
D = C.left;
A.right = D.left;
D.left A;
C.left = D.right;
D.right = C;

For the purpose of more clarity, we do not show the updates to the parent nodes.

The double rotation is required, when the balance factor of the node where the tree

is to be reconstructed, and the balance factor of the higher sub-tree are opposite.

In this case first we rotate the tree at the lower node and then at the upper node.

If the lower sub-tree is RIGHT HIGH, we make a left rotation, and if it is LEFT HIGH

we make a right rotation. Secondly we rotate the tree at the upper node. If the

tree rooted at the upper node is LEFT HIGH, we make a right rotation and if it is

RIGHT HIGH, we make a left rotation (Malik and Nair, 2003).
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Figure 2.9: The tree in Figure 2.8 after a double rotation.

2.1.2 AVL Tree Deletion

To remove a node from an AVL tree, first we search the tree to find the node to

be removed. If we find the node, we can remove it in the same way as we remove

a node from a standard BST. The difference is that, after removing the node, the

BST may not be an AVL tree. There may be an unbalanced node in the tree on

the path from the parent of the deleted node to the root of the tree. In fact, there

can be one such unbalanced node at most. Therefore, after deletion we have to

restore the balance criteria for the tree. To do this, we follow the path from the

parent of the deleted node back to the root node. We visit each node on this path,

and sometimes we need to change only the balance factor, otherwise the tree is

restructured at the point of imbalance. Suppose that Nis a node on the path back

to the root node. We check the current balance factor of N.

1. If the current balance factor of N is EQUAL HIGH, then the balance factor of

N is changed according to whether the left sub-tree of N was shortened or the

right sub-tree of N was shortened.

2. Suppose that the balance factor of N is not EQUAL HIGH and the taller sub-

tree of N is shortened. The balance factor of N is changed to EQUAL HIGH.

3. Suppose that the balance factor of N is not EQUAL HIGH, the shorter sub-tree

of N is shortened. Also suppose that P points to the root of the taller sub-tree

of N.

If the balance factor of P
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(a) is EQUAL HIGH, a single rotation is required at N,

(b) is the same as N, a single rotation is required at N,

(c) and that of N are opposite. A double rotation is required at N, i.e. a

single rotation at P and then another rotation at N.

(Malik and Nair, 2003).

2.2 Splay Trees

Splay trees are a self adjusting form of BST, invented by Daniel Sleator and Robert

Tarjan (1983). Splay trees are used for many applications including searching,

updating, and data compression (Grinberg and Rajagopalan, 2005). Linux kernels

before 2.4.10 used A VL trees for keeping track of virtual memory areas. Later

versions of the kernel use splay trees (Pfaff, 2004) and Windows NT also uses splay

trees for its equivalent of virtual memory areas (Custer, 1993). Srinivasan et al.

(2006) use splay trees for packet classification in high-speed routers and claim high

performance gains in terms of space and time complexity over previous techniques.

Contrary to other types of self-balancing trees, splay trees work well with nodes

containing identical keys. Splay trees support all the operations of BSTs and have

the following advantages:

• They require" less memory space since they do not store extra balancing

information.

• They are easy to program.

• They automatically adapt to the input sequence. This results in better per-

formance than fixed trees, when the access pattern is non-uniform (Sleator

and Tarjan, 1983).

Splay trees have the following disadvantages:

• They require more adjustment than the other balanced BSTs. It means

more rotation and more swapping of children is needed during insertion,

deletion, and search operations. It results in potentially expensive individual

operations. Of course, this depends on the application. If rotations are

3AVL trees need two bits per node to represent the balance factor.
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usually expensive, splay trees may be less efficient than other balanced ESTs

(Sleator and Tarjan, 1983) .

• They have O(N) worst case performance per operation. There are many

search trees with O(log N) worst case times, such as AVL trees, (2-3)-trees,

B-trees and red-black trees.

After each access to a node of a splay tree, the newly accessed node is moved

to the root of the tree. When the node is accessed again, subsequent accesses are

cheaper, if they occur soon enough. There are three methods for moving a node

to the root of the tree:

1. The simple splay tree strategy,

2. The bottom-up splay tree strategy, and

3. The top-down splay tree strategy.

2.2.1 Simple Splay Trees

The easiest method for moving an item to the root of the tree is called the sim-

ple self-adjusting strategy, or rotate-to-root strategy. In this method the newly

accessed item is continually rotated with its parent until it becomes the root of

the tree. The tree is rearranged after each access. In this method, when the ac-

cessed item is moved to the root, some other items are moved further away from

the root. Therefore, if the access order of the items is not clustered 90-10%, i.e.

the accesses follow a locality rule where most accesses occur more or less in a 10%

cluster and the rest outside of that cluster, it is possible for some bad accesses to

occur. As a result, simple splay tree operations do not have logarithmic amortized

behavior (Sleator and Tarjan, 1985).

2.2.2 Bottom-up Splay Trees

The bottom-up splay strategy also moves the accessed item to the root of the

tree, but differently. This kind of move to root operation is known as splaying.

The bottom-up splay strategy considers the item to be rotated, its parent, and its

grandparent-if it exists. Single or double rotations are used during the splaying,

depending on the position of the item to be splayed. A single rotation is required
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if the item to be splayed has only a parent but has no grandparent. This kind of

rotation is called a Zig rotation (Sleator and Tarjan, 1985).

A double rotation is required if the node to be accessed has both, parent and

grandparent. Double rotations can be a Zig-zig or Zig-zag. A Zig-zig rotation is

A ~rotate y-z, Zig

c D

A B C

D ~otate x-y, Zig

A B

Figure 2.10: A left-left Zig-zig.

required if the item to be accessed and its parent, are both left children or both

right children. In Figure 2.10 a Zig-zig of x is accomplished with two rotations:

the first anti-clockwise rotation or left rotation is performed between its parent,

y, and grandparent, z, i.e. y-z is left rotated with y as the center of rotation.

Sleator and Tarjan call this a Zig. Next, the second rotation is performed between

x and its parent, i.e. x-y is also left rotated around x-another Zig (Sleator and

Tarjan, 1985).

A Zig-zag rotation is required if the item is a left child and its parent is a

right child or vice versa. A Zig-zag is also performed in two rotations-one left

and one right rotation or vice versa. The first rotation is between the item, x, and

its parent, y, and the second rotation is between the item, x and its grandparent,

z (Sleator and Tarjan, 1985).

The Zig-zig or Zig-zag process is repeated until the accessed item becomes

the root of the tree.

To delete an item from a bottom-up splay tree, we first access the item. The

access process moves the accessed item to the root of the tree. Deleting the item

from the root of the tree, we get two sub-trees: L and R. At this stage there are

two possibilities:
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Figure 2.11: A left-right Zig-zag.

1. We find the largest item in L and splay that item to the root of L, and then

make R the right sub-tree of L's root.

2. Alternately, we find the smallest item in R and splay that item to the root

of R, and then make L the left sub-tree of R's root.

This is called the join operation, which joins the left and right sub-trees (Sleator

and Tarjan, 1985).

2.2.3 Top-down Splay Trees

Bottom-up splaying uses two passes for splaying the item to the root of the tree.

The first pass is required to access the item, and the second pass is used to splay

the item to the root of the tree. Therefore, bottom-up splay trees need more

comparisons and rotations for accessing and splaying the items to the root of the

tree.

Top-down splay trees on the other hand, use a single pass for accessing and

splaying the items to the root of the tree. In this way, top-down splay trees require

less comparisons and rotations for accessing the items. Top-down splay trees are

fast and maintain the amortized time bound (Sleator and Tarjan, 1985).

In a top-down splay, the tree is split into three sub-trees: a left sub-tree, L,

right sub-tree, R, and a middle sub-tree, M. During the search for an item, we

take the items that are on the access path and move them to the left sub-tree or

right sub-tree depending on whether they are smaller or larger than the item for

which we are searching. Initially the left and right sub-trees are empty and the
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middle tree consists of the entire tree (Sleator and Tarjan, 1985). At any point

during the search for x, we have to follow the left or right link. When we follow the

left link, then x and its right sub-tree are larger than the item which will become

the root. Therefore, we put x and its right sub-tree into R. When we follow the

right link then x and its left sub-tree are smaller then the item which will become

the root. Therefore, we put x and its left sub-tree in another sub-tree, which we

call its left sub-tree, L.

Descending the tree two levels at a time, we encounter three items, x, y, and

z. x is the root of the middle tree, y is a child of x, and z is the grandchild of

x. With these three items we consider three different cases: Zig case, Zig-zig case,

and Zig-zag case. In the Zig case, y becomes the root of the middle tree, x and

its sub-tree are attached to the L sub-tree or the R sub-tree, depending whether

x is smaller or larger then y, respectively. If the case is Zig-zig, z become the root

of the middle tree, and we rotate y around x and attach it as a right child of the

largest value of sub-tree L or as a left child of the smallest value of sub-tree R. In a

Zig-zag case, z is moved to the root of the middle tree, M sub-tree, the sub-trees x

and y are moved to Rand L sub-trees, respectively. Simplify the code, by changing

the Zig-zag case to a Zig case. That is, instead of making z the root of the middle

tree, y is moved to the root of the middle tree and z remains as a sub-tree of y.

This simplification makes the Zig-zag case similar to the Zig case. It avoids the

rotation process but causes more iterations in the splay process. When the value

to be accessed is at the root of the middle tree, we make the left child of x a right

child of the maximum item in the L sub-tree, and make the right child of x a left

child of the minimum item in the R sub-tree. Finally we make Land R the left

and right children of x, respectively.

2.3 Skip Lists
Skip lists, invented by William Pugh (1990), are an alternative data structure to

balanced ESTs, but their structure is completely different. They are a suitable and

often better alternative to balanced ESTs in many applications (Pugh, 1990). Skip

lists use a probabilistic balancing method rather than strictly enforcing balance.

Each node in a skip list contains a key, its data, and one or more pointers. The

number of pointers, which is also called the node level, for each node is determined
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randomly. Each node has at least one pointer, and the first of them always points

Figure 2.12: A skip list.

to the next node in the skip list. The additional pointers are used to skip one or

more intermediate nodes. Each list has two extra nodes. The first node determines

the beginning of the list and the last node determines the end of the list. The first

node has a key smaller than any other node, and the last node has a key greater

than any other node. These two nodes can conveniently be made -00 and +00
respectively.

Figure 2.12 gives Goodrich and Tamassia's (2004) depiction of a skip list in

which the levels are terminated by an extra node which has a null out pointer

and a key of +00 such that the value of the key does not need special treatment.

Pugh (1990) draws the skip list slightly differently clearly showing the null pointers

at the end of the list. In Figure 2.12 these null pointers can never be reached so

the pointers need never be tested since the lists are terminated by a key sentinel,

i.e. by +00 giving this representation a slight edge on Pugh's. Pugh's levels are

terminated by a non sentinel key but the end node in the level has a null pointer

and this is used to terminate searches in levels.

For most applications skip lists are easier and simpler to implement than bal-

anced trees and self-adjusting trees. They are also very space efficient and Pugh 1990

points out that they can be configured easily to require an average of 1~ pointers

per element or even less and do not require balance or priority information to be

stored with each node.

For many applications, skip lists are a more natural representation than bal-

anced trees, and they lead to simpler algorithms. The simplicity of skip list algo-

rithms makes them easier to implement in many applications. It is easier to balance

a data structure probabilistically rather than explicitly maintaining its balance.

Skip lists have probabilistic time bounds, which means, any operations or

sequence of operations can take longer than expected, although the probability of
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any operation taking significantly longer than expected is very low. We present

our code in Appendix D on Page 133.

2.3.1 Skip List Structure

A skip list consists of a series of lists arranged horizontally in levels and vertically

in towers. Each level contains about half the number of nodes than the previous

level. Therefore, the total number of levels in a skip list is probably about O(log N),

where N is the number of elements in the skip list. The structure of a skip list

is determined only by the number of elements in the skip list and the results

of consulting the random number generator. The sequence of operations that

produced the current skip list does not matter. (Pugh, 1990).

Suppose that S is a skip list. Then S will contain a series of horizontal lists-

levels-such as So, SI, S2, ... ,Sh. Each list represents a level in the skip list. So

will contain all the elements in the skip list. SI probably contains about half of the

elements of So, and list S2 probably contains about half of the elements of SI, and

so on. In other words, So contains all the elements, SI probably contains about ~

of the elements, S2 probably contains about ~ of the elements, and Sh probably

contains f,. of the elements.(Pugh, 1990)

Generally, Sh will contain about ¥> elements, where h is the height of the list.

The halving of the number of entries from one list to the next is not enforced as an

explicit property of skip lists. Instead randomization is used. Each level contains

special keys at the end points, such that the key of the starting element in every

list is -00 and +00 is the key of the last element of every list. Level h, the highest

level, contains only these special keys -00 and +00.

2.3.2 Skip List Algorithms

We can easily implement a skip list by means of a linked structure. We view a skip

list as a two-dimensional collection of positions arranged horizontally into levels

and vertically into towers. Each level is a list Si and each tower contains positions

storing the same entry across consecutive lists.

Each element in a skip list is represented by a node. The level of a node is

chosen randomly when the node is inserted. We do not need to store the level of

a node in the node. All levels of a skip list are terminated with null. A new list

is initialized so that the level of the list is 1 and all forward pointers of the list's
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header point to null.

2.3.2.1 Search in a Skip List

Search for a key is started at the header of the top level, and continues moving

forward, if the node key is smaller than the search key. If the node key is equal or

greater than the search key, the search drops down one level and then continues

forward. This process is continued until we find the target node or we are satisfied

that the target node is not present in the skip list (Pugh, 1990).

For example, suppose that we want to search for a key k. We begin the search

by setting a pointer P to the top most, left position in the skip list S, called the

start position of S. We then perform the following steps, where P. key denotes the

key of the entry at position P:

1. If the element of S below P is null, then the search terminates. Because we

are at the bottom and have located the largest entry in S with a key less

than or equal to the search key k. Otherwise, we drop down to the next lower

level in the present tower by moving P down one level (Weiss, 1999).

2. Starting at position P, we move P forward until it is at the right-most position

on the present level such that P. key<=k. We call this the forward-scan step.

Note that such a position always exists, since each level contains the keys +00

and -00. In fact, after we perform the forward scan for this level, P may

remain where it started. In any case, we then repeat the previous step (Pugh,

1990).

2.3.2.2 Inserting New Nodes into a Skip List

To insert a new item into a skip list, we first search the list to find a position for the

new item. During the search, the references of items at which the search dropped

down one level are saved in an array. When the position is found the item level

is generated by a randomized level generator. Next the new item is created and

it is entered into the skip list. This is done by assigning the forward references

stored in the array (Pugh, 1990). Then the insertion algorithm for skip lists uses

randomization to decide the height of the tower for the new entry. To do this we

flip a coin. If the coin comes up tails, then we stop here. Else, we backtrack to the

next higher level and insert k in this level at the appropriate position. We again
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flip a coin; if it comes up heads, we go to the next higher level and repeat. Thus,

we continue to insert the new entry k in lists until we finally throw tails. We link

together all the references to the new entry k created in this process to create the

tower for the new entry. If an insertion generates a node with a level greater than

the previous maximum level of the list, we update the maximum level of the list

and initialize the appropriate portions of the update vector (Pugh, 1990).

A skip list S must maintain a reference to the start position-the top most,

left position in S-as an instance variable, and must have a policy for any insertion

that wishes to continue inserting a new entry past the top level of S. There are

two possible actions we can take, both of which have their own advantages:

• One possibility is to restrict the top level h, to be kept at some fixed value

that is a function of N, such as logN where N is the number of entries in

the skip list.

• The other possible action is to let an insertion continue inserting a new

position as long as it keeps getting heads returned from the random number

generator. The probability that an insertion will go to a level that is more

than logN is very low.

2.3.2.3 Deleting Elements from a Skip List

Deleting an item from a skip list is similar to insertion. To delete an item, first

search for the item to be deleted. If it is found, update the references by reassigning

the nodes that reference the node to be deleted, to the node that come after the

node to be deleted. After each deletion, check if the maximum element of the list

has been deleted. If so, decrease the list's maximum level (Pugh, 1990).



Chapter 3

Literature Review

Binary search trees (BSTs) have an important data structure which is used in

many computer applications. Their search operation has a complexity similar to

that of the binary search algorithm in a sorted linear list, but it also allows fast

insertions and deletions.

Each operation in a BST requires that the search begins at the root of the tree.

The time needed to find a node depends on how many levels down the tree the

node is situated. The number of levels depends on the total number of nodes and

the structure of the tree. A balanced B ST with N nodes, has the best search

and update performance, and its worst-case search cost is logarithmic-O(log N)

(Wright,2006). Unfortunately, there is no guarantee that the tree is balanced. The

update operations-insertion and deletion-tend to change the structure of the tree,

and may unbalance the tree. If the tree is completely unbalanced, in the worst

case, the access time becomes linear O(N) (Baer and Schwab, 1977). Keeping

the tree balanced requires restructuring the tree during insertion and deletion,

which slow down the operations of insertion and deletion, and complicate their

algorithms. There is a trade-off between the speed of updating the tree, and the

speed of retrieving items from the tree (Foster, 1965). Different applications may

prefer either fast update operations or fast search operations or both.

Some questions can be raised regarding the run time performance of BSTs

and their algorithm complexity. Even a simple question about these data structures

may require an unexpected nontrivial analysis to answer (Jonassen and Knuth,

1978).

The balance of a BST depends on the key values and order in which the keys

are entered into the tree. If the keys are inserted randomly, the tree will tend be

more or less balanced. But, if the nodes are inserted strictly in order of the keys,

say from smallest to largest or vice versa, then the tree degenerates into a linear

list with a worst case search time of O(N) (Baer and Schwab, 1977).

22
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In a perfectly balanced full EST, the sub-trees of each node have exactly the

same height. Other ESTs are said to be height balanced, or simply balanced, if the

sub-trees of each node in the tree differ in height by no more than 1. A balanced

EST with N nodes has O(log N) performance in the worst-case, where unbalanced

BST has O(N) worst case performance (Jonassen and Knuth, 1978).

Several algorithms are used to implement balanced ESTs. Most of these algo-

rithms are slightly more complicated than the standard EST algorithms. Because

the operations of insertion and deletion can change the structure of the tree, they

take longer than look-ups. However, a balanced EST's update algorithm keeps the

tree balanced and provides protection against unbalanced trees.

3.1 AVL Trees

AVL trees are the most well known balanced ESTs (Adel'son-Vel'skiï and Landis,

1962); see also the article by (Baer and Schwab, 1977). They have the property

that: for each node the height of its left sub-tree and the height of its right sub-

tree differ by at most one. This property acts as a condition that keeps A VL trees

balanced. The property must be checked after each insertion and deletion to ensure

that the tree is still an A VL tree. When necessary the proper rotations are applied

to the tree, thus complicating insertions and deletions.

In addition to the data and references of the left and right sub-trees, each

node also stores a balance factor (Foster, 1965). Every node keeps track of its

balance factor. The balance factor indicates the height of the left and right sub-

tree of the node.

In the worst case, AVL trees require log(N + 1) probes for retrieving an

item from the tree (Foster, 1965). The worst-case search in an AVL tree is about

1.44log N comparisons, and the average search can require 1.05log N comparisons.

If an application uses only insertion and search operations, then AVL trees are the

preferred data structure (Nievergelt and Reingold, 1972).

The concept of AVL tree was generalized by Caxton Foster (Foster, 1973) to

allow the imbalance of the tree by more than one before reconstructing the tree.

That means, during the insertion and deletion the nodes left and right sub-trees

can differ by more than one. In this way they permit a system designer several

options which allow trade off between the access time and ease of construction. The
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ease of construction and speed of retrieval also depends on the application (Foster,

1973).

Foster found that by allowing imbalancing up to 4, the number of probes for

retrieving increase by one, but the number of restructurings of the tree decrease

from one every other item to only one for every 13.7 items (Foster, 1973).

3.2 Splay 'frees

Splay trees are a self adjusting form of BSTs. They were invented by Daniel

Sleator and Robert Tarjan (Sleator and Tarjan, 1983). Splay trees are used for

many applications including searching, updating, and data compression (Grinberg

and Rajagopalan, 2005). They have been proposed to be used for packet classi-

fication to provide security, quality of service (QoS), monitoring and multimedia

capabilities (Srinivasan et al., 2006). Contrary to other types of self-balancing

trees, splay trees work well with nodes containing identical keys.

Even though balanced BSTs have a O(log N) worst-case time bound per op-

eration on an n-nodes tree, they are not as efficient as possible if the access pattern

is non-uniform, and need extra space for storing balance information (Sleator and

Tarjan, 1985). Balanced BSTs have several limitations:

• They require a little extra space for storing balancing information.

• They are complicated to implement, making insertions and deletions expen-

sive and potentially error-prone.

• Easy inputs need the same work as more difficult ones.

(Sleator and Tarjan, 1985)

On the other hand, the worst-case, average-case, and best-case performance for

balanced BSTs are essentially identical. This means, the performance of balanced

BSTs is improvable. For example, if we want to find an item such as X in a

balanced BST, the find cost is logarithmic and the second find operation costs the

same time as the first one. In splay trees, the second find operation for the same

item is cheaper when it occurs soon enough. We would also expect that if we

perform an access of X, Y, and Z, then a subsequent set of accesses for the same

sequence would be cheaper in a splay tree than in an AVL tree (Sleator and Tarjan,

1985).



25

Splay trees support all the operations of ESTs and have the following advantages:

1. They require slightly less storage space because, they do not store extra

balancing information.

2. They are easy to program.

3. They adapt automatically to the input sequence, resulting in better perfor-

mance than fixed trees, when the access pattern is skewed.

(Sleator and Tarjan, 1985)

Splay trees have the following disadvantages :

1. They require more adjustment than balanced ESTs, i.e. more rotations and

more swapping of children is needed during insertion, deletion, and search

operations. It results in potentially expensive individual operations. Of

course, this depends on the application. If rotations are usually expensive,

splay trees may be less efficient than other balanced ESTs.

2. They have O(N) worst case performance per operation. There are many

search trees with O(log N) worst case times, such as AVL trees, (2-4)-trees,

B-trees and red-black trees. In the worst case, the overall running time of

a search, insertion, or deletion in a splay tree of height h is O(h). This is

because the node we splay might be the deepest node in the tree. Moreover,

it is possible for h to be as large as N. Thus, from the worst-case point of

view, a splay tree is not an attractive data structure. Splay trees perform well

in an amortized sense, Le. in a sequence of intermixed searches, insertions,

and deletions, each operation on average takes logarithmic time.

(Sleator and Tarjan, 1985)

Good performance of splay trees depends on the self-balancing, self-optimizing,

in that frequently accessed nodes will move nearer to the root of the tree to be ac-

cessed more quickly. Inactive elements will be pushed away further from the root.

This is the case in most applications, and is particularly useful for implementing

caches. This is important because of the 90-10 rule. The 90-10 rule suggested by

empirical studies states that, in practice 90% of the accesses are localized to 10%

percent of the data items. The 90 -10 rule has been used for many years in disk

input/output systems. A memory cache stores the contents of some of the disk
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blocks in fast memory. The hope is that when a disk access is required, the block

can be found in the main memory cache and thus save the cost of an expensive disk

access. Programs running in memory show this behavior. Peter Denning (1968)

speaks of a working set. Only a relatively small proportion of an entire disk can

be stored in memory. Even so, storing the most recently accessed disk blocks in

the cache enables large improvements in performance because many of the same

disk blocks are accessed over and over again. The same idea applies to splay trees.

The most recently accessed nodes stay near the top of the tree.

Applications in which the total time for a sequence of operations is im-

portant and not the individual operation time, then splay trees become a better

choice (Sleator and Tarjan, 1985).

The interesting point about a splay tree is that, it guarantees an amortized

running time, for insertion, deletion, and search operations. This means, its bounds

are amortized. The amortized time bound means that a specific operation may

take longer but a sequence of operations is fast. In an N-node splay tree, all

the standard search tree operations have an amortized time bound of O(log N) per

operation. Thus splay trees are as efficient as balanced trees when the total running

time is the measure of interest (Sleator and Tarjan, 1985). Moreover, designing a

data structure with amortized performance, such as a splay tree, is simpler than

designing the worst-case time performance (Iacono, 2001). However, amortized

bounds are not always acceptable. Specifically, if a single bad operation becomes

too time-consuming: 0 (N) time for a single access may be acceptable as long as

it does not happens too often. In particular, if any M operations take a total of

O(M log N) worst-case time, giving an average of log N, then the fact that some

operations are expensive could become acceptable (Sleator and Tarjan, 1983).

In the best case the required number of comparisons for building a splay tree,

from N sorted order data items, is N - 1 comparisons (Geldenhuys and van der

Merwe, 2008). The worst case cost for building a splay tree with N items is

N( If + 1) - 2 - a, where a = 0 if N is even and a = ~when N is odd (Geldenhuys

and van der Merwe, 2008).

Considering the amortized time bound and ignoring the constant factor, splay

trees are as efficient as both dynamic balanced trees and static optimal trees. They

may have stronger optimality properties (Sleator and Tarjan, 1985). Since almost

all uses of ESTs involve a sequence of operations rather than just a single operation,



27

an amortized bound is generally as useful as a bound on each operation. On the

other hand, data structures designed to achieve a certain amortized performance

are often simpler to implement than the data structures with good worst-case per-

formance. A situation in which this might not be true is in real-time applications,

where it is important to have a low worst-case bound on the running time of each

individual operation (Sleator and Tarjan, 1985).

Splay trees require more rotations than balanced BSTs such as A VL trees.

The cost of rotation depends on the application. Therefore, if the rotation cost is

bigger then the self-adjusting tree's performance may be inefficient (Sleator and

Tarjan, 1983). The cost of a rotation in a search tree, which we assume to be 0(1),

depends upon the application. If rotations are unusually expensive, self-adjusting

search trees may be inefficient. One worst-case issue with splay tree algorithms is

that of sequentially accessing all the elements of the tree in sorted order. This will

leave the tree completely unbalanced (Weiss, 1999).

The delete minimum in a minimizing heap, and delete maximum in a max-

imizing heap, are important priority queue operations. With splay trees, these

operations become simple. To delete the minimum item, first we perform a find

minimum operation. This operation brings the minimum item to the root, and

by the BST property, there is no left child. Put the right child at the new root.

Figure 3.1 illustrates the delete minimum operation. The initial tree whose root

1

o

1

1

o
4

4 9 11

(a)
9 11

(b) (c)
Figure 3.1: The operation delete minimum using a splay tree.

node has the key 3 is shown in Figure 3.1(a), then in Figure 3.1(b) the minimum

node with key 0 has been splayed, and finally in Figure 3.1(c) the root containing

o has been removed and the new root has been set pointing to the node with key

2. Similarly, delete maximum is implemented by finding the maximum node by
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following right pointers from the root of the tree until a leaf is reached, splaying

this maximum node to the top and setting the new root to its left child.

The easiest way to move an item toward the root is by a simple rotation

strategy. The accessed node is continually rotated with its parent until it reaches

the root. After becoming the root, subsequent accesses to that node are cheaper.

Even if some other nodes are accessed before it is re-accessed, that node is closer to

the root and is found quickly. But, if the access order of nodes does not follow the

90 -10 rule, it is possible for some bad accesses to occur. In reality, rotating like

this leads to badly behaved trees when every node in the tree is repeatedly accessed

sequentially. A simple proof that this takes 8(N2) time is given in Appendix A on

Page 128.

The second strategy for moving the accessed node to the root called the

bottom-up splay strategy is more viable. Bottom-up splay strategy is similar to

the simple rotate-to-root strategy, but the parent and grandparent are considered

to decide what kind of rotations to apply. Movement of the accessed node in this

way is called splaying. Splaying roughly halves the depth of every node along the

access path (Sleator and Tarjan, 1985).

Bottom-up splay trees use Zig, Zig-zig and Zig-zag rotations for splaying a

node to the root of the tree. See Section 2.2.2 on Page 14 for a full description.

Top-down splay trees use the same three kinds of rotations differently. Top-down

splay trees do not use a rotation in the Zig case. Instead, they use some movement

of the nodes. Zig-zig and Zig-zag cases use only one rotation and some movement

of the nodes (Sleator and Tarjan, 1985). Even the simplified Zig-zag case does

not use rotation. It only uses movement of the nodes. Simplified Zig-zag avoids

rotation and makes the code simpler, but increases the number of iterations (Weiss,

1999). For the details of top-down splaying see Section 2.2.3 on Page 16.

A more efficient method for moving the accessed node to the root of the tree is

the top-down splay strategy. Top-down splaying uses a single pass for accessing and

splaying the node. Therefore, the top-down splay procedure is faster in practice,

and maintains the logarithmic amortized bound (Sleator and Tarjan, 1985).

3.2.1 Splay Tree Theorems

We have adapted the proofs by Daniel Sleator and Robert Tarjan 1985 for theorems

concerning the run-time efficiency of splay trees.
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(a) (b) (c) (f)
8 8 8 8

7 7 7 7

6 6 6 6

5 5 1

4 4 2

3 1 2

2 2 3

1 3

Figure 3.2: (a) A skew tree built by sequentially inserting [LN] in 8(N) time.
(b) The tree after 1 has been zig-zigged once. (c) The tree after 1 has been zig-
zigged twice. (d) The final tree after 1 has been zig-zigged a third time. (e) The
resultant tree after 2 has been splayed to the root. (f) The final tree after each
node has been accessed sequentially is the same as the initial tree.

Theorem 3.2.1 Balance Theorem The total access time in a splay tree is O((M+

N) log N + M), where N is the total number of nodes, and M is the total number

of operations.

Proof Let us assign a weight of ~ to each item. Then the total weight W =

2:::=1 ~ = 1. The amortized access time is at most 3log N + 1 for any item. The

net potential drop over the sequence is at most N logN.

(Sleator and Tarjan, 1985). •
Let f (i) be the total number of times any item i is accessed. Splay trees have

the same O(logf(i)) runtime as optimal search trees. The only difference is that

its bound is amortized, rather than worst case. Splay trees achieve this bound

without any prior knowledge of the input distribution. This property is known as

the Static Optimality Theorem.

Theorem 3.2.2 Static Optimality Theorem If every item is accessed at least

once, then the total access time is:

N M
O(M + ~ f(i) log f(i))

Proof Assign a weight of tt9 to item i. Then the total weight W - 1, the
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amortized access time of item i is O(log f~)), and the net potential drop over the

sequence is at most 2:;:1 log f~) .

(Sleator and Tarjan, 1985). •

Assume that the items are numbered from 1 to N in symmetric order. Suppose

that the the sequence of items is iI, i2,·.·, iu-

Theorem 3.2.3 Static Finger Theorem For any fixed item, F, in the splay

tree, the total access time is

M

O(NlogN +M + Llog(lij - FI + 1))
j=l

Proof Assign a weight of (li-il+l)2 to item i. Then W ~ 22::1 k12= 0(1). Then,

the amortized time of the j th access is 0 (log( Iij - F I + 1)). The net potential drop

over the sequence is 0 (N log N), since the weight of each item is J2'
(Sleator and Tarjan, 1985). •
There are many open questions about the performance of splay trees. Further

analysis and work are needed to analyze the worst-case, average-, and best- case

behavior of splay trees (Geldenhuys and van der Merwe, 2008). Splay trees may

follow a top-down, i.e. root insertion method or a bottom-up, i.e a leaf insertion

method. In root insertion the newly formed splay tree is built as progress is made

down the tree until the access is successful. Whereas in leaf insertion the splaying

of the tree is started after the element is finally accessed. Leaf insertion thus needs

two passes along the access path whereas leaf access traverses the access path

once. In their analysis for root insertion and leaf insertion Geldenhuys and van der

Merwe (2008) compare leaf insertion and root insertion for a sequence of inputs s

such as {al,a2, ... , an} and the reverse of s such as {an, an-I, ... ,al}' They also

compare the average-case and worst-case for building a tree using root insertion,

and conclude their study by providing experimental results that have provided the

impetus for our investigation. They also mention many interesting questions that

arise from considering their experimental results. (Geldenhuys and van der Merwe,

2008)

The analysis of worst-case, average, and best-case behaviors of root insertion

in splay trees is still open and needs more work. We study and analyze the per-
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formanee of splay trees experimentally and study theoretical aspects of splay tree

behavior. In our analysis we will assume different possible cases and then compare

the results.

3.3 Skip Lists
Skip lists-data structures that behave similarly to balanced binary trees-were

discovered by Bill Pugh (1990).

Skip lists use a probabilistic balancing method, rather than strictly enforcing

balance. They make random choices in arranging the entries in such a way that

search and update times are O(log N) on average, where N is the number of entries

in the list (Pugh, 1990). The average time depends on the use of a random number

generator in the implementation of the insertion to help decide where to place

the new entry. It does not depend on the probability distribution of the keys

in the input. It means, no input sequence consistently produces the worst-case

performance (Pugh, 1990). The insertion algorithm of skip lists can be easily

modified to allow duplicate keys (Pugh, 1990).

For most applications skip lists are easier and faster to implement than bal-

anced trees and self-adjusting trees (Pugh, 1990). They are also very space effi-

cient and can be configured easily to require an average of 1% percent pointers

per element-or even less-and do not require balance or priority information to

be stored with each node (Pugh, 1990). They have balance properties similar to

search trees built by random insertion, but they do not require insertion to be

random (Pugh, 1990).

The structure of a skip list is determined only by the number of elements in

the skip list and the results of consulting the random number generator, and the

sequence of operations that produced the current skip list does not matter (Pugh,

1990). The total number oflevels in a skip list is probably about O(log N), where

N is the number of elements in the skip list (Pugh, 1990). Items are randomly

distributed in the levels and half of the items will move from level i to level i+ 1

with high probability (Pugh, 1990).

Skip list implementation has roughly the same efficiency as the implementa-

tion of highly optimized, non-recursive balanced trees (Pugh, 1990). For uniform

query distribution, skip lists are faster by a factor of 2-3, than recursive balanced
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trees or highly optimized splay trees (Pugh, 1990).

Although skip lists have bad worst-case performance, no input sequence con-

sistently produces the worst-case performance (Pugh, 1990). It is very unlikely a

skip list data structure will be significantly unbalanced. As an example, for a list

of more than 250 elements, the chance that a search will take more than three

times the expected time is less than one in a million (Pugh, 1990).

The time required to find an element is proportional to the length of the

search path, which is determined by the pattern in which elements with different

levels appear as we traverse the list (Pugh, 1990). Since a skip list has about

O(log N) levels with high probability, and the expected amount of time spent

scanning forward at any level i is 0(1), therefore, the expected running time for

searching an entry on a skip list with N entries is O(log N) (Pugh, 1990). The

probability of poor running times for successive operations on the same data struc-

ture are not independent, that means two successive searches for the same element

will both take exactly the same time (Pugh, 1990).

The expected running time of the insertion algorithm on a skip list with N

elements is O(log N) (Pugh, 1990). The running time is averaged over all possible

outcome of the random numbers used when inserting entries. The expected running

time for removal is also O(log N) (Pugh, 1990).

In worst-case performance, skip lists are not a superior data structure. In

fact, if we do not officially prevent an insertion from continuing significantly past

the current highest level, then the insertion algorithm can go into what is almost

an infinite loop, however, since the probability of having a fair coin repeatedly

come up heads forever is O. If we terminate position insertion at the highest level

h, then the worst case running time for performing the find, insert and remove

operations in a skip list S with N entries and height h is O(N + h). (Weiss, 1999)

This worst-case performance occurs when the tower of every entry reaches level

h - I, where h is the height of the skip list. However, the probability for this to

happen is very low. Judging from this worst case, we might conclude that the skip

list structure is strictly inferior to the balanced BSTs (Weiss, 1999).

Balanced trees- A VL, red-black trees-, self-adjusting trees-splay trees- and

skip lists can be used for the same problems. A choice among them involves

several factors such as, ease of implementation, type of bounds, constant factor,

and performance on non-uniform distribution of queries (Pugh, 1990).
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For many applications, skip lists are a more natural representation than bal-

anced trees, and they lead to simpler algorithms. The simplicity of skip lists

algorithms makes them easier to implement in many applications. It is easier to

balance a data structure probabilistically than to maintain the balance explic-

itly (Pugh, 1990). The main advantage of using randomization in data structures

and algorithm design is that the structures and methods that result, are usually

simple and efficient (Pugh, 1990).

Balanced trees have worst-case time bounds, self-adjusting trees have amor-

tized time bounds and skip lists have probabilistic time bounds. For skip lists,

any operations or sequence of operations can take longer than expected, although

the probability of any operation taking significantly longer than expected is very

low. In some real time applications, we must be sure that an operation will be

completed within a certain time bound. For such applications, self-adjusting trees

may be undesirable since they can take significantly longer on an individual oper-

ation than expected. For example, in self-adjusting trees an individual search can

take O(N) time instead of O(log N) time. For real-time systems, skip lists may be

usable if an adequate safety margin is provided (Pugh, 1990).

Constant factors can make a significant difference in the practical applications

of an algorithm. Skip lists provide significant constant factor speed improvements

over balanced trees and self-adjusting tree algorithms. Compared to self-adjusting

trees, skip lists have low inherent complexity and low inherent overhead. Skip list

algorithms are non-recursive and they are simple enough so that programmers can

optimize them (Pugh, 1990).

Self-adjusting BSTs such as splay trees adjust to non-uniform query distri-

bution, therefore, they are faster than skip list for skewed distribution. On the

other hand skip lists are faster when processing uniform query distribution (Pugh,

1990).

The Table 3.1 on Page 34 by Bill Pugh (1990) compares the performance of

implementations of skip lists, balanced trees, and self-adjusting trees. All imple-

mentations were optimized for efficiency.

Skip lists perform more comparisons than other methods. If real numbers are

used as keys, skip lists were slower than the non-recursive AVL tree algorithms.

Also search in a skip list was slightly slower than search in a 2-3 tree, but, insertion

and deletion using the skip-list algorithms were still faster than using the recursive
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Implementation Search Time Insertion Time Deletion Time
Skip Lists 0.051 ms. (1.0) 0.065 ms. (1.0) 0.059 ms. (1.0)
Non-recursive AVL trees 0.046 ms. (0.91) 0.10 ms. (1.55) 0.085 ms. (1.46)
Recursive 2-3 trees 0.054 ms. (1.05) 0.21 ms. (3.2) 0.21 ms. (3.65)
Top-down splaying 0.15 ms. (3.0) 0.16 ms. (2.5) 0.18 ms. (3.1)
Bottom-up splaying 0.49 ms. (9.6) 0.51 ms. (7.8) 0.53 ms. (9.0)

Table 3.1: Comparison of methods with skip lists.

2-3 tree algorithms (Pugh, 1990).

Skip lists are faster than self-adjusting trees by a significant constant factor

when queries are uniformly distributed. Self-adjusting trees are faster than skip

lists only for highly skewed distributions. So, in an application where highly skewed

distributions are expected, either self-adjusting trees or a skip list aided by a cache

may be preferable (Pugh, 1990).



Chapter 4

Methodology

Our starting point for this research was conducting the literature review. We

started our research by studying and analyzing the behaviors of binary search

trees (BSTs), particularly splay trees and skip lists. In this phase we collected

enough information about BSTs. Through our literature review we were able to

grasp the history and development of various BSTs.

Based on our study of the literature, we could formulate the theoretical anal-

ysis for AVL trees, splay trees, and skip lists. Our theoretical analysis is based

on the brute-force approach. The insertion, deletion, and search operations for

the above mentioned data structures were theoretically studied and analyzed. In

order to generalize the theory, for each operation different inputs and tree struc-

tures were considered. For each operation the required number of comparisons,

rotations-if necessary-, and the resultant tree structure were determined. To

analyze the building operation of each data structure, sorted and unsorted inser-

tions were considered.

Because of the involvement of randomization and probabilities in the opera-

tions of skip lists, we used simple probabilistic approaches to analyze the perfor-

mance of skip lists. The probability of different cases for many sequences of inputs

were studied and analyzed. Our results are based on the cases which have high

probabilities.

The search and update operations of bottom-up and top-down splay trees are

theoretically analyzed by using a brute-force approach. For each operation different

data inputs and tree structures were considered. The best-case, average-case, and

worst-case are calculated. The effect of the rotation types on the structure of the

resultant tree is analyzed.

After completing the manual analysis we started our experimental analysis.

In fact, in our research, completing the manual analysis before the experiments

35
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guided us to decide which experiments were needed. For our experimental analysis

we implemented the existing algorithms for various BSTs and skip lists.

After completing the experimental analysis we compare our results with the

expected theoretical behavior. In the case of differences the reason is explained.

We have compared statistically the run-time, R, with theoretical time, T. When

comparing the empirical timings we scaled the data structures according to the

theoretical bounds of the algorithms in order to get 'fair' comparisons. For example,

if the theoretical bound for lookup in a balanced BST is O(log N) and the bound

for a lookup in a BST that has degenerated into a linear list with bound O(N) we

will use n = logN elements where N is a large number when comparing two such

methods. We expect the empirical times to differ by a constant. The experimental

results and statistics are programmatically generated, timed, and tabulated.

All the above steps and analysis are used to analyze the worst-case, average-

case, and best-case behavior of splay trees. It is also used for comparing splay trees

with skip lists as well as for finding the cases in which splay trees outperform skip

lists.

4.1 Analysis of Binary Search 'frees
In a BST, the required time for finding an element depends on how many levels

down the tree the element is situated. In other words, the required search time

depends on the depth of the target element. The search operation begins at the

root of the tree and descends the tree level by level to find the target node. For

selecting the path to the right or left sub-tree, only one comparison is performed

in each level.

4.1.1 BST Best Case Analysis

In any BST, the best case occurs when the target node is situated at the root of

the tree. Therefore, trivially, the best case search time is 0(1).

4.1.2 BST Worst Case Analysis

The worst case occurs when the target node is situated at the bottom level of the

tree. In a fully degenerate BST, where all the nodes have been inserted strictly

in order, the nodes of the BST are arranged in a linear list. So the worst case
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search time occurs when searching for the node at the end of list giving a worst

case search time of O(N).

4.1.3 BST Average Case Analysis

We first show a deviation by calculating the time taken to access each node of

a fully populated balanced EST. This analysis leads to the conclusion that the

average search time is O(log N).
N on-probabilistic proof of average search time in a BST

In a binary search tree the target node can be located at any level of the tree.

The relation between the total number of elements and the number of levels in a

full BST is: Let N be the total number of elements and h be the level number,

Table 4.1: The relationship between the number of elements and the heights of
each level: There are 2h-1 elements in level h and altogether 2h - 1 elements in an
h level fully populated balanced BST, i.e. a full BST.

Level Number of elements
per level

2°
21
22

Number of elements
down to this level

2° = 21 - 1
20+ 21 = 22 - 1

20+ 21+ 22 = 23 - 1

Levell
Level2
Level3

Level h

then:

N = 2h - 1 and h = log(N + 1)

The total number of elements can also be calculated as follows:

N 1 + 2 + ... + 2h-1
h-1
L2i = 2h-1.
i=O

To calculate the average search time in a full BST, divide the total search time for

searching each of the elements in the tree once by the number of elements. The

total time for searching all the elements in a full, balanced tree with h levels is:

h

Th 1+ 2·2 + 3·4 + ... + h· 2h-1 = L i2i-1.
i=l
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In order to follow the standard derivation for the average case first consider Fig-

ure 4.1 which shows a few levels of a fully loaded balanced BST. Notice that there

are 2h-l nodes on level h and that the total number of nodes up to that level is

2h - 1. The number of elements N in a full balanced BST with h levels is given

4 8

Elements in tree
down to this level

1 1
Elements

Level per level
1 1

2 2 3

3 4 7

15

111 ... 12

Figure 4.1: A full balanced BST with h levels has altogether 2h - 1 nodes.

by

h

N L2i-l,

i=l

To approximate the average access time we assume that the probability of accessing

anyone node is uniform. Going further we will approximate this by finding the

total number of probes to probe each node once and divide this by N.

The total number of probes, Th, needed for accessing each node once in a full

balanced BST with h levels, is given by

h

Th L i2h-l.
i=l
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This is calculated as follows.

Th - 1+2·2+3·4+ +h·2h-\

2Th 2+2·4+3·8+· . +(h - 1) ·2h-1 +h· 2\

Th - -(1+ 2+ 4+ +2h-l)+h'2\

_ _(2h + 1) + h2h,

2h(h - 1) + 1.

where h is the number of levels in the BST. Substituting N = 2h - 1, gives

Th = (N + l)(log(N + 1) - 1) + 1

The average time, Taverage, for finding a node in a full balanced BST is:

Taverage
Th
N'
(N + l)(log(N + 1) - 1) + 1

N
- (1 + ~)(log(N + 1) -1) +~,

~ logN, when N is large.

So the average access time for a full BST is O(log N). When we consider balanced

BSTs that are not fully populated it is clear that (1 + ~ )(log(N + 1) - 1) + ~ is

an upper bound for their average search length.

The further observation that the majority of the nodes lie in the bottom level

of a balanced tree ensures that this bound is reasonably close to the lower bound

for the average number of probes required for access in a uniformly distributed

balanced BST.

4.1.4 Probability of the Best case

A full and balanced binary search tree with N elements, has 10g(N + 1) levels. In

the best case the target node appears at the root of the tree. The probability of

looking up this node is: ~. So, the best case which has an access time of 1 occurs

only ~ of the time.
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4.1.5 Probability of the Worst Case

Since in a complete BST, half of the elements are situated in the bottom level of

the tree, the probability of the worst case occurring is: ~.

4.2 Recursive Versus Iterative Implementation of a BST
Most of the operations in binary search trees necessitate descending from the root

down the tree level by level. Half of the elements in a full BST are situated in the

bottom level of the tree. Given this the target is situated at the bottom level, with

a probability of ~, and that it takes O(log N) to reach the target when it is at the

bottom level, the number of comparisons for doing lookups in a BST is bounded

by the height of the tree O(log N) even if the target is situated at the bottom level

of the tree.

A BST has a pointer to the root node and each node in a BST has two

extra references, namely pointers called left and right respectively. The search

operation starts at the root of the tree. To do a lookup set the value of the current
pointer to the value of the root using

current = root;

Next a comparison is made with the target key. If the target key, id, has been

found, return current. If the target key is not present in the current node and

is greater than its key, select the right sub-tree, otherwise select the left sub-tree

to search further. The next comparison is made at the selected node.

if (id == root.key)
return current;

else if (id>current.key)
current = right;

elsecurrent = left;

The same three cases are repeatedly tested until the procedure terminates suc-

cessfully and returns a pointer to the target node or returns a null pointer if the

search was unsuccessful. The function procedure lookup accesses a tree called T
and attempts to find a target node with the value contained in id is invoked as

follows.

tree T;
ii' (T.lookup(id) != null)
else' .

error(id + II not foundll);
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The type of the 'node' is a subtree which we call 'tree'. We first show an iterative

implementation of lookup

tree lookup (keytype id){
tree current = root;

while (current != null){
if (id == current.key)

return current;
else if (id> current.key)

current = right;
else

current = left;
}

return current;
}

We present the same algorithm recursively.

tree lookup (keytype id){
if (root == null)

return null;
else if (id == root.key)

return root;
else if (id> root.key)

return lookup(root.right id);
else

return lookup(root.left, id);
}

On inspection of the code generated by the recursive version, we observe that it

incurs some overhead not required by the iterative version. Whereas the pointer

current is simply updated in the iterative version, a procedure call is executed

with all its incumbent overhead including the usage of stack space for each new

node inspected. Both procedures rely on the global value of a 'root', in the case of

the iterative procedure root refers to the unique root of the tree T being traversed,

and in the recursive procedure root refers to a pointer to the current node.

In Chapter 6 on Page 100 We show that the recursive procedures run at a

constant time slower that the iterative ones.



Chapter 5

Theoretical Results

5.1 AVL Trees

The AVL tree uses balance conditions to ensure that the tree is almost balanced

and its height is logarithmic. During the process of insertion and deletion, the

balance condition is checked and either the balance criteria is changed or the tree is

reconstructed by making the appropriate rotations. The tree can be reconstructed

by a single left or right rotation, or it can be reconstructed by double rotation (Baer

and Schwab, 1977).

Suppose that x is the node to be rebalanced. If the insertion occurs into the

left sub-tree of the left child of x, or into the right sub-tree of the right child of x,

then a single rotation between x and its child is required. If the insertion occurs

into the right sub-tree of the left child of x, or into the left sub-tree of the right

child of x, then a double rotation is required. A double rotation is two rotations:

the first rotation is performed between x's grandchild and x's child. The second

rotation is performed between x and its grandchild (Adel'son- Vel'skiï and Landis,

1962). The order in which the data is inserted into the tree can affect the type and

the number of rotations.

5.1.1 Inserting Sorted Data into an AVL Tree

If the data is inserted in ascending or descending order, into an AVL tree, the

balance is maintained by changing the balance criteria or making a single rotation.

There is no need for double rotation at all. The rotation can be single left or

single right depending on the order of the data. If the data is inserted in ascending

order, the required rotation is left, but if the data is entered in descending order,

the required rotation is right. In both cases, inserting the following items in order,

does not need rotation: Items numbered 1, 2, 4, 8, .... If N sorted items are

inserted into an A VL tree, then the required number of rotations is:

42
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Rotations = N - (log(N) + 1) (5.1)

This means that only (log(N) + 1) cases do not need rotation. The probability of

rotations (Pr) for ordered data is:

Pr = N - (log(N) + 1)
N

(5.2)

where N is the number of items in the tree. The probability of cases which do not

need rotation (PJ) is:

P _ log(N) + 1
J- N . (5.3)

where N is the number of items in the tree.

Note: When calculating the log, using the above formula, ignore the decimal

places.

In the best case there is no need for rotation. Worst case needs one rotation,

and the average number of rotations is N-(lO~N)+l) ~ 1 rotation.

Table 5.1 shows our theoretical results for inserting ascending or descending

sorted data into an A VL tree.

When sorted data items are inserted into an AVL tree, the tree is always

balanced and the height of the tree is logarithmic. In the worst case the height of

the tree is 1+ logN, in the best case the height of the tree is log(N + 1) and the

average height is 0.5 + log(N). The worst case is when item number 2i is entered

into the tree. The best case is when item number 2i - 1 is entered into the tree.

We will see that, when the same number of unsorted data items are inserted into

an A VL tree, the tree is balanced according to the A VL tree conditions, but it may

not be a full and complete BST.
Table 5.2 shows our theoretical results for the number of nodes and number

of levels, when sorted data is inserted into an AVL tree.

After inserting the items numbered 1, 3, 7, 15, 31, 63, 127, and so on, all the

leaf nodes have equal height and the tree becomes a full BST. This means that,

the tree is full if the number of items in the tree is 2k - 1, where k is any integer

value from 0 to 00.

Most of the rotations are performed on newly inserted nodes. Our manual
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Table 5.1: Required number of rotations for inserting data in sorted order.

Number of Total Rotation
Items Rotations probability

1 0 0.0000
2 0 0.0000
3 1 0.3333
4 1 0.2500
8 4 0.5000

16 11 0.6875
32 26 0.8125
64 57 0.8906

128 120 0.9375
256 247 0.9668
512 502 0.9805

1024 1013 0.9893
2048 2036 0.9941
4096 4083 0.9968
8192 8178 0.9982

16384 16369 0.9991
32768 32752 0.9995
65536 65519 0.9997
131072 131054 0.9998
262144 262125 0.9999
524288 524268 0.9999

1048576 1048555 0.9999

analysis shows that, after inserting the items numbered 3, 6, 12, 24, 48, 96, 192,

383, 768, 1536 ... , the rotation is performed around the root of the tree. Therefore,

after inserting the above items, the process of rotation changes the root of the tree.

When the root is changed, the number of items in the left sub-tree becomes 2m = 1,

where m is the number of items in the left sub-tree, before changing the root. In

the same way, the number of items in the right sub-tree is halved. This is the case

when the data is inserted in ascending order. The symmetric case is correct when

the data is inserted in descending order. The above sequence of numbers shows

that, the process of rotation changes the root of the tree, when the number of items

is doubled.

Table 5.3 shows the old and the new root for the tree after inserting the above

sequence of items:

According to our observations the total number of comparisons for inserting

sorted data items into an AVL tree is: ~ log N + C, where C is the total number

of required comparisons for inserting ~ items. The best case is when the first item

is inserted into the tree. The worst case needs 1+ logN comparisons. The average
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Table 5.2: Number of items versus levels.

Number of Number of
Items Levels

1 1
2-3 2
4-7 3

8-15 4
16-31 5
32-63 6

64-127 7
128-255 8
256-511 9

512-1023 10
1024-2047 11
2048-4095 12
4096-8191 13

8192-16383 14
16384-32767 15
32768-65535 16

65536-131071 17
131072-262143 18
262144-524287 19

524288-1048575 20

Table 5.3: The old and the new root after doubling the number of items.

Number of
Items Old root new root
3 1 2
6 2 4
12 4 8
24 8 16
48 16 32
96 32 64
192 64 128
383 128 256
768 256 512
1536 512 1024

number of comparisons is Nlo;Z+2C. The average and worst cases are nearly the

same because this BST has half of its items stored in bottom level-so that half

of the elements appear in the worst case.

Table 5.4 shows the total, and the average number of comparisons, for in-

serting sorted data items into an AVL tree.
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Table 5.4: Total and average number of comparisons for inserting sorted data.

Number of Total Average
Items Comparisons Comparisons

2 1 0.5000
4 5 1.2500
8 17 2.1250

16 49 3.0625
32 129 4.0313
64 321 5.0156

128 769 6.0078
256 1793 7.0039
512 4097 8.0020

1024 9217 9.0010
2048 20481 10.0005
4096 45057 11.0002
8192 98305 12.0001

16384 212993 13.0001
32768 458753 14.0000
65536 983041 15.0000

131072 2097153 16.0000
262144 4456449 17.0000
524288 9437185 18.0000

1048576 19922945 19.0000

5.1.2 Inserting Unsorted Data into an AVL Tree

When unsorted data items are inserted into an A VL tree, the required rotation,

for keeping the tree balanced, may be single left or single right or double. Our

experimental analysis shows that, 25% of the rotation is left, 25% is right and 50%

is double. The total cases which need rotation is 46% of N, where N is the number

of items. Even though, the number of required rotations for inserting unsorted data

is not fixed, but for all N ~ 8, it is less than the required number of rotations when

the same number of items were inserted in a sorted order. For sorted insertion the

percentage of rotations increases when the number of items increases, however, for

unsorted insertion the percentage of rotations is always around 46%.

Table 5.5 compares the required number of rotations for sorted and unsorted

insertion into an AVL tree.

When the sorted data items are inserted into an AVL tree, the tree will be

full if the number of elements is 3, 7, 15, 31, 63,... , and so on. But this is not the

case for unsorted data. For example, the following 7 elements will not generate a

full binary search tree: 6, 3, 4, 15, 20, 10, 12. On the other hand, the insertion of

the above sequence of unsorted items, does not require rotation.
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Table 5.5: Required number of rotation for sorted and unsorted insertion.

Number of Total Rotations Total Rotations
Items for sorted data for unsorted data
32 26 14
64 57 29
128 120 58
256 247 117
512 502 238
1024 1013 472
16384 16369 7591
32768 32752 15277
65536 65519 30539
262144 262125 122149
1048576 1048555 488218

The average number of rotations for inserting sorted data items into an A VL

tree is N-(IO~N)+1), where N is the number of items in the tree. It means, the

number of required rotations depends on the number of items in the tree. But the

exact number of required rotations for inserting unsorted data items into A VL tree

depends on the number of items as well as the insertion order of the items. That

means, the same number of items with different orders may need different number

of rotations.

In the case of unsorted data the height of the tree is close to logarithmic.

Our experimental analysis shows that the height of the tree will be 1 + logN up

to 4 + logN.

5.1.2.1 AVL Search Cost

The search is started from the root of the tree and descending one level at a time.

Each level need only one comparisons. In the best case the search cost is 0(1) and

in the worst case the search cost is equal to the number of levels in the tree. In
the worst case the number of levels are equal to 4 + log(N), therefore, the worst

search time in AVL tree is 4 + log (N).

In a full AVL tree, since each level contains 2i items, where i is the number

of levels. And each item in level i needs i comparison therefore, the total search

cost for accessing all the items is:

log(N+l)-l

L 2i(i + 1)
i=O

(5.4)
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The average search cost is:

L!~JN+l)-l 2i(i + 1)
N

(5.5)

5.2 Skip Lists
Skip lists are an alternative to balanced ESTs. They use a probabilistic balancing

method, rather than strictly enforced balancing (Pugh, 1990). Skip lists with N

elements has search and update times near to O(log N) on average. Skip list has

a probabilistic time bound. The worst case behavior of skip lists is worse than

that of linear lists, because of the extra overheads for handling the lists, but the

probability for the worst case to occur is very low (Pugh, 1990). The time bounds

for the average and worst cases depend on the random numbers generated and the

number of items in the list. The time bound does not depend on the probability

distribution of the keys in the input (Pugh, 1990). But, it still depends on the

distribution of items in the upper levels.

5.2.1 Structure of a Skip Lists

A skip list is a series of lists in which the nodes are arranged horizontally in levels

and vertically in towers. Each node contains a key, its data, and one or more

pointers. The number of pointers, which is also called node level, for each node is

determined randomly. Each node has at least one pointer, and the first of them

always points to the next node in the skip list. From this point of view a skip list is

like a linked list. The additional pointers are used to skip one or more intermediate

nodes. Each list has two extra nodes. The first node determines the beginning of

the list and the second node determines the end of the list. The first node has a

key smaller than every node, and the last node has a key greater than every node.

These two nodes can be -00 and +00 respectively. Other required properties for

a skip list is probability, maximum level, and current overall level.

For the convenience of the reader Figure 5.1 duplicates the skiplist in Fig-

ure 11.
The order in which the data is inserted into a skip list does not affect the

structure and performance of the skip list. The structure of the skip list is deter-

mined only by the number of elements in the skip list and the result of consulting

the random number generator. In other words, the number of levels and the distri-



49

Figure 5.1: A skip list.

but ion of items in the levels are determined only by the number of items and the

process of randomization. Beside the number of levels, the distribution of items in

the upper levels also affects the performance of the skip list. The average number

of comparisons for the search and update operations depends on the number of

levels and the distribution of items in the levels. The first or lowest level contains

all the items. The items will be distributed randomly in the upper levels.

Theoretical analysis can be used to understand the possible number of levels

and the distribution of elements in the levels. The analysis helps us to understand

the performance of the skip list. The number of levels, the number of items in

each level, and even the positions of items in the level affect the search and update

performance and the number of comparisons for searching an item. The position

of items, which reach to the top level, h, positions of elements which reach to the

level h - 1, and so on, also affect the number of required comparisons, during the

search and update operations.

The following are our observations for skip list performance. Our analysis

uses simple probability. For finding the average and worst cases, we consider the

situations which have higher probability than the situation with lower probability.

5.2.1.1 Probability for the Number of Levels

The number of levels is one of the factors that affects the performance of skip lists.

The number of comparisons will increase or decrease according to the number of

levels. The number of levels can be compared with the height of a EST. If the

height of a EST is not logarithmic, then the number of comparisons for search and

update operations increases.

For a balanced BST, we restrict the height of the tree to a minimum by

changing the properties of the elements or by restructuring the tree through the

process of rotation. But for a skip list the levels are generated randomly. Depending
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on the number of items in the skip list, more or less levels will be generated. When

the number of items increase, the probability for having more levels also increase.

It is also possible to have a different number of levels for the same number of items.

We now analyze the probability for different numbers of levels.

Assume that, the probability for moving an item from level i to level i + 1

is ~. Further, assume that the keys of the items are uniformly distributed. Based

on these assumptions, the probability for reaching each of these items, to levell,

level 2, ... , level h is as follows:

Level 1

Level 2

Level h

Proof:

Let PI be the event of reaching an item to levell, and P2 be the event for

reaching the same item to level 2. Then the probability of reaching the same item

to level 2 is the intersection of PI and P2:

1 1 1
P = PI . P2 = - . - = -

224

Similarly we can prove the reachability of the same item to the higher levels.

Generally, the probability of reaching level his:

P = Pl· P2····· Ph

Since the probability of reaching an item from level i to level i+ 1 is ~, it follows

that, the probability of reaching level his:

Fact 1:
1

p= 2h·

If a skip list has N items, then the probability of reaching m items to level

h, is:

Fact 2:

(
N) ( 1 )N N! ( 1 )N

P = m 2h = m!(N - m)! 2h .
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Fact 3: Considering Fact 1 and Fact 2, it follows that for all even N, half

of the items will move from level i to level i+ 1 with high probability. And for all

odd N, ~ ± ~ items will move from level i to level i+ 1. Both cases have equal

possibility.

Fact 4: Consequently, Fact 3 shows that the probability of having log Nlevel

is higher than having less or more than log N levels. Therefore, a skip list with N

elements will has 1+ logN levels, including the base level which contains all the

items, with high probability.

We can also prove that the probability of having log N levels (except the base

level) is higher than having 1+ log N, 2+ logN ... levels.

Let P be the probability of having log N levels, then if at least one item

reaches level logN, the skip list will have log N levels. Let us find the probability

of reaching at least one item to level log N:

P - (N 1) 1 - N 1 - N-l "'-J 1- - 2fOiN - 2fOiN - 2IoiN - --w- "'-J •

The probability of reaching one of the items to level logN + 1, and conse-

quently having log N + 1 levels is:

P - N1ogN+l - N -...lL - 1 -'- 50%- - 21ogN+1 - N21 - 2 -rr:

The probability of reaching one of the items to level logN + 2, and conse-

quently having logN + 2 levels is:

P_ NlogN+2 - N _ N - 1 -'- 25o/c
- - 210gN+2 - N22 - 4 -r-r: 0

The probability of reaching one of the items to level log N + 3, and conse-

quently having log N + 3 levels is: P=N1ogN+3 = 210~+3 = ;;3 = ~=} 12.5%

Generally, the probability for reaching one of the items to level log N + mis:

P = N21ogN+m, where m is an integer.

This means that the probability for having logN levels is higher than the

probability of having more than log N levels. In other words, the probability of

having O(log N) levels is higher than having O(log N) ± m levels.

Table 5.6 shows the probability of distribution of items in the levels, and

consequently the probability of the number of levels.

Results:

1. The probability of having log N levels is higher than the probability of not

having logN levels.
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Table 5.6: Probability for the distribution of items over the levels.

Positive Negative
Level Probability Probability
logn 1.000000 0.0000000

logn + 1 0.500000 0.5000000
logn + 2 0.250000 0.7500000
logn + 3 0.125000 0.8750000
logn + 4 0.625000 0.9375000
logn + 5 0.312500 0.9687500
logn + 6 0.156250 0.9843750
logn + 7 0.078125 0.9921875

2. The probability of having 1 + log N levels is equal to the probability of not

having 1 + logN levels. If the number of levels is greater than log N than

the search operations will not be logarithmic and the number of comparisons

for search and update will increase. The probability of this happening is

50%. Therefore, if we do not stop the moving of elements to the level above

logN then there is a 50% probability of moving one of the elements to level

1+ log N, and 25% for moving to level 2 + log N and so on.

3. The probability of an element to reach level 7 + logN is 0.78125%

which is very low. This means that having 7 + logN levels has 0.0078125

probability of all values of N.

5.2.1.2 Distribution of Items in Each Level

Another consideration about the structure of the skip list is the number of items

in each level. The search and update operations are affected by the distribution of

items in different levels. In the previous section we proved that half of the items

will move from level i to level i+ 1 with high probability. In this section we will

see the effect of distribution of items in the levels.

Suppose that we have log N levels in a skip list. Our theoretical analysis

show that, the skip list will behave well if we have only one item in the middle

of the top level, which is level number logN. In this case the performance of the

skip list will be better than having more than one item in the top level. In the

same way the number and distribution of items in the rest of levels also affect the

performance of the skip lists. To analyze the performance of the skip list from this
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point of view we intend to find the probability of more than one item reaching level

logN .

• Let us see the probability of all the items reaching level log N. If we have

N items then the probability of all the items reaching level log N is the

intersection of their probabilities:

Since the probability for each item to reach level log N is 21o~N then:

1iogN N
P = (- )

2

The above result shows that the probability of all the items reaching level

log N is very low. For example if there are 4 items then the probability of all

the items reaching level 2 (log n) is:

(
1 N 1

210gN) = 256 = 0.0039 = 0.39%

If we have 8 items in a skip list, then the probability for reaching all the

items to level log N which is level 3 is:

p = (2\)8 = 167';7216 = 0.00000005 = 0.000005%.

(21ogN)N =~.

• The probability of all the items reaching level log N - 1 is:

Therefore, the probability for this to happen, is very low.

Table 5.7 shows the probability for different values of N.

• The probability of all the elements reaching level log N - 2 is:

The probability for this to happen is very low.



54

Table 5.7: Probability of reaching all the items to level N - 1.

Number of
elements Probability

2 N/A
4 6.25%
8 0.0%

Table 5.8 shows the probability for different value of N.

Table 5.8: Probability for reaching different values of N.

Number of elements Probability
8 0.39%
16 0.0%

The probability of all the items reaching level log N, log N - 1 and log N - 2

is very low and is close to zero. When the number of items increases, the

chance of all the items reaching the upper levels decreases.

The probability of 2 elements reaching level log Nis:

(N) 2 N-2 _ N! (l)N _ N! ( 1 )N - n(Nj.p Th f h b
2 P q - 2!(N-2)!' 2f09!iT - 2!(N-2)!' N - 2.N ere ore, t e pro -

ability for moving more than one item to level log N is NJ.~fP.

Our experimental result also show that the distribution of items affect the

performance of the skip list.

Results:

1. All the items reaching levellog(N), log(N) - 1, and log(N) - 2, results in

a worst case operation for the skip list. But the probability of all the items

reaching the upper levels is very low and nearly zero. When the number of

items increases in the skip list the probability for all of the items reaching

the uppermost level decreases.

2. The probability of 2 items reaching level log N is also very low. Two items

reaching to the top level causes the number of comparisons to increase during

search and update operations.
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5.2.1.3 Performance of the Skip List

The best performance of a skip list depends on the number of levels and the

distribution of the keys in the levels. A skip list will behave like a balanced BST if

the item which represents the middle of the bottom list reaches level logN, and the

items which represent the quarter of the bottom list reach to the levellog(N) - 1,

and so on. In this case the search and update operations of the skip list will be

identical to balanced BSTs such as AVL trees and Red-Black trees, with the ease

of implementation. The worst-case performance will be logN. But, the structure

of the skip list is not determined by the input order of the data and also it is

not reconstructed by some process such as rotations. The structure of the skip

list is determined by the number of items and the distribution of the items in the

levels. In the following sections, we identify the best, average and worst search

performance of the skip list.

5.2.1.4 Skip List Insertion

To insert a new item into a skip list, we first search the list to find the place for the

new item. During the search, the references of items at which the search dropped

down one level are kept in an array. When the place is found the item level is

retrieved from the random level algorithm. Next the new item is created and it is

placed in the skip list. This is done by assigning the forward references stored in

the array (Pugh, 1990).

Our analysis shows that the average number of comparisons for inserting a

sequence of items into a skip list depends on:

• The number of levels,

• The distribution of items in the levels, and

• The order in which the data is inserted into the skip list.

The required number of comparisons for inserting a new item into a skip list

is equal to the search comparisons, to find the place for the new item. In the next

section, when we analyze the search operation for the skip lists, we will show that

the number of levels and the distribution of items in the levels affect the search

cost. Therefore, the number of levels and the distribution of items in the levels

also affect the process of insertion. The order in which the data is inserted into
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a skip list, does not affect the average number of search comparisons. But, our

analysis shows that the order in which the items are inserted into a skip list affects

the average number of comparisons for inserting data into a skip list. Our analysis

for inserting items into a skip list follows.

Our analysis shows that, when the data is inserted in descending order the

average number of comparisons is equal to the number of levels in the skip list.

Since the number of levels is logarithmic, the average number of comparisons is also

logarithmic. In other words, when the data is inserted in descending order after

each comparison the pointer is dropped down one level. This is exactly the same

as with a EST. In a EST we need only one comparison at each level. Therefore,

the worst case insertion cost for inserting descending ordered data is 1 + logN.

But, when the data items are inserted in ascending order, the required number of

comparisons at each level is not restricted to one comparison. But, the number of

comparisons depends on the number of items traversed before reaching the newly

inserted item's position. Since the data in the skip lists is in ascending order, some

levels need more than one comparison, and the average number of comparisons is
r'

not logarithmic.

Suppose that we want to insert 3 items with keys 10, 20, and 30 into a

skip list. With a high probability such a skip list will have two or three levels .

In either case-2 levels or 3 levels-the descending ordered insertion requires less

comparisons on average.

The average number of comparisons for inserting the above 3 items in de-

scending order is 3.00 comparisons. But the average number of comparisons for

inserting the same 3 items in ascending order is 3.78 comparisons. Even the de-

scending insertion cost is better than random insertion cost. However, the random

insertion cost is better than ascending ordered insertion. Our experimental results

support this theory.

Table 5.9 shows our manual analysis for inserting 3 items in different orders.

For each order, the average was calculated from 3 different distributions of items

in the levels.

A similar manual analysis shows the same result, when seven items with keys

10,20,30,40,50,60, and 70 are inserted into a skip list. The analysis shows that

the insertion cost is lower if these seven items were inserted in descending order.

The average insertion cost for descending insertion is 4.0000 where the average
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Table 5.9: Manual analysis for inserting items in different order.

Insertion Average
Order Comparisons
10,20,30 3.78
10,30,20 3.67
20, 10,30 3.44
20, 30, 10 3.33
30, 10, 20 3.33
30,20,10 3.00

insertion cost for ascending insertion is 5.7856 comparisons.

Table 5.10 shows our analysis for inserting seven items in three different

orders. For each order, the average was calculated from four different distributions

of items in the levels.

Table 5.10: Analysis of inserting seven items in different orders.

Insertion Average
Order Comparisons
10,20,30,40,50,60,70 5.79
40,20,60,10,50,70,30 5.21
70,60,50,40,30,20,10 4.00

Our empirical results support the above results. That is, the descending

ordered insertion cost is less than the ascending and random ordered insertion

cost.

5.2.1.5 Skip Lists Search Performance

Search for a key starts at the header of the top level, and continues moving forward,

if the node key is smaller than the search key. If the node key is equal or greater

than the search key, the search drops down one level and then continues forward.

This process is continued until we find the target node or we show that the target

node is not in the skip list (Pugh, 1990).

On average the cost of the search is logarithmic. We show that, the search

cost for an item depends on the number of levels and the distribution of items in

the levels. Our approach is to determine the best, average, and worst behaviors

of the skip list from the cases which have higher probability. The following is our

analysis for the search operation in a skip list.
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Suppose that three items with keys 10, 20, and 30 are inserted into a skip

list. For these three items, the skip list will have two or three levels with high

probability. Consequently, a skip list with three items has two or three levels with

equal probability. If one item is moved to level two then the probability for having

a third level is not higher than the probability for not having the third level. But

if two items were moved to level two, then with high probability one of these two

items will move to level three. For both cases we have different distributions of

items in the levels, which consequently affect the performance of the skip list.

Let us first consider Scenario 1 in which we have two levels.

Table 5.11 shows our analysis for Scenario 1:

Table 5.11: Analysis for Scenario 1.

Distribution Total Average
of Items Comparisons Comparisons
10 reach to level I 8 2.67
20 reach to level 1 6 2.00
30 reach to level 1 6 2.00
Overall Average 6.67 2.22

Results

• Table 5.11 shows that the distribution of items in the levels affects the per-

formance of the skip list. The average number of comparisons for search

increases or decreases depending on the distribution of items in the levels.

• Our analysis shows that, when the first item reaches level two, the average

number of comparisons for searching an item is greater than when the second

and third items reach to level two. The reason is when the middle item

reaches the second level it keeps the distribution of items in balance, and

when the last item reaches the second level, it eliminates some comparisons

with the end pointer. As a result, the performance of the skip list is better

if the items which are at the end of the skip list reach the top levels. But, if

the items which are at the front of the skip list reach the higher levels, the

performance of the skip list is lower.

• When the number of items is 3, the probability for having the above two best
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cases, in which the middle and last items reach to the top levels, is 0.67. But

this probability decreases when the number of items increases .

• If these three items were inserted into a balanced BST such as AVL tree,

then the average search cost is 1.67 comparisons. Whereas in the skip list

the average search cost is 2.22 comparisons. Therefore, comparing skip lists

with AVL trees, AVL trees need less comparisons for searching an item. When

we compare the search efficiency between skip lists and A VL trees, we ignore

the required number of rotations during A VL update operations. If no item

reaches to levell, the skip list behaves like a linked list. In this case the best

case will be 0(1), the worst case is O(N) and the average case is N(:;l). But

the probability for such a worst case to happen is very low. A skip list with 3

items, has the probability of 0.125 (12.5%), for the worst case to occur. The

probability decreases when the number of items increases. For example if the

number of items is 8, then the probability for skip list to become like a linked

list is 0.0039 (0.39%). Generally, the probability for a skip list to behave

like a linked list is <]N. This shows that the probability decreases when the

number of items increases.

Now let us consider the Scenario 2, which has 3 levels.

Table 5.12 shows our analysis for Scenario 2:

Table 5.12: Analysis for Scenario 2.

Distribution Total Average
of Items Comparisons Comparisons
10 reach to level 3 and 20 to level 2 9 3.00
20 reach to level 3 and 10 to level 2 7 2.33
10 reach to level 3 and 30 to level 2 8 2.67
30 reach to level 3 and 10 to level 2 7 2.33
20 reach to level 3 and 30 to level 2 7 2.33
30 reach to level 3 and 20 to level 2 6 2.00
Overall Average 7.33 2.44

Results

• Our analysis for having 3 levels also shows that, the distribution of items in

the levels affects the performance of the skip list. That is, the search cost

depends on the distribution of items in the levels.
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• Our analysis illustrates another interesting point: when the items which are

at the front of the skip list reach the highest level, the average number of

comparisons for searching the items increases. The best case is when the

middle and the last items reach to the higher levels. Especially, when the

last item reaches to the higher level h, and the middle item reach to level

h - 1. The reason is the same as it was for having two levels. That is, when

the middle item reaches the top level, it keeps the items in balance, and when

the last item reaches the second level, it eliminates some comparisons with

the end pointer.

• The probability for having the above two best cases is 0.33, which is less than

the probability for having the best case when we have two levels. Similarly,

this probability decreases when the number of items increases.

• Compared with a balanced EST such as an A VL tree, the required number

of comparisons for A VL tree is 1.67. But a skip list with 3 levels, require 2.44

comparisons on average.

• Our theoretical analysis shows that, a skip list with 3 items is more efficient if

it has two levels rather than three levels. The average number of comparison

for a search will increase by the factor of 1.099 if there are 3 levels. But,

these two cases are equiprobable.

As a result, skip lists with 3 items have 2 or 3levels with high probability, and

the average number of search comparisons for these two cases, is 2.33 comparisons.

Now suppose that seven items with keys 10,20,30,40,50,60, and 70 are in-

serted into a skip list. For a skip list with seven items the high probability is for

moving three or four items to level two. If three items were moved to level 2 then

the high probability is for moving one or two items to level three. Their probability

is equal. If four items were moved to level two then two items will move to level

3 with high probability. Considering both cases together, level three contains two

items with high probability. Therefore, with high probability, one of these two

items moves to level four. Consequently, when seven items are inserted into a skip

list the number of levels has a high probability of reaching four. A skip list with

four levels has different shapes depending on the distribution of items in the levels.

From the probabilistic facts we know that, all the items have equal possibility for
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reaching the upper levels. This distribution affects the search performance of the

skip list. We consider three scenarios:

1. A skip list with four levels in which four items are in level 2, two items are

in level 3, and one item is in level 4.

2. A skip list with four levels, in which 3 items are in level two, two items are

in level 3, and one item is in level 4.

3. A skip list with three levels, in which 3 items are in level two, one item is in

level3.

Table 5.13 shows our analysis for the distribution of items in the levels con-

sidering the Scenario 1:

Table 5.13: Distribution of items considering the Scenario 1.

Distribution Total Average
of Items Comparisons Comparisons
40 = L4; 60 = L3; 10 and 30 = L2 29 4.14
40 = L4; 70 = L3; 20 and 50 = L2 26 3.71
40 = L4; 10 = L3; 20 and 60 = L2 28 4.00
40 = L4; 70 = L3; 30 and 60 = L2 25 3.57
40 = L4; 70 = L3; 50 and 60 = L2 28 4.00
40 = L4; 70 = L3; 20 and 60 = L2 25 3.57
40 = L4; 60 = L3; 20 and 50 = L2 26 3.71
10 = L4; 30 = L3; 20 and 60 = L2 33 4.71
10 = L4; 20 = L3; 30 and 40 = L2 42 6.00
70 = L4; 60 = L3; 40 and 50 = L2 25 3.57
10 = L4; 70 = L3; 20 and 60 = L2 34 4.86
10 = L4; 30 = L3; 50 and 60 = L2 34 4.86
10 = L4; 60 = L3; 20 and 70 = L2 34 4.86
Overall Average 29.92 4.27

Results

• The above table shows that, the distribution of items in the levels of a skip

list with 7 items also affects the performance of the skip list. The required

number of comparisons for searching depends on the distribution of items in

the levels.

• The above table also shows that when the items at the middle and at the end

of the skip list reach higher levels, then the performance will be better than,
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when the items which are in the beginning of the list reach to higher levels.

The reason is the same as it was with a skip list with 3 items. When the

middle item reaches the second level it keeps the distribution of the items in

balance, and when the last item reaches the second level, it eliminates some

comparisons with the end pointer.

• From the above table the average number of comparisons for searching an

item in the skip list with seven items is 4.2746. We have 4 levels in the skip

list. Therefore, the average number of comparisons is close to the number of

levels as it was in the skip list with 3 items.

• Compared with A VL trees, if these seven items were inserted into an A VL

tree, then the average search cost is 2.14 comparisons.

Now let us consider the Scenario 2, in which we have four levels but we have

3 items in level two, two items in level three, and one item in level four.

Table 5.14 shows our analysis considering the Scenario 2:

Table 5.14: Distribution of items considering the Scenario 2.

Distribution Total Average
of Items Comparisons Comparisons
40 = L4; 20 = L3; 60 = L2 27 3.86
40 = L4; 60 = L3; 20 = L2 27 3.86
40 = L4; 10 = L3; 70 = L2 29 4.14
40 = L4; 70 = L3; 10 = L2 29 4.14
10 = L4; 40 = L3; 30 = L2 34 4.86
10 = L4; 20 = L3; 30 = L2 43 6.14
70 = L4; 60 = L3; 50 = L2 28 4.00
40 = L4; 70 = L3; 20 = L2 27 3.86
40 = L4; 70 = L3; 30 = L2 27 3.86
10 = L4; 30 = L3; 60 = L2 34 4.86
40 = L4; 70 = L3; 60 = L2 28 4.00
10 = L4; 30 = L3; 70 = L2 35 5.00
10 = L4; 70 = L3; 30 = L2 34 4.86
Overall Average 30.92 4.42

Results

• Table 5.14 also shows that, when the items at the middle and at the end

of the skip list reach higher levels the performance is better than when the

items which are at the beginning of the list reach to the higher levels.
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• In Table 5.14 the average number of comparisons for searching an item in the

skip list with seven items is 4.42, which is almost the same as with having 4

items in level two.

Now let us consider the third scenario, in which we have three levels. Three

items are moved to level two and one item is moved to level three.

Table 5.15 shows our theoretical analysis for the Scenario 3:

Table 5.15: Distribution of items in a skip list considering Scenario 3.

Distribution Total Average
of Items Comparisons Comparisons
40 = L3j 20 and 60 = L2 22 3.14
40 = L3j 10 and 70 = L2 24 3.43
70 = L3j 30 and 50 = L2 21 3.00
70 = L3j 40 and 60 = L2 22 3.14
10 = L3j 30 and 50 = L2 30 4.29
70 = L3j 40 and 60 = L2 22 3.14
70 = L3j 10 and 40 = L2 24 3.43
30 = L3j 10 and 70 = L2 25 3.57
10 = L3j 20 and 30 = L2 38 5.43
70 = L3j 50 and 60 = L2 24 3.43
Overall Average 25.20 3.60

Results:

• Table 5.15 also shows that when the items at the middle and at the end of

the skip list reach to the higher levels the performance will be better than

when the items which are in the beginning of the list reach to the higher

levels.

• In Table 5.15 the average number of comparisons for searching an item in

the skip list with seven items is 3.60. This is better than when the skip list

has 4 levels. Although, the probability for having four levels is higher than

having 3 levels.

• The average number of comparisons is still worse than for AVL trees.

Deleting an Item from a Skip List Deleting an item from a skip list is similar

to inserting an item into a skip list. To delete an item, first we search the skip

list to find the item to be deleted. If it is found, we update the references. To
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do this, reassign the nodes with references to the node to be deleted, to the node

that comes after the node to be deleted. As a last step, we check to see if we have

deleted the maximum element of the list and if so, we decrease the maximum level

of the skip lists.

In the previous section we saw that the search cost depends on the number

of levels and the distribution of items in the levels. However, the search cost is

logarithmic on average. Therefore, deleting an item from a skip list needs 10g(N)

comparisons for finding the item, plus updating the references and decreasing the

maximum level, if we delete the node with maximum level.

5.3 Splay Trees
Splay trees are a self-adjusting form of binary search trees, in which the newly

accessed items are moved to the root of the tree (Sleator and Tarjan, 1985). When

the item is accessed second time, the second access is cheaper. There are three

methods for moving an item to the root of the tree:

1. Simple Splay Trees

2. Bottom-up Splay Trees

3. Top-down Splay Trees

The easiest method for moving an item to the root of the tree is called the

simple self-adjusting strategy, or rotate-to-root strategy. In this method the newly

accessed item is continually rotated with its parent until it becomes the root of

the tree (Sleator and Tarjan, 1985). The tree is rearranged after each access. In

this method, when some items are moved to the root, some other items will be

moved far from the root. Therefore, if the access order of the items do not follow

the 90-10 rule, it is possible for some bad accesses to occur. As a result, simple

splay tree operations will not have a logarithmic amortized time bound (Sleator

and Tarjan, 1985). We do not analyze the performance of simple splay trees.

5.3.1 Bottom-up Splay Trees

The bottom-up splay strategy is similar to the simple rotate-to-root strategy, but

it achieves a O(log N) amortized time bound. It also moves the accessed item to

the root of the tree, but differently. This kind of move to root operation is known
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as splaying (Sleator and Tarjan, 1985). Bottom-up splay strategy considers the

item to be rotated, its parent, and its grandparent (if exists). Single or double

rotations are used during the splaying, depending on the position of the item to be

splayed. A single rotation is required if the item to be splayed has only a parent but

no grandparent. This kind of rotation is called Zig rotation (Sleator and Tarjan,

1985).
A double rotation is required if the node to be accessed has both, parent and

grandparent. Double rotations can be a Zig-zig or Zig-zag. A Zig-zig rotation is

A ~rotate Y-"'

y

B C D

C D

D ~otatex-y

A B

Figure 5.2: A left-left Zig-zig.

required if the item to be accessed and its parent, are both left children or both

right children. In Figure 5.2 a Zig-zig of x is accomplished with two rotations:

the first rotation is performed between its parent, y, and grandparent, z, and the

second rotation is performed between x and its parent, y (Sleator and Tarjan,

1985).
A Zig-zag rotation is required if the item is a left child and its parent is a

right child or vice versa. A Zig-zag is also performed in two rotations-one left

and one right rotation or vice versa. The first rotation is between the item, x, and

its parent, y, and the second rotation is between the item, x and its grandparent,

z (Sleator and Tarjan, 1985).

These steps are repeated until the accessed item becomes the root of the tree.
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Figure 5.3: A right-left Zig-zag.

5.3.1.1 Analysis of Bottom-up Splay Trees

Bottom-up splay trees can be used for search and update operations. The per-

formance of these operations depends on the arrangement of data items and the

resultant tree structure. After each operation the structure of the tree is altered.

Theoretical analysis can help us to understand the behavior of bottom-up splay

trees. We analyze the following aspects of bottom-up splay trees:

• The insertion order of the data items,

• The effect of different operations on the structure and performance of the

tree, and

• The cost of different operations.

5.3.1.2 Insertion Order of the Data Items

The order in which the data items are inserted into a bottom-up splay tree, affects

the structure and performance of the bottom-up splay tree. Insertion of sorted

and unsorted data items affects the behavior of the bottom-up splay trees. The

number of comparisons will increase or decrease due to the order in which the data

items are inserted. We first deal with in-order insertion.

Insertion of Sorted Data Items Let us identify N items with their keys,

{ki}f. Suppose that items are ordered as follows k1 ::; k2 ::; ... ::; kN-1 ::; kN, and

they are entered in this order from smallest to largest. Entering k1 into the splay



67

tree puts it at the root with no comparison or rotation. Next entering k2, puts it

at the root with one comparison of k2 and k1, insertion of k2 at the right child of

k1 and finally a rotation around k2-k1 which puts k2 at the root and leaves k1 as

its left child. Inserting k3, puts it at the root with one comparison of k3 and k2,

insertion of k3 at the right child of k2 and finally a rotation around k3-k2 which

puts k3 at the root and leaves k2 as its left child. Inserting k4, puts it at the root

with one comparison of k4 and k3, insertion of k4 at the right child of k3 and finally

a rotation around k4-k3 which puts k4 at the root and leaves k3 as its left child.

Inserting kN-l' puts it at the root with one comparison of kN-l and kN-2, insertion

of kN-l at the right child of kN-2 and finally a rotation around kN-1-kN-2 which

puts kN-1 at the root and leaves kN-2 as its left child. Inserting kN, puts it at

the root with one comparison of k» and kN-1, insertion of kN at the right child of

kN-l and finally a rotation around kN-kN-1 which puts kN at the root and leaves

kN-l as its left child.

Therefore, the total insertion cost for inserting N items into a bottom-up

splay tree is N - 1 comparisons and N - 1 rotations. All the rotations are Zig.

Ascending sorted items require left rotations, and descending sorted items require

right rotations. The average insertion cost is N;:/ ~ 1 comparisons and rotations.

The best, average and worst insertion cost are almost identical to each other.

Insertion of sorted data into a bottom-up splay tree require less comparisons, when

we compare it with standard BST, balanced BST such as AVL trees and red-black

trees, and skip lists. This is due to:

• A single splay rotation after inserting each item, and

• the sorted order of the data items.

The single rotation after each insertion, keeps the insertion point for the next

item close to the root of the tree. The sorted order of data items keeps the insertion

of next item close to the previous item.

After inserting N sorted items into a bottom-up splay tree, the resultant tree

becomes a linked list. This is exactly the same when sorted items are inserted into

a standard BST. This causes the search operation to be expensive. In the worst

case the search operation will need N comparisons. We will analyze this situation

when discussing search operation of the bottom-up splay tree.
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Results:

1. Inserting N sorted items into a bottom-up splay tree require one comparison

and one rotation on average. The resultant tree behaves like a linked list.

2. Insertion of sorted data items into a bottom-up splay turn out to a degenerate

trees as happens with standard BST. Insertion of sorted data items into

a bottom-up splay tree needs N - 1 rotations, where insertion of sorted

data items into a standard BST does not need rotations. On the other

hand, insertion of sorted data items into a bottom-up splay tree needs N-1

comparisons, where insertion of sorted data items into a standard BST needs

N(~+1) _ 1 comparisons. On average, insertion of sorted data items into a

bottom-up splay tree needs 1 comparison, where insertion of sorted data

items into a standard BST need Nt! comparisons.

3. Insertion of sorted data items into an AVL tree yields a full BST. The number

of required rotations is N -log(N + I), which is less than inserting the same

number of items into a bottom-up splay tree. But the number of comparisons

for inserting N items into an AVL tree is more than inserting the same

number of items into a bottom-up splay tree.

4. If we repeatedly insert N sorted items into a bottom-up splay tree, the num-

ber of comparisons is N - 1. But if we access any element during insertion,

the number of comparisons increases.

5. For inserting N sorted items into a bottom-up splay tree the best-case,

average-case and worst-cases are almost identical. The best case is when

the first item is inserted in the bottom-up splay tree where we do not need

comparisons and rotations. Insertion of each other element requires one com-

parison and one rotation.

6. If we need to insert sorted items and display them in reverse order we can

use bottom-up splay trees.

Insertion of Unsorted Data Items When unsorted data items are inserted

into a bottom-up splay tree, the required number of comparisons and rotations are

more than inserting the same data items in ascending or descending orders. The
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total number of comparisons and rotations depends on the order of the data items.

That means, different orders of data items need different numbers of comparisons

and rotations. The resultant tree structure also depends on the order of the inserted

data. Different orders of the data items will generate different structures for the

tree. On the one hand inserting items in sorted order is very fast and need less

comparisons, but it yields a degenerate tree. On the other hand inserting data in

unsorted order is slower, but yields better balanced trees.

We analyze the effect of different unsorted orders on the required number of

comparisons, and the resultant shape of the tree.

Suppose that we insert three items with keys 10, 20, and 30 into a bottom-

up splay tree. There are 6 different orders for entering these three items into a

bottom-up splay tree.

Table 5.16 shows the number of comparisons and rotations for inserting the

data items in each order. As we can see the sorted insertion require less comparisons

and rotations. Sorted data items always require a single rotation, where unsorted

insertion require single, or double, or both types of rotation.

Table 5.16: Number of comparisons and rotations.

Order of Total Zig Zig-zig Zig-zag Total
Items Comparisons Rotations Rotations Rotations Rotations
10,20,30 2 2 0 0 2
10,30,20 3 1 0 1 3
20,10,30 3 1 1 0 3
20,30,10 3 1 1 0 3
30,10,20 3 1 0 1 3
30,20,10 2 2 0 0 2

Three items have 6 different orders. The two orders, in which 20 comes at

the end, yields a full BST. These two orders need a Zig-zag rotation, where the

other 4 orders do not require any Zig-zag rotations. An interesting point about

Zig-zag rotations is that they tend to improve the balance of the tree.

Table 5.17 shows our results for inserting three items into a bottom-up splay

tree, and the resultant tree shape.

Now let us see the insertion of seven items with the keys 10, 20, 30, 40, 50,

60 and 70, into a bottom-up splay tree. As with the insertion of three items into

a bottom-up splay tree, the total number of comparisons and rotations depends
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Table 5.17: The Resultant Tree Shape.

Order of Resultant 'free
Items Shape
10,20,30 Completely Unbalanced (Only Left Child)
10,30,20 Full EST
20,10,30 Completely Unbalanced (Only Left Child)
20, 30, 10 Completely Unbalanced (Only Right Child)
30, 10, 20 Full EST
30, 20, 10 Completely Unbalanced (Only Right Child)

on the order of the data items. However, all the unsorted orders, require more

comparisons than sorted orders. The resultant tree structure also depends on the

order of the inserted data. Different orders of the data items will generate different

structures for the tree. As with three items, when 7 items are inserted in the sorted

order, the number of comparisons is less than when the same items are inserted in

unsorted orders. But, sorted insertion yields a degenerate tree, whereas insertion

in unsorted order yields better balanced trees.

Table 5.18 shows the number of comparisons and rotations for different orders

of the data items.

Table 5.18: Number of comparisons and rotations.

Order of Total Zig Zig-zig Zig-zag Total
Items Comparisons Rotation Rotation Rotation Rotation
10,20,30,40,50,60,70 6 6 ° ° 6
40,20,60,10,30,50,70 15 3 3 3 15
40,60,20,50,70,10,30 17 3 5 2 17
40,20,10,30,60,50,70 11 3 2 2 11
70,50,30,10,60,20,40 14 4 1 4 14
40,30,20,10,50,60,70 9 5 2 ° 9
40,70,10,60,20,50,30 15 5 1 . 4 15
10,30,50,70,20,40,60 13 5 1 3 13
10,30,20,50,70;60,40 11 3 1 3 11

Results

1. Our analysis shows that, when unsorted data is inserted into a bottom-up

splay tree, the number of comparisons is equal to the number of rotations.

The same holds when sorted data items are inserted into a bottom-up splay

tree.
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2. Insertion of sorted data items requires less comparisons and rotations-on

average one comparison and one rotation-but the resultant tree is degen-

erate. On the other hand, insertion of unsorted data items require more

comparisons and rotations but yields trees that are better balanced.

3. The average number of comparisons and rotations for inserting 3 items into

a bottom-up splay tree is 0.8888 comparisons and rotations. Where the av-

erage number for inserting 7 items into a bottom-up splay tree is 1.7619

comparisons and rotations. The average number of comparisons and rota-

tions increases when the number of items increase.

4. Sorted insertion needs only Zig rotations. Unsorted insertion may require

Zig, Zig-zig, Zig-zag rotations, or all three types of rotations.

5. Our analysis shows that the Zig-zag rotations tend to improve the balance

of the tree. For example if we insert the items in the following order:

70,50,30, 10,60,20, and 40 into a bottom-up splay tree the resultant tree

will be a full balanced BST. The insertion process needs 4 Zig, 1 Zig-zig and

4 Zig-zag rotations. The 4 Zig-zag rotations tend to balance the tree. But,

if we insert the same 7 items in the following order: 40,50,30,60,20,70, and

lO, which require 3 Zig, 5 Zig-zig, and no Zig-zag rotations, the resultant

tree will be completely unbalanced, looking like a linked list. Therefore, the

order which needs more Zig-zag rotations tends to balanced trees. On the

other hand, if we insert the first order into an A VL tree, the insertion process

requires 4 rotations and the resultant tree will not be a full balanced BST.

Insertion of the second order into an A VL tree requires 2 rotation and yields

a full BST. Therefore, the order which needs more Zig-zag rotations yields

balanced trees.

6. Our analysis has shown that the number of required Zig-zag rotations increase

if the item(s) which represent the root of the balanced BST come at the end

of the orders. For example, with the three items such as lO, 20, and 30,

if 20 is entered at the end, the tree will be balanced and require 1 Zig-zag

rotation. All other 4 orders do not require Zig-zag rotations. In the same

way if 4 items such as lO, 20, 30, and 40 were inserted into a bottom-up splay

tree, the resultant tree will be balanced if 20 or 30 were inserted at the end.
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Similar observations hold when 7 items are inserted into a bottom-up splay

tree.

5.3.2 Effect of Operations on the Structure of a Bottom-up Splay Tree

Accesses to the items of a bottom-up splay tree change the structure of the tree.

Each accessed item is splayed to the root of the tree. A number of rotations is

required in order to splay the accessed item to the root of the tree. These rotations

alter the structure of the tree.

5.3.2.1 Access to the Items

Accessing an item splays that item to the root of the tree. The structure of the

tree is changed depending on the number of items accessed, their order of access,

and the initial structure of the tree before any accesses. We analyze the effect of

sequentially accessing all the items from the root to the leaf as well as from the

leaf to the root of the tree.

5.3.2.2 Sequential Access to All Items from the Root to the Leaf

If all items of a degenerate bottom-up splay tree are accessed in sequential order

from the root to the leaf of the tree, the structure of the tree is changed from

a left degenerate tree to the right degenerate tree or vice versa. If the tree was

a left-child-only tree, then the sequential access to all items will degenerate the

tree to a right-child-only tree. But if the tree was a right-child-only tree, than the

sequential access to all items will degenerate the tree to a left-child-only tree. The

order of the items also change from ascending to descending order or vice versa.

Our analysis shows that, accessing all elements sequentially from the root to

the leaf requires 2N - 1 comparisons and N - 1 rotations. Therefore, the average

number of comparisons is
2N -1
---~2

N

and the average number of rotations is

N-1
N ~l.

All the rotations are Zigs. In the best case there is one comparison and no rotation.

The worst case needs 2 comparisons and 1 rotation. On the average, there is
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~ 2 comparison and 1 rotation. Here we can see that the average number of

comparisons is 2 which is less than the average number of comparisons for the

balanced BST. A degenerate bottom-up splay tree has a structure similar to a

linked list, but accessing all items in a linked list requires Nt comparisons on

average, where accessing all the items in a degenerate bottom-up splay tree requires

2 comparisons on average. Our analysis shows that, bottom-up splay trees work

very well with degenerate trees, if all the items are accessed from the root to the

leaf. The total search cost is 2N - 1 comparisons and N - 1 rotations.

5.3.2.3 Sequential Access to All Items from the Leaf to the Root

If all items of a degenerate bottom-up splay tree are accessed in sequential order

from the leaf to the root of the tree, the structure of the tree is not changed. Of

course, accessing each item will change the structure of the tree, but after accessing

Table 5.19: Comparisons and rotations for sequentially accessing all the ele-
ments.

Number of Total Zig Zig-zig Zig-zag Total
Items Comparisons Rotation Rotation Rotation Rotation

4 12 2 2 1 8
5 15 2 2 2 10
6 20 4 2 3 14
7 23 4 2 4 16
8 30 6 2 6 22
9 33 6 2 7 24
10 38 8 2 8 28
11 41 8 2 9 30
12 45 9 3 9 33
13 55 6 6 12 42
14 60 8 6 13 46
15 63 8 6 14 48
16 70 10 6 16 54

all the items we will have the same tree as before the access. Accessing all the items

from the leaf to the root of the tree requires N + R comparisons, where N is the

number of items and R is the number of rotations. The total number of rotations

is C - N where C is the number of comparisons and N is the number of items.

Table 5.19 shows the number of comparisons and rotations for sequentially

accessing all the elements from the leaf to the root.
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5.3.2.4 Random Access to All Items of a Degenerate Bottom-up Splay
Tree

The result of random access, to all items of a degenerate bottom-up splay tree

differs from sequential access. But, random access to each item of a degenerate

tree changes the shape of the tree to a better balanced BST. Some specific random

orderings of access, may change a degenerate tree to a fully balanced BST.

Accessing all the items in random order requires N + R comparisons, where

N is the number of items and R is the number of rotations. The total number of

rotations is C - N where C is the number of comparisons and N is the number of

items.

Suppose that a degenerate bottom-up splay tree contains seven items with

the keys 10, 20, 30, 40, 50, 60 and 70. Our analysis shows that, after accessing all

the items in random order, the tree shape is changed from a degenerate to some

better shaped BST. Some orderings change the tree to a full and balanced BST.

Table 5.20 shows the result of some random access to all items of a degenerate

bottom-up splay tree.

Table 5.20: Random access to all items of a degenerate bottom-up splay tree.

Total Total Resultant
Access Order Comparisons Rotation Tree
40,70,30,60,20,50,10 26 19 Not Linked List
10,30,50,70,20,40,60 34 27 EST
20,40,60,10,30,50,70 32 25 Not Linked List
10,70,20,60,30,50,40 28 21 Not Linked List
70,50,30,10,20,60,40 21 14 EST
10,50,70,30,20,60,40 31 24 BST
10,70,50,30,20,60,40 31 24 BST
50,10,70,30,60,20,40 29 22 Full EST
30,70,10,50,20,60,40 29 22 Full EST
30,10,50,70,20,60,40 32 25 Full EST
50,70,30,10,60,20,40 26 19 Full EST
10,30,50,70,20,60,40 34 27 Full EST
70,50,30,10,60,20,40 25 18 Full EST
50,10,30,70,60,20,40 27 20 Full EST
50,30,10,70,60,20,40 25 18 Full EST

The results of repeatedly inserting items in sorted order into a bottom-up

splay tree are similar to those of a simple rotate-to--root splay tree. But accessing

some nodes of a bottom-up splay tree improves the balance of the tree. This is one

of the cases which illustrates that splay trees are not good for uniform operations.
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If some random accesses are executed after inserting some nodes in sorted order the

balance of the tree may improve. Suppose that items 10, 20, and 30 were inserted

into a bottom-up splay tree in ascending or descending order. The resultant tree

will be left-child-only if the items were inserted in ascending order, or it will be

right-child-only if the items were inserted in descending order. Some random access

orders will change the tree from linked list to a full balanced EST.

Table 5.21 shows the access order and the shape of the resultant tree.

Table 5.21: Access order and the shape of the resultant tree.

Access Order Resulting Tree
10, 20, 30 Only left child tree (like a linked list)
20, 10, 30 Only left child tree (like a linked list)
30, 20, 10 Only right child tree (like a linked list)
20, 30, 10 Only right child tree (like a linked list)
10,30,20 Full EST
30, 10, 20 Full EST

Results:

• Two access orders with 20 at the end, generate a full EST. For these three

items 20 is the root of the EST. It means if the leaf items are accessed first

and the root is accessed last the resultant tree will be a full EST.

• If the access orders are left, root, right or root, left, right then the resultant

tree will be a left-child-only tree.

• If the access orders are right, root, left or root, right, left then the resultant

tree will be right-child-only tree.

Our elaboration shows that the above result is also true for more than 3

items. Suppose that the items 10, 20, 30, 40, 50, 60, and 70 were inserted into

a bottom-up splay tree in ascending or descending order. The result will be a

left-child-only tree if the items were inserted in ascending order, or it will be only

right child if the items were inserted in descending order. After accessing all the

elements the shape of the tree will change depending on the access order.

Table 5.22 shows the access order and the shape of the resultant tree.
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Table 5.22: Access order and the resultant tree.

Access Order Resulting Tree
10, 30, 50, 70, 20, 60, 40 Full BST
10, 50, 30, 70, 20, 60, 40 Full BST
10, 70, 30, 50, 20, 60, 40 Full BST
10, 30, 70, 50, 20, 60, 40 Full BST
30, 70, 10, 50, 20, 60, 40 Full BST
30, 10, 50, 70, 20, 60, 40 Full BST
50, 10, 70, 30, 60, 20, 40 Full BST
50, 70, 30, 10, 60, 20, 40 Full BST
50, 70, 10, 30, 60, 20, 40 Full BST
50, 30, 70, 10, 60, 20, 40 Full BST
50, 30, 10, 70, 60, 20, 40 FullBST
50, 10, 30, 70, 60, 20, 40 Full BST
50, 10, 30, 70, 20, 60, 40 Full BST
70, 50, 30, 10, 60, 20, 40 Full BST
10, 20, 30, 40, 50, 60, 70 Only left child tree
70, 60, 50, 40, 30, 20, 10 Only left child tree
10, 30, 20, 50, 70, 60, 40 Right balanced, left like linked list
10, 20, 50, 70, 30, 60, 40 Right balanced, left like linked list
70, 50, 30, 10, 20, 60, 40 Right balanced, left like linked list
10, 50, 70, 30, 20, 60, 40 Right balanced, left like linked list
10, 70, 50, 30, 20, 60, 40 Right balanced left like linked list
20, 40, 60, 10, 30, 50, 70 Near to linked list
40, 70, 30, 60, 20, 50, 10 Near to linked list

Results:

• If all items are accessed from the root to the leaf, the resultant tree will be

a right-child-only tree like a linked list. In the same way, if all the items are

accessed from the leaf to the root, the resultant tree will be a left-child-only

tree like a linked list .

• If the leaf items are accessed first and then the items which are in the upper

levels, and finally we access the root, the resultant tree will be a full EST or

close to a full balanced EST.

• If the upper level items are accessed before the bottom level items, then the

resultant tree will be close to the linked list shape.

Random Access to All Items of a Full Balanced Bottom-up Splay Tree

Random access to all items of a full balanced bottom-up splay tree changes the

shape of the tree. Some access orders yield degenerate trees, and some other orders

yield unbalanced trees. There are some orders which keep the tree, after accessing
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all of its elements, full and balanced. That means, if all items of a full and balanced

bottom-up splay tree are accessed, the resultant tree is again a full and balanced

bottom-up splay tree.

An interesting observation is that, the access orders which yield a full and

balanced bottom-up splay tree, also yield a full and balanced bottom-up splay

tree, when all items of a degenerate bottom-up splay tree are accessed in the same

order. Suppose that a bottom-up splay tree contains 7 items with keys 10, 20, 30,

40, 50, 60, and 70. Table 5.23 shows the access orders which yields a full balanced

bottom-up splay tree when all the items are accessed in a full balanced bottom-up

splay tree and degenerated bottom-up splay tree. Of course there are other orders

Table 5.23: Access orders and the resultant tree.

Access order Total Total The Resultant
Comparison Rotation Tree Shape

50, 10, 70, 30, 60, 20, 40 31 24 FUll EST
30, 70, 10, 50, 20, 60, 40 31 24 FUll EST
30, 10, 50, 70, 20, 60, 40 30 23 FUll EST
50, 70, 30, 10, 60, 20, 40 30 23 FUll EST
10, 30, 50, 70, 20, 60, 40 29 22 FUll EST
70, 50, 30, 10, 60, 20, 40 29 22 FUll EST
50, 10, 30, 70, 60, 20, 40 28 21 FUll EST
50, 30, 10, 70, 60, 20, 40 29 22 FUll EST

which also yield full BSTs. But all of these orders have the root elements 20, 60,

40 at the end of the order.

Accessing all the items in random order from a full and balanced bottom-up

splay tree requires N + R comparisons, where N is the number of items and R is

the number of rotations. The total number of rotations is C - N where C is the

number of comparisons and N is the number of items.

5.3.3 Bottom-up Splay Thee Deletion

To delete an item from a bottom-up splay tree, first we access the item. The

process of access moves the accessed item to the root of the tree. Now deleting

the item from the root of the tree, we get two sub-trees: Land R. At this stage

we find the largest item in L and splay that item to the root of L, and then make

R the right sub-tree of L's root. This is called the join operation, which joins the

left and right sub-trees (Sleator and Tarjan, 1985).
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The cost of deletion in a bottom-up splay tree is two splays. The first splay

puts the item to be deleted at the root of the tree. The second splay is needed

to splay the largest item in the left sub-tree to its root. For the deletion of some

items we will not need the second pass splay rotation, if the largest item in the left

sub-tree is already at the root of the left sub-tree. For some items we will not even

need the first pass splay rotation. This depends on the structure of the tree, and

the position of the item in the tree.

The number of comparisons for finding the item to be deleted, and finding the

largest item in the left sub-tree, depends on the number of items and the structure

of the tree. Analysis is helpful to understand the required number of comparisons

for deleting an item from a bottom-up splay tree.

Suppose that we have a bottom-up splay tree with three items such as lO, 20,
and 30. The number of comparisons and rotations for deleting an item depends on

the structure of the tree, and on the position of the item to be deleted. Table 5.24

shows the number of comparisons and rotations for deleting an item from a bottom-

up splay tree. In this analysis, the original tree is considered for deletion of each

item.

Table 5.24: Comparisons and deletions when deleting in a bottom-up splay tree.

Tree Shape Total Total Average Average
Comparison Rotation Comparison Rotation

Balanced 7 2 2.33 0.67
Only right children 8 3 2.67 1.00
Only left children 8 3 2.67 1.00
One right one left child 9 4 3.00 1.33
One left one right child 9 4 3.00 1.33

Results:

• The above table shows that, in a bottom-up splay tree the average number

of comparisons and rotations for deleting the items increases if the tree is

shaped like a linked list or near to a linked list .

• A bottom-up splay tree with 3 items, does not require rotations in the second

pass, if the tree is balanced or has only left children or only right children.

But the second pass of splay needs rotation if the tree is shaped with one left

and one right child or one right and one left child.
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Now let us consider the deletion of items in a bottom-up splay tree, which

contains 7 items with the keys 10, 20, 30, 40, 50, 60 and 70. In our analysis we

consider the different shapes of the bottom-up splay tree with the above 7 items.

In each shape, when finding the average number of comparisons and rotations we

consider the original tree, for the deletion of each item. The order in which the

items are deleted is ascending order for each shape.

Table 5.25 shows the number of comparisons and rotations for the different

shapes of the bottom-up splay tree with 7 items.

Table 5.25: The number of comparisons and rotations.

Tree Shape Total Total Average Average
Comparisons Rotations Comparisons Rotations

Full Balanced EST 24 12 3.43 1.71
Linked List 31 21 4.43 3.00
EST but, not balanced 27 14 3.86 2.00
Balanced EST 25 12 3.57 1.71
EST but, not balanced 26 13 3.71 1.86
Near to linked list 29 16 4.14 2.29

Results:

• In a bottom-up splay tree with 7 items the average number of comparisons

and rotations will increase if the tree is shaped like a linked list or near to a

linked list. This is the same result as it was with 3 items.

• In a balanced bottom-up splay tree with 7 items, the average number of

comparisons is 3.4285 and the average number of rotations is 1.7142. In a

linked list shaped bottom-up splay tree with the same 7 items, the average

number of comparisons is 4.4285, and the average number of rotations is

3.0000.

• Deletion from a left-child-only degenerate bottom-up splay tree with any

number of items, does not require a rotation in the second pass. However,

deletion from a right-child-only degenerate bottom-up splay tree, requires a

number of Zig and Zig-zig rotations. But the number of rotations in the

second pass is always less then the number of rotations in the first pass.
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5.3.4 Top-down Splay Trees

Bottom-up splay trees use two passes for splaying the item to the root of the tree.

The first pass is required to access the item, and the second pass is used to splay

the item to the root of the tree. Therefore, bottom-up splay trees need more

comparisons and rotations for accessing and splaying the items to the root of the

tree.

Top-down splay trees on the other hand, use a single pass for accessing and

splaying the items to the root of the tree. In this way, top-down splay trees require

less comparisons and rotations for accessing the items. Top-down splay trees are

fast and maintain the amortized time bound (Sleator and Tarjan, 1985).

In a top-down splay, the tree is split into three sub-trees: a left sub-tree, a

middle sub-tree, and a right sub-tree. During the search for an item, we take the

items which are on the access path and move them to the left sub-tree or right

sub-tree depending on whether they are smaller or larger than the search item.

Initially the left and right sub-trees are empty and the middle tree consists of the

~entire tree (Sleator and Tarjan, 1985). At any point during the search for x, we

have to follow the left or right link. When we follow the left link, then x and its

right sub-tree are larger than the item which will become the root. Therefore, we

put x and its right sub-tree in a separate tree, which we call it right sub-tree (R).

When we follow the right link then x and its left sub-tree are smaller than the item

which will become the root. Therefore, we put x and its left sub-tree in another

sub-tree, which we call the left sub-tree (L). Descending the tree two levels at a

time, we encounter three items, x, y, and z. x is the root of the middle tree, y is a

child of x, and z is the grandchild of x. With these three items we consider three

different cases: the Zig case, the Zig-zig case, and the Zig-zag case.

In the Zig case, y becomes the root of the middle tree, x and its sub-tree are

attached to sub-tree L or sub-tree R, depending whether x is smaller or larger then

y, respectively. If the case is Zig-zig, z becomes the root of the middle tree, and

we rotate y around x and attach it as a right child of the largest value of sub-tree

L or as a left child of the smallest value of the sub-tree R. In a Zig-zag case, z is

moved to the root of the middle tree, i.e. sub-tree M, the sub-trees x and yare

moved to sub-trees Rand L, respectively. To make the code simpler, the Zig-zag

case is changed to a Zig case. That is, instead of making z the root of the middle

tree, y is moved to the root of the middle tree and z remain as a sub-tree of y.
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This simplification makes the Zig-zag case similar to the Zig case. It avoids the

rotation process but causes more iterations in the splay process. When the value

to be accessed is at the root of the middle tree, we make the left child of x as a

right child of the maximum item in the sub-tree L, and make the right child of x

a left child of the minimum item in the sub-tree R. Finally we make Land R the

left and right children of x, respectively.

5.3.5 Analysis of Top-down Splay 'frees

As with the bottom-up splay trees, we analyze the search and update operations

of top-down splay trees to understand the structure and performance as well as

the effect of different operations on the structure and performance of the top-down

splay trees. In our analysis we consider the effects of:

• The order in which data items are inserted into a top-down splay tree,

• The effect of various operations on the structure of the tree, and

• The cost of operations.

5.3.5.1 The Order of the Data Items

The order in which the data items are inserted into a top-down splay tree, affects

the structure and performance of the top-down splay tree. Sorted and unsorted

insertion of data items changes the structure and performance of the top-down

splay trees. The number of comparisons will increase or decrease due to the order

in which the data items are inserted. Our observations for inserting sorted and

unsorted data items into a top-down splay tree follows.

Insertion of Sorted Data Items When data items are inserted in sorted order

into a top-down splay tree, one comparison is required for insertion of each item,

except the first item, which does not need comparison. There is no need for rotation

at all. When the new item is inserted into the middle tree, the previously inserted

item with its sub-tree is attached to the left or right of the newly inserted item,

depending on whether the new item is larger or smaller than the previous item,

respectively. In other words, if the data items are inserted in ascending order, the

previously inserted item with only its left sub-tree is attached to the left of the
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new item, and if the data items are inserted in descending order, the previously

inserted item with only its right sub-tree is attached to the right of the new item.

Insertion of N sorted items into a top-down splay tree in ascending or de-

scending order, requires N - 1 comparisons. Unlike the bottom-up splay tree,

insertion of sorted data items into a top-down splay tree does not need rotations.

Without rotation, the new item is moved to the root of the middle tree and the

previous item with its sub-tree is attached to it. The difference between ascending

and descending sorted data items is the resultant tree shape. If the data items are

inserted in ascending order the resultant tree is a left-child-only tree with the larger

keys close to the root of the tree. When the data items are inserted in descending

order the resultant tree is a right-child-only tree with the smaller keys close to the

root.

Suppose that we want to insert N items with their keys {ki}f into a top-

down splay tree. Let the items be entered in the following order k1 ::; k2 ::; .•• ::;

kN-l ::; kN into a top-down splay tree. Entering k1 into the splay tree puts it at the

root with no comparisons or rotations. When we insert k2, after one comparison

we make k1 (the previous item), the left child of k2• In the same way when k3 is

entered, after one comparison k2 is attached to the left of k3' Finally when entering

kN, kN-l is attached to the left of kNo Therefore, insertion of each item requires

one comparison and one attachment to its left. The total number of comparisons

for inserting N sorted items into a top-down splay tree is N - 1. Therefore, the

average number of comparisons is N;/ ~ 1. The same method is applied when the

items are ordered as k: ~ k2 ~ ..• ~ kN-l ~ kNo The only difference is that k1 is

attached to the right of k2, k2 is attached to the right of k3, and kN-1 is attached

to the right of kN .

When sorted data items are inserted into a top-down splay tree the best,

average, and worst insertion cost are identical to one another. We can also see

that when inserting sorted data items into a top-down splay tree, the average

number of comparisons is the same as it is for the bottom-up splay tree. But there

is no need for rotations at all, whereas insertion of N sorted data items into a

bottom-up splay tree needs N -1 rotations. This is due to the top-down splay tree

algorithm in which, before inserting the new item, we turn the previous item and

its sub-tree into a left or right child of the new item. Instead of rotation, the new

item is put in the root of the middle tree and the previous item with its sub-tree
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is attached to it.

After inserting N sorted data items into a top-down splay tree, the resultant

tree will be completely unbalanced, like a linked list. The resultant tree will be

a left-child-only tree, if the items were inserted in ascending order, or it will be a

right-child-only tree if the items were inserted in descending order. This causes the

search operation for some items to be expensive. This is exactly the same as when

the sorted items are inserted into a bottom-up splay tree or into a simple BST. But

this differs from balanced BSTs such as AVL trees and red-black trees. Inserting

sorted data items into an AVL tree yields a balanced BST. However, for insertion

of sorted data items, a top-down splay tree does not require rotations and puts the

newly inserted item into the root of the tree. The number of required comparisons

is also less than for inserting the same number of data items into an AVL tree.

Our analysis for inserting ascending or descending sorted data items, into a

top-down splay tree, yields the following results.

Results:

• Insertion of N ascending or descending sorted data items, into a top-down

splay tree, requires N - 1 comparisons. This is the same as inserting sorted

data items into a bottom-up splay tree. This is despite that the bottom-up

splay tree uses two passes, where top-down splay trees use a single pass, for

inserting data items into the tree.

• When sorted data items are inserted into a top-down splay tree, the resultant

tree shape is a left-child-only or a right-child-only tree. This is also the same

as with the bottom-up splay tree and a simple BST.

• Insertion of sorted data items into a top-down splay tree does not require

rotations, whereas insertion of sorted data items into a bottom-up splay tree

requires N - 1 rotations.

• For inserting N sorted items, into a top-down splay tree, the average number

of comparisons is one. The worst case also needs one comparison. The best

case needs zero comparisons. Therefore, for inserting the sorted data items

into a top-down splay tree, the best, average, and worst cases are identical.

The best case is when the first item is inserted into the top-down splay tree,
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where we do not need comparisons. Insertion of each of the other items

require one comparison.

5.3.5.2 Insertion of Unsorted Data Items

When unsorted data items are inserted into a top-down splay tree, the required

number of comparisons is the same as when these unsorted items are inserted into a

bottom-up splay tree. But, the number of required rotations for inserting unsorted

data items into a top-down splay tree is less than inserting the same number of

items into a bottom-up splay tree. Different orders of data items yield different

numbers of comparisons and rotations. The resultant tree structure also depends

on the order of the inserted data, but in most cases the insertion of unsorted data

items into a top-down splay tree yields a degenerate tree.

Suppose that we insert three items with keys 10, 20, and 30 into a top-down

splay tree. There are 6 different orders for entering these three items into a top-

down splay tree.

Table 5.26 shows the number of comparisons and rotation for each order of

the data items.

Table 5.26: Number of comparisons and rotations.

Order of Total Total Tree
Items Comparisons Rotations Shape
10,20,30 2 ° Linked List
10,30,20 3 ° Full EST
20,10,30 3 1 Linked List
20,30,10 3 1 Linked List
30,10,20 3 ° Full EST
30,20,10 2 ° Linked List

Now let us consider the insertion of seven items with the keys 10, 20, 30, 40,

50,60, and 70, into a top-down splay tree. As with the insertion of three items, the

total number of comparisons and rotations depends on the order of the data items.

The resultant tree structure also depends on the order of the data items. However,

comparing with bottom-up splay tree, for most of the orders, the resultant tree is

an unbalanced or degenerate tree.

Table 5.27 shows the number of comparisons, rotations, and the resultant

tree, for different orders of the data items.
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Table 5.27: Sequential access from the root to the leaf.

Order of Total Total Tree
Items Comparisons Rotations Shape
10,20,30,40,50,60,70 6 ° Linked List
40,20,60,10,30,50,70 14 1 Linked List
40,60,20,50,70,10,30 17 6 BST
40,20,10,30,60,50,70 11 3 Linked List
70,50,30,10,60,20,40 14 4 Unbalanced BST
40,30,20,10,50,60,70 9 2 Unbalanced BST
40,70,10,60,20,50,30 15 5 Unbalanced BST
10,30,50,70,20,60,40 13 3 Unbalanced BST
10,30,20,50,70,60,40 11 2 Unbalanced BST
20,60,70,30,10,50,40 14 3 Unbalanced BST
60,20,10,50,70,30,40 14 4 Unbalanced BST

Results:

1. Our observations show that, the number of comparisons is almost the same as

it was for bottom-up splay tree. But, insertion of unsorted data items requires

less rotations. Top-down splay trees require rotation only in the Zig-zig case,

which is only one rotation for each Zig-zig case. The Zig and Zig-zag cases

don't require rotation. Instead, some movement of items between left, L,

middle, M, and right ,R, and sub-trees are required.

2. After inserting the data items into a top-down splay tree, in most cases

the resultant tree has degenerated to a linked list or almost to a linked list.

Where insertion of the same items into a bottom-up splay tree yields a better

balanced tree. For example, insertions of data in the orders 70, 50, 30, 10,

60, 20, 40 and 10, 30, 50, 70, 20, 60, 40 into a top-down splay tree results in

an unbalanced degenerate tree, but inserting these two sequences of items in

the same order into a bottom-up splay yields a full, balanced EST.

3. We observed another interesting point about the unsorted insertion into a

top-down splay tree. Using the standard Zig-zag notation yields better bal-

anced ESTs, than using the simplified Zig-zag notation. The literature men-

tions that, the simplified Zig-zag notation simplifies the code but increases the

number of iterations, where the Zig-zag complicates the code but decreases

iterations (Weiss, 1999). This is true but, the simplified Zig-zag notation

yields a more degenerate tree. For example, applying the simplified Zig-zag
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notation for inserting the orders 20, 60, 70, 30, 10, 50, 40 and 60, 20, 10, 50,

70, 30, 40 into a top-down splay tree, results in a more degenerate tree than

using the standard Zig-zag notation.

4. The average number of comparisons for inserting three items into a top-down

splay tree is 0.78. The average number ofrotations is 0.11. Where the average

number of comparisons for inserting 7 items is 1.78 comparisons. The average

number of rotations for inserting 7 items into a top-down splay tree is 0.43.

5.3.5.3 Effect of Operations on the Structure of Top-down Splay Trees

Search and update operations change the structure of the top-down splay tree.

Every access to some item brings that item to the root of the tree. Consequently,

every access changes the shape of the tree. The affect of each operation may be

different. We will analyze the effect of different operations on the structure of the

top-down splay trees. Our analysis considers the required number of comparisons

and rotations, and the resultant tree structure.

Sequential Access to All Items from the Root to the Leaf If the data

items are inserted in ascending order into a top-down splay tree, the resultant tree

will be a left-child-only tree. After accessing all the elements sequentially from the

root to the leaf, the structure of the tree is changed from a left-child-only tree to

a right-child-only tree. Our analysis reveals that, the total number of comparisons

for sequentially accessing all the items is 2N - 1, where N is the number of items

in the tree. Sequential access to all elements from the root to the leaf does not

require any rotations. This is due to the movement of the accessed item to the

root of the middle tree, tree M. While its left sub-tree, the old root, and its right

sub-tree is moved to the right sub-tree, tree R. In this case the left sub-tree, tree

L, is always empty.

Table 5.28 shows our observations for sequential access to all elements from

the root to the leaf.

These results in Table 5.28 show that, when the number of items is increased

by one, the number of comparisons is increased by two. That means that three

items require 5 comparisons, 4 items require 7 comparisons, and so on. The average

number of comparisons is 2f~-1 ~ 2.
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Table 5.28: Sequential access from the root to the leaf.

Number Total Total
of Items Comparisons Rotation

3 5 0
4 7 0
5 9 0
6 11 0
7 13 0
8 15 0
15 29 0
31 61 0
63 125 0

We can conclude that after inserting N items in ascending order into a top-

down splay tree, and than sequentially accessing all the items from the root to

the leaf require 2 comparisons on average. This is the same as for the bottom-up

splay tree. In the bottom-up splay tree we also need 2 comparisons on average for

accessing all the items from the root to the leaf of the tree. But there is no need for

rotation, when accessing all the items in a degenerate top-down splay tree. Where

we need N - 1 rotations to access all the items in a degenerate bottom-up splay

tree. Bottom-up, and top-down splay trees will be degenerated, if the items were

inserted in ascending or descending orders into the trees.

Inserting the data items in descending order into a top-down splay tree, and

then accessing all the items from the root to the leaf of the tree, yields a symmetric

result. After accessing all the elements sequentially from the root to the leaf, the

structure of the tree is changed from a right-child-only tree to a left-child-only

tree. The total number of comparisons for sequentially accessing all the elements

is 2N -1, where N is the number of items in the tree; there is no need for rotation

at all.

Sequential Access to All Items from the Leaf to the Root After inserting

the data items in ascending or descending orders, and then accessing all the items

from the leaf to the root of the tree, the resultant tree shape is not changed. This is

unlike accessing all the items from the root to the leaf. The number of comparisons

is increased compared with accessing all the items from the root to the leaf. In
some cases there is also need for rotation.

Table 5.29 shows our analysis for sequentially accessing all the items from
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the leaf to the root of the tree.

Table 5.29: Sequential access from the leaf to the root.

Number Total Total Average Average
of Items Comparisons Rotations Comparison Rotation

3 7 1 2.33 0.33
4 11 1 2.75 0.25
5 15 2 3.00 0.40
6 19 3 3.16 0.50
7 23 4 3.28 0.57
8 28 4 3.50 0.50

Our experimental results show that the total number of comparisons for ac-

cessing all the items from the leaf to the root of a degenerate top-down splay tree is

from 2N to 5.32N comparisons, where N is the number of items and N is between

2 and 1048576. Therefore, the average number of comparisons ranges from 2 to

5.32. The total number of required rotations ranges from 0 to 1.45N where N

ranges between 1 and 1048576.

5.3.5.4 Random Access to All Items

For random access we will not consider the original structure of the tree for all

items, as it was for sequential access. But, for each item we will consider the

structure which was obtainied after accessing the previous item. Our theoretical

analysis show that, random access to all items of a top-down splay tree, require

different number of comparisons and rotations, depending on the access order. The

resultant tree structure also depends on the order in which the items are accessed.

Suppose that three items with the keys 10, 30, and 20 were inserted into a

top-down splay tree. The resultant tree will be a full balanced BST, with 20 in the

root, and 10 and 30 as a left and right child respectively.

Table 5.30 shows the result of accessing all the items in various orders.

It means, after accessing the first item the tree shape will change, and we

consider this shape for accessing the second item. In the same way when access

to the second item changes the shape of the tree, we consider that change for

accessing the third item. The best case is when the root, 20, is in the middle of

the access order. In this case we need a total of 6 comparisons and there is no

need for rotation. If the root is accessed first, the same number of comparisons is

required, but there is also need for rotation. The worst case is when the root is at
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Table 5.30: Access in various orders.

Number of Number of
Access Order Comparisons Rotations
10,20,30 6 0
10,30,20 7 1
20, 10, 30 6 1
20,30, 10 6 1
30, 10,20 7 1
30, 20, 10 6 0

the end of the order. In the worst case we need 7 comparisons and 1 rotation for

each order. But if we access these three items in different orders and considering

the original shape of the tree for each access, the required number of comparisons

will be 5 and there is no need for rotation. As a result, in top-down splay trees the

access to items degenerate the tree. If we access all the items of a balanced BST,

when considering the original shape of the tree for accessing each item, the number

of comparisons and rotations decrease. But, if we consider the shape which was

changed by accessing the previous item, the number of comparisons and rotations

increase. On the one hand, top-down splay trees move the recently accessed items

to the root of the tree, on the other hand it changes the structure of the tree from

balanced to unbalanced. Let us consider a top-down splay tree which has 7 items

with the keys 10, 20, 30, 40, 50, 60, and 70. Suppose that the tree which contains

these items is a full balanced BST.

Table 5.31 shows the result of sequentially accessing all the elements in dif-

ferent orders.

Table 5.31: Sequential access in different orders.

Number of Number of
Access Order Comparisons Rotations
10,20,30,40,50,60,70 17 1
40,60,20,10,50,70,30 22 3
70,60,50,40,30,20,10 17 1
20,60,10,50,30,70,40 25 7
60,20,50,10,70,30,40 25 7
10,30,50,70,20,60,40 24 6
70,50,30,10,60,20,40 24 6
30,50,10,70,20,60,40 28 8
50,30,70,10,60,20,40 29 7
30,50,40,20,60,10,70 25 6
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Table 5.31 also shows that the best case is when we access the root in the

middle (in-order). In this case we need 17 comparisons and 1 rotation. The worst

case is when the root is at the end of the access order. In the worst case we need

up to 29 comparisons and up to 8 rotations.

5.4 Comparing Splay Trees with Skip Lists
Skip lists are also widely used for search and update operations. They are related

to splay trees in terms of most of their run time behaviors. For many non-uniform

sequences of operations, splay trees perform better than other search trees, even

when the specific pattern of the sequence is unknown (Sleator and Tarjan, 1985).

Some operations in splay trees may take longer but a sequence of operations has

a logarithmic time bound (Sleator and Tarjan, 1985). If we need a sequence of

operations, and the importance is the total required time for all operations and not

an individual operation, then the splay tree is a better choice. In such applications,

a better goal is to reduce the amortized time of the operations, which is the average

time (Sleator and Tarjan, 1985).

Skip lists on the other hand are a probabilistic data structure which use

randomization for balancing. The operations of insertion and deletion change the

structure of skip lists but searching does not change the structure of the skip

list. Skip lists remain static after searching an item, therefore, the future search

operation for the same item needs the same amount of time as the first search.

How do splay trees compare with skip lists? The effect of the search and

update operations on splay trees differs from these operations on skip lists. We

have analyzed these two data structures by (1) manually elaborating small data

sets, (2) considering the theoretical aspects and (3) comparing timed computer runs

empirically, the behavior of splay trees and skip lists. We consider the behaviors

of splay trees and skip lists below.

Restructuring Movement of the accessed item to the root of the tree is an

important feature of splay trees which distinguishes splay trees from skip lists and

other BSTs.

Skip lists and balanced BSTs remain static when only search operations

are done. But splay trees move the accessed item to the root of the tree. This
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movement of the accessed item to the root of the tree improves the efficiency of

future search operations to the same item (Sleator and Tarjan, 1985).

Restructuring and Tree Building Our observations show that, the insertion

of sorted data items into a bottom-up or top-down splay trees is affected by the

restructuring feature of the splay tree. As a result of restructuring, insertion of

sorted data items into a splay tree requires less comparisons than inserting the

same number of items into a skip list and balanced BSTs. The reason is that,

after inserting each item, a restructuring rule is applied which moves the newly

inserted item to the root of the tree so that the insertion point for the next item

is likely to be closer to the root of the tree. Inserting N sorted data items into

bottom-up or top-down splay trees requires N - 1 comparisons. Therefore, the

average number of comparison is ~ 1. Where the average number of comparisons

for inserting N items into a skip list, in the best case, is logN + 1 comparison.

In fact, the required number of comparisons for inserting N items, into a skip list

depends on:

1. The number of levels in the skip lists,

2. The distribution of items in the levels, and

3. The order in which the data items are inserted.

Though insertion of N sorted data items into a bottom-up splay tree requires

N - 1 rotations, insertion of items into a skip lists does not require rotation.

However, insertion of data items into a skip lists needs some initialization of pointer

and random number generation. Insertion of sorted data items into top-down splay

tree does not need rotation.

Our experiments affirm that the required time for inserting N sorted data

items into a splay tree is less than inserting the same number of items into a skip

list.

Restructuring and the Search Operation Our observations show that, the

restructuring feature affects the search operation of splay trees. The obvious effect

is on a degenerate tree. That means, splay trees work very well, with a degenerate

tree if all the items are accessed from the root to the leaf of the tree. According to
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our observations, the total search cost is 2N - 1 comparisons and N - 1 rotations.

The average number of comparisons for searching is 2, and the average number of

required rotations is one. Splay trees move the accessed item to the root of the

tree, where skip list operations do not change the position of the items during the

search operation. Instead, skip lists keep sorted lists of items. The average search

cost for searching an item in a skip lists with 3 items is 2.33 comparisons, and

the average search cost for searching an item in a skip list with 7 items is 4.10

comparisons. The averages are taken from the cases which have high probability.

The average search cost in a degenerate splay tree with 3 items, when all the items

are accessed from the root to the leaf of the tree, is 2~-1 = 1.67 comparisons. In a

bottom-up or top-down splay tree with 7 items, if all the items are accessed from

the root to the leaf, the average search cost is 2~-1 = 1.86 comparisons-see the

proof in Section 5.3.5, page 86.

The average number of comparisons for accessing all the items from the root

to the leaf of a degenerate bottom-up or top-down splay tree is 2 comparisons,

which is less than the average number of comparison for accessing all the items in

a skip list and balanced BSTs. In a balanced BST, such as A VL tree, the average

number of comparison is close to logN.

Memory Requirements Splay trees are more storage-efficient because no bal-

ance information is stored. Rather than maintaining the balance, the tree is ad-

justed during each operation by splaying the accessed node to the root of the tree.

The resultant tree behaves, in an amortized sense, as though it is balanced (Sleator

and Tarjan, 1985).

Bottom-up splay trees require two passes for splaying an item to the root of

the tree. The first pass is used to find the item, and the second pass splays the

item to the root of the tree. The second pass traverses the path back to the root

of the tree. This can be done by maintaining parent references, or by storing the

access path on a stack. Top-down splay trees on the other hand use a single pass

for accessing and splaying the item to the root of the tree. Top-down splaying is

faster in practice and use only constant extra space (Sleator and Tarjan, 1985).

Skip lists are also very space efficient. They can easily be configured to

require less memory because they do not need balance and priority information to

be stored with each node (Pugh, 1990).
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Ease of Implementation Splay trees are simpler to implement than A VL trees

because there are fewer cases in the algorithms (Sleator and Tarjan, 1985).

The skip list is an alternative to the BST, which has a structure similar to

linked lists and properties similar to self-balancing BSTs. For many applications, it

is easier to balance a data structure probabilistically, rather than strictly maintain

a balanced data structure. Therefore, skip lists are a more natural representation

for many applications and have a simpler algorithm (Pugh, 1990).

Skip list algorithms have low inherent constant-factor overheads. This makes

them easy to implement. On the other hand self-adjusting trees re-arrange their

structure after each operation. This causes a significant overhead on the imple-

mentation of self-adjusting trees. (Pugh, 1990).

Splay trees require more rotations than A VL trees. The cost of a rotation

in a search tree, which we assume to be 0(1), depends upon the application. If

rotations are expensive, self-adjusting search trees may be inefficient (Sleator and

Tarjan, 1983).

When do splay trees outperform skip lists? Splay trees use an amortized

time bound rather than worst case or probabilistic time bound. Any operation

in splay trees may take longer but a sequence of operations is guaranteed to take

logarithmic time on the average. Most of the time, a long sequence of operations

improves the future operations of the splay trees.

Skip lists on the other hand have a probabilistic time bound. There are many

cases which can cause worst case performance for the skip lists, but the probability

of those cases occurring is very low.

Splay trees perform very well if the access patterns are non-random. Non-

random access includes those that follow the 90-10 rule, as well as several special

cases such as sequential, double-ended access, and apparently access patterns that

are typical of priority queues during some types of event simulations. When access

sequences are random and uniform, splay trees do not do as well as other balanced

trees (Weiss, 1999).

There are many applications that can benefit from the properties of splay

trees. The main features, which distinguish splay trees from the skip lists are

listed below:
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Locality Locality is the process of looking for the same item repeatedly in the

list. Some applications need to look repeatedly for the same item in the list. A

good example is a network router. A network router examines the lP address

in each packet and decides onto which outgoing interface to route the incoming

packets (Narlikar et al., 2000). For this purpose routers keep a list of lP addresses

and their corresponding interfaces. For each packet the router checks the list to

find the entry with the same lP address. If the entry was found the packet is

routed from the related interface. If the entry was not found in the list, the packet

is routed through the default route if it is configured; or the packet is dropped if

the default route is not configured. On the other hand, in order to manage the

size of the lP packets, the Internet system segments the message to multiple parts

depending on the size of the messages. Then each segment is encapsulated in an

lP packet. Therefore, if an lP packet arrives at the router, it is likely that multiple

packets with the same destination lP address also arrive. The router has to check

the destination lP address in the list for each packet. If splay trees are used the first

check will bring the list entry which contains the lP address and its corresponding

outgoing interface number, to the root of the tree. Then the subsequent checking

will be easy which results very quick packet forwarding by the router.

Therefore, splay trees are an appropriate choice to use for storing a list of lP

addresses and the corresponding outgoing interfaces (Narlikar et al., 2000). When

the first packet arrives at the router the router searches for the lP address in the

list and moves that address to the root of the tree. Skip lists and balanced ESTs

are static data structures and they do not change their structure during search

operations. Therefore, their performance is very slow in this situation compared

with splay trees. Generally, if an item is used repeatedly or a small number of

items are being heavily used, splay trees can be used to store these items near to

the root.

Packet Classification Packet classification is the process of categorizing lP

packets into different flows for suitable processing. Flows are specified by rules

applied to incoming packets. A collection of rules is called a classifier. Each rule

specifies a flow that a packet may belong to based on some criteria applied to the

packet header. For example, denying all e-mail traffic to destination lP address

192.13.40.90. Or send all voice-over-IP traffic via a separate ATM network.
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Packet classification provides security, monitoring, quality of service (QoS) and

multimedia capabilities (Srinivasan et al., 2006). To classify a packet as belonging

to a particular flow or set of flows, routers and firewalls perform a search over

pre-defined rules. Routers and firewalls use multiple fields in the packet, such as

destination or source lP address, or application port number, as the search key.

Splay trees perform better than skip lists and balanced BSTs for packet

classification. Splay trees are faster than skip lists and balanced trees when they

are used for packet classifications (Srinivasan et al., 2006).

Memory Caches A cache is a temporary storage area where frequently accessed

data can be stored for rapid access, where the original data require longer access

time, compared to the cost of reading the cache. When the data is stored in

the cache, future use can be made by accessing the cached copy rather than re-

fetching the original data, so that the average access time is shorter. A cache is

very effective because many computer applications access patterns have locality of

reference. The computer CPU, hard drive, web browsers, and web servers use a

cache in order to increase the speed of previously accessed data.

When the cache client such as CPU, web browser, or operating system wishes

to access data in its original place, it first checks the cache. If an entry can be

found with a tag matching that of the desired data, the data in the entry is used

instead. This situation is known as a cache hit. So, for example, a web browser

program might check its local cache on disk to see if it has a local copy of the

contents of a web page at a particular URL.

Splay trees can be used to implement caches.

Skewed Operations In some applications the distribution of required opera-

tions will be skewed rather than uniform. That means some operations will be

performed repeatedly. Since splay trees adjust according to usage therefore, they

are efficient to use in such applications. Splay trees perform better than a fixed

tree when the access pattern is non-uniform (Sleator and Tarjan, 1985). On the

other hand, if the distribution of operations is more uniform, and the items are all

equally likely to be accessed, then a randomized data structure such as a skip list

is preferable. Generally, if the set of frequently accessed elements is a small subset

of the elements in the tree, splay trees perform better than skip lists and other
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ESTs.

Our observations show that uniform operations result in worst case splay

trees. Some operations lead to best case splay trees, i.e. when the order of these

operations is in ascending or descending order or sequentially accessing all the

items of a degenerated splay tree from the root to the leaf of the tree. Another

example is the insertion of sorted data items into a splay tree.

Individual operations within a sequence can be expensive, which may be a

drawback in real-time applications (Sleator and Tarjan, 1985). In certain real-time

applications, we must be sure that an operation will be completed within a certain

time bound. For such applications, self-adjusting trees may be undesirable, since

they can take significantly longer on an individual operation than expected time

instead of O(log N) time. For real-time systems, skip lists may be usable if an

adequate safety margin is provided (Pugh, 1990).

5.4.1 Theoretical Comparison of AVL Trees, Splay Trees, and Skip

Lists

Table 5.32 shows the results of our theoretical comparison for inserting ascending

ordered data items between A VL trees, splay trees, and skip lists.

Table 5.32: Comparing ascending insertion.

Operation AVL Trees Bottom-up Top-down Skip Lists
Type Splay Trees Splay Trees
Best Compo 0 0 0 1
Avg. Compo N logN+2C ~1 1 ~ logN *2N
Worst Compo 1+ logN 1 1 O(N) *
Total Compo lflogN +C N-l N-l *
Best Rot. 0 0 0 0
Avg. Rot. N-(logN+l) ~ 1 ~1 0 0N ~
Worst Rot. 1 1 0 0
Total Rot. N - (logN + 1) N-l 0 0
Best Height log(N + 1) O(N) O(N) logN + 1
Avg. Height 0.5 + logN O(N) O(N) logN + 1
Worst Height 1+ logN O(N) O(N) O(N) *
Tree Shape Full BST Degenerate Degenerate Balanced

Notes for Table 5.32

* For skip lists the number of required comparisons depends on the number of levels,
distribution of items in the levels and the order in which the data items are inserted.
Since skip lists have logN levels with high probability, therefore, the number of
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comparisons is logN + d, where d represents the distribution of items in the levels
and the order in which the items are inserted into the skip list. Our theoretical
and experimental analysis show that, if the items are inserted in ascending order
then d can be 1 ~ d ~ N. However, the probability for d to be N or even close to
N is very low. The probability for d to be equal to N is iFr.

Table 5.33 shows the results of our theoretical comparison for inserting descending

ordered data between EST, A VL tree, splay trees, and skip lists.

Table 5.33: Comparing descending insertion.

Operation AVL Trees Bottom-up Top-down Skip Lists
Type Splay Trees Splay Trees
Best Camp. 0 0 0 1
Avg. Camp. NlogN+2C ~1 1 1 + logN *2N
Worst Camp. 1 +logN 1 1 O(N) *
Total Camp. ~logN +C N-l N-l *
Best Rot. 0 0 0 0
Avg. Rot. N-{logN+l) ,....,1 ~1 0 0N ~
Worst Rot. 1 1 0 0
Total Rot. N-(logN+l) N-l 0 0
Best Height log(N + 1) O(N) O(N) logN
Avg. Height log(N + 1) O(N) O(N) logN
Worst Height 1 +logN O(N) O(N) O(N) *
Tree Shape Full BST Degenerate Degenerate Balanced

Notes for Table 5.33

* For skip lists the number of required comparisons depends on the number of levels,
distribution of items in the levels and the order of insertion. Since skip lists have
logN levelswith high probability, therefore, the number of comparisons is logN +d,
where d represents the distribution of items in the levels and the order in which
the items are inserted into the skip list. Our theoretical and experimental analysis
show that, if the items are inserted in descending order then d is O.

Table 5.34 shows the results of our theoretical comparison for random insertion

between standard EST, A VL tree, splay trees, and skip lists.

Notes for Table 5.34

* The required number of rotations for inserting unsorted data items into an A VL
tree is not fixed but depends on the order in which the items are inserted into the
tree, but, it is always less than inserting the same number of items in sorted order.

** When unsorted data items are inserted into a bottom-up splay tree, the required
number of comparisons and rotations depend on the order of insertion, but, it is
more than inserting the same number of items in sorted order. When unsorted
data items are inserted into a bottom-up splay tree the number of comparisons is



98

Table 5.34: Comparing random insertion.

Operation AVLTrees Bottom-up Top-down Skip Lists
Type Splay Trees Splay Trees
Best Compo 1 ** *** ****
Avg. Compo logN ** *** ****
Worst Compo logN +4 ** *** ****
Total Compo ** *** ****
Best Rot. 0 ** *** ****
Avg. Rot. 46%N * ** *** ****
Worst Rot. 46%N* ** *** ****
Total Rot. 46%N * ** *** ****
Best Height log(N + 1) ** *** ****
Avg. Height 1+ logN ** *** ****
Worst Height 4+ logN ** *** ****
Tree Shape Balanced ** *** ****

always equal to the number of rotations. The structure of the tree also depends
on the insertion order. Some orders yield degenerate trees, and some other orders
yield full balanced ESTs.

*** The number of comparisons and rotations for inserting unsorted data items, into
a top-down splay tree also depends on the order of insertion. The number of
comparisons is the same as for bottom-up splay trees, but the number of rotations
is less than for a bottom-up splay tree.

For skip lists the number of comparisons depends on the number of levels, distri-
bution of items in the levels and the order of insertion. Since skip lists have log N
levels with high probability. The number of comparisons is log N + d, where d
represents the distribution of items in the levels and the order in which the items
are inserted into the skip list. Our analysis shows that, if the items are inserted
randomly then d can be 1 ::; d ::; N. However, the probability for d to be N or
even close to N is very low. The probability for d to be equal to N is ~.

****

Table 5.35 shows the results of our theoretical comparison for accessing all the

items from the root to the leaf.

Notes for Table 5.35
In the above table the required number of comparisons and rotations for bottom-up and
top-down splay trees are according to the sequential access to a degenerate tree from the
root to the leaf of the tree. The result of sequential access from the leaf to the root or
random access will be different. The reason is, each access to the items of a splay tree
changes the structure of the tree.

* For skip lists the number of required comparisons depends on the number of levels,
distribution of items in the levels and the order of insertion. Since skip lists have
log N levels with high probability, therefore, the number of comparisons is log N +d,
where d represents the distribution of items in the levels and the order in which
the items are inserted into the skip list. Our analysis shows that, if the items are
inserted in descending order then d is O. But if the items are inserted in ascending
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Table 5.35: Comparing sequential access to all items from root to the leaf.

Operation AVL Trees Bottom-up Top-down Skip Lists
Type Splay Trees Splay Trees
Best Compo 1 1 1 1
Avg. Compo (2=~~in+1)-12i(i + 1))/N ~2 ~2 1+ logV»
Worst Compo 4+ logN 2 2 O(N) *
Total Compo 2:~~Jn+1)-l2i(i + 1) 2N -1 2N -1 *
Best Rot. 0 0 0 0
Avg. Rot. 0 ~1 0 0
Worst Rot. 0 1 0 0
Total Rot. 0 N-l 0 0
Best Height log(N + 1) O(N) O(N) logN
Avg. Height logN O(N) O(N) logN
Worst Height 1+ logN O(N) O(N) O(N) *
Tree Shape FUll EST Degenerate Degenerate Balanced

or random orders then d can be 1 ~ d ~ N. However, the probability for d to be
N or even close to N is very low. The probability for d to equal N is <}N.



Chapter 6

Experimental Results

This chapter describes our experimental results. The experiments include the

insertion and search performance of A VL trees, splay trees and skip lists. The

required number of comparisons and rotations for insertion and search operations

of these data structures are programmatically calculated, tabulated, and the results

are compared with the theory. The search performance and run time behaviors

are practically tested and analyzed. For skip lists the effect of the number of levels

and distribution of items in the levels are empirically tested and analyzed. For

splay trees the search operations for one class keys and two class keys-applying

the 90-10 rule-are analyzed.

The experiments test and verify the theoretical results by comparing search

and insertion performance of AVL trees, splay trees and skip lists with each other.

All the experiments were done using Java on various Linux based machines

and a Solaris based machine. The size of the data sets we used are powers of 2 so

that the logarithms base 2 are obvious.

6.1 AVL Trees

6.1.1 Inserting Sorted Data into an AVL Tree

Our experimental results show that, if the data items are inserted in ascending

or descending orders, into an A VL tree, then the required number of rotations for

inserting N items is:

N - (logN + 1)

So the average number of rotations is

N - (logN + 1) ~ 1.
N

100
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For sorted insertion our experimental results correspond exactly with the theoret-

ical results.

Table 6.1 shows our experimental results for inserting ascending or descending

sorted data into an A VL tree.

Table 6.1: Experimental results for inserting data in sorted order.

Number of Total Rotation
Items Rotations probability

1 0 0.0000
2 0 0.0000
3 1 0.3333
4 1 0.2500

16 11 0.6875
64 57 0.8906

256 247 0.9648
1024 1013 0.9893
4096 4083 0.9968

16384 16369 0.9991
65536 65519 0.9997

262144 262125 0.9999
1048576 1048555 0.9999

When sorted data items are inserted into an A VL tree, the tree stays balanced

because it is an AVL tree and thus the height of the tree is logarithmic. In the

worst case the height of the tree is 1 + log N, in the best case the height of the

tree is log(N + 1) and the average height of the tree is 0.5log N. The worst case is

when the item with key 2i is entered into the tree, where i is an integer. The best

case is when the item with key 2i - 1 is entered into the tree, where i is an integer.

Table 6.2 shows our experimental results for the number of nodes and number

of levels, when sorted data is inserted into an A VL tree.

Table 6.2: Number of items versus levels.

Number of Number of
Items Levels

1 1
2-3 2
4-7 3

8-15 4
32-63 6

128-255 8
512-1023 10

2048-4095 12
8192-16383 14

32768-65535 16
131072-262143 18

524288-1048575 20

For inserting sorted data items into an AVL tree, our experimental results
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support the theory that, the height of the tree is almost exactly logarithmic.

Our experimental results support the theory for the required number of com-

parisons when sorted data items are inserted into A VL tree. That is, the total num-

ber of comparisons for inserting sorted data items into an AVL tree is: ~ logN+C,
where C is the total number of required comparisons for inserting ~ items. The

average number of comparison is Nl°1>.Z+2C.

Table 6.3 shows our experimental results for the required number of compar-

isons when sorted items are inserted into an A VL tree.

Table 6.3: Experimental results for the number of comparisons.

Number of Total Average
Items Comparisons Comparisons

2 1 0.5000
4 5 1.2500
8 17 2.1250
16 49 3.0625
64 321 5.0156

256 1793 7.0039
1024 9217 9.0010
4096 45057 11.0002
16384 212993 13.0001
65536 983041 15.0000
262144 4456449 17.0000

1048576 19922945 19.0000

6.1.1.1 Timing Insertion of Sorted Data into an AVL Tree

The run-time behavior of AVL trees was programmatically calculated and recorded.

Table 6.4 shows the total time for 30 repetitions, average time for a single repe-

tition, standard deviation, CJ, and average time for a single insertion. Insertion of

descending order yields to the same timing results.

Table 6.4: Time requirement for inserting ascending sorted data.

Number of Total Time (s) Average Average Time
Items for 30 Repetitions Time (ms) CT IJ. sees.
16384 0.3491 11.64 2.1916 0.7102
32768 1.0582 35.27 4.0444 1.0764
65536 3.0558 101.86 7.8803 1.5542
131072 5.4712 182.37 20.8637 1.3914
262144 10.4017 346.72 40.3712 1.3226
524288 22.2717 742.39 77.4441 1.4160

1048576 43.6493 1454.98 160.6548 1.3876
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6.1.2 Inserting Unsorted Data into an AVL Tree

When unsorted data items are inserted into an A VL tree, the required rotation, for

keeping the tree balanced, may be single-left, single-right or double. Our experi-

ments show that, 25% of the rotations are single-left, 25% are single-right and 50%

are double. The total number of cases which need rotation is 46% of N, where N

is the number of items. The number of required rotations for inserting unsorted

data is not fixed, and depends on the number of items and the order in which

the items are inserted into the tree. However, for all N ~ 8, it is less than the

required number of rotations when the same number of items were inserted in a

sorted order.

Table 6.5 shows the experimental results for inserting unsorted data into an

AVL tree.

Table 6.5: Experimental result for unsorted data.

Number of Left Right Double Total Rotation
Items Rotations Rotations Rotations Rotations Probability

32 3 4 7 21 65.63
64 8 6 14 42 65.63

128 14 15 29 87 67.96
256 33 29 57 166 64.84
512 60 62 122 366 71.48

1024 113 122 239 713 69.62
16384 1914 1896 3832 11474 70.03
32768 3872 3817 7600 22889 69.85
65536 7713 7506 15191 45601 69.58

262144 30600 30645 60529 182303 69.54
1,000,000 116197 116447 233052 698748 69.87

In the case of unsorted data the height of the tree is close to logarithmic.

Our experimental analysis shows that the height of the tree will be 1+ logN up

to 4 + logN.

Table 6.6 shows the experimental results for the height of the tree.

6.1.2.1 Time Requirement for Inserting Unsorted Data

Even though unsorted data requires less rotations than sorted data, the time re-

quirement is more than that for sorted data. It means if we insert 1000000 unsorted

items into an AVL tree, it will take slightly more time than if these 1000000 ele-

ments are inserted in a sorted order.

Table 6.7 shows the experimental timing result for inserting unsorted data

into an A VL tree.
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Table 6.6: Experimental results for the height of the tree.

Number of Number of
Items Levels

8 4
30 6
32 6
80 8

300 10
500 11
800 12

16500 17
65688 19

1000000 24

Table 6.7: Experimental results for inserting unsorted data.

Number of Total Time (s) Average Average Time for an
Items for 30 Repetitions Time (ms) a Insertion JL sees.
16384 0.6609 22.03 4.6795 1.3445
32768 1.3625 45.42 6.6924 1.3861
65536 3.5200 117.33 10.9296 1.7904
131072 6.6538 221.79 24.7740 1.6921
262144 13.2102 440.34 48.9074 1.6798
524288 26.9129 897.10 97.3714 1.7111

1048576 53.6187 1787.29 195.7715 1.7045

6.1.3 AVL Search Cost

In a full A VL tree each level contain 2i items, where i is the level number, and each

item in level i needs i comparison. Our experimental results show that the total

search cost of accessing all the items of a full AVL tree is: 2:~~JN+1)-12i(i + 1)
",log(N+l)-12i(+1)comparisons. The average search cost is: L...i-Q N t comparisons.

Table 6.8 shows our experimental results for the total and average number

of comparisons when all the items of AVL tree are accessed.

Table 6.9 shows the experimental timing for searching all the items of AVL

tree.

6.1.4 Comparing Experimental and Theoretical Results

Our experimental results for the search and update operations of A VL tree are

the same as our theoretical results. The number of comparisons and rotations

for inserting sorted data items are exactly the same, in both our theoretical and

experimental results. The number of levels for inserting sorted and unsorted data

items are also the same in both our theoretical and experimental results.

Our theoretical results for inserting unsorted data items say that the exact
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Table 6.8: Experimental results for searching an AVL tree.

Number of Total Average
Items Comparisons Comparisons

3 5 1.66
7 17 2.42
15 49 3.26
31 129 4.16
63 321 5.09
127 769 6.05
255 1793 7.03
511 4097 8.01

1023 9217 9.00
2047 20481 10.00
4095 45057 11.00
8191 98305 12.00
16383 212993 13.00
32767 458753 14.00
65535 983041 15.00
131071 2097153 16.00
262143 4456449 17.00
524287 9437185 18.00
1048575 19922945 19.00

Table 6.9: Experimental results for searching every item of an AVL tree.

Number of Total Time(s) Average Average Time for a
Items for 30 Repetitions Time (ms) (1 Seareh JJ. sees.
16384 0.4925 16.42 2.4348 1.0010
32768 0.4933 16.44 3.9546 0.5018
65536 1.1829 39.43 5.0302 0.6017
131072 2.2974 76.58 9.0051 0.5842
262144 4.6136 153.79 17.0603 0.5866
524288 9.8212 327.37 33.7517 0.6244
1048576 20.3237 677.46 70.4748 0.6461

number of comparisons and rotations depends on the order of data items, but it

is less than, when the same number of items are inserted in sorted order. In our

experiments we calculated the number of comparisons and rotations for different

orders of data items, and we obtained the same result as the theoretical results.

Our theoretical results show that the total and average search comparison
I (N+1)-1 . . "log(N+l)-12i(i+1) .are Li~O 2~('/,+ 1) and L...,-Q N ' respectively, Our experiments give

the same results.

Therefore, regarding A VL trees, our theoretical and experimental results sup-

port each other and there is no inconsistency between our theoretical and experi-

mental results.
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6.2 Skip Lists
6.2.1 Experimental Results for the Number of Levels

Our experimental results support the theory that, the number of levels affects the

performance of the skip list. The experiments show that the number of levels will

be close to logN with high probability.

Table 6.10 shows our results for the number of levels in a skip list.

Table 6.10: Experimental results for the number of levels.

Number of First Second Third Fourth
Items logN Run Run Run Run

256 8 7 9 8 7
512 9 9 9 10 9

1024 10 10 11 10 9
2048 II 10 10 11 10
4096 12 12 11 11 13
8192 13 11 12 14 13

16384 14 14 14 15 15
32768 15 17 14 17 15
65536 16 18 16 17 18

131072 17 17 16 21 18
262144 18 21 17 17 17
524288 19 16 18 19 19

1048576 20 21 20 18 19

These experiments were done on 13 different numbers of items in the range

256-1048576. For each number the program was run 4 times. The 52 cases are

distributed as follows: 17 cases have logN levels, 16 cases logN + l Ievels, 10 cases

have logN - 1 levels. In the remaining 9 cases: 4 cases have logN + 2 levels, 2

cases have logN - 2 levels, 1 case has logN + 3 levels, 1 case has logN - 3 levels,

and 1 case has logN + 4 levels.

6.2.2 Distribution of Items in Each Level

Our experimental results support the theory that the distribution of items in the

levels affects the performance of the skip lists.

Table 6.11 shows our experimental results for the distribution of items in

the levels in a skip list. This table shows that, besides the number of levels,

the distribution of items in the levels also affect the performance of the skip list.

Considering the table, in some cases the skip list with logN levels has the best

performance. In some other cases the skip list with logN - 1 levels has the best

performance. Skip lists with the same number of levels for the same number of
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items may perform differently. This confirms that, besides the number of levels,

the distribution of items in the levels also affects the performance of the skip list.

Table 6.11: Experimental results for the distribution of items in the levels.

Number of Number of Total Standard Average Time for
Items Levels Time (Sec) Deviation single insertion Jl. s
32768 17 0.0702 25.0465 2.1423

14 0.0707 25.3567 2.1576
17 0.0701 25.6426 2.1393
15 0.0730 25.8887 2.2278

65536 18 0.1243 22.1226 1.8967
16 0.1283 29.1463 1.9577
17 0.1240 22.6280 1.8921
18 0.1240 22.1521 1.8921

131072 17 0.2450 48.2721 1.8692
16 0.2420 43.7013 1.8463
21 0.2475 43.9928 1.8883
18 0.2381 37.3447 1.8166

262144 21 0.4747 72.9647 1.8147
17 0.4468 68.5452 1.7044
17 0.4538 73.8355 1.7311
17 0.4507 73.8310 1.7193

524288 16 0.8840 134.6113 1.6861
18 0.8964 128.2645 1.7097
19 0.8960 126.0836 1.7090
19 0.9005 131.4925 1.7176

1048576 21 2.0304 290.5449 1.9363
20 1.9879 288.4646 1.8958
18 1.9608 290.4399 1.8700
19 1.9655 283.8019 1.8744

6.2.3 Skip List Insertion

Our experimental results show that, the order in which the data is inserted into a

skip list, does not affect the average search comparisons. But, it still affects the

average number of comparisons for inserting data into a skip list. The descending

ordered insertion cost is less than the ascending and random ordered insertion

cost. Our theoretical analysis shows that the random insertion cost is less than the

ascending insertion cost. But, our experimental results show that the ascending

ordered insertion cost is less than the random insertion cost.

6.2.3.1 Timing Results
Table 6.12 shows our experimental results for inserting data items ui ascending

order into a skip list.

Table 6.13 shows our experimental results for inserting data items in descend-

ing order into a skip list.



108

Table 6.12: Timings for inserting ascending ordered data into a skip list.

Number of Total Time(s) Average Average for
Items for 30 Repetition Time(ms) (J one insertion Jl. s
16384 0.9788 32.63 4.5485 1.9913
32768 1.7944 59.81 8.0291 1.8254
65536 4.0793 135.98 13.8803 2.0748
131072 7.1546 238.49 29.2792 1.8195
262144 14.4390 481.30 54.6476 1.8360
524288 28.9955 966.52 106.5134 1.8435
1048576 57.2318 1907.73 211.7464 1.8193

Table 6.13: Timings for inserting descending ordered data into a skip list.

Number of Total Time(s) Average Average for
Items for 30 Repetition Time(ms) (J one insertion Jl. s
16384 0.8740 29.13 3.6925 1.7781
32768 1.6044 53.48 7.0246 1.6321
65536 3.7123 123.74 12.3199 1.8882
131072 6.3975 213.25 26.4979 1.6270
262144 12.3912 413.04 49.4233 1.5756
524288 25.4369 847.90 92.683 1.6172
1048576 52.0794 1735.98 187.1503 1.6556

Table 6.14 shows our experimental results for inserting data items in random

order into a skip list.

Table 6.14: Timings for inserting random ordered data into a skip list.

Number of Total Time(s) Average Average for
Items for 30 Repetition Time(ms) (J one insertion Jl. s
16384 1.1365 37.88 5.8565 2.3122
32768 2.3559 78.53 9.5268 2.3966
65536 3.7925 193.08 17.6536 2.9462
131072 11.5550 385.17 40.5972 2.9386
262144 25.2904 843.01 83.6645 3.2158
524288 50.9471 1698.24 180.0230 3.2391
1048576 105.9887 3532.96 368.2043 3.3693

6.2.4 Skip List Search Performance

The search cost of a skip list is logarithmic on average. However, our experimental

results show that, the search cost for an item depends on the number of levels and

the distribution of items in the levels.

Table 6.15 shows the experimental timing for searching all the items of a skip

list.
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Table 6.15: Experimental results for searching all the items of a skip list.

Number of Total Time(s) Average Average Time for a
Items for 30 Repetition Time(ms) a Seareh J.t sees.
16384 0.1202 4.01 0.7769 0.2444
32768 0.2522 8.41 1.0870 0.2566
65536 0.5223 17.51 1.9315 0.2672
131072 1.1013 36.71 3.8413 0.2801
262144 2.2990 76.63 7.9509 0.2923
524288 4.8863 162.88 16.5520 0.3107
1048576 10.1815 339.38 35.0408 0.3237

6.2.5 Deleting an Item from a Skip List

Deleting items from a skip list is similar to inserting items into a skip list. However,

the search cost is logarithmic on average, so deleting an item from a skip list needs

log N comparisons for finding the item, plus the time for updating the references

and decreasing the maximum level, when a node with a maximum level is deleted.

6.2.6 Comparing Experimental and Theoretical Results

Our experimental results support the theory that the number of levels and the

distribution of items in the levels affect the performance of the skip list. Our

experimental results show different performances for the same number of items

and the same number of levels. This confirms the theory that, beside the number

of levels, the distribution of items in the levels also affects the performance of the

skip list.

For the search performance in the skip list our theoretical and experimental

analysis show the same results. Our theoretical results show that the search time

depends on the number of levels and distribution of items in the levels. Our

experimental analysis show the same results.

6.3 Top-down Splay Trees

Our experimental results show that, the insertion order into a top-down splay

tree, affects the performance of the top-down splay tree. Insertion of ordered data

items into a top-down splay tree requires less comparisons than inserting the same

number of items in unsorted order. We now present our experimental results for

inserting sorted and unsorted data items into top-down splay trees.
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6.3.1 Insertion of Sorted Data Items

Our experimental results show that, insertion of N sorted data items into a top-

down splay tree in ascending or descending order, require N - 1 comparisons.

Unlike the bottom-up splay tree, insertion of sorted data items into a top-down

splay tree does not need any rotations.

Table 6.16 shows the experimental results for the number of comparisons

and rotations when ascending or descending ordered data items are inserted into a

top-down splay tree.

Table 6.16: Number of comparisons and rotations for inserting ordered items
into a top-down splay tree.

Number of Tata! Tata!
Items Comparisons Rotation

256 255 0
1024 1023 0
4096 4095 0

16384 16384 0
65536 65535 0

262144 262143 0
1048576 1048575 0

6.3.2 Insertion of Unsorted Data Items

Our experimental results show that, when unsorted data items are inserted into a

top-down splay tree, the required number of comparisons is more than inserting

the same number of items in sorted order. Unsorted insertion of data items also

requires rotations.

Table 6.17 shows the number of comparisons and rotation when random or-

dered data items are inserted into a top-down splay tree.

Table 6.17: Number of comparisons and rotations for inserting random ordered
items into a top-down splay tree.

Number of Total Average Tata! Average
Items Comparison Comparison Rotation Rotation

256 2514 9.82 881 3.441406
1024 14104 13.77 4987 4.870117
4096 72741 17.75 25676 6.268555

16384 355772 21.71 125541 7.662415
65536 1685905 25.72 595441 9.085709

262144 7792344 29.72 2750522 10.492409
1048576 35360885 33.72 12485117 11.906735
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6.3.2.1 Insertion Timing

Our experimental results show that insertion of sorted data items into a top-down

splay tree require less time than inserting the same number of items in random

order. The following section contain our experimental timing for inserting sorted

and unsorted data items into top-down splay trees.

Table 6.18 shows the experimental results for inserting strictly ascending data

into a top-down splay tree.

Table 6.18: Ascending ordered insertion into a top-down splay tree.

Number of Total Time(s) Average Average Time for an
Items for 30 Repetition Time (ms) CT Insertion JJ- sec.
16384 0.1988 6.63 1.8027 0.4045
32768 0.7484 24.95 3.6285 0.7613
65536 1.9524 65.08 5.9745 0.9930
131072 3.3763 112.54 13.8605 0.8586
262144 6.9542 231.81 25.5942 0.8843
524288 12.3675 412.25 51.0229 0.7863
1048576 23.8297 794.32 104.9841 0.7575

Table 6.19 shows the experimental results for inserting strictly descending

data into a top-down splay tree.

Table 6.19: Descending ordered insertion into a top-down splay tree.

Number of Total Time(s) Average Average Time for an
Items for 30 Repetition Time (ms) CT Insertion JJ- sec.
16384 0.1997 6.66 2.4456 0.4062
32768 0.7126 23.75 3.8742 0.7249
65536 2.1447 71.49 6.0710 1.0908
131072 3.5875 119.58 14.9091 0.9123
262144 6.6248 220.83 27.3081 0.8424
524288 11.5643 385.48 50.1044 0.7352
1048576 23.2090 733.63 97.5527 0.7378

Table 6.20 shows the experimental results for inserting randomly ordered data

into a top-down splay tree.

6.3.3 Searching a Top-down Splay Tree

Our experimental analysis includes two kinds of searching:

1. Splay Trees with One-class keys,

2. Splay Trees with Two-class keys.
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Table 6.20: Randomly ordered insertion into a top-down splay tree.

Number of Tota! Time(s) Average Average Time for an
Items for 30 Repetition Time (ms) u Insertion J.L sec.
16384 0.5275 17.58 3.4743 1.0732
32768 1.3701 45.67 5.7158 1.3938
65536 3.7491 124.97 10.3945 1.9069
131072 8.8066 293.55 25.8941 2.2396
262144 20.1351 671.17 61.4467 2.5603
524288 42.0433 1401.44 141.4106 2.6730
1048576 71.9864 2399.55 305.3005 2.2884

Splay trees with one-class keys consider the access to all items of the tree

with equal probability. In this case, each element of the tree is accessed once. On

the other hand, splay trees with two-class keys consider the 90-10 rules, which

state that 90 percent of the accesses is to 10 percent of the elements. The 90-10

rule applies the concept of locality when using splay trees.

In order to compare the run-time behavior of one-class and two-class splay

trees, we consider a degenerate top-down tree for both types of access.

6.3.3.1 Splay Tree with One-class keys

We first consider one-class splay trees, by accessing all the items from the root to

the leaf of a degenerate top-down splay tree.

Number of Comparisons and Rotations Our experimental results show that

the total search cost for accessing all the elements sequentially from the root to the

leaf, is 2N -1comparisons, where N is the number of items in the tree. Sequential

access to all elements from the root to the leaf does not require any rotations.

Table 6.21 shows the experimental results for the number of comparisons and

rotations when all the items are accessed from the root to the leaf in a degenerate

top-down splay tree.

Table 6.21: Number of comparisons and rotations for sequential search.

Number of Tota! Average Tota! Average
Items Comparisons Comparisons Rotations Rotations
256 511 1.99 0 0.00
1024 2047 1.99 0 0.00
4096 8191 1.99 0 0.00
16384 32767 1.99 0 0.00
65536 131071 1.99 0 0.00
262144 524287 1.99 0 0.00
1048576 2097151 1.99 0 0.00
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Our experimental results show that the total number of comparisons for ac-

cessing all the items from the leaf to the root of a degenerate top-down splay

tree is from 2N to 5.32N comparisons, where N is the number of items and N

is 2 ::; N ::; 1048576. Therefore, the average number of comparisons is from 2

to 5.32. The total number of required rotation is from 0 to 1.45N where N is

1 < N < 1048576.

Table 6.22 shows the experimental results for the number of required com-

parisons and rotation when all the items are accessed from the leaf to the root of a

degenerate top-down splay tree.

Table 6.22: Number of comparisons and rotations for sequential search.

Number of Total Average Total Average
Items Comparisons Comparisons Rotations Rotations

2 4 2.000000 0 0.00
8 28 3.500000 4 0.50

32 146 4.562500 33 1.03
128 646 5.046875 166 1.29
256 1320 5.156250 353 1.37
1024 5395 5.268555 1459 1.42
4096 21728 5.304688 5905 1.44
16384 87093 5.315735 23717 1.44
65536 348590 5.319061 94989 1.44

262144 1394617 5.320042 380136 1.45
1048576 5578631 5.320197 1521159 1.45

Table 6.23 shows the experimental results for the number of comparisons and

rotations when all the items of a top-down splay tree are accessed in random order.

Table 6.23: Number of comparisons and rotations for random search.

Number of Total Average Total Average
Items Comparisons Comparisons Rotations Rotations

2 4 2.0000 0 0.000000
8 32 4.0000 9 1.125000

32 218 6.8125 59 1.843750
128 1276 9.9687 383 2.992188
256 2841 11.0976 848 3.312500
1024 14471 14.1318 4426 4.322266
4096 69998 17.0893 21515 5.252686
16384 327812 20.0080 101798 6.213257
65536 1500352 22.8935 467011 7.126022

262144 6761574 25.7933 2108548 8.043472
1048576 30076736 28.6834 9398662 8.963263

6.3.3.2 Timing for Splay Trees with One-class Keys

Table 6.24 shows the experimental results for searching all the items from the root

to the leaf of a degenerate top-down splay tree.
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Table 6.24: Lookup timing in a top-down splay tree with one-class keys.

Number of Tota! Time(s) Average Average Time for
Items for 30 Repetition Time (ms) a a Lookup Jl- sec.
16384 0.1316 4.39 1.8833 0.2678
32768 0.3348 11.16 3.1994 0.3406
65536 0.3875 12.92 3.8564 0.1971
131072 0.8035 26.78 4.6884 0.2044
262144 1.4933 49.78 6.9413 0.1899
524288 2.9081 96.94 11.7476 0.1849
1048576 6.4100 213.67 25.5751 0.2038

Table 6.25 shows the experimental results for searching all the items from the

leaf to the root of a degenerate top-down splay tree.

Table 6.25: Lookup timing in a top-down splay tree with one-class keys.

Number of Tota! Time(s) Average Average Time for
Items for 30 Repetition Time (ms) a a Lookup Jl- sec.
16384 0.2478 8.26 2.8874 0.5041
32768 0.6335 21.12 4.4086 0.6444
65536 1.0671 35.57 6.2412 0.5428
131072 2.1719 72.40 9.2178 0.5524
262144 4.3471 144.24 16.5074 0.5502
524288 8.9324 297.75 31.8676 0.5679
1048576 18.2683 608.94 66.3734 0.5807

Table 6.26 shows the experimental results for searching all the items of a

randomly built top-down splay tree in random order.

Table 6.26: Lookup timing in a top-down splay tree with one-class keys.

Number of Tota! Time(s) Average Average Time for
Items for 30 Repetition Time (ms) a a Lookup Jl- sec.)
16384 0.2029 6.76 1.8646 0.4127
32768 0.3211 10.70 2.3778 0.3266
65536 0.7163 23.88 3.2072 0.3643
131072 1.5000 50.00 5.6029 0.3815
262144 3.3207 110.69 11.1846 0.4223
524288 6.4841 216.14 23.9056 0.4122
1048576 12.0755 402.52 54.9438 0.3839

6.3.3.3 Splay Tree with Two-class Keys

In our experiments for splay trees with two-class keys, we consider the keys of a

degenerate top-down splay tree in two classes. Suppose that K represents all the

keys in a splay tree. Let K; represent 10% of the keys, and let K2 represent the

other 90% of the keys. The probability for accessing a key from K, is 90%, and

the probability for accessing a key from a K2 is 10%.
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Number of Comparisons and Rotations Table 6.27 shows the experimental

results for the number of required comparisons and rotations when all the items

of a top-down splay tree are accessed in random order, using a splay tree with

two-class keys.

Table 6.27: Number of comparisons and rotations for random search in a top-
down splay tree with two-class keys.

Number of Total Average Total Average
Items Comparisons Comparisons Rotations Rotations

32 104 3.250000 19 0.593750
128 627 4.898438 156 1.218750
256 1624 6.343750 450 1.757813
1024 9350 9.130859 2784 2.718750
4096 48996 11.961914 14815 3.616943
16384 242422 14.796265 74237 4.531067
65536 1164299 17.765793 360257 5.497086

262144 5414563 20.654919 1681673 6.415073
1048576 24712052 23.567249 7696780 7.340221

6.3.3.4 Timing For Splay Trees with Two-class Keys

Table 6.28 shows the experimental results for searching a top-down splay tree with

two-class keys.

Table 6.28: Lookup timing in a top-down splay tree with two-class keys.

Number of Total Average Average Time for
Items Time (s) Time (ms) a a Lookup Jj, sec.
16384 0.001 0.1 0.1054 0.0061
32768 0.002 0.2 0.2108 0.0061
65536 0.002 0.2 0.2108 0.0031
131072 0.003 0.3 0.3162 0.0023
262144 0.005 0.5 0.5270 0.0019
524288 0.007 0.7 0.7379 0.0013
1048576 1.242 124.2 130.9183 0.1184

6.3.4 Comparing Experimental and Theoretical Results

For inserting the sorted data items into a top-down splay tree our experimental

results support our analysis. Our analysis and our experimental results show that

the number of required comparisons for inserting sorted data items is N -1. Sorted

insertion into a top-down splay tree does not require rotation.

Our experimental results for inserting unsorted items into a top-down splay

tree is the same as our theoretical results.
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Our theoretical and experimental results show that the required number of

comparisons for accessing all the items in a degenerate top-down splay tree from

the root to the leaf of the tree is 2N - 1 comparisons. There is no need for rotation

when all the items of a degenerate top-down splay tree is accessed from the root

to the leaf of the tree.

Our experimental results show that the required number of comparisons for

accessing all the items from the leaf to the root of a degenerate top-down splay tree

is from 2N to 5.32N comparisons, where N is 2 ~ N ~ 1048576. And the number

of required rotation is from 0 to 1.45N rotation where N is from 2 ~ N ~ 1048576.

Table 6.29 compares the timing for A VL trees, splay trees and skip lists.

Table 6.29: Comparing the timing results for AVL trees, splay trees and skip
lists.

Time for 10 Top-down
Repetitions (s) AVL Trees -Splay Trees Skip Lists

Ascending Insertion 17.091 07.715 19.327
Descending Insertion 17.091 08.358 17.167

Random Insertion 18.600 27.301 35.456
Searching 6.895 4.690* 3.392

Notes for Table 6.29

* Unlike the other data structures, for splay trees the search time depends on

the order in which the items are searched. The above mentioned time is for

random search, in a randomly built top-down splay tree. But if we search a

degenerate splay tree sequentially from the root to the leaf, then the total

search time will be 1.9510 seconds. If we search a degenerate top-down splay

tree from the leaf to the root of the tree, then the total search time will

be 5.7920 seconds. For a top-down splay tree with two-class keys the total

search time is 1.0850 seconds.

Table 6.29 shows that, top-down splay trees are better than AVL trees and

skip lists for sorted insertion. For unsorted insertion AVL trees are better than

splay trees and skip lists. For random search, skip lists are faster then A VL trees

and splay trees. But splay trees with 90-10, two-class keys are faster than skip

lists and AVL. Sequentially accessing all the items of a degenerate top-down splay

trees from the root to the leaf of the tree is significantly faster than for A VL trees

and skip lists.



Chapter 7

Conclusion

7.1 Overview
In this thesis we have studied the complexity of splay trees and skip lists. We pre-

sented theoretical and experimental analysis for splay trees and skip lists and iden-

tified their worst-case, average-case, and best-case behaviors. We have compared

splay trees with skip lists, and then we identified where splay trees outperform skip

lists.

Based on our studies we have analyzed the search and update operations of

these data structures. Because of the involvement of randomization and probabil-

ities in the Operation of skip lists, we used probabilistic approaches to analyze the

performance of skip lists.

All the experiments were done on various machines, and the results were

programmatically recorded. The experimental results were compared with the

theoretical results. In the case of difference, the reason for the difference is ex-

plained. Where the theory seemed to be violated we attempted explanations of

the aberrant behavior.

7.2 Summary of the Results
7.2.1 AVL Trees

Insertion of sorted data items into A VL trees, requires more rotations and compar-

isons than random insertion. Our theoretical and experimental results show that

the total number of rotations for inserting N sorted data items into an A VL tree

is:

N - (logN + 1) (7.1)

The average percentage of rotations for inserting N sorted items is 99.99%
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of N, where N is equal to 1048576.

The total number of comparisons for inserting sorted data items into an A VL

tree is:
N
2"logN + C,

where C is the total number of required comparisons for inserting It items. The

number of comparisons in the worst case is 1+ log N, and the average number of

comparisons is
NlogN + 2C

2N

Our experimental results show that, when unsorted data items are inserted

into an A VL tree, the exact number of rotation depends on the insertion order of

the data items, but, it is always less than the required number of rotations when

the same number of items are inserted in a sorted order. The average percentage

of rotations for random insertions into AVL tree is 46% of N.
When unsorted data is inserted into an A VL tree, the height of the tree is

very close to logarithmic. Our experiments show that the height of the tree is

between 1 + log Nand 4 + logN, for 2 :::;N :::;1048576.

Even though unsorted data items require less rotations than sorted data

items, the insertion time for unsorted data is a little more than sorted insertion.

In a full AVL tree the total search cost for accessing all the items is:

log(N+1)-l

L 2i(i + 1).
i=O

The average search cost is:

2:~~JN+1)-l 2i(i + 1)
N

7.2.2 Skip Lists

Our theoretical analysis show that, in a skip list with N elements, for all even N,

half of the items will move from level i to level i+ 1 with high probability. And for

all odd N, ~ ± ~items will move from level i to level i+ 1, with high probability.

Therefore, the probability for having logN levels (except the base level) is higher

than having 1+ logN, 2 + logN ... levels. Our experimental result support our

theoretical result.
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Our analysis shows that the distribution of items in the levels of a skip list

affects its the performance. The average number of comparisons increases if the

items which are in the front of the list, reach the upper levels. But, the average

number of comparisons decreases if the items which are in the middle and end of

the skip list reach the upper levels. The reason is, when the middle items reach

the upper levels it keeps the distribution of the items in balance, and when the

items from the end of the skip list reach to the upper levels, it eliminates some

comparisons with the end pointers.

Our analysis shows that the average number of comparisons for inserting

3 items into a skip list is 2.222, whereas the average number of comparisons for

inserting the same three items into an AVL tree is 1.666 comparisons. The average

number of comparisons for inserting 7 items into a skip list is 4.417 comparisons,

whereas the average number of comparisons for inserting the same seven items into

an AVL tree is 2.142 comparisons. Therefore, the cost of insertion into AVL trees

is lower than for skip lists.

Our experimental results show that skip lists with the same number of items,

and the same number of levels have different performance behaviors. This means

that besides the number of levels, the distribution of items in the levels, and the

location of high towers also affect the performance of the skip list.

Our analytical and experimental results conclude that, the insertion cost of

skip lists does not depend only on the number of levels, and the distribution of

items in the levels. It also depends on the order in which the data items are inserted

into a skip list.

Our analysis shows that, when data items are inserted in descending order,

the average number of comparisons equals the number of levels in the skip list.

Therefore, the worst case insertion cost for inserting descending ordered data is

1 + log N. On the other hand if the data items are inserted in ascending order,

then the required number of comparisons at each level is not restricted to one

comparison. But, the number of comparisons also depends on the number of items

which precede the newly inserted item. Since the data items in a skip list are

in ascending order, some levels need more than one comparison, and the average

number of comparisons is not logarithmic.

If we insert three items into a skip list in descending order, then the aver-

age number of comparisons is 3.00. But the average number of comparisons for
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inserting the same three items in ascending order is 3.78. Our analysis for insert-

ing 7 items also shows that descending insertion requires less comparisons than

ascending insertion.

Even the descending insertion cost is better than random insertion cost. How-

ever, the random insertion cost is better than ascending ordered insertion.

Our experimental results confirm the above observations. That is, for skip

lists the descending ordered insertion cost is less than the ascending or random

ordered insertion cost. Our observations show that the random insertion cost is less

than the ascending insertion cost. But, our experimental results ANOMALOUSLY

show that the ascending ordered insertion cost is less than the random insertion

cost.

7.2.3 Splay Trees

Insertion of sorted data items, into a bottom-up or top-down splay trees require

less comparisons, than inserting the same number of items into A VL trees, and

skip lists. The total number of comparisons for inserting N sorted data items

into a bottom-up or top-down splay trees is N - 1 comparisons. Therefore, the

average insertion needs NNI ~ 1 comparisons. The difference between bottom-up

and top-down splay trees, for sorted insertion is the required number of rotations.

For sorted insertions top-down splay trees do not require rotations, whereas a

bottom-up splay trees needs N - 1 rotations.

When the data items are inserted in a sorted order the top-down splay tree

performs better than AVL trees, and skip lists in terms of comparisons and rota-

tions. Bottom-up splay trees are also better, in terms of comparisons, than AVL

trees and skip lists, but AVL trees are better than bottom-up splay trees in terms

of rotations. For sorted insertion AVL trees need less rotations than bottom-up

splay trees. Skip lists do not use rotation.

Insertion of sorted data items into splay trees yields a degenerate tree, where

insertion into an AVL trees obviously preserves its balance.

When sorted data items are inserted into a bottom-up or top-down splay tree

the best, average, and worst insertion cost are almost identical.

If we want to quickly insert sorted items and display them in reverse order,

we can use top-down or bottom-up splay trees. Of course, a top-down splay tree

is preferred.
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When unsorted data items are inserted into bottom-up or top-down splay

trees, the number of comparisons and rotations exceeds that for inserting the same

number of items in ascending or descending orders. The total number of compar-

isons and rotations depends on the order of the data items. The resultant tree

structure also depends on the order of the inserted data. However, top-down splay

trees require less rotations than bottom-up splay trees. Our theoretical analysis

shows that, for sorted and unsorted insertion, into a bottom-up splay tree, the

number of comparisons is equal to the number of rotations, whereas for top-down

splay trees, the number of comparisons exceeds the number of rotations.

The interesting point in our theoretical analysis is that, the Zig-zag rotations

tend to improve the balance of a tree. For example if we insert the items in the

following order: 70, 50, 30, 10, 60, 20, and 40, into a bottom-up splay tree, the

resultant tree will be a full EST. The insertion process needs 4 Zigs, 1 Zig-zig and

4 Zig-zag rotations. The 4 Zig-zag rotations help the tree to be balanced. But,

if we insert the same 7 items in the following order: 40, 50, 30, 60, 20, 70, and

10, which requires 3 Zigs, 5 Zig-zigs, and ° Zig-zag rotations, the resultant tree

turns out to be degenerate or a "completely unbalanced" tree. Therefore, the order

which needs more Zig-zag rotations tends to yield balanced trees. The number of

Zig-zag rotations increase when the data items are inserted in discrepancy order.

After inserting unsorted data items into a bottom-up or top-down splay tree,

the resultant tree structure depends on the order of the data, but in most cases

the insertion of unsorted data items into a top-down splay tree yields a degenerate

tree. In terms of tree structure, bottom-up splay tree yield better balanced trees

.than top-down splay trees, when the same sequence of items is inserted. The

reason is the Zig-zag rotation in the bottom-up splay tree. Top-down splay trees

require rotations only in the Zig-zig case. For example, inserting the orders 70,

50, 30, 10, 60, 20, 40 and 10, 30, 50, 70, 20, 60, 40 into a top-down splay tree

yields a completely unbalanced or degenerated tree. Whilst inserting the same

sequences of items in the same orders into a bottom-up splay tree yields a full

balanced BST. Again, the Zig-zag rotation tends to make the resultant bottom-up

tree more balanced.

Our analysis shows another interesting point about unsorted insertion into a

top-down splay tree. Using the standard Zig-zag approach yields better balanced

BSTs, than using the simplified Zig-zag approach. The literature mentions that,
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the simplified Zig-zag approach simplifies the code but increases the number of

iterations, where standard Zig-zag approach complicates the code and decreases

the iterations (see Weiss, 1999, p. 619). This is true but, the simplified Zig-zag

approach yields more degenerate trees. For example, using the simplified Zig-zag

approach for inserting the orders 20, 60, 70, 30, 10, 50, 40 and 60, 20, 10, 50, 70,

30, 40 into a top-down splay tree, results more degenerated tree than using the

standard Zig-zag approach.

If all the items of a degenerate bottom-up or top-down splay tree are accessed

in sequential order, from the root to the leaf of the tree, the structure of the tree

is changed from a left degenerate tree to a right degenerate tree, or vice versa.

The order of the items will also change from ascending to descending order, or vice

versa.

Accessing all the items of a degenerate bottom-up or top-down splay tree

sequentially from the root to the leaf requires 2N - 1 comparisons. Therefore, the

average number of comparisons is

2N -1
N .~2

A degenerate top-down splay tree does not require rotations, when all the items

are accessed from the root to the leaf of the tree, where bottom-up splay tree

needs N - 1 rotations for accessing all of its items from the root to the leaf of the

tree. Therefore, the average number of rotations for accessing all the items of a

degenerate bottom-up splay tree is

N-1
N ~l.

Degenerate bottom-up or top-down splay trees have a structure similar to a

linked list. But, accessing all the items in a linked list requires Nt1 comparisons

on average, where accessing all the items in a degenerate splay trees requires 2

comparisons on average per item.

Accessing every item of a degenerate bottom-up splay tree from the leaf to

the root of the tree requires N +R comparisons, where N is the number of items

and R is the total number of rotations. The total number of rotations is C - N

where C is the total number of comparisons, and N is the number of items.
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Accessing every item of a degenerate top-down splay tree, from the leaf to

the root of the tree needs from 2N to 5.32N comparisons, where 2 ::; N ::; 220.

The average number of comparisons is from 2 to 5.32. This means that the average

number of comparisons in the worst case will be very close to 5.32, but does not

exceed 5.32, for 2 ::; N ::; 220. Accessing all the items of a degenerate top-down

splay tree, also needs rotations. But, the number of rotations is always less that

than for a bottom-up splay tree.

If all the items of a degenerate bottom-up or top-down splay tree are accessed

in sequential order, from the leaf to the root of the tree, the structure of the tree

is not changed. This is unlike the access to all items of a bottom-up or top-down

splay trees from the root to the leaf of the tree.

Random access to all items of a degenerate bottom-up splay tree require N+R
comparisons, where N is the number of items and R is the number of rotations.

The total number of rotations is C - N where C is the number of comparisons and

N is the number of items.

The result of random access, to all items of a degenerate bottom-up splay

tree alters the structure of the tree to some better balanced BST. Some seemingly

random access orderings can change the tree from its degenerate shape into a full

balanced BST. When the leaf items are accessed first, and the root is accessed at

the end, the resultant tree will be a full BST. But, if the root is accessed at the

beginning or middle, then the resultant tree will be a degenerate or some kind of

unbalanced tree. If the upper levels items are accessed before the bottom level

items, than the resultant tree tends to take on a linked list shape.

The interesting point is that, the access orders which yield a full and balanced

bottom-up splay tree, also yield a full and balanced bottom-up splay tree, when

all items of a degenerated bottom-up splay tree are accessed in this order. All

orders which yield a full and balanced BST have the root elements at the end of

the order.

Random access to all items of a top-down splay tree requires a different

number of comparisons and rotations, depending on the access order. The resultant

tree structure also depends on the order in which the items are accessed. The

number of comparisons and rotations decreases if the items which are in the root

of the balanced BST are accessed in the middle. If the root items are accessed at

the end, the number of comparisons and rotations increases.
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7.3 Comparison Between A VL 'frees, Splay Trees, and Skip

Lists
Our theoretical and experimental results show that the insertion of sorted data

items into a splay tree requires less comparisons than inserting the same number

of items into a skip list and AVL trees. For ascending insertion AVL trees are

faster than skip lists, but for descending insertion, skip lists perform better than

A VL trees. For unsorted insertion A VL trees perform better than splay trees and

skip lists. Splay trees are faster than skip lists when unsorted items are inserted.

The average number of comparisons for accessing all the items from the root

to the leaf of a degenerate bottom-up or top-down splay tree is less than the average

number of comparisons for accessing all the items in a skip list and balanced

ESTs. Our experimental result affirm that the average search cost for accessing

all the items in a degenerate top-down splay tree is better than AVL tree and skip

lists. Our experiments also show that the average search cost for accessing all the

elements of an AVL tree is better than accessing all the items of a skip list.

Splay trees perform very well if the access patterns follow the 90-10 rule (see

Weiss, 1999, p. 636). This is useful for applications which need to look repeatedly

for the same item. Examples of such applications include routing tables, packet

classifiers, caches for the CPU, hard drives, web browsers, and web servers (Narlikar

et al., 2000) and (Srinivasan et al., 2006).

Splay trees perform better than search trees for non- uniform sequences of

operations. When access sequences are random and uniform, splay trees do not do

as well as other balanced trees. If the distribution of operations is more uniform,

and the items are all equally likely to be accessed, then randomized data structure

such as a skip list is preferable. There are some uniform operations which have a

best case when splay trees are used if the order of these operations is in ascending

or descending order. The example is sequentially accessing all the items of a

degenerate splay tree from the root to the leaf of the tree. Another example is the

insertion of sorted data items into a splay tree which has also the best case for

building a data structure (Sleator and Tarjan, 1985).

7.4 Our Findings
We conclude by summarizing some key points of our research:
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1. Our analysis and experimental results show that the total number of rotations

for inserting N sorted data items into AVL tree is:

N - (logN + 1)

The average percentage of rotations for inserting N sorted items is 99.99%

of N, where N = 220. The average percentage of rotations for unsorted

insertions into an AVL tree is 46% of N, where 32 < N :::;220.

2. The total number of comparisons for inserting sorted data items into an AVL

tree is: ~ logN + C, where C is the total number of required comparisons

for inserting ~ items.

3. In a full AVL tree the total search cost for accessing all the items is:

log(N+1)-l

L 2i(i + 1)
i=O

and the average search cost is:

L:~~JN+1)-l 2i(i + 1)
N

4. For skip lists, our analysis shows that, the average number of comparisons

increases if the items which are in the front of the list, reach the upper levels.

But, the average number of comparisons decreases if the items which are in

the middle and end of the skip list reach to upper levels.

5. Our theoretical and experimental results conclude that, the insertion cost of

skip list does not depend only on the number of levels, and the distribution

of items in the levels. It also depends on the order in which the data items

are inserted into the skip lists. The descending order insertion is faster and

require less comparisons than ascending and random insertion. The worst

case insertion cost for descending insertion is 1+ logN.

6. The interesting point for the bottom-up splay tree is that, the Zig-zag ro-

tations make the tree to be better balanced. The orders which need more
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Zig-zag rotations tend to yield more balanced trees. The number of Zig-zag

rotations increases, if the data items are inserted in random order.

7. In most cases the insertion of unsorted data items into a top-down splay tree

yields a degenerate tree. In terms of tree structure, bottom-up splay trees

yield better balanced trees than top-down splay trees when the same sequence

of items are inserted. The reason is the appearance of Zig-zag rotations in

the bottom-up splay tree.

8. Insertion into a top-down splay tree, using the standard Zig-zag approach

yields better balanced BSTs than using the simplified Zig-zag approach.

The literature mentions that, the simplified Zig-zag approach simplifies the

code but increases the number of iterations, whereas the standard Zig-zag

approach complicates the code and decreases the iterations (see Weiss, 1999,

p. 619). This is true but, the simplified Zig-zag approach yields more degen-

erate trees.

9. Accessing all the items of a degenerate bottom-up or top-down splay tree

sequentially from the root to the leaf requires 2N-1comparisons. Therefore,

the average number of comparison is

2N -1
N ~2.

The average number of rotations for accessing all the items of a degenerate

bottom-up splay tree is

N-1
N ~l.

10. Accessing all the items of a degenerate bottom-up splay tree from the leaf to

the root of the tree requires N + R comparisons, where N is the number of

items and R is the total number of rotations. The total number of rotations

is C - N where C is the total number of comparisons, and N is the number of

items. Accessing all the items of a degenerate top-down splay tree, from the

leaf to the root of the tree need from 2N to 5.32N comparisons, where 2 :::;

N :::;220. The average number of comparisons is from 2 to 5.32 comparisons.
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11. Random access to all items of a degenerate bottom-up splay tree requires

N + R comparisons, where N is the number of items and R is the number of

rotations. The total number of rotations is C - N where C is the number of

comparisons and N is the number of items.

12. The result of random access, to all items of a degenerate bottom-up splay

tree alters the structure of the tree to some more balanced EST. Our analysis

shows that if the leaf items are accessed first, and the root is accessed at the

end, the resultant tree will be a full EST. But, if the root is accessed at the

beginning or middle, then the resultant tree will be degenerated or some kind

of unbalanced tree.

13. The interesting point is that, the access orders which yield full and balanced

bottom-up splay trees, also yield full and balanced bottom-up splay trees,

when all the items of a degenerate bottom-up splay tree are accessed in the

same order. All orders which yields full and balanced ESTs have the root

elements at the end of the order.

In summary, the thesis analyzed theoretically and practically, by means of

manual and computational elaboration, the performance of splay trees and skip

lists. We have compared the search and update operations of A VL trees, skip lists

and splay trees. In our theoretical analysis the search and update operations of

A VL trees, skip lists and splay trees were manually analyzed. The experiments

practically analyzed the search and update performance of A VL trees, splay trees

and skip lists. The required number of comparisons and rotations for search and

update operations of these data structures are programmatically calculated, tabu-

lated, and the results are compared with the theory.

We have compared the search and update performance of AVL trees, splay

trees and skip lists. Based on the comparison we identified the cases where each

data structure is desired or undesired. The exact random insertion and random

search cost of skip list and splay trees still need further investigation.



Appendix A

Simple Rotate-to-root Splaying Can

Take 8(N2) Time

There are arbitrarily long pathological sequences for which the amortized time is

8(N). Suppose the keys in the tree are from the set [l..N]. Inserting these nodes

in sequential order from 1 to N, is reasonably fast because the new node always

gets attached to the previous root, so the average cost for a sequential insertion

is 8(1). The tree tree built initially possesses only left children as illustrated in

Figure A.l (a). Figure A.l (b) Illustrates the result of rotating 1 once towards the

(a) (b) (d)
8 8 1

7 7 7 7

6 6 6 7 6

5 5 5 6

4 4 5

3 3 1 4

2 1 4

1 2 2 2 3

Figure A.I: (a) A skew tree built by sequentially inserting [l..N]. (b) The tree
after 1 has been rotated once. (c) The tree after 1 has been rotated twice. (d)
The final tree after 1 has been rotated N - 1 times. (e) The resultant tree after 2
has been rotated to the root. (f) The final tree after each node has been accessed
sequentially is the same as the initial tree.

root. Figure A.l(c) shows the result after accessing. Figure A.l(d) is the resulting

tree after 1 has been accessed twice. In Figure A.l(e) 1 has reached its final position

at the root and Figure A.l(f) shows that after sequentially accessing all the nodes

once the resultant tree is exactly the same as the initial tree. Each of these accesses

starts at the root and finds the node to be rotated-to-root using N comparisons,

and then rotates the node to the root in N - 1 rotations. Each such access thus
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costs N(N - 1)/2 giving an average access time of 8(N2). Repeating accesses

in the sequence 1,2, ... ,N an arbitrary number of times will cost an average of

8(N2) probes.
This makes it clear that trees using simple rotation-to-root, much like ordi-

nary unbalanced BSTs, are prone to a worst case performance of 8(N).



Appendix B

The Main Timing Code

The code used to time our skip list algorithms is given below. The code for run-

ning the other algorithms is similar. In this example we use the timing method

System.currentTimeMillis().

We later used the System. nanoTime 0 method which returns the time in

nanoseconds. The System. currentTimeMillis 0, gives the same results but re-

turns milliseconds. Using nanoTime 0 gives the same values as currentTimeMillis 0
but gives three more so called significant digits. The Java SDK documentation

states that the System. nanoTime 0 method provides nanosecond precision, but

not necessarily nanosecond accuracy. Both methods are very crude and in or-

der to attain meaningful times the data structures need to be run repeatedly-30

times-using up to a million data items. No guarantees are made about how fre-

quently values change. Although the Java SDK documentation states that the

System. nanoTime 0 method is guaranteed to be the most accurate timer available

from the system, (Miller, 2005),

This method can only be used to measure elapsed time and is not related to

any other notion of system or wall-clock time.

import java. text .• ;
public class trySkiplist {
public statie int logN ... 30;
public statie int N = l«logN: II (1«23) + (1«22):
public statie final int numberOfClass8s ... 100;
public static void main{String args D) {
node (] randomNode;
int classNo, eaeesee H = new int [numberOfClass88+1];
int repetition. repetitions = 10;
boolean debug = true;
final int random - 0, ascending ... 1. descending = 2;
String modality(] = {"random", lIascending". "descending"};
DecimalFormat twoD ... Dew DecimalFormat ("0.00") j

DecimalFormat fourO = new DecimalFormat("0.0000") j

DecimalFormat eightD = nev DecimalFormat("O.OOOOOOOO") i

for (logN = 1: logN < 1«30: logN++) {
System.out.println("log n = II + logN) i

int mode;
double maxTime = O.O. minTime = 1«30;

double t (J ::::new double (repeti tiona + 1] i

N :::: l«logN;
System. out. println( "\n \n~==_=;::E=====_="" ......====-=:o:z::_====_ ...==,""",,,,,...===== ...= __=====""_-=\n"

+ "java" + arg8(O) + " running" + N + " public nodes.")j
System. out. println(" 11) j
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randomNode = nes node [N+l];

for (mode"" descending; mode >= random; mode--)
double runTime = Of, runTime2 "" Of. time j

runTime = O.Oj runTime2 = 0.0;
maxTima = 0.0; minTime = 1«20;

for (int i = 1j i <= numberOfClasses; i++) {
classes [1] - 0;

}

for (repetition"" 1; repetitlon<=repetitionsj repetition++) {
skiplist S '" uev sk.lplistO i
double start, finish, duration:

S. setupListOfRandomNodes(mode, randomNode. N) j

for (int i - lj i <= numberOfClass8sj i++)
classes [i) - 0;

}

// start ---------------------------------------------------------------------

II
start = System. currentTimeHillis 0 j

for (int i = 1; i <= N; i++){
II System.out,println("ins8rt node[" + i + ") '" " + randomNode[i)j

S.insert (randomNode[i]) ;
}

finish = System.curreDtTimeHillis ();

// finish ---------------------------------------------------------------------

IlrunTime = (finish - .tart)/1000;
time"" (double) (finish - start) j

t[repetition] - tim.;
runTime +... time i
runTime2 += (time-time) j

if (time < minTime) minTime = time;
if (time > muTime) muTime = time:

1/ System.out.println("Skiplist S:\n" + S):

System.out.println("Repetition " +repetition+" Run time = +time+ "ms. for N = lt +N
+ It nodes. entered in It + modality [mode] + order.");

double aveRuntime = runTime/repetitions;
double stdDeviation =' Math. sqrt (runTime2 - repetitions*aveRuntime*aveRuntime) I (repetitions-1) ;

/ I Display a few nodes for visual verification
System. out. println(" ") i

System.out.printf("\n\nNodes in %s order\n". modality [mode]) i
int upto c 10; if (upto> N) upto = N;
for (int i - 1; i <c upto; i ++){
System. out. printf ("%d", r8.IldomNode[i] .key) ;
if (i 1. upto != 0)
SysteJll.out.printf(", ") i
else
System. out. printf (" \n") i

}
System. out. println(" \n"

1/+ "\nTotal time 11 + runTime
1/+
/ /+ per operation .. II + fourD.format(1000*runTime/N) + " mus. It

+ "\nMinimum time + minTime
+ "
+" per operation = lt + fourD.format(1000*minTime/N) + " nue ."
+ "\nAverage time per run = 11 + twoD.format(aveRuntime) + " "

+ '\uOOB1' + " "
+ fourD.format(stdDeviation) + "ms"
+ fourD .format(1000*aveRuntime/N) + II mus."+" per operation

,.. 11 + muTime+ "\nMaximum time
+ '
+ ti per operation = 11 + fourD.format(1000*maxT1me/N) + " mU8.11

+ "\nStandard deviation =" + fourD.format(stdDeviation)
+ "\nH + N
+ tI\nRepetitions + repetitions
+ "\nAverage time + fourD.format(1000*aveRuntime/N) + 11 mus. It

+ "\nper operation (aveT)\n"
+ "\naveT/logN in mus. + fourD. format (1000*aveRuntime/N/ (double) logN)
+ '\n \n\n');

for (int i - 1; i <"" repetitions: i++) {
classNo ~ (int) « t [i] - minTime) / (muTime - minTime) *numberOfClasses) i

classes [classNo] ++:
}

System.out.printlnO:
for (int 1 ... 1 i i <,.. numberOfClasses i i ++) {
double X "" i/«double)numberOfClasses)*(maxTime - minTime) + minTime:

if (cla •••• [i] > 0)
System. out .printf ("%6.0f tJd\n", X, classes [i]) :

}



Appendix C

Code for rotation in a splay tree

rotate(tree x) {
1/ pre: x != null
tree y -- :z:. parent;
if (y != null) II x ls not tbe root
if (x.key < y.key) { II right rotation

y.left ""x.right;
x.right = Yi
}

e1.e { II x i. right child: left rotation
y.right = x.1e£t;
x.left a;: y;
}

x.puent .. y.parenti
y.parent = Xi
if «x.parent) .key > x.key)

(x.parent) .left = Xj

als8
(x.parent) .right ""Xi
}

void splay(tree x) {
if (x.parent !& null) II y -- x
if «x.parent) .parent != null) { II z -- y -- x
if (x.key < (x.parent) .key)

if «x. parent) .key < «x.parent) .parent) .key)
rotate (x. parant) ;

e1s8 / / left-right! zig-zag
rotate (x) j

e1.e II right
if «x.parent) .key < «x.parent) .parent) .key)

rotate (x .parent) i

ej.ee II right-left: zig-gig
rotate (x) i

rotate (x) ;
}
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Appendix D

Code for Skip Lists

public class skiplist {
public static final int random == O. ascending ., 1, descending "'2;
public boolean debug > false i

public static int length ""0 j

public statie int NEl «20;
public statie int 1 = 0 i
node s = null i
int height = 0;
final int infinity - 2147483647;// 999; II 2147483647;

public skiplist 0 {
s - nev DOde(-infinity.
// a.below" Dull:
/ / B. before = null;
/ / s .above ... null:

node r = nev node(infinity.
II r.belov = null1;
// r.prev" null:
II r.above'" null:
II r.next - null:

"-infinity") j 1/ {l} all pointers are set to null

"+lnfinity"); // {2} all pointers are set to null

// r.prey will later be Bet to s

lo
8.setNext(r) ;
r. setPrev(s) j

II.88tPrev(null);
ol

/1 s.next = rj
/1 r.prev = s;
1/ a.prev ... null: II redundant

r ...insertAfterAbove(s, null, r) j

node t = new Dode(-infinity, "-infinity");
t ...insertAfterAbove (null, s , t) j

I I {l} ----> {2}
II {3}
II {3} \\\\v {l}

s ... t;
t - new node(infinity, "+1nfinity"); II {4}

I. t = inaertAfterAbove(a, (a.getBelow(».getNext(), t)j.1
t ...insertAfterAbove (a, r, t) i I I {3} ----> {4}
}

public booloan isEmpty(){
return (length == 0) j

}

public booloan isFull 0{
roturn (length -- N);

lo
public node find (long kJ{

p = this. search(long k) ;
if (p.gotKoyO == k)

return Pi
elae

return null j

}ol

public node soarch(long kJ{
nodap=a;

if (p == null) {
}

else {
if (p. bolow == null)

}
while (p. below != null)

P = p.below;
while (p.next.koy < k)

p = p.next;
}

return p;
}

public node new_search(long k){
nodep=sj

while (p. bolow != null) {
p = p. below;

while (p.Dext.key < k)
if (dobug)
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System.out.println(IIGoing East from p z. It + p);
p ~ p.next;
}

return pj
}

public node lnsertAfterAbove(node p, node q, node r) {

r.prev = Pi

if (p == null)
IIr. setBelo.,(q);
/ / System. out. println(lIr. setBelow(q) It) j

}
else {

node psnext ... p.next;
if (psnext 1= null)

psnext. prey = r;
}
r .next = psnext;

II r.setNext(p.getNextO);
II System.out.println('r.setNext(p.getnextO)');
p.next - rj
IIr. setBelo.,(q);
/ / System. out .println("r. setBelow(q) It) j

}
1£ (q 1= null) {

q.above ,. rj
}

r.below = qi
return r;
}

public node insert(node item){
/ / Code based on Goodrich and Tama.ssia J s (2006)
II Code Fragment 9.11. p. 402.
node e ,. null;
int ij
node P .. search(item.key);
/ / 1f a null ls returned then item is not in the list
node q - this .1nsertAfterAbove CP. null, item) ;

II e a q.elomentO

i = OJ
boolean throwHeads = (Hath. randomO >= 0.5);

.,hile (thro.,Heads) { II heads \in [0.6,1) or tails \in [0,0.5)
i++j
1£ (i >= height)

height++;
node t = s .nextj

I I [-in!, --]------------------> [+in!, null]
B = this.1nsertAfterAbove(null, e , new node (-infinity, "-inf-"»j

node dummy;
dummy" this.insertAfterAbove(s, t, new node (+infinity, "+inf+"»j

.,hile (p. above == null) {
p = p.prev;

if (p -- null)
System. out .println("Error in insert: p has become null") j

}

p = p.abovej

e - new nodeCitem.key, "... ");

q = insertAfterAbove(p, q, e);

thro.,Heads = Math.randomO >= 0.5;
}

length++;
return ei
}

public void display 0{
String diep = "Display skip list";

System. out .println(disp) i
}

public long remove () {
I I Dummyfunction

return OLi
}

public double log2(double xl{
return Hath.log(x)/Math.log(2);
}

public int size 0{
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return length;
}

public void setupListOfRandomNodes (int mode. node randomNode [J. int N){
int randomKey [] = nev int [N+l];
II int [) randomKey = {4, 3, 12,7,9,8,1,5, 10,2, 11, 6};

for (int i =1; i <= Nj i++) {
If (mode - descending)

randomKey [1] - N - i + 1j /1 descending keys
else
randomKey [i] = ij / / random and ascending keys

}

if (mode == random) {
for (int i =1 j i <= Nj i++) {
int r = (int) (Math.randomO * N + 1);
int keep = randomKey [i) ;

randomKey [i) - randomKey [r) ;
randomKey [r) - keep;
}

int lineLength = 1;
for (int i c:l; 1 <= Nj i++) {

randomNode [i] ""new node (randomKey Ii.L, It ••• ");

II System.out.print("< " + randomKey[i] + It > It) j

II if (l1neLength++ Yo 11 -- 0)
I I System. out. printlnO;
}

public String toStringO {
return "« It + 8 + " »"j
}



Appendix E

Our Manual Observations

In order to gain an understanding of the data structures we hand diagrammed many

trees and skiplists considering insertion, search, and deletion operations. For each

operation, different numbers of items in ascending, descending, and random order

were considered.

E.l AVL Trees
The insertion, search, and deletion operations of A VL trees were manually ana-

lyzed. For the insertion operation, we entered different number of items-from 1

to 32 items-in ascending, descending, and random orders into AVL tree. For each

insertion we drew the corresponding A VL tree on paper. Then for each tree shape

we manually counted the required number of comparisons and rotations. If all

the cases yield the same result then the result was considered as our "theoretical"

result. Otherwise, the process was continued by entering a new number of items

to find a generic result. Similarly, the search and delete operations were manually

analyzed by considering AVL trees with different numbers of items. For each case

the required number of comparisons and rotations were manually counted.

E.2 Skip Lists
The search and update operations of the skip list were also analyzed similarly by

entering different numbers of items into skip lists and the corresponding skip list

was drawn on paper. For the insertion operation we manually drew many skip lists

for different numbers of items considering all the possible shapes for the skip list.

First we entered 3 items into a skip lists and we considered 36 different shapes for

the skip list.

Then we counted the total and average number of comparisons for each shape.

We derived our results from all the possible shapes. In the same way we entered 4

136



137

items into skip lists and considered all the possible shapes. We again calculated the

total and average number of comparisons for each shape. Then in the same way we

entered 7 items into skip lists and we considered all the possible shapes. We again

calculated the total and average number of comparisons for each shape. Then we

compared the results from arising from 3,4 and 7 items. Using this manual analysis

for skip lists we could draw some conclusions that are sometimes referred to in the

thesis as our "theoretical" results or our "observations." Similarly, search and

delete operations of skip lists were manually analyzed by searching and deleting

of items from different skip lists. For each operation, the conclusions are based on

considering all the possible cases.

E.3 Splay Trees
For splay trees we entered different numbers of items, again 3, 4, and 7 items, in

different orders, and counted the total number of comparisons and rotations. We

separately analyzed the bottom-up and top-down splay trees. First we entered 3

items in different orders into a bottom-up splay tree. We counted the total number

of comparisons and rotations for each order manually. Then we entered 4 items in

different orders into a bottom-up splay tree and we counted the total number of

comparisons and rotations. We considered all the orders for these 4 items.

The result was the same as for inserting 3 items into a bottom-up splay tree.

Then we entered 7 items in different orders into a bottom-up splay tree and we

counted the total number of comparisons and rotations. We considered all the

orders for these 7 items. The result was the same as for inserting 3 items and

4 items into a bottom-up splay tree. For the search operations of a bottom-up

splay tree we considered a different number of items then we accessed all the items

in different orders. We accessed all the items from the root to the leaf and from

the leaf to the root. Then we accessed all the items of a bottom-up splay tree

in different orders. Then we accessed all the items of a degenerated bottom-up

splay tree with 7 items in different orders and we counted the total number of

comparisons and rotations for each sequence.
Similarly, we entered 3, 4, and 7 items in different orders into a top-down

splay tree. We counted the total number of comparisons and rotations for each

order, by drawing the corresponding top-down splay tree on the paper.
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We illustrate one the pages? generated in our manual elaboration of splay

trees in Figure E.l.

Figure E.1: A page from the manually diagrammed Zig-zag analysis.

The final result was derived by considering different numbers of items, and

for each number of items we test all the possible orders. For the search operations

of a top-down splay tree we considered different numbers of items and accessed all

the items in different orders. We accessed all the items from the root to the leaf

and from the leaf to the root. Then we accessed all the items of a top-down splay

tree in random order. We counted the total number of comparisons and rotations

for each order and derived our final result considering different number of items

and different orders for each number of items.

4We diagrammed about 200 such pages.
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