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UNIVERSITY OF THE WESTERN CAPE

Abstract
Master of Science

Application of Anomaly Detection Techniques to Astrophysical Transients

by Malema Hendrick Ramonyai

We are fast moving into an era where data will be the primary driving factor for discovering new

unknown astronomical objects and also improving our understanding of the current rare astronomical

objects. Wide field survey telescopes such as the Square Kilometer Array (SKA) and Vera C. Rubin

observatory will be producing enormous amounts of data over short timescales. The Rubin observatory

is expected to record ∼ 15 terabytes of data every night during its ten-year Legacy Survey of Space and

Time (LSST), while the SKA will collect ∼100 petabytes of data per day. Fast, automated, and data-

driven techniques, such as machine learning, are required to search for anomalies in these enormous

datasets, as traditional techniques such as manual inspection will take months to fully exploit such

datasets.

In this work, we aim to answer two questions: 1) how do we generalise the anomaly detection process

(i.e., how do we automate the process from data processing to anomaly detection with minimum

programming), and 2) how do we personalise interesting anomalies? To do this, we employed un-

supervised anomaly detection techniques incorporated in the ASTRONOMALY framework, to search for

anomalies in optical astrophysical transient and variable light curve datasets (a plot of brightness

against time of an astronomical object). ASTRONOMALY is a flexible framework designed to generalise

the anomaly detection process and personalise interesting anomalies to a human expert. We extend

the ASTRONOMALY framework to operate with light curve data, and employed two machine learning

algorithms: isolation forest (iForest) and local outlier factor (LOF), incorporated in the framework,

to search for anomalies in the MANTRA and PLAsTiCC light curve data. We then used the active

learning technique incorporated in ASTRONOMALY, to personalise interesting anomalies in both datasets.

We found that iForest detects two types of anomalies in the MANTRA data: anomalies triggered

by artefacts (bogus) and those triggered by interesting astrophysical processes (e.g., stellar flares).

However, active learning is successful in flagging most of the bogus anomalies, which implies that our

technique is promising in detecting anomalies in big datasets. We also found that LOF performs better

than iForest in detecting anomalies in the PLAsTiCC data; however, on average, the performance

of both algorithms as measured by both recall and rank weighted scores was subpar. We also found

that different feature extractors results in different classes of objects detected as anomalies. Our work

highlights the importance of both feature extraction and active learning for anomaly detection in

large samples of variable and transient light curves. Lastly, we conclude from our work that the feets

feature extractor is not ideal for anomaly detection with PLAsTiCC-like data.
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Preface

The use of machine learning algorithms has emerged dramatically in the past few decades. This

is due to the big datasets that come with the developing technology. A group of machine learning

algorithms called anomaly detection algorithms are ideal tools to search for anomalies in these big

datasets. However, using these techniques is not as simple as it sounds. The challenges I encountered

in applying them include choosing the best algorithm for a given dataset and finding the best tool to

extract features from the input data.

However, overall, my masters experience at the University of the Western Cape was fun and exciting.

I got an opportunity to learn about some of the hot topics in the fourth industrial revolution (machine

learning) and astronomy (transient astronomy); and also learned to link the two fields into a practical

research problem: applying anomaly detection techniques to astrophysical transients.

Chapters 1 and 2 are the literature review Chapters. Transient astronomy is discussed in Chapter 1,

which covers the most common techniques used to acquire data in optical astronomy and the common

variable and transient events. Machine learning is discussed in Chapter 2, covering the algorithms

used in this work (random forest, local outlier factor, and isolation forest), and also included is the

application of anomaly detection in transient astronomy.

Chapter 3 covers the tools used in this work, which includes the feature extractors (feets and

avocado) and the ASTRONOMALY framework. It also include the steps taken in extending ASTRONOMALY

to operate with time series data. Chapters 4 and 5 are the research chapters, which discusses the ap-

plication of the upgraded framework on variable and transient time series data from real observations

(Chapter 4) and simulated (Chapter 5). Chapter 6 discusses conclusions drawn from Chapters 4 and

5.
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Chapter 1

Introduction to Time Domain Astron-

omy

Illustrations: @wandering_astro

EventEvent

Figure 1.1: An example taxonomy tree for transients and variable objects (Förster et al. 2021).

Time domain astronomy is the study of short-lived astronomical phenomena with time-varying prop-

erties: how they occur, what triggered the process, what are the implications for known models,

and how can they be used to better probe and understand the Universe. They are categorised into

two main groups: transient events and variable events (see Figure 1.1 which outlines the two groups

highlighted by blue boxes and their respective subgroups). There are many types of objects in each

1
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Chapter 1. Time Domain Astronomy 2

group, and some of them, particularly rare events (“known unknowns” and “unknown unknowns”),

do not have a well-understood underlying physics.

In this work, we investigate how well machine learning techniques detect rare variable and transient

events in a given light curve dataset.

1.1 Taking astronomical observations

Scientists study the transient and variable events using photometric and spectroscopic observations.

Discussions covered in this section are based on optical astronomy, however, our approaches are general

and can be applied to most astronomical data.

1.1.1 Photometric Observations

Astronomers study both transient and variable events using light curves, a plot of brightness against

time for a target object. To construct a light curve, a telescope is used to capture multiple images

of a target event over a period of time. The images are commonly saved in a standard scientific

format called FITS, an acronym for Flexible Image Transport System, which contains the raw data

and additional information about the observations (e.g., exposure time, time and date of observation,

and the coordinates of the target object).

Telescopes use filters (also known as bands or passbands) when capturing images to improve their

contrast and sharpness. They do this by filtering other wavelengths of light except the one specified

in the filter itself. The most common filters used in astronomy are the Johnson-Cousins UBVRI

filters. However, survey telescopes such as the Sloan Digital Sky Survey (SDSS) also have their own

filters, e.g., the SDSS u’g’r’i’z’ filters. Figure 1.2 shows the wavelength ranges covered by both the

Johnson-Cousins UBVRI and SDSS u’g’r’i’z’ filters and their normalised efficiency (Bessell 2005).

It is important to note that each filter will have its own light curve for cases where the telescopes have

multiple filters. In constructing the light curves, the multiple images captured by the telescopes can

also cover other stars or events that are within the field of view of the telescope.

Astronomers often employ a technique called aperture photometry (see review in Mighell 1999) to

measure the brightness of the target object for a single observation, where the brightness of the target

star is obtained by fitting a circle to a target star and adding the pixel counts within the fitted circle.
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The background brightness is measured by adding pixel counts from an annulus fitted around the

target. The final brightness of the target is then the brightness of the target minus the background

brightness. However, to measure the variability of the target, a reference star (a star that does not

vary with time) has to be identified in the same image, and the same process described above is

repeated to get the brightness of the reference star. The exact process of measuring the brightness

for both the target star and the reference star is then repeated for the remaining images from other

observing days. The target star’s brightness is then compared with that of the reference star over the

observing period. If there are changes detected, then the target object is either a variable or transient

event. These variations in brightness will then be recorded for the observation duration and plotted

as a light curve.

Figure 1.2: Example filters used by telescopes, the top plot shows the Johnson-Cousins UBVRI
filters and the bottom plot shows the SDSS u’g’r’i’z’ filters (note that the SDSS filters have at-
mosphere included while Johnson-Cousins does not). The y-axis are their normalised efficiency

(normalised to unit at peak; Bessell 2005).

The technique described above is what is known as differential photometry. However, the most com-

mon technique used to find variable and transient events is difference imaging photometry (hereafter

difference imaging). Difference imaging involves registering a test image (e.g., new observations) to a

high signal to noise ratio (S/N), low mass, stacked reference image. A point spread function (PSF)

is fitted to uncrowded stars to compute the convolution kernel required to map the reference image
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to the test image. The resultant convolution kernel is applied to the reference image. The test im-

age is then photometrically normailsed to match the convolved reference image. Finally, objects are

detected by subtracting the registered, normalised and convolved image from the test image (Alcock

et al. 1999a).

However, the time measurements are often recorded in Julian days (JD) or in modified Julian days

(MJD). The former corresponds to the number of days since 1 January 4713 BC, while the latter

is the number of days since 1 January 1950 (McCarthy 1998). This time units are used to simplify

calculations in astronomy.

Light curves offer insights into the astrophysics of variable and transient events. For example, the

period of variable stars can be estimated directly from their light curves. The light curves can also be

used to search for exoplanets through a technique called the transit method. This involves observing

a target star over some time; if the star has an orbiting planet around it, its light curve will display

periodic dips. The light curves, in this case, can help estimate the orbital period of the system and the

size of the exoplanet (e.g., Gibson et al. 2009). Another case where light curves can be helpful is the

case of categorising different variable and transient events (e.g., Belokurov, Evans, and Le Du 2004).

The shape and behavior of light curves are unique for most classes, and a new transient/variable

event can be assigned a class by inspecting the shape of its light curve, however, there are some

uncertainties involved. Similarly, a new class of transient/variable events can be proposed if the shape

of the light curve of a target object does not match any of the known shapes (support evidence, such

as spectroscopy is required to declare a new class).

1.1.2 Spectroscopic Observations

The shapes of the light curves alone are often not enough to distinguish/verify a class of transien-

t/variable events. In such cases, additional data such as spectra are required for follow up studies.

In astronomy, the electromagnetic radiation of a target object is recorded with a set of instruments

collectively known as a spectrograph: these include the slit, collimating mirror, dispersing device

(diffraction grating are often used), a camera mirror, a detector [e.g., charged-couple device (CCD;

see review of CCDs in Lesser 2015)], and computer. A small fraction of light rays from an observing

telescope passes through the slit and hits the collimating mirror, which then rearranges the rays to be

parallel. The parallel rays are then split into constituent wavelengths by the light dispersing device

(e.g., a diffraction grating), which changes the wavelengths and position them on the focal plane of

the camera mirror. The camera mirror finally focuses photons from each of the wavelengths on the
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detector (e.g., the CCD) which are then converted to electrical signals, which can also be converted

to flux, and the results are saved as an image on a computer. A spectrum is then constructed by

recording the brightness of the target object at different wavelengths, which is then calibrated using

reference stars to get the final spectrum.

The spectrum can take different characteristic shapes, depending on the type of source and the material

that the light passes through between the source and the observer. There are many different examples

of emission that creates a continuum spectrum such as synchrotron emission or blackbody radiation.

Most sources are surrounded by gas and dust (there is always an interstellar and intergalactic material

between us and any source). This material then absorbs photons at specific wavelengths, which results

in a spectrum with absorption lines known as an absorption spectrum (characterised by a decrease in

intensity at specific wavelengths).

Lastly, suppose there is an interactive medium (e.g., a molecular or interstellar medium) between the

user and an energetic target source (e.g., supernovae). The photons from the source will excite the

electrons in the cloud resulting in an emission spectrum characterised by an increase in intensity at

specific wavelengths in the spectra.

A wide variety of information can be retrieved from these spectra: they can be used for the classifi-

cation of different astronomical objects (e.g., Veilleux and Osterbrock 1987). We can also use them

to learn about the chemical composition of ions, atoms and molecules in an object (e.g., Aoki et al.

2012). Lastly, we can use them to estimate the temperature and motion of the object by comparing

its observed wavelengths to rest wavelengths to measure if the object is moving towards or away from

us and most importantly, estimate its redshift (e.g., Hutchinson et al. 2016).

Some of the transient events/variable events have the same light curve shapes but different chemical

compositions. This might be due to different progenitors (e.g., the progenitor stars for type Ia su-

pernovae are white dwarfs with a companion star, while that of type II supernova are massive stars).

The two progenitor stars will have a different chemical composition, and their spectra will be different

(see Filippenko 1997; Branch, Baron, and Jeffery 2001). Studying both their light curves and spectra

can decrease the chances of misclassification. In sections 1.2 and 1.3, we describe different classes of

transients and variable events and give an example light curve for each class.

http://etd.uwc.ac.za/ 
 



Chapter 1. Time Domain Astronomy 6

1.2 Variable Stars

Variable stars are stars that display variation in brightness in their light curves. The first detected

variable star is the Omicron Ceti, which was discovered in 1638 by Johannes Holwarda, who corrected

its classification as it was previously classified as a nova in 1596 by David Fabricius. He discovered

that Omicron Ceti (currently known as the Mira star) was pulsating every 11 Months, which showed

that the sky is not entirely invariable (Hoffleit 1997). Three decades later, Geminiano discovered an

eclipsing variable star (know as Algol) whose variation mechanism was explained by John Goodricke in

1784 (Bopp 1980). Development in technology then increased the catalogue of variable stars through

photographs in the late 1890s, where telescopes were able to take photographs of stars that were not

visible to a human eye.

Some of the variable stars (examples and details of each of them will be explained later in this section)

are periodic, and their light curves can be represented in a folded format. To fold a light curve, the

period (P) of the object is first computed, and used to compute its phase as follows:

phase =
t− t0
P

, (1.1)

where t is the time observations and t0 is the time the light curve is at a specific phase, such as

maximum or minimum. The decimal points from equation 1.1 are then used as the phase, and the

final light curve is thus a plot of brightness against the phase (e.g., see Figure 1.4). Variable stars are

categorised into two main groups: extrinsic and intrinsic variables.

1.2.1 Extrinsic Variables

Extrinsic variables are variable stars whose brightness varies because of external characteristics such

as eclipses and rotations. They are further categorised into three main groups: transiting exoplanets,

eclipsing, rotating, and microlensing variables.

1.2.1.1 Eclipsing Variables and Transiting Exoplanets

Eclipsing variables are stars found when the orbital plane of two or more companion stars is aligned

with the observer’s line of sight. As they orbit each other, they form eclipses which are detected as

dips in their light curves. A typical example is the eclipsing binary stars (EBs).
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With eclipsing binaries, as the two stars orbit each other, two different dips are detected in their light

curves, where the bigger deep occurs when the dimmer star passed in front of the brighter star causing

a primary eclipse. The other dip occurs when the bright star passes in front of the dim star causing

the secondary eclipse (see Figure 1.3). The orbital period of the system is thus the time between two

successive primary eclipses (e.g., Southworth et al. 2004).

Similarly, transiting exoplanets form eclipses around stars they are orbiting, resulting in primary and

secondary eclipse in their light curves. The orbital period of the system is thus computed as the

period between successive primary eclipses (e.g., Gibson et al. 2009).

Figure 1.3: An example light curve of an eclipsing binary system showing how the light varies as
the two stars orbit each other. The top panel shows the orbits of the stars, and the bottom panel

shows the corresponding variation in brightness. Credit: NASA.

1.2.1.2 Rotating Variables

Rotating variables are variable stars whose brightness may vary because of an uneven distribution of

luminosity on their surface; where there are small regions of low luminosity as opposed to the total

luminosity of the star (e.g., starspots), which are caused by strong magnetic fields (Solanki 2003).

Our Sun is an example as it occasionally displays sunspots on its surface. If a significant fraction of

its surface was covered with sunspots, then a variation in brightness would be detected from its light

curve as it rotates (see an example folded light curve in Figure 1.4). However, sunspots cover a small

fraction of the Sun’s surface and will not account for much brightness variability in their light curves.
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Stars with bigger starspots, like the By Draconis stars, display significant variations in brightness as

spots rotate in and out of sight of an observer (Bopp 1980).

Another example of rotating variable stars is young stellar objects (YSO), also known as pre-main-

sequence. They are detected in the early stages of their stellar evolution before they reach the main

sequence and display brightness variation in their light curves which is due to the presence of hot and

cold spots on their surface (e.g., Herbst 2012). Studying the light curves of rotating variable stars can

help estimate their periods (see Bopp 1980; Vogt 1975).

Figure 1.4: Phased example light curve of a rotating variable star, where the dots corresponds to
the observations, and the solid line is the best fit described by Vogt 1975.

Gravitational Microlensing Variables

Gravitational microlensing occurs when the total luminosity of a distant source is magnified by a

foreground stellar object (also known as a gravitational lens, there are other gravitational lenses

whose details are beyond the scope of this work) as it passes between the observer’s line of sight and

the source. There are two main types of gravitational microlensing: microlensing due to a single lens

and binary lens.

Microlensing is believed to be caused by a single gravitational lens object, while binary microlensing

events are believed to be caused by multiple gravitational lens objects (multiple stars in line with each

other). The light curves of the former are characterised by an increase then decrease in brightness as
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the gravitational lens passes in front of the distance source, and that of the latter displays multiple

peaks corresponding to each of the gravitational lens objects (see Figure 1.5; Guo et al. 2015).

For the purpose of this work, we adapted the names given to gravitational microlensing events simu-

lated in the PLAsTiCC data, which is µLens-Single (for the gravitational microlensing due to a single

lens) and µLens-Binary (for the gravitational microlensing due to a single lens); see chapter 5 for the

description of the PLAsTiCC data.

Studying the light curves of microlensing events can help astronomers search for exoplanets around

stellar gravitational lenses (e.g., see Figure 1.5). They can also help study the stellar population of

faint objects such as the black holes, white dwarfs, brown dwarfs, and neutron stars (e.g., Hansen

1998).

Figure 1.5: Example r-band light curves of microlensing events, wherein the blue dotted curve is
for the single lens, and the red is for the binary lens Kessler et al. 2019.
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Figure 1.6: Similar to Figure 1.5, but here the lens is a star with an orbiting exoplanet. The top
panel indicates the change in brightness of a distance as the lens passes in front of it, and the bot-
tom panel is the corresponding light curve. Indicated with pointing arrows are the magnifications

due to both the star and the exoplanet. Image credit: NASA 1

1.2.2 Intrinsic Variables

Intrinsic variable stars are objects whose brightness varies because of their physical properties. These

stars, along with other variable stars, can be found in different locations on the Hertzsprung–Russell

diagram (HR diagram, e.g., see Figure 1.7), a scatter plot of luminosity against the spectral type/-

effective temperature. The spectral types gives information about the temperature of the stars. It

takes the letters, O B A F G K M, arranged in an order from hotter to cooler. They are further

subdivided into numbers from 0-9 in an order from hottest to coolest, e.g., A0 is the hottest, and A9

is the coolest (Kutner 2003).

1https://nexsci.caltech.edu/workshop/2011/
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Figure 1.7: The HR diagram showing the locations of known variable stars. The horizontal axis is
related to their spectral types/effective temperature, and the vertical axis corresponds to either their

luminosity/absolute magnitudes (LSST Science Collaboration et al. 2009).

The HR diagram gives information about the stellar evolution. Most intrinsic variable stars are located

at the instability regions of the HR diagram (Eyer and Mowlavi 2008). They are categorised into two

main groups: pulsating and cataclysmic variables.

1.2.2.1 Pulsating Variables

Pulsating variable stars are stars whose brightness varies due to repeated expansion and contraction

of their radii. Most of them follow a radial pulsation, which occurs when the sphere of the star’s outer

layer expands and contracts symmetrically. However, some stars also follow a non-radial pulsation

which occurs when the volume of the star is kept constant while its shape changes (e.g., pulsating Be

stars; Rivinius, Baade, and Štefl 2003). Their light curves are categorised into three groups: regular,

semi-regular, and irregular, where regular light curves are strictly periodic, irregular light curves are

non-periodic, and semi-irregular light curves are in between the regular and irregular light curves

(Catelan and Smith 2014).

http://etd.uwc.ac.za/ 
 



Chapter 1. Time Domain Astronomy 12

The variation observed of most pulsating stars is believed to be caused by a phenomenon known as

the Eddington’s valve (Eddington 1988). This occurs in late stellar evolution, where stars burn helium

in their outer shells after depleting hydrogen in their core; as the star burns helium, the helium atom

alternate between being singly and doubly ionised. The latter is more opaque than the former and

absorbs radiation from the core of the star, leading to more doubly ionised helium.

As the amount of doubly ionised helium increases, more radiation is absorbed (the star is dimmer

at this point). The star’s outer helium layer expands due to the increased star temperature. Its

temperature decreases as it expands, resulting in less ionised helium (singly ionised); the star becomes

less opaque and bright as radiation escapes. The star then contracts because of its gravitational force.

Its temperature increases as it contracts, leading to more doubly ionised helium ions, making the star

appear dim again and the process is repeated.

Table 1.1: Different pulsating variable stars and their properties taken from Catelan and Smith 2015; Percy 2007; Eyer
and Mowlavi 2008. Objects with regular, irregular, and semi-irregular light curves shapes are those with periodic, non-

periodic, and semi-period light curves, respectively.

Pulsating

Variable

Period

[days]

Amplitude

[V band mags]

Spectral

Type

Location on

HR diagram

Light Curve

Shape
Mass [M⊙]

Type I

Cepheids
1 - 135 0.1 - 1.5 F, G - K Yellow supergiant Regular 2 - 20

W Virginis 0.8 - 35 0.3 - 1.2 F, G - K Supergiants Semi-regular 0.4

RV Tauri 30 - 150 1 - 3 F - G, K - M Yellow supergiant Semi - regular 0.1 - 2.2

RR Lyrae 0.1 - 1 0.2 - 2 F5 - A8 Horizontal branch Regular 0.6 - 0.8

Delta Scuti 0.01 - 0.2 0.003 - 0.9 A0 - F5 Giant/main sequence Regular/Semi-regular 2.2

Mira 100 - 1000 2.5 - 10 M, C or S Red giant Irregular 1 - 2

Most pulsating variables follow the Eddington’s valve mechanism, including type I Cepheids, type II

Cepheids, and RR Lyrae. See their example light curves in Figure 1.8 and their properties in table

1.1, where W Virginis and RV Tauri are sub-classes of type II Cepheids. However, Mira stars are

different in that their pulsation is driven by burning hydrogen and helium shells (Whitelock 1999).

This occurs when the radius of the star expands due to a burning helium shell around the carbon/oxy-

gen core, and as the helium shell runs out of fuel, the star shrinks. As the star shrinks, its temperature

increases, and the outer hydrogen shells continues to convert hydrogen to helium. The inner helium

shell starts burning helium again, resulting in what is known as the helium shell flash characterised

by high luminosity, resulting in the expansion of the star radius. This process is repeated, and as the

star expands and shrinks, it changes brightness (this process is also known as the thermal pulsation;

Marigo et al. 2008).
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Figure 1.8: Phased example light curves of pulsating variable stars, top and middle panels cor-
responding to Cepheids and the bottom panel corresponding to the RR Lyrae. The middle panel
shows the anomalous Cephieds that displays a bump close to the minimum brightness, as opposed
to the smooth curves observed in the classical Cephieds in the top panel ( Soszyński et al. 2019).

Mira stars are examples of a group of variable stars known as long-period variables (LPV, characterised

by periods between hundred days and more than thousand days), which follow the thermal pulsation

mechanism described above. During the thermal pulsation process, some of the material from the

star’s core (e.g., carbon) might travel to the outer shells, forming what are known as carbon stars.

They are characterised by a red atmosphere dominated by carbon (Ripoche et al. 2020), and some of

them are known to be variable with semi-regular light curves (e.g., Brincat, Galdies, and Hills 2020).

Table 1.1 shows properties of the most common pulsating variables. Notice the wide range in masses,

temperatures and periods of these objects. This highlights the complexity in classifying the different

types, however machine learning algorithms can easily address such complexities (e.g., Richards et al.

2011).
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Pulsating Variables as Distance Indicators

Henrietta Leavitt discovered the period-luminosity relationship in the 1900s, where she discovered a

direct proportion between the period and luminosity of Cepheids, where bright cepheids were asso-

ciated with long periods and vise versa (Leavitt 1908). Right after her discovery, Ejnar Hertzsprung

(Hertzsprung 1913) proposed that given the period and apparent magnitude (m) of a Cepheid star

at a given distance (d), the period can be interpolated on the period-luminosity plot to estimate its

absolute magnitude (M) and the distance can be calculated by substituting m and M in the distance

modulus equation given by:

m−M = 5 log10(d)− 5. (1.2)

Edwin Hubble also used the same principles as that of Ejnar Hertzsprung, to calculated distances to

the Cepheids in the Andromeda galaxy (M31) in 1924, where he discovered that M31 was separated

from our galaxy (E. P. Hubble 1926). He later measured redshifts of galaxies and discovered that

galaxies at high redshifts move away from us at high speed compared to nearby galaxies, which then

led to the discovery that the Universe is expanding (E. Hubble 1929). This phenomenon is also known

as Hubble’s law which is given by:

v = H0D, (1.3)

where v is the recession velocity corresponding to the measured redshifts, D is the proper distance to

the galaxy, and H0 is the Hubble constant.

1.2.2.2 Cataclysmic Variables

Cataclysmic variable stars (CVs) are stars found in compact binary systems. The system is composed

of a primary star (usually a white dwarf) and a secondary star (also known as a donor star) which is

typically a main-sequence star (more massive stars are rarely found in binary systems). Mass transfer

occurs in the binary system where the tidal forces distort and disrupt the surface of the donor stars,

resulting in mass accretion from the donor star to the primary star (Warner 2003).
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Figure 1.9: Schematic representation of a binary cataclysmic variable system (Warner 2003).

The mass from the donor star forms what is known as an accretion disk (a layer of matter that

is orbiting a compact central object) around the white dwarf. Mass from the inner disk (mostly

hydrogen) falls onto the white dwarf, increasing its temperature and density. The high temperature

ignites hydrogen fusion onto the hydrogen layer around the white dwarf, which converts hydrogen to

helium. This is characterised by a sudden increase in brightness in their light curves (see Figure 1.10),

such phenomena are known as novae.

Table 1.2: Table of cataclysmic variables classes and their characteristics (Robinson 1976).

Class Amplitude [mag] Energy [ergs] Recurrence time

Novae 9 − > 14 1044 − 1045 or more Only one eruption

Recurrent novae 7−9 1044 − 1045 10 − 100 days

Dwarf novae

(a) U Gem 2−6 1038 − 1039 15 − 500 days

(a) Z Cam 2−5 1038 − 1039 10 − 50 days

Novalike −− −− No eruptions

Dwarf novae, on the other hand, occurs when a small portion of the outer accretion disc is not stable

(see the bright spot in Figure 1.9), i.e., the disc changes from a quiescent state (associated with

cool temperature and low luminosity) to an active state (associated with high temperatures and high

luminosity). The characteristics of both novae and dwarf novae are outlined in Table 1.2, where

recurrent novae and dwarf novae are classified as variable events, while the novae are transients since

their outburst is only detected once.
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Figure 1.10: Example light curves of cataclysmic variables from the Catalina real-time transient
survey (CRTS), where the black dots represents the active state of the system (outbursts), and the

gray points represent the quiescent state (Breedt et al. 2014).

1.3 Transient Events

The study of explosive events has gained momentum in the past few decades, where astronomers

extensively study the events themselves, and their environments. They are different from variable

stars in that they occur once (i.e., they are non-recurrent). Astronomers have been studying these

events before the development of telescopes, where a new bright star appears in the sky and disappears

within short timescales, with Tycho’s supernova (also known as SN 1572) being an example (Schaefer

1996).
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Figure 1.11: Example light curves of different variable and transient events in different obser-
vation bands (ugrizy), the y-axis are flux values in arbitrary units, the x-axis is the time in days
where Tpeak is the time at peak bolometric flux. This Figure also shows some of the rare transients
including the intermediate luminosity transients (ILOT), calcium-rich transients (CaRT), and pair-
instability supernova (PISN), details of which will be discussed in the next sections, (Kessler et al.

2019).

Tycho discovered a bright object in the sky in 1572, which he and other astronomers thought was
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a new star (Schaefer 1996). Later observations showed that it was a supernova, called SN 1572.

Supernovae are explosive events characterised by high luminosities. Type Ia supernova are used to

estimate cosmic distances (Riess, Press, and Kirshner 1996; Perlmutter et al. 1998; Krause et al.

2008).

Discoveries of transient events such as SN 1572 opened a new window in astronomy where astronomers

used modern technology to search for more transient events in the universe to understand their true

nature. We give an overview of the most common transient events below.

1.3.1 Supernovae

Supernovae (SNe) are one of the most energetic explosive events in the Universe, having a luminosity

that can be as bright as a galaxy. They are mainly triggered by the death of massive stars, and they

have different classes. Their spectral features are used to distinguish between their classes where type

I SNe lacks hydrogen lines in their spectra as opposed to strong hydrogen lines present in type II SNe

spectra.
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Figure 1.12: The classification of SNe based on their spectral features. The rate is measured in
supernova units where 1 SNu = 1 SN per century per 1010L⊙,B (Raffelt 2012), where L⊙,B is the
B band solar luminosity. Note that the number of observed SNe has increased to 94,248 as of 5

February 2022 (see the open supernova catalog: https://sne.space/statistics/).

Type I SNe are further categorised into different groups based on their spectral features: type Ib/c

does not have silicon in their spectra while SNIa do; type Ic SNe does not have helium in their spectra

while type Ib do (Raffelt 2012), see the classification table in Figure 1.12, and their spectral shapes

in Figure 1.14.

The progenitor stars vary between the different SNe classes: type Ib/c and type II SNe are caused by

the death of a massive star through a process called core collapse explosion. This occurs in the late

stellar evolution of massive stars (8M⊙ ≤ M∗ ≤ 40M⊙; where M∗ is the mass of the star) whereby the

stars are not stable due to the depletion of fuel in their core. This occurs when the stars have fused

silicon into iron (which is why silicon is often not detected in their spectra) in their core. Because the

star cannot fuse heavier elements than iron, it collapses under its own gravity. The infalling material

then explodes into a shock wave, which leaves either a neutron star or a black hole remnant (Raffelt

2012).
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Figure 1.13: Example light curve shapes of different SNe. The types are indicated by the arrows
pointing the curves (Filippenko 1997).

SNIa, on the other hand, are believed to be caused by thermonuclear explosions, where the white

dwarf accretes mass from a companion star (a main sequence or giant star) or collides with another

white dwarf. It does this until it reaches a mass limit of 1.44 M⊙ (also known as the Chandrasekhar

limit, which is why the light curves of SNIa are reproducible), beyond this mass, the temperature and

pressure in the core of the white dwarf rise triggering a runaway carbon fusion. The white dwarf then

explodes into a type Ia supernova and becomes completely destroyed in the process (Raffelt 2012),

emitting light that is mostly powered by nickle decaying into iron (Goobar and Leibundgut 2011).
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Figure 1.14: Spectra of different SNe, types of SNe are indicated in brackets next to the SN name
(Ostlie and Carroll 2007).

The shapes of type Ib/c and type II SNe light curves vary significantly from object to another (see

Figure 1.13), while those of type Ia are similar (see Figure 1.15). However, different SNIa have different

luminosity and decay rate, where brighter SNe decay slower than the dimmer SNe. This phenomena

is known as a stretch factor (or stretch-luminosity relation; Pskovskii 1977), and it can be corrected

by estimating the amount of flux need for the observed flux to aligned with the rest frame (bottom

panel of Figure 1.15; Goobar and Leibundgut 2011). Correcting the stretch factor means SNIa can

be used as “standard candles” to estimate cosmological distances.
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Figure 1.15: Example light curves of known SNIa (top panel), and their aligned light curve (bot-
tom panel) after they were corrected for the stretch factor (Perlmutter et al. 1998).

1.3.2 Other Types of Supernovae

Modern telescopes have opened a new window of transient astronomy whereby new SNe events fail to

fit any of the described classifications above (Goobar and Leibundgut 2011). Some of these events are

rare [type I superluminous SNe, calcium-rich transients (CaRT), intermediate luminosity transients

(ILOT), pair instability SNe (PISNe)], and some of them are common [peculiar SNIa (SNIa-91bg),

and peculiar SNIax]; see their example light curves in Figure 1.11. Studying these objects is extremely

useful for understanding stellar mechanisms better, and this project aims to employ machine learning

algorithms to retrieve rare events from a given light curve dataset.
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Type I Superluminous Supernovae (SLSN-I) are amongst the most luminous explosions with

luminosity 50 times that of the normal supernova (SN Ia). They are characterised by a light curve

that lasts for few months and blue hydrogen poor spectra (Chomiuk et al. 2011; Quimby et al. 2011).

Their high peak brightness makes them ideal candidates as distance indicators for objects located at

high redshifts (Scovacricchi et al. 2016), if they can be standardised. They are believed to be driven

by the same mechanism as that of type Ib/c and type II SNe.

Peculiar SN (SNIax) is a type of supernova explosion that is similar to SN Ia, but different in that

the progenitor star (white dwarf) is not entirely disrupted after the explosion (Foley et al. 2013). The

peak luminosity of SN Ia is much brighter than that of SN Iax. Their spectra deviate from those of

SN Ia at later times where they do not go into a “nebular” phase (a region in the spectra of SN Ia

where emission lines from new elements dominate as opposed to absorption lines from elements from

the progenitor stars).

SNIa-91bg (Filippenko et al. 1992) are subtypes of SNIa: they, however, differ from the normal SNIa

in that they have a low luminosity, lack secondary peaks in izy bands, they disappear quickly after

peak luminosity, and do not display any stretch-luminosity relation (Phillips 1993); hence they cannot

be used as “standard candles.”

Calcium-rich transients (CaRT) are also dimmer than normal SNe, and their spectra are rich in

calcium with a short-lived light curve, and their true progenitors are not known (Lunnan et al. 2017).

Pair instability SNe (PISNe) thought to follow the same mechanism as that of type Ib/c and type

II SNe; they are, however, different in that their progenitor stars are low-metallicity population III

stars, and they do not leave any remnant behind after the explosions (Barkat, Rakavy, and Sack 1967;

Kasen, Woosley, and Heger 2011). They are characterised by high luminosity and are expected to be

found at high redshifts, which makes them difficult to observe (they are only predicted theoretically).

Intermediate luminosity transients (ILOT) are a group of transients whose peak brightness lies

between that of SNe and novae; they are believed to often share the same progenitor stars as that of

type II SNe (Kessler et al. 2019).

1.3.3 Tidal Disruption Events

Tidal disruption events (TDEs) occur when a star is ripped apart by strong tidal forces from a super

massive black hole (SMBH) having a mass between 106 - 107 M⊙. The star passes close to the SMBH,
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and the strong tidal forces from the SMBH triggers a mass transfer from the star onto the black hole,

wherein the blackhole accretes ∼ 50% of its mass. The high relativistic speed at which the mass

is accreted gives rise to a luminous emission of radiation (also known as a flare; Rees 1988) across

the electromagnetic spectrum. The flare peaks in the soft X-ray, ultraviolet wavelengths (Rees 1988;

Ulmer 1999; Strubbe and Quataert 2009) and the near infrared wavelength (Jiang et al. 2016), see

example light curves in Figure 1.11 and 1.16.

These events can also be detected in the optical wavelength (e.g., Hung et al. 2017) with spectra

characterised by a strong blue continuum with broad Hα and doubly ionised helium (HeII; Arcavi

et al. 2014). Most of their light curves follow a power-law proportional to t−5/3 (Evans and Kochanek

1989), where t is the observing time. TDEs are mostly found in post-starburst E+A galaxies [galaxies

with an elliptical galaxy spectrum (hence the E) and an A-type stellar spectral type with strong

Balmer lines (hence the A)]. They are found to power outflows and jets across the electromagnetic

spectrum (e.g., X-ray, radio and UV). Studying the properties of these jets and the outflows can give

insights into AGN feedback and the formation of jets. (Gezari 2021).

Figure 1.16: Examples light curves of TDEs (Velzen et al. 2019).

1.3.4 Gamma Ray Bursts

Gamma ray bursts (GRBs) are the most energetic, luminous events in the Universe detected in the

gamma-ray part of the electromagnetic spectrum. They are thought to be triggered by: the death
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of massive stars (Mass > 20 M⊙), colliding neutron stars, or when a neutron star and a black hole

merge or two black holes merge. They are categorised into two main groups: short-duration GRBs

and long-duration GRBs. The duration of the former can last between milliseconds and 2 seconds,

while the latter lasts between 2 seconds and a couple of minutes. Figure 1.17 shows the splitting point

between the two objects from the Burst and Transient Source Explorer (BATSE) instrument from the

Compton Gamma Ray Observatory (Gehrels, Chipman, and Kniffen 1994). Their light curves vary,

i.e., they do not have a standard light curve shape (see Figure 1.18).

Short duration GRBs are likely to be triggered when a neutron star merges with another neutron

star or with a black hole neutron star (Nakar 2007), producing a kilonova (e.g., Tanvir et al. 2013;

Acciari et al. 2021). They are found in regions of low star formation rate or at the nuclei of galaxy

clusters. In contrast, the long-duration GRBs are located in regions of high star formation rate. They

are triggered by the deaths of massive stars generating a core-collapse supernova. The afterglow that

remains after the burst can be detected with the ground-based telescopes in the optical, near-infrared,

and radio wavelengths.

Figure 1.17: GRBs duration against number of detected burst. The red vertical line indicates the
splitting point between the two types of GRBs, bursts on the left are short-duration bursts, while

those on the right are long-duration bursts (NASA 2013).
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Figure 1.18: Examples light curves of GRBs, the x-axis is time is seconds, and y-axis is the count
per seconds, which corresponds to the number of detected of rays per second (Bustamante et al.

2017).

1.3.5 Kilonovae

When a neutron star is in a binary system with another neutron star (NS-NS) or a black hole (NS-

BH), or when two blackholes are in binary systems (BH-BH), they can collide at high speeds, forming

ripples in space and time. These ripples are known as gravitational waves. They were first predicted

in 1916 by Einstein and first detected on 14 September 2015, by the advance Laser Interferometer

Gravitational-wave Observatory (aLIGO; Aasi et al. 2015) from BH-BH merger (Abbott et al. 2016).

The electromagnetic counterparts of gravitational waves are expected from either the NS-NS or NS-

BH collisions. This occurs when the mass ejected from the collisions powers a transient events such as

Kilonova (KN) visible in the electromagnetic spectrum. KN are strongly linked with short-duration

GRBs (e.g, Tanvir et al. 2013; Ascenzi et al. 2019).

The first detected kilonova is the DLT17ck (also known as AT 2017gfo; Valenti et al. 2017), which was

detected after the gravitational wave event GW170817. GW170817 was detected by the Virgo interfer-

ometer (Acernese et al. 2014) and the advanced Laser Interferometer Gravitational-wave Observatory

(aLIGO; Aasi et al. 2015) on the 17 August 2017, where its progenitor stars are merging neutron stars

(Soares-Santos et al. 2017). A short duration GRB, and an optical counterpart (DLT17ck) were also

detected soon after the detection of GW170817 (Valenti et al. 2017).
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Figure 1.19: Example near-infrared light curves of KNe (indicated by the data points), and the
solid lines are fitted theoretical models (Zhu et al. 2018).

These discoveries has proven that observations from gravitational waves and the electromagnetic

spectrum can be used simultaneously to study phenomenon in the universe, which motivates the field

of multimessenger astronomy, a field that studies four signals from a single astrophysical sources:

gravitational waves, electromagnetic radiation, cosmic rays and neutrinos; Bartos and Kowalski 2017.

Kilonovae events are expected to peak in the red optical and near-infrared bands. Their light curves

are characterised by a sudden increase in brightness that only lasts for a few weeks (see Figure 1.19).

1.3.6 Active Galactic Nuclei

Active galactic nuclei (AGN) are galaxies with nuclei that are brighter than that of normal galaxies

(galaxies that does not have an active supermassive black hole in their center). Galaxies displaying

such phenomena are called “active galaxies”, and they are one of the brightest objects in the universe.

They are characterised by aperiodic variation in brightness, which is believed to be powered by large

mass accretion by a supermassive black hole at their centers, associated with ionised matter that is

released at high relativistic speed (close to the speed of light), also known as jets. This mass accretion

might have been triggered by merging galaxies (Hopkins et al. 2006).
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Figure 1.20: Example light curves of a blazar (Raiteri et al. 1999).

There are two types of AGN: type 1 and type 2; the spectra of type 1 AGN have broad balmer

emission lines, and type 2 narrow balmer emission lines (Netzer 2015). Some AGN display a rare

behavior where they change between types: changing from type 1 to type 2 or vise versa. These are

known as “changing look” AGN (e.g., Yang et al. 2018).

A blazar is a subtype of AGN, where the jets are pointed in the direction of the observer. Their light

curves are characterised by semi-periodic or aperiodic dramatic variation in brightness that can last

for days to years (see Figures 1.11 and 1.20).

Studying AGN can help scientists understand the galaxy evolution as their high relativistic energy has

an impact on star formation (Silk and Rees 1998). Their high luminosity makes them ideal candidates

to measure the expansion rate of the universe at high redshifts (if they can be standardised), and

Watson et al. 2011 attempted to standardise their luminosity so as to test this.

1.3.7 Flare Stars

Flare stars are stars that undergo a sudden dramatic luminosity outburst associated with stellar

magnetic activities (Pettersen 1989). They often occur close to starspots, hence they are believed to

be the results of a magnetic reconnection activity occuring around the starpots regions, which gives

rise to the sudden luminosity outburst detected in their light curves (Pettersen 1989). Their light

curves have both the variable and transient characteristics, where the former is due to the presence

of starspots that rotate with the star [more details in section 1.2.1 and example light curves in Figure

1.21 (top and middle panels)], and the latter is due to the stellar flares (see bottom panel in Figure

1.21).
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Figure 1.21: Example light curves of an M dwarf flare star. The star symbols indicate the flares,
the top panel represent the original light curve, and the bottom panels represent zoomed-in regions

indicated by gray boxes (Emmanoulopoulos, McHardy, and Uttley 2010).

Flare stars are located across the HR diagram, where the majority are found on the main sequence.

The most abundant main sequence flare stars are the M spectral type dwarfs (also known as the

M-dwarf). Flares from M dwarfs can last for few minutes, with amplitudes in magnitude change

between 0.001 and 0.1 (Hawley et al. 2014). Their low luminosity makes them hard to detect during

their quiescence periods (West et al. 2011), hence they are likely to be detected as transient stars

rather than variable stars.

1.4 Optical Surveys and the Big Data Challenge

The search for known and unknown variable and transient events has recently gained momentum,

making the field of transient astronomy a hot topic. Modern technology has improved, allowing us

to have wide, fast, and deep surveys. The discovery rate of new transients and variable events has

been exponentially increased by optical surveys such as the Panoramic Survey Telescope and Rapid

Response System 1 (Chambers et al. 2016), the Dark Energy Survey (DES; Collaboration: et al.

2016), the Zwicky Transient Facility (ZTF; Bellm et al. 2018; Graham et al. 2019), the All Sky

Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014), the the Sloan Digital Sky Survey

(SDSS; Blanton et al. 2017), and the Catalina Real-Time Transient Survey (CRTS; Drake et al. 2011).

The ASAS-SN, ZTF, and DES are able to continuously survey a large fraction of the sky, releasing

petabytes of data per year.
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Figure 1.22: Schematic image of the Rubin Observatory camera, notice its size relative to an
average human height (Ivezić et al. 2019).

The upcoming Vera C. Rubin observatory (Ivezić et al. 2019), through its ten-year Legacy Survey of

Space and Time (LSST), is expected to increase the discovery rate to millions of new variable and

transient events per year. The Rubin observatory is currently under construction in Chile, and its

first light is expected in the next few years. It will operate on an 8.4-meter telescope with a gigantic

3.2 gigapixel camera with a field of view of 9.6 square degrees, and lastly, it will be observing in

six passbands (ugrizy). Most of its observing time (∼ 90%) will be on the wide fast deep survey

(expected r mags ∼ 24.5, with visits separated by ∼ 3 days) mode where ∼ 32 trillion observations of

∼ 20 million stars will be conducted to cover the primary science goal of the project. The remaining

observing time will be allocated to very deep (expected r mags ∼ 26) and very fast (expected short

revisiting times of ∼ 1 day) time-domain observations (LSST Science Collaboration et al. 2009; Ivezić

et al. 2019).

The LSST is expected to detect millions of variable and transient events every night, releasing ∼ 15

terabytes of data per night (Ivezić et al. 2019). There are limited resources for follow-up studies of

these objects, which means that only a small fraction (roughly 0.1%) of them can be followed up with

spectroscopic studies (Villar et al. 2021). The challenge is to find objects worthwhile for this studies

using only their light curves. This calls for fast, automated data processing and analysis techniques

to detect interesting objects from light curve datasets with minimum or no human expert guidance.

This leads us to the field of machine learning.
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Introduction to Machine Learning

The current development in technology has resulted in systems being flooded with a massive amount

of data in short timescales. Explicit programming techniques require in-depth domain knowledge and

consistent system maintenance, which can be costly and time-consuming. They are often specific to

the domain they are applied to, and they would fail in the current era of big data. Fast, automated,

and data-driven techniques such as machine learning are required to extract information from this

data.

Figure 2.1: Types of machine learning problems.
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In machine learning, a group of self-taught algorithms is employed by a computer to build computer

programs that can automatically process, analyse and learn from data with minimum or no guidance

(Mitchell 1997). These algorithms were first introduced in the mid-1900s, where their earliest appli-

cations were on computer gaming (Samuel 1959). For example, Samuel 1959 employed a machine to

learn the game of checkers based on the rules of the game and other features. It was found that the

machine outperformed a human user, and it only required ∼ 8 hours (which was considered a short

time, given the processing power of computers those days) to learn the game. The shortcoming of

the machine learning algorithms in the early 1900s was that they required high computer processing

power.

Recent development in technology has improved the processing power of computers, and they are

now fast enough to run machine learning algorithms on sub-second timescales on certain datasets.

Machine learning algorithms are ideal data analysis tools for the current and upcoming era of big

data. They have been explored in a wide variety of fields, for example, they have been employed in

banking to assess credit risks (predict if a customer will be able to pay a loan given a set of features;

Shoumo et al. 2019; Aziz and Dowling 2019). They were also applied in healthcare, where machine

learning algorithms are tasked to recognise and locate lung cancer in its early stages given set of lung

images (Reddy, Reddy, and Reddy 2019). They were also applied in astronomy where supernovae

were classified in different types based on their photometric light curves (Lochner et al. 2016). Figure

2.1 shows the main types of machine learning problems: supervised, unsupervised, and others that

are outside the scope of this study except for active learning. This includes semi-supervised1 and

reinforcement learning2

2.1 Supervised Learning

In supervised machine learning, the learning algorithm is given labeled data (data with both the input,

also known as features, and the desired output, also known as target labels) as input. The algorithm

then maps the features to the target labels such that it can predict target labels of unseen data. The

basic idea is to build a model that can generalise a mapping function f between the input data x to

the target labels y such that y = f(x). Here, x and y are the training data. A human expert acts

1A group of algorithms that lie between supervised and unsupervised learning, where their input data is partially
labeled.

2A group of algorithms that learn by interacting with their environment, where they are awarded when performing
a right task, and punished otherwise.
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as an instructor to guide the algorithm learn and generalise the mapping function such that given an

unseen input test data x1, the model can accurately predict the target labels y1 using the mapping

function as: y1 = f(x1). However, human labeling (labeled data) is frequently imperfect and the

machine learning algorithm can only learn what is trained on. Hence any biases in a labeled training

set will result in a biased machine learning algorithm.

Supervised learning is the most common used machine learning techniques in astronomy (e.g., Con-

nolly et al. 1994; Lochner et al. 2016; Möller et al. 2016; Neira et al. 2020). Supervised learning can

be subdivided into classification and regression algorithms depending on the target label available in

the data.

2.1.1 Classification and Regression

Classification occurs when the target label is categorical, and the algorithm is tasked to classify

between two or more target labels. The former is called binary classification, while the latter is

referred to as a multi-class classification problem. Binary classification is the most commonly explored

because of its simplicity: e.g., classification between transient and non-transient (see Neira et al.

2020), classification between gravitational microlensing and non-gravitational microlensing events (see

Teimoorinia et al. 2020), classification between SN Ia and non-SN Ia (see Takahashi et al. 2020). Multi-

class classification is also intensively explored because there are often more than two target labels in

practice, e.g., classifying between different types of variable and transient stars (see Pashchenko,

Sokolovsky, and Gavras 2018; Hosseinzadeh et al. 2020; Gabruseva, Zlobin, and Wang 2020).

Regression occurs when the target label is a continuous or real number. It aims to predict real

numbers y1 of a test set x1 given a mapping function f that has been learned from the training data.

These techniques have also been explored in astronomy: e.g., they were used for photometric redshift

predictions (Schuldt et al. 2020; Jarvis, Hatfield, and Almosallam 2020; Dainotti et al. 2021; Curran,

Moss, and Perrott 2021). The most commonly used algorithms for supervised learning are decision

trees, random forest (RF; Breiman 2001), support vector machines (SVM, Pisner and Schnyer 2020),

artificial neural networks (ANN; Wang 2003), and k-nearest neighbors (kNN), some of which can be

adapted for both classification and regression problems, with random forest being an example.
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2.1.2 Random Forest-An Example of a Classification Algorithm

Here we introduce RF because we will later use isolation forest, an anomaly detection algorithm based

on the principles of RF. A RF algorithm is a collection of multiple decision tree algorithms. They

fall under a group of algorithms called ensemble methods, algorithms built by combining multiple

weak learners (e.g., decision trees, see an example decision tree in Figure 2.2) that work together

to improve the overall performance. To understand the principles of RF, we first need to introduce

bagging, which is an important algorithm adapted and improved in RF.

Given a training set T, a bagging algorithm draws multiple subsets of data samples from T with

replacement (i.e., a single point in the T can be picked multiple times); this technique is known as

bootstrapping, and the drawn samples are referred to as the bootstrap samples. The algorithm then

builds multiple trees, one for each of the bootstrapped samples. The majority votes then give the

classification of a new instance from the multiple trees (Liaw, Wiener, et al. 2002).

Figure 2.2: Schematic example of two decision trees, where x1, x2, x3 are the features, and
ω1, ω2, ω3 are the target labels. The nodes represent a selected feature through which the feature
space is partitioned, and the branches represent the regions that satisfy the conditions specified in

the nodes (left being true and right being false; Safavian and Landgrebe 1991).

RF uses an upgraded bagging technique which is different from the original one in that instead of

splitting the nodes of the trees based on the best features in the entire original sample, and the splits

are based on the best features that are randomly selected at each node (Breiman 2001). It takes the

number of features required to split the tree nodes [m, which is often set to the square root of the

total number of features in the original data (Breiman 2002)] and the number of trees (N) to build
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as inputs. The algorithm then draws N bootstrap samples from, e.g., ∼ 67% of the training data T,

and the remaining ∼ 33% of the T is used to test the uncertainties of the predictions, also known as

“out-of-bag” data.

The algorithm then builds a tree for each bootstrapped sample, which grows by picking the best split

feature among randomly selected features in the bootstrapped sample at each node. It then selects

the best splitting features based mostly on two criteria: the information entropy and the Gini index.

Given a dataset with K possible classes/labels, the Gini index measures the purity of a class at each

node after a split was made on a randomly selected feature xi as:

G(C|xi) = 1−
K∑
q=1

P 2(Cq|xi), (2.1)

where P (Cq|xi) measures the likelihood that an instance belong to class Cq, given xi. The purity can

also be calculated using the information entropy as:

H(C|xi) = −
K∑
q=1

P (Cq|xi)log2P (Cq|xi). (2.2)

Both the Gini index and information entropy are similar in that they measure the purity of a class

at a given node given a randomly selected splitting feature. The optimum feature is the feature that

gives fewer values for either the Gini index and information entropy.

The homogeneity of the classes at each node increases with decreasing Gini index and vice versa. The

trees have different nodes: the parent nodes and the child nodes. A successful split occurs when the

Gini index of the child node is less than that of a parent node, and the splitting continues until the

Gini index is zero, leading to the terminal node (i.e., the final class). This process is repeated for N

trees, and the final predictions are given by the majority votes (for classification), and the average

predicted values (for regression). Random forest is famous for its high performance and will use it

later in Chapter 5 to get insights into our data. We describe the general procedure for model fitting

and performance analysis in the next section (section 2.1.3).
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2.1.3 Building a Model and Analysing its Performance

Building a supervised machine learning model starts with data. The data is often disorganised (e.g.,

the data might have missing values, or the text in the data might be a mixture of lower and upper

case letters).

Data Cleaning

Most machine learning algorithms require a homogeneous feature space, i.e., they do not function

with missing values in the feature space metric. The feature space is composed of rows and columns,

where the rows represent the instances and the columns are their features. The data with missing

values are often preprocessed by different approaches: dropping the entire column with missing values

or replacing the missing values mostly with the mean of values in that column. The latter is often

preferred over the former because dropping a column can result in the loss of important information

(Peng and Lei 2005).

The process described above is often referred to as data cleaning; data that has passed through this

process is called “cleaned data.” The cleaned data can sometimes (very rarely) be used as input to a

learning algorithm if its dimension is low and its features are non-redundant. However, some datasets

can be high dimensional even after the data cleaning process. Many machine learning algorithms

perform poorly with such datasets. High dimensional feature space can have highly correlated features,

which might introduce a bias in the learning algorithm. The algorithms would then overfit the training

data (see an example of an overfitted model in Figure 2.3) and not generalise the mapping function,

leading to poor performance on unseen data. Dimensionality reduction techniques such as feature

extraction are often employed to solve this problem (Gnana, Balamurugan, and Leavline 2016).

Feature Extraction

Feature extraction reduces the dimensions of high-dimensional data by computing a set of features

that represent the original data in a non-redundant informative manner. It aims to obtain features

that uniquely represent the data points and reduce the redundancy of the data. This is critical in

machine learning because the algorithm will not perform well if the features are wrongly computed

(Dong and Liu 2018). The feature extraction process can also result in missing values or invalid values,

and the same procedure for data cleaning described above can be applied in this case. The process of

data cleaning and feature extraction are often collectively called the data preprocessing process.
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Model Selection and Fitting

Different algorithms perform better at some tasks than others. Each algorithm has hyperparameters

that control the learning process. These parameters are flexible, and they can easily overfit data.

Overfitting occurs when the model does not learn a general mapping function between the features (X)

and target (y); instead, the mapping function learns the training data too well such that it performs

poorly on unseen data (see Figure 2.3). Multiple algorithms are often fitted with the training data

to find the best one that performs better on the input data/features. The optimal model is then

fine-tuned via a technique called model fitting to insure that it does not overfit the data.

Figure 2.3: An illustration of an overfitted mapping function (left panel) and a generalised map-
ping function (right panel). The black points are the observations and the blue line is the mapping

function that maps feature 1 to the target.

Model fitting is the process of fitting a model on the data to map a general function that can make

accurate predictions on unseen data. At this point, the data is split into the training and validation

set with X features and y target labels; and a test set with Xt features and their corresponding yt

target labels. This step is also critical as it helps the model from overfitting the training data, which

would result in poor performance on unseen data. This is often achieved through a process known as

the k-fold cross-validation (Refaeilzadeh, Tang, and Liu 2009).

In k-fold cross-validation, the training and validation data (X, y) are recursively divided into train and

test sets, where an error score is computed for each iteration, and after k iterations, the average score

is computed. This validation process is essential in supervised machine learning problems as it might

prevent the model from being biased and overfitting the data. It is also crucial in selecting the best

model (e.g., Jung 2018) and its corresponding optimum hyperparameters (an important parameter

that controls the learning algorithm).
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Analysing the Performance of a Model

Now that the optimum model has been fitted on the training data, we can assess its performance on

unseen data (Xt, yt). There are a wide variety of techniques used to assess the performance of an

algorithm; we will only cover the accuracy and confusion metrics in this work. To understand these

metrics, we first need to introduce the following concepts, which are based on binary classification

where the target labels are A (positive groups) and B (negative group):

• True positive (TP): this occurs when an algorithm classifies an instance to be A while its true

label is A

• True negative (TN): this occurs when an algorithm classifies an instance to be B while its

true label is B

• False positive (FP): this occurs when an algorithm classifies an instance to be A while its

true label is B

• False negative (FN): this occurs when an algorithm classifies an instance to be B while its

true label is A,

Accuracy is thus defined as:

Accuracy =
TP + FN

TP + TN + FP + FN
, (2.3)

which measures how accurately an algorithm classifies instances in unseen data. It is one of the most

commonly used metrics. On the other hand, the Confusion metric is a two-dimensional plot of the

true target labels on one axis and the predicted target labels on the other. An algorithm is considered

to be performing well if it has high percentage values along the diagonal of the confusion metrics

(highlighted in dark gray in Figure 2.4).
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Figure 2.4: Confusion metrics of a binary classification problem between target label A and B.

We adopted both the accuracy and confusion metrics to assess the performance of RF, which we

will discuss later in Chapter 5. We give a broad overview of unsupervised learning algorithms and

introduce the anomaly detection techniques in section 2.2 below.

2.2 Unsupervised Learning

In unsupervised learning, the target labels are not available in the data (also known as unlabeled

data). This means that unsupervised learning differs from supervised learning as its aim is not to

build a mapping function between the input features X and target labels y; instead, it aims to find

underlying structures and patterns in the input features X. They do this independently without any

human instructor. They have an advantage over supervised learning because getting labeled data can

often be expensive and requires in-depth domain knowledge. They are categorised into four main

groups: clustering, association, dimensionality reduction, and anomaly detection.

2.2.1 Clustering, Association and Dimensionality Reduction

With clustering, the algorithm is tasked to group instances in the input data (X) based on the

underlying similarities found. These groups are known as clusters, and they can help identify patterns
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in complex data. The most commonly used algorithms for clustering are k-means clustering and

hierarchical clustering, some of which have been applied in astronomy (e.g., Hocking et al. 2018; Lee

and Song 2019; Martin et al. 2020).

Unsupervised learning can also be used to find interesting associations between the input features

(X) themselves. This group of algorithms is known as association. They can are widely applied in

marketing, where the buying patterns of a customer is analysed by finding the associations in items

they buy (e.g., an analyst may find that customers buy bread and juice together, and they would

suggest that these items should be placed next to each other in the stores; Aggarwal 2015).

Unsupervised learning can also help reduce the dimensions of a high-dimensional features space. This

is known as dimensionality reduction, where the algorithm is tasked to reduce the dimensions into a

lower but essential dimension feature space that represents the original high dimensional feature space.

They can be used to assess feature importance (a critical step for both supervised and unsupervised

learning) by finding correlations between features, and correlated features are often removed as they

will be redundant on the learning algorithm. The principal component analysis (PCA, Pearson 1901;

Jolliffe and Cadima 2016) is often used for such tasks.

Dimensionality reduction can also be used as a visualisation tool where a high-dimensional feature

space can be visualised on a two or three-dimension plots. This can be helpful to identify a group of

instances that share the same properties in feature space, with t-distribution Stochastic Neighbour

Embedding (t-SNe; Van der Maaten and Hinton 2008) being an example technique used for such

analysis.

2.2.2 Anomaly Detection

With anomaly detection (AD), the learning algorithm is tasked with searching for outliers/anomalies

in a given input sample (X). An anomaly can be an instance that deviates from a bulk of the “normal”

instances in feature space (e.g. Boyajian’s star and calcium-rich transients). Traditional methods of

finding outliers in data involved deep domain knowledge and manual programming that would define

a thin line between the “normal” and anomalies, given training data (X). These techniques can be

biased, i.e., they can only be applied to that specific domain. They also require constant maintenance

because if there is a slight change in the domain, the expert would have to go and adjust the program

to accommodate the new changes. These techniques would, however, fail for the current era of big

data (D’Souza and Reddy 2021).
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Current big data challenges have pushed the development of new robust automated AD techniques

through machine learning. They can be both supervised and unsupervised. The supervised anomaly

detection approach is just a classification problem with highly unbalanced classes, as such it is not

useful in discovering new objects. In this work, we will only cover unsupervised AD techniques.

Unsupervised learning techniques have the following advantages: they work with unlabeled data

(which is the common data in practice), are adaptive, and can handle large datasets.

Unsupervised anomaly detection techniques can be applied to a wide variety of fields: e.g., fraud

detection (see Monamo, Marivate, and Twala 2016; Agaskar et al. 2017), healthcare (see Baur et al.

2018; Haque, Rahman, and Aziz 2015) and astronomy (Pruzhinskaya et al. 2019; Webb et al. 2020;

Storey-Fisher et al. 2020). The most commonly used algorithms for unsupervised AD problems are:

isolation forest (iForest, Liu, Ting, and Zhou 2008), local outlier factor (LOF, Breunig et al. 2000),

and one-class support vector machine (OC-SVM, Schölkopf et al. 2001). In this work, we used both

iForest and LOF to search for anomalies in variable and transient light curve data.

2.2.2.1 Isolation Forest

Isolation Forest (iForest) is an unsupervised AD algorithm build from the principles of RF. It works

by isolating points in a given training set based on their path lengths. It is built on the assumption

that anomalies are “few and different,” which makes them easy to isolate (Liu, Ting, and Zhou 2008).

iForest uses ensemble binary decision trees (also known as iTrees) to isolate each object in a dataset.

It works by picking a random feature and split value at each node of the iTree, and growing the iTree

until the object is isolated. The number of partitions required to isolate an object is known as the path

length, and the path length of an anomaly is expected to be short compared to that of a “normal”

object. For example, Figure 2.5 shows that only four splits are required to isolate an anomaly (x0) as

opposed to twelve splits for the “normal” object (xi).
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Figure 2.5: Demonstration that iForest requires few random splits to isolate an anomaly (x0) as
opposed to a normal instance (xi; Liu, Ting, and Zhou 2008).

iForest computes the anomaly score s of object x given n objects in the training set, as:

s(x, n) = 2
−E(h(x))

c(n) (2.4)

where h(x) is the object’s path length, E(h(x)) is the average path length across the forest of iTrees,

and c(n) is a normalising factor which is derived from a harmonic number H(i) = ln (i)+0.5772156649

as follows:

c(n) = 2H(n− 1)− 2(n− 1)/n.

If the anomaly score s ∼ 1, then object x is likely to be an anomaly; if s < 0.5, then x is likely to be

normal; and if s ∼ 0.5 for all points in the dataset, then the entire set does not have any anomalies.

The advantage of iForest is that it can perform well with high dimensional datasets with redundant

features (Liu, Ting, and Zhou 2008).
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2.2.2.2 Local Outlier Factor

LOF is an unsupervised anomaly detection algorithm that computes an anomaly score of an object

based on its local density relative to its k nearest neighbors. It is built on the assumption that

anomalies are located in low-density regions instead of “normal” objects located in high-density regions

(Breunig et al. 2000). The principle idea of the algorithm is to compare the local density of an object

to that of its nearest neighbors, and “normal” instances will be those located in high-density regions,

while anomalies will be those in low-density regions.

To compute the anomaly score, the algorithm first computes the distance k-distance(x), which is the

distance between object x and its kth nearest neighbour, and the complete set of k nearest neighbours

Nk(x), is thus the objects falling within the boundaries of k-distance(x). The algorithm also computes

the distance dist(x,y), which is the distance between object x and y. It then calculates the maximum

Reachability distance as:

reach-distk(x, y) = max { k-distance(x), dist(x, y) }.

The local reachability density of object x is thus calculated as:

lrdk(x) = 1/

(∑
y∈Nk(x)

reach− distk(x, y)

|Nk(x)|

)
, (2.5)

where |Nk(x)| is the sum of objects in Nk(x). The local outlier factor of object x is finally calculated

as:

LOFk(x) =

∑
y∈Nk(x)

lrdk(y)
lrdk(x)

|Nk(x)|
=

1

|Nk(x)|
∑

y∈Nk(x)

lrdk(y)

lrdk(x)
. (2.6)
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Figure 2.6: Demonstration of the LOF anomaly scores based on the local densities of objects. The
radius of the circle indicates the anomaly score where a large radius corresponds to high anomaly
scores. Points with big circles are located at low-density regions, while those with small circles are

located at high-density regions (Pedregosa et al. 2011).

The anomaly score of objects in a given dataset is then calculated from equation 2.6, where objects

with LOF ≤ 1 are considered to be “normal,” while those with LOF > 1 are anomalies. This means

that objects located in regions of low-density are anomalous and vise versa (see Figure 2.6). LOF can

be helpful in cases where the outliers are relatively close to the “normal” objects in the feature space

(Breunig et al. 2000).

2.3 Active Learning

Active learning algorithms are a group of algorithms that learn by interacting with an external user

(also known as an oracle). They are often employed in cases where the input data is partially labeled,

where they query an oracle to label some unlabelled instances in the data. Their ability to operate

with partially labeled data makes them useful tools to use in practice. Most datasets are partially

labeled because labeling data can be expensive and time-consuming. Active learning intelligently

chooses objects to label, thus minimising user time while maximising performance (Settles 2009).
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Active learning has three main query strategies: pool-based, stream-based selective sampling, and

membership query synthesis. Pool-based (Lewis and Gale 1994) active learning techniques involve a

learner that processes the entire input datasets, assigning a confidence score to each instance in the

data. Objects with small confidence scores are presented to an oracle for labeling.

With stream-based selective sampling (Atlas, Cohn, and Ladner 1990), the learner processes each

instance in the data one by one; it then decides if an instance should be labeled or not based on its

query criteria. The learner query the oracle to label instances that meet the criteria.

Lastly, with membership query synthesis (Angluin 1988), the learner processed the input data and

build a distribution describing the patterns found in the data. It then queries an oracle to provide a

prediction to a sample generated from the distribution. These predictions are then re-introduced into

the input data, meaning that the distribution of the data might change depending on the predictions

provided by the oracle.

Active learning techniques have been applied in: speech recognition (Tur, Hakkani-Tür, and Schapire

2005), video classification (Hauptmann et al. 2006) and image classification (Zhang and Chen 2002)

just to mention a few.

The active learning technique we use in this work is different from the above described techniques.

We use a technique proposed by Lochner and Bassett 2020, where its basic principle is that we present

the features of the transient and variable events to a machine learning anomaly detection algorithm.

The algorithm then computes the anomaly scores of the objects. The objects are then presented to

the user on the ASTRONOMALY frontend in a rank from the most anomalous to the least anomalous.

The user can then assign a score to each of the objects (giving interesting objects a high score and vise

versa). The active learning technique then computes a relevance score based on the input anomaly

scores provided by the user. Lastly, the most interesting objects will then appear on the top ranks

(see chapter 3.1.6 for more information).

The advantage of our technique is that it works with very few labels and allows the user to define what

is interesting. It also works with any machine learning algorithm and incorporates uncertainty in the

regression of the user interest score. The disadvantage is that because the user always gets presented

with the most anomalous objects and not necessarily the ones that would improve the active learning

the most, the algorithm won’t improve as quickly as a more traditional active learning approach.

Our approach is not used to improve the performance of the anomaly detection algorithms, rather

used to personalise interesting anomalies. Another interesting question that one can ask is: can this
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technique be applied for real-time anomaly detection? Of course, in principle these techniques can

be used for real-time anomaly detection, but in practice may require different feature extractions and

algorithms (Muthukrishna et al. 2021).

2.4 Anomaly Detection Applied to Transient Astronomy

Traditional methods of detecting new objects in astronomy involved careful analysis of a specific

object and comparison with known objects. If the object does not fit in any of the known classes,

then further careful analysis is performed to check if the weird behavior of the object is not due to

artefacts. Finally, if the unique behavior of the object is due to an astrophysical process, it is then

regarded as a discovery of a new object (Ekers and Kellermann 2011). However, these techniques

would require months and many experts to analyse in the current era of big data; hence automated

techniques such as anomaly detection (AD) with machine learning are required.

There have been efforts to employ AD algorithms to search for anomalies in transient astronomical

data. These include both supervised and unsupervised learning algorithms. Nun et al. 2014 developed

a supervised AD algorithm by combining the random forest (RF) classifier and Bayesian network to

search for anomalies in labeled MACHO (Alcock et al. 1999b) light curves. Each light curve was

represented by 13 features described by Pichara et al. 2012 which is a combination of continuous

autoregressive [CAR(1); Belcher, Hampton, and Wilson 1994] and time-series features.

Their approach starts with a RF classifier, where they train it with a sample of yk known variable

classes to get a voting distribution for each of the known variable events. For each light curve xi in

the training set, RF returns a vector {vi1, ..., vik} which is the probability that xi belongs to the class

yj where vij ∈ [0, 1], j ∈ [1, ..., k], and
∑k

j=1 vij = 1.

Their next step involves discretisation (a process used to transform continuous variables into discrete

forms) of the probabilities, after which they obtain a dataset V = {v1, ..., vn} where vi = {vi1, ..., vik}.

The V dataset gives information about how RF assigns votes among objects that belong to the known

classes. They finally train a model using Bayesian network to learn the joint probability distributions

over V ; this joint probability is used to learn the decision mechanism of the RF classifier. An unlabelled

object is analysed by first obtaining a voting distribution {v1i, ..., vik} from the trained RF classifier

and computing a joint probability associated with its voting distribution P (v1i, ..., vik) using the

trained Bayesian network. The outlier score is thus computed as 1 - P (v1i, ..., vik); the lower the joint

probability, the higher the outlier score, and the corresponding object is thus an outlier.
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This AD algorithm has proven to be effective as it has detected anomalous objects in the MACHO

light curves; however, some of the detected anomalous objects were found to be due to artefacts.

To take advantage of the supervised nature of the algorithm, they repeatedly labeled these objects

and reintroduced them in the data until they were no longer flagged as anomalies. The remaining

anomalies detected in the data were rare known variables like the cataclysmic variables, blue variables

and eclipsing Cepheids, and anomalies with unknown variability types.

Similarly, Richards et al. 2012 fitted a RF classifier algorithm to the ASAS (All-Sky Automated

Survey) light curves to classify the objects into 28 known variable classes. Seventy-two features

represented each object in the data, 67 of which are time-series features (e.g., Amplitude, Standard

Deviation and Period) described by the author and Richards et al. 2011, and five color features. The

pipeline is called MACC (machine-learned ASAS Classification Catalog), which works by training a

RF classifier coupled with active learning algorithms that allow the human user to interact with the

classifier. When an unlabelled object is introduced to MACC, it is assigned a class, and an anomaly

score.

The anomaly score is computed based on the distance metric from the unlabeled object i to each object

j in the training data. The final anomaly score of object i is thus the distance to its nearest neighbor.

The calculation takes advantage of the output proximity estimate value ρij from RF, which is a fraction

of trees in the RF that has the same feature vectors (for both i and j) in the leaf nodes. Objects

with an anomaly score > 10.5 are considered to be anomalies. Using these techniques, they detected

anomalous objects with various characteristics: rare variable objects with a period of ∼ one year,

an active unknown pulsating Be star, a semi-regular pulsating Be star, and other aperiodic variables

with outbursts. Both techniques described in Richards et al. 2012 and Nun et al. 2014 assumes prior

knowledge of the labels of the variable stars (i.e., they are supervised learning algorithms), and their

techniques are promising, as they detect anomalies. However, supervised learning techniques require

labeled data, which in practice is hard and expensive to obtain (e.g., spectroscopic follow-up studies

are required to verify accurate classifications of variable stars). Some of the data might be mislabelled

which then results in less accurate predictions (Omar, Ngadi, and Jebur 2013).

An alternative to supervised AD is unsupervised AD algorithms. Rebbapragada et al. 2009 modified

the k-means clustering algorithm to develop an unsupervised AD algorithm called PCAD (Periodic

Curve AD) to search for anomalies in periodic unsynchronised light curves. This technique uses an

algorithm called Phased K-means (Pk -means), which works similar to k-means in that it requires an

initial value of k (the number of clusters) and assigns each of the light curves in the data a cluster
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based on its closest centroid. The algorithms take the raw light curve values (time and magnitude)

as features and use their periods to fold them. The light curves are then represented by their phased

durations, which are adjusted to optimise the maximum correlation between the light curve and each

k centroids. Lastly, the anomaly score of an object (light curve) is the distance between it and

its nearest centroid, and the objects are then ranked based on the anomaly score where the most

anomalous objects appear at the top of the list.

They tested the PCAD algorithm on light curves from the Optical Gravitational Lensing Experiment

Survey with three variable classes, Cepheids, Eclipsing Binaries, and RR Lyrae. From this sample,

they detected three main categories of anomalies: bogus light curves, misclassified light curves, and a

potential new class of periodic variable stars.

Pruzhinskaya et al. 2019 also used an unsupervised AD algorithm, iForest, to search for anomalies

in the Open Supernova Catalog (Guillochon et al. 2017). Their feature extraction process includes

a technique called multivariate Gaussian processes (GP), which helps make the light curve data

homogeneous (iForest requires homogeneous input data to operate). Given an object with light curves

in different filters (e.g., gri), multivariate GP works by first finding the cross-correlation between

all light curves and approximating a fit to all light curves using GP. This fit can then be used to

extrapolate light curves with missing values given a range of values. For example, the missing peak

magnitude in the g filter of an object can be approximated from the r and i filter using multivariate

GP. Each object in the data was represented by 374 features, a combination of the normalised flux

values from the multivariate GP, the maximum light curve flux value, and the fitted parameters from

the GP. They further reduced the high dimensional feature space (374 features) to eight features using

the t-SNE techniques and fitted iForest to the eight features. This is because they suspect that the

original high dimensional data can be too sparse and reduce the performance of the iForest algorithm.

They detected anomalies with various characteristics where out of a sample of 1999 objects, only 5%

of the sample was found to be anomalous objects. They also found that 16% of the detected anomalies

have been misclassified as SNe while their true nature is likely to be stars or quasars. The interesting

anomalies detected include Peculiar SNe Ia, Peculiar SNe II, and Superluminous SNe.

Malanchev et al. 2021 proposed a pipeline called SNAD that can be applied to both transient and

variable light curves. It operates in three main steps of analysis: data processing (including minimum

point cut in each light curve and feature extraction), anomaly detection using multiple algorithms, and

follow-up studies with experts in the field. They extracted 42 features from light curve data from the

Zwicky Transient Facility (ZTF; Bellm et al. 2018) third public data release. The feature extraction
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process, in this case, is more general and involves features that describe the light curves in terms of

features characterising the magnitudes of the light curves (e.g., amplitude, standard deviation, and

mean) and those characterising the Fourier transform of the light curves (e.g., periodogram standard

deviation and periodogram amplitude).

Multiple unsupervised AD algorithms were then employed to search for anomalies in the extracted

features. This algorithms includes iForest, LOF, one-class support vector machines (O-SVM; Schölkopf

et al. 1999) and Gaussian mixture model (GMM; McLachlan, Lee, and Rathnayake 2019). The top

40 anomalous objects (in terms of anomaly scores) from each algorithm were then presented to an

expert for analysis. These anomalies were categorised as bogus outliers (due to artefacts) and anomaly

candidates (of potential astrophysical interest). Out of the input data set with ∼ 2.25 million objects,

only 0.01% were detected as anomalous; and 68% of the detected anomalies were due to artefacts,

while 32% were interesting anomalies. Lastly, 25.8% of the interesting anomalies were uncatalogued,

and these findings prove that the AD algorithms can help with new discoveries in big data. However,

the large sample of detected bogus light curves (light curves with anomalies due to artefacts) raises

an alarm; this indicates that interactive learning techniques (among others) are required to customise

the AD process.

Similarly, Mart́ınez-Galarza et al. 2020 employed multiple unsupervised AD algorithms: iForest, Unsu-

pervised Random forest (URF; Shi and Horvath 2006), t-distributed Stochastic Neighbor Embedding

(t-SNE), and uniform manifold approximation and projection (UMAP; McInnes, Healy, and Melville

2018), to search for anomalies in light-curve data from the Kepler space telescope with a known

anomaly, the Boyajian’s star. They criticise the FATS (Nun et al. 2015a; currently updated to feets)

feature extraction package as the package may return invalid values for instances where light curves

do not meet the minimum requirements, which might lead to biased results from an AD algorithm.

They thus used an alternative feature extraction technique where they considered the light curve data

(time, magnitude, and magnitude errors) and the Fourier transform of the light curves [in terms of a

periodogram from the Lomb-Scargle (Lomb 1976; Scargle 1982)] as features for their model. From the

Lomb-Scargle, they computed periodograms on discrete frequency values and used the power values

at each frequency as features. They fitted the data to the iForest and URF, then later used the t-SNE

and UMAP to reduce the dimensionality of the features to two dimensions and examined the correla-

tion among the detected anomalies. The two AD algorithms detected different objects as anomalies

where the majority of the detected anomalies were associated with sharp peaks (which can be due to

artefacts or could be a rare astronomical phenomenon like stellar flares), light curves with dips that

can be linked to stellar eclipses (the Boyajian’s star was also detected as an anomaly), and stellar
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pulsations. Although their results are promising, using the light curve values as features is not ideal

for most transient and variable light curve datasets as they are not translationally invariant and don’t

cleanly separate out classes. Hence a feature extraction technique is needed to reduce the complexity

of the light curve data and extract useful information for classification.

Villar et al. 2021 explored a different feature extraction technique using neural networks through a

technique called variational recurrent autoencoder neural network (VRAENN) and employed iForest

to search for anomalies in extragalactic transients (SN-like) in the PLAsTiCC data (Allam et al. 2018).

Their pipeline involved: interpolating the light curves using GP, encoding the interpolated light curves

using VRAENN, and lastly using the encoded vectors as inputs to the iForest algorithm, which then

assigned each light curve an anomaly score. They also show that given a new SN-like light curve,

their technique can detect if the SN-like event is an anomaly or not before its peak luminosity. They

detected interesting anomalies from the PLAsTiCC data, including the KNe, Type I Superluminous

SNe, AGN, and Intermediate Luminosity Optical Transients. Their technique has the advantage of

handling unevenly sampled light curves and is not biased to anomalies that are due to artefacts. Their

results are presented in a ranked manner according to the anomaly scores from iForest, and some of

the normal classes are ranked as anomalous. This means that other techniques are required to help

the AD learn which of the detected anomalies are interesting or not. This problem can be solved by

an active learning approach where the user interacts with the machine by provided labels to objects

according to their interest.

How interesting an anomaly is, depends on the user; e.g., an instrumental scientist would find the

anomalies due to artefacts interesting, while an astrophysicist would find astrophysical anomalies

interesting. This brings us to the question; How can we help the AD algorithms learn how to flag

anomalies that are not of interest to a user? Lochner and Bassett 2020 developed an anomaly detection

framework called ASTRONOMALY (Lochner and Bassett 2020) that runs the full pipeline of AD techniques

using a python back end and presents the results on a JavaScript front end which allows the user to

explore and interact with data. To answer the question above, ASTRONOMALY presents the objects

in the frontend in a rank manner according to their raw anomaly score from the algorithms. The

user can assign a score between zero and five to any object where five indicate the most interesting

objects and zero indicate the least interesting. The user can then train astronomaly after assigning

the scores, and objects related to those assigned high scores will appear in the top ranks for further

analysis (more details about ASTRONOMALY will explain in the next Chapter).

Webb et al. 2020 used the ASTRONOMALY framework to search for anomalies in 85 553 fast cadenced
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transient light curves obtained through the multiwavelength Deeper, Wider, Faster (DWF) program.

Their full pipeline starts outside the ASTRONOMALY framework where they extracted features from the

light curves using FATS and adopting other features from Richards et al. 2011, and Kim et al. 2011.

They then clustered the objects using Hierarchical Density-Based Spatial Clustering of Applications

with Noise (HDBSCAN; McInnes, Healy, and Astels 2017). The Unclustered objects were explored

by manual inspection and by running ASTRONOMALY on them where iForest was used to assign an

anomaly score to each of them and present them in a rank according to the score. Through the manual

inspection, they detected nine interesting variable anomalies, three of which were newly discovered,

and they also discovered an ultrafast flare anomaly. They then investigated as to at what rank will

the detected anomalies appear in ASTRONOMALY and found that the variable source and ultrafast flare

anomalies were retrieved within the top 280 and 600 ranks.

The studies described above shows that unsupervised AD algorithms are ideal tools for searching

for anomalies in big datasets. They also indicates that the algorithms detect two main types of

anomalies: artefacts and interesting anomalies. Which means that they cannot distinguish between

the two types. A human can help the algorithms learn which anomalies are interesting or not. Active

learning techniques, as seen in from Lochner and Bassett 2020, have proven to be effective in this

regard.

In this work, we updated ASTRONOMALY such that it can be generalised to most of the light curve data

format (details described in the next Chapter). We then tested it on both the transient and variable

light curve data. Lastly, we used active learning approaches to flag less interesting anomalies and

retrieve more of the interesting anomalies in the top ranks.
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Methodology

The main goal of this work is to employ anomaly detection techniques to search for anomalies in

both transient and variable light curve data. These techniques were applied to two datasets: light

curves from the Catalina real-time transient survey (CRTS; Drake et al. 2009) and Photometric LSST

Astronomical Time-Series Classification Challenge (PLAsTiCC; Allam et al. 2018). The former data

is from real observations (see details in section 4.1) while the latter is simulated (see details in section

5.1). This means that we can investigate the anomalies detected in CRTS data (see details in section

3.2), and it also means that we can take advantage of the simulated data to assess the performance

of the anomaly detection algorithms. The latter is possible because we know the anomalous sample

present in the dataset, and we can use the ranking to evaluate how accurately the algorithms detect

these anomalies (see section 3.1.7).

In this work, we follow the methodology covered by most machine learning problems. This includes

data management, feature extraction, and anomaly detection with unsupervised machine learning

algorithms. We used and extended a python package called ASTRONOMALY1, to process light curve

datasets, extract features from the data, employ anomaly detection (AD) algorithms to search for

anomalies in the given data, and employ active learning to personalise interesting anomalies. We

then investigated anomalies detected in CRTS data and assessed the performance of the algorithms

on anomalies detected in the PLAsTiCC data.

1https://github.com/MichelleLochner/astronomaly
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3.1 ASTRONOMALY

Most machine learning problems are solved using a standard procedure. This includes reading in

the data, extracting features from the data, and employing an AD algorithm to search for anomalies

(see section 2.1.3). For example, the same procedure of searching for anomalies in spectral data can

be repeated for light curve and image data. However, the main difference is the data structure and

feature extraction techniques. This means that one can automate the full anomaly detection pipeline

in one setting by customising the data management and feature extraction process. The remaining

processes can be standardised by choosing a suitable algorithm for the specified data and task at

hand.

A suitable algorithm, in our case, is determined by the rank weighted score (RWS) and recall metric

(see section 3.1.6). For example, we choose LOF over iForest in chapter 5 because it did better using

both RWS and recall.

To automate the anomaly detection process, Lochner and Bassett 2020 developed a framework called

ASTRONOMALY that couples anomaly detection algorithms with novel active learning techniques to

personalise interesting anomalies according to a human expert. It is built to answer two essential

questions: 1) how do we generalise the anomaly detection process (i.e., how do we automate the

process from data processing to anomaly detection with minimum programming), and 2) how do we

personalise interesting anomalies?

ASTRONOMALY addresses question 1 through its python backend pipeline (see Figure 3.1), where it

covers the data processing, feature extraction, and anomaly detection processes. It then addresses

question 2 through its JavaScript frontend web interface by using the anomaly scoring tab (see Figure

3.3). The detected anomalies are visualised in a ranked manner according to their raw anomaly scores

(where the most anomalous objects appear at the top of the list). A user can then assign a relevance

score to the top N anomalies where interesting anomalies are assigned high scores and less interesting

a low score. The user can then retrain ASTRONOMALY, and it will then recommend anomalies that are

similar to those assigned high relevance scores.

ASTRONOMALY can be applied to most astronomical data types (e.g., images, spectra, and light curves),

and it can also be easily be extended to operate with other data types (Lochner and Bassett 2020).

It currently incorporates two anomaly detection algorithms: LOF and iForest, both of which we use

in this work. We have extended ASTRONOMALY to be more general to most light curve datasets and

applied it to the CRTS and PLAsTiCC light curve data. We describe below, the full ASTRONOMALY
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pipeline in detail and how we extended it to operate with light curve data (see the code in appendix

B).

3.1.1 Data Management and Preprocessing

Data management is the first step in any machine learning problem, involving reading in the data and

preprocessing it before the feature extraction process. ASTRONOMALY is built to generalise the process

of reading in data from most astronomical data types (e.g., images). Even though it has been applied

to light curve data (see Webb et al. 2020; Lochner and Bassett 2020), the data management process

was not general to most light curve data. We extended it to be more general to most light curve data

files with the following characteristics (see the code in appendix B):

Figure 3.1: The Astronomaly pipeline. The backend follows standard data processing and ma-
chine learning algorithm steps. It starts with reading in the data and preprocessing it (section
3.1.1), extracting useful features from high dimensional data (section 3.1.2), dimensionality re-
duction (not applicable to this work), data postprocessing (section 3.1.3), and anomaly detection
(section 3.1.4). The input data (light curves in our case) and their corresponding anomaly scores
(computed by the anomaly detection algorithms) are presented to the JavaScript frontend for label-
ing and visualisation purposes (see section 3.1.5 and subsections therein) where the objects will be
presented in a ranked manner according to the anomaly scores. The anomaly tab has an option to
assign objects relevance scores which are then used for active learning (see section 3.1.6 Lochner and

Bassett 2020)
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• Light curves of multiple objects embedded in one big file,

– Light curves with time and magnitudes/flux observations in one broad passband (e.g., the

V band for CRTS, with or without error), we refer to this as case 1a.

– Light curves with time and magnitude/flux observations in multiple passbands (e.g., ugrizy

in PLAsTiCC), we refer to this as case 1b.

• Light curves of individual objects that are saved in a directory where each object has its own

filename; we refer to this as case 2.

This was done by extending an existing class called light curve reader, to generalise the data

management process as follows:

1. Prompt the user to:

• Specify the file paths: filename for case 1a and case 1b and directory for case 2.

• Specify the number of rows covered by the header text (this is important because removing

the header from the files will make it easy for us to standardise the column names) in the

data files.

• Specify the column index that corresponds to object IDs (with an exception for case 2 since

the IDs are simply the filename), time, magnitude/flux, errors, passbands, and labels. Most

of these are treated as boolean, because our program first checks if some of the columns

are missing, and naturally adjust the data management process that follow.

• Specify if they want to use the flux values themselves or convert them to magnitude. This

applies to all cases where the light curve comes with flux values instead of magnitudes.

2. Reading in the data:

Now that we have the file path to the light curve file(s), we use PANDAS (McKinney et al. 2011)

to read in the file(s) and standardise their columns by renaming them as follows:

• Time column: time

• Magnitude column: mag

• Magnitude error column: mag error

• Flux column: flux
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• Flux error column: flux error

• Passbands column: filters

3. Converting flux and flux errors to magnitudes (m) and magnitude errors (σm):

m = f0 − 2.5 log10 f, (3.1)

where f0 is the flux of a standard source and f is the observed flux. The magnitude errors were

estimated using the propagation of errors relation given by:

σ2
m =

(
∂m

∂f

)2

σ2
f , (3.2)

where m is the magnitude defined by equation 3.1 and σf is the recorded flux errors. Differen-

tiating equation 3.1 with respect to f we get:

∂m

∂f
= −2.5

∂

∂f
log10(f), (3.3)

but we can substitute log10(f) =
ln f
ln 10 in 3.3 to get:

∂m

∂f
=

−2.5

ln 10

∂ ln(f)

∂f
≈ −1.09

f
. (3.4)

Substituting equation 3.4 in 3.2, and taking the square root both sides we get:

σm ≈ 1.09
σf
f
. (3.5)

Note that this step is optional, and can be neglected if the feature extractor tool can operate

with flux values themselves (which is true for this work).

4. Returning a PANDAS dataframe with standard column names: changes described above were then

applied to case 1a and case 1b data, we then returned a dataframe with standard column

names.

The case 2 data is, however, treated differently: we read in and standardise the columns in

each individual file and concatenate all the light curves into one PANDAS dataframe; which then

takes the same properties as case 1a and case 1b. We then return the dataframe.
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The standardised light curve datasets were then used as an input to one or more feature extraction

techniques described below.

3.1.2 Feature Extraction

The next critical step in machine learning is feature extraction. Currently, ASTRONOMALY has feature

extraction tools for image data: ellipse-fitting, wavelet decomposition, and power spectral density

(Lochner and Bassett 2020). It, however, does not have a feature extractor for light curve data. This

means that we need to extend it to be able to extract features from data returned in section 3.1.1.

To do this, we added a feature extractor class called feets features which makes use of a python

package called the feATURES eXTRACTOR for tIME sERIES (feets; Cabral et al. 2018). We also

adopted features from another python package called avocado2 (Boone 2019), however, the features

were extracted outside the ASTRONOMALY environment. It will be incorporated in ASTRONOMALY in the

near future.

3.1.2.1 Feature Extraction With feets

Feets is an open-source python package that is designed to extract features from any time-series data,

including light curves. It is an updated version of a package known as FATS, which was also designed

for the same purpose; it, however, had some restrictions (e.g., it operates on python 2.7; Cabral et al.

2018). Cabral et al. 2018 adopted the same features computed by FATS and updated it to operate

with python 3 and to be an open-source where the community can add more features to it. The new

updated version was then renamed feets. Feets, which computes a comprehensive set of features,

was successfully applied in astronomy, particularly for classification of variable stars (Khalil, Fantino,

and Liatsis 2019; Gabruseva, Zlobin, and Wang 2020; Hosenie et al. 2019; Sirigiri 2019). Hence, it is

chosen in this work as a feature extractor. We describe below, its feature extraction procedure.

Input Data and Data Preprocessing

The data returned in section 3.1.1 is in a form a PANDAS dataframe with standardised light curve

columns. We designed ASTRONOMALY such that it can incorporate the basic procedure feets follows

2https://github.com/kboone/avocado
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when extracting features. This includes taking light curve data as an input and computing features

from it. This was done by adding a new class called feets features which takes the output light

curve data from the light curve reader and computes features from it. feets takes the following

as inputs:

• Time: this corresponds to the observation time column (time column in our case),

• Magnitude: this corresponds to the brightness column (mag or flux column in our case),

• Error: this corresponds to the brightness errors (mag error or the flux error column in our

case).

• Time2, Magnitude2 and Error2: this corresponds to the observations in a different band.

It is important to note that some of the inputs specified above might not be available in other light

curve datasets. However, feets is designed in such a way that a user can specify the columns available

in their light curves, and it can then compute features that are only supported by these columns. We

automated this process in ASTRONOMALY such that it scans through the columns from the output of

the light curve reader and computes features based on them.

We also added a preprocessing step in the feets features class, whereby we prompt the user to give

the light curve point cut number N. Objects with light curves points < N are then discarded from

the dataset, and we then extracted features for light curves with points ≥ N. This is because some

features in feets are sensitive to the number of points in a light curve.

Given a light curve of an object, feets computes features based on the columns available in the light

curve and returns a one-dimensional array with values corresponding to the computed features. If a

dataset has N objects, and feets computes M features, then an NxM matrix is returned.

Extracting Features

After the light curve data is preprocessed and the available columns detected, feets can be employed

to extract features.. We designed feets features such that it only computes features based on

the available columns. It is also designed to prompt the user to specify features to exclude when

computing features if required. Table 3.1 shows features that can be extracted with the light curve

columns available in our data.
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It is important to note that other features can be computed by feets; most of these are based on

the colour characteristics of the light curves. Even though the PLAsTiCC data has observations in

different bands, we chose to neglect the colour features, because some objects has missing values in

some bands, this will result in a heterogeneous feature space. Instead, we computed features for each

passband and concatenated them to form a vector with all computed features. For example, if we

compute the amplitude feature for all six bands in PLAsTiCC (ugrizy), then the final vector will

have the following as outputs: amplitude u, amplitude g, amplitude r, amplitude i, amplitude z

and amplitude y, where u, g, r, i, z and y are features computed in different bands. However,

this can be improved in future by interpolating the missing values using 2D Gaussian processes as

discussed in section 3.1.2.2.

Some of the features computed by feets are derived from the Lomb-Scargle periodogram, Fourier

components (Richards et al. 2011), CAR (Brockwell and Davis 2002), and Stetson (Stetson 1996)

statistics.

- Lomb-Scargle Periodogram Features

Lomb-Scargle periodogram is a period finding algorithm that is used to find periods in both evenly

and unevenly sampled data. It is often preferred over the discrete Fourier transform (DFT) algorithm

because the DFT algorithm is built on the assumption that the data points are evenly sampled,

which is not always the case in astronomy. Lomb-Scargle algorithm works by decomposing the time-

series data into a linear combination of sinusoidal functions with the following characteristics: y =

a cosωt+ b sinωt. It does this by first transforming the observations from time-domain to frequency-

domain and computing a periodogram as follows:

P (ω) =
1

2σ2


[∑N

n=1(mn − m̄) cos [ω(tn − τ ]
]2

∑N
n=1 cos

2 [ω(tn − τ)]
+

[∑N
n=1(mn − m̄) sin [ω(tn − τ ]

]2
∑N

n=1 sin
2 [ω(tn − τ)]

 , (3.6)

where ω = 2π/T , T is the period and τ can be calculated from:

tan (2ωτ) =

∑N
n=1 sin (2ωtn)∑N
n=1 cos (2ωtn)

. (3.7)

Periodic light curves can be folded using equation 1.1 to form what is known as phase folded light

curves. feets computes the Lomb-Scargle periodogram for each object in the data. It then estimates
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the object’s period by converting its frequency at peak periodogram value to period. The period is

then used to fold the light curve of the object (Kim et al. 2011; Kim et al. 2014). Features are then

computed from both the periodogram itself and the phase folded light curves. These features, along

with others, are described in table 3.1 below.

- Fourier Components Features

Features extracted here are computed by first representing the light curves of the objects using the

superposition of sinusoidal functions of the form:

yi(t|fi) = ai sin (2πfit) + bi cos (2πfit) + bi,o, (3.8)

where fi are the sinusoidal frequencies normalised by the constants a and b; bi,o is the magnitude

offset. χ2 minimisation is then applied to equation 3.8 to find the periodic variation in the data as

follows:

χ2 =
∑
k

(dk − yi(tk))
2

σ2
(3.9)

where σ is the error in the measurement of data point dk. The generalised Lomb-Scargle periodogram

is then defined as:

Pf (f) =
(N − 1)

2

χ2
o − χ2

m(f)

χ2
o

(3.10)

where χ2
m(f) is χ2 minimised over a, b and b0.

χ2
o =

∑
k

(dk − µ)2

σ2
k

, µ =

∑
k dk/σ

2
k∑

k 1/σ
2
k

. (3.11)

Each light curve is then fitted with the harmonic sum of the sinusoidal function yi plus a linear term

as follows:

y(t) = ct+
3∑

i=1

4∑
j=1

yi(t|jfi), (3.12)
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where fi is the frequency that can only have four harmonics at fi,j = jfi frequencies. The frequencies

fi are found by recursively searching for periodic signals in Pf (f) and removing them from the data.

The algorithm works by finding a peak in Pf (f), fitting the model y(t) with a frequency corresponding

to the peak Pf (f) and the 2, 3 and 4 frequency harmonics. The algorithm then subtracts the fitted

model from the data and updates χ2
o. The process is then repeated to find more periodic components.

The final features are that given as the phase and amplitude (see table 3.1 for a full list of these

features):

Aij =
√
a2i,j + b2i,j (3.13)

PHi,j = arctan

(
bi,j
ai,j

)
(3.14)

where PHi,j is the phase component of the ith frequency with the jth harmonic and Aij is the

amplitude. The final phase is then computed as:

PH ′
i,j = PHi,j − PH0,0, (3.15)

where PH0,0 is the phase of the first component (Richards et al. 2011).

- CAR Features

CAR is used to model the irregular sampled time series data. It has three parameters: the mean

(CAR mean), variance (CAR sigma) and relaxation time (CAR tau). It is defined by the equation:

dX(t) = −1

τ
dt+ σC

√
dtϵ(t) + bdt, (3.16)

for σC , t, τ ≥ 0, where τ is the relaxation time of X(t),
τσ2

C
2 is the variance and bτ is the mean value

of X(t). σC is parameter describing the variability of the light curve with time observations less than

τ , and ϵ(t) describes the “white noise” process with a variance equal to one and mean of zero.

The likelihood function of equation 3.16 can be computed as follows:
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p(x|b, σC , τ) =
n∏

i=1

1

[2π(Ωi + δ2i )]
1/2

exp

(
−1

2

(x̂i − x∗i )
2

Ωi + δ2i

)
(3.17)

where x−{x1, ..., xn} are the observations, {t1, ..., tn} are the observed times, and {δ2, ..., δ2n} are the

errors in the measurements.

x∗i = xi − bτ, x̂0 = 0,

Ω0 =
τσ2

C

2
, x̂i = aix̂i−1 +

aiΩi−1

Ωi−1 + δ2i−1

(x∗i−1 + x̂i−1),

Ωi = Ω0(1− a2i ) + a2iΩi−1

(
1− Ωi−1

Ωi−1 + δ2i−1

)
,

and

ai = e−(ti−ti−1)/τ .

The final features are computed by maximising the likelihood with respect to τ and σC . b is calculated

by taking the average light curve magnitudes divided by τ (Pichara et al. 2012). See table 3.1 for a

list of features extracted from CAR.

- Stetson Features

The Stetson features are extracted from the Welch/Stetson variability index (Stetson 1996) defined

as:

I =

√
1

n(n− 1)

n∑
i=1

(
bi − b̂

σb,i

)(
υi − υ̂

συ,i

)
, (3.18)

where vi and b are the magnitudes for an object observed in two different bands, and συ,i, and σb,i are

errors in the magnitude measurements. n is the number of observation pairs, υ̂, and b̂ are the mean

in magnitude from each of the light curves in the two bands.

The number of observations from the two bands might be different, and their “relative error” can be

computed as:
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δ =

√
n

n− 1

υ − υ̂

συ
. (3.19)

StetsonK measure the kurtosis of the light curve. It calculated as:

K =
1/N

∑N
i=1 |δi|√

1/N
∑N

i=1 δ
2
i

, (3.20)

and it is computed on a single light curve, i.e., it is computed on a single band. This means that it is

not limited to objects with multiple bands (Richards et al. 2011).

Table 3.1: Descriptions of features covered in this work. Note that feets has more features
which are not covered here. We only cover those that we computed based on the input data

we have. Their references can be found in the footnotes at the end of the table.

Features
Description

Input

Data

Mean6
The average magnitude is calculated as: m̄ =

∑N
i=1 mi

N
, where mi are

the observed magnitudes and N is the number of observations.
Magnitude

Standard

Deviation

(std)2

The standard deviation of the magnitudes is given by:

σ =
√

1
N

∑
i(mi − m̄)2

Magnitude

Mean

Variance

(Meanvariance)4

The mean variance is given by the ratio: std(σ)/mean(m̄). It is

useful to measure the variability of an object (also known

as the variability index) where it takes a large value for

highly variable objects.

Magnitude
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Continuation of Table 3.1

Feature Description Input Data

Amplitude2

The amplitude of magnitude observations, m, is calculated as follows:

amplitude = 1/2 {median[ max5%(m) ] - median[ min5%(m) ]}

where max5% is the maximum 5% of the sample and min5% is the

minimum 5%. E.g., a sample with magnitude values from 0 to 500

will have an amplitude of 48.

Magnitude

Median buffer

range percentage

(MedianBRP)2

Given an object with magnitude points, m, with a median, n,

then MedianBRP is the percentage (≤ 1) of m ≤ amplitude/10

from n.

Magnitude

Range of

cumulative sum

(Rcs)
4

Rcs is defined by: Rcs = maxS −minS,

where S = 1
Nσ

∑l
i=1(mi − m̄), and l = 1, 2, 3, ..., N . It takes values

∼ 0 for symmetric distributions.

Magnitude

Eta e (ηe)6

This is derived from a variability index:

η = 1
(N−1)σ2

∑N−1
i=1 (mi+1 −mi)

2,

which is used to check if successive data points are independent or not.

It, however, assumes an evenly sampled data which is rarely the case

for astrophysical light curves. ηe accounts for this by modifying η as

follows:

ηe = ω̄(tN−1 − t1)
2
∑N−1

i=1 ωi(mi+1−mi)
2

σ2
∑N−1

i=1 ωi
,

where ωi =
1

(ti+1−ti)2
, ω̄ is the mean values of wi and

t is the measurement epoch.

Time and

magnitude
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Continuation of Table 3.1

Feature Description Input Data

Lomb-Scargle

features4,6

The following features are derived from the Lomb Scargle

periodogram algorithm:

PeriodLS: Period estimated from the Lomb-Scargle

periodogram

Period fit: the probability of the false-alarm maximum

periodogram values. It is expected to take values close to

zero for periodic light curves.

Psi CS (Ψcs): Rcs computed from the folded light curves.

Psi eta (Ψη): η
e applied to the folded light curves.

Time and

magnitude

Autocorrelation

function length

(Autocor length)4

Autocor length4 is used to measure the similarities in

observations as a function of lag time between them. It is used to

find repeated patterns in a light curve. It is defined by:

ρ̂h =
∑T

t=h+1(mt−m̄)(mt−h−m̄)∑T
t=1(mt−m̄)2.

where m̄ is the mean of a sample with observations

m1,m2, ...,mT and h is the lag

time. When ρ̂h is applied to a light curve, it returns a vector.

However, only one value can be used as a feature. feets

thus returns the lag value

where ρ̂h becomes < e−1.

Magnitude
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Continuation of Table 3.1

Feature Description Input Data

Slotted Autocorrelation

function length

(SlottedA length)8

Unlike with Autocor length where the time lag is a single value, the

time lags are given as intervals in SlottedA length. It is computed by

taking the average cross product between observations that have

a time difference that falls within a given interval.

SlottedA length is defined by:

ρ̂(τ = kh) = 1
ρ̂(0)Nτ

∑
ti

∑ti+(k+1/2)/2

tj=ti+(k−1/2)h m̄i(ti)m̄j(tj),

where m̄ is the normalised magnitude, h is the interval size, ρ̂(0) is

the SlottedA length for the fist lag, and Nτ is the is number pair

that fall in a given interval. Again feets returns the lag value

where ρ̂(τ = kh) becomes < e−1.

Time and

Magnitude

Stetson features2

StetsonK is computed from equation 3.20 and it takes

values close to 0.2 for a Gaussian distribution.

StetsonK AC: This is StetsonK applied to the slotted

autocorrelation function of the

time series.

Magnitude

and error

SmallKurtosis2

The small kurtosis is computed as:

κ = N(N+1)
(N−1)(N−2)(N−3)

∑N
i=1

(
mi−m̂

σ

)4

− 3(N−1)2

(N−2)(N−3)

Magnitude

Skewness (γ1)
2

The measures the skewness of the light curve and it is defined as:

γ1 = N
(N−1)(N−2)

∑N
i=1

(
mi−m̂

σ

)3

The SmallKurtosis and Skewness should be zero for a normal

distribution.

Magnitude
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Continuation of Table 3.1

Feature Description Input Data

Median absolute

deviation

(MeadianAbsDev)2

This is defined as:

MeadianAbsDev = median(|m − median(m)|),

where m is the magnitude observations. For a normal distribution,

it takes a value ∼ 0, 675.

Magnitude

Percentage Amplitude

PercentageAmplitude2
The maximum percentage difference between either the minimum

or maximum magnitude and the median.

Magnitude

Anderson-Darling

test

(AndersonDarling)3

This statistics tests whether the light curve data has a characteristic

of a given probability distribution. It takes values ∼ 0.25

for a normal distribution.

Magnitude

Linear trend

(Lineartrend)2 This is slope of a linear function that is fitted on the light curve.

Time

and magnitude

Maximum slope

(MaxSlope)2
This is the maximum slope computed from two successive observations,

it calculated from the absolute magnitudes.

Time

and magnitude

Beyond 1 std

(Beyond1Std)2
This is a fraction of magnitude observations that are beyond one std

from the weighted mean, where std is the standard deviation.

Magnitude

and error

http://etd.uwc.ac.za/ 
 



Chapter 3. Methodology 68

Continuation of Table 3.1

Feature Description Input Data

Pair slope trend

(PairSlopeTrend)2

This is computed by taking the ratio of the rising first differences to

the declining first differences from the last 30 magnitude

measurements (sorted by the time)

Magnitude

Q3−1

(Q31)6
The is computed as the third quartile (Q3) minus the first quartile

(Q1) of the magnitude observations.

Magnitude

CAR5
Three features are extracted from CAR (see equation 3.16

and the descriptions that follow it): CAR tau (τ),

CAR mean (mean), and CAR sigma (variance).

Time,

magnitude

and error

Fourier Components2

Below is a list of features computed from the equations 3.13 and 3.15

Freq3 harmonics amplitude 0 Freq3 harmonics amplitude 1

Freq3 harmonics amplitude 2, Freq3 harmonics amplitude 3

Freq2 harmonics rel phase 3, Freq2 harmonics rel phase 2

Freq2 harmonics rel phase 1, Freq2 harmonics rel phase 0

Freq1 harmonics amplitude 2, Freq1 harmonics amplitude 3

Freq1 harmonics amplitude 0, Freq1 harmonics amplitude 1

Freq3 harmonics rel phase 2, Freq3 harmonics rel phase 3

Freq3 harmonics rel phase 0, Freq3 harmonics rel phase 1

Freq2 harmonics amplitude 1, Freq2 harmonics amplitude 0

Freq2 harmonics amplitude 3, Freq2 harmonics amplitude 2

Freq1 harmonics rel phase 0, Freq1 harmonics rel phase 1

Freq1 harmonics rel phase 2, Freq1 harmonics rel phase 3

Time and

magnitude
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Continuation of Table 3.1

Feature Description Input Data

Con4

This is computed by counting 3 consecutive magnitude observations

that are fainter or brighter than two times the standard deviation of

the observations. The number is then divided by

N-2 to get the Con feature, where N is the

total number of observations in the data.

Magnitude

References: 1Nun et al. 2015a; 2Richards et al. 2011; 3Kim et al. 2009; 4Kim et al. 2011; 5Pichara et al. 2012; 6Kim

et al. 2014; 7Stetson 1996; 8Huijse et al. 2012

3.1.2.2 Feature extraction with avocado

Avocado is a python package aimed to classify different transient and variable events in the PLAs-

TiCC data. It was developed by Boone 2019 who applied it to the data and won the PLAsTiCC

astronomical classification kaggle challenge3 (see details about the challenge in Chapter 5). Their

approach of solving the classification challenge involved the basic machine learning approaches de-

scribed in Chapter 2. We are, however, interested in their data pre-processing and features extraction

techniques.

They pre-processes the light curves using Gaussian processes (GP; Rasmussen and Williams 2006).

A GP is built on the assumption that the data is drawn from a random sample with a probability

function characterised by Gaussian noise. The joint probability distribution (Rasmussen and Williams

2006):

 y

f∗

 ∼ N

 µ

µ∗

 ,

K(X,X) + C K(X,X∗)

K(X∗, X) K(X∗, X∗)

 , (3.21)

characterises the reconstruction of function f∗(X∗) from an input data X defined by a probability

distribution y(X), with a covariance matrix C. The symbols µ and µ∗ are the mean of the of f∗ and y,

given as initial guesses when fitting the GP, and K is the GP kernel which is also chosen beforehand.

3https://www.kaggle.com/c/PLAsTiCC-2018
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The reconstructed function f∗ is defined by the mean, covariance (cov), and marginal log likelihood

(lnL) computed as:

mean(f∗) = µ∗ +K(X∗, X)[K(X,X) + C]−1(y − µ), (3.22)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + C]−1K(X,X∗), (3.23)

lnL = −1

2
(y − µ)T [K(X,X) + C]−1(y − µ)− 1

2
ln |K(X,X) + C| − n

2
ln 2π. (3.24)

where n is total number of observations in the data. Avocado makes use of the kernel function K3/2

defined by:

K3/2(x1, x2;α, l) = α2

(
1 +

√
3
(x1 − x2)2

l2

)
exp

(
−
√

3
(x1 − x2)2

l2

)
, (3.25)

where α, l, x1, and x2 are the amplitude scale, length scale, and a set of points in the observations,

respectively. Now, to model the light curves in both time and wavelengths, they used the two-

dimensional kernel by taking the product of the equation 3.25 in both time and wavelength space:

K2D(t1, t2, λ1, λ2;α, lt, lλ) = α2K3/2(t1, t2; 1, lt)K3/2(λ1, λ2; 1, lλ), (3.26)

which takes the amplitude (α), length scale in in both wavelength (lλ) and time (lt) as hyperparam-

eters. The length scale in wavelength was kept fixed (lλ = 6000Å), the time scale length (lt) and

amplitude (α) were fitted using the George package (Ambikasaran et al. 2016)). Table 3.2 shows

features computed by avocado, some of which are derived from the GP described above.

We extracted 41 features from the PLAsTiCC data using avocado. We extracted the features outside

the framework and saved them as a csv file with an NxM matrix, where N is the objects in the data

and M is their corresponding features. We then used PANDAS to read in the csv file during the

anomaly detection step (see section 3.1.4) in ASTRONOMALY.
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Even though table 3.2 shows the list of all features, some of the features were neglected in this work

because avocado returns invalid values for them. A list of the neglected features is outlined in the

footnote at the bottom of table 3.2.

Table 3.2: List of features computed from the avocado code.

Features
Description

host photoz
This is the photometric redshift of the galaxy at which the event occurs,

it is given in the metadata.

host photoz err
This is the error in the measurement of the host photoz, it is also given

in the metadata.

length scale
This is the fitted lt from the GP described above, where lt is the

time length scale, it takes units of days.

max mag
This is the peak magnitude of the predicted GP flux. It measured

in the i passband of the data.

pos flux ratio
The ratio of the postive maximum flux to the difference between the maximum

flux and minimum flux. It is computed on the i band observations.

[max,min] flux ratio

[blue,red]

This is the normalised difference of an object’s colour, calculated from its

maximum/minimum light curve flux. The red measurements is computed

by taking the difference between the y and i bands; and the blue

measurements are computed as the difference between i and g bands.

The final normalised difference is thus computed by

subtracting the fluxes in the two bands and dividing by their sum

max dt

This is calculated by taking the difference between the peak time in

y and g bands, where peak time refers to the time at

maximum flux.

[positive,negative]

width

This is computed by taking the integral of the positive/negative parts

of the predicted GP fluxes and dividing by the maximum positive/negative

fluxes. It is used to estimate “width” of the

light curves.

time [fwd,bwd] max

[0.2,0.5]

This is the time it takes for the light curve to decline (bwd) or rise

(fwd) to a specified percentage (either 20% or 50%) of the

maximum flux in i band.
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Continuation of Table 3.2

Feature Description

time [fwd,bwd] max

[0.2,0.5] ratio

[blue,red]

This is computed as the ratio of the rise time to the decline time,

similar to those described above, but computed in different bands.

The red and blue colours are also similar to

those described above.

frac s2n [5,−5]

This is the fraction of observations with a signal that is less than -5

or greater than 5 times the level of noise

in the observations.

frac background Fraction of observations with an absolute signal-to-noise that is less than 3.

time width s2n 5

This is computed based on observations (in any band) with

signal-to-noise ratio that is greater five. It is calculated by

taking the time difference between the first observation and the

last observation.

count max center

This counts observations falling within 5 days of the

maximum flux (the observations can

be in any band).

count max rise

[20,50,100]

This counts observations between twenty, fifty, or hundred days

before maximum flux and five days after maximum flux

(observations also measured in any band).

count max fall

[20,50,100]

This counts observations between five days before maximum

flux and twenty, fifty, or hundred days after maximum flux

(observations can be in anay band).

peak frac 2

This is the ratio of the second maximum peak flux to the original

maximum peak flux in the observations per band, averaged over

all bands. It used to separate SN-like light curves

from others since they mostly have a single peak

total s2n
Total signal-to-noise taken from all light curves (in all bands) of

the object.

percentile diff

[10,30,70,90] 50

This measures the flux distribution of observations. It is computed

by taking the flux level in each band at a specified percentile

and normalising it with the maximum flux minus the minimum

flux from the flux predicted by the GP. The final value

is calculated by taking the median (in all bands) of the

difference between the normalised flux at any given

percentile and the flux at the 50th percentile.

Note: The following features were neglected in this work because of reasons described above: peak frac 2,
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d max 0.2 ratio blue, time bwd max 0.2 ratio red, time bwd max 0.2, time bwd max 0.5 ratio blue,

time fwd max 0.5 ratio red, time fwd max 0.5, time fwd max 0.2 ratio red, time fwd max 0.2,

time bwd max 0.5 ratio red, time bwd max 0.5, time fwd max 0.5 ratio blue, and

time fwd max 0.2 ratio blue.

3.1.3 Data post-processing

ASTRONOMALY has additional post-processing techniques after the feature extraction process. This

includes employing techniques such as feature scaling and the principal component analysis (Pearson

1901; Hotelling 1933) for dimensionality reduction. We only implemented the feature scaling technique

in this work.

The feature scaling technique incorporated in ASTRONOMALY works by standardising each column in

feature space such that they have a mean of zero and standard deviation of one:

Y =
x−mean(X)

std(X)
, (3.27)

where Y is the new column with standardised features, std is the standard deviation, x is the feature

value for a single object, and X is the total sample for a given feature column.

This is crucial for most machine learning algorithms (LOF for our case) as they tend to be biased to

features with large values. For example, the percentile diff feature returns values between 0 and

1, while the mean returns values close to 1000, the algorithm will then assume that the mean is greater

than percentile diff. This means that the algorithms assume that features with large values are

more important than those with small values (Surbhi 2019).

3.1.4 Anomaly Detection

The anomaly detection algorithms are employed to assign anomaly scores to individual objects in a

given dataset based on their extracted features. A wide variety of AD algorithms can be used, both

in supervised and unsupervised learning problems. The challenge with the former is that it operates

with labeled data which can be expensive to acquire in practice. Currently, two unsupervised AD

algorithms are incorporated in ASTRONOMALY: iForest and LOF, both of which were used in this work.

http://etd.uwc.ac.za/ 
 



Chapter 3. Methodology 74

We have described in section 2.2.2 the iForest and LOF algorithms, both of which return anomaly

scores of objects in a given dataset. However, the range of the anomaly scores differ for each algorithm,

e.g., iForest does not take scores greater than one while LOF does. ASTRONOMALY normalises the raw

anomaly scores from the algorithms such that they both have a standard scale. The anomaly scores

from the algorithms are standardised such that they both have anomaly scores in the range from zero

to five. The former and latter scores correspond to the sample’s least anomalous and most anomalous

objects, respectively.

3.1.5 The Frontend Web Interface

ASTRONOMALY has a frontend web interface that has two tabs: the anomaly scoring and visualisation

tab.

Visualisation Tab

The visualisation tab incorporates the t-SNE technique to reduce the dimensions of a given high

dimensional features space to two-dimensional feature space for visualisation purposes. t-SNE works

by computing the probability of the similarities between point pairs in a high dimensional features

space using Euclidean distances. The computed probability distribution is then used to represent

points that are similar in the high dimensional space to lie close to each other in the lower dimensional

space, two or three dimensions (Van der Maaten and Hinton 2008).

t-SNE plots are useful in finding underlying structures that may be present in high dimensional feature

space. This includes finding clusters of objects and outliers in the given feature space. Figure 3.2

shows an example t-SNE plot of features computed for the CRTS data (we set perplexity = 100

max sample = 2000 and shuffle = False). We do not focus on t-SNE plot analysis in this thesis;

rather, we focus only on the anomaly detection algorithms and active learning techniques incorporated

in ASTRONOMALY.
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Figure 3.2: A screenshot of the ASTRONOMALY frontend visualisation tab. Highlighted in red is the
t-SNE plot computed on CRTS data. Note that both the x- and y-axis are in arbitrary units. The
points on the t-SNE plot are colour quoted with the raw anomaly scores (darker points indicate the
least anomalous objects and vise versa). The visualisation tab is interactive, one can click on any
point on the t-SNE plot, and the original data (a light curve for our case) will be plotted on the
right (see the plot highlighted in green). The blue arrow indicates the point clicked on the t-SNE

plot and its corresponding light curve on the right.

Anomaly Scoring Tab

By default, the objects are presented on the anomaly scoring tab in a ranked manner according to

the standardised anomaly score described in section 3.1.4. The most anomalous objects appear at the

top ranks and vice versa. ASTRONOMALY has other options at which the objects can be sorted in the

anomaly scoring tab. This includes sorting the object randomly or by the human retrained scores.

The anomaly scoring tab is interactive such that a user can assign scores to objects according to how

interesting they are to them. We refer to these scores as the “relevance” scores. They also take values

from zero to five, where five indicate that the object at hand is interesting to the user, three indicate

moderate, and zero indicate boring objects (see Figure 3.3). The user can then retrain ASTRONOMALY

to get the human retrained scores. These scores are obtained from active learning, which will be

described in the next subsection.
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Figure 3.3: A screenshot of the ASTRONOMALY frontend anomaly scoring tab. Highlighted in or-
ange is the example light curve from the CRTS data. To the right (highlighted in blue) is additional
information about the object (e.g., features computed and metadata). The numbers from 0 to 5 in
gray boxes (highlighted in red) are used to assign the relevance scores. The drop box at the bottom

left (highlighted in green) prompts the user to choose how they want the objects to be sorted.

3.1.6 Active Learning

The raw anomaly scores S from the machine learning algorithm and the relevance scores U can be

used to help ASTRONOMALY to personalise interesting anomalies. This is done by ranking objects on

the anomaly scoring tab (Figure 3.3) according to score calculated as:

Ŝ = S tanh (δ − 1 + arctanh (Ũ)), (3.28)

where Ŝ is the new active learning score, δ is a distance penalty term, which is takes a large value for

cases where S is not well defined, and Ũ is the normalised relevance score calculated as:

Ũ = ϵ1 + ϵ2

(
U

Umax

)
(3.29)

where Umax is the maximum possible user score, which is five for ASTRONOMALY. The normalisation

constants are set to: ϵ1 = 0.1 and ϵ2 = 0.85. We use arctan because it is a smoothly varying function

with the desired asymptotic properties and other similar functions will likely perform equally well.
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The constant terms ϵ1 and ϵ2 were chosen to give stable numerics for the full range of possible user

scores, since archtanh diverges for arguments of unity.

Predicting the Relevance Score

The user can provide a relevance score U for a limited number of objects in the sample. However,

for ASTRONOMALY to successfully run, all objects in the sample need to have a relevance score. This

means that equations 3.28 and 3.29 have two unknown parameters that needs to be predicted and

calculated: the remaining relevance scores U , and the distance penalty term δ.

ASTRONOMALY incorporates the random forest regression algorithm to estimate U , where the hyperpa-

rameter n estimators is set to 100. The uncertainties in the regression estimates are quantified with

the distance penalty term δ defined by:

δ = exp

(
α
d

d0

)
, (3.30)

where d is the Euclidean distance between the object at hand in feature space and its nearest labeled

relevance score provided by a human user. α and d0 are the tuning parameter and mean distance to a

human-labeled neighbor, respectively. In this work, we adopted the default setting of ASTRONOMALY,

where d was computed using KDTree (Maneewongvatana and Mount 2002) and α = 1 (Lochner and

Bassett 2020).

3.1.7 Analysing the Performance of Unsupervised Anomaly Detection Algorithms

Just like with supervised learning algorithms, we can analyze the performance of anomaly detection

algorithms. We described in section 2.1.3 some of the metrics used to assess the performance of

supervised learning algorithms. However, these metrics assume a known target label. The case is

different with unsupervised anomaly detection, particularly for ASTRONOMALY, since it is built on the

assumption that anomalous classes are unknown in the sample (Lochner and Bassett 2020). However,

for the case of simulated data, e.g., PLAsTiCC for our case, we can evaluate the performance of

ASTRONOMALY since we know a sample of anomalies present in the dataset.

This is done by taking advantage of how ASTRONOMALY arranges the objects in the datasets from the

most anomalous to the least anomalous as by the raw anomaly score. Of course, the objects can also
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be rearranged according to the computed active learning scores (see equation 3.28). This means that

we can use different metrics to evaluate the ranks at which the known anomalies in the dataset appear

in ASTRONOMALY anomaly scoring tab. In this work, we adopted two metrics used by Lochner and

Bassett 2020:

• Recall: Given a set of N objects a user views, recall counts the number of anomalies retrieved

after viewing these objects. For example, if the user views one hundred objects and only two

anomalies are retrieved, then the recall is two. This is an important metric because, ideally, we

want anomalies to be at the top of the ranked list so that a human expert can quickly analyse

them without going through the entire dataset.

• Rank Weighted Score: Given a dataset with a known number of anomalies, N, the Rank

Weighted Score (RWS; Roberts, Bassett, and Lochner 2019) is computed as:

SRWS =
1

S0

N∑
i=1

wiIi, (3.31)

where wi = (N + 1− i) are the weights, S0 = N(N + 1)/2 and Ii is variable used to indicate if

object i is an anomaly or not. Ii = 0 if object i is not an anomaly, and one otherwise. SRWS takes

values between zero and one. It returns zero when zero anomalies are retrieved after viewing N

objects and one when all objects in the top N are anomalies.

Even though the description above is based on N corresponding to the number of anomalies in

the dataset, it can also be set to a reasonable number that a human expert would want to look

at. In this work, we set the limit of N to be 1000.

3.2 Follow-up Studies on Detected Anomalies

Anomaly detection techniques are ideal tools for making new discoveries in the current and upcoming

era of big data. However, most of the anomalies that will be detected might be known objects, and

only a small fraction of them might be new discoveries. Follow-up studies are required to check if

the detected anomalies are already cataloged in the literature or not. They are also needed to check

whether the anomalous behavior of the objects is not due to artefacts.

http://etd.uwc.ac.za/ 
 



Chapter 3. Methodology 79

In this work, we conducted follow-up studies on the top twelve anomalies detected in the CRTS data

using the Caltech4 and SIMBAD5 platforms. SIMBAD is an online astronomical database platform

that has basic information about astronomical objects. This information includes the magnitude,

coordinates, proper motions, and identifiers. The latter is important as it provides other names that

identify the objects in other surveys.

Figure 3.4: A flow diagram showing the follow-up studies procedure covered in this work.

Caltech is an online database platform that currently has updated light curves for objects in the

CRTS. It also has links to other database platforms such as SIMBAD and a link that is used for

period estimation. Figure 3.4 shows the steps we follow in making follow-up studies on anomalies

detected from the CRTS data. Step 1 includes querying the Caltech database using the coordinates

of the objects. We then compare the updated light curves with those detected from MANTRA data.

We finally click on the SIMBAD link to get additional information about the objects, including the

classification of the object and other identifiers.

We describe in Chapters 4 and 5 the application of ASTRONOMALY to CRTS and PLAsTiCC data

respectively. We also discuss the properties of some of the detected anomalies from the CRTS data after

we conducted follow-up studies. Lastly, we assess the performance of ASTRONOMALY using anomalies

detected in the PLAsTiCC data.

4http://nunuku.caltech.edu/cgi-bin/getcssconedb_release_img.cgi
5http://simbad.u-strasbg.fr/simbad/
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Chapter 4

Application of Astronomaly on the

Catalina Real-Time Transient Survey

data

The Catalina Real-Time Transient Survey1 (CRTS; Drake et al. 2008; Djorgovski et al. 2011) is a

synoptic survey that is designed to study the variable sky. It aims to continue studies conducted

by early surveys such as the Palomar-Quest survey (Djorgovski et al. 2008), and its main goal is to

discover interesting and rare variable and transient events. To date, it has discovered ∼ 4190 SNe

events, and ∼ 1513 cataclysmic variable stars to date. It operates on three surveys from the Catalina

sky survey, the: 1.5-meter Mount Lemmon survey (MLS), 0.7-meter Catalina sky survey (CSS), and

0.5-meter siding springs survey (SSS).

The MLS and CSS are both located in Tucson, Arizona, and SSS is located in Australia. They all

operate on a 4× 4 CCD camera, with a coverage of 4, 1.1, and 8.2 square degrees for the SSS, MLS,

and CSS, respectively. In total, they can cover an area of ∼ 33000 square degrees. They, however,

exclude the Galactic latitude b < 10 − 15 degrees to avoid the overcrowded stellar region on the

Galactic plane.

The three telescopes make observations for 23 nights per lunation, with an exposure time of 30 seconds.

They take four images of the same region during the observing period, each taken after ten minutes.

They observe in the V band with a magnitude limit of V ∼ 19 − 20 mag. The light curves are

1http://crts.caltech.edu/
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constructed using aperture photometry through a package called SEXTRACTOR (Bertin and Arnouts

1996).

4.1 The Data

The data used in this work is from one of the CRTS surveys, the CSS. The survey covers ∼4000 deg2

of the sky per night, with a magnitude limit of V ∼ 19.5 mag. We used the MANTRA (Neira et al.

2020) data that is composed of 4869 transient light curves (see example light curves in Figure 4.1)

and 71207 non-transient light curves. Both the transient light curves and non-transient light were

stored in a repository that is found at: https://github.com/MachineLearningUniandes/MANTRA,

under the data/lightcurves folder.

In this work, we are interested in the transient light curve file (transient lightcurves.csv), and

its supporting files (transient labels.csv and transient info.txt). The supporting files have

information about the object’s labels, coordinates, and many more. The files have the following

columns:

• transient lightcurves.csv:

– ID: The unique ID of the objects

– observation id: This is the order at which the objects were observed

– ID: The unique ID of the objects

– Mag: The magnitude measurement

– Magerr: The error in the magnitude measurements

– MJD: Observing time in modified Julian dates

• transient labels.csv:

– TransientID: The unique ID of the objects

– Classification: Their labels

• transient info.txt:

– #CRTS ID: The object ID as by CSS catalog

– RA (J2000): Right Ascension in degrees
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– Dec (J2000): Declination in degrees

Note: The transient info.txt has more columns, however, in this, we only utilized those described above. The

three files can be linked to each other through the object’s unique IDs.

Figure 4.1: Example light curve from the MANTRA dataset.

Even though the objects in the data are labeled, some of them do not have a clear class. These

are identified with the special characters: ‘/’, ‘?’ and ’Unclear’. The ‘?’ character indicates events

with unclear classes (e.g., CV?) and ‘/’ indicates cases where a single event has multiple classes (e.g.,

Var/Nova), see table A.1 for a complete list of these objects. Objects with clear labels are those whose

labels were confirmed with spectroscopic and photometric follow-up studies2.

Figure 4.2 shows a list of clear labels present in the dataset and the corresponding number of objects

in each of the labels. The dataset is dominated by supernovae, cataclysmic variables, high proper

motion stars, and active galactic nuclear events.

2http://crts.caltech.edu/Followup.html
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Figure 4.2: A bar graph showing a list of labels present in the MANTRA data before applying
the cuts described in section 4.2 but only including objects in the dataset with clear labels. It is
important to note that the list is not complete, as some of the objects do not have clear labels (see

table A.1).

Figure 4.3: Histogram showing the light curve duration of objects in the MANTRA data in units
of MJD.

Figure 4.3 shows the light curve duration of objects in the dataset. 176 objects have a light curve

duration of zero, which means they only have a single point in their light curves. These objects were

removed from the dataset during the data pre-processing step discussed in the next section. The

longest light curve duration in the dataset is 3130.29 MJD.
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In this work, we used all the 4869 light curves from the light curve data as an input to ASTRONOMALY.

We then pre-processed the light curves, extracted features, ran an anomaly detection algorithm, and

made follow-up studies on the detected anomalies.

4.2 An Overview of the Methodology

The MANTRA data have light curves of multiple objects embedded in one file with one V band. This

means that this data is treated as case 1a as described in section 3.1.1. We used ASTRONOMALY to

read in the data, extract features from the light curves and assign an anomaly score to each object

using iForest algorithm. 4,869 light curves were used as input to ASTRONOMALY, and we only considered

objects with ≥ 20 points in their light curves because we found that some features in feets require a

minimum of 20 points per light curve to be successfully computed. Only 2506 objects remained after

this pre-processing step, and features were extracted only on these objects.

4.2.1 Feature Extraction

We extracted 56 features using feets, see a full list of feature in table 3.1. We, however, excluded

the period fit feature as it fails to return a value for non-periodic light curves. Figure 4.4 and 4.5

shows the distribution of features extracted from the most abundant classes in the data. These are

used to get an insight into how the features would succeed in separating the different classes.

We can see from the top left plot of Figure 4.4, that the Amplitude values differ for each of the classes.

This can also be seen on the Beyond1Std (right plot on the middle panel), and Mean (bottom right

plot) features. However, not much difference is observed with the AndersonDarling and CAR sigma

features.

Figure 4.5 shows scatter plots of the features. These plots give insights into the relationship between

any random two features. The majority of the objects occupy the same region (see plots b, e, and

f) with few outliers. There is also a clear, distinct difference observed between the objects using plot

d. This means that the Amplitude and Mean features are the best features to separate the different

classes. Also notice the correlation metrics on Figure 4.6, which shows that on average, the computed

features are not highly correlated.

Traditionally, less important features are normally discarded from the data to improve the performance

of machine learning algorithms. This is done mainly in classification problems. However, we are
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interested in anomaly detection algorithms, and we opt to keep all the computed features and neglect

only those that do not return values. Our final sample has 55 features.

Figure 4.4: Histogram showing the distribution of some of the computed features for different
classes. The “unknown” class corresponds to objects that are not catalogued in the literature, i.e,

possible new discoveries.
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Figure 4.5: Scatter plot of some of the calculated features. Note that all the plots have the same
legend.

4.2.2 Anomaly Detection and Active Learning

We employed iForest to compute anomaly scores for each of the 2506 objects, each represented by 55

features described above. We use the default hyperparameters from the scikit-learn implementa-

tion3. ASTRONOMALY then displayed the objects in a ranked manner from the most anomalous to the

least anomalous on the anomaly scoring tab of the web interface. We assign three new classes to each

of the top 100 light curves based on the following characteristics:

3https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
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Figure 4.6: Correlation metric of the computed features from feets. Notice that the are few fea-
tures that are highly correlated (mostly the frequency features). However, on average, the features

are not highly correlated.

• Bogus: These are light curves with few data points or light curves with large gaps between the

observations (gaps > 600 MJD).

• Normal: These are light curves that display normal shapes.

• Anomaly: These are light curves that display unusual interesting shapes.
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The bogus, normal and anomaly light curves were assigned a relevance score of zero, two and five

respectively. We then retrained ASTRONOMALY through active learning to predict the relevance scores

of the remaining light curves. Lastly, we make follow-up studies on the top 12 anomalies that are

returned after active learning.

4.3 Results

Figure 4.7 shows a violin plot of the raw anomaly scores obtained from iForest. Even though iForest

is expected to return an anomaly score ∼ 1 for the most anomalous objects as described in subsection

2.2.2.1, the case is different for the scikit-learn implementation. The most anomalous objects are

assigned a low anomaly score (negative scores) and the least anomalous a high score (positive scores).

The violin plot shows the anomaly score distribution in each input class plotted in a ranked manner

from the least abundant class to the most abundant class in the dataset.

Figure 4.7: A violin plot of the computed anomaly scores from iForest for every input class in
the MANTRA data. On the y-axis is the anomaly score, and on the x-axis are the classes. The
black dotted horizontal line divides the y-axis such that the negative scores are below the line and
the positive scores are above the line. Note that the classes are arranged on the x-axis from the
least abundant class in the data to the most abundant class. One can easily spot outliers from the

elongated tails of the violin.

It is expected that the least abundant classes in the dataset should have negative scores and vice

versa. We, however, find from Figure 4.7 that each class in the dataset has both positive and negative

anomaly scores. This implies that iForest detects outliers in every class independent of the number of

objects present in each class. Note that this analysis was conducted on the raw anomaly scores before

they were standardised by ASTRONOMALY.
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Figure 4.8: Light curves of random objects in the CRTS data. The black points are the light curve
points, and this plots are only intended to show different light curve shapes. Highlighted in grey,

blue and red boxes are the normal, anomaly, and bogus classes respectively.

We plot in Figures 4.8, 4.9 and 4.10 the top twelve light curves sorted randomly, by raw anomaly scores

and human retrained scores, respectively. Notice that the light curves plotted randomly display all

the three classes (bogus, normal, and anomaly). The normal classes disappear after running iForest

and the top twelve anomalies are dominated by the bogus class light curves and a few anomaly class

light curves.
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Figure 4.9: The top 12 anomalies as by the raw anomaly scores. Notice that only the bogus (red
boxes), and anomaly (blue boxes) classes are detected in the top 12 anomalies.

4.3.0.1 Analysis of the Top 12 anomalies after Active learning

Figure 4.10 shows the top twelve anomalies after assigning a relevance score to the top 100 anomalies

as by the raw anomaly scores and running active learning to predict the human retrained scores (see

section 3.1.6). We find from these plots that the bogus class light curves are successfully flagged from

the top twelve anomalies, and only the anomaly class is retrieved. We outline in table 4.1 the names,

coordinates and labels of the top 12 anomalies. We also give a detailed description of the anomalous

properties of IRAS 04188+0122, SN 2013cv, 1FGL J0050.0-0446 and CSS130509:121714+121504.

Table 4.1: The top 12 anomalous objects from the MANTRA data. We give their CSS
names, labels, coordinates, other identifier names and periods. Information outlined here is

taken from the Caltech database1 and SIMBAD database.

CSS Namea Ra [Deg]b Dec [Deg]c Labeld Other identifierse
Period

[MJD]

CSS J042127.2+012913 65.3635 1.4871 Carbon Star

IRAS

04188+0122 408.95

CSS J051750.2+005415 79.4590 0.9042 Flare Star – –
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Continuation of Table 4.1

CSS Namea Ra [Deg]c Dec [Deg]d Labelb Other identifierse
Periodf

[MJD]

CSS J005021.4-045221 12.5893 -4.8726 Blazar

1FGL

J0050.0-0446 –

CSS J121713.9+121505 184.3080 12.2516 type Ia-91T SN – –

CSS J052650.4+244516 81.7101 24.7545 Carbon Star

IRAS

05237+2442 0.73

CSS J123014.1+251806 187.5587 25.3019 Blazar

1FGL

J1230.4+2520 –

CSS J082433.0+243843 126.1375 24.6455 Blazar

ICRF

J082433.0+243843 –

CSS J040338.3-104945 60.9097 -10.8292
High proper

motion star

DR2

3190603665145353984 –

CSS J131012.3+474515 197.5513 47.7543
High proper

motion star
– –

CSS J104031.6+061722 160.1317 6.2895 Blazar

SDSS

J104031.62+061721.7 –

CSS J140453.9-102701 211.2246 -10.4505
Cataclysmic

Variable Star

SDSS

J140453.98-102702.1 –

CSS J162243.0+185734 245.6790 18.9596 Type Ia-91T SN PTF 13asv –

1We query the Caltech database: http://nunuku.caltech.edu/cgi-bin/getcssconedb_release_img.cgi, using the

coordinates of the objects. The caltech database has an updated light curve data, wherein most of the noise is removed

from the light curves. Highlighted in bold are objects that were detected as anomalies by ASTRONOMALY because of the

noise in the MANTRA data, and this noise is removed in the updated data from caltech. The light curves of this objects

can be seen on the top right plot and bottom left plots in Figure 4.10.

aThis is the object name as the CSS

bThis is the right ascension in degrees

cThis is the declination ascension in degrees

dThis is classification of the objects taken from the MANTRA data and SIMBAD
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eThis are object IDs that can be used to identify object in other surveys.

fThis the period estimate of the periodic objects, taken from the Caltech.

Figure 4.10: The top 12 anomalies after active learning. Notice that only the anomaly class is
detected, and all objects except the one highlighted in green, were assigned a relevance score.
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Figure 4.11: Top 12 anomalies flagged by active learning (i.e., they were not assigned a relevance
score, rather predicted by active learning). Notice that the anomaly class (highlighted in blue) domi-

nates, and few bogus (red) and normal (black) classes are detected.

IRAS 04188+0122

This is a red N-type carbon star that was first discovered as APM 0418+0122 by Totten and Irwin 1998.

It is characterised by an anomalous red spectroscopic behaviour, where there are no flux measurements

detected before wavelengths ∼ 5000 Å. Figure 4.13 shows the spectra of APM 0418+0122 compared

to other carbon stars in the sample described by Totten and Irwin 1998. APM 0418+0122 is located at

an approximate distance of 6 kpc, with galactic coordinates of RA = 65.36359o and Dec = 1.48691o

(Mauron, Gigoyan, and Kendall 2007).
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The light curve displays a periodic variation with an approximate period of 408.95 MJD. It also

displays an increase in the magnitude of the entire periodic variation of the object, where the variation

starts at a low magnitude (V ∼ 14.5 mag) and then increases to higher magnitudes (V ∼ 12.5 mag,

see Figure 4.12).

Figure 4.12: Light curve of IRAS 04188+0122. Notice that it is identifed as
CSS J042127.2+012913 in the CRTS database. The top plot is the original light curve of IRAS
04188+0122 in the MANTRA data, and the bottom plot is the phase folded light curve with period

of 408.95 MJD. Credits: The Catalina survey data release 1 (CSDR1).

http://etd.uwc.ac.za/ 
 



Chapter 4. Application of Astronomaly on the Catalina Real-Time Transient Survey data 95

Figure 4.13: Anomalous spectra of IRAS 04188+0122. Notice the anomalous characteristic of the
IRAS 04188+0122 in the middle spectrum compared to the other two spectra (Totten and Irwin

1998).

SN 2013cv

SN 2013cv (also known as iPTF 13asv or PTF 13asv) is a peculiar type Ia supernova which was discov-

ered by Zhou et al. 2013 in the galaxy SDSS J162243.02+185733.8. Its classification lies between the

super-Chandrasekhar and the normal type Ia SN events (Cao et al. 2016). The super-Chandrasekhar

events occur when the progenitor white dwarf of type Ia SNe exceeds the Chandrasekhar mass limit

of 1.44M⊙ (Tomaschitz 2018).
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Figure 4.14: Light curve of SN 2013cv. The top plot is the original light curve of SN 2013cv and
the bottom plot is zoomed in light curve were the SN occurs. Credits: The Catalina survey data

release 1 (CSDR1).

SN 2013cv was also detected as anomalous by Pruzhinskaya et al. 2019, where they employed iForest

to search for anomalies in the open supernova catalogue (see section 2.4).

1FGL J0050.0-0446

This is blazar located at a redshift of 0.922 associated with the AGN PKS 0047-051. It is classified as

the flat spectrum radio quasar (FSRQ), which is a class of blazar characterised by rapid and strong

variability. They are thought to be the most extreme classes of the AGN. The host galaxy of 1FGL

J0050.0-0446 has a logarithmic SMBH mass of 8.2 M⊙ (Chen et al. 2021).
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Figure 4.15: Light curve of 1FGL J0050.0-0446. Credits: The Catalina survey data release 1
(CSDR1).

ASTRONOMALY detected 1FGL J0050.0-0446 an anomaly after we ran active learning. It was found from

Figure 4.15 that 1FGL J0050.0-0446, identified as CSS J005021.4-045221, displays a rapid variation

in brightness. It, however, displays a sudden increase in brightness at ∼ 56500 MJD, which might the

reason why our algorithm detected it as an outlier.

CSS130509:121714+121504

CSS130509:121714+121504, herein referred as CSS130509, is a peculiar type Ia-91T supernova located

at redshift 0.10 (Yang et al. 2013). It was discovered in 2013 by the CRTS, and no additional

information is available for it in the literature. Type Ia-91T supernovae differ from the normal type

Ia supernovae in that they have broad light curves with higher peak luminosity (Taubenberger 2017).

The original light of CSS130509, we refer from the MANTRA data can be seen on the bottom left plot

in Figure 4.10. Notice that the light curve has two bright points at the beginning; these points are

flagged out in the new Catalina survey data release 1 (CSDR1; see Figure 4.16) 4. This implies that the

two points are triggered by artefacts, which might be the reason why our algorithm detects CSS130509

as an anomaly in the data. Even though that might be the case, CSS130509 is an interesting transient

object.

4http://nunuku.caltech.edu/cgi-bin/getcssconedb_release_img.cgi#simtable
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Figure 4.16: Same as Figure 4.14 but for CSS130509.

4.4 Discussion

We employed iForest to assing anomaly scores to objects in the MANTRA data, based on features

extracted using feets. The data has a significant class imbalance (see Figure 4.2) and given the char-

acteristics of iForest: “anomalies are few and different” (Liu, Ting, and Zhou 2008), we expect classes

with few objects to be detected as anomalies. However, we found that iForest detected anomalies in

each of the MANTRA classes (see Figure 4.7). This is because the feets feature is biased towards

bogus light curves, as a result, iForest detects bogus light curves as anomalies (see Figure 4.9). We

flagged these bogus light curves from the top ranks by running active learning as described above.

After active learning, no bogus light curve was detected in the top 12 anomalies as by the human

retrained score. However, only the interesting anomalies are retrieved. An example is a long-period

red carbon star, IRAS 04188+0122. This object has an anomalous light curve, where the entire

brightness of the object increases from ∼ 14.5 mags to ∼ 12.5 mags (see Figure 4.12), it also has an

anomalous spectra (see Figure 4.13). These results show that active learning techniques, coupled with
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anomaly detection algorithms, are promising tools to use in searching for anomalies in light curve

data and personalising interesting anomalies.
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Chapter 5

Application of ASTRONOMALY on the

Photometric LSST Astronomical Time-

Series Classification Challenge data

We have seen in the previous Chapter that ASTRONOMALY is a promising tool to be employed for

anomaly detection in any given light curve data. Even though it has detected interesting objects

in the MANTRA data, its overall performance is not fully analysed. This is because the anomalous

classes are not known in the MANTRA data; hence we cannot assess the performance of ASTRONOMALY

based on ranking as discussed in section 3.1.7.

In this Chapter, we apply ASTRONOMALY to simulated data from PLAsTiCC with a known anomalous

sample. We then assess its performance based on the ranks at which the anomalous objects appear

in the results.

5.1 The Photometric LSST Astronomical Time-Series Classification

Challenge

PLAsTiCC is a kaggle classification challenge developed by two collaboration teams: the LSST dark

energy science collaboration (DESC1); and the transient and variable stars collaboration (TVS2). The

1http://lsstdesc.org/
2https://lsst-tvssc.github.io/
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participants are tasked to use machine learning algorithms to classify simulated large light curve data.

This data represents what is expected from the Vera C. Rubin observatory during its 10-year LSST.

The classification challenge is designed to prepare the scientific community for the big data challenges

that will come with the LSST (Allam et al. 2018).

The PLAsTiCC data have light curves for both transient and variable events. Each object in the data

is represented by six light curves from six passbands: u, g, r, i, z, y (see Figure 5.2). Figure 5.1 shows

the wavelength ranges covered by each of the six passbands and their corresponding filter efficiency.

The advantage of observing objects in different passbands is that they can resolve fainter objects that

are located at higher redshifts (Allam et al. 2018). However, objects located at high redshifts are

often affected by observational challenges such as Galactic extinction, which needs to be corrected.

Figure 5.1: A plot showing the distribution of the six passbands in the LSST data and the spec-
tra of a SN Ia located at redshift 0.01 (solid black curve) and 0.50 (dashed black curve). The x-axis
shows the wavelength covered by each passbands and the y-axis is their normalised flux (for the
curves) and filter transmission (for the bands). Notice that shapes of both curves are similar, how-
ever, SN Ia at high redshift appears to be redder than that of a lower redshift (Allam et al. 2018).

The light curves data in PLAsTiCC are corrected for the atmosphere transmission and Galactic

extinction. The latter is important as it accounts for the amount of light absorbed by the Milky

Way dust as the light passes through it to an observer on Earth. This is known as the Milky Way

extinction, and its value for each object is given in the metadata file (described below) with column

a name MWEBV.
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The LSST will have two survey fields, both of which were incorporated in simulating the PLAsTiCC

data. This includes the wide-fast-deep (WFD) and the deep drilling fields (DDF). The former will cover

a small region of the sky that will be sampled on a regular basis to obtain the optimal observational

depth, while the latter will cover a wider region of the sky that will be sampled less frequently.

The DDF will be able to resolve fainter objects, and their light curves will have small flux errors

and most frequent observations as opposed to those from WFD. However, the WFD will make more

discoveries because of its wider field (Ivezić et al. 2019; Allam et al. 2018). The PLAsTiCC metadata

file (described below) has a boolean column that indicates whether a given object is from the DDF

or WFD.

Figure 5.2: Example light curves of two randomly selected objects from the PLAsTiCC data.
Each panel represents one object plotted in the six LSST bands. These plots also shows the gaps

between the observation, which is what is expected from the LSST (Allam et al. 2018).

5.2 The Data

Since PLAsTiCC is a machine learning classification challenge, its data is split into the training set

and test set. The training set is composed of 8000 labeled objects, and the test set has ∼ 3.5 million

unlabelled objects that need to be classified. The data is stored in multiple csv files that can be found

on the kaggle website3.

3https://www.kaggle.com/c/PLAsTiCC-2018/data

http://etd.uwc.ac.za/ 
 

https://www.kaggle.com/c/PLAsTiCC-2018/data


Chapter 5. ASTRONOMALY applied to PLAsTiCC 103

In this work, we are interested in the test data files. However, due to the computational cost of our

feature extraction techniques, we apply our machine learning algorithms on two samples drawn from

the original data which has ∼3.5 million object (see table 5.1 and section 5.2.1 for more details).

PLAsTiCC has 18 classes of different transient and variable events. Some of the more common events

(“normal” events) in the simulated data includes type Ia and core collapse supernovae, variable stars

(e.g., RR Lyrae, and eclipsing binaries), and AGN. The data also contains ∼ 0.37% of anomalous

objects, including calcium rich transients (CaRTs), kilonovae, and pair instability supernovae (PISNe).

Table 5.1 shows a full list of transient and variable events in the PLAsTiCC data.

The data is simulated from different models and real observation data (see Kessler et al. 2019 for a

full description). This models includes: SALT-II (Guy et al. 2007), SED (Kessler et al. 2010; Anderson

et al. 2014; Galbany et al. 2016), MOSFiT (Villar et al. 2017; Guillochon et al. 2017; Sako et al. 2018),

GalFast (Villar et al. 2017; Guillochon et al. 2018; Jiang, Jiang, and Villar 2020), Galaxia (Sharma

et al. 2011), CODEX (Ireland, Scholz, and Wood 2008; Ireland, Scholz, and Wood 2011) and PyLIMA

(Bachelet et al. 2017).

The real observations are from the: joint light curve analysis (JLA; Betoule et al. 2014), open supernova

catalog (OSC; Guillochon et al. 2017) and GenLens which is microlensing data drawn from multiple

surveys (Udalski et al. 1992; Alcock et al. 1993; Bond et al. 2001). Some light curves are modeled

from theoretical calculations (TC; Kasen et al. 2017). We highlighted in table 5.1, the models used in

simulating each event in the data.

Table 5.1: A list of classes in the PLAsTiCC test set, their true labels, model used in the
simulation, number of events in the original test data, number of events in the sample used

in this work and the redshift range of the simulated data.

Targeta True Labelb Modelc Nevent original
d Nevent new

e
Redshift

Rangef

90 SNIa SALT-II+JLA 1,659,831 1,538 < 1.6

67 SNIa-91bg SED 40,193 1,538 < 0.9

52 SNIax SED+OSC 63,664 1,538 < 1.3

42 SNII SED 1,000,150 1,538 < 2.0

62 SNIbc SED+MOSFiT 175,094 1,538 < 1.3

95 SLSN-I MOSFiT 35,782 1,538 < 3.4

15 TDE MOSFiT 13,555 1,538 < 2.6

64 KN TC 133 133 < 0.3
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Continuation of Table 5.1

Targeta Label Descriptionb Modelc Nevent original
d Nevent new

e
Redshift

Rangef

88 AGN DRW 101,424 1,538 < 3.4

92 RRL GalFast 197,155 1,538 0

65 M-dwarf flare stars GalFast 93,494 1,538 0

16 Eclipsing binaries (EB) Galaxia 96,572 1,538 0

53 Mira stars CODEX 1,453 1,453 0

6 µLens-Single PyLIMA+GenLens 1,303 1,303 0

991 µLens-Binary GenLens 533 50 0

992 ILOT MOSFiT 1,702 50 < 0.4

993 CaRT MOSFiT 9,680 50 < 0.9

994 PISN MOSFiT 1,172 50 < 1.9

Total the total number of objects – 3,492,890 20,007 –

aThis is the target integers from the PLAsTiCC metadata files. Note that the targets 991-994 were treated as anomalies

in this work as they were categorised as the unknown classes in the original classification challenge.

bThis is the corresponding true label of the object as by the literature (see Chapter 1)

cThis is the model through which the data was simulated from. The “+” sign indicates cases where the data is simulated

from multiple models.

dThis is the number of object in the original in the original test set.

eThis is the number of object in the new sample used in this work.

fThis is the the redshift range covered by objects in a given target label. A redshift of zero indicates that the objects

are within the Milky Way galaxy and those with redshift range > 0 are extra galactic.

The PLAsTiCC data is composed of two main types of files: the light curve files, and the metadata

files. The light curve files have light curves of multiple objects in the six bands, each object identified

by a unique ID. The metadata files list the properties of each object in the data, each identified by a

unique ID. This means that the metadata files and the light curves can be linked by the unique ID

of a given object. We describe the columns found in both the light curve files and the metadata files

below:

The metadata columns

• object id: unique ID of the object.
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• ra: right ascension in degrees.

• decl: declination in degrees.

• gal l: Galactic longitude in degrees.

• gal b: Galactic lattitude in degrees.

• ddf : A boolean used to identify if a given object is sampled from the DDF or WFD, it takes a

value of one for DDF and zero otherwise.

• hostgal specz: the spectroscopic redshift of the target object.

• hostgal photoz: The photometric redshift of the galaxy at which the event occurs.

• hostgal photoz err: The errors in the measurements of the hostgal photoz based on the

projections of the LSST survey.

• distmod: The distance modulus to the target object, calculated from the hostgal photoz.

• MWEBV = MW E(B-V): this is the Galactic extinction value as described above. It is a

function of ra and decl and it provides information about the reddening and dimming of target

objects as they pass through the Milky Way dust to an observer on Earth.

• target and true target: this gives the classification or label of an object at hand. The target

labels for the training set are found in training set metadata.csv file (in the target column)

on the original kaggle website and those of a the test set in the plastic test metadata.csv

(in the true target column) file on the unblinded data release on the zenodo website4.

The Light Curve columns

• object id: unique id of the objects, similar to that of the metadata.

• mjd: observation time in MJD.

• passband: an integer representing the LSST passbands, where 0,1,2,3,4, and 5 represents the

u, g, r, i, z, and y passbands, respectively.

• flux: the measurement of the brightness of the objects in each of the six passbands. The flux

has arbitrary units.

4https://zenodo.org/record/2539456#.YXvkPpuxXs0
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• flux err: the uncertainty in the flux measurements.

• detected: a boolean used to indicated if the object is detected after subtracting the reference

template image from the image containing the target object. This step is done during aperture

photometry (see Chapter 1). detected = 1 if the object is detected and zero otherwise.

Note that additional metadata (such as redshift and sky location) can be added to the column list

above.

5.2.1 The Samples

We sampled two different data from the original PLAsTiCC test set for our analysis. The first sample

is motivated by the assumptions through which iForest is built (anomalies are few and different; Liu,

Ting, and Zhou 2008), and we aim to use this sample to ensure that our algorithms work on a very

simple test case. We sample a small dataset that is composed of two distinct labels (KN and RRL)

that should be trivially distinguishable. This sample is composed of 133 KNe and 10,000 RRL that

were randomly picked. The final sample is composed of 10,133 objects, and we refer to this as the

KN RRL sample. Since KNe are few and different from the RRL, they are treated as anomalous objects.

The second sample is composed of all labels in the PLAsTiCC test set, where we randomly selected

all objects in the KN, Mira, and µLens-Single labels and picked 50 objects from each of the anomalous

labels: µLens-Binary, ILOT, CaRT, and PISN. Lastly, we selected 1,538 objects from the remaining

labels in the data. The final sample is composed of 20,007 objects, and we refer to this as the

all labels sample. The µLens-Binary, ILOT, CART, and PISN are treated as the anomalous objects

in this sample, as they were labeled the unknown classes in the original PLAsTiCC challenge.

It is important to note that both samples (KN RRL sample and all labels sample) were used for

testing purposes before scaling to the larger sample and feets failed our test. This is why we did not

apply our techniques to a larger PLAsTiCC sample.

5.3 Astronomaly applied to a small PLAsTiCC sample

We applied ASTRONOMALY on the KN RRL sample data. Figure 5.3 shows example light curves of the

RR Lyrae and KNe objects in the KN RRL sample. We see from these plots that the two classes are
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significantly different from each other. We expect iForest to detect the objects from KNe as anomalous

since they are few in the sample.

5.3.1 The Methodology

We follow the same procedure as that described in section 3.1. Since the PLAsTiCC data is observed

in multiple bands and the light curves of multiple objects are embedded in one csv file, then it is

treated as case 1b dataset as described in section 3.1.1.

Figure 5.3: Example light curves from the KN RRL sample. These plots are from random bands in
the sample, and we only intend to show the difference in the light curve shapes between the kilonova

and RR Lyrae classes.

5.3.1.1 Data Pre-processing and Feature Extraction

The PLAsTiCC light curves are recorded in flux measurements in six passbands instead of magnitude

like those from the CRTS. Of course we can convert the flux to magnitudes using equations 3.1 and
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3.5, however, our feature extractor is not restricted to magnitude units, i.e., it can be applied to any

time series data (Nun et al. 2015b; Cabral et al. 2018). We thus use the flux measurements themselves.

The light curves also have large gaps between observations (see Figure 5.3). We split the light curves

in chunks based on the gaps between the observations to account for these gaps. However, the process

of splitting the light curves into chunks is computationally expensive. Because of this, we choose to

neglect it in this work. However, we describe the two possible methods in which the complexity of the

PLAsTiCC can be solved, where in method 1, we consider the gaps between the observations, and in

method 2 we neglect the gaps (see Figure 5.4).

Figure 5.4: The flow diagram of the pipeline used for data pre-processing in the PLAsTiCC data.
The numbers in red are the steps that we followed in reducing the complexity of the input light
curves (steps 1 and 2) and finally, in step 3, we extracted features from the light curve from step 2.

The whole process was repeated for all passbands.

Method 1: Considering the gaps between observations

Even though this method was not considered in this work, we have experimented on it and found that

it is computationally expensive. Our algorithms perform poorly with light curves pre-processed with

it. This is because separating the light into chunks results in very few light curves passing the number

of point cut described below. This is also because most light curve chunks that pass the pointcut do

not have the actual transient activity; hence all objects from both the “normal” and anomaly classes

will have similar light curve characteristics. Below we describe the steps covered by this method:

1. Passbands: Separate the input light curves of a single object into n passbands (see step 1 from

fig 5.4), where n is the number of passbands. We chose n = 4 corresponding to girz passbands.
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2. Gaps: Separate the light curve from step 1 into k chunks, where k is the number of light

curves. k = gaps + 1, where gaps is the number of gaps in the light curve. We computed

the difference between consecutive observations (time difference), we then defined a gap as

time difference >= 100 days. For example, the bottom left light curve on fig 5.3 has 2 gaps,

it will be separated into 3 smaller light curves chunks. If the ID of the object is 13, we renamed

it to 13 0, 13 1, and 13 2, where 0, 1, and 2 correspond to light curves 1, 2, and 3 respectively.

3. Point Cut: The feets feature extractor needs atleast 20 point in a light curve to compute all

features described in table 3.1. We found that the following features:

• Freq1 harmonics rel phase 0, PercentDifferenceFluxPercentile,

• FluxPercentileRatioMid20,FluxPercentileRatioMid35,

• FluxPercentileRatioMid50, FluxPercentileRatioMid65,

• FluxPercentileRatioMid80, Freq1 harmonics rel phase 0,

• Freq2 harmonics rel phase 0, and Freq3 harmonics rel phase 0,

are the only features that can’t be calculated by feets with less points (< 20 points). They were

neglected in the feature extraction process. This means we can set the point cut to a lower

number, this was set to 5.

4. Feature Extraction: We extracted 50 features from the light curves that pass the point cut.

We consider each light curve from step 2 as a separate object (i.e., we compute features for each

of objects 13 0, 13 1, and 13 2). Steps 1 to 4 were repeated for all passbands, and the features

were concatenated to form a matrix with 200 columns. For example, the mean feature for object

13 0 will be mean g, mean i, mean r and mean z for the 4 passbands.

Method 2: Neglecting the gaps between observations

In this method, we considered the entire light curves with the gaps between the observations. This

is because our feature extractor feets is not sensitive to unevenly sampled light curves (Nun et al.

2015b). Splitting the light curves into chunks as in method 1 led to fewer points in the light curve.

This means that a large fraction of the data will not pass the pointcut, resulting in losing information

about the observations. We thus consider steps 1, 3, and 4 from method 1; the only difference is

that we are extracting features from the entire light curve.
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We computed 50 features for each light curve band with the feets features extractor. A full list of

all the computed features can be seen in table 3.1 with the following neglected: con, Autocor length

and features outlined in method 1. As with method 1, we compute the features on each passband

and concatenate them. This means that each object is represented by 200 features from the girz

bands.

5.3.1.2 Anomaly Detection, Active Learning, and Classification

iForest and LOF were employed to assign anomaly scores to each object in the KN RRL sample, each

represented by features described in method 2. We use the default hyperparameters as those de-

scribed in Chapter 4 for iForest and set n neighbours = 20 for LOF. We then ran active learning on

the results by assigning relevance scores to the top 500 anomalies as by the raw anomaly scores from

iForest. The KNe and RR Lyrae were assigned a score of 5 and 0, respectively.

We assessed the performance of ASTRONOMALY on the results, using recall and the rank weighted score

(RWS), and compared the results from both iForest and LOF. We describe in the next section the

results obtained from both the raw anomaly scores and active learning. We then discuss insights into

why the iForest algorithm performs poorly.

5.3.2 Results

Figure 5.5 shows the recall and RWS curves for both LOF and iForest, where before active

learning represents the results ranked by the raw anomaly scores and after active learning

are results ranked by the human retrained score (see section 3.1.6 for details).

Before active learning, a recall of 0% and 8.27% was retrieved after viewing 133 objects (this is the

number of anomalies present in the data) from iForest and LOF, respectively. The recall improved to

6.76% and 21.05% after active learning for iForest and LOF, respectively.

Similarly, the RWS curves indicate a significant improvement after active learning for LOF and a

slight improvement for iForest. The recall curves on figure 5.5 shows that LOF outperforms iForest

before active learning. It also shows that after active learning, LOF has a good performance “out of

the box”, i.e., it successfully retrieves more anomalies in the top ranks compared to iForest. However,

it levels off after ∼ 500 index, and iForest shows an excellent improvement after the same index. The

rank weighted score curves shows that iForest performs poorly on average.
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We investigate if our feature extractor contributes to the poor performance of iForest by fitting a

random forest classification algorithm to the same features used in iForest. Since this is a supervised

problem, we split the features into a training and test set. The test set was composed of 20% of the

KN RRL sample and the remaining 80% was used as the training set.

Figure 5.5: Recall and RWS for anomalies in the KN RRL sample before active learning and after
active learning. The solid lines indicates results from iForest, while the dashed line are those from

LOF.

Figure 5.6: Confusion matrix from the random forest classifier, class 1 is for the KNe and class 0
is for the RRL.
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Surprisingly, the random forest classifier performs well with an accuracy of ∼ 99.9% (see the confusion

matrix in Figure 5.6). We further investigate the feature importance from the random forest results.

Figure 5.8 shows the top 30 important features. We see from this that the mean in flux measurements

from all griz bands are the most important features; which is worrying because this implies that the

algorithm is learning rates (i.e., it learns that certain objects are brighter than others), and as a result,

we might miss interesting objects that are far away. We plot these features and others in figure 5.7

to get insights into the distribution of the features space for the two labels (KN and RR Lyrae).

We found that there is a distinct separation between the two labels, which is why random forest

performs well. However, we also found that majority of the anomalous objects (KNe) lie close to

normal objects (RR Lyrae) in the features space, i.e., they are not isolated from the “normal” sample.

This might be why iForest is performing poorly on this sample. LOF, on the other hand, is built

to detect anomalies that lie relatively close to the “normal” sample in feature space (Breunig et al.

2000), which is why it is outperforming iForest on this sample.

Again, given the nature of the two classes: RR Lyrae are periodic and KNe are not, we expected that

the periodicity features would have a stronger impact, but iForest sees more anomalies in the flux

features than in the periodicity features (see Figure 5.8).
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Figure 5.7: The scatter plots showing the relationship between some of the important features as
by random forest (see figure 5.8) and random features in the data. We can see from left panel and

middle panel plots, that there is a distinct difference between the KNe and RR Lyrae labels.
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Figure 5.8: The top 30 important features as by the random forest classifier. The most important
features are the mean in flux measurements in all bands.

5.4 Astronomaly applied to a large sample with all classes in the

PLAsTiCC Data

We have found in the previous section that the LOF algorithm is the best algorithm to search for

anomalies in the KN RRL sample. In this section, we adopt the same procedure (method 2) as that

described in section 5.3.1 and apply ASTRONOMALY to the all labels sample. The all labels sample

is composed of 200 anomalies and 19970 normal objects.

We found from our analysis that given the feets features, where the anomalies are not particularly

distinct from the “normal” objects, LOF outperforms iForest on the all labels sample; hence we

neglect analysis from iForest and focus on those from LOF. The main goal of this section is to assess

the performance of ASTRONOMALY on a large sample with all the PLAsTiCC labels. We also aim to

assess its performance on two feature extractors: feets and avocado.
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5.4.1 The methodology

We extracted 200 features from feets (see method 2 in section 5.3.1) and 28 features from avocado

(see a full list of features in table 3.2). We refer to features extracted from feets and avocado as

the feets sample and avocado sample, respectively. We employed LOF to assign anomaly scores

to each object in the feets sample and avocado sample. We set n neighbours = 20. We then

assigned relevance scores to the top 1000 objects sorted by the raw LOF anomaly scores, and ran

active learning to get the human retrained scores. We assigned a relevance score of 5 to labels: 991,

992, 993 and 994; and zero to the remaining labels (see table 5.1 for list of the labels).

We then assessed the performance of ASTRONOMALY on anomalies detected from both the feets sample

and avocado sample.

5.4.2 Results

Figure 5.9 shows the recall and rank weighted scores from the feets sample and avocado sample

before and after active learning. A recall of 0.5% and 3.0% were retrieved from the feets sample after

viewing 200 objects (number of anomalies in the data) before and after active learning, respectively.

The recall has improved slightly for the avocado sample, where the recall was found to be 1.5% and

7.0% before and after active learning, respectively. However, this is poor performance.

Figure 5.9: Same as figure 5.5, but for the all labels sample. The solid curves indicates results
from the feets sample, while the dashed curves are those from the avocado sample

To get insights into why the perfomance of LOF is poor from both feature samples (feets sample and

avocado sample), we plotted a bar graph showing the labels retrieved in the top 200 anomalies before

and after active learning in figure 4.9. It is found that ∼ 53.5% of the top anomalies are from labels:
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M-dwarf flare star, EB, and SNII, for the avocado sample before active learning; and ∼ 68% are from

labels: µLens-Single, RRL, and Mira for the feets sample. Two anomalous labels (µLens-Binary

and PISN) were retrieved from the avocado sample and only one anomalous label (µLens-Binary)

from feets sample.

Figure 5.10: A bar graph showing the top 200 anomalous classes detected from both the
feets sample (right panel) and avocado sample (left panel). The top and bottom plots are re-
sults before and after active learning, respectively. Notice that the anomalous labels (µLens-Binary,
ILOT, CaRT, and PISN) were retrieved in the top 200 after active learning; with an exception for
results detected from the feets sample, as label CaRT is not retrieved both before and after active

learning.

After active learning, all the four anomalous labels (µLens-Binary, ILOT, CaRT, and PISN) were

retrieved in the top 200 anomalies from the avocado sample), while the label CaRT was not retrieved

from feets sample. After active learning, it was found that the most abundant labels detected

from the avocado sample are: AGN, SLSN-I, and M-dwarf. Mira, RRL, and µLens-Single were

detected from the feets sample. We also found from figure 5.11, that anomalies detected from the

avocado sample have small flux and flux errors (with an exception for the EB label) values.

Similarly, we find from figure 5.12, that the anomalies detected from the feets sample have large

flux and flux errors values. We also found that some of the anomalies have negative flux values.
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Lastly, we find from figure 5.13, that the anomalous objects detected in the top 200 have maximimum

photometric redshift of 2.07 and 2.87 for the feets sample and avocado sample, respectively. The

majority of the anomalies are galactic: with 58.5% and 77.5% detected from the avocado sample and

feets sample, respectively.

Figure 5.11: The flux and flux error distribution of the top 3 anomalous labels from the
avocado sample. The left and right panels are the flux and flux error measurements taken directly
from the light curve data. The blue lines indicates observations from the top 200 most anomalous
objects (as by the raw LOF anomaly scores) within the given label and the orange is for the remain-
ing objects. On average, anomalies detected in avocado are dimmer than those considered normal

and they also have small flux errors.
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5.5 Discussion

We have applied ASTRONOMALY on the KN RRL sample and all labels sample and outlined the results

in sections 5.3 and 5.4. The main goal of the former sample is to find the best algorithm that can be

employed to detect anomalies in the PLAsTiCC data. We employed two anomaly detection algorithms

(iForest and LOF) to assign anomaly scores to object in the KN RRL sample based on features extracted

from feets. It was found that the LOF outperforms iForest with a recall of 8.27% and 21.05%. This

is because the anomaly objects are not isolated in feature space; rather, they lie close to the “normal”

objects (see figure 5.7).

Figure 5.12: Same as figure 5.11 but from the feets sample. On average, anomalies detected
from the feets sample are bright and they have high flux error values; they also have negative flux

values which is a result of difference imaging in PLAsTiCC.
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Since iForest is built to find objects that are isolated from the “normal” sample, it is expected to

perform poorly on the KN RRL sample because of the reason outlined above. LOF, on the other hand,

is built to find anomalies that lie relatively close to the “normal” sample; hence it is performing well

on the KN RRL sample. We also found that active learning improves iForest more than LOF, which

indicates that iForest is also doing a useful job, and with a better feature extraction technique, we

might find excellent results from it.

Since LOF is found to be the best algorithm to search for anomalies in the PLAsTiCC data, we

applied it to a larger sample (all labels sample). We however, assessed its performance based on

two features extraction techniques (feets sample and avocado sample). It was found that LOF

performs poorly on both the avocado sample and feets sample, with a recall of 0.5% and 3.0%

respectively.

Figure 5.13: A histogram showing the host galaxy photometric redshift distribution for the top
200 anomalies detected from both the feets sample (blue lines) and avocado sample (orange
lines). The x-axis shows the photometric redshift of the host galaxy, and the y-axis correponds to
the counts. The majority of anomalies detected from both avocado sample and feets sample are
galactic (redshift = 0). However, anomalies in avocado sample can be found at high redshifts ∼ 2.9,

while those in the feets sample are restricted to a redshift of ∼ 2.

We also found that the the results from the avocado sample outperforms those from feets sample.

This is because anomalies detected from the feets sample are biased towards bright Galactic (low

redshift) transient and variable objects (see figures 5.8, 5.11, 5.12). However, majority of the anoma-

lous samples (ILOT, CaRT, and PISN) from PLAsTiCC are extra-galactic (with an exception for the

µLens-Binary label).
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The negative flux values and high flux error values detected in the anomalies from the feets sample

(see figure 5.12) shows that the feets feature extractor is biased towards light curves with low S/N.

Hence, it is not an ideal feature extractor tool for anomaly detection problems. Even though the

results from the avocado sample are not the best, we found that avocado is not biased to either in

the redshift or brightness of the object.

5.5.1 Comparing Anomalies Detected from the feets and Avocado samples

We find from the top panel of figure 5.10, that different objects are detected as anomalies from

both the feets sample and avocado sample. For example, the top 3 most abundant labels from

the feets sample are the microlensing (µLens-Single), RR Lyrae, and Mira events. We have seen

from chapter 1 that these events are one of the most commonly studied events. However, due to the

Lomb-Scargle features in feets that are related to periodic events (see table 3.1), this might be the

reason why the RR Lyrae and Mira variables were detected as anomalous because they and eclipsing

binaries (EBs), are the only periodic events in the PLAsTiCC. Take note that the EBs class is the

fourth most abundant label as seen from figure 5.10.

The most abundant labels of anomalies detected in the avocado sample are M-dwarf, EBs, and type

II supernovae (SNII). These events also fall within the most commonly studied transient and variable

events in astronomy (see chapter 1). However, M-dwarfs have interesting activities in their light

curves, where they display a sudden, short-lived outburst (see figure 1.21 of chapter 1). This might

result in a unique Gaussian process fit with a small width compared to the rest of the population.

Hence features from avocado such as [positive,negative] width, might flag such objects as unique

and place them in low-density regions in the feature space. This might be why LOF is detecting most

of them as anomalous.

Further investigations are required to get more insights into why LOF is detecting common transient

and variable events as anomalies other than the actual anomalies in the data. The bias characteristics

observed from the feets sample can be further investigated by normalising the flux values before the

feature extraction process.

5.5.2 Scaling Astronomaly

The feets feature extractor incorporated in Astronomaly, is fairly computationally expensive and

this can be a problem for huge datasets coming from the Rubin observatory. However, the feature
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extraction process can be easily parallelised, and it can help speed up the feature extraction process.

An alternative approach might be to only do feature extraction on a subset of objects, because some

will have poor data quality, and some will be fit very well by other classifiers (which makes anomaly

detection on them redundant).
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Conclusions

We have extended an existing public framework, ASTRONOMALY, to be able to load, extract and run

anomaly detection algorithms on time-series data. ASTRONOMALY is a flexible framework designed to

search for anomalies in the most common astronomical data type, including images, spectra, and

time-series data (with the updates done in this work).

It is coupled with an active learning technique that is used to personalise interesting anomalies detected

by the machine learning algorithms. This is because anomalies are mostly triggered by either artefacts

or astrophysical processes. An instrumental scientist will find those triggered by artefacts interesting,

while an astrophysicist would find the latter interesting.

ASTRONOMALY has a python backend where the data management, feature extraction, data pre-processing,

data post-processing, and machine learning [currently operating with the anomaly detection algo-

rithms isolation forest (iForest) and local outlier factor (LOF)] processes occurs. The backend returns

anomaly scores for objects in a given data set, and these objects are then visualised on the JavaScript

frontend web interface. The frontend is also used for labeling the objects according to how relevant

they are to a user. This follows after the objects are ranked according to the raw anomaly scores

returned from the frontend. ASTRONOMALY can then be retrained on the human labels, and the object

can be sorted by the human retrained label. This technique is referred to as active learning.

ASTRONOMALY has been applied to time series data (Webb et al. 2020); however, the implementation

was not generalised. In this work, we have extended ASTRONOMALY to operate with time-series data

(light curves) with two main characteristics: light curves observed in one band and those observed in

multiple bands. We designed the light curve reader to be able to load two types of light curve data

files: a light curve file with light curves of multiple objects embedded in one large file and multiple
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light curve files, each having a light curve of a single object. We also incorporated the feets feature

extractor in ASTRONOMALY to extract features from any given time series data. feets is an open feature

extractor package designed to extract features from any time series data.

We also adopted features from avocado, a feature extractor package designed to extract features from

the PLAsTiCC data (a simulated data designed to mimic what is expected from the LSST). However,

the features were extracted outside ASTRONOMALY (it will be incorporated in the near future).

We applied the updated ASTRONOMALY (using iForest and feets features) on the MANTRA datasets, a

data composed of light curve data with real observations from the Catalina real-time transient survey.

The goal is to test how effective ASTRONOMALY is in detecting anomalies from real observations. We

also aim to test if the anomalies detected from the real observations are from the anomalous objects

in the literature or are due to artefacts.

It was found that ASTRONOMALY detects anomalies triggered by both artefacts and interesting objects.

However, most of the detected anomalies (appearing at the top ranks) are those triggered by artefacts.

We further tested the active learning technique by assigning a relevance score to the top 100 anomalies

sorted by the raw anomaly scores, where bogus light curves were given a low score and interesting

objects a high score. We found that active learning successfully flags most of the artefacts from top

ranks and retrieves interesting anomalies instead.

This indicates that ASTRONOMALY is an ideal tool for personalising interesting anomalies in a given

dataset. It can be useful in searching for anomalies in big datasets from upcoming surveys such as

the LSST, which will detect ∼ 10 million alerts per night.

Even though the results from the MANTRA data are promising, the observing strategies of big surveys

such as the Vera C. Rubin Observatory are different from those of the CRTS. This means that we need

to test ASTRONOMALY on a dataset that closely mimics what is expected from the Rubin Observatory.

To get insights into how ASTRONOMALY would perform when applied to data from the Rubin Obser-

vatory, we tested it on the PLAsTiCC data. Because we know the ground truth of the anomalous

samples in the PLAsTiCC data, we can assess the performance of our algorithms using recall and the

rank-weighted score metrics. We tested this on a small sample of the PLAsTiCC data composed of

the anomalous KNe labels and “normal” RR Lyrae labels. It was found that the LOF algorithm is

the best in detecting anomalies in the small sample, whose features are extracted from feets.

Similarly, we tested ASTRONOMALY on a large PLAsTiCC sample composed of 18 labels, four of which

are anomalous labels. Again, it was found that the LOF algorithm outperforms iForest, and returns
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the best results when applied to features from avocado. It was also found that the anomalies detected

from the feets feature extractor is biased towards bright and nearby objects with bogus light curves.

This is why our algorithms are not performing well with features extracted from them. This indicates

the importance of a feature extractor technique: a poor, biased feature extractor is responsible for

the poor performance of a machine learning algorithm.

We have shown in this work that anomaly detection techniques coupled with active learning are ideal

tools to optimise the anomaly detection process. Although the features used in this work result in

poor performance, machine learning still has a great deal to offer to speed up the process of finding

anomalies. This will be critical in the data deluge expected from Rubin. Our work also shows that

more needs to be done to find an appropriate feature extractor for anomaly detection in time series

data from the Rubin Observatory.

Future directions for applying ASTRONOMALY to time series data include incorporating other feature

extraction techniques such as the Lomb-Scargle periodogram, taking the colour features from feets

into account when extracting features, and adding a light curve pre-processing step for sigma clipping

to remove noise from the light curves.

Anomaly detection techniques with machine learning are unavoidable in the current and upcoming

era of big data, as traditional techniques of making new discoveries will be prohibitively slow to keep

up with incoming data. As we have seen in this work, anomaly detection algorithms are powerful and

successful in detecting anomalies in transient and variable data. However, they cannot distinguish

between bogus and interesting anomalies. Employing a human expert to label the anomalies and

personalise interesting anomalies using active learning techniques, has proven to be effective (Lochner

and Bassett 2020) and promising (through this work). However, more work still need to be done,

particularly on feature extraction techniques, to optimise the results before such techniques will be

applicable to the high data rates expected from the Rubin Observatory and the SKA.
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Soszyński, I, R Smolec, A Udalski, and P Pietrukowicz (2019). “Type II Cepheids Pulsating in the

First Overtone from the OGLE Survey”. In: The Astrophysical Journal 873.1, p. 43.

Southworth, J, S Zucker, PFL Maxted, and B Smalley (2004). “Eclipsing binaries in open clusters–III.

V621 Per in χ Persei”. In: Monthly Notices of the Royal Astronomical Society 355.3, pp. 986–994.

http://etd.uwc.ac.za/ 
 



Chapter 6. Conclusions 143

Stetson, Peter B (1996). “On the automatic determination of light-curve parameters for cepheid

variables”. In: Publications of the Astronomical Society of the Pacific 108.728, p. 851.

Storey-Fisher, Kate, Marc Huertas-Company, Nesar Ramachandra, Francois Lanusse, Alexie Leau-

thaud, Yifei Luo, and Song Huang (2020). “Anomaly Detection in Astronomical Images with Gen-

erative Adversarial Networks”. In: arXiv preprint arXiv:2012.08082.

Strubbe, Linda E and Eliot Quataert (2009). “Optical flares from the tidal disruption of stars by

massive black holes”. In: Monthly Notices of the Royal Astronomical Society 400.4, pp. 2070–2084.

Surbhi, Sultania (2019). Gamma-ray Burst. Last accessed 19 October 2021. url: https://medium.

com/codex/feature-scaling-in-machine-learning-e86b360d1c31.

Takahashi, Ichiro, Nao Suzuki, Naoki Yasuda, Akisato Kimura, Naonori Ueda, Masaomi Tanaka,

Nozomu Tominaga, and Naoki Yoshida (2020). “Photometric classification of HSC transients using

machine learning”. In: arXiv preprint arXiv:2008.06726.

Tanvir, NR, AJ Levan, ASe Fruchter, J Hjorth, RA Hounsell, K Wiersema, and RL Tunnicliffe (2013).

“A ‘kilonova’associated with the short-duration γ-ray burst GRB 130603B”. In: Nature 500.7464,

pp. 547–549.

Taubenberger, Stefan (2017). “The Extremes of Thermonuclear Supernovae”. In: Handbook of Super-

novae, pp. 317–373. doi: 10.1007/978-3-319-21846-5_37. url: http://dx.doi.org/10.1007/

978-3-319-21846-5_37.

Teimoorinia, Hossen, Robert D Toyonaga, Sebastien Fabbro, and Connor Bottrell (2020). “Comparison

of Multi-class and Binary Classification Machine Learning Models in Identifying Strong Gravita-

tional Lenses”. In: Publications of the Astronomical Society of the Pacific 132.1010, p. 044501.

Tomaschitz, Roman (2018). “White dwarf stars exceeding the Chandrasekhar mass limit”. In: Physica

A: Statistical Mechanics and its Applications 489, pp. 128–140.

Totten, E J and MJ Irwin (1998). “The APM survey for cool carbon stars in the Galactic halo—I”.

In: Monthly Notices of the Royal Astronomical Society 294.1, pp. 1–27.

Tur, Gokhan, Dilek Hakkani-Tür, and Robert E Schapire (2005). “Combining active and semi-supervised

learning for spoken language understanding”. In: Speech Communication 45.2, pp. 171–186.

Udalski, Andrzej, M Szymanski, J Kaluzny, M Kubiak, and Mario Mateo (1992). “The optical gravi-

tational lensing experiment”. In: Acta Astronomica 42, pp. 253–284.

Ulmer, Andrew (1999). “Flares from the tidal disruption of stars by massive black holes”. In: The

Astrophysical Journal 514.1, p. 180.

http://etd.uwc.ac.za/ 
 

https://medium.com/codex/feature-scaling-in-machine-learning-e86b360d1c31
https://medium.com/codex/feature-scaling-in-machine-learning-e86b360d1c31
https://doi.org/10.1007/978-3-319-21846-5_37
http://dx.doi.org/10.1007/978-3-319-21846-5_37
http://dx.doi.org/10.1007/978-3-319-21846-5_37


Chapter 6. Conclusions 144

Valenti, Stefano, J David, Sheng Yang, Enrico Cappellaro, Leonardo Tartaglia, Alessandra Corsi,

Saurabh W Jha, Daniel E Reichart, Joshua Haislip, and Vladimir Kouprianov (2017). “The dis-

covery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck”. In: The

Astrophysical Journal Letters 848.2, p. L24.

Van der Maaten, Laurens and Geoffrey Hinton (2008). “Visualizing data using t-SNE.” In: Journal of

machine learning research 9.11.

Veilleux, Sylvain and Donald E Osterbrock (1987). “Spectral classification of emission-line galaxies”.

In: The Astrophysical Journal Supplement Series 63, pp. 295–310.

Velzen, Sjoert van, Suvi Gezari, S Bradley Cenko, Erin Kara, James CA Miller-Jones, Tiara Hung,

Joe Bright, Nathaniel Roth, Nadejda Blagorodnova, Daniela Huppenkothen, et al. (2019). “The first

tidal disruption flare in ZTF: from photometric selection to multi-wavelength characterization”. In:

The Astrophysical Journal 872.2, p. 198.

Villar, V Ashley, Edo Berger, Brian D Metzger, and James Guillochon (2017). “Theoretical Models

of Optical Transients. I. A Broad Exploration of the Duration–Luminosity Phase Space”. In: The

Astrophysical Journal 849.1, p. 70.

Villar, V. Ashley, Miles Cranmer, Edo Berger, Gabriella Contardo, Shirley Ho, Griffin Hosseinzadeh,

and Joshua Yao-Yu Lin (2021). “A Deep Learning Approach for Active Anomaly Detection of

Extragalactic Transients”. In: arXiv: 2103.12102. url: http://arxiv.org/abs/2103.12102.

Vogt, SS (1975). “Light and color variations of the flare star by Draconis A critique of starspot

properties”. In: The Astrophysical Journal 199, pp. 418–426.

Wang, Sun-Chong (2003). “Artificial neural network”. In: Interdisciplinary computing in java pro-

gramming. Springer, pp. 81–100.

Warner, Brian (2003). Cataclysmic variable stars. Vol. 28. Cambridge University Press.

Watson, D, KD Denney, Marianne Vestergaard, and Tamara Maree Davis (2011). “A new cosmological

distance measure using active galactic nuclei”. In: The Astrophysical Journal Letters 740.2, p. L49.

Webb, Sara, Michelle Lochner, Daniel Muthukrishna, Jeff Cooke, Chris Flynn, Ashish Mahabal, Simon

Goode, Igor Andreoni, Tyler Pritchard, and Timothy MC Abbott (2020). “Unsupervised machine

learning for transient discovery in deeper, wider, faster light curves”. In: Monthly Notices of the

Royal Astronomical Society 498.3, pp. 3077–3094.

West, Andrew A, Dylan P Morgan, John J Bochanski, Jan Marie Andersen, Keaton J Bell, Adam F

Kowalski, James RA Davenport, Suzanne L Hawley, Sarah J Schmidt, David Bernat, et al. (2011).

“The sloan digital sky survey data release 7 spectroscopic M dwarf catalog. I. Data”. In: The

Astronomical Journal 141.3, p. 97.

http://etd.uwc.ac.za/ 
 

https://arxiv.org/abs/2103.12102
http://arxiv.org/abs/2103.12102


Chapter 6. Conclusions 145

Whitelock, Patricia A (1999). ““Real-time” evolution in Mira variables”. In: New Astronomy Reviews

43.6-7, pp. 437–440.

Yang, Qian, Xue-Bing Wu, Xiaohui Fan, Linhua Jiang, Ian McGreer, Jinyi Shangguan, Su Yao,

Bingquan Wang, Ravi Joshi, Richard Green, et al. (2018). “Discovery of 21 New Changing-look

AGNs in the Northern Sky”. In: The Astrophysical Journal 862.2, p. 109.

Yang, T. -C., A. J. Drake, A. A. Mahabal, S. G. Djorgovski, M. J. Graham, R. Williams, J. L. Prieto,

M. Catelan, E. Christensen, and S. M. Larson (May 2013). “Classification of CRTS Supernova

Discoveries”. In: The Astronomer’s Telegram 5077, p. 1.

Zhang, Cha and Tsuhan Chen (2002). “An active learning framework for content-based information

retrieval”. In: IEEE transactions on multimedia 4.2, pp. 260–268.

Zhou, Li, Xiaofeng Wang, Kaicheng Zhang, Juncheng Chen, Jide Liang, Tianmeng Zhang, Xu Zhou,

Fang Huang, Xulin sZhao, Xiaofeng Wang, Tianmeng Zhang, D. D. Balam, M. L. Graham, and E. Y.

Hsiao (June 2013). “Supernova 2013cv = Psn J16224316+1857356”. In: Central Bureau Electronic

Telegrams 3543, p. 1.

Zhu, Yonglin, Ryan Thomas Wollaeger, Nicole Vassh, Rebecca Surman, TM Sprouse, Matthew Ryan
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Appendix A

Objects with Unclear Labels in the

MANTRA Data

Table A.1: A List of objects with unclear labels in the MANTRA data.

Classification Number of objects Classification Number of objects

AGN/Blazar 3 Var/Ast? 2

AGN/CV 2 Var/Flare? 1

AGN/Flare? 1 Var/Nothing 1

AGN/SN 6 Var/Nova 1

AGN/SN? 4 Var/SN 2

AGN/Var 4 Var/SN? 2

AGN/Var? 1 Var/nothing? 1

AGN/nothing? 1 Var? 15

AGN? 138 YSO? 5

AMCVn? 1 Unclear 1

Ast/CV? 2 Var/AGN 1

Ast/Flare 1 Var/Artifact 1

Ast/Flare? 1 Var/Ast 5

Ast/SN 4 SN/AGN? 11

Ast/SN? 1 SN/Ast 10

Ast/Var 1 SN/Ast? 2

Ast/Var? 2 SN/CV 36

Ast/Var?? 1 SN/CV? 6

Ast? 68 SN/TDE 6
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Continuation of Table 5.1

Classification Number of objects Classification Number of objects

Blazar/AGN 4 SN/TDE? 1

Blazar/SN 1 SN/Var 3

Blazar? 19 SN/Var? 1

CV/AGN 3 SN/nothing? 1

CV/AGN? 3 SN? 319

CV/Ast 4 TDE? 3

CV/Ast? 1 SN/AGN 23

CV/Blazar 1 O/Ne 1

CV/Flare 2 Nova? 1

CV/SN 19 Nova/CV 1

CV/SN? 1 Nothing/Lensing 1

CV/Var 5 Merger/CV? 1

CV/Var/Ast 1 Lensing/nothing? 1

CV/Var? 1 HPM? 3

CV? 77 HPM/Var? 1

Comet/Ast? 1 Flare? 20

Flare/CV 1 Flare/SN? 1

Flare/SN 2
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Appendix B

The code developed when extending As-

tronomaly to Operate with Light Curve

Data

B.1 The Light Curve Reader Class

This code is used to read in different kinds of light curve datasets. The code first prompts the user to specify:

file path(s), time columns, brightness columns, brightness error columns, the number of lines covered by the

header, if the user wants to covert flux values to magnitudes, and if the user wants to split the light curves into

chunks based on their gaps. It then loads the data, discards the header, converts flux to magnitudes (optional),

splits the light curves (optional), and standardises the column names as described in Chapter 3. Lastly, it

returns a PANDAS dataframe with standard column names.

import pandas as pd

import numpy as np

from astronomaly.base.base_dataset import Dataset

# ignores the false positve pandas warning

# for the following kind of code

# df['key'] == item, for an existing key in a df

pd.options.mode.chained_assignment = None

148
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def split_lc(lc_data, max_gap):

'''Splits the light curves into smaller chunks based on their gaps

Parameters

----------

lc_data: Dataframe with the light curves

max_gap: Maximum gap between observations'''

unq_ids = np.unique(lc_data.ID)

unq_ids = unq_ids

splitted_dict = {}

id_n = 0

for ids in unq_ids:

id_n += 1

progress = id_n/len(unq_ids)

progress = progress*100

print('Concatinating {}%'.format(progress))

lc = lc_data[lc_data['ID'] == ids]

if 'filters' in lc.columns:

unq_filters = np.unique(lc.filters)

for filtr in unq_filters:

lc1 = lc[lc['filters'] == filtr]

time = lc1.time

time_diff = [time.iloc[i] - time.iloc[i-1]

for i in range(1, len(time))]

time_diff.insert(0, 0)

lc1['time_diff'] = time_diff

gap_idx = np.where(lc1.time_diff > max_gap)[0]

# Separating the lc as by the gap index

try:
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lc0 = lc1.iloc[:gap_idx[0]]

lc0['ID'] = [ids+'_0' for i in range(len(lc0.time))]

splitted_dict.update({'lc'+ids+'_'+str(filtr)+str(0): lc0})

for k in range(1, len(gap_idx)):

lcn = lc1.iloc[gap_idx[k-1]:gap_idx[k]]

lcn['ID'] = [ids+'_'+str(k)

for i in range(len(lcn.time))]

splitted_dict.update({'lc'+ids+'_'+str(filtr)+str(k):

lcn})

lc2 = lc1.iloc[gap_idx[k]:]

lc2['ID'] = [ids+'_'+str(k+1)

for i in range(len(lc2.time))]

splitted_dict.update({'lc'+ids+'_'+str(filtr)+str(k+1):

lc2})

except (IndexError, UnboundLocalError):

pass

final_data = pd.concat(splitted_dict.values(), ignore_index=False)

return final_data

def convert_flux_to_mag(lcs, f_zero):

'''Converts flux to mags for a given light curve data

Parameters

----------

lcs: DataFrame with the light curve values

zeropoint: Zeropoint magnitude

'''
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# Replacing the negative flux values with their respective errors

neg_flux_indx = np.where(lcs['flux'].values < 0)

lcs.loc[lcs['flux'] < 0, ['flux']] = lcs['flux_error'].iloc[neg_flux_indx]

# Only consider ugiz bands

lc = lcs[lcs['filters'].isin([1, 2, 3, 4])]

# Flux and flux error

f_obs = lc.flux.values

f_obs_err = lc.flux_error.values

constants = (2.5/np.log(10))

# converting

flux_convs = - 2.5*np.log10(f_obs/f_zero)

err_convs = constants*(f_obs_err/f_obs)

# Adding the new mag and mag_error column

lc['mag'] = flux_convs

lc['mag_error'] = err_convs

return lc

class LightCurveDataset(Dataset):

def __init__(self, data_dict, f_zero=22, header_nrows=1,

delim_whitespace=False, max_gap=50, plot_errors=True,

convert_flux=True, split_lc=False,

filter_colors=['#9467bd', '#1f77b4', '#2ca02c', '#d62728',

'#ff7f0e', '#8c564b'],

filter_labels=[],

**kwargs):

"""

Reads in light curve data from file(s).

Parameters

----------

filename : str

If a single file (of any time) is to be read from, the path can be

given using this kwarg.
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directory : str

A directory can be given instead of an explicit list of files. The

child class will load all appropriate files in this directory.

list_of_files : list

Instead of the above, a list of files to be loaded can be

explicitly given.

output_dir : str

The directory to save the log file and all outputs to. Defaults to

'./'

data_dict: Dictionary

It a dictionary with index of the column names corresponding to

the following specific keys:

('id','time','mag','mag_err','flux','flux_err','filters',

'labels')

e.g {'time':1,'mag':2}, where 1 and 2 are column index

correpoding to 'time' and 'mag' in the input data.

If the data does not have unique ids, the user can neglect the

'id' key, and the ids will be the file path by default.

The user can also provide a list of indices for the 'mag' and

'flux' columns.

This is the case where the brightness is recorded in more than

one column. e.g {'time':1,'mag':[2,3]} 2 and 3 corresponds to

columns with brightness records

header_nrows: int

The number of rows the header covers in the dataset, by

default 1

f_zero : float/int

The zero flux magnitude values, by default 22

max_gap: int

Maximum gap between consecute observations, default 50

split_lc: bool

Should be true if one wants to split the ligh curves based on

the gaps. Default False.

delim_whitespace: bool

Should be True if the data is not separated by a comma, by

default False

plot_errors: bool

If errors are available for the data, this boolean allows them
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to be plotted

filter_colors: list

Allows the user to define their own colours (using hex codes)

for the different filter bands. Will revert to default

behaviour of the JavaScript chart if the list of colors

provided is shorter than the number of unique filters.

filter_labels: list

For multiband data, labels will be passed to the frontend

allowing easy identification of different bands in the light

curve. Assumes the filters are identified by an integer in the

data such that the first filter (e.g. filter 0) will correspond

to the first label provided. For example, to plot PLAsTiCC

data, provide filter_labels=['u','g','r','i','z','y']

"""

super().__init__(data_dict=data_dict, header_nrows=header_nrows,

delim_whitespace=delim_whitespace, f_zero=f_zero,

max_gap=max_gap, plot_errors=plot_errors,

filter_labels=filter_labels, split_lc=split_lc,

convert_flux=convert_flux,

filter_colors=filter_colors, **kwargs)

self.data_type = 'light_curve'

self.metadata = pd.DataFrame(data=[])

self.data_dict = data_dict

self.header_nrows = header_nrows

self.delim_whitespace = delim_whitespace

self.f_zero = f_zero

self.max_gap = max_gap

self.plot_errors = plot_errors

self.filter_labels = filter_labels

self.filter_colors = filter_colors

self.convert_flux = convert_flux

self.split_lc = split_lc

# ================================================================

# Reading the light curve data

# ================================================================
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# The case where there is one file

data = pd.read_csv(self.files[0], skiprows=self.header_nrows,

delim_whitespace=self.delim_whitespace, header=None)

# Spliting the light curve data using the gaps

if self.split_lc is True:

data = split_lc(data, self.max_gap)

# The case for multiple files of light curve data

file_len = [len(data)]

if len(self.files) > 1:

file_paths = [self.files[0]]

for fl in range(1, len(self.files)):

data = pd.concat([data, pd.read_csv(self.files[fl],

skiprows=self.header_nrows,

delim_whitespace=self.delim_whitespace,

header=None)])

file_paths.append(self.files[fl])

file_len.append(len(data))

IDs = [file_paths[0] for i in range(file_len[0])]

for fl in range(1, len(file_len)):

for f in range(file_len[fl] - file_len[fl-1]):

IDs.append(file_paths[fl])

# =================================================================

# Renaming the columns into standard columns for astronomaly

# =================================================================

time = data.iloc[:, self.data_dict['time']]

standard_data = {'time': time}

if 'id' in data_dict.keys():

idx = data.iloc[:, self.data_dict['id']]

http://etd.uwc.ac.za/ 
 



Appendix B. The code 155

ids = np.unique(idx)

ids = np.array(ids, dtype='str')

# self.index = ids[:5] # Testing for 100 objects

standard_data.update({'ID': np.array(idx, dtype='str')})

else:

idx = self.files

self.index = idx

self.metadata = pd.DataFrame({'ID': idx}, index=idx)

standard_data.update({'ID': IDs})

if 'labels' in data_dict.keys():

labels = data.iloc[:, self.data_dict['labels']]

standard_data.update({'labels': labels})

# Possible brightness columns

brightness_cols = ['mag', 'flux']

# WE NEED TO CONVERT FLUX TO MAG FOR FEETS FEATURE EXTRACTOR

# Looping through the brightness columns

for col in range(len(brightness_cols)):

data_col = brightness_cols[col]

if data_col in self.data_dict.keys():

# ============Multiple brightness columns======================

try:

for i in range(len(self.data_dict[data_col])):

# The case where there are no error columns

standard_data.update({data_col+str(i+1):

data.iloc[:, self.data_dict[

data_col][i]]})

# The case where there are brightness error columns

if data_col+'_err' in self.data_dict.keys():
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# Updating the standard dictionary to include the

# brightness_errors

standard_data.update({data_col+'_error'+str(i+1):

data.iloc[:, self.data_dict[

data_col+'_err'][i]]})

# =================Single brightness Column===================

# ============================================================

except TypeError:

# The case for single brightness column and no errors

standard_data.update({data_col:

data.iloc[:, self.data_dict[

data_col]]})

if data_col+'_err' in self.data_dict.keys():

standard_data.update({data_col+'_error':

data.iloc[:, self.data_dict[

data_col+'_err']]})

# ============The case where there are filters in the data=====

if 'filters' in self.data_dict.keys():

standard_data.update({'filters': data.iloc[

:, self.data_dict['filters']]})

lc = pd.DataFrame.from_dict(standard_data)

if 'flux' in lc.columns:

# Convert flux to mag

if convert_flux is True:

lc = convert_flux_to_mag(lc, self.f_zero)

# THIS IS TEMPORARY, ESSENTIAL FOR PLOTTING

# lc1 = lc.copy()
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lc['mag'] = lc.flux

lc['mag_error'] = lc.flux_error

# =========UnComment To Split Lcs==================

# Split the light curve into chunks

self.light_curves_data = lc

else:

self.light_curves_data = lc

ids = np.unique(lc.ID)

self.index = ids

# Add the classes to the metadata

if 'labels' in lc.columns:

lc1 = lc.copy()

lc1 = lc.drop_duplicates(subset='ID')

labels = [lc1[lc1['ID'] == i]['labels'].values[0] for i in ids]

self.metadata = pd.DataFrame({'label': labels, 'ID': ids},

index=ids)

# Metadata without the class

else:

self.metadata = pd.DataFrame({'ID': ids}, index=ids)

def get_display_data(self, idx):

"""

Returns a single instance of the dataset in a form that is ready to be

displayed by the web front end.

Parameters

----------

idx : str

Index (should be a string to avoid ambiguity)

Returns

-------

dict
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json-compatible dictionary of the light curve data

"""

# WE NEED TO EXPAND THIS TO BE MORE GENERAL

# All the standard columns are included here

data_col = ['mag']

err_col = ['mag_error']

out_dict = {'data': [], 'errors': [], 'filter_labels': [],

'filter_colors': []}

# Reading in the light curve data

light_curve_original = self.light_curves_data[

self.light_curves_data['ID'] == idx]

lc_cols = light_curve_original.columns.values.tolist()

if err_col[0] in lc_cols and self.plot_errors:

plot_errors = True

else:

plot_errors = False

if 'filters' in lc_cols:

multiband = True

unique_filters = np.unique(light_curve_original['filters'])

else:

multiband = False

unique_filters = [0]

k = 0

for filt in unique_filters:

if multiband:

msk = light_curve_original['filters'] == filt

light_curve = light_curve_original[msk]

else:

light_curve = light_curve_original

mag_indx = [cl for cl in data_col if cl in lc_cols]

err_indx = [cl for cl in err_col if cl in lc_cols]
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if plot_errors:

light_curve['err_lower'] = light_curve[mag_indx].values - \

light_curve[err_indx].values

light_curve['err_upper'] = light_curve[mag_indx].values + \

light_curve[err_indx].values

lc_errs = light_curve[['time', 'err_lower', 'err_upper']]

err = lc_errs.values.tolist()

# inserting the time column to data and adding 'data'

# and 'errors' to out_dict

mag_indx.insert(0, 'time')

dat = light_curve[mag_indx].values.tolist()

out_dict['data'].append(dat)

if plot_errors:

out_dict['errors'].append(err)

else:

out_dict['errors'].append([])

if len(self.filter_labels) >= len(unique_filters):

out_dict['filter_labels'].append(self.filter_labels[k])

else:

out_dict['filter_labels'].append((str)(filt))

if len(self.filter_colors) >= len(unique_filters):

out_dict['filter_colors'].append(self.filter_colors[k])

else:

out_dict['filter_colors'].append('')

k += 1

return out_dict
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def get_sample(self, idx):

# Choosing light curve values for a specific ID

light_curve_sample = self.light_curves_data[

self.light_curves_data['ID'] == idx]

return light_curve_sample

B.2 The feets Feature Extractor Class

This code incorporates the feets package to extract features from the standardised light curves returned by

the light curve reader. It prompts the user to: give a list of features to exclude, specify if they want the features

to be computed on the magnitude or flux, and specify the number of point cut. It then extracts features and

returns a PANDAS dataframe with the computed features.

import numpy as np

import feets

from astronomaly.base.base_pipeline import PipelineStage

class Feets_Features(PipelineStage):

'''Computes the features using feets package

Parameters:

exclude_features: Features to be excluded when calculating the features

Output:

A 1D array with the extracted feature'''

def __init__(self, exclude_features, compute_on_mags=True, n_points_plc=5,

**kwargs):

super().__init__(exclude_features=exclude_features,

compute_on_mags=compute_on_mags,

n_points_plc=n_points_plc, **kwargs)
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self.exclude_features = exclude_features

self.labels = None

self.compute_on_mags = compute_on_mags

self.n_points_plc = n_points_plc

def _set_labels(self, feature_labels):

# All available features

self.labels = feature_labels

def _execute_function(self, lc_data):

'''Takes light curve data for a single object and computes the features

based on

the available columns.

Input:

lc_data: Light curve of a single object

Output:

An array of the calculated features or an array of nan values

incase there is an error during the feature extraction process'''

# Sorting the columns for the feature extractor

# This needs to be extended to be more general

if self.compute_on_mags is True:

standard_lc_columns = ['time', 'mag', 'mag_error']

else:

standard_lc_columns = ['time', 'flux', 'flux_error']

current_lc_columns = [cl for cl in standard_lc_columns

if cl in lc_data.columns]

# list to store column names supported by feets

available_columns = ['time']
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# Renaming the columns for feets

for cl in current_lc_columns:

if cl == 'mag' or cl == 'flux':

available_columns.append('magnitude')

if cl == 'mag_error' or cl == 'flux_error':

available_columns.append('error')

# Getting the length of features to be calculated

fs = feets.FeatureSpace(data=available_columns,

exclude=self.exclude_features)

len_labels = len(fs.features_)

# The case where we have filters

if 'filters' in lc_data.columns:

ft_values = []

ft_labels = []

for i in range(0, 6):

passbands = ['u', 'g', 'r', 'i', 'z', 'y']

# passbands = ['g', 'r', 'i', 'z']

filter_lc = lc_data[lc_data['filters'] == i]

lc_columns = []

for col in current_lc_columns:

lc_columns.append(filter_lc[col])

# Accounts for light curves that do not have some filters

if len(filter_lc.ID) != 0:

# Checking the number of points in the light curve

if len(filter_lc.ID) >= self.n_points_plc:
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features, values = fs.extract(*lc_columns)

# print(features)

new_labels = [f + '_' + passbands[i-1]

for f in features]

for j in range(len(features)):

ft_labels.append(new_labels[j])

ft_values.append(values[j])

else:

for ft in fs.features_:

ft_labels.append(ft+'_'+passbands[i-1])

ft_values.append(np.nan)

else:

for vl in fs.features_:

ft_values.append(np.nan)

ft_labels.append(vl+'_' + passbands[i-1])

# Updating the labels

if self.labels is None:

self._set_labels(list(ft_labels))

return ft_values

# The case with no filters

else:

if len(lc_data.ID) >= self.n_points_plc:

# print('passed')

lc_columns = []

for col in current_lc_columns:

lc_columns.append(lc_data[col])
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ft_labels, ft_values = fs.extract(*lc_columns)

# # Updating the labels

if self.labels is None:

self._set_labels(list(ft_labels))

return ft_values

# Returns an array of nan values

else:

print('Not satified')

return np.array([np.nan for i in range(len_labels)])

B.3 An Example script showing how to implement Astronomaly to

search for anomalies in the MANTRA data.

This is an example script that is passed to the ASTRONOMALY frontend, specifically for the MANTRA data (i.e.,

case 1a light curve data type as described in Chapter 3).

from astronomaly.data_management import light_curve_reader

from astronomaly.feature_extraction import feets_features

from astronomaly.postprocessing import scaling

from astronomaly.anomaly_detection import isolation_forest, human_loop_learning

from astronomaly.visualisation import tsne

import os

import pandas as pd

# Root directory for data

data_dir = os.path.join(os.getcwd(), 'example_data')

lc_path = os.path.join(data_dir, 'transient_lightcurves.csv')

# Where output should be stored

output_dir = os.path.join(

data_dir, 'astronomaly_output', '')
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if not os.path.exists(output_dir):

os.makedirs(output_dir)

display_transform_function = []

def run_pipeline():

"""

Any script passed to the Astronomaly server must implement this function.

run_pipeline must return a dictionary that contains the keys listed below.

Parameters

----------

Returns

-------

pipeline_dict : dictionary

Dictionary containing all relevant data. Keys must include:

'dataset' - an astronomaly Dataset object

'features' - pd.DataFrame containing the features

'anomaly_scores' - pd.DataFrame with a column 'score' with the anomaly

scores

'visualisation' - pd.DataFrame with two columns for visualisation

(e.g. TSNE or UMAP)

'active_learning' - an object that inherits from BasePipeline and will

run the human-in-the-loop learning when requested

"""

# This creates the object that manages the data

lc_dataset = light_curve_reader.LightCurveDataset(

filename=lc_path,

data_dict={'id': 0, 'time': 4, 'mag': 2, 'mag_err': 3}

)

# Creates a pipeline object for feature extraction

pipeline_feets = feets_features.Feets_Features(

exclude_features=['Period_fit'])

http://etd.uwc.ac.za/ 
 



Appendix B. The code 166

# Actually runs the feature extraction

features = pipeline_feets.run_on_dataset(lc_dataset)

# Now we rescale the features using the same procedure of first creating

# the pipeline object, then running it on the feature set

pipeline_scaler = scaling.FeatureScaler(force_rerun=False,

output_dir=output_dir)

features = pipeline_scaler.run(features)

# The actual anomaly detection is called in the same way by creating an

# Iforest pipeline object then running it

pipeline_iforest = isolation_forest.IforestAlgorithm(

force_rerun=False, output_dir=output_dir)

anomalies = pipeline_iforest.run(features)

# We convert the scores onto a range of 0-5

pipeline_score_converter = human_loop_learning.ScoreConverter(

force_rerun=False, output_dir=output_dir)

anomalies = pipeline_score_converter.run(anomalies)

try:

# This is used by the frontend to store labels as they are applied so

# that labels are not forgotten between sessions of using Astronomaly

if 'human_label' not in anomalies.columns:

df = pd.read_csv(

os.path.join(output_dir, 'ml_scores.csv'),

index_col=0,

dtype={'human_label': 'int'})

df.index = df.index.astype('str')

if len(anomalies) == len(df):

anomalies = pd.concat(

(anomalies, df['human_label']), axis=1, join='inner')

except FileNotFoundError:

pass

# This is the active learning object that will be run on demand by the
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# frontend

pipeline_active_learning = human_loop_learning.NeighbourScore(

alpha=1, output_dir=output_dir)

# We use TSNE for visualisation which is run in the same way as other parts

# of the pipeline.

pipeline_tsne = tsne.TSNE_Plot(

force_rerun=False,

output_dir=output_dir,

perplexity=100)

t_plot = pipeline_tsne.run(features)

# The run_pipeline function must return a dictionary with these keywords

return {'dataset': lc_dataset,

'features': features,

'anomaly_scores': anomalies,

'visualisation': t_plot,

'active_learning': pipeline_active_learning}

B.4 An Example script showing how to implement Astronomaly to

search for anomalies in the PLAsTiCC data.

Similar to B.4 but for the PLAsTiCC data (i.e., case 1b light curve data type).

from astronomaly.data_management import light_curve_reader

from astronomaly.feature_extraction import feets_features

from astronomaly.postprocessing import scaling

from astronomaly.anomaly_detection import isolation_forest, human_loop_learning

from astronomaly.visualisation import tsne

import os

import pandas as pd

import numpy as np

from sklearn.impute import SimpleImputer

# Replace missing values with the median of the data

imp = SimpleImputer(missing_values=np.nan, strategy='median')
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# Root directory for data

data_dir = os.path.join(os.getcwd(), 'example_data')

lc_path = os.path.join(data_dir, '10k_KN_RRL_test_sample.csv')

# Where output should be stored

output_dir = os.path.join(

data_dir, 'astronomaly_output', 'plasticc_norm_flux', '')

if not os.path.exists(output_dir):

os.makedirs(output_dir)

display_transform_function = []

def artificial_human_labelling(anomalies=None, metadata=None, N=200,

human_labels={0: 0, 1: 5}):

print('Artificially adding human labels...')

if anomalies is None:

raise ValueError('Anomaly score dataframe not provided')

if metadata is None:

raise ValueError('True labels not given')

anomalies['human_label'] = [-1] * len(anomalies)

labels = metadata.loc[anomalies.index]

for k in list(human_labels.keys()):

inds = labels.index[:N][(np.where(labels.label[:N] == k))[0]]

anomalies.loc[inds, 'human_label'] = human_labels[k]

print('Done!')

return anomalies

def run_pipeline():

"""

Any script passed to the Astronomaly server must implement this function.
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run_pipeline must return a dictionary that contains the keys listed below.

Parameters

----------

Returns

-------

pipeline_dict : dictionary

Dictionary containing all relevant data. Keys must include:

'dataset' - an astronomaly Dataset object

'features' - pd.DataFrame containing the features

'anomaly_scores' - pd.DataFrame with a column 'score' with the anomaly

scores

'visualisation' - pd.DataFrame with two columns for visualisation

(e.g. TSNE or UMAP)

'active_learning' - an object that inherits from BasePipeline and will

run the human-in-the-loop learning when requested

"""

# This creates the object that manages the data

lc_dataset = light_curve_reader.LightCurveDataset(data_dict={'id': 0,

'time': 1,

'flux_err': 4,

'flux': 3,

'filters': 2,

'labels': 6},

filename=lc_path,

plot_errors=False,

delim_whitespace=False,

header_nrows=1,

max_gap=100,

filter_labels=['g', 'r',

'i', 'z'],

convert_flux=False)

# print(lc_dataset.index)

# Creates a pipeline object for feature extraction

pipeline_feets = feets_features.Feets_Features(
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compute_on_mags=False,

exclude_features=['Period_fit', 'PercentDifferenceFluxPercentile',

'FluxPercentileRatioMid20',

'FluxPercentileRatioMid35',

'FluxPercentileRatioMid50',

'FluxPercentileRatioMid65',

'FluxPercentileRatioMid80',

'Freq1_harmonics_rel_phase_0',

'Freq2_harmonics_rel_phase_0',

'Freq3_harmonics_rel_phase_0',

'Autocor_length', 'Con']

)

# Actually runs the feature extraction

features = pipeline_feets.run_on_dataset(lc_dataset)

columns = features.columns

indx = features.index.values.tolist()

features = imp.fit_transform(features,)

features = pd.DataFrame(features, columns=columns, index=indx)

# print(features)

# Now we rescale the features using the same procedure of first creating

# the pipeline object, then running it on the feature set

pipeline_scaler = scaling.FeatureScaler(force_rerun=False,

output_dir=output_dir)

features = pipeline_scaler.run(features)

# The actual anomaly detection is called in the same way by creating an

# Iforest pipeline object then running it

pipeline_iforest = isolation_forest.IforestAlgorithm(

force_rerun=False, output_dir=output_dir)

anomalies = pipeline_iforest.run(features)

# We convert the scores onto a range of 0-5

pipeline_score_converter = human_loop_learning.ScoreConverter(

force_rerun=False, output_dir=output_dir)

anomalies = pipeline_score_converter.run(anomalies)
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# Human labels

anomalies = anomalies.sort_values('score', ascending=False)

anomalies = artificial_human_labelling(

anomalies=anomalies, metadata=lc_dataset.metadata, N=500,

human_labels={0: 0, 1: 5})

try:

# This is used by the frontend to store labels as they are applied so

# that labels are not forgotten between sessions of using Astronomaly

if 'human_label' not in anomalies.columns:

df = pd.read_csv(

os.path.join(output_dir, 'ml_scores.csv'),

index_col=0,

dtype={'human_label': 'int'})

df.index = df.index.astype('str')

if len(anomalies) == len(df):

anomalies = pd.concat(

(anomalies, df['human_label']), axis=1, join='inner')

except FileNotFoundError:

pass

# This is the active learning object that will be run on demand by the

# frontend

pipeline_active_learning = human_loop_learning.NeighbourScore(

alpha=1, output_dir=output_dir)

# We use TSNE for visualisation which is run in the same way as other parts

# of the pipeline.

pipeline_tsne = tsne.TSNE_Plot(

force_rerun=False,

output_dir=output_dir,

perplexity=100)

t_plot = pipeline_tsne.run(features)

# The run_pipeline function must return a dictionary with these keywords

return {'dataset': lc_dataset,

'features': features,
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'anomaly_scores': anomalies,

'visualisation': t_plot,

'active_learning': pipeline_active_learning}
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