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Abstract

Cybersecurity defense tools, techniques and methodologies are constantly faced with increasing

challenges including the evolution of highly intelligent and powerful new-generation threats. The

main challenges posed by these modern digital multi-vector attacks is their ability to adapt with

machine learning. Research shows that many existing defense systems fail to provide adequate

protection against these latest threats. Hence, there is an ever-growing need for self-learning tech-

nologies that can autonomously adjust according to the behaviour and patterns of the offensive

actors and systems. The accuracy and effectiveness of existing methods are dependent on de-

cision making and manual input by human experts. This dependence causes 1) administration

overhead, 2) variable and potentially limited accuracy and 3) delayed response time.

In this thesis, Autonomous Threat Detection and Response (ATDR) is a proposed general method

aimed at contributing toward security-related self-protected networks. Through a combination

of unsupervised machine learning and deep learning, ATDR is designed as an intelligent and

autonomous decision-making system that uses big data processing requirements and data frame

pattern identification layers to learn sequences of patterns and derive real-time data formations.

This system enhances threat detection and response capabilities, accuracy and speed. Research

provided a solid foundation for the proposed method around the scope of existing methods and

the unanimous problem statements and findings by other authors.

ATDR is a multi-layered approach that will meet the demands of the ever-changing threats land-

scape. At the lowest layer, network packet data is constantly learned to maintain the most optimal

processing system during any change in load and conditions. With an optimal queue processing

layer, the upper layers perform pattern recognition and identification. Collectively, the traffic data

is optimally processed, while data patterns are identified and grouped into clusters, accurately

and efficiently, for self-organized responses to threats.

A case study is used to demonstrate the effectiveness of the proposed ATDR approach through a

series of tests using various kinds of data sets. The inspection and classification of network data

into organized cluster groups enables granular automated management. The performance study

shows that network traffic processing can be enhanced through round-robin scheduling with real-

time optimal processing time slice adaptation. The security-related self-protected network can

govern and control its own state of affairs for resilient cyber defense.
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Abbreviations

Table 1: Abbreviations

Abbr. Word/Phrase
AI Artificial Intelligence
ATDR Autonomous Threat Detection and Response
APIC Automated pattern identification and classification
CNN Convolutional neural networks
CNNH Convolutional neural network hashing
DBSCAN Density-based spatial clustering of applications with noise
DMDBSCAN One method of DBSCAN algorithm modification on Eps value to obtain opti-

mal value automatically with different densities
DL Deep learning
DN Deep neural network
FIFO First in first out
LRD Long-range dependence
MAP Mean average precision
PR Pattern recognition
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Symbols

Table 2: Mathematical Symbols Overview

Symbol Description
e Epsilon. Distance parameter that defines the radius to search for nearby neigh-

bours
eps A clustering parameter that specifies how close data points should be to each

other to form part of the same cluster
k & K-means K-means algorithm identifies k number of centroids, and then allocates every

data point to the nearest cluster, while keeping the centroids as small as possible
minPTS Minimum Data Points, signifies how many neighbours should be in close prox-

imity to be considered a cluster
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Chapter 1

INTRODUCTION

1.1 Introduction

With the growing ubiquity and complexity of data, cybersecurity has become a subject of utmost

importance. Developing models capable of protecting the integrity of data as well as reducing

cyber attacks is thus paramount. These threats/attacks, which can be introduced at different lev-

els of the network, can be discovered by random or scheduled inspection of network systems.

However, at high data rates, deep network packet inspection introduces latency, as packets have

to queue to be processed. These delays are further exacerbated by payload encryption, which

increases the processing time of packets and can also significantly affect inspection accuracy of

legacy systems.
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CHAPTER 1. INTRODUCTION 3

Figure 1.1: A Network Security Landscape

Figure 1.1 depicts the network security landscape, with potential threats to the different levels

of a computer network. It shows attacks on prominent protocols such as Transmission Control

Protocol (TCP), User Datagram Protocol (UDP) and Internet Protocol (IP), as well as the different

tools that may be used by the network administrator to mitigate the impact of these attacks [2].

The recent increase in the adoption rate of high-speed connectivity solutions has resulted in a

corresponding increase in network density and by extension the threat landscape. As a result,

current traffic pattern recognition and classification systems require more time and continuous

manual interventions from human experts to optimally calibrate requisite features and/or param-

eters. Undoubtedly, the efficacy of these methods is questionable, as human errors are inevitable.

Automatic classifiers can be valuable in this regard, but they require "deep learning" of the net-

work system, to accurately and efficiently recognise and classify threats. Achieving this goal is

the crux of this research work, which is to automate the detection and response to anomalous and

malicious traffic flow and feature management in real-time, with automatic and elastic scaling.
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CHAPTER 1. INTRODUCTION 4

1.2 Research problem

Currently, embedding Machine Learning (ML) into network classification requires extensive man-

ual and complex intervention from domain experts. Variance in capabilities of human experts

limits the definition of best feature sets, identification of distinct patterns in data (annotation),

as well as the design of accurate and optimal models that generalise well, especially in real-time

scenarios. The effectiveness of the system to accurately identify patterns in real-time (as they are

detected) is highly influenced by the limitation imposed by the human experts’ intervention and

calibration. Moreover, new protocols do not follow the rule of port registration, thereby resulting

in increased error rates. Signature-based identification systems are efficient and accurate, but as

protocol registration specifications change with time, the identification process must be changed

accordingly and that becomes time consuming and labour-intensive.

1.3 Research aim and objectives

1.3.1 Primary aim

The primary aim of this research is to develop an autonomous threat detection and response

(ATDR) system for computer networks, which is able to achieve high degrees of classification

accuracy with minimal human intervention.

It seeks to ascertain whether ATDR can reduce manual expert input around classifiers for classifi-

cation tasks, increasing the overall accuracy, efficiency and completeness of the classifiers required

to detect threat vectors that include zero day threats in real-time, compared to existing methods.

1.3.2 Research objectives

According to [3], the success of IP traffic classification can be measured using two metrics: com-

pleteness and accuracy. Accuracy measures the number of correct matches a signature makes and

the confidence level thereof, while completeness is the availability of a signature (classifier) for each

threat protocol present in the network.

With the research aim stated above and the criteria for IP classifiers spelt out, the objectives of this

work are thus:
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CHAPTER 1. INTRODUCTION 5

• To determine if ATDR can accurately and automatically detect new threat patterns in dy-

namic, uncategorised noisy and large data sets.

• To determine whether ATDR can be implemented as a general method, supporting integra-

tion and application across a wide range of problems compared to other ML problems.

• To determine whether ATDR can automatically derive customised classifiers, with accuracy

results that are comparable with (or improvement upon) other ML methods implemented

by human experts for similar tasks.

• To use case studies to determine the accuracy and effectiveness of ATDR with regards to IP

traffic classification.

1.4 Contributions

The contributions of this thesis are in three fold: 1) to propose a method for ATDR for self-

protected networks using a combination of unsupervised machine learning and Deep learning

models, 2) leverage on big data analysis, pattern recognition and deep packet inspection to design

ATDR as an intelligent and autonomous decision-making system, and 3) derive a system capable

of accurate and fast real-time data threat detection and response, with minimal human interven-

tion.
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CHAPTER 1. INTRODUCTION 6

Figure 1.2: High-Level Overview of the ATDR Model

The proposed ATDR model is aimed at providing an optimal queuing deep packet inspection

model for traffic identification and classification that will contribute toward overcoming current

challenges, as stated in [2].

The model consists of different functional workflows as can be seen in Figure 1.2. Firstly, the

network packets processing is aimed to be optimally tuned and dynamically changeable according

to workload and traffic conditions. With optimal processing in place, deep learning can take

place at the other layers to recognise traffic patterns, which would be used to accurately and

efficiently classify traffic for optimal network traffic steering. The final layer inspects the traffic

for anomalous and malicious behavioural patterns and then enforces mitigation and prevention

of further processing of unwanted anomalous packets for resource preservation and optimisation

[4].

The network packet scheduling is based on Markov Chains, because it is designed for when the

future of the process is independent of the past given only its present value.
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CHAPTER 1. INTRODUCTION 7

1.5 Thesis outline

Chapter 1 of this thesis explains the concept of ATDR, itemising the aim and objectives of the re-

search work and importantly the intended contribution of this study to the science community and

the world at large. Chapter 2 describes Machine Learning techniques as cutting-edge approaches

in a broad range of data classification tasks. It also shows that the majority of these techniques

are strongly dependent on the intervention of human experts for feature set extraction, optimisa-

tion, data set annotation, and model design processes. These inefficiencies result in less reliable

and incomplete systems, where overly complex classifiers predisposed to human error are highly

likely. Chapter 3 outlines a novel method for addressing these deficiencies with the design and

implementation of ATDR, wherein optimised feature selection, pattern discovery, and optimised

classifier production processes are performed automatically. In Chapter 4, the efficacy of this new

method is tested using different case studies, including: IP Traffic Classification and anomaly de-

tection. Finally, Chapter 5 provides the conclusion of this research and related future work that

aims to further enhance the contribution of the research.
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Chapter 2

Literature review

2.1 Literature overview

Machine learning (ML) is a sub-field of Artificial Intelligence that is concerned with learning from

data or experience and has gained widespread adoption over the past decade. This increased in-

terest and adoption can be attributed to two main factors: the ubiquity of data and the availability

of adequate computational power for data analysis [3]. It is important to note that the compu-

tational power per dollar has increased exponentially at an average rate of about 55 percent per

annum, since 1940. This increment created an avenue for ML model such as Artificial Neural

Networks (ANN), which easily adapt to complexity situations to be explored.

Deep Learning (DL) networks are more complex forms of ANN and consist of multiple hidden

layers, providing per-level non-linearity at each of the layers. Other general classifiers are adapted

from the complexity of these multilayered models to avoid conventional ANN pitfalls such as

over-fitting. Multiple layers enable the algorithm to more accurately model high-level abstrac-

tions found in complex, large data sets. Classification tasks are complimented by ML due to the

ability to model high-dimensional, complex data sets. A prevalent constraint of applying the tech-

nology in each task is it’s dependency on human experts for successful implementation. Greater

deployments of ML-based classification techniques, that cover a broader range of tasks, over mul-

tiple domains, will be achieved if these obstacles can be overcome and it is imperative to ensure

that the algorithms behave predictably. Discussed below are the different models/techniques that

have been used by various researchers in the analysing of large data with varying levels of com-
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CHAPTER 2. LITERATURE REVIEW 9

plexity.

2.2 Hashing model

Hashing models generally transform character(s), string(s), key words or streams of data into

another value, for security purposes to ensure credibility and/or integrity.

2.2.1 Deep hashing learning networks

Deep hashing learning networks use Convolutional Neural Networks (CNN) to learn hashing

codes [5]. CNNs have been extensively utilised for diverse visual recognition and exceed human-

level performance in many tasks, including recognising traffic signs, faces and hand-written dig-

its. In [5] the authors encoded images into multiple levels of representation using deep CNN. This

enabled the discovery of complex structures hidden behind high-dimensional data. For classifica-

tion tasks, the important aspects of the input are reserved by the higher layers of representation

for discrimination and irrelevant variations are inhibited.

This study leverages on the learning capability of deep CNNs to automate threat-defining features

in computational networks.

2.2.1.1 Hashing model configuration

For a given data set (x1, x2, ..., xn) with xi ε Rd, let {yi}n
i = 1 with yi ε {0,1}m be the binary code

for each input. In general [5] assumed different bits are independent of each other, that is yi =

[h1(xi), h2(xi), ..., hm(xi)]
T with m independent binary hashing functions {hk(.)}m

k = 1. Each bit

has a 50% chance of being either one or zero. The authors then sought to minimise the average

Hamming distance between similar pairs.

2.2.1.2 Result analysis

The proposed methods are based on the open-source Caffe [37] framework. Filters of 32, 32, 64

were used with size 5 * 5 in the first, second and third convolutional layers with each using a

ReLU activation function. The hash mapping layer is located at the top of the third pooling layer,

followed by a compression sigmoid layer. Results in Table 2.1 and Figure 2.1 reveal the precision-

recall curves for KSH and BRE obtained by [5]. They also compared their result with CNNH,

with theirs showing a 0.2% gain over CNNH when using the MNIST data set and an 18% to 27%
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CHAPTER 2. LITERATURE REVIEW 10

gain on CFIR-10. This shows that CNN-based methods can achieve better results compared to

conventional methods.

Table 2.1: mAP on MNIST and CIFAR-10 data set, w.r.t different number of bits

Figure 2.1: Quantitative comparison results on CIFAR-10. (a) Precision-recall curves with 48 bits,
(b) Precision-recall curves w.r.t numbers of top returned images

2.2.1.3 One hot encoding model overview

According to [5], a good code for hashing is satisfied by 3 conditions, namely

1) projecting similar pairs in data space to similar binary code words in Hamming space

2) a small number of bits to encode each sample

3) little computation for input projection.

2.2.1.4 One hot encoding

One hot encoding is a method to encode integer features using one-hot also known as one-of-K

scheme. One hot encoding is a process whereby categorical variables are converted into a form

that could be provided to ML algorithms to improve prediction and accuracy. The numerical

value of the entry in the data set is represented by a categorical value. Other algorithms assign

values to categories from 0 to N-1 categories. This is not sufficient as the higher categorical value

is assumed to be the better category and could cause prediction errors. A one hot encoder can be
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CHAPTER 2. LITERATURE REVIEW 11

used as a tool to mitigate this type of error. It converts the category to binary and includes it as a

feature to train the model.

The hashing models/techniques had no limits around data scale and could generate hash codes

with little computation. This can further be boosted by Graphic Processing Unit (GPU) accelera-

tion and multi-threading, which this research contributes with an optimal processing engine using

the First-In-First-Out (FIFO) queue processing that can scale into multiple processing threads as

described in Chapter 3.

2.3 Machine learning

Machine learning (ML) is a process whereby machines are able to "intelligently" perform tasks that

require human intuition, by observing data to discover hidden patterns. ML is a collection of pow-

erful techniques for data mining and knowledge discovery in data (structured or unstructured).

A learning machine has the ability to learn automatically from experience, refine and improve its

knowledge base.

ML can broadly be categorised into: Classification (or supervised learning), Clustering (or unsu-

pervised learning), Association, and Prediction. [6, 7]

2.3.1 Data mining

Finding data patterns is common-place; however, capacities of modern databases and the overall

overwhelming amount of data stored within them has made it cumbersome to process and analyse

these data. Furthermore, the larger the database size the lower the ability of humans to manually

process and make sense of it.

The author in [8] defines data mining as the process of automatically or semi-automatically dis-

covering patterns in data. Structural patterns capture the decision structure in an explicit way and

help to describe the data. The authors term this process "Decision Trees". With "decision trees", a

sequence of decisions along with the resulting recommendation as a popular means of expression

is made. They also introduced "decision tree induction" and "nearest-neighbour" methods, noting

that most learning algorithms use statistical tests when constructing trees or rules, and Machine

learning techniques and models are validated by statistical tests.

Alternatives to "Decision Trees" are "covering approaches". Covering approaches lead to a set of
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rules rather than to a decision tree and at each stage you identify a rule that “covers” some of

the instances. The study in [8] describes two interesting Fielded Application Machine learning

techniques namely "Decisions including judgement" and "load forecasting". Decisions including

judgement statistical methods are used to clearly distinguish “accept” and “reject” cases, while

Load Forecasting is a prediction of future demands estimated on historical data.

Another approach is the use of expert systems learning approaches, which use induction algo-

rithms to find rules automatically that human experts would have derived with their knowledge.

[8] illustrated analogies where data mining can be used. An example was the production of

women’s embryos by fertilising the ovaries with sperm, and noting the 60 character traits that

exist pertaining to the quality of ovaries’ eggs. Another illustration is the collection of breeding

and milk production history of dairy cows considering the herd’s differentiating characteristics

such as age, behaviour and production success. They noted that Machine learning ascertains

what factors form successful outcomes and results for future comparisons.

2.3.2 Internet traffic classification using ML

The authors in [7] suggested that current research should focus on IP traffic classification tech-

niques that do not rely on well-known TCP or UDP ports. Traffic at the network layer has statis-

tical properties (such as the distribution of flow duration, flow idle time, packet inter arrival time

and packet lengths). These properties are unique for certain classes of applications and enable

different source applications to be distinguished from each other. The need to deal with traffic

patterns, large data sets and multi dimensional spaces of flow and packet attributes is one of the

reasons for the introduction of ML techniques.

In 1994, ML was first utilised for Internet flow classification in the context of intrusion detection.

ML is the process of finding and describing structural patterns in a supplied data set. ML takes

input in the form of a data set of instances (also known as examples). In the networking field,

consecutive packets from the same flow might form an instance, while the set of features might

include median inter-packet arrival times or standard deviation of packet lengths over a number of

consecutive packets in a flow. A class usually indicates the application or group of applications the

IP traffic belongs to. Instances are usually multiple packets belonging to the same flow. Features

are typically numerical attributes calculated over multiple packets belonging to individual flows.

Feature selection algorithms can be broadly classified into filter method or wrapper method. Filter
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method algorithms make independent assessment based on general characteristics of the data.

Wrapper method algorithms, on the other hand, evaluate the performance of different subsets

using an ML algorithm that will ultimately be employed for learning. The results are therefore

biased toward the ML algorithm used. The ’flow statistics processing’ step involves calculating

the statistical properties of these flows (such as mean packet inter- "arrival time, median packet

length and/or flow duration) as a prelude to generating features. The authors, [7], mention that

when evaluating unsupervised ML schemes in an operational context, it is relevant to consider

how clusters will be labelled (mapped to specific applications), how labels will be updated as

new applications are detected, and the optimal number of clusters (balancing accuracy, cost of

labelling and label lookup, and computational complexity). Important traffic classification should

occur as the traffic is flowing or within a short period of time. Numerous applications (such as

multiplayer online games or streaming media) exhibit different (asymmetric) statistical properties

in the client-to-server and server-to-client directions. An inefficient classifier may be inappropriate

for operational use regardless of how quickly it can be trained and how accurately it identifies

flows. A model may be considered portable if it can be used in a variety of network locations, and

robust if it provides consistent accuracy in the face of network layer perturbations such as packet

loss, traffic shaping, packet fragmentation, and jitter. Also, a classifier is robust if it can efficiently

identify the emergence of new traffic applications.

Ref. [9] in 2005 proposed the AutoClass, which is an unsupervised Bayesian classifier, using the

EM algorithm to determine the best clusters from a data set. AutoClass can be preconfigured with

the number of classes (if known) or it can try to estimate the number of classes itself. Firstly, pack-

ets are classified into bidirectional flows and flow characteristics are computed using NetMate.

A metric called intra-class homogeneity, H, for assessing the quality of the resulting classes and

classification is introduced. H of a class is defined as the largest fraction of flows on one appli-

cation in the class. The overall H of a set of classes is the mean of the class homogeneities. The

goal is to maximise H to achieve a good separation between different applications. The authors

used accuracy (Recall) as an evaluation metric. Median accuracy is larger than or equal to 80% for

all applications across all traces. TCP-based application identification is performed using Simple

K-Means.

Ref. [10] proposed a technique using an unsupervised ML (Simple K-Means) algorithm that clas-

sified different types of TCP-based applications using the first few packets of the traffic flow. The
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rule worked as follows: the Euclidean distance between the new flow and the centre of each pre-

defined cluster is computed, and the new flow belongs to the cluster for which the distance is a

minimum. The flow duration in the missing direction is estimated as the duration calculated with

the first and the last packet seen in the observed direction. The number of bytes transmitted is

estimated according to information contained in ACKs packets. The number of packets sent is es-

timated with the tracking of the last sequence number and acknowledgement number seen in the

flow, with regard to the MSS. Results show that the algorithm produces the best overall accuracy

when compared to K-Means, DBSCAN and AutoClass, while DBSCAN had the highest precision

value for P2P, POP3 and SMTP (lower than AutoClass for HTTP traffic) [1].

Comparing AutoClass with Naive Bayes on nine application classes (HTTP, SMTP, DNS, SOCKS,

IRC, FTP control, FTP data, POP3 and LIMEWIRE), AutoClass resulted in an average overall

accuracy of 91.2% while the Naive Bayes classifier has an overall accuracy of 82.5%. AutoClass

also performs better in terms of precision and recall for individual traffic classes.

With respect to ranking, From literature, algorithms can be ranked in descending order of classifi-

cation speeds as: C4.5, NBD, Bayesian Network, Naive Bayes, NBK. When ranked in descending

order in terms of model build time: Naive Bayes, C4.5, Bayesian Network, NBD, NBK. Naive

Bayes, AdaBoost and Maximum Entropy should be looked at for application signature building

algorithms. Results show that BLINC can classify 80% to 90% of traffic flows with more than

95% flow accuracy. The first test, based on Pearsons Chi Square test, detects Skypes fingerprint

through analysis of the message content randomness introduced by the encryption process. The

second test, based on the Naive Bayes theorem, detects Skype traffic based on message size and

arrival rate characteristics. There are still open questions as to how well they can maintain their

performance in the presence of packet loss, latency jitter, and packet fragmentation. Therefore, the

use of a combination of classification models is worth investigating.

2.3.3 Use of multiple sub-flows for ML classification of IP networks

The authors in [6] infer that current ML-based IP traffic classification algorithms consider either

the first few packets or full flows; however, real-world scenarios require a classification decision

well before the flow has finished. This implies that classification must be performed by using

statistics derived from the most recent N packet taken at any point in a flow’s lifetime. The authors

further proposed to use a set of sub-flows, with windows as small as 25 packets long, extracted
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from full flow examples and then optimising with Naive Bayes ML algorithm that will result in

excellent performance.

[6] suggests future use of unsupervised ML algorithms to identify optimal sub-flows for training.

Traffic classification can be a core part of automated intrusion detection systems used to detect

patterns of denial of service attacks, trigger automated re-allocation of network resources for pri-

ority customers, or identify customer use of network resources that in some way contravenes the

operator’s terms of service. Governments are lately also defining ISP obligations with respect to

‘lawful interception’ (LI) of IP data traffic. Customers may use encryption to obfuscate packet

contents including TCP/UDP port numbers. Governments may impose privacy regulations con-

straining the ability of third parties to lawfully inspect payloads at all. Deep inspection of every

packet will require commercial devices with repeated updates. Newer approaches classify traffic

by recognising statistical patterns of observable patterns, such as inter-packet arrival times and

typical packet lengths. Their ultimate goal is either to cluster IP traffic flows into groups that have

similar traffic patterns or classify one or more applications of interest. Classification involves two

stages: training the ML algorithm to associate sets of features with known traffic classes (creating

rules) and applying the ML algorithm to classify unknown traffic using previously learned rules.

This study focuses on the practical application of ML algorithms to traffic classifiers deployed in

operational IP networks.

ML classification algorithms all assume that a ‘class’ of traffic can be identified using statistical

analysis of traffic features. Unsupervised ML algorithms allocate flows to classes based on clus-

tering of similar feature values. Supervised ML algorithms use examples of IP traffic, matching

the class of traffic that is later to be identified in the network. Reducing the time taken to detect

traffic of interest implies reducing the number of packets that must pass the monitoring point

before classification can be achieved. Also, re-calculating features over a sliding window of N

packets requires buffering of the most recent N packets. Minimising the number of buffered pack-

ets per flow provides a beneficial reduction of physical memory requirements. Naive Bayes is a

well-understood supervised learning algorithm whose classification approach is based on proba-

bilistic knowledge. Traffic flows are bidirectional streams of packets between a given pair of hosts.

A flow is defined using the 5-tuple of source and destination IP addresses, protocol (TCP & UDP)

and the source and destination ports. For UDP traffic a flow is considered to have stopped when

no more packets are seen for 60 seconds. For TCP traffic, a flow is stopped when the connection
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is explicitly turned down or no packets are seen for 60 seconds. Online gaming traffic seen at a

server can exhibit three different phases: clients probing the server, clients connecting to the server

and clients actually playing a game on the server. Precision held steady at 98% when trained on

the multiple sub-flows (similar to the single sub-flow model).

ML has also been used with the sliding window technique, which is a sequential learning method-

ology that converts a sequential learning problem into a classical learning problem. A window

classifier hw maps an input window of width w into an individual output value y. The win-

dow classifier hw is trained by converting each sequential training example (xi,yi) into windows

and then applying a standard ML algorithm. A new sequence x is classified by converting it to

windows, applying hw to predict each yt and then concatenating the Yt to form the predicted se-

quence y. The obvious advantage of this sliding window method is that it permits any classical

supervised learning algorithm to be applied. While the sliding window method gives adequate

performance in many applications, it does not take advantage of correlations between nearby yt

values. Specifically, the only relationships between nearby yt values that are captured are those

that are predictable from nearby xt values. If there are correlations among the yt values that are

independent of the xt values, then these are not captured.

2.3.4 Classification using Bayesian analysis and neural networks

Authors in [11] introduced Internet traffic identification as an important enabler for 1) future traffic

matrices and demand management, 2) malicious traffic behaviour recognition and 3) the develop-

ment of more realistic traffic models. They developed a traffic classifier that can achieve high accu-

racy across a range of application types without any destination, source, host or port information

by using supervised ML based on a Bayesian trained neural network. The training data categories

were extracted from packet headers with training and testing done using features derived from

packet streams. Their proposed technique offers wider application as it does not inspect the packet

content, but rather only commonly available packet header information is inspected. The authors

argue that application classification schemes are inaccurate due to only limited packet header in-

formation being available. Using supervised ML to train a classifier, the predicted category was

compared to the actual category of each object. The authors claim that their results presented

much more accuracy than that of port-based mechanisms. The valuable contributions from [11]

include the use of a Bayesian framework with a neural network model that allows identification of
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traffic with 99% accuracy without monitoring port, IP and host information. The authors further

stated that network operators and users have a broad interest in observing network anomalies

to reveal malicious traffic. Their process of combining host knowledge and content verification

through contact with the users, allowed the original data to be classified, manually, with very

high accuracy.

Furthermore, site-specific information such as the role of machines, the access to the content of

packets and access to the system administrator and user community may not be assumed. A

number of properties are referred to and used such as client and server port of each flow, along

with behavioural characteristics. The aforementioned properties enabled the authors to differenti-

ate between the different traffic classes. Network training consists of choosing the best weights of

the network for a particular problem. Entropy is where the network is different to the prediction

it is making. The authors confirm satisfaction when they note that when the network makes a

false classification, low confidence is indicated. In a classification situation in which false predic-

tions are to be minimised, the entropy of the distribution can be used to reject a prediction. The

percentage of prediction rejections (based on entropy) was then used to verify the behaviour, and

the accuracy was recorded. A maximum value of the distribution of the classes could be set but

given a high entropy, the predictions are discarded and it is inferred that the classifier is unable

to predict the class accurately for that flow. Features that are derived from packet headers, when

treated as interdependent, can provide an effective method for the identification of network-based

applications [2]. They conclude with results that proved that it is possible to reverse the data to

discover the application in use. The authors also note that classification accuracy declines over

time as the composition of Internet traffic changes.

2.3.5 Traffic classification using clustering

The authors in [10] highlight the necessity for early identification of TCP flows without using

port numbers. They further mention that the current modern techniques cannot identify traffic

without looking at the full TCP flows. They then propose a method that recognises traffic after

monitoring only 5 packets. The size of the first few packets is a good predictor of the application

associated with a flow because it captures the application’s negotiation phase. A single application

can have multiple behaviours that should each have a model. FTP is an example of a multi-modal

application. Encryption is however a challenge, as inspecting packet payload can only be accurate
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if the packets are not encrypted.

In applying clustering, [10] explains that representation flows are represented by points in a P-

dimensional space where each packet is associated to a dimension. The coordinate on the dimen-

sion p is the size of packet p in the flow. A heuristic is used and the Euclidean distance between

the new flow and the centre of each predefined cluster is computed. The cluster with the mini-

mum distance is chosen. The processing of training flows with a payload analysis tool is able to

accurately determine the application associated with each flow. Their classifier takes the series of

packet headers for both directions of an edge link as input. A packet analyser extracts the 5-tuple

(protocol, source IP, destination IP, source port, destination port) and the packet size. The anal-

yser filters out control traffic (the three packets of the TCP handshake) and stores the size of every

packet in both directions of the connection. With the size for the first P packets of the connection

ascertained, it sends this information to the flow conversion module, which maps the new flow

to a spatial representation. The cluster assignment module searches all the cluster descriptions to

find the best fit for this new flow and the application identification module selects which applica-

tion is most likely associated with the flow given the set of applications that compose the cluster.

A prototype classifier was built with Matlab.

2.3.6 A survey on Internet traffic identification

Internet traffic measurement has improved enormously over the years. This is due to increased

network access speeds and growth in connected (data dependent) applications. These changes af-

fect the work of network administrators and service providers with respect to resource demands.

Traffic analysis is separated into packet-based and flow-based categories. Techniques that will be

revised include signature-matching, sampling and inference. Characterisations of Internet traffic

provide insight for various network management activities, such as capacity planning and pro-

visioning, traffic engineering, fault diagnosis, application performance, anomaly detection and

pricing [12].

The availability of broadband user connections is continually growing and has opened up new

ways of resources usage for both home and small businesses, including an increase in a wider

range of services being consumed like voice over IP, e-commerce, Internet banking, etc. As far

as broadband residential users and access providers are concerned, measuring traffic to and from

the customer base is essential for understanding user behaviour. Measurement strategies are key
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for detecting anomalous traffic, design and validation of new traffic models and optimal capacity

planning. To differentiate, network measurement is about data gathering and counting, while ap-

plication identification is the recognition and classification of some traffic characteristics. Traffic

measurements can be divided into active and passive measurements or online and offline strate-

gies. With online, traffic analysis is performed while capturing the traffic, while with offline, data

traces are stored and analysed later.

Flow-based measurement deals with a compilation of unidirectional streams of packets passing

through a given router. There are three possible ways to perform packet capture, namely 1)

cable splitter to capture without affecting the traffic, 2) port mirroring to clone the port for

monitoring and 3) active equipment can be installed inline. Sampling techniques are crucial for

scalable Internet monitoring due to large volumes of high-speed link capacity data. Sampling

techniques may be divided into systematic, random and stratified sampling. The simplest

sampling process is uniform 1/N sampling (systematic sampling), where the first one of every

Npacketsisretained.Anotherverysimple f ormisrandom1/Nsampling(randomsampling),wherearandompacketo f everyN

packets is retained. Stratified sampling technique is based on the idea of increasing the estimation

accuracy by using some prior information: it performs an intelligent grouping of the elements

of the parent population and many levels of grouping may be considered. Heavy hitters (large

flows) stay as heavy hitters for most of their lifetime and mice (small flows) rarely become heavy

hitters as revealed in the elephants and mice phenomenon study by duration, longer flows are

called tortoise and shorter ones are called dragonfles. By rate, heavy flows are called cheetahs

and light ones snails and by business, bursty flows are called porcupines and non-bursty ones

stingrays; but these are also called alpha and beta traffic.

The Internet community is aware that a small percentage of flows are responsible for a high per-

centage of the traffic volume. This paper analyses the relationships between the different heavy

hitters and concludes that there is a strong (over 80%) correlation between flow rate and bursting,

between flow size and rate and between flow size and bursting, while there is a small correlation

between flow duration and all the other metrics. It is well known that aggregate traffic exhibits

long-range dependence (LRD) correlations and non-Gaussian marginal distributions. LRD traf-

fic signals that the traffic exhibits only small variations on the intensity of self-similarity over

different timescales. Stripping the alpha (bursty spikes) traffic from an aggregate trace leaves a

beta traffic residual that is Gaussian, LRD, and shares the same fractal scaling exponent as the
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aggregate traffic. Ignoring flash flows will eventually improve the performance and accuracy of

flow/volume-based prediction systems.

2.3.7 Application behaviour characterisation for fast and accurate large-scale traffic

classification

System security and network management have critical dependency on Network Traffic Classifi-

cation according to [13]. Furthermore, with modern applications changing to peer-to-peer (P2P)

based protocols with encryption, the accuracy of current traffic classification techniques becomes

less effective. [13] proposed an Application Behaviour Characterisation (ABC) System, extracting

application behaviour using an effective classification algorithm that combines multiple flows of

the same application type in a hierarchical manner. This system will provide good efficiency and

high performance. New distributed applications with collaborative protocols among multi-parties

(e.g., proprietary P2P, or peer-server hybrid systems) make existing techniques less effective be-

cause of the encryption and dynamic random port number usage and the authors reckon this is

still an issue. Payload-based techniques that classify traffic by comparing packet payloads with

known signatures are used to mitigate the random port usage issue that affects current classifi-

cation methods. Two methods are used to match payload to signatures, namely: 1) string-based

matching and 2) regular-expression matching. String-based matching supports many protocols

including P2P protocols and HTTP, and can use fast multi-pattern matching algorithms.

2.4 Deep learning in network traffic identification

Most IP network systems are based on features that include port numbers, static signatures and

characteristics. The challenge is to find the features in the traffic flow but the process is time-

consuming and current methods do not cater for unknown protocols. The authors in [2] proposed

a method using deep learning and neural networking and the results reflect that the approach

works well for protocol identification, feature learning and anomalous protocol detection. The

application of their method includes feature learning, protocol classification, anomalous protocol

detection and unknown protocol identification. Earliest methods used special or predefined ports,

with HTTP port 80 and HTTPS port 443 as an example. Recent approaches are based on automatic

classification based on statistical features and ML. These approaches depict features around traffic

transmission, such as time interval between packets, packet size, repeating pattern and so forth.
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The features are then parsed through classifiers, such as Naive Bayes, Decision Tree and Neural

Networks; with the objective of detecting the relevant features.

An Artificial Neural Networks (ANN) is as a ML inspired by the biological neural network in the

brain and has been widely used for pattern recognition. Deep learning is a form of advanced ANN

and includes methods such as Deep Neural Networks (DNN), Convolutional Neural Networks

(CNN), Stacked Auto-Encoders (SAE) and Deep Belief Networks (DBN). Deep learning consists of

efficient algorithms for semi-supervised or unsupervised feature learning and hierarchical feature

extraction.

The number of layers is always three and the nodes in the output layer are the same as the in input

layer. The middle layer consists of new features that have lower-dimensional representations,

meaning that data can be reconstructed after complicated computations. Deep networks can be

made up by stacking these structures.

In each training, results of the middle layer are cascaded, forming a new structure called a Stacked

Auto-Encoder (SAE). In cyber security, a popular approach is defining features and signatures by

experts’ experience. The main difference between SAE and ANN is in the type of data set used.

In ANN models, labels are necessary whereas in SAE they are not; they are in essence supervised

and unsupervised respectively.

Some critical steps in ANN and DL are briefly discussed below.

2.4.1 Feature learning

This encompasses feature extraction and feature selection, both of which are necessary for both

ANN and DL.

2.4.2 Feature extraction

With ANN models, the information in the hidden layers is automatically chosen and merged by

the nodes in the outer layers. This process is known as raining or parameter learning. With the

exception of the output layer, all nodes in any layer can be used as features. Nodes in the input

layer are known as the original features.
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2.4.3 Feature selection

Optimal parameters are achieved when the error cost is very low (about 10−3) and stable at 50 to

60 epochs. A weight parameter W represents the contribution of the original parameter x to the

hidden layer feature h. The magnitude of parameters, contribution is the importance of every byte

in x. The sum of all absolute weights for every node in the input layer selected is then fed into the

activation function for that layer.

2.5 Literature review conclusion

Following research of various domains in data learning and classification, it can be seen that re-

searchers address the vast increase in density of network traffic differently. Identifying flow data,

especially in real time, is an important problem with port-based, signature-based and statistical-

feature-based identification being the mainstream approaches. However, they are either inaccu-

rate or rely on human expertise. Signature-based is a portion of payload data that is static or

distinguishable for applications which can be described as sequence of strings with a theoretical

error rate lower than 10%. Signature-based is efficient with a high accuracy, but when protocol

registration and specifications change over time, signature validation must start over and it then

becomes time-consuming and labour-intensive.

Complementary to the goal of this research, supervised ANN methods are found to have two pri-

mary applicable advantages, which are: 1) autonomy, which reduces the need for manual human

intervention, such that once input of the model and stopping criterion of the iteration are deter-

mined, the model will train automatically, and 2) dimensionality reduction, which ensures that

once training is completed, relevant features get mapped to a new space and redundant informa-

tion is filtered out.
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Chapter 3

ATDR - DESIGN AND

IMPLEMENTATION

3.1 ATDR optimal processing architecture

ATDR architecture is primarily based on two fundamental concepts: 1) queuing theory, and 2)

round-robin scheduling.

3.1.1 Optimal traffic processing with M/M/1/N queuing theory

Queuing theory was initially created by Agner Krarup Erlang to describe the Copenhagen tele-

phone exchange with the mathematical study of waiting lines [14] but has been adapted for ap-

plication in various domains. Queue processing plays a fundamental role in the performance and

stability of many processing systems used in various fields [15]. To avoid delay on the overall in-

frastructure and negative impact on user experience, the rate at which demands arrive needs to be

timed and efficiently matched with the rate at which these requests are processed by the server’s

processor and for this we will consider the M/M/1/N system which represents Poisson.

3.1.1.1 Parameters

For the system processing model of the ATDR, we will consider a single server with multiple traffic

queues. Figure 3.1 gives a high level overview of the ATDR process, with components described

as follows:
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Figure 3.1: High-level overview of ATDR process

3.1.1.2 Server and queue properties

Inter arrival time (IA) is the time between packet arrivals.The time to service a packet is known as

the service time. IA times and arrival times are independent.

The arrival process can be defined as

A(t) = Pr(Xt) (3.1)

Other queuing properties and their corresponding details can be seen in Table 3.1.
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Table 3.1: Server and queue properties

Attribute Details

Packets arriving Can be similar or different

Arrival process Avg. arrival rate λ Packets/Sec

Service process Avg. Service Rate µ Packets/Sec

Queue backlog Infinite or finite

Server service First In First Out (FIFO)

discipline

Number of servers 1 with multiple processing threads

Network priority requirements Equal or different

Assumptions

• The IA times and the service times are independent.

• Successive IA times are independent.

• Successive service times are independent.

• The time to the next arrival is not dependent on the time since the last arrival and is consid-

ered memoryless.

• The only continuous distribution is the exponential distribution with memoryless (Markov)

property.

3.1.1.3 Algorithm implementation

Arrival and Service processes

• THE ARRIVAL PROCESS | IA time distribution

A(t) = Pr(X≤ t) (3.2)

• THE SERVICE PROCESS | service time distribution

B(t) = Pr(Y≤ t) (3.3)
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To determine the arrival rate (number of events per unit time), the server will function with the

well-known Poisson process to model the random points in time and space. The Poisson distribu-

tion process, defined by λ, is a parameter that represents the expected number of events within a

given interval or the highest probable number of events therein. Randomness mimics the number

of k occurrences, with k being the number of completed occurrences within the given time slot. K

is defined as P(X = k) = e ˆ (-µ ) ∗ µˆk/k!.

Suppose no arrival occurred in seconds (s), then (t) is the remaining time until the next arrival.

Thus, the distribution for (t) is given by:

Pr(X≤ s + t‖X s) = Pr(X≤ t) = 1− e−µt (3.4)

3.1.1.4 Merging and splitting of Poisson processes

Merging function

Let N1(t) and N2(t) be two independent Poisson processes with rates λ1 and λ2 respectively. The

random process Nt is obtained by combining the arrivals N1(t) and N2(t). Therefore, we claim

that Nt is a Poisson process with rate λ = λ1 + λ2. Since N1 and N2 are independent and increases

independently, we conclude that Nt also increase independently.

Let N1(t), N2(t), · · ·, Nm(t) be m independent Poisson processes with rates λ1 , λ2, · · · , λm. Let

also, N1(t) = N1(t) + N2(t) + · · · + Nm(t) for all t ∑ [0,∞ ]. Then, Nt is a Poisson process with rate

λ1 + λ2 + · · · λm .

Splitting function

For packets arriving and intelligently forwarded, or packets steered to the upper layers of the

server for fingerprint processing, suppose the number of packets arriving at the server for pro-

cessing in a given time interval I is N ~ Poisson (λ). Assuming that each packet is treated inde-

pendently from the other packets in the queue, and from the value of N, with a probability of p, let

X be the number of packets processed in that time interval. Also, let Y be the number of packets

that were not processed; such that X +Y = N. Thus, to split the Poisson process, let N(t) be a Pois-

son process with rate λ. For the example, we will divide the process into two processes: N1(t) and

N2(t). Upon each arrival, the queues will be analysed with P(H) = p. Arrivals are independent

of each other and are independent of N(t). Thereby, N1(t) is a Poisson process with rate λp, N2(t)
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is a Poisson process with rate λ(1− p) and N1(t) is independent of N2(t). When a large num-

ber of statistically independent processes are merged, the merged process will be approximately

Poisson.

3.1.1.5 Queuing function

Queue processing derivatives

• The average number of packets being serviced in the queue at any given time is given by:

W̄ =
∑i niX(t f − t f−1)

t f
=

W + ∑i niX(t f − t f−1)

t f
(3.5)

• Duration that the server occupies while processing the queue is given by:

W̄ = ∑
i

niX(ti − ti−1) (3.6)

• The number of packets in the queue at any time

• Running total amount of packets in the queue

Poisson process

The probability of an event occurring in a small interval of time4 t is λ4 t

Probability of more than one event occurring in4t is zero.

Probability of n events occurring during time t is:

¯Pn(t) =
(λt)ne−λt

n!
(3.7)

If a Poisson process is formed by the events, the inter-events times are exponentially distributed:

A(t) = Pr(X≤ t) =
∞

∑
n=1

Pn(t)n = 1− e−λt (3.8)
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M/M/1/N with memoryless property

Queue length distribution:

Pn = (1− p)pn (3.9)

Note:

pn = λ/µimpliesλ µ (3.10)

Average queue length:

Q =
∞

∑
n=1

nPn =
p

1− p
(3.11)

Average waiting time:

W = Q/λ =
1

µ(1− p)
(3.12)

3.1.2 Network packet processing using round-robin packet scheduling

Round-robin is a classic scheduling algorithm, which allocates equal service time to each queue. It

has been expensively used in numerous domains, including operating systems, task scheduling,

job shops and most importantly traffic optimisation [16, 17]. In this study, round robin is being

used to optimise network traffic flow across multiple queues, as it is a fair scheduling algorithm,

which ensures that each queue gets equal access to the server for equal amounts of time.

3.1.3 M/M/1/N round-robin queue | Fundamental time quantum election

λ−→ µ ⊃−→ (3.13)

M/M/1/N round-robin queue is an enhancement to the M/M/1/N queue, wherein each queue

n ∈ N gets equal service time with the single server (where N is the number of queues). The queue

length distribution is given by:

Pn = (1− p)Pn (3.14)
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3.2 Autonomous Threat Detection and Response (ATDR)

The proposed method is designed to detect multi-vulnerability attack vectors at line rate, by

means of deep learning packet inspection on network traffic flow in real-time. The method con-

sists of optimal formulations and functions focused on attack and detection of malicious activities

by monitoring behaviours of threats. Zero-day attacks are known to be when vendors have not

yet released patches to resolve vulnerabilities in their systems and appliances. Thus, the proposed

real time system model will contribute toward protection against zero-day attacks through artifi-

cial intelligence. The goal of ATDR is to identify distinct patterns in a variety of noisy data sets,

automatically identify and cluster traffic into categorical and accurate classes. [3] states that the ac-

curacy of the classifiers should be competitive, equal to, or should surpass the accuracy achieved

by classifiers manually created by human experts. This chapter presents the ATDR method shown

in Figure 3.2, which improves the completeness, efficiency and accuracy of existing classification

systems. ATDR also leverages on ML, incorporating feature selection, signature discovery and

fingerprint production processes. These processes are classified as unsupervised ML clustering.

Figure 3.2: ATDR - Behavioural threat detection system

The behavioural threat hunting logic searches for an optimal (reduced) feature set to describe each

data set. NPU1 (pattern match inspection) matches the derived feature set against known finger-

print patterns. In NPU2 (fingerprinting and forensics), new patterns, referred to as fingerprints in
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this research, are automatically identified and grouped (clustered) into these new data sets. NPU3

is the response process to detected threats. It discards anomalous and malicious activity packets

and terminates any further processing for resource preservation.

3.2.1 Threat hunting process

Autonomous Threat Detect and Response functional layers consist of a processing layer, inspec-

tion layer, and production layer, executing above the network behavioural anomaly detection

(NBAD) layer. The layers are explained below and the workflow is illustrated in Figure 3.2. Be-

tween each of the functional layers are sensors that serve as triggers for action traffic flow, switch-

ing between the layers depending on the state of classification. Sensors in the layers will also

instantly initiate flow packet dropping if a malicious behavioural pattern is matched.

3.2.2 Multi-vector threat flow handler

Parallel server processes are dedicated to scrub the traffic flows on the lowest layer so that it can

be shunted/blocked to reduce processing and resource overhead. The goal is not to cover the

broad spectrum of traffic inspection for potential anomalous and malicious traffic, but rather to

recognise popular and obvious malformed traffic in the shortest time. This is to enforce packets

drop before being further processed by the system, network and devices.

3.2.3 Network Processing Unit 1 (NPU1) - Ingest traffic pattern match

NPU1 is a workload processing cluster consisting of multiple processing queues that combine

intersection and processing capacity. It ensures that all packets associated with a flow and session

are always processed by the same queue, regardless of the physical interface through which they

enter the cluster. This is achieved by the ATDR hashing algorithm proposed in this paper.

3.2.3.1 Feature learning and selection

Authors in [3] describe a feature vector as an n-dimensional vector of numerical features that

describe an object. ML algorithms identify future instances of an object within a mixed data set

by the training of these vectors. Extra computational overheads are required for vectors with

increased dimensionality and are more task intensive. Thus, it is best to discover a more optimised

feature set for each problem.
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Feature selection is performed at the NPU1 layer, where the ATDR method, as illustrated in Fig-

ure 3.3, also encodes each feature subset by first projecting the feature into a low-dimensional

subspace. This is then followed by a normalisation step to obtain a compact binary vector. Local-

ity sensitive hashing (LSH) and its extensions are based on randomised projections and are one of

the most widely employed hashing methods in ANN-related literature [5].

Figure 3.3: Normalising features to 1 or 0

The functions of NPU1 are as follows:

• Pattern signature cross hashing, which reduces processing overhead

• Packet and process queue hash mapping

• Mapping to known signatures

• Elevating unknown patterns to upper layer NPU2 for fingerprinting and forensics

3.2.3.2 NPU1 network layer function

This is a function in the first layer where traffic is captured, and deep packet inspection performed

with the proposed processing architecture. A sensor switches the traffic to the second layer for

intelligent processing.
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3.2.3.3 NPU1 situational awareness function

Here the Naive Bayes ML method will be applied to learn and match fingerprints and assign

to the closest network traffic protocol type as revealed by the Bayes network classification. The

system will be an unsupervised ML expert system infused with the k-means algorithm for pattern

recognition, decisions and reasoning executions.

3.2.4 Network Processing Unit 2 (NPU2) - Fingerprinting and forensics

NPU2 is a second layer of the workload processing cluster, dedicated to learning and formulating

a baseline and traffic profiling for fingerprinting and/or forensics. This layer steers the traffic to

a parallel NBAD sensor process which compares the traffic against known malicious behavioural

fingerprints. If a malicious match is found, the traffic is shunted to the NBAD actor which enforces

block rules that include instant black-holing. If no malicious matches are found, the traffic is

forwarded to the NPU3 layer for further learning.

The functions of NPU2 are as follows:

• Arriving packets are forwarded to the uni- and multi-flow handling anomaly sensor and

NBAD actor to scrub the traffic flows for anomalous and abnormal occurrences. If there

are no exact known threats, traffic is matched against known fingerprint signatures or for-

warded to NPU3 for deeper analysis.

• Anomaly sensor tags the flows if malicious activities are matched.

• NBAD actor drops the flows upon anomaly sensor tagging.

3.2.4.1 Traffic flow fingerprinting

According to [3], human experts are often used to annotate each datum with its associated class

label. This process is inefficient, prone to error, time-consuming and labour-intensive. This further

justifies the need for ATDR, as it is capable of grouping feature vectors of a particular type (pattern)

using unsupervised learning algorithms.

3.2.5 Network Processing Unit 3 (NPU3) - Deep learning and traffic clustering

This layer involves DL cluster building and enhancement. From NPU2, the sensors switch the

unknown traffic flows to NPU3 which performs detailed analytics to learn and automatically en-
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hance cluster definitions by means of DL clustering techniques. If a match is found, traffic flow is

forwarded with the applicable traffic protocol family, inheriting the associated priorities.

The roles of NPU3 are as follows:

• It groups unique traffic characteristics into small clusters for granular control.

• It assigns traffic to high or low VP group priority based on traffic classes.

3.2.5.1 Traffic pattern recognition (PR) and clustering

In pattern recognition, when the number of clusters is unknown, algorithms such as Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) and k-means provide effective

means to infer these automatically. For the k-means algorithm, the stopping criteria is met when

there are no more changes detected at the centroid locations.

3.2.5.2 Feature selection from data set

Table 3.2 summarises the paramount features required from the data set.

Table 3.2: ATDR - Feature datum of an IP packet

Feature Description
Packet Direction The direction of packets within a flow (source to destination, destination to

source.
Packet Length Packet length statistics (min, max, quartiles, standard deviation).
Packet IAT Packet inter-arrival time (min, max, quartiles, standard deviation).
Flow Duration The duration of a particular flow on the network, from its start to termina-

tion.
Number of Packets The total number of packets observed for a particular flow.

3.3 Overview of network attacks

Authors in [18] proved that the common goal of cyber attacks is to affect the service availability

for legitimate traffic. This is performed by sending malformed packets or by overloading the

resources with excessive requests that are aimed to exhaust the resource capacity required to serve

legitimate requests. The authors further divided attacks into three types namely: 1) volume-based

attacks, 2) protocol-based attacks and 3) application-layer-based attacks. Volume-based attacks

are often performed through botnets (millions of infected systems) of multiple Trojan infected
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systems and one system is made the controller of that botnet. The controller signals the botnet

to perform attack at scale against a server and/or service [18]. Protocol-based attacks launch a

flood of requests to a port service, for which the server allocates resources to serve each request,

cumulatively exceeding the total resource capacity of the target. Application-based attacks are

similar, in that a flood of application layer requests are sent to an application for processing until

the queue in requests overwhelms the application’s ability to function reliably [18]. ICMP flood

attacks are when attackers misuse the administration ping service, a service used to check if hosts

are alive, by sending millions or billions of ping requests until the server stops responding [18]. In

SYN flooding, the attacker sends SYN packets to the server from spoofed IP addresses. The server

tries to respond to each by sending the SYN/ACK packet, but as the fake IP does not respond, the

server awaits multiple open replies and wastes resources for each request. The attacker further

sends an additional flood of requests so that the server may stop responding to the legitimate

users. In UDP floods, the server sends ICMP replies to a flood of UDP requests from a spoofed

IP address, thus causing the system to be unresponsive and unavailable for the legitimate users

[18]. DNS amplification is a technique where the attacker uses the DNS open resolver and the

victims IP. The attacker sends the victim’s IP through a botnet to open recursive servers; thus, the

servers send a large number of packets overwhelming the victim [18]. Zero-day attack threats are

explained as cases when the vulnerability has not yet been detected by anyone and no patches for

the vulnerability have been released by the vendors. The attacker uses this window and exploits

the vulnerability by crafting the packet and sending to the victim to cause the system to crash.

3.3.1 Network behavioural anomalies

This subsection briefly describes various types of network behavioural anomalies considered in

the model [19]:

• Invalid Packets: Packet inspection for malformed IP headers, short packets, invalid TCP

flags, invalid ACK numbers and bad IP, TCP and UDP checksum.

• NX Domain per Second: Benchmarking the baseline rate for NX domain responses, and

enforcing actions if any influx is detected.

• DNS Rate Limiting: Benchmarking the baseline flow rate of DNS requests

• DNS Malformed: DNS packets that do not conform to the standard RFC rules
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• TCP Flow Resets: Packet inspection for TCP resets, considering the source to destinations

counts

• TCP Out-of-sequence Authentications: Benchmarking the baseline flow rate of SYN authen-

tications to the internal segments and taking influx if a burst in rates is detected

• ICMP Floods: The originating traffic source port will be baselined and monitored for any

spikes in rate, while also considering the size of the ping packets and the counts of source to

destination hosts

• UDP Floods: According to [20], UDP flood attacks send an enormous number of UDP pack-

ets to any random ports of a server to impact other legitimate traffic to the network port.

UDP’s flooding technique is to exhaust the target machine with a large number of UDP

packets. The network bandwidth continues to degrade until services malfunction. Trending

of 95th percentile traffic packet baselines will be learned over intervals of a day, one week

and finally one month, to forecast and match any rapid or abnormal packet bursts to build a

confidence in behavioural variance in comparison to normal expected traffic patterns.

• Session Attacks: Exhaust a server’s resources through empty sessions, resulting in complete

system malfunction or service-impacting system performance. These attacks can bypass

defence mechanisms that only monitor incoming traffic on the network.

• SYN Floods: In order to respond against SYN floods, the need to be detected by monitoring

that the TCP three-way handshakes are established correctly. In normal behaviour: client

sends a SYN message to the server, the server responds with a SYN-ACK and then the client

responds with an ACK. The three steps above establish a session correctly. Monitoring the

rates of the new session handshake steps could reveal attempts to intercept or hijack sessions

and/or attempt to flood the server with high loads of negotiations around the connection

state.

3.3.2 Malware database pattern identification with external attack and exploit feeds

Malware databases are released by anti-virus companies and research organisations to enable

researching of algorithms. The following sources are considered in this study:

• http://www.netresec.com/?page=PcapFiles

• https://wiki.wireshark.org/SampleCaptures

http://etd.uwc.ac.za/ 
 



CHAPTER 3. ATDR - DESIGN AND IMPLEMENTATION 36

• https://snap.stanford.edu/data/#email

• http://www.secrepo.com/

3.4 Use cases implementation

For the implementation phase, simulations were conducted at internal and external network

points to obtain a broad collection of traffic behavioural patterns, similar to Figure 3.4.

Figure 3.4: Capturing real-time traffic

Once captured, the packets were anonymised, as required for data privacy. Anonymisation was

achieved by randomising IP addresses, ports and payloads of traffic records used for statistical

analysis to prevent leakage of personally identifiable data. The authors in [21] contributed an ef-

fective variant of C++ code that modifies packet headers to remove link-layer addresses used in

anonymising IP addresses, and shuffles UDP/TCP ports. Crypto_Pan is also a cryptographic al-

gorithm that can be applied for anonymising IP addresses, while preserving the subnet structure.

Any string of bits x is encrypted to a new string Ek(x) while ensuring that for any bit-stream pairs

(x,y), that share a common prefix of length p, their images Ek(x), e, phEk(y) also share a common

prefix length p. Bit-strings of length n are encrypted by Crypto_Pan by descending a binary tree

of depth n one step for each bit in the string. A pseudo-random function assigns a “0” or “1” to
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each of the binary tree’s 2n− 1 non-leaf nodes.

Figure 3.5: Crypto_Pan algorithm as a tree descent

In the Crypto_Pan figure above, the tree nodes are coloured according to a pseudo-random func-

tion of the key material. The arrows show the descent corresponding to the input bit-string "010".

That descent’s nodes are coloured "001" and, thus, the anonymised output string is "011".

3.4.1 IP & port anonymisation

The algorithm used for IP anonymisation in this study is based on Crypto_Pan with features that

ensure:

• prefixes are preserved

• one-to-one mapping

• IP anonymisations are reproducible and reversible via the use of a consistent 256-bit key

• port anonymisations are reproducible and reversible via the use of a consistent 16-bit seed

• port numbers are anonymised to a different port number

• AES encryption and the mappings are pseudo-random.
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3.4.2 Traffic classification and clustering

3.4.2.1 Data pre-processing

Network TCP flow data combined with payload bytes for every TCP session are collected. Each

byte is represented by an integer range of 0 to 255, which are then normalised to between 0 and 1.

The length of each payload sequence is set to 1,000. Finally duplicate data are discarded. For data

visualisation, each payload is depicted with a picture where each byte is represented as a pixel.

3.4.2.2 Clustering – DBSCAN threat detection classifier

DBSCAN is an n-dimensional clustering algorithm that provides benefits over other clustering

algorithms in that: 1) clusters can be non-spherical, 2) it can differentiate between clustered end-

points and noise points and 3) it does not require the number of points to be specified in advance.

Data clustering performance tests were performed against random generated data sets according

to the best values for hyper-parameters for optimal clustering as derived from the search by [3]

with eps of 0.1039 and a minPTS of 152.

Jupyter Notebook is an open-source web application that provides the ability to create and share

live code documents, equations, narrative tests and visualisations toward use cases that include

numerical simulation, statistical modelling, data visualisation, machine learning and others. The

combination of Jupyter Notebooks and DBSCAN algorithmic code sets provided the means to

perform clustering performance tests and the comparison of the output results with the optimal

findings of other authors.

http://etd.uwc.ac.za/ 
 



Chapter 4

PERFORMANCE EVALUATION

4.1 Performance evaluation overview

When traffic passes through the inspection sensors, the sensors execute real-time threat hunting:

fingerprinting and matching for categorisation of the traffic flows. As one of the response func-

tions of ATDR, it tags and drops anomalous and malformed network flow packets. Thereafter,

it forwards the clean traffic in a supervised learning manner. For the detection role of ATDR,

traffic flow profile inspections and learning are achieved by means of deep packet inspection as

traffic passes through the ATDR system sensors. To prevent depletion of the sensor servers’ re-

sources, malicious traffic is inspected and removed by network behavioural signature detector.

This reduces queuing and provides a more secure and optimised infrastructure. System security

and network management largely depends on network traffic classification according to [13]. The

traffic inspection and classification model used in this study is based on Bayesian Networks and

Naive Bayes. According to [22], these well-understood supervised learning algorithms have a

classification approach that is based on probabilistic knowledge. Also, similar to [13], this model

consists of various processing layers.

In addition to the response and detection functions of ATDR, each cluster group is automatically

annotated with the coined term lane priority that produces training sets for the production of su-

pervised and semi-supervised classifiers. In this study, the number of clusters is set explicitly or

inferred automatically through a discovery and nomination process. Similar to the APIC method,

where the number of fingerprints, patterns or targets are not specified as described in [3], this
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method used in this study utilises algorithms such as Density-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN) to automatically determine number of clusters. That is, the number

of targets, k, is known prior. Subsequently, an algorithm such as k-means is then used to group

traffic into k clusters [1].

Once the server has processed the traffic and traffic flows are divided into clusters, each cluster is

allocated a weighted priority. The main objective is to give traffic with highest priority expedited

access. In this context, lane priority can be defined as the assignment of a weighted priority to

traffic flows on a network path that has been divided into virtual protocol group (VP-group) while

in transit. Lane priority assignment is a ranked numbering system representing a priority level

and can be customised. In this study, four levels were used for testing; however, more levels can

be allocated to enable more granular control and management as shown on Table 4.1. On the

table, ’reservation’ represents the maximum head-room in percentage allowed for each priority

level. This allows for additional guarantees based on well-known committed information rate

(CIR) and peak information rate (PIR). At every instant, the capacity available is divided among

the flows considering the multidimensional combination of the flow demands, lane priority and

reservation allocated.

Table 4.1: ATDR virtual cluster groups - Traffic lane prioritisation

Lane Priority Cluster Protocol Fingerprints Reservation
1 P2P BitTorrent, Kazaa 2
2 TCP-ATTACK SYN-flood, Session-flood, TCP-ACK flood,

Out-of-sequence packets
0

3 UPDATES Microsoft, Apple, Android 8
4 WEB HTTP, HTTPS, FTP, Email 20
5 UDP-ATTACK NTP-flood, DNS-attack 0
6 VIDEO YouTube, Skype, Gtalk,Webex 70

The rest of this chapter gives performance evaluation details of the proposed ATDR model and

also discusses obtained results.

4.2 ATDR - Clustering

The clustering process is executed in a ten step process, which is illustrated in Figure 4.1 and

enumerated in the list below:

• Step 1 - Live inspection and/or collection of traffic data.
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• Step 2 - Introduction of offensive/threat traffic patterns.

• Step 3 - Cast the traffic data to a data frame training set.

• Step 4 - Data frame validation.

• Step 5 - Training data analytic.

• Step 6 - Collection and graphing of traffic analytic.

• Step 7 - Collection of data features sets using various algorithms.

• Step 8 - Feature grouping and learning.

• Step 9 - Calculate and discover the optimal eps and MinPTS for DBSCAN

• Step 10 - Cluster formation for further security-related traffic management.

Figure 4.1: ATDR ten step process

4.2.1 Step 1 | ATDR - Live inspection and collection of traffic data

In this step, network traffic is captured and inspected as it flows in real time. Figure 4.2 shows a

snippet, wherein various packet captures are inspected to determine the response to the various

legitimate and/or anomalous communication behaviours.
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num_of_packets_to_sniff = 10

pcap = sniff(count=num_of_packets_to_sniff)

pcaplen = len(pcap)

# rdpcap returns packet list and packet list object can be enumerated

print(type(pcap))

print(len(pcap))

print(pcap)

pcap[0]

Figure 4.2: ATDR | Step 1 | Live capture

Captured traffic packets are then filtered using different parameters to build specific data sets

that can be tested against various use cases.

<Sniffed: TCP:4 UDP:2 ICMP:0 Other:4>

<Ether dst=ff:ff:ff:ff:ff:ff src=14:49:e0:68:87:9a type=ARP |<ARP hwtype=0x1

ptype=IPv4 hwlen=6 plen=4 op=who-has hwsrc=14:49:e0:68:87:9a psrc=192.168.1.142

hwdst=00:00:00:00:00:00 pdst=192.168.1.1 |<Padding

load='\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'

|>>>

4.2.2 Step 2 | ATDR - Introduction of offensive traffic patterns

This step tests ATDR’s ability to detect known threats. Multiple vector attacks were executed and

mixed with the original (clean) traffic. These were processed by the system to test the ability to

accurately separate different kinds of anomalous traffic heuristics and also differentiate legitimate

traffic. Actual TCP reset, MS Blaster worm and DOS attacks are performed and captured for

analysis.

The following are snippets of some of the captured traffic stream.
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# ATDR - Multiple-vector attacks launched | 192.168.21.21 ----( D o S )----> 192.

↪→168.21.22

pcap = rdpcap("pcap/attack-dos-tcp-rst-attack.pcap") # TCP RESET Attack Simulated

pcap = pcap + rdpcap("pcap/attack-dos_tcp_vertical_scans.pcap") # TCP Vertical␣

↪→Port Scans Attack Simulated

pcap = pcap + rdpcap("pcap/attack-dos_tcp_syn_flood.pcap") # TCP SYN Flood␣

↪→Attack Simulated

pcap = pcap + rdpcap("pcap/attack-msblaster_worm_attack.pcap") # MS Blaster worm␣

↪→exploitation Attack Simulated

<attack-dos-tcp-rst-attack.pcap+attack-dos_tcp_vertical_scans.pcap+attack-

dos_tcp_syn_flood.pcap+attack-msblaster_worm_attack.pcap: TCP:2792 UDP:1035

ICMP:89 Other:0>

ATDR - TCP segment structure

Each encapsulated layer of frames/packets/segments consists of fields that ATDR extracts from

the packet list. Layer 3 (IP) and Layer 4 (TCP/UDP) are inspected with payload in the following

sequence: ETHERNET -> Internet Protocol -> Layer 4 segments.

The ATDR feature datum below reflects the payload that ATDR inspects to calculate the hashes

for traffic clustering.

[ATDR Feature Datum]

///////////////////////////

Packet length: 40

Packet payload:

b'zi\x00\x19bJ\xf2\x0f\x16\xb3\x15\x80P\x04\x02\x00\x07U\x00\x00'

Destination Port: 25

///////////////////////////

Ether / IP / TCP 192.168.21.22:31337 > 192.168.21.21:smtp R

IP / TCP 192.168.21.22:31337 > 192.168.21.21:smtp R

TCP 192.168.21.22:31337 > 192.168.21.21:smtp R
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###[ Ethernet ]###

dst = 00:0c:29:4d:34:fd

src = 00:0c:29:3f:0e:13

type = IPv4

###[ IP ]###

version = 4

ihl = 5

tos = 0x0

len = 40

id = 37086

flags =

frag = 0

ttl = 42

proto = tcp

chksum = 0x5476

src = 192.168.21.22

dst = 192.168.21.21

\options \

###[ TCP ]###

sport = 31337

dport = smtp

seq = 1649078799

ack = 380835200

dataofs = 5

reserved = 0

flags = R

window = 512

chksum = 0x755

urgptr = 0
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options = []

ATDR - Training data set statistics

Profiling network communication produces intelligence around the different traffic heuristics.

Traffic fingerprint profiles are obtained through a combination of similar characteristics for both

legitimate protocol traffic and distinct patterns associated to the anomalous traffic as derived from

the simulated attack training sets.

Ethernet <Ether from attack-dos-tcp-rst-attack.pcap+attack-

dos_tcp_vertical_scans.pcap+attack-dos_tcp_syn_flood.pcap+attack-

msblaster_worm_attack.pcap:

TCP:2792 UDP:1035 ICMP:89 Other:0>

IP <IP from attack-dos-tcp-rst-attack.pcap+attack-

dos_tcp_vertical_scans.pcap+attack-dos_tcp_syn_flood.pcap+attack-

msblaster_worm_attack.pcap:

TCP:2792 UDP:1035 ICMP:89 Other:0>

TCP <TCP from attack-dos-tcp-rst-attack.pcap+attack-

dos_tcp_vertical_scans.pcap+attack-dos_tcp_syn_flood.pcap+attack-

msblaster_worm_attack.pcap:

TCP:2792 UDP:0 ICMP:0 Other:0>

UDP <UDP from attack-dos-tcp-rst-attack.pcap+attack-

dos_tcp_vertical_scans.pcap+attack-dos_tcp_syn_flood.pcap+attack-

msblaster_worm_attack.pcap:

TCP:0 UDP:1035 ICMP:0 Other:0>

4.2.3 Step 3 - Cast traffic to training data set

In Step 3, various types of malicious traffic and attacks were generated and then captured to serve

as the data set, as shown in the snippet below.

# Collect field names from IP/TCP/UDP (These will be columns in the Dataframe)

ip_fields = [field.name for field in IP().fields_desc]

tcp_fields = [field.name for field in TCP().fields_desc]
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udp_fields = [field.name for field in UDP().fields_desc]

dataframe_fields = ip_fields + ['time'] + tcp_fields +␣

↪→['payload','payload_raw','payload_hex']

4.2.4 Step 4 - ATDR data frame validation

At this stage, the traffic flow packet fields are inspected to perform classification of protocol family

types and also anomolous packets.

# Retrieve first row from DataFrame

# Return first 5 rows

# Return last 5 rows

# Return the Source Address for all rows

# Return Src Address, Dst Address, Src Port, Dst Port

IP Packet fields extracted to derive ATDR features

version 4

ihl 5

tos 0

len 40

id 33862

flags

frag 0

ttl 42

proto 6

chksum 24846

src 192.168.21.22

dst 192.168.21.21

options 0
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time 1570563493.006009

sport 31337

dport 25

seq 1269542725

ack 1466347216

dataofs 5

reserved 0

flags R

window 512

chksum 34490

urgptr 0

options None

payload 0

payload_raw b''

payload_hex b''

Name: 0, dtype: object

(3916, 28)

Source to Destination Ports:

src dst sport dport

0 192.168.21.22 192.168.21.21 31337 25

1 192.168.21.22 192.168.21.21 31337 25

2 192.168.21.22 192.168.21.21 31337 25

3 192.168.21.22 192.168.21.21 31337 25

4 192.168.21.254 192.168.21.100 33576 37008

... ... ... ... ...

3911 192.168.21.22 192.168.21.21 31337 135

3912 192.168.21.22 192.168.21.21 31337 135

3913 192.168.21.22 192.168.21.21 31337 135

3914 192.168.21.21 192.168.21.22 None None
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3915 192.168.21.22 192.168.21.21 31337 135

4.2.5 Step 5 | ATDR - Training data set Analytics

The traffic flows were analysed and some of the obtained outputs are shown in the snippet below.

These include: the source and destination IP addresses, and the most active source and destination

ports.

# Top Source address

count 3916

unique 3

top 192.168.21.22

freq 2793

Name: src, dtype: object

# Top Destination address

count 3916

unique 3

top 192.168.21.21

freq 2793

Name: dst, dtype: object

# Who is the top address speaking to?

['192.168.21.21']

# Who is the top address speaking to (Destination Ports)

[25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
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52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

496 497 498 499 500 501 502 503 504]

# Who is the top address speaking to (Source Ports)

[31337 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
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2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
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2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713

2714]

# Unique Source Addresses

# Unique Destination Addresses

Unique Source Addresses

['192.168.21.22' '192.168.21.254' '192.168.21.21']

Unique Destination Addresses

['192.168.21.21' '192.168.21.100' '192.168.21.22']

4.2.6 Step 6 | ATDR - Traffic intelligence

In this step, analytical results are displayed in graphical form. These aid in immediately "seeing"

the unearthed patterns.

Figure 4.4 shows that the most active destination address was ’192.168.21.21’, while in Figure 4.5it

can be seen that the three major source of traffic were ’216.58.223.131’, followed by ’192.168.1.107’

and ’172.217.170.68’.

# Group by destination address and payload sum
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Figure 4.3: Group by destination address and payload sum

Store ATDR cluster feature set

ATDR_feature

dport

1 0

2 0

3 0

4 0

5 0

...

2700 0

2701 0

2702 0

31337 0

37008 13966
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# Group by source address and payload sum

Figure 4.4: Group by source address and payload sum

# Group by destination address and payload sum
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Figure 4.5: Results

4.2.7 Step 7 | ATDR - Payload Investigation

Having identified the most active data source, this step further analyses the "conversation" to

identify which address has exchanged the most amount of bytes with most active source IP ad-

dress. We can then create a data frame with only conversation from the most active and/or and

suspicious addresses.

The obtained results are shown in the snippet below and Figure 4.6.

# Create data frame with only conversation from most frequent address

# Display Source address, Destination address, and group by payload only

# Plot the frequent address communication (by payload)

192.168.21.21 is detected as a potential victim
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Figure 4.6: Payload validation

# Store each payload in an array

4.2.8 Step 8 | ATDR - Number of clusters

In this step, the total number of groups as clustering input is shown. A total of 998 groups were

identified by ATDR and are depicted in Figure 4.7.

# Count of groups to input for Clustering

ATDR_clusters

998

#Cluster formation: learn to form accurate cluster groups
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Figure 4.7: Attack traffic flow similarity grouping

distances = np.sort(distances, axis=0)

distances = distances[:,1]

plt.plot(distances)

4.2.9 Step 9 | ATDR - Discover optimal eps

DBSCAN is a base algorithm for density-based clustering containing large amounts of data which

has noise and outliers. DBSCAN has two parameters - eps and minPts. Determination of the

optimal eps value is acquired using the DMDBSCAN algorithm on a single density level corre-

sponding to the k-distplot.

Figures 4.8 and 4.9 show elbow graphs obtained from running the DMBSCAN algorithm in Figure

4.10 to determine the optimal eps values for threat and legitimate traffic respectively. For threat

traffic, a value of about 0.3 was obtained after close to 3800 iterations. Similar value was also

obtained for the legitimate traffic but after much fewer iterations (about 275).
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Figure 4.8: ATDR - Determine threat traffic optimal eps value required for clustering with DB-
SCAN

Figure 4.9: ATDR - Determine legitimate traffic optimal eps value required for clustering with
DBSCAN
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Figure 4.10: DMDBSCAN algorithm (Elbatta 2012, [1])

4.2.10 Step 10 | ATDR - Clusters plot

In this final step, the obtained clusters are shown using a scatter plot.

Figure 4.11 shows four clusters from the legitimate traffic, while Figure 4.12 shows the clusters

with colour coded traffic types. The Figure 4.12 also presents eight other traffic types that were

identified by the model.

Figure 4.11: Traffic recognition formation phase 1 - Learning and grouping
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Figure 4.12: Traffic recognition formation phase 2 - Managed state

Figure 4.13: Multi-vector threat detected traffic patterns

# cluster the data into the ATDR_ clusters (count of grouped features)
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Figure 4.14: Feature datum of multi-vector threat detected traffic pattern in isolation

Figures 4.13 and Figure 4.14 respectively show the multi-vector threat detection pattern and the

feature datum in isolation.

4.3 Discussion of clustering results

The results obtained thus far have show that ATDR is indeed able to categorise network traffic

into groups (clusters) and is also able to detect malicious traffic patterns.

The detection (and isolation) of malicious/anomalous traffic group is more obvious when a single

feature from the traffic data set is considered. Figure 4.15 and Figure 4.16 illustrates the orange

cluster indicative of malicious traffic. Once identified, preventive and/or mitigation actions can

then be taken.
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Figure 4.15: ATDR clusters forming granular groups

Figure 4.16: ATDR clusters fully converged and anomalous traffic grouped in the isolated orange
cluster
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4.4 M/M/1/N server queue processing

The dimensioning test aims to apply Erlang C function which is a well-known queuing formula

with efficient computational implementations. According to [23], ErlangC() is a function that com-

putes the probability that on arrival of a packet to an M/M/c system, all queues in the system

are either full or it has to wait in a queue for an available server. This formula will be applied to

predict the probability of packet being dropped to achieve optimal queuing parameters, similar to

the prediction of probability that a traffic will have to wait in a queue due to a full system.

4.4.1 System model

The pseudo-random network simulator transmit packets toward the processing server from the

test input. Varied input data are fed into the system to test the ATDR’s robustness, including the

discovery of the optimal scheduling time slice for optimal server processing. The network traffic

flows that are steered to the server are inspected to retrieve the tuple elements of an IP packet for

comparison matching using:


Protocol Payload Length Flags DstPort

PayloadRegex String HeaderChecks Checksum

PacketDirection Numbero f Packets

PacketLength PacketIAT FlowDuration


The goal is to dynamically learn and arrive at the optimal time quantum for optimal server pro-

cessing. A code change modifies the simulator to schedule the end of the current time slice which

equals the addition of the current simulation time and the remainder of the processing time (of

the packet) or the allocated time slice, whichever has the smallest value. According to [24], usual

network management methods should also monitor the partial traffic stream loads and not only

the server load .

4.4.2 ATDR M/M/1/N queue

Listed below are the characteristics of the ATDR M/M/1/N queue:

1. Poisson arrivals (exponentially distributed inter-arrival times)

2. Inter-arrival times and service times are exponentially distributed
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3. Single server

4. Unlimited queue size

5. Arrivals finding full queues will be dropped.

4.4.2.1 Queue processing derivatives

• The average number of packets being serviced in the queue at any given time is given by:

W =
∑i niX(t f − t f−1)

t f
=

W + ∑i niX(t f − t f−1)

t f
(4.1)

• Duration that the server occupies while processing the queue is given by:

W = ∑
i

niX(ti − ti−1) (4.2)

• The number of packets in the queue at any time and is given by:

N = λ ∗ t (4.3)

where λ is arrival rate.

• Queue utilisation:

P = λ/µ (4.4)

• Mean number of packets in the queue:

p/(1− p) (4.5)

4.4.2.2 M/M/1/N round-robin queue | Fundamental time quantum election

λ−→ µ ⊃−→

M/M/1/N round-robin queue is an enhancement to the M/M/1 queue. The queue length dis-

tribution is given by Pn = (1− ρ)ρn. To meet the goal of learning the optimal time quantum for
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optimal server processing, a code change modifies the simulator to schedule the end of the current

time slice.

Table 4.2: C++ simulator variables

Variable Description

x the time (in the future) that the current

time-slice processing completes

Time total simulation time at that point

this→tm remaining processing"burst" time

q time slice

In C++, f min returns the smaller of two arguments: either x or y.

f min(x,y) =
(x)as(x y)
(y)as(y x)

(4.6)

Per packet visits to the queue is constantly analysed to ensure the optimal efficiency of the time

slice allocation at any given time using the equation below:

VisitsPerPacket = Ceilling
(

TotalPacketServiceTime
TimeSliceDuration

)
= Ceilling

(
B
q

)
(4.7)

The packet visit count must be rounded up to an integer, as the "Total Packet Service Time" is not

always necessarily a fraction of "Time Slice". Thus, the rescheduling of packets in a queue by the

server for further processing in round-robin can be achieved with the following C++ code:

x = time + f min(this→ tm,q) (4.8)

Schedule(x); schedule the time-slice event
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4.4.3 Dimensioning

Dimensioning calculation is aimed at returning the probability of traffic flow being dropped in an

M/M/1/N system using the recursive Erlang C approach.

In this study, we set λ = 10,µ = 12, and used 50 000 traffic flows as the training set. We also com-

pared the queue processing service times with the Tmax prediction. This value ρ ranges between

0.50 – 0.99.

Parameters - Input:

load : float - average arrival rate * average service time (units are erlangs).

c : int - number of servers

Parameters - Output:

probability of arriving to a full system : float

probability of all servers being busy: float

4.4.4 ATDR - Traffic tail dropping

For optimal processing with respect to system capacity, stress testing of a single server system

with traffic intensities measured at 1.0 was focused around discovering the probability that traffic

will arrive at the system at full capacity, to which was less than 0.5. The statistical probability of

traffic being dropped is returned with an Erlang C recursive approach, as shown in Figure 4.17.

Scaling up with additional servers reduces the probability of tail drop, as shown in Figure 4.18.
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Figure 4.17: ATDR - Probability of tail dropping traffic by load

Figure 4.18: ATDR - Probability of tail dropping considering 1, 2 and 5 servers
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4.4.5 Success criteria - Optimal M/M/1/N server queue processing

For traffic intensities less than 1, there is a probability that traffic would be dropped (p< 1). Op-

timal dimensioning is achieved by scaling to the sufficient count of servers that will mitigate the

probability of any legitimate traffic discards (drops).

4.4.6 Results summary

The results of the tests between M/M/1 queue and a M/M/1/N queue with round-robin

scheduling proved that round-robin scheduling enhances the completion success rate and opti-

mises the processing time of all customers in the queue.

With a large queue size and a large time slice the total execution vastly increases which causes

delay.

A large time slice and small queue causes fewer customers to be processed and a greater customer

drop rate.

Customer drop rate increases when both the queue size and time slice are too small.

Discovering the optimal smaller time slice and longer queue length combination in real time

yielded greater optimal server processing pertaining to total execution time and completions rates.

The results of simulation experiments are tabled in Table 4.3 and Table 4.4.

Table 4.3: Simulation queue test part 1 - Optimal queue time slice discovery

Parameters Lambda Mu Time slice Q-Length RunTime Avg Q-Length

M/M/1/N Round-Robin vs M/M/1 Q 10 12 4987.61 4.68759

Large TimeSlice (q);Q-Length(N) 10 12 200 1000 4987.61 4.68759

10 12 200 1000 4987.61 4.68759

Large TimeSlice(q);Small Q-Length(N) 10 12 200 1 5772.34 0.873077

10 12 200 2 5482.51 1.27043

10 12 200 5 5162.98 2.29483

10 12 200 10 5023.04 3.52317

10 12 200 20 4990.48 4.42346

10 12 200 40 4967.16 5.1141

Small TimeSlice(q);Large Q-Length(N) 10 12 1 200 4987.61 4.68759

10 12 0.8 200 4987.18 4.68897
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10 12 0.5 200 4979.64 4.7497

10 12 0.2 200 4733.56 5.06072

10 12 0.1 200 4060.23 5.66797

10 12 0.08 200 3762.1 5.13801

10 12 0.05 200 3111.09 4.67976

10 12 0.01 200 1021.92 4.38593

10 12 0.008 200 841.899 4.1134

10 12 0.005 200 543.662 4.71814

10 12 0.002 200 227.519 5.77943

10 12 0.001 200 121.387 2.97649

10 12 0.00001 200 1.93816 0.994522

Small TimeSlice(q);Small Q-Length(N) 10 12 0.001 40 121.387 2.97649

10 12 0.001 20 121.387 2.97649

10 12 0.001 10 121.535 3.50923

10 12 0.001 8 119.273 2.80713

10 12 0.001 5 126.637 2.20504

10 12 0.001 2 143.166 1.30702

. . . .. 10 12 0.001 1 164.982 0.854309
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Table 4.4: Simulation queue test part 2 - Optimal queue time slice discovery

Parameters Arrivals Completions M/M/1 Customers Actors in Traffic

Queue length in Queue Calendar Dropped

M/M/1/N Round-Robin vs M/M/1 Q 50000 50000 5 0 1

Large time slice (q); Queue length(N) 50000 50000 5 0 1

50000 50000 5 0 1

Large time slice(q);Small Q-Length(N) 57812 42188 5 0 1 15624

55045 44955 5 2 2 10087

52005 47995 5 0 1 4010

50681 49319 5 0 1 1362

50092 49908 5 4 2 179

50005 49995 5 4 2 5

Small time slice(q);Large Q-Length(N) 50000 50000 5 0 1 0

49999 49998 5 0 2 0

49938 49934 5 3 2 0

47678 47668 5 9 2 0

41189 41186 5 2 2 0

38226 38225 5 0 2 0

31317 31307 5 9 2 0

10357 10355 5 1 2 0

8566 8565 5 0 2 0

5578 5577 5 0 2 0

2304 2290 5 13 2 0

1182 1181 5 0 2 0

16 11 5 4 2 0

Small time slice(q);Small Q-Length(N) 1182 1181 5 0 2 0

1182 1181 5 0 2 0

1199 1168 5 0 2 30

1193 1145 5 5 2 42

1239 1166 5 2 2 70

1418 1159 5 0 2 258

1592 1191 5 0 2 400

4.5 Round-robin rescheduling switching overhead consideration

The context switch overhead associated with re-scheduling can be defined as:

Rescheduling overhead = C/(q + C)
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where q is the length of the time slice and C is the queue rescheduling time.

An increment in q results in an increase in efficiency and a reduction in average response time.

Suppose the number of arrivals is (10) , q = 200 milliseconds, and C = 5 milliseconds: Customer

0 (first in the queue of the list of Customers that are ready to run) gets to run immediately.

Customer 1 can only run after customer 0’s quantum expires (200 milliseconds) and the context

switch takes place (5 milliseconds), so Customer 1 starts to run at 205 milliseconds. Likewise,

Customer 2 can only run after another 205 milliseconds. The amount of time delay experienced

by each customer can be calculated and a comparison done between delay using a small quantum

(20 milliseconds) and a long quantum (200 milliseconds) as can be seen in Table 4.5 below.

Table 4.5: M/M/1/N - Queue rescheduling switching overhead consideration

Traffic Flow Q = 20 delay (ms) Q = 200 delay (ms)

0 0 0

1 25 205

2 50 410

3 75 615

4 100 820

5 125 1025

6 150 1230

7 175 1435

8 200 1640

9 225 1845

With ten customers and a quantum of 200 milliseconds, the last customer in the queue will have

to wait nearly 2 seconds before getting another chance. This performance will not suffice for real-

time processing and protection against jitter and delay for sensitive real time protocols. When

the quantum is reduced to 20 milliseconds, the last customer has to wait less than a 1/4 second

before it gets processed. However, the disadvantage of this is that with a small quantum, the

rescheduling overhead at (5/(20 + 5)) is 20%. Thus, about a fifth of the queue processing time is

consumed for rescheduling. With a quantum of 200 milliseconds, the context switching overhead

is reduced to around 2.5%.
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CONCLUSION AND FUTURE WORK

5.1 Conclusion

The popularity of the Internet has resulted in an exponential increase in the number of inter-

connected and Internet-connected devices. Today, there are billions of devices sending data to

or receiving data from the Internet. These include computers, laptops, mobile phones, tablets

and the plethora of smart devices, such as smart homes, smart watches, connected vehicles, au-

tonomous machines and robots, etc. Many of these devices form critical components of bigger

systems (such as smart healthcare systems and intelligent transportation systems) and a failure of

one of these devices or a compromise of input or output data can be catastrophic with cascaded ef-

fects. Data compromise can emanate from transmission errors, malicious attacks (including virus

and worms), cyber-hackers, etc. It is therefore pertinent to concert measures to avoid such com-

promises.

In the recent past, numerous efforts have been proposed and implemented to checkmate data com-

promise and safeguard the integrity and accuracy of data sent over the Internet. Some notable ef-

forts include: data encryption, intrusion detection and/or prevention, firewalls, and anti-viruses.

These efforts, though arguably effective, require a lot of manual human intervention. Such inter-

ventions could be in terms of studying network traffic to identify and flag potentially malicious

data source(s), manually populating a whitelist of safe traffic and/or a blacklist of suspicious or

malicious traffic, feature extraction, optimisation, data set annotation, etc. These process are not

only taxing, but highly prone to errors and omissions due to human limitations, and extremely
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slow. The ability to automate these functions/processes and reduce dependency on human ex-

perts will lead to more complete, accurate and task-efficient systems.

In this study, a model for automatic classification of network traffic for the purpose of detecting

and responding to detection is developed. This model, tagged Autonomous Threat Detection and

Response (ATDR), uses a combination of queuing theory, round-robin scheduling and machine

learning (clustering) to achieve the primary objective of guaranteeing network traffic safety. Ma-

chine learning models are synonymous with the ability to annotate data sets, optimise feature sets

and optimally classify, and have been extensively used for such tasks in IP traffic classification and

anomaly detection.

In testing the proposed ATDR model, simulations were carried out to test the ability to appro-

priately group traffic types and automatically detect malicious traffic in real time. Live network

traffic was first observed over a period of time to "learn" traffic patterns. Using clustering ma-

chine learning algorithms, the network traffic was then split into distinct traffic groups. Each

group corresponded to a network traffic queue and was associated with a priority level. The re-

sulting system of queues was then modeled as an M/M/1/N system, and was managed using

round-robin scheduling.

The model was also tested using a variety of queue variables to determine the optimal server

processing time (quantum). Obtained results show that short a quantum is desirable, as it results

in the least amount of traffic delay and avails the opportunity to better separate anomalous traffic

from normal traffic. However, this introduces an overhead cost of frequent rescheduling.

In conclusion, systems that leverage on machine learning (such as ATDR proposed in this study)

can contribute immensely toward enhancing self-protected, next-generation networks that are re-

silient against the fast-growing and highly adaptive advanced threat landscape.

5.2 Future work

Though this study has developed a threat detection system for Internet packets, only clustering

algorithms were considered. In future, it would be valuable to explore the possibilities of using

deep learning models such as CNN in anomaly detection. Furthermore, only detection of mali-

cious traffic was considered in this study. Another interesting possible future research direction

could be in threat prediction. By studying and learning from historic network patterns, a machine
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learning model might be able to predict the likely impact of a malicious attack and curb such an

attack before it takes place. Finally, extensive work on security-related challenges in self-protected

networks might be another aspect of potential research.
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Appendix A

6.0.1 Attack simulation : TCP single RST attack simulation

Attack launched

Figure 6.1: TCP single RST attack simulation - Launched
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Victim statistics

Figure 6.2: TCP single RST attack simulation - Victim statistics

Traffic flow capture

Figure 6.3: ATDR method schematic

Protocol hierarchy

Figure 6.4: TCP single RST attack simulation - Protocol hierarchy
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Conversation statistics

Figure 6.5: TCP single RST attack simulation - Conversations

Packet lengths

Figure 6.6: TCP single RST attack simulation - Packet lengths

Packets per second graph

Figure 6.7: TCP single RST attack simulation - Packets per second
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IPv4 statistics

Figure 6.8: TCP single RST attack simulation - IPv4 Statistics

Source

Figure 6.9: TCP single RST attack simulation - Source

Destination

Figure 6.10: TCP single RST attack simulation - Destination

Expert information

Figure 6.11: TCP Single RST Attack Simulation - Expert information
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Sequence numbers graph

Figure 6.12: TCP single RST attack simulation - Sequence numbers

6.0.2 Attack simulation : Single SYN attack simulation

Attack launched

Figure 6.13: Single SYN attacks simulation - Attack launched
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Victim statistics

Figure 6.14: Single SYN attacks simulation - Victim statistics

Packets per second Graph

Figure 6.15: Single SYN attacks simulation - Packets per second
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Traffic flow capture

Figure 6.16: Single SYN attacks simulation - Traffic flow capture

Packet lengths

Figure 6.17: Single SYN Attacks Simulation - Packet lengths

Protocol hierarchy

Figure 6.18: Single SYN attacks simulation - Protocol hierarchy
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Sequence numbers graph

Figure 6.19: Single SYN attacks simulation - Sequence numbers

IPv4 source and destination statistics

Figure 6.20: Single SYN attacks simulation - IPv4 statistics

Expert information

Figure 6.21: Single SYN attacks simulation - Expert information
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6.0.3 Attack simulation : UDP flood attack simulation

Attack started

Figure 6.22: UDP flood attack simulation - Attack launched

Victim statistics

Figure 6.23: UDP flood attack simulation - Victim statistics
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6.0.4 Attack simulation : TCP scan simulation - Type horizontal, high volume, layer 4

| using IP

Attack launched

Figure 6.24: TCP horizontal scan - Attack launched

Victim statistics

Figure 6.25: TCP scan - Victim statistics

Protocol hierarchy

Figure 6.26: TCP horizontal scan - Protocol hierarchy
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Conversations

Figure 6.27: TCP horizontal scan - Conversations

Packet Lengths

Figure 6.28: TCP horizontal scan - Packet lengths

Packets Per Second Graph

Figure 6.29: TCP Horizontal Scan - Packets per second
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Sequence Numbers Graph

Figure 6.30: TCP horizontal scan - Sequence numbers

IPv4 source and destination statistics

Figure 6.31: TCP horizontal scan - IPv4 statistics

Expert Information

Figure 6.32: TCP horizontal scan - Expert information
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Test capture submitted to a Software as a Service (SaaS) provider for threat analysis scoring

Figure 6.33: TCP horizontal scan - SAAS threat analysis

Figure 6.34: TCP horizontal scan - SAAS threat analysis 2
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6.0.5 Attack simulation 4 : TCP scan simulation – Type vertical, high volume, layer 4,

using ports

Attack launched

Figure 6.35: TCP vertical scan - Attack launched

Victim Statistics

Figure 6.36: TCP vertical scan - Victim statistics

Protocol hierarchy

Figure 6.37: TCP vertical scan - Protocol hierarchy
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Statistics

Figure 6.38: TCP vertical scan - Traffic flow capture

Conversations

Figure 6.39: TCP vertical scan - Conversations

Packet Lengths

Figure 6.40: TCP vertical scan - Packet lengths
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Packets per second graph

Figure 6.41: TCP vertical scan - Packets per second

Sequence numbers graph

Figure 6.42: TCP vertical scan - Sequence numbers
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IPv4 source and destination statistics

Figure 6.43: TCP vertical scan - IPv4 statistics

Expert Information

Figure 6.44: TCP vertical scan - Expert information

Test capture submitted to SaaS provider for an online threat assessment of the test data

Figure 6.45: TCP vertical scan - SaaS threat analysis part 1
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Figure 6.46: TCP vertical scan - SaaS threat analysis part 2

Figure 6.47: TCP vertical scan - SaaS threat analysis part 3
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Figure 6.48: TCP vertical scan - SaaS threat analysis part 4
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Figure 6.49: TCP vertical scan - SaaS threat analysis part 5

6.0.6 Attack Simulations : Worm propagation simulation | MS Blaster

Attack launched

Figure 6.50: Worm propagation - Attack launched
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Victim statistics

Figure 6.51: Worm propagation - Victim statistics

Traffic flow capture

Figure 6.52: Worm propagation - Traffic flow capture

Protocol hierarchy

Figure 6.53: Worm propagation - Protocol hierarchy
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Conversations

Figure 6.54: Worm propagation - Conversations

Packet Lengths

Figure 6.55: Worm propagation - Packets lengths

Figure 6.56: Worm propagation - Packet length graph
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Packets Per Second Graph

Figure 6.57: Worm propagation - Packets per second

IPv4 source and destination statistics

Figure 6.58: Worm propagation - IPv4 statistics

6.0.7 Attack simulation : Intrusion detection – HTTP URI fragment and max attack

MAC address attack simulation

Figure 6.59: Intrusion detection - MAC address
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MAC address exploitation

Figure 6.60: Intrusion detection - MAC exploit

Traffic capture

Figure 6.61: Intrusion detection - Traffic capture

Figure 6.62: Intrusion detection - Payload detail part 1

Figure 6.63: Intrusion detection - Payload detail part 2

Hacking IIS 5 and Web applications reference

GET /naughty_real_ - 404 GET /scripts/sensepost.exe /c+echo*␣

↪→*Olifante%20onder%20my%20bed* *sensepost.exe* POST /scripts/upload.asp - 200␣

↪→POST /scripts/cmdasp.asp - 200 POST /scripts/cmdasp.asp␣

↪→|-|ASP_0113|Script_timed_out 500
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https://epdf.pub/

↪→hacking-exposed-network-security-secrets-amp-solutions-third-edition-hacking-exp9b39ce614100f3f3694bdef9715ce4a374896.

↪→html

Protocol hierarchy

Figure 6.64: Intrusion detection - Protocol hierarchy

Conversations

Figure 6.65: Intrusion detection - Conversations
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Packets Per Second Graph

Figure 6.66: Intrusion detection - Packets per second

Sequence Numbers Graph

Figure 6.67: Intrusion detection - Sequence Numbers
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IPv4 source and destination statistics

Figure 6.68: Intrusion detection - IPv4 statistics

Expert Information

Figure 6.69: Intrusion detection - Expert information
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