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Abstract

This research objectively investigates the effectiveness of machine learning (ML) tools

towards predicting several geo-physical parameters. This is based on a large number

of studies that have reported high levels of prediction success using ML in the field.

Therefore, several widely used ML tools coupled with a number of different feature sets

are used to predict six geophysical parameters namely rainfall, groundwater, evapora-

tion, humidity, temperature, and wind. The results of the research indicate that: a)

a large number of related studies in the field are prone to specific pitfalls that lead to

over-estimated results in favour of ML tools; b) the use of gaussian mixture models as

global features can provide a higher accuracy compared to other local feature sets; c)

ML never outperform simple statistically-based estimators on highly-seasonal parame-

ters, and providing error bars is key to objectively evaluating the relative performance

of the ML tools used; and d) ML tools can be effective for parameters that are slow-

changing such as groundwater. Ultimately, the thesis demonstrates the importance of

using well-grounded statistical techniques when producing and analyzing the results of

ML predictive models.
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Chapter 1

Introduction

1.1 Background

The study of physical geography is about understanding and representing changes on

the Earth’s surface. It focuses on factors that affect the geographic nature of the Earth.

The functioning of the Earth can be classified into the following processes: hydrologi-

cal processes like storm waves and groundwater; biological processes like forest growth;

atmospheric processes like thunderstorms and rainfall; human processes like urban de-

velopment; and geological processes like earthquakes. So the field of physical geography

seeks to investigate the distribution of the different features/parameters that describe

the landscape and functioning of the planet by analyzing the processes that shape it.

These features/parameters have been referred to as geophysical parameters in the litera-

ture [24], and the overall field that involves the study of various geophysical parameters

that describe the functioning of the planet is called physical geography.

Modelling geophysical parameters to forecast their future behavior is essential for long-

term planning in a number of different contexts. The following are some important

examples of uses of accurate geophysical parameter forecasting:

• Accurate geophysical parameter forecasting can help to take necessary steps and

make preparations for extreme weather such as droughts and floods etc.

• The forecasting of rainfall and groundwater can be immensely helpful in decision-

making for the agricultural sector.

• The forecasting of food and energy demand and consumption can be very instru-

mental in urban planning and development.

1
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Chapter 1 Introduction 2

• The ability to predict potential disasters such as earthquakes, tsunamis and vol-

canic eruptions can help mitigate their effects on the population.

Many other example use-cases exist for geophysical parameter forecasting, and it is clear

that it is a very important area of research.

Historically, in order to be able to understand and predict geophysical parameters, re-

searchers began to gather raw data through geographic enquiries. The collection of some

datasets started as early as centuries ago [22, 24]. In the past century, the advancement

of computer data processing and remote sensing has helped geophysical parameter re-

searchers to record a large number of varied geophysical parameter data, resulting in

petabytes of data recorded per day [24]. This made a shift in the geophysical parameter

research community to move from a data-scarce to a data-rich environment [29].

The datasets used in geophysical parameters can be characterized according to two

properties:

1. The time interval of the data set: this specifies the interval between data

points during data collection. It can vary from very short intervals of a few seconds

or minutes, to medium intervals of one or more hours or days, to long and very

long intervals of one or more months or years. Shorter time intervals provide more

fine-grained information of variations in a given parameter, whereas longer time

intervals provide a better overview of long-term trends in the data.

2. The space dimensionality of the data set: This specifies the number of di-

mensions of each time point where:

(a) 1D data means that all data points in the data set were collected at a static

known location, which often comes from e.g. meteorological stations.

(b) 2D data means that the data point associated with each time point is a

2D structure of data values, where the two dimensions implicitly specify the

location on a 2D grid of a given data value recording, such as longitude and

latitude. This is common with satellite images and radar.

(c) 3D data is similar to 2D data, with a third spatial dimension that specifies e.g.

height/depth. This is common with datasets collected by means of LiDAR.

As an example, Figure 1.1 represents a map of 2D precipitation data on a daily time

interval from the National Center for Environmental Prediction (NCEP) dataset [15].

The two properties mentioned above i.e. time interval and space dimensionality directly

shape and influence the methodology used in generating a forecasting model, right from

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 3

Figure 1.1: Satellite precipitation images an image from the NCEP dataset [15].

the pre-processing phase up to creation of the predictive model [24]. A wide variety

of features can be used in geophysical parameter forecasting and prediction such as

previous lags, and climate indices. [4, 9, 16, 17, 25, 26, 30, 41, 43].

In general, the use of machine learning (ML) towards the creation of predictive models for

geophysical parameter forecasting has received increased attention in research. Figure

1.3 shows the progress in the usage of ML towards geophysical parameter forecasting

[2]. The graph clearly demonstrates a consistent increase in the number of research

papers produced, year-on-year from 2010 onwards. This demonstrates the importance

and relevance of this field.

The exponential increase in the use of ML towards geophysical parameter forecasting can

be attributed to the availability of data, the abundance and increase in computational

resources and significant advances in ML frameworks. ML is one of the approaches that

scientific communities have utilized extensively to model large complex datasets in a

variety of fields, which includes physical geography.

The ML tools used in geophysical parameters forecasting can be categorized into two

broad types:

1. Deep learning tools: Deep learning tools have consistently been shown to per-

form well on very large data sets typical of datasets with short and very short time

intervals. Furthermore, the ability of deep learning tools to perform automatic fea-

ture selection and reduction on high-dimensional data with a large number of fea-

tures is another advantage [18]. The tools used include Recurrent Neural Networks

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 4

Figure 1.2: The growth of machine learning for modeling geophysical parameters [2].

(RNNs) in [32, 38], convolutional neural networks (CNNs) in [5, 6, 31, 32, 48], and

various combinations between the two techniques in [3, 7, 23, 36–40, 42, 44].

2. Classical ML tools: These tools are more often used with small-to-medium

sized data sets, typical of data sets with medium or long time intervals, accom-

panied with manual or auto feature selection using external techniques such as

Principal Components Analysis (PCA) [12–14, 31, 33, 47]. The ML tools used in

the literature vary from simple models like multivariate linear regression (MLR)

[8, 9, 14, 26], to more advanced models like support vector machines (SVMs) and

random forest (RF) in [1, 11, 14, 28, 34, 35, 46].

The accuracy and effectiveness of ML tools is still under debate in the literature [10].

To elaborate on this point: there is a tendency in the literature to make use of more

sophisticated methods such as neural networks, without first investigating simpler meth-

ods. This is problematic as neglecting the use of simpler baselines makes it difficult to

objectively determine the true effectiveness of ML tools relative to simpler baselines.

A recent study carried out an investigation of several papers that used RNNs for top-

n-recommendation tasks, and the study showed that a simple model using k-Nearest

Neighbours (kNNs) outperforms several of the more sophisticated models [10]. Another

study discussed two methods based on neural networks in the field of information re-

trieval. The results showed that the proposed methods do not significantly outperform

simpler baseline methods [27].

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 5

Therefore, this research closely investigates the ability of several ML tools such as SVMs,

extreme gradient boosting (XGB) and multilayer perceptron (MLP), to predict several

geo-physical parameters relative to simple statistical estimators. Several features are also

investigated in terms of their effectiveness on prediction success. Features investigated

include global features such as the use of gaussian mixture models (GMMs), and local

features such as previous lags of geophysical parameters used. The features are detailed

later in this thesis.

1.2 Research Question

The main research question posed in this research is phrased as follows: “How effective

is ML at predicting geophysical parameter data, given the spatio-temporal aspect of this

kind of data?”

This research question can be broken down into the following sub-questions:

1. What are the evaluation and pre-processing pitfalls when it comes to spatio-

temporal parameter forecasting?

2. What features/parameters affect the prediction success of the geophysical param-

eter prediction models?

3. How do various ML techniques compare in terms of geophysical parameter fore-

casting success?

4. How do the various ML techniques compare to appropriate simple baselines?

1.3 Research Objectives

The following research objectives will be used to obtain answers to the research sub-

questions mentioned in the previous section, the answers to which will culminate in an

answer to the main research question posed in the previous section:

1. Conduct a detailed literature survey on geophysical parameter forecasting, to show

how related and relevant research studies approach the problem of geophysical

parameter forecasting, with a focus on data sets, data pre-processing, evaluation

and baselining strategies.

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 6

2. Investigate, use and compare various appropriate features of varying complexity

for geophysical forecasting. The features that can be considered include global

features such as the use of GMMs, and local features such as pixel values.

3. Select and train several ML models on the features selected in the previous objec-

tive to forecast geophysical parameters.

4. Compare the prediction success of the trained ML models.

5. Develop appropriate baselines and compare the trained models to the baselines, in

order to put the success of the more sophisticated trained models into perspective.

1.4 Thesis Structure and Outline

Chapters 2–5 of this thesis takes the form of a series of peer-reviewed double-blind pub-

lications with the researcher as first author in all of these publications. The publications

include two journal papers, one International conference paper and one book chapter

that have either been published or have been accepted for publication at the time of

writing, through which the objectives set out in this chapter were progressively met and

the research sub-questions set out in this chapter, answered.

Each paper is self-contained and provides a complete set of information. This includes

introduction and background, related work, implementation, results and conclusions, as

relevant in each case. The formatting of each paper is in line with the requirements of

the publishing outlet to which it was submitted for publication.

Figure 1.3: Summary of the mapping between the research objectives (labelled Obj1–
Obj5) and the thesis chapters (labelled CH2–CH5), showing the chapter(s) that address

each objective.

.Further details on each of the papers which form Chapters 2–5 are provided below,

specifically pointing out which research objective(s) each paper addresses, and this in-

formation is visually summarized in Figure 1.3, as well as pointing out which research

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 7

Figure 1.4: Summary of the mapping between the research sub-questions (labelled
Q1–Q4) and the thesis chapters (labelled CH2–CH5), showing the chapter(s) that ad-

dress each sub-question.

sub-question(s) each paper addresses, and this information is visually summarized in

Figure 1.4. This will form the basis on which to conclude the thesis in Chapter 6 by

answering each of the research sub-questions, culminating in an answer to the main

research question set out in Section 1.2.

The following sub-sections 1.4.1–1.4.5 describe each of the papers, providing overviews

of each study and pointing out which research objectives/sub-questions are addressed,

and the contributions that are made in each case.

It should be noted that the studies in Chapters 3–5 are similar in methodology whereby

in each case several ML techniques coupled with several features were trained to predict

one or more geophysical parameters, and the final models were compared to appropriate

simple baselines. Therefore, in general, the following contributions are common for these

papers:

• In line with research objective 2 and providing insight into research sub-question

2, the use and comparison of several features of varying complexity for geophysical

parameter prediction.

• In line with research objectives 3 and 4 and providing insight into research sub-

question 3, the use and comparison of several commonly used ML techniques for

geophysical parameter prediction.

• In line with research objective 5 and providing insight into research sub-question

4, the development of appropriate simple baselines to which the ML models were

compared.

Having noted these contributions, they will be omitted in the subsections below for the

sake of brevity.

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 8

1.4.1 Chapter 2

The study in this chapter has been accepted for inclusion in the book titled ”Empowering

Artificial Intelligence in Data Science” that will be published by Springer. The study in

this chapter looks at related work in the literature, focusing on geophysical parameter

prediction implementations, with a focus on rainfall which is one of the most prominent

geophysical parameters. It demonstrates the methods used in the literature, including

data sets, pre-processing techniques, right through to ML models used, and evaluation

and baselining strategies. This chapter aims to meet research objective 1 in order to

provide an answer to research sub-question 1.

The contributions of the study in this chapter can be summarised as follows:

• A systematic review of 66 papers, which focuses the use of machine learning for

rainfall forecasting.

• The survey provides researchers with crucial awareness of the different pitfalls that

can lead to unrealistic and over-estimated model performance. These pitfalls apply

equally to rainfall as to any other geophysical parameter, and in fact time series

data prediction in general. Some of the key findings in this paper that can be

useful to other researchers in this field include the following:

– Many studies fail to utilize practices that prevent data leakage, leading to

overestimates of predictive accuracy. These practices are clearly highlighted

in the study.

– Many studies do not provide error bars for prediction errors, so that the

significance of differences between prediction methods cannot be determined.

– Many studies in the literature do not use simple baselines for comparison,

but rather compare several variations or architectures of more advanced ML

methods such as SVR or MLP. This makes it very difficult to objectively

gauge the performance of the proposed advanced techniques in real terms.

These contributions serve to meet research objective 1 and provide an answer to research

sub-question 1, whereby a large number of relevant papers were reviewed and examined,

and potential errors during the pre-processing and evaluation process that are made by

authors were pointed out, which this research tries to consider in subsequent chapters.

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 9

1.4.2 Chapter 3

The study in this chapter has been published in the proceedings of the 23rd Interna-

tional IEEE conference on information fusion (Fusion 2020) [18]. The study proposes,

implements and evaluates a class-based approach to rainfall prediction, with predictions

ranging from 1–30 days ahead. The study made regional predictions based on sequences

of daily rainfall maps of the continental US, with rainfall quantized at 3 levels: light or

no rain; moderate rain; and heavy rain.

In this initial study, one ML technique was used for prediction, namely, support vector

machine (SVM), in partial satisfaction of research objective 3. Furthermore, the trained

model was compared to a simple baseline developed in the study. The results showed

that predictions by the SVM in edge regions were less accurate than predictions obtained

by a simple untrained classifier. However, in central regions, the SVM outperformed

the untrained classifier. That paper provides initial evidence that SVMs applied to

large-scale precipitation maps can under some conditions, but not all, provide useful

information for predicting regional rainfall, but care must be taken to avoid pitfalls

pointed out in the study in Chapter 2.

In addition to the common contributions of Chapters 3–5 mentioned previously, the

study in this chapter additionally makes the following contributions:

• In line with research objective 2 and providing insight into research sub-question 2,

the chapter shows that increasing the complexity of the features does not necessar-

ily yield better prediction success, and in fact may contribute towards worsening

the prediction success.

• In line with research objective 5 and providing insight into research sub-question

4, the chapter shows that a very simple baseline in most cases outperforms SVMs.

Accordingly, the chapter helps to build towards research objectives 2, 3 and 5 towards

developing answers to research sub-questions 2 and 4.

1.4.3 Chapter 4

This chapter has been published as a paper in the MDPI Algorithms journal in 2020

[21]. This chapter proposes, implements and evaluates a machine-learning approach to

groundwater prediction with the following characteristics:

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 10

1. the use of a regression-based approach to predict full groundwater images based

on sequences of monthly groundwater maps.

2. the use and comparison of a range of local and global features, coupled with

strategic automatic feature selection using extreme gradient boosting.

3. the use of a multiplicity of ML techniques, namely, extreme gradient boosting,

multivariate linear regression, random forests, multilayer perceptron and support

vector regression, in line with research objective 3 and 4.

4. the development of a simple baseline to which the ML techniques were compared,

in line with research objective 5

In addition to the common contributions of Chapters 3–5 mentioned previously, the

study in this chapter additionally makes the following contributions:

• In line with research objective 2 and providing insight into research sub-question 2,

the paper proposes a novel global feature obtained from a GMM which ultimately

produced ensemble based models with lower error than the best models which

could be obtained with local geographical features.

• As a further confirmation of the findings in Chapter 3 in line with research ob-

jective 2 and providing insight into research sub-question 2, the study further

confirms that more complicated features do not necessarily contribute towards

better prediction success.

• In line with research objectives 3 and 4 and providing insight into research sub-

question 3, while all techniques were able to successfully predict groundwater one

month ahead, support vector regression consistently performed best in terms of

minimizing root mean square error and mean absolute error.

• In line with research objective 5 and providing insight into research sub-question

4, the study successfully showed that all ML techniques were able to out-perform

the simple baseline in this study for this geophysical parameter.

Accordingly, the study in the chapter helps to build towards research objectives 2–5

towards developing answers to research sub-questions 2–4.

1.4.4 Chapter 5

This chapter has been accepted for publication as a paper in the MDPI Atmosphere

journal in 2021 [19]. In line with research objectives 2–4 to provide insight into research

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 11

sub-questions 2–4, this study scrutinizes the effectiveness of five widely used ML algo-

rithms using several combinations of features towards the monthly prediction of several

geophysical parameters, namely, rainfall, humidity, evaporation, temperature and wind,

using monthly image data.

Furthermore, in line with research objective 5 the study compares the predictive accuracy

of the resulting trained ML models to that of simple baseline statistical estimators that

are computed directly from the training data.

Unlike other related studies, the study provides error bars for the relative performance

of different predictors based on jackknife estimates applied to differences in predictive

error magnitudes. The study also shows that the practice of shuffling data sequences

which was employed in some previous related studies leads to data leakage, resulting in

over-estimated performance.

Ultimately, the paper demonstrates the importance of using well-grounded statistical

techniques when producing and analyzing the results of ML predictive models.

In addition to the common contributions of Chapters 3–5 mentioned previously, the

study in this chapter additionally makes the following contributions:

• As a further confirmation of findings in previous chapters and in line with research

objective 2 and providing further insight into research sub-question 2, the study

confirms yet again that more complicated features do not necessarily contribute

towards better prediction success.

• As a further confirmation of the findings in Chapter 2, and in line with research

objective 5 and providing further insight into research sub-question 4, the study

shows that ML never significantly outperforms the statistical baseline for these

geophysical parameters, and under-performs for most feature sets, ranging from

simple to more sophisticated feature sets.

• Further to the previous contribution, the study provides error bars to measure the

relative performance of different predictors based on jackknife estimates applied

to differences in predictive error magnitudes, which has not been done in any re-

lated studies previously. This tool can help objectively and realistically determine

the effectiveness of ML models compared to the baselines, in line with research

objective 5 and providing further insight into research sub-question 4.

• Linked to the previous contribution, the study also clearly shows that data leakage,

which is regularly to be found in related studies, can lead to over estimation in

model performance.

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 12

Accordingly, this culminating study in this chapter helps to finalize research objectives

2–5 towards developing final answers to research sub-questions 2–4.

1.4.5 Chapter 6

This chapter concludes the thesis by providing clear answers to the research sub-questions,

thereby providing an answer to the main research question posed in this chapter. The

chapter closes with several directions for future work.
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Abstract. Research on rainfall prediction contributes to different fields
that have a huge impact on our daily life. With the advancement of
computer technology, machine learning has been extensively used in the
area of rainfall prediction. However, some papers papers suggest that
applications of machine learning in different fields are deficient is some
respects. This chapter performs a review on 66 research papers that use
machine learning tools to predict rainfall. The papers are examined in
terms of the source of the data, output objective, input features, pre-
processing, model used, and the results. The review shows questionable
aspects present in many studies. In particular, many studies lack a base-
line predictor for comparison. Also, many references do not provide error
bars for prediction errors, so that the significance of differences between
prediction methods cannot be determined. In addition, some references
utilize practices that permit data leakage, leading to overestimates of
predictive accuracy.

Keywords: forecasting, short and long term data, geophysical, deep
learning, sequence prediction, data leakage, baselining, error bars, shuf-
fling, seasonality.

1 Introduction

Natural processes on Earth can be classified into several categories, including
hydrological processes like storm waves and groundwater; biological processes

? E.A.H. acknowledges financial support from the South African National Research
Foundation (NRF CSUR Grant Number 121291 for the HIPPO project) and from
the Telkom-Openserve-Aria Technologies Center of Excellence at the Department of
Computer Science of the University of the Western Cape.
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like forest growth; atmospheric processes like thunderstorms and rainfall; human
processes like urban development; and geological processes like earthquakes. The
field of physical geography seeks to investigate the distribution of the different
features/parameters that describe the landscape and functioning of the Earth
by analyzing the processes that shape it. These features/parameters have been
referred to as geophysical parameters in the literature [37].

Rainfall is a key geophysical parameter that is essential for many applications
in water resource management, especially in the agriculture sector. Predicting
rainfall can help managers in various sectors to make decisions regarding a range
of important activities such as crop planting, traffic control, the operation of
sewer systems, and managing disasters like droughts and floods [32]. A number
of countries such as Malaysia and India depend on the agriculture sector as a
major contributor to the economy [32, 58] and as a source of food security. Hence,
an accurate prediction of rainfall is needed to make better future decisions to
help manage activities such as the ones mentioned above.

Rainfall is considered to be one of the most complicated parameters to fore-
cast in the hydrological cycle [32, 34, 52]. This is due to the dynamic nature of
environmental factors and random variations, both spatially and temporally, in
these factors [32]. Therefore, to address random variations in rainfall, several ma-
chine learning (ML) tools including artificial neural networks (ANN), k-nearest
neighbours (KNNs), decision trees (DT), etc. are used in the literature to learn
patterns in the data to forecast rainfall. In this chapter, a review of past work
in the area of rainfall prediction using ML models is carried out.

A number of related review papers exist as follows. The authors in [51] fo-
cused on reviewing studies that use ML for flood prediction, which closely resem-
bles rainfall prediction. The authors in [70] focused on the use of ML for generic
spatiotemporal sequence forecasting. Finally, the authors in [58] conducted a
survey on the use of ML for rainfall prediction: however the study was limited
to rainfall prediction in India.

This chapter serves as an addition to the field by surveying recent relevant
studies focusing on the use of ML in rainfall prediction in a variety of geographic
locations from 2016–2020. After detailing the methods used to forecast rainfall,
one of the important contributions of this chapter is to demonstrate various
pitfalls that lead to an overestimation in model performance of the ML mod-
els in various papers. This in turn leads to unrealistic hype and expectations
surrounding ML in the current literature. It also leads to an unrealistic under-
standing of the advancements in, and gains by, ML research in this field. It is
therefore important to clearly state and demonstrate these pitfalls in order to
help researchers avoid them.

The rest of this review is organized as follows: Section 2 discusses the method-
ology used to survey and review the literature which defines the discussion
framework used in all subsequent sections; Section 3 describes the data sets
used; Section 4 provides a description of the output objective in the various
papers; Sections 5 – 7 describe the input features used, common methods of pre-
processing and the ML models used; Section 8 summarizes the results obtained
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in various studies; and Section 9 then provides a discussion of the procedures
used, specifically pointing out the pitfalls mentioned before towards obtaining
over-estimated and unrealistic results. The section that follows concludes the
paper.

2 Methodology

This chapter carries out an in-depth review of relevant literature to reveal the
different practices authors take to predict rainfall. The review covers several
aspects which relate to the input into, output from, and methods used in the
various systems devised in the literature for this purpose. The review specif-
ically focuses on studies that use supervised learning for both regression and
classification problems.

Google scholar was used to collect papers from 2016 to 2020, with the follow-
ing key words: (”machine learning” OR ”deep learning”) AND (”precipitation
prediction” OR ”rainfall prediction” OR ”precipitation nowcasting”). Almost
1240 results were obtained, and of these only supervised rainfall prediction pa-
pers that used meteorological data from e.g. radar, satellites and stations were
selected, while papers that used data from normal cameras e.g. photographs
were excluded. Even though this review focuses on the prediction of rainfall, the
methods used to achieve this can be extended and applied to other geophysical
parameters like temperature and wind. Hence, the conclusions and discussions
of this chapter can be adapted to other parameters.

The total number of reviewed papers are 66, which are a combination of
conferences and journal papers published from 2016–2020, except for one paper
[68] which was published in 2015 and is a seminal work in this field. Figure 1
shows the reviewed studies per year. Tables which summaries the reviewed paper
can be found in Appendices A and B.

Fig. 1. Pie chart showing proportions by publication year for papers in this review .
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Figure 2 shows the generic structure of supervised ML models. This structure
was used as a guideline to construct a set of questions used to systematically
categorize and analyze the 66 papers. The questions are as follows:

1. What data sets are used and where are they sourced?
2. What is the output objective in the various papers in terms of what the goal

of prediction/forecasting?
3. What input features are extracted from the data set(s) to be used to achieve

the output objective?
4. What pre-processing methods are used prior to classification/regression?
5. What ML models are used to achieve classification/regression towards the

output objective?
6. What results were obtained from the above-mentioned steps, and how were

they reported?

Fig. 2. Basic flow for building machine learning (ML) models [51]

These questions provide the framework for the rest of this paper. Sections
3–8 address questions 1–6 in sequence. Section 9 discusses the findings in the
previous six sections, and Section 10 provides conclusions.

3 Data Sets

This section provides a breakdown of the data sets used in the 66 studies sur-
veyed, based on the sources of the data sets, availability, and geographical loca-
tions where the data sets were collected.

Figure 3 (left) provides a breakdown of the studies based on the sources/availability
of the data sets used in those studies. About 75% of the studies used private data,
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sourced from meteorological stations of their prospective countries [60, 61, 84, 85,
82, 71, 55, 7, 27, 46, 38, 68, 72, 36, 6, 18, 75, 67, 78, 76, 69, 26, 16, 86, 28, 23, 20, 40, 62,
73, 4, 1, 63, 66, 8, 48, 10, 54, 2, 39, 31, 29, 80, 5, 19, 11, 14, 47, 79, 30, 49]. Most of these
data sets are not readily available for use. Only 10% of the studies use data
sourced from freely available sources such as Kaggle (www.kaggle.com), and the
National Oceanic and Atmospheric Administration (NOAA) [64, 15, 56, 83, 59,
22, 5]. The remaining 13% of studies in this review use data from both private
and publicly available sources [77, 81, 25, 17, 33, 12, 13, 41, 3].

Figure 3 (right) summarizes the geographical regions included in this review.
The continent of Asia accounts for around 68% of all studies [61, 81, 82, 46, 38, 68,
64, 69, 12, 13, 73, 4, 8, 48, 22, 41, 10, 29, 19, 11, 47, 79, 85, 17, 27, 33, 36, 18, 75, 67, 15,
78, 76, 26, 28, 80, 30, 7, 23, 40, 62, 63, 39, 49]. Of these, studies that focus on China
and India make up almost one quarter and one tenth respectively of all studies in
this review. The remaining Asian studies focus on countries such as Iran, South
Korea and Japan.

The rest of the chart is distributed as follows: the Americas make up 12.1%
of studies [77, 71, 72, 56, 83, 16, 86, 14]; Europe accounts for 9.1% [25, 6, 20, 66, 54,
3]; Australia comprises 6.1%; [55, 1, 2, 31], and the remaining 4.5% either involve
multiple regions, or involve the use of the whole global map [60, 59, 5].

Fig. 3. Pie chart of the percentage of data sets in this survey in terms of
source/availability (top) and geographical region (bottom).
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4 Output Objectives

The output objectives of rainfall forecasting studies can be analyzed in terms
of three factors: the forecasting time frame of the output; whether the output
is continuous or discrete; and the dimensionality of the output. The forecast-
ing time frame of the output specifies the time span of the forecast made, i.e.
hourly, daily, monthly etc. The output can also be discrete (e.g. classification into
“Rain”/“No Rain” classes), or continuous (e.g. predicting the quantity of rain),
or both. Finally, the output can be 1-dimensional (1D) in the form of a single
number or label representing a rainfall measure or category, or 2-dimensional
(2D) in the form of a geospatial map of rainfall measures or categories on a grid
of the geographical location under study.

In terms of the forecasting time frame, the studies can be broken down into
those that make long-term predictions and those that focus on making short-
term predictions. In this review, long-term prediction is defined as predictions
of one months up to a year ahead, while short-term prediction can be a few
minutes ahead (e.g. 5–15 minutes), up to one or more days ahead. Figure 4 (left),
shows the distribution of papers’ forecasting time frames. Of the 66 reviewed
papers, 30 papers (45%) make long-term predictions, the majority of which focus
on monthly forecasting [20, 40, 62, 73, 4, 1, 63, 66, 8, 48, 22, 41, 10, 54, 2, 39, 31, 29,
80, 5, 14, 11, 19, 47, 79, 49, 3]. Only two studies focus on seasonal forecasting [28,
23],while a single study aims towards yearly forecasting [30]. As for studies that
focus on short-term prediction, these are broken down nearly evenly between
daily [60, 61, 82, 25, 71, 55, 7, 33, 15, 56, 86, 12, 13], hourly [77, 84, 85, 81, 17, 27, 26,
83, 16, 59], and one or more minutes ahead [46, 38, 68, 72, 36, 64, 6, 18, 75, 67, 78,
76, 69].

In terms of the type of output i.e. discrete (classification) or continuous (re-
gression), Figure 4 (right) shows the distribution between the different output
types. The majority carried out regressions to obtain continuous output [28, 23,
20, 40, 62, 73, 4, 1, 63, 66, 8, 48, 22, 41, 10, 54, 2, 39, 31, 29, 80, 5, 14, 11, 19, 47, 79, 60,
61, 77, 84, 85, 81, 75, 78, 69, 26], while slightly more than one third carried out
classification into discrete classes [82, 25, 71, 55, 7, 17, 27, 46, 38, 33, 68, 72, 36, 64,
18, 67, 16, 59, 86, 12, 13, 30, 49, 3]. Only 3 studies applied both classification and
regression [6, 76, 83].

For studies that applied classification,mostly carried out binary classification
[82, 25, 71, 55, 7, 17, 27, 46, 38, 33, 68, 72, 36, 64, 18, 67, 59, 86, 12], with the major-
ity of these classified into “Rain”/“No Rain” classes. Relatively fewer studies aim
towards carrying out classification into multiple classes [33, 16, 13, 30, 49],varying
from three to five classes.

Finally, for the dimensionality of the output, 54 out of 66 studies produce 1D
output [28, 23, 8, 48, 22, 41, 10, 54, 2, 39, 31, 30, 49, 84, 85, 81, 82, 25, 71, 55, 3, 60, 61,
77, 7, 17, 27, 46, 38, 33, 56, 26, 83, 16, 59, 86, 12, 13], with the remaining 12 studies
producing a series 2D images as output [68, 72, 36, 64, 6, 18, 75, 67, 15, 78, 76, 69].
Of the studies with 2D output, all except one [15] involve short-term prediction
intervals of 10 minutes or less.
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Fig. 4. Pie chart of the percentage of data sets in this survey in terms of forecasting
time frame (top) and the discrete (classification)/continuous (regression) nature of the
prediction output (bottom).
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A connection between forecasting time frame and the discrete/continuous
nature of the output can be observed. In general, studies involving longer-term
predictions tend to make use of regression which produces continuous output,
whereas on short-term time frames, studies tend towards using classification that
gives discrete output. Specifically, 27 out of the 30 papers that focus on long-
term prediction carry out regression [28, 23, 20, 40, 62, 73, 4, 1, 63, 66, 8, 48, 22, 41,
10, 54, 2, 39, 31, 29, 80, 5, 14, 11, 19, 47, 79], and 23 of the 36 papers that focus on
short-term prediction carry out classification [82, 25, 71, 55, 7, 17, 27, 46, 38, 33,
68, 72, 36, 64, 6, 18, 67, 83, 16, 59, 86, 12, 13]. This relation may be explained by
the fact that longer-term studies usually aim at predicting averages over several
days (up to a month), while short-term studies predict instantaneous conditions.
Multi-day averaged data assumes a continuous range of values, while in instan-
taneous rainfall datasets most values are null. It follows that classification into
rain/no rain is useful for short term, but not for long-term prediction.

5 Input Features

In order to make future predictions, studies make use of data from one or more
time steps (called “lags” or “time lags”) as input features to predict one or more
future lags. For example, to predict rainfall at lag T , two previous time lags
(T − 1) and (T − 2) may be used.

The actual input features in each lag vary across studies. In general, the
input features used in the studies in this review were found to be of two types:
1D input features in which each time lag in the data set represents one or a set
of geophysical parameters that have been collected at static known locations i.e.
meteorological stations; and 2D input features in which each time lag in the data
set is a 2D spatial map of values representing rainfall in the geographical area
under review, usually collected by satellite or radar.

1D input features used include geophysical parameters such as tempera-
ture, humidity, wind speed and air pressure [62, 4, 8, 22, 3, 55, 46, 38, 43, 80]. In
a smaller number of cases,climatic indices such as the Pacific Decadal Oscilla-
tion may also be used [28, 1, 41, 30, 77]. Studies that use 1D input features tend
to use a relatively small number of overall input features, ranging from 2–12
features used for prediction.

With 2D input features, one or more images are taken as input features,
depending on the number of time lags used as input e.g. two time lags used as
input implies that two images are used as input. The number of time lags used
as input is henceforth referred to as the “sequence length”.

There is no rule of thumb for how many time lags should be used as input, and
this is mostly selected arbitrarily, and in fewer cases via trial and error. The vast
majority of the studies under review select a fixed sequence length. The sequence
length can be viewed as a hyper-parameter that affects the prediction outcome,
but the optimization of this hyper-parameter is not investigated in the studies
under review. The studies under review were found to be more focused on the
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machine learning component, mostly at devising new deep learning architectures,
than selecting and tuning other aspects of their systems.

The most common sequence lengths used are 5 frames [72, 36, 64, 78] and 10
frames [72, 36, 64, 78]. Other sequence lengths are also used, such as 2 [72], 4 [64],
7 [78] and 20 [36].

Studies that use 2D input features tend to use a relatively large number
of input features. This can be attributed to the fact that the feature vectors
produced are associated with one or more 2D images, resulting in vectors of
size (Image width × Image height × Sequence length). Overall, the number of
features can grow as high as several thousands.

Typically, 1D or 2D inputs are used to predict 1D or 2D outputs, respec-
tively. As noted in the previous section, longer-term predictions tend to make
1D predictions, so it follows these studies also tend to use 1D data [28, 23, 20,
40, 62, 73, 4, 1, 63, 8, 48, 22, 41, 10, 54, 2, 39, 29, 80, 14, 11, 19, 47, 49, 3], while those
that make shorter-term predictions tend towards the use of 2D data [68, 72, 36,
64, 6, 18, 75, 67, 15, 78, 76, 69, 13]

6 Input Data Pre-processing

Before ML tools are applied to make predictions on the available data, the in-
put data is usually pre-processed to reformat the data into a form that will
make training of, and prediction by, the ML tool(s) easier and faster. The pre-
processing techniques usually applied in geophysical parameter forecasting can
be broken down into three broad categories, namely data imputation; feature
selection/reduction; and data preparation for classification. The following sub-
sections describe these categories, as well as their application in the papers in
this review.

6.1 Data Imputation

Data sets are regularly found to have missing data entries, which is caused by
a range of factors such as data corruption, data sensor malfunction etc. This
is a serious issue faced by researchers in data mining or analysis, and needs to
be addressed as part of pre-processing before feature selection/preparation and
training.

The techniques used to infer and substitute missing data are collectively
referred to as data imputation techniques. Data imputation is challenging and
is an on-going research area. In the papers in this review, it was found that
very little focus was placed on this problem, with most of the studies making
use of simple statistical techniques such as averaging to interpolate missing data
entries [73, 31, 14, 11, 82, 55]. While not used in the papers in this review, more
advanced data imputation techniques exist beyond the use of simple statistics,
such as the use of ML to impute the data. The interested reader may refer to
[74, 65, 57].
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6.2 Feature Selection/Reduction

Feature selection/reduction aims to determine and use salient features in the
data, and disregard irrelevant features in the data. This helps to reduce train-
ing time, decrease the model complexity and increase its performance. In the
papers in this review, it is observed that feature selection is carried out either
automatically or manually.

For automatic feature selection, various algorithms are used to determine the
most salient features in the data. The most common method used in the papers
in this review involved the use of deep learning techniques such as ANNs and
convolutional neural networks (CNNs), to select/reduce features automatically,
most especially when high-dimensional data such as radar and satellite images
was used [68, 72, 36, 64, 18, 67, 15, 78, 76, 69, 59, 86, 12, 13, 31, 79]. The use of deep
learning techniques was found to be much more common with short-term data
sets which are generally much larger, therefore making it possible to achieve
convergence on deep networks. Another category of ML tools used for automatic
feature selection includes ensemble methods like random forests (RFs) which
automatically order features in terms of importance, as used in [22, 11, 3, 77, 81,
82, 25, 71, 7]. Finally, principle components analysis (PCA) has also been used
to reduce features in [28, 60, 85, 25, 27, 56].

As regards manual feature selection, researchers may either use prior expe-
rience and trial and error to manually select relevant features such as in [23, 20,
23, 20, 40, 73, 63, 66, 8, 54, 31, 29, 14], or use correlation analysis methods such as
auto correlation to indirectly inform the manual feature selection process as in
[28, 62, 1, 48, 22, 41, 2, 39, 30]. Where images are used, image cropping and resiz-
ing is applied to, respectively, dispose of irrelevant/static image segments and
reduce the number of features [68, 72, 36, 64, 18, 67, 15, 78, 76, 69].

Manual feature selection is much more common with long-term data sets,
with very few long-term prediction studies in this review making use of automatic
feature selection methods. This is partly attributed to the relatively smaller
amount of data available in these sets, as mentioned before, which makes it
challenging, or even rules out, the application of e.g. deep learning methods for
automatic feature selection.

The rotation of the earth around the sun can cause data to exhibit a seasonal
behavior on an annual basis i.e. they exhibit annual periodicity [24, 9]. This is
most prominent in long-term data sets and less prominent in shorter-term data
sets. Addressing seasonality in long-term data sets is critical when traditional
time series models are used, since these models assume stationarity [24, 53], while
seasonality and trends in general makes time series non-stationary. Converting
data from a non-stationary to a stationary state involves is a process of gener-
ating a time series with statistical properties that do not change over time. For
further information about seasonal and non-stationary data sets and the conver-
sion of non-stationary to stationary time series, the interested reader is referred
to [53]. Another way to deal with seasonality is the inclusion of features that
exhibit seasonal behavior, such as the usage of the same month previous year.
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Figure 5 shows the methodologies used in the long-term prediction studies in
this review. 11 of the 30 long-term papers (37%) did not address seasonality in
the data [28, 23, 62, 63, 8, 22, 41, 47, 49, 3, 30],while the remaining 19 papers used
some means of addressing seasonality in the data [11, 4, 66, 80, 48, 10, 14, 20, 40,
73, 1, 54, 2, 39, 31, 29, 5, 19, 79].

In the papers that addressed seasonality, four unique approaches were identi-
fied, and some were combined with others. The first approach involves including
features from lag T − 12 (same month previous year) in the feature set used
to predict rainfall at month T [48, 10, 14, 20, 40, 73, 1, 54, 2, 39, 31, 29, 5, 19, 79].
A less common approach is to use the index of the current month in the year
(1=January, . . . , 12=December) as an input feature [31, 10].

Alternative approaches include performing time series decomposition, either
using singular spectrum analysis as in [11] or wavelet transformation as in [4, 80,
66]. One paper [10] combined time series decomposition using singular spectrum
analysis with the inclusion of features from lag T − 12 in the feature set. This
has been included in the segment labelled “Combination” in Figure 5.

The final approach used to address seasonality takes the form of data de-
seasonalization by subtracting the monthly averages from the data as in [19,
48]. All of the papers in this review that used this approach combined this
subtraction with the first approach i.e. including features from lag T − 12 in the
feature set. These two papers have also been included in the segment labelled
“Combination” in Figure 5.

Fig. 5. Methods used to account for seasonality in studies with long-term data, by
percentage.
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6.3 Data Preparation for Classification

When attempting to carry out classification into discrete classes, it is either
necessary to use a data set in which the desired output variable is discrete, or to
convert a desired continuous-valued output variable into discrete classes. This
involves setting the desired number of classes, which is usually done manually and
arbitrarily, followed by determining the range of values represented by each class
i.e. determining the thresholds that divide the continuous scale into the desired
classes. Finally, where the number of instances across classes is imbalanced, it is
necessary to balance them.

In the papers in this survey that carried out classification, most made use of
data that was continuous, yet very few provide details on the process used to
convert from a continuous to a discrete scale. Select studies in this survey that
provide information about their data preparation process are described below.

In converting from continuous to discrete data, after manually specifying the
number of classes (which has been explained in Section 4), studies automate the
selection of the class thresholds using clustering tools, specifically k-means and
k-medioids [16, 49, 3]. Another approach taken is to manually determine suitable
thresholds, by performing a series of experiments to compare various threshold
values [69]. To address any resulting class imbalances, researchers may perform
random down-sampling to obtain an equal sample distribution across classes as
in [3, 55, 46].

7 Machine Learning Techniques Used

The studies in this survey made use of a wide range of ML techniques which can
be subdivided into two main groups: “classical” techniques such as multivariate
linear regression (MLR), KNN ANNs, SVMs, and RF; and modern deep learning
methods such as CNNs and Long-Short-Term-Memory (LSTM). It was observed
that classical ML models tended to work with 1D data from meteorological
stations, such as in [45, 28, 23, 4, 61, 81, 62] for short-term data and [28, 20, 40,
62, 1, 66, 48, 22, 47, 30, 3] for long-term data.

Some papers use hybrid models that combine two or more approaches. A
popular hybrid approach is to combine ML with optimization tools such as
genetics and particle swarm optimization to optimize hyper-parameters [47, 10,
48, 26, 27]. Multiple ML techniques are combined in [19, 71, 60], and ML is used
with ARIMA in [61].

Deep learning models usually requires huge datasets to avoid overfitting on
the data, which explains their popularity among short term data sets, especially
those using 2D data [68, 72, 36, 64, 6, 18, 75, 67, 15, 78, 76, 69, 56, 26, 83, 16, 59, 86,
12, 13]. 2D data in particular has a huge feature space, which requires authors
to implement automated feature reduction models like CNNs [83, 16, 59, 86, 12].

In order to accommodate the time dimension in the data,many researchers
try to adapt time series models such as LSTMs for 1D data in [39, 29, 80, 5,
14, 84, 59]. For 2D data, models combining CNNs with LSTMs (designated as
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ConvLSTMs models) were first used in in[68] in 2015, and subsequently several
variations have been implemented [72, 36, 64, 6, 18, 75, 67, 15, 78, 76, 69].

8 Reporting of Results and Accuracy Measures

Several different metrics are used in the literature to measure the performance
of the ML models according to the type of the problem. In classification prob-
lems, authors tend use metrics such as precision, recall, and accuracy [30, 49, 3,
82, 25, 71, 55, 17, 46, 38, 33, 72, 83, 16, 59, 86, 12]. If the data is not balanced then
f1-score is used rather than the accuracy, since accuracy does not take the imbal-
ance between the classes into account [82, 25, 71, 55, 72, 59]. For sequence clas-
sification prediction, other metrics are used such as the critical success (CSI)
[64, 6, 18, 75, 67, 76, 69]. For continuous outputs, then the mean absolute error,
and the root mean squared error are the most commonly used metrics in the lit-
erature [60, 61, 77, 84, 85, 81, 28, 23, 20, 40, 62, 73, 4, 1, 63, 66, 8, 48, 22, 41, 10, 54, 2,
39, 31, 29, 80, 5, 14, 11, 19, 47]

A direct comparison of these results across different papers is a nearly im-
possible task,since each paper uses its own models, pre-processing, metrics, data
sets and parameters. However, individual authors frequently compare multiple
algorithms, and there are a few ML algorithms that stand out as being most
frequently mentioned as better performers. ANNs and deep learning are most
frequently mentioned as best performing models, for both long-term prediction
[28, 40, 4, 1, 63, 8, 2, 79, 5, 39, 31, 29, 14, 19, 47] and especially for short-term pre-
diction [68, 72, 36, 64, 6, 18, 75, 67, 15, 78, 76, 69, 56, 26, 83, 16, 59, 86, 12, 13, 84, 85,
25, 38].

Other algorithms mentioned as best performers are SVMs in 6 studies [81, 46,
17, 27, 66, 48]. ensemble in [77, 82, 62, 54, 80, 3], logistic regression in three studies
[55, 7, 30] and KNNs in two studies [33, 20].

9 Discussion

The above sections clearly demonstrate that there is a robust, growing literature
on rainfall prediction, which covers an extremely wide variety of time-scales,
features used, pre-processing techniques, and ML algorithms used. From a high-
level perspective, the field can be divided into short versus long time scales (time
intervals of a one day or less, versus intervals of a month or more), which tend
to have divergent characteristics.

Short term studies typically rely on huge datasets, and require deep learning
applied to large feature sets to find hidden patterns in those datasets. On the
other hand, long term studies rely more on pre-processing methods such as
feature selection, data imputation, and data balancing in order to make effective
predictions. ANNs and deep learning seem are becoming increasingly prevalent
in long term studies as well as short term: since 2018, 7 of 23 papers on long-term
prediction utilized deep learning tools.
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There are reasons to regard the trend towards more complicated models with
skepticism. Some recent studies have shown that much simpler models such as
knns can sometimes outperform advanced ML techniques like RNNs, [42, 35, 44,
20]. Similar findings have been reported for other ML applications, such as the
top n recommendation problem [21].

These results underscore the importance of providing simple but statistically
well-motivated baselines to verify whether ML truly is effective in improving
predictive accuracy. However, many papers do not provide simple baselines, but
rather compare several variations or architectures of more advanced ML methods
such as SVR or MLP [50, 11, 47, 14, 60, 17, 27, 46, 26, 83, 59, 12, 13]. Of the total
reviewed papers, almost half (48.2%) of papers did not supply simple baselines.
Of those papers that did supply baselines, a variety of methods was used. For
short-term image data, the previous image is frequently used as an untrained
predictor for the next image [75, 67, 76, 69]. For monthly data, some papers use
MLR based on multiple previous lags [19, 28, 20, 40]; while same-month averages,
though statistically well-motivated, are used much less frequently [80].

Besides the issue of baselining, the use of error bars is essential for comparison
purposes, as it highlights whether the improvement obtained by the models are
significant. Unfortunately most of the literature in ML does not provide error
bars around the measured metrics. In the case of our reviewed literature shows
that 88% of the papers did not give error bars.

A final issue of concern is data leakage. Data leakage refers to allowing data
from the testing set to influence the training set. Data leakage occurs during the
pre-processing of the data, and can take various forms as follows:

– Random shuffling, which involves choosing sequences from a common data
pool for both training and testing:

– Imputation, which involves filling missing records using statistical methods
on the entire data set (including both training and testing)

– De-seasonalization which utilizes the monthly averages from the entire data
set.

– Using current lags, e.g. using temperature at a time T to predict rainfall
at the same time T . (Depending on the application, this may or may not
constitute data leakage)

– Combination: Which uses two of the above mentioned techniques.

Figure 6, shows the reviewed papers in terms of data leakage. The top chart
focuses on long term data, where the bottom focuses on short term data. We
mentioned previously that long term data often undergoes more pre-processing
than short term data. This reflects on the graph, as leakage-producing methods
are more than twice as common for long term as for short term. Random shuffling
was performed in [28, 40, 41, 10, 29, 30, 49, 3] for long term data,and in [77, 27, 46,
56, 26, 16] for short term data. Data imputation was performed in [73, 31, 14, 11]
for long term data, and in [55] for short term data. Faulty de-seasonalization
was carried out in [48] for long term data. Using the current lags was seen only
implemented in [62]. Multiple leakage issues (denoted as “combination” in the
figure) were observed in [19, 82].

http://etd.uwc.ac.za/ 
 



Fig. 6. Percentage of papers which introduced data leakage during pre-processing, for
long term data (top) and short term data (bottom).
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10 Conclusions

In the area of rainfall prediction, 66 relevant papers are reviewed, by examining
the data source, output objective, input feature, pre-processing methods, models
used, and finally the results. Different pre-processing like random shuffling used
in the literature suggests that in some cases model performance is inaccurately
represented. The aim of the survey is to make researches aware of the different
pitfalls that can leads to unreal models performance, which does not only apply
for rainfall, but for other time series data.

A Appendix: List of abbreviations

– ML Machine learning
– AD Author defined
– ANNs Artificial neural networks
– CNNs Convolution neural networks
– LSTMs Long short term memory
– ConvLSTMs Convolutions layers with Long short term memory
– RF Random forest
– SVMs Support vector machines
– DT Decision tress
– XGB Extreme gradient boosting
– LogReg Logistic regression
– MLR Multi linear regression
– KNNs K-nearest neighbour
– RMSE Root mean square error
– MAE mean absolute error
– CA Classification accuracy
– pre precision
– f1 f1-score
– PACF Partial autocorrelation function
– ACF Autocorrelation function
– PCA principle component analysis
– NOAA National Oceanic and Atmospheric Administration
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B Appendix: Summary Tables for References

This appendix contains four tables which summarize the findings for the reviewed papers for long term data 1, 2, and short
term data 3, 4. Tables 1 and 3 contain information regarding the source, period, region, input, output; while Tables 2 and4
include information about the pre-processing tools, data leakage, and the ML used.

No. Source Period Region Input Output Ref
1 China Meteorological Administration

(CMA)
1916-2015 China 6 climatic indices Seasonal regression [28]

2 Indian Institute of Tropical Meteorology
(IITM)

1817-2016 India 8 past lags Seasonal regression [23]

3 Romanian rainfall 1991-2015 Romania 12 past lags Monthly regression [20]
4 Rainfall from the India Water Portal 1901-2002 India 11 climatic parameters Monthly regression [40]
5 Tuticorin meteorological station 1980-2002 India Four climatic parameters Monthly regression [62]
6 Malaysian Department of Irrigation and

Drainage
1965-2015 Malaysia 10 past lags Monthly regression [73]

7 National Cartographic Center of Iran (NCC) 1996-2010 Iran Four climatic parameters Monthly regression [4]
8 Royal Netherlands Meteorological Institute

Climate Explorer
2004-2014 Australia Seven climatic indices Monthly regression [1]

9 Indian water portal 1901-2000 India four climatic parameters Monthly regression [63]
10 Serbian meteorological stations 1946-2012 Serbia past rainfall lags Monthly regression [66]
11 Iran meteorological department 2000-2010 Iran Two Climatic parameters Monthly regression [8]
12 Iran meteorological department 1990-2014 Iran four past lags Monthly regression [48]
13 CHIRPS, and NCEP-NCAR Reanalysis 1918-2001 Indus basin 5 climatic features Monthly regression [22]
14 World AgroMeteorological Information Ser-

vice (WAMIS) and NOAA
1966-2017 South Korea 11 climatic indices Monthly regression [41]

15 Malaysian Department of Irrigation and
Drainage

1950-2010 Malaysia 6 past lags and time stamp Monthly regression [10]

16 Turkish stations 2007-2016 Turkey 3 rainfall lags Monthly regression [54]
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17 Australian stations 1885-2014 Australia 10 climatic indices and parame-
ters

Monthly regression [2]

18 Indian Meteorological Department 1871-2016 India 12 past lags Monthly regression [39]
19 Bureau of Meteorology (BOM), Royal

Netherlands Meteorological Institute Cli-
mate, more

1908-2012 Australia 43 climatic indices and parame-
ters

Monthly regression [31]

20 Vietnam’s hydrological gauging 1971-2010 Vietnam 12 features Monthly regression [29]
21 Global Precipitation Climatology Center

(GPCC)
1901-2013 China 6-9 climatic indices and param-

eters
Monthly regression [80]

22 Precipitation from NCEP 1979-2018 GLOBAL 164 past lags Monthly regression [5]
23 National Center of Hydrology and Meteorol-

ogy Department (NCHM)
1997-2015 Bhutan 6 climates parameters Monthly regression [14]

24 Taiwan Water Resource Bureau 1958–2018 Taiwan 3 past lag Monthly regression [11]
25 Instituto de Hidroloǵıa, Meteroloǵıa y Estu-

dios Ambientales (IDEAM) of Colombia
1983-2016 Colombia 6 past lags Monthly regression [19]

26 Islamic Republic of Iran Meteorological Or-
ganization (IRIMO)

1981- 2012 Iran 5 past lags Monthly regression [47]

27 Pluak Daeng Station in Thailand 1991-2016 Thailand 346 climatic indices and param-
eters

Monthly regression [79]

28 National Climate Center of China Meteoro-
logical Administration (NCC-CMA)

1952-2012 China 84 climatic indices Yearly Classification [30]

29 The Department of Agricultural Meteorol-
ogy Indira

2011-2013 India five climatic parameters Monthly Classification [49]

30 meteorological stations of the island of
Tenerife and NOAA databases

1976 - 2016 Tenerife Is-
land

12 climatic indices and parame-
ters

Monthly Classification [3]

Table 1: Data sources, spatio-temporal coverage, inputs and out-
puts, and references for long-term predictive studies
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No. Pre-processing Data leakage ML used Ref
1 Normalization, Random shuffling, feature

correlation
Random shuffling PCA-ANN, PCA-MLR [28]

2 Normalization no Knns, ANNs, ELM [23]
3 Windowing no Knns, ARIMA, ANNs [20]
4 windowing, random shuffling Random shuffling ANN, ARMA, LR [40]
5 Data imputation, noise removal, correlation

analysis
Using current lags DT, ANNs [62]

6 Normalization, and data imputation Imputation ANNs, ARIMA [73]
7 Normalization, Decomposition no WTANN, ANNs [4]
8 features correlation no ANNs, POAMA [1]
9 Normalization no Different ANNs [63]
10 N/A no ANN, WT-SVM, GP [66]
11 Normalization, optimization no AD-MLP, AD-SVM, DT [8]
12 correlation analysis (PACF), square

root transformation, standardization,
de-seasonalization

De-seasonalization SVR, AD-SVR, more [48]

13 feature correlation, random shuffling no MLP, SVR, MLR, RF, Knns [22]
14 feature correlation, random shuffling Random shuffling ANNs [41]
15 Decomposition Random shuffling AD-MLP [10]
16 normalization no Ensemble method, SVM,

ANNS, more
[54]

17 Feature selection no ANNs, POAMA [2]
18 Feature correlation, windowing N/A LSTM, RNN [39]
19 Data imputation, normalization Imputation 1D-CNN, MLP, baseline

(ACCESS-S1)
[31]

20 random shuffling Random shuffling MLP, LSTM, SNN [29]
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21 Normalization, Wavelet no MLR, MLP, LSTM, SVMs,
ConvLSTMs, ensemble meth-
ods

[80]

22 greyscale, windowing no LSTM, ConvNet [5]
23 Normalization, data imputation Imputation MLR , AD-LSTM, LSTM, MLP [14]
24 Decomposition Imputation UD-RF, RF, UD-SVR, SVR [11]
25 Imputation, de-seasonlization Imputation, de-

seasonalization
3 AD-ANNs models [19]

26 Normalization no ANNs, AD-ANNs, AD-gene ex-
pression programming

[47]

27 N/A no DNNs [79]
28 feature correlation, feature reduction Random shuffling MLogR [30]
29 Clustering Random shuffling GPR, DT, NB [49]
30 Random Down sampling, feature correlation Random shuffling XGB, RF, more [3]

Table 2: Pre-processing, data leakage characteristics, machine
learning algorithms used, and reference numbers for long term pre-
dictive studies
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C

No. Source Period Region Input Output Ref
1 Indian Statistical Institute 1989-1995 Multiple re-

gions
10 climatic parameters Daily Regression [60]

2 Vietnamese stations 1978-2016 Vietnam previous lags Daily Regression [61]
3 Meteoblue Data , MODIS, and more 2012-2014 Colombia 12 climatic indices and parame-

ters
Hourly Regression [77]

4 Central Meteorological Observatory of
Shanghai

2015-2017 China 24 climatic parameters Hourly Regression [84]

5 China Meteorological Administration 2015-2017 China 13 climatic parameters Hourly Regression [85]
6 Taiwan and the National Severe Storms Lab-

oratory and NOAA
2012-2015 Taiwan 3-4 parameters Hourly Regression [81]

7 Meteorological Drainage and the Irrigation
departments in Malaysia

2010-2014. Malaysia 4 parameters Daily Classification [82]

8 The water planing and managing ageny for
Tenerife Island, and NOAA

1979-2015 Spain 1800 parameters Daily Classification [25]

9 U.S. Government’s open data 2010-2017 US 25 parameters Daily Classification [71]
10 Kaggle and the australian government 2008-2017 Australia 23 parameters Daily Classification [55]
11 Indian Meteorological Department 2008-2017 India 8 parameters Daily Classification [7]
12 satellite imagery data are from FY-2G, and

meteorological station located in Shenzhen
2015 China 8 parameters Hourly Classification [17]

13 Data from the Nanjing Station N/A China 6 parameters Hourly Classification [27]
14 Singapore related weather stations 2012-2015 Singapore 15 climatic parameters Min Classification [46]
15 Japan Meteorological Agency 2000-2012 Japan 8 features Min Classification [38]
16 NCEP-NCAR and Beijing Meteorological

station
1990-2012 China 6 climatic indices and parame-

ters
Daily Classification [33]

17 Radar images collected in Hong Kong 2011-2013 Hong Kong 5 frames Min Classification [68]
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18 Radar images from USA from 2008-2015 2008-2015 US 10 frames Min Classification [72]
19 Radar images from National Meteorological

Information Center
2016-2017 China 10 frames Min Classification [36]

20 Radar images are retrieved using Yahoo!
Static Map API

2013-2017 Japan 10 frames Min Classification [64]

21 Radar images from the German Weather
Service (DWD)

2006-2017 Germany 2 frames Min Both [6]

22 Weather Surveillance Radar-1988 Doppler
Radar (WSR-88D)

2015-2018 China 20 frames Min Classification [18]

23 CIKM AnalytiCup 2017 competition N/A China 5 frames Min Regression [75]
24 CINRAD-SA type Doppler weather radar 2016 China 4 frames Min Classification [67]
25 CHIRPS 1918-2019 China 5 frames Daily Regression [15]
26 Radar images collected in Hong Kong 2011-2013 China 10 frames Min Regression [78]
27 CIKM AnalytiCup 2017 competition N/A China 7 frames Min Both [76]
28 dataset from HKO-7 2009-2015 Hong Kong 5 frames Min Regression [69]
29 NCEP, and NOAA 1979-2017 US A tensor of 8 × 4 × 25 × 25 Daily Regression [56]
30 China meteorological data network N/A China 7 climatic parameters Hourly Regression [26]
31 NOAA 1800-2017 US 30 climatic parameters Hourly Both [83]
32 Large Ensemble (LENS) community project 1920-2005 US 3 × 28 × 28 × 3 Hourly Classification [16]
33 Kaggle 2012-2017 US and In-

dia
120 climatic lags Hourly Classification [59]

34 Iowa state 1948-2010 USA 9 climatic parameters Daily Classification [86]
35 Meteorological Department of Thailand and

the Petroleum Authority of Thailand
2017-2017 Thailand one image Daily Classification [12]

36 Meteorological Department of Thailand and
the Petroleum Authority of Thailand

2017-2018 Thailand one and batch of images Daily Classification [13]

Table 3: Data sources, spatio-temporal coverage, inputs and out-
puts, and references for short-term predictive studies
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No. Pre-processing Data leakage ML used Ref
1 normalization, cross validation, feature re-

duction (PCA)
no AD-ELM [60]

2 normalization, feature correlation no ARIMA-MLP, ARIMA-SVM,
ARIMA-HW, ARIMA-NF,
more

[61]

3 data imputation, data shuffling Random shuffling RF, Cubist [77]
4 feature selection, correlation analysis, Inter-

polation, clustering
no LSTM, MLR, SVMs, ECM-

FWF
[84]

5 normalization, feature reduction (PCA) no DRCF, ARIMA, more [85]
6 N/A no RF, SVM [81]
7 Normalization, data imputation, shuffling Data imputation, Ran-

dom shuffling
SVM, RF, DT, NB, ANN [82]

8 Feature reduction (PCA) no ANNs, RF, Knns, LogR [25]
9 Feature selection (RF), k-fold cross valida-

tion
no RF,AD[ ANNs, Adaboost,

SVM, KNN ]
[71]

10 Feature selection, Feature correlation, data
imputation, over, and down sampling

Imputation LogR, DT, Knns, more [55]

11 N/A no LogReg, DT, RF, more [7]
12 Radiometric, and geometric correction, and

windowing
no SVM [17]

13 Normalization, random shuffling Random shuffling AD-SVMs [27]
14 Down-sampling, feature correlation Random shuffling SVM [46]
15 outliers removal, normalization no MLP, RBFN [38]
16 Normalization no Knns [33]
17 Feature reduction, noise removal, windowing no ConvLSTM, FC-LSTM, more [68]
18 Resizing, windowing no Eulerian persistence, AD-Conv-

RNN, Conv-LSTM
[72]
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19 Feature reduction, windowing no MLC-LSTM, ConvLSTM, more [36]
20 Feature reduction, windowing no SDPredNet, TrajGRU, more [64]
21 logarithmic transformation no Optical flow, Dozhdya.Net [6]
22 Noise removal, remove corrupted images,

windowing, Normalization
no COTREC, ConvLSTM, AD-

ConvLSTM, more
[18]

23 Normalization, windowing no Last frame, TrajGRU, ConvL-
STM, AD-TrajGRU, more

[75]

24 Windowing, greyscale transformation no Last input, COTREC, AD-
CNN

[67]

25 Windowing, grey-scale, resizing no ConvLSTM, AD-ConvLSTMs [15]
26 Windowing, grey-scale, resizing no ConvLSTM, PredRNN, VPN-

baseline
[78]

27 Windowing, grey-scale, resizing, data aug-
mentation

no ConvLSTM, ConvGRU, Traj-
GRU, PredRNN, PredRNN++,
last frame

[76]

28 Windowing, grey-scale, noise removal, nor-
malization

no 2D CNN, 3D CNN, ConvGRU,
TrajGRU, last frame, more

[69]

29 Normalization, random shuffling Random shuffling LR, CNNs, base model (NARR) [56]
30 Random shuffling and Normalization Random shuffling DBN, GA-SVM, more [26]
31 N/A no CNN, LPBoost, more [83]
32 clustering, down-sampling, random shuffling Random shuffling CNN, LogReg [16]
33 normalization no CNN, LSTM [59]
34 cropping no CNN [86]
35 cropping N/A CNN [12]
36 cropping N/A CNN [13]

Table 4: Pre-processing, data leakage characteristics, machine
learning algorithms used, and reference numbers for short term
predictive studies
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Abstract—Rainfall prediction helps planners anticipate poten-
tial social and economic impacts produced by too much or too
little rain. This research investigates a class-based approach to
rainfall prediction from 1-30 days in advance. The study made
regional predictions based on sequences of daily rainfall maps of
the continental US, with rainfall quantized at 3 levels: light or
no rain; moderate; and heavy rain. Three regions were selected,
corresponding to three squares from a 5 × 5 grid covering the
map area. Rainfall predictions up to 30 days ahead for these
three regions were based on a support vector machine (SVM)
applied to consecutive sequences of prior daily rainfall map
images. The results show that predictions for corner squares
in the grid were less accurate than predictions obtained by
a simple untrained classifier. However, SVM predictions for a
central region outperformed the other two regions, as well as
the untrained classifier. We conclude that there is some evidence
that SVMs applied to large-scale precipitation maps can under
some conditions give useful information for predicting regional
rainfall, but care must be taken to avoid pitfalls.

Index Terms—a comparison study, a sequence of images, SVMs

I. INTRODUCTION

A. Role of rainfall maps in water resource management

Rainfall maps provide essential information about intensity,
temporal, and spatial location which are essential in water
resource management. Historical rainfall maps data can help
different management sectors such as agriculture to make
informed decisions about water supply management strategies
to better utilize the occurrence of precipitation events [1].
Historical data can be most effectively utilized by develop-
ing prediction models such as machine learning to capture
historical rainfall patterns.

In previous literature, prediction models based on rainfall
maps may be grouped into two main categories. The first type
involves applying deep learning to a sequence of images as
an input to predict future frames. Usually, the images used for
this type of prediction are separated by relatively small time
intervals e.g 6-10 minutes [2]–[8]. The second type consists of
single output regression or classification-based models. These
models predict rainfall on an hourly [9]–[11], daily [12], [13],

or monthly [14] basis using prior rainfall maps. Regression-
based models may use a single frame [14] or batch of frames
[10] as an input to give a numerical rainfall prediction. In
contrast, classification based models categorize local rainfall
into two or more discrete classes and predict the classes of
future precipitation events based on a single frame or a batch
of frames. [12], [13], [15]. Both regression and classification
models can be used to predict entire images one pixel at a
time [11], [16].

For purposes of comparison, we describe the work of
Boonyuen in [12] and [13]. In [12] the authors used a single
image to produce a binary classification (rain/no-rain) for
three days ahead in Thailand. Using the inception-V3 based
CNN model the authors had up to 54.84% classification
accuracy for three days ahead prediction. The study also
concluded that including neighboring countries in the images
increases the efficiency of the model compared to cropping
the image to focus only on Thailand. In [13] the authors
developed an inception-V3 model to classify predicted rainfall
into four categories (No-rain, light-rain, moderate-rain, heavy-
rain). Both batches of satellite images and single images were
used as input. The study demonstrated that using batches of
images as input makes the model more robust at classifying
upcoming rainfall. The trained model was able to predict one,
two, three days ahead with an accuracy of 70.58%. Having
the same accuracy up to three days ahead is an issue of
concern, as we suspect that the trained model has a bias
towards the majority class (no-rain), making the accuracy
to be constant. Measuring the efficiency of models using
classification accuracy on imbalanced data is not ideal, because
the results obtained may reflect the relative frequencies of the
classes more than the actual effectiveness of the model. When
imbalanced classes are involved, the f1-score can be a better
measure of the method’s effectiveness [17], as it takes the
weighted average of precision and recall and is less influenced
by class imbalance.

In The literature, various image sizes and sequence lengths
are used in different prediction models. It appears that these
parameters are usually chosen arbitrarily, or determined by
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Fig. 1. Satellite precipitation images: (left) An image from the NCEP dataset; (centre) 5 grid overlay; (right) tile 13.

trail and error. For example, the authors in [10] used up to
60 images to predict rainfall on an hourly base. the authors
in [3], [7], [8], [18]–[20], used 4, 4, 5, 10, 10, 20, .20 images
respectively. As to image size, the authors in [10] used several
image sizes between 101 × 101 and 10 × 10, and compared
the performance.

Even though most previous studies made use of deep
learning related techniques to capture rainfall patterns on the
historical images like Convolutional LSTM in [2], in some
cases the deep learning approach has significant drawbacks.
In particular, as it often overfits when the training set is
relatively small [21], [22]. In addition, those models have
many hyperparameters that need to be optimized.

These difficulties can be avoided by using a support vector
machine (SVM) approach instead of deep learning. SVM is a
powerful machine learning technique where it is often used in
classification and regression problems [23]. SVM is a classifier
that generates a hyperplane to classify data instances [24],
[25], where optimal hyperplanes are determined by construct-
ing the largest margin of separation between the different
instances [26]. In contrast to deep learning, SVMs are suited
to be trained on small and medium-sized complex datasets
[23], [27]. SVM also has the capability to perform structural
risk minimization (SRM), which enables SVMs to avoid over-
fitting by minimizing the bound on the generalization error
[28].

Using SVMs can also avoid the need for extensive hyper-
parameter tuning. For example, the authors in [29] considered
the use of linear kernel (SVMs) in case of having the number
of features exceeds the size of the dataset. Linear kernels use
only a single parameter, the regularization parameter C, that
determines the trade-off between minimizing the training error
and the model complexity [30].

Several recent papers in the literature use SVMs on rainfall
prediction for different classifications and regression problems.
The authors in [31] investigated the use of SVMs as well as
other techniques to classify rainfall on a very small training
set 10% (2245), where the output was a binary classifica-
tion rain/no-rain daily. Another binary classification problem
(rain/no-rain) was studied in [25], which investigated the use

of SVMs on weather stationary data to classify rainfall for the
next five minutes. The data were highly imbalanced due to
the rare occasion of rain, which made the researchers perform
down-sampling on the dataset. As for regression problems, The
authors in [32] used SVM to predict daily and the accumulated
rainfall on 42 different cities from Europe and the US. The
authors in [11] investigated the use of SVMs with hourly
radar-derived rainfall to predict precipitation during typhoons.
Another study linked the observations from satellite imagery
data to predict rainfall up to 6-hours [15].

B. Scope of this research

This research aims to investigate precipitation forecasting
on a dataset from the National Center for Environmental
Prediction (NCEP) using SVMs. Our investigation has three
aspects: i) Determine the effect of image sequence input length
on class prediction accuracy, ii) Assess the effect of image size
on class prediction accuracy, and iii) Compare the accuracy of
rainfall class predictions for three selected squares (tiles) from
a 5× 5 grid covering the map area, for up to 30 days ahead.

This paper is organized as follows. Section 2 presents the
methodology, including a discussion of the datasets and their
preparation as well as the SVM specification and training.
Section 3 presents the results in tabular and graphical form
and provides analysis and discussion. Section 4 summarizes
our conclusions.

II. METHODOLOGY

Following the flow chart in Figure 2, we start by discussing
the data set, followed by the pre-processing of the images and
the preparation of the data then explaining one of the models
for this prediction.

A. Data Set

1) 24-Hour-Precipitation-Forecasting: The data used for
this study are radar images taken daily at 7 a.m. Eastern
Standard Time, from Jan 2012 to Oct 2019, with a total of
2,835 images. The data comes from the NCEP, with a size
of 400×320 pixels which represents the United States. Each
image contains 16 different rainfall intensity level, Figure 1
(Left) shows a full image of the used dataset.
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Fig. 2. Flow chart showing the implementation process.

Fig. 3. Overview of dataset preparation.

B. Pre-Processing

The input data set went through a pre-processing transfor-
mation as shown in Figure 2. The first transformation included
size reduction, as we reduced the size of the images from
400 × 320 to 172 × 123 (image size a), and 87 × 61 (image
size b). For both reduced data sets, we cropped the images to
remove some of the irrelevant information that exists in our
data set like the color bar on the left of Figure 1 (left map).
In this study, we did not consider the full image size due
to memory and time consideration. After resizing we trans-
formed the images into one channel by performing a grayscale
transformation on the images to reduce the complexity of the
model.

Figure 3, shows how we prepared the input dataset in
a sliding window fashion to predict the next image in a
sequence. Our use of sliding windows resembles the approach
in several previous references [8], [20], [32]–[34]. The figure
shows the case where n = 4, which stands for the size of the
window (sequence length). In general, the number of feature
(pixels) of one sample of the data set can be determined by
n × w × h, where n is the size of the window, w is the

width of the image, and h is the height of the image, which
depends on the size of the images. For optimization, the study
tested different size window sizes n, where n ∈ {2, 4, 6, 8}.
We divided that data into 90% training and 10% testing for
the whole experiment. Moreover, we divided the US map into
a 5×5 grid squares (tiles), as We trained on specific grid tiles
which are 1, 13, 25.
Initially, we divided the 16 classes on the color bar by Figure 1
left image equally into three classes light, moderate, heavy. For
each image, tiles were classified according to the highest level
observed within the tile: for example, if the tile had one or
more pixels showing heavy rainfall, the entire tile was classi-
fied as heavy rain for that image. However, this equal division
produced highly unbalanced data, due to the rare occasion of
very heavy rainfall. Consequently, our classification accuracy
on the testing test was constant for predictions up to 30 days
ahead, which is similar to what was observed in [13] as
discussed in the Introduction. To circumvent this problem, we
made an unequal division between the classes by designating
the lowest three classes as no/light rain, the next three classes
as moderate rain, and all remaining classes as heavy rain. This
improved the balance between the three classes: for the three
tiles, we observed the following frequencies (no/light rain,
moderate rain, heavy rain): (25%, 49%, 26%) for tile 1, (38%,
30%, 32%) for tile 13, and (36%, 37%, 27%) for tile 25.

The three tiles show quite different seasonal behavior, as
shown in Figure 4. For Tile 13 (central), there is a clear dis-
tinction between the light rain and heavy rain class frequencies
between summer months (May-Aug) and winter months (Oct-
Mar). For Tile 25 (southeast), the light/no rain class shows
strong seasonality, while the other two classes less so. For Tile
1 (northwest) the seasonality for all classes is less distinct.

To summarise, the input to our model is a set of full images,
with different images sizes and windows (sequence length),
while the prediction of the rainfall intensity happens on three
specific tiles corresponding to three local regions within the
U.S.
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TABLE I
TILE 1 (F1-SCORE ACCURACY ON THE TESTING SET). WITH k DAYS AHEAD (DA), WITH DIFFERENT n INPUT IMAGES AND SIZES.

Image Input F1-score of Days Ahead (DA) (%)
Scale Images 1DA 2DA 3DA 4DA 5DA 6DA 7DA 14DA 30DA Mean

Img(size a) 2 60 31 27 30 26 23 34 22 22 30.55
4 52 37 40 26 24 32 22 22 22 30.77
6 50 37 37 32 31 22 22 22 22 30.66
8 44 31 30 29 27 25 22 22 22 28

Img(size b) 2 55 33 40 25 25 33 30 22 22 31.66
4 57 43 30 35 37 25 22 22 22 32.55
6 51 42 32 32 32 22 22 29 23 31.66
8 53 34 36 35 24 25 23 22 22 30.44

Mean 52.75 36 34 30.5 28.25 25.875 24.625 22.875 22.125

TABLE II
TILE 13 (F1-SCORE ACCURACY ON THE TESTING SET). WITH k DAYS AHEAD (DA), WITH DIFFERENT n INPUT IMAGES AND SIZES.

Image Input F1-score of Days Ahead (DA) (%)
Scale Images 1DA 2DA 3DA 4DA 5DA 6DA 7DA 14DA 30DA Mean

Img(size a) 2 51 49 49 42 42 42 43 38 44 44.44
4 58 50 45 41 44 44 45 46 45 46.44
6 51 50 42 39 44 44 40 48 41 44.33
8 54 45 46 43 44 44 46 45 44 45.66

Img(size b) 2 55 46 48 46 41 40 48 46 37 45.22
4 55 47 43 45 43 41 43 43 40 44.44
6 57 48 46 43 49 43 43 42 41 45.77
8 60 49 48 42 44 41 45 42 45 46.22

Mean 55.125 48 45.875 42.625 43.875 42.375 44.125 43.75 42.125

TABLE III
TILE 25 (F1-SCORE ACCURACY ON THE TESTING SET). WITH k DAYS AHEAD (DA), WITH DIFFERENT n INPUT IMAGES AND SIZES.

Image Input F1-score of Days Ahead (DA) (%)
Scale Images 1DA 2DA 3DA 4DA 5DA 6DA 7DA 14DA 30DA Mean

Img(size a) 2 41 40 40 37 40 46 49 44 39 41
4 45 35 46 36 43 44 36 40 49 41.55
6 46 48 39 46 39 41 39 42 49 43.22
8 53 37 41 46 42 41 42 39 42 42.55

Img(size b) 2 48 41 39 37 41 42 41 45 34 40.88
4 42 38 42 48 41 47 41 42 42 42.55
6 56 50 49 44 46 39 41 41 41 45.22
8 49 42 42 46 42 43 41 43 42 43.33

Mean 47.5 41.375 42.25 42.5 41.75 42.875 40.375 42 42.25

C. Classification

In this study, we used linear kernel SVMs, based on [29]
which advised using a linear kernel when the number of
features exceeds the size of the dataset. These were trained on
the training set, which comprised 90% of the data. Training
was accomplished using the sklearn.svm.SVC class in scikit-
learn (www.scikit-learn.org). Since we are working with a
linear kernel, we had only one parameter to optimize which
is the regularization parameter C. We tried values C = 2k

for k ∈ −15, ...6 with 10-fold cross-validation on the training

set, and we chose the best C value separately for each input
configuration and each day ahead prediction, for each of the
three tiles. (It was observed that in most cases the value of
C thus obtained was in the 2−13–2−10 range.) The models
obtained were then applied to the testing set, and confusion
matrices were obtained which were used to compute macro
f1 scores. The macro f1-score was calculated as the average
of the f1 scores of each class, where the per-class f1 score is
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TABLE IV
F1-SCORE RANGES FOR 8 DIFFERENT SVM INPUTS FOR DIFFERENT DAYS AHEAD (DA), FOR THREE REGIONS (%)

F1-score range of Days Ahead (DA) (%)
Region 1DA 2DA 3DA 4DA 5DA 6DA 7DA 14DA 30DA

tile 1 16 12 13 10 13 11 12 7 1
tile 13 9 5 7 7 8 4 8 10 8
tile 25 15 15 10 12 7 8 6 6 15

Fig. 4. Seasonality on a monthly basis for Tile 1 (left), Tile 2 (middle), and Tile 3 (right).

computed as follows:

f1-score =
2× Precision× Recall

Precision + Recall
(1)

III. RESULTS AND DISCUSSION

Tables I, II,III show the macro f1-score accuracy on the
testing set for tile 1 (northwest), tile 13 (central) and tile 25
(southeast) respectively. Each table gives results for different
days-ahead predictions for 8 different SVM inputs (four dif-
ferent input sequences and two different image sizes). The
bold numbers in each column represent the highest macro f1-
score among the 8 SVM inputs for that specific days-ahead
prediction for the given tile.

In the following discussion, we will first compare the
prediction performance for the different SVM inputs. Then we
will compare the prediction performance for the three different
geographical regions.

A. Comparison between different SVM inputs

From Tables I, II, and III we do not find that any one input
configuration is clearly better than the others. In Table I for
example, we find that 5 different input configurations attain
the best accuracy for different days-ahead predictions. There
is considerable variation within each column of the tables,
as well as from column to column for each row. Table IV
shows the f1 score range (maximum − minimum) among the
8 predictions for each days-ahead, for the three regions. From
the table, it is clear that Tile 13, in general, has the lowest
variability in the 1-6 day range, while the variability for Tile
1 reduces to almost 0 after 30 days.

The observed variabilities may be attributed at least partially
to the relatively small size of the testing set, which consists
of about 300 images. For purposes of comparison, a sequence
of 300 Bernoulli trials with success probability p = 0.5 will
have a standard deviation of ±3 percentage points. So a 95%
confidence interval of ±2 standard deviations will have a width

Fig. 5. Mean macro f1-scores as a function of days ahead for different input
image sequence length, averaged over all image sizes and tiles.

of 12 percentage points. So in this Bernoulli trial scenario, the
probability of getting 8 independent trials within a range of
12 is roughly 0.958 = 0.66.

Figures 5 and 6 isolate the effect of input sequence length
and image size, respectively. In Figure 5 the macro f1 scores
for all predictions for all tiles for each days-ahead were
averaged, and the results plotted as a function of days-ahead.
The figure shows that no particular input sequence length is
superior to the others. Figure 6 similarly averages macro f1
scores separately for each image size. There appears to be
a slight advantage of about 1 percentage point when using
the larger image size (172 × 123) instead of the smaller size
(87 × 61). Both figures show a clear decrease in accuracy as
days-ahead increases. in contrast to the constant classification
accuracy found in [13].

B. Comparison between regional predictions

Figure 7 shows the macro f1 scores averaged over 8 inputs
(4 sequence lengths × 2 images sizes) for each day ahead,
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Fig. 6. Mean macro f1 score as a function of days ahead for the two different
image sizes, averaged over all input sequence lengths and tiles.

for each image separately. These f1 scores are compared to
f1 scores obtained from an untrained predictor that simply
uses the class of the final image in the sequence as the
predicted class for 1, 2, 3, . . . 30 days ahead. From the figure, it
is clear that the SVM significantly underperforms the untrained
benchmark predictor for Tiles 1 and 25. For Tile 13, the SVM
outperforms the untrained predictor by about 1-3 percent.

The SVM performance for Tile 1 is particularly poor, espe-
cially for longer-range predictions. Upon closer examination
of the confusion matrices produced by the simulation, we
found that for predictions longer than 4 days ahead, almost
all of the SVM inputs were producing a classifier that always
predicted the most frequent class (moderate rain) regardless
of the SVM input. An elementary calculation based only on
class frequencies (25%, 49%, 26%) shows that a predictor
which ignores inputs and always chooses the majority class
will have a macro f1-score of 21.5%, which is consistent with
our observed result.

The SVM performance for Tile 25 is also worse than
the untrained predictor. The confusion matrices for Tile 25
shows that for larger-DA predictions, most predictors simply
choose between light and moderate classes, and never predict
the heavy class. This result is understandable based on the
seasonal behavior of Tile 25, shown in Figure 4 (right).
During the winter months (Nov.-Dec.), the light class is by
far the most frequent. So if the input images show the tile
as belonging to the light class, the chances are that the class
will remain light for the next 30 days. On the other hand,
in the summer months (May-Sep), the light class is virtually
nonexistent, and moderate and heavy are about equal. Since
moderate is a more frequent class than heavy (37% versus
27%), the classifier favors moderate over heavy. Apparently,
the untrained benchmark predictor more closely matches the
seasonal pattern, which is why the untrained predictor per-
forms better. We note that for Tile 25, a predictor that always
chooses the majority class will have a macro f1 score equal
to 18%, so the SVM does represent a large improvement over
a majority-class predictor.

Fig. 7. Per-tile average of f1-scores for 8 SVM inputs as a function of days
ahead, compared to untrained benchmark predictor.

Tile 13 showed the best SVM performance among the three
tiles and was the only tile where the SVM outperformed the
untrained benchmark classifier. We also noted from Table IV
that there was a smaller variation in macro f1 scores among
the 8 different SVM inputs, for predictions between 1-5 days
ahead. It is reasonable that the SVM’s in Tile 13 are finding
useful features and converging, while the SVM’s for the
other tiles are not locating truly useful features, so they are
overfitting the training set which means that they no longer
give consistent accuracy when applied to the testing set. It
may be argued that Tile 13 has better input data than the
other tiles because the input images contain information from
all regions surrounding Tile 13 which is not the case for the
other two tiles.

IV. CONCLUSION

Our study points out some of the limitations and poten-
tial pitfalls in using SVMs with linear kernels for weather
prediction up to 30 days in advance. We have shown that
some classifiers used by previous researchers (e.g. [12] and
[13]) which seem to show good performance may be largely
due to unequal class divisions rather than the classifier itself.
We have also shown that unequal classes may cause linear
SVMs to converge on majority-class classifiers, or to com-
pletely neglect classes of low frequency. Among the three
geographical regions predicted, only the central region had
an SVM-based classifier that performed better than a simple
untrained classifier that used the tile’s class in the final image
of the input sequence as the prediction. We conjecture that
SVMs may be performing better on the central tile because
the input sequence contains precipitation information for all
surrounding tiles, which is not the case for tiles at the corners
of the map (such as Tile 1 and Tile 25).

In this study, we propose to divide the map of the US onto
25 tiles, as for the optimization we used different input config-
urations. The support vector machine was used to classify the
image sequences as no/ light-rain: a) Our study shows that f1-
score for tile 13 has a generally better f1-score than tile 1 and
tile 25, which goes back to the position of the tile. b) Taking a
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bigger size scale as an input appears to provide slightly better
performance than the smaller scale, but with higher time cost.
c) The f1-score shows a decay while predicting days ahead,
but the decay does not appear as prominent with imbalanced
tiles e.g tile 1.

We have argued that the variability in the results obtained
from day to day and from input method to input method
was at least partially due to the insufficient amount of data
for training and testing. Much of the variation in observed
f1 scores is attributable to the small testing set size. Recent
research has shown that using data augmentation to augment
the set of training images may improve the efficiency of the
trained model [5]. With an augmented training set, a larger
portion of the actual data may be used for testing.

Another significant drawback of the SVM classifiers used
was that they did not take seasonality into account. This is why
a simple untrained classifier that took advantage of seasonality
was able to substantially outperform the SVM classifiers on
two out of the three regions examined. It is possible that SVMs
that take seasonality into account my perform much better: this
is a possible area for future research.

In the current research we did not attempt to include addi-
tional engineered features, because the number of features used
was already very large. For future investigation, a possible
approach would be to use PCA to reduce the number of
features, and then apply feature engineering. In addition to
time stamp, Gaussian Mixture Models may be used to capture
spatial means and variances, which could be used as global
features.
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Abstract: Predicting groundwater availability is important to water sustainability and drought mitigation.
Machine-learning tools have the potential to improve groundwater prediction, thus enabling resource
planners to: (1) anticipate water quality in unsampled areas or depth zones; (2) design targeted
monitoring programs; (3) inform groundwater protection strategies; and (4) evaluate the sustainability
of groundwater sources of drinking water. This paper proposes a machine-learning approach
to groundwater prediction with the following characteristics: (i) the use of a regression-based
approach to predict full groundwater images based on sequences of monthly groundwater maps;
(ii) strategic automatic feature selection (both local and global features) using extreme gradient
boosting; and (iii) the use of a multiplicity of machine-learning techniques (extreme gradient boosting,
multivariate linear regression, random forests, multilayer perceptron and support vector regression).
Of these techniques, support vector regression consistently performed best in terms of minimizing
root mean square error and mean absolute error. Furthermore, including a global feature obtained
from a Gaussian Mixture Model produced models with lower error than the best which could be
obtained with local geographical features.

Keywords: time series data; pixel estimation; full image prediction; gaussian mixture model;
global features; feature engineering; square root transformation

1. Introduction

In many countries, groundwater is one of the key natural resources that supplies a large
portion of the water used by a nation. Besides its use in households and businesses, some other
groundwater consumers include: (i) rural households and public water supplies that depend on
wells and groundwater; (ii) farmers who use groundwater to irrigate crops and water their animals;
and (iii) commercial businesses and industries that depend on groundwater for their processes and
operations. Furthermore, the importance of groundwater can be revealed in its usage in supplying
springs, water in ponds, marshlands, swamps, streams, rivers and bays. However, despite its
unequivocal importance, groundwater levels in aquifer systems are often not constant and depend on
recharge from infiltration of precipitation.

Several major acts and regulations such as the South African national water Act [1] and the 4th
World Water Forum [2] recognize water as a basic human need, which is a major contributor to social
development since it helps to alleviate poverty [1]. Hence, there is a growing interest towards the
use of groundwater to help alleviate this crisis [2]. Groundwater is a vital freshwater resource which
provides around 50% of the available drinking water according to UNESCO [3]. Also, sectors like
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agriculture, and industry greatly depend on groundwater for their operations due to its widespread
availability and the fact that it is not easy polluted [3,4]. Therefore, in 2015 the United Nations have
reaffirmed their commitment regarding the human right to safe drinking water and sanitation by
identifying it as one of the 17 Sustainable Development Goals to be pursued by 2030 [5].

Predicting groundwater availability is important to water sustainability and drought mitigation.
It can provide useful insights based on real data of what happened when the flow of streams and
rivers declined and/or when water supply issues developed into a drought. Machine-learning tools
technologies have the potential to drive groundwater knowledge discovery and management by
assisting in the prediction of groundwater availability. This can be done by enabling the collection
of massive water datasets, storing these datasets into databases and processing these datasets to get
useful insights which can be used by water resource managers to: (1) anticipate water quality in
unsampled areas or depth zones; (2) design targeted monitoring programs; (3) inform groundwater
protection strategies; and (4) evaluate the sustainability of groundwater sources of drinking water.

This paper uses a regression-based approach to predict full groundwater images based on
sequences of monthly groundwater maps of the southern part of the African continent using the
Gravity Recovery and Climate Experiment (GRACE) dataset [6]. Five machine-learning techniques are
implemented on the GRACE dataset and compared to predict pixels in future frames of the dataset.
These are extreme gradient boosting (XGB), multivariate linear regression (MLR), random forest
(RF), multilayer perceptron (MLP) and support vector regression (SVR). The prediction is guided by:
(i) performing feature selection based on the XGB feature importance bar on the previous lags (pixels);
and (ii) investigating the effect of adding other features such as the temporal features, position indices,
and global features obtained by Gaussian mixture models (GMMs) fitted to peak areas on each image.

This paper is organized as follows: Section 2 provides a background on water prediction,
citing relevant literature in the field; Section 3 describes the algorithms used in this work;
Section 4 discusses the methodology used for ground water prediction; Section 5 provides and
discusses the results obtained; and Section 6 furnishes the conclusions.

2. Background on Groundwater Prediction

With the increase in population size coupled with urban expansion, water demand has
dramatically increased, which has led to the over-exploitation of groundwater in many countries
around the world [7,8]. This highlights the importance of groundwater forecasting. Accurate prediction
of groundwater can help government officials determine the best approach to manage groundwater
effectively [9]. The main tools for groundwater prediction are based on physical models and
data-driven models [10]. Physical models require a large amount of detailed hydrological data,
which suffers from a lack of accuracy during its collection and pre-processing [9]. Therefore,
data-driven models tend to be more appealing, since they require less data and are more reliable [3,11].

Statistical models like multivariate linear regression (MLR), and various time series models
such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA)
and seasonal ARIMA (SARIMA), have been used to investigate patterns between the input and the
output of groundwater data to make future predictions. The following studies have investigated:
MLR for groundwater prediction [12–14]; and time series models for groundwater prediction [12,15–17].
Both techniques are considered to be linear fitting models [11]. Time series models have the advantage
of accounting for the correlations that arise between data points [18]. In general, however, linear fitting
is not ideal in describing the nonlinear behavior of groundwater. Hence, recent research has made use
of MLR models more for comparative purposes [11].

In addition to these techniques, a range of machine-learning techniques have been applied to the
problem, including MLP in [12,19–23], SVR in [19,24] and recently RFs in [25,26]. The use of XGB is
rare in the scheme of groundwater prediction, and is found in only a few studies such as [27,28].

The above studies can be broadly divided into those that predict the groundwater level (GWL) and
those that estimate the terrestrial water storage (∆TWS). GWL provides an idea of the groundwater
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level, whereas ∆TWS provides an idea about the volume of the groundwater. The GRACE database
gives geographical ∆TWS levels monthly [6]. The significance of GRACE in hydrology is that it can
provide an understanding of groundwater storage conditions and trends [29]. GRACE has been used
as a predictor to help in the estimation of the GWL in [29,30].

In the literature, there are two main approaches to the problem of sequential image prediction.
The first type involves taking a sequence of images as an input to predict future frames using
deep learning techniques such as Convolutional Long-Short-Term-Memory (ConvLSTM). Usually,
the images used for this type of prediction are separated by relatively short time intervals
e.g., 6–10 min [31–37]. This approach normally does not involve any feature selection approach,
since deep learning related techniques are known for their feature selection and reduction properties.
However there are several concerns when using deep learning models: they depend heavily on a
large quantity of high quality data to produce an effective model; they are very costly to train and use,
in terms of time and resources; deep learning models are often viewed as black boxes [38] which
means that it is very difficult to unpack and understand the automated feature selection process that
eventually takes place and the predictions that arise from any given deep-learning-based model.

This leads us to the second approach in which machine-learning techniques can be used for
single-output regressing problems. For GRACE ∆TWS image reconstruction, the authors in [27] used
both XGB and RFs to acquire the importance of 20 features. It was shown that the precipitation of
the two months prior to prediction is the most important variable for estimating the TWS dynamics.
In [28], authors manually selected 11 hydrological predictors including the total precipitation and
snow cover to predict ∆TWS. As for the idea of using previous pixels to predict current pixels has not
been investigated enough in the literature. The authors in [39] made a comparison between Support
Vector Machines (SVMs) and RF in predicting the present grid-based rainfall up to 3 h ahead, where the
input involved the antecedent radar-derived rainfall. The authors in [40], used ANNs to predict full
water vapor images every 30 min, where they included information from two previous images.

3. Techniques Used

In the following section we describe the tools and the technologies that has been used during
the study. A total of five machine-learning techniques were used in this study for image prediction:
(a) MLR; (b) MLP; (c) RF; (d) XGB; and (e) SVR.

Aside from the task of prediction, XGB was also used as a feature extraction and selection tool.
As for feature engineering we used Gaussian Mixture Models (GMMs) to capture global
features—mean and variance—of past images. For evaluation of the trained models, we used the
RMSE and the MAE as evaluation metrics. All of the above-mentioned tools were implemented using
the scikit-learn library [41] in the Anaconda python distribution (version 2020.07) with their default
hyper-parameter settings.

Sections 3.1–3.6 describe each of the five machine-learning techniques listed above. Section 3.7
describes the metrics used to evaluate the trained models.

3.1. Multivariate Linear Regression

The level of correlation between the predictors and the output variables are usually estimated by
regression models to determine their relationship form [42]. In linear regression, the mean square error
is used to fit the models and to assess the performance of the trained models on the testing set [42,43].
In general, MLR is used to discover the hyperplane that best fits all individual data points [42].
For simplicity, in the following sections, MLR will be abbreviated as LR.

3.2. Multilayer Perceptron

MLPs are a type of artificial neural networks, which is a class of models inspired by the biological
nervous system of the human brain. They can emulate complex functions like decision making,
and pattern generation [44]. Like the human brain, MLPs also consist of a set of processing units called
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‘neurons’, which are connected to each other. Each neuron is a multi-input and single-output nonlinear
element [45]. Neurons mostly operate in parallel, and are arranged in multiple layers which include
an input layer into which the data are fed; hidden layer where the learning takes place; and an output
layer [44]. MLPs can detect complex nonlinear relationships through a learning process that involves
the adjustment of the weighted connections that exists between the neurons. This gives MLPs the
ability to perform two important functions: pattern classification and nonlinear adaptive filtering [46].

3.3. Random Forest

RF uses an ensemble of classification and regression trees. Each tree is built using a different
bootstrap sample (with replacement) from the original data [47]. Compared to traditional trees,
RF adds a randomness layer to bagging, since in traditional trees each node is split using the best split
among all variables [48]. As for RF, only a random subset of the variables is used when splitting a
node during the construction of a tree [47,48]. As a result of the random constructions, RF provides
robustness to overfitting as compared to some other techniques [48,49].

3.4. eXtreme Gradient Boosting

Like RF, XGB is an ensemble learning technique. XGB relies on gradient boosting to form a
combined prediction. In XGB, the predictors in a tree are built in a sequential manner, and are trained
on the residuals of the previous learners, so that errors are reduced step by step [27].

In the scikit-learn implementation in XGB, the plot.importance command can be used to
determine feature importance for the features in trained predictive model [50]. The plot.importance
command computes for each separate feature the sum of estimated improvements in squared error risk
for all decision nodes employing that feature, averaged over all trees used in the model. The averaging
greatly reduces the masking effect which occurs when variables are correlated [51].

3.5. Support Vector Machine and Support Vector Regression

SVM is a powerful machine-learning technique that has the capability to perform structural
risk minimization (SRM), which enables it to avoid overfitting by minimizing the bound on the
generalization error [52]. SVMs may be extended to apply to estimation and regression problems:
this extension is known as support vector regression (SVR) [53]. SVR maps the input data into a
higher-dimensional feature space via nonlinear kernel functions [54]. The objective is to choose a
vector of regression coefficients with a small norm, while minimizing the sum of the distances between
the data points and the regression hyperplane in the higher-dimensional space [55].

3.6. Gaussian Mixture Models

Gaussian mixture models (GMMs) may be used for clustering [56] or as parametric models of
the probability distribution of continuous features [57]. The user specifies the number of Gaussians
in the model, and the means and covariances of the Gaussians are automatically computed using an
expectation maximization (EM) algorithm [58].

3.7. Performance Metrics

The accuracies of the above machine-learning models are evaluated using the root mean square
error (RMSE) and the mean absolute error (MAE). Both metrics are commonly used to measure
the forecasting accuracy [59]. RMSE is more sensitive to outliers and is more appropriate for
Gaussian-distributed errors, while MAE weights all errors equally [60]. The RMSE and MAE are
computed as follows:

RMSE =

√
1
n

n

∑
i=1

(yobs
i − ypre

i )2 (1)
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MAE =
1
n

n

∑
i=1
|yobs

i − ypre
i | (2)

where yobs
i and ypre

i refer to the observed and predicted value of the ith output, respectively.

4. Groundwater Prediction Methodology

Following the flowchart in Figure 1, we start by discussing the data set, followed by the
pre-processing of the images and the preparation of the data set. Then we speak about the feature
selection that was done using XGB, and feature engineering using GMM. Finally, we end up with
the experiment. Our end goal is to predict groundwater on a pixel level to end up with a full image
using a sequence of images as an input.

Figure 1. Flowchart showing the implementation process.

4.1. Monthly Groundwater Data Set

The dataset used in this study consists of 174 monthly groundwater satellite images between
March 2002 and May 2019. Each image has a size of 360× 180 pixels, and provides a color-coded
representation of the ∆TWS of the earth’s land surface. A sample image from the dataset is provided
in Figure 2. The images were originally obtained as part of the GRACE survey conducted by the U.S.
National Aeronautical and Space Administration (NASA). The actual data was obtained from the
Physical Oceanography Distributed Active Archive Center (PO. DAAC) website [6].

Figure 2. A sample full image of the GRACE groundwater dataset used in this research [6].
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Using this dataset posed some serious challenges. Several monthly images in the dataset were
missing. Neglecting these months would disrupt the periodicity/seasonality in the data, which is a
key aspect of the data. Further reducing the dataset was not feasible, since the number of images is
already on the small side for machine-learning applications. Finding better methods for dealing with
missing images is an ongoing research topic.

4.2. Image Pre-Processing

Predicting a full color image at the pixel level would be computationally expensive, since the
full image consists of R,G,B values for 360× 180× 3 pixels. Hence, to reduce the computational cost,
we transformed the images into grayscale, and cropped the images to focus on the southern area of the
African continent with a size of 47× 51. An image of the pre-processed data is shown in Figure 3 (left).

Figure 3. Overview of dataset preparation for feature selection: (left) Example of groundwater image of
southern Africa before pre-processing (note image is inverted vertically); (right) Notation for same-pixel
features used in image prediction.

The dataset provided from PO.DAAC had missing months. We imputed the data for the missing
months by replicating the previous months’ images. Out of the 174 frames, we deleted the first two
frames because of a gap of about 100 days between the 2nd and the 3rd image in the data. This left
172 images, and after image imputation we ended up with a dataset of 190 images. Altogether 18 images
were imputed, which amount to about 10% of the original 172 images. We then applied a sliding
window to form 161 sequences of 12 consecutive images. The first 149 sequences were used for training,
and the rest for testing. We did not use any of the imputed images as labels for the models to train on.

4.3. Feature Selection

Since the dataset in this research is small, it was particularly important to choose a set of features
of limited size (to avoid overfitting) but which still captures essential information that can be used
for prediction. In our model we used both local and global spatiotemporal features, and additionally
performed a rescaling, as described in the following subsections.

4.3.1. Same-Pixel Features

Our first set of candidate features for prediction of an image pixel consists of the same pixel
location for the 12 previous months. A similar choice has been made in previous studies [39,40,61].
To select the most important of these 12 features, a sliding window technique is used, as shown
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in Figure 3 (right): the same pixels within a prior 12-month window were used to predict the
corresponding pixel in the 13th month.

To evaluate the relative importance of these features, XGB with the gain metric was applied to the
training set. Figure 4 shows the results. In the figure, f(0) stands for the same month in the previous year
while f(11) stands for the previous month. The graph shows that f(0), f(11), and f(1) (12, 1, and 11 months
previous, respectively) have the greatest importance. This finding agrees with [62,63], which also used
the previous and 12-month prior pixels to predict corresponding points in current month.

Figure 4. Feature importance of same pixel of previous months, where f(0) stands for same month
previous year, and f(11) stands for previous month.

Based on our results, we created seven different feature sets labelled a–g as follows:

• a = f(0, 11)
• b = f(0, 11, 1)
• c = f(0, 11, 1, 10)
• d = f(0, 11, 1, 10, 2)
• e = f(0, 11, 1, 10, 2, 9)
• f = f(0, 11, 1, 10, 2, 9, 3)
• g = f(0, 11, 1, 10, 2, 9, 3, 8, 4)

4.3.2. Other Local Spatiotemporal Features, and Rescaling

Because of the geographical and seasonal nature of groundwater levels, the following spatiotemporal
features were also deemed to be significant and were used:

• Pixel’s x, y coordinate;
• Time stamp (0, . . . , 11) (0 = January, . . . 11 = December)

Since most of the pixel values are low and high values were relatively infrequent, the pixel
values were replaced by their square roots to regularize the scale. The square root transformation was
similarly applied to inputs in [64], and to outputs in [65,66].
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4.3.3. Global Feature Generation Using Gaussian Mixture Models

In this subsection we describe how we used Gaussian mixture models (GMMs) to generate
global features. This idea came from observing that regions of high groundwater level seemed to form
shapes that could be described as Gaussian distributions, which propagated from image to image.
The means and the covariances of these Gaussian-shaped features can be used as global features that
describe the motion of high regions from image to image. To apply GMM to an image, we converted
the image to a set of pixel locations by randomly selecting pixels with selection probability proportional
to the pixel’s scaled intensity (see Figure 5). These pixel locations were fed to the GMM algorithm
which returned means, covariance matrices, and weights of Gaussian clusters. In this study, we set up
the algorithm to have only one cluster. The pixel located at the cluster mean and the two eigenvalues
of the covariance matrix were used as global features.

Figure 5. Two image representations of groundwater, where (A) represents a normal frame of groundwater;
(B) represents the captured high pixels intensity.

We applied GMM to image 10 (two months previous), and image 11 (one month previous),
yielding a total of 8 global features. As described above, our application of GMM involved a
randomization when choosing pixel locations. To account for this randomness, when evaluating
models that used GMM features we created 100 different models using different randomization.
From those 100 results we took the per-pixel averages to get a single model, and took the RMSE and
MAE for this model to obtain accuracy estimates.

5. Performance Results and Discussion

5.1. Performance Results

Tables 1–4 show performance accuracies for models trained using different features. Table 1 uses
only same-pixel data from previous months; Table 2 adds the features (i,j), which stands for the pixels
position in a 2D array; Table 3, adds the time stamp (denoted by t); Table 4, additionally applies the
square root transformation (denoted by s) to the pixel values. The code together with image data is
available on GitHub at https://github.com/EslamHussein55/Groundwater-Pixel-Prediction-using-
ML-tools.
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Table 1. RMSE and MAE for the same-pixel features from previous months, using seven different
configurations and five different machine-learning techniques.

Features MAE
XGB

RMSE
XGB

MAE
LR

RMSE
LR

MAE
RF

RMSE
RF

MAE
MLP

RMSE
MLP

MAE
SVR

RMSE
SVR

MAE
Mean

RMSE
Mean

a 2.887 5.790 2.915 5.649 2.911 5.878 2.843 5.639 2.700 5.720 2.851 5.735
b 2.890 6.064 2.840 5.642 3.047 6.402 3.008 5.952 2.677 5.895 2.892 5.991
c 2.912 6.078 2.909 5.630 3.048 6.255 2.782 5.844 2.640 5.861 2.858 5.933
d 2.928 6.145 2.900 5.625 3.074 6.407 2.844 5.657 2.626 5.857 2.874 5.938
e 2.890 6.060 2.913 5.621 3.034 6.351 2.829 5.723 2.617 5.751 2.856 5.901
f 2.957 6.104 2.942 5.641 3.065 6.293 2.763 5.655 2.616 5.710 2.868 5.880
g 2.936 6.065 2.933 5.628 2.954 5.981 2.826 5.803 2.617 5.685 2.853 5.832

Table 2. RMSE and MAE using the same-pixel features from Table 1, plus an additional pixel location
feature, using five different machine-learning techniques.

Features MAE
XGB

RMSE
XGB

MAE
LR

RMSE
LR

MAE
RF

RMSE
RF

MAE
MLP

RMSE
MLP

MAE
SVR

RMSE
SVR

MAE
Mean

RMSE
Mean

a + i, j 2.655 5.571 2.655 5.571 2.996 6.358 2.73 5.540 2.436 5.413 2.694 5.690
b + i, j 2.736 5.884 2.736 5.884 2.893 6.057 2.838 5.809 2.526 5.657 2.745 5.858
c + i, j 2.716 5.763 2.716 5.763 2.781 5.736 2.838 5.908 2.493 5.625 2.708 5.750
d + i, j 2.805 5.983 2.805 5.983 2.759 5.770 2.760 5.594 2.479 5.626 2.721 5.791
e + i, j 2.753 5.904 2.753 5.904 2.714 5.668 2.838 5.809 2.481 5.565 2.707 5.770
f + i, j 2.844 5.890 2.844 5.890 2.811 5.806 2.860 5.907 2.491 5.592 2.770 5.817
g + i, j 2.887 5.996 2.887 5.996 2.804 5.679 2.813 5.742 2.529 5.607 2.784 5.804

Table 3. RMSE and MAE using the same feature sets as Table 2 plus time stamp, using five different
machine-learning techniques.

Features MAE
XGB

RMSE
XGB

MAE
LR

RMSE
LR

MAE
RF

RMSE
RF

MAE
MLP

RMSE
MLP

MAE
SVR

RMSE
SVR

MAE
Mean

RMSE
Mean

a + i, j + t 2.478 5.859 2.967 5.682 2.567 5.954 2.872 5.893 2.377 5.342 2.652 5.746
b + i, j + t 2.481 5.742 2.867 5.658 2.653 5.769 2.807 5.781 2.445 5.559 2.650 5.701
c + i, j + t 2.514 5.834 2.933 5.641 2.587 5.595 2.95 6.272 2.456 5.588 2.680 5.786
d + i, j + t 2.576 5.879 2.924 5.637 2.609 5.634 2.771 5.903 2.440 5.602 2.660 5.731
e + i, j + t 2.598 5.946 2.94 5.633 2.620 5.613 2.945 6.263 2.451 5.540 2.710 5.799
f + i, j + t 2.758 6.092 2.962 5.645 2.700 5.689 2.882 6.159 2.474 5.573 2.755 5.831
g + i, j + t 2.724 5.936 2.954 5.634 2.621 5.519 2.912 5.843 2.491 5.580 2.740 5.702

Table 4. RMSE and MAE using the same feature sets as Table 3 and square root rescaling, using five
different machine-learning techniques.

Features MAE
XGB

RMSE
XGB

MAE
LR

RMSE
LR

MAE
RF

RMSE
RF

MAE
MLP

RMSE
MLP

MAE
SVR

RMSE
SVR

MAE
Mean

RMSE
Mean

a + i, j + t + s 2.342 5.544 2.857 5.582 2.536 5.897 2.490 5.598 2.542 5.313 2.553 5.586
b + i, j + t + s 2.438 5.682 2.788 5.612 2.612 5.821 2.598 5.661 2.503 5.326 2.587 5.620
c + i, j + t + s 2.417 5.602 2.797 5.575 2.558 5.668 2.633 5.634 2.450 5.275 2.571 5.550
d + i, j + t + s 2.539 5.816 2.785 5.571 2.557 5.670 2.726 5.870 2.455 5.291 2.612 5.643
e + i, j + t + s 2.554 5.757 2.796 5.550 2.569 5.629 2.945 6.039 2.455 5.289 2.663 5.652
f + i, j + t + s 2.596 5.839 2.818 5.565 2.628 5.642 2.942 6.283 2.477 5.301 2.692 5.726
g + i, j + t + s 2.557 5.639 2.811 5.553 2.631 5.632 2.859 5.964 2.477 5.315 2.667 5.620

5.2. Performance Comparisons

The data in Tables 1–4 are summarized in Figures 6 and 7. For MAE, XGB with all features
(including same-pixel, spatial-temporal, and square root rescaling) gives the overall best performance.
However, SVR is clearly the best performer for most feature sets. SVR tends to work best with fewest
same-pixel features (i.e., configuration a, which is the previous month + 12 months prior). SVR with
configuration a + (i, j) reduces the MAE by about 7% over the best result without spatial features.
Adding time stamp and square root rescaling gives little additional improvement. In general, SVR gave
MAE values that were between 7 and 20 % better than the worst-performing algorithms, which were
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random forest (for same-pixel and same-pixel + spatial location feature sets) or linear regression
(for other feature sets). It is noteworthy that adding a time stamp brought large error reductions to
random forest and XGB, while having little effect on linear regression, MLP, and SVR.

The RMSE results resemble the MAE results in that SVR consistently gives the lowest error.
This time however, XGB with a + i, j + t + s does not outperform the SVR results. Once again, same-pixel
configuration a tends to give the best results for SVR, and a + i, j has about 4% lower error than a only.
In general, SVR gave MAE values that were 2.5–15.5% better than the worst-performing algorithms.

Figure 6. MAE Graph for the different set configurations.

Figure 7. RMSE Graph for the different set configurations.

Figure 8, shows the percentage performance improvement (i.e., percentage error reduction) of
the overall best-performing model from Tables 1–4 (SVR) compared to the untrained model based
on the previous month. The MAE and RMSE values for the untrained model were 2.988 and 6.771,
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respectively. When square root rescaling is used, all predictions reduced MAE and RMSE by over 15%
and 20%, respectively. The overall best predictor (a + i + j + t) reduced both MAE and RMSE by more
than 20%. This result is consistent with [39], which found that SVM outperformed RF when predicting
rainfall images up to 3 h ahead on a per-pixel basis.

Figure 8. Performance improvement of SVR versus the untrained previous month regressor.

When GMM was added to XGB with a + i, j + t + s, the values of MAE and RMSE obtained were
2.258 and 4.838, respectively. These values were better than the corresponding best results without
GMM by 3.6% and 9.4% respectively. Compared to the untrained predictor, this XGB+GMM model
gave 25% improvement in MAE and 29% improvement in RMSE. Figure 9, shows an example of an
actual image and its prediction using XGB+GMM.

Figure 9. Example of an image prediction made with the model (XGB+GMM).

All of the above results were obtained using the default parameters in sklearn for their
respective methods. Parameters were not optimized because of the large number of different
methods involved. In particular, optimizing GMM is very expensive since it used 100 trained models
which would all have to be optimized separately. We did conduct a preliminary investigation into
parameter optimization by tuning parameters used in RF and XGB for the models in Tables 1–3.
For this purpose, the scikit-optimize package was used, which employs Bayesian optimization.
Improvements in MAE and RMSE were less than 6.5%, and still fell short of the performance obtained
with GMMs without parameter optimization.

Figure 10 gives residual plots and R2 values for the best XGB+GMM (a + i, j + t + s) model and
the best SVR model (a + i, j + t), superimposed on the untrained model residuals. Visually, XGB+GMM
and SVR are giving predictions closer to the 45◦ line than the untrained regressor, while the R2 values
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are more than doubled. Figure 11 presents Regression Error Characteristics (REC) curves for the same
three models. For XGB+GMM, 85% of pixel predictions have a deviation of 5 or less.

Figure 10. Residual plots and R2 values for XGB+GMM versus untrained predictor (left), and best
SVR model versus the untrained (right).

Figure 11. Regression error characteristic (REC) curves for the best XGB+GMM, and SVR models,
together with the untrained regressor.

6. Conclusions

This paper investigated the automatic prediction of groundwater ∆TWS in the GRACE dataset.
The proposed approach uses a regression-based approach to predict full groundwater images based
on sequences of monthly groundwater maps.

Our results show that the application of appropriate machine-learning techniques can yield
significantly more accurate predictions. In particular, it was shown that using SVR as a predictor,
automatically selected previous same-pixel values and time stamp as features, and square root rescaling
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all contributed to better overall prediction outcomes. Global features constructed from GMMs fitted to
the pixel intensity distribution brought further improvements.

In future work we will apply these methods to other regions and meteorological parameters
such as rainfall, temperature, air pressure, humidity etc. We shall also explore possible improvements
to the method such as better imputation of missing values and the investigation of other global features.
Additionally, we shall extend these methods to the joint prediction of multiple parameters.
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Abstract: Machine learning (ML) has been utilized to predict climatic parameters, and many successes
have been reported in the literature. In this paper, we scrutinize the effectiveness of five widely
used ML algorithms in the monthly prediction of seasonal climatic parameters using monthly image
data. Specifically, we quantify the predictive performance of these algorithms applied to five climatic
parameters using various combinations of features. We compare the predictive accuracy of the
resulting trained ML models to that of basic statistical estimators that are computed directly from the
training data. Our results show that ML never significantly outperforms the statistical baseline, and
underperforms for most feature sets. Unlike previous similar studies, we provide error bars for the
relative performance of different predictors based on jackknife estimates applied to differences in
predictive error magnitudes. We also show that the practice of shuffling data sequences which was
employed in some previous references leads to data leakage, resulting in over-estimated performance.
Ultimately, the paper demonstrates the importance of using well-grounded statistical techniques
when producing and analyzing the results of ML predictive models.

Keywords: geophysical image data; high-dimensional data analysis; prediction; statistical modeling;
baselining; evaluation; data leakage; seasonality; uncertainty quantification; jackknife

1. Introduction

Recent advances in computing have shifted the focus of scientific communities from
a data-scarce to a data-rich research environment [1]. This paradigm shift, known as
the fourth paradigm of science, and often referred to as the era of “big data” [2], has
emerged from the move of big data and AI into our daily lives and the pervasiveness of
these two technologies, which are (i) leading to an explosion in innovation, competition,
and productivity [3], (ii) causing a dramatic shift to data-driven research [4], and (iii)
unleashing the benefits of data-intensive applications.

Climate science is a research field where data-driven models based on machine learn-
ing (ML) have become popular [5]. A major focus of climate science is the understanding
and prediction of climate parameters such as rainfall and temperature [6] and many others.
For many practical climate-influenced decisions where prediction times of months to a
decade are likely to be the most important [7], providing accurate models to predict cli-
matic parameters on these time scales is critical. The remarkable successes of ML and deep
learning in a variety of fields such as computer vision and natural language processing
suggests that this success may be extended to climate science as well.

However, there is a concern regarding how effective and legitimate these ML models
are to address real world applications in climate science. This is reason for enthusiasm,
but also for skepticism, as it is all too common to make excessive claims for new techniques,
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which turn out not to live up to their initial promise, as exemplified by Gartner’s hype
cycle model [8]. There are already several examples in the literature that show that ML
does not always live up to its hype. A recent overview study reviewed several papers
that used recurrent neural networks for top-n recommendation tasks, and found that a
simple model using K-nearest neighbors outperformed most of the more sophisticated
models [9]. One major deficiency identified by the study was the use of defective or weak
baselines when quantifying the performance of newer proposed models. Other papers that
also reached the conclusion that sophisticated ML models do not necessarily outperform
simpler models include [10–13].

One key feature of ML methods is that they make no assumptions about the underlying
distribution of inputs. This can be both an advantage and a disadvantage. The advantage
is that ML methods can be applied to a wide variety of datasets without having detailed
knowledge of the statistics of the individual datasets. The disadvantage is that ML may
miss important characteristics of particular datasets. For this reason, if the user has
some knowledge of the dataset’s distribution, it is important to compare ML predictors
with statistical estimates based on the presumed distribution. Such statistical estimates
have the advantage that they are simple to calculate, require no training, and are easy to
interpret [14].

One deep flaw in most papers in the literature is that accuracy estimates for ML
methods are given (such as R2 or root mean squared error) without providing error bars on
these estimates. Hence, it is impossible to tell whether or not differences between methods
are statistically significant. This may be one reason why different investigators often reach
different conclusions about the relative effectiveness of different ML methods. For example,
Armstrong et al. [15] concluded from an analysis in the context of ad hoc retrieval tasks
that numerous published papers report mutually contradictory conclusions concerning
ML model performance.

Another concern is that some common pre-processing practices produce data leakage,
so that ML algorithm accuracies are over-reported. Some examples of such practices are:
data shuffling, whereby researchers randomly shuffle the data [11,16–23]; data imputation
methods that use statistics (such as averaging) calculated on the entire data set, including
both training and testing [24–26]; and data transformations such as de-seasonalization that
also use statistics calculated on the whole dataset [27,28].

It is necessary to investigate the robustness of ML models in different fields of applica-
tion. The current study is aimed at investigating the above mentioned deficiencies in the
area of climatic seasonal parameters. This paper is organized as follows: Section 3 describes
the data used; Section 4 discusses the methodology used for climatic parameter prediction;
Section 5 shows the results obtained; Section 6 discusses the results; and Section 7 furnishes
the conclusions.

2. Literature Review and Scope of the Research

ML is widely used in climatology to construct predictive models based on sequential
data [11]. A variety of types of input data are used, including satellite images or periodic
samples from gauges or weather stations.

The studies in the literature can be largely divided into two categories in terms
of the predicted output: those that predict one or more entire images which provide a
visual representation of a given predicted climate parameter on spatial maps of a specific
geographical area under review (“whole-image prediction”); and those that predict only a
single output representing a given predicted climate parameter at a fixed location (“single-
output prediction”).

For whole-image prediction based on sequential images, convolutional neural net-
works (CNNs) and convolutional long-short term models (ConvLSTMs) are often used
due to their ability to perform feature reduction on spatial information. However these
models require very large datasets with tens of thousands of images, due the data-intensive
training process. For this reason, CNNs and ConvLSTMs are mainly applied to data sets
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with short time intervals of no more than a few minutes between data points, which are
typically much larger than data sets with longer time intervals [29–40]. For single-output
prediction, a wider range of ML tools and time frames have been used, from linear methods
in [17,21,41,42], to ensemble methods in [43–45], to hybrid methods in [28,46–48], to deep
models in [49–56] covering time scales from minutes to years.

From a practical point of view, usually the most important policy decisions involving
climate require monthly predictions [7]. Relatively few studies exist which use image data
to make monthly predictions [57,58]. When time scales on the order of months or longer
are involved, datasets are typically much smaller than those involving shorter time scales.
A broad range of ML methods are applied, from simple methods like multilinear regres-
sion (MLR) up to advanced neural networks models [13,16–18,20,21,24,25,46,47,49,59–62].
Because of the small data sets used, researchers often perform feature selection/reduction
to avoid overfitting. Most often, the selected features in the literature are combinations of
features derived from previous time steps in the data, for example, a parameter at month
n may be predicted based one or more parameter values taken from months previous
to n [25–27,46,63].

Because of the rotation of the earth around the sun, monthly time series data like
rainfall exhibit a seasonal behavior on a yearly basis (exhibit a yearly periodicity) [64,65].
This is critical to address because traditional time series models tends to rely on the
time series being stationary [64,66]. Hence, the authors in [64] saw it as necessary to
remove the periodicity in a monthly time series data. They described three ways of
going about this: (a) previous lag differencing, (b) seasonal referencing; and (c) monthly
mean subtraction, where (c) was identified as the most suitable method for monthly time
series data. However, we found that many papers dealing with monthly prediction of
climate parameters did not transform the input data to remove seasonality. Some papers
accommodate seasonality by including data from month n− 12 to predict parameters at
month n [13,17,19,20,24,25,27,28,44,49,51,58,60,62,67]. Month n’s time stamp (defined as
n mod 12) was used as a feature in [19,49], but is not common in the literature.

In a few papers, the authors subtracted the monthly mean averages computed from
the whole data set [25,28], with the inclusion of data from month n− 12. This procedure
disrupts the integrity of the data by causing data leakage, whereby information from the
testing set is introduced into the training set. Other papers make no attempt to account for
seasonality [18,22,23,46,48,61,68,69]. Evidently, there is no consistent procedure for dealing
with the seasonality aspect of the data; this is one point that we address in this paper.

In the previous section we emphasized the importance of using simple baselines
to provide benchmarks to compare with more complicated methods. According to [66],
the simplest baseline for predicting time series is to use the previous lag. For short-term
image data, the previous image is used as a naive predictor for the next image [36,37,40,70].
As for monthly data, using previous lags as a baseline is not a common practice. Instead,
a variety of baselines are used. Some papers use MLR based on previous lags [13,16,17,25],
while the authors in [45] used same-month averages. Some papers do not use simple base-
lines, but rather compare several variations or architectures of more advanced ML methods
such as SVR or MLP [26,27,46,63]. In summary, simple baselines are not consistently used
in the literature.

The Objectives of the paper are as follows: (a) perform seasonal grid prediction on
multiple climatic parameters; (b) investigate multiple untrained baselines, and in particular
using a statistical estimator derived from a simple statistical model of the image pixel
distributions; (c) analyze the effectiveness of subtracting the seasonality using the monthly
average calculated only on the training data; (d) investigate the common feature sets used
in the literature; (e) calculate error bars on the relative prediction accuracies of different
methods using jackknife estimation applied to pairwise differences between prediction
errors; and (f) demonstrating the effect of data leakage on the reported performance.

Our results show that across all climatic parameters studied, a very limited feature set
(time stamp with spatial information) without seasonal subtraction outperforms feature sets
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that use previous lags, with or without seasonal subtraction. Furthermore, an untrained
baseline based on a simple statistical model can out perform more sophisticated ML tools.
Furthermore, handling data inappropriately so that data leakage occurs (as has been done
in some previous papers) can lead to significant overestimation of predictive performance.

3. Data and Area of Interest

The climatic data were obtained from the NASA GESDISC data archive, which is
accessible to users registered with NASA Earthdata [71]. The dataset used is obtained
from the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation
System (FLDAS). FLDAS contains monthly image data for 28 fields such as rainfall flux,
evaporation, and temperature [72] with a spatial resolution of 0.1◦ × 0.1◦. The data are
archived in netCDF format, where it can be manipulated and displayed using freely
available software packages within python and R. NASA also supplies a cross-platform
application called Panoply that can be used to plot the data [71].

The downloaded data set for each parameter used contains 228 satellite frames on a
monthly basis, between January 1982 and December 2000. Images depict the entire globe
at a resolution of 1500× 3600 pixels. Figure 1 shows a sample image of rainfall. In general,
the images are color coded to provide information about the relevant parameter. In the
current study, the climatic parameters used are rainfall, evaporation, humidity, temperature,
and wind speed.

Figure 1. A sample full image of the rainfall dataset used in this research [72]. Color scale indicates
normalized rainfall intensities.

To limit the computational load, we focused our prediction on Madagascar. Mada-
gascar is the world’s fourth largest island with an area of about 592,000 km2 [73], and is
separated from Mozambique on the main African continent by about 400 km [73]. The cli-
mate on the island is subtropical and is characterized by a dry season from May to October
and rainy season from November to April [74,75]. Table 1 summarizes the characteristics
of the Madagascar image data used in our study, which was extracted from the original
FLDAS data.
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Table 1. Properties of Madagascar image data (extracted from FLDAS dataset).

Property Value
Latitude Extent 12◦–26◦ S

Longitude Extent 43◦–51◦ E

Spatial Resolution 0.1◦ × 0.1◦

Temporal Resolution Monthly

Temporal Coverage January 1982 to December 2000

Dimension (lat × lon) 140× 80

Madagascar is currently facing several challenges due to the potential impact of climate
change on the agricultural sector, which can threaten food security [76–79], especially since
farmers in the country are estimated to be 70% of the population [74]. Example images
of the five climatic parameters used at a specific arbitrary timestamp are provided in
Figure 2. The figure shows normalized values of five climatic parameters, namely rainfall,
evaporation, humidity, temperature, and wind.

Figure 2. Images showing normalized values of five climatic parameters of Madagascar used in this
study (left to right): rainfall (Rain), evaporation (Evap), humidity (Humid), temperature (Temp),
and wind.

4. Methodology

Figure 3 shows a flowchart of the system created and used to make predictions in
this research. The end goal of the system is to predict monthly rainfall, evaporation,
humidity, temperature, and wind speed images on a pixel level, using a sequence of
previous images as an input. The rest of this section describes the progression through
the flowchart in the figure in detail: first we discuss the pre-processing of the images
and the preparation of the data set; then we describe feature selection; and finally, we

http://etd.uwc.ac.za/ 
 



Atmosphere 2021, 12, 539 6 of 20

indicate the tools used. The code together with the results are available on GitHub at
https://github.com/EslamHussein55/Climatic-parameters (accessed on 16 April 2021).

Figure 3. Flowchart showing the implementation process.

4.1. Image Pre-Processing

All images in the parameter datasets were cropped to a rectangle of size 140× 80
that includes the Madagascar land area. We transformed the image pixels to greyscale
(0–255) and re-sized the images to 70× 40 to further reduce their complexity. In view
of the fact that extreme values are a common occurrence in geophysical parameter data,
pixel values were regularized by replacing them with their square roots, following the
example of [57,80,81]. Since our study is concerned with relative performance of different
algorithms rather than absolute performance, for simplicity we did not remove over-ocean
pixels, which are constant in all images and hence perfectly predicted.

We mentioned previously that some authors recommend transforming time series data
to remove seasonality, while many authors do not follow this recommendation. To evaluate
the effectiveness of transforming time series, we created two input data sets (denoted as
‘raw’ and ‘de-seasonalized’) for each of the five parameters. The raw dataset contains the
original data, while the de-seasonalized data is transformed by subtracting same-month
averages. Care was taken to compute monthly averages based only on the training data
to prevent data leakage. For illustrative purposes, Figure 4 shows example raw and
de-seasonalized images for rainfall.

Figure 4. Pre-processed rainfall images (compare first image in Figure 2): raw image (left) and
de-seasonalized image (right).
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4.2. Data Preparation

We prepared the data in a sliding window fashion, similar to the following
studies [35,82–85]. Figure 5 shows how pixels at a given location in a 12 month win-
dow are used to predict the corresponding pixel at the same location in the 13th month.
In the figure, the symbols {f[0], . . . , f[11]} refer, respectively, to the frames {12, . . . , 1}
months prior to the predicted frame, respectively.

Figure 5. Overview of dataset preparation: Notation for same-pixel features used in image prediction.

As shown in Figure 5, the datasets were used to produce sequences consisting of 12
consecutive months. All datasets were divided into training and testing sets, where the
training set was made up of sequences occurring earlier in the dataset, and the testing set
made up of sequences that followed those in the training set. This technique of maintaining
chronological order when dividing the datasets into training and testing sets helps avoid
the problem of information leakage into the trained model from the future [66]. Applying
the sliding window generated 216 sequences with the first 156 used for training, and the
rest as testing. Although the number of images appears relatively small, the training task is
nonetheless computationally expensive since the training process utilizes 156× 70× 40
input vectors. This explains why previous similar studies also use relatively few images;
for example [86] trains on only 47 images.

4.3. Feature Selection

Feature selection is critical to increasing training efficiency and model accuracy. Based
on the reviewed literature for monthly prediction, we tested a variety of feature sets to
understand the system mechanism. We also added in features systematically and assessed
whether or not added features gave clearly better performances to ensure model parsimony
and avoid overfitting [87]. The feature sets are described in the following subsections.

We first created a list of 12 candidate features for image prediction consisting of
pixel values at the same location for the 12 prior months. To select a variety of these
features, we prepared the data using the sliding window algorithm, where each 12-month
window was used to predict the 13th month. Based on previous literature [13,17–20,22–
28,44–49,58,59,61,62,67–69,88], we included the following feature sets:

• f[0]: same-pixel values from frames 12 months previous;
• f[11]: same-pixel values from the previous month;
• f[0, 11]: same-pixel values from 12 months previous and the previous month;
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• f[0, 1, 2, 11]: same-pixel values from {12, 11, 10} months previous and the
previous month;

• f[0, 1, 10, 11]: same-pixel values from {12, 11} months previous and the previous
two months.

Given the geographical variation and seasonal nature of the dataset used, the following
spatio-temporal features are also used in this study:

• The (i, j) coordinates of the pixel of interest;
• Monthly time stamp t ∈ {0, . . . , 11} where {0 = January, . . . , 11 = December}.

The five past-pixel feature sets and the two spatio-temporal features were combined
to form the following feature set variants:

• Past-pixel features only (five variants, as listed above);
• (i, j) feature set only;
• (i, j, t) feature set only;
• Past-pixel features (five variants) plus (i, j, t).

These 12 feature set variants were applied to both the raw and de-seasonalized train-
ing data.

4.4. Tools and Evaluation Methods
4.4.1. Machine Learning Algorithms

A total of five ML techniques are used for image prediction: (a) multivariate linear re-
gression (MLR); (b) k-nearest neighbor (KNN); (c) random forest (RF); (d) extreme gradient
boosting (XGB); (e) multilayer perceptron (MLP). Since the training set consisted of less
than 200 sequences, we did not use deep learning, which typically requires much larger
training sets [89–92]. For all ML tools except for MLR, parameters were optimized via grid
search with three fold validation, using the time series cross-validator implemented in
scikit-learn [93]. The purpose of cross-validation is to avoid overfitting by making sure
that the model is not overly dependent on the particular training data used to construct
the model. Additionally, for MLP, a regularization parameter was used as an additional
measure to counteract overfitting. Grid search optimizations to optimize ML parameters
were performed separately for each feature set applied to each climatic parameter used on
the raw data and separately again on the de-seasonalized data. All optimized parameters
for all ML tools can be found in the GitHub link provided above.

Altogether, a total of (5 climate parameters × 2 data variants (raw/de-seasonalized)
× 12 feature set variants × 5 ML tools) = 600 optimization experiments were performed.

4.4.2. Performance Metrics

One commonly used measure of the accuracy of a predictor’s error is the mean abso-
lute error (MAE). The MAE is calculated as the mean of the absolute values of prediction
errors for all predicted pixel values:

MAE =
1
M

M

∑
m=1
|yobs

m − ypre
m | (1)

where M is the number of observations, and yobs
m and ypre

m refer to the observed and
predicted value of the mth output, respectively.

There is a long-running debate over whether or not MAE is superior to root mean
squared error (RMSE) in geophysical studies [94–97]. It is generally acknowledged that
MAE is more robust, since it puts less weight on outliers. In view of the number of
comparisons made in the current research, we settled on MAE as our principal measure of
forecasting error, rather than reporting both MAE and RMSE.

In order to obtain error bars for differences between estimated MAE values for dif-
ferent ML estimates, we used the jackknife variance estimator [98]. The jackknife was
implemented by obtaining M− 1 different MAE values by omitting successively the first,

http://etd.uwc.ac.za/ 
 



Atmosphere 2021, 12, 539 9 of 20

second, third, . . . image in the testing set. It is important to note that entire images were
omitted and not single pixels, because pixel errors in the images are highly correlated: a
jackknife estimator based on omitting single pixels will greatly underestimate the variance.
Since we are interested in relative performance of the ML method compared to a selected
baseline, we applied jackknife to the difference between the MAEs for the ML estimate and
the baseline. This is another critically important point, because the variance for the MAE
for individual ML methods is much larger than the variance of difference between ML and
baseline MAEs because the MAEs for ML and baseline are highly correlated. A pseudocode
for the procedure is given in Algorithm 1.

Algorithm 1 Computation of MAE for the difference between baseline and ML algorithms.
di f f _tot = totalMAE(ML_estimate)− totalMAE(baseline_estimate)
var_est = 0
for m in range(M) do

omit image m from list of M images
di f f = MAE(ML_estimate)−MAE(baseline_estimate) . for the reduced list of images
var_est = var_est + (di f f − di f f _tot)2

end for
var_est = (M− 1)/M× var_est
std_est = sqrt(var_est)

4.4.3. Baselines and Statistical Estimators

For this study, we employed four different untrained predictors as baselines: (1)
previous month (denoted ‘base-11’); (2) same month previous year (denoted ‘base-0’);
and (3) average of all training set images for the same month (referred to as ‘seasonal
baseline’ or ‘base-Se’); (4) the squared mean square root for training set images of the same
month, rounded down to the nearest integer (denoted as ‘base-Se(sqrt)’). When evaluating
the effectiveness of different ML algorithms in parameter prediction, we compared these
baselines against the trained ML models.

The first three baselines have precedents in the literature. The authors in [66] suggested
the use of base-1) as the simplest baseline. Base-0 is suggested by the seasonality of the
data. As for base-Se, the authors in [45] implemented the use of the monthly averages as
a baseline.

The final baseline is justified by an inferred statistical model of the image pixel distri-
butions, which is motivated as follows. It is clear that the distribution of seasonal climatic
parameters for any pixel (i, j, n) must depend on the location (i, j) and the time stamp
t = mod (n, 12). It is also clear that neighboring pixels at the same month index n are
correlated. Allowing for these correlations, we posit the simplest possible statistical model
for the pixel distributions: namely, that all pixels at month n are statistically independent
of all pixels at month n′ as long as n′ 6= n; and further, that the probability distribution for
the pixel value (i, j, n) depends only on the values of (i, j, t).

Given this assumed model for the pixel distributions, we may design an estimator
for future pixel values as follows. It is a well-known result in theoretical statistics that the
true median of the distribution of a random variable minimizes the expected MAE of a
random sample. For a nearly symmetric distribution, the median is approximately equal to
the mean. To reduce the influence of high outliers and make the distribution more nearly
symmetric, we first take the square root of the data before taking the mean: the result will
approximate the median of the square-rooted data, which is equal to the square root of the
median of the original data. Consequently, the median may be estimated as the square of
the mean of the square-rooted data, which is rounded down to reduce the bias produced
by high outliers.
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5. Results

In this section, we first present performance results for the different predictors, in-
cluding baselines and ML methods with and without deseasonalization. Then we give
error bars on the relative performance of predictors compared to the base-Se(sqrt) baseline
prediction. Finally, we describe the effect of data shuffling on predictor accuracy estimates.

In the following discussion, the data is presented graphically for brevity. Data in
tabular format is available at https://github.com/EslamHussein55/Climatic-parameters
(accessed on 16 April 2021).

5.1. Performance Comparisons for Different Baselines, Feature Sets, and Preprocessing Methods

Figure 6 gives residual plots and R2 values for the three baselines base-11, base-0, and
base-Se(sqrt) for the five climatic parameters (base-Se is not shown, but strongly resembles
base-Se(sqrt)). As seen in the figure, Base-Se(sqrt) gives the most accurate estimations
across all parameters (predictions lie closer to the 45◦ line), as well as giving larger R2

values. Indeed, the R2 performance for base-Se(sqrt) is almost perfect, with all values
over 0.96.

Figure 6. Residual plots and R2 values for three proposed baselines on five different parameters. The scatter plots show
5000 randomly-selected point for each baseline, for each parameter.

Figures 7–11 summarize the MAE results for models trained using different feature sets
for each of the climatic parameters. The corresponding RMSE values were also generated,
but since they closely resemble the MAE results, they are omitted here. Each figure contains
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two line graphs for raw and de-seasonalized data sets, respectively. For the raw data,
the [i,j] feature set performed very badly, so we omitted these results from the figures to
avoid stretching the vertical scale. In addition, the base-11 baseline was above the vertical
scale for all parameters except rainfall, and is not shown.

Figure 7. MAE for rainfall predictions with different feature sets, for raw and de-seasonalized data sets.

Figure 8. MAE for evaporation predictions with different feature sets, for raw and de-seasonalized data sets.

Figure 9. MAE for humidity predictions with different feature sets, for raw and de-seasonalized data sets.
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Figure 10. MAE for temperature predictions with different feature sets, for raw and de-seasonalized data sets.

Figure 11. MAE for wind predictions with different feature sets, for raw and de-seasonalized data sets.

Of the four baselines, base-Se(sqrt) is always the best, followed by base-Se, base-0, and
base-11, in that order. In fact, Base-Se(sqrt) is also better than all ML tools for all parameters
and feature sets, except evaporation for a few feature sets.

Next, comparison between raw-based and de-seasonalized-based predictions shows
that de-seasonalizing tends to stabilize the performance, so that it is less dependent on
the feature set used. If the feature set contains [0], then de-seasonalizing makes little
difference. De-seasonalizing does not always improve the feature sets’ performances,
as will be discussed in more detail below.

A comparison of feature sets shows that the feature sets [i,j,t],[11,i,j,t], and [0,11,i,j,t] are
consistently the best performers, both for raw-based and de-seasonalized-based predictions.
In our detailed performance analysis below, we focus on these three feature sets.

It is significant that the above observations apply consistently to all five parameters,
which suggests that the same observations can generalize to other climatic parameters.

5.2. Detailed Comparison of ML Tools and Feature Sets

Figures 12 and 13 show the percentage error reductions for different ML algorithms
for the 5 climatic parameters, using raw and de-seasonalized data, respectively. Only the
three best feature sets are represented, namely i,j,t, [11]+i,j,t, and [0,11]+i,j,t. In the figures,
the 100% level corresponds to the Base-Se(sqrt) MAE error: so, for example, the MLR value
of 120% for rain (raw) with feature set [0,11] + i,j,t indicates that the MAE error for MLR
is 1.2 times the corresponding Base-Se(sqrt) error. Error bars in the figures correspond to
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±2 standard deviations, and were computed using the jackknife procedure described in
Section 4.4.2, using the different ML methods and the Base-Se(sqrt) baseline.

Figure 12. MAE of all trained models with features [i,j,t, i,j,t+[11], i,j,t+[0,11]], compared to base-Se(sqrt) on the raw climate
datasets. On the vertical scales, 100 corresponds to the MAE for the base-Se(sqrt) estimator.

Figure 13. MAE of all trained models with features [i,j,t, i,j,t+[11], i,j,t+[0,11]], compared to base-Se(sqrt) on the de-
seasonalized climate datasets. On the vertical scales, 100 corresponds to the MAE for the base-Se(sqrt) estimator.
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For raw-based predictions, Figure 12 shows that the KNN, XGB, and RF algorithms
typically attain between 100 and 110% of base-Se(sqrt) across all parameters, while MLR
and MLP exceed 125% in several cases. For evaporation with the [11]+i,j,t feature set
and for wind with the i,j,t feature set, the KNN XGB and RF algorithms are slightly
better than base-Se(sqrt), but the error bars show that this relative improvement is not
statistically significant.

For deseasonalized-based predictions, the accuracy of XGB and RF is nearly the same
as for raw-based, but KNN performance is degraded by up to 10%. The errors for MLR
and MLP are reduced to below 115%, but still tend to be 5–10% higher than errors for XGB
and RF.

For all parameters except evaporation, the ML methods of KNN, XGB, and RF applied
to the feature set i,j,t give the best performance on both raw and de-seasonalized data.
This implies that (surprisingly) including lag-based features actually worsens prediction
accuracy for these parameters. It is also surprising that the most and least sophisticated
methods (MLR and MLP) have similar (and sub-optimal) performance in most cases.

5.3. Data Shuffling

In Section 1, we mentioned that several references shuffle the image sequences. In
order to gauge the effects of this shuffling, we used RF with features set [11]+i,j,t to predict
all climatic parameters with both shuffled and unshuffled data. For both shuffled and
unshuffled data, 156 of the 216 total 12-month sequences were used for training and the rest
for testing. The unshuffled data used the first 156 sequences for training and rest for testing,
as described in Section 4.2, while the shuffled data took 156 sequences randomly from the
entire dataset, thus producing overlap between training and testing sequences. Results
showed that MAE obtained from shuffled data was 2-10% lower than from unshuffled data,
due to data leakage.

6. Discussion

The results demonstrate that when doing seasonal parameter prediction on monthly
time scales, it is important to use a well-motivated simple baseline, e.g., a statistical
estimator computed from the source data. This finding is consistent with the points made
in [9]. Baselines that depend on lags do not perform as well. Furthermore, a simple
same-month average baseline which does not take into account the statistical properties of
MAE cannot match the performance of baseline that is designed to estimate median values,
which in theory will minimize MAE. For the seasonal parameters we tested, a carefully
designed statistical estimator outperforms even highly sophisticated ML models. This
finding raises concerns about positive results reported in previous papers that fail to supply
statistical baselines.

The results also show that care must be taken in selecting seasonal features as inputs.
In the literature, same month previous year (corresponding to our feature [0]) is com-
monly used [13,17,19,20,24,25,27,28,44,49,51,58,60,62,67]. However, we found that using
[0] scarcely outperforms base-0, and is much worse than base-Se(sqrt). Indeed, we found
that time stamp t (where t runs from 0 to 11) gave much better results, although it is rarely
used in the literature. In addition, using both features typically gave worse performance
than using t only.

Aside from using seasonal features, another way to account for seasonality is to
de-seasonalize the input data by subtracting monthly averages. The results show that
de-seasonalization tends to reduce model complexity: for example, when data is de-
seasonalized, then feature [0] becomes unnecessary. However, whether or not
de-seasonalization lowers the error depends which algorithm and which features set
is used. For example, the best-performing feature-algorithm combinations in our study
used i,j,t with RF, or XGB, and for these combinations de-seasonalization of inputs made
no difference. We conclude that appropriate feature and algorithm selection has more of an
effect on performance than de-seasonalization.
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A study similar to ours may be found in [45], in which base-Se is used to standardize
the performance of different ML models in predicting 1–6 months ahead rainfall using past
rainfall, temperature, and climate index. Compared to base-Se, the following ML algo-
rithms had worse performance: MLR, RF, support vector machine (SVM), artificial neural
network (ANN), long short term memory neural networks (LSTM), and convolutional
LSTM (ConvLSTM). It follows that including additional climatic parameters as features
and doing joint prediction may yield no benefits. Only when the authors used wavelets
during pre-processing did their accuracy improve. Even with wavelets, the basic MLR
model gave results that nearly matched a sophisticated LSTM model (no error bars for the
difference are given, so it is impossible to tell whether there is a significant difference).

For the climatic parameters that were examined in this paper, using previous month
(denoted as feature [11]) was not effective, and could even degrade predictive performance
when added. However, this conclusion is not applicable to other parameters such as
groundwater [7,57], which involves conditions that last over multiple months. The slight
improvements seen when adding [11] to evaporation may be due to this effect.

Unlike most prior research in this area, we established the significance of differences
in predictive performance between ML methods using error bars that were calculated
using statistically rigorous jackknife estimates. The error bars for differences between MAE
values for different estimation methods were much smaller than error bars on the MAE
values themselves (such as those calculated in [45]). The jackknife methods employed are
quite general, and can be used for other ML applications.

Finally, we established that images used for training and testing must be strictly
separated and timed. Shuffling of image sequences, which has been employed in some prior
research, leads to data leakage, which produces artificial reductions of prediction errors.

7. Conclusions

In this paper, we studied the application of machine learning to the prediction of
seasonal climatic parameters on a monthly basis. Our conclusions may be briefly summa-
rized as follows. First, a well-thought out baseline based on a simple statistical estimator
will often outperform all ML models. Hence, studies of ML prediction algorithms that do
not provide a baseline comparison are not sufficiently demonstrating the effectiveness of
the algorithms. Second, the use of time stamp (i.e., month index) as a feature can replace
de-seasonalization, and often yields better results than lags (i.e., previous month, or same
month previous year). Third, we have demonstrated that jackknife estimation can be used
to calculate error bars on algorithms’ relative performance, which until now have not
been generally reported in the literature. Fourth, we have shown that the practice of data
shuffling produces error estimates that are artificially lowered. The methods we have used
are quite general, and can be readily applied to other situations. The fact that our results
are consistent over five widely different climatic parameters suggests that similar results
may be expected for other climatic parameters measured on other regions. This conclusion
is reinforced by the fact that similar results have been observed in another study of rainfall
conducted in China [45].

In the current research, we have considered only single parameter prediction, using
local spatio-temporal based features. For future work, we may apply similar methods to
predictions based on other features. Reference [45] for instance shows that using wavelets
can lead to better predictions—the question remains whether ML applied to these features
can bring significant improvements, or whether simple statistics are sufficient.

Another possibility for future research is the application of deep learning. However,
since most monthly datasets available are not large, deep learning may be of limited
applicability for monthly prediction. Furthermore, the authors of [45] found that deep
learning did not significantly improve on multi-linear regression for monthly rainfall
prediction. Nonetheless, since the field of deep learning is developing rapidly, future
techniques may produce algorithms that perform well even on datasets of limited size.
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The following abbreviations are used in this manuscript:

ML Machine learning
ANNs Artificial neural networks
Base-0,. . . ,base-11 Baseline estimators based on previous lags (see Section 4.4.3)
Base-Se Seasonal baseline computed from same-month averages (see Section 4.4.3)
Base-Se(sqrt) Seasonal baseline computed from regularized same-month averages

(see Section 4.4.3)
CNNs Convolution neural networks
LSTMs Long short term memory
ConvLSTMs Convolutions layers with Long short term memory
MLP Multilayer perceptron
RF Random forest
SVMs Support vector machines
XGB Extreme gradient boosting
MLR Multi linear regression
KNN K-nearest neighbour
RMSE Root mean square error
MAE Mean absolute error
Rain Rainfall
Temp Temperature
Evap Evaporation
Humid Humidity
FEWS NET Famine Early Warning Systems Network
FLDAS FEWS NET Land Data Assimilation System
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Chapter 6

Conclusion

This study aimed to investigate the question “How effective is ML at predicting geo-

physical parameter data, given the spatio-temporal aspect of this kind of data?”. The

background to this question was an abundance of research studies in the literature in

the same context that make use of very complex ML methods without proper or any

baselining. This results in reports of high levels of prediction success, with very few

exceptions.

The aim of this study was to objectively investigate the task of geophysical parameter

forecasting using ML tools to provide insight into the debate that is ongoing [10].

Accordingly, the research investigated the use of six ML tools towards the prediction of

several geo-physical parameters based on image data. Specifically, the predictive perfor-

mance of these algorithms applied to six climatic parameters using various combinations

of features was quantified. Furthermore, the predictive success of the resulting trained

ML models in each case was objectively compared to that of basic statistical estimators

computed directly from the training data.

The main research question was broken down into four research sub-questions.

Research sub-question 1 was “What are the evaluation and pre-processing pitfalls when

it comes to spatio-temporal parameter forecasting?”. The key findings obtained towards

this question were as follows:

• Many studies lack a baseline predictor to which to compare the ML methods used.

This makes it difficult to objectively quantify the performance of the ML methods

in real terms.
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• Many studies do not provide error bars for prediction errors, so that the significance

of differences between prediction methods cannot be determined.

• Some references utilize practices that permit data leakage, leading to overestimates

of predictive accuracy.

Accordingly, research sub-question 1 can be answered as follows: The evaluation and

pre-processing pitfalls relating to spatio-temporal parameter forecasting include data

leakage, lack of baselining and a lack of error bars when reporting errors.

Research sub-question 2 was phrased as “What features/parameters affect the prediction

success of the geophysical parameter prediction models?”. Key findings made towards

this sub-question include the following:

• A variety of features can be used including global features derived from GMMs,

and local features including previous lags, pixel location, timestamp and others.

A complete and detailed description of these features were provided in Chapters

3–5.

• Global features constructed from GMMs fitted to the pixel intensity distribution

brought further improvements when applied to groundwater. Although GMMs

gave some improvement in groundwater prediction, GMMs are not suitable for

highly seasonal parameters since GMMs captures the slow changes that occurs on

a month-to-month basis. This conclusion was supported by preliminary investiga-

tions in which GMMs were used for rainfall and temperature prediction. Based on

these preliminary results, GMMs were not investigated further for highly seasonal

parameters.

• More complicated feature sets do not necessarily contribute towards better predic-

tion success, and in most cases contribute towards a decline in prediction success.

• For all parameters used in this study except for groundwater, making use of fea-

tures based on previous lags was not effective and degraded the predictive perfor-

mance when utilized. This is due to the highly seasonal nature of these parameters

i.e. rain, temperature, evaporation, humidity and wind. This finding is consistent

with [45], in which the authors showed that using previous lags was not effective

for rainfall prediction. Groundwater, on the other hand, changes at a much slower

pace than other parameters, and groundwater conditions are generally observed

to last for multiple months, making it easier to predict.

Based on the above findings, research sub-question 2 can be answered as follows: while

a range of features, both local and global, can be used towards prediction: a) increasing
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the feature complexity does not provide better performance and can even contribute

towards reducing it; b) local features based on previous lags may only be effective

for parameters that are not highly seasonal like groundwater, and are certainly not

effective for highly seasonal parameters like rainfall, temperature etc.; and c) global

features provided by means of GMMs are promising and could help improve on prediction

performance, although this was only investigated for groundwate.

Research sub-question 3 was phrased as “How do various ML techniques compare in

terms of geophysical parameter forecasting success?”. Key findings made towards this

sub-question include the following:

• On groundwater data, SVMs were shown to outperform all other tools such as

XGB, RF, MLR and MLP when using local features. However, XGB provided

better prediction success when coupled with global features provided by GMMs.

• On highly seasonal parameters i.e. rainfall, temperature, evaporation, wind and

humidity, the techniques compared i.e. MLR, MLP, kNNs, RF, and XGB, showed

very similar performance, with a small advantage to RF.

• It was also shown that data leakage, which is regularly to be found in the majority

of related studies in this field, can lead to over estimation in model performance,

and steps should therefore always be taken to prevent data leakage.

Based on the above findings, research sub-question 3 can be answered as follows: In

general, most ML techniques provide comparable prediction performance for most pa-

rameters, and it is in fact the choice of features used that has the most prominent

effect on prediction performance. While this is the general trend across all parameters

(highly-seasonal or not), for groundwater which is not a highly-seasonal parameter, some

techniques may outperform others.

Finally, research sub-question 4 was phrased as “How do the various ML techniques

compare to appropriate simple baselines?”. Towards answering this question, and unlike

most prior research in this area, the significance of differences in predictive performance

between the ML methods and the baselines used were clearly established in this research

using error bars that were calculated using statistically rigorous jackknife estimates. The

error bars for differences between MAE values for different estimation methods were

much smaller than error bars on the MAE values themselves (such as those calculated

in [45]). The jackknife methods employed in this research are quite general, and can be

used for other ML applications. The jackknife estimates helped to objectively quantify

performance of the ML methods in real-terms.
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Key findings made towards this sub-question include the following:

• For groundwater, it was shown that ML can out-perform a simple baseline given

an appropriate feature set.

• For all five other parameters considered, which are highly-seasonal parameters that

are commonly used, it was shown definitively that ML never significantly outper-

forms the statistical baseline. In fact, it was shown that ML methods actually

perform worse than the baseline for most feature sets. This finding is consistent

with [10] and [45]. This demonstrates the crucial importance of using a simple

baseline in such studies, which helps to objectively quantify the success of current

prevailing algorithms in climate research and other fields so as to generate an ap-

propriate evaluation of the performance which is neither a hype nor depreciation.

Based on the above, research sub-question 4 can be answered as follows: Simple baselines

outperform trained ML methods on all highly-seasonal geophysical parameters, while

the baseline did not outperform the ML methods for groundwater, which is not highly

seasonal. This points to difficulty of predicting highly-seasonal parameters which are

fast-changing. This also demonstrates the importance of using well thought-out baselines

to measure the true performance of the ML methods.

It should be noted that the methods used were shown to be readily and generally appli-

cable, and can therefore be readily applied to other parameters and regions. The results

were shown to be consistent over five widely different parameters i.e. rain, temperature,

evaporation, humidity and wind, over a variety of different regions, and this suggests

that similar results may be expected for other climatic parameters measured in other

regions. This conclusion is reinforced by the fact that similar results have been observed

in another study of rainfall conducted in China [45].

Based on the answers to the research sub-questions above, an answer to the main research

question of this thesis can be formulated, which was phrased as “How effective is ML

at predicting geophysical parameter data, given the spatio-temporal aspect of this kind

of data?”. In response to the main research question and in conclusion to this thesis,

it is stated that: “The ML tools considered in this study have limited effectiveness at

predicting geophysical parameter data; they may be more effective at predicting slower-

changing parameters such as groundwater, but not effective when predicting highly-

seasonal parameters such as rainfall, temperature, humidity, evaporation and wind. The

features used to this end are very important and can help attain an effective prediction

model, where the use of more complex feature sets should not be be primarily preferred

to simpler ones, and global features using GMMs should be considered as they are
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promising. Finally, it is important to avoid various pitfalls such as data leakage, lack of

error bars, and the lack of an appropriate statistical baseline in order to obtain accurate

indications of the prediction performance of the trained models.”

6.1 Future Work

The following provides several directions for future work.

• Investigating the use of deep learning on limited data, even though the authors in

[45] found that deep learning did not significantly improve over MLR for monthly

rainfall prediction. The field is continuously evolving, and future techniques may

produce algorithms that perform well even on datasets of limited size.

• Conduct joint parameter prediction, and try other features based on wavelets.

Reference [45] for instance shows that using wavelets can lead to better predictions.

The question remains whether ML applied to these features can bring significant

improvements, or whether simple statistics are sufficient.

6.2 Concluding Comments

Ultimately, this research demonstrates the importance of using well-grounded statistical

methods and techniques when producing and analyzing the results of ML predictive

models.
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