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Observations that push the boundaries have historically fuelled scientific breakthroughs,

and these observations frequently involve phenomena that were previously unseen and

unidentified. Data sets have increased in size and quality as modern technology ad-

vances at a record pace. Finding these elusive phenomena within these large data sets

becomes a tougher challenge with each advancement made. Fortunately, machine learn-

ing techniques have proven to be extremely valuable in detecting outliers within data

sets. Astronomaly is a framework that utilises machine learning techniques for anomaly

detection in astronomy and incorporates active learning to provide target specific results.

It is used here to evaluate whether machine learning techniques are suitable to detect

anomalies within the optical astronomical data obtained from the Dark Energy Cam-

era Legacy Survey. Using the machine learning algorithm isolation forest, Astronomaly

is applied on subsets of the Dark Energy Camera Legacy Survey (DECaLS) data set.

The pre-processing stage of Astronomaly had to be significantly extended to handle real

survey data from DECaLS, with the changes made resulting in up to 10% more sources

having their features extracted successfully. For the top 500 sources returned, 292 were

ordinary sources, 86 artefacts and masked sources and 122 were interesting anomalous

sources. A supplementary machine learning algorithm known as active learning enhances

the identification probability of outliers in data sets by making it easier to identify tar-

get specific sources. The addition of active learning further increases the amount of

interesting sources returned by almost 40%, with 273 ordinary sources, 56 artefacts and

171 interesting anomalous sources returned. Among the anomalies discovered are some

merger events that have been successfully identified in known catalogues and several

candidate merger events that have not yet been identified in the literature. The results

indicate that machine learning, in combination with active learning, can be effective in

detecting anomalies in actual data sets. The extensions integrated into Astronomaly

pave the way for its application on future surveys like the Vera C. Rubin Observatory

Legacy Survey of Space and Time.
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Chapter 1

Making Discoveries In Optical

Surveys

1.1 Introduction

Astronomical surveys are key to making new scientific discoveries, since they contain the

observational data needed for these discoveries. All of the information that is analysed,

processed and interpreted is included in the data obtained from the surveys. Technical

innovation has always been a driving force in pushing the boundaries of science, perhaps

more so in Astronomy than in any other field due to the vast increases in observations

made with improved technology. Astronomy is currently experiencing a major increase

in new surveys being undertaken. The amount of data that some of these surveys are

expected to produce has increased rapidly and, with it, the potential for unexpected

discoveries [1]. However, a disadvantage of having so much data is that the few key

sources required to make new scientific discoveries can easily be overlooked.

New telescopes are designed with specific scientific goals in mind, but they collect data

far beyond what is required for these goals alone. Discoveries thus tend to be made in

two separate ways. The first is due to the goals as set out for the telescope, with the

discovery being made directly as a result of the technology used and the methods applied.

The second stems from alternative methods and searches applied to the collected data

with the idea of mining it for new discoveries. These tend to be different in nature to

the goals set out for the survey itself, but are often important in their own right. An

example of this was the application of an outlier detection machine learning algorithm

on spectra from the Sloan Digital Sky Survey (SDSS) [2], which found numerous new

anomalous galaxies based on their spectra [3].

1
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Chapter 1. Making Discoveries In Optical Surveys 2

Surprisingly though, a significant number of important discoveries in astronomy have

been made unexpectedly. While scientific goals are set for telescopes, it sometimes

happens that new discoveries are made unexpectedly along the way. A well known

example of this is the accidental discovery of pulsars [4]. Studies done also indicate that

about half of the scientific discoveries made in astronomy are unexpected and arise from

scouring data sets for purposes other than that set out for the telescope [5, 6].

It is crucial that the data obtained from a survey is fully scrutinised using various

methods to maximise the potential to make new discoveries. Increased data volumes

and survey sensitivities increases the number of discoveries that can potentially be made,

but with an increase in volume and complexity comes an increase in difficulty to detect

the required data to make the discoveries.

Astronomy is already at the point where it is no longer feasible to mine such large

data sets manually. Even citizen science projects such as Galaxy Zoo [7], which utilises

thousands of people, are still unable to mine large scale surveys effectively. This problem

is not unique to current and upcoming surveys, but exist within older data sets as well

which have not been completely examined for discoveries. Often, the majority of the

techniques applied to these data sets are ones available around the time that the data sets

were published, yet newer techniques could provide valuable new insights. An example

of this is a fairly recent scientific discovery made in 2018. A group of astronomers

discovered that there is a possibility that thousands of black holes are likely to exist

near the galactic centre of the Milky Way [8]. This is possibly a new discovery but

makes use of data that is 20 years old. The need for more advanced and complex

methods that are capable of handling large amounts of data and finding the relevant

data required for discoveries is clear.

Such a solution lies with the application of machine learning. Although the concept

of computer intelligence and machine learning is not new [9], it is only due to recent

advances in computational capabilities, availability of data and development of novel

approaches such as deep learning that machine learning has become more common [10].

Machine learning is applied on optical astronomical data with the aim of detecting

interesting and anomalous sources that provide better opportunities to make scientific

discoveries.

Before diving in to the details of machine learning and its application on the data set,

a basic understanding of galaxies is required and is covered in section 1.2. This section

explains why it is important to find anomalies such as gravitational mergers. Section

1.3 details some anomalous sources and what can be learned from them. The focus

of the thesis utilises optical surveys, which are covered in more depth in section 1.4,

wherein the need for more advanced techniques becomes clear. It should be noted that

www.etd.ac.za



Chapter 1. Making Discoveries In Optical Surveys 3

the majority of the information covered within the following sections is obtained from

the literature review by R. Buta [11], unless where otherwise indicated.

1.2 Overview Of Galaxy Morphology And Evolution

Galaxies are systems of stars, gas, dust, remnants of dead stars and dark matter all bound

together gravitationally. Their characteristics and morphologies can differ significantly

from each other. Not only do they vary in size and shape, but they also vary in age,

colour, star formation rate and luminosity, among other things. The structure of galaxies

is one of the basic ways in which these properties are depicted and through which the

evolution of galaxies is determined.

Early observations of galaxies were not able to fully quantify all of these properties,

however, they were able to identify visual distinctions between galaxies. From these

visual differences, various classification systems were proposed for the different types of

galaxies that were observed. The most successful classification system is that proposed

by Edwin Hubble [12], which has proven to be mostly reliable under certain specifica-

tions and with some adjustments made. Classification is thus an ideal starting point in

understanding galaxies and the properties that they typically possess.

Understanding galaxy evolution is one of the most active topics in extragalactic as-

tronomy today. There are several indications that some important evolutionary steps

include galaxy merger events [13]. In the early universe, galaxy mergers and collisions

were much more common compared to the late universe [14]. This is simply because the

early universe was smaller than the late universe and galaxies were much closer to each

other. The overall matter density of the Universe was higher during the early universe.

However, due to the large distances, observing the early universe and making accurate

measurements can be difficult. Finding these merger events in order to study the role

they play in galaxy evolution is therefore important.

This section starts off by covering the basic classification scheme, including adjustments

made throughout history, in order to provide an understanding of different galaxy types.

The second part of the section focuses on the connections between these classifications

along with the basic theories of evolution and how merger events fit in with the process.

1.2.1 Galaxy Morphologies And Classification

The history of galaxy morphology predates the knowledge that galaxies are in fact

extragalactic. First mentions of galaxy morphology even predates the telescope, with
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some descriptions dating back as early as the 10th century by the Persian astronomer

Abd al-Rahman al-Sufi [15]. Since then there have been numerous observations made

that clearly distinguish galaxies from stars, based on the resolved structure that is visible.

Yet throughout this time, even with advances in telescopes and observational techniques,

the structures and morphology of galaxies have continued to be one of the most common

ways to describe galaxies.

Although numerous improvements in classification and morphology were carried out over

the years by the likes of Charles Messier, William Herschel and John Herschel, it was

only with the invention of photography that the structures and morphology of galaxies

could be studied in more detail. This led to the well known Hubble classification, first

published in 1926 by Edwin Hubble. The classification, along with the Tuning Fork

diagram, was published in the book, “The Realm of the Nebulae”, in 1936 [16]. This

classification is still used today due to its simplicity and easier to apply.

Hubble classified the morphology of galaxies into three main classes: ellipticals, lenticu-

lars and spirals, [12]. Along with these were a few irregular galaxies that did not quite

fit in with the main classes. The spiral galaxy class has subdivisions for galaxies with

bars and those without. Most of the nearby, bright galaxies were classified according to

this scheme. The main classes of the Hubble classification system are as follows:

• Spiral Galaxies: also called disk galaxies and typically, but not always, contain

a bulge that is reminiscent of an elliptical galaxy but with an outer, thinner disk of

stars. This thin disk often contains spiral arms. Barred Spirals are spiral galaxies

that contain a bar near the center.

• Lenticular Galaxies: are similar to spiral galaxies except that they do not con-

tain any spiral arms.

• Elliptical Galaxies: are elliptical in shape and usually do not contain many

features. The brightness tends to decrease the further out from the centre the

galaxy is viewed. Unlike spiral galaxies where most of the stars rotate around the

core in the same direction, the orbits of stars in elliptical galaxies vary significantly.

Ellipticals are believed to be highly evolved galaxies created by galaxy merger

events; either single, large events, or multiple smaller ones [17].
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Figure 1.1: These three images illustrate the three different classes proposed by Ed-
win Hubble. The first image is a spiral galaxy, NGC 1376, with clear spiral arms and
dust lanes (Acknowledgment: R. Thompson (University of Arizona)). The second is a
lenticular, NGC 6861, which also contains dust lanes in this instance, but there are no
spiral arms visible (Acknowledgement: J. Barrington). The last is that of an ellipti-
cal galaxy, NGC 4150, which appears much more uniform throughout (R.M. Crockett

(University of Oxford, U.K.)). Image credit: ESA/Hubble NASA.

Any galaxy that did not quite fit into these classes was labelled as irregular. With

improvements in technology and observations, it was found that the Hubble classification

scheme was not sufficient to cover all types of galaxies observed. However, 90% of

bright, luminous galaxies that are relatively close to the Milky Way fit into the Hubble

classification scheme. Fainter dwarf galaxies do not fit into the scheme, and observations

reveal that these dwarf galaxies greatly outnumber the luminous galaxies that do fall in

line with the classification scheme. It is evident that an updated classification scheme

is needed [18].

Figure 1.2 illustrates the Hubble Tuning Fork diagram. The lenticular galaxies are

not clearly indicated on the diagram, although they are similar to the spiral galaxies.

Irregular galaxies would also not fit into any specific group on their own as they contain

all galaxies that do not fit in with the specified classes.
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Figure 1.2: A replication of the original Hubble Tuning Fork Diagram. The distinction
between spiral galaxies and elliptical galaxies is clear, although the evolutionary path

is not. Image credit: NASA and ESA1.

In 1959, Gerard de Vaucouleurs published a revised edition of Hubble’s scheme that

included additional visual properties that could be discerned with newer technology

[19]. While classification, morphology and developments thereof are always useful, it

does not provide any physical measurement as to why the galaxies differ. It is not clear

which physical features of the galaxies are key in defining their morphology or their

evolutionary path.

At around the same time, Erik Holmberg discovered that the morphologies of nearby

galaxies were related to some physical properties of the galaxies [20]. Holmberg found

that spiral galaxies tended to be smaller in mass than ellipticals and usually contained

younger, brighter stars in active star formation regions. Ellipticals were typically found

to be larger, redder and generally older than spirals, but not always [21]. This correlation

1https://en.wikipedia.org/w/index.php?title=File:HubbleTuningFork.jpg
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is an important part in understanding the process of galaxy formation and evolution as

it makes a clear, physical distinction between the morphologies.

An important breakthrough in technology in the form of charged coupled devices (CCDs)

allowed the light distributions of galaxies to be measured in a detailed way. de Vau-

couleurs determined that massive elliptical galaxies have very similar light distributions,

known today as the de Vaucouleurs profile [22]. Coan et al. utilised CCDs in conjunc-

tion with deep photographic images to reinforce the light distribution relation [23, 24].

This highlighted the fact that while galaxy morphologies vary, galaxies in each class

were similar in nature.

The problem arises with the observations being done, which were mainly focused on

nearby galaxies. A significant amount of effort was put into studying the local universe,

but the early universe remained difficult to study. [25]. Even with modern technology,

observing more than the basic structures and morphology of early universe galaxies

remains a challenge. Telescopes have limited resolving power, thus even large galaxies

at a high redshift would be harder to identify. The images of such galaxies have a poor

resolution, making it difficult to identify unique features and characteristics. Distant

galaxies are also fainter and redder due to the redshift, causing faint morphological

features to be lost.

The basic classification of the morphology of a galaxy is thus still instrumental in un-

derstanding the properties of the galaxy. Simple classifications of distant galaxies allow

it to be compared to nearby galaxies to gain insight into its properties. It is a key

starting point when investigating galaxies as it provides information between different

types of galaxies. Additionally, any theory that is created regarding galaxy evolution or

formation will have to account for the different morphologies observed today.

Another key aspect of galaxy morphology is that it is strongly related to the galactic

star formation history. The current morphology of a galaxy is dependent upon its star

formation history and classification illustrates these properties directly. This can also

be used to study the evolutionary paths of galaxies since changes in star formation rates

usually occur due to external events occurring.

1.2.2 Basic Concepts Of Galaxy Evolution

It is known that galaxies evolve over large amounts of time. This is clearly seen by the

rapid variations in the stellar mass density, the total solar masses (M⊙) located within

a unit volume, of galaxies located at the redshift range 1 < z < 3, where almost half of

the stellar mass is formed by redshift z = 1, [26]. The redshift of a galaxy is the shift of
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the spectrum of an object towards the longer wavelengths, caused by the Doppler effect

as the source recedes away from the observer due to the expansion of the Universe. The

redshift increases with the distance of the object and can be considered to be a distance

measurement. The star formation rate, the total mass of stars formed per year, usually

in M⊙ per year, in the universe appears to peak at a redshift of z = 2.5, despite the

large variations in star formation history of individual galaxies [27]. Although galaxies

evolve over time, it is not clear what physical factors are the cause of this. Some of the

theories of galaxy formation are are as follows:

• Top Down theories: This was based on principles similar to stellar formation

[28]. The basic theory is that disk galaxies formed through the collapse of gigantic

gas clouds. In the early universe, matter was distributed in clumps consisting

mostly of dark matter. These clumps interacted gravitationally, creating tidal

forces that lead to increased angular momentum in the surrounding matter. The

baryonic matter cooled and started contracting towards the centre, forming a disk.

This disk broke into smaller sections which contracted individually to form stars

and so the galaxy is formed.

• Bottom Up theories: The theory is that tiny quantum fluctuations occurred

shortly after the Big Bang [29]. Matter started off in clumps formed by these fluc-

tuations and merged with other matter due to gravitational forces. This resulted

in disk shaped distributions which would contain dark matter halos similar to that

which is observed today.

• ΛCDM Model: The current standard model of cosmology, the ΛCDM model,

theorises that the universe was created in the Big Bang and is now composed of

roughly 5% baryonic matter, 27% dark matter and 68% dark energy [30, 31]. The

model is based on inflation and the general theory of relativity along with the

standard model of particle physics [32, 33]. The ΛCDM model also assumes the

universe is homogeneous and isotropic. The basis of structure formation within the

model stems from gravitational collapses in over-dense regions, whereby structures

grow and merge due to gravitational forces. However, an unsolved problem with

the model is that it underestimates the number of thin disk galaxies that we see

[34]. This is because the model predicts a large number of galaxy mergers which

typically results in galaxies without a thin disk. There are some open questions

in the ΛCDM model, such as those involving cosmological simulations that fail

to accurately predict the population of galaxies observed today for example [35],

but it is still the generally accepted cosmological model as it best explains current

data.
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The actual formation of galaxies is almost impossible to observe directly and is largely

theorised. However, the evolution of galaxies can be observed as mentioned earlier. The

different stages of a galaxy can be observed by investigating galaxies that are similar in

nature, but which differ slightly. This allows a timeline of the evolution to be created

by viewing the similar galaxies as different steps along the way. Most of this has been

possible due to the Hubble Space Telescope (HST) and extensive surveys such as the

SDSS [2].

Such surveys have allowed measurements to be made of the structures of galaxies, allow-

ing the morphology to be used to determine its evolution. Modern space observations

along with new ground based telescopes have allowed galaxies to be observed at much

higher redshifts, [36]. These observations reveal that the early universe differs signifi-

cantly from the late universe. They also reveal that there is a general trend stemming

from small galaxies with high star formation rates in the early universe to much larger

and quieter galaxies found in the late universe.

Investigations into the general trend suggests that is starts at smaller galaxies with

active star forming disks which evolve into more massive ellipticals that lack significant

star formation. However, galaxies do not just expand in size and mass. The main theory

behind such an evolutionary path is that galaxies must interact with other galaxies at

some point in their life time in order to grow to the much larger galaxies that we see

in the late universe. These interactions are commonly seen in the early universe in the

form of collisions between galaxies, sometimes even complete galaxy mergers that result

in a single, larger galaxy. This theory is supported by the ΛCDM cosmology model

that proposes a hierarchical method of structure formation through mergers of the dark

matter halos around galaxies [37].

Not only can these collisions or merger events alter the appearance and properties of

galaxies, they might actually be required in the formation of large elliptical galaxies that

can be seen in the late universe. It is therefore crucial to make accurate observations

of such events. It is estimated that roughly 10 - 20% of star-forming galaxies undergo

some form of galaxy interactions [38]. This is only one of the anomaly types sought after

in the thesis, in order to identify unknown galaxy collision and merger events to allow

follow up investigations to be done into their properties.

1.3 Scientific Discoveries With Anomalous Sources

No two galaxies, stars or planets are the same, but given the vast quantity of each, it

becomes possible to make classifications statistically. Finding a source that does not fit in
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with the rest becomes an important scientific goal as these lead to a better understanding

of the source in question. These objects can be considered to be “anomalies” in the sense

that they do not conform to regular or typical patterns. However, there are anomalies

that are known but are rare. As mentioned previously, such a rare, yet important, event

that is of scientific significance is that of a galaxy collision or merger.

Another important anomaly that is of great interest and importance is that of a grav-

itational lens. Not only are they extremely rare, but they provide unique information

that can not be determined in any other way known. Gravitational lenses allow a range

of properties to be investigated, from dark matter to estimates of the Hubble constant.

This section covers these anomalies in more detail, starting off with galaxy merger events

before moving on to gravitational lenses. A broad overview is given of each anomaly,

from how they are formed to what significance they have. Additionally, any unusual or

unidentifiable source would also be of interest, especially if they are unexpected.

1.3.1 Galaxy Mergers

Studies of distant galaxies indicate that galaxy interactions, collisions and mergers in-

fluence the size and shape of galaxies seen today, as covered in [11]. During galaxy

collisions, the stars themselves do not get directly affected much due to the distances

between them. Instead, their orbits change due to the changes in the gravitational forces

that act on them. Collision events could be minor, creating a few tidal streams between

galaxies, or they could be more involved. Observations and simulations indicate that

mergers involving more massive galaxies, or a higher mass fraction, are usually more

major than mergers involving less massive galaxies [39] When two similarly sized galax-

ies collide it is referred to as a galaxy merger and usually results in a much larger, single

galaxy. If the collision involves a galaxy that is much smaller than the other one, then

the larger galaxy consumes the smaller one in a process called galactic cannibalism. In

such an event, the larger galaxy could remain largely undisturbed by the entire event.

There are two separate merger types based on the galaxies that are involved within

the merger event. The first type is called a “dry” merger, where the galaxies that

collide have already progressed past the star formation period and are devoid of gas.

These dry mergers typically result in the larger, elliptical galaxies as seen in the late

universe. The second type is the “wet” merger, where the galaxies are relatively gas-

rich, resulting in high star formation periods when they collide [40]. These mergers are

typically responsible for changing a younger and bluer galaxy into an older, redder one.
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The following are indications that galaxy collisions play an important role in galaxy

evolution:

• Evidence can often be seen in very large elliptical galaxies, which often possess

multiple nuclei, a strong indication of having consumed multiple galaxies.

• The shapes of peculiar galaxies are also caused by past interactions with other

galaxies.

• Elliptical galaxies in the late universe are much larger than galaxies observed in the

early universe. They must have gained additional material during their lifetime.

These are all important factors to consider in understanding galaxy evolution. It is not

just the shape of the galaxy or galaxies that are affected by the collisions. For galaxies

that contain significant interstellar matter regions, a collision can cause these regions

to compress, triggering star formation. Estimates show that collisions can increase the

star formation rate of the galaxies by as much as a factor of 10 [41]. Galaxies that show

signs of this are called starburst galaxies. Starburst galaxies tend to be much brighter

than normal galaxies and so they become easier to spot at large distances. Identifying

merger events, or galaxies that have had recent interactions with other galaxies, is thus

made easier by identifying starburst galaxies.

Younger galaxies, located a very large distance away at around 12 billion light years,

resemble closely starburst galaxies that are involved in mergers [42]. Most of them have

peculiar shapes with multiple nuclei and contain larger and brighter stars usually only

found in regions with high star formation rates [43]. This clearly indicates a relation

between galaxies that are currently merging, and younger galaxies that also appear to

be merging. It is clear that galaxy interactions were much more common in the distant

past and it is indicative that collisions and interactions are required to create the more

evolved galaxies that we see today [44].

In the late universe, galaxy merger events are less common with only an estimated

4% of nearby bright galaxies showing some form of interaction [45]. These events can

thus be considered to be rare and anomalous, yet they are vital in understanding the

evolutionary paths of galaxies.
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Figure 1.3: The image here is an example of a galaxy merger event that is a part of
the Dark Energy Camera Legacy Survey (DECaLS) data set, also known as NGC00612.
The two separate galactic nuclei are clearly visible in the image. It is also evident that
a merger completely distorts the shape of both constituent galaxies, a property that

will be utilised to locate them.

Figure 1.3 shows an example of a galaxy merger event. While it may be clear to clas-

sify the individual galaxies according to their morphology, it is unclear as to what the

outcome will look like. Regions of high star formation rates are also seen at the parts

where the galaxies make contact.

1.3.2 Gravitational Lenses

A gravitational lens, also referred to as the foreground source or object, is an object that

is massive enough to visibly affect the path of light that emanates from a background

source as it travels by the lens to the observer [46]. There are many factors that influence

whether a lens can be seen. Higher mass systems are more likely to be detected by

ground-based surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and

Time (LSST), as higher mass increases the lens cross-section. However, the likelihood

of detecting a particular lens system is also a function of the geometry of the system as

well as the seeing conditions during the observation [47].

Figure 1.4 illustrates the basic concept of gravitational lensing, where a massive source

is located along the line of sight to a distance object. The light from the distant source

travels along different paths around the lens, often resulting in multiple images of the

same background source being observed if the lens is massive enough. Different variations

2https://www.legacysurvey.org/viewer
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are possible whereby the foreground source is a cluster of galaxies or even a star in the

case of microlensing. The different variations can be found as lenses, rings, arcs, series

of arcs or a series of bright spots all depending on the alignment and viewing angle of

the objects in question.

Gravitational lenses were first theorised by Albert Einstein more than a century ago

and observed in 1919 by Frank Watson Dyson and Arthur Stanley Eddington when

they measured the gravitational deflection of starlight passing near the Sun during a

solar eclipse [48]. However, it was only in 1979 that the first extragalactic lens was

observed by Dennis Walsh, Robert F. Carswell and Ray J. Weymann, due to advances

in technology that made such observations possible [49]. This large gap between theory

and observations is due to the nature of gravitational lenses themselves. The alignment

of sources is crucial, as is the ability to observe such events.

There are several factors that affect the ability to observe lenses. First is the optical

depth; which is a measure of the amount of absorption that occurs when light travels

through an absorbing medium, measured as the ratio of incident to transmitted light so

that a high value means less transmitted light. Because of the vast distances between

the lens and the background object, the optical depth for the observation may be larger,

making observations more challenging. Second is the actual distances involved, whereby

the background source needs to me significantly more distant than the foreground lens-

ing object in order for the lensing to take place. The other significant factor is the

surface brightness of the source, which is the amount of apparent brightness per angular

area of the source. The surface brightness of the background source is conserved in the

lensing process, but dims with increased redshift as (1 + z)4 due to the expansion of the

Universe [50]. As such, lensed sources were too faint to observe until technology reached

the sufficient capacity to detect them.
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Figure 1.4: Example of gravitational lensing. In the image the different pathways
that the light from the background source, the quasar, travels is illustrated. This is
an instance of strong lensing where the background source is replicated multiples times

from the observers point of view. Image credit: Freddie Pagani [51].

There are three different types of gravitational lensing observed today, each one varying

by how the light is affected and what the foreground source consists of. Weak lensing

occurs when the density of the lens, amongst other factors, is not high enough to bend

the light so as to form multiple lenses. Weak lensing illustrates the distribution of dark

matter on large scales and can be used to constrain the density of dark matter within

a given volume [52]. Microlensing occurs when the background object, or background

and foreground objects, are unresolved. As a result of this, the actual distortions are

not observed directly. Instead, the brightness of the sources, stars within the Milky Way

itself, is amplified temporarily as the objects align. In this instance, light curves are used

to measure the distances as well as the motions of the objects in question. Microlensing

is thus a transient anomaly and will not be covered in detail in the thesis. However, it is

worth mentioning that microlensing is used to search for dark matter within the Milky

Way itself, as well as to find extra-solar planets, since it is observed with stars within

the Milky Way itself [53]. The last type is strong lensing, which is covered in more detail

in the following section.

Strong Lensing

If the density of the lens is high enough, and if the geometry of the system allows, it will

create multiple images of the background source, as seen in Figure 1.4. Strong lensing

results in distinct visual features that are not seen elsewhere which, coupled with their

rarity, causes them to be considered anomalous.
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The light originates from a single source, but travels along different paths. These path

variations cause time delays that depend on the geometry of the Universe and can be

used to measure the expansion rate of the Universe, also known as the Hubble constant.

Elliptical galaxies are examples of good lens candidates since they are massive and

compact. Strong lensing provides measurements of the distribution of dark matter in

elliptical galaxies since the light paths are affected by the mass distribution of the lens.

The baryonic matter of the lens can be observed and measured directly and the effect

on the path that the light travels can also be measured.

Galaxy clusters can cause lensing that magnifies distant galaxies to such an extent that

they can be observed directly, which might otherwise not be possible due to the large

distances to such sources. This magnification allows observations of the earliest galaxies

to be made due to magnifications up to a factor of 30, at a time when the Universe was

only about 10-15% of its current age [54].

Galaxy clusters cover a larger area compared to single galaxies and are much more mas-

sive, thus providing a larger chance to observe lensing of background sources. However,

they have additional complications in the form of matter distributions within them that

need to be taken into account. Galaxy clusters that create lenses magnify the background

sources in angular size as well as integrated brightness. The earliest galaxies observed

reveal that they are very small in nature, growing in size through accretion of surround-

ing hydrogen gas and through mergers with other galaxies. Strong lenses thus assist

in observing parts of the evolutionary path of galaxies, improving our understanding of

galaxy formation and evolution.

1.4 Large Optical Surveys

Often an astronomical survey is comprised of observations of a specific region of the

sky without there being any specific observational targets. These are referred to as

sky surveys. However, surveys can also often be focused solely on a specific type of

target source, with the goal being to gain additional information about these targets.

These second types of surveys are often subsets of sky survey types, but with additional

observations made on the target sources. An example of such is the Extremely Luminous

Quasar Survey [55], a subset of the Sloan Digital Sky Survey (SDSS) [2]. In general,

surveys are used to produce astronomical catalogues.

This thesis utilises optical data and as such, optical surveys will be discussed here only.

In the following few paragraphs, a few of the optical surveys from the past to future
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surveys are briefly looked at to gain a better understanding of the increases in data

volumes and sources observed.

DPOSS : The Digital Palomar Observatory Sky Survey

The Digitized Palomar Observatory Sky Survey [56], is the result of digitising one of

the last major photographic sky surveys, POSS-II [57]. It was one of the largest sky

surveys done towards the end of the 20th century, containing roughly 3TB of data in

three bands excluding catalogues created for the sources therein.

SDSS : Sloan Digital Sky Survey

In recent years, numerous discoveries have been made by studying millions of galaxies

that span over a large area of the sky. These discoveries were based on the SDSS, which

images over 200 million galaxies over a quarter of the sky using five different wavelength

bands. The SDSS has made it possible to study various aspects of the universe, from

the structure of the Milky Way, to large scale cosmological structure and the study of

dark matter and dark energy.

First started in 1998, the SDSS has utilised a 120 megapixels CCD camera to make

precise photometric measurements for over 900 million objects and has been a revolution

in astronomy. Thanks to its multi-fibre spectroscopy, the SDSS has reached data volumes

of around 40TB. With further expansions, the Data Release 12 done in July 2014 reached

116TB in total.

DESI : Dark Energy Spectroscopic Instrument Legacy Surveys

The DESI Legacy Imaging Surveys currently includes over 1 billion galaxies within a

data set well over 1000TB in size [58]. Twenty five times larger than SDSS, the DESI

Legacy Imaging Surveys took six years to complete using three different telescopes. The

data set has only been released recently and has not been completely studied yet. The

map produced by the survey covers half of the sky to the deepest magnitude depths

observed to date.

Vera C. Rubin Observatory

The Vera C. Rubin Observatory will soon be operational and will produce roughly

30TB each night over the planned 10 year observational period [59]. It is expected to
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reach data volumes totalling 70PB (1PB = 1000TB) with the corresponding catalogue

reaching almost 20PB on its own. It is estimated that the LSST will reach depths 100

times fainter than SDSS in 6 different bands and will create a catalogue containing an

estimated 20 billion galaxies and 20 billion stars.

These include some of the largest optical surveys that have been done, as well as ongoing

and future surveys. The volume of data available is increasing at a rapid rate and future

surveys will be much larger still [60]. Large surveys have become the primary method

for astronomers to study the universe. The unprecedented data quality and quantity has

produced new scientific opportunities but at the same time the vast volumes of data has

created challenges that must be overcome. Astronomy has moved into a data intensive,

computationally driven era that requires techniques capable of producing results that

match the quality of the surveys.

Not only are methods required to handle and process such large volumes of data, but

simple procedures like classifying the morphology of a galaxy becomes extremely time

consuming for large amounts of data. Making scientific discoveries often depends on

finding the few sources that differ considerably from others, but they become increasingly

difficult to find in larger and larger data sets.

One solution to tackling large volumes of data is crowd sourcing, whereby a large num-

ber of volunteers are enlisted to work through the data to achieve a goal. This was

successfully implemented in the Galaxy Zoo project [7], in which the morphology of

nearly 1 million galaxies from SDSS was classified. The project have proven to be suc-

cessful in classifying galaxies and has since been expanded upon. However, even with a

large number of volunteers, 1 million sources is still dwarfed by the estimated 20 billion

galaxies expected from the LSST. Even if only a small number of these galaxies can be

resolved, it will dwarf existing catalogues like the SDSS.

This necessitates the need for a more automated technique that utilises computational

power to speed up the process. This is the goal of the thesis, to expand on and implement

such a technique on a data set.

www.etd.ac.za



Chapter 2

An Overview Of Machine

Learning

2.1 Introduction

As mentioned in the previous chapter, astronomical data contains the typical challenges

that come with big data sets: large volumes and high dimensional data along with some

more unique issues including gaps in observations of a target, or seeing variations for

instance. In recent times however, it has been proven that big data can be successfully

tackled with machine learning as can be seen in Longo, Cunshi and Sen [61–63].

The simplest definition of machine learning stems from the name itself; a machine that

learns. Although the application of machine learning has seen a sharp increase in modern

times, the first application of machine learning dates back to the early 1940’s, [9]. It is

only in recent times however, that the need for such techniques has been required and

that the technology exists that is capable of applying such techniques.

One of the key aspects of a machine learning algorithm is that is can automatically

improve its performance as it learns. Machine learning involves computers applying

algorithms that utilise statistical methods to make predictions or to classify data. These

algorithms differ in usage and ability, ranging from basic mappings that relate different

data sets to creating complex functions that represent patterns inherent within data

sets. In modern times, machine learning algorithms are found in almost every field,

from medical diagnosis and biology to facial recognition software and many more.

The chapter starts off with a basic overview of how machine learning algorithms work in

general. The typical procedure of applying a machine learning algorithm is illustrated

in section 2.1.1. In the sections that follow, a broad outline of the different types of

18
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machine learning algorithms is made in section 2.2. The algorithm predominantly used

in this thesis is covered in section 2.3. Measuring the performance of machine learning

algorithms plays a crucial role in evaluating the results. Thus section 2.4 is dedicated

to typical performance measurement and evaluation techniques. The chapter finishes off

with in section 2.5 with an overview of machine learning applications within astronomy,

based mainly on similar works done to detect anomalies.

2.1.1 Basic Procedure Of Machine Learning Algorithms

The basic procedure that machine learning algorithms follow is fairly straightforward.

The initial step, perhaps in any scientific study, is data collection and preparation. The

data quality and even quantity affects the performance of machine learning algorithms.

Machine learning is ideal for big data volumes since it is based on data; the more data

there is and the better the quality of the data, the better the algorithms tend to perform.

The data preparation step is often crucial as unwanted data entries can be removed that

would otherwise affect the outcome of the algorithm. Some algorithms do not require a

validation set, or even a training set.

Features are extracted from the data points themselves and are unique to each individ-

ual data point. They are lower dimensional representations of the data points, often

representing single aspects of the data only that are relevant to the task at hand. For

example, galaxy mergers are easily identified visibly due to distortions within the natu-

ral shape of the galaxies involved. The features that could be used to identify mergers

could thus be derived from the shape of the galaxy. Feature selection and extraction is

a vital step in order to achieve the required task. Not only does it reduce the amount of

information used, decreasing computational times, but it also discards or down weighs

less important information. This is also important since some machine learning algo-

rithms can not deal with high dimensional data and require dimensionality reduction

techniques.

2.2 Machine Learning Categories

Machine learning models or algorithms can be separated into various different categories.

Each category functions in a specific way and has its own requirements. This determines

which algorithms are suitable for which data sets and for which problems. For cases

where predictions or classifications are to be made based on current, labelled data, then

supervised learning would be the best. If no solutions are known for data points within

the data set then unsupervised learning algorithms is required. The main different
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categories are briefly covered here, with the focus being on their general workings and

applications rather than any specific algorithms and how they function. However, some

examples are briefly mentioned for each category.

Once the category or type of algorithm required is known, they can be investigated or

tested to determine which algorithm, or even an ensemble of algorithms, would work best

for the situation at hand. Finding an optimal algorithm can prove to be invaluable and

is often necessary to do before tackling the goal directly. The No Free Lunch Theorem

states that there is no single algorithm that will work for all tasks since each has its own

idiosyncrasies, [64]. For this reason it is important to select the algorithm best suited

to the data and the task at hand.

2.2.1 Supervised Learning

The main aspect that sets supervised machine learning apart from the other categories

is that it requires a training set that consists of labelled data points. What this means

is that there exists a subset of the data for which the true value or outcome is known.

Supervised methods are given this training set with the labels from which they attempt

to learn the pattern therein. This pattern is then applied by the machine learning algo-

rithm upon a testing set for which the labels are not known. Based on the pattern learnt,

the algorithm labels the unknown data. This is the fundamental process of supervised

machine learning. Supervised machine learning differs from the traditional model fitting

methods since it creates the relations between the input and output itself instead of

relying on a predefined relation.

Mathematically this consists of the machine learning algorithm learning a function that

maps the data to the known labels:

f : x → y (2.1)

where f in the function created by the algorithm, x is the input data, usually in the form

of a vector consisting of multiple values that represent the features of the data, and y is

the single label or output value. For supervised learning, x and y is known for a subset

of the data and this subset is used to determine the function f . The function is then

applied on unlabelled data to determine the corresponding y values. For classification

tasks, y is a categorical variable and can take on a limited amount of values only. When

y is real-valued, it is a regression. Supervised learning can thus be used to predict class,
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be it binary or multiple classes. It can also be used to predict probability distributions

and continuous quantities as in regression.

Most supervised learning algorithms can be adapted to either type. A few examples

of supervised machine learning algorithms, specifically the Support Vector Machines,

Decision Trees and K-Nearest Neighbour algorithms, can be found in Schölkopf, Rokach

and Altman respectively [65–67].

2.2.2 Reinforcement Learning

Reinforcement learning is similar to supervised learning but it does not use a labelled

training set. Instead, the model typically makes a small amount of predictions or clas-

sifications which are then rated. The algorithm adjusts based on how well it performed

on the previous predictions or classifications by making a series of decisions, each one

rewarded or penalised depending on how well it performs. The penalties and rewards are

set up beforehand, but there is no information provided to the machine learning algo-

rithm to complete the task. It is thus free of any outside influence. Since reinforcement

learning constantly improves its rewards through trial and error.

The main challenge with reinforcement learning is in setting up the environment as it has

to be very complex and detailed in order to produce quality results for the specific task

at hand. The environment includes everything that the agent, or learner, can interact

with in order to make its decisions. There is also no way of controlling the actions of

the algorithm other than changing the rewards and penalties applicable.

Some examples of reinforcement learning algorithms include some neural networks often

applied in video games as well as in navigation systems and robotics.

2.2.3 Semi-supervised Learning

Semi-supervised machine learning algorithms are similar in nature to supervised algo-

rithms except that the training set contains labelled and unlabelled data. In a sense

it falls in between supervised and unsupervised machine learning since it is trained on

both known and unknown data. The training set typically contains a small amount of

labelled data and a large amount of unlabelled data.

This can have multiple advantages. First, labelled data can often be hard to come by, or

be expensive as it can require an expert to manually label the data. Using a combination

of labelled and unlabelled data reduces this cost.
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Additionally, using a combined training set provides the benefits of both supervised and

unsupervised learning. Applying supervised learning to such a training set would require

the unlabelled points to be removed. The opposite is true for an unsupervised algorithm

that would require the labels to be removed. The semi-supervised algorithm is capable of

doing both at once, learning new labels in the training set to a higher degree of accuracy

due to the known labels. More labels would then be correctly identified for the testing

set, increasing the performance of the algorithm compared to supervised learning based

only on the same known labels.

However, this is also a disadvantage since semi-supervised learning can not always replace

supervised learning. This is because the unlabelled data within the training set for semi-

supervised learning must be directly correlated to the labelled data. If they are not, then

the algorithm would label them incorrectly, reducing the performance on the testing set.

The labelled data must be a true representation of the entire training set, including the

unlabelled data.

2.2.4 Unsupervised Learning

Unsupervised learning utilises data that does not have any labels. The algorithm does

not know, and does not have any way of knowing, what the true label is for a given

data point. It creates its own solution based on the patterns it identifies in the data set.

Unsupervised learning algorithms typically finds features that are common throughout

the data set and groups the data points according to this.

These algorithms are data driven; the results are solely dependent on patterns identified

within the data itself. Unsupervised learning is typically used to detect trends within

data as well as unusual data points commonly referred to as outliers or anomalies. One

advantage of this is that they can detect trends not known or expected to exist within

the data. This makes them ideal for scientific research since they can identify new

discoveries and/or provide new knowledge about the data set.

One of the disadvantages of unsupervised learning is the presence of free parameters that

can not be optimised. Different parameter values may result in significantly different

results since they are not optimised. While the performance might not be affected

severely, the results can be seen as being different interpretations of the same data set.

The specific interpretation of the output of unsupervised learning must thus be done

with care as these free parameters have different meanings when applied. In addition to

this, some of the internal parameters could also be affected by the free parameters. This

variability of results due to the change in parameters often produces a different outcome
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even though the same algorithm is used. In some instances this can cause unwanted

complications. However, as unsupervised learning is applied to unknown data sets, the

scientific goal might not be precise and the variability might even assist in the data

exploration process.

2.2.4.1 Outlier Detection Algorithms

Unsupervised learning is usually applied on data sets that are unexplored. Often the goal

of this is to find unusual data points that are also referred to as outliers or anomalies.

Outlier detection algorithms are designed to find these anomalies. They typically rank

data points based on how different they are to the norm of the data set. Defining what

is different and defining the norm of the data is often a debatable concept.

Finding the norm of the data, or how similar the data points are to each other, is the

easier of the two. The data set can be modelled in various ways which would determine

the common points and density fields can also be used to find similar points. The most

common ways to determine which data points are outliers are to find the points which

are least similar to the other points, or to find the points that lie in low density sections

of the data set, or to find points that do not follow the model of the data well.

Outliers might be useful and interesting sources captured in the data set, or they may

be unwanted defects that need to be identified during a process as they can affect the

model. They might be a data point altogether unique, or they might be similar to oth-

ers, but an extreme sample of the data type.

Common outlier detection algorithms include:

• Isolation Forest: iForest is the algorithm used throughout the thesis and is

covered in more detail in section 2.3

• Local Outlier Factor: LOF is an outlier detection algorithm. It works around

the basis of finding data points that are located far away from other points in the

feature space of the data set. Each data point is scored based on how isolated it is

from its nearest neighbours. LOF works well for relatively low dimensional data,

but struggles for high dimensional data, [68].

• One Class Support Vector Machines: The standard Support Vector Machine

(SVM) is typically used for binary classifications, but can be adjusted to classify

points as being either normal, or outliers, [65].

www.etd.ac.za



Chapter 2. An Overview Of Machine Learning 24

• Clustering Analysis Algorithms: Data points that are similar to each other

are grouped together in the data set. This helps to identify similarities between

sources as well as to identify differences between clusters themselves. It can also

be used to detect outliers that do not belong to any specific cluster. The goal of

clustering analysis algorithms is to find clusters that exist within the feature space

of the data set. Unlike classification, it is not used to predict labels or classes, but

is used to separate the data into natural groups or clusters. A cluster is an area

in the feature space of the data set that contains a high density of data points.

Points with similar features will naturally group together and points that do not

lie within any specific cluster are considered to be outliers. There are numerous

different types of clustering algorithms, a few examples can be seen in Achtert,

Saquib Sarfraz and Wang [69–71].

2.2.5 Active Learning

Active learning is a different type of machine learning that is applied upon other machine

learning techniques rather than on the extracted features themselves. Often, obtaining

known labels for supervised learning can be expensive or difficult to obtain, or in the

case of unsupervised learning, there are no known labels [72]. Active learning effectively

creates known labels based on the input of the user. For supervised learning this in-

creases the number of labels available, while it can change an unsupervised model into

a supervised model.

The performance of the relevant model can thus be improved by applying active learning

[73]. For anomaly detection, active learning allows the rare phenomena to be scored

higher manually once detected and retrains the rest of the scores based on these labels,

increasing the scores of similar sources. The caveat is that in order to increase the

number of observations of a specific anomaly detected, samples of such an anomaly

must be identified first. This is thus easier to apply for supervised learning if the

anomalies form part of the known labelled data. However, for unsupervised learning,

active learning can greatly increase the detection of anomalous sources, especially if the

rest of the data set is scored low throughout.

2.3 Isolation Forest

Isolation Forest (iForest) is an outlier detection unsupervised machine learning algo-

rithm, [74]. It is the main algorithm used throughout the thesis and is covered in detail
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in this section. iForest is based on the Decision Tree algorithm, see Figure 2.1. A deci-

sion tree takes some input, applies a condition to it at a node and produces an output.

As can be see in Figure 2.1, the first node splits the values into two, and the subsequent

nodes split the values further until a class or type is determined. This is an example

of a classification decision tree. The iForest algorithm works in a similar way, but with

the goal of isolating points instead of labelling or classifying them. At each node for

the iForest algorithm, a random feature is selected to be the node and a random value

for that feature is selected by the algorithm. For anomaly detection, the path length,

how long the path is before the source is isolated, determines its anomaly score. Section

2.3.1 details the working of the iForest algorithm in more detail.

Figure 2.1: Example of a simple decision tree. At each node, an input is given
and multiple outcomes depending on the output of the node can be achieved. In this
example, there are two outcomes per node. The data is input at the top node, whereby
a decision is made that splits the data depending on the condition in the node. Each
outcome is passed on to another node until a classification or value for regression is

obtained.

As the name suggests, the Isolation Forest technique uses isolation as the means to

detect anomalies rather than the typical distance and density measures used in most

outlier detection algorithms. It is based on the principle that outliers are rare, making

them easier to identify since they will separate into isolated branches quicker. iForest

utilises an ensemble of Isolation Trees, that forms the Forest, to identify outliers.

While most outlier detection algorithms attempt to model or define the norm of the

data set first and then proceed to identify the outliers based on the norm, iForest does

not. It does not define the norm or common points of the data set, instead it focuses

on isolating data points directly. This reduces both the computational time required as
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well as the memory requirements to run the algorithm as it does not have to go into the

same depth levels as other algorithms. The depth of the relevant isolated point defines

the score given to it; the faster the point can be isolated, the higher the score it will

receive.

iForest achieves this isolation by splitting the data set based on random feature values.

Random partitioning done in this way will create shorter paths for isolated or outlier

points. A more detailed explanation of this procedure in done in subsection 2.3.1.

The running time of the iForest algorithm scales as O(N), where N is the number of

data points in the data set. This is a linear relation, making iForest capable of handling

larger data sets more easily than other algorithms. Due to the random feature selection

it does, iForest is also capable of handling high dimensional data; data that has a large

number of features.

2.3.1 Algorithm

The procedure of iForest is illustrated in Figure 2.2, with the steps detailed as follows:

1. The first step is to obtain all of the data points with their corresponding features.

It is important to note that the features supplied to the machine learning algorithm

are used here.

2. A subset of these features are selected randomly by the algorithm. This is done to

reduce overcrowding of the feature space.

3. From this subset, a random dimension is chosen. A dimension corresponds to a

feature, so the number of different features that is used corresponds to the number

of dimensions there are. It is easier to illustrate the concept in a two dimensional

way since it is difficult to visualise higher dimensions. In the chosen dimension, a

random value is selected, indicated by the cross in Figure 2.2. This produces the

top node of the tree.

4. A line is drawn through the data point, which splits the data into two separate

sections. These sections form the branches of the tree. It should be noted that

this line exists in higher dimensions if the data is high dimensional. The figure

illustrates a two dimensional case.

5. Another data point is randomly selected on one of the branches to form the next

node. A line is drawn again to separate the data points. This line must be

perpendicular to the first line since it must make contact with it at some point.
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6. This is repeated until all sources have been isolated or until the preset depth limit

has been reached.

7. The forest is built up by repeating the tree building process for all of the subsets

of the data.

Figure 2.2: The plots shown here illustrate the procedural steps that iForest follows.
The first plot shows the features of the data that are supplied to the iForest algorithm.
The second shows a subset that is selected randomly. The third plot illustrates the
starting point, where the algorithm selects a random dimension followed by a random
data point in that dimension that forms the first node of the tree. Plot four illustrates
the two regions, each forming a branch of the tree. Plots five and six shows some further

branches and nodes being made on one side of the tree.

The goal of the iForest algorithm is to isolate each data point. The easier it is to isolate

a data point using the above procedure, the more of an outlier it is. These sources can

be viewed as being anomalous since they are more isolated from other sources than the

rest of the sources.

Decision trees consist of nodes and branches and in the case of iForest. The nodes

represent a feature that is selected and the two branches that stem from each node

define the regions created that partition the data points. Given a data set that contains

N points, XN , a subset, X ′, of the data is created: X ′ ⊂ XN . For each node T that

exists in the tree, T is either an internal node that contains two branches leading to

further nodes, or an external node that has no branches or child nodes. Since each node
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consists of a feature, it is that feature of the data points that determines which way the

data point will proceed. For example, if the feature at that node has a minimum and

maximum value of 0 and 10 respectively within the data set, then a random value, x ,

is chosen as the splitting point. If a data entry travels along the path and reaches that

node, the data point’s value of that specific feature will be compared to the random

value x. If it is higher than x, it will go further on one branch, if it is lower, it goes to

the other branch.

The reason why subsets are selected initially is because they work better when it comes

to isolating sources. If the full data set is used simultaneously, there will be points closer

to the outliers, which might cause some of them to be missed. Utilising subsections of

the data at a time is referred to as sub-sampling.

2.3.2 Anomaly Score

Every machine learning algorithm produces output of some type. For unsupervised

learning, specifically outlier detection algorithms, the output is typically some score or

ranking given to the data points. The scores given to the sources typically fall within a

predefined range so as to be able to compare them to each other. In iForest, outliers are

typically isolated more easily, meaning that they tend to be located closer to the root

of the tree and have a shorter path length. This forms the basis of the scoring system

used by the algorithm. The scoring method of iForest explained here follows the original

outline given by Liu et al. [74].

The path length h(x) of a point x is defined to be the number of edges, or branches,

that the point travels from the root to its location within the tree. The tree grows by

an order of n in maximum possible height, resulting in the average height increasing by

log(n). Normalising the scoring function is thus complicated, However, there are some

factors that can be considered to simplify matters. The first is that iForest trees contain

only two different types of nodes; one with no branches/children and the other with

exactly two branches/children.

This means that the trees are binary and that the same principles for binary trees can

be applied to the iForest trees. A node without branches in iForest is the equivalent of

an unsuccessful outcome for the standard binary tree search (BST). In turn, the average

path length, h(x) to the empty node is the same as the average path length for an

unsuccessful outcome in a BST which is given by:

c(n) = 2H(n− 1)− 2(n− 1)

n
(2.2)
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where H(i) is the harmonic number, estimated by ln(i) + 0.5772156649, with the latter

being Eulers constant, γ. For a given n, c(n) is the average of h(x) and can be used to

normalise h(x).

The anomaly score s of a data point x is thus given by:

s(x, n) = 2−E(h(x))/c(n) (2.3)

where E(h(x)) is the average of h(x) from several iForest trees. From this equation we

see that s is monotonic with h(x):

• when E(h(x)) → 0, s → 1

• when E(h(x)) → c(n), s → 0.5

• when E(h(x)) → n− 1, s → 0

From this it is seen that the score s of a data point ranges from 0 to 1. If s is scored

close to 1, then it is definitely an outlier within the data set. If s is lower than 0.5, it is

typically regarded as being part of the norm of the data set. If all of the points within

the data set return scores close to 0.5, then there are no outliers whatsoever.

2.4 Determining The Performance Of Machine Learning

Algorithms

Evaluating the performance of any machine learning algorithm is crucial to determine

whether the results are reliable. Performance measurements are easier to make for

supervised machine learning algorithms as a set of known solutions are available and

the results can be compared directly. For unsupervised learning however, evaluating the

performance becomes complex and more involved as there are no known solutions or

labels to any of the data points. The performance is largely dependant upon the goal of

the machine learning application.

Metrics are used to evaluate the performance of machine learning algorithms, but it is

vital to use the correct or appropriate metric for the algorithm in question. Often, even

using a single, albeit correct, metric is not sufficient to evaluate the performance of the

model sufficiently. Metrics are inherently different from loss functions. Loss functions

indicates a measure of the performance of the algorithm and can be used to train an

algorithm. Metrics are used to measure and monitor the performance of the algorithm

and is usually not used for training purposes.
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Some methods of determining the performance of algorithms are detailed below. For

the most part, these include classification algorithms as their performance is the easiest

to determine.

Confusion Matrix

One of the most important concepts for any type of classification algorithm is that of

the confusion matrix. It is a comparison of the predicted outcomes from the model and

the actual labels or values.

Figure 2.3: This shows the basic outline of a confusion matrix for a two dimensional
classification algorithm. 1

The following definitions are used to calculate some of the performance measures:

• True Positives - These are sources that are correctly labelled as being positive by

the algorithm. It is the number of actual positives labelled correctly as being an

positive.

• False Positives - These sources have been labelled by the algorithm as being positive

but they are not. They are incorrectly labelled.

1https://www.nbshare.io/notebook/626706996/Learn-And-Code-Confusion-Matrix-With-Python/
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• True Negatives - Normal sources that are correctly labelled as non positives. They

are correctly labelled.

• False Negatives - These are positives that are missed. They are labelled as being

normal sources but are actually positives.

The evaluations and performance measures used are based on the above definitions:

Recall - Is a measure of how well the positives are identified. Also known as the

Sensitivity or True Positive Rate.

Recall =
True Positives

True Positives + False Negatives
(2.4)

Recall is a measure of how many positives are correctly identified out of all of the actual

positives within the data set.

False Positive Rate - Is a measure of the number of incorrect positive predictions

made against the total number of negatives.

False Positive Rate =
False Positives

True Negatives + False Positives
(2.5)

The False Positive Rate is a measure of how many false positives are returned; how

many values are incorrectly labelled as being positive out of all of the negative values.

Precision - In its simplest definition, the precision is the ratio between true positives

and all positives:

Precision =
True Positives

True Positives + False Positives
(2.6)

Precision is a measure of how many positives are correctly identified out of all of the

sources returned as positives.

Accuracy - Is a measure of how many sources are correctly identified by the algorithm.
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Accuracy =
True Positives + True Negatives

All Predictions Made
(2.7)

Accuracy measures how many positives are correctly identified as well as how many

normal sources are identified correctly.

ROC Curves

Common metrics that are used to evaluate the performance of classification algorithms

include receiver operating characteristic curves (ROC-curves), [75, 76]. ROC curves

illustrate the performance of classification algorithms as a function of the cut-off thresh-

old. The true positive rate is plotted against the false positive rate for different cut-off

threshold values. The area under the curve (AUC) value is used as the performance

measure as it measures the performance of the classifier on all possible threshold values.

The values lie between 0 and 1, where a higher value translates to a better performance.

2.4.1 Rank Weighted Score

The Rank Weighted Score (RWS) is a numerical formula that can be used to measure the

performance of a machine learning algorithm, specifically an outlier detection algorithm

where the rank of the output is important [77]. The RWS assigns a value to the location

or rank of each anomaly. The higher up an anomaly is ranked, the larger impact it has

on the RWS score. The RWS is given by:

Rank Weighted Score =
1

S0

NX

i=1

wiIi (2.8)

where

wi = (N + 1− i) (2.9)

and

S0 = N(N + 1)/2 (2.10)

Ii is a Kronecker delta function that is equal to 1 when the source is an anomaly and 0

otherwise. N is the number of sources in total and i is the rank of the source. The value

of the RWS ranges from zero (where no anomalies are found) to 1 (where the anomalies

occupy all the top values). This provides a numerical representation of the performance

of the algorithm. The RWS score is not to be confused with the individual scores of the

data points themselves. Rather, it is a measure of how accurate the scoring system of

the machine learning algorithm is.
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2.5 Machine Learning Applications In Astronomy

Machine learning has become more popular in astronomy in recent years, with the large

data sets typically found in astronomy being well suited for such applications. The

wide range of properties usually available in astronomical surveys, such as the mass,

luminosity, light curve, spectra and so on, provides ample features for machine learning

algorithms. In most cases, the model is some form of classification, such as classifying

spectra into stars or quasars [78, 79]. However, it is also possible to have a regression

task, normally occurring where estimations such as redshifts are to be made [80]. Static

data in the form of images based on the flux levels of the sources in question are utilised in

this thesis with the goal of detecting outliers that correspond to astronomical anomalies.

This section covers some literature reviews of similar machine learning applications on

static astronomical data that are similar in nature to that used in this thesis.

Automatic Identification Of Outliers In Hubble Space Telescope Galaxy Im-

ages (Shamir 2021)

Galaxies are usually classified into morphological types based on their visual appear-

ance. However, there are some that are considered peculiar and which can not be

classified to belong to a specific morphological class. These galaxies can carry important

information regarding galaxy evolution and are thus important to identify.

The data used within this paper consists of several HST fields that form the Cosmic

Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) [81]. A total

number of 176 808 sources were investigated, with the majority having redshifts

below z = 1. Each source was converted into a set of numerical image content

descriptors that describe the visual contents of the image in question. The similarity

between each pair of galaxy images is determined by computing the Earth Mover’s

Distance (EMD) metric on the numerical image content descriptors. The EMD

calculates the cost of moving from one object to another. Outliers are identified to

be the sources with the greatest cost since they are furthest away from other sources [82].

The results indicate that the algorithm struggles to detect some anomalies. Only

2 of the 67 known gravitational lenses are detected when applying the algorithm.

However, it is proven that a significant amount of normal galaxies can be identified and

removed, thereby reducing the amount of data by two orders of magnitude. A total of

147 interesting and anomalous sources were detected that would otherwise have been

difficult to identify, out of a total of 1 100 determined to be peculiar.
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Unsupervised machine learning techniques are proven to be efficient in detecting outliers

within large data sets. A large amount of false positives suggest that the algorithm

struggles in detecting all of the outliers, but the algorithm can greatly reduce the initial

data set, making manual investigations much easier [81].

Pushing Automated Morphological Classifications To Their Limits With The

Dark Energy Survey (Vega-Ferrero et al. 2020)

Morphology is a key factor that is related to various physical properties of galaxies, such

as the star formation rate and galaxy mass. Identifying the morphology of a galaxy

thus enables the identification of certain properties without directly measuring them.

The data consisted of almost 27 million galaxies that form a part of the Dark Energy

Survey science Data Release 1, which utilises the Dark Energy Camera and consists of

the griz-bands. Convolutional neural networks, a type of deep learning algorithm, are

used to morphologically classify the galaxy images. A training set consisting of fully

classified galaxies that have been simulated to be at a higher redshift is used.

The results are an impressive 97% accuracy in classifying the morphology of the

galaxies according to whether the galaxy is an early-, or late-type galaxy and whether

the galaxy is edge-on or face-on. Five different models are trained using k-folding

(where the data is split into k consecutive folds, each fold is used once as a validation

set, while the remaining folds are used as training sets) to determine the uncertainty.

Roughly 87% of the galaxies have secure classifications regarding whether they are early

or late type galaxies, and 73% have secure classifications whether they are edge-on or not.

The faint images used are difficult to distinguish visibly. The work done here demon-

strates that machine learning can be used to identify features that are visibly hidden

due to the faintness of the sources. The method of creating a training set simulated at

a higher redshift can be utilised in future surveys [83].

Anomaly Detection In Astronomical Images With Generative Adversarial

Networks (Storey-Fisher et al. 2020)

Generative Adversarial Networks (GANs) are a type of deep neural networks that

consist of two parts and are suited to identify outliers [85]. The first part is the

generator: this models data/images based on the training set, performing better on

common objects within the training set and poorer on rare or anomalous objects. The
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second part is the discriminator; this distinguishes between the generated images and

the real images and identifies the poorly modelled rare images generated in the first

part. This is ideal when it comes to detecting outliers.

Data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is used.

The wide-field optical survey is imaged with the Subaru Telescope using 5 filters and

contains over 430 million sources. A subset of 942 782 sources was selected by restricting

the magnitude used to 20.0 < i < 20.5, consisting of about 70% extended objects and

30% compact objects.

A Wasserstein GAN [86], similar to a GAN but with the discriminator replaced by

a critic, is applied here to detect outliers which are then classified. The critic scores

how real or fake an image is. The WGAN is used to recreate the images in the data

set, which are then compared to the original images. The difference between the

images forms the residual, which is used to determine if the source is anomalous or

not. This works since WGANs recreate typical images much better and do not create

anomalous sources. Where the residuals are high, the original source is deemed to be

more anomalous.

A total of 9 648 sources were identified to be anomalous based on having a score

greater than 3σ and were followed up on. A full catalogue is still being compiled for

publication. The application of the WGAN shows promise for detecting anomalies

within large data sets. Recreating images allow training sets to be created that would

otherwise be difficult to obtain. It is also proven to be scalable to larger data sets and

is easily reproducible [84].

Discovering New Strong Gravitational Lenses In The DESI Legacy Imaging

Surveys (Huang et al. 2020)

Strong gravitational lensing systems provide useful information for astrophysics and

cosmology; they can be used to study how dark matter is distributed in galaxies and

galaxy clusters and are suited to study dark matter beyond the local universe. Strong

lensing provides the only known way to study the morphology and internal structures

of galaxies at sub-kpc scales at high redshifts that can extend to z > 2 and are thus

important discoveries.

The DESI Legacy Imaging Survey’s DR8 covers almost one third of the sky and is the

source of the objects used in this study [58]. A training sample consisting of known
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lensing systems as well as non-lenses in the Legacy Surveys is created for the machine

learning algorithm. This training set contained about 21 000 non lens sources and 632

previously known gravitational lenses. Almost 10 million galaxies were investigated

using the algorithm.

Deep convolutional neural networks (CNNs) and their variations have been shown to

be highly effective in identifying instances of strong lenses within astronomical data

sets. The results contain a total of 1210 new strong lens candidates that are identified.

In addition, the efficiency of the neural network has been improved significantly. The

results contain a significant amount of newly identified strong lensing candidates, a

substantial amount compared to the ones currently known. This also indicates that the

method used is successful in detecting instances of strong gravitational lensing [87, 88].

Practical Galaxy Morphology Tools from Deep Supervised Representation

Learning (Walmsley et al. 2021)

Machine learning techniques have been applied to astronomical data in many different

forms, from basic classifiers to more complicated deep neural networks. Often data is

simplified, or features are extracted, to create a simpler representation of the original

source. These representations, particularly those created for images, are important in

astronomy.

The representations of these galaxies created by deep learning models can be useful for

tasks outside of those for which they were created. There representations can thus be

used to outperform existing methods for certain tasks when investigating large galaxy

samples. The machine learning network used in the paper was trained on Galaxy Zoo

data, which includes DECaLS data.

Throughout this paper, data from the Dark Energy Camera Legacy Survey DR5 was

used [58, 89]. An r -band magnitude cut of 14.00 < r < 17.77 was made to ensure that

the fainter galaxies are within the bulk of the population with SDSS spectroscopy [90]

and so that the brighter galaxies exclude those with unreliable radii measurements.

The result was a catalogue of 305 657 galaxy images.

Combining these representations with the Astronomaly framework, [91], resulted in

100% accurate identification of the most interesting 100 anomalies (as judged by

Galaxy Zoo 2 volunteers). Additionally, with only a few extra labelled galaxies, these

representations outperform models fine-tuned from terrestrial images or trained from
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scratch when used to identify ring galaxies [89]. This very new approach represents a

promising alternative to the techniques investigated in this thesis.

2.5.1 Advantages And Disadvantages of Machine Learning

Despite being a concept that has been around for nearly a century, machine learning

has only recently expanded due to advancements in technology and the significant

increase in volumes of data. New ideas and methods are constantly being developed and

applied. Machine learning has already proven to be extremely valuable in astronomy,

being used to detect rare phenomena such as gravitational lenses, galaxy mergers or

even to perform more common tasks such as morphology classifications [92–96].

Large data sets in astronomy has also led to an increase in interest in the field. Machine

learning applications to astronomical data has attracted data and computer scientists

amongst others via the popular challenges hosted on Kaggle2. Alternative solutions to

handling large volumes of data include citizen science, where members of the public

volunteer their time to complete various tasks [7, 97]. The outcome from these citizen

science projects have produced valuable results, yet they also highlight the need for

improved techniques. The Galaxy Zoo project for instance, has produced morphological

classifications for numerous galaxies with the assistance of thousands of volunteers, but

this is not enough on its own for upcoming surveys that will have much larger data

sets. The results of the Galaxy Zoo projects, specifically the Galaxy Zoo DECaLS

project, have been used to train machine learning algorithms in order to make further

classifications [98].

While machine learning automates and speeds up a significant amount of the procedures

of handling the data, it can not replace manual labelling or human expertise and can

not recreate all aspects of the process. By returning the more interesting results, or

being able to identify large amounts of uninteresting data that can be removed, machine

learning makes it much easier to utilise large data sets and to detect anomalies within

them.

Other challenges also affect the performance of machine learning algorithms. Machine

learning is almost entirely based upon the quality of data. If the data is not of good

quality, or ideal to learn from, then the results will not be ideal. Studies have shown

that data sets are the largest limiting factor for machine learning algorithms [99, 100].

The lack of enough labels for supervised learning is also an issue that must be dealt

2https://www.kaggle.com/c/PLAsTiCC-2018
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with and can be sorted using mock data [101]. The next challenge that the algorithms

face is that of the features extracted from the data. The features play a vital role

as they represent the data, or the key aspects of the data, that the machine learning

algorithm utilises. However, it is often the case that the wrong or less efficient features

are chosen. In some instances of unsupervised and deep learning, the features are

generated automatically by the algorithm [102]. This reduces human input error and

bias but may not always be the most ideal feature set to use. Several algorithms also

include random aspects, be it when selecting features or selecting random values of

features or in some other way. This random part will almost always affect the results

differently, with each application of the same parameters producing different results.

Furthermore, studies have shown that outlier detection techniques, including the iForest

algorithm used within the thesis, produce significantly different results when compared

to each other [103].

Despite the challenges in determining which algorithm performs well, setting up the

data and extracting the correct features, machine learning repeatedly outperforms other

approaches and is ideally suited to anomaly detection within astronomical data sets.
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Chapter 3

Methodology I: Applying Base

Astronomaly to DECaLS Data

3.1 Introduction

The DECaLS data set provides an ideal opportunity to test machine learning algorithms

designed to find outliers. Not only is the data set massive in volume, the survey reaches

depths not easily observed before and has a significant chance of containing previously

undetected anomalous sources. Astronomaly is a flexible framework for anomaly

detection in astronomy [91]. It provides a complete pipeline with multiple options for

each stage; from data access and processing to anomaly detection, output display and

active learning. The details of the DECaLS data and of Astronomaly will be discussed

in this chapter.

Data selection is crucial for anomaly detection. Large volumes of data that are not fully

explored are ideal for this purpose. When coupled with some of the deepest magnitude

depths reached to date, it is difficult to find a better data set suited to the task than the

one used in the thesis. Section 3.2 discusses the Dark Energy Spectroscopic Instrument

Legacy Imaging Surveys, of which the Dark Energy Camera Legacy Survey data set

used throughout the thesis is a part [58]. Technical details of the surveys are covered

here, as well as details about the DECam Legacy Survey which contains the data used

throughout the thesis. Some issues concerning large volumes of data are also covered

briefly in this section. The format of the DECaLS data set is also reviewed briefly in

this section.

This chapter also covers the basic procedure of applying Astronomaly on a data set.

An introduction and overview of Astronomaly is covered in section 3.3. General steps

are outlined in this section, highlighting the various applications of Astronomaly as well

39
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as detailing the overall modular design. The final section, 3.4, examines the processes

used for the DECaLS data specifically. Since Astronomaly has several functions to use

during each processing step, those used specifically for the DECaLS data are covered

here.

3.2 Brief Overview Of The Legacy Surveys

The DESI Legacy Imaging Surveys are three public imaging survey projects combined.

The Legacy Surveys are designed to provide targets for the DESI survey. The main

scientific goal of the DESI project is to study dark energy by measuring the cosmic

distance scale using the baryon acoustic peak method. DESI will also investigate the

growth of large scale structure using redshift-space distortions in the redshift range

0 < z < 3.5 [104]. Other scientific goals will also be done, including cosmological

constraint measurements and an in-depth survey of galaxies, clusters and quasars. The

three Legacy Surveys along with their locations are as follows:

• Dark Energy Camera Legacy Survey1 - Also referred to as the DECam Legacy

Survey, utilises the Dark Energy Camera on the 4m Blanco telescope at Cerro

Tololo.

• Beijing-Arizona Sky Survey (BASS)2 - The Beijing-Arizona Sky Survey is

hosted at the BOK telescope at Kitt Peak and uses the 90Prime instrument.

• Mayall z-band Legacy Survey (MzLS)3 - This is also hosted at Kitt Peak,

but uses the MOSAIC-3 camera on the Mayall 4m telescope.

For the purpose of this thesis however, only part of one of the individual surveys within

the Legacy Surveys will be used, namely the Dark Energy Camera Legacy Survey.

3.2.1 Sky Coverage Of The Legacy Surveys

The area of the sky covered by the various Legacy Surveys along with the bands used

can be seen in Table 3.1. It should be noted that the DECaLS project made use of

existing DECam data that is located within the DESI footprint. The largest of this

comes from the Dark Energy Survey (DES), which is a 5000 deg2 area located towards

the South Galactic Cap. This existing data was incorporated directly into DECaLS as

it met all requirements of the Legacy Surveys.

1https://www.legacysurvey.org/decamls/
2https://www.legacysurvey.org/bass/
3https://www.legacysurvey.org/mzls/
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Table 3.1: The table indicates the bands used by the individual Legacy Surveys. Also
included in the table is the area of the sky covered by each individual survey.

Legacy Survey Band Area Covered

DECaLS g,r,z 9500 deg2

MzLS z 5000 deg2

BASS g,r 5000 deg2

The 8th public data release (DR8) of the Legacy Surveys contains the data used in this

thesis and is the first to contain data over the entire footprint of the survey. It contains

data from all three of the Legacy Surveys covered in Table 3.1. The sky coverage

ranges from 19 437 deg2 for single pass observations, to an area of 13 161 deg2 with

at least three passes. These regions contain observations using all three bands. Areas

exist that contain fewer bands, but these are not used within the thesis. In addition to

this, the DR8 also includes Wide-field Infrared Survey Explorer (WISE) flux values [105].

The DECaLS part of the DR8 will be the main focus to study as mentioned before. This

is mainly due to the fact that it contains regions of the Southern Galactic Hemisphere,

which is studied less than the Northern Galactic Hemisphere. This improves the

chances of making new and interesting discoveries. Additionally, this can also improve

the knowledge of the southern sky if new discoveries are made which would assist future

projects that will be done.
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3.2.2 Depths Of The Legacy Surveys

Figure 3.1 is a colour map that illustrates the z-band (5-σ) depths of the Legacy

Surveys. It can be seen that the majority of the sources lie towards the fainter, higher

magnitude range of the map as indicated by the darker blue regions, this is also

illustrated in Figure 3.2.

Figure 3.1: A colour map indicating the z-band depth in magnitudes for the Legacy
Surveys. A redder colour indicates less depth, while a darker blue colour corresponds
to a higher magnitude and thus fainter source. The map also illustrates the regions
covered by the Legacy Surveys as well as the more in-depth Dark Energy Survey [106].

The outline of the Legacy Surveys can also be seen on the figure. Plots are also available

for the g and r bands but are not included here. The depth varies due to a multitude

of reasons, from filter quality to extinction levels, observing conditions and more.
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Figure 3.2: The plots illustrate the sky area covered against the number of exposures
made over the region. Most of the sky covered by the survey has been observed using

three or more passes in all of the bands [107].

Figure 3.2 contains histograms for each band used in the DECaLS project, com-

paring the area of the sky covered to the 5σ point source depths. In all three plots

it can be seen that the vast majority of the sky mapped is done using multiple exposures.
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Together, the Legacy Surveys provide remarkable depths and greatly increases the

known footprint at fainter magnitudes compared to the SDSS. This makes it a potential

treasure trove of anomalous sources. Imaging to the 5σ z-band depth of the Legacy

Surveys is expected to increase the number of galaxies detected by a factor of > 15 for

redshift 0.5 < z < 1.0 galaxies and by a factor of > 200 for redshift z > 1.0 galaxies

when compared to SDSS [58].

3.2.3 DECaLS Data

The total number of sources within the DR8 release of the DECaLS data is roughly 1.6

billion, of which about 870 million are resolved, non point sources. This is a substantial

amount of data; both in the number of sources present as well as in the overall data size.

Even with current technology, such large quantities of data presents several hurdles

that must be overcome despite the data being readily available. The overall size of the

data set is well over 10TB, severely limiting our ability to download and store the data

and as such, smaller subsets had to be used.

Selecting this subset is dependent upon numerous factors. A random subset would be

an ideal representation of the overall data set, but placing certain restrictions also make

it easier to detect some anomalous sources. One such restriction made is to remove

point sources since they are unresolved. No distinguishing physical features are visible

for these sources, making it nearly impossible to identify them as being anomalous

especially as the focus is on anomalous morphologies. For this reason all point sources

are removed from the data first and foremost.

Several choices are made throughout the thesis to create these criteria for selecting the

data. The majority of these criteria originate from complications encountered during

the application of the various stages of Astronomaly on the data. These complications

are covered further in this chapter. Additional limitations on the amount of data that

can be used are also encountered due to available computational storage and processing

power.

3.2.4 DECaLS Data Format

The standard file type for astronomical data is the Flexible Image Transport System

(FITS) type, designed specifically for astronomical data. Multiple channels are usually

contained within fits files with each representing a different wavelength band. This
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allows each band to be accessed and manipulated individually or all the bands to be

processed together for the complete image. DECaLS data is obtained in fits files with

three channels corresponding to the g-, r- and z-bands, but there are two distinct ways

in which the data is formatted. The data is also accompanied by a catalogue that

contains the details of the sources, for example: the flux levels of the different bands,

the RA and Dec of the sources and so on.

3.2.4.1 Data Bricks

The first format that the DECaLS data can be found in is referred to as a brick. Bricks

are fits files that encompass small, square regions of the sky and are coupled with a

catalogue containing the details of the sources located within the brick. They can be

thought of as pieces of a puzzle with all the bricks fitting together to encompass the

entire survey. The number of sources within each brick varies, but each brick typically

contains several thousand sources.

The brick names have a specific format to them that details the location of the sky that

they cover. These names are formatted to indicate the central location of the brick.

This is best explained using an example. For the brick 0267m062, the first section

0267 denotes the right ascension (RA) of the central coordinates multiplied by a factor

of 10. Thus 0267 corresponds to an RA of 26.7◦. The letter in the middle indicates

plus or minus and is indicated by a p or m. Finally, the numbers at the end show the

declination (Dec) of the brick center multiplied by a factor of 10. So m062 corresponds

to a declination of -6.2◦.

The brick fits file consists of the three channels used, each one covering the entire region

of the brick. Sources within the bricks are accessed by using the coordinates located

within the corresponding catalogue. Individual sources are thus looked at by using their

central coordinates and by specifying a surrounding region to display as well. Sources

differ in angular size and would thus require different surrounding regions in order

to view them in their entirety. This can cause some problems as selecting individual

regions proves to be quite tricky.

Bricks provide the benefit of downloading thousands of sources in one file with the

corresponding catalogue readily available as well. The downside is that the individual

sources have to be “extracted” to view them separately.
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3.2.4.2 Data Cutouts

The other format that the DECaLS data can be found in also consists of fits files

with three channels, except that they are much smaller regions of the sky. These are

typically “cutouts” of the individual sources themselves. They are downloaded directly

from the SkyViewer Server4. The files are labelled cutout xx.xxxx yy.yyyy.fits where

xx.xxxx and yy.yyyy denote the relevant RA and Dec of the source respectively. A

minus sign is included in front of the Dec if needed.

The benefits of using cutouts are that they are centred upon the source and the

surrounding region size can be specified before downloading the data. This reduces the

amount of data downloaded as the “empty” regions between sources are not downloaded

and a minimal size of each source can be downloaded. Noise levels are reduced in this

manner as well since there is a smaller region surrounding each source; less noise is

located within the image used.

The downside is that the sources are specified by the RA and Dec and thus require a

catalogue to be prepared beforehand. Accessing the files locally can also be a challenge

as they must be linked to the relevant catalogue entry.

3.3 General Introduction to Astronomaly

To efficiently explore the DECaLS data looking for anomalies, we use Astronomaly,

[108], a generalised framework for anomaly detection in astronomical data. It contains

the whole process of applying anomaly detection machine learning algorithms on

astronomical data with only minor data specific changes required. One of the main

features of Astronomaly is its versatility. It is highly modular in design and easily

enables different functions and algorithms to be used in different stages by simply

exchanging them. Astronomaly is also applicable to various astronomical data types

such as multi-channel images, time series data, light curves, spectra or even just general

sets of features and contains a secondary machine learning algorithm in the form of

active learning. The output is displayed in a user-friendly method.

4https://www.legacysurvey.org/viewer
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3.3.1 General Steps Followed When Applying Astronomaly

The individual stages of Astronomaly are described here in the order in which they

typically occur. The outlines of the stages are highlighted, concentrating on the purpose

of the stage instead of its actual workings. While each stage has different functions that

can be applied within it to yield similar results, certain functions are more effective for

some types of data. For instance, some feature extraction methods only work on image

data and not on time series data.

Data Pre-Processing

This is the first stage of Astronomaly other than reading in and accessing the data.

Depending on the data type, the pre-processing stage of Astronomaly ranges from

merely scaling the data, to complex combinations of functions applied to optimise the

data for the next stage of the process. These functions can easily be implemented in

any order simply by setting up the list of functions to use in Astronomaly. One of the

key functions of this stage is to reduce background noise within the data, usually by

means of removing the noise directly by applying a sigma clipping function, see section

3.4.2.4. Some of the function include sigma-clipping, scaling using carious methods,

band weighting and grey-scaling for example.

Feature Extraction

Once the data has been processed, it is passed on to the feature extraction process.

Feature extraction can be considered to be a form of dimensionality reduction, with the

aim being to extract the most relevant information from the data. This extracted infor-

mation represents the key characteristics of each data entry in a lower dimensionality

space, reducing the amount of data passed on to the machine learning algorithm itself.

Selecting the features to be used is critical as it is these features that will determine

which anomalies are detected. Selecting which features to extract is thus also data

dependent and goal orientated.

Feature extraction takes on many different forms, depending mainly on the type of data

that is used. Astronomaly includes a power spectrum feature extraction process that

utilises the Discrete Fourier Transform (DFT), a wavelet feature extraction process

and a shape feature extraction process amongst others. The feature extraction method

required can easily be selected without the need to make vast changes in Astronomaly.
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Machine Learning: Anomaly Detection

With the features successfully extracted from the data, the next step is to ap-

ply a machine learning algorithm in order to detect the anomalies. Astronomaly

uses unsupervised machine learning since training sets are not easily available for

anomaly detection. In most cases, training sets are not available at all. This is

mainly due to the nature of the data used for anomaly detection. Due to the scarcity

of anomalies, it is possible that even a subset of the data would not contain any anomaly.

The two machine learning algorithms for detecting outliers currently available in

Astronomaly are implemented with the scikit-learn software package [109]. They are

the iForest [110], discussed in detail in section 2.3, and the LOF [68], discussed briefly

in section 2.2.4.1. Additional machine learning algorithms can easily be implemented

within Astronomaly. The algorithm used can be swapped out simply by replacing one

with another in the pipeline. However, a large variety of anomalies exist that are found

in various different forms and according to the No Free Lunch Theorem [64, 111], it

is not possible to create or select an algorithm that will be able to detect all types of

anomalies. It is therefore necessary to explore various algorithms to find one that works

best for a given data set.

Applying a machine learning algorithm on the extracted features results in a score being

given to each source. These scores determine how anomalous a source is in relation

to all of the other sources within the data set. The scores produced by the machine

learning algorithms is re-scaled to range from 0 to 5 within Astronomaly, with 5 being

the most anomalous, solely for the active learning process that can be applied.

Active Learning And Output Visualisation

The front end of Astronomaly allows the user to apply active learning in a user

friendly manner. Active learning allows the user to incorporate personal experience and

knowledge into the scoring system of the machine learning algorithms. Even though

the sources are scored by the algorithm, it does not mean that the anomalies of interest

are ranked the highest. This is often the case when using image data; an artefact or

masked source might be included within the data and could be scored as being highly

anomalous despite not being of much interest. Similarly, if a user is interested in a

specific type of anomaly only then active learning will assist in scoring these sources

higher.
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Active learning allows the user to manually label the sources, thereby “training” the

algorithm on a subset of the data based on the input from the user. A second machine

learning algorithm, called the regressor, adjusts all of the scores in the entire data set

based on these trained labels. The regressor predicts new values for all of the sources

based on how similar they are to the ones that have been labelled. For example, for a

source that is labelled as highly anomalous, the regressor will look for similar sources

and will score them higher in turn. Once retrained, the sources are rearranged in the

new order based on the users preferences. The regressor can be trained multiple times as

new sources are labelled. This active learning allows the user to focus more on sources

that they are interested in and reduces the time required to inspect large amount of data.

Figure 3.3: This is a screenshot of the front end of Astronomaly. The images are
displayed in order of the anomaly score given to them. At the top right we see the
information from the catalogue displayed in the section labelledMetadata. This includes
the flux values, coordinates, and name along with other details if available. Below this
is the Features section, which displays the features of the source shown. Below the
image is a series of numbers ranging from 0 to 5. These form part of the active learning
and are used to manually label the sources based on how anomalous they are. To the
bottom left is the option to change the order in which the sources are displayed and to
the right of this is the button that retrains the scores based on the manual labels made.

Figure 3.3 is a screenshot of the front end of Astronomaly when applied on image data.

There are several options to order the output display data and a useful t-Distributed

Stochastic Neighbour Embedding (t-SNE) plot can also be included for the data points

[112]. The t-SNE plot is used to display high dimensional feature space in a lower,

usually two or three, dimensional plot. Included within the front end are features and
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information about the source currently displayed.

3.4 Procedure Used To Apply Astronomaly On DECaLS

The typical application of Astronomaly is in the form of a pipeline which joins together

sections of Astronomaly to obtain the desired outcome. Pipelines are thus user specific

and vary depending on the data used as well as the functions required. The following

sections illustrate the full pipeline used on the DECaLS data. They do not delve into

the coding details of the pipeline, but rather detail the functions used within the pipeline.

The order follows the steps as they are done. A small section, 3.4.1, on reading in

and accessing the data is included at the start and includes some complications that

arise from using large data sets. This section also contains the parameters that must

be set for the rest of the pipeline. The functions used for each step are explained in

depth, except for the iForest machine learning algorithm as this is covered in section 2.3.

3.4.1 Accessing Data And Setting Up The Parameters To Use

This is a small part before the actual pipeline is created. It is the part where key

parameters are set up. The data directory is specified here, along with the image

and output directories. If required, the catalogue containing the information of the

files is read in here as well. All of the parameters are set here, and both the image

transform function and the display transform functions are defined here. Addi-

tional parameters specific to certain functions are also set here. This section essentially

forms the foundation of the pipeline and any small tweak or change is typically done here.

3.4.2 Image Processing Techniques Applied To The DECaLS Data

The first section of the actual pipeline involves setting up the image dataset which is

an adaptation of the catalogue set up to use in the rest of the pipeline. For example, if

the DECaLS brick files are used, see section 3.2.4.1, the image data set would include

the location of all of the sources as well the window size used which specifies the region

around the sources to include.

This section of the pipeline also deals with data handling, specifically processing and

manipulating the input files. Various functions that process the images are applied

within this section. Both the image pre-processing function and the output display
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transform function are created within this section. The focus in this part will be on the

image pre-processing function.

This function is aptly named the image transform function and consists of various

individual python functions applied onto an input image in a specific order. The

following functions are applied to the DECaLS fits files in the order presented here.

3.4.2.1 Image Transform: Scale

Images are comprised of pixels, which can be numerically represented as an array with

a value assigned to each pixel. For the fits files this translates to three arrays, one

for each band, with a numerical value assigned representing the flux level within that

particular pixel of the image.

This function normalises the values of the arrays so that they range from 0 to 1. This

is useful for deep learning purposes as it reduces the distribution of the values.

The function determines the highest, Imax, and lowest, Imin, values of the image and

scales each pixel, or value in the array, using the equation

New pixel value =
I− Imin

Imax − Imin
(3.1)

where I is the pixel value in question.

This function is also applied at the end of the image transform function, after the sigma

clipping in this case, to ensure that all of the values are normalised before they are

passed on to the machine learning algorithm.

3.4.2.2 Image Transform: Axis Shift

The DECaLS cutout fits files are the main type of data format used throughout the

thesis and are read into a three dimensional array with the shape (3,x,y), where x

and y are the cutout width and height respectively. The first number, 3, indicates

the number of channels or bands there are within the fits file. It is unusual that

the DECaLS data is ordered in this way since the conventional way of producing

fits files is to have the channels located at the end such as (x,y,3), although there is

no set standard. Since some of the other functions within Astronomaly rely on the

standard form and so this small function shifts the order of the three dimensions to fit in.
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3.4.2.3 Image Transform: Greyscale

This function combines the three channels into a single channel. This is needed for the

sigma clipping function, see section 3.4.2.4, so that the image is not clipped on a single

band only, but on all of the bands. If the bands are not combined, there might be noise

left over that is not clipped out by the sigma clipping which would result in errors

further along in the pipeline. This is explained in more detail in the next chapter.

OpenCV’s function, BGR2GRAY, is used to combine the bands together into one

channel [113]. The reason for using this function instead of simply adding the bands

numerically is that the function uses a known weighting system. A weighting system

scales each band by a specific factor, adding more value to some bands and less to

others. The weightings used by OpenCV are the standard weightings used to create

grey images which is an ideal method to use when combining bands together. More

detail pertaining to why this function is used, as well how how it works, is given in the

next chapter.

3.4.2.4 Image Transform: Sigma Clipping

Sigma clipping is used to deal with unwanted background noise surrounding the

source. Noise up to three sigma are clipped away to reduce errors. This sigma value

is calculated for each image based on the flux values within the image itself. Sigma

clipping determines the standard deviation from a centre value of the data and removes

the parts that are outside of this standard deviation. After the sigma clipping is

applied, contours are fit where the source is expected to be; where the flux remains

after the sigma clipping has removed the areas of low fluxes. In instances where there

is a nearby bright source, the contour shifts to the edge because the fainter source has

been clipped out and the only contour left is the bright source, causing the feature

extraction to fail. For the DECaLS data, the sigma clipping is set to 3σ, which is 3

standard deviations away from the central value. The clipping is done a maximum of 5

times or until convergence is reached when there is no more data to clip. An example of

sigma clipping is shown in Figure 3.4. It should be noted that in some cases where the

source might contain a tidal tail, the sigma clipping function might affect the tail itself.
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Figure 3.4: The images shown here display the before and after effect of sigma clipping
applied to a sample of the DECaLS data. On the left we see the image after the previous
transformation function have been applied but before sigma clipping has been applied.
On the right we see the same image after sigma clipping. The noise surrounding the

source has been clipped away.

3.4.3 Ellipse Fitting Feature Extraction Method For Optical Data

One of the key aspects of any machine learning algorithm is the feature set used.

Features are used to uniquely define a source or object using a reduced number of

dimensions. The ellipse fitting feature extraction method was designed mainly for

images of galaxies. Astronomical images are two dimensional representations of three

dimensional sources.

Optically, whether they are elliptical or spiral, galaxies tend to be spheroidal in nature

to a degree with a few exceptions only. This is due to the formation and rotation of

galaxies in general. A two dimensional representation of a spheroidal, or rotational

ellipsoid, is an ellipse. Even a spiral galaxy viewed side-on with a large bulge will

appear to be mostly elliptical. Some irregular galaxies might be an exception, but their

overall outline, the two-dimensional representation of the galaxy as seen in an image,

would still be mostly ellipsoidal in shape. Those that do differ significantly tend to

do so due to other factors which can lead to such galaxies being classified as being

anomalous. For example, they might have a distorted shape that has been caused by

past interactions with other galaxies. In the case of the DECaLS optical data, where

the data consists of images, the feature extraction method used is the Ellipse Fitting

feature extraction method.
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The ellipse fitting method fits several ellipses to the source. If they are all similar in

shape and alignment and fit the contour well, then it is indicative of a “standard”

galaxy without any external interference visible. If there are significant deviations

between the ellipses then it indicates an unusual shape and the source could possibly

be an anomaly. After the image pre-processing has been done and the input images

have all been through the transformations applied, they appear similar to the example

shown in Figure 3.4.

The points of the source are numerically valued between 0 and 1 due to the scaling

transform applied. Six flux percentiles are chosen for the DECaLS data namely; the

90th, 80th, 70th, 60th, 50th and 0th percentiles. For each percentile, the values or pixels

that fall within that percentile are located. This forms regions of adjacent points that

have similar brightness levels. A contour is drawn around the perimeter of this region

and a best fit ellipse is created and fit to this contour. Both the contour and ellipse are

created and fit using OpenCV functions and an example can be seen in Figure 3.5.

www.etd.ac.za



Chapter 3. Methodology I: Applying Base Astronomaly to DECaLS Data 55

Figure 3.5: The six contours and their best fit ellipses are shown here for a random
sample. The contours are drawn in red, the ellipses next to it in right. The outermost
contour varies the most since it is the boundary between the source and the region cut
by the sigma clipping. This indicates how important the sigma clipping step is within
the process. Despite being two sources located close to each other, or in line with each
other along the line of sight, the ellipses are all quite similar in shape and orientation.

Only the outermost ellipse appears to be rotated with respect to all the others.

An ellipse is fit for each percentile and the parameters of the ellipse forms the features

that are extracted from the image and used by the machine learning algorithm. These

parameters describing the shape of the ellipses, as well as their relation to each other

are as follows:

• Residual: This is the difference between the ellipse and the contour. The differ-

ences are summed together to create the residual.

• Offset: This is the distance between the centre of the ellipse in question and the

centre of the 90th percentile ellipse.

• Aspect: This is the aspect ratio of the ellipse; the ratio of the major axis to the

minor axis of the ellipse. The ratio is then divided by the aspect ratio of the 90th

percentile ellipse.
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• Theta: The rotational angle of the ellipse after the rotational angle of the 90th

percentile ellipse has been subtracted. The absolute value is taken since it is with

respect to the 90th percentile ellipse.

These four parameters are determined for each of the six percentiles and form the features

that are extracted for each image. Since the features are relative to the 90th percentile,

only its residual is used as a feature for it [91]. This provides a total of 21 features for

each image.

3.4.4 Machine Learning

With the features extracted from the data, the next stage of the pipeline is the machine

learning aspect of Astronomaly. For the DECaLS data, the machine learning algorithm

applied is the iForest algorithm. This can be a time consuming section of the pipeline

and plays a role regarding the computational capabilities of Astronomaly. In section

4.5.1 the limits of the iForest algorithm are tested.

The sources are all scored by the iForest algorithm and ranked according to this

anomaly rating. This determines the output order that is displayed by the frontend

of Astronomaly. Active learning, see section 3.3.1, can be considered to be a part of

the machine learning section of Astronomaly. The manual labelling and training is

done within the frontend, but the labels are passed to a secondary machine learning

algorithm that uses these labels to revalue all of the scores.

3.4.5 Astronomaly: Frontend

After the sources have been ranked according to their anomaly scores, the output is

produced by way of an interactive webpage that is run locally by Astronomaly. An

example of this can be seen in Figure 3.3.

The sources are displayed here after they have been transformed using the display

transform function. The transform requires the input fits files from DECaLS to be

adjusted using the axis shift function explained in section 3.4.2.2. Once the order is

corrected, an adjusted display function is applied to better display the files. It is similar

to the greyscale function in that it weights each band separately before adding them

together, but it uses different weightings. The transform function ends off with the

same scaling function as discussed in section 3.4.2.1.
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3.5 How And Where The Feature Extraction Process Fails

Early attempts to apply Astronomaly to DECaLS data showed very quickly the limita-

tions of the basic algorithm. This is due to the failure of the feature extraction method

on realistic and noisy data. There are several different instances where the feature

extraction process fails. The failures can be separated into two distinct categories,

those due to the source within the images themselves, and those that are caused by the

image itself.

The latter often requires a different image to be downloaded and used altogether, whilst

the former requires adjustments to be made within the functions applied to the data.

In some instances, these can not be dealt with sufficiently or there are no clear methods

to deal with the failures that arise.

3.5.1 Feature Extraction Failures Due To Sources

The first type consists of failures caused by the source itself and is largely independent

of the image. The various different failure methods are briefly outlined below and the

adaptations made to reduce these failures are discussed in detail in the next chapter.

Bright Source Close To The Object

For the DECaLS data, a common reason for the ellipse fitting to fail is due to there

being a much brighter source close to the source in question. This is typically a

foreground star that lies along the line of sight to the source being looked at. Often the

bright source is so bright and large that the algorithm detects it as being a part of the

original source and places the ellipses towards the edge where it extends beyond the

image itself and fails. In some instances, some of the inner ellipses and contours extend

to the bright source and then extends beyond the image itself as well. In this case, the

outermost ellipse or ellipses will fail to be fit. The figure below, Figure 3.6, illustrates

the source when another bright object is close to the line of sight.
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Figure 3.6: The three images shown here all fail the ellipse fitting feature extraction
method due to there being a much brighter object located along the line of sight to the
source in question. These images all contain masked sources, where an attempt was

made to mask the brighter sources.

Masked Sources Creating Challenges

Similar to the bright objects close to the source, masked sources can also cause

problems. In a sense they are more challenging than having a nearby bright source as

the ellipse fitting process does not always fail when a masked source is present. Instead,

the ellipses are fit successfully, but incorrectly and have to be dealt with. Figure 3.7

shows some images containing masks. In some instances, the source itself is masked

and is typically of a stellar nature, but in others there is a masked source close to the

line of sight which can affect the ellipses fit. Masks arise from various phenomena, from

solar flares to satellites to stellar sources.

Figure 3.7: The images shown here contain masked sources. They are more challeng-
ing to deal with than nearby bright sources as they cause incorrect ellipses to be fit
rather than failures within the process. Even though they are not desired, they can be
scored quite highly by the machine learning algorithms due to their unusual shapes.
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Source Too Faint To Fit Ellipses

A significant amount of the sources within the entire DECaLS data set consist of

sources that are either too faint to fit ellipses properly, or the signal to noise ratio is

too low to distinguish the source from the background noise. For the faint sources,

the ellipses can not all be fit properly and there is not much that can be done about

it. For the low signal to noise ratio sources, the noise can be clipped using sigma

clipping, but care must be taken as the ellipse shape can be affected greatly if this is

done incorrectly. Figure 3.8 shows a few faint sources that have low signal to noise ratios.

Figure 3.8: These images fail the ellipse fitting process because they are either too
small and faint for the ellipses to be fit correctly, or the signal to noise ratio is too low

for the source to be identified correctly.

Band Weightings

The three bands are joined together into a single band during the pre-processing

stage of Astronomaly. Often the bands are weighted differently, meaning that each

band has a specific scalar multiple applied to it in order to achieve a certain goal.

For instance, certain weightings used will create a grey scale image, while others will

highlight certain features more. Some weightings can cause the ellipse fitting process

to fail by up-weighing the background noise too much so that ellipses are not fit, or

down-weighing certain values causing the source to become “blended” and not having

the required distinguishable brightness ranges.

3.5.2 Feature Extraction Failures Due To Image Problems

The second group of failures is caused by the actual image themselves and does not

depend on the source within the image. This ranges from incorrect image sizes for the

source in question, to incomplete band passes for the sources. Most of the time these
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failures can be solved by using different sized images of the source. For some of the

instances there is no method to avoid the failure and these sources have to be removed

beforehand or the failure is just accepted as part of the process.

Band Passes Not All Available

For some sources, especially those lying towards the boundary regions of the surveys,

not all three bands are available. This could be due to various reasons such as faulty

equipment or time constraints not allowing all filters to be used. These sources fail the

ellipse fitting process due to the lack of a band and is not dependent on the source at

all in any way. While there are methods to deal with this failure, these sources are

preferably left out to avoid inconsistencies.

Feature Extraction Failures Due To Incorrect Cutout Sizes

Determining the correct cutout size that corresponds to the source is difficult to do. If

the cutout size chosen is too small, then the entire source would not fit into the image.

This would result in an open ellipse that is not a failure in and of itself, but rather

an incorrect fit since the entire source is not visible. This results in incorrect features

being extracted for the cutout in question, which could affect the overall scoring of the

entire data set used. Figure 3.9 shows sources that are too big for the cutout size used.

Figure 3.9: Open ellipses, such as those that would result from these images, are not
failures since the ellipses are often fit successfully although they would be incorrect.

It is also possible for the cutout size to be too big for the actual source in question.

This often results in problems arising from the sigma clipping function during the

image pre-processing stage. Figure 3.10 illustrates the issue. Other sources are present

throughout the cutout, some of which might be bigger and brighter than the source in

question, which can cause the sigma clipping function to clip away parts of the source
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that is to be inspected. This would result in incorrect ellipses being fit.

Figure 3.10: Other sources within the image will affect the image pre-processing
stage, especially the image scaling and the sigma clipping functions. These images all

show cases where the image is too large for the source in question.

The biggest issue regarding the image sizes however, is that a significant proportion

of the sources are all small and faint in nature. A common image size for these faint

sources within the DECaLS data set is 32 by 32 pixels, which is so small that at

this resolution, the source itself only occupies a handful of pixels. A large amount of

feature extraction failures arise from a lack of data points to fit the innermost ellipse

successfully. Five pixels are required to fit the ellipse successfully, but there is not

always a sufficient amount of points available for this.

In the following chapter, the changes and adaptations made to Astronomaly dealing

with these failures and challenges are discussed in detail. The performance increase

made from the changes is also discussed. Unless otherwise stated, the changes and

adaptations, along with the selection criteria and other data cuts made, are implemented

in the data sets used.
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Chapter 4

Methodology II: Extending

Astronomaly

4.1 Introduction

This chapter details the additions and adaptations made to Astronomaly to improve

its performance and solve the other difficulties encountered during the application of

the base version of Astronomaly to DECaLS data. The additional changes made to

Astronomaly relating specifically to the DECaLS data is explained in detail in this

chapter. The chapter starts in section 4.2 by detailing the data specific changes made,

along with computational complications that arise when using large data sets. A

significant change made to Astronomaly for the DECaLS data is due to the unusual

ordering of the channels found therein. The changes incorporated revolve around

increasing the number of sources that have ellipses fit successfully. Sources without

ellipses fit are discarded even though they could contain anomalies. Therefore it is cru-

cial to look at as many sources as possible and to understand why the sources are failing.

The feature extraction process of Astronomaly used on the DECaLS optical data

consists of the ellipse fitting procedure, which is covered in detail in section 3.4.3. One

of the main reasons why this feature extraction method fails is due to the source and

image size relation; that is, how much of the actual image is covered by the source

itself. Sources vary in shape and angular size, both physically and in their appearance

to us in images. The angular diameter of the source in question is directly related

to how many pixels it covers within an image, regardless of the size of the image

itself. It is these pixels that contain the information of the source and it is also these

pixels that are used to fit the ellipses on. To avoid unnecessary background noise

or interference and to ensure that the entire source is displayed within the image, it

is best to use images which conform as much as possible to the angular size of the source.

62
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However, this is not always easy to implement. For instance, if the data is contained

within a brick, then a set cutout size surrounding each source is used as the image

for all of the sources. Once specified, the image size remains the same for all of the

sources located within the specific brick. If the data consists of individual cutout files,

then each source can have its own image size specified, but this must be determined

beforehand for each source. Section 3.2.4 contains the full explanation of the DECaLS

data bricks and the individual cutout files.

The majority of the changes made revolve around the goal of achieving the best fit

between the source in question and the corresponding image in order to reduce the

failures encountered. Figure 4.1 illustrates the problems that arise when the image size

used does not fit well with the angular size of the source in question. All three images

displayed are the same size, but the second and third sources require different image

sizes for the sources within them. Changes made to reduce the failures resulting from

these issues are discussed in section 4.3 and section 4.4. These sections also illustrate

the improvements in the feature extraction rate resulting from the changes made.

Figure 4.1: The images shown here illustrate the issue with using a single image size
(128 by 128 pixels) for sources that have different angular diameters. The first image
shows a source that fits in the image well; no other sources are located within the image
and the source does not extend beyond the image. The central image shows multiple
sources throughout the image, which will affect the sigma clipping process. The last
image shows a part of a source that extends beyond the image size used. Ellipses for
this source will also extend beyond the image and do not represent the true features of

the source.

Section 4.5 focuses on testing the limitations of some of the machine learning algorithms

available within Astronomaly. Most importantly, the computational limitations of

the iForest algorithm are tested. While the iForest algorithm is the sole algorithm

used in detecting the anomalies within the DECaLS data set, the LOF algorithm is

also tested to provide a comparison in the event that it proves to be a better option
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computationally. These tests are very important as they provide limitation estimates

regarding the data set size that can be investigated using available computational

processing capabilities.

The chapter finishes off with section 4.6, which is a short section summarising the

limitations and data selection criteria found within the rest of the chapter. The

improvements gained from the adaptations made is also quickly illustrated within this

section on a subset of the DECaLS data set.

4.2 Data Format Adjustments And Selection Cuts

In this section, the adjustments made in order to handle the DECaLS data files are

explained. As mentioned in section 3.2.4, the DECaLS data files are available in two

different formats, bricks and cutout files. The differences between the two different

formats is also explained in section 3.2.4. The first choice made regarding the data is

deciding which of these two format types to utilise since each has distinct advantages

and disadvantages.

Given the large size of the survey, as well as the significant range in angular sizes

of the individual sources throughout, the cutout format is better suited for a large

scale investigation. This is based on the contents of the bricks, where a significant

number of the sources contained therein are typically faint sources with low flux

values, as well as the difficulty in selecting the appropriate window sizes for the sources

when using bricks. The downside to using cutouts however, is that large amounts of

files are needed. This can present storage problems depending on the storage set up used.

A significant change made to Astronomaly specifically for the DECaLS data is based

on the order that the channels are within in the fits files themselves. Astronomical

convention for fits files1 follows that the two dimensional data be given first followed

by the channels, but the opposite is given by the DECaLS data where the channels

are given first. This is more of an inconvenience than an issue since Astronomaly is

designed to follow the norm. A function is thus introduced so as to adjust the order

of the fits file where needed. Without this channel reordering function, all of the other

functions present within Astronomaly would fail by default. The data itself is not

affected in any way by this function, merely shifted around.

1https://www.loc.gov/preservation/digital/formats/fdd/fdd000317.shtml
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The DECaLS data set also contains a significant amount of point sources, mainly

stellar in nature that are not investigated in any way in this thesis. This forms the

first selection cut made in selecting a subset of the overall data set to investigate. A

significant restriction also placed on the DECaLS data is to investigate sources located

within the Southern Hemisphere only. This is done mainly on the basis that the

Southern Hemisphere is less explored than the Northern Hemisphere and it stands to

reason that there is thus a better chance of finding anomalous sources that have not

been previously identified. Additional criteria, or cuts, made are discussed in more

detail throughout the following sections, and include criteria such as flux levels and

bands available amongst others.

4.3 Changes Made For Image Based Failures

This section covers the changes made to Astronomaly to reduce the number of feature

extraction failures that are caused by the images themselves and not the sources within

the images. In section 3.5.2, some of these failures are highlighted. This section covers

the changes made in response to these failures as well as the improvements gained from

the changes made.

The failures can be broken down into the causes behind them. For images that are

too small, there are two related failures. One which is not a true failure, but rather

an incorrect fitting caused by the images being too small for the angular diameter

of the source. In this case, the outermost ellipse actually extends beyond the image

and is fit incorrectly since the entire source is not taken into consideration. This

is referred to as an open ellipse and is not a true representation of the source in

question. The other is due to a lack of pixels within the images to fit the innermost

ellipse. This latter issue is a direct result of the actual number of pixels available in the

corresponding image and is not related to the area of the sky covered by the image itself.

For images that are too large, other sources are often located within the image, which

can cause ellipses to be fit incorrectly as it becomes more difficult to distinguish

between sources that are close to each other. More noise will also exist within these

images, which will affect the sigma clipping process as well. Another failure is based

on the band passes available for the source in question as discussed very briefly in

the subsection 3.5.2. A lack of band passes can have detrimental implications on the

machine learning algorithm as not all data points are equal. Unfortunately no fix ex-

ists for this as it is a case of data being incomplete with respect to the rest of the data set.
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4.3.1 Ellipse Fitting Errors Due To Small Image Sizes

This is one of the failures that occur when the image size is too small. These failures

occur when the image used is too small for the angular diameter of the source in

question. They are challenging in that they do not always cause the ellipse fitting to

fail, but often cause incorrect ellipses to be fit. This is because the angular diameter of

the source within the image is too large for the image size used, and parts of it exist

outside of the image. The ellipse fitting process fits only based on the parts that are

within the image, so the outer parts of the sources are not taken into account. This

is referred to as an open ellipse since the ellipse that is fit actually extends beyond

the image, but can not be drawn to be beyond the image. The result is an ellipse

that it cut off at the boundary of the image and incorrect ellipse parameters are returned.

Adjustments made to the image itself do not solve this problem since it is a case of the

data surrounding the image being missing. The only method to fix this failure is to

increase the image size for the corresponding source by including surrounding regions

as well. A random subset of 15 000 cutouts consisting of non point sources was used

to test various image sizes. Initially all cutouts were downloaded with the image size

of 32 by 32 pixels. Out of the 15 000 sources, a total of 909 sources failed the feature

extraction process due to various reasons. It should be noted that not all failures

are due to incorrect image sizes. These 909 sources were then replaced with images

consisting of 64 by 64 pixels around the same sources. The feature extraction process

was then applied to the 15 000 sources and it was found that 440 sources failed. These

were in turn replaced by images consisting of 128 by 128 pixels, which then resulted

in 240 sources failing the feature extraction process. It is evident that the image sizes

used play an important role in the feature extraction process, but it is also evident that

there exists a range of sizes to be used. Fortunately, using the cutout format allows the

sizes to be selected individually for each source. A two-fold approach has thus been

incorporated to determine the ideal image size to use for each source.

First, the existing catalogues of the DECaLS DR8 data set have been inspected and

the initial cutout size is based on model predictions already made. These are models

fit to the sources themselves and contain a semblance of the diameter of the source.

This value is used as the base for the cutout size to be downloaded and is increased by

20% to compensate for the endpoints of the ellipses that tend to extend slightly beyond

the sources. This means that the cutouts input into Astronomaly initially are not all

necessarily the same size or dimensions, although no negative effects stem from this.

This reduces the number of sources that initially fail the feature extraction process due

to this image size issue quite significantly. Not only does this improve accuracy, it also
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decreases computational times needed since less cutouts need to be replaced by larger

ones. Performance is also improved since the sources have ellipses that fit better and

more sources are fit successfully. Unfortunately though, it is not able to compensate for

all of the sources and some still fail.

The additional step is introduced within the pipeline of Astronomaly to assist with this

failure. Sources with an open ellipse are flagged within the pipeline by a function that

determines whether or not the ellipse fits completely within the image. A new window

size is then calculated based on the same ellipse that extends beyond the original

cutout size, along with an additional increase to compensate for any changes to the

ellipse size that might occur when drawn for the larger cutout. These adjusted win-

dow sizes are then used to download larger cutouts which then replace the initial cutouts.

Applying these two steps for the same 15 000 cutouts used reveal that the first step,

using the catalogues to determine an initial image size, produces a total of 206 failures.

The second step of basing a new image size on the ellipse fit to the initial image, reduces

this even further to a total of 188 failures.

4.3.2 Implementing Adaptive Image Scaling In Astronomaly

This section covers the other failure type associated with having too small an image.

Unlike the previous type, where incorrect ellipses were fit, this failure results in actual

failures to fit ellipses. While the previous type was caused by the outermost ellipse, this

one is due to the innermost ellipse and arises due to a lack of points to fit an ellipse

uniquely. A brief overview of ellipses is given to gain insight into what this means.

Ellipses are given by the equation:

ax2 + by2 + cxy + dx + ey + f = 0 (4.1)

Any two ellipses can thus intersect at up to four points, and so four points are

insufficient to uniquely determine an ellipse. A minimum of five points are needed

as can be seen by Equation 4.1. For small and faint sources, the smallest image size

typically used is composed of 32 by 32 pixels. The number of data points available

to plot ellipses is limited, more so if the source has a small angular diameter. The

innermost ellipse fails since it is only fit on the four central pixels, which is not enough

to fit a unique ellipse.
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A solution to to this problem is to upscale the small images, increasing the number of

pixels available and thus providing the additional data points to fit the ellipse without

losing any information about the image. This upscaling is done using OpenCV’s resizing

function, allowing the image to be upscaled to a higher number of pixels without losing

information [113]. It should be noted that this does not increase the area covered in

the image to include extra pixels, but rather increases the number of pixels within the

same area, effectively increasing the pixel density of the image. Both the source and

the image remain unaffected, other than the fact that the image is now composed of

more pixels.

This adaptive scaling was tested upon some bricks of the DECaLS data format. A

compilation of ten adjacent bricks were joined together into a data set containing 41414

not point sources. Additionally, a subset comprising of the 500 brightest non point

sources of another data brick was also created to determine what effect the scaling

will have on bright sources. The results from implementing the scaling in shown in

Table 4.1. The results from both data sets show a significant increase in the number of

sources that pass the feature extraction process. Quantifying exactly how many of the

sources that fail in this way is difficult, as there will often be failures caused by other

reasons. This is the reason why the top 500 brightest sources of a data brick were used.

From this particular data set it can be seen that 15.4% of the sources failed the feature

extraction process before applying the adaptive scaling, but only 1.4% failed after it

has been applied. The large amount of failures still present for the compilation data set

is thus due to other problems, with the majority due to the significant amount of faint

sources present in this data set.
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Table 4.1: This table represents the results obtained from implementing the adaptive
scaling technique. For both data sets tested, is is clear that a minor increase in the

number of data points (pixels) available produces the best results.

Percentage Scaled Brightest Sources Sources From Compilation

101 423 20642

102 423 20642

103 423 20642

104 493 27113

105 493 27113

106 493 27113

107 486 26363

108 486 26363

109 486 26363

110 475 26415

115 477 26856

120 468 26327

125 473 26260

150 429 24279

Oddly though, it is seen that a small percentage increase in the number of pixels per-

forms better than a larger percentage increase. Further investigations show that this is

dependent upon the initial size of the image. For small images, a smaller percentage in-

crease provides the single additional data point needed but a larger percentage increase

tends to cause complications with the resizing function. The function ends up expanding

the small central part where the innermost ellipse is located, but if the scaling is too

much the ellipse ends up back in the central part and still missing the data point needed.
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Figure 4.2: These two plots illustrate the results shown in Table 4.1. For both plots,
a significant increase in the number of sources that pass the feature extraction process
is found with a minimal upscaling factor. It is also seen that the number of sources with
features extracted successfully drops off as the image is upscaled to higher percentages.

Figure 4.2 illustrates the results found from the adaptive scaling applied to the two data

sets. A common trend is seen with the best results obtained from the small percentage

increase in the number of pixels only, along with a steady decline as the percentage

of pixels is increased to higher values. It is seen that the adaptive scaling provides

a significant improvement to both data sets, with the benefit of returning the best

results from the smallest changes to the images themselves. This reduces the risk of

the adaptive scaling function affecting the actual ellipses that are fit during the feature

extraction process as the images are as close as possible to the original images as can

be.

4.3.3 Ellipse Fitting Errors Due To Large Image Sizes

Similar to the failures found in section 4.3.3, the failures due to images that are too

large for the source in question is not a failure, but is also a case of the incorrect ellipse

being fit. The solution to these failures is the same as the first adaptation that is

implemented for images that are too small, namely using the ideal cutout size for the

source in question.

The difference however, lies in the fact that there are no open ellipses or a similar

type of flag that can be used when the images are too large for the source. Detecting

these instances is thus extremely difficult, but can be easily remedied once identified.
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Implementing the initial cutout size selection procedure reduces these failures, although

the actual improvement is uncertain. These images are dealt with on a case by case

basis when detected within the output of Astronomaly.

4.4 Changes Made For Source Based Failures

This section addresses the challenges and failures of the feature extraction process as

encountered in section 3.5.1, where the problems are due to the source located within

the image itself. It is seen that in some instances, there is not much that can be done

to correct the issues and that it is often best to remove these problematic sources from

the data set during the data selection process.

In other cases, the failures stem from the method by which the images are displayed.

Although this is related to the image, it is also dependent upon the source within. Some

image transform methods cause feature extraction failures for certain sources where

others do not. The transform methods also affect the detection rates of anomalous

sources throughout the data set and are thus vital to optimise.

This section starts off with the short subsection 4.4.1, in which can be seen that some

of the failures are actually caused by other objects within the image that lie along the

line of sight to the source in question. Following this is subsection 4.4.2, wherein the

failures due to faint sources is discussed. This section finishes off in subsection 4.4.3,

where the investigation into the band weightings used is done.

4.4.1 Effect Of Nearby Bright Sources And Masked Sources

Section 3.5.1 showed that the feature extraction process failed when there are nearby

bright sources along the line of sight to the object. This goes hand in hand with

the cases presented in section 3.5.1, where it was seen that masked sources are

included in the data set. Both of these are actually related to each other, since

they are both masked sources. The difference lies in whether the masked source is

the focus of the image, or whether it lies close to the source in question within the image.

The failures from these are mixed; in some instances the ellipse fitting fails completely

but in others an ellipse is produced for the source, yet these ellipses will be affected by

the masked sources. Sometimes the masked object itself is the source in question in the

image and even passes the feature extraction process, but these sources are undesirable

due to the irregular shapes that can occur. More often than not, masked sources are
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stellar in nature and are thus not important for the work done in this thesis. As such,

they can be discarded from the data set used. Fortunately, the majority of masked

sources can be identified and ignored initially from existing flags set up in the catalogues.

It is worth noting that artefacts are also common within the DECaLS data set.

Artefacts are caused by various phenomena, ranging from satellites passing through

the observation to solar flares occurring at the time of viewing. They too will affect

the ellipses fit and care has to be taken when they are encountered. Artefacts do

not have a pre-existing flag within the catalogues to identify them, so encountering

them is unavoidable. There are two options for dealing with artefacts, they can either

be removed once identified which would require the outlier detection algorithm to be

reapplied on the remaining features, or the active learning will have to be relied upon

to handle the scoring of the artefacts.

4.4.2 Faint Sources Causing Failures

In section 3.5.1 it was seen that faint sources can cause feature extraction failures. The

low signal to noise ratio is the main cause of this as the sigma clipping process used

within Astronomaly will not be able to identify the difference between the source and the

surrounding noise easily. Even if the sigma clipping is done successfully, the remaining

data often includes some of the surrounding noise and would thus results in incorrect el-

lipses being fit. This can be improved by fine tuning the sigma clipping process, but the

variations are too vast for there to be a single set of ideal parameters for all of the sources.

From this arises an important aspect regarding the data; namely that of flux limitations.

The majority of the DECaLS data is comprised of faint, low flux sources that cause the

feature extraction process to fail. It is therefore important to identify what the flux lim-

itations are for the DECaLS data set that can be investigated successfully. To identify

what these limitations are, the compilation of DECaLS data bricks used earlier is inves-

tigated. In section 4.3.2 it was seen that 20 642 out of the 41 414 sources had features

extracted successfully before implementing the adaptive scaling feature. The 41 414

sources were thus visually inspected, one by one, after being ordered in decreasing flux

levels, to determine at what point the sources can not be identified visually. This com-

plete inspection was also done to gain a better understanding of the DECaLS data itself.

The flux values differ for each band, so the inspection was carried out in two different

ways. The first is to average the flux values across the bands and ordering the sources

by this value and then inspecting them. The second is to use the maximum of the
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three flux values and ordering the sources by this value. After ordering the sets

by the flux values in descending order, the sources were inspected one by one until

they became indistinguishable from the background. The outcome from this visual

inspection indicates that when the average flux value reached 7 nanomaggies, features

and structures within the sources became difficult to identify.

A nanomaggy is 10−9 times a maggy, which is the flux f of a given source relative to

the standard, zero point source, f0. For a source with a given nanomaggy value f , it

will have an apparent magnitude given by2:

m = 22.5 mag − 2.5 log10 f (4.2)

Below 1 nanomaggy the sources are nearly impossible to distinguish from the back-

ground. For the second method of ordering, the same results were seen, but at levels of

10 nanomaggies and 1 nanomaggy respectively. As such, a requirement of having at least

10 nanomaggies in a given band can be placed on the data that can be investigated. For

the compilation of bricks this corresponds to nearly 40% of the data that can be reduced.

4.4.3 The Impact of Band Weightings On Images

Images are composed of pixels, which can be numerically represented as an array with

a value assigned to each pixel. For the DECaLS data files this corresponds to three

arrays, one for each band, with a numerical value assigned to represent the flux level

for each pixel of the image. Each of the three bands, g, r, and z, has its own array and

when reproduced digitally, each band is assigned a different colour corresponding to

the wavelength of the band. For the bands used, the colours are blue, green and red

respectively. These coloured bands are then combined together to produce the output

image displayed. They are often assigned a different scalar weighting that adjusts how

much impact each colour or band will have on the displayed image.

These are called the band weightings and they affect the image directly. The weighting

used for a specific band determines how much of that colour is displayed within the

image. This is the visual interpretation of the band weightings, which can be seen

in the images displayed in the front end of Astonomaly. During the output process,

the band weightings only affect the images visually. The affect on the output would

affect the labelling process for active learning as the displayed images appear differently

2http://www.sdss3.org/dr8/algorithms/magnitudes.php#nmgy
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depending on the weightings used.

Additionally, during the pre-processing stage of Astronomaly, the image bands are

not treated equally when sigma clipping is applied. By default, only the first band

in the image is used, i.e., the g-band for the DECaLS data. A region in the image

might contain high flux values in one band, but low values in the g-band that is

used. The result from using the g-band only is thus a low SNR image that does

not represent all of the available information. To prevent this, the bands should be

stacked together before applying the sigma clipping function, or the sigma clipping

function should be applied to all three bands simultaneously. The former is easier

to implement and it is more common to stack the bands to create a single banded image.

However, it is not merely a case of directly combining the bands and displaying them.

It turns out that certain band weightings are more beneficial to the feature extraction

process while others make visual inspection easier. For example, there are standardised

weightings used to create greyscale images or to replicate colours corresponding to

what the human eye would see. Different weights produce different images which would

produce varying results from the feature extraction process.

Band weightings are essentially scalar multiples applied to each band. Let G, R and

Z, represent the g-, r- and z-bands respectively. The greyscale and display weighted

functions used in this section are represented by the following two equations respectively:

Greyscale Function = 0.1140 G+ 0.5870 R+ 0.2290 Z (4.3)

Display Weighted Function = 0.5357 G+ 0.2679 R+ 0.1964 Z (4.4)

The default method used by Astronomaly stacks the images directly and scales the

values from 0 to 1, 0 corresponding to the point with the lowest value and 1 to the

brightest point [114]. From Equations 4.3 and 4.4 we see that the bands are favoured in

different ways by the relevant weighting functions. To determine which function would

be best to use, each one is inspected, first by inspecting the visual effect from each

weighting function and then the effect that they have on the feature extraction process.

The reason for this is that measuring the impact of the band weightings is difficult to

do. The only quantifiable measurement that can be made is the number of sources

that have ellipses fit successfully; sources for which the feature extraction process is

successful. This is thus used to measure the performance of the different band weighting
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functions. Using this as a performance measure is ideal since we want the most number

of sources returned, meaning that fewer sources are “lost” during the feature extraction

process. The impact of stacking the bands together is investigated first. This is followed

by a comparison of the different weighting functions. Then it is investigated whether

an optimal function can be created that would perform better than the other weighting

functions.

4.4.3.1 Visual Inspections Of Different Band Weightings

The output display of Astronomaly is the starting point in order to determine what

the ideal weightings should be. Changes within the weightings used produce a visual

difference that is easy to see. The three different band weightings mentioned above are

illustrated in Figure 4.3. The first image is the display as seen through the SkyViewer3,

which corresponds to Equation 4.4. The second image is the default output from

Astronomaly, the image produced by matplotlib, while the last is the greyscale image

given by Equation 4.3, produced by OpenCV [113].

It is immediately clear that the output from Astronomaly differs significantly from

the images of the same sources when viewed in the SkyViewer. For the gravitational

lens in Figure 4.3, the arcs are difficult to see in the default output image and

such important aspects can easily be overlooked. In the greyscale function, the arcs

are more visible, but not easily identifiable due to the lack of colour information.

Colour in itself assists in visually identifying features within an image and as mentioned

previously, the colour of these images are produced by the weightings used for each band.

3https://www.legacysurvey.org/viewer
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Figure 4.3: These images display the same source, but with different band weightings
used. The first is the cutout image as seen directly within the SkyViewer, the mid-
dle image is the default display from Astronomaly and the image on the right is the
greyscale image produced using OpenCV’s greyscale function. A significant difference
is observed between the images. It is seen that the reproduced colours are important

to visually distinguish between features.

From Figure 4.3 it can be seen that the weightings used by the SkyViewer produces an

image that is clearer and in which aspects, such as the arcs, are more easily identifiable.

The output from the SkyViewer is reproduced in Astronomaly by the display weighted

function as shown by Equation 4.4. This new function is used for the DECaLS data

during the output process as it provides clearer images. However, measuring the impact

of this display weighted function is challenging. The sources would all still be scored the

same as they have the same features extracted. Only the output display function has

changed. The only noticeable change from this would arise from the manual labelling

for active learning, which is subjective in itself.

Since the various band weightings produce such different results within the output dis-

played images, the affect that these weightings would have during the pre-processing

state is also investigated. The first change that arises is that the functions combine the

bands into a single band, where as the base version of Astronomaly focuses on the first

band only. As mentioned before, not combining the bands is an issue that can cause

information to be lost. Applying either the greyscale or the display weighted functions

will provide a solution to this. The second change stems from the actual weighting val-

ues used. Different weights affect the images in different ways, which would affect the

feature extraction process. This is investigated to determine what the ideal weightings

are for the DECaLS data.

4.4.3.2 Single Channel Benefits For Feature Extraction

The greyscale weighting function is applied to determine the effects of stacking the

bands before the sigma clipping function is applied. The results are compared to

applying sigma clipping on a single band only. Only the greyscale function is used here
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for the purposes of determining the effect of stacking the bands since the weighting

functions are compared to each other in the next section.

Testing the greyscale function on the previously used data set of 500 brightest sources

from a DECaLS data brick shows an increase in the number of sources that have

ellipses fit successfully. Using the default method of Astronomaly, utilising a single

band only, 77 of the 500 sources fail the ellipse fitting process. This is reduced

to 20 sources by stacking the bands using the greyscale function. When repeated

on a larger and unconstrained data set however, the improvement is present but

not to such an extent. For the brick compilation data set used earlier, a total of

20642 out of 41414 sources have ellipses fit initially. With the stacking applied

this increases to 23174 sources only. Investigations into the sources that still fail

the feature extraction process reveal that these sources are the ones that are very

faint and small, indicating that the greyscale function performs better on brighter

sources, but still provides an overall improvement. In both instances it is evident that

stacking the bands together provides better returns from the features extraction process.

4.4.3.3 How Different Weightings Affect Feature Extraction

In the previous section, it is clear that stacking the bands together instead of using

a single band provides a performance increase. However, the band weighting meth-

ods introduced both stack the bands, so investigations must be done to determine

which, if any, provides quantitative results. In order to do this, a data set is set

up specifically for this by including known anomalies. This allows us to see the

effect that the weightings have on the anomalies and on the number of sources that

pass the feature extraction process. It should be noted that this procedure was

adopted so as to incorporate the anomaly detection aspect that the band weightings

might have in addition to the number of sources that pass the feature extraction method.

This data set contains 15 000 random sources subject to a minimum flux level of

10 nanomaggies within each band to reduce the number of faint sources as per the

results found previously. Additionaly, the set contains 342 gravitational lenses; 60 high

confidence lenses, 106 fairly confident lenses and 176 suspected lenses recently found

by Huang et al., [87]. The lenses added are easily identifiable since they have different

names. Astronomaly is not a classifier or lens finder, but having known anomalies

within the data set is needed to make the actual performance measurements and to

determine whether any set of weightings provide an advantage for the anomalies.
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Astronomaly was first run on the data set using the greyscale function and then the

display weighted function. For each function, the top 50 sources were investigated and

the ranks of the lenses within the 50 sources was noted. The number of sources looked

at was increased in increments of 50 until 250 sources were looked at. The ranks of the

lenses are noted each time. This compares the number of anomalies that each function

detects. In addition to this, the procedure was repeated several times with active

learning applied, each time with a different amount of sources labelled. This compares

the two functions with active learning applied.

The results are shown in Figure 4.4. For little to no active learning, the greyscale

function tends to return more gravitational lenses than the display weighted function.

When more training is applied the display weighted function tends to perform better.

Looking at the top 250 sources, it is seen that the greyscale function performs better

for all increments of active learning other than the last increment where 10% of the

data has been labelled. This is the most important result since more than 250 sources

will most likely be looked at for any data set. Labelling 10% of the data can also be

time consuming for large data sets and is unlikely to occur.

In addition to these results, the greyscale function resulted in successful feature extrac-

tion for a total of 15012 sources while the display weighted function returned 14595

sources. Since the ranks of the lenses are known in the output, the Rank Weighted

Score (RWS) can be calculated using Equation 2.8. It is found that the greyscale

function has a RWS of 0.03828 and the display weighted function has a RWS of 0.03715

for this data set. The greyscale function has a higher RWS value, returns more sources

and contains more anomalies within the top sources. For these reasons, the greyscale

function is chosen as the preferred function to use during the pre-processing stage, with

the display weighted function used for displaying the output.
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Figure 4.4: The plot illustrates the recall of the gravitational lenses for the two
functions. The solid lines indicate the greyscale function, the dashed lines the display
weighted function. Each line represents the number of sources looked at, i.e the Top
100 is determined by looking at the top 100 sources and counting how many lenses are
located there. The results are cumulative with the previous one; the Top 100 Sources
contains the same lenses as those in the Top 50 Sources. From the plot it is seen that the
greyscale function outperforms the display weighted function when no active learning is
applied. When 10% of the data is labelled, the display weighted function outperforms

the greyscale function on all occasions.

4.4.3.4 Finding An Optimal Function

In addition to the greyscale and display weighted functions, a third “optimal function”,

was created specifically for the gravitational lenses. This function was created by

applying an optimisation function on 100 runs of Astronomaly on the same data set

of 15 000 random sources and the 342 gravitational lenses. The optimisation goal was

set to maximise the RWS value returned. The parameters that were adjusted between

each run were the weightings themselves. The optimisation function starts with a

random value for each weighting used during the pre-processing stage. The RWS score

is then calculated for that run. The weightings are then adjusted for the next run. This

process is repeated in order to determine the best RWS value from all of the different

weightings tested. For each of these 100 runs, the number of sources that pass the

feature extraction process is also noted.
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Figure 4.5: The figure shows the results from a grid search done to find the optimal
weighting parameters. Both the greyscale function and the display weighted function
have their corresponding values plotted as a comparison. The higher the Rank Weighted
Score, the better the weightings perform in detecting the anomalous sources. However,
there is a clear trade-off between the RWS value and the number of sources that pass
the feature extraction process. This must be taken into account when considering which

function to apply.

Figure 4.5 shows all 100 of these searches. It is seen that the majority of the runs

produce higher RWS values than both the greyscale and the display weighted functions.

However, the number of sources returned drops off exponentially as the RWS value

increases. This “loss” is too significant to accept as even a small improvement in

RWS value causes a large decrease in the number of sources returned. Out of the 342

lenses present within the data set, 81 failed the feature extraction process for the run

with the highest RWS value. This is nearly a 25% loss in the number of gravitational

lenses detected. Such a significant loss in detection rates is not acceptable and so this

optimised weighting system is not used.

This optimal function is found to have the following band weightings:
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Optimal Function = 0.0255 G+ 0.5720 R+ 0.4025 Z (4.5)

Inspection indicates that the optimal function has a strong z-band weighting which

corresponds to red and a weak g-band weighting, corresponding to blue. This increases

the fainter regions within an image and decreases the actual source, up to the point

that the noise is blended with the source. Sigma clipping would then clip away most

of the data within the images and there would not be enough points remaining for

the ellipses to be fit successfully and so the feature extraction process fails. This also

explains why the RWS are higher since these lensed sources tend to have less blue in

them; the flux values in the g-band are seen to be lower throughout, due to the higher

redshifts of the lenses in question.

4.4.3.5 Discussion On The Band Weightings Used

It is seen that the display weighted function provides the clearest images when used

during the output process of Astronomaly. It is thus used during the output process

when applying Astronomaly on DECaLS data. Stacking the bands together before

applying sigma clipping provides an increase in the number of sources that have

their features extracted successfully. The improvement amount varies, with the best

performance increase seen for brighter sources.

The actual features that have been extracted would also differ depending on the

weighting function applied. The band weighting functions would alter the images in

such a way that different values would be obtained for the features extracted. The

outcome, or variations in the features, have not been investigated directly, but it stands

to reason that the features for all of the sources would be affected in a similar manner.

As such, investigating the final results provides an indication of the performance of each

band weighting function since it is dependent upon the features extracted. Comparing

the greyscale function to the display weighted function shows that the former returns

more lenses when there is no active learning applied, or when little active learning is

applied. The display weighted function returns more lenses when a larger number of

sources are labelled. It is possible to label a higher number of sources, but it becomes

impractical when large data sets are used. For instance, the data set used here requires

1534 sources to be labelled if we were to label 10%. This takes a significant amount

of time to do, and it would take much longer for larger data sets. For smaller data

sets it might be preferable to implement the display weighted function during the

pre-processing stage, but for larger data sets the greyscale function would be better.
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An optimal function was found within the 100 Astronomaly runs. However, the num-

ber of sources that failed the feature extraction process is too high to implement this

optimal function. Since it is based on gravitational lenses, this optimal function might

serve a better purpose as a classifier for lenses, but this requires further investigation

as a significant number of lenses failed the feature extraction process as well. Other

anomalous sources might also fail when this optimal function is used. For this reason,

this function is not applied in any way further in this thesis.

4.5 Limitations Of Outlier Detection Algorithms

Astronomaly has only been applied to tens of thousands of sources. While the feature

extraction is trivial to parallelise, the algorithms usually need to consider all the data

at once. Thus the capabilities of these algorithms was tested before attempting to

implement them on large data sets.

Mock data consisting of random Gaussian distributions are used to simulate the features

that would normally be obtained from the data. These mock features can easily be

controlled by adding additional dimensions to each data point and outliers or anomalies

can be recreated by positioning them far enough away from the norm. Four groups

of Gaussian distributions are created, the “norm” consisting of 99% of the sources

and three outlier groups that combined consists of 1% of the total number of sources,

representing the anomalous sources. Figure 4.6 illustrates the groupings for a two

dimensional case.

Figure 4.6: These plots show the way in which the groupings are made for a two
dimensional case. The first shows the distributions for 100 sources. In it there are
three anomalous sources but there are other sources that form part of the norm which
can be mistaken to be outliers. The second shows the groupings for 5 000 sources and
in it we can see that there exists an overlap between the anomalous groups and the

norm group which can make detecting the outliers difficult.
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Two different tests are done for each of the machine learning algorithms and are covered

in the following sections. The first test for each algorithm is to determine the limit

of the number of sources that can be investigated, while the second test focuses on

the dimensionality of the data. The first test for each uses two-dimensional data, but

increases the number of sources until such a point that the limits of either the algorithm

itself or the processing power available is reached. The second test uses a fixed number

of sources, 50 000, but increases the amount of dimensions that each point has until the

limits are reached.

4.5.1 iForest

The key limitations to be tested are the memory usage, which would directly affect

the number of sources that can be investigated, and the runtime, which could play a

limiting role as well. Along with these limitations, the accuracy, recall and precision

was determined for the algorithm as well.

Amount Of Sources Test

The results from the first test, for the amount of sources, can be seen in Figures 4.7

and 4.8. The number of dimensions was kept constant for this test, only the number of

sources was increased.

Figure 4.7: Both the runtime and the memory usage plots shown here indicate that
the iForest algorithm scales linearly with an increasing number of sources. This is an
important result as it allows easy yet accurate estimates to be made to determine what

data size can be run and how long it would take.
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The straight lines for the memory usage and runtime plots are best fit using the least

squares method. The data points are not evenly spaced due to the way that the test

was run; the sources were not increased in equal steps throughout the test. This does

not affect the results since the same data format and algorithm is used each time.

From the plots it can be seen that the main limiting factor for the iForest algorithm

is the amount of memory used. For the amount locally available, this corresponds

to a bit more than 60 million sources, with a corresponding runtime of about 40 minutes.

Figure 4.8: All three plots appear to indicate good results from the test. However,
it is actually a case of overfitting by the machine learning algorithm that creates these
results. This is indicated clearly by the lack of trade-off between the precision and

recall that is usually seen by a machine learning algorithm.

Figure 4.8 indicates that there were issues in the set up of the data. The variations

seen throughout is a strong indication of a simulation that contains significant overlap

between the anomalies and the normal sources.

Number Of Dimensions Test

The same limitations were tested, but on a data set with a constant number of

sources (50 000). The dimensions were increased and the results can be seen in Fig-

ures 4.9 and 4.10. The dimensions were increased in steps of one dimension for each run.
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Figure 4.9: A clear linear relation is seen in both plots. The first plot for the runtime
has a few spikes throughout but closer inspection shows that the runtime itself is very
short and that these spikes are less than a second long. They are most likely due to some
external factor. For the most part the memory usage appears linear, although there is
a sharper increase towards the end of the plot. The ellipse fitting feature extraction

method of Astronomaly used 24 features, which is within lower part of the plot.

Both plots indicate mostly linear relations between the runtimes and the number of

dimensions, as well as with the memory usage and the number of dimensions. The plot

comparing the runtime to dimensions has a lot more variance in it, but the overall trend

is still linear. The runtime values are so low that the variances are less than a second

in length. Once again it is found that the limiting factor is the amount of memory

available for use.

Figure 4.10: At a high enough dimension, all three plots reach perfect scores. This
is an unlikely result and is indicative of a model that is overfitting the data.
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It is seen that the model over-fits, due to the high dimensionality making it easier

to detect the anomalies, and so the results can not be treated as being completely

reliable. This is a clear result of the curse of dimensionality, where each additional

dimension separates the sources more and more, making it easier and easier to identify

the anomalies.

4.5.2 Local Outlier Factor

Another machine learning algorithm present within Astronomaly that can also be used

to detect outliers or anomalies is the LOF algorithm. The limitations of this algorithm

is tested in the same manner that the iForest algorithm was tested.

Amount Of Sources Test

Testing the sources and dimensions was carried out in the same way and using the same

data as used previously. The results can be found in Figures 4.11 and 4.12.

Figure 4.11: Both of the plots have a linear relation for the number of sources used.
The runtime is shorter than that of the iForest, but closer inspection shows that the
algorithm only managed to complete up to 20 million sources before reaching the com-

putational limits.

The LOF algorithm uses almost three times as much memory as the iForest algorithm,

severely constraining the number of sources that it can be run on locally. Similarly to

the iForest algorithm, the LOF algorithm overfits on the data. This too suggests that

it is the data itself that causes the issues to occur, not the algorithms used. In Figure
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4.12, it is seen that the recall drops to zero when the number of sources is increased

significantly. The cause of this is the set up of the data set; the “anomalies” start to

overlap with the “normal” sources as the number of sources in total is increased. Fewer

anomalous sources are detected by the algorithm as all sources tend to become similar.

Figure 4.12: It is seen that LOF fails for a large number of sources, most likely a
result of not optimising the k parameter.

Number Of Dimensions Test

The dimensions were tested in the same way as the iForest test and the results can

be seen in Figures 4.13 and 4.14. These are the first nonlinear results seen for both

the runtime and the memory usage. The runtime increases exponentially and then

drops and flattens out. At the same number of dimensions the memory usage increases

significantly and flattens out as well. The cause of this peculiarity is unknown and

warrants further investigation, although it appear to be related to the number of

neighbours looked at.
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Figure 4.13: Plots of the runtime and memory usage against the number of dimen-
sions. A peculiar drop in runtime and a corresponding jump in memory usage is seen
within the plots. Besides this interesting feature, the memory usage appears to increase
linearly by a small amount only while the runtime initially increases exponentially.

The LOF algorithm can be run on significant numbers locally, but the dimensionality

of the data might cause some issues.

Figure 4.14: Recall and precision plots for the LOF algorithm against the number
of dimensions used with a constant number of sources (50 000). Unlike the runtime
or memory usage plots in Figure 4.14, there are no clear peculiarities and no sign of
any change at the dimension where the peculiarity occurred in Figure 4.14. When
compared to the iForest algorithm in Figure 4.10, it is seen that the recall drops off at
higher dimensions for the LOF algorithm. This is a result of the reliance of the LOF

algorithm on distances, causing it to struggle with high dimensional data.
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4.5.3 RWS - Variations Between Runs

Another key feature tested is the consistency of the iForest algorithm itself. iForest

creates its branches based on random values selected from the features themselves,

which could result in a different anomaly score for a given source each time iForest is

applied to the data set.

A good baseline to test this with is the data set contained within the Astronomaly

paper [115], for which the anomaly scores obtained for the sources are available. As

detailed in the paper, the data set used consists of all objects with a Class 6.1 score

greater than 0.9, meaning that 90% or more of the volunteers of the Galaxy Zoo project

labelled the galaxy as odd. The result is 924 anomalous sources out of a total of 61578

galaxies. It should be noted that these sources are not expertly labelled and identified

and that there could be other anomalies located within the data set as well that have

just not been labelled in such a way as to fall within the selection criteria.

The performance of the algorithm can be determined by calculating the RWS, 2.8,

based on these anomalies. This is not typical for unsupervised machine learning since

the data sets are usually unknown, but it is useful as it allows the performance of the

algorithm to be evaluated for different parameters and runs.

Testing the consistency of iForest involves applying it to the same data set, using the

same parameters, and collecting and comparing the results. This is done on the data

set described above. Astronomaly is applied ten different times, each time using the

same pipeline as the one used in the paper. The scores are collected and compared to

each other and to the scores that were obtained within the paper as well. A part of

the results can be seen in Table 4.2, which illustrates the scores given to five random

sources for the different runs of Astronomaly. It is clear that there are variances with

each run that arise from the inherent randomness within the iForest algorithm.
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Table 4.2: This table contains the scores given to the first five sources by the ten
different runs of iForest on the data. Each run produces a different score for each
source, but the overall variations appear consistent between the sources. The ones

ranked higher are consistently higher.

Index 100008 100023 100053 100078 100090

Run 1 0.134979783 0.262751067 0.209853262 1.858548684 0.302624109

Run 2 0.119456987 0.392547851 0.257869102 1.830837854 0.29262809

Run 3 0.082700135 0.395604346 0.21600787 2.30294151 0.302855328

Run 4 0.081143936 0.332077173 0.227049578 1.953016112 0.128202146

Run 5 0.080605902 0.394849011 0.223891892 2.228423805 0.210845819

Run 6 0.107863126 0.308342155 0.205533798 1.957506749 0.193213866

Run 7 0.057889005 0.441916366 0.281334987 2.303204822 0.159698612

Run 8 0.089964938 0.461069973 0.224150421 2.204988806 0.195663398

Run 9 0.141601234 0.351550062 0.188050934 2.056108123 0.353090826

Run 10 0.117164409 0.407346612 0.212804181 2.080952645 0.268128672

iForest contains numerous parameters that can be adjusted to tweak the performance.

The ten runs were done for some of the parameters to determine if they also produce

varying scores. The parameters used are the bootstrap parameter; meant to hone in

on the results more accurately by re-sampling the data, the verbose parameter; which

controls how strictly the tree is built each run, and the random state parameter; meant

to reproduce the same results each run when set to a specific value. Each parameter

was set individually and ten runs were performed on it. The scores varied for each

parameter set and for each run for each parameter. A quick summary can be seen in

Table 4.3, which shows the scores given to a source for each of the ten runs made with

different parameters.
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Table 4.3: Scores given by iForest to the source with index value 100008 for each of
the ten runs done for each parameter setting. All of the values differ somewhat, even
the random state parameter which is meant to prevent this randomness from occurring.

Default Bootstrapping Verbose Random State

Run 1 0.134979783 0.112538964 0.089096976 0.056243771

Run 2 0.119456987 0.056026746 0.116359405 0.130954996

Run 3 0.082700135 0.076762931 0.10848139 0.199757334

Run 4 0.081143936 0.135557938 0.198903614 0.087315227

Run 5 0.080605902 0.106083643 0.153036701 0.041529418

Run 6 0.107863126 0.134913541 0.076614419 0.06816127

Run 7 0.057889005 0.178257503 0.143586869 0.107148105

Run 8 0.089964938 0.138754332 0.159743844 0.123728335

Run 9 0.141601234 0.176248253 0.069903531 0.096207762

Run 10 0.117164409 0.100195132 0.084830371 0.085212271

All of the scores differ from each other although the general trend from one source

to the next seems to remain the same. Even if all of the scores differ each time, it

is still possible for the results to be the same if the sources are returned in the same

order consistently. To fully determine whether or not there are any differences in the

results, the RWS is calculated from the known anomaly list for various parameters of

the iForest algorithm.

This can be seen in Figure 4.15 which shows that the RWS for each parameter differs

when compared to the RWS obtained in the Astronomaly paper.
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Figure 4.15: The four plots shown here are the RWS values obtained for each of the
parameters used. The thicker blue line is the RWS from the original Astronomaly paper
[115]. It is seen that the RWS values differ slightly for each run for all of the different
parameters used. It appears to differ greatly, especially when N is low, but this is only
due to the way that the plot is made; the plot is more sensitive to variations when N is
small. The variations are minor as N increases, suggesting that the individual runs are
similar in nature and do not produce significantly different results. However, the most
surprising result from these plots is that of the random-state parameter. This is meant
to replicate the cuts made each time and should thus result in the same scores for each

run but it does not.

A more important aspect of the differing runs would be whether or not the number

of anomalies within a certain number of sources, N, differs between the runs. Since

all of the N sources would be looked at, minor positioning differences would not be

that important compared to a different number of anomalies within the N sources.

The number of anomalies within the top N sources is thus calculated for each run to

determine whether the different scores result in a different number of anomalies seen.

The result of this is seen in Figure 4.16.
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Figure 4.16: This shows the number of anomalies found within the top N sources for
each run of the default parameter settings. The thicker blue line indicates the original

Astronomaly papers result.

There is a small difference for the number of anomalies detected between the runs, but

the variations are minor compared to the overall number of anomalies detected by the

algorithm. Averaging multiple runs would be ideal to compensate for this and could be

used to estimate the error margin, but this would be time consuming so the cost must

be considered beforehand. Active learning still needs to be applied on these runs and

could make up for the minor variations seen.

The other important aspect to note is that Astronomaly is designed to make detecting

more sources more easily, not to perfectly predict all of the anomalies within each

data set. Astronomaly is unsupervised and is often applied to unknown data where

the actual anomalies are not known. In such instances it would not be possible to

determine how many anomalous sources are not within N sources for each run without

looking at all of the sources in the data set.

The precision and recall values for the ten default runs were also determined to

illustrate the differences and can be seen in Figure 4.17. Again, it would be difficult

to calculate these values for unsupervised learning when the actual labels are not known.
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Figure 4.17: The recall and precision values for each run of the default parameters
are shown here compared to the recall and precision of the original Astronomaly paper,

shown by the dotted line. Both plots indicate different values for each run.
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4.6 Improvements Due To The Changes Made

This small section finishes off the chapter and provides a quick summary of the changes

made to Astronomaly and also illustrates the improvements gained from the changes

and adaptations made.

Data selection is restricted before even obtaining the data. Point sources and masked

sources are removed based on the flags available within the DECaLS catalogues. A

minimum flux level of 10 nanomaggies is also adapted since this will reduce the amount

of feature extraction failures. These criteria are all applied when selecting the data to

be used within a subset.

Image pre-processing is key to producing the optimal input for the feature extraction

process. It was found that joining the separate image bands together, and using

the greyscale weighting values when doing so, produced the best results for the rank

weighted score and returned the most sources with features extracted successfully.

During the feature extraction stage, adaptive scaling is implemented to increase the

amount of data points available for a specific image. This reduces the amount of feature

extraction failures.

After the feature extraction process, a list of sources is created that indicates a need

for larger image sizes for these sources. The sources are thus downloaded again with

the recommended image size and the feature extraction process is applied on all of the

sources again.
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Figure 4.18: This figure shows the improvements gained from applying the two major
changes to Astronomaly. The increase in the number of sources detected in substantial

in both instances.

Figure 4.18 illustrates the gain obtained from implementing the adaptive scaling and

the greyscale weighting system on the known anomalous sources within the lens data

set, see section 5.2 for a desciption of the data set. The adaptive (dynamic) scaling was

implemented first and then the greyscale function was introduced in addition to the

scaling. It is clear that both of these adaptations create a substantial increase in the

anomaly detection rate. From the figure it is also seen that a higher overall value is

reached, corresponding to more sources with features extracted being returned.

Table 4.4 contains the number of sources that have ellipses fit successfully for each

adaptation implemented in Astronomaly. The results are mixed in the sense that the

Greyscale function provides a better improvement over the Dynamic Scaling for the

Lens set, but otherwise for the compilation of bricks, see section 4.3.2. This is most

likely due to the composition of the two data sets, whereby the lens set is more “refined”

and has the lower flux limitation of 10 nannomaggies implemented, but the compilation

of bricks does not. This also explains why the Dynamic Scaling has a larger impact on

the compilation of bricks as it affects fainter sources more.
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Table 4.4: The table indicates the number of sources with features that have been
extracted successfully for the changes made.

Changes Made Compilation Of Bricks Lens Set

Base Astronomaly 20642 14512

Greyscale Only 23174 14935

Dynamic Scaling Only 27113 14717

Greyscale and Dynamic Scaling 30401 15012

Total Number Of Sources 41414 15342

The dynamic scaling implemented is quite specific to the failures resulting from

the Ellipse Fitting feature extraction technique. It improves results, but only because

the failures arise as a combination of the feature extraction method and the nature of

the data used.
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Chapter 5

Results of Applying Improved

Astronomaly On DECaLS Data

5.1 Introduction

The previous chapter detailed the changes made to Astronomaly and ended with a

section illustrating the effects that these changes have individually. This chapter focuses

on the results found when applying Astronomaly with these changes applied to a few

subsets of the DECaLS data set. In section 5.2, an overview of the subsets is given.

Some of these have been used in previous chapters, but have not yet been described in

detail as they are here. Section 5.3 details the procedures used for testing. The various

tests done are described here, along with the goals of each test and what will be used to

determine the performance of the algorithm. The results from these tests are illustrated

and discussed in section 5.4, where the changes made to Astronomaly are tested against

the base version, and section 5.5, where the active learning of Astronomaly is tested.

The chapter ends off with section 5.6 where some of the more interesting sources found

within the subsets are discussed. A comparison to known galaxy mergers is also made

here.

5.2 Data Sets Investigated

The subsets used within the thesis are all derived from the DECaLS data set. Some

restrictions determined in previous chapters are applied to all of these data sets, but

some subsets have specific selection criteria. Point sources and masked sources have

been removed before the sets were created based on the flags available within the

catalogues themselves. This successfully removes all point sources before selection

is made, but the flags do not incorporate all of the masked sources within the data

98
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set. This results in entries that exist within the different subsets that are still masked

sources and some artefacts are also still present. Although methods exist that can

remove most images of sources that contain traces of artefacts, this has the risk of

also removing potentially interesting anomalies. Instead, we use the active learning

part of Astronomaly to handle artefacts. All three subsets used here are obtained from

the Southern Hemisphere within the DECaLS data set since this side is typically less

explored.

Subset 1: Brightest Subset

This subset has been created by selecting the 10 000 brightest sources within the

Southern Hemisphere of the DECaLS data set. The highest flux value out of all three

bands for each source was used as the selection criteria. Unfortunately this has resulted

in some masked sources being included as they typically have high flux values. The

reason why the brightest sources were chosen was based on the idea that they would

be the most visible and thus be the easiest to identify. Most of the anomalous sources

within this data set turn out to be ordinary spiral galaxies that have bright bulges.

Some of them turn out to be galaxy mergers, or show signs of interactions with other

galaxies, but it is seen that there is a fundamental issue throughout the data set; the

full sources are not displayed properly within the cutout sizes used. This data set is

thus not reliable and its shortcomings will be discussed in the conclusions section, with

this also being the reason why some of the results presented later on do not include

data from this subset.

Subset 2 : Random Subset

The second subset consists of a random selection of 10 000 sources located within

the Southern Hemisphere. Point sources and masked sources have been removed as

mentioned earlier. The only other selection criteria made on this subset is to restrict

the lower flux levels so that they have to be at least 10 nanomaggies in the bands.

Previous testing has shown that this reduces the amount of feature extraction failures

significantly and is key to visually identify the sources in question. It is expected that

the majority of the sources will still be on the fainter side, although the random selec-

tion should indicate an even representation of all flux levels within the DECaLS data set.
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Subset 3: Lens Subset

The last subset created is similar to subset 2, except that it contains a total of 15

000 randomly selected sources and includes an additional 342 known and suspected

gravitational lenses. This is done due to the rarity of such sources; testing whether the

algorithm works on lenses would be extremely difficult if only one or two are available.

It is also useful to have a fairly large number of known anomalous sources as this allows

the performance to be determined more easily. Even though this ratio of gravitational

lenses to other sources is unusually high and very unlikely to be found naturally, this

set does provide a better means to test the anomaly detection rate. It is worth noting

that the aim is to find all anomalous sources, not just gravitational lenses, although

they do provide a useful means to test the algorithm.

5.3 Testing Procedures And Performance Measurements

The sources within all of the subsets have been inspected manually beforehand in order

to create a list of interesting and anomalous sources for each set. This is required in order

to determine the performance of the algorithm. Without knowing which entries are in-

teresting, there is no consistent method to determine the performance of the algorithms

and the Rank Weighted Score for each data set could also not be calculated without this.

Additionally, Astronomaly is not a classifier and the order that the sources are returned

in is the backbone of the performance of the algorithm. It is not meant to identify sources

but rather to return the more anomalous sources in an ordered list so that it is easier

and quicker to identify the majority of them. The locations of the interesting sources are

thus used as the main performance measure of the algorithm. Along with this, the num-

ber of sources with features successfully extracted is also used as a performance measure.

The first set of results are aimed at illustrating the improvements obtained from the

adaptations and changes made to Astronomaly as described in chapter 4. For each

data set, the base version of Astronomaly is applied and the results are noted. This is

repeated for all data sets with the adaptations and changes included. The improvements

in the number of sources that have ellipses fit successfully are noted, along with the

improvement in the detection rate of the anomalous sources.

The next set of results focus on the active learning function that is incorporated in

Astronomaly. Both the amount of active learning required and the method of labelling

is tested. Labelling is done in increments of 1%, retraining the scores after each
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increment, up to 5% and this is compared to a single labelling stint of 5%. These

results are compared to those from a random sample from each data set as well as to

the outcome from applying no active learning at all.

The actual interesting and anomalous sources are then compared to a known galaxy

merger catalogue [116]. Sources present in both are noted and the sources within the

DECaLS data set that are similar in nature to those in the merger catalogue are also

noted as they could be possible unknown merger events.

5.4 Impact Of Adjustments Made To Astronomaly

The first test for the adaptations made to Astronomy is to test the number of failures in

the feature extraction process. It was seen in chapter 4 that there are numerous causes

for failures regarding the ellipse fitting procedure. Some of these are dealt with before

obtaining the data; using the flags within the catalogues to reduce masked source, or to

limit the lower flux levels. These changes have been implemented before creating the

subsets described earlier in this chapter. This allows the remaining challenges to be

tested and dealt with directly.

The adaptations are tested as a whole since it was seen in section 4.6 that the improve-

ments from the changes stack successfully. Figure 5.1 illustrates the improvements

made in the number of sources that have their features extracted successfully for the

random and the lens subsets.
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Figure 5.1: This histogram details the number of sources that have features extracted
successfully for the random and the lens subsets. It is clear that both subsets show an

increase in the number of sources that pass the feature extraction process.

The number of additional sources varies up to roughly 10%. This may not seem that

significant at first, but on a much larger data set this could be thousands of sources

added.

The next aspect of the adaptations tested is the location in the list of sources ranked

by anomaly score. As mentioned earlier, Astronomaly is designed to identify the more

anomalous sources more easily. The results should indicate that there are a higher

number of anomalous sources located higher up in the returned order of sources if there

is an improvement.

Figure 5.2 contains the plots that show the improvements gained from the adaptations

made. Both the random subset and the lens subset show an improvement from the start

to the end of the plot. Both plots reflect the improvement in the number of sources

detected when using the adapted version. This is clear from the higher values reached

within each plot.
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Figure 5.2: These plots show the comparison between the base version of Astronomaly
and the version with the adaptations made. Overall it is clear that there is a substantial
improvement in the number of sources detected. There is also a clear shift in the

locations of these sources within the returned order.

These results can be somewhat misleading though as the largest difference between

the base and adapted versions tend to lie towards the lower end of the returned order.

While there is a clear improvement in this region, this somewhat defeats the goal of

applying Astronomaly; if all of the sources are looked at, then the order that they are

returned in has a much smaller significance. As such, the actual increase in performance

of Astronomaly lies towards the start of the plots, where the top sources are returned.

Figure 5.3: These plots are the same as those in Figure 5.2, but are limited to the top
2000 sources. Again a clear improvement is seen in the number of interesting sources

located higher up in the list.
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Figure 5.3 contains the same plots as those in Figure 5.2, except that the plots are

limited to the first 2000 sources returned. This represents a reasonable number of

sources that will be looked at when inspecting a data set. In both plots it is clearly

seen that the adaptations made to Astronomaly provide a significant improvement in

the order of the interesting sources.

5.5 Improved Performance From Active Learning

Active learning is a key aspect of Astronomaly, where the user is able to manually label

sources based on how interesting they are. Not only does this reduce false positives,

but it also allows specific sources to be weighted higher according to the needs of

the user. This section is based on the improvements gained from applying active learning.

As seen in the previous section, it is the top end of the returned order of sources that

matters most in determining the performance of Astronomaly. As such, the outcome of

the subsets will mostly be restricted to the top sources only.

Active learning is based on the manual labelling of sources by a user. In this case, the

sources that appear interesting in any way are labelled higher and the false positives

and uninteresting sources are labelled low. See Figure 3.3 and section 3.3.1 for an

overview of the labelling process.

How many sources to label and how they should be labelled are important to know. If

the data set is small, labelling a substantial amount of sources is relatively quick and

easy and will provide good results, but for a large data set, even 5% of the data could

be several thousand sources to label. This leads to Figures 5.4 and 5.5, where the active

learning is tested in increments and this is compared to a single labelling set.
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Figure 5.4: The plots shown here illustrate the results from applying active learning
in 1% increments, up to 5% on the Lens subset. This incremental 5% is compared to a
single, bulk 5% training set done in order to determine if there is any difference between

the two methods.

Figure 5.4 shows that the various percentages of active learning applied appears to

converge when looking at more sources. They still differ at higher amounts, but to

a lesser degree. At the more important lower end, it is seen that each percentage

increment labelled and trained provides an increase in the results compared to the

previous percentage. This is somewhat given, since more sources labelled would provide

a better result. The significance of this however, is that labelling 2% provides a

noticeable gain over labelling 1%, and the same for the higher percentages, although

the difference tends to become smaller and smaller. It is also clear that the bulk

training method provides a better performance than the 5% incremental method. This

is due to the larger variety of sources labelled when doing bulk labelling; incremental

training returns similar sources after each training and so they are more reinforced, but

a smaller variety of sources are labelled overall.

However, 5% of a data set can be a large amount of sources to label. There is a clear

difference between labelling 1% and labelling 2%, but is it worth labelling more if the

time required is taken into consideration? Figure 5.5 indicates that the RWS values

flatten out quickly after labelling 3% in increments. The method of labelling used is the

reason for this. After labelling a certain number of sources, the algorithm is retrained

and returns sources with higher scores. When this process is repeated a few times,

sources that are similar in nature tend to be found, and labelling these won’t have as

much of an impact on the rest of the data set. While better scores are obtained when

labelling more sources, the extra time required might not be worth the small gain in

performance. The amount to label is thus dependent upon the data set in question;
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for large data sets it might not be possible to label large amounts and 1-2% might

be sufficient, but for smaller data sets it is best to label as much as possible within reason.

Figure 5.5: This histogram shows the RWS values for the top 2000 sources from the
Lens set when applying incremental labelling for active learning. Also included in the

histogram is the 5% bulk labelling RWS value, which returns the best results.

It was seen in Figure 5.3 that the adapted version of Astronomaly provides improved

results. The 5% bulk active learning is thus compared to the adapted version to see

what performance gains are achieved. Figure 5.6 displays the results for the random

and lens subsets when using the iForest algorithm. In these plots, a random selection

was also made from each set and the number of sources that it contained was also

plotted. This is to give an idea of the performance gain in detecting anomalies when

applying machine learning on a data set. It is evident that machine learning provides

a significant improvement over a random sample and that active learning provides

an even better result. From both plots it is seen that more anomalous sources are

detected within the top 2000 sources of each data set. More importantly though, these

anomalous sources are also ranked higher in the top 2000 as can be seen by the shift to

the left of the plot when compared to machine learning only.
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Figure 5.6: These plots show the performance of active learning compared to the
adapted version of Astronomaly along with a random selection of sources. The random
selection is included to further highlight the gains from applying machine learning

(iForest) on the data sets.

Figure 5.7 shows the RWS scores obtained from the different methods for the random

and lens subsets. It should be noted that these are all based on the entire data sets and

not just on the top 2000 sources. This is the reason why there are certain discrepancies

in these results, where the 5% bulk labelling does not necessarily perform the best in

all instances. This result should be taken with caution, as it is highly unlikely that the

entire data set will be looked at, and if it is then the application of machine learning

is not required. The key result from this figure is that any form of machine learning,

with or without any application of active learning, significantly outperforms a random

selection of the data.
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Figure 5.7: These histograms illustrate the RWS values obtained from the various
methods applied to the data sets. It is clear that any one of the machine learning

applications provides an improvement over a random sample of the data.

5.6 Interesting Sources Identified

Interpreting the actual results found is more of a challenge. The scale and depths of the

Legacy Surveys are difficult to compare to with other surveys and finding catalogues of

anomalous sources is extremely difficult due to the scarcity of such events. The Catalog

of Merging Galaxies, [116], is used as a comparison for some of the results. There are

several challenges when it comes to making cross comparisons; faint sources can be

hard to identify and match accurately, the coordinates make it difficult to match the

exact source in some instances, the difference between the quality of the observations

made also make it difficult to match sources. Another significant challenge is finding

catalogues that cover the same region of the sky. This is also why the Southern

Hemisphere was chosen to be investigated, since the chances of finding something

that no one has seen before is greater. Nonetheless, the Catalog of Merging Galaxies

contains regions that overlap with that of DECaLS and the quality of the observations

are good enough to make some accurate matches.

Table 5.1 contains all of the sources located within the three subsets used above that

are also identified within the merging catalogue.
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Table 5.1: This table represents the images located within the galaxy merger catalogue
that have also been located within the various subsets of DECaLS explored. The

merging type is as follows: M=mergers, CP=close pairs, CM=close multiples.

Subset

Located In

Identification

HC2009

RA

J2000

DEC

J2000

Field

Name

Merging

Type

Random 1942 01h26m19.5s -02h24m07.8s RCS0133 M

Random 3489 01h44m16.9s -02h24m06.9s RCS0133 M

Random 6801 11h03m14.2s -05h09m57.4s RCS1111 M

Random 6868 11h04m17.6s -03h39m27.4s RCS1111 M

Random 12714 21h57m37.1s +02h08m40.3s RCS2143 M

Random 13657 23h27m25.6s -12h12m13.2s RCS2338 M

Lens 2744 01h37m33.3s -00h28m32.9s RCS0133 M
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Figure 5.8: These images are the ones contained within both the DECaLS subsets
used in the thesis and in the Catalog of Galaxy Mergers. The first and third columns
are the sources obtained by DECaLS [58], the second and fourth columns are the ones
from the Catalog of Galaxy Mergers [116]. It is evident that making accurate cross
matches is challenging and is largely dependent upon the quality of the observations.

Figure 5.8 contains the images of these sources from both the DECaLS data set and

the Catalog of Merging Galaxies. It is clear that the majority of these sources are faint

and difficult to detect, yet they have all been identified as merger events.

Table 5.2 contains similar images that have been identified within the subsets created

earlier. These sources are similar in nature, but are not identified within the merger

catalogue. This is due to the sky coverage such that these sources are not within the

same field as that of the merging catalogue. The Catalog of Galaxy Mergers covers an

area of 422 deg2, compared to the 19 437 deg2 of the DECaLS data set. It stands to

reason that randomly selecting sources within the DECaLS data set has a small chance
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of being in the same region as the Catalog of Galaxy Mergers despite the two areas

overlapping.

Table 5.2: This table contains the information of some of the sources that are similar
in nature to those found within the galaxy merger catalogue. The corresponding images
of these sources are located in Figure 5.9. It should be noted that there are no sources
from the brightest set, mainly due to the fact that the galaxy merger catalogue is
focused on faint sources. The order is the same as that in which the sources were

ranked as being anomalous.

Subset ObjID RA

(degrees)

DEC

(degrees)

Peak Flux

(nanomaggies)

Lens Set 11445 239.7461 30.73416 20.89395

Lens Set 13821 337.07996 -1.15186 69.58491

Lens Set 2962 27.63204 28.60366 25.38894

Lens Set 1947 13.2149 -25.10791 32.4932

Lens Set 3764 36.83676 -1.12947 26.64307

Lens Set 6906 146.0695 6.26327 46.95848

Lens Set 5735 112.03286 26.99792 244.46881

Lens Set 7179 147.83899 30.66448 31.50535

Lens Set 1545 10.64194 20.60109 55.33132

Lens Set 4431 52.42099 -0.7785 809.40283

Random Set 9051 334.3656 -9.1567135 20.320427

Random Set 6101 183.90918 10.311913 20.440084

Random Set 9305 345.55133 -12.7322445 19.318884

Random Set 2555 54.56285 -52.45696 31.580101

Random Set 8674 324.71393 9.353114 45.52135

Random Set 7800 255.18332 26.90739 10.209927

Random Set 99 2.6280801 -2.1222188 30.379688

Random Set 8402 318.0885 15.651253 26.046024

Random Set 9359 346.98325 11.854805 36.805374

Random Set 2799 63.09433 -1.3849617 31.563364

Figure 5.9 contains the images of the sources located within Table 5.2. All of the

sources contains multiple individual sources that are either along the line of sight to

each other or they are interacting. There are several similarities between these sources

and those found in Figure 5.8, suggesting that these are possibly cases of galaxy mergers

or galaxies that are interacting with other galaxies.
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Figure 5.9: These images are the sources indicated in Table 5.2. The first ten sources
are all located within the subset containing the gravitational lenses, while the last ten
are all located within the random subset. They are all visually similar in nature to
those found in the galaxy merger catalogue, except that they contain colour due to the
band weightings applied. There is a possibility that some, or all of these sources are

coincidental alignments, merely being along the line of sight to each other.

It is worth noting that none of these sources are located within the Bright subset. The

reason behind this is that the sources located within the Bright subset are typically

close by and have large angular diameters. This causes the issue that the entire source

is not displayed within the cutout images used, even when basing the initial size on

the suggested model as found in the DECaLS catalogues and applying the open ellipse

function. Obtaining the correct cutout size for such large sources is thus a challenge

that has not been successfully handled at this stage. The issue lies in the fact that these

types of sources are not identified unless a follow up investigation is done. Since there

are so many sources in the data set that has this problem, doing a follow up of each

source is not an efficient way of dealing with it. Figure 5.10 shows some of the more in-

teresting sources that suffer from this issue and which are not correctly identified within

Astronomaly due to the incorrect cutout size obtained. This brings into question the re-

sults pertaining to the Bright data set as a whole since not all sources are utilised equally.
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Figure 5.10: These images are some of the sources located within the Bright subset.
The model fit within the DECaLS catalogue does not provide the correct image size
and the open ellipse function implemented within Astronomaly is not able to deal with
such a large image difference. The top row shows the incorrect image size obtained and
used within Astronomaly. The bottom row shows the sources within the correct image

size after a follow up investigation has been done.
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Discussion

Scientific discoveries are often made when observing new and rare sources, yet they

are becoming more difficult to identify within the rapidly expanding volumes of data.

Astronomical data sets have already reached the point where the sheer volume of data

is beyond the typical means of inspection. Even crowd-sourcing projects such as Galaxy

Zoo, which utilises hundreds of thousands of citizen volunteers, is likely not efficient

enough to handle the large volumes of data available [7, 117]. Upcoming astronomical

surveys will produce significantly more data to explore. Machine learning is becoming

a more and more popular solution to tackling such large data volumes.

The goal of this study is to apply Astronomaly, which incorporates machine learning

techniques, on optical astronomical data to assist in detecting anomalous objects located

therein. Astronomaly is a framework incorporating numerous different techniques for

each stage of the process; from pre-processing to feature extraction and the machine

learning algorithm applied. As such, there are several feature extraction options that

can be utilised. The ellipse fitting procedure is used throughout the thesis, which works

by fitting ellipses to isophotes (contours of a given flux level) and using the parameters

of the ellipses as features. Various machine learning algorithms are also available for

use, from which the iForest algorithm is selected.

The results indicate that machine learning is not only capable of handling large

volumes of data, but that outlier detection algorithms significantly improve the

detection rates of anomalous sources. Additionally, active learning provides a further

improvement to the detection rates and can be used selectively for specific targets

if needed. It is seen that Astronomaly provides a complete solution, from data

pre-processing to a user friendly output display, that makes identifying anomalous

sources much easier.

114

www.etd.ac.za



Chapter 6. Discussion 115

The optical data from the DECaLS data set utilised in the thesis contains three

different bands, each corresponding to a different observational band used. Combining

the bands together during the pre-processing stage allows the information from all

three bands to be utilised, a feature that was not taken into account in the base version

of Astronomaly. The method used to join the bands together also plays an important

role in both the pre-processing and the output display section of Astronomaly. Some

selection criteria for the DECaLS data was also required to ensure optimal performance;

these include selecting sources with a minimum flux level, only using sources that have

all three bands available and removing the point sources and the masked sources as

options to be selected. Several tests were done that concluded that the sources should

be acquired using the individual cutouts; the fits files containing single sources only

instead of the DECaLS bricks. This allows differing image sizes to be obtained as well

as increasing the randomness of the selections made.

6.1 Changes Made To Astronomaly

During the study, several changes and additions had to be made to Astronomaly to

improve the algorithms performance on the DECaLS data. The changes range from

the pre-processing stage to the output display. Most of them are aimed at improving

the number of sources that have their features extracted successfully. This is because

there was a substantial amount of feature extraction failures that were caused by

various factors; from incorrect image sizes to a lack of data points to fit ellipses. Image

pre-processing thus plays a vital role in the entire process as it directly affects the

features that are extracted, which in turn affects the machine learning algorithms.

For example, adaptive scaling was introduced to increase the number of data

points available within a given image. This was required to reduce feature extraction

failures where the innermost ellipse could not be fit due to a lack of enough data

points. In some instances, incorrect features were extracted where the source was too

large for the image itself. For these occurrences, a method was implemented that

flagged them, allowing a better fitting image to be acquired, in turn improving the

accuracy of the extracted features. The other significant adaptation made was for the

output display, where the individual channels of the images are weighted using specific

weights to improve their visual appearance. This results in more efficient and accurate

manual labelling as the sources are easier to identify. Familiarity with the data used is

therefore important; knowing what effect the various channels may have, or how they

are displayed, may significantly affect the results. It is thus important that each step

of the process be studied to determine how the data is impacted and how it affects the

www.etd.ac.za



Chapter 6. Discussion 116

rest of the process.

These adaptations and changes, when applied to Astronomaly, shows an increase

of up to 10% in the number of sources that have features extracted successfully. This

is a significant result, especially when applied to large volumes of data where there

could be millions of sources. For instance, it is estimated in [88] that there exists one

gravitational lens for every ten thousand galaxies. This makes the 10% increase in

sources with features extracted a very important result; for a data set of 1 million

sources for example, this would on average, result in up to 10 additional gravitational

lenses. In addition these changes also resulted in up to 20% more anomalous sources

being located within the top 2000 sources. All of these small changes and additions

work together and improve the detection rate of the anomalous sources by a substantial

amount. From the results it is also seen that there are additional anomalous sources

returned when using the adaptations; some of the feature extraction failures that

occurred initially included anomalous sources.

6.2 Active Learning

For the subsets of the DECaLS data used, the anomalous sources have been identified

beforehand by visual inspection in order to be able to test the performance of As-

tronomaly. As such, the machine learning algorithms do not detect new sources since

they are identified already, but rather returned them in a more favoured order. The

output of Astronomaly is an ordered list of the data, where the sources are ranked from

most anomalous to least anomalous based on the scores given to them by the machine

learning algorithm. The first, or top, 2000 sources in this list are looked at to evaluate

the performance of the algorithm. This is compared to 2000 sources selected randomly

within the subsets. Throughout the three subsets used, applying Astronomaly provided

a significant increase, up to 600%, in the number of anomalous sources located within

the top 2000 sources when compared to the number of sources in the random sample.

An even greater improvement is seen when applying active learning, especially towards

the very top of the ranked list, with almost 40% more anomalous sources located within

the top 500 sources.

Additionally, it was found that active learning performs better when the sources

are labelled in bulk sets rather than incremental increases, although this can be an

issue when using very large date sets. For large volumes of data, inspecting each and

every source individually is time consuming and more often than not, is not possible.

Having a larger number of anomalous sources concentrated within the top subset of

www.etd.ac.za



Chapter 6. Discussion 117

the data set makes them easier to detect and identify. This is the fundamental goal

of Astronomaly; it is not a classifier used to identify specific sources, but rather it is

meant to identify anomalous sources throughout the relevant data set and to return the

more anomalous sources higher up in the output.

Coupled with the previous result, the active learning aspect that forms a part of

Astronomaly allows user specific targets to be weighted higher than other sources,

allowing the focus to be put on the targets of interest. The outcome in this study

indicates that active learning provides a further improvement in the detection rate of

the anomalous sources, even with a minimal number of sources labelled for retraining.

It was shown that even a small amount of active learning, as little as 1% of the

overall data set size, shows a visible improvement in performance. Active learning has

been shown to improve results to varying degrees, but not once has it degraded the

performance of the algorithm.

The gains achieved from active learning outweigh the additional time required

labelling the sources and provide the additional benefit of reducing false positives

that are caused by artefacts and masked sources. Similar improvements in identifying

anomalies and outliers with the use of active learning have been confirmed within other

studies done [118, 119].

Variations in the way that the labelling was done indicates that a single, larger

number of sources labelled before retraining provides a better result compared to

labelling and retraining multiple times on smaller amounts. However, it is seen that

the improvements (of the rank weighted score and the anomaly recall) gained from

labelling 3% compared to 4% or higher is not as significant as the gain from 2% to 3%,

or from 1% to 2%. While labelling more sources provides a better result, it might not

be as effective due to the extra time required to label. A trade-off exists between better

results and manually labelling more sources. It must be taken into consideration as

more anomalous sources can be identified by extending the number of sources looked

at. A choice must be taken as to whether the time and effort will be spent on labelling

more sources, or investigating a larger number of sources in the output in order to

identify more sources. There are many factors that play a role in this decision, but the

two main ones are the overall volume of data and the time it takes to label the sources

manually and so it would depend on the individual case in question.
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6.3 Computational Performance Of Algorithms Used

Some basic tests were done on the scalability of the actual machine learning algorithms,

iForest and LOF, in order to determine if there were any limitations on the number

of sources and dimensions that they could handle. The main focus was to determine

the run-time and memory usage of the algorithms, although other aspects were also

measured such as precision, accuracy and recall. The results indicate that the iForest

algorithm scales linearly for both the run-time and memory usage when increasing the

number of sources while keeping the dimensions constant, as well as when increasing the

dimensions and keeping the number of sources constant. Similarly, the LOF algorithm

also showed a linear relationship between run-time and number of sources and between

memory usage and the number of sources. For both algorithms it is seen that the

computational processing power available is the limiting factor when increasing the

number of sources investigated.

Additional tests were done to determine the variability in the results of the ap-

plication of the iForest algorithm. Multiple runs were done using the same set up

on the same data set, yet the results varied for each run. This is not unexpected

since the algorithm selects a random value when making the feature cuts which

will produce slightly different results each time. Comparing the variations to the

original Astronomaly paper reveal that some performed marginally better, while others

performed worse but they were all fairly consistent throughout [108].

6.4 Performance On The DECaLS Data

A comparison was carried out with a known galaxy merger catalogue regarding the

anomalous sources detected in the output of the DECaLS subsets. A few of the

sources within the subsets investigated overlapped with the merger catalogue and are

known. Several other sources were identified that are similar in nature to the previously

identified mergers, but they are not within the merger catalogue. The results found

within this study from applying Astronomaly fall in line with similar studies done

regarding machine learning applications to detect anomalies within astronomical data

[120–122]. While Astronomaly will not present all of the anomalies within the data set

within the topmost output, it is clearly capable of reducing the amount of time and

effort required to detect a majority of the anomalous sources within a given data set.

This is a strong indication that machine learning is a suitable solution to the issue of

tackling big volumes of data.
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It should be noted that the results for the Brightest subset (the subset of DE-

CaLS selected based on highest flux values) used are not fully accurate. Detection rates

failed in some instances and the main cause of this was the lack of proper image sizes

for the sources in question. The image sizes obtained were incorrect and resulted in an

incorrect detection rate along with a high number of incorrectly identified sources. This

occurred despite using the image sizes recommended from the models available within

the DECaLS catalogues, and despite applying the open ellipse function to reduce these

types of errors. As a result of this, it is possible that some anomalous sources within

this particular data set have not been correctly identified. The results based on those

that were identified however, reflect the general results found from all other testing,

but to a smaller scale. There is still an improvement in detection rates when applying

Astronomaly and when utilising the active learning capabilities.

Determining whether or not new types of anomalous sources can be detected us-

ing such techniques have not been confirmed. The results suggest that new sources

would potentially be detected, but due to the limited size of the data sets explored, this

has not been conclusively confirmed. The subset size also limits the sources expected

therein. For instance, gravitational lenses are estimated to occur once in every 10 000

massive galaxies only [88], suggesting a high possibility of there not being such an event

in the relatively small subsets used. For merger events, a comparison was carried out to

the Catalog of Galaxy Mergers [116], showing that there are known, faint galaxy merger

events within the very limited subsets of the data used. Similar sources have been

located within the data sets as well, but a full follow up investigation has not been done

to identify these sources so it is not known whether or not they are also merger events.

Only by applying the techniques on larger volumes of data and doing full followup

investigations will it be possible to determine if the method can detect new source types.

A limitation regarding the data sets used is based on the minimum flux level re-

striction applied. The restriction was placed since it became difficult to identify the

faintest of sources, but this also goes against the depth achieved by the DECaLS data.

A large amount of the faintest sources are newly observed, or have not been observed

to such an extent as has been done in the Legacy Surveys, but by placing the lower flux

limits, a significant amount of these sources are ruled out when selecting the data to

be investigated. In turn this restricts the possibility of identify new anomalies. Future

studies would require alternative feature extraction methods, or would require improved

observations on these faint sources in order to identify them. For the Legacy Surveys,

the latter has been implemented on most of the faint sources as they are marked for

follow up investigations.
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Astronomaly has proven to be a robust and versatile package that returns signif-

icant results on the optical data. While it is not meant to work as a classifier, applying

active learning on selective sources can increase the detection rates of these specific

sources only. Additionally, active learning improves the chances of detecting sources

similar to ones that have already been identified. Astronomaly is also not limited to

optical image data, but can be used on other types of data as well, even data obtained

from other fields. The results obtained in this study reinforce the idea that machine

learning provides a suitable solution to handling large volumes of data and is applicable

to nearly every instance where such large volumes are used.

6.5 Future Work

The features used, obtained from the ellipse fitting process, are largely dependent upon

the image itself and not just on the source in question. The majority of the images

used throughout the thesis are small and fitting contours accurately can be difficult for

these image sizes. There are also anomalies such as rings galaxies for which the features

used here are insensitive to which would thus be difficult to detect using this method.

Alternative features could be incorporated, either in addition to, or as a complete

replacement for, the current features used. It can be see that representation learning

can be very effective and could be a suitable replacement, although it has only been

tested on a very specific subset of DECaLS data set [89]. Representation learning on

larger and more diverse subsets will be investigated in future work, and other feature

extractors for the DECaLS data will also be explored.

The faintest of sources within the DECaLS data set could not be used in the

study due to the difficulty in identifying them visually. This places a limitation on the

source magnitude that can be investigated, in turn restricting the chance of identifying

new anomalies. However, known galaxy mergers were identified amongst the fainter

sources that were included and several possible merger candidates similar to these were

detected as well. This indicates that more focus should be given to the fainter sources

in future investigations.

To determine whether new types of anomalies could be detected using this method it

is recommended that future studies be done on much larger volumes of data, thereby

increasing the chances of actually identifying anomalies. Large scale data sets would

also provide a true test for the active learning aspect, especially regarding how much

labelling is enough to make a significant impact.
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Further research can also be done on multi-wavelength data since the anomaly

detection techniques to date have mostly been limited to single data types. Sources that

appear to be ordinary within the optical spectrum might be anomalous within the radio

spectrum for instance. Correlations between properties in different wavelengths could

also possibly be used to identify anomalies. Multi-wavelength studies into anomalies

can provide greater insight into their properties and warrants future investigations.

Machine learning has proven to be a successful method for handling large vol-

umes of data and has great potential for anomaly detection in current and future data

sets. Detecting anomalies not only provides the opportunity to expand the knowledge

about known, yet rare phenomena, it also provides the possibility of detecting previously

unidentified phenomena. The work done here provides a solid foundation in anomaly

detection on astronomical data with substantial results on real data and includes the

identification of key criteria and shortcomings of data processing and feature extraction.

Astronomaly is a flexible framework and can be applied to data of different wavelengths,

making it an ideal tool to utilise for upcoming data from the Square Kilometer Array

and from the Vera C. Rubin Observatory [5, 59].
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