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Abstract

PAIRINGS OF BINARY REFLEXIVE RELATIONAL
STRUCTURES

N. Chishwashwa

M.Sc thesis, Department of Mathematics, University of Western Cape.

The main purpose of this thesis is to study the interplay between relational
structures and topology, and to portray pairings in terms of some finite poset
models and order preserving maps. We show the interrelations between the
categories of topological spaces, closure spaces and relational structures. We
study the 4-point non-Hausdorff model S4 weakly homotopy equivalent to the
circle s'. We study pairings of some objects in the category of relational
structures, similar to the multiplication of Hopf spaces in topology. The mul-
tiplication S4 x S4 ---7 S4 fails to be order preserving for posets. Nevertheless,
applying a single barycentric subdivision on S4 to get Ss, an 8-point model of
the circle enables us to define an order preserving poset map Ss x Ss ---7 S4'
Restricted to the axes, this map yields weak homotopy equivalences Ss ---7 S4'
Hence it is a pairing. Further, using the non-Hausdorff join Ss ® Ss, we obtain
a version of the Hopf map Ss ® Ss ---7 §S4. This model of the Hopf map is in
fact a map of non-Hausdorff double mapping cylinders.
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Chapter 1

Introduction

1.1 Introduction and historical background

A pairing is a generalized multiplication. Although looking at a pairing in this
perspective oversimplifies matters, it does however give the spirit and intricacy
of the matter. Some motivating scenarios of multiplication include multipli-
cation of groups, multiplication of topological groups and group action. In
classical homotopy, when one wants to obtain new elements of the homotopy
groups of spheres, one of the possible things do is to apply the Ropf's con-
struction to a pairing. P.S.Alexandroff in [3] supplemented by M.McCord [33]
establishes a connection between finite topological spaces and finite ·posets. In
particular, [33] shows the interrelation between the homotopy theory in the
context of To spaces and compact polyhedra: that one can work directly with
the To space instead of the associated polyhedra. In this thesis, we are par-
ticularly interested in pairings of some objects in the category R of relational
structures. By a binary reflexive relational structure (X, e), we mean an arbi-
trary set X with some reflexive relation e defined on it. In general, the relation
e might not be symmetric or transitive. Binary reflexive relational structures
have been considered for a while, for instance in by A. Pultr and V. Trnkov in
[40]. In a recent study [29], B. Larose and C. Tardif define homotopy groups
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for relational structures to study complexity class problems. With an intention
to find poset models of some representative maps in homotopy theory, Hardie
et al. in [26], [24] and [23] for instance, replace Hausdorff topological spaces
by some finite posets.

1.2 Overview of the thesis

In this section, we describe an overall perspective of the thesis. We present
the main contributions of each chapter of the thesis.

In Chapter 2 we introduce some category theoretic preliminaries necessary for
the presentation of what follows in the latter chapters of the thesis.

Chapter 3 is a brief look on basic homotopy. Further, we recall the functorial
association from a pointed topological space to some group structure. This
is essential because if you need to talk about symmetry, then group theoretic
concepts come in very handy. We give a result (Theorem 3.2.5) similar to that
by B. Gray [21] on weak homotopy equivalence in terms of open covers. The
result in [21]has a defect similar to that by J.P. May in [30] and the correction
can be found in the paper [48] by P.J. Witbooi. The homotopy equivalences
discussed here, thus, give us a tool to construct the models. In Section 4.5 we
discuss a well known four point model which we denote by S4. We explicitly
describe S4. By the implication of Theorem 3.2.5, we show that this model is
weakly homotopic to the Hausdorff space SI. This may be considered as one of
the possible models weakly equivalent to SI. In Section 2.11.3, we discuss a well
known isomorphism between the category of To spaces and the subcategory
LFPos (locally finite posets ) of Pos. The weak homotopy equivalence enables
us to study the space by way of finite models that admits a To separation.

In Chapter 4, we consider the category R whose class of objects consists of
binary reflexive relational structures and maps are R-morphisms. We give
some examples of binary reflexive relational structures. Further, when one
takes quotients on a given relational structure, new ones may be obtained. We

2
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show that by taking the barycentric subdivision of a relational structure, one
obtains a functorial association B* : R ----t Pos from the category of relational
structures to Pos the category of posets. We show that for relational structures
X and Y, the construction (lk(X x Y) is isomorphic to (lk(X) x (lk(Y) (here,
(lk(X) for a relational structure X and kEN is understood to mean the R
version of the usual kth homotopy group).

In Chapter 5, we discuss closure spaces. We prove a result similar to Lemma 1
of [44] but in our case, restricted to binary reflexive relational structures. We
study the functorial association between Clo, the category of closure spaces
and continuous maps and Top, the category of topological spaces and continu-
ous functions. There is a Galois correspondence between the category of binary
relational structures Rand Clo. In Chapter 6, we describe a non-Hausdorff
version of the cylinder object. Here, the unit interval is replaced by a suitable
three point poset.

In Chapter 7, some basic definitions for the construction of a pairing in a
category are considered. Further, we give a map x : S4 x S4 ----t S4 following
[24]. Though it fails to be order preserving, by applying a single barycentric
subdivision on each of S4 on S4 x S4, we obtain an order preserving map jJ, :

Ss x Ss ----t S4. We describe a model (Hopf Construction) r(jJ,) : Ss x Ss ----t SS4
of the Hopf map S3 ----t S2. We show that the non-Hausdorff join Ss ® Ss
and the non-Hausdorff suspension SSs are special cases of the non-Hausdorff
double mapping cylinder. Furthermore, we describe a model of a generalised
Whitehead product (GWP), and how it relates to the Hopf construction.

3
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Chapter 2

Basic categorical constructions

The study of mathematical structures entails the deployment of tools which can
show how the different structures relate. Category theory serves this purpose
well. In this chapter, we formulate some basics of category theory that will
be important in what follows in the latter chapters of this thesis. The main
references are J. Adamek [1], J. Adamek et al. [2], N. Chishwashwa [11] and
H. Herrlich et al. [27].

Definition 2.0.1. (cf. [1], [27]) A category C consists of

(i) a collection ob(C) whose members are the objects of C;

(ii) for each A, B E ob(C), a collection C(A, B) whose members are maps or
morphisms or simply arrows from A to B,

(iii) for each A, B, CE ob(C), and some morphisms C(A, B), C(B, C) a func-
tion
o : C(B, C) x C(A, B) --+ C(A, C), called the composition,

(iv) for each object A E ob(C), an element lA E C(A, A) called the identity
on A satisfying unit Laws: f 0 lA = f = lB 0 f for all A, B E ob(C) and
fE C(A, B).

4
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(v) Associativity: (h 0 g) 0 f = ho (g 0 I) for all A, B, C, D E ob(C) f E

C(A, B), gE C(B, C) and h E C(C, D).

From the definition, one sees that the notion of a category is that of a class of
sets together with a class of functions between them. In the case where we have
a class of structured sets and structure preserving morphisms between them,
then the category is said to be a construct. We give examples of categories
that will serve as our reference points in the thesis.

(1) Set: Consider the class of sets and set functions between sets. This forms
the category Set whose objects are sets and morphisms are set functions.
We show that Set satisfies the conditions of Definition 2.0.1. Let A and
B be objects of C and f : A -+ B a function defined on A with values
in B. Let 9 : B -+ C be another function, then their composite will
be (g 0 f) (a) = g(f (a)) for some a E A. The operation 0 is associative
because when we consider another function h : C -+ D, one can form the
composites ho(gof) and (hog)of. But ((hog)of)(a) = h(g(f(a))) =
(h 0 (g 0 f))(a), i.e, (h 0 g) 0 f = ho (g 0 I). For each set A we have the
.identity map lA : A -+ A defined as L, : a -+ a for all a E A. These
identity maps are units under the operation 0 and have f 0 lA = lB 0 f.

(2) Pos: Consider the class of partially ordered sets, and order preserving
functions between these sets. This forms the category Pos whose objects
are posets and a morphism f :A -+ B is such that for a', a E A,

a :S:A a' =} f( a) :S:B f( a').

The identity lA : A -+ A is trivially order preserving since a :S:A a
implies lA(a) :S:A lA(a). It remains to check composition of these order
preserving (monotone) functions. Let 9 .:B -+ C where C is another
poset. We have that fog: A -+ C is monotone since

a :S:A a' =} f(a) :S:B f(a') =} g(f(a)) :S:c g(f(a')) =} (gol)(a) :S:c (gol)(a')

5
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Composition is associative hence we have a category of posets and maps
as order preserving functions.

(3) Top is the category whose objects are topological spaces and the maps
are continuous functions. In this thesis, we are particularly interested
in the objects which are pairs (X, xo) where Xo is a point in the topo-
logical space X. In some cases, the point Xo will be denoted by *. A
morphism from (X, xo) to (Y, Yo) is defined as the continuous function
f : X --+ Y where f(xo) = Yo· The class of such pairs of topological
spaces with a privileged point and the respective morphisms between
them forms the category Top" (note that Top" denotes the category of
pointed topological spaces). Furthermore, there is a category denoted
as Top2 whose objects consists of pairs (X, A) where X is a topological
space and A c X. A morphism from the object (X, A) to another ob-
ject (Y, B) being defined by the continuous function f :X --+ Y where

f(A) ~ B.

(4) Grp is the category whose objects are groups and morphisms are group
homomorphisms. For objects (groups) G and Hof Grp the set Hom(G, H)
consists of group homomorphisms from G to H. In the usual manner, if
f E Hom(G, H), and g, g' EGthen f(gg') = f(g)f(g')·

2.1 Product category

Let C and V be categories, then the product category of C and V denoted as
C x V consists of objects in the form of pairs (G, D) where G and D are objects
of C and V respectively. Morphisms are

(j, g) : (G, D) --+ (G', D')

6
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where f :C ---+ C' E C and g : D ---+ D' E 'D. Composition of morphisms and
units are defined componentwise, as follows:

(I',g') 0 (I,g) = (I' 0 f,g' 0 g)

I(C,D) = (Ic, ID).

2.2 Subcategory

A category 8 is said to be a subcategory of C if the class of objects and
morphisms of 8 are contained in those of C and that 8 is closed under the
category operations of domain, codomain, composition and identity. Formally,
we have the following.

Definition 2.2.1. (cf. [1], [27]) The category 8 is a subcategory of C provided
the following conditions hold.

(1) ob(8) C ob(C),

(2) Mor(8) C Mor(C),

(3) the domain, codomain and composition of morphisms of 8 are restric-
tions of the corresponding functions of C,

(4) every 8- identity is a C-identity.

In the instance where the morphisms of a subcategory 8 of C are exactly the
same as with respect to the "larger" category C then the subcategory 8 is said
to be full.

Definition 2.2.2. (cf. [1], [27]) A subcategory 8 of C is said to be a full
subcategory of 8 if for all objects A, B E 08) the morphisms morB(A, B) =
morc(A, B).

7
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2.3 Locally finite objects in Pos

In this section, we discuss a subcategory of Pos which is of particular interest
in our study. We first recall the following definition.

Definition 2.3.1. A poset is a binary reflexive structure P = (X,:S) where
:S is an order relation defined on X which is reflexive, antisymmetric and
transitive.

Consider all those objects X of Pos in which for every x EX, we have that
the subsets {y E Xly :S x} and {y E Xly ~ x} of X are finite. These objects
together with the morphisms between them forms a subcategory of Pos. We
shall denote this subcategory by LFposet. It is easy to observe that LFPoset
is a full subcategory of Pos since the morphisms between any pair of objects
in LFPoset are exactly the same morphisms as with respect to Pos.

2.4 Final and initial objects

Definition 2.4.1. An object A in a category C is said to be an initial object
if for any other object X of C there exist a unique morphism i :A --+ X.

Dually, a final (terminal) object in a category is defined as follows:

Definition 2.4.2. An object A' in a category C is said to be a final object in
C if for any other X in C there exist a unique arrow j : A' f- X in C.

In some cases, an object in a category is both final and initial. In such a case,
then we say that the object is null.

Definition 2.4.3. A category with a null object is said to be a pointed cate-
gory.

8
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2.5 Product and coproduct

Products of objects in a category generalize the Cartesian products of objects
in a structured set. The underlying principle being that the product is not
just an object, but is should consist of an object together with a system of
projection morphisms. The uniqueness of a product in a category just goes up
to isomorphism.

Definition 2.5.1. The product of two objects A and B in a category C if it
exists is a triad

satisfying the following conditions. For any other object X and a pair of
morphisms !I : X --+ A and 12 : X --+ B there exists a unique morphism
(!I,h) :X --+ A x B such that 71"1 0 (!I,h) = !I and 71"2 0 (!I,h) = h· The
latter two identities is equivalent to saying that the diagram

commutes.

Definition 2.5.2. The coproduct of two objects A and B in a category C if it
exists is a triad

satisfying the following conditions. For any other object X and a pair of
morphisms gl : X +- A and g2 : X +- B, there exists a unique morphism
[gl, g2] : A VB: X --+ X such that jl 0 [gl, g2] = gl and j2 0 [gl, g2] = g2· This
is equivalent to saying that the diagram

X
91~ + ~J9 922

/' 191:92J -.

A~AvB-B
Jl J2

9
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commutes.

2.6 Pullback and pushout

Definition 2.6.1. The pullback of morphisms f and 9 in a category C, with

consists of morphisms

satisfying the following conditions. f 0 P2 = 9 0 PI and that given any triad
A~X ~B with f 0 Xl = go X2, there is a unique morphism u :X -+ p
such that PI 0 u = X2 and P2 0 U = Xl' This is equivalent to saying that the
diagram

commutes.

Definition 2.6.2. The pushout of morphisms f and 9 in a category C where

10
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consists of

satisfying the following conditions. Plof = P2 0 9 and that given any triad
A~X~B with Xl 0 f = X2 0 g, there is a unique arrow u: P ---+ X such
that u 0 PI = Xl and u 0 P2 = X2. This is equivalent to saying that the diagram

commutes.

2.7 Functors

Having discussed categories, their objects and morphisms between them, it is
natural to consider maps from one category to another.

Definition 2.7.1. Let A and B be categories. A functor F : A ---+ B consists
of

(i) a function

ob(A) s; ob(B)
A ~ FA

11
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(ii) for each A, A' E ob(A), a function

A(A,A') ~ B(FA,FA')

f ~ Ff ,

such that:

(iii) F (J' 0 f) = F f' 0 F f for all A .L: A' .L: A' in A,

(iv) F1A = 1FA for all A E ob(A).

With each object A of A is associated an object FA of B and every string

Aa~" .~An (of objects and morphism) in A gives precisely one mor-
phism FAa ---7 FAn in B. A functor defined in this way is sometimes called a
covariant functor. On the other hand, a contravariant functor assigns objects
to objects but reverses the arrows. In this thesis, by functor (without prefix)
we mean a covariant functor.

Proposition 2.7.2. Let F : A ---7 B be a functor and suppose that A and A'
are isomorphic objects of A. Then FA and F A' are isomorphic objects of B.

Proof. If A and A' are isomorphic objects of A then there exist an isomorphism
FJ

f : A ---7 A'. Hence there are maps F A ~ F A' in B. Clearly F f and F(J-l)
FU-I)

are mutually inverse, since

In a dual sense, FA f'V F A'. o

Remar k 2.7.3. This shows that functors preserve isomorphism in that if f is
an isomorphism, then so is F f.

12
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2.8 The functor To Pos ---+ To

One of the usefulness of category theory come in through the maps from one
category to the other. Some functors introduce a new structure on the image
category whilst others do not. As an example, we give some functors of interest
to our work in this thesis. There is a covariant functor from the category of
topological spaces and continuous maps to the category of sets and functions
which assigns each topological space its underlying set. This functor forgets
some of the structure of the topological space. The functor we describe below
turns every poset not only into a topological space, but one which satisfies the
To separation axiom. Consider the subsets Ux (x E X) of X where Ux = {y E

X ly::; x} Viewing these sets as open sets and taking them to be the basis,
we have that P is a topological space. We show that this topology satisfies the
To separation axiom. For any distinct points x, x' EX, we have the following
possibilities:

a. x and x' are not related, that is they are not comparable in any way i.e

x i x' and x i. x' or,

b. x and x' are comparable that is x ::;x' or x 2: x'.

If a is the case, then one can construct an open set Ux' = {y : y ::; x'}
containing the point x' but not x. In the case of b we have that Ux = {y :
y ::; x} does not contain x' since x =I x'. This association is a functor To :
Poset --+ To from the category of posets and order preserving functions to the
category of topological spaces and continuous functions.

Definition 2.8.1. Locally finite To-spaces (LFTo), is the category whose class
of objects are those To spaces X having the property that for every x E X, x
has a finite neighborhood and the closure {x} is finite.

Definition 2.8.2. A functor F : A --+ B is said to be full if for each hom
set mor A(A, A') where A, A' E ob(A), we have that the hom-set restriction
F : mor A(A, A') --+ mor{3(F A, F A') is surjective.

13
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In the case where this hom-set restriction is injective, then F is said to be
faithful.

2.9 Natural transformation

We have seen that functors can be regarded as morphisms between categories,
we now consider transformations between functors.

Definition 2.9.1. Let A, B be categories and F, G functors such that F, G :
A-B. A natural transformation from F to G assigns to an object A of A a
B-morphism /-LA : FA - GA such that if 0: : A - A' is an A-morphism, we
have /-LA' 0 Fa = Ga 0 /-LA, that is, the diagram

FA~FA'

~A! l-
GA-GA'Go<

commutes.

2.10 Limits and colimits

To define a limit, we need the notion of a diagram and that of a cone. A
diagram D :I - C where I and C are categories is some functor of the form:

C

The diagram D is a

~

14
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The functor D takes the objects i, j, k of I to the objects Di, Dj, o, of C and
the maps a , (3 and 'Y of I to the maps Da D(3 and D"( of C.

Definition 2.10.1. Let Da be maps between the objects Di and Dj, then the
object X together with the triad Di f- X -> Dj form a cone of the diagram
D if

Xy~
commutes.

We denote this cone in C by X {hi} iEl.X is the vertex of the cone. The cones
for a diagram Ai -> Aj forms a category. A map of cones 9 : X {hihEl-X'{h~hEl
is a map g: X-X' such that h~ 0 9 = hi,

~x
X' hi

"'h' h'
'",,- j~

Di -- -~ D·
D", J

hj

Definition 2.10.2. A cone (as in definition 2.10.1 ) is a limit in C if for any
other object X' of C with maps h~ from X' to Di, there exists a unique map
K from X' to X such that hi 0 k = h~ and hj 0 k = hj. That is, the diagram

X'

15
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commutes.

When constructing a limit, one has to use a functor that picks out the relevant
objects or morphisms. In most cases, the category T as used in the definition
of the limit of a diagram is small that is it has fewer elements than C.

Definition 2.10.3. A category C is said to be complete if every functor
F :T ---+ C has a limit.

Remark 2.10.4. The categories Set, Grp and Top are complete. In general,
categories that are not complete are those which have some restriction on
their size. One of the most obvious category which is not complete is that of
finite-dimensional vector spaces over a fixed field.

Dually, reversing the direction of the morphisms in Definitions 2.10.1 and 2.10.2
gives the notion of a co-cone and colimit respectively.

2.11 Equivalence of categories

A natural question one might ask is: when are two categories essentially the
same? That is, when is it possible to infer results and properties in a category
one is working with into the other. The equivalence of categories is deployed to
describe such an instance. The equivalence of categories is given by appropriate
functors between two categories.

Definition 2.11.1. Given functors F, G : C ---+ 'D, a natural transformation a :
F ---+ G is a natural isomorphism if there exists another natural transformation
f3 : G ---+ F such that af3 = IF and f3a = lG.

From the definition, it follows that a natural transformation a :F ---+ G is a
natural isomorphism if for every object A of C, every morphism aA : FA ---+ GA

is invertible.

16
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Definition 2.11.2. A functor F : C -7 'D is an equivalence if it has a weak
inverse, i.e, there is a functor C : 'D -7 C such that there exists natural
isomorphisms a :FC -7 le and f3 : CF -7 ID·

Theorem 2.11.3. Restricted to the subcategory LFPoset, the functor To as
in Subsection 2.8 is an isomorphism of the category LFPoset onto the category
LFTo·

Proof. We need to construct a functorial association P : LFTo -7 LFPos such
that PTo = lLFTo and ToP = lLFTo. For x, y E X where X is a locally finite
To space, we declare that y ~ x if and only if xE {yl· Note that {yJy ~ x} is
the smallest open set that contains x. In this way, we have constructed exactly
the same finite poset that To associates on LFT o- 0

17
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Chapter 3

Basic Homotopy

In this chapter, we present some homotopy concepts that are pertinent to the
sequel. Homotopy can be introduced in two different ways: by the use of
the cylinder, or the path space. For the work in this thesis, we employ the
cylinder approach. Two functions from one topological space to the other are
said to be homotopic if one can be deformed continuously into the other. For
our purposes, the topological spaces will be pointed topological spaces, i.e, we
consider pairs (X, *) where * is a distinguished point in a topological space X.
By abuse of notation, as is common, we shall in some cases for convenience
suppress the base point. The main references are J.P. May [31], J.R. Munkres
[34], H. Sato [42], M.C. McCord [33] and E.H. Spanier [45].

3.1 Homotopy relation

In this section, we define homotopy and in Proposition 3.1.2, show that it is
an equivalence relation.

Definition 3.1.1. Let (X, *) be a pointed topological space, Ik a k-dimensional
unit square with boundary alk. Fix kEN. Consider the set Fk(X, *) of all
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continuous functions

For h,h E Fi; we say that h is homotopic to h if and only if there exists a
continuous map H : Ik x I --+ X such that:

H(x,O) h(x), V x;

H(x, t) - *,

H(x,l) h(x), V x.

Let [J] ~ Fk (X, *) be a set of all functions homotopic to J, then we have the
following proposition.

Proposition 3.1.2. The homotopy relation on Fk(X, *) is an equivalence re-
lation.

Proof. Reflexivity: This is obvious by taking for a given J E Fk(X, *), the
constant homotopy H(x, t) = J(x) V x.
Symmetry: Suppose Jo ~ I, via the homotopy H(x, t).

Then I, ~ Jo via the inverse homotopy H(x, 1 - t) because

H(x,l - t) It=o= H(x, 1) -

H(x,l - t) 1099

H(x,l - t) It=1= H(x, 0)

h(x) V x

* V xE 8Ik

Jo(x) V x.

Transitivity: Suppose Jo ~ I, via the homotopy H(x, t) and I, ~h via the
homotopy G(x, t), then Jo ~ h via the homotopy

{
H (x, 2t), 0 :S t :S ~

F(x, t) =
G (x, 2t - 1), ~ < t :S 1.
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Further, we have

H(x,2t) It=!= ft(x) = G(x, 2t - 1) It=!,

that is, the two homotopies Hand G agree on t = 1/2. Thus continuity of F
follows by the pasting lemma (see Munkres [34]). 0

Denote this collection of equivalence classes by 7rk(X, *) and define a binary
operation * on the later set as follows. For f, g, hEF, [f] * [g] = [hl where

h(x, t) = {g(X' 2t),
f(x, 2t - 1),

O~t~~

~~t~1.

Note that x E Ik-1. This gives a group structure on 7rk(X, *) with the identity
being the equivalence class consisting of constant maps. The inverse [f]-l for
an element [f] of 7rk(X, *) is [g] where g : (x, t) f-+ f(x, 1 - t).

Definition 3.1.3. For a pointed topological space (X, *) and natural numbers
k, the group 7rk(X, *) is called the kth homotopy group of X for k=1,2,3, ...

In some instances, it is convenient to use Sk in the place of Ik in Definition
3.1.1. Suppose f : (X, *) ~ (Y, *) is a map taking base point * E X to
basepoint * E Y. We show that the induced map [, : 7rk(X, *) ~ 7rk(Y, *)
is a group homomorphism. We define f* in terms of composition of maps as
follows: given g : Ik ~ X, we let f*[g] = [f 0 glo The map I, is well defined
because if we consider the homotopy H : I x X ~ X of loops based at *, f 0 H
gives a composed homotopy of loops based at f( *). And for go ~ gl via H,

That is, if fa, ft : (X, *) ~ (Y, fi(*)) i = 0,1 are pointed homotopic then we
have 7rkUO) = 7rk(ft). This shows that [; is well defined. Furthermore,

f*[g 0 h] = [f 0 (g * h)] = [U 0 g) * U 0 h)] = f*[g]f*[h].
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Hence the induced map [, is indeed a group homomorphism. The continuous
maps between the spaces (X, *) and (Y, f(*)) are projected onto homomor-
phisms between their algebraic images. Thus topologically related objects will
have algebraically related images,

f(X, x) ----70- (Y, f(x)) .

In this way, for each k, the association 7rk : Top* - Grp defines a functor
from the category of pointed topological spaces and continuous maps to the
category of groups and group homomorphisms.

Definition 3.1.4. The map f : (X, x) - (Y, y) is a homotopy equivalence if
there exists a map 9 : (Y, y) - (X, x) such that f 0 9 c:::: ly and 90 f c:::: Ix·

Remark 3.1.5. In the case where f : (X, x) - (Y, y) is a homotopy equiv-
alence, then the induced homomorphism 7rk(l) : 7rk(X, x) - 7rk(Y, y) is an
isomorphism for each k. To show this, consider (cf. [31]) the diagram

ly Ix

(Y,y)_9_

Since 17rIc(x,x) and 17rIc(y,y) are isomorphisms, we have that 7rk (9) is an injection
and 7rk (I) is a surjection, 7rk (I) is an injection and 7rk (9) is a surjection thus
7rk (I) is a bijection for each k.

Definition 3.1.6. A map f : X - Y is a weak homotopy equivalence if the
induced homomorphism [; : 7rk(X, x) - 7rk(Y, f(x)) is a bijection for each
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kEN U {O}, for all x EX.

From the previous remark and the definition of weak homotopy equivalence,
we have the following implication.

Proposition 3.1.7. If f : (X,x) --+ (Y,y) is a homotopy equivalence, then it
is weak homotopy equivalence.

Proof. This follows from the fact that if f is a homotopy equivalence, the
induced homomorphism 7rk(f) : 7rk(X, x) --+ 7rk(Y, y) is an isomorphism for
each k. Thus it is a bijection for kEN U {O}. D

Definition 3.1.8. Let (X, A) be a topological space where A c X. Then a
continuous map r : X --+ A is a retract if r IA= lA, i.e r(a) = a Va E A. In
this case, r is said to be a retraction.

Definition 3.1.9. Let the notation be as in Definition 3.1.8. A continuous
map d : X x [0,1] --+ X is said to be a deformation retraction if, for all x E X,
a E A, and t E [0,1], we have the following:

d(x,O) - x

d(a,t) - a

d(x,l) E A

In relation to Definition 3.1.1, we have that a deformation retraction is a
homotopy between the maps:

ix : X --+ X the identity map on X and

r : X --+ A a retraction of X onto A, where r(x) = d(x, 1) for all x EX.

Deformation retraction is related to the notion of homotopy equivalence, in
that two spaces are homotopy equivalent if and only if they are both deforma-
tion retracts of a single space.
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Definition 3.1.10. A topological space X is said to be contractible if it is
homotopy equivalent to a point.

This implies that the identity map Ix : x f--t x on each point x E X is
homotopic to the map f : X --+ X for which f(X) = *. Thus we have
that 7rk(X) rv 7rk(*) = O. Any topological space which deformation retracts
to a point is contractible. Contractibility, however, is a weaker condition, as
contractible spaces exist which do not deformation retract to a point [45].

3.2 Cone, suspension and join of spaces

Let X be any topological space. Consider the space Y obtained as follows.
Y = X x I where I is the usual unit interval [0,1], and let Xo = X x {a}.
Shrinking the subspace Xo to a point on Y, we denote the resultant space by
Y/Xo. The space Y/Xo is called the unreduced cone on X. The space X is
identified to the closed subspace X x {I} in Y/Xo.

Definition 3.2.1. Let Xo E X, the reduced cone (or simply cone) over the
pointed space (X, xo) is the space

CX Y/(X x {a} U ({xo} x [a, I]))
- Y/(X x {a}U ({xo} x 1)).

The space ex is contractible to the point xo. Let X I = X X {I}, then the
space Y/Xo U Xl is the unreduced suspension of X. In this construction, the
subspace space X x {a} is shrunk to a single point say Ct and all the points
of X x {I} are shrunk to another point say (J. Keeping the same notation for
the subspaces Xo and Xl, we define the suspension of a space with base point
as follows.

Definition 3.2.2. The space Y/(Xo U {xo} x I UXl) is called the reduced
suspension (or simply suspension) of the space X and denoted as §X.
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Note that the points Cl( and f3 are identified in case of reduced suspension.
From this construction, we see that there is a natural map

¢x :ex ~ §X such that ¢x(x, t) = (x, t).

Taking Xo to be the basepoint of X, we choose Xo = (xo,O) to be the basepoint
in the cone ex and the suspension §X.
Suppose X and Yare some arbitrary pointed spaces. Let x E X and Y E Y,
and consider the product space Z = X x Y x [0, I]. We make a partition of Z
consisting of the following sets.

l. the sets {x} x Y x {O} for all x EX,

2. the sets X x {y} x {1} for all y E Y and

3. the singletons {(x, y, t)} for x EX, Y E Y, t E (0, 1).

Definition 3.2.3. The join of two spaces X and Y denoted by X * Y, is
defined to be the quotient space (X x Y x 1)/R, where I is the interval [0, lj
and R is the relation defined by

(x, Yl, 0) f'V (X, Y2, 0) 'ti x E X and Yl, Y2 E Y,
(Xl, y, 1) f'V (X2, y, 1) 'ti xl, X2 E X and y E Y.

Remark 3.2.4. Thus the natural map f : X x Y x [0, lj ~ X * Y sends
X x Y x {O} onto some closed subspace which is homeomorphic to X, and
sends X x Y x {1} onto some closed subspace homeomorphic to Y.

It is interesting to note that, given a weak homotopy equivalence defined on
two open sets, there exist some conditions for the map to be a weak homotopy
equivalence when defined on their union. We give a result in this direction.

The following result is very similar to that in [21], Lemma 16.24. The more
general result in terms of excisive triads can be deduced from 3.2.5 below as
shown in P. Witbooi, [48J.
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Theorem 3.2.5. (cf. B. Gray [21]) Suppose that Xl, X2 are open sets in X
and Yl, Y2 are open sets in Y, and that X = Xl UX2 and Y = Yl UY2. Let
¢: X -4 Y with ¢(XI) C Yl and ¢(X2) C Y2. If ¢ IXl: Xl -4 Yl, ¢ IX2: X2 -4

Y2 and ¢ IXlnX2: Xl nX2 -4 Yl n 1'2 are weak homotopy equivalences, then so
is ¢.

Proof. To prove this, we need to show that the induced homomorphism ¢* :
7rn(X, *) -4 7rn(Y, *) is an isomorphism. To show the isomorphism, it is suffi-
cient to prove the following:

(A) Given f : /::;.n -4 Y, 9 : fJ/::;.n -4 X with ¢g = f la.0.n, there exists
F : /::;.n -4 X with F liu~,n=9 and ¢ 0 F rv f(relative to fJ/::;.n). We
further show that (A) implies the following.

(B) [(i)] ¢* : 7rn-I(X, *) -4 7rn-I(Y, *) is mono,

[(ii)] ¢* : 7rn(X, *) -4 7rn(Y, *) is epi.

We first show that indeed A ::::}B;
An arbitrary element a of 7rn (X, *) can be represented by a function

Let 9 : fJ/::;.n -4 * E Y be the constant map, then by condition (A), a map
F: (/::;.n, fJ/::;.n) -4 (Y, *) exists such that ¢*[F] = If], i.e, ¢* : 7rn(X, *) -4 (Y, *)
is an epimorphism. Hence (B) (ii) is proved. Suppose that (3 E 7rn-I(X, *) and
¢*{3 = o. We must prove that {3 = O. Now {3 can be represented by a map
g' : fJ/::;.n -4 X. Since ¢*{3 = 0, it means that there exists f : /::;.n -4 Y such
that fla.0.n rv ¢ 0 g'. Let 9 = f la.0.n. The F which exists by (A) guarantees
that {3 = 0, thus (B) (i)
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We now show the sufficiency condition that (A) holds.

Let Al = g-I(X - Xl) U f-l(y - Yl) and

A2 = g-I(X - X2) U f-l(y - Y2),

then Al and A2 are disjoint closed sets. We subdivide 6,n in such a way that
no simplex 0 meets both Al and A2. We then define

te, = {81 g(8 n o6,n) C Xl, f(8) C Yl} and

K2 = {81 g(8 n o6,n) C X2, f(8) C Y2}.

Then K, and K2 are sub complexes and 6,n = K, UK2. This is because if o6,n
is a simplex that does not meet Ai, then o6,n C Ki. Furthermore,

f(Ki) C Yi,
g(Ki n o6,n) C Xi.

Thus we have the commutative diagram

There exists F : te, nK2 ---7 Xl nX2 with

Now we define GI : K, n (o6,n U K2) ---7 Xl by GI IKln8.6n= 9 Ikln8.6n and

GI IKlnK2= F, then ¢GI ,.....,f IKln(8.6nUK2)·

We extend this homotopy to a homotopy H : K, x I ---7 Yl of f to a map

iI :K, ---7 Yl with iI IKln(8.6nuK2)= ¢GI.
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Thus the diagram
X I - _ _;___-Y

ClI r ft

commutes and we may find FI : K, ---+ Yl where FI IKln(86nUK2)= GI and
¢JFI rv I, (relative to (Kl n (86n U K2))). This implies that ¢JFI rv f (rel-
ative to Kl n 86n). In a similar manner, we construct F2 : K2 ---+ X2 with
F2 IK2n(86nUKI)= G2 and ¢JF2 rv f (relative to K2 n 86n). In this way FI and
F2 agree on K, n K2' hence we define a map F : I" ---+ Y as follows,

Then F 186n= 9, the homotopies ¢JFI rv h rv f and ¢JF2 rv h rv f agree
on (Kl U K2) x I because ¢JFI rv li, ¢JF2 rv h relative to K, n K2 and the
homotopies I, rv h when restricted to (Kl n K2) x I both yield the homotopy
¢JF rv f. Thus ¢JF rv f is the homotopy relative to (Kl n86n

) U (K2 n86n
) =

86n. 0

3.3 Exactness in a sequence of homotopy groups

Let ¢J: Go ---+ GI is a group homomorphism. Recall that ¢J is monomorphic if
Ker ¢J= {O} and it is epimorphic if the quotient GI/lm¢J = {O}. For a pair
(X, A) of topological spaces, there is a homotopy sequence of homotopy groups
and group homomorphisms

The homomorphisms j and i arise out of the inclusions (X, *) t.......t (X, A) and
A t.......t X respectively. The homomorphism 8 arise from the boundary operator.
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Definition 3.3.1. A sequence

of groups and group homomorphism is said to be exact at G1 if Im(h) = Ker(q).

Remarks A longer sequence

is exact if any two consecutive homomorphisms form an exact sequence. From
the definition of exactness, it follows that it is not defined on the first or last
group of a sequence if at all the groups do exist.

Definition 3.3.2. An exact sequence of the form

is called a short exact sequence.

For example, suppose H is a normal subgroup of a group G, then we have the
following

O-H~G~GIH-O

Where i is the inclusion of H in G and 7r is the projection of G on ClH.

3.4 Cofibrations and fibrations

In this section, we give the definition of a fibration and cofibration.

Definition 3.4.1. Let f :X - Y and h : A x I - Y. A map i :A - X is a
cofibration if it satisfies the homotopy extension property (HEP) with respect
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to any space. This means that if h 0 io = f 0 i in the diagram

h

X~
y.

Then there exists h that makes the diagram commute. The map h does not
necessarily have to be unique.

Remark 3.4.2. In [31], May shows by way of some "diagram chasing" that
the pushout of two cofibrations is itself a cofibration.

Dually, we have the following:

Definition 3.4.3. A surjective map p : E -t B is a fibration if it satisfies
the homotopy lifting property (HLP) with respect to any space Y. That is, for
each diagram of unbroken arrows

there exists an h that makes the diagram above commute.

Taking the natural map io : Y -t Y x I, the commutative diagram in Definition
3.4.3 can be displayed in a more visually helpful way as: p : E -t B has HLP
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if h 0 io = pof in the diagram,

Y x I ----,;--B

there exists an It that makes the diagram commutative.

Remark 3.4.4. Suppose A eX, then we say that the space X is obtained
by attaching a cell to A if there exists the following pushout diagram:

where the inclusions sn-l C D" and A c X are inclusions in Top. In the
category Top, a map p : A ~ X is said to be a Serre-fibration if it has the
homotopy lifting property with respect to the n-dimensional disk, (n 2:: 0).
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Chapter 4

Relational structures

In this chapter, we discuss relational structures. We define a relational struc-
ture and the concept of a relational morphism. In Section 4.1, we give some
examples of relational structures. Furthermore, we show that one may obtain a
new relational structure by taking quotients on a given one. In Section 4.2, we
discuss the product of relational structures. We give a result that the projec-
tion map from a product of two relational structures into one of the relational
structures is a relational morphism. In Section 4.3, we discuss the functorial
association of the category of relational structures to that of partially ordered
sets. In light of the weak equivalence between an object X and its barycentric
subdivision X', one may regard (as in Section 4.4) objects of R as models.
We illustrate by an example in Section 4.5 a 4-point model which is weakly
homotopy equivalent to the J-circle SI. The main references are K.A Hardie
et al. [23], [24], K.A. Hardie and Witbooi [26], and the paper of B. Larose and
C. Tardiff [29]. We begin by giving a formal definition of a relational structure
following [29].

Definition 4.0.5. (cf. [29]) A binary reflexive relational structure X = (X,8)
is a set X together with a reflexive relation

8 ~ X xX.
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If there is no possibility of ambiguity, we will call a binary reflexive relational

structure a relational structure.

Definition 4.0.6. A morphism of relational structures j : (X, Bx) -- (Y, By),
in short an R-morphism, is a function j : X -- Y satisfying the condition that

(Xl, X2) E Bx :::;. (fXI, jX2) E By.

It is easy to see that we obtain a category of relational structures and R-
morphisms which we denote by R. Elsewhere in the literature, this category
is sometimes denoted by Rere, as in the book by J. Adamek et al. [2] for
instance.

Remark 4.0.7. In this case, we adopt the following notation. For a binary
relation B on a set X, we write Xl -- X2 as meaning (XI,X2) E B. In some
instances where it is convenient, we denote (Xl, X2) E B by XIBx2'

In the following section, we give examples of relational structures.

4.1 Some examples

(a) ···-2~-1~O~1~2··· The directed rayon Z.

In this case, X -- Y whenever X = Y or Y - X = 1.

(b) ···-2~-1~O~1~2···
relation on Z whenever X = Y or ly - z] = 1.

In this case, we have a

(c) The one way infinite fence IFis as below.

1 3 5 7

/\/\/\/
o 2 4 6

The relation is as follows: X -- Y if X = Y or X is even and Ix - yl = 1.
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New structures may be constructed from a given one. For example, from the
infinite rayon Z, we can obtain the finite 5 point directed ray

- 2~ - 1~0~1~2.

We denote this by IF-2,2' Identifying the point -2 with 2 on IF-2,2 gives the
relational structure below:

(d)
-1~0

t 1
2-1

(e) Similarly, from the relational structure in (b) we can obtain

- 2+==: - 1+==:0+==:1+==:2,

and identifying the point -2 with 2 gives

-1~0

tt Il
2~1.

(f) From the fence IF in (c), identify the points 0 and LI to obtain IF4/ (0=4)

2/~
:3 I~/

LI

We now discuss the concept of a product of relational structures.
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4.2· Product of binary relational structures

Given two relational structures, we can, in a natural way, extend the notion
of relational structure to the product of the underlying sets.

Definition 4.2.1. The product of two binary relational structures X and Y is
the structure X x Y on the product of the base sets of X and Y and we define
(x, y) --+ (x', y') if X --+ x' and Y --+ y'.

Consider the product X x Y of the relational structures X = (X, R) and
Y = (Y, S). Rand S are the respective relations on X and Y. We have that

X x Y = (X x Y, T).

For the relation T on X x Y, (Xl, YI)T(X2, Y2) if and only if XIRx2 and yISY2.
The relation T is reflexive, hence X x Y is a relational structure.

Proposition 4.2.2. Let X and Y be relational structures and X x Y their
product. Then the projection map f :X x Y --+ X is a R-morphism.

Proof. Let X and Y be the underlying sets for X and Y respectively. Let
Xl, X2 E X and Yl, Y2 E Y, and suppose (Xl, Yl) --+ (X2, Y2) in the R-product
X x Y. Then f(XI, Yl) = Xl and f(X2, Y2) = X2· But f(XI, Yl) = Xl --+ X2 =
f(X2, Y2) hence f(XI, yI) --+ f(X2, Y2) and so f is an R-morphism. D

It is interesting to note that we can extend the notion of relational structure to
the corresponding set of morphisms from one relational structure to the other.
Let X = (X, R) and Y = (Y, S) be binary structures. We define a binary
structure Hom(X, Y) whose base set consists of all homomorphisms from X
to Y. Here, we have that if f and 9 are two such homomorphisms, we define
f --+ 9 if f(x) --+ g(y) whenever X --+ y.

Proposition 4.2.3. For an arbitrary object Y in R we have the following:
Hom(Y, Xl x X2) ~ Hom(Y, Xl) x Hom(Y, X2).
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Proof. To the map p : Y ---+ Xl X X2 in Hom(Y, Xl x X2) we assign

Here, the projections 7ri : Xl X X2 ---+ Xi, i = 1,2 are R-morphisms by Propo-
sition 4.2.2. Let y E Y, then to a pair ofR-morphisms (J,g) E Hom(Y,XI) x
Hom(Y, X2) we assign a map y I--t (J(y), g(y)) E Xl xX2. Furthermore we have
themapsp I--t 7rlpandp I--t 7r2pwherep E Hom(Y,XlxX2),7rIP E Hom(Y, Xl)
and 7r2P E Hom(Y, X2). But these maps are transformed by the evident bi-
jection above into the maps; (J, g) I--t f E Hom(Y, Xl) and (J, g) I--t 9 E

Hom(Y,X2).

o

This isomorphism of relational structures can be expressed equivalently as

follows: For each pair of maps XI.......£_Y~X2 there exists exactly one map
p: Y ---+ Xl X X2 such that f = 7rIf and 9 = 7r2g. This is a categorical product.
Larose and Tardiff in [29] construct an analogue of the classical homotopy
groups using pointed objects in Rand R-morphisms. For each object (X, *)
in R, they define a sequence ak(X, *), kEN U {O} of homotopy sets. A loop
based at Xo in the structure X can be regarded as a sequence Xl, X2, ... ,Xn, Xo
of elements of X such that XOeXI, X2eXI, X2eX3, . .. as displayed in fig. 4.1
below.

Figure 4.1:
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The loop in fig. 4.1 represents the sequence

where each arrow belongs to the relation ex. The concept of homotopy is
in this case mimicked by the connectivity of the class of loops based at Xo·

The one way infinite fence JF acts as the unit interval in this case. Note that
there exists a path from Xi to Xj if and only if there exists a homomorphism
f : JF --+ X and an integer N 2: 0 such that f(O) = Xi and f(n) = Xj. Loops of
different lengths are accommodated by defining a homomorphism from the one
way infinite fence which is equal to Xo almost everywhere. To define the kth
homotopy, one simply replaces Ik with JFk. Thus, the elements of ak(X, xo)
are essentially of the form JFk --+ (X, xo).

Theorem 4.2.4. For each k, we have ak(X x Y) rv ak(X) x ak(Y).

Let X and Y be relational structures with base point Xo and Yo. Consider
any f : JFk --+ X X Y representing an arbitrary element of ak(X x Y). Let
7r1 0 f = iI and 7r2 0 f = 12 where 7r1 and 7r2 are projection maps. Suppose
that g : JFk --+ X X Y represents the same element of ak(X x Y) as f, i.e.,

[f] = [g] E ak(X x Y),

Then there is an R-morphism (cf. Larose and Tardif [29]) H : JFk xJFm --+ XxY
for some m such that

H(t,O)

H(t,m)

H(t, s)

f(t) 'ti t

g(t) 'ti t
k

(xo, Yo) E X x Y whenever IIti(ti - N) = O.
i-I
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Then we have that

I, rv gl via the homotopy ?rl 0 Hand

12 rv g2 via the homotopy ?r2 0 H.

Therefore, there is a well defined map

defined by

</>([f]) = (?rIO [f],?r2 0 If]) = ([?rlof], [?r2 0 f]) = ([!l], [12])

We prove that this map is an isomorphism.

Proof. That </> is a group homomorphism if k 2: I is obvious. To the map
f : JFk -+ X X Y a representative of one of the components of (J"k(X x Y), we
assign. (?rlof,?r2 01). Note that ?rl 0 f : JFk -+ X, hence [?rIO fl E (J"k(X).
Similarly, [?r2ofl E (J"k(Y). Hence we have ([?rlof], [?r2of]) E (J"k(X) X (J"k(Y). To
the pair of maps (!l, h) : (JFk, JFk) -+ (X, Y), i.e., ([!l], [12]) E 6k(X) x 6k(Y),
we assign a map j : t f---t (!l(t),h(t)) where t E JFk. Note that [jl may
be regarded as a component of (J"k(X x Y). Consider the maps [fl f---t [?rIO

fl and [fl f---t [?r2 0 fl. These maps are transformed by the evident bijection
above into the maps [(!l,h)l f---t [ill and [(!l,h)l f---t [hl· Note that these
are maps from (J"k(X x Y) onto (J"k(X) and (J"k(Y) respectively. This completes
the proof. D

4.3 Barycentric subdivision

Given a relational structure (X,O), an object in R. By an ordered k-tuple of
(X, 0), we mean a R morphism x : Ak -+ X where Ak = {I, 2, .., k} for kEN
with the usual order in N. The map "point" x is an increasing ordered k-tuple
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and can be written as a "cordi nate" on X, thus

Note that the set {Xl, X2, ... , xd is a totally ordered subset of X and that
Xi -t Xk for all i E Ak. In general, the relation fJ is not antisymmetric, hence

some entries may be repeated.

Definition 4.3.1. Let X be a relational structure, then its barycentric subdi-

vision X' is the set of all finite chains in X.

Then X' is a poset, the relation being given by subset inclusion. Here, a finite
chain is the image of an R-morphism h : A -t X, where A is a finite subset of

the poset N

Proposition 4.3.2. (cf. [26]) The association X -t X' is a functor from the

category R to Pos.

Proof. For an R-morphism 9 : X -t Y we define a morphism of posets g'
X' -t Y' as follows. For a finite chain C in X, we let g'(C) = {g(x) : X E Cl·
Then g'(C) is a chain in Y, moreover, if C, DE X' and CCD, then g'(C) C

g'(C). Thus g' is well defined and is a morphism of posets. 0

Larose and Tardif [29] further show that for each poset X, there is a natural
isomorphism

where TX is the associated topological space. In this way, we have that the
associated concept of weak homotopy equivalence can be constructed in R.
They give a proof that for (X, fJ) a connected structure, and X' its barycentric
subdivision, there is a weak R-homotopy equivalence

j3: X' -t X.
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Hence [26] if f : (X, e) --* (Y, e) is a map of pointed relational structures, there

is a diagram

X'~Y'

ex 1 l~Y
X~Y

which in general might not be commutative at the level of maps. But the
corresponding diagram

u(X') ~ u(Y')

(T(~X) 1 1(T(~y)
u(X) -;ur u(Y)

of induced homotopy groups and group homomorphism is commutative. With
regard to this scenario, one may take a further step as what follows in the next
section.

4.4 Objects of R as models

Hardie and Witbooi [25], Hardie et. al. [24], [23] use objects in R to model
some topological concepts which would have been otherwise difficult to visu-
alise using their classical definitions. We give a formal definition.

Definition 4.4.1. (cf. [6]) Let A be a topological space. A finite R-object X
is a model of A if it is weakly homotopy equivalent to X.

Let Ao and Al be topological spaces and Xo and Xl some relational structures.
Then an R-morphism f :Xo --* Xl is a model of the Top-morphism 9 : Ao --*

Al if there are weak ,homotopy equivalences ho and hl making the following
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square commutative.

IX'ol~IX~1
ho1 1hl

The underlying reasoning is that ([26]), an object X of R. becomes a model
of a polyhedron IKX/I via the homotopy equivalence IKX/I ~ X' !!!....r X.
Likewise, a map of polyhedron IK!,I : IKX/I ---+ IKy/1 can be modelled by the
n morphism j :X ---+ Y where j' is the barycentric subdivision of the map j.

4.4.1 Notation

In what follows in the thesis, we adopt the following notation. Recall that in
Section 3.2, we used the letter S to mean the suspension of a space. To avoid
some confusion, we write S" to mean the n-sphere, whereas Sn represents an
n-point model of the circle.

4.5 Model of Sl

As an example, we illustrate that there is a weak homotopy equivalence be-
tween a 4-point model and the 1-circle SI. We construct the 4-point model as
follows: From the fence lF4 below,

I :3/~/~
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we identify the points 0 and 4 to obtain IF4/ (0=4)

2/~
3 I~/

4

Denote this set by Y = {I, 2, 3, 4o}. This model is a poset and recall that in
Section 2.8, we can functorially associate a topological space that admits a To
separation to it. We define a map f from the Hausdorff space SI = X onto
the finite model Y as follows.

I ,t = 0

2 ,O<t<7T
f( cos t, sin t) =

3 , t = 7T

4 ,7T< t < 27T

We show that f :X ~ Y defined in this way is a weak homotopy equivalence.
To illustrate this, we consider open sets

37T
Xl {(cost,sint) : 0 < t < 2} and

X2 - {(cost,sint) : 0 < t < ~ U7T< t ~ 27T} on SI.

We have Xl UX2 - X and

XlnX2 {(cost,sint);O<t<~U7T<t< 3;}
{(cos t, sin t) ;0 < t < ~} U {(cos t, sin t); 7T< t < 3;}.
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On the finite model Y, we consider the open sets

Yl = {2, 3, li} and

Y2 = {2, I, li}.

Yand

{2, li}.

The open sets Xl, X2, Yl and Y2 are contractible, hence f lXI: Xl -+ Yl and
f IX2: X2 -+ Y2 are weak homotopy equivalences. The subset Xl n X2 is a
disjoint union of two contractible sets, each mapped onto some contractible
subset of Yl n Y2, hence f IXlnx2: Xl nX2 -+ Yl n Y2 is a weak homotopy
equivalence. We note that Xl, X2 are open sets in X and Yl, Y2 are open sets
in Y and that Xl UX 2 = X and Yl UY2 = Y.

By Theorem 3.2.5, we have that the map f : SI = X -+ Y as defined on the
entire X is a weak homotopy equivalence. In this way, we have shown that
there is a weak homotopy equivalence from SI to our four point model IF'4/ (0=4).
It should be noted as elaborated in the context of minimal finite models in [6]
that this construction is one of the many possible models weakly homotopy
equivalent to SI.

42

https://etd.uwc.ac.za/



Chapter 5

Closure spaces

In this Chapter, we discuss closure spaces. Closure spaces have been studied
by many authors including E.Cech [10]. Our interest is particularly in the
relation between closure spaces and binary relational structures. In Section
5.1, we give a brief note on closure operators. Similar to J. Slapal in [44], we
further show that a binary relation induces a closure on a relational structure.
Conversely. There is [44] a Galois correspondence between closure spaces and
a-nary relational structures. In this line, we give (Section 5.2) some mutually
inverse functors between the category of closure spaces and that of relational
structures. In Section 5.3 we study the notion of a quotient on a closure space.
Here, the quotient is constructed by way of the relation induced by the closure
operator.

5.1 Closure operators

Let U be some set of interest. Recall that 2u denotes the set of all subsets of
U. We define a closure operator.

Definition 5.1.1. A map a : 2u -+ 2u is said to be a closure operator if it
satisfies the following axioms:
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(i) A ~ aA, (extensionality),
(ii)A ~ B implies aA ~ aB (monotonicity).

Definition 5.1.2. The pair (X, a) where a is a closure operator defined on
the set X is said to be closure space.

A closure space is a generalisation of topological space. If in addition, a
satisfies the following axioms,
(iii) aaA = a2 A = aA (idempotence),
(iv) a0 = 0
(v) a(A U B) = a(A) U a(B),
then the five axioms collectively are known as the Kuratowski axioms. In this
case, this defines a unique topology on U. Let a subset A of U be said to be
closed if and only if aA = A. We have that each Kuratowski closure operator
a gives a unique topology T = {A' ~ UIA - A' is closed} on U.

We denote by Clo the category of closure spaces and continuous maps. Here,
continuity of a map f : (X, a) -+ (Y,,6) is in the sense that f(aA) ~ f3f(A)
whenever A c X. When a closure operator satisfies axiom (iii) of Definition
5.1.1, declaring the open sets to be the collection T = {A' E U IA - A' is closed}
is a functorial association from the category Clo of closure spaces and contin-
uous maps to the category Top of topological spaces and continuous maps.

Definition 5.1.3. Let a and f3 be closure operators on A, then a :::;f3 if and
only if aA ~ f3A.

In the usual way, take a binary relation B on a set U with BeU x U to mean
the pair (U, B). Let a be a closure operator on U. Similar to J. Slapal in [44],
we define a binary operator on U as follows:

b(a) = {(x,y) E U2: y E a{x}}

Clearly, the construction b(a) is a binary relation on U with respect to a. This
is because xb( a)y always implies x is in the closure of y. For a binary relation
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() on U, let fe : 2u ---t 2u be the map

feA = A U {y EU: there exist x E A such that x()y}.

Proposition 5.1.4. The map feA = A U {y E U;:J x E A : x()y} defines a
closure operation on U.

Proof. We show that [o satisfies all the closure axioms.

(i) fe0 = 0 U {y E U;:Jx E 0 such that x()y} = 0 U 0 = 0

(ii) Let x E A, then by definition of feA, if x E A, then A <; feA

(iii) Suppose A <; B <; U, then by (ii) we have A <; feA and B <; feB.
x E feA implies x E A U {y E U;:Jx E A: x()y} but A <; B, hence
x E B U {x E U;:Jx E B :3 x()y} but this simply means x E feB. Thus

we have feA <; feB.

o

We have a result following [44].

Proposition 5.1.5. For a set U, we have the following.

(i) fb(o.) ~ a for each closure operation a on U and that,

(ii) () <; bUe) for any binary operation () on U.

Proof. To prove (i), we need to show that for A <; U, fb(o.) <; aA. Let a E

fb(o.)A, then by definition of fb(o.)A, we have a E Au {y E U;:Jx E A : xb(a)y}.
That is either a E A or a E {y EU: :Jx E A : xb(a)y}. Since A <; aA and
{y E U;:Jx E A : xb(a)y} <; aA then their union fb(a) must be contained in
aA. Thus a E aA =} fb(o.)A <; aA and that fb(o.) ~ a. We prove (ii) as follows,
let () be a binary operation on U. Suppose (x, y) E () <; U2. We have that
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bfe = {(x, y) E U2; xRfey {:} Y E fe{x}}
= {(x,y) E U2;xRfey {:} Y E {{x} U {p EU;:3x E {x} : xOp}}
= {(x,y) E U2;xRfey {:} Y = x}
U {(x, y) E U2; xRfey {:} y E {p E U;:3x : xOp}}

Thus (x, y) E bUe) and we have that 0 ~ bUe). D

5.2 Relation between Clo and R

Galois correspondences in the context of sets with an order are well known
and have a frequent occurrence not only in mathematics but have found some
diverse applications in fields such as quantum physics [9], computer science
[43] and systems biology [20]. In this section, we discuss the Galois correspon-
dence between the categories Clo and R. For each object (X, a) E Clo, put
G(X, a) = (X, b(a)), where b(a) is as already defined. For each object (X,O)
in R, put F(X,O) = (X, fe) where fe is kept as in Proposition 5.1.4. Thus F
so defined is a functor from the category of binary relational structures to the
category of closure spaces. The association G is a functor from the category
of closure spaces to the category of binary relational structures. We first recall
the concept of Galois correspondence in the context of posets.

Definition 5.2.1. Let (M, :S,,) and (N, :S<p) be posets. A Galois correspon-
dence between them consist of two order preserving functions F* : M ---+

N, G* : N ---+ M such that F* (m) :S<p n if and only if m :S" G (n) for
mE M,nE N.

These two functions uniquely determine each other. Actually, one can go
further and consider these functions as specifications of one and the same
object.

Proposition 5.2.2. The functors F : R ---+ Clo and G : Clo ---+ R preserve
the underlying sets of objects and the underlying morphisms.
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Proof. For each object A = (X, a) of Clo, the object GA = G(X, a) is of the
form (X, a*), with o" = b(a) in n. Let f : (X, a) --+ (Y,,8) be a continuous
map, then Gf: (X,a*) --+ (Y,,8*) with a* = b(a),,8* = b(,8) in R: For each
object B = (X,O) in R: the object F B = F(X, 0) is of the form (X,O*) with
0* = fe. Each relational homomorphism f : (X,O) --+ (Y, S), F f : (X,O*) --+

(Y, S*) with 0* = fe and S* = [s- This establishes a Galois correspondence
between Clo and n. D

5.3 Quotient construction in Clo and R

It is interesting that one can extend in a natural way the construction of
quotients on sets to that of closure spaces and relational structures. We first
recall some of the basic concepts of quotient construction on sets.

Definition 5.3.1. Let q : X --+ Y be a surjective map between topological
spaces X and Y. Then q is said to be a quotient map if and only if a subset B
of Y is open whenever q-l(B) is open in X.

Equivalently this is true when the open sets are replaced by closed sets. The
relation between quotient maps and continuous maps is as follows:

Suppose q : X --+ Y is a quotient map and f : X --+ Z is a continuous map
constant on each set q-l(B) with BeYand that

then there is a unique continuous map 9 :Y --+ Z such that 9 0 q = f, and we
say that 9 is induced by f.

The notion of a quotient map helps us construct a quotient space. Let the
space Xn be the partition of some space X into disjoint subsets whose union
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is X. Let 'Jr : X -+ X~ map each point of X to some subset containing it in
X~. We turn X into a topology by declaring some subset B of X~ to be open
if and only if 'Jr-l(B) is open in X, hence 'Jr is a quotient map. The space so
defined is a quotient topology and is the finest topology for which the map 'Jr

is continuous. X~ together with this topology is called the quotient space.

Definition 5.3.2. Let q : (X, jj) -+ (Y, v) be a Clo morphism. Then the map
q is said to be a quotient map in Clo if it satisfies the following property.
Given any A ~ Y, then v(A) = q(u(q-l(E))).

We have the following result.

Theorem 5.3.3. (cf. Hardie and Witbooi [26]) Let (X, u) be any closure space
and Y any set. Consider any surjective function f : X -+ Y of sets. For any
subset B ofY, let vB = fuf-l(B). Then the following holds.

(a) The operation v is a closure operation on Y.

(b) The induced map f : (X, u) -+ (Y, v) is continuous.

(c) Given any closure space (Z, w) and a function 9 : Y -+ Z for which go f
is a continuous fog: (X, u) -+ (Z, w), then 9 is continuous.

Proof. Let B be a subset of Y, then f-l(B) ~ X for every f : X -+ Y and
B ~ Y. That u is a closure operator on X implies that f-l(B) ~ Uf-l(B).
Let y E f-l(B) => y = f(x) E f[uf-l(B)] for some x E Uf-l(B). That
is, f[f-l(B)] ~ f[uf-l(B)]. Note that this implies B ~ vB, hence, the
closure axiom (i) is satisfied. Let Bl, B2 be subsets of Y with Bl ~ B2. Then
f-l(Bl) ~ X and for each x E f-l(Bl), there is ayE B2 such that x =
f-l(y) ~ f-l(B2). Thus f-l(Bl) ~ f-l(B2). Since u is a closure operation
on X, we have Uf-l(Bl) ~ Uf-l(B2). For each y E f[uf-l(Bl)], we have
some x E Uf-l(B2) such that y = f(x) ~ f[uf-l(B2)]. Thus [fuf-l(Bl)] ~
f[uf-l(B2)] and we have that Bl ~ B2 => VBl ~ VB2, this satisfies closure
axiom (ii). We show that the induced map f is continuous as follows; Let
A c X, then vf(A) = fuf-l[f(A)] = fu(f-l(f(A))) = f(uA) thus (b) holds.
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To prove part (c), consider any set B c X. We have g(vB) = g(fuf-I(B)) =

go f(uf-I(B)) = go f(uf-I(B)) ~ w(g 0 f(f-I(B))). The last inclusion is as

a result of the continuity of 9 0 f. Furthermore we have w(g 0 f(f-I(B))) =

wg(f(f-I(B))) = wg(B). Hence, for every B c X, we have g(vB) C wg(B).
Therefore 9 is continuous. 0

Definition 5.3.4. Let q : (X, ex) ~ (Y, ey) be a n- morphism. The map q
is a quotient map (in n) if for any points Yl, Y2 E Y, (Xl, X2) E ey if and only
if there exists Xl E q-I(YI) and X2 E q-I(Y2) such that (Xl, X2) E ex·

Consider a closure space X with u a closure operator on X. Let an equivalence
relation r- on X be defined as follows;

X f'V Y ¢:} xE u{y} for each x, Y E X*.

Then the quotient X = (X*, "') is called an equiclosure space. The collection of
equiclosure spaces and maps of objects X ~ Y being functions XI "'~ Yl",
such that X* ~ Y* is a continuous map of closure spaces forms a category

Eclo of closure spaces.

In the case where X = (X*, "') with X* a topological space, we say that X is
an equilogical space. The object X is in the category EqI of the equilogical
spaces. EqI forms a full subcategory of Eclo. This is because, by definition of
the morphisms between X and Y, we have HomEql(X, Y) = HomEclo(X, Y).

It is interesting to note that we have an interrelation between closure spaces
and relational structures. That a closure operator induces a relation on a clo-
sure space. Similarly, a relational structure enjoys some closure properties.
Recall (Section 4.1 and Section 4.5) that one may construct models by taking
quotients on a relational structure. Furthermore, in the case where the rela-
tional structure satisfies a topological property (To in our case), we may regard
the model as an object in the category Eql. The relation between EqI and
Eclo present an avenue to understand constructions that arise out of taking
quotients, for instance models in R:
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Chapter 6

Category with a cylinder object

In this chapter, we discuss the notion of a cylinder object in a category. In
particular, a non-Hausdorff version of a cylinder object. The main references
are K.A Hardie et al. [23], K.H. Kamps and T. Porter [28] and P.J Witbooi

[51].

6.1 The cylinder object

Recall in Definition 3.1.1 that a homotopy between functions J, g : X -t Y in
Top is a map of the form:

H : X x I -t Y such that H(x,O) = J(x), H(x, 1) = g(x) 'ti x E X.

The underlying concept is that the homotopy theory in Top is induced by
constructing the cylinder X x I on a topological space X and then finding an
extension for the restriction of the functions to the two ends of X x I. Further,
defining a collapsing map taking the points (x, t) to x for all x EX, tEl.

Definition 6.1.1. (cf. Kamps [28]) A cylinder Junctor T, on a category C is
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a functor
_xI:C----+C

together with three natural transformations.

io : I de ----+ _ x I

il : Ide ----+ _ x I

(J : _ X I ----+ Ide

such that (J 0 io = (J 0 il = Ide.

In Top, taking the unit interval I = [0,1], we have that the space X x [0,1] is
a cylinder on a topological space X. The cylinder functor in this case is

X x [0, 1] : Top ----+ Top

where the natural transformations are given by the restrictions of the functions
to the two ends of the cylinder

io (x ) - (x, 0),

il(x) - (x,l),

and the collapsing map (J(x, t) - x.

We define the notion of a non-Hausdorff double mapping cylinder.

In the subcategory Fpos of R, this construction can have the following inter-
pretation. Let A be a finite poset, with order ::; on it. We first replace the
unit interval by some poset

1
II= ° f-- - ----+ 12

The cylinder in this context is

AxII:R----+R

51

https://etd.uwc.ac.za/



where the natural transformations are given by

*io : a 1--+ °
"a : (a, t) 1--+ a

with some additional relations *a(a, t) ::; *io(a) and *a(a, t) ::; *i1(a) for all
a E A and t E II. Here, the points ° and 1 are understood to be the two ends
of the non-Hausdorff cylinder.

Definition 6.1.2. (cf. P. Witbooi [23]) Let iI :A -+ X and 12 : A -+ Y be a
pair of poset maps, then the non- Hausdorff double mapping cylinder of iI and
12 denoted M(iI, h) is the poset obtained from the disjoint union X +A+Y of
finite posets by imposing some additional relations a::; iI(a), a::; h(a) VaE
A.

Remark 6.1.3. Note that the non-Hausdorff double mapping cylinder M(iI, h)
is a quotient space obtained from the disjoint union X + A + Y.

The poset IIcan be related to the usual unit interval [0, 1] in JR in the following
way: Witbooi in [49] (proposition 3.2) defines a map h : [0,1] -+ IIwhere

1
01--+0, (0,1) 1--+2' 1 1--+1

which can be looked at as a homotopy from [0,1] to II. It was proved in [33]
that for each cotriad in Top, the map h induces a weak equivalence from
the ordinary double mapping cylinder to the non-Hausdorff double mapping
cylinder. We shall return to these concepts in Chapter 7 where following [25],
[24], [23] and [49], we give some examples of non-Hausdorff mapping cylinders.
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Chapter 7

Pairings in a category

7.1 Introduction

In this chapter, we present the notion of a pairing in a category, following Oda
[36]. Further, we model some pairings by posets and order preserving maps as
from Hardie et al. in [25], [24] and [23]. We work in pointed categories. Recall
that a pointed category is one which has a null object (i.e the initial and final
objects are isomorphic); we denote it by *. In particular, we will consider the
objects of the subcategory LFTo of Top. By way of the interrelations between
Top, LFTo, FPos and R (Section 2.8, Theorem 2.11.3 and Proposition 4.3.2),
the models of the pairings are in the category of relational structures and R-
morphisms.

Before we discuss the concept of a pairing in a category, we first present in
Section 7.2 the notion of homotopy relation in a category. Further, we recall
how the product relates to the pushout in a category.
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7.2 Preliminaries

Definition 7.2.1. (cf. Oda [38]) A homotopy relation in a category C is an
equivalence relation c::= among morphisms J, 9 : X ---+ Y which satisfy the
following conditions. If J c::= 9 then h 0 J c::= hog for any morphism h : Y ---+ Z,
and that J 0 w c::= 9 0 w for any morphism w : W ---+ X.

This is more general than the homotopy discussed in Chapter 3, since in Chap-
ter 3, as we were only restricted to topological spaces.

Definition 7.2.2. Objects X, Y in the category C are said to be of the same
homotopy type when there exist some morphisms J : X ---+ Y and 9 : Y ---+ X

such that goJ c::= Ix and Jog c::= ly.

Definition 7.2.3. Let C and 1) be categories equipped with homotopy rela-
tions. A functor F :C ---+ 1) is said to be homotopy preserving Junctor if when-
ever J, gare morphisms in the category C such that J c::= 9 then F(f) c::= F(g).

Given categories, one can define a homotopy relation on their product which
is induced in a natural way by the respective homotopy relations on the cate-
gories. The relation is in the following result.

Proposition 7.2.4. (Oda [36]) Suppose C and 1) are categories with homotopy
relation. Then their respective homotopy relations induce a homotopy relation
on the product category C x 1).

Proof. Let !I c::= 12 in C where !I,12 : C ---+ C' and

gl c::= g2 in 1) where gl, g2 : D ---+ D'.

Then for any other morphisms h : C' ---+ Z, w : W ---+ C, u : D' ---+ Y and
v : X ---+ D, we have that (!I, gl) c::= (12, g2) will imply

(h, u) 0 (!I,gl) = (h 0 !I,u 0 gl) c::= (h 0 12, u 0 g2) = (h, u) 0 (12, g2).
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We therefore have that the homotopy relation (h 0 h, u 0 gI) ::::::(h 0 12,u 0 g2)
is induced by the respective homotopy relations in C and V. 0

In general, one can define a pairing in a category as in the case of [38], if the
category has a pseudo product and pseudo-coproduct. In this thesis, we work in
a category which has product, coproduct and zero object. The pseudo-product
is given by the product, the pseudo-coproduct in given by the coproduct [37].
We recall some details on how the object X x Y relates to X V Y the one point
union (pushout) in a category. Let the morphism which factors through the

null object * be denoted by * : X --7 Y, thus * : X --7 * --7 Y.

Write 6x :X --7 X X X to mean the diagonal map, as in the pullback diagram

X

~
XxX~X

Ix ! 1
X *

Dually, we write the folding map \Jx :X V X --7 X as in the pushout diagram

* X

1 !
x~xvX

~ X

Ix

For instance, restricted to categories which are constructs, one may write

6x(x) = (x, x) and the dual \Jx(x, *) = * = \Jx( *, x) for every x E X.

Consider the following for the product:
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We have il(x) = (z;») and i2(y) = (*,y) are inclusions, PI(X,y) = x and
P2(X, y) = yare projections for any x E X and x E Y. These maps satisfy the

following:

Similarly, for the one point union,

where jl(X) = (x, *) and )2(Y) = (*,y) are inclusions, ql(X, *) = X,ql(*,Y) = *
and q2(X, *) = *, q2( *, y) = yare projections for any x E X and Y E Y. These
maps satisfy the following:

It is easy to see that we have an inclusion map j : X VY --+ X x Y where

j = (ilO qi, i2 0 q2).

7.2.1 Definition of a pairing

Definition 7.2.5. If X, Y and Z are objects in a pointed category, then a
morphism Jl : X x Y --+ Z is a pairing with axes f :X --+ Zand g : Y --+ Z if

it satisfies
Jl I X V Y ~ \lz 0 (f V g) --+ Z,

that is, the diagram

is homotopy relation commutative.

In the case where we have a multiplication m : X X X --+ X on a topological
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space X such that m has a two sided homotopy unit, that is the diagram

XxX m X

jI Isr x
XVX~XVX

is homotopy relation commutative, then X is said to be a Hopf space. In what
follows, we present some models of pairings.

7.3 The multiplication f-L : 88 x 88 ---t 84

At this point, we show as presented in [24] by way of an example that the
connected To spaces S4 and its barycentric subdivision Ss admit a non-trivial
pairing with axes f where f : Ss --+ S4 is a weak homotopy equivalence. The
model of SI is as in Section 4.5 where we represented SI by its finite four
point model S4 obtained from the quotient space IF4/O=4. For convenience,
we take a slight modification of the model in Section 4.5 as follows: we write
i = 3, -i = 1,1 = 2, -1 = 4. This is done so that we get a multiplication
reminiscent of the complex number multiplication. Hence we have

-'t

Figure 7.1:

and its barycentric subdivision (S4)' = Ss is in the diagram below.
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88=

-1+i-i-1+i

r r
-1 1

! !
-1-i--1-1-i

. 't .

1 1
-1 1

j j
·--1-·

In the diagram of 88, the square on the extreme right has some dots in the
place of -1 + i, 1 + i, -1 - i and 1 - i for simplicity. The (complex number)
multiplication of 84 x 84 -t 84 is represented by the grid in Figure 7.2. In the

-i=-i-1 i---1

r r r r r
-1=-1--i-1 i

! ! ! ! !
i i--1--i--1

r r rtt
1 1 i--1--i

II II II II
x 1--~i--1--i

Figure 7.2:

grid, the column on the left as well as the row on the bottom each represents
a copy of 84. The double lines between the points on each of the 84 and the
respective points on the second column and the second row from down imply
equality. In particular, an arrow in any direction is permissible.

Lemma 7.3.1. The complex number multiplication x : 84 x 84 -t 84 fails to

be order preserving.

Proof. On the grid (fig. 7.2) which represents the multiplication x : 84 x 84 -t
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S4, consider the small square near the upper left corner of the grid,

-i-1

1 1
-l--i

We see for instance that -i -+ 1 and -i -+ -1 . The directions of the arrows
are not in line with the arrows between the respective points on S4 in Figure
7.1. This clearly shows that x : S4 X S4 -+ S4 is not continuous. D

We now consider a different map p, : Ss X Ss -+ S4' We define the map p, as

follows:

1-1--i- -1----1---1--i-1-1-1
~ t t t t t t t t t
·-l--i -i -i- -1- -i - -i - -i-1t t t t t t t t t t
-i-1-1-1--i - -1----1---1- -i-1
~ t t t t t t t t t
·-- -i - -i -l--i-i -i - -1- -i --it t t t t t t t t t
-1---1- -i-1-1-1--i- -1----1---1
~ t t t t t t t t t
·----1- -i- -i - -i-1--i-i -i--1t t t t t t t t t t
i - -1----1---1- -i -l-l-l--i --1
~ t t t t t t t t t
·-i -i - -1- -i - -i - -i-1--i-it t t t t t t t t t
1-1--i- -1----1---1- -i -1-1-1

t ~ t ~ t ~ t ~ t
P, 1--·-i-·--1-----·---i~·-1

Figure 7.3:

The multiplication can be explained as follows: The grid represents lFs x lFs
where lFs is the 8 point fence. When we identify 0 and 8 in lFs, we obtain Ss.
So we can view this grid as representing Ss x Ss. Now in place of (x, y) in
Ss x Ss we put p,(x, y) where of course ui», y) E S4.
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Checking for associativity, we see for example that

1-"(1-"(1, -l),i) = 1 1= 1-"(1, 1-"(-1, i)) = 1-"(1, -1) = -1,

hence this property fails. The element 1 fails to be the strict identity for this
multiplication. For example, consider 1-"(1, i) = -i 1= i. Nevertheless, since
1-"(1, x) = I-"(x, 1) for all x E S8, 1 can be regarded as a right and left homotopy
identity. The function I-" so defined is base point preserving taking the point 1

onto 1 E S4. The following result appears in [24].

Lemma 7.3.2. The function I-" : S8 X S8 -t S4 as described is order preserving.

Proof. By inspecting the grid in Figure 7.3 which represents I-" : S8 X S8 -t S4,
we observe that the arrows in the cartesian product are in line with the partial

order on S4. D

Proposition 7.3.3. The function I-" : S8 X S8 -t S4 defines a non trivial pairing
with axes f and l, where f : S8 -t S4 is some weak homotopy equivalence.

Proof. The left column and the bottom row in the diagram for S8 x S8 each
defines a map S8 -t S4. Note that it winds the 8-point circle once around
S4. Hence by [24] (Theorems 0.1 and 0.2), we have that the map f : S8 -t S4
is a weak homotopy equivalence. Since the map S8 x S8 -t S4 is continuous
(Lemma 7.3.2), we have that the diagram

S8 X S8 __:_J1. __ S4

iI I~S4
S8 V S8MS4 V S4·

is homotopy relation commutative. This completes the proof. D
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7.4 Model of Hopf map

In Section 7.3, we discussed the existence of an order preserving map J-l :

S8 X S8 ----+ S4' In this section, we take a step further. Using the notion of
the non-Hausdorff join and suspension, we use the map J-l to model the Hopf
map. The Hopf map h : S3 ----+ S2 was the first example of a null homotopic
map from a higher dimensional sphere to one with a lower dimension [14]. The
construction we give closely follows that of [24]. We first give some definitions.

Definition 7.4.1. Let X be a poset. The non-Hausdorff Cone ex = (X, x)
of X is the poset equipped with an additional point x as upper bound.

Definition 7.4.2. The non-Hausdorff suspension, §X = (X, n, s) is the union
of two copies of ex such that their intersection is X.

These constructions are analogous to the cone and suspension as defined in
Section 3.2 for Hausdorff spaces. We define the non-Hausdorff join of X and

Y to be the poset
X ® Y = CX x Y UX x cr.

Let X, Y and Z be finite posets and J-l : X x Y ----+ Z a pairing with axes

f :X ----+ Zand 9 : Y ----+ Z.

Using the non-Hausdorff join, we construct a map r(J-l) : X ® Y ----+ §Z as

follows (cf. [24]):

I'(u) (x, y) = ui», y), r(x, y) = ii, I'(z ,y) = s (x EX, Y E Y).

Note that the sphere S2 is weakly equivalent to the poset X displayed below:

-1--i-n

X~ XX
1 i~s.
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We take iL and s to denote the north and south poles on S4' r(p,) is a map
of posets in the category Pos. Thus we can apply the functor K described
in 2.11.3 on f(p,). The homotopy class IKf(p,)1 is equivalent to the class
of the Hopf construction IKp,I. We give a sketch to represent f(p,) where

p, : Ss X Ss ---+ S4' First observe that

8s ® Ss - CSs x Ss U Ss x CSs

- Ss x Ss U Ss x (y) U (5:) x Ss·

This is a finite model of the 3-sphere. Ss x Ss has 64 points, Ss x (Y) and (5:) x Ss
have 8 points each. Thus the model has 80 points. The associated poset is
given in Figure 7.4. The diagram is to be interpreted as follows: We consider

.--.-.--.-.--.-.--.-
Figure 7.4:

the figure to be a k x l grid denoted by T(k, l) where 1 < k < 9,1 < l ::; 9. In
this case, k represents the rows and l the columns. The subposet (5:) x Ss i.e.,
T(9,l) is represented by the larger bullets at the bottom of the diagram. The
bullets on the left hand extreme ofthe grid i.e., T(k, 1) represents the subposet
Ss x (y). The inside of the diagram i.e., T(k, lh~k~S, 2~I~S constitutes an 8 x 8
grid of smaller dots which represents the product p, : Ss X Ss ---+ S4 as discussed
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in Section 7.3. The arrows on the extreme right edge have their sources, the
small dots on the left hand side of the 8 x 8 grid thus completing the circles. In
a similar manner, the downward pointing arrows on the top edge of the 8 x 8
grid T(k, lh'Sk'SS, 2'SI'SS have their sources the small dots on the bottom of the
grid. The subposets Ss x (iJ) and (x) x Ss each has arrows between their points
whose intention is to complete the circle. The double lines between the bullets
and the grid represent equality between representative points in the column
(row) to the bullet in the column (row). Hence an arrow in either direction is

permissible.

7.5 The construction r(t-t)

In [24], where the map is constructed, the function I'(u) is described as follows.
Each point of the grid is sent to a respective point as described in Section 7.3.
The "larger" bullets on the left edge are all identified with the point (s) and
the bullets on the lower edge are all identified with the point (iL). Hence, we
have that the map r(J.l) : Ss ® Ss --+ §S4 is induced by the diagram

Ss~Ss X Ss~Ss

! ~! !
iL 4--n-- S4 --8- ....S

where J.l is a pairing, 7r1 and 7r2 are projection maps. The map r(J.l) is a Hopf
construction which is a Model of the Hopf map S3 --+ S2.

The join Ss ® Ss = CSs x Ss U Ss x CSs as in Section 7.4 is a special case of
the non-Hausdorff double mapping cylinder. We have that Ss ® Ss = M(7r, 7r)

where the projections are given by 7r : Ss X Ss --+ Ss. In relation to the model
of the Hopf map I'(u) : Ss ® Ss --+ §S4, we have that the suspension §S4 is
equalto M(n, s), where the maps n : §S4 --+ iL and s : §S4 --+ S. We have
that the non- Hausdorff suspension §S4 is a special case of the non- Hausdorff
double mapping cylinder. Hence the model of the Hopf map can be looked
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at as a map r(f.l) : M(7r,7r) ---+ M(n, s) of the non-Hausdorff double mapping

cylinders.

7.6 Model of generalised Whitehead product

The Whitehead product on the homotopy groups of a space is constructed as
follows. Let If] E 7rn(X), 19] E 7rm(X). When it is clear from the context, it is
convenient to write f in the place of [f]. Thus, we may represent If] and 19]
by

f : S" ---+ X,

9 : S'" ---+ X respectively.

We then denote by
w = If, g] E 7rn+m-l(X)

the map derived as follows: The product S" x S"' can be obtained by attaching
an n+m cell to the one point union SnV S'" by the attaching map a : sn+m-l ---+

S" V sm. Thus composing the wedge sum

(I, g) = {3 : S" V sm ---+ X

with an attaching map a we obtain the map

w = If, g] = a 0 (3 : sn+m-l ---+ S" V S'" ---+ X.

The term [I,g] is the Whitehead bracket. This resulting map has a homotopy
class which does not depend on the choice of the representative maps. For
example, in the fundamental group 7rl(X, *), we have that

64

https://etd.uwc.ac.za/



and this is the usual commutator in a group. Let

A ® B = A x CB UCA x B ~ CA x CB

denote the join of the spaces A and B as defined in section 7.4 and A * B the
join as in Definition 3.2.3. Then there is a natural map [5]

u : A * B - A ® B, which may be defined as follows:

_ {(a, (b, 1- 2t)) (0::; t::; ~)
lJ(a,b,t) -

(a,2t - 1, b) (~ ::; t ::; 1)
Remark 7.6.1. In the case where A and B are polyhedra, then the map lJ is
a homeomorphism [13].

Following [25]definition 2.1, we give a definition of the generalized Whitehead
product. In short, we shall write GWP to mean the generalized Whitehead
product.

Definition 7.6.2. [25], Let a = [f] E 7l'(SA, X), {J = [g] E 7l'(SB, X) be
homotopy classes. Then the GWP of a and {J is defined to be [a, {J], that is,
the class of the composite map:

A*B ~ A®B = CA x BuA x CB ~SAV§B ~ X

where w I (A x CB) = <PB7l'2,w I (CA x B) = <PA7l'1.The maps <PAand <PBare
the natural maps <PA: CA - §A and <PB: CB - SB as defined in Section 3.2.

Definition 7.6.2 is essentially consistent with that given by Arkowitz in [5]. Let
f E 7l'(SA, X) and g E 7l'(SB, X) be a pair of maps in the category FPos of
finite posets and order preserving functions. We choose their GWP to be the
map

A®B = CA x BuA x CB ~SAV§B ~ X.

To construct the Whitehead square of the circle 82, we choose SA = §B =
X = (84? where 84 is the four point model of 81. Note that the suspension
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of 84 can be represented graphically as

-J

This is a finite model of the two sphere and we shall denote it by (84? Note
that in relation to the model of 82 in Section 7.4, we represent the antipodal
points il, and s by j and - j respectively. The maps f and 9 become identity
maps 84 ---t 84, thus the GWP reduces to

Figure 7.5 below displays the resulting GWP function.

-j __-j 4- -j __-j 4-

~~2

- j 1--i 4- -1---i 4- j -- j 4- j -- j 4- 1~ 1<-- 1~ 1--
t ~ ~ tt tt t t ~ ~ ~ ~
- j ~ 1--i 4- -1---i 4- ~ j ......j <- j -- j <- ~ i --- i ----i --- i -
tIt tt t tt t t tt t t
- j 1--i <- -1......-i <- j ......j <- j ......j 4- -1......-1<- -1---1<-

t ~ ~ tt tt t t tt t t
- Jl ......i <- -1 ---i <- j ......j <- j -- j <- -i - -i ---i - -i <-
t tt tt tt t t tt t t

Figure 7.5:

Theorem 7.6.3. (Hardie and Witbooi [25]) The function described above is

a model of the Whitehead square class in 7f3(82).

Proof. We first check the order preservation of the function. Examining the
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five components of the diagram separated by the ee- arrows. The extreme left
component describes a constant function from the subposet into the codomain
(S4)2. and there is no failure of order preservation. The second component of
the diagram from the left is a 16-point subposet, a model of SI x SI. Checking
the values indicated and the directions of the arrows displayed, and assuming
partial order as in the §S4 model of SI, we see that the function is order
preserving on this component. On the central portion, each of the entries for
each row lies below the entry -jin the row in the extreme left column and also
lie below the entry j in the same row and column of the central block. Since
the map 1/ : SI * SI ---+ S4 ® S4 is a homeomorphism, then by Definition 4.4.1,
the non-Hausdorff join S4 ® S4 is a model of SI * SI. Observe that the map w

is as follows: ¢>S7rl modelled by wlsxlCs and ¢>S7r2 by wlcsxs. This completes

the proof. D

In Section 7.7, we discuss (in model form) the relation of the Generalised

Whitehead product to the Hopf class.

7.7 Relation of the generalised Whitehead prod-
uct to the Hopf class

Since a pairing is a map in a category, a natural transformation can be applied
on it. Oda [39] applies the transformation between pairings to obtain some
properties of the Whitehead product and the I"-Hopf construction. In [25],
Hardie and Witbooi describe a commutative diagram of the form:

Figure 7.6:
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In figure 7.6, the map W S is a model of the Whitehead square of the 2-sphere
S2. The Whitehead square being the element [i2, i2] E 7r2(S2). The function e
is described as follows: Similar to the diagram for S4®S4 -+ §S4 V§S4 -+ (S4)2,
[25] further displays S8 ® S8 -+ §S8 V §S8 -+ (S8)2 as follows:

.~ . ===? .~

Figure 7.7:

The description of e uses the notion of a label-preserving function that maps
each of the five components of S8 ® S8 onto the corresponding sections of
S4 ® S4. The function e restricted to the central torus is constructed as a
l-fold covering map onto S4 ® S4. Here, the product of pairs of adjacent points
are sent to the same point. On the 8-point circles of S8 ® S8, which are the
images of the maps 7r1 and 7r2, each circle is wound exactly once around the
corresponding 4-point circle of S4 ® S4. This is done in a similar manner by
sending pairs of adjacent points to the same point. As for the torus on the far
right (the domain of the projection 7r2), when one looks at the top left corner
one sees that the corresponding point on S8 x S8 corresponds to r-I(I). This
point is sent together with the next three points of the fibre to the top left
corner point of the right hand torus of the diagram for the model of WS for
7r3(S2). The rest of the points of the fibre of 1under r are wound exactly once
around the top row of the far right torus on the model of WS for 7r3(S2).

A natural question one might ask is wether it is possible to construct contin-
uous multiplications for the 3 -sphere and the 7-sphere. Further, whether a
single barycentric subdivision as we did in Chapter 7 Section 7.3 would suf-

68

https://etd.uwc.ac.za/



fice to yield a continuous multiplication. In [23], Hardie et al. answer this
in the affirmative. They describe an order preserving function of the form
v : Op(S3)' X (S3)' -+ S3 where Op(S3)' is the poset obtained from reversing
the order relations in (S3)' (the poset (S3) is the 8-point model of the 3-sphere).
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Chapter 8

Concluding remarks

The thesis was developed from an idea of making a contribution to the pro-
gram of finding poset models of certain interesting maps that are important
in homotopy theory. One such map is a special case of the famous Hopf map
S3 ---+ S2. Finite posets, in particular the objects (finite To Spaces) of the
subcategory FTo of R provide an alternative and rich avenue for such a study.
This has much to do with the fact that besides being combinatorial in nature,
thus affording the possibility of automation when one wants to carry out some
computations (in [23] for instance), they come with an extra topological prop-
erty. The topological property such as how well a space is endowed with open
sets is closely related to its supply of continuous functions. Since continuous
functions are of central importance in topology, this property enables us to
know whether enough of them are available to make our deliberations fruitful.
Though by no means does this thesis provide a comprehensive treatment of
pairings, it does however illustrate the availability of an approach for portray-
ing similar representative maps in visual and finite terms. For instance, it
will be interesting to use finite posets to model pairings of compact lie groups.
One may further devise a general theory that models topological spaces in the
category of binary reflexive relational structures by finite poset models.
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