
Classifying non-redundancy in the HERA array

A thesis submitted in partial fulfilment of the requirements

for the degree of

Magister Scientae

in the

Department of Physics & Astronomy

The University of the Western Cape

Author: Kabelo Malapane

(Student Number: 4052809)

Supervisor: Prof. Mario Santos

Co-Supervisor: Dr. Philip Bull

https://etd.uwc.ac.za/

https://www.uwc.ac.za/faculties/ns/Physics/Pages/default.aspx
https://www.uwc.ac.za/Pages/default.aspx


Declaration

I, Kabelo Malapane , declare that this thesis, Classifying non-redundancy in

the HERA array , and the work presented in it are my own, that it has not been
submitted before for any degree or examination in any other university, and that all
the sources I have used or quoted have been indicated and acknowledged as complete
references.

Full Name: ...............................................................................

Signature: ...............................................................................

Date: ...............................................................................

i

https://etd.uwc.ac.za/



Acknowledgements

I would like to thank my supervisors Prof. Mario Santos and Dr. Philip Bull for
their mentorship and guidance throughout the research project. I also like to thank
Dr. Samir Choudhuri for taking the time to explaining and walking me through
his simulations used in this study. In the same note I thank Dr. Piyanat (Boom)
Kittiwisit for his insight on the project.

I would like to thank the National Research Foundation (NRF), South African
Radio Astronomy Observatory (SARAO) and the Centre for Radio Cosmology
(CRC) at the University of the Western Cape for providing the funding which en-
abled me to do this research project, and also providing the necessary equipments
needed for me to complete my work.

I wish to thank the Inter-University Institute for Data Intensive Astronomy, IDIA
and the Queen Mary University of London (QMUL) for providing the facilities used
for simulating, storing and analysing the data used for this study. I would also like to
thank the technical support staff that maintained the system for better accessibility
and usage.

I also wish to thank my colleagues, the members of the CRC for making post-
graduate experience a pleasant one and taking your times to organise the weekly
meetings which have been quite insightful and has made these Covid-19 times feel
less suffocating. Its been an honor and privilege to know and engage with you all.

Finally to my family, I would like to wholeheartedly thank my mother Jane
Thibela for supporting me throughout my entire life and always believing that I can
achieve anything I put your mind to. To my sister Cyncinatia who has advised me
on every aspect of life, especially on academics being a student herself. To my two
big brothers who have been a source of encouragement and support, thank you very
much.

ii

https://etd.uwc.ac.za/



Abstract

Classifying non-redundancy in the HERA array

Kabelo Malapane

M.Sc. Thesis

Department of Physics & Astronomy
The University of the Western Cape

HERA is a highly redundant radio interferometer array, where pairs of receivers
with the same position vector between them should see exactly the same signal
from the sky. We can use this fact to do a really good job of calibrating them.
Unfortunately, the receivers are not perfectly identical, and so they don’t see exactly
the same signal. This is called "non-redundancy". This project classifies the level of
redundancy using a clustering machine learning technique. The aim is to see if any
particular clustering algorithm can group different segments of the array into very
similar blocks, so we can at least do a good job of redundantly calibrating within
those blocks. We call this new calibration method, logi_cal, while the standard
calibration method used in HERA is called redcal.

We simulated six cases of non-redundancy for a 124 antenna array, and the re-
sults show that for these six cases, the calibrated antenna gain solutions when using
logi_cal have improved compared to the ones for redcal. For the case where we
stretch the primary beam, we improved the calibration by 12.2%. When we perturb
the side lobe, we get 13.6%, and for a case where the primary beam is rotated, the im-
provement is about 6.8± 0.1%. Logi_cal works for primary beam non-redundancies
and does not improve the gain solutions for positional non-redundancies in the sys-
tem.

Keywords: Non-redundancy, low frequency arrays, epoch of reionisation, Clustering
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1 Introduction

The 21 cm signal emitted by neutral hydrogen could reveal the secrets of the early
Universe and give us an accurate look into how the first stars and galaxies formed,
and how the Universe became reionized in the so-called Epoch of Reionization (EoR).
Several experiments have been designed to explore this era by measuring the 21 cm
signal to study the EoR (e.g. (Zaroubi, 2010; Parsons et al., 2010; Deboer et al.,
2017; Lonsdale et al., 2009)). To measure the 21cm signal, precision calibration is
key in separating the neutral hydrogen signal from bright astrophysical foregrounds
(Dillon & Parsons, 2016), and a highly sensitive instrument is needed to observe this
signal. The Hydrogen Epoch of Reionisation Array (HERA) is such an instrument.

HERA uses redundancy within the array to calibrate the data. By redundancy,
we mean when radio interferometer arrays are arranged into a regular pattern, pairs
of receivers with the same position vector between them (i.e. the same distance and
orientation) should see exactly the same signal from the sky. We will use simulations
of the HERA observation pipeline to train and test calibration algorithms to see how
well they perform. We will ultimately apply such algorithms to the real data from
the HERA array to classify the level of non-redundancy and compare it to what is
currently known.

1.1 Epoch of Reionisation

The evolution of the Universe, and in particular the evolution of hydrogen in the
Universe from the Big Bang to the present, has been of particular interest to cosmol-
ogists. After the Big Bang occurred, the Universe was in a hot, fully ionised state
where the neutral fraction was essentially zero. A few hundred thousand years later,
the Universe had expanded and cooled, so the hot plasma which the Universe was
composed from became electrically neutral, via the recombination process (the for-
mation of neutral atoms from hydrogen ions and electrons). The cosmic microwave
background (CMB) then free-streamed through the Universe. the Universe stayed
in a fairly neutral state for about a billion years after this. Over time, areas of
higher gas density began to collapse under gravity, and the neutral matter in the
Universe began to clump together. Eventually, the first stars, black holes and galax-
ies formed. The formation of these structures reionises the gas in the intergalactic
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medium (IGM), leading to the fully ionised gas between galaxies that we see today.

This period of time is called the Epoch of Reionisation (EoR). Figure 1.1 shows
the process of what is believed to be the evolution of the Universe. The yellow line
on the figure shows the span of the EoR, which is observable in the redshift range
of 6 . I . 15 and occurs for about 0.6 billion (between 400 million and 1 billion)
years (Madau et al., 1997; Thomas et al., 2009).

Figure 1.1: A map showing the history of the Universe, including the shift from neutral
to ionized hydrogen, resulting in the Universe we see today. The upper axis shows the time
that elapsed since the Big Bang in years, and the lower axis shows time in redshift (1 +
z). The yellow double-sided arrow shows the epoch of reionisation timeline (Kwon, 2017).

It is difficult to learn about the Universe in this era, given the limited light
emitted by the young stars and galaxies. However, new state-of-the-art telescopes
are to be deployed like the James Webb Space Telescope (JWST) to study the first
light, reionization and galaxy assembly (Windarto, 2017). Thanks to the quantum
mechanical transition between the ultrafine energy levels of hydrogen (the so-called
spin-flip transition), there is radio emission with a wavelength of about 21 cm. When
the radiation reaches the Earth, a 21 cm line for the EoR is observed at a frequency
of about 100 − 200 MHz, corresponding to a redshift range of I ∼ 6 − 12 (Bernardi
et al., 2009; Zaroubi, 2013; Deboer et al., 2017).

1.1.1 Astrophysical foregrounds

Observing the 21 cm line during the EoR is plagued by astrophysical foregrounds
and other non-astrophysical interferences (which include instrumental response, and

2
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ionospheric disturbances, to name a few). These astrophysical foregrounds are ∼ 105

orders of magnitude brighter than the 21 cm signal (Morales & Hewitt, 2004; Santos
et al., 2005; Furlanetto et al., 2006; de Oliveira-Costa et al., 2008). Of course, the
signals from these foregrounds can themselves have considerable scientific interest,
like galaxy surveys (e.g. (Hurley-Walker et al., 2017, 2019)). However, for the EoR
experiments, they are considered contaminants, which need to be separated from
the 21 cm cosmological signal.

Here we mention the astrophysical foregrounds that are major contributors to the
contamination of the 21 cm signal. These include the Galactic synchrotron emission,
Galactic free–free emission and the extragalactic emission (including extragalactic
point sources). These contribute about ∼ 70%, ∼ 1% and ∼ 27% respectively (Shaver
et al., 1999).

• Galactic synchrotron emission: The result of cosmic-ray electrons and positrons
propagating in the interstellar magnetic field. Electrons move at an angle to
the magnetic field and feel the Lorentz force; therefore are accelerated and ra-
diate in a cone-shaped beam. Their combined spectra mostly follow the power
laws. This emission is brightest in the galactic plane (from the milky way) and
includes other galaxies with any ongoing star formation or accretion activity
(Jarvis et al., 2015).

• Galactic free–free emission: Also known as bremsstrahlung (German: “braking
radiation”), from electrons scattering by ions in a very hot plasma. It is the
least well-known of the three diffuse Galactic emissions, which dominate the
mm and cm wavelength sky (Smoot, 1998). It results from the deceleration
of a charged particle when deflected by another charged particle, typically an
electron with an atomic nucleus. As the name suggests, an electron starts in
a free (unbound) state and ends in an unbound state. This type of emission
is mostly found in galaxy clusters.

• Extragalactic point sources: Includes emission from sources outside the Milky
Way, from extragalactic radio and mm/sub-mm sources, with radio galaxies
being the main sources. These include the synchrotron and free-free emission
from other galaxies.

3
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Figure 1.2: A 10◦×10◦ sky region showing maps of foreground emissions at 150 MHz from
the (a) Galactic free–free emission, (b) Galactic synchrotron emission, (c) Extragalactic
point sources, and (d) Masked extragalactic point sources (i.e. the case with the brightest
point sources removed). Every color bar is in units of ×103 < . With (d), the brightest
point sources are removed from (c), leaving a background of undetected point sources that
still contaminate. Credit: (Lian et al., 2020).

These plots show that the Galactic synchrotron emission is the major contributor,
compared to the other two diffuse Galactic emissions, to the foreground problem.
They also show that the foregrounds are ∼ 104 − 105 orders of magnitude brighter
than the 21 cm signal with a brightness temperature of a milli-Kelvin (Fialkov &
Loeb, 2013).

1.2 21 cm Signal

Studying and imaging the Universe and its progression to the current day remains
one of the exciting challenges facing modern cosmology. Hydrogen is the most
abundant element in the Universe, so finding a way to trace this hydrogen throughout

4
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time can give us a way of observing the Universe. Over the years, the observation
of the 21 cm line of neutral hydrogen (HI, pronounced "H one") has enabled the
mapping of the Universe in three dimensions, with redshift providing line-of-sight
distance information (e.g. (Pritchard & Loeb, 2012; Cisewski et al., 2014)). However,
the first HI galaxy surveys were done way before. For example, in the late 1970s,
Vera Rubin used in her discovery of dark matter, confirming Fritz Zwicky’s 1933
prediction of dark matter (Trimble, 1987; De Swart et al., 2017). The mapping of
the 21 cm line is also helped by the fact that at about 1420 MHz, this radiation
from hydrogen can pass through dust clouds and gives us a more complete map of
the hydrogen than all the optical observations.

In radio astronomy, observations of the 21 cm line have been crucial in deter-
mining the relative speed of each arm of our galaxy. It is done by using the fact
that our galaxy is distributed throughout with hydrogen, therefore by calculating
the Doppler shift of each of these lines, one can calculate the speed. It has also
helped in the calculation of the rotation curve of our galaxy, thereby allowing us to
use a plot of the rotation curve to determine the distance to certain points within
the galaxy. This scientific approach has also extended to other astronomical obser-
vations. The rotation curves of the 21 cm line are often used to track the dynamics
of galaxies. While the traditional method of observing 21 cm emission detected
lines only in relatively localized galaxies, the 21 cm line has appeared in absorption
against a background of noisy radio waves, that is, from background sources for
individual systems in redshifts I . 3 (Kanekar et al., 2007).

The 21 cm line was theoretically predicted in 1942 by Dutch astronomer H. C.
van de Hulst (van de Hulst, 1945) and was first observed in 1951 by Harold Ewen
and Edward M. Purcell (Ewen & Purcell, 1951) at Harvard, and then later by other
observers in Holland and Australia. In radio astronomy, the telescopes look for ra-
diation from the cold hydrogen gas inside galaxies. Because of the line’s narrowness
with a well-measured rest-frame frequency, it can be used as a probe for gas veloc-
ity distributions in the Milky Way and other nearby galaxies in local space. The
21 cm line has been theorized to be a crucial catalyst in the continued study of
the Big Bang, from recombination to reionization. This line has two applications.
First, by mapping the intensity of the redshifted 21 cm of radiation, in principle, a
very accurate image of the matter power spectrum at the time after recombination
can be provided (e.g. (Harker et al., 2010; Liu & Tegmark, 2011; Parsons et al.,
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2012)). Second, the radiation-ionized neutral hydrogen from stars and quasars ap-
pears as holes in the 21 cm background, indicating how the Universe was reionised
e.g. (Natarajan & Yoshida, 2014).

In quantum mechanics, the 21 cm line can be absorbed or emitted by a neu-
tral hydrogen atom, and in doing so, we have a way of seeing hydrogen. The 1420
MHz radiation originates from the transition between the two levels of hydrogen’s
ground state F=0 and is slightly split (known as hyperfine structure) by the in-
teraction between electron and nuclear spins. Due to the quantum properties of
radiation, hydrogen absorbs 1420 MHz in the lower state, and observations of 1420
MHz of emission signify a previous excitation to the upper state F=1. The transition
between states is visualised as spin-flip, where the "spin" is not a literal classical
spinning charge sphere, so there is no clear classic analogy, it is merely a descrip-
tion of the behaviour of the angular momentum in quantum mechanics. A more
scientific explanation is that it’s going between the symmetric and anti-symmetric
states. This process is shown in Figure 1.3.

Figure 1.3: The transition of the Hydrogen 21-centimeter line (Tiltec, 2021)

There are other hyperfine transitions that may be useful in probing cosmology:
(a) The 8.7 GHz hyperfine transition of 3�4+, for probing Helium reionisation (Bagla
& Loeb, 2009), and (b) the analogue of the 21 cm line, the 92 cm deuterium (Sig-
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urdson & Furlanetto, 2006). However, since these elements are not as abundant as
neutral hydrogen, it is less desirable to use them for probing cosmology. To do 21
cm cosmology, it is important to consider what’s called the cosmic microwave back-
ground (CMB, CMBR), electromagnetic radiation left over from an early stage of
the Universe (Sunyaev, 1974). The radiation from the CMB is almost isotropic and
is radiating the strongest in the microwave region of the radio spectrum, filling all
space. So since the CMB is used as a backlight, what we measure is the brightness
temperature contrast with the 21 cm line (Pritchard & Loeb, 2012).

Figure 1.4: This is an illustration of a set up of the various components relevant to
radiative transfer. We have some signal coming from the CMB with temperature )�"� ≡ )W
interacting with a cloud of hydrogen atoms with spin temperature )( , which then results in
a brightness temperature )1 that is then measured by the radio telescopes. Credit: (Day,
2015)

This brightness temperature contrast corresponds to the absorption or emission
of the hydrogen atoms. Then, that absorption or emission is going to be propor-
tional to the hydrogen density X , that is, the more hydrogen there is, the more the
absorption or emission. It will also depend on the neutral fraction j�� , which in-
dicates what fraction of the atoms are neutral. The relative population of the spin
states define the spin temperature, )( , through the relation,

(
=1

=0

)
=

(
61

60

)
4G?

{
−)∗
)(

}
, (1.1)

where 61 and 62 are the spin degeneracy factors and )∗ ≡ ℎa0/:� ≡ �10/:� =

68< is equivalent to the transitional energy �10. The detailed 21 cm line signal
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depends on the transmission of radiation through the gas along the line of sight,
the peculiar velocity term (3a ‖/3A ‖), and the background radio sources, usually the
CMB with temperature)W . According to the derivation from Furlanetto et al. (2006);
Furlanetto (2016), the observed brightness temperature )1 due to the 21cm line at
a frequency a is given by

)1 (a) ≈
)( −)W (I)

1 + I ga0 (1.2)

≈ 9j�� (1 + X) (1 + I)1/2
[
1 −

)W (I)
)(

] [
� (I) (1 + I)
3a ‖/3A ‖

]
< , (1.3)

Figure 1.4 in conjunction with Equation 1.3 shows that if )( < )W then )1 < 0

which yields an absorption signal. It yields an emission signal when )( > )W . Both
these regimes are important for the high redshift Universe however, the general
agreement is that currently, during the reionization era, emission will dominate.

8

https://etd.uwc.ac.za/



2 Introduction To Radio Astronomy

Radio astronomy is a sub-field of astronomy that deals with observations done at
radio frequencies. The first astronomical radio waves were detected by Karl Jansky
at Bell Telephone Laboratories, as he reported radiation coming from the Milky
Way (Jansky, 1932, 1933). This observation opened new possibilities in the field of
astronomy, allowing not only the observation of stars and galaxies, but also entirely
new classes of celestial objects, such as radio galaxies, quasars, pulsars, and masers
(Noordermeer et al., 2005). Early studies in observational astronomy were limited to
visible objects that lie in the optical range of the electromagnetic spectrum, that is,
anything that can be observed by the human eye. However, with the introduction of
radio observations, things we could not see before with our eyes now became visible,
like radio jets, which are material spewing from the centres of some galaxies at close
to the speed of light and emitting strong radio waves.

Observations using radio waves not only reveal new structures from the celes-
tial objects that were not visible in the optical, but these waves can also penetrate
through cosmic dust in the interstellar medium. This ability to look through dust
makes observations that could not be done in optical possible, leading to major dis-
coveries of the 21 cm hydrogen line and the cosmic microwave background (Penzias
& Wilson, 1965), which has become a staple in studying the history of the Universe.

Because of the Earth’s atmosphere, only radio and optical/near-infrared observa-
tions can be made on the ground. This is due to the Earth’s atmosphere absorbing
most of the infrared (IR), ultraviolet (UV), X-ray, and gamma-ray wavelengths, as
shown in Figure 2.1. The figure shows how narrow the optical range is, which in turn
limits the number of astronomical objects that can be studied. Because the radio
window is so broad, it includes a wide range of astronomical sources, thermal and
non-thermal radiation mechanisms, and propagation phenomena, which can all be
observed at radio wavelengths. With the number of discoveries made using optical
observations despite such a narrow window, the prospect of new scientific knowledge
that can be acquired with radio observation with such a broader window has made
a wide variety of radio telescopes and observing techniques necessary to cover the
radio window effectively.

Radio telescopes are built in different sizes and shapes, but often they are large
parabolic ("dish") antennas. These are specialised antennas and receivers built to
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Figure 2.1: This figure shows different types of astronomical observations could be made
at a given wavelength or frequency ranges. When plotted on logarithmic wavelength or fre-
quency scales the visible window is much narrower than the radio window when plotted on
logarithmic wavelength or frequency scales, indicating that in comparison, radio astronomy
includes a lot of astronomical sources and emission mechanisms. Credit: NASA/IPAC.

detect radio waves coming from astronomical radio sources (Marr et al., 2015). Their
shapes are influenced by which part of the radio window they are trying to probe.
Radio waves come from far away sources like galaxies, so their signals are very weak,
requiring large parabolic dishes to collect as much information as needed. These
radio telescopes can either be operated individually, or they can be linked together
electronically in an array. These linked antennas can be two or more, separated by
a small distance or thousands of kilometres apart.

2.1 Interferometer

The groundwork for interferometry in astronomy dates back to the optical work of
Michelson (Michelson, 1890, 1920), and Michelson and Pease (Michelson & Pease,
1921), who were able to measure the diameters of some of the nearer and larger stars
such as Arcturus and Betelgeuse (0.047 arcseconds). Early on, radio astronomers
recognized the fundamental similarity of the theory of optical and radio radiation
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fields, and they used the theory behind these optical experiments to build the theory
of radio interferometry (Thompson et al., 2017). The idea of interferometry is to use
two or more telescopes to detect an electromagnetic wave from a source and combine
them. So this means that waves from the same source only combine constructively
when they are in phase and this is related to the distance travelled by light between
the light source and the telescope elements.

The angular resolution for most telescopes of diameter D, observing signals of
wavelength _ is given by:

\ ≈ _

�
(2.1)

From the equation, the angular resolution is highly dependent on the size of the
telescope, that is, the bigger the telescope, the more resolved the sources are. How-
ever, there is a limit to how big we could make a single dish and still be able to op-
erate it. As an example, the Green Bank Telescope (GBT) is the world’s largest fully
steerable radio telescope operating between wavelengths ranges of 2.6<< and 3< (0.1−
116 ��I) and � = 100 < are limited to \ � 1 0A2B42, still given its size it is not
large enough to achieve sub-arcsecond resolution at radio wavelengths (Condon &
Ransom, 2016). To overcome this limitation, radio astronomers use multiple radio
telescopes at the same time, and this technique is called interferometry.

In interferometry, the angular resolutions are not calculated using the diameter
of the individual antennas, but by the distance between the two farthest antennas,
called a baseline. This baseline is the vector connecting any two antenna elements
in an array. So with interferometry, they are effectively creating a single telescope,
improving the resolution of the telescope, but without increasing the light-gathering
power. A signal from a radio source arrives at each antenna at a slightly different
time (due to different travel lengths) depending on the location of the antenna in
the array. In Very-Long-Baseline Interferometry (VLBI), each antenna has a clock
to record the observation time of the source, then the signals are later combined
with every other antenna in an array, taking into account the time delay (g8 9) using
computer software. However, for telescopes like MeerKAT, signals are combined in
real-time as they arrive, not saved for later. This process is shown in Figure 2.2:
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Figure 2.2: This figure shows a two-element interferometer, Credit: (Mahmoud et al.,
2011). It shows antennas 8 and 9 , separated by baseline vector �8 9 .

To be more specific, we consider a simple interferometer model and assume a
quasi-monochromatic wave with identical elements and perfect electronics. A signal
from a source arrives at antenna-elements/receivers 8 and 9 separated by baseline
vector �8 9 . This signal arrives at an angle q to the normal of the baseline, from
direction 3 reaching each antenna receiver element 8, 9 at slightly different times
resulting in a phase difference. The signal is detected by a current induced in an
antenna receiver system, where they can be measured as a voltage B8 (C) at receiver
8 that is sampled and digitized at regular times C . The pair of receivers shown
in Figure 2.2 can be used as an interferometer to measure the difference in phase
between the signals B8 and B 9 due to the time delay between the received signals
defined as:

g8 9 = �8 9 ·
®3
2

, (2.2)
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where 2 is the speed of light. This time delay g8 9 can be roughly approximated
using the positioning of the antennae relative to the source direction (provided by
an Ephemerides service). The Ephemerides service gives the trajectory of naturally
occurring astronomical objects as well as artificial satellites in the sky, i.e., the
position and, if possible, the velocity over time. g8 9 can also be precisely determined
by the resulting interference pattern in the cross-correlation between the signals:

(B8 · B 9 ) (g) =
∫ ∞

−∞
B8 (C)B 9 (C + τ)3C (2.3)

In radio astronomy, we use the coordinate system (u,v,w), where w is along a
reference direction to the phase centre and (u,v) are in the orthogonal plane, with u
East-West and v North-South (the u-v plane). So unlike a single dish telescope that
measures the intensity, what an interferometer measures is called coherence. The
data from these interferometers is called a visibility, given by +8 9 = (B8 · B 9 ) (g8 9 ). Put
simply, the visibility is the amplitude and phase information of the cross-correlated
signals between pairs of antennas. The complex visibility is related to the 2D Fourier
transform of the emission on the sky ) (;,<), over the projection of the celestial
sphere in the l-m plane onto the u-v plane defined as,

) (;,<) =
∫ ∫

+ (D, E)4−2c8 (D;+E<)3D3E. (2.4)

In terms of the sky brightness distribution, the complex visibility and Fourier
Transform relation in the u-v plane can be written as:

+ (D, E) =
∫ ∫

) (;,<)4−2c8 (D;+E<)3;3<. (2.5)

A radio telescope consists of a number of antennas, with the baselines between
them representing measurement points in u,v space. Then this means we will need
to convert an array of dishes on the ground to a set of points in u,v space. Note
that a consistent coordinate system needs to be established between the u,v space
and the baselines, where antenna separations are typically measured in units such
as meters along the ground. According to the note by Gary (2019), the complex
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visibilities of a source measured by the interferometer is defined as

+ (D, E) =
∫

�(;,<)� (;,<)4−82c (D;+E<)3;3< (2.6)

where + (D, E) is the true visibility evaluated at u, v,
(D, E) are the projected baseline coordinates in wavelengths, D = �;,_, E = �<,_,
�(;,<) is the normalized primary beam pattern (beam of a single antenna),
(;,<) are the direction cosines with respect to the phase center, and
� (;,<) is the brightness distribution of the source

Most radio telescopes have been built with more than just two antennas, so an
array of = antennae has =(=−1)

2 baselines (one per pair of antennae) and so =(=−1)
2

visibilities can be obtained. However, each baseline changes over time due to the
Earth’s rotation, in the case where readings are taken over intervals of hours. For
these long observational periods, the amount of data and computational power it
takes to process the signals measured from all antennas is an enormous challenge
in this field. Take HERA as an example, which will eventually have about 350
antennae dishes and will produce about 260 terabytes (TB) of raw data for a typical
observation period of 12 hours (La Plante et al., 2021). In a night, the real-data
volume recorded by HERA will be well over 50 TB when using baseline dependent
averaging, as described in (Wijnholds et al., 2018). With the amount of data being
produced and the large number of arrays deployed, good data quality needs to be
assured so good calibration methods are needed.

2.2 Experiments for 21 cm observations

The importance of 21 cm observations in mapping the high-redshift universe using
redshifted radio emission from neutral hydrogen has led to the design of several
experiments to probe the 21 cm line. Due to how faint the 21 cm signal is, these
experiments have to fit certain criteria in their design: they must have low noise, a
wide field of view, and moderate angular resolution. We focus mainly on broadband
interferometers instead of single-dish telescopes that were built for general-purpose
observations, like the Green Bank Telescope (GBT) (Prestage et al., 2009) and the
Parkes radio telescope (Staveley-Smith et al., 1996). In this chapter we discuss some
of the experiments ongoing for observing the 21 cm line, namely LOFAR (e.g. (van
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Haarlem et al., 2013)), MWA (e.g. (Lonsdale et al., 2009)), PAPER (Parsons et al.,
2010), as well as the ones that are planned and under construction, the HERA
Deboer et al. (2017) and the SKA (e.g. (Koopmans et al., 2015)).

The Low-Frequency Array (LOFAR): Currently the largest radio telescope lo-
cated in the Netherlands, operating at the lowest frequencies. It is a multipurpose
sensor network built to handle extremely large data volumes with its innovative net-
work infrastructure and computers. It is an interferometric array of radio telescopes
that at present, is using about 20,000 small antennas concentrated in 52 stations.
LOFAR focuses on the EoR in the window (6 < z < 10), exploring large areas of
the sky with low-frequency radio waves (1.5 < z < 7), and constantly monitoring
radio wave transients from some of the most energetic explosions in the universe.
LOFAR is observing the largely unexplored low-frequency range from 10–240 MHz
(van Haarlem et al., 2013).

Figure 2.3: An aerial image of the LOFAR array, from August 2011 (Haarlem et al.,
2013).

The Murchison Widefield Array (MWA): A low-frequency radio telescope located
in Western Australia, consisting of 4096 spider-like antennas that are arranged in
256 regular grids called ‘tiles’, spread over several kilometres. It is operating in a
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wide frequency range (70–300 MHz) and its extreme (digital) pointing agility allows
for flexible tuning. The telescope was built to answer four key scientific objectives:
how does the Sun affect the environment on Earth; time-domain astrophysics; what
more could we learn from the Milky Way galaxy when looking at its magnetic
field, and pulsing and exploding stellar objects; and the pursuit of the intergalactic
hydrogen gas that surrounded early galaxies during the EoR. The instrument has 3
bands of observations for the 21 cm experiment (Jacobs et al., 2016): ultralow-band
(75–100 MHz), low-band (139–167 MHz), and high-band (167–197 MHz), with low-
and high-bands accounting for more than 90% of the observed data.

Since its operation, the MWA is and has performed large surveys of the entire
Southern Hemisphere sky. Since one of its main science goals is to probe the EoR, the
MWA is pioneering the testing and development of new techniques for the separation
of cosmological foregrounds for the 21 cm signal (Lonsdale et al., 2009).

Figure 2.4: Image of the MWA array with its spider-like antennas. Credit: Greg Row-
botham ICRAR UWA 2016

The Precision Array for Probing the Epoch of Reionization (PAPER): A low-
frequency radio interferometer that was located in South Africa, built to detect 21
cm hydrogen (HI) fluctuations occurring when the first galaxies ionized intergalac-
tic gas around 500 million years after the Big Bang. PAPER mapped the intensity
of hydrogen emission at 21 cm in a high redshift range (7 < I < 12). It had a
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32-antenna array at the NRAO site and a 64-antenna array in the Karoo reserve
in South Africa, with plans to expand to 128 antennas. The PAPER project took
an incremental engineering approach, optimizing each component in the array in a
staged process to minimize potential problems with subsequent calibration and anal-
ysis. This was done to tackle the foreground problem, given that they are 5 orders of
magnitude brighter than the background for detecting reionization (Parsons et al.,
2010). PAPER, along with the MWA, are frontier projects within the Hydrogen
Epoch of Reionization Array (HERA) program. Since PAPER is no longer func-
tioning, its receivers were used on HERA dishes during HERA’s first observational
campaign.

Figure 2.5: PAPER Green Bank with a 32 antennas configuration optimized for power
spectrum sensitivity (Bottom) , PAPER South Africa (64 antennas) in an imaging config-
uration (Top). Credit (website): (PAPER, 2012).

For this project, we are focusing on the Hydrogen Epoch of Reionization Array
(HERA) radio telescope. HERA is currently the most sensitive 21cm EoR exper-
iment in the world. It is specifically designed to detect fluctuations in the emis-
sion from neutral hydrogen gas found throughout the Universe during the Epoch of
Reionisation and Cosmic Dawn, when stars, galaxies and black holes formed. It is
an interferometer located in South Africa that, when fully complete, will consist of
350 elements consisting of 14-m parabolic dishes, and it will detect radio waves in
the low-frequency range of 50–250 MHz (Deboer et al., 2017).
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Figure 2.6: Rendering of the 320-element core (left) of the full HERA-350 array and the
picture on the right we have on the foreground of 19 HERA 14 m, zenith-pointing dishes
(with PAPER elements in the background) currently deployed in South Africa (right)
(Deboer et al., 2017)

The Square Kilometer Array (SKA): An international project to build the world’s
largest radio telescope. SKA has four precursor facilities that are already operating.
Two of them have been mentioned: HERA and MWA; and the other two, the
Australian SKA Pathfinder (ASKAP) and MeerKat in South Africa. SKA-Mid
(mid-frequency) will be located in Africa, hosting a mid-frequency dish array, and
SKA’s low-frequency telescope will be in Australia, hosting a low-frequency aperture
array antenna. The SKA telescope is being built in phases, SKA1 and SKA2. SKA1
accounts for only 10% of the capability of the whole telescope. SKA-Mid will have
the 64 MeerKat dishes with 133 additional antennas totalling nearly 200, located
in South Africa. SKA-Low will have more than 130,000 antennas in total built in
Australia. To break it down, it will have 512 stations (each with 256 individual
antennas) arranged in a large core with three spiral arms, spread over a distance of
65 km.

The SKA will be observing at frequencies covering 50 MHz to 14 GHz in the
first two phases of its construction. When complete, it will have a total collecting
area of a large fraction of one square kilometre and will be the world’s largest radio
telescope. SKA1-Low will operate in the redshift range I ∼ 6− 28 and will allow for
high resolution (from scales of arc-minutes to degrees) direct imaging of the 21 cm
line, to possibly even higher redshifts with SKA2-LOW (Koopmans et al., 2015).
SKA will be trying to answer these five Key Science Programs: Probing the Dark
Ages; Galaxy Evolution, Cosmology and Dark Energy; The Origin and Evolution of
Cosmic Magnetism; Strong Field Tests of Gravity Using Pulsars and Black Holes;
and The Cradle of Life.
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Figure 2.7: Artist’s impressions of the two SKA receptors, the low frequency sparse
aperture arrays to cover the frequency range from 50 to 350 MHz (Left) and the Offset
Gregorian Antennas to cover the frequency range 350 MHz to 14 GHz (Right). Credit:
Swinburne Astronomy Productions with enhancements by MAG

2.3 Calibration

Calibration has always been a keystone for astronomical observations, and with
highly sensitive instruments, the characterization and development of precision cal-
ibration techniques for 21 cm cosmology has been expanded, leading to several
calibration methods being proposed (Liu et al., 2010; Ewall-Wice et al., 2016; Dil-
lon & Parsons, 2016; Barry et al., 2016; Ewall-Wice et al., 2017; Nikolic & Carilli,
2017; Dillon, 2017; Dillon et al., 2018; Grobler et al., 2018; Orosz et al., 2019; Kern
et al., 2020; Dillon et al., 2020; Gorthi et al., 2021). Calibration methods for 21
cm observations have two main categories: ’Sky-based’ calibration and ’redundant’
calibration. Sky-based calibration involves fitting the measurements to the simu-
lation of the sky and instrument models. However, since this method depends on
the sky model, it suffers from contamination of the EoR power spectrum when cal-
ibrating on incomplete sky models (Ewall-Wice et al., 2016; Barry et al., 2016).
Alternatively, redundant calibration has been introduced as a way to minimise this
dependency on sky models because it uses the internal consistency of the array to fit
these measurements during calibration (this is explained clearly in the next chapter).

The number of radio telescopes built is rapidly increasing and they are becom-
ing more ambitious. With an interferometer, it is not the case that the Fourier
Transform of the observed visibilities will provide nice images. This may be due to
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several factors: atmosphere (ionosphere, troposphere, water vapour); antenna/feed
(system temperature, primary beam, pointing, position/location); digitiser/correla-
tor (auto-levelling, baseline errors) and/or low noise amplifier plus conversion chain
(clock, gain, phase, delay, frequency response).

Because of these effects, there arises a need to mitigate these effects by using
calibration. In the calibration process, there is an effort to measure and remove the
time-dependent and frequency-dependent atmospheric and instrumental variations.
It uses these models to calculate corrections to the data. Many astronomical appli-
cations use the interferometer to measure the amount of interference (or coherence)
in the incident radiation field to obtain information about the source morphology on
angular scales (or spatial frequencies) sampled by the interferometer (Boden, 2007).

Most interferometers follow these general steps in calibrating their data:

• Correct frequency-dependent telescope response (bandpass calibration).

• Remove effects of atmospheric water vapor and correct time-varying phas-
es/amplitudes (phase and gain amplitude calibration)

• Set absolute flux scale (absolute flux calibration)

However, these steps may differ depending on the type of array – how it is built,
and which type of observations are made. Also, given the sophistication of the new
instruments, the traditional calibration methods will need to be revised, leading to
new calibration techniques for the new interferometers to reach their design sensi-
tivities. Self-calibration (self_cal) (Nikolic & Carilli, 2017) or redundant calibration
(redcal) (Dillon et al., 2020) have now become the proposed calibration methods to
handle the sensitivity of these instruments because they allow the instrument to be
calibrated off complicated sky emission structures, which is ideal (Liu et al., 2010).
However, redundant calibration is still not without errors; 21 cm spectral contami-
nation can be caused by (e.g.) systematic phase offsets in the calibration solutions
because redundant calibration absorbs antenna position offsets into the calibration
solutions (Joseph et al., 2018).
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2.3.1 Redundant Baseline Calibration

The difficulty in observing the 21 cm line during the epoch of reionization, is due to
the challenge the separating the cosmological signals from astrophysical foregrounds.
This challenge has become a trigger for the construction of highly redundant low-
frequency radio arrays (Liu et al., 2010; Deboer et al., 2017; Dillon et al., 2020).
These configurations provide an alternative calibration strategy, "Redundant Base-
line Calibration", and boost sensitivity on specific spatial scales. The Hydrogen
Epoch of Reionization Array (HERA), shown in Figure 2.6, uses the internal consis-
tency of the array to calibrate its data. So HERA is specially built with dishes that
are arranged into a regular pattern so that pairs of receivers with the same position
vector between them (same length and orientation) see exactly the same signal from
the sky, which is called redundancy (Liu et al., 2010; Dillon & Parsons, 2016; Dillon
et al., 2018; Grobler et al., 2018; Kern et al., 2020; Dillon et al., 2020).

Ultimately redundant baseline calibration is a process of finding a solution to a
system of equations written in the form

+ >1B8 9 (a) = 68 (a)6∗9 (a)+ CAD48 9 (a) + =8 9 (a) (2.7)

where +8 9 (a) is the visibility measured for the baseline between antennas i and
j (+ >1B8 9 (a)− is the observed and + CAD48 9 (a)− is the expected visibilities), 68 (a) is the
complex bandpass associated with antenna 8 and =8 9 (a) is the Gaussian-distributed
thermal noise on that visibility. Accurate estimation of 68 (a) is essential to 21 cm
cosmology. By definition, the baselines of antennas i,j and k,l are considered to
be perfectly redundant when their observed visibilities are equal, also taking into
account their antenna gains, as shown in the equation

+ >1B8 9

686
∗
9

=
+ >1B
:;

6:6
∗
;

(2.8)

and not when +8 9 = +:; .

So the idea behind redundant baseline calibration is that, by building a highly
redundant array like HERA, we are measuring the same modes on the sky, therefore
the same baselines, over and over again. So this simply means this method is building
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a big-linear system of equations, therefore the main goal is to minimise the j2.

j2 ≡
∑ |+ >1B8 9 − 686∗9+ B>;8− 9 |2

f2
8 9

(2.9)

Since it can model the unique visibilities(+ B>;8− 9 ) and the gains(68 and 6∗9 ), The
notation 8− 9 , as referred in Dillon et al. (2020), is intended to signify that any given
correlation should depend only on the relative positions of the two antennas. The
unique visibilities(+ B>;8− 9 ) is a stand-in for + CAD48 9 shown in equation 2.7. In redundant
baseline calibration, we try to solve for + B>;8− 9 and 68 simultaneously, in the end mak-
ing sure that it is as close to the real data as possible given the noise (f28 9 , noise
variance). It is also important to note of all the parameters in this equation, + B>;8− 9 is
the only parameter fixed across redundant baselines, the only free parameters are
the gain solutions for each antenna, 68 and 6∗9 . However, since redundant baseline
calibration does not explicitly need the sky model, after minimizing j2, there are
some degeneracies that leave j2 unchanged (Zheng et al., 2014; Dillon et al., 2018,
2020). There are 4 of these degeneracies per polarisation and frequency that need
to be solved when running redundant calibration.

• The overall amplitude (68 → �68 , + B>;8− 9 → �−2+ B>;8− 9 ), then 686
∗
9+

B>;
8− 9 is unchanged.

If there is an error in the overall amplitude, the brightness of the sky will
change, making the sky appear artificially bright.

• The overall Phase (68 → 48Ψ68) the changes in 68 and 6∗9 always cancel out. This
degeneracy exists for both sky based calibration and redundant calibration,
this is also because the j2

B:~
(for the sky based calibration) responds the same

way.

• The East-West tip-tilt (68 → 684
8ΦGG8 , + B>;8− 9 → + B>;8− 94

−8ΦGΔG8 9 ), then 686∗9+
B>;
8− 9 is

unchanged for all baselines.

• The North-South tip-tilt (68 → 684
8Φ~~8 , + B>;8− 9 → + B>;8− 94

−8Φ~Δ~8 9 ), then 686∗9+
B>;
8− 9 is

unchanged for all baselines. The last last two degeneracies represent the phase
gradient and errors in their parameters can make sources appear offset from
their true positions due to a shift of the sky image.

The overall amplitude, the East-West tip-tilt and the North-South tip-tilt can be
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solved by absolute calibration using a sky model as a reference. But since the overall
phase is merely an arbitrary convention with no physical significance, it does not
need the solved using the sky model (Dillon et al., 2020). The process of redundant
calibration takes place in three steps, firstcal, logcal and lincal+abscal. Firstcal
finds one delay and one phase offset per antenna and per polarization (but not per
frequency), it uses the sky model to find a starting point for the rest of redundant-
baseline calibration. Logcal (logarithmically linearized redundant-baseline calibra-
tion) finds an approximate per-frequency calibration solution and then finally refin-
ing that solution with lincal, which iteratively searches for the minimum value of j2

by first restricting degrees of freedom (Dillon et al., 2020). Lincal has been shown
to produce less biased results compared to logcal (Liu et al., 2010).

2.4 Calibration and Foreground Cleaning

The ongoing and future experiments mentioned in chapter 2.2, which are primar-
ily aimed at detecting the 21 cm signal, with their new level of precision, have led
to the requirement of new calibration techniques for those interferometers to reach
their design sensitivities. This is especially crucial given that the astrophysical fore-
grounds are around 4-5 orders of magnitude brighter than that of the cosmological
21cm signal (Morales & Hewitt, 2004; Santos et al., 2005; Furlanetto et al., 2006;
de Oliveira-Costa et al., 2008). This foreground problem could be solved either:
(a) by subtracting a model foreground components (made directly from the data or
simulation based on the sky+instrument models) and using the resulting residual
data to estimate the 21cm signal, known as foreground removal (Zaldarriaga et al.,
2004; Wang et al., 2006). (b) by restricting the foregrounds within the wedge-shaped
region in the (:⊥, :‖) plane leaving an ‘EoR Window’ with cosmological signal free
of foreground bias, known as foreground avoidance (Datta et al., 2010).

Regardless of the approach to mitigate foregrounds, the issue is more compli-
cated if the spectral structure imparted by the instrument cannot be calibrated-out
or restricted to a limited part of Fourier space. It has made precision calibration
recognised as a necessity to perform EoR Power Spectra observations. Several stud-
ies have been carried out, to tackle the problem of separating the cosmological signal
from astrophysical foregrounds in 21 cm observations by proposing different calibra-
tion methods (e.g. (Mitchell et al., 2008; Liu et al., 2010; Dillon et al., 2020) ).
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Traditionally B4; 5_20; has been the go-to method for bandpass calibration. This
is the iterative process of forward-modelling a source catalogue, solving for gains,
imaging, and updating the source catalogue (Braun, 2013). This Self-calibration is
done on sources whose Signal-to-Noise (S/N) ratio on each baseline is of the order
of at least 5 or so. It is conceptually very similar to a basic calibration. The main
difference is that the source model is generally more complex than simply assuming
it is a point source at the phase center.

Ewall-Wice et al. (2016) and Barry et al. (2016) showed that even a small model
error in the foreground can have a drastic effect on the instrumental calibration and
can bias the 21 cm power spectrum. These modelling errors end up creating spec-
tral structures on calibrated short baselines beyond what the instrument normally
imparts because the intrinsic chromaticity of the long baselines ends up leaking into
the gain solutions of the shorter baselines. Ewall-Wice et al. (2016) further states
that their analysis of the chromaticity of longer baselines motivates possible solu-
tions to noise modelling problems in sky-based calibration. Their proposed strategy
is to down-weight the contribution of long baselines to the gain solutions that are
applied to short baselines. While Barry et al. (2016) suggests limiting the number
of degrees of freedom of calibration.

According to Byrne et al. (2019), which follows the work done by Barry et al.
(2016), shows that errors caused by incomplete sky models introduce some errors
during calibrations, even in the limit of perfect antenna positioning and identical
beams. Byrne et al. (2019) also highlights how redundant calibration is affected by
sky models errors and how they are actually worse for redundant arrays. This is
because it follows a two-step process; ’relative’ calibration and absolute calibration.
The former solves for the antenna gains, and the latter constrains the degenerate
parameters described in 2.3.1, which were left unsolved by ’relative’ calibration.
However, redundant calibration still suffers from its fundamental assumption that
redundant baselines measure the same sky visibility, as this is not true in the case
where, the primary beam responses are different (Choudhuri et al., 2021), and there
are antenna-to-antenna variations in dish construction and placement. Orosz et al.
(2019) proposed a redundant-baseline calibration strategy that relies predominantly
on short baselines to mitigate these antenna-to-antenna variations.

For our project, we propose a modified redundant-baseline calibration strategy
that uses a machine-learning clustering algorithm to cluster baselines within a re-
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dundant baseline group based on their visibility solutions instead of relying solely on
the ‘perfect’ redundancy of the array. It means that we are trying to mitigate for any
instrumental effect that could be present during observations by taking into account
not only the redundant design of the array but also the visibility solutions that are
solved for during calibration. So by splitting a redundant baseline group into sub-
groups using the clustering algorithm, we are effectively increasing the number of
degrees of freedom to be solved for in Equation 2.9. Therefore, this method includes
all the steps involved in redundant calibration with the only difference being the
redundant baseline groups used for calibration, as shown in Figure 4.2. This work
is also motivated by the fact that for non-moving drift scan telescopes like HERA,
characterization of the primary beam is especially difficult because standard beam-
calibration routines are not applicable (Cornwell et al.). Therefore this means that
we need a way to mitigate for whatever effects (beam non-redundancies) might affect
this telescope by improving the calibration method.

3 Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) and computer science
that uses data and algorithms to learn and make predictions based on that dataset.
In the digital age, where almost every one of us has a digital footprint, thereby lead-
ing to a lot of data to sift through, ML has become the most promising scientific
method to handle this data. ML techniques have become an acceptable methodolog-
ical approach in many fields like Astronomy (Baron, 2019), banking (Huang et al.,
2020), Medicine (Litjens et al., 2017) and many other fields. The integration of ML
techniques has become a necessity, especially in the field of Astronomy, where we
are entering the big-data era due to the high-end observatories being built. Bringing
in large amounts of data and their complexities, like LSST (now renamed the Vera
C. Rubin Observatory) and eventually the Square Kilometre Array (SKA).

In machine learning, there are two main approaches, supervised and unsuper-
vised learning. The main distinction between these two approaches is the use of
labelled datasets. Supervised learning deals with labelled data, that is, data where
we already know what the output should be. Therefore, the goal of supervised learn-
ing is to learn from a given sampled dataset and desired outputs (labels) and then
give the best approximation of the relationship between input and output observ-
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able in the data (Murphy, 2012; Jordan & Mitchell, 2015; Goodfellow et al., 2016b).
On the other hand, unsupervised learning deals with unlabeled data, that is, we
do not have any prior knowledge of what the output should be. The main goal of
unsupervised learning is to infer the relationship between the data points, if there
is any, within a given dataset (Jordan & Mitchell, 2015).

3.1 Supervised vs Unsupervised Learning

Supervised learning is done in the context of classifying, where we try to assign
labels to outputs from input examples, or regression, where we try and predict a
continuous value from input features. Since supervised learning is also known as a
predictive model, it can be thought of as trying to fit in a function. For example,
in giving the algorithm a dataset with a set of labels, we are basically building a
function that can best describe the input data. By providing the algorithm with
new inputs, we are trying to find the best outputs that closely fit that function.
Now, this leads to one of the most drawbacks of supervised learning, to fit such a
function, the model is highly dependent on what is deemed "correct" outputs.

It is also important to note that this "correct" output is entirely dependent on
the training set (given data with its corresponding labels), however, incorrect acqui-
sition of the dataset and wrong/noisy labelling will clearly reduce the effectiveness
of the model (Medar et al., 2017). There are a lot of supervised learning approaches
including but not limited to Decision trees (Quinlan & Cameron-Jones, 1993; Cardie,
1993), K-nearest neighbors (Aha et al., 1991), Logistic regression (Le Cessie &
Van Houwelingen, 1992) and Neural Networks-deep learning (LeCun et al., 2015;
Goodfellow et al., 2016a).

In Unsupervised Learning, the model is not trained at all. A dataset is given to
the algorithm for the computer to learn the patterns in data. Unsupervised learning
is done in the context of clustering, that is, grouping data points based on their
similar traits or features. This method is frequently used to learn new aspects of the
data that have not been observed yet, often leading to new discoveries (Goodfellow
et al., 2016b). Most of its application is in anomaly detection (Chandola et al.,
2009), which is a branch of ML where a data point or points do not conform to a
well-defined normal behaviour of a given dataset. It is often applied to banks to
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detect fraudulent transactions against their clients, and in astronomy, it is applied
to detect new astronomical objects like transients, supernovas and anything that
looks out of place on the night sky(Mahmood et al., 2010; Xiong et al., 2011).

Unsupervised learning techniques include K-means clustering, Hierarchical clus-
tering, Principle component analysis (PCA) and Apriori Algorithm. The most pop-
ular being K-means clustering, which segments data points within a dataset into
clusters/sub-groups based on features. Some algorithms like PCA are generally
applied to reduce the dimensionality of a given dataset. PCA is often applied to
discern the importance of particular features used for analysis. By trimming down
the features, we are thereby increasing the interpretability of the dataset but at the
same time minimising information lost.

3.2 K-means clustering

K-means clustering is one of the most popular unsupervised machine learning algo-
rithms, first introduced by MacQueen et al. (1967) and Lloyd (1982) as a technique
for pulse-code modulation. In recent times the algorithm is usually used in pattern
recognition and data mining (e.g.(Huang, 1998; Singh et al., 2011; Wu, 2012; Win-
darto, 2017; Hossain et al., 2019)). K-means is used for clustering unlabelled data
into k clusters, and it does this by trying to separate samples in n groups of equal
variance. It is a distance-based algorithm that uses N data points defined in space
of dimension � , to find the minimum distance between them and the nearest cluster
centroids/centers, to split them into K clusters. This distance is calculated using
the Euclidean distance in an I-dimensional space defined as,

3 (?, @) =
√
(@1 − ?1)2 + (@2 − ?2)2 + ... + (@� − ?� )2

3 (?, @) =

√√
=∑
8=1

(@8 − ?8)2
(3.1)

Each cluster is parameterized by a vector<(:) called its mean. We will represent
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the data points as {G (=)} where subscript = runs from 1 to N, with each x having �
components G8 . We have a metric that defines distances between points by assuming
a real space that x lives in, for example,

3 (G,~) = 1

2

∑
8

(G8 − ~8)2 (3.2)

Lets consider a two-dimensional dataset that we are trying to split into 2 clusters
(i.e. K=2). The K-means algorithm follows a 4 step process to cluster the data:

1. Initialization: Set K means {<(:)} to random values that is, place = points
into the feature space to represent the initial cluster focal point. These points
represent initial cluster centroids.

2. Assignment step: Each data point = is assigned to the closest cluster cen-
troid. We denote our guess for the cluster : (=) that the point G (=) belongs to
by :̂ (=).

:̂ (=) = 0A6<8=
:

{3 (<(:), G (=))}. (3.3)

An alternative, equivalent representation of this assignment of points to clus-
ters is given by ‘responsibilities’, which are indicator variables A (=)

:
. In the

assignment step, we set A (=)
:

to one if mean : is the closest mean to datapoint
G (=); otherwise A (=)

:
is zero.

A
(=)
:

=


1 if :̂ (=) = k

0 if :̂ (=) ≠ k
(3.4)

In the unlikely event where two means are exactly the same distance from a
data point, :̂ (=) is set to the smallest of the winning {:}.

3. Update step: When all points have been assigned, recalculate the positions
of the K centroids by adjusting them to match the sample means of the data
points that they are responsible for.

<(:) =

∑
=
A
(=)
:
- (=)

' (:)
(3.5)
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where ' (:) is the total responsibility of mean :

' (:) =
∑
=

A
(=)
:

(3.6)

If ' (:) = 0, − that is, if we find means with no responsibilities, then we leave
the mean <(:) where it is

4. Repeat the last two steps: Until the assignments of the K centroids does
not change or until a specified number iterations is reached.

This 4 step process is what makes K-means easier to understand, thereby allowing
more room to modify and improve the method, evidenced by the large number of
publications in the last 50 years or so. However even with its simplicity K-means
still has its problems especially when it comes to dealing with steps 1 and 4, whether
that is on two or multidimensional data (which has its own host of effects).

3.2.1 Issues with K-means clustering

Despite how popular K-means, with its variety of applications it still has its draw-
backs, which have been extensively studied in literature, with some suggesting ways
to mitigate them. The main drawbacks for K-means is that:

• It assumes you already have a deep knowledge of your data, therefore that you
know the number of clusters your data should be split into. But when dealing
with real world data we often have little knowledge of the data, which is why
K-means is often applied as an exploratory analysis method (Jain et al., 1999).

• It is an iterative process, which makes it very sensitive to the initial starting
point, which can lead to different final results every time the method is run.

• It converges finitely at a local minimum. This means that it chooses the correct
option that is in the neighbourhood instead of looking at the bigger picture
(choosing the most optimal solutions that fits perfectly).

The fact that the value of  has to be supplied by the user is one of the main
drawbacks that plague not only K-means but also other clustering algorithms. This
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drawback could either be a major or a minor problem since this is highly dependent
on the user’s knowledge of the data. If you are already very familiar with the data,
especially when you already know the number of classes, then this should not be a
problem, so will now only have to deal with the other problems. However, in real-
world situations, that knowledge is not readily available, which makes it difficult to
ascertain the value of  . Nevertheless, several methods have been used to try to
gauge the number of clusters: the most common methods are, the Elbow method,
the Silhouette method, to the most complicated; the Akaike’s information criterion;
Bayesian inference criterion and Cross-validation. A review of these methods of
determining the K in K means was done by Kodinariya & Makwana (2013). Other
extensive studies have been carried out to try and validate the number of clusters
by doing a comparative study of cluster validity indices (Arbelaitz et al., 2013).

The elbow method is visual and it is the most commonly used method for finding
 in K-means, although it is a little naive in its approach. It calculates the Within-
Cluster-Sum of Squared Errors (WSS) for different values of  usually starting at
 = 2 and chooses the  for which WSS becomes first starts to diminish. Then
a plot is made with the K-values on the x-axis and the WSS on the y-axis. The
K-value corresponding to the point where the plot begins to diminish (forming an
elbow) is the optimal value for  for that data set. The major problem with this
method is that it leaves a lot to interpretation because sometimes there is no elbow
at all or this "elbow" cannot always be unambiguously identified.

Another popular method for determining  is the Silhouette Method (Rousseeuw,
1987), which is another graphical approach, however, unlike the elbow method, it
shows a concise graphical representation of how well each object has been classified
and has shown success in (Pollard & Van Der Laan, 2002; Arbelaitz et al., 2013).
This silhouette shows which objects lie well within their cluster, and which ones are
merely somewhere in between clusters. It does this by calculating the distance of
a point between its cluster and another cluster, using any distance metric, such as
Euclidean distance or the Manhattan distance. This measure is called the silhouette
value, ranging from −1 to 1. If more points have values closer to 1 means that they
belong to that cluster, if it is closer to 0 then it could belong to either cluster and if
the values are closer to −1 then it does not belong to that cluster or the clustering
configuration may have too many or too few clusters. This gives a better view of
the natural number of clusters present in a data set, also allowing the silhouette to
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be maximized by re-scaling the data using feature weights that are cluster-specific
(De Amorim & Hennig, 2015).

Even with brief descriptions of these methods it is obvious that how they go
about determining the optimal K-value, the final clustering will depend on the initial
cluster centres chosen.

Since K-means is an iterative process, the end product is always determined by
the initial steps. Since the introduction of K-means, several initialisation methods
have been proposed, including choosing the first K data points, randomly choosing
K data points in the dataset and dividing the data points randomly into K clusters
(Random partitions). The first two methods were proposed by MacQueen et al.
(1967), with the first one suffering from the ordering of the data. The second method
seems to be more sensible, since choosing the centroids at random and is likely to pick
a good candidate as cluster centers. However, this does not prevent it from picking
any points that are close to each other or any outliers or even offer any mechanism to
mitigate it (Anderberg, 1973), which will in turn affect the convergence of K-means.
In recent years, there has been some introduction to more advanced techniques like
density-based initialization and Intelligent initialization.

Given that the different approaches to initializing K-means will eventually yield
different results, a comparative study of efficient initialization methods for the k-
means clustering algorithm has been done by Celebi et al. (2013). They tested
eight of the commonly used initialization methods: Forgy’s method (Forgy, 1965),
MacQueen’s second method (MacQueen et al., 1967), maximin (Gonzalez, 1985),
Bradley and Fayyad’s method with J = 10 (Bradley & Fayyad, 1998) , k-means++
(Arthur & Vassilvitskii, 2006), greedy k-means++ , Var-Part , and PCA-Part (Su &
Dy, 2007). They tested these methods on a large and diverse collection of data sets
using various performance criteria, which then found that the Bradley and Fayyad’s
method was consistently the best performing, even on smaller data sets; # < 10000

(with greedy k-means++). By default, the K-means clustering algorithm on scikit-
learn uses k-means++ as its initialization method.

The other problem faced when implementing this algorithm is there is no way to
make sure that the points are clustered correctly, which is one of the biggest disad-
vantages of dealing with unsupervised learning. This is because k-means converges
on a local (find references in Bottou & Bengio (1995)) instead of a global minimum.
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It means that for the 4th step, even if the assignments of the K centroids do not
change, it does not mean that those are the correct cluster centroids. The concept
of local and global minimum can be clearly explained using figure 3.1, which shows
that K-means tends to choose the local minimum as the ideal model, even though
the optimal model might be present or has not been reached yet, given the number of
iterations/how quickly K-means converges. Given that the convergence of k-means
at a global minimum is not guaranteed, it is, however, insured at a local minimum
(Selim & Ismail, 1984).

Figure 3.1: A plot showing the local and global minimum for different K-means models
(automaticaddison, 2019). This diagram is an analogy of how the K-means clustering
algorithm chooses what is in the neighbourhood instead of focusing on the larger picture.

3.3 Hierarchical clustering

Hierarchical clustering, also referred to as also called hierarchical cluster analysis
or HCA, is another clustering technique, used to split similar objects of a data
set into groups called clusters. As the name suggests, it does this by building a
hierarchy of clusters, following two types of approaches: Agglomerative (a "bottom-
up" approach) by starting each observation in its cluster, we have pairs of clusters
that are merged (subsequently updating the intercluster distances) as we move up
the hierarchy. And Divisive (a "top-down" approach), unlike the previous method
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we start all observations in one cluster, and then we split the cluster recursively as
one moves down the hierarchy. This method is highly visually representative with
its results represented using a dendrogram, a diagram that shows the hierarchical
relationship between objects shown in figure 3.2.

Several hierarchical clustering techniques have been proposed, and some litera-
ture reviews that include hierarchical clustering have been published (Olson, 1995;
Xu &Wunsch, 2005; Murtagh & Contreras, 2012). Since all these methods are either
agglomerative or divisive, the decision to merge or split the objects and a measure of
dissimilarity between sets of observations is necessary. In a lot of these methods, an
appropriate metric is required to measure this dissimilarity (a measure of distance
between pairs of observations). These metrics include the: Euclidean distance, Max-
imum distance, Squared Euclidean distance, Manhattan distance and Mahalanobis
distance. Another parameter needed is the linkage criterion which specifies the dis-
similarity of sets as a function of the pairwise distances of observations in the sets.
Both these parameters have a large impact on the overall performance of the clus-
tering algorithm. For example consider two dimensional data points, 0 = (0, 0)
; 1 = (0.5, 0.5) and 2 = (0, 1), as we compare two different distance metrics the
Euclidean distance (equation 3.1) and the Manhattan distance metric defined as,

3 (?, @) =
=∑
8=1

| @8 − ?8 | (3.7)

from this we can see that using the Manhattan metric, 3 (0, 1) = 3 (0, 2), however
when using the Euclidean metric 3 (0, 1) ≠ 3 (0, 2), and consequently the Euclidean
distance 3 (0, 2) is shorter than the Manhattan distance 3 (0, 2). It shows that the
choice of an appropriate metric will influence the shape of the clusters, especially
when some elements are relatively closer to one another under one metric than
another.

Of the two hierarchical clustering methods, the Divisive Hierarchical Clustering
(DHC) technique is rarely used in the real world, so the dendrogram shown in fig-
ure 3.2 (right) is showing how elements are clustered in Agglomerative Hierarchical
Clustering (AHC). In the plot, we have six observations, and according to the def-
inition of AHC, we start from the bottom-up, assuming that each observation is
its unique cluster. In the second step, a distance metric is used to calculate the
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distance between the points, preferably using a distance matrix for the i-th and j-th
elements, recording the results in the i-th row j-th column. The shortest distances
between these elements are merged to form a new cluster, thereby merging columns
and rows, and the distances are updated. Now the way these distances are updated
is different, and it’s also one of the most important parameters when running AHC,
called linkage criterion.

A simple AHC adopts the single-linkage clustering. As an example we have
clusters {�}, {�}, {�}, {�}, {�} and {� } we can see that {�} and {� } are closer to
each other, so at first we end up with these clusters {�}, {�}, {�}, {�} and {�, � }.
The minimum distance in the cluster {�, � } is now used as an updated position for
cluster {�, � }. To merge further we need to take the distance between {�} and
{�, � }, and therefore define the distance between two clusters. Usually, the distance
between two clusters P and Q is one of the following:

• Single-linkage clustering - The minimum distance between elements of each
cluster: <8={3 (G,~) : G ∈ %, ~ ∈ &}

• Complete-linkage clustering - The maximum distance between elements of each
cluster:

<0G{3 (G,~) : G ∈ %, ~ ∈ &}

• Average linkage clustering - The mean distance between elements of each clus-
ter:

1

|�| · |� |
∑
G∈%

∑
~∈&

3 (G,~)
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Figure 3.2: The plots shows the hierarchical clustering (right) of six observations shown
on the scatter-plot to the left. The heights reflect the distance between the clusters (Bock,
2020).

In the case where the minimum distances are equal, a pair is randomly chosen,
leading to structurally different dendrograms being generated. Alternatively, all tied
pairs may be joined at the same time, generating a unique dendrogram (Fernández
& Gómez, 2008).

Because of how AHC does its clustering, especially with its dependence on the
two input parameters (the distance metric and the linkage criterion), it requires
very little knowledge of the data set from the user (Murtagh, 1984), making it very
useful for exploratory analysis. This also leads to its most important advantage of
not requiring the number of clusters we needed to split the data. That being said,
dendrograms cannot definitively tell you the number of clusters, however, in some
cases, like the given example, the dendrogram can suggest the number of clusters.
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4 Methodology

This chapter explains how the data used in this study was created and also explains
the steps taken to improve the redundant baseline calibration code (redcal). This
chapter is organised as follows. In subsection 4.1 we describe the standard model of
the array and different types of non-redundancy perturbations considered. In sub-
section 4.2, we give a brief description of the machine learning clustering algorithms
we are using, and how the data is structured. In subsection 4.3 we describe how the
redcal code was modified, including different options considered in the modification.

4.1 Simulation

The simulations were run using a non-redundant pipeline, by Dr Phil Bull and Samir
Choudhuri found on GitHub (https://github.com/philbull/non-redundant-pipeline).
This pipeline is for simulating, calibrating, and analysing data from non-redundant
arrays, based on the HERA stack. Most of the simulation parameters are taken
from Choudhuri et al. (2021), and they explain the simulation and its dependencies
in detail. Therefore, this chapter will give a brief overview of the simulation.

Most of the data presented in this work is for simulations run with a bandwidth
of 100 - 120 MHz with 120 frequency channels and 10 time samples. Because we
used very few time samples, means we observed the sky for a few minutes, covering
the LST range of 9.1 - 9.3 hours. The sources that we observed have a flux falling
in the range of about 5 - 15811 Jy. These sources are neither brightest nor the
faintest in the sky, making them ideal for our simulation. The choice of LST range
and observed sources was done to reduce the simulating time because bright sources
dominate most of the emissions used. The drawback with this small observing time
is that in that time tot all of these sources will rise above the horizon within the
simulated observing time.

4.1.1 Redundant array layout

For our data, we simulate an array like HERA, and like HERA it has a nominal
array centre of 30◦43′17”( and 21◦25′42”�, operating as a drift scan instrument,
pointing at zenith. So the simulated HERA instrument has closed packed arrays
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with a large number of redundant baselines to improve the instrument sensitivity
on the relatively large angular scales needed for 21 cm experiments. So unlike
HERA, which will comprise of 350, 14-m dishes/antennas when complete, with the
shortest baseline of 14.6 m. For our simulation, we emulate the hexagonal shape of
HERA but with different antenna numbers. We have simulations with 10, 24, 75
and 124 antennas, each serving a particular purpose in our analysis process, which
are detailed in section 5.1. All receivers are assumed to be in the same plane and
equidistant from each other, with no significant elevation changes or position errors
between them.

The choices for the different array layouts were made specifically for the val-
idation of the clustering algorithm and the modified calibration code (logi_cal),
especially for the 10 and 24 antenna arrays. Which is a reasonable number of anten-
nas to provide several well-populated redundant baseline groups with a few different
lengths and orientations. It also limits the computational time for a simulation run
10 time-samples with 10 frequency channels, using the 10 and 24 arrays, and that
gives a total of 45 and 276 baselines, respectively. The small array size allows us
to better explore the data, making sure get what we expect from the simulation, as
well as testing the visibility data on a machine learning algorithm. Once validations
are carried out on the small array, we then move to a much bigger array with 75
and 124 dishes. These simulations might be computationally expensive, however, it
is much better than the alternative of simulation the entire HERA array. So these
simulations on the large array give a fair representation of how the real HERA ar-
ray would react when exposed to the different cases of non-redundancy. This will
also give some measure of the relative importance of the array size concerning the
clustering algorithm used for calibration.

4.1.2 Models of primary beam non-redundancy

In this subsection, we explain how we went about introducing non-redundancy to a
perfectly redundant system in a form of primary beam perturbations. To do this, we
used a pre-existing code on GitHub (https://github.com/philbull/non-redundant-
pipeline), which already has the configuration files needed to add those perturba-
tions. Each of these yaml files represents the type and level of perturbation added
to a perfectly redundant system. To model the antenna-to-antenna variation in the
primary beam, we add some perturbations to the true (model) visibility for antenna
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Figure 4.1: This figure shows the array used in our simulation with 10 antennas arranged
in a hexagonal shape. Each antenna has a diameter of 14m and separated by 14.6m.

pairs (i, j) in the equation

+ CAD48 9 (a) =
∫
Ω
�8 9 () , a)� () , a)4−2c8u8 9 ·)32Ω , (4.1)

where �8 9 is the primary beam power pattern, � () , a) is the specific intensity in the
dimensional sky plane position ) and frequency a, and u8 9 is the baseline vector for
antenna pairs (i, j). The simulation pipeline has many case parameters to consider,
but 4.1 shows cases that are prioritised, particularly case3a, since most testing and
validations for this study were done using this case of non-redundancy:

Beam perturbation type Degree of perturbation
Case 1 Sidelobe f(! = 0.05
Case 3 Stretched beam (a) Gaussian, f< = 0.01
Case 4 (a) Ellipticity Ellipticity (4 = 1%, 2%)

(b) Ellipticity + Rotation Ellipticity (4 = 1%, 2%) and
Rotation U ∼ *=8 5 [0◦, 360◦]

Case 5 Stretched baseline length bl_len = +102<

Table 4.1: The table shows a summary of the models of primary beam non-redundancy
used in our for this project. The table is a recreation of table 1 in Choudhuri et al. (2021),
with modifications to only include perturbations in the study.
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Case1: Sidelobe-only perturbations— This simulation only includes the side-
lobe perturbation effect of the antenna-to-antenna variations without modifying the
main-lobe at all. To modulate the fiducial beam pattern beyond a zenith angle \"!,
we use a low-order Fourier series (# = 8) with randomly-chosen coefficients, where
\"! defines the ‘edge’ of the main-lobe. For this model, we assume that the side-lobe
variations can be quite complex, potentially shifting the location and depth of nulls
in the beam. The beam perturbation, is defined as

1̃ (\, q) = 1 (\, q)
(
1 + 2(!f(!Θ(\ )

∑
0<B8=(2c<\/!)

)
, (4.2)

where ! = c/2 is the period which corresponds to the angle between the zenith
and the horizon. The modulation is normalised by 2(! = [<0G (~) −<8=(~)]−1 where
the summation term ~ in eq. 4.2 is rescaled to span [-1, +1] independent of any
chosen values of the coefficient {0<}. For the project we consider a case where the
amplitude f(! = 0.05

Case3a: Stretching the primary beam— In this simulation, we are stretching
the whole primary beam, but in the same amount in the x-y direction, changing
the overall angular size of the beams from antenna to antenna, using Gaussian
random numbers. So this simulation changes the entire beam for the configuration
files on GitHub, perturbation is added (set to ’True’) for this simulation, but the
perturbation scale is set to zero (meaning we do not want to perturb the side lobes).
So for different ways of perturbing the primary beam, for each antenna:

(a). m is drawn from a Gaussian distribution with mean unity and standard devi-
ation f< = 0.01 or 0.02.

(b). m is drawn from a Uniform distribution between [−0.02, +0.02] (which is
roughly comparable in width to the f< = 0.01 case above).

Case4: Ellipticity and rotation of the primary beam — Considering the
axisymmetric nature of the basic beam model, this case allows for perturbations in
ellipticity and rotation to model beam squint and feed rotation effects by simply
remapping the coordinates of the axisymmetric beam.
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Case5: Stretching the baseline length— This is the only simulation with
positional errors. The perturbation includes the stretching of the baseline length up
to 10 cm. So in this case, the beam patterns are unmodified, the only thing modified
is the antenna positions to get that 10 cm perturbation.

4.2 Classifications

For classifying the levels of non-redundancy in the HERA array, we use a machine
learning clustering algorithm called k_means clustering discussed in subsection 3.2,
and Agglomerative Hierarchical Clustering (AHC) discussed in subsection 3.3. In
k-means, the clustering is done on a set P on n points, but for our case, we want
to cluster a set of visibility profiles for a given baseline, meaning we want to cluster
lines. In (Marom & Feldman, 2019) they discuss how to cluster a set of L of n lines,
in a sense of visibility per frequency channel. Here the distance from a line to a
center c is the closest Euclidean distance to c over all the points on the line. Since
we want to cluster these visibility profiles (lines), we will treat the points that make
up those profiles as dimensions, to use during clustering.

The k-means clustering algorithm is a package taken from scikit-learn (a ma-
chine learning software library for the Python programming language) and is solved
using either Lloyd’s (Lloyd, 1982) or Elkan’s algorithm. The k-means algorithm
only requires two inputs: (1) The data we want to cluster and (2) The number of
subgroups we want to segment a particular group into. As a default, the algorithm
uses k-means++ as an initialisation method, meaning for a chosen k-value, the k-
centroids will be chosen at random every time the code runs. This is also coupled
with the fact that k-means always converges to a local minimum (see Bottou &
Bengio (1995)), implying that the results are not reproducible, simply meaning that
the makeup of resulting clusters will change with every iteration.

To cluster our baselines from a redundant baseline group into even more redun-
dant subgroups, we use K-means clustering. As inputs, we use the absolute value of
the visibility for each baseline. For example, for the second simulation, we have a
set of visibilities for each frequency channel. For a simulation that has only one time
sample we have point sets C1 = {E1, E2, ..., E=}, where E is the visibility for frequency
channel number 1 to =. Now K-means will cluster the baselines based on their sim-
ilarities between the points in the set t1, for each baseline in a redundant baseline
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group. However for multiple time samples, in the case of the first simulation we have
) = [C1, C2, ..., C10], where each C has 10 values corresponding each frequency channel.
Now the input for k-means will be a T, where instead of stacking the visibility solu-
tions corresponding to each channel, we just append the time samples into one 1D
array i.e. in this simulation, each baseline will have 10 × 10 visibility solutions. To
summarise, the input data is the absolute value of visibilities as a function of time
and frequency.

If the data has more than two variables (two dimensional) like our data set, say it
has three variables, x,y and z. The distance between these points and the centroids
are calculated in this way: 3 = |G2 − G1 | + |~2 − ~1 | + |I2 − I1 |

NOTE: I am going to refer to the number of sub-groups we are clustering the
RBGs as k or k-values, this also include when we are talking about the number of
sub-groups when using AHC.

4.3 Modifying RedCal

This subsection will discuss how we went about trying to improve the redundant cal-
ibration (redcal) code. Going forward for context and clarity, refer to the Hera_cal
documentation on GitHub( HERA_team). For our modification, we focused mainly
on two functions; (1) get_reds, which gives us a list of lists (sorted by baseline length)
of redundant baseline tuples. (2) redcal_iteration, which performs redundant cali-
bration (performs a single iteration of the redundant calibration algorithm, which
must be repeated many times to converge to a solution).
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Figure 4.2: This flow chart represents a summary of how the data is calibrated using
redcal and logi_cal. This figure illustrates the extra steps (namely 2, 5 and 6) that logi_cal
has to go through to calibrate the data compared to redcal. It is also important to note
that this figure does not show the internal processes that are involved in running redundant
calibration.

In modifying get_reds (into a new function called custom_get_reds), we include
K-means which will cluster baselines within a redundant baseline group into even
more redundant sub-groups. Now the custom_get_reds will still give us that list
of lists as the original get_reds, however, it will now include lists with even more
redundant baseline groups. The visibility solutions we get from running redcal the
first time are used as inputs to cluster those baselines within a redundant baseline
group, as shown in step 5 of the flow chart. Then the resulting lists from cus-
tom_get_reds as inputs, in place of the line that calls the get_reds functions, on
the redcal_iteration function.
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4.4 Ways of clustering Redundant Baseline Groups (RBGs)

In clustering the redundant baseline groups (RBGs), we implement different methods
to investigate a variety of questions. The main issue we face when dealing with
a clustering algorithm is that we do not know the number of subgroups we are
supposed to have for each of the redundant baseline groups. The baselines in a
RBG have specific visibilities, meaning each RBG will respond to k in k-means in
different ways. Because of this predicament, we suggest 4 different ways of dealing
with this problem (considering k-means).

4.4.1 Option 1: Cluster RBGs using the same k-value

In this method, all the specified RBGs are clustered using the same k-value. This
means that for a HERA75 simulation which has about 228 RBGs if we specify that
we want to cluster the first 60 RBGs, each of those groups will be clustered into the
same number of subgroups i.e.the same k-value. This is a very simplistic approach
since it assumes that all the RBGs respond relatively the same to the same k-value,
without any regard to the visibilities present for each baseline in those RBGs. This
method assumes that there is an optimal k-value that fits all the scenarios for a
particular case of non-redundancy.

4.4.2 Option 2: Cluster RBGs using different k-values (Uniform)

This method involves clustering all the specified RBGs using different k-values.
Redundant baseline calibrations usually uses RBGs that are ordered based on the
lengths of the baselines present in those groups. Because of that the first RBGs (for
example in that HERA75 simulation), usually have a higher number of baselines
in their groups and that number decreases as you go to RBGs at a higher index.
For example, the 1st RBG has 112 baselines, and the 60th RGB has 52 baselines.
Because of this, it is only logical to think that the first few RBGs should have more
clusters and the later ones should have fewer clusters. So as an example, for the 60
specified RBGs, the groups could be split into four, 0-15 will use k=6, 15-30 will use
k=5, 30-45 will use k=4, and 45-60 will use k=3. It is also important to mention
that the shorter baselines are split more times, and the longer baselines that split
fewer times. For this method, we try to see if groups RBGs respond differently to
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different k-values and how it affects the calibration solutions.

4.4.3 Option 3: Cluster RBGs using different k-values (Random-k)

This method involves clustering all the specified RBGs using different k-values, but
unlike the previous method, the clustering of the RBGs are completely random. So
each of the first 60 specified RBGs are using a random k-value ranging from 2 to
6. This method is, however, not that practical and reliable especially given a higher
range of values. It is mainly because there is a higher margin of error between
iterations of the same calibration for the same parameters. This could however be
reduced if we limit the range of k-values to be considered in the calibration, to
only two choices in k-values (either 2/3, 3/4, 4/5, 5/6 or any combination of two k
values). For this method, we try to see how individual RBGs respond to different
k-values and how it affects the calibration solutions.

4.4.4 Option 4: Cluster RBGs using the same k-values (Random-baseline

label)

This method is very different from the other three methods because this does not
include a clustering algorithm. In this method, we use the same k-value, but since
there is no clustering algorithm, the baselines are clustered at random. Each baseline
within a redundant baseline group is given a random label (within a set range), and
then the baselines with the same label are considered to be in the same cluster. This
method is mainly introduced to try and validate the need for a clustering algorithm.
This is to observe if the is any improvement in the calibration method, or whether
it is due to the clustering algorithm or the simple action of just splitting the RBG.
So if the results we get from this method are at least similar to the ones from the
previous three approaches, then it shows that there was no need for a clustering
algorithm to begin with.
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5 Data Analysis

This chapter’s main focus is how we went about analysing the data from the multi-
tude of simulations we ran. The chapter is organised as follows. In section 5.1 we try
to visualise the data so we could visually observe and understand what redundancy
is, and to make sure that the simulation outputs what we expect. In section 5.2
we describe how the clustering algorithm works on our data set. In section 5.3 we
describe different summary_statistics (input) we use for the clustering algorithm,
that best describe the data for a given simulation. In section 5.4 we describe the
best clustering algorithm that best fits our data set. And finally In section 5.5 we
compare the results we get when we calibrate the data using redcal and logi_cal.
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5.1 Data Visualisation

Figure 5.1: This is the 2D visibility or waterfall plot (number of frequency channels
vs time samples) of baselines within a Redundant Baseline Group, with each number on
the plot title representing the baseline ID (to help identify antenna pairs making up the
baseline, 67586=(0,1), 69635=(1,2), 71684=(3,4), 75782=(4,5), 77831=(5,6), 81929=(7,8)
and 83978=(8,9)). These baseline IDs are just unique numbers that help in identifying
antenna pairs. These baselines look similar to one another, clearly showing that they are
redundant.

Figure 5.1 is for a simulation that was run with nfreq=10 and ntimes=10, using 10
antennas i.e. 45 baseline/correlated measurements, which resulted into 20 Redun-
dant Baseline Groups (RBG). These RBGs are in an array arranged by length, from
short to long-baseline length. The results below are for a redundant baseline group
with baselines of length 14.6<, this group has the most baselines (with 7), excluding
the group with auto-correlated baselines (with 10). We exclude the auto-correlated
baselines because they have correlated noise terms, and thus are likely to be much
noisier than other correlated measurements (Liu et al., 2010).

The fact that the visibility of these baselines looks almost indistinguishable from
each other through visual inspection, meant we had to find a mathematical way
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to distinguish between them i.e. find the level of non-redundancy. In Figure 5.2
we show the mean and the standard deviation for the RBG described above and
both their statistical values can help us in quantifying the non-redundancy of these
baselines. From this plot, we can see that these baselines within this RBG have a
high level of redundancy, given the range of values from the standard deviation plot,
since it shows a little variation in the visibility solution. Another way to confirm the
non-redundancy for this case is to find the typical percentage level of non-redundancy
for this group. We calculated this using the equation BC3/<40=, which is (size of
fluctuations) / (size of signal), resulting in roughly 3.0% of non-redundancy in this
group.

Figure 5.2: This is a waterfall plot of the mean and standard deviation of the Redundant
Baseline Group for all time samples and all frequency channels used. The color-bar shows
the visibility solution.

The small simulation above is presented to show what redundancy looks like and
how calibrated HERA is to have this many baselines with very similar visibilities.
However, HERA will be operating with more baselines, frequency channels and time
samples. For Figures 5.3 and 5.4 we show results for a simulation with the same
number of antennas (10), but with more frequency channels and time samples, to
test the effect they have of the level of non-redundancy. This simulation was run
with nfreq=120 and ntime=600, meaning the simulations covers the LST range 9.2
- 15.8 hours. For the same parameters we ran this simulation for two cases, Case1:
has added noise and antenna gains and Case2: has no added noise and antenna
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gains. Case1 is what we could expect when making an observation with HERA
since we know that during astronomical observations there is always noise, either
internal or external. Case2 act as a control, this is what we would see if there were
no internal or external factors affecting the data.

Figure 5.3: This is the 2D visibility or waterfall (number of frequency channels vs number
of time samples) plot of baselines is the Redundant Baseline Group, with each number of
the plot title representing the antenna pairs making the baseline. These baselines look
similar to one another, clearly showing that they are redundant. The x-axis is the number
of frequency channels and the y-axis is the number of time samples.

Figures 5.4(a) and 5.4(b) show the waterfall plot of the mean and standard
deviation of the visibility solutions for case1 and case2. Case1 is a simulation with
added noise and gains, and case2 is a simulation without added noise and gains.
using the mean and std values from Figures 5.4(a) and 5.4(b), we find that case1
has a level of non-redundancy at 4.117% and for case2 is 9.994%. It is important
to note that case1 is calibrated for noise and gains using redcal. One thing that is
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peculiar about the percentages of non-redundancy for both cases in Figure 5.4, is
that we get the reverse of what we expected. For example, we expected the noisy
data (case1) to have a higher percentage of non-redundancy and higher standard
deviation compared to the data for case2. But this discrepancy might be due to
redcal, which tries to find gains that are more redundant than they appear to be,
which might result in the noisy data hiding some of its non-redundancy since noise
makes things look more equal.

(a) Case1: Added noise and gains (b) Case2: No added noise and gains

Figure 5.4: This is a waterfall plot of the mean and standard deviation for both cases.
The color-bar shows the visibility solution. (a) Show an instance where the simulation has
added noise and antenna gains (observed visibility). (b) Shows a case where the simulation
has no added noise and gains (true visibility).

5.2 Classification (Testing clustering algorithm)

In this section we investigated if we could cluster the baselines within a redundant
baseline group into sub-groups using the visibility solutions. In short we are checking
the validity of using visibility solutions for clustering the baselines.

For the first part of our classification, we used the k-means clustering algorithm,
and as a test set, we used a 2D array, which constitutes a single time sample (con-
taining visibility values per frequency channel) for each baseline. By 2D-array, we
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mean for each time sample (ntimes), there is = number of frequency channels (nfreq),
then if nfreq=120, we would have 120 dimensions per baseline that K-means has to
deal with. Since K-means is an unsupervised machine learning algorithm, for us to
evaluate its performance, we have to cluster the baselines ourselves.

Figure 5.5: This is a single time sample of the each baseline in the RBG as function of
frequency, with each number on the legends representing the baseline ID. As we can see
there is a level of non-redundancy between these baselines.

Figure 5.5 shows that even if there is some level of non-redundancy between
these baselines, there are still some almost redundant baselines. Because of this,
we can try to classify baselines that are similar into groups. Based on what we
see in Figure 5.5, we use three groups to cluster the baselines. The plot in Figure
5.6(a) was done to see what we would expect when using the clustering algorithm in
classifying the baselines. The plots show that the clustering algorithm works since
our classifications look very similar to the grouping done by the clustering algorithm,
with only one not matching our manual classification.

Now that we know that the clustering algorithm works, we expanded our array
from 10 antennas (small array) to 24 antennas (big array). For the big array, the
same method as the small array was followed, which resulted in a 1.38% level of
non-redundancy, from a redundant baseline group of 19 baselines (Figure 5.7). In
classifying the baselines, unlike the small array, the baselines of the big array were
clustered into four groups. But for the big array, it is hard to manually cluster these
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baselines by just looking at the profiles on the plot (Figure 5.7), so this means for
arrays with more antennas, we have to depend on the clustering algorithm. However,
even if we have to depend on the clustering algorithm, Figure 5.5 has shown that
k-means has the ability to cluster the baselines based on their visibility solutions,
given the 6/7 score we get when comparing clustering in 5.5(a) and 5.5(b).

(a) Manually (b) K-means clustering

Figure 5.6: A plot showing how similar baselines are grouped together. Plot (a) showing
how we would group these baselines by color-coding them manually to specify that they
belong to the same group. Plot (b) shows how the clustering algorithm is classifying these
baselines given the same data.
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Figure 5.7: A plot of classified baselines by the K-means clustering algorithm from the
big array (24 antennas) with 19 baselines in its RBG. The baselines are clustered into four
clusters.

5.3 Comparing summary statistics

In this section, we are investigating two things, (1) the performance of the clustering
algorithm on data with added noise and antenna gain, and (2) how we handle the
input data for the clustering algorithm. The data used in this section is for Case3a
(Stretching the primary beam) non-redundancy, this is for a 10 antenna array with
10 time samples (ntimes) and 120 frequency channels (nfreq). For the first point,
we are checking if the clustering algorithm can deal with data that has added noise
and antenna gains by comparing the clustering we get when we cluster baselines
that have added noise and gains (case1) in them and ones that do not have noise
and gains (case2). So the idea is if the clustering for case-1 matches the clustering
for case-2, then it means that the clustering algorithm can handle noisy data.

For the second point, we have compared different summary statistics used in
clustering the baselines. The summary statistics are how we choose to represent

52

https://etd.uwc.ac.za/



the data, and these statistics were used as input for the clustering algorithms. We
evaluate the success of these summary statistics by checking if the classification for
Case-1 matches our own for Case-2. Using the same simulated data as the one used
in Figure 5.8 to 5.10, we have summarized how each summary statistic behaves given
the same simulated data and using the same clustering algorithm.

Figure 5.8 shows the results for the clustering of case-1 and case-2 data when
using a single time sample as input. The idea of these plots is to make sure that the
clustered groups for case-1 match that of case-2, since case-2 represent the "true"
visibility solutions. That would mean that even if there is added noise and gains,
the clustering algorithm can still cluster the baselines like there were no added noise
and gains. From this plot, we can see that when the is added noise and gains, k-
means struggles to produce high accuracy results on the clustering, since it manages
to cluster 4/7 baselines in their correct groups. When we compare the groups for
case-1 and case-2, baseline 83978 is labelled as red when it belongs to the blue group,
baseline 75782 is green when it is red and baseline 81929 is blue when it’s green.

(a) Case1: Added noise and gains (b) Case2: No added noise and gains

Figure 5.8: A clustering algorithm classification where the two cases are compared by
plotting a single time sample of the number of frequency channels against the absolute
value of the visibility.

Figure 5.9 shows the results for the clustering of case-1 and case-2 data when
using all-time samples as input. The data has 10-time samples and was run with
120 frequency channels, so using all-time samples means we are appending the time
samples into one array per baseline. So in terms of input for the clustering algorithm,
it means we end up having 1200 data points (dimensions) per baselines. The plots
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seen in Figure 5.9 are for 1-time sample, but the input used to cluster these baselines,
is for when we used all-time samples as input. What we see in this plot is that
even when there is added noise and gains, k-means can still correctly cluster these
baselines, as we are seeing 100% accuracy. By that, we mean the clustered baselines
for case-1 match that of case-2. Since the baseline in the red, blue and green groups
contain the same baselines when comparing both cases. This result also means
having more dimensions for the k-means improves the performance of this clustering
algorithm.

(a) Case1: Added noise and gains (b) Case2: No added noise and gains

Figure 5.9: A clustering algorithm classification where the two cases are compared by
plotting all time samples of the number of frequency channels against the absolute value
of the visibility.

As we have seen with Figures 5.8 and 5.9 it hard to manually cluster the baselines
especially when more frequency channels are used. It is especially impossible to make
out any relationship between the visibility profiles of these baselines, seen in Figure
5.9 (a), that can enable us to confidently cluster these baselines. So one way to
eliminate this problem is to use the RMS values of the visibility solutions of each
baseline. Figure 5.10 shows the RMS values (y-axis) for each baseline, where the
x-axis is just the index the baselines are in a list. This plot shows that it is now
much easier to see similar traits between the baselines that we could not see with
Figures 5.8 and 5.9. With this new found clarity, the baselines were clustered using
RMS ranges, so any baseline in the range > 5.18 = 6A44=′, 5.18 < '"( < 5.12 = 1;D4

and < 5.12 = A43. The top plots in Figure 5.10, show that when using these RMS
ranges, the clustering does not match for case-1 (left frame) and case-2 (right frame).
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The middle and bottom frames in Figure 5.10 are not using RMS ranges to cluster
these baselines, but the cluster we see are using the labels we get from Figures 5.8
and 5.9. To put it simply, we are using k-means to cluster these baselines, and based
on the labels assigned to them, we paint that picture on the RMS plot. We did this
to check if these RMS ranges can be used as a reliable summary statistic. Since
we have established that using all time samples as input produces the best result,
we represent the labels we get from the clustering in the RMS plot at the bottom
of Figure 5.10. It shows that there is no clear relationship between the baselines
that are in the same cluster when looking at the case-1 plot. The results for all
these summary statistics are recorded in Table 5.1, and what this shows is that
whatever summary statistic is used, the clustered groups for case-2 match. It means
the clusters we get are probably the correct clusters, and whatever statistic we use
that can match that clustering for case-1 is the one we will use going forward.
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Figure 5.10: The RMS plots for the redundant baselines. The x-axis just represents the
index of the baseline in a list, so its value is not significant. The frames on the left show
case1 and the right frames show plots for case2. From top to bottom we have: baselines we
classified on our own using RMS ranges; baselines classified from the labels of the k-means
cluster algorithms for a single time sample and baselines classified from the labels of the
k-means cluster algorithms for all time samples respectively.
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Methods of clustering (Summary statistics)
Own Single time ATS (appended) ATS (Average)

classification sample

Case-1 Case-2 Case-1 Case-2 Case-1 Case-2 Case-1 Case-2
(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(4, 5) (4, 5) (4, 5) (4, 5) (4, 5) (4, 5) (4, 5) (4, 5)
(1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)
(5, 6) (5, 6) (5, 6) (5, 6) (5, 6) (5, 6) (5, 6) (5, 6)
(8, 9) (8, 9) (8, 9) (8, 9) (8, 9) (8, 9) (8, 9) (8, 9)
(3, 4) (3, 4) (3, 4) (3, 4) (3, 4) (3, 4) (3, 4) (3, 4)
(7, 8) (7, 8) (7, 8) (7, 8) (7, 8) (7, 8) (7, 8) (7, 8)

Table 5.1: The table shows the list of summary statistics used. The numbers in the
parenthesis represent the antenna pairs, making up the baselines within 1 redundant base-
line group. Each of those antenna pairs is coloured depending on the group they belong to
according to the clustering algorithm, and the type of summary statistic used for cluster-
ing. So for each summary statistic, if the colours match for between case-1 and case-2 then
we consider that method to be the most optimal one to choose in our future clustering.

In the table we are trying to cluster the baselines in such a way that the groups
for case1 match groups for case2 (True case). All time samples (3rd column from the
right) is the best performing method, since its clustering matches for both case1 and
case2 and also with my own classification for case2. But the term ‘best performing’
is subjective since we are dealing with an unsupervised machine learning algorithm,
in a sense that for us to say the algorithm and the summary statistic performs well,
we have to classify those baselines into groups ourselves in what we deem to be a
‘good’ classification and see if the algorithm gives the same results as us.

In this section we have shown that stacking time samples(and averaging over
them per frequency channel) or just using only one time samples does not yield as
good of results as when appending all the time samples into a 1D array. This is why
for most of our simulation we use all the time samples as input on the clustering
algorithm. This may be due to the fact that K-means has more data points to deal
with when using all time samples instead of just one.
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5.4 Comparing clustering algorithms

In this section we compare how different clustering algorithms cluster (groups) the
baselines and we use the best summary statistic we discussed in section 5.3 as our
input. We also compare how each algorithm interact and clusters different models
of primary beam non-redundancy shown in Table 4.1.

Not only do we compare these algorithms, we also try to find the optimal number
of clusters for each algorithm that will give the best accuracy. To do this comparison
we use a confusion matrix, which is the most efficient way of dealing with the
clustering of such a big array. A confusion matrix is a simple visualization tool
for evaluating the performance of a classification system. It is in the form of a
grid with one axis representing the correct labels (assumed, as discussed in the
section 5.3) and the other axis representing the labels predicted by the classifier.
Each entry in this grid is an integer value representing the number of times each
actual class has been assigned to each predicted class. This grid can be displayed
as an image that quickly visually represents the accuracy of the classifier. An ideal
classifier has only diagonal values, meaning that all points are correctly classified. It
is important to note that in defining the confusion matrix, we are using words like
"classifier" and "classification", normally these words are reserved for explaining
a supervised machine learning algorithm. In our case the correct wording should
be "clustering", but in this section we are trying to validate the effectiveness of
the clustering algorithm on working on noisy data. Therefore because of that we
interchange the terms "clustering" and "classifying".

To get the accuracy for each clustering algorithm from the confusion matrix we
use this simple formula:

�22DA02~ =
)% +)#

)% + �% +)# + �# (5.1)

for a binary classification, where True Positive (TP), True Negative (TN), False
Positive (FP) and False Positive (FP). But for a Multi-Class Classification Confusion
Matrix the accuracy can get a little tricky, but for a general accuracy of the entire
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algorithm we use this simple equation:

�22DA02~ =
(D< >5 Cℎ4 CAD4 ?>B8C8E4 (3806>=0;)

)>C0; =D<14A > 5 Cℎ4 B0<?;4

�22DA02~ =

=∑
8=1
)%

=

(5.2)

The idea of doing a confusion matrix on an unsupervised machine learning clus-
tering algorithm is a little bit unorthodox since our data is not labelled and the
algorithm is not trained. So for us to get the confusion matrix, we must first find
the ’true’ labels, and for that, we used the labels we get when we cluster the data for
case2 (No noise/gains). As we have shown in section 5.3 that case2 is an ideal case
where our manual classification matches that of the clustering algorithm. Therefore
given that we have shown that using all time samples as our summary statistic gives
a 100% accuracy for the redundant baseline groups of 7 and 19 redundant baselines,
it is only logical to assume that we might get the same results for large scales (more
antennas, time samples and frequency channels).

It simply means that we do not need to manually cluster the baselines ourselves
since it will be more challenging to do that on more baselines and also try to avoid
imposing our prejudice and biases on the final clustering. So the biggest as-

sumption we have made going forward is that the ’true’ labels are always

correct even in a larger array.

5.4.1 Accuracy, precision and recall

Considering what we want to achieve in clustering the baselines into even more
redundant baseline groups, we have to examine what we care about in those clusters.
Since this is a simulation we care about the accuracy, precision and recall, however
when dealing with cases we do not know the true values precision and recall takes
precedence. Even if this is the case, it is still difficult to decide which is better
(high precision and low recall or vice-versa). Recall is just the ability of a model at
detecting the positives or simply finding all the related cases within a data set.

So when we look at it, in clustering the baseline it is okay if a few baselines are

59

https://etd.uwc.ac.za/



clustered in groups they do not belong into (false positive), but what if in doing so
the baseline would have had a great impact on the improvement of the calibration
solutions, when clustered into its designated group (true positive). Having baselines
into groups they do not belong to (acting as outliers) has some drastic effects on
the calibration solution, however since we are clustering within a redundant baseline
group its effect is mitigated.

So we our main objective is to find out of all the positive predicted, what per-
centage is truly positive. In other words, out of all the baselines clustered in one
group, what percentage of the baselines truly belong in that group i.e. the precision
given by,

%A428B8>= =
)%

)% + �% (5.3)

Data:

We use data for a simulation that was run 60 times (ntimes) with 120 frequency
channels (nfreq), with an additional parameter, ℎ4G_B?42 = [5, 12], where ℎ4G_B?42
represents the number of antennas to use in the hexagonal pattern of HERA, 5 is
the number of antennas on the top and bottom part of the hexagon and 12 is the
number of antennas in the middle part of the hexagon. This results in 124 antennas
arranged in a hexagonal pattern, giving us a total of 7750 baselines, 124 of those
being self-correlated. At the moment we considered a redundant-baseline-group with
more redundant baselines, and that is the group with the shortest baseline length
of 14.6< containing 109 redundant baselines.

5.4.2 K_means Clustering

K_means Clustering is the most popular machine learning clustering algorithm and
is the one we used most in our classifications. Since we were implementing the
algorithm on a smaller array we now implement the algorithm on a bigger array and
use confusion matrix to do the evaluation of its performance.

Case 3a: Stretching the primary beam by 1%

Using more groups to cluster these baselines would have been ideal since it would
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make the simultaneous calculations of the gains more accurate. We have tested the
accuracy of the algorithm on the ideal number of clusters(groups) ranging from
k=3 to k=9. The problem with : ≥ 4 is not only about the low accuracy but the
fact that its accuracy and the matrix would change every time we run the clustering
algorithm. Therefore as the matrix shows, we opted to use k=3 since it was the most
stable and has the highest accuracy (94%) compared to the other cluster numbers.
The classification report shown below summarises the performance of the algorithm:

Figure 5.11: 3×3 Confusion matrix using K_Means clustering for case 3a, were baselines
are clustered in to 3 groups namely 0,1 and 2. This is a really good clustering for this
dataset since most of the predicted labels match the actual labels (most values are in the
diagonal-pattern).

Case 4a: Ellipticity and rotation of the primary beam by 1%

This case still encounters the same problem we had for case 3a, where the stability
of the confusion matrix and the accuracy changes every time we run the clustering
algorithm for : ≥ 4. While for k=3 we get the highest accuracy compared to the
other : values, where the change in the confusion matrix is insignificant because we
get an accuracy of 92 % ± 1 %. The classification report shown below summarises
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the performance of the algorithm:

Figure 5.12: 3×3 Confusion matrix using K_Means clustering for case 4a, were baselines
are clustered in to 3 groups namely 0,1 and 2. This is a really good clustering for this
dataset since most of the predicted labels match the actual labels (most values are in the
diagonal-pattern).

Case 4b: Ellipticity and rotation of the primary beam by 2%

This case is a little different from cases 3a and 4a in the sense that there is no
stable classification for any value of k. That being said, the only k-values that seem
to be more stable, are the ones for k=3 and k=4 with the accuracy of 92% and
90% respectively. The instability of the classification for both these k-values comes
when 1 or 2 baselines are clustered into groups that they do not belong to. This
simply means the classification alternate between two confusion matrices, but since
the difference is so small, the overall accuracy of these two classifications for both
k-values remains the same.

Now moving to higher k-values we encounter the same problem we had for case
3a and 4a, where the stability of the confusion matrix and the accuracy keeps on
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changing every time we run the clustering algorithm for : ≥ 5. For this reason, we
did not record the accuracy for these k-values since the change in the accuracy is so
unstable that it can differ by a factor of 40% for the same k-value.

Figure 5.13: 3×3 Confusion matrix using K_Means clustering for case 4b, were baselines
are clustered in to 3 groups namely 0,1 and 2. This is a really good clustering for this
dataset since most of the predicted labels match the actual labels (most values are in the
diagonal-pattern).

Case 5: Stretched baseline length by 10 cm

The confusion matrix for this case is a little hard to pin down because there
is no stable classification for any value of k. It may be due to the nature of the
non-redundancy introduced into the system since all the previous cases presented
before were primary beam-dependent non-redundancies, while case 5 is a positional
non-redundancy. However, k=3 is the only k-value that seems more stable with an
accuracy ranging between 92% and 96%. This is a 4% difference in accuracy. One
thing to make note of is that the true labels (i.e. data from case2) do not change
every time we run the algorithm. The only changes are from the predicted labels
which are understandable, given how some of the visibilities from other baselines
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are intermingling with each other, because of added noise and gains.

Figure 5.14: 3× 3 Confusion matrix using K_Means clustering for case 5, were baselines
are clustered in to 3 groups namely 0,1 and 2. This is a really good clustering for this
dataset since most of the predicted labels match the actual labels. In this plot we show
the matrix that gives us the highest accuracy for the same k-value

K-Means Summary

The figures in 5.15 show a classification report, which acts as a measure of the
quality of predictions from a classification algorithm. But since K-means is a clus-
tering algorithm, for this validation stage of the project, we treated K-means as a
classification algorithm. As mentioned before, we used K-means to cluster the true
data, therefore the results become our labels, turning this into a classification prob-
lem (this could only be done with a simulation since we know the expected results).
From the results, the precision and accuracy of the model take more precedence
than the other scores, because those clustered baselines are used for calibration.
It requires that the baselines with similar visibility solutions be clustered together
(because they are modelled to have the same visibility).

Figure 5.15 shows some further information regarding the performance of the
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k-means clustering algorithm for the different cases it was tested on. This report
has these statistics, precision, recall, f1-score and support. Precision counts the per-
centage that is correctly predicted, and recall gives the percentage baseline that the
model managed to find that belongs to that group. The f1-score is the combination
(the harmonic mean) of precision and recall metrics, giving us the measure of a
model’s accuracy on a dataset. Support is the number of baselines that are present
in that cluster.

Figure 5.15: Classification Report using K_Means clustering. Using K-means the op-
timal k-value is 3 for all cases of non-redundancy. When looking at the support column,
the number 109 is the number of baselines in the group we clustered, with the other three
numbers showing how many baselines are clustered in one group. This report also shows
the recall, precision and f1-score for each clustered group, the overall accuracy of K-means
clustering, in the range of 92 − 96%.

K-mean is the easiest clustering algorithm to understand and implement. For
all the different cases of non-redundancy, the algorithm performs very well, giving
us an overall accuracy ranging from 92 − 96%, which is very impressive. The only
downside of k-means clustering is that the classifications change every time for some
k-values, and it is only stable for selected k-values. The only k-value that seems to
give good results in all the cases of no-redundancy is : = 3. Even though : = 3 is
the most stable k-value, there are some levels in its stability, for instance in terms
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of percentage differences case3a, case4a and case4b all have a percentage difference
of 1%, while it is 4.26% for case5. So even though the difference for case5 does not
seem that significant, baselines changing the groups they are clustered into could
have a significant effect on the simultaneous equation for solving the gain solution,
thereby affecting the resulting degree of freedom of those gain solutions.

5.4.3 Agglomerative Hierarchical Clustering (AHC)

Case 3a: Stretching the primary beam by 1%

For AHC we do not encounter the same problem as KMeans clustering, where
our classifications change every time we run the algorithms for every number of
clusters (for k=3 to k=7). The only cluster number giving us higher accuracy is for
: = 5, with an accuracy of 80%. Since the AHC does not run into the same problem
as KMeans, we can record the accuracy for each cluster number. For k=3, 4, 5, 6,
7 we have accuracy = 24%, 24%, 80%, 67%, 64% respectively. The classification
report shows the performance summary of the best optimal cluster number.

Figure 5.16: 5 × 5 Confusion matrix using Agglomerative Hierarchical Clustering clus-
tering for case 3a, where baselines are clustered in to 5 groups namely 0,1,2,3 and 4.
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Case 4a: Ellipticity and rotation of the primary beam by 1%

For this case, we ran the algorithms for a reasonable number of clusters, i.e. k=3
to k=7. Unlike case 3a, the only cluster number giving us higher accuracy is for
: = 3, with an accuracy of 84%. The recorded the accuracy for each cluster number
k=3, 4, 5, 6, 7 we have accuracy = 84%, 83%, 73%, 66%, 61% respectively. Unlike
case 3a, the accuracy seems to follow a pattern where the accuracy decreases as the
number of clusters increases.

Figure 5.17: 3 × 3 Confusion matrix using Agglomerative Hierarchical Clustering clus-
tering for case 4a, where baselines are clustered in to 3 groups namely 0,1 and 2.

Case 4b: Ellipticity and rotation of the primary beam by 2%

Just like in the previous case, we run the algorithms for k=3 to k=7. For case4b
the only cluster number giving us higher accuracy is for : = 4, with an accuracy of
82%. The accuracy for each cluster number k=3, 4, 5, 6, 7 we have the accuracy =
61%, 82%, 34%, 48%, 40% respectively.
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Figure 5.18: 4 × 4 Confusion matrix using Agglomerative Hierarchical Clustering clus-
tering for case 4b, where baselines are clustered in to 4 groups namely 0,1,2 and 3.

Case 5: Stretched baseline length by 102<

For AHC we have the most stable classification since it does not change every
time we run the algorithms for every number of clusters (for k=3 to k=7). For this
case of non-redundancy, : = 3 gives us the highest accuracy of 85% for any k-value.
The accuracy for each cluster number k=3, 4, 5, 6, 7 we have accuracy = 85%, 53%,
81%, 18%, 70% respectively.

68

https://etd.uwc.ac.za/



Figure 5.19: 3 × 3 Confusion matrix using Agglomerative Hierarchical Clustering clus-
tering for case 5, where baselines are clustered in to 3 groups namely 0,1 and 2.

AHC Summary

The Agglomerative Hierarchical Clustering algorithm still produces good results
given the dataset we are using and the number of features supplied. As explained
in section 3.3, AHC does not suffer the same flaw as k-means clustering of changing
output every iteration (thereby changing the accuracy). This advantage offers us
a new perspective on how we interpret the performance of this algorithm and also
enlightens us on the sensitivity of choosing the right k-value. It allows us to display
the accuracy per case for each k-value. From these accuracy values, we can see that
all the other cases of non-redundancy show no trend on how k affects the accuracy
of our model, except for case4a. For case4a, the accuracy decreases as the value of
k increases. Meaning that for this case, the more we split the baselines into even
more subgroups, the less accurate the model is in separating baselines based on their
visibility solutions. As for the other cases, we see no such trend in making AHC less
reliable for our case study since we could not have an intuition on what the k-value
is since it changes for each case. By saying AHC is less reliable, we mean in terms
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of low accuracy compared to k-means, but more reliable in terms of reproducibility.

Figure 5.20: Classification Report using Agglomerative Hierarchical Clustering. AHC
does not have a universal optimal k-value since this value differs on case-to-case bases for
all the cases of non-redundancy tested. The support column has the value 109, which is
the number of baselines in the group we clustered, with the other three numbers showing
how many baselines are clustered in one group. This report also shows the recall, precision
and f1-score for each clustered baseline group. The overall accuracy of AHC is in the range
of 80 − 85%.

5.4.4 Best performing Clustering algorithm

The previous two subsections show how the clustering algorithms respond to data
from different cases of non-redundancies. It has shown that the clustering algorithm
can produce good clusters based on the accuracy we are getting. The most notable
difference between these clustering algorithms is that the final baseline clusters we
get from k-means is not reproducible (unless given enough tries for our data) com-
pared to AHC. This issue was discussed in section 3.2, which has to do with the
iterative nature of k-means, which leads to different results because of discrete start-
ing points. Even with these shortcomings, k-means still performs much better than
the AHC (giving us the accuracy of 92− 96% compared to 80− 85%). The iterative
process of k-means does not seem to become much of an issue if there are more
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baselines to cluster, given the differences in percentage changes (±1%) we get after
multiple iterations. This small margin of error is equivalent to only about 1 or 2
baselines clustered into different groups.

Overall given the data, k-means is the best-performing clustering algorithm be-
tween the two. Therefore k-means is used in modifying redcal, so the results reported
and discussed for the entirety of this work are done using k-means clustering.

5.5 Comparing RedCal and Logi_Cal

This section is split into different subsections that will all be centred around com-
paring the solutions we get from redcal and logi_cal. The first section, 5.5.1 will
deal with the visibility solutions and the second section, 5.5.2 will deal with the
antenna gain solutions. In all these subsections, we are trying to see if we could re-
cover the visibility and gain solutions better when using logi_cal instead of redcal.
Furthermore, different approaches to modifying redcal are discussed, based on how
the gain solutions of each antenna have improved and by how much.

5.5.1 Visibility solutions

This subsection reports on two main simulation parameters; first, the simulation is a
10-antenna array run with nfreq=10, ntimes=10 and second, the simulation is a 124
antenna array run with nfreq=120, ntimes=1. These simulations have added noise
and antenna gains and run with the same case of non-redundancy(case3a- Stretched
primary beam).

The main focus of this subsection will be on trying to quantify the results we
get from redcal and logi_cal. To do that, we compare the visibility solutions we
get from these calibration methods with what is known (true_data). Since we are
dealing with simulations of the big array, we cannot visually observe all the baselines
to check for improvements in the calibration method, for that we employ some
statistical methods to assist in our analysis. There are about 6 statistical methods
we are considering namely: The directed Hausdorff distance (Birsan & Tiba, 2005;
Knauer et al., 2011); Partial Curve Mapping (PCM) (Witowski & Stander, 2012);
Discrete Fréchet distance (Eiter & Mannila, 1994); Dynamic Time Warping (DTW)
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(Müller, 2007); Area between two curves (Raju, 1988) and Curve-Length distance
metric. Ultimately all these methods share the same goal, that is to measure the
similarities of these curves (shown in figures 5.21 and 5.23). However, this subsection
mainly concentrates on two; Discrete Fréchet distance and Area between two curves.
Because these two give very noticeable results, based on Figure 5.22, and they are
very different in their approach to determining the similarities between these curves.

Discrete Fréchet distance: is a measure of similarity between curves, intro-
duced by Fréchet (1906). This method can help in distinguishing the difference/sim-
ilarities between two curves by taking into account the location and ordering of the
points along those curves. It does this by calculating the farthest that the curves
separate. It means that all other points on the curve are closer together than this
distance. This method is even more ideal because it takes the continuity of the
curves into account, unlike the directed Hausdorff distance, which measures the
mismatch between two point sets, making it unsuited for curve matching (Witowski
& Stander, 2012).

Area between two curves: As the name suggests, this method calculates
the area between two curves you want to compare. The curves are similar if the
area is small, but not so similar if the area is not small. Notice that we did not
define "small", and for our case, it is not necessary since we are comparing the area
between two pairs of curves, the first being redcal vs true_data and the second
being logi_cal vs true_data. It simply means the curve pair that gives a lower area
has more similarity than the other.

Simulation: N_antenna =10, nfreq=10, ntimes=10

To run calibration using logi_cal for this case we clustered the first 4 RGBs and
each is clustered into 3 subgroups. In this simulation we can visually see that there is
some improvement with the calibration method for one baseline and no improvement
for the other baseline. We have some instances where the there is some improvements
in the calibration methods and there other instances where there is none. For this
particular simulation we have more improvements than not, 6 out of 7 baselines to
be exact.

Since all the statistical methods are different in their approach, it means they
all have different scales. To visualize the results, we plot results for Discrete Fréchet
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(a) Antenna pair (0,1) (b) Antenna pair (8,9)

Figure 5.21: Plot for two baselines/antenna pairs in a redundant baseline group of 7
baselines. The Plot compares the visibility solutions from redcal, logi_cal and true_data
(no added noise and gains).

distance and Area between two curves separately. From these plots (Figure 5.22),
there are many improvements in the visibility solutions for the first 6 baselines except
the last baseline, and this is shown in Figure 5.21(b).

We use the gains we get from steps 7 & 8 of Figure 4.2 to give us the new
visibility solutions for each calibration method and use those in our analysis. For
this simulation, we cluster the first 4 redundant baseline groups. The plots in
Figure 5.21 show the visibility solutions for the antenna pair (0,1) and (8,9), each
of those baselines has the visibility solutions for true data, redcal and logi_cal
plotted against each other. For antenna pair (0,1), we can see that the logi_cal
line is superimposed over the true data line, and this means that our calibration
can recover the calibration solutions better than redcal. But for antenna pairs
(8,9), the performance of logi_cal cannot be determined, because all the lines are
superimposed over each other. Because of this inability to gauge the difference
between these calibration methods, we employ the help of some statistical methods
that can compare the similarities between curves.

To do this, we used Discrete Fréchet distance and Area between two curves to
calculate the similarities between the true visibilities, redcal and logi_cal visibility
solutions. Even though the statistical methods differ in approach, their interpreta-
tion of the results is the same, making them easier to compare. So when comparing
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two curves (the visibility solutions) for each baseline, if the values from these meth-
ods are closer to zero, the more similar those curves are. Figure 5.21(a) shows that
logi_cal is improving the visibility solutions for the first six antenna pairs (out of
7), but it does not work for antenna pair (8,9), giving us a success rate of 85.7%.
Figure 5.21(b) shows how logi_cal is failing to improve the visibility solutions for
antenna pair (8,9), confirming the previous conclusion. With this, it is fair to say
that logi_cal does improve the visibility solutions, with an 85.7% success rate for
this case.
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(a) All Statistical methods

(b) Discrete Fréchet distance

Figure 5.22: Plot of statistical methods for all baselines/antenna pairs in a redundant
baseline group of 7 baselines. The circle represents the statistical value for redcal and the
★ represents logi_cal, and the one with the lowest value per baseline is closer to the the
true_data. (a) shows the results for all six statistical methods and (b) shows only for one,
the Discrete Fréchet distance.
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Simulation: N_antenna =124, nfreq=120, ntimes=10

To run calibration using logi_cal for this case, we clustered the first 30 RGBs
and each was clustered into 3-subgroups. For this simulation, we cannot visually
see any improvement with the calibration method. With the curves for redcal and
logi_cal being superimposed on each other as they are, we check if we could gauge
if there are any improvements made on the calibration method using the mentioned
statistical methods.

(a) Antenna pair (0,1) (b) Antenna pair (8,9)

Figure 5.23: Plot for two baselines/antenna pairs in a redundant baseline group of 109
baselines. These are plots of the visibility solutions from redcal, logi_cal and true_data
(no added noise and gains)

Unlike Figure 5.22, we plot the statistical values for the Discrete Fréchet distance
and the Area between two curves in different colours to make out their differences,
given how similar the curves are for redcal and logi_cal are to each other. Since
there are so many baselines in the redundant baseline group for this array to clearly
distinguish the values for each baseline, we produced a plot for the first 20 baselines
from one of the redundant baseline groups. From this, we can see some improvements
for logi_cal, however, this improvement is so small that is not that notable.
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Figure 5.24: A plot of statistical methods for the first 20 baselines/antenna pairs in a
redundant baseline group of 109 baselines. The circle represents the statistical value for
redcal and the ★ represents logi_cal, and the one with the lowest value per baseline is
closer to the true_data

So far, Logi_cal shows some promise since we can see some improvements in the
visibility solutions we get. However, this improvement is limited to simulations with
a smaller array, and we see no notable difference as we increase the array size. It
is a considerable problem considering that HERA will have 350 antenna elements
when complete, and up to this point, we have done only 124 antennas. Note that
these are results from case3a (stretched primary beam), and since gain solutions are
easier to work with, we will try to see if we can reach the same conclusion for case3a
using gain solutions. If the trend is the same when comparing the gain and visibility
solutions for case3a, then we would know that we can investigate the improvement
logi_cal using either the gain solution or visibility solution. This would mean that
there is no need to test logi_cal for other cases of non-redundancy using visibility
solutions, we can just use the gain solutions for that.
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5.5.2 Gain solutions

The main focus of this subsection will be on trying to quantify the results we get
from redcal and logi_cal. To do that, we compare the gain solutions we get from
these calibration methods with what is known (true_data). Unlike the statistics
used in the previous subsection, here we used a j2−like statistic which we will
call Δ2, shown in Equation 5.4, to check if there is any improvement in the gain
solutions for each antenna. This Δ2 statistic was calculated using the equation
[(608=.A40; − 608=_CAD4.A40;)2 + (608=.8<06 − 608=_CAD4.8<06)2] and summing over
all times and frequencies. Therefore each antenna will have only one value.

Δ2 =
∑
($8 − �8)2 , (5.4)

where "O" is the observed value, that is the gains solutions we get from redcal(6'43�0;8 )
and/or logi_cal(6!>68_�0;

8
) and "E"is the expected value (true gains). Therefore this

equation can be written as

Δ2 =
∑ ((

68,A40; + 68,8<06
)�0; − (

68,A40; + 68,8<06
)CAD4 )2

, (5.5)

The values calculated using this equation enable us to compare the calibrated
(either using redcal or logi_cal) gain solutions with the true gain solutions. How-
ever, these values only allow us to make comparisons per antenna, so since this
statistic can be interpreted like j2, the antenna with a Δ2 value closer to zero is
closer to the true value/gains. Therefore given that we might have a situation where
gain solutions per antenna are not improving or sometimes even getting worse when
using logi_cal, we introduce another statistic which will help us in concluding about
the overall performance of logi_cal, the percentage change.

%4A24=C064_2ℎ0=64 =
Δ̄2
'43�0;

− Δ̄2
!>68_�0;

Δ̄2
'43�0;

× 100%, (5.6)
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where Δ̄2
'43�0;

is the average of the Δ2 values of all the antennas using redcal
and Δ̄2

!>68_�0; is the average of the Δ2 values of all the antennas using logi_cal for
calibration. The percentage change will help in quantifying the change in the Δ2

values from one number to another and express the change as an increase or decrease.

But equation 5.6 can also be expressed as,

Note: 6'43�0;8 =
(
68,A40; + 68,8<06

)'43�0; , 6!>68�0;
8

=
(
68,A40; + 68,8<06

)!>68�0; and 6)AD48 =(
68,A40; + 68,8<06

))AD4

%4A24=C064_2ℎ0=64 =
Δ̄2
'43�0;

− Δ̄2
!>68_�0;

Δ̄2
'43�0;

=

1
#

∑
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'43�0;

− 1
#

∑
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!>68_�0;

1
#

∑
Δ̄2
'43�0;

=

1
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)2]
Now including the real and imaginary parts we get,

%4A24=C064_2ℎ0=64 =

1 −
∑∑ ((

68,A40; + 68,8<06
)!>68�0; − (

68,A40; + 68,8<06
))AD4 )2

∑∑ ((
68,A40; + 68,8<06

)'43�0; − (
68,A40; + 68,8<06

))AD4 )2
 × 100%

(5.7)

This subsection will be a report for several simulation parameters: namely an-
tenna array = 10, 75 and 124, each run with nfreq=10, 60 and 120, ntimes=10 and
60. In calibrating some of the simulations, we have excluded baselines longer than
80< since longer baselines have an adverse effect on the spectral structure (Orosz
et al., 2019). So tables that include the notation <0G_1;_2DC = 80 have excluded
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those longer baselines, and the tables without that notation calibrate using every
baseline present in the array. This series of simulations have added noise and gains,
and are run with different cases of non-redundancy, discussed and demonstrated
in section 4.1. With a multitude of simulations like this, we will be investigating
several questions regarding the performance of logi_cal:

1. What is the most favourable number of redundant baseline groups that should
be used to get the best gain solutions from logi_cal?

2. What is the Optimal K-value (from K-means) that should be used for each
case of non-redundancy to improve the results?

3. Is there any improvement on the overall gain solutions when using any number
of these simulation parameters?

4. Overall, how is logi_cal’s performance in comparison to redcal for each of the
non-redundancy cases?

Finding the best hyper-parameters:

To answer these questions, we illustrate the results in a table for the multiple
simulations we ran and the parameters implemented in the calibration methods.
What we have noticed when running logi_cal is that the resulting gain solutions
depend on the number of redundant baseline groups (RBGs) we choose to cluster
and the number of subgroups we wish to cluster those groups into (the k-value in
k-means clustering). The RBGs we chose to cluster are the first 15, 25, 30, 35,
40, 50 and 60 groups. It is also important to note that increasing the number of
RBGs we chose to cluster increases the baseline lengths of the antenna pairs in
those groups. And each of those RGBs is clustered using k-means clustering, with
: = 2, 3, 4, 5 0=3 6, with the choice of : being highly dependent on the fact that
k-means cannot cluster RBGs whose =D<14A > 5 4;4<4=CB (10B4;8=4B) < :.

When running redundant baseline calibration, we are given a list of lists of re-
dundant baseline groups that are predetermined by the layout of HERA, based on
the antenna positions and orientation. And when running logi_cal, we are splitting
those redundant baselines into even more redundant baseline groups (as shown in
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the stacked histogram in Figure 5.25). This histogram in 5.25 shows that each clus-
ter has a reasonable number of baselines per RGB, with just a few exceptions. This
kind of distribution is needed when running redundant baseline calibration to avoid
the clusters within each RBG having fewer baselines in them, thereby rendering the
gain solutions coming from those RBG clusters to be biased. It means that includ-
ing longer baselines in our calibration introduces some intrinsic spectral structures
because of visibility errors via gain errors (Orosz et al., 2019).

Figure 5.25: The histogram shows how the first 30 RBGs are clustered with k=3. Each
of these colours represents the subgroups that the clustered baselines are grouped into.
The data is from case3a with parameters: nfreq=60, ntimes=10. The x-axis is the baseline
lengths corresponding to each RBG, with the numbers in the parenthesis representing the
index that RBG is in. The baseline lengths are in the units 13<, e.g. 146 = 146 - 13< =

14.6<.

In this subsection, we have investigated the number of redundant baseline groups
that need to be split into subgroups by checking if there is an improvement in the
gains solutions compared to the ones we get from redcal. These results are recorded
in the table, showing the number of antennas that have improved their gain solutions
based on how many RBGs have been clustered and by how many subgroups. So
these antennas with improved gain solutions are taken from every antenna that
is above the red line in Figure 5.26, which were calculated by finding out which
antennas satisfy this condition Δ2

;>68_20; < Δ2
A4320;

. In the table, the best, second best
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and third best parameters are colour coded by green, yellow and red, respectively.
The colour coding is needed because the number of antennas with improved gains
on these tables does not tell the whole story, mainly how large is that improvement.
So instead of studying the entire image catalogue visually, by colour coding, we are
leaving the best images (parameters) per simulation that we are visually checking.
All the images that we are reporting in the table resemble the one shown in Figure
5.26.

(a) RBG=35, k=2 (b) RBG=30, k=6

(c) RBG=30, k=6 (d) RBG=30, k=5

Figure 5.26: Plot represents the Δ2 values for logi_cal against redcal, where each point
represents an antenna. The red diagonal line G = ~ and every antenna above that line
means that they have improved gains when using logi_cal to calibrate. The titles in each
of these plots are the parameters used in logi_cal, RBG being the first number of redundant
baseline groups and : is the k-value in k-means used for calibration. All these figures are
for the case3a simulation run with nfreq=120, ntimes=10. Figures (a)-(b) are for an array
with 75 antennas, while Figures (c)-(d) are for an array with 124 antennas
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The Δ2 values plotted in Figure 5.26 are calculated using Equation 5.4. Figures
(a) and (c) are the best performing parameters based on the number of antennas
above that redline. However, looking at the plots, we can see that (b) is the best
performing given the number of antennas that are even more far away from the
redline than in (a), but numerically (a) is the best with only a 1-antenna difference
(looking at the table). It is also the reason we need a table and colour coding of the
best three performing parameters per case of non-redundancy since this indicates
that only going by the number of antennas that have improved gain solutions can
be misrepresentative of the overall performance of logi_cal. With this, the same
attention to detail given to (a)-(b) cannot be applied to (c)-(d), because unlike the
former, we cannot visually see the difference between (c) and (d) meaning that in
deciding the perfect parameters for calibration, the table is the best option.
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N_antennas = 75, nfreq=120, ntimes=10
Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

2 57 52 56 59 48
3 50 47 50 47 35

Case 3a 4 56 53 57 56 46
5 56 49 56 55 41
6 52 50 58 53 38
Avg 54 50 55 54 42

2 45 32 36 30 24
3 51 26 32 25 16

Case 4a_0.01 4 57 32 33 28 16
5 63 35 36 33 20
6 63 43 43 38 23
Avg 56 34 36 31 20

2 42 37 42 37 34
3 56 35 39 31 28

Case 4b_0.01 4 60 46 49 45 37
5 58 52 53 48 33
6 56 45 52 43 35
Avg 54 43 47 41 33

2 36 37 36 37 37
3 41 38 35 38 37

Case 5 4 32 41 40 37 37
5 40 45 46 45 46
6 44 47 49 42 47
Avg 39 42 41 40 41

Table 5.2: The table shows a number of antennas that have improved gains out of 75.
The best three performing parameters (k-value and number of RBGs) per case of non-
redundancy (case 3a, case4a, case4b and case 5) are colour-coded: green, yellow and red
representing the best, second best and third best, respectively. The numbers on the far
left are the k-values used in the clustering algorithm, and the numbers on top are the first
RBGs clustered, including the longest-baseline length present in that group.
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N_antennas = 75, nfreq=120, ntimes=10, max_bl_cut = 80

Number of Re-
dundant baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

2 -0.96 -0.67 -0.76 0.16 0.48
3 2.15 3.39 4.12 3.53 5.62

Case 1_0.05 4 2.82 3.78 3.37 4.33 4.73
5 2.56 3.22 3.25 -1.0 3.5
6 4.85 1.68 0.64 -2.32 1.47

Avg 2.28 2.28 2.12 0.94 3.16

2 4.58 3.75 6.57 5.53 -0.36
3 5.32 4.13 8.44 7.1 -3.56

Case 3a_0.01 4 7.42 6.53 12.16 11.49 -0.44
5 7.92 7.15 13.37 12.28 -0.20
6 7.63 6.93 13.56 12.83 -1.58

Avg 6.57 5.7 10.82 9.85 -1.59

2 3.29 -1.82 -0.23 -1.8 -7.02
3 3.33 -4.27 -2.52 -5.16 -13.25

Case 4a_0.01 4 5.48 -2.05 0.07 -4.84 -15.09
5 5.77 -2.48 0.8 -3.41 -14.31
6 5.96 -1.02 2.39 -0.61 -13.02

Avg 4.77 -2.33 0.1 -3.16 -12.54

2 3.42 -1.8 0.17 -1.69 -7.57
3 3.61 -4.18 -2.71 -5.93 -13.79

Case 4a_0.02 4 5.37 -2.34 -0.27 -3.98 -15.29
5 6.17 -2.25 0.42 -4.14 -12.09
6 6.23 0.73 2.81 -1.02 -13.66

Avg 4.96 -1.97 0.08 -3.35 -12.46

2 2.93 -0.93 0.79 -1.15 -5.15
3 4.8 -0.22 1.49 -1.48 -7.96

Case 4b_0.01 4 6.26 2.57 5.58 2.33 -5.94

Continued on next page
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Table 5.3 – continued from previous page

N_antennas = 75, nfreq=120, ntimes=10, max_bl_cut = 80

Number of Re-
dundant baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

5 6.83 5.07 6.86 4.65 -3.87
6 6.69 5.28 8.73 5.08 -2.7

Avg 5.5 2.35 4.69 1.89 -5.12

2 3.05 -0.26 1.4 -1.06 -4.6
3 5.23 0.0 2.05 -1.04 -6.94

Case 4b_0.02 4 6.34 3.5 5.47 1.54 -5.45
5 6.62 4.32 8.02 4.47 -4.04
6 6.82 5.08 6.41 4.81 -3.03

Avg 5.61 2.58 4.67 1.74 -4.81

Table 5.3: The table shows the overall percentage change of antenna gain solutions cal-
culated using equation 5.6. It shows the best performing parameters (k-value and number
of RBGs) per case of non-redundancy (case 1, case 3a, case 4a and case 4b). The numbers
on the far left are the k-values used in the clustering algorithm and the numbers on top
are the first number of RBGs clustered, including the longest baseline length present in
that group.

The Tables 5.2 and 5.3 act as test cases for testing the performance of logi_cal.
Table 5.2 shows the number of antennas that have improved their gain solutions out
of a total of 75. What is unique about this table is that when running calibration
we are using all the redundant baseline groups present (so baselines of every length
and orientation are included). This is not really ideal we have stated before that
according to Orosz et al. (2019) longer baselines introduce some intrinsic spectral
structures. That is where Table 5.3 comes in, for this table calibration is run with
a <0G_1;_2DC = 80<, this means that calibration is run using baselines that are
not longer than 80<, to reduce those spectral structure we mentioned. Because of
this we can see a slight improvement in the number of antennas that have improved
their gains solutions by at least 2 − 4 antennas. This result is by comparing Tables
5.3 and .1 (in the appendix).
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Reading more into the table it can be observed that clustering the first few
baselines to run logi_cal seems to give better results, since we see a lot of overall
improvement in the number of antennas with improved gains.
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5.5.3 Logi_cal Option 1

(a) RBG = 30 k=6

(b) RBG = 60 k=6

Figure 5.27: Plot represents the Δ2 values for logi_cal against redcal, with the annotated
numbers representing the antenna number. (a) Shows the best performing, giving 104
antennas with improved gains and a percentage change of 12.16%. (b) Shows the worst
performing, giving 52 antennas with improved gains and a percentage change of -3.5%. The
red line is just the axis for ~ = 0 and every antenna above that line means that they have
improved gains when using logi_cal to calibrate. RBG is the first number of redundant
baseline groups and : is the k-value in k-means used for calibration
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N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80
Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

2 63 58 60 69 67 77 79
3 69 70 69 72 78 90 93

Case 1_0.05 4 67 62 58 61 71 81 85
5 62 52 56 61 67 69 91
6 61 54 57 59 67 73 83
Avg 64 59 60 64 70 78 86

2 92 84 94 88 63 76 73
3 93 87 97 90 60 63 58

Case 3a 4 94 91 104 98 62 71 65
5 96 92 106 96 55 69 59
6 96 90 104 98 56 67 52
Avg 94 89 101 94 59 69 61

2 83 52 53 42 25 34 32
3 81 49 51 47 27 31 32

Case 4a_0.01 4 85 71 77 59 33 43 39
5 90 67 80 64 35 45 38
6 96 75 80 68 37 48 44
Avg 87 63 68 56 31 40 37

2 84 49 54 41 25 34 31
3 76 41 51 38 30 33 30

Case 4a_0.02 4 88 63 70 58 35 44 38
5 93 72 80 64 39 42 37
6 97 71 86 65 40 46 42
Avg 88 59 68 53 34 40 36

2 90 55 67 47 32 26 26
3 91 65 76 62 37 31 30

Case 4b_0.01 4 92 77 86 67 43 39 39
5 101 78 90 79 40 40 34
6 97 78 84 73 43 39 31
Avg 94 71 81 66 39 35 32

2 91 59 70 49 34 29 28
3 88 63 77 68 33 35 32

Case 4b_0.02 4 96 80 83 68 40 40 36
5 98 80 86 73 42 38 33
6 96 77 86 74 42 40 35
Avg 94 72 80 66 38 36 33

Table 5.4: The table shows a number of antennas that have improved gains out of 124.
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N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80
Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

2 0.58 -1.37 -0.73 0.39 1.04 5.41 5.63
3 1.26 1.14 2.21 4.38 6.82 11.12 12.7

Case 1_0.05 4 -0.07 -4.59 -2.75 -0.43 0.13 9.49 11.42
5 1.11 -6.51 -3.06 -1.0 1.02 4.41 13.59
6 1.72 -6.05 -1.99 -0.85 -0.22 4.87 13.4
Avg 0.92 -3.48 -1.26 0.5 1.76 7.01 11.35

2 5.5 4.33 6.92 5.05 0.33 2.31 1.88
3 7.02 5.22 8.94 6.24 -1.61 -0.06 -1.54

Case 3a 4 8.02 6.87 11.27 8.78 -0.84 2.31 0.76
5 8.24 6.93 11.8 8.72 -1.67 0.73 -1.53
6 8.24 7.07 12.16 9.24 -1.52 0.28 -3.5
Avg 7.4 6.09 10.22 7.61 -1.06 1.11 -0.78

2 3.75 -1.82 -0.35 -3.54 -8.96 -10.18 -11.6
3 4.63 -2.0 -0.01 -2.81 -10.73 -11.02 -14.86

Case 4a_0.01 4 5.54 1.26 4.24 0.27 -8.31 -8.69 -11.02
5 6.33 0.75 3.66 -0.13 -9.85 -9.94 -13.71
6 6.91 2.04 4.73 1.63 -8.41 -7.35 -10.09
Avg 5.43 0.05 2.45 -0.92 -9.25 -9.44 -12.26

2 3.25 -2.41 -0.91 -4.02 -9.56 -11.07 -12.8
3 3.57 -3.01 -1.05 -4.64 -11.66 -13.41 -14.92

Case 4a_0.02 4 5.05 0.14 2.33 -1.14 -9.7 -9.81 -13.23
5 5.64 1.14 3.87 -0.73 -10.06 -9.86 -13.76
6 6.79 1.16 5.24 0.84 -8.41 -9.92 -12.34
Avg 4.86 -0.6 1.9 -1.94 -9.88 -10.69 -13.41

2 3.57 -1.62 0.42 -2.65 -9.16 -9.92 -11.5
3 5.17 0.89 2.87 0.36 -8.12 -11.68 -12.91

Case 4b_0.01 4 6.58 2.58 4.76 1.69 -7.24 -9.08 -12.41
5 6.65 3.03 6.31 2.98 -7.32 -9.31 -13.54
6 6.82 3.79 5.99 3.69 -8.51 -9.6 -15.33
Avg 5.76 1.73 4.07 1.21 -8.07 -9.92 -13.14

2 3.66 -1.05 0.42 -2.34 -8.5 -9.72 -9.99
3 5.04 0.87 2.96 0.71 -8.1 -11.01 -11.95

Case 4b_0.02 4 6.24 3.08 4.48 1.40 -8.09 -9.28 -13.18
5 6.42 3.09 5.32 2.73 -8.23 -10.76 -14.01
6 6.52 3.84 6.69 4.05 -7.87 -9.96 -13.31
Avg 5.58 1.97 3.97 1.31 -8.16 -10.15 -12.49

Table 5.5: The table shows the overall percentage change of antenna gain solutions
calculated using equation 5.6
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Both Tables 5.4 and 5.5, show the best three performing parameters (k-value and
number of RBGs) per case of non-redundancy (case1_0.05, 3a, case4a_0.01, case4a_0.02,
case4b_0.01 and case4_0.02). Where the best are color coded: green, yellow and
red representing the best, second best and third best respectively. The second col-
umn from the left are the k-values used in the clustering algorithm and the numbers
on top are the first RBGs clustered, including the longest baseline length present
in that group. Now the values in the table are taken from Figure 5.27, where the
number of antennas above that red line are recorded in Table 5.4 and the percentage
changes for Table 5.5 are calculated using the y-axis values in that figure. Therefor
each value in the cells of the tables represent the data from one figure.

The table show that there is some improvement in the overall performance of
redcal, but as these tables show that improvement is highly depended on how many
redundant baseline groups are clustered. For case1_0.05 clustering the first 60
redundant baseline groups gives the highest percentage change. Case3a shows that
clustering the first 30 RBGs gives better results, however that improvement begins
to decline as we move on clustering more RBGs. All case4 cases of non-redundancy
give good results when clustering the first 15 RBGs as the performance of logi_cal
begins to decline as the number of RBGs clustered are increased.

This analysis is mainly based on Table 5.5 and not table 5.4, this is because the
latter just gives as the number of antennas with improved gains, but with no context
on how much those gains have improved. With Table 5.5 we get almost everything
regarding the performance of logi_cal when compared to redcal, because it takes
into account not only the antennas with improved gains but also the antennas that
have gains that have worsened. The way the percentage values are calculated is also
a double-edged sword. For instance we could have a certain number of antennas
with gains that have improved drastically, the values of those gains could increase
the overall percentage change, thereby affecting how we report on the performance
of logi_cal. However the opposite is also true.

This is why we need Table 5.4 as a reference when talking about the overall per-
formance of logi_cal. Because by looking at the number of antennas with improved
gains we could extrapolate what the percentage change should be, since we also
know the number of antennas for the entire array. For example if we were to find
a case where fewer antennas have improved gains but a higher percentage change
we would surmise that those antennas’ gains have drastically improved, therefore
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giving higher percentage, which is not representative of the performance of logi_cal
for the entire array. However looking at the tables we do not seem to encounter that
situation.

As mentioned in the conclusion for section 5.5.1, the improvement of logi_cal
decreases as the size of the array increases. Now using the gain solutions, we want to
see if we reach the same conclusion we did when using visibility solutions, for case3a.
The best way to do this is by comparing the results from Tables 5.3 (HERA75) and
5.5 (HERA124), for case3a. From these tables we can see that the highest average
improvement in case3a for HERA75 is 10.82% while for HERA124 it is 10.22%,
showing that the improvement of logi_cal decreases as the array size increases.

5.5.4 Logi_cal Option 2

In this sub-section and the next coming sub-sections, we summarise the results of
the simulations (for each Logi_cal option) like what is shown in the tables (5.4 and
5.5) using histograms. These histograms ( Figure 5.28, Figure 5.29, Figure 5.30, and
Figure 5.31 ) are a visual representation of the performance of the new calibration
method (logi_cal). These plots are done to at least alleviate any confusion that
might be caused by the tables referenced. The bars on these histograms represent
the average values recorded on the table. For Figure 5.28(a), the y-axis is the average
number of antennas that have improved their gain solutions and for Figure 5.28(b),
the y-axis is the average percentage change, where positive numbers show how much
our calibration method has improved the gain solutions, while the negative numbers
show the opposite. On the x-axis, we have the cases of now redundancy we consid-
ered for this work and on the legends, we have the number of redundant baseline
groups clustered. The blue bar (15) means we have clustered the first 15 RBGs, for
the orange bar (25) means we have clustered the first 25 RBGs and so on.

The figures discussed in this subsection are for the method described in section
4.4.2. For Figure 5.28 the k-values range from [2,6], this means that in equal portions,
for a given number of RBGs those are split into different subgroups. For example
for 60 specified RBGs the groups could be split into five portions, 0-12 will use
k=6, 12-24 will use k=5, 24-36 will use k=4, 36-48 will use k=3, and 48-60 will use
k=2. While for Figure 5.29 k-values range from [4,6], then for 60 specified RBGs
the groups could be split into three portions, 0-20 will use k=6, 20-40 will use k=5
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and 40-60 will use k=4. For both these figures it shows that whatever the range
is, the difference in improvement is very minimal, indicating that splitting shorter
baselines into more subgroups and longer baselines into fewer subgroups has little
impact on the overall performance of logi_cal. These extra steps will only add more
unnecessary steps to the calibration method, which will only increase the time it
takes to run the logi_cal.
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(a)

(b)

Figure 5.28: bar graphs showing average results for option2 of modifying redcal. These
results show k-values in the range [2, 6]. Plot (a) shows the number of antennas (out of 124)
that have improved their gain solution. Plot (b) shows the percentage change calculated
using equation 5.6, and any positive value/percentage indicate the improvement of logi_cal
and negative percentages show the opposite for each case of non-redundancy.
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(a)

(b)

Figure 5.29: bar graphs showing average results for option2 of modifying redcal. These
results show k-values in the range [4,6]. Plot (a) shows the number of antennas (out of 124)
that have improved their gain solution. Plot (b) shows the percentage change calculated
using equation 5.6, and any positive value/percentage indicate the improvement of logi_cal
and negative percentages show the opposite for each case of non-redundancy.
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5.5.5 Logi_cal Option 3

For this method involves we cluster the specified RBGs using different k-values at
random. This randomness is is limited to a range of k-values staring from k=2 to
either k=3,4,5 or 6. With this method its easy to see that the more k-values we
have to choose from will result in differing results for every iteration. For example
(look at Table .6) when we clustered the first 40 RBGs and k-range=[2,3], then each
group will be clustered in either 2 or 3 sub-groups and the margin of error for each
iteration is about ±6 antennas. However for k-range=[2,5] the margin of error for
each iteration is about ±11 antennas depending on the case of non-redundancy. This
shows that this margin of error could be reduced if we limit the range of k-values
to be considered in the calibration, to only two choices in k-values (either 2/3, 3/4,
4/5, 5/6 or any combination of two k values).

Figure 5.30 and Figure 5.28(a) shows the average number of antennas, out of
124, that have improved their gain solution. From these figures we can see that
for all variations of non-redundancy in case 4, the number of antennas that have
improved gain solutions has decreased significantly, when more redundant baseline
groups are clustered. This can also be seen in Figure 5.30 and Figure 5.28(b), where
the overall percentage change in the antenna gain solution seems to get much worse
when more RBGs are clustered. This means that increasing the number of RBGs to
cluster makes the calibration method worse for case 4 (ellipticity and rotation of the
primary beam) non-redundancy. Since the RBGs are arranged in order by length,
from short to long, we can deduce from the plot that clustering only baselines with
shorter lengths improves the gain solutions for case 4 and the opposite is true for
case 1 (sidelobe-only perturbations).

Case 5 (stretching the baseline length) is different from the other case of non-
redundancy since it shows neither improvement nor deterioration in the antenna
gain solutions, especially when we look at the average percentage change, for Fig-
ures 5.28, 5.29 and 5.30(b). This is true for any approach/option tested here for
improving the calibration method. For case 3a (stretching the primary beam), when
we look at Figure 5.28 and Figure 5.29(b), we can see that any number of RBGs
clustered will improve the gain solutions, since every bar is in the positive side of
the y-axis. But we do not see the same trend for Figure 5.30(b), where the gain so-
lutions deteriorate when we cluster more baselines. This means that on average, the

97

https://etd.uwc.ac.za/



calibration approach of using option2 works much better than option3 in improving
the gain solutions.
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(a)

(b)

Figure 5.30: bar graphs showing average results for option3 of modifying redcal, using
k-values up to the range [2,6]. Plot (a) shows the number of antennas (out of 124) that
have improved their gain solution. From plot (b) any positive value/percentage indicate
the improvement of logi_cal and negative percentages show the opposite for each case of
non-redundancy.
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5.5.6 Logi_cal Option 4

This method is very different from the other three methods, because this does not
include a clustering algorithm. In this method we use the same k-value however since
there is no clustering algorithm, the baselines are clustered at random. For example
if k=2, it means we want to cluster the baselines within a redundant baseline group
into two groups, so each baseline will randomly be given a label of 0 or 1. Then after
the baselines have been given a label, those with the same label will be clustered
into the same group. This method is mainly introduced to try and validate the need
for a clustering algorithm. This is to compare if any improvement observed using
this calibration method (logi_cal) is due to the clustering algorithm or it is due to
the simple action of randomly splitting the RBGs.

What we observe from Figure 5.31(b) is that we see no improvement in the
gain solutions, in fact, especially for case_1_0.05 the gain solutions are getting
much worse. When we compare this result to the other three options highlighted
(which all use a clustering algorithm), we can see that there is a need to use a
clustering algorithm to improve the gain solutions. So to summarise it shows we
need a clustering algorithm in our method, to have a machine distinguish between
baselines and group those with similar traits into clusters for calibration.
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(a)

(b)

Figure 5.31: bar graphs showing average results for option3 of modifying redcal, using
k-values up to the range [2,6]. Plot (a) shows the number of antennas (out of 124) that
have improved their gain solution. From plot (b) any positive value/percentage indicate
the improvement of logi_cal and negative percentages show the opposite, for each case of
non-redundancy.
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5.5.7 Optimizing hyperparameters

In this sub-section we try to optimize the hyperparameters used during calibration:
The number of RBGs and the number of clusters we want. We do this by testing
which hyperparameter is most influential in improving the gain solutions. We ran
a simulation where we know the perturbation levels for each of the 124 antennas,
making it easier to understand which antenna pair make the most redundant baseline
group. By understanding the data, we can determine the number of clusters that we
want to divide the data points into. This means we are only left with the number
of RBGs to cluster as an unknown. Using this dataset we can also figure out the
influence the k-value has on the overall performance of the logi_cal.

Below are the perturbation levels on the primary beam added to the simulation
for case 3a, with nfreq=120 and ntimes=10 .

1 x s t r e t ch = 0∗ x s t r e t ch + 1
2 x s t r e t ch [ Nant / / 2 : ] ∗=1.02
3 y s t r e t ch = 0∗ y s t r e t ch + 1
4 ro t a t i on = 0∗ r o t a t i on
5 mainlobe_scale= 0∗mainlobe_scale + 1

Instead of the perturbation levels being random, in line 2 : The first half of the
array(antennas) are all ones and the second half are 1.02; line 3 : all the antennas
have a ystretch values of 1; line 4 : all the antennas have a rotation values of 0; line
5 : all the antennas have a mainlobe_scale values of 1.

With no knowledge of k in K-means to use during calibration, it helps to have
some prior knowledge of the dataset. This knowledge will be invaluable in making
sure the results of the K-means clustering algorithm make sense given the context of
the problem. This is done by simulating the array with known perturbation levels
(A and B), A=1, B=1.02. Therefore for our redundant baseline groups, we could
only have three combinations AA, BB and AB. A better representation of these
combinations is shown in Figure 5.32, where we could only have baselines made out
of antenna combinations: blue-blue; blue-red and red-red. So the hope is to see
if the clustering algorithm can be able to split them since we already know which
antenna pairs are redundant based on their perturbation levels.

So since we now know precisely which baselines form the most redundant baseline
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group, we can use that to test the performance of the clustering algorithm. We
want to know whether all the baselines in the subgroups follow the predicted cluster
allocations (AA, BB and AB). To answer this, we wrote a script that will manually
cluster the baselines based on the perturbation levels of each antenna and then
compare it to the output of the clustering algorithm. These results are shown in
Figure 5.33. This result is very significant because it proves two things: (1) The
chosen summary statistic works (using all-time samples and frequency channels);
(2) The clustering algorithms works on visibility solutions, whether the system has
added noise or gains.

So with the perturbations not randomized like the previous simulations, we can
now try to infer the k-value from the results we get after running redcal and logi_cal.
The idea is to see if we could use the perturbation levels to automatically get the
k-value every time we run logical instead of using a range of k-values to find the one
that gives us the best performance.

Figure 5.32: This is an image of 124 antenna array, showing the position of the antennas
separated by meters represented by the numbers in the x-y axes. The image shows antennas
in blue with A=xstretch=1 and antennas in red with B=xstretch=1.02
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(a)

(b)

(c)

Figure 5.33: Confusion matrices for the first 3 redundant baseline groups with baseline
length of 14.6-m and orientation of (a) 120◦, (b) 60◦ and (c) 0◦ to the Y-axis. The angle is
calculated counter clockwise to the East. All the confusion matrices show a 100% accuracy
and precision when using the clustering algorithm on the true data and the data with noise
and gains.
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K-Means(true_data) Vs clusters based on perturbation

After clustering the baselines based on what we know about the perturbation
levels, we get a 100% percent accuracy on all the 60 RBGs clustered. This is really
promising, it shows that using the visibility solutions as inputs for the clustering
algorithm works as a way to identify redundancy between baselines. Not only does
this validate the visibility solutions, it also shows that k-means does what it is meant
to do.

K-Means (true_data) Vs K-Means (noise_gains_data)

Since K-Means(true_data) and clusters based on perturbation are basically indis-
tinguishable we could use either to compare with data with noise and gains. Except
for RBG6 and RBG54, all the RBGs give us a 100% accuracy when clustering. This
clearly shows that even with added noise and gains k-means can still recover the
same groups as when using true data. This also goes with the fact that we already
know the number of sub-groups (the k-value) we can get given that we know the
perturbation levels. So to get this 100% accuracy is only possible because we know
the ideal k-value.

Now what happens in a real-world case where we do not know the individual
perturbation for each antenna, thereby not knowing the ideal k-value for clustering.
The recovery of the same clusters is highly dependent on the perturbation levels
added to the system, because when clustering data with random perturbations we
cannot recover a 100% of the subgroups/clusters.
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Figure 5.34: Plot represents the percentage change of the Δ2 values (positive values
indicate that logi_cal has improved the overall gain solutions by a certain percentage).
On the y-axis we have the first number of redundant baseline groups that are clustered
in to more redundant subgroups. This plot is for case3a where we know the perturbation
levels. This shows that for the most part the k-values are giving us almost the same
percentage change for a given number of RBGs used.

The results in Figure 5.34 indicate that the k-value used for clustering does not
matter that much compared with the number of redundant baseline groups chosen to
be clustered. This is very evident as there is some change in the percentage changes
for any number of RBGs clustered, and on the other hand, it does not change that
much when using k=3,4,5,6. This also tells us that clustering the RBGs into two
groups (k=2) can improve the calibration method regardless of the number of RBGs
clustered. We also see that using k=2 for calibration improves the gain solutions no
matter the approaches (or options) tested to modify redcal. However, in most cases,
this improvement is not that desirable compared to when using other k-values. Since
this is a simulation, we have the luxury to know what the optimal k-value is, which
is something we do not have in a real-life situation. In summary, k=2 is guaranteed
to improve redundant calibration for simulated data (but not by that much) and
the number of RBGs to cluster is the most important parameter to consider when
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running logi_cal.

Even though we have shown that the k-value does not have that much of an
effect on the overall performance of the calibration method, it could still be useful
to find a method that can automatically identify the optimal k-value. We discussed
two methods in section 3.2.1 that are very popular in finding the optimal k-value
to use during clustering, the elbow method and the silhouette score. The elbow
method is a visual analysis approach, where optimal the k-value is the point where
the plot begins to diminish (forming an elbow). As shown in Figure 5.36 finding
the diminishing factor in this plot is subjective at best, making it difficult to find
the optimal k-value. Since this method is visual, it is hard to automate this in
our calibration method. The other method is the silhouette score which is another
graphical approach, however, unlike the elbow method, it shows a concise graphical
representation of how well each object has been clustered. It also has a clear defini-
tion of what makes an optimal k-value. By definition, the k-value with the highest
silhouette score is the optimal k-value (2), as shown in Figure 5.35(a).

Figure 5.35(b) shows the distribution of the data for k=2, which is the optimal
k-value given by the silhouette score. From this plot you can see that there is no
clear structure of a cluster, we can also see it in the low value of the silhouette score,
meaning that the confidence of k=2 being the ideal k-value is very small. Since we
know how the data is structured, we already know that k=3 is the optimal k-value
and both these methods fail to identify that. This means both these methods are not
ideal to find the best k-value and will require that calibration be run with different
k-values.
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(a)

(b)

Figure 5.35: The plots show the optimal k-value to be used to cluster a redundant
baseline group for case3a. (a) shows the silhouette score against the number of clusters.
(b) shows the distribution of the data for the optimal k-value given by the silhouette score.
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Figure 5.36: This Image shows results the elbow method, for determining the optimal
k-value for case 3a. On the x-axis we have the k-value and on the y-axis is the distortion
(the average of the squared distances from the cluster centers of the respective clusters).
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6 Conclusion

Observing the 21 cm line promises to provide us with a better view of the epoch of
reionisation, however separating the 21 cm signal and the astrophysical foregrounds
is a challenge. This separation requires precise calibration of the system. Cur-
rently, several experiments have been built that have precise control of systematics,
with sufficient sensitivity for the detection and characterization of the cosmologi-
cal 21cm signal. These instruments are designed differently from traditional radio
telescopes, and because of the precision they are trying to achieve, they will require
non-traditional ways of calibrating them so they could reach their design sensitivi-
ties. HERA is such an instrument, which uses the internal consistency of the array
to calibrate its data, called redundant baseline calibration(redcal) (Dillon & Par-
sons, 2016; Dillon et al., 2020). In redcal antenna pairs with the same positional
vector between them see the same signal. However, there are many reasons why this
assumption is not always true, due to many reasons that can spoil the redundancy
of the array like different primary beam patterns as well as ’outlier’ antennas which
sustain the largest gain errors (Barry et al., 2016; Ewall-Wice et al., 2016; Joseph
et al., 2018; Orosz et al., 2019; Gehlot et al., 2021; Choudhuri et al., 2021).

Due to the uncertainty of what might spoil the redundancy of the array, in this
thesis, we try to classify the non-redundancy in the HERA array using a machine
learning clustering algorithm. So we are clustering the baselines within a redundant
baseline group (RBG) based on their visibility solutions. We then use these clustered
baselines that are now more redundant to calibrate the data with a new calibration
technique called logi_cal. In this technique, we have modified the original redcal
code to include a section where the baselines within the redundant baseline groups
(predetermined by their positional vector) are clustered into sub-groups based on
their visibility solutions. To modify redcal we focused on the primary assumption
that baselines within a redundant baseline group should see the same Fourier mode
on the sky. So using a machine learning algorithm, we perform the clustering on a
single redundant baseline group using the visibility solutions from redundant cali-
bration (specifically, the hera_cal package), this is because these visibility solutions
are, in principle, the same.

In chapter 4 we described the simulation and the cases of non-redundancy used
as our data. We also describe the steps we took in modifying redcal and also
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outlined different options/approaches we took modifying redcal. In option 1, all the
specified RBGs are clustered using the same k-value; option 2 involves clustering all
the specified RBGs using different k-values (uniform distribution of k-values) and
option 3 involves clustering all the specified RBGs using random k-values within a
given range. Although options 1-3 are completely different, there are no notable
distinctions in the results we get. Except when we compare them with option 4 (the
baselines are clustered randomly without any use of a clustering algorithm) which is
used as a way to validate the use of the clustering algorithm. These results clearly
show that just increasing the number of groups will not improve the results. There
needs to be a strategical way of grouping those baselines, and using a clustering
algorithm is the best way of doing it. The results also show that for any case of
non-redundancy and whatever option (1-3) is implemented, k=2 is always improving
the results. This improvement might be small compared to other k-values for some
cases, but k=2 for the simulations is always guaranteed to improve the antenna gain
solutions.

In chapter 5 we start showing and discussing the results, by comparing the re-
sults we get from redcal and logi_cal using gain solutions. These results show that
logi_cal can improve the results for any beam dependent primary beam perturba-
tions added to the simulation, but that improvement is not extended for positional
non-redundancies added to the simulation. Overall per case of non-redundancy:
Case3a_0.01 the calibration is improved by 12.2%, case1_0.01 by 13.6% and case4a
and case 4b the calibration is improved by about 6.8± 0.1%. Unlike the other cases,
case5 (stretching the baseline length by 10cm) is the only one that is positional
non-redundancy, and our results show that logi_cal does not improve the antenna
gains. This could be explained by the fact that when a redundant array like HERA,
has positional offsets in the order of 10 cm, careful consideration has to made on
when to do redundant calibration (Joseph et al., 2018). In this chapter we also val-
idated the use of a clustering algorithms and the choice of features for the visibility
solutions. The way this was done is to simulate a case where we already know the
perturbation levels and the baseline redundant subgroups that will be formed as a
result, and our method was able to recovered those subgroups, clearly showing that
the clustering algorithm is performing as expected.

Despite this success there is still more to be done to make even more improve-
ments, for example this version of logical still requires two parameters before run-
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ning calibration (1) the number of redundant baseline groups to be clustered (2) the
number of clusters we want (the k in k-means). For (1) the number of RBGs to be
clustered varies on a case to case basis, some cases of non-redundancy may require
more RBGs to be clustered and some may require less. Because of this result, using
80< for the maximum baseline cut length (<0G_1;_2DC) for calibration, gives us a
reasonable number of RBGs to cluster. For (2) we could try to find a more auto-
mated way of choosing the number of clusters by using algorithms like the elbow
method and the silhouette score. We say ’like’ here because these methods do not
work for our datasets so there might be some other methods out there that could
work, as shown in chapter 5.5.7. Another thing that chapter 5.5.7 also showed is
that parameter (1) is more important to optimise than (2), since the improvement
of the results was more driven by the number of redundant groups clusters and not
the k-values. So this leaves more opportunities for improvements to be made on this
project.
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Appendix A:

Additional information on the results presented

.1

N_antennas = 75, nfreq=120, ntimes=10, max_bl_cut = 80

Number of Re-
dundant baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

2 56 54 56 58 45
3 50 47 53 50 34

Case 3a_0.01 4 55 53 60 62 43
5 58 52 62 62 38
6 55 51 60 61 38

Avg 55 51 58 59 40

2 47 31 34 29 22
3 51 27 32 26 19

Case 4a_0.01 4 58 32 41 29 15
5 59 34 41 31 18
6 62 39 42 39 15

Avg 55 33 38 31 18

2 48 38 42 38 31
3 59 35 40 35 26

Case 4b_0.01 4 61 44 51 43 30
5 60 49 55 50 32
6 55 53 55 50 32

Avg 57 44 49 43 30

2 36 37 36 37 37
3 41 38 35 38 37

Case 5 4 32 41 40 37 37
5 40 45 46 45 46

Continued on next page
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Table .1 – continued from previous page

N_antennas = 75, nfreq=120, ntimes=10, max_bl_cut = 80

Number of Re-
dundant baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

6 44 47 49 42 47

Avg 39 42 41 40 41

Table .1: The table shows a number of antennas that have improved gains out of 75. The
numbers on the far left are the k-values used in the clustering algorithm and the numbers
on top are the first RBGs clustered, including the longest baseline length present in that
group.

.2 Logi_cal Option2

N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80

Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

2 63 59 61 68 66 82 79
3 59 59 63 68 73 83 87

Case 1_0.05 4 62 57 66 57 64 79 79
5 62 61 63 63 68 82 82
6 61 65 60 62 64 73 82

Avg 61 60 63 64 67 80 82

2 93 83 93 87 63 75 71
3 95 84 100 88 59 72 75

Case 3a 4 96 89 96 92 75 78 63
5 94 83 102 96 74 76 74
6 96 84 98 95 73 66 66

Avg 95 85 98 92 69 73 70

Continued on next page
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Table .2 – continued from previous page

N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80

Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

2 87 50 53 43 25 36 31
3 83 52 58 42 25 36 36

Case 4a_0.01 4 79 50 56 48 29 44 37
5 87 55 75 50 39 40 39
6 93 55 71 61 38 37 39

Avg 86 52 63 49 31 39 36

2 84 50 50 37 26 34 33
3 82 50 57 39 26 32 30

Case 4a_0.02 4 80 44 47 42 28 35 36
5 83 54 65 51 31 43 40
6 89 57 68 59 40 42 38

Avg 84 51 57 46 30 37 35

2 90 54 65 49 32 25 26
3 78 60 73 49 29 34 32

Case 4b_0.01 4 87 69 64 61 44 46 35
5 84 60 73 61 41 38 36
6 93 65 78 77 39 45 34

Avg 86 62 71 59 37 38 33

2 94 57 67 53 35 26 28
3 83 61 66 51 27 37 34

Case 4b_0.02 4 89 65 65 55 42 43 40
5 93 68 68 58 42 36 35
6 92 67 80 67 44 45 33

Avg 90 64 69 57 38 37 34

Continued on next page
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Table .2 – continued from previous page

N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80

Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

Table .2: The table shows the overall number of antennas with gain solutions when using
option 2 of logical to calibrate the data. On this table the k-value starts from k=2 to the
specified k-value on the left side of the column.
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N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80
Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

2 0.48 -1.43 -0.1 0.87 0.88 5.41 6.35
3 0.0 -2.73 -1.03 0.66 3.19 8.57 10.2

Case 1_0.05 4 0.93 -2.8 -1.02 -1.13 2.11 7.56 8.26
5 0.41 -1.95 -0.69 0.08 2.27 8.26 7.9
6 0.27 -1.17 -0.4 0.17 -0.37 4.96 9.93
Avg 0.42 -2.02 -0.65 0.13 1.62 6.95 8.53

2 5.51 4.32 6.93 5.05 0.29 2.32 1.92
3 5.23 6.31 8.86 4.44 -1.07 2.42 3.31

case 3a 4 6.45 5.56 7.96 6.84 2.35 4.4 0.77
5 6.13 4.8 9.19 7.08 2.46 3.51 3.61
6 7.69 5.62 8.95 8.53 2.53 2.27 0.04
Avg 6.2 5.32 8.38 6.39 1.31 2.98 1.93

2 3.62 -1.8 -0.37 -3.31 -8.88 -9.91 -11.85
3 3.04 -0.85 0.64 -4.7 -10.88 -12.05 -14.02

Case 4a_0.01 4 3.38 -1.6 -0.69 -3.74 -9.28 -10.31 -12.51
5 3.71 -1.64 1.32 -1.67 -6.83 -9.11 -13.14
6 5.8 -1.2 1.01 -0.14 -7.51 -10.7 -12.5
Avg 3.91 -1.42 0.38 -2.71 -8.68 -10.42 -12.8

2 3.21 -2.61 -0.92 -4.63 -9.44 -11.04 -12.38
3 3.06 -1.81 -0.44 -5.52 -12.02 -13.65 -15.13

Case 4a_0.02 4 3.31 -3.2 -2.38 -4.58 -10.6 -12.49 -14.72
5 3.29 -1.84 0.43 -3.51 -8.28 -10.76 -13.92
6 5.03 -2.1 1.14 -0.58 -7.72 -12.12 -13.92
Avg 3.58 -2.31 -0.43 -3.76 -9.61 -12.01 -14.01

2 3.53 -1.46 -0.23 -2.61 -9.18 -9.68 -11.22
3 3.0 0.09 1.93 -2.08 -9.42 -8.27 -9.25

Case 4b_0.01 4 4.14 0.19 0.76 -0.86 -6.33 -6.93 -11.88
5 3.37 -0.74 2.21 0.06 -6.58 -8.79 -12.23
6 5.43 -0.22 2.86 1.24 -6.08 -7.43 -15.17
Avg 3.89 -0.43 1.51 -0.85 -7.52 -8.22 -11.95

2 3.86 -1.32 0.33 -2.08 -8.47 -10.72 -10.0
3 3.34 0.14 1.55 -2.11 -9.37 -8.33 -8.4

Case 4b_0.02 4 4.34 0.25 0.83 -0.91 -6.33 -6.8 -10.03
5 3.71 -0.14 1.86 -0.28 -6.53 -8.39 -10.77
6 5.36 0.46 2.61 0.54 -5.28 -8.01 -10.7
Avg 4.12 -0.12 1.44 -0.97 -7.2 -8.45 -9.98

Table .3: The table shows the overall percentage change for the Δ2 values of antenna gain
solutions calculated using equation 5.6, and it is the complement of Table .2

126

https://etd.uwc.ac.za/



N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80
Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

4 59 61 66 72 72 80 82
Case 1_0.05 5 69 65 59 66 70 84 85

6 62 61 61 61 60 77 87
Avg 63 62 62 66 67 80 85

4 91 93 104 95 58 72 73
Case 3a 5 97 92 105 98 61 73 61

6 96 91 104 100 59 67 66
Avg 95 92 104 98 59 71 67

4 82 56 72 49 27 41 37
Case 4a_0.01 5 96 68 81 60 34 42 33

6 90 66 80 61 30 44 35
Avg 89 63 78 57 30 42 35

4 76 52 58 47 29 44 36
Case 4a_0.02 5 87 62 81 64 43 45 36

6 82 63 77 56 38 36 40
Avg 82 59 72 56 37 42 37

4 96 70 83 69 44 37 43
Case 4b_0.01 5 89 68 79 63 50 41 32

6 91 76 87 79 45 34 36
Avg 92 71 83 70 46 37 37

4 96 74 81 68 40 40 41
Case 4b_0.02 5 93 71 73 67 46 38 34

6 91 77 83 74 45 36 35
Avg 93 74 79 70 44 38 37

Table .4: The table shows the overall number of antennas with gain solutions when using
option 2 of logical to calibrate the data. On this table the k-value starts from k=3 to the
specified k-value on the left side of the column.
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N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80
Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

4 1.08 -1.78 0.7 2.25 3.93 8.01 8.11
Case 1_0.05 5 1.93 -1.23 -1.09 2.45 2.7 10.31 10.5

6 0.92 -2.03 -0.89 0.35 -0.25 8.74 12.81
Avg 1.31 -1.68 -0.43 1.68 2.13 9.02 10.47

4 6.9 6.85 10.53 7.51 -0.66 2.61 3.36
Case 3a 5 7.66 6.27 10.6 8.65 0.37 3.47 -1.34

6 7.56 6.1 11.09 8.21 -0.08 1.71 0.74
Avg 7.37 6.41 10.74 8.12 -0.12 2.6 0.92

4 4.81 -1.0 1.53 -2.0 -9.65 -8.41 -10.28
Case 4a_0.01 5 5.61 0.33 3.19 -0.19 -8.23 -8.64 -11.94

6 5.46 0.38 3.5 -0.71 -8.94 -9.24 -11.24
Avg 5.29 -0.1 2.74 -0.97 -8.94 -8.76 -11.15

4 3.78 -1.42 0.33 -3.06 -10.21 -9.4 -12.42
Case 4a_0.02 5 4.48 -0.38 1.83 -0.45 -8.72 -9.5 -13.27

6 4.87 -0.2 3.11 -1.16 -8.5 -11.2 -12.6
Avg 4.38 -0.67 1.76 -1.56 -9.14 -10.03 -12.76

4 5.41 2.43 4.66 1.01 -7.6 -9.7 -11.04
Case 4b_0.01 5 5.24 1.35 3.81 1.24 -6.75 -9.9 -15.18

6 5.86 1.31 4.02 2.53 -7.17 -11.22 -13.12
Avg 5.5 1.7 4.16 1.59 -7.17 -10.27 -13.11

4 5.25 2.07 4.59 1.08 -7.99 -10.29 -10.67
Case 4b_0.02 5 5.48 1.83 3.3 1.29 -6.68 -10.37 -13.06

6 5.86 1.78 4.23 2.54 -7.35 -12.2 -13.1
Avg 5.53 1.89 4.04 1.64 -7.34 -10.95 -12.28

Table .5: The table shows the overall percentage change of antenna gain solutions calcu-
lated using equation 5.6, and it is the complement of Table .4

.3 Logi_cal Option3
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N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80

Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

3 66 59 59 73 72 84 84
3 66 67 69 77 73 80 93
3 64 70 67 73 70 83 89
4 63 63 60 67 67 81 72
4 66 64 68 67 65 74 92
4 67 59 65 71 60 84 76

Case 1_0.05 5 66 57 55 58 57 73 85
5 68 70 53 71 70 78 94
5 66 58 61 64 69 73 90
6 60 58 61 57 65 69 88
6 69 55 68 60 79 80 69
6 66 55 55 66 64 76 90

Avg 64 59 60 64 70 78 86

3 91 82 100 91 52 60 43
3 93 86 97 91 60 63 59
3 95 90 97 93 69 77 80
4 91 81 102 100 38 43 28
4 92 86 98 103 50 65 39

case_3a 4 99 90 98 88 86 81 96
5 94 83 101 108 46 55 41
5 98 85 101 84 67 61 51
5 98 96 87 93 86 84 70
6 95 86 104 85 34 77 35
6 96 88 104 87 57 87 48
6 97 94 97 88 59 88 85

Avg 95 87 99 93 59 70 56

3 79 46 54 55 34 41 26

Continued on next page
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Table .6 – continued from previous page

N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80

Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

3 81 57 50 58 24 35 32
3 80 56 57 44 19 30 31
4 75 43 68 66 48 37 30
4 82 63 66 56 35 32 46

Case 4a_0.01 4 75 56 64 52 31 37 25
5 90 48 67 61 34 38 37
5 91 64 56 68 26 42 43
5 85 46 79 46 39 42 37
6 93 62 77 59 29 42 31
6 103 67 71 41 28 48 39
6 95 61 79 45 33 50 52

Avg 86 56 66 54 32 40 36

3 77 45 52 50 27 37 31
3 77 52 52 44 30 36 37
3 79 51 58 45 22 33 25
4 67 50 57 66 45 37 28
4 80 67 55 58 26 36 38

Case 4a_0.02 4 80 61 65 49 27 36 26
5 86 47 65 57 35 36 37
5 91 63 51 67 29 44 34
5 86 49 61 47 41 36 29
6 90 63 72 54 31 43 34
6 96 66 66 44 38 49 39
6 85 65 74 43 33 48 48

Avg 83 57 61 52 32 39 34

3 87 57 71 66 37 32 31

Continued on next page
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Table .6 – continued from previous page

N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80

Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

3 93 62 58 68 35 41 29
3 86 69 68 52 33 33 25
4 82 64 79 68 58 36 35
4 95 73 67 62 32 34 43

Case 4b_0.01 4 91 70 67 62 35 36 24
5 101 55 70 62 43 39 33
5 95 67 66 72 25 46 39
5 94 56 72 63 53 38 29
6 88 68 85 79 30 39 29
6 94 74 77 61 34 31 28
6 96 71 74 62 38 34 42

Avg 92 66 71 65 38 37 32

3 86 60 69 64 39 31 34
3 91 64 64 64 34 36 29
3 88 68 71 56 33 33 23
4 85 61 83 63 52 37 31
4 95 73 70 59 33 36 46

Case 4b_0.02 4 86 70 68 61 35 35 25
5 98 57 67 67 47 37 29
5 92 72 60 76 31 44 41
5 95 59 77 66 48 39 29
6 87 70 87 67 28 37 31
6 95 74 70 65 37 32 33
6 91 75 67 65 35 36 39

Avg 91 67 71 64 38 36 32

Continued on next page
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Table .6 – continued from previous page

N_antennas = 124, nfreq=120, ntimes=10, max_bl_cut = 80

Number of
Redundant
baseline
groups

15
(43.0<)

25
(52.6<)

30
(63.6<)

35
(63.6<)

40
(66.9<)

50
(77.3<)

60
(87.6<)

Table .6: The table shows a number of antennas that have improved gains out of 124.
These results are for option3 of logical where the k-value is randomized within a given
range from k=2 to the k-values specified on the left column of the graph. These k-values
are repeated three times which indicate the iterations for the parameters. Iterations are
implemented to ensure that we do not conclude the performance of this method based on
one result since the k-values are random.
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