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Abstract 

The efficacy and toxicity of several drugs and prodrugs are influenced by the inter-

individual genetic variations in drug-metabolising enzymes. Cytochrome P450 

enzymes constitute the major metabolising enzymes in humans. Cytochrome 3A4 

(CYP3A4) is the highest abundantly expressed human cytochrome P450 enzyme 

metabolising about 40% of marketed drugs. Several studies have shown the 

significant effects of CYP3A4 single nucleotide variability on its enzymatic activity 

and the pharmacokinetic parameters of metabolized drugs. However, there is a 

paucity of information on the molecular characteristics (including three-

dimensional protein structures, physicochemical properties, and molecular 

dynamics characteristics) of single nucleotide variants of CYP3A4 enzymes that 

may be correlated with the reported variability of their enzymatic activities. This 

study investigated the possible effects of the reported single nucleotide 

polymorphism on the structural, physicochemical, and molecular dynamic 

properties of selected variants of CYP3A4. The research also aimed to establish a 

potential correlation between the previously reported enzymatic activities (as 

measured by intrinsic clearance of lidocaine) of selected variants of CYP3A4 and 

molecular characteristics of the variants.   

The literature reviewed revealed four CYP3A4 variants that showed significant 

differences in the clearance of lidocaine relative to the wild type, this include the 

CYP3A4*2 (S222P) and CYP3A4*24 (Q200H), CYP3A4*11 (T363M) and 

CYP3A4*23 (R162W) . The differences in the three-dimensional modelled protein 

surfaces were investigated. Bioinformatics tools such as MOE program, ChimeraX, 

Expasy protparam, and CharmGUI were used for the prediction of the 

physicochemical properties of the modelled protein structures of the selected 

variants. The free energy binding of the modelled protein structures of the CYP3A4 

with lidocaine was determined with molecular docking, and the molecular dynamic 

characteristics of the selected variants with and without the docked lidocaine were 

investigated. Pearson's correlation coefficients were used to determine the 
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correlation between the reported intrinsic clearance of lidocaine and the predicted 

molecular protein properties of selected CYP3A4 variants.  

Structural differences were observed in the active site region and noticeable 

differences were also discovered in the molecular lipophilicity potential, coulombic 

electrostatic potential, and some of the variants' physicochemical and general 

protein properties relative to the wild type. Notably, the Gibbs free energy change 

predicted a decrease in the structural stability of the selected variants. The wild type 

showed the highest solvation energy when compared to all the selected variants. 

The molecular dynamics study showed a decrease in structural dynamic stability of 

the selected variants’ unbounded protein structures, and increased flexibility was 

observed in the core active regions of variants CYP3A4*2 and CYP3A4*23. In all, 

more than sixty-five percent of the total predicted properties (structural, 

physicochemical, and dynamic properties) showed significant differences in the 

selected variants relative to the wild type. The correlation study revealed that 

significant correlation exists between fifty-two percent of the predicted properties 

with notable differences, and the reported variation in the clearance of the selected 

variants. 

Overall, the data generated from this study provided insight into the effect of single 

nucleotide polymorphism on the structural, physicochemical properties, and 

dynamic characteristics of the modelled protein structures of selected variants of 

CYP3A4. The results from this study provide plausible explanations for the 

observed differences in the functional activity (metabolism) of the selected variants 

of CYP3A4 enzymes. The observed correlation between the molecular 

characteristics and the reported functional differences may help to elucidate the 

basis for the observed variation in the reported functional activity (metabolism) of 

the different variants of the CYP3A4 enzyme. This is applicable in drug design and 

discovery, to reduce the toxicity of drugs associated with genetic variation. This 

will also facilitate an increase in drug efficacy with appropriate implementation of 

the knowledge of the effects of single nucleotide polymorphism.   
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Chapter 1  

Introduction 

1.1 Background of the study 

Reports have shown that the efficacy and toxicity of several drugs and prodrugs are 

influenced by the inter-individual genetic variations in drug-metabolising enzymes 

(Ahmed et al., 2016; Neamțu, 2020). Pharmacogenomics, which is an essential 

component in precision medicine, is the study of the response of individuals to 

medication with their genomics information (Ahmed et al., 2016; Arafah et 

al.,2021). The advent of pharmacogenomics allows the assessment of genetic 

variants responsible for an individual’s specific drug response (Jørgensen, 2019, 

Radouani et al., 2020). The alteration in the expression and function of proteins 

have been linked to variations in the deoxyribonucleic acid (DNA) sequences. 

(Teama, 2018; Vihinen, 2021), which may also explain the variation in individual 

drug responses. 

Most drugs in use today that undergo hepatic clearance are found to be metabolised 

by cytochrome P450 (CYP) enzymes (Tornio and Backman, 2018). It has been 

reported that CYP enzymes undergo gene polymorphism as well as gene 

duplications which often result in variations in the metabolism of medication 

(Tverdohleb et al., 2016). In the liver, the CYP3A family is the most common 

subfamily of CYP isoforms. There are at least four isoforms: 3A3, 3A4, 3A5, and 

3A7, the most important of which is 3A4 (Guttman et al., 2019). The variability of 

CYP3A4 activity in the population has been reported to be extremely high (>100-

fold) (Klein and Zanger, 2013; Saiz-Rodríguez et al., 2020). 

Several studies have proved the significant effects of CYP3A4 gene variability on 

its enzymatic activity, and consequently on most pharmacokinetic parameters (Fang 

et al., 2017; Zhou et al., 2019; Chen et al., 2020). However, there has been no report 

on the effect of gene variation on the three-dimensional structures, physicochemical 

and dynamic characteristics of the CYP3A4 protein.  This research seeks to explore 
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the potential link between reported functional differences in CYP3A4 variants and 

their structural or physicochemical/molecular and dynamic characteristics. 

 Four CYP3A4 variants that showed significant differences in the clearance of 

lidocaine relative to the wild type were selected in the report by Fang et al., ( 2017). 

These four variants with significant differences in their enzymatic activities were 

selected to investigate the effect of the variation on the structural properties, 

molecular dynamic characteristics, physicochemical and general protein properties. 

Hence, a need to generate three-dimensional protein models of the selected 

CYP3A4 variants. Homology modelling, also known as comparative protein 

structure modelling, is a method for obtaining three-dimensional models of a 

protein from its amino-acid sequence (Ruppé et al., 2019; Adebiyi and Olugbara, 

2021). It uses an alignment with a homologous protein of a known structure that 

serves as the template. Studies have shown that in all circumstances where template 

structures can be found, homology modelling is the approach of choice for creating 

accurate three-dimensional in silico models of a protein (Waterhouse et al., 2018; 

Chikhale et al., 2020). In addition, according to Esfandi and Atabati (2021), to 

guarantee the structural properties of the 3D protein models’ compatibility with the 

physicochemical rules, the final 3D protein models created via homology modelling 

must be checked relative to experimentally solved protein structures. Hence, several 

3D protein model analysis packages have been developed to validate the quality of 

the modelled protein structures. A good 3D protein homology model is more likely 

to give better results in the subsequent protein structural analysis including the 

effect of single nucleotide polymorphism on the structural, dynamics 

characteristics, and physicochemical properties of selected protein variants. 

According to recent reports, one of the important aspects of the characterization of 

a protein is the analysis of its physicochemical parameters (Kaur et al., 2020; 

Munjal, Shukla, and Singh, 2021b). Furthermore, Georgiou (2018) reported that the 

corresponding characteristics of the amino acids in a protein may determine its 

physicochemical properties. Therefore, it is important to investigate the effect of 



http://etd.uwc.ac.za/

3 

 

the substitution of an amino acid on the physicochemical property of the mutated 

protein structures. 

It is a widely held view that the use of in silico bioinformatics tools and techniques 

like molecular dynamics to analyse modelled protein structures leads to a better 

understanding of the molecular mechanism, physicochemical characteristics, 

protein interaction, and other structural conformation of the protein (Oyugi et al., 

2018; Patra et al., 2020). Rezaei et al. (2020) also reported that an examination of 

protein dynamics using molecular dynamics simulations can aid in understanding 

the effects of mutations on protein structure. This allows the investigation of the 

effect of a single amino acid change on the characteristics of modelled protein 

structures of selected CYP3A4 variants.  

1.2 Research problem statement 

The variations in the implicated enzymes (CYP3A4) led to the observed phenotype 

of poor metabolizers (PMs), intermediate metabolizers (IMs), extensive 

metabolizers (EMs), and ultra-rapid metabolizers (UMs). While several studies 

have proved the significant effects of CYP3A4 variability on its enzymatic activity, 

especially on most pharmacokinetic parameters, there is a paucity of information 

on the effect of some of these single nucleotide variations on the molecular, 

physicochemical, structural, and dynamic properties of the implicated enzymes 

(CYP3A4 variants). There is also a need to establish the correlation between the 

molecular characteristics of the variant CYP3A4 enzymes and the observed 

phenotype of varied rates and extent of the enzymatic functionality (Bins et al., 

2019; X. Liu et al., 2019). 

1.3 Significance of the study  

The data and the knowledge that was generated from this study provide insight into 

the effect of single nucleotide polymorphism on the structural, physicochemical 

properties, and dynamic characteristics of modelled and validated protein structures 

of selected variants of CYP3A4. The significance of this study is hinged on the 
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potential to be able to predict the intrinsic clearance of a drug by a variant of 

CYP3A4 enzyme from the structural properties of the variant enzyme.  

1.4 Research aim 

This study aimed to investigate the effects of single nucleotide polymorphism 

(SNP) on the structural, physicochemical, and general protein properties of the 

modelled three-dimensional (3D) protein structures of selected CYP3A4 variants 

and to correlate such properties to the reported intrinsic clearance of lidocaine. 

1.5 Research questions  

In this research, four CYP3A4 allelic variants were selected from a set of twenty-

two allelic variants reported from a study that assessed the functional enzymatic 

effect of the variants on the metabolism of lidocaine (Fang et al., 2017). The four 

selected variants were those with reported significant differences in the metabolism 

(clearance) of lidocaine relative to the wild type as reported by Fang et al. (2017). 

Based on this reported study, the following research questions were asked: 

1. What is the effect of reported single nucleotide polymorphism (SNP) on the 

three-dimensional protein structures of the selected variants? 

2. What is the effect of reported single nucleotide polymorphism on the 

physicochemical and general protein characteristics of selected variants of 

CYP3A4 relative to the wild type? 

3. What are the observable differences in the molecular dynamic properties of 

the three-dimensional protein structures of the wild type and the selected 

variants of CYP3A4? 

4. What is the extent of correlation between the molecular structure, dynamic 

properties, physicochemical characteristics of selected variants of CYP3A4, 

and the observed differences in the functional activity (relative clearance) 

reported by Fang et al. (2017)? 
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1.6 Research objectives 

The following are the research objectives for this study: 

1. Homology modelling and quality evaluation of the protein structures of the 

CYP3A4 selected variants. 

2. Visualisation, structural and molecular comparisons to investigate the effect 

of single nucleotide polymorphism on modelled and validated protein 

structures of the selected CYP3A4 variants. 

3. Determination of the differences in the physicochemical properties, ligand 

and solvent interaction, and other general properties of “protein” of the 

selected CYP3A4 variants, relative to the wild type. 

4. Investigate the dynamic properties of the modelled protein structure of the 

selected variants relative to the wild type of CYP3A4 by molecular dynamic 

simulations. 

5. Determination of the potential correlation between the studied structural, or 

physicochemical effects of SNPs and the reported effects of SNPs on the 

relative clearance of selected variants. 

1.7 Thesis framework 

 

Figure 1.1: Schematic diagram of the thesis framework  



http://etd.uwc.ac.za/

6 

 

Chapter 2  

Literature review 

This chapter presents an overview of the polymorphism of cytochrome P450 (CYP) 

enzymes with a major focus on the single nucleotide polymorphism of CYP3A4 

and its clinical implications in humans. The review includes a comprehensive report 

of the protein structure of CYP enzymes and the uniqueness of the CYP3A4 

structure including its active site, ligand binding conformation, structural 

flexibility, topology, and volume. Summary of cytochrome P450, catalytic cycle, 

catalytic termination, substrate recognition sites, and protein structures' 

physicochemical properties was also reported in this chapter. Furthermore, the 

genetic polymorphism in CYPs, with a focus on the reported functional variants of 

CYP3A4 and their clinical implications are discussed. Finally, a summary of the 

reported techniques involving homology modelling and validation of the three-

dimensional (3D) protein structure as well as docking and molecular dynamics 

simulation of the 3D structures of CYP are presented in this chapter. 

2.1 Overview of polymorphism in cytochrome P450 (with focus on 

CYP3A4 variants) and their clinical implications 

2.1.1 Background of cytochromes P450 enzymes 

In 1958, cytochrome P450 (CYP) enzymes were identified and formally named first 

by Klingenberg while executing research on steroid hormone metabolism. 

Klingenberg discovered that a spectrum with maximum absorbance at 450 nm 

resulted from bubbling carbon monoxide that was obtained from the preparation of 

rat liver microsomes. It was reported that the maximum absorption gave P450s their 

name “Pigment-450nm (Klingenberg, 1958; McLean and Munro, 2018). 

Subsequently, cytochrome P450 (CYP) enzymes were discovered to be heme-

containing monooxygenases that catalyse a wide variety of both endogenous and 

xenobiotic compounds (Tornio and Backman, 2018). Approximately 57 CYP genes 

and 8 pseudogenes have been recorded in humans and currently, about 18 different 

families and 44 subfamilies are known in humans (Guengerich, Waterman, and 
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Egli, 2016; Esteves, Rueff, and Kranendonk, 2021). Previous reports have 

established that CYP pathways with similar gene sequences are assigned a family 

number such as CYP1 and CYP3, while a letter is used to indicate the subfamily 

(e.g., CYP3A and CYP2D). The subfamily is then distinguished with a number that 

shows the isoform such as CYP3A4 and CYP2D6 (McDonnell and Dang, 2013; 

Magwanga et al., 2019). Reports have shown that in mammals, CYPs are found in 

all tissues predominantly in the liver and small intestine, with a widely held view 

that they are bound in the microsomal fraction of the liver (Pelkonen et al., 2008; 

Esteves, Rueff, and Kranendonk, 2021). CYPs are said to function mainly as drug-

metabolising enzymes (Guengerich, 2018; Guttman, Nudel, and Kerem, 2019). 

2.1.2 Cytochrome P450 enzymes as drug-metabolising enzymes 

Many scholars hold the view that drug metabolism in the body is a complex 

biotransformation process in which numerous metabolising enzymes structurally 

modify chemical compounds into other molecules (metabolites) (Zhang and Tang, 

2018; Hilmi Orhan 2021; Soltani et al., 2021). According to Polic (2018), drug 

metabolism occurs in two phases, namely, phase 1 and phase 2. According to 

Lakshmanan (2019), the insertion of OH, -SH, or -NH2 functional groups, in phase 

I reactions converts the parent medication into more polar metabolites, which 

influences the activation or deactivation of the parent drug. It has been reported that 

in the phase 2 metabolising process, the drug is conjugated with endogenous 

charged molecules such as glutathione, glucuronide, and glycine. Since the 

conjugated metabolite is bigger and more water-soluble, it can be secreted into the 

bile or urine (Chen, 2020). Recent reports have also shown that the CYPs constitute 

the major metabolising enzymes in humans, and they are responsible for the 

metabolism of the most recognized clinically used drugs (Tornio and Backman, 

2018; Hakkola et al., 2020). The CYPs enzyme family forms the most essential 

enzymatic system in phase I drug metabolism in humans (Hakkola et al., 2020). 

Cytochromes P450 perform a diverse range of oxidative reactions (Guengerich, 

2018; Johnson, Su, and Zhang, 2021). CYP enzymes use one atom of oxygen to 

produce water while the other is incorporated into an organic substrate resulting in 
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the activation of molecular oxygen. This process is also applied in several catalytic 

reactions undertaken by CYPs, especially hydroxylation, epoxidation, deamination, 

and dealkylation (Guengerich, 2018; Johnson, Su, and Zhang, 2021). 

2.1.2.1  CYP3A4: the most abundant CYPs drug-metabolising 

enzyme 

Several studies have reported that the enzymes in the families 1-3 are responsible 

for about 80% of activity involved in the hepatic metabolism of drugs while the 

other families have minor endogenous functions (Ulrich M. Zanger and Schwab, 

2013; Rendic and Guengerich, 2015). The CYP3A family is known to be the most 

common subfamily of CYP enzymes, and includes the CYP3A3, CYP3A4, 

CYP3A5, and CYP3A7 (S.-F. Zhou 2008; Dostalek et al., 2011). CYP3A4 as an 

isoform of cytochrome P450 enzymes is a complex heme-containing enzyme that 

shows non-Michaelis-Menten kinetics and exhibits homotropic and heterotropic 

cooperativity with various substrates (Sevrioukova and Poulos, 2013; Rendic and 

Guengerich, 2015). The CYP3A4 gene is reported to be located on chromosome 7q 

at the q21-q22 locus (Lolodi et al., 2017). It has been shown that CYP3A4 has an 

abundance of about 40% in the liver and in the intestine, which signifies the highest 

isoform in the CYPs family (Kumondai et al., 2021). Recent studies have also 

reported that CYP3A4 is the highest abundantly expressed human CYP, 

metabolising between 30% and 50% of marketed drugs (Basheer and Kerem, 2015; 

Ghassabian et al., 2019). Hence, the broad substrate selectivity of CYP3A4 enables 

it to play an important role in metabolism (Lolodi et al., 2017; Kumondai et al., 

2021). Therefore, CYP3A4 is a  major metabolizing enzyme with a high potential 

for more research studies. 

2.1.2.2  CYP3A4 broad substrate selectivity 

CYP3A4 binds to a very diverse group of molecules with higher molecular weight 

when compared with the substrates of other CYPs enzymes (Goto, Yamazoe, and 

Tohkin, 2020). CYP3A4 has shared many substrates and inhibitors with CYP3A5 

except that they vary in efficiency, catalysis, and the extent of susceptibility to the 

inhibitors (Lolodi et al., 2017; Denisov et al., 2021). CYP3A4 is also more active 
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to inhibit fluconazole, nicardipine, erythromycin, diltiazem, and ketoconazole when 

compared with CYP3A5 (Samuels and Sevrioukova, 2021). Erythromycin, 

tamoxifen, benzodiazepines, tacrolimus, opioids, and antidepressants are examples 

of drugs metabolised by CYP3A4 with its preference for mainly lipophilic and large 

drug compounds in most available drugs categories (Lolodi et al., 2017). CYP3A4 

also functions in the metabolism of numerous endogenous steroids such as 

testosterone, cortisol, progesterone, and bile acids (Niwa et al., 2015).  CYP34A4 

endogenous biomarkers include 4B-hydroxylation of cholesterol, and 6b 

hydroxylation of cortisol (Gjestad et al., 2019; Penzak and Rojas‐Fernandez, 2019). 

However, the structural study of the interaction that exists between the CYP3A4 

protein and the reported drugs was not identified. 

2.1.3 Structure of CYPs enzymes 

Various studies have reported that CYP, as a heme protein has one heme prosthetic 

group, located in the active site (Johnson and Stout, 2013; Midlik et al., 2021). It 

has been reported that CYP contains about 400-500 amino acid residues and the 3D 

structural representatives of CYP have similar characteristic folds and common 

elements present in the structure of CYP (Barr et al., 2020). There are 12 helices 

and loops with a designated number (A-L) present in the general structure of CYP, 

and there are also a few B-sheets in the structure (Fig 2.1) (Johnson and Stout, 

2013). Reports have shown that CYPs heme moiety is located between the I and L 

helix (Midlik et al., 2021: Johnson and Stout, 2013). Several lines of evidence also 

proved that the enzyme's catalytic core is the heme prosthetic group, where a 

reactive hypervalent oxo-iron protoporphyrin IX radical cation intermediate is 

generated before the iron-bound oxygen atom is inserted into a substrate bond (Kaur 

et al., 2016; Guengerich, 2018). Many recent studies established that the B-C and 

F-G helices play a role in the enzyme specificity and its accessibility to the enzyme 

substrate (Šrejber et al., 2018; Dong et al., 2021).  
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Figure 2.1: General features of CYPs enzyme structures. 

The different helixes (A-L) and the centred positioned prosthetic heme group (brown 

centred circle) (Adapted from Midlik et al., 2021)  

2.1.3.1  The uniqueness of CYP3A4 structure in the CYP family 

According to Giantin et al. (2019), CYP3A4, as it relates to other CYPs enzymes 

found in mammals, is a membrane-bound protein. The first structures of the drug-

metabolising human enzyme CYP3A4 were independently reported by Williams 

(2004) and Yano et al. (2004) without a bounded ligand. Both structures have a very 

close structural agreement with a root mean square deviation of 0.6 A. The general 

tertiary structure of previously observed P450 structures is retained by CYP3A4, 

which is made up of several Beta -sheets, as well as Alpha helices and, are denoted 

with letters A-L (Williams, 2004; Yano et al., 2004; P. C. Nair, McKinnon, and 

Miners, 2019). 

It was reported that CYP450 3A4 has a homodimer structure with similar sub-units, 

including an N-terminal domain made up mainly of β sheet and a larger C-terminal 

domain rich in α helices (Williams, 2004; Lokwani et al., 2020). Williams (2004) 

reported that the larger C-terminal domain contains the active site.  
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Recent studies have shown that CYP3A4 has shorter F and G helices which 

necessitates the extension by unstructured linkers to the short F’ and G’ helices 

(Figure 2.2) (Hsu and Johnson, 2019; Lokwani et al., 2020). Also, an interaction 

between the phenylalanine from the B-C region, the helix F’, and the three 

phenylalanine residues from the linker regions have been reported  to form a unique 

phenylalanine cluster located on the ceiling of the active-site cavity (Davydov et 

al., 2012). The homodimer structure of CYP3A4 is reported to include an N-

terminal domain made up mainly of β sheet and a larger C-terminal domain rich in 

α helices (Williams, 2004; Lokwani et al., 2020). According to Williams (2004), 

the larger C-terminal domain contains the active site.  

 

Figure 2.2: The structure of CYP3A4.  

 The secondary structure elements, β-helices (in stripes), α- helices (curls), The linkages 

(F’ and G’), and the central position heme (Adapted from Otyepka, Berka, and 

Anzenbacher, 2012) 

Figure 2.2 shows the structure of CYP3A4 that indicates the secondary structure 

elements, β-helices in stripes while α- helices are in curls and labelled with capital 

letters. The heme is positioned in the hidden active site close to the I helix. Above 

the heme is the CYP distal side, while the proximal side is below the heme plane, 

on the opposite side of the distal side (Otyepka, Berka, and Anzenbacher, 2012). 
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Recent reports have shown that CY3A4 deviates structurally from the other 

eukaryotic CYP450 enzymes in three principal ways; CP3A4 has a hydrophobic 

region in which the 36-50 residues in the N-terminal regions help in its interaction 

with the microsomal membrane (Munjal, Shukla, and Singh, 2021). In addition, the 

F and G helices constitute the active site upper region in many of the CYP450 

enzymes, however, this has been truncated in CYP3A4 (Hsu and Johnson, 2019). 

Finally, CYP3A4 has a unique cluster of 6 phenylalanine (Phe) residues namely: 

Phe-213, Phe-215, Phe-219, Phe-220, Phe-241, and Phe-304. The Phe cluster is 

localised at the upper region of the enzyme’s peripheral binding region in the active 

site, the primary residues in the Phe cluster are reported to take part in the oxidation 

pathway of the allosteric regulation (Davydov et al., 2012; Munjal, Shukla, and 

Singh, 2021). It has been reported that no other characterised structure of CYPs has 

such a phenylalanine residue cluster (Davydov et al., 2012). Therefore, the 

Phenylalanine cluster is a major component that contributes to CYP3A4’s 

‘uniqueness. 

Researchers have reported that there are 256 residues or 55% as part of α helices in 

the secondary structure of CYP3A4 while only 35 residues or 7% are part of the β 

sheets (Ekroos and Sjogren, 2006; Hsu and Johnson, 2019; Estrada et al., 2021). 

Wright, Chenge, and Chen (2019) further stated that the numerous substrates’ exit 

channels, and the high flexibility of the enzyme are due to the high level of alpha-

helices contained in the active site. 

2.1.3.2  The topology of CYP3A4 active site 

Several studies have shown that mono oxidation of various substrates takes place 

at the CYP3A4 internal active site (Sevrioukova and Poulos, 2015; Guengerich, 

Waterman, and Egli, 2016). Sevrioukova and Poulos (2017) reported that the heme 

prosthetic group defines the lower bound of the CYP3A4’s active site while the 

Phenylalanine cluster linking the F and G helices with the F’ and G’ helices 

constitute the upper bound. Furthermore, it has been suggested that the binding of 

the first ligand occurs at the peripheral binding site, and the Phenylalanine cluster 

initiates the reaction pathway (Ekroos and Sjogren, 2006; Davydov et al., 2012). 
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Wright, Chenge, and Chen (2019) further stated that the initial binding at the 

peripheral binding site causes conformational changes to the CYP3A4 structure; 

and added that this affects the water accessibility and the hydration state of the heme 

prosthetic group. In addition, Šrejber et al. (2018) reported that the F-G and B-C 

loops of P450 that make up the substrate-access channel could be a part of the 

membrane binding and orient the substrate-access channel with the membrane 

surface. 

Poulos et al. (2015) reported that CYP3A4 has a larger active site cavity as 

compared to other CYP450 enzymes in families 1 and 2, which account for its 

ability to bind up to two or more molecules. Godamudunage, Grech, and Scott 

(2018) reported that CYP3A4 can metabolise various substrates without inhibiting 

one another competitively. The largeness of the CYP3A4 active site is consistent 

with its positive cooperation of oxidation or/and binding with some other substrates. 

The binding of an additional substrate molecule might result in the promotion of 

metabolism when the first substrate is stabilised in a productive orientation 

(Godamudunage, Grech, and Scott, 2018). Previous reports from both the 

homotropic and the heterotropic cooperativity show that the active site of CYP3A4 

might sufficiently accommodate up to three molecules simultaneously (Müller, 

2014; Müller et al., 2015). The uniqueness of CYP3A4 is further shown in the 

report of its structure when it is bound to a ligand. 

2.1.3.3  The structure of CYP3A4 when bound to the ligand 

Yano et al. (2004) reported from the study of the crystal structure of CYP3A4 when 

bound to progesterone as a substrate that the role in the first substrate recognition 

is consistent with the position of the progesterone binding site located in the F-G 

region of the CYP3A4 structure. Yano et al. (2004) suggested that the substrate 

access channel could stretch from the peripheral binding site to the heme group with 

the proper conformational movement of the residues close to the Phenylalanine-

cluster. Urban et al. (2018) further reported that the substrate access channel gives 

a route for the movement of the compound to the active site from the first 

recognition site. 
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The structure of CYP3A4 with metyrapone which is an inhibitor was also described 

by Williams (2004). In addition, Williams (2004) reported that there was no change 

in the protein conformation with the binding of metyrapone in contrast to CYP2C5 

which shows changes in its active site topology when different ligands bind to it. 

Sevrioukova and Poulos (2015) further stated that there might be an expansion of 

the active cavity of CYP3A4 when substrates or inhibitors bind to it and there could 

be a contraction in some cases. Furthermore, Yano et al. (2004) reported that the 

expansions are possible with the upper portion of the binding pocket positioned 

opposite to the prosthetic heme group; and that this flexibility is an indication of 

the absence of a secondary structure between the F and G regions, which is present 

in other CYP. Sevrioukova and Poulos (2015) also reported that most of the 

differences observed in the amino acid sequence between CYP3A4 and CYP3A5 

reside in the helixes of the F and G region, which makes up the roof or upper part 

of the active site cavity as well as in the N-terminal area of the cavity of the structure 

of CYP3A4. Reports on the structural flexibility of CYP3A4 have also showcased 

its uniqueness in the CYPs family (Sevrioukova and Poulos, 2015; Urban et al., 

2018). 

2.1.3.4  The structural flexibility of CYP3A4 

The ability of CYP3A4 to recognize and bind to more compounds has been 

attributed to its well-defined flexibility (Lokwani et al., 2020).  Ohkura et al. (2009) 

reported that the size of the volume available for the ligand to bind at the CY3A4 

binding site is about 520Å, which is very large. Additionally, Lokwani et al. (2020) 

reported that CY3A4 displays multiple conformations and can bind to a different 

and huge number of ligands such as its reported multiple binding with ritonavir and 

ketoconazole by Sevrioukova and Poulos (2017). 

The conformation ability of CYP3A4 to the different compounds is attributed to the 

flexibility of its secondary structure; this flexibility is found to happen in the F-F’ 

region of the CYP3A4 secondary structure. It was reported that there was an 

extended active site at the ligand bounded structure with an outward expansion also 

at the F-F’ region due to the attributed flexibility of the secondary structure of 
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CYP3A4 in the amino acid residues located in the roof of its binding pocket (Hsu, 

Savas, and Johnson, 2018). This change was discovered when the ligand-bound 

structure of CYP3A4 with two molecules of ketoconazole was compared to the 

ligand-free structure of CYP3A4 (not bound to any ligand nor coordinated to any 

water molecules) (Xu and Chen, 2020). None of the reports identified any effect of 

single nucleotide polymorphism on the structural flexibility of CYP3A4 

2.1.3.5  Notable differences in CYP3A4 and CYP3A5 structures 

Guttman, Nudel, and Kerem (2019) reported that CYP3A5 is an isoform of the 

CYP3A family. The difference in the amino acid residues lining the binding pocket 

of CYP3A4 and CYP3A5 secondary structures recently proved that despite the 

overall homologous secondary structures in the two, there is a unique shape that 

had been conferred on each structure in which the active site of CY3A4 is shorter 

and wider as compared to CYP3A5 which is taller and less wide (Hsu, Savas, and 

Johnson, 2018). 

In studying the differences in the X-ray crystal structure of the Human Mono-

Oxygenase Cytochrome CYP3A4 and CYP3A5, Hsu et al. (2018) discovered that 

the amino acid variation in CYP3A4 affects the substrate-binding cavity. This was 

shown in residue Ile-369 as carried out in the study. It was reported that there is a 

hydrophobic contact formed with the isopropyl thiazole moiety of ritonavir (IP2) 

and the thiazole groups with the Ile-369 of the CYP3A4 structure which is not the 

same in CYPA5, with a different residue (a smaller valine),at that position in CYP3A4 

(Hsu, Savas, and Johnson, 2018).However, there was no report to justify if the 

biochemical characteristics of the different residues could explain the observed 

differences. 

2.1.3.6  The conformational change in the active sites of CYP3A4  

Lokwani et al. (2020) reported that CYP3A4 has multiple binding sites, and further 

suggested that these multiple binding sites have been attributed to the homotropic 

and heterotropic cooperativity displayed by the CYP3A4 enzyme, which influences 

the metabolic process of CYP3A4 substrates and brings a new level of complexity 

to the regulation of the CYP3A4. In addition, Kondža et al. (2021) reported that the 



http://etd.uwc.ac.za/

16 

 

ability of active sites of CYP3A4 enzymes to accommodate more than one substrate 

can act to either increase or decrease the metabolic rate. The authors explained that 

there is an increase in the metabolic rate if the presence of one substrate favourably 

holds the other in a good position for catalysis, and a decrease occurs when the 

other substrate is competitively inhibited, thereby preventing the other substrate to 

be well-positioned for conformational change in the presence of different substrates 

(Kondža et al., 2021). 

Furthermore, Williams (2004) reported that there is an unpredicted peripheral 

binding portion positioned above the phenylalanine cluster which sometimes is 

involved in the commencing and recognition of the substrate or that of the allosteric 

effectors. Li et al. (2021) further stated that a noticeable difference occurs in the 

size of the active site of CYP3A4 due to the conformational change after the binding 

of ligand to its protein structure. As reported by Yano et al. (2004), the active site 

volume of the CYP3A4 structure has an estimation of 950Å without a bounded 

ligand. In addition, reports have shown that when CYP3A4 is bounded with 

ketoconazole and erythromycin, there is an increase from the original 950Å to 

1650Å and 2000Å respectively (Ekroos and Sjogren, 2006; Benkaidali et al., 2017). 

Although the stated volume of the active site without the bounded ligand differs 

from the recent report by Lokwani et al., (2020) with a reported volume of about 

520Å. However, both reports are indicative of a large active site volume. There was 

however no mention of the effect of variation on the conformational change in the 

active sites of the implicating enzyme from both reports. 

2.1.4 Substrate recognition sites of CYP 

The substrate recognition sites (SRS) have been reported to be an important part of 

CYP (Lokwani et al., 2020). The SRS are regions in the CYP protein where 

substrates can recognize and bind, and six of them have been recognized with their 

locations in the CYP enzyme’s structure (P. C. Nair, McKinnon, and Miners, 2019). 

They are, SRS1, SRS2, SRS3, SRS4, SRS5, and SRS6 (Figure 2.3). 
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Figure 2.3: Identified substrates recognition sites (SRS) in the X-ray crystal structure of 

CYP enzymes (CYP29-PDB 1R9O).  

The arrows are pointed to; SRS1 (red), SRS2 (green) and SRS3 (blue), SRS4 (yellow), 

SRS5 (orange), and SRS6 (magenta), while the rest of the secondary structural protein 

elements are white. The heme is represented with balls and sticks (Adapted from Nair et 

al., 2016). 

SRS 1 is found between the B and C helixes. SRS 2 and 3 are found between the F 

and G helices and the upper region of the active site is also located there. SRS 4 is 

located at the centre portion of the I helix. SRS5 is found at the N- terminus and the 

start of B sheet 4 (Lokwani et al., 2020).  Despite the well-established substrate 

recognition sites, the studies did not highlight the effect of variation associated with 

the substrate’s recognition sites due to variation.  

 

2.1.5 The catalytic cycle of the cytochrome P450 

Several reports have shown that cytochrome P450 enzymes are very active oxidants 

and can hasten the rates of reaction of substrates through the oxidation of the 

compound being targeted (Cook et al., 2016; Sellés Vidal et al., 2018). Other 

reported reactions catalysed by CYP enzymes are the dealkylations and 

hydroxylation (Girvan et al., 2011; Guengerich, 2018). 



http://etd.uwc.ac.za/

18 

 

Figure 2.4 shows the graphical illustration of the cytochrome P450 catalytic process 

with a detailed analysis of each step (Cook et al., 2016). The oxidation occurs with 

the insertion of one of the atoms in its oxygen molecule into the substrate and a 

subsequent reduction of the other oxygen atom to give a water molecule. This is 

applied with the use of the two electrons that are provided by NAD(P)H through 

protein reductase (Cook et al., 2016).  

 

Figure 2.4: Graphical illustration of Cytochrome P450 catalytic process. 

The arrows show the progression of the various steps in the process. (Adapted from Cook 

et al., 2016) 

Hence, CYPs are called monooxygenase enzymes because one oxygen atom is 

transferred from the initial oxygen molecule to the oxidised substrate as shown in 

Figure 2.4 (Cook et al., 2016a; Sellés Vidal et al., 2018). These responses are 

reported to cause a conformational change as not only does the shape of the active 

site change, but it confers a change at the reductase area as well, especially with 

adequate catalysts which converge the flavins closer together to aid the movement 

of electrons down the chain (Girvan et al., 2011). The transformation of iron from 
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a low spin to a high spin state was suggested to result in this (Girvan et al., 2011). 

Previous reports have shown that the energy state concerning the iron when it binds 

to the substrate defines the spin state, with at least nothing less than one unpaired 

electron in the outer orbital that reflects the higher identified energy state, hence the 

transition from a lower to a higher spin state (Girvan et al., 2011; Guengerich, 

2018). 

The energy is reported to be produced when iron attaches to the active site of the 

substrate and it is known as the spin state, with at least one unpaired electron in the 

external orbital which makes it have elevated energy and a transition from a low to 

an elevated spin (Cook et al., 2016). This energy shift was reported to be 

responsible for the widely observed "Difference spectra '' found when calculating 

the complex of the enzyme-substrate spectrophotometrically (Cook et al., 2016). 

The spectrum of variation is reported to be the two shifts in the absorbance of the 

complex; namely, a rise is observed with an absorbance at 390 nm combined with 

a reduction of absorbance 420 nm absorbance (Cook et al., 2016). Otherwise, 

Degregorio et al. (2017) reported that if carbon monoxide creates a decreased P450, 

the absorption moves to 450 nm. 

Barr et al. (2020) showed that conformational alteration occurs when the substrate 

binds, and it triggers the donation of primary electrons with NAD(P)H present. An 

electron moves from NAD(P)H to the first molecule of flavin, then FMN, and 

finally the heme area, where the iron in the porphyrin ring is accepted (Barr et al., 

2020). This moves Iron from the initial ferric (Fe3+) state to the ferrous (Fe2+) 

state. Once there is an initial reduction, then molecular oxygen can combine 

covalently with the heme iron at the distal axial location (Cook et al., 2016a). The 

iron-oxygen bond was stated to be dissociated to give superoxide radical at this 

point (Cook et al., 2016a). The iron-oxygen bond was reported to be very reactive 

and capable of disrupting the catalytic cycle, and then the second stage reduction 

occurs which results in the formation of a peroxide group that is negatively charged, 

in which the iron-bound oxygen gets to be more negatively charged than it was in 

the previous state before it donated electrons (Cook et al., 2016a). The peroxo group 
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was reported to be greatly nucleophilic, and this makes the duration of the 

intermediate stage very short (Girvan et al., 2011). Girvan et al. (2011) suggested 

that the complex is quickly protonated twice because of the hydrogen bonding of 

the surrounding water and the amino acid side chains. This results in the splitting 

of the dioxygen which attaches to the given hydrogen resulting in the release of the 

water molecule and the formation of the intermediate cytochrome P450 compound 

I (Girvan et al., 2011). This intermediate was reported to have a Fe4+ group due to 

a donated electron pair from the nucleophilic peroxide group and has a double-

bonded oxygen atom (Girvan et al., 2011). Cytochrome P450 compound I (Cpd-I) 

is generally recognized as the final intermediate stage in the P450 catalytic cycle 

and is thought to be the key oxidising agent that produces the hydroxylated 

substance (Rittle and Green, 2010). The bound substrate was stated to be oxidised 

by the Cpd-1 and thereafter released as a hydroxylated substance. Water is then 

reported to bind to the active site and returns the enzyme to its original resting state 

(Rittle and Green, 2010). The studied and reported catalytic cycle of CYP provides 

a broader knowledge and understanding of the conformational changes of each step 

in the cycle. However, the process of catalytic termination was not involved in the 

cycle. 

2.1.6 The process of catalytic termination 

The process of catalytic cessation was thereafter reported to occur in three different 

major ways after the oxygen has bound to the heme iron leading to dissociation 

(Polic, 2018). First is through an auto-oxidation shunt process (Figure 2.4), which 

involves the degradation of the intermediate compound; peroxo-ferrous, and the 

formation of anion superoxide radical. Furthermore, the addition of protons to the 

hydroxyl ferric intermediate results in the dissociation and production of hydrogen 

peroxide hence this process occurs through the peroxidase shunt process. Finally, 

the termination occurs with the oxidase shunt pathway with the release of a water 

molecule after the deprotonation of Cytochrome P450 compound I and double 

reduction (Polic, 2018; Zhao et al., 2021). 
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Several studies have shown that there are several identified amino acids which are 

located around the heme region that play an important function in the passage of 

electrons required for the cleavage of the dioxygen. One of such revealed the 

significance of leucine amino acid located at the “cysteine pocket” of the CYP450, 

the mutation of the leucine with proline results in an increase in the uncoupling 

rates of external substrates and a subsequent increase in the rate of enzymatic 

activity (Pedroso, Zampieri, and Donato, 2015). 

2.1.7 Genetic polymorphism and reported phenotypes in CYP 

For many years, several landmarks of pharmacogenetic research have taken place 

and reported with other drug-metabolising enzymes such as N-acetyltransferase-2 

and pseudocholinesterase. However, there were none in Cytochrome P450 enzymes 

until 1975 when the CYP2D6 incident occurred at St. Mary’s Hospital Medical 

School in London (Ahmed et al., 2016; Tornio and Backman, 2018; and Mitchell, 

2020). This led to the discovery of two phenotypes: the “poor” and the “extensive” 

metabolizers in genetic polymorphism that occur in drug oxidation. Further 

discoveries of numerous CYP2D6 alleles and different distinct variants occurred 

that can be mostly associated with four metabolism phenotypes: poor, intermediate, 

extensive, and ultra-rapid (Lam, 2019; Smith and Mitchell, 2020). 

Del Re et al. (2016) reported that the metabolism of certain drugs varies depending 

on the phenotype encoded by the genes. Klein and Zanger (2013) and Jørgensen 

(2019) also thought that the ability of an individual to metabolise drugs is due to 

the paired individual allele inherited from the parents and this allele could either be 

the wild type or the variant. They further stated that the wild type is referred to as 

the “normal” and is found mostly in the general population while the variant, also 

known as the defective allele, may be responsible for reduced or no activity (Klein 

and Zanger, 2013; Jørgensen, 2019).  

Similarly, it was reported that the intermediate metabolizers are characterised by 

decreased enzymatic activity. Enzyme activity may become higher than normal 

when there is gene amplification or duplication in more than two gene copies of the 
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wild-type alleles. These individuals are referred to as ultra metabolizers and they 

occur in some cases (Figure 2.5) (Taylor et al., 2020; Arafah et al., 2021). 

 

Figure 2.5: A graphical representation of phenotype and genotype of Sparteine oxidation 

in a German population of three hundred and eight individuals.  The different phenotypes 

(ultrarapid, extensive, intermediate, poor metabolizers) encoded by the different alleles 

(duplicated, normal, partially defective, null) are shown (Adapted from Zanger and 

Schwab, 2013). 

2.1.8 Single nucleotide polymorphism in CYP3A4 

There is a rather large inter-individual variability in CYP3A4 activity, which has 

been linked to genetic polymorphism (Denisov et al., 2021; Kumondai et al., 2021). 

Many recent studies have postulated that single nucleotide polymorphisms (SNPs) 

are one of the major molecular mechanisms that affect the uniform expression and 

the activity of CYP3A4 (Berno et al., 2014; Mulder et al., 2021). With the reported 

large inter-individual variability in CYP3A4 activity, a further study into the 

structural effects could also provide valuable knowledge of the effect of SNPs on 

the uniform expression as well as the structural conformation. 
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2.1.9 Functional variants of CYP3A4 

The first identified variant of CYP3A4 was assigned in the Single Nucleotide 

Polymorphism database (dbSNP) as rs2740574 (CYP3A4*1B) with an A>G 

substitution at the 5’ promoter potion. It was found in 66% of African Americans, 

and 4% of the European population. (Stillemans et al., 2018). Wang et al., (2011) 

identified the CYP3A4*22 (rs35599367 C>T) variant, which has been reported to 

occur mainly in 3% of African Americans and 5% of Europeans. The 664T>C 

variant (rs55785340, CYP3A4*2) was reported to have a frequency of 0.03 in 

Caucasians. CYP3A4*4 were identified in three subjects among 102 Chinese 

selected individuals (Y. Zhou et al., 2017). 

 The detailed annotation for the available SNPs is well documented in the Human 

Cytochrome P450 (CYP) Allele Nomenclature Database (www.cypalleles.ki.se) 

and (dbSNP). More than 20 SNPs have been reported to take place within the 

coding region of CYP3A4 (Kumondai et al., 2021). Variants of CYP3A4 have been 

reported with clinical implications on its enzymatic activity. 

2.1.10 Recent reports on the clinical implications of single 

nucleotide polymorphism in the enzymatic activities of 

CYP3A4 variants 

It was reported that CYP3A4*22 has a profound impact on the area under the curve 

(AUC) ratio in volunteers treated with atorvastatin (Mulder et al., 2021). With the 

attainment of maximum lipid control, as shown in the volunteers as well as in 

clinical studies, there was a 1.7 to 5-fold reduction in the statin dose of T-allele 

carriers when compared with the non-T carriers (Mulder et al., 2021). There was 

also an indication of the relationship of the CYP3A4*22 variant with an observed 

lipid-lowering response that occurs with the use of simvastatin in a clinical study 

(Ragia et al., 2015). Reduced CYP3A4 activity was observed in renal transplant 

recipients who were carriers of the T-allele with about 33% reduction in the mean 

daily dose that is required for the blood concentration of Tacrolimus as compared 

to those of the wild type (Abdel-Kahaar et al., 2019). 
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 Findings revealed that rs67666821 (CYP3A4*20) which is a variant that does not 

include heme and is therefore not functional (Saiz-Rodríguez et al., 2020). In 

addition, Klein et al. (2012) established that this variant was responsible for the 

reduction in the protein levels when the study was done with 150 liver samples, 

however, it was not proven with multiple sample testing. 

CYP3A4*1B was linked to lower dose-adjusted trough concentrations (C0/D) and 

higher tacrolimus and cyclosporine dosage needs. It was also linked to a decreased 

likelihood of dose reduction or switching therapy while taking simvastatin (Ben-

Fredj et al., 2020). The summary of recent reports on clinical implications of single 

nucleotide polymorphism in the enzymatic activities of CYP3A4 variants is presented in 

Table 2.1. 

The clinical implications of CYP3A4 variants are increasing with available drugs 

of different classes. However, none of the report identified the structural 

implications of the identified variations. To enable the study of the structural 

properties and dynamic characteristics of the reported variants of CYPs enzymes, 

especially the CYP3A4 enzymes, it is expedient to model the three-dimensional 

structures of the implicating variants. 

 

Table  2.1: The summary of recent reports on clinical implications of single nucleotide 

polymorphism in the enzymatic activities of CYP3A4 variants. 

Identified 

variants with 

significantly 

reduced activity 

Identified 

variants with 

significantly 

increased activity 

Identifie

d 

variants 

with lost 

Enzymat

ic 

activity 

 

Identifie

d 

variants 

without 

any 

effect 

activity 

 

Affected 

drug 

Referen

ces 

CYP3A4*11 

CYP3A4*12  

CYP3A4*13  

CYP3A4*20 

CYP3A4*23  

 CYP3A4*15  

CYP3A4*29 

 

CYP3A4

*6 

CYP3A4

*26 ,  

CYP3A4

*30 

CYP3A4

*28 

CYP3A4

*34  

Quinine Zhou et 

al. 

(2019) 
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CYP3A4*8 

CYP3A4*17 

CYP3A4*21  

CYP3A4*2,CYP

3A4*5, 

CYP3A4*9, 

CYP3A4*16, 

and CYP3A4*24 

CYP3A4*29,CYP

3A4*31, 

CYP3A4*32, 

CYP3A4*34 

CYP3A4

*17 

CYP3A4

*30 

 Lidocaine Fang et 

al. 

(2017) 

CYP3A4*9, 

CYP3A4*14, 

CYP3A4*16, 

CYP3A4*19, 

CYP3A4*23, 

CYP3A4*24, 

CYP3A4*28, 

CYP3A4*32 

CYP3A4*11CYP3

A4*2, CYP3A4*3, 

CYP3A4*11, 

CYP3A4*29, 

CYP3A4*33 

 

CYP3A4

*6, 

CYP3A4

*7, 

CYP3A$

*8, 

CYP3A4

* 12, 

CYP3A4

*13, 

CYP3A4

* 17, 

CYP3A4

* 18, 

CYP3A4

* 20 

n 

CYP3A4

*4, 

CYP3A4

*5, 

CYP3A4

* 10, 

CYP3A4

* 15, 

CYP3A4

* 31, and 

CYP3A4

*34 r 

Acalabrut

inib 

Han et 

al. 

(2021) a 

CYP3A4*6, 

CYP3A4*17, 

CYP3A4*20,  

CYP3A4*30  

   Loperami

de 

Lin et 

al., 2019 

(CYP3A4*2, 

CYP3A4*3, 

CYP3A4*4, 

CYP3A4*5, 

CYP3A4*.7, 

CYP3A4*8, 

CYP3A4*9, 

CYP3A4*10, 

CYP3A4*11, 

CYP3A4*12, 

CYP3A4*13, 

CYP3A4*16, 

CYP3A4*17, 

CYP3A4*18, 

CYP3A4*20, 

CYP3A4*23, 

CYP3A4*29, 27 

CYP3A4*31, 

CYP3A4*32, 

CYP3A4*33 and 

CYP3A4*34) 

CYP3A4*14 and 

CYP3A4*15 w 

 CYP3A4

*19 and 

CYP3A4

*24. 

CYP3A4

*28.  

Brexpipra

zole 

(Chen et 

al., 2020 
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CYP3A4*2, 

CYP3A4*7, 

CYP3A4*16, 

CYP3A4*18, 

CYP3A4*19, 

CYP3A4*23, 

CYP3A4*24, 

CYP3A4*28, 

CYP3A4*29, 

CYP3A4*31, 

CYP3A4*34 

CYP3A4*6, 

CYP3A4*17, 

CYP3A4*20, 

CYP3A4*21, 

CYP3A4*26, 

CYP3A4*30) 

  Oxycodo

ne 

Cai et 

al. 

(2021) 

 

 

2.2 Overview of the developments in the prediction and 

validation of three-dimensional protein structures 

2.2.1 The advances in homology modelling 

Most recent reports have shown that the knowledge of biological systems and the 

operation of protein complexes can be known with a detailed description of their 

protein interaction and an overall three-dimensional structure (Townshend et al., 

2019; Bryant, Pozzati, and Elofsson, 2022). Jha et al. (2022) further stated that the 

modulation of protein networks and complexes is also made possible with the 

knowledge of the three-dimensional structure. Reports have shown that the three-

dimensional structure of proteins informs the understanding of protein function on 

a molecular level (Fuller, Burgoyne, and Jackson, 2009; Nim et al., 2016). 

According to Jha et al. (2022) and Denisov et al. (2021), it has been established that 

the major insights into the active site regions, the portions for the binding of the 

inhibitors and substrates, and the recognition of individual residues involved in the 

binding of ligand are obtained via the understanding of the three-dimensional (3D) 

structures of the CYP enzymes. In addition, Selvam et al., (2017) reported that the 

knowledge of the structure of CYP enzymes may be maximised in findings relating 

to the structure-function relationships, altered enzymatic activity associated with 

genetic polymorphism, or investigations that relate to drug-drug interactions with 

emphasis on its molecular basis. It was also reported that the efficiency of the CYP 
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enzymes can also be facilitated with adequate knowledge of the structures of CYP 

(Selvam et al., 2017; Haddad, Adam, and Heger, 2020). 

Different methods have been developed such as co-evolution methods, which have 

been reported to utilise the correlated amino acid mutations in deep multiple 

sequence alignments (MSA) and can be used for the identification of the protein 

interaction with the application of the sequence details alone (de Oliveira and 

Deane, 2017). Electron-Microscopy which was developed recently had been 

utilised in the computational prediction of macromolecular assemblies (Marsh and 

Teichmann, 2015; Soni and Madhusudhan, 2017). 

However, it has been shown that high quality models are only obtained when 

models are made from available multi-chain template information (Peterson et al., 

2018). Waterhouse et al. (2018) reported that interacting interfaces are always 

conserved in homology complexes as observed in increasing available 

experimentally modelled protein structures. It was further stated that the templates 

of the known protein-protein interactions are available in homology modelling 

(Waterhouse et al., 2018).  

According to Akapo et al. (2021), homology modelling was shown to be a useful 

tool in the close study of the interaction between substrates and Cytochrome P450 

enzymes when crystal structures are not present. These observed reasons as 

discussed, have provided the principle for the comparative or homology modelling 

of protein complexes. 

Homology Modelling, also known as Comparative Modelling, has been defined as 

the prediction of a protein's three-dimensional structure based on its amino acid 

sequence (Nikolaev et al., 2018; Barcelos et al., 2020;). The literature has 

highlighted that the modelling technique can be broken down into the following 

steps: First, a suitable template(s) relevant to the target sequence is chosen from the 

Protein Data Bank (PDB) (the sequence identity must be greater or equal to 30%). 

Second, using the Basic Local Alignment Search Tool (BLAST), an alignment of 

the target sequence to the template(s) is generated. Third, the three-dimensional 
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model's coordinates are constructed using the alignment and the template structures 

(Haddad, Adam, and Heger, 2020). 

 

Figure 2.6: The major steps involved in homology modelling of protein structures 

(Adapted from Bordoli et al., 2009) 

Reports have shown that alternative alignment approaches, such as profile-profile 

alignments, Hidden Markov models (HMMs), and position-specific iterated 

BLAST (psi-BLAST), are employed to eliminate shifts and gaps in the case of low 

homology below 35 percent sequence identity (Gupta et al., 2020). Recently, it was 

reported that the application of AlphaFold based on Machine learning is a useful 

tool to design new protein folds (Jumper et al., 2021; Wei, Guo-Wei 2021). 

Vatansever et al. (2021) further stated that the AlphaFold invention has made 

enormous gains in predicting structures by demonstrating the power of Machine 

Learning in identifying patterns in fundamental sequences that predict three-

dimensional folds with high accuracy. Jumper et al. (2021) reported that the core 

of AlphaFold is a neural network that is based on many structures in the Protein 

Data Bank to estimate the distributions of distances between the C atoms of pairs 

of residues in a protein and build an artificial force field to direct folding. Gao et al. 

(2020) in their study established that AlphaFold also uses sequence databases and 
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multiple sequence alignments extensively. However, researchers are doing further 

study to the Alphafold, as not all the three-dimensional protein structures have been 

stated to be established by the Alphafold. 

Although several crystal structures of CYP3A4 are available in various repositories; 

more than 78 crystal structures are available on PBD with different resolutions 

which could all serve as templates in homology modelling, however the structures 

of the CYP3A4 variants models have been understudied. Homology modelling 

could therefore be used effectively in the structural prediction of CYP3A4 variants. 

However, the quality of the predicted three-dimensional protein structures must be 

checked before it is used for further analysis 

2.2.2 The quality estimation of modelled protein structures 

Several quality assessment tools are available and have been used to estimate the 

quality of modelled protein structures, this includes Verify3D, QMEAN, and the 

PROCHECK (Reddy, 2020; Adebiyi and Olugbara, 2021; Akapo et al., 2021). 

Table 2.2 further gives a summary of the reported available quality assessment 

tools. 

Table 2.2: The summary of available quality assessment tools 

Quality 

Analysis 

Package 

Method Employed Links References 

Verify 

3D 

It determines an atomic model's (3D) 

compatibility using its amino acid sequence 

(1D) by using   a structural class depending on 

its location and environment in comparison 

with results from good structures 

https://servicesn

.mbi.ucla.edu/V

erify3D/ 

(Tan et al., 

2020) 

ERRAT It evaluates the statistics in interactions that are 

non-bonded that exist in distinct atom types and 

derives plots to show the value of the error 

function against the location of the 9-residue 

https://servicesn

.mbi.ucla.edu/E

RRAT/ 

(Panda et 

al., 2021) 
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sliding window obtained by the comparison in 

statistics from structures that are well defined. 

PROCH

ECK, 

Analyse the residue-by-residue geometry as 

well as the overall structure's geometry to 

determine the stereochemical quality of the 

protein structure 

https://servicesn

.mbi.ucla.edu/P

ROCHECK/ 

(Park et al., 

2020) 

ProSA Offers a number (Z-Score) that indicates the 

model's overall quality; when the score falls 

within the range for typical protein structures 

estimated within the same length, the built 

model is most likely error-free. 

https://prosa.ser

vices.came.sbg.

ac.at/prosa.php 

(Okella et 

al., 2020) 

PROVE It estimates the atom volume of 

macromolecules with an algorithm that regards 

atoms as hard spheres and determines the 

model’s statistical Z-score deviation from 

highly resolved structures found in the PDB 

https://servicesn

.mbi.ucla.edu/P

ROVE/ 

(Sahay, 

Piprodhe, 

and Pise, 

2020) 

WHAT 

CHECK 

 Created from a subset of WHATIF protein 

verification tools that thoroughly examines 

various stereochemical properties of the 

model's residues. 

https://servicesn

.mbi.ucla.edu/W

HATCHECK/ 

(Yenenler, 

Gerlevik, 

and 

Sezerman, 

2020) 

QMEAN It allows the server to rank the models by 

providing access to two scoring algorithms for 

estimating the quality of structured protein 

(mean score, Z-score). It also identifies the 

regions of the protein structure that are possibly 

unreliable. 

https://swissmo

del.expasy.org/q

mean/ 

(Studer et 

al., 2020) 
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2.2.4 The relevance of molecular docking in CYP modelled protein 

structures 

Several reports have established that molecular docking exists as an in-silico 

approach for the flexible generation and sampling of possible ligand binding poses 

against the ligand-binding region of receptor protein structures (Salmaso and Moro, 

2018; Rahman et al., 2019). The presence of a three-dimensional generated high-

resolution protein structure obtained by computational methods such as NMR, 

homology modelling, and X-ray crystallography is, therefore, a must to obtain the 

possible poses between the ligand and the binding site of the protein (Butt et al., 

2020). 

The docking capacity to imitate ligand-receptor recognition at the atomic level 

might provide useful insight into complex and empirically challenging processes, 

like enzyme reaction mechanics or ligand-receptor interaction (Salmaso and Moro, 

2018; Munjal, Shukla, and Singh, 2021b).  A wealth of research has described how 

molecular docking interaction with CYP3A4 structures has been used to predict 

potential interacting compounds with the CYP3A4 enzyme (Harahap et al.,2022; 

Patil et al.2022). There is little or no information on the molecular docking 

interactions of ligands with the different protein structures of variants of CYP3A4. 

2.2.5 The significance of molecular dynamics in CYP3A4 

Reports have established that protein is both dynamic and densely folded (DuBay, 

Bowman, and Geissler, 2015). It has also been established that the important 

cellular function of a protein can be determined most importantly by its dynamic 

properties and not only by the notable relative rigid structures (Yang et al., 2014; 

Tokunaga et al., 2020).  The catalytic activity of enzymes including cytochrome 

P450 is being altered by mutation situated away from the active sites of the enzymes 

(Osuna, 2021). Studies have shown that mutations within the cytochrome P450 

respective active sites exhibit dynamically correlated motion (Tyukhtenko et al., 

2018). 
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The dynamic correlation exists between residues, and this can be detected through 

molecular dynamics simulations (Barbera et al., 2018). Molecular dynamics 

provides individual particle function to time, and the difficulty in the experimental 

access of protein global molecular motions has been solved with molecular 

dynamics techniques (Vidal-Limon, Aguilar-Toalá, and Liceaga 2022). The 

simulation accuracy has been greatly increased with the improvement in force fields 

and advanced presentation of the solvent (Stroet, 2018). 

Molecular dynamics simulations work based on Newton’s equations of motion to 

generate subsequent conformations of the system to time with known potential 

energy, conformational coordinates, and a set of starting velocities (De Vivo et al., 

2016; Nair, McKinnon, and Miners, 2016). Molecular dynamics simulation enables 

the determination of the force affecting individual atoms to determine the new sets 

of conformations by projecting the system forward with time (Gkeka et al., 2020). 

The bimolecular force fields undergo the process of parametrization to fit well in 

the calculations of Quantum mechanical and experimental data of spectroscopy 

(Oostenbrink et al., 2004). The definition of all bonded and non-bonded terms is 

done during parameterization, and the way each of the force fields is parameterized 

differs with similar outputs. Major programs used in MD include CHARM (Brooks) 

GROMACS (Abraham et al., 2015), and NAMD (Phillips et al., 2005). 

Other experimental methods can be used to understand the dynamic nature of CYP 

structures, however, there are certain known limitations attached. Nuclear magnetic 

resonance (NMR) does provide knowledge of the protein dynamic but the protein 

size of approximately 20kDa is a limitation to this approach (Yee et al., 2014) which 

does not apply to molecular dynamics. Since CYP3A4 and other CYPs enzymes 

have a larger size, molecular dynamics have shown that the observed channels that 

connect the heme active domain to the protein surface as observed in the X-ray 

structure underwent conformational changes (Johnson and Stout, 2013; Yee et al., 

2014). Hence, molecular dynamics simulation has been generally accepted by 

researchers for major studies in CYP protein structures. 
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The high flexibility of the active sites of CYP enzymes has been proved in studies, 

and this flexibility is associated with the conformational changes when the ligand 

binds with the subsequent ability of the enzyme’s active site to structurally interact 

with various compounds (Ekroos and Sjogren, 2006; Zhao et al., 2006). Hence, this 

major reason necessitates and predicts the importance of the study of the CYP 

enzymes in line with their dynamic behaviour effects on ligand binding, to have a 

better understanding of its CYP enzyme structure-function (Xiao et al. 2020; 

Ducharme et al. 2021). With Molecular dynamics simulation, the flexibility of the 

CYP structures can be modelled which could also elucidate the influence of 

flexibility on ligand binding (Salo-Ahen et al., 2021). 

With the capture of the CYP structures dynamics, several numbers of the chemical, 

physical and biological properties of the CYP protein enzymes can be elucidated 

such as its molecular interactions, binding of ligand to the receptor, folding of the 

protein, and so on. 

The 214-220 amino acid region of CYP3A4 makes up the F’ helix which is a part 

of the region F-G previously recorded to be hidden in the CYP3A4 membrane 

(Zhao et al., 2006; Denisov, Shih, and Sligar, 2012). Molecular dynamics 

simulation (MD) has revealed that there is a huge movement occurring when the F, 

F’, G’, and the G helices interact with the lipid bilayer (Denisov, Shih, and Sligar, 

2012).  Studies have proved the use of MD to make findings on the major features 

present in the structure of CYP3A4 (Šrejber et al., 2018; Sabiu and Idowu 2022). 

An MD study performed by Hendrychová et al. (2011) showed that all CYP 

enzymes have an active site with notable flexibility with a difference of more than 

50% in the binding site volume with time. MD has also proved the elasticity of 

CYP3A4 and its ability to recognize and accommodate large numbers of different 

substrates with some of the substrates having a higher molecular mass when 

compared with other compounds (Hendrychova et al., 2012). The application of 

molecular dynamic simulations in CYP3A4 analysis is continually increasing. 
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2.3 Conclusion 

The reported interindividual variability in drug response has been linked to the 

polymorphisms of the drug-metabolising enzymes, especially the cytochrome P450 

(CYP). The most abundant isoform of CYP, CYP3A4, has shown greater 

importance and uniqueness in its metabolic activity. Its polymorphic nature has 

been reported with the discovery of different CYP3A4 variants. From the literature 

reviewed, several investigations brought an understanding of the clinical 

implications of the effects of polymorphism, mostly in the enzymatic activity in 

some of the discovered variants. 

There is an advent of knowledge on the structure of CYPs enzyme, with a focus on 

reports on the uniqueness of CYP3A4 structural components. Understanding the 

flexibility and conformational changes of the CYP3A4 complex with ligands has 

undoubtedly advanced the knowledge of the major features involved in the 

enzymatic activity. The major components of the CYP3A4 structure prove their 

importance in the metabolic process. However, the available information from the 

literature focuses only on the effects of polymorphism on enzymatic activity. There 

has been a paucity of information on the effects of polymorphism on the CYP3A4 

protein structure. Little or no information exists to show the effect of polymorphism 

on the dynamic properties of the implicating enzymes, especially on major reported 

structural components involved in the metabolic process.  

Several reports have shown the relevance of homology modelling in the prediction 

of a protein's three-dimensional structure based on its amino acid sequence. This is 

further supported by information on the increasing available quality assessment 

tools to estimate the quality of the modelled protein structures. Hence, an assured 

possibility in the prediction and quality validation of the three-dimensional protein 

structures of available CYP3A4 variants. Further analysis of the structural and 

dynamic effects of polymorphism on the modelled structures, therefore, becomes a 

possibility. 

Applications of molecular dynamics bring light to the dynamic properties and 

flexibility of CYP variants modelled protein structures. The literature reviewed 



http://etd.uwc.ac.za/

35 

 

shows the advantage of molecular dynamics simulation in CYP. This information 

buttresses its usefulness in the study of the effect of polymorphism on the dynamic 

properties of the available CYP3A4 variants protein structures.  
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Chapter 3  

Research materials and methods 

This chapter describes the research study methodology. It starts with a synopsis of 

the materials used for the research study (Figure 3:1). Thereafter, a detailed 

description of the research methods utilized was discussed.  

 

Figure 3.1: A flowchart showing the synopsis of the method used in the current research. 

3.1 Research materials 

All computational analysis was carried out on windows 10 operating system with 

processor 3.1GHz Quad-core intel 17, memory 16GB 2133MHz, and windows 10 
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operating system, with 8GB memory, Intel Core i5-7200U processor, and 64-bit. 

The biological databases employed are the National Centre for Biotechnological 

Information (NCBI)(https://www.ncbi.nlm.nih.gov/), Protein Data Bank (PDB) 

(https://www.rcsb.org/),SNPedia(https://www.snpedia.com/),SwissModel 

(https://swissmodel.expasy.org/) and the Human Cytochrome P450 Allele 

Nomenclature (CYP-allele) (http://www.cypalleles.ki.se/). Software: MOE 

program (2019.01), OSIRIS DataWarrior (version 5.5.0), UCSF Chimera (version 

1.14), UCSF ChimeraX (version1.3), Git for Windows (version2.33.0), Graphpad 

prism version 9.0 were all utilised in this study. 

3.2  Retrieval of CYP3A4 wild-type amino acid sequence, and 

mutation of the wildtype sequence with Bio.SeqIO module on 

Python package (biopython) 

The methods below outlined the steps taken to obtain (from the NCBI database) 

and mutate the amino acid sequence of the wild type. It includes retrieval of the 

CYP3A4 wild type sequence, collation of information on amino acid sequences of 

selected variants on databases, and the method used in the mutation of the amino 

acid sequences of the wild type required for the modelling of the selected variants' 

protein structures. 

3.2.1  CYP3A4 wild-type amino acid sequences retrieval 

The CYP3A4 wild-type amino acid sequence (NP_059488.2) was retrieved from 

the (National Centre for Biotechnological Information) NCBI database (Sayers et 

al., 2019) in the Fasta format (accessed in December 2020).  

3.2.2  Collation of information of amino acid sequences of the selected 

CYP3A4 variants on databases 

Four CYP3A4 allelic variants were selected based on the report of SNPs on the 

functional assessment of CYP3A4 allelic variants in lidocaine metabolism (Fang et 

al., 2017). Twenty-two allelic variants were subjected to the in vivo study; however, 

the four chosen variants were those that indicated a significant difference in the 

clearance of lidocaine relative to the wild type as reported by Fang et al. (2017). 

https://swissmodel.expasy.org/
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CYP3A4*2 and CYP3A4*24 have values significantly lower (27.93 and 30.29 

respectively) than the relative clearance value of the wildtype (100), while 

CYP3A4*11 and CYP3A4*23 have values that are significantly higher (213.61 and 

206.96 respectively) than the relative clearance value of the wild type (100). 

The position of mutation and information of the substituted amino acid of the 

selected variants of CYP3A4 for this study were retrieved from SNPedia (a wiki 

resource that collects information on single nucleotide variants), and on the Human 

Cytochrome P450 Allele Nomenclature (CYP-allele) website) database (Gaedigk 

et al., 2018).  

Table 3.1: The selected variants with an indication of the position of mutation on the 

amino acid sequences of CYP3A4 selected variants 

Variant name Mutation on Amino Acid 

Sequence 

References 

CYP3A4*1 - (Gonzalez et al., 1988; 

Córdova et al., 2017) 

CYP3A4*2 S222P (Sata, 2000; Tang et al., 

2020) 

CYP3A4*11 T363M (Murayama et al., 2002; 

Han et al., 2021) 

CYP3A4*23 R162W (Drögemöller et al., 2013; 

Chen et al., 2020) 

CYP3A4*24 Q200H  (Fang et al., 2017; Tang 

et al., 2020) 

 

The position of the mutation in the amino acid sequence and the substituted amino 

acid of the CYP3A4 selected variants (Table 3.1) were available in the database 

sources.  The CYP3A4*2 variant has S-P, which implies that serine was replaced 

by proline. In the CYP3A4*11 variant, threonine was replaced by methionine (T-
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M). CYP3A4*23* R-W denotes that arginine was replaced by tryptophan 

CYP3A4*24, and Q-H denotes that glutamine was replaced by histidine (Table 3-

1). All selected variants have amino acid changes located in the coding or exonic 

regions (www.pharmvar.org/gene/CYP3A4). 

3.2.3 Mutation of the wildtype amino acid sequence using Bio.SeqIO 

module on Python package (bio-python)  

The steps taken to obtain the amino acid sequences of the selected variants were 

outlined in this section (Figure 3.2). With the known position of the amino acid 

substitution as obtained from the SNPedia and on the Human Cytochrome P450 

Allele Nomenclature (CYP-allele) website), the amino acid sequence of the wild 

type of sequence was mutated in Python with its underlying bio python package to 

obtain the selected variants sequences.  

 

Figure 3.2: The process of generating amino acid sequences of selected CYP3A4 variants 

on the Python package 

The bio python package was installed into the Jupyter notebook (Cock et al., 2009; 

Leong, 2020). The Fasta format of the wild-type sequence was converted to a 

mutable sequence (initially in a string form), and the sequence became immutable 

http://www.pharmvar.org/gene/CYP3A4
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as a Bio-Seq object type. The substitution of the amino acid was implemented at 

each indicated position of mutation of each variant from the SNPedia and on the 

Human Cytochrome P450 Allele Nomenclature (CYP-allele) website). The amino 

acid sequences of the selected CYP3A4 variants were generated and downloaded 

as a mutated sequence. 

3.3 Homology modelling of the selected CYP3A4 variants  

Homology modelling was employed to model the three-dimensional protein 

structures of the selected CYP3A4 variants. Homology modelling is the 

comparative modelling that generates a three-dimensional protein model from a 

targeted sequence. It uses a protein structure that has deduced experimental 

information and is evolutionarily related to the targeted sequence as template (Jacob 

K. et al., 2017; Chikhale et al., 2020). The SWISS-Model, an automated protein 

homology server, was used in the comparative modelling (Waterhouse et al., 2018). 

The SwissModel was the pioneered automated modelling platform and has been 

undergoing continuous development since its release about 25years ago. Since the 

template of the wildtype structure was available on SwissModel, it was chosen as 

the platform for the homology modelling.   

Crystal structure of CYP3A4 ligated to pyridine-substituted desoxyritonavir 

(4i4h.1A Cytochrome P450 3A4) was selected as the template from the protein data 

bank (PDB). It has a good resolution of 2.90 Å, a Rfree-0.263, a clash score of 

17,and Ramachandran outliers of 0.4%. Each of the variant’s amino acid sequences 

was separately inputted in Fasta format as the query. The protein structures of the 

four variants were built on SWISS-Model, with the crystal structure of CYP3A4 

(4i4h.1A Cytochrome P450 3A4) as the template. The SWISS-Model used the 

computational structural biological method on its “openStructure'' to model the 

protein structures of the selected variants, as described in previous studies (Biasini 

et al., 2013; Bienert et al., 2017).  
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3.4 Evaluation and quality check of the modelled protein 

structures of the selected CYP3A4 variants. 

The quality and accuracy of the predicted CYP3A4 selected variant protein models 

were evaluated for further structural analysis and characterization using the 

QMEAN (Qualitative Model Energy Analysis) (Pramanik et al., 2017), the Verify 

3D (Choudhary, Malik, and Tomar, 2020), and the ERRAT (Rahman et al., 2019). 

These are tools on the SAVES server (The SAVES v6.0) (Akapo et al., 2021). The 

Ramachandran plot was also plotted on PROCHECK (also a tool on the SAVES 

server) to evaluate the structural stereochemical property of the modelled protein 

structures of the CYP3A4 selected variants. The PROCHECK examines the overall 

model geometry and generates the Ramachandran plot after a modelled protein file 

has been inputted (Selvam et al., 2017). 

3.5 Structural alignment and molecular surface visualization of 

the CYP3A4 wild-type and the selected variants’ models 

The visualisation of each of the modelled protein structures was done on UCSF 

Chimera version: 1.14 (Pettersen et al., 2021). The alignment of each of the 

modelled variants was done with the modelled structure of the wild type as the 

reference. Each of the modelled protein structures was inputted and superimposed 

on the reference protein structure. The Needleman-Wunsch alignment algorithm 

with matrix BLOSUM-62 on matchmaker UCSF Chimera (version: 1.14) at 

2.0Angstroms was used for the structural comparison.  

The molecular surface characteristics of the wildtype and the modelled variants 

proteins were estimated with UCSF ChimeraX version: 1.3 (2021-12-08) (Goddard 

et al., 2018; Pettersen et al., 2021). The molecular lipophilicity potential (MLP) for 

the protein structures of the wild type and the variants were estimated.  

The Coulombic electrostatic potential (ESP) was also calculated on the UCSF 

ChimeraX version:1.3. Coulomb's law is used to compute the Coulombic 

electrostatic potential given the atomic partial charges and atomic coordinates: 

φ = Σ [qi / (εdi)].  
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φ is the potential (which fluctuates in space), q is the atomic partial charges, d is the 

distances between the atoms, and ε is the dielectric, which represents media 

screening. At 298 K, the resultant potential is measured in kcal/(mole). The 

estimated ESP was used as colour representation on the molecular surfaces of the 

protein structures with pre-set colours ranging from red for the negative potential 

to white for positive potential and blue for neutral potential. 

3.6 Investigation of the differences in the physicochemical and 

general protein properties of the selected CYP3A4 variants 

relative to the wild type 

To investigate the notable differences in the protein properties of the CYP3A4 

wildtype and the selected variants, the physicochemical properties, and general 

protein properties were; predicted. The analysis of all the physicochemical 

properties was carried out on the Expasy protparam tool (Suhaibun, Elengoe, and 

Poddar, 2020) and Molecular Operating Environment (MOE) 2019 (accessed on 

2nd January 2022). The protein structures of the selected variant structures of 

CYP3A4 were loaded on MOE. The MOE protein property descriptor was used to 

calculate the molecular protein properties, and the descriptors were based on the 

entire protein shape (Gupta, Baudry, and Menon, 2022; Sripriya Akondi et al., 

2022). The property calculator was set at NaCl (salt), viscosity (0.89), dielectric 

(78), probe radius (1.8), hydrophobic cut-off (0.09), hydrophobic minimum area 

(50), charge cutoff (40), charged min area (40). The simulation environment was 

set at the default levels of pH 7.4, the temperature at 300 Kelvin, and a salt 

concentration of 0.1M. More general protein properties for the wildtype and the 

variants were also obtained from the patch surface analyser on Maestro 2019 

(Sankar et al., 2018). 

3.7 Prediction of the protein stability of the modelled protein 

structures of variants. 

The changes in the stability of the protein structures of the selected variants’ 

sequences were predicted with I-Mutant 2.0. I-Mutant 2.0 is a support vector 
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machine (SVM) tool that gives an automatic prediction of protein stability with a 

single point mutation. It indicates the effect of mutation on the protein structure as 

a destabilised or stabilised surface (López-López, Naveja, and Medina-Franco, 

2019). The relative solvent accessible area and free energy change value (DDG) 

were also obtained from the support vector machine (SVM) tool. The relative 

solvent accessible area (RSA) value was determined from the protein structure by 

dividing the accessible surface area value of the altered amino acid region by the 

free residue surface (López-López, Naveja, and Medina-Franco, 2019). The PDB 

code of the wild type of protein structure was inputted with an indication of chain 

A and the position of the mutation. The new amino acid residue at the position of 

mutation was also inputted at a temperature of 25-celsius degrees and a pH value 

of 7. The direction (the DDG sign) of the protein stability changes and the DDG 

associated values were predicted and interpreted. 

3.8 Determination of solvation energy of protein structures of 

variants 

The PBEQ solver on the CHARMM-GUI (Brooks et al., 2009), was used to 

generate the solvation energy of the protein structures of the wild type and the 

selected CYP3A4 variants. The PBEQ solver uses the Poisson-Boltzmann (PB) 

equations to generate the solvation energy with the PBEQ module in CHARMM 

(Jo et al., 2008; Brooks et al., 2009). Each of the protein structures (both the wild 

type and the variants) was uploaded in PDB format to obtain an output of the 

solvation energies. 

3.9 Determination of binding score of the wild type and the 

selected CYP3A4 variants with lidocaine ligand 

Molecular docking was done using the protein structures of the CYP3A4 wild type 

and the variants as the receptor. Lidocaine was used as the ligand, according to the 

study reported by Fang et al. (2017). The docking calculations were performed 

using the methods described in previous studies (Bahuguna et al., 2020 Fadaka et 

al., 2020). 
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 The modelled structures were prepared using the “Protein Preparation Wizard'' of 

the Schrodinger suite (Schrödinger Release 2020–3: Maestro, Schrödinger, LLC, 

New York, NY, 2020. version 12.2). At this stage, a series of processes were carried 

out, which included the addition of hydrogen atoms, fixing of bond orders, removal 

of water molecules, optimization of the protonation states, and hydrogen bond 

network. The structures underwent energy minimisation using the OPLS-2005 

force field, and all other parameters were kept at default (Kumar et al., 2018). 

For the ligand preparation step, the two-dimensional structure of lidocaine in 2-

Dimensional format was downloaded from PubChem 

(https://pubchem.ncbi.nlm.nih.gov/) (Kim et al., 2016), and prepared using the 

“LigPrep” module of Maestro. At this stage, the physiological and ionisation states 

were set at 7.0 pH using ± 2 with the Epik ionisation program. The OPLS-2005 

force field was selected for minimization, keeping all other parameters as default. 

The binding site was specified to generate the receptor grid at the site of the co-

crystallized ligand, using the ‘‘Grid generation’’ panel. Thereafter, the prepared 

ligand was docked into each of the prepared proteins using the ‘‘Ligand docking’’ 

panel with extra precision mode (XP) of the Glide module on the Schrödinger suite. 

The docked poses were analysed and the best pose of the selected CYP3A4 

variants’ complex was selected based on their binding energy (BE). 

The Molecular Mechanics-Generalised Born Surface Area (MM-GBSA) approach 

as reported according to previous studies (Mali and Chaudhari, 2018; Rajagopal, 

Arumugasamy, and Byran 2019; Choudhary et al., 2020), was done with the Prime 

module of Schrödinger suite 2016-2, the OPLS3 power field and VSGB dissolvable 

model were used to analyse the calculations.  

3.10 Molecular dynamics analysis 

The dynamic properties of the modelled protein structure of the selected variants 

relative to the wild type of CYP3A4 were investigated with molecular dynamics 

simulation. Molecular dynamic (MD) simulation was done with Schrodinger 

software on Maestro molecular modelling platform (Schrödinger Release 2020–4: 

Maestro, Schrödinger, LLC, New York, NY, 2020. version 12.2.012). The MD 

https://pubchem.ncbi.nlm.nih.gov/
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simulations were carried out on a workstation having an Ubuntu platform, with Intel

Ⓡ Xenon (R) Gold 6130 CPU @ 2.10 GHz × 64 processors, Quadro 

P620/PCle/SSE2 graphics card, and 134.8 GB RAM. Molecular dynamics studies 

were carried out on the docked complexes of the wild type and the variants of 

CYP3A4 according to the method described in previous studies (Choudhary et al., 

2020; Fadaka et al., 2020). This was performed using the Desmond module of 

Schrödinger with the OPLS3e force field (Harder et al., 2016). The system was 

prepared using “System Builder” in Maestro, where the best-docked pose of the 

selected protein-ligand complex was bounded with a predefined TIP3P water model 

in the orthorhombic box. The volume of the box was minimised, and the overall 

charge of the system was neutralised by adding Na and Cl ions. The simulations 

were made under the Isothermal-Isobaric (NPT) ensemble. The temperature and 

atmospheric pressure of the system were kept constant at 310 Kelvin and 1.013 bar 

respectively, and the job was set to run at 100 ns. The system was minimized in a 

phase of 1000 steps with a restraint applied on solute atoms, and only water and 

salt ions were allowed to move. Minimization was followed by heating of the 

system from 0 to 298 K.  The simulation interaction diagram tool of Maestro was 

used to analyse and sketch the plots and figures. The final trajectories was used for 

the calculation of the root mean square deviation (RMSD),root mean square 

fluctuations( RMSF), and radius of gyration (RG), secondary structure 

elements(SSE), and solvent accessible surface area (SASA). 

 

3.11 The correlation study between the studied structural and 

physicochemical effects of SNPs on selected variants and the 

reported effects of SNP on the relative clearance of the 

selected variants 

To investigate the link between the studied structural and physiological differences 

in the variants and the reported functional differences in the pharmacokinetic 

parameter (intrinsic clearance) as reported by Fang et al. (2017), a correlation study 
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was done on Datawarrior (version 5.5.0). Datawarrior is a free, versatile data 

analysis and visualisation program (López-López, Naveja, and Medina-Franco, 

2019). The correlation plot was plotted, and Pearson's correlation coefficients were 

obtained from the plotted graph. The values obtained were interpreted and reported 

accordingly.  
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Chapter 4  

Results and discussion 

This chapter presents and discusses the findings/results of the effects of single 

nucleotide polymorphisms (SNP) on the structural, physicochemical, and general 

protein properties of the modelled three-dimensional (3D) protein structures of 

selected CYP3A4 variants. The comparative study of the reported effect of SNPs 

on the relative clearance of lidocaine as reported by Fang et al. (2017) and the 

studied properties, to identify any significant correlation were also presented in this 

chapter. 

The chapter starts with the outcome of the selection and generation of amino acid 

sequences of the selected variants used for the modelling of the variants’ protein 

structures. A detailed report of the result of the CYP3A4 variants protein modeling 

and validation was reported and interpreted. The result from the investigation of the 

effect of SNPs on the structural and molecular properties of the selected variants 

was presented and discussed. The data obtained from the evaluation of the 

physicochemical and general protein properties of the selected variants were 

reported in this chapter. This was followed by the estimated effect of SNPs on the 

dynamic characteristics of the protein structures of the CYP3A4 selected variants. 

4.1 Selection and collation of sequences of the selected variants 

and the wild type of CYP3A4 

The four selected CYP3A4 variants, namely, CYP3A4*2, CYP3A4*24, 

CYP3A4*11 AND CYP3A4*23, and their substituted amino acids, the location of 

substitution, and the reported clearance were summarized in Table 4.1 

S222P indicates Serine (S) was replaced by Proline (P) at position 222, T363M indicates 

that Threonine (T) was replaced by Methionine (M) at position 363, R162W indicates that 

Arginine (R) was replaced by Tryptophan (W) at position 162, Q200H indicates that 

Glutamine (Q) was replaced by Histidine (H) at position 200. 
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Table 4.1: The selected CYP3A4 variants with the location of substitution, the substituted 

amino acids, and the reported relative clearance.  

Selected 

Mutants 

Mutation 

location 

Class of amino 

acid being 

substituted 

 

Class of new 

amino acid present 

after substitution 

Reported 

Relative 

clearance 

(%) 

CYP3A4*1 Wild type N/A N/A 100 

CYP3A4*2 S222P S-(Hydrophobic) 

(non-polar) 

P (Hydrophilic) 

(Polar) 

27.93 

CYP3A4*11 T363M T-(Hydrophilic) 

(neutral) 

M-(Hydrophobic) 213.61 

CYP3A4*23 R162W R- (Hydrophilic) 

(Basic) 

W-(Hydrophobic) 206.96 

CYP3A4*24 Q200H Q- (Hydrophilic) 

(Acidic) 

H- (Hydrophilic) 

(Basic) 

30.29 

 

At the position of mutation, the newly substituted amino acid was shown with 

proline as the newly substituted amino acid at position 222 for variant 2 (see 

example in Fig.4.1). This process was also employed to obtain other selected 

variants’ sequences that were studied. The substitution of each variant was 

confirmed with pairwise and multiple sequence alignment of all variants as 

indicated in Figure 4.2 to Figure 4.5. 

The pairwise alignment of the wildtype and selected CYP3A4 variants' amino acid 

sequences indicated the missing residues at the positions of the mutation (S222P, 

T162M, R222W, Q200H for CYP3A4*2, CYP3A4*11, CYP3A4*23, CYP3A4*24 

respectively) in the selected CYP3A4 variants (Fig 4.2 to 4.5). The study of the 

class of substituted amino acids for each of the selected variants indicated a change 

from a hydrophobic amino acid to a hydrophilic amino acid (CYP3A4*11, 

CYP3A4*23) or a change from a hydrophilic amino acid to a hydrophobic amino 
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acid (CYP3A4*2) except for variant CYP3A4*24 (Table 4.1). In CYP3A4*24, the 

substituted amino acids were in the same class (though the substituted amino acid 

is more acidic than the originally positioned amino acid). It can be estimated that 

the substitution of amino acids with different characteristics (hydrophilicity and 

hydrophobicity) at an exon position might interfere with the protein properties and 

subsequently, the enzymatic activity of the implicating variants. This is consistent 

with previous reports by Drögemöller et al. (2013) and Cai et al. (2021) . The 

reports stated that an amino acid substitution of a hydrophilic amino acid to a 

hydrophobic amino acid could affect the function of the enzyme variants. 

Therefore, varied classes of the substituted amino acid and the new amino acid at 

positions of mutation might account for the observed differences in the rate of 

metabolism in the selected variants of CYP3A4 with lidocaine as reported by Fang 

et al. (2017).  

Additionally, an increase of 113.6 and 106.96 was observed in the relative clearance 

of variants CYP3A4*11 and CYP3A4*23 (213.61 and 206.96 respectively). They 

both have hydrophobic newly substituted amino acids. A change from a hydrophilic 

amino acid to a hydrophobic amino acid might affect the rate of metabolism of the 

implicating enzymes. This is consistent with the finding by Koulgi et al. (2022) 

who predicted that increased interaction with hydrophobic residues causes an 

increase in the rate of metabolism of the ligands. 

 

Figure 4.1: An extract of the process to obtain the mutated sequence of the CYP3A4*2 

variant on the python Jupyter page. 

Note: the substitution at position 222 to proline(P) is indicated in the third last line. 
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Figure 4.2 A CLUSTAL generated multiple alignment of CYP3A4*1-S222P, 

CYP3A4*11-T162M CYP3A4*23-R222W and the wild-type sequence (4i4th.1A 

Cytochrome P450 3A4). 

An asterisk (*) denotes identical amino acids. The red arrow depicts an amino acid 

substitution 
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Figure 4.3: A CLUSTAL generated pairwise alignment of CYP3A4*2-S222P and the 

wild-type sequence (4i4th.1A Cytochrome P450 3A4). 

An asterisk (*) denotes identical amino acids. The red arrow depicts an amino acid 

substitution. 

 

Figure 4.4: A CLUSTAL generated pairwise alignment of CYP3A4*11-T162M and 

the wild-type sequence (4i4th.1A Cytochrome P450 3A4).  

An asterisk (*) denotes identical amino acids. The red arrow depicts an amino acid 

substitution. 
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Figure 4.5: A CLUSTAL generated pairwise alignment of CYP3A4*23-R222W and 

the wild-type sequence (4i4th.1A Cytochrome P450 3A4).  

An asterisk (*) denotes identical amino acids. The red arrow depicts an amino acid 

substitution 

 

 

Figure 4.6: A CLUSTAL generated pairwise alignment of CYP3A4*24-Q200H and 

the wild-type sequence (4i4th.1A Cytochrome P450 3A4).  

An asterisk (*) denotes identical amino acids. The red arrow depicts an amino acid 

substitution. 
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4.2 Homology modelling of the selected variants 

Homology modelling was employed to generate the three-dimensional protein 

structures of the selected variants of CYP3A4. An initially established template, a 

crystal structure of CYP3A4 ligated to pyridine-substituted desoxyritonavir 

(4i4h.1A Cytochrome P450 3A4) was used as the template sequence, together with 

the query sequences (variants sequences) to model the three-dimensional protein 

structure of the selected variants. The protein structures of the four variants are 

shown in Figure 4.6. 

 

Figure 4.7: Three-dimensional protein structures of the selected CYP3A4 variants. 

Secondary structures are indicated in different colours: helixes in blue, coils in green, 

strands in purple and the centre positioned heme in golden brown (A-CYP3A4*2, B-

CYP3A4*11, C-CYP3A4*23, D-CYP3A4*24) 

4.3 Estimation of the quality of the modelled protein structures 

The estimation of the reliability and quality of a modelled protein structure is a vital 

step in protein structure characterization and prediction (Shin et al., 2017; Haddad, 

Adam, and Heger, 2020). To predict the quality of the modelled protein structures, 
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the QMEAN (Qualitative Model Energy Analysis) (Pramanik et al., 2017), the 

Verify 3D (Choudhary, Malik, and Tomar, 2020), and the ERRAT (Rahman et al., 

2019) were employed as highlighted in the method (Chapter 3, sub-section 3.4).  

4.3.1 Quality evaluation of modelled protein structures on QMEAN 

The GMQE was used to assess the quality of the target (query) to template 

alignment in modelled protein structures. It combined target-template alignment 

and template structure properties (Waterhouse et al., 2018; Crook et al., 2021). 

QMEANDisCO generated a plot of local distance difference comparison values for 

each residue between the range of 0 and 1. The reliability of the modelled structures 

was shown from the obtained values (Table 4.2).   

The GMQE and QMEANDisCo >0.6 were predictive of a highly reliable model 

(David et al., 2020). The GMQE and QMEANDisCO values obtained were high 

(>0.8), and the acquired data demonstrated that the modelled protein structures of 

CYP3A4 variants had a high level of confidence and were credible for further 

research investigations. 

 

Table 4.2: Estimation of the quality of modelled protein structure on QMEAN with 

GMQE and QMEANDisCO obtained values (>0.8). 

Protein Structure QMEANDisCo 

Global 

Global Model Quality 

Estimate (GMQE) 

CYP3A4*1 0.86±0.05 0.85 

CYP3A4*2 0.86±0.05 0.85 

CYP3A4*11 0.85±0.05 0.85 

CYP3A4*23 0.86±0.05 0.85 

CYP3A4*24 0.86±0.05 0.85 
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4.3.2 Quality evaluation of modelled protein structures with the 

Ramachandran plot 

The prediction of the structural stereochemical properties was obtained on the 

Ramachandran plot. The PROCHECK evaluates the geometry of each residue to 

determine the stereochemical quality of a predicted model (Pramanik et al., 2017).  

The Ramachandran plot generated by the PROCHECK tool in SAVES was used 

to generate the Ramachandran plots and it showed that 90.7% of the residues were 

in most of the favoured regions of the plot, 0.0% in generously allowed regions 

and 0.5% in disallowed regions for all the modelled protein structures of selected 

variants (Fig.4.7 to 4.10).  

 

 

Figure 4.8: The Ramachandran plot of the modelled CYP3A4*1 structure generated on 

PROCHECK. 

Residues are shown by little black squares. The red section denotes the most favoured 

regions. Yellow denotes allowed areas. Disallowed areas were indicated by white space 

with no colour. It indicates that 90.7% of the residues were in most of the favoured 

regions of the plot, 8.8% in the additional allowed regions, 0.0% in generously allowed 

regions and 0.5% in disallowed regions 
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Figure 4.9: The Ramachandran plot of the modelled CYP3A4*2 structure generated on 

PROCHECK. 

 Residues are shown by little black squares. The red section denotes the most favoured 

regions. Yellow denotes allowed areas. Disallowed areas were indicated by white space 

with no colour. It indicates that 90.7% of the residues were in most of the favoured 

regions of the plot, 8.8% in additional allowed regions, 0.0% in generously allowed 

regions and 0.5% in disallowed regions 

 

Figure 4.10: The Ramachandran plot of the modelled CYP3A4*11 structure generated on 

PROCHECK  
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Residues are shown by little black squares. The red section denotes the most favoured 

regions. Yellow denotes allowed areas. Disallowed areas were indicated by white space 

with no colour. It indicates that 90.7% of the residues were in most of the favoured 

regions of the plot, 8.8% in additional allowed regions, 0.0% in generously allowed 

regions and 0.5% in disallowed regions 

 

Figure 4.11: The Ramachandran plot of the modelled CYP3A4*23 structure generated on 

PROCHECK.  

Residues are shown by little black squares. The red section denotes the most favoured 

regions. Yellow denotes allowed areas. Disallowed areas were indicated by white space 

with no colour. It indicates that 90.7% of the residues were in most of the favoured 

regions of the plot,8.8% in additional allowed regions, 0.0% in generously allowed 

regions and 0.5% in disallowed regions 
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Figure 4.12: The Ramachandran plot of the modelled CYP3A4*24 structure generated on 

PROCHECK.  

Residues are shown by little black squares. The red section denotes the most favoured 

regions. Yellow denotes allowed areas. Disallowed areas were indicated by white space 

with no colour. It indicates that 90.7% of the residues were in most of the favoured 

regions of the plot, 8.8% in additional allowed regions,0.0% in generously allowed 

regions and 0.5% in disallowed regions 

4.3.3 Quality evaluation of modelled protein structures on ERRAT plot 

The ERRAT uses a database of highly refined protein structures to produce a graph 

of the position of the nine-residue sliding window against the error function. The 

Errat graph was based on the improved structure database's nonbonded interaction 

statistics between distinct atom kinds. (Kumar et al., 2019). The validation report 

from the ERRAT quality plot derived from the SAVE server (Table 4.3) shows that 

all the modelled structures inputted had good resolution with an overall quality 

factor >95%.  
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Table 4.3: The overall quality factor of modelled protein structure on ERRAT 

Modelled Protein Structure ERRAT 

Overall Quality Factor 

Wild type 95.55556 

CYP3A4*2 95.12 

CYP3A4*11 +95.79 

CYP3A4*23 95.56 

CYP3A4*24 95.56 

 

 The output graphs of the modelled protein structure (Figure 4.11 to 4.14) indicated 

that the red or yellow colour regions are very minimal while the ash-coloured 

regions are predominant. 

   

Figure 4.13: Errat model for CYP3A4*2 

 The red- and yellow-coloured sections in the graph represent the faulty parts of the 

structure, while the ash-coloured portions show the allowed regions 
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Figure 4.14: Errat model for CYP3A4*11. 

The red- and yellow-coloured sections in the graph represent the faulty parts of the 

structure, while the ash-coloured portions show the allowed regions 

 

Figure 4.15: Errat model for CYP3A4*23. 

The red- and yellow-coloured sections in the graph represent the faulty parts of the 

structure, while the ash-coloured portions show the allowed regions 

   

Figure 4.16: Errat model for CYP3A4*24 

 The red- and yellow-coloured sections in the graph represent the faulty parts of the 

structure, while the ash-coloured portions show the allowed regions 
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4.3.4 Quality evaluation of modelled protein structures on Verify 3D 

Verify 3D makes use of the structural database of proteins to determine if a 3D 

structure will be compatible with a 1D (one-dimensional) amino acid sequence 

based on structure assignments. Examples of such structure assignments include the 

loops, the alpha-helix, and the sheets (Khan et al., 2021). In the Verify 3D, at least 

80% of the amino acids must have scored >= 0.2 in the 3D/1D profile for quality 

and reliable modelled protein structures (Oyugi et al., 2018; Khalid et al., 2020).  

All modelled protein structures have 96.58% of the residues with a 3D-1D score 

>=0.2 which is the same as the wild type of protein structure, and therefore met the 

requirement (Table 4.4). In summary, all the modelled protein structures passed all 

quality check steps indicating high reliability and were therefore suitable for further 

characterization and analysis of the modelled protein structures of the selected 

CYP3A4 variants. 

Table 4.4: The estimation of the quality of modelled protein structure on Verify 3D 

Modelled Protein 

Structure 

            Verify 3D 

Wild-type 96.58% of the residues have averaged 3D-1D score >= 0.2 

Pass. 

At least 80% of the amino acids have scored >= 0.2 in the 

3D/1D profile. 

 

CYP3A4*2 96.58% of the residues have averaged 3D-1D score >= 0.2 Pass. 

At least 80% of the amino acids have scored >= 0.2 in the 3D/1D 

profile. 

CYP3A4*11 96.58% of the residues have averaged 3D-1D score >= 0.2 Pass. 

At least 80% of the amino acids have scored >= 0.2 in the 3D/1D 

profile. 
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CYP3A4*23 96.58% of the residues have averaged 3D-1D score >= 0.2 Pass. 

At least 80% of the amino acids have scored >= 0.2 in the 3D/1D 

profile. 

CYP3A4*24 96.58% of the residues have averaged 3D-1D score >= 0.2 Pass. 

At least 80% of the amino acids have scored >= 0.2 in the 3D/1D 

profile. 

 

4.4 Structural alignment and molecular surface visualization of 

the CYP3A4 wild-type and the selected variants’ models 

4.4.1 Structural alignment of the CYP3A4 selected variants and the 

wild type. 

From the visualised modelled protein structures of the wild-type and the variants, it 

was observed that the position of the heme ligand of all the variants’ structures did 

not show any significant difference from the wild type. None of the mutations likely 

affected the positioning of the heme moiety. It has been reported that the enzyme's 

catalytic core is the heme prosthetic group (Kaur et al., 2016; Guengerich, 2018). 

This could explain why there was no reported loss of activity in the reported effects 

of mutation for the selected variants in the previously reported study (Fang et al., 

2017). A projection of a reduction or increase in activity has been the difference 

reported (Fang et al., 2017). The single nucleotide polymorphism in the selected 

variants might not have affected the cysteine-heme property of CYP3A4. 

Therefore, the heme prosthetic group property might not be a determinant of the 

reported varied rate of metabolism in the selected variants.  

In CYP3A4*2(S222P), the Ser222 is in the loop, in between the F and G helices, 

and the substitution with proline occurred at the F-G helices region (Figure 4.15). 

Previous reports have shown that the F-G helixes played a role in enzyme 

specificity and accessibility to the enzyme substrate (Šrejber et al., 2018; Dong et 

al., 2021). The substitution at this position (S222P) with proline might interfere 

with the enzyme specificity which might account for the variation in the enzymatic 
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activity (reduced intrinsic clearance relative to the wildtype) of CYP3A4*2 with 

lidocaine in the previous report (Fang et al., 2017). In addition, in previous reports, 

Proline has been reported to break helixes (Miyazaki et al., 2008), The effect of the 

substituted proline as reported by Miyazaki et al., (2008) is consistent with the 

prediction of the effect of SNPs on the F and G helices, where the substitution 

occurred. 

In CYP3A4*11 (T363M), threonine was replaced by methionine (T-M). It has been 

reported that Threonine 363 at the SRS-5 region was a major part of hydrogen 

interaction in CYP3A4 interaction with ligands (Murayama et al., 2002; Zhou et 

al., 2019). Reports have shown that the hydrogen bond is important in CYP3A4 

interaction, and an alteration could interfere with its enzymatic function (Eiselt et 

al., 2001; El-Sayed et al., 2016). Hence, the substitution at T363M (Figure 4.16) 

could lead to alteration in hydrogen interaction and was estimated to be responsible 

for the varied rate of enzymatic activity (relative to the wildtype) in the metabolism 

of CYP3A4*11 with lidocaine as reported by Fang et al. (2017). 

In CYP3A4*23 (R162W) arginine was replaced by tryptophan, the arginine at 

position162 has a very close distance to the active site (Figure 4.17). The 

substitution at the position occurred between amino acids of different classes: 

Arginine(R) is a hydrophilic amino acid while Tryptophan(W) is a hydrophobic 

amino acid. Drögemöller et al. (2013) in their findings predicted that an amino acid 

substitution of a hydrophilic amino acid for a hydrophobic amino acid could affect 

the catalytic activity of the enzyme variants. In addition, Koulgi et al. (2022) 

predicted in the study of the conformation of CYP3A4 structures that increased 

interactions with hydrophobic residues may cause an increase in the rate of 

metabolism of the ligands. Therefore, the substitution of hydrophilic residue 

(Arginine) with hydrophobic residue (Tryptophan) might account for the reported 

difference in the rate of metabolism of CYP3A4*23 with lidocaine (higher relative 

clearance of 206.96 as against the wild type of 100) (Fang et al., 2017). 

In variant CYP3A4*24 (Q200H), glutamine was substituted with  histidine at 

position 200. Both amino acids belong to the same class(hydrophilic) and no 
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noticeable difference was observed in the superimposed structure of the 

CYP3A4*24 variant three-dimensional structure with the wildtype. It was 

estimated that other protein properties might account for the reported varied rate of 

metabolism by Fang et al. (2017). Variants 2 and 23 showed a mismatch at the helix 

(Figure 4.18 and Figure 4.21). This noticeable structural difference could account 

for the difference in the reported relative clearance, relative to the wild type. 

 

Figure 4.17: The molecular surface structure of CYP3A4*2(coils in red, helix in green, 

strands in blue, heme moiety in ash) . 

 The headed arrow shows the location of the new amino acid Proline at position 222 

(PRO222). 
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Figure 4.18: The molecular surface structure of CYP3A4*11(coils in red, helix in green, 

strands in blue, heme moiety in ash).  

 The headed arrow shows the location of the new amino acid Methionine at position 363 

(MET363). 

 

Figure 4.19: The molecular surface structure of CYP3A4*23(coils in red, helix in green, 

strands in blue, heme moiety in ash). 

The headed arrow shows the location of the new amino acid Tryptophan at position 162 

(TRP162). 
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Figure 4.20: The structural comparison of CYP3A4*1(blue) and CYP3A4*2(ash). 

  The superimposed three-dimensional protein structural models, with the headed arrow 

showing the position of mix match at the helix 

 

 

Figure 4.21: The structural comparison of CYP3A4*1(blue) and CYP3A4*11(ash) . 

 The superimposed three-dimensional protein structural models with no noticeable mix 

match 
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Figure 4.22: The structural comparison of CYP3A4*1(blue) and CYP3A4*23 (ash) . 

 The superimposed three-dimensional protein structural models and the centralised heme 

moiety in a ball(brown) with the headed arrow showing the position of the mix match at 

the helix 

 

Figure 4.23: The structural comparison of CYP3A4*1 (blue) and CYP3A4*24 (ash) .  

The superimposed three-dimensional protein structural models, with no noticeable mix 

match 
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The observed RMSD has minimal deviation (Table 4.5) in the superimposed 

structure of the wild type and selected variants protein structures on the 

matchmaker. It was noticeable that variants 2 and 24, though negligible, had the 

highest RMSD values relative to the other selected variants (CYP3A4*11 and 

CYP3A4*23) (Table 4.5). 

Table 4.5: RSMD values for structural comparison of CYP3A4 wild type and the selected 

variant models 

Protein Model RMSD (Root Mean 

Square Deviation) of 

superimposed protein 

structures 

CYP3A*2 0.029 

CYP3A*11 0.015 

CYP3A4*23 0.003 

CYP3A4*24 0.02 

4.4.2 The molecular surface visualization of the CYP3A4 wild-type and 

the selected variants’ models 

The molecular lipophilicity potential of the modelled protein structures of the wild 

type and the variants was shown in Table 4.6.  

Table 4.6: The molecular lipophilicity potential values of CYP3A4 wild-type and selected 

variant protein models 

Modelled Protein 

Structures 

Minimum Mean Maximum 

Wild type -28.39 -3.448 23.93 

Model 2 -28.46 -3.426 23.83 

Model 11 -28.53 -3.447 24.09 

Model 23 -27.44 -3.372 23.95 

Model 24 -28.39 -3.444 23.93 

 



http://etd.uwc.ac.za/

69 

 

The colour range on the molecular surface ranges from dark cyan (most 

hydrophilic) to white (less hydrophilic) to dark golden (most lipophilic).The 

differences in the hydrophobicity of the various regions of the variants relative to 

the wild type were visualised. There was a noticeable variation in the molecular 

surface colour in variants CYP3A4*11, CYP3A4*23, and CYP3A4*24 when 

compared with the wild type (Figure 4.22 -4.25). The wild type has a darker cyan 

(pointed region Figure 4.22), while a white colour was observed in CYP3A4*11 

and CYP3A24 (Figure 4.23 and Figure 4.25). A golden colour region was observed 

in CYP3A4*23 (Figure 4.24). This implies that the wild type (darker cyan blue) 

was more hydrophilic than the selected variants (white and golden colour). The 

observation also gives a prediction that CYP3A4*23 was the most hydrophobic 

(golden colour). 

 

It was observed from the mean values of the molecular lipophilicity potential (Table 

4.6) that the selected CYP3A4 have varied values, relative to the wild type. The 

wild type has the least value (-3.448) as compared to the selected variants (-3.426, 

-3.447, -3.372, -3.444) for CYP3A4*2, CYP3A4*11, CYP3A4*23, CYP3A4*24 

respectively). This further supports the observation of the molecular surface and 

gives an estimation that the wild type was likely more hydrophilic than the selected 

variants. The mean value of the molecular lipophilicity potential also suggests that 

CYP3A4*23 is the most lipophilic of the selected variants with the highest mean 

value of (-3.372). 

Lipophilicity is a fundamental physicochemical property that affects the 

metabolism and toxicity of a drug, and it is evident that lipophilicity is important to 

P450 substrate selectivity and clearance (Lewis, Jacobs, and Dickins, 2004; 

Stephens, Lucena, and Andrade, 2018). It has been reported that drug clearance 

increases as lipophilicity rises (Broccatelli, Aliagas, and Zheng, 2018). This report 

agrees with the finding in CP3A4 variants. For example, the high relative clearance 

(206.96) observed in CYP3A4*23 has the highest mean MLP (-3.372). With the 

altered lipophilicity (due to SNPs) in the selected variants, it is estimated that the 
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molecular lipophilicity potential might account for the reported variation in the rate 

of metabolism in the selected variants. The molecular lipophilic potential result was 

subjected to a correlation study (section 4.10) to further investigate the correlation 

between the physicochemical parameter (molecular lipophilicity potential) and the 

reported difference in clearance of the selected CYP3A4 relative to the wildtype. 

 

Figure 4.24: The molecular hydrophobic surface colour of wild-type structure. 

Dark cyan (most hydrophilic) to white (less hydrophilic) to dark golden (most 

lipophilic.  

 

Figure 4.25: The molecular hydrophobic surface colour of CYP3A4*11. 

Dark cyan (most hydrophilic) to white (less hydrophilic) to dark golden (most 

lipophilic.  
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Figure 4.26: The molecular hydrophobic surface colour of CYP3A4*23 

Dark cyan (most hydrophilic) to white (less hydrophilic) to dark golden (most 

lipophilic 

 

Figure 4.27: The molecular hydrophobic surface colour of CYP3A4*24. 

Dark cyan (most hydrophilic) to white (less hydrophilic) to dark golden (most 

lipophilic 

The differences in the electrostatic potential of the various regions of the variants 

relative to the wildtype were visualised. No colour difference was observed in the 

wild type and selected variants' colour surface range. The Coulombic electrostatic 

potential (ESP) of the wild type and the selected variants were calculated. The 

obtained result is shown in Table 4.7. It was observed that the mean values of the 

Coulombic electrostatic potential (ELP) of the selected variants differ from the ELP 

value of the wild type. For example, a very significant difference was observed in 

CYP3A4*23 (0.18) relative to the wildtype (0.38). This gives a prediction that 

SNPs might affect the ELP of a variant’s protein structure. It was, however, 
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estimated that the Coulombic electrostatic potential might be a determining 

property in the reported difference in the rate of metabolism (clearance) of the 

selected CYP3A4 variants. The Coulombic electrostatic potential result was 

subjected to a correlation study (section 4.10) to establish the potential link between 

the Coulombic electrostatic potential and the reported difference in clearance of the 

selected CYP3A4 relative to the wildtype. 

Table 4.7: The coulombic electrostatic potential values of CYP3A4 wild-type and the 

selected variants protein models 

Modelled Protein 

Structures 

Minimum Mean Maximum 

Wild type -11.21 0.38 15.70 

Model 2 -11.32 0.39 15.61 

Model 11 -13.88 0.37 15.68 

Model 23 -11.24 0.18 15.58 

Model 24 -15.41 0.37 15.69 

 

4.5 The differences in the physicochemical and the general 

protein properties of the selected CYP3A4 mutants, relative 

to the wild type. 

Previous reports have shown that one of the important aspects of the 

characterization of a protein is its physicochemical parameters analysis (Kaur et al., 

2020; Munjal, Shukla, and Singh, 2021b). The physicochemical properties of each 

of the selected mutated sequences of CYP3A4 and the wild-type sequence 

investigated in this study were outlined in Table A.0.1 (Appendix A). 

Each of the CYP3A4 studied sequences contains 503 amino acids. Varied 

molecular weight was obtained for each variant, none of it was the same as that 

obtained for the wild type due to the different residues substituted at the point of 

mutation. It can be suggested that the varied values of the molecular weight could 

be a determining property in the reported difference in lidocaine clearance of the 



http://etd.uwc.ac.za/

73 

 

selected variant. The isoelectric point (pI) is an important physicochemical property 

that indicates the point at which a solution gives an absolute charge of zero due to 

an equal amount of positive and negative charges. It gives an estimation of the 

surface charge of proteins at different pH conditions (Kozlowski, 2021). All 

variants studied have a pI of 8.27 except for CYP3A4*23 with a pI of 8.00. All 

values were an indication of a mildly alkaline protein which was the same as the 

wild type. The sequence and structure-based pI did not show significant differences; 

hence, they might not be a determining factor for the reported difference in 

enzymatic activity. The extinction coefficient depicts the interaction between the 

protein-protein and protein-ligand (Munjal, Shukla, and Singh, 2021). The 

quantitative finding of the extinction coefficient has the same value for all the 

variants; hence, it might not be a determinant of the observed varied enzymatic 

activity of the wild type and variants of CYP3A4 (Table A.0.1). The instability 

index for all selected mutants and variants was above 40. Verma, Singh, and Gaur 

(2016) reported that values higher than 40 are unstable. This study predicts a higher 

instability in CYP3A4*2 and CYP3A4*24 relative to the wild type. Interestingly, 

both variants also have higher RMSD values as reported in the superimposition of 

the variants’ protein structures. Therefore, this suggests that the instability index 

might be a factor in the reported difference in the clearance of the selected variant 

relative to the wild type. The property (instability index) shows a relationship with 

the reported relative clearance values. It was observed that variants with lower 

clearance relative to the wildtype have higher instability index (Table A.0.1). 

The Aliphatic index (which is the relative volume of protein that the aliphatic side 

chains occupied) (Kaur et al., 2020) was the same in all studied variants and the 

wild type (Table A.0.1). The aliphatic index is therefore not a determinant of the 

reported varied enzymatic activity in the selected CYP3A4 variants. The Gravy 

(Grand Average of Hydropathicity) is the sum of the relative hydrophobicity and 

hydrophilicity values of all the amino acids when divided by the total number of 

residues in each sequence for all variants (Nagai et al., 2016). According to Nagai 

et al. (2016), low values indicate that the interaction was more between water and 

the protein. The obtained value for each variant differed from the wild type and all 
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obtained values were lower (relative to the wildtype) except CYP3A4*2 (Table 

A.0.1). This could be a predictive property of the observed difference in the 

enzymatic activity (clearance) of the selected CYP3A variants. The Debye 

screening length is a protein property that depends on the salt concentration and the 

temperature of the settings (Piccinini et al., 2018). The values obtained in both the 

variants and the wildtype were the same, (Table A.0.1) (Section 3.6). The Debye 

screening length may not account for the reported varied rate of clearance of 

CYP3A4 selected variants. The frictional coefficient (an individual molecule's 

frictional drag coefficient quantified by the size and viscosity of the protein) 

(Erickson, 2009; Su et al., 2020), diffusion coefficient (diffusion coefficient of 

Stokes-Einstein, quantity is affected by temperature, protein size, and viscosity) 

(Poolman et al., 2021;  Bellotto et al., 2022), the radius of gyration (the root mean 

square distance of the molecule atoms from the protein's centre of mass scaling 

laws) (Ahmed, Crehuet, and Lindorff-Larsen, 2019; Pražnikar, 2021), and the 

hydrodynamic radius (the apparent size of the dynamic hydrated/solvated particle, 

calculated based on the macromolecule's diffusion characteristics) (Ahmed, 

Crehuet, and Lindorff-Larsen, 2020) were not indicative of the reported varied rate 

of enzymatic activity in the selected variants. The values obtained from these 

studied protein properties do not indicate a significant difference between the wild 

type and the selected variants (Table A.0.1).The sedimentation constant is the 

dimension of time in seconds, given in Svedbergs and it is used to characterise 

sedimentation processes such as centrifugation. The duration of one Svedberg is 

10-13 seconds, and the value is based on a constant buoyancy in water (Sétáló Jr, 

2013). The sedimentation constant did not present a significant difference in the 

CYP3A4 selected variants (Table A.0.1). It was predicted not to be a determinant 

property in the reported variation in the enzymatic property of the CYP3A4 

variants. Protein eccentricity is a shape descriptor that is determined by the ratio of 

the two main components (the perfect sphere and the linearized protein); the perfect 

sphere has a value of 1.0, while a linearized protein has a value of 0(Feng, Wang, 

and Wang, 2017). The data obtained for this property for the wild type was the same 

for the selected CYP3A4 variants and therefore the protein eccentricity is likely not 
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to be a determinant property of the varied rate of metabolism in the reported 

CYP3A4 variants. Accessible surface area (a protein's water-accessible surface 

area) (Konstantinidis et al., 2021), hydrophobic surface area (hydrophobic atoms 

of a protein with a water-accessible surface area.) and the hydrophilic surface area 

(hydrophilic atoms of a protein with the water-accessible surface area) have varied 

values for the wildtype and the selected CYP3A4 (Table A.0.1). These properties 

might therefore be predictors of the reported difference in enzymatic activities in 

selected variants of CYP3A4.The protein volume in the protein volume calculation 

was made with the addition of its solvation shell (Dahal and Schmit, 2018), and 

there was a noticeable significant difference in the property (protein volume) for 

the wild type and the selected variants of CYP3A4 (Table A.0.1). There is an 

estimation of the protein volume being a determining property of the observed 

variation in the rate of metabolism of the selected variants. Protein mobility was 

calculated according to Kim et al. (2006), and the value represents the protein 

migration velocity during an electrophoretic separation for a particular electric 

potential (J.-B. Kim et al., 2006; Webster et al., 2019). No significant difference 

was observed in the protein mobility values (Table A.0.1); hence it might not be a 

determinant property of the reported difference in relative clearance of the selected 

variants.The protein helix ratio is the percentage of residues assigned to a helical 

secondary structure (Lu et al., 2019). All the selected variants except for variant 

CYP3A4*2 (though not a significant difference) have the same value as the wild 

type (Table A.0.1), the protein helix is not likely to be a determining protein 

property of the varied enzymatic activity of the selected variants. 

Protein Net charge (the formal charge on the protein at an ascertained pH) (Lu etal., 

2019) might not be an indicative property of the observed varied rate of activity of 

the selected variants because the values of the variants were the same as the 

wildtype (Table A.0.1). Sum negative surface area, sum positive surface area, sum 

donor surface area, and sum acceptor surface area, all have values with significant 

differences between the wild type and the selected variants (Table A.0.1). It was 

estimated that they might be determinant properties of the difference observed in 

the relative clearance of the selected CYP3A4 variants. The sum of aggregation-
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prone regions (sum of AggScore) in proteins are short sequence stretches that 

aggregate in a protein and they can form a cross-steric hindrance (Buck, Kumar, 

and Singh, 2013; Sankar et al., 2018). Studies have shown that the sum of Aggscore 

often has more capacity to stabilise proteins than equal length segments from the 

same protein. The sum of Aggscore could be a determinant of the difference 

observed in the relative clearance of the selected variants of CYP3A4, its values 

significantly differ in the selected variants relative to the wild type (Table A.0.1) 

(Buck, Kumar, and Singh, 2013; Sankar et al., 2018). Protein Dipole Moment is 

based on the inconsistent distribution of positive and negative charges on the 

various atoms in a protein. The charges allocated by the forcefield involved were 

used in the computations (Tartaglia et al., 2004; Das et al., 2019). The protein 

dipole moment might account for the reported variation in the rate of metabolism 

as the values obtained for the selected CYP3A4 variants significantly differ from 

the wild type (Table A.0.1). Hydrophobicity Moment is a weighted moment 

computation in which amino acid residues are given quantities based on their 

intrinsic hydrophobicity (Kraml et al., 2019; Stone et al., 2019). There was a 

noticeable significant difference in the property (protein hydrophobicity moment) 

for the wild type and the selected variants of CYP3A4 (Table A.0.1). There is an 

estimation of the hydrophobicity moment being a determining property of the 

observed variation in the rate of metabolism of the selected variants. 

Zeta potential at debye length has an aggregation tendency that is indicated by a 

value of zero. Typical values vary from positive to negative values (Piccinini et al., 

2018; Foteini et al., 2019). The obtained value for each variant differs from the wild 

type and all obtained values were different from the wild type (Table A.0.1). This 

could be a predictive property of the observed difference in the enzymatic activity 

(clearance) of the selected CYP3A4 variants. Zeta Dipole Moment is the quantity 

of the dipole moment of the zeta potential. It is mainly measured by direct 

examination of the angular velocity that exists in rotational electrophoresis. It was 

also defined as the measurement of charge homogeneity at the surface of a solvated 

protein that can be utilised as an additional indicator of particle stability, 

particularly when the zeta potential is approximately 0 mV. Zeta Quadrupole 
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Moment is the quantity of quadrupole moments of the zeta potential (Long and 

Labute, 2010). No significant differences were observed in the Zeta dipole moment 

and the zeta quadrupole moment values (Table A.0.1); hence it might not be a 

determinant property of the reported difference in relative clearance of the selected 

variant. 

In summary, a total of thirty-five physicochemical and general protein properties 

were studied out of which seventeen parameters indicated significant differences 

relative to the wildtype (Table A.0.1). It was estimated that single nucleotide 

polymorphism might affect the studied seventeen parameters with noticeable 

differences relative to the wild type. The physicochemical and general protein 

properties of the selected CYP3A4 variants that differ significantly from that of the 

wild type were selected. The selected physicochemical and general protein 

properties with notable differences would be subjected to correlation analysis in 

section 4.10. The correlation analysis was to estimate the quantitative correlation 

between the obtained values of the protein physicochemical properties and the 

reported relative clearance of the selected variants. 

4.6 The prediction of the protein stability of the modelled protein 

structures of the selected variants upon mutation. 

The prediction of stability changes of the modelled protein structures of selected 

variants was done on I-Mutant 2.0, a tool used for stability prediction upon mutation 

in protein structures. It indicates whether the mutation of the protein is destabilised 

or stabilised (Sohaib, Smiline, and Vijayashree, 2019). The Relative Solvent 

Accessible Area (RSA) value was determined from the protein structure by dividing 

the accessible surface area value of the altered amino acid region by the free residue 

surface. 

The unfolding Gibbs free energy value of the wildtype was subtracted from the 

Gibbs free energy value of the mutant protein to get the free energy change value 

(DDG) (Kcal/mol) used to express all values. A negative symbol (-) denotes a 

reduction in its stability, whereas a positive sign (+) denotes increased stability. 
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Table 4.8: The stability index, energy change value and relative solvent area result 

Protein 

Models 
Position WT NEW Te

mp

erat

ure 

pH RSA Energy 

Change 

Value 

(DDG) 
(Kcal/m

ol) 

Stability 

CYP3A4

*2 
222 S P 25 7.0 41.0 -1.27 Decrease 

CYP3A4

*11 
363 T M 25 7.0 0.7 -0.07 Decrease 

CYP3A4

*23 
162 R W 25 7.0 59.4 -0.24 Decrease 

CYP3A4

*24 
200 Q H 25 7.0 93.5 -0.98 Decrease 

 

WT: Amino acid in the wild-type protein 

New: New substituted amino acid after mutation 

DDG: DG (New Protein Energy value) - DG (Wild Type protein energy value) in 

Kcal/mol 

           DDG<0: Decrease stability 

           DDG>0: Increase stability 

pH: -log[H+] 

RSA: Relative solvent accessible area 

The energy change values have significant quantities for all the selected variants 

(Table 4.8). Jayakanthan et al. (2010) in the analysis of CYP3A4 interaction with 

HIV-1 protease drugs reported that the CYP3A4 complex (CYP3A4 and the 

reacting molecule) with a higher free energy change value has a higher preference 

for metabolism (metabolic clearance). This report is consistent with findings in the 

energy change values for the selected CYP3A4 variants with significant values 

(Table 4.8). The energy change value might therefore account for the varied rate of 

metabolism of lidocaine with the selected CYP3A4 variants. 
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The result obtained (Table 4.8) from the DDG, therefore, gives a prediction that the 

stability of all selected mutated protein structures decreased from that of the wild 

type. This indicates that the single nucleotide polymorphism might affect the 

stability of the selected variants' protein structures. 

The relative solvent accessible area (RSA) values of the selected variants also 

indicated noticeable differences relative to the wildtype (Table 4.8). The solvent-

accessible surface area of substrates is a determinant of susceptibility to CYP3A4-

mediated metabolism (Singh et al., 2003). RSA might be a determinant property 

for the reported variation in the rate of metabolism of selected CYP3A4 variants. 

Further investigation was done in this study (section 4.10) to investigate if there is 

a link between the free energy change value and the functional differences (relative 

clearance) in the selected CYP3A4 variants. The likeable link would also be 

investigated for the RSA values. 

4.7 The solvation free energy of protein structures of variants 

The solvation energy was reported to be one of the important forces responsible for 

protein folding and interactions in water. It also guides the stability of the protein 

structure in water (Matubayasi, 2017; Kraml et al., 2019). The investigation was 

carried out to see the effect of SNP on the solvation free energy of the selected 

variants of CYP3A4. The result (Figure 4.26) indicates that the solvation energy 

value for the wild type differs from that of the selected variants. The highest 

solvation free energy was observed in the wildtype with a noticeable decrease in 

the solvation free energy in the other variants. Studies have shown that solvation 

energy affects the structural behaviour of drug molecules, this includes their ability 

to bind to target receptors (Dasari and Mallik, 2020; Li et al., 2020).  Li et al. 2020 

reported that a drug molecule interacts with a target receptor when both species 

desolvate and this change in free energy is included in the total binding constant. 

This implies that a decrease or increase in solvation energy might have an 

equivalent effect on the free binding energy. Findings have shown that the binding 

affinity (energy) of a drug to a receptor could affect the clearance of the drug 

(Eigenmann et al., 2017; Smith, Gagnon, and Waters, 2017; Wang et al., 2020;). 
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This indicates that the amino acid substitution in the variants might influence the 

solvation free energy and subsequently the binding energy.  

 

Figure 4.28: Graphical representation of the free energy of solvation of the protein 

structures of the variants and the wildtype. 

 There is an indication of higher free energy of solvation  in CYP3A4*1(wildtype) 

relative to the selected variants. 

4.8 The free binding energy of the CYP3A4 wild type and the selected 

CYP3A4 variants  

To investigate the effect of single nucleotide polymorphism (SNP) in the free 

binding energy of CYP3A4 variants-lidocaine complexes, the free binding energy 

of the wildtype/selected variants-lidocaine complexes was obtained from the 

docking procedure and the Molecular Mechanics-Generalised Born Surface Area 

(MM-GBSA) method (Mali and Chaudhari, 2018; Rajagopal, Arumugasamy, and 

Byran, 2019; Choudhary et al., 2020). It was observed that the calculated free 

binding energy from the MM/GBSA of the selected variants differs from the wild 

type (Table 4.9). This was also observed in the initial docking scores obtained for 

the variants and the wild type. However, the values of the free binding free energy 

obtained from the MM/GBSA calculation differ from the initial docking score.  This 

may be due to the solvation energy parameters incorporated in the MM/GBSA 

calculations (Choudhary et al., 2020). It may also be associated with additional 



http://etd.uwc.ac.za/

81 

 

energy components used in the calculation of the binding energy in MM GBSA (E. 

Wang et al., 2021). 

The varied binding energy in both methods (docking procedure and MMGBSA) for 

the wildtype and the selected variants may imply that the single nucleotide 

polymorphism may affect the free binding energy of the selected CYP3A4 variants-

lidocaine complexes.  Previous studies have shown that the binding affinity 

(energy) of a drug to a receptor could modulate the clearance of the implicating 

drug ( Eigenmann et al., 2017; Smith, Gagnon, and Waters, 2017; Wang et al., 

2020). Therefore, the free binding energy might be a determining parameter in the 

reported variation in the relative clearance of the selected CYP3A4 variants. 

The result of the protein-ligand interaction indicated varied positions and numbers 

of hydrophobic bonds in the selected CYP3A4 variants, relative to the wild type 

(Fig 4.28-4.32). Although all the selected CYP3A4 variants had the same number 

of hydrogen bonds as the wild type (one hydrogen bond each), it was observed that 

the positions of the hydrogen bond interaction for variants CYP3A4*23 and 

CYP3A4*24 differ from the wildtype (Table 4.9). It was estimated that the single 

nucleotide polymorphism is likely to influence the protein-ligand interaction and 

subsequently, the binding energy of the implicating enzymes. 

The results of the binding free energy, hydrogen bonding, lipophilic energy, and the 

pi-pi packing correction are shown in Table 4.10. The calculated energy 

components (hydrogen, lipophilic, van der Waals, and pi-pi energy) of the selected 

CYP3A4 variants differ significantly from the wild type. Yao et al. (2018) reported 

that hydrogen bonding with other hydrophobic energies can significantly increase 

the binding affinity and selectivity of a receptor. It has also been reported that the 

binding affinity (energy) of a drug to a receptor could modulate the clearance of the 

implicating drug (Eigenmann et al., 2017; Smith, Gagnon, and Waters, 2017; Wang 

et al., 2020;). In addition, previous findings have established that protein-ligand 

interaction energies can be used to estimate binding potency trends (Kohut et al., 

2018; Thapa et al., 2018; Thapa and Raghavachari, 2019;). Therefore, the 
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differences in the free binding energy and the calculated component energies could 

be determinant properties of the reported variation in the metabolic rate of the 

selected CYP3A4 variants. The possible relationship between the calculated energy 

components and the reported variation in the CYP3A4 rate of metabolism would be 

investigated in section (4.10).  

 

 

 

 

Figure 4.29: 2D structure of lidocaine ligand. Molecular formula: C14H22N2O, Molecular 

weight: 234.34g/mol, IUPAC name: 2-(diethylamino)-N-(2,6-dimethylphenyl)acetamide, 

Canonical SMILES: CCN(CC)CC(=O)NC1=C(C=CC=C1C)C), International Chemical 

Identifier (InChI): InChI=1S/C14H22N2O/c1-5-16(6-2)10-13(17)15-14-11(3)8-7-9-

12(14)4/h7-9H,5-6,10H2,1-4H3,(H,15,17) 

https://pubchem.ncbi.nlm.nih.gov/#query=C14H22N2O
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Table 4.9: The docking score and bond interactions of CYP3A4 wildtype and the selected variants with lidocaine ligand. 

Wild 

type/Variants 

Hydrophobic bond  Hydrogen 

bonds 

interacting with 

amino acid 

Docking 

score(kc

al/mol) 

Total 

binding 

free 

energy 

Hydrogen-

bonding 

correction 

(H-bond) 

Lipophilic 

energy 

(Lipo) 

Van der 

Waals 

energy 

(vdW) 

Pi-pi 

packing 

correction 

CYP3A4*1 ALA305, PHE304, ILE301, 

ILE300, ILE369, ILE120, 

PHE108, LEU210, LEU211, 

PHE241, MET114 

 SER119 -5.916 -5.90 -0.39 -23.25 -29.16 -0.81 

CYP3A4*2 PHE241, LEU210, LEU211, 

PHE304, ALA305, LEU482, 

ILE301, ILE300, MET114, 

ILE120, PHE108 

 SER 119 -5.589 -13.57 -0.51 -22.41 -31.08 -1.36 

CYP3A4*11 PHE241, MET114, LEU211, 

ILE21O, ILE300, ILE301, 

ILE120, PHE304, ALA30, 

ILE369, ALA370 

 SER 119 -4.595 -13.36 -0.38 -23.25 -29.12 -2.02 

CYP3A4*23 LEU373, ALA370, PHE57, 

PHE108, TYR53, ILE50, 

PHE215 

 GLU 374 -3.374 -35.53 -1.36 -16.04 -32.35 -3.14 

CYP3A4*24 LEU462, LEU483, ALA30, 

PHE304, ILE369, ALA370, 

MET371, PHE57, LEU482, 

LEU483, GLN484. 

ILE369 -4.667 -33.39 -0.04 -14.90 -31.96 -4.22 
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Figure 4.30: Protein-ligand interaction of lidocaine and CYP3A4*1(wildtype). 

It shows the 2D structure of the ligand(lidocaine), the hydrophobic bond interacting 

residues (green), hydrogen bonds (arrow-headed purple line)  

 

 

Figure 4.31: Protein-ligand interaction of lidocaine and CYP3A4*2. 
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 It shows the 2D structure of the ligand(lidocaine), the hydrophobic bond interacting 

residues (green), hydrogen bonds (arrow-headed purple line)  

 

 

Figure 4.32: Protein-ligand interaction of lidocaine and CYP3A4*11. 

 It shows the 2D structure of the ligand(lidocaine), the hydrophobic bond interacting 

residues (green), hydrogen bonds (arrow-headed purple lines)  

 

 

Figure 4.33: Protein-ligand interaction of lidocaine and CYP3A4*23. 
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It shows the 2D structure of the ligand (lidocaine), the hydrophobic bond interacting 

residues (green), and hydrogen bonds (arrow-headed purple lines).  

 

 

Figure 4.34: Protein-ligand interaction of lidocaine and CYP3A4*24. 

 It shows the 2D structure of the ligand(lidocaine), the hydrophobic bond interacting 

residues (green), hydrogen bonds (arrow-headed purple line)  

The binding free energies of the CYP3A4 variants/wild-type protein structures and 

the lidocaine ligand were also calculated with the Molecular Mechanics-

Generalised Born Surface Area (MM-GBSA) method (Mali and Chaudhari, 2018; 

Rajagopal, Arumugasamy, and Byran, 2019; Choudhary et al., 2020). MM-GBSA 

has been described as an accurate and efficient computational approach to 

calculating protein-ligand binding free energies (Mali and Chaudhari, 2018; 

Arumugasamy, and Byran, 2019). The accuracy has been ascribed to its ability to 

calculate the solvation energy parameters that analyse the solute and solvent 

interactions (Wang et al., 2021). The results of the binding free energy, hydrogen 

bonding, lipophilic energy and the pi-pi packing correction are shown in Table 4.10.  
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Table 4.10: The calculated component interacting energies result in Kcal/mol. 

 The table contains the component interacting energies (hydrogen bond, lipophilic energy, 

van der Waals energy and pi-pi packing) of the CYP3A4 wildtype/selected variants- 

lidocaine complexes. 

CYP3A4 

enzymes 

Total 

binding 

free 

energy 

Hydrogen-

bonding 

correction 

(H-bond) 

Lipophil

ic energy 

(Lipo) 

Van der 

Waals 

energy(vd

W) 

Pi-pi 

packing 

correction 

Wildtype -5.90 -0.39 -23.25 -29.16 -0.81 

CYP3A4*2 -13.57 -0.51 -22.41 -31.08 -1.36 

CYP3A4*11 -13.36 -0.38 -23.25 -29.12 -2.02 

CYP3A4*23 -35.53 -1.36 -16.04 -32.35 -3.14 

CYP3A4*24 -33.39 -0.04 -14.90 -31.96 -4.22 

 

It was observed that the calculated free binding energy from the MM/GBSA of the 

selected variants differs from the wild type (Table 4.10). This was also observed in 

the initial docking scores obtained for the variants and the wild type, however, the 

values of the free binding free energy obtained from the MM/GBSA calculation 

differ from the initial docking score.  This may be due to the solvation energy 

parameters incorporated in the MM/GBSA calculations (Choudhary et al., 2020). 

It may also be associated with additional energy components used in the calculation 

of the binding energy in MM GBSA (E. Wang et al., 2021). 

The calculated energy components (hydrogen, lipophilic, van der Waals and pi-pi 

energy) of the selected CYP3A4 variants differ significantly from the wild type. 

Yao et al. (2018) reported that hydrogen bonding with other hydrophobic energies 

can significantly increase the binding affinity and selectivity of a receptor. It has 

also been reported that the binding affinity (energy) of a drug to a receptor could 
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modulate the clearance of the implicating drug (Eigenmann et al., 2017; Smith, 

Gagnon, and Waters, 2017; Wang et al., 2020). In addition, previous findings have 

established that protein-ligand interaction energies can be used to estimate binding 

potency trends (Kohut et al., 2018; Thapa et al., 2018; Thapa and Raghavachari, 

2019). Therefore, the differences in the free binding energy and the calculated 

component energies could be determinant properties of the reported variation in the 

metabolic rate of the selected CYP3A4 variants. The possible relationship between 

the calculated energy components and the reported variation in the CYP3A4 rate of 

metabolism would be investigated in section (4.10).  

4.9 Molecular dynamics simulations studies of the protein 

structures of the wild type and the selected variants. 

According to previous reports, mutations may produce changes in interaction 

patterns or conformations with notable effects on the dynamic properties of the 

mutated protein structures which could affect their enzymatic activity (Tyukhtenko 

et al., 2018; Rodrigues, Pires, and Ascher, 2018). The effects of single nucleotide 

polymorphism (SNPs) on the dynamic properties of the mutated protein structures 

were investigated with molecular dynamics simulation in which the root mean 

square deviation (RMSD), root mean square fluctuation (RMSF), and the radius of 

gyration (Rg) of the wild type and the selected variants were studied. The solvent-

accessible surface area (SASA) and the secondary structure elements (SSE) of the 

variants were also investigated in this section. 

4.9.1 The root mean square deviation of the wild type and the selected 

variants of CYP3A4 

The standard measurement of the structural average distance that exists between 

coordinates of atoms (mostly backbones) of superimposed protein was achieved 

with root mean square deviation (RMSD). RMSD helps to determine the 

conformational change in the protein backbone (Salmaso and Moro, 2018; Lazar et 

al., 2020). The trajectory evaluation of the RMSD of the backbone was done for 

100ns, and the average and standard deviation of the RMSD were calculated from 

the data obtained from the simulation (Table 4.11).   
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Table 4.11: Average RMSD of the wild type and the selected mutants of CYP3A4 

Protein Average RMSD(Å) 

CYP3A4*1 1.57±0.137 

CYP3A4*2 1.71±0.147 

CYP3A4*11 2.02±0.247 

CYP3A4*23 2.19±0.292 

CYP3A4*24 2.00±0.162 

 

As shown in the result obtained in Table 4.11 the wild type has the least value of 

overall mean RMSD of 1.57 with a statistically significant difference with all the 

selected variants except variant 2. This was an indication that the wild type has  a 

higher  stability in comparison with all the selected variants except variant 2. The 

result obtained shows a notable change in the RMSD of all variants relative to the 

wild type; there is a higher RMSD value for all variants, an indication of decreased 

stability as shown in Figure 4.33.  
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Figure 4.35: The comparative RMSD plot of the wildtype and the selected variants. 

The wild type(red), CYP3A4*2 (green), CYP3A4*11(black), CYP3A4*23 (yellow), and 

CYP3A4*24 (purple), indicating a higher RMSD in the selected CYP3A4 variants 

This might imply that the substituted amino acid at the position of mutation 

significantly influences the stability of the protein structures of all variants except 

variant 2. This agrees with the result obtained from the initial prediction of stability 

in the method reported previously in section 4.6.1 of this study. The comparative 

plots of each selected variant against the wild type (Fig 4.33) indicated that 

CYP3A4*11 has the highest overall mean RMSD variation value, it was predicted 

to be the least stable of the selected CYP3A4 variants. However, all selected 

CYP3A4 variants and wild type reached an equilibrium between 800 to 1000 

frames. 

The molecular dynamics analysis of the protein-ligand complexes and protein-

ligand interactions of the selected variants and wild type were done to study the 

differences in the CYP3A4 complex structures and their interactions with lidocaine. 

It was observed from the analysis that both the wildtype and the selected CYP 3A4 
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variants protein structures (unbounded) have higher stability than the protein-ligand 

complex (Figure 4.34). However, from the plots (Fig 4:34), it was observed that the 

difference between the RMSD values for the CYP3A4 protein structures 

(unbounded) and protein-ligand complex is larger in the selected variants than in 

the wild type (at the 400 to 1000frames end of simulation equilibration) except in 

CYP3A4*24. This might imply that the lidocaine ligand was more aligned to the 

protein receptor in the wildtype than the selected CYP3A4 variants except in 

CYP3A4*24. This further supports the estimation that the single nucleotide 

polymorphism might affect the stability of the protein-lidocaine complex of the 

selected variants. However, a correlation study would be done to investigate any 

likeable link between the average RMSD of the complexes and the reported 

differences in the rate of metabolism in section 4.10. 

 

Figure 4.36: The comparative plots of the CYP3A4 protein-lidocaine complex (red) and 

the free protein structures (black). 

The difference between the RMSD values for the CYP3A4 protein structures 

(unbounded) and protein-ligand complex is larger in the selected variants than in the 

wildtype (at the 400 to 1000frames end of simulation equilibration) except in 
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CYP3A4*24.  (A-wildtype, B-CYP3A4*2, C-CYP3A4*11, D-CYP3A4*23, E-

CYP3A4*24). 

4.9.2 The analysis of the root mean square fluctuation of the selected 

variants and the wild type 

The RMSF of the protein backbone was calculated to determine the effect of the 

mutations on the structural flexibility of the protein structures of the selected 

CYP3A4 variants when compared to the wild type (Salo-Ahen et al., 2021). The 

result obtained as shown in Table 4.12 indicated that the wild type has the lowest 

value for the overall average RMSF, however, the difference between the RMSF 

value for the variants and the wildtype was not statistically significant, therefore the 

mutation might not have affected the rigidity of the protein structure's interaction 

with ligands. 

Table 4.12: The average root mean square fluctuation of the wild type and the selected 

variants of CYP3A4 

Protein Average 

RMSF(Å) 

CYP3A4*1 0.89±0.583 

CYP3A4*2 0.94±0.454 

CYP3A4*11 0.93±0.539 

CYP3A4*23 1.01±0.618 

CYP3A4*24 0.95±0.442 

 

From the plots of the RMSF against the residue index (Figure 4.35), each of the 

variants has more numbers of flexible regions than the wild type. Although there 

was an observed fluctuation in residue 380 to 400 in the wildtype. Variant 24 has 

the highest number of regions as seen in the RMSF value and the plot. The regions 

of fluctuation in two of the variants (CYP3A4*2 and CYP3A4*23) fall between the 

residue 209-217 and 237-242, which were the core active regions in the CYP3A4 

structures (Yano et al., 2004). The mutation at position 222 from serine to proline 

in CYP3A4*2 falls within the reported core active regions. This implies that the 
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mutation could affect the flexibility of the active regions of the mutant’s protein 

structures of CYP3A4*2 and CYP3A4*23. 

 

Figure 4.37: The comparative RMSF plot of the wildtype and the selected variants. 

The wild type(red) and CYP3A4*2 (green), CYP3A4*11(black), CYP3A4*23 (yellow), 

and CYP3A4*24 (purple), indicate higher flexibility in the selected CYP3A4 variants 

There were observed fluctuations between residue 215 to 220 in CYP3A4*24(Fig. 

4.35) which was the position of the Phenylalanine cluster in the CYP3A4 that was 

responsible for the oxidative allosteric regulation pathway (Davydov et al., 2012). 

Although the reported substitution in CYP3A4*24 was said to occur at position 

200, however its proximity to the phenylalanine cluster region might be responsible 

for the observed fluctuations. This increased flexibility may affect the allosteric 

regulation of the implicated protein structure. All variants appear to be less rigid 

than the wild type, with increased regions of fluctuation when compared with the 

wild type as shown in Figures 4.35. 
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4.9.3 Analysis of the solvent-accessible surface area (SASA) of the 

selected variants and the wild type 

The solvent-accessible surface area (SASA) of a protein is the region of the protein 

structures that can be in contact with water molecules, that is the hydrophilic regions 

(Durham et al., 2009; Ausaf et al., 2014). The change in solvent accessible surface 

area of the wild type and variants was calculated to study the main hydrophilic 

domain. As shown in Table 4.13, the result for the average SASA for both the 

variants and the wild-type, there was a significant decrease in the average SASA 

for all selected variants (though with varying degrees of decrease) when compared 

with the wild-type. 

Table 4.13: The average solvent accessible surface area of the wild type (highest value) 

and the selected mutants of CYP3A4 

Protein Average SASA (Å2) 

CYP3A4*1 105.06±16.069 

CYP3A4*2 92.37±16.377 

CYP3A4*11 87.94±12.164 

CYP3A4*23 96.67±19.863 

CYP3A4*24 88.43±14.175 
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Figure 4.38 The comparative SASA plot of the wild type (red) and the selected variants. 

Indicating a higher SASA in the wild type and a lower SASA in  the other variants, 

CYP3A4*2 (green), CYP3A4*11 (black), CYP3A4*23 (yellow), CYP3A4*24 (purple) 

4.9.4 The analysis of the radius of gyration (Rg) of the selected variants 

and the wild type. 

The radius of gyration (Rg) is a measure of the extent of compactness of a protein 

structure (Sharn, Singh, and Singh, 2021). To investigate the effect of mutation on 

the backbone of the protein structure compactness of selected variants, the average 

Rg for all variants was calculated and compared with the Rg of the wild type. There 

was a minimal increment in the values obtained for variants CYP3A4*2 and 

CYP3A4*23 while a minimal decrease was observed in CYP3A4*11 and 

CYP3A4*24 (Table 4.14). It was predicted that the mutation of selected variants 

may not significantly affect the compactness of interacting protein structures. 

Table 4.14: The radius of gyration of the selected CYP3A4 variants and the wild type 

Protein Radius of Gyration(Å) 

CYP3A4*1 3.30 

CYP3A4*2 3.35 

CYP3A4*11 3.11 

CYP3A4*23 3.32 

CYP3A4*24 3.20 

 

4.9.5 The analysis of protein secondary structure of the selected 

variants and the wild type  

The protein secondary structure elements (SSE) which include the alpha helices and 

the beta strands were monitored in the simulation process. The total summary of 

the SSE distribution in the protein structure for the selected variants and wild type 

trajectory frames throughout the simulation process is shown in Table 4.15. 
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Table 4.15: The total summary of the SSE distribution in the protein structure of the 

selected variants and the wild type. CYP3A4 wild type (CYP3A4*1) has the highest 

percentage helix. 

Protein Percentage 

Helix 

Percentage 

Strand 

Percentage Total Secondary 

Structure Element 

CYP3A4*1 41.92 6.43 48.35 

CYP3A4*2 41.38 7.51 48.88 

CYP3A4*11 41.64 7.04 48.68 

CYP3A4*23 40.89 6.82 47.71 

CYP3A4*24 41.34 7.73 49.07 

The result shows that the wildtype has the highest percentage of the helix, while the 

mutated protein structures have a reduced percentage of the helix. It has been 

reported structurally that the high percentage of alpha-helices present in the 

catalytic regions leads to significant enzyme flexibility and more substrate egress 

channels (Fishelovitch et al., 2009). This suggests that the mutation affects the SSE, 

specifically the percentage helix, hence, having an equivalent effect on the 

metabolic activity of the protein structures of variants. 

4.9.6 The analysis of Hydrogen bond interactions between the 

ligand(lidocaine) and  the selected CYP3A4 variants and the wild 

type  

The protein-ligand interactions analysis indicated that CYP3A4*11 and 

CYP3A4*23 have a higher hydrogen bond interaction relative to the wildtype 

(Figure 4.37). More hydrophobic interactions were also observed in the wildtype 

and CYP3A4*2. The observed differences in hydrogen bonding interactions in the 

selected CYP3A4 variants relative to the wild type might account for the reported 

variations in the relative clearance. This was consistent with previous reports as 

hydrogen bonds in CYP3A4 interactions have been reported to play an important 

function in ligand binding (Mukhtar, Sajid Kiani, and Jabeen 2017; Yao et al.,2018) 



http://etd.uwc.ac.za/

97 

 

also reported that hydrogen bonding with other hydrophobic energies can 

significantly increase the binding affinity and selectivity to a receptor. 

 

 

Figure 4.39: The comparative plots of the CYP3A4 protein-ligand interaction. (A - 

wildtype, B - CYP3A4*2, C - CYP3A4*11, D - CYP3A4*23, E - CYP3A4*24) with a 

higher hydrogen bond interaction in CYP3A4*11 and CYP3A4*23 have a higher hydrogen 

bond interaction relative to the wildtype 

 4.10 The correlation plot result and discussion 

The complete result obtained from the characterised parameters with noticeable 

differences in the selected variants was summarised in Table 4.16. A correlation 

graph was plotted for each parameter as shown in Appendix B (Figure B.0.1 to 

B.0.34) to investigate if there was a quantifiable correlation between the reported 

functional difference (relative clearance) and the differences observed in the data 

obtained from the characterization investigation. It has been reported in previous 

studies that the Pearson correlation coefficient gives an indication of the strength of 

correlation as reported in previous studies (Stefaniu, Rasul, and Hussain, 2020; 

Oselusi, Egieyeh, and Christoffels, 2021). 
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Table 4.16: The summary data of characterised properties of the wild type and the 

selected variants with a significant difference. 

Characterised 

properties of 

wildtype and 

selected variants 

with a noticeable 

difference 

Wildtype Variant 2 Variant 11 Variant 23 Variant 24 

  

Reported 

relative 

clearance* 

100 27.93 213.61 206.96 30.29 

Molecular 

Weight (Da) 

57343.18 57353.22 57373.27 57373.20 57352.19 

Gravy 0.040 0.042 0.035 0.033 0.039 

RMSD(Å) N/A 0.015 0.033 0.020 0.029 

Energy change 

value Kcal/mol) 

N/A -0.07 0.24 0.98 -1.27 

Solvation energy 

(Kcal/mol) 

-5629.82 -5426.77 -5360.77 -5381.87 -5373.80 

Docking score 

(Kcal/mol) 

-5.916 -5.589 -4.4595 -3.374 -4.4667 

Relative solvent 

accessible area 

(Å2) 

N/A 41.0 0.7 0.24 0.98 

Average RMSD 

(complex 

structures) (Å) 

4.93 3.66 4.97 3.044 1.41 

Molecular 

lipophilicity 

potential 

minimum 

-28.39 -28.46 -28.53 -27.44 -28.39 
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Molecular 

lipophilicity 

potential 

maximum 

23.93 23.83 24.09 23.95 23.93 

Molecular 

lipophilicity 

potential mean 

-3.45 -3.43 -3.45 -3.37 -3.44 

Coulombic 

electrostatic 

potential 

minimum 

kcal/(mol·e) 

–11.21 -11.22 -13.88 -11.24 -15.41 

Coulombic 

electrostatic 

potential mean 

kcal/(mol·e) 

0.38 0.39 0.37 0.18 0.37 

Coulombic 

electrostatic 

potential 

maximum 

kcal/(mol·e) 

15.70 15.61 15.68 15.58 15.69 

Average 

RMSF(Å) for 

the protein 

backbone 

0.89 0.94 0.93 1.01 1.02 

Average solvent-

accessible 

surface area (Å2) 

105.06 92.37 255.59 258.41 88.43 

Radius of 

Gyration(Å) 

3.30 3.35 3.11 3.32 3.20 

Percentage Helix 

(%) 

41.92 41.38 41.64 40.89 41.34 

Percentage 

Strand (%) 

6.43 7.51 7.04 6.82 7.73 

Percentage Total 

SSE (%) 

48.35 48.88 48.68 47.71 49.07 
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Accessible 

surface Area 

 (Water probe) 

*(Å2) 

20369.7 20407.5 20375.3 20419.1 20353.5 

Hydrophobic 

Surface 

Area*(Å2) 

11941.1 11973.5 11925.1 12037.4 11944.4 

Hydrophilic 

surface 

Area*(Å2) 

7448.2 7448.2 74616.6 7433.2 7386.7 

Protein volume 
Å3 
 

50087.6 50033.6 50083.6 50113.4 50098.0 

Protein 

mobility(cm2/V)

  

4.3 4.4 4.3 3.5 4.4 

Protein Net 

charge 

5.56 5.63 5.57 4.60 5.66 

Sum positive 

surface 

area*(Å2) 

12080.30 12090.82 12095.13 12254.23 12337.73 

Sum negative 

surface 

area*(Å2) 

6996.98 6860.53 6858.70 6591.23 6606.73 

Sum donor 

surface 

area*(Å2) 

3379.18 3296.91 3313.10 3134.33 3146.54 

Sum acceptor 

surface 

area*(Å2) 

4015.71 4048.43 4062.33 3973.62 4001.24 

Protein Charge 

at Debye Length 

1.43 1.45 1.44 1.18 1.46 

Sum of 

Aggregation 

Score 

630.13 621.64 611.90 687.59 687.17 
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Hydrogen-

bonding 

correction 

(Kcal/mol) 

-0.39 

  

-0.51 -0.38 -1.36 -0.04 

Lipophilic 

energy 

(Kcal/mol) 

-23.25 

  

-22.41 -23.25 -16.04 -14.90 

Van der Waals 

energy 

(Kcal/mol) 

-29.16 

  

-31.08 -29.12 -32.35 -31.96 

Pi-pi packing 

correction 

-0.81 

- 

-1.36 -2.02 -3.14 -4.22 

Hydrophobicity 

Moment 

2989.8 2070.2 2069.9 2038.0 2089.3 

Zeta potential at 

Debye 

Length*(mV) 

7.48 7.58 7.49 7.62 7.62 

Protein Dipole 

Moment 

(Debye) 

1056.67 1039.69 1056.96 1152.37 1048.99 

Debye screening 

length 

Κ-1 

1056.67 1056.67 1056.67 1056.67 1056.67 

*-reported relative clearance value by Fang et al. (2017). 

Note: Check Figure B.0.1 to B.0.33 for the plotted graphs of relative clearance 

against the studied parameters (with a noticeable difference) of the selected 

variants. 

 

Surprisingly, more than sixty-five percent (forty out of the total sixty-one) of the 

studied and characterised parameters of the CYP3A4 selected variants showed 

noticeable differences relative to the wild type (Table 4.16). All studied parameters 

(physicochemical, dynamics, and structural) with noticeable differences between 

the wildtype and the selected CYP3A4 variants were subjected to a correlation 

study. The correlation study was done to investigate the relationship between the 
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reported variation in the rate of metabolism (relative clearance) of the selected 

CYP3A4 variants and the structural, physicochemical, and dynamic properties of 

the selected variants.  Twenty-one of the characterised properties (structural, 

physicochemical, and dynamics) with noticeable differences indicated a positive 

and negative correlation (Table 4.17) with the reported variation in the relative 

clearance of the CYP3A4 selected variants. This was observed in the Pearson’s 

correlation coefficients obtained from the plotted graphs as shown in Appendix B 

(Figure B.0.1 to B.0.33). 

Table 4.17: The correlation interpretation of characterised parameters (physicochemical, 

dynamic, and structural properties) with the reported difference in the rate of metabolism 

(relative clearance) of the wild type and the selected variants of CYP3A4 

Properties Pearson 

Correlation 

factor(r) 

Interpretation 

Molecular weight 

(Da) 

0.816 Strong positive linear correlation 

Gravy -0.819 Strong negative linear correlation 

Root mean square 

Deviation(Å) 

 

-0.945 Strong negative linear correlation 

Free energy change 

value (DDG). 

(Kcal/mol) 

0.818 Strong positive linear correlation 

Average RMSD 

(complex structures) 

(Å) 

0.453 Good positive linear correlation 

Solvation Energy 

(Kcal/mol) 

0.226 Very weak correlation 

Docking Score 

(Binding energy) 

(Kcal/mol) 

0.623 Strong positive linear correlation 

RMSF(Å) 0.141 Very weak correlation 

The radius of 

Gyration(Å) 

-0.349  Very weak correlation 

Percentage Helix (%) 

 

-0.175  Very weak correlation 

Percentage Strand 

(%) 

-0.581 Good negative correlation 

Percentage Total 

Secondary structure 

elements (%) 

-0.690 Strong negative linear correlation 
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Relative solvent 

accessible area (Å2) 

0.420 Good correlation value 

Average solvent-

accessible surface 

area(Å2)  

0.966 Strong positive linear correlation 

Radius of Gyration 

(Å) 

-0.349  Very weak correlation 

Accessible surface 

area (Water probe) Å2 

0.311 Weak correlation value 

Hydrophobic Surface 

Area(Å2) 

 

0.252 Weak correlation value 

Hydrophilic surface 

Area  (Å2) 

 

0.601 Strong positive linear correlation 

Protein volume 0.533 Good positive linear correlation 

Protein 

mobility(cm2/Vs) 

 -0.647 Strong negative linear correlation 

Protein Net charge -0.616  Strong negative correlation value 

Sum positive surface 

area (Å2) 

-0.13 Weak correlation value 

Sum negative surface 

area (Å2) 

0.081 Very weak correlation 

Sum donor surface 

area (Å2) 

0.043 Very weak correlation 

Sum acceptor surface 

area (Å2) 

-0.071 Very weak correlation 

Protein Charge at 

Debye Length 

-0.603 Strong negative linear correlation 

Sum of Aggregation 

Score 

0.049 Very weak correlation 

Protein Dipole 

Moment (Debye) 

0.65 Strong positive linear correlation 

Molecular 

lipophilicity potential 

minimum (MLP) 

0.48 Good positive linear correlation 

Molecular 

lipophilicity potential 

mean (MLP) 

0.40  Good positive linear correlation 

Molecular 

lipophilicity potential 

maximum (MLP) 

0.78 Strong positive linear correlation 

Coulombic 

electrostatic potential 

minimum 

kcal/(mol·e)  

0.15 Weak correlation value 

Coulombic 

electrostatic potential 

mean kcal/(mol·e)  

-0.60 Strong negative linear correlation 
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Coulombic 

electrostatic potential 

maximum 

kcal/(mol·e)  

0.15 Weak correlation value 

Hydrophobicity 

Moment 

-0.126  Weak correlation value 

Hydrogen bond 

(Kcal/mol) 

 

-0.60 Strong negative linear correlation 

Lipophilic energy 

(Kcal/mol) 

 

0.085  Weak correlation value 

Van der Waals 

energy (Kcal/mol) 

0.218 Weak correlation value 

Pi-Pi energy 

(Kcal/mol) 

0.016 Weak correlation value 

Zeta potential at 

Debye Length (mV) 

 

-0.28 Weak correlation value 

Note: Check Figure B.0.1 to B.0.33 for the plotted graphs with the Pearson 

correlation values. 

 

From the correlation plots analysis, as shown in Appendix B (Figure B.0.1 to 

B.0.33), it was predicted that twelve of the studied parameters with noticeable 

variations have a good or strong linear positive correlation (Pearson coefficient ≥4). 

This implies that the parameters with strong or good positive correlation values are 

directly correlated to the differences observed in the relative clearance of the 

selected variants in the metabolism of lidocaine. Nine characterised parameters 

have a good or strong negative Pearson correlation coefficient (Pearson coefficient 

≤-4). This was an indication that they are inversely correlated to the reported 

differences in the relative clearance of the selected variants. Other characterised 

parameters showed weak or non-significant correlations with the obtained Pearson 

correlation coefficient values. All 21 of the total characterised parameters with 

noticeable differences have a strong correlation (positive and negative correlations) 

with the reported difference in intrinsic clearance of the variants with lidocaine 

ligand (Table 4.17). 
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Minimum lipophilic potential (MLP) (minimum (0.48), maximum (0.78), and mean 

(0.40) values) all have a good positive correlation. This gives a prediction that the 

higher the MLP the greater the rate of metabolism(clearance) and vice versa, this 

finding was consistent with the report given by Yusra Sajid Kiani and Ishrat Jabeen 

(2020). It was reported that the metabolic stability and intrinsic clearance of 

CYP450 substrates were connected to their lipophilicity (log P or log D). It was 

stated that the higher the log D value of a substrate, the more eagerly it binds to a 

certain CYP450 enzyme, and the greater it shows more intrinsic clearance (Kiani 

and Jabeen, 2020). 

A strong linear positive correlation (0.642) was observed between the molecular 

weight and the relative clearance of the selected CYP3A4 variants. Asides from the 

reports on the effect of varied molecular weight of ligands that react with protein 

receptors (El-Sayed et al., 2016; Zhang et al., 2021), works of literature haven’t 

given a relevant report on the effect of varied molecular weight (due to mutation) 

of CY3A4 protein receptors (enzymes). Therefore, this prediction would require 

further investigation to probe into the effect of the varied molecular weight of 

CYP3A4 variants on the rate of metabolism and to validate the relationship 

estimated in this study. 

The docking score (free binding energy) and the free energy change value(kcal/mol) 

have a strong linear positive correlation (0.69 and 0.94), this implies that an increase 

or decrease in the value of the free binding energy/free energy change value could 

lead to an equivalent increase or decrease in the enzymatic activity of the selected 

CYP3A4 enzymes. This finding was consistent with previous reports (Jayakanthan 

et al., 2010; Saba and Seal 2018). For example, Jayakanthan et al. (2010) in the 

analysis of CYP3A4 interaction with certain drug molecules reported that the 

CYP3A4 complex (CYP3A4 and the reacting molecule) with higher free binding 

energy and free energy change value have a higher preference for metabolism 

(metabolic clearance). The finding was further supported with an in vitro study 

reported in the study. 
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The average solvent-accessible surface area (SASA) is a measure of how much 

solvent molecules are exposed to enzymes. It was estimated in this study that a 

strong positive linear relationship (0.8) exists between SASA and the reported 

variation in the rate of metabolism of the selected CYP3A4 variants, relative to the 

wildtype in lidocaine metabolism. The linear correlation indicates that an increase 

or decrease in the SASA results in the same enzymatic activity of the selected 

CYP3A4 variants with lidocaine. This was consistent with the previous study, as 

reports have shown that the structural integrity of the CYP3A4 structure can be 

altered with a decrease in SASA. However, an increase in SASA maintains the 

structural stability (Tang et al. 2021; Kehinde et al., 2022;). The report also has it 

that stability enhances the rate of metabolism (Munjal, Shukla, and Singh 2021), 

therefore the finding on the direct positive effect of SASA on the rate of metabolism 

of the selected variants in lidocaine metabolism was consistent with these reports.  

The root mean square deviation (RMSD) for the protein-ligand complex has a good 

positive correlation (0.453) with the reported rate of metabolism of the selected 

variants of CYP3A4. This implies that a higher RMSD might produce a 

proportional higher relative clearance of the variants. The relative solvent 

accessible area did not indicate any significant relationship with the rate of 

metabolism in the selected variants. This also applies to the radius of gyration. The 

hydrophobic surface area indicated a weak correlation value (0.252) with the rate 

of metabolism (clearance) in the selected CYP3A4 variants. A strong positive linear 

correlation (0.601) was observed between the hydrophilic surface area and the 

reported rate of metabolism of the selected CYP3A4 variants. This agrees with 

previous reports by Cai et al. (2021) and Drögemöller et al. (2013). It was reported 

that hydrophilicity and hydrophobicity might interfere with the protein properties 

and subsequently, the enzymatic activity of the implicating variants. 

The grand average of hydropathicity (Gravy) has a strong negative correlation of -

0.79. This implies that a change in Gravy might cause an opposite effect in the rate 

of metabolism of the selected CYP3A4. Free solvation energy was estimated to 

have a very weak or insignificant correlation value of 0.0046.  
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The root mean square fluctuation (RMSF) was used to investigate the effect of 

mutation on the structural flexibility of the protein structures of the selected 

CYP3A4 variants. The correlation study between the RMSF and reported variation 

(relative to the wild type) in the rate of metabolism (clearance) of the selected 

variants was estimated to be very weak or insignificant (0.14).  

The percentage of total secondary structure elements (SSE) indicated a strong 

negative correlation (-0.69) with the varied rate of metabolism in the selected 

CYP3A4 variants. This implies that an increase or decrease in the percentage helix 

present in the structure of the CYP3A4 might cause an opposite effect in the rate of 

metabolism (clearance) in the selected CYP3A4 variants. This same relationship 

was observed in the percentage strand with a good negative correlation of -0.581. 

The correlation study of the relationship between the percentage of the helix and 

the reported difference in the enzymatic activities of selected CYP3A4 variants was 

estimated to be insignificant. Fishelovitch et al. (2009) reported that structurally, 

the high percentage of alpha-helices present in the catalytic regions leads to 

significant enzyme flexibility and more substrate egress channels (Fishelovitch et 

al., 2009), but the report did not well define the insignificant correlation observed 

in the percentage of the helix in this study. 

Protein volume has a positive linear correlation (0.533) while protein mobility has 

a strong negative correlation value (-0.647) with the rate of metabolism in the 

selected CYP3A4 variants. An increase or decrease in the protein volume might 

result in an equivalent outcome in the relative clearance of the selected variants. An 

increase or decrease in protein mobility could cause an opposite effect on the rate 

of metabolism. The protein net charge has a negative correlation value (-0.616) in 

its relationship with the relative clearance of the selected CYP3A4 variants and wild 

type. It was predicted that a change in the value of the protein net charge would 

result in an opposite effect on the rate of metabolism. Sum positive surface area, 

sum negative surface area, sum donor surface area, and sum acceptor surface area 

all have very insignificant correlation values with the rate of metabolism of the 

selected CYP3A4 variants relative to the wildtype. 
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The protein dipole moment has a positive correlation of 0.65 with the rate of 

metabolism of the selected variants of CYP3A4. An increase in protein dipole 

moment might have an equivalent effect on the rate of metabolism. Protein charge 

at Debye length has a negative correlation of -0.603 with the rate of metabolism 

(clearance) of the selected CYP3A4 variants. This implies that an increase in the 

protein charge at Debye length results in an opposite effect on the rate of 

metabolism in the CYP3A4. The sum of the Aggregation score did not show any 

significant correlation (0.0489) with the rate of metabolism of the selected CYP3A4 

variants. ESP minimum and maximum (0.15) have insignificant correlation values 

with the rate of metabolism of the selected variants and the wild type. While the 

ESP mean has a negative correlation (-0.60) with the rate of metabolism with the 

selected CYP3A4 variants. This implies that a change in the ESP might cause an 

opposite effect on the rate of metabolism. 

The hydrogen bond has a strong negative linear correlation (-0.60) with the rate of 

metabolism of the selected This indicates that an increase in the hydrogen bond may 

lead to an opposite effect in the rate of metabolism of the selected CYP3A4 variants. 

This agrees with the study by Yao et al. (2018), which reported that hydrogen 

bonding may significantly increase the binding affinity and selectivity of a receptor. 

It has also been reported that the binding affinity (energy) of a drug to a receptor 

could modulate the clearance of the implicating drug (Eigenmann et al., 2017; 

Smith, Gagnon, and Waters, 2017; Wang et al., 2020). 

Lipophilic energy, van der Waals energy and pi-pi energy did not indicate any 

significant relationship with the rate of metabolism in selected CYP3A4. Previous 

reports have shown the presence of lipophilic, van der Waals energy and pi-pi 

energy in CYP3A4 ligand interactions (Fa, Cong, and Wang, 2015; Prajapati et al., 

2022), however, the relationship between them and the rate of metabolism has not 

been reported. The hydrophobicity moment has no significant correlation (-0.126) 

with the relative clearance of CYP3A4 variants. Zeta potential at Debye Length has 

no significant correlation value (-0.28) with the rate of metabolism of CYP3A4 

variants. 
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4.11. Summary of the chapter 

The chapter outlined the result obtained from the homology modelling, and quality 

evaluation of the modelled CYP3A4 selected variants. The result obtained from the 

effect of single nucleotide polymorphism on the structural, physicochemical, and 

dynamic properties of the selected CYP3A4 variants were also presented, 

interpreted, and discussed in this chapter. Interestingly, more than sixty-five percent 

of the total predicted properties (structural, physicochemical, and dynamic 

properties) showed significant differences in the selected variants relative to the 

wild type. The chapter further presents the result of the correlation study between 

the identified parameters (structural, physicochemical, and dynamic properties) and 

the reported variation in the clearance of the selected variants with an estimated 

significant difference. Amazingly, the correlation study revealed that a significant 

correlation exists between fifty-two percent of the predicted properties with notable 

differences. The implications of the established link in the correlation study to the 

reported rate of metabolism(clearance) were discussed. 
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Chapter 5  

Conclusion and recommendation 

This chapter provides an overview of the primary findings and conclusions derived 

from the study's aims. It also outlined the study's limitations and makes 

recommendations for future research. 

The variations in CYP3A4 have led to the observed phenotype of poor metabolizers 

(PMs), intermediate metabolizers (IMs), extensive metabolizers (Ems), and ultra-

rapid metabolizers (Ums), which influence the efficacy and toxicity of most drugs 

and prodrugs (Ahmed et al., 2016; Neamțu, 2020). While several studies have 

proved the significant effects of CYP3A4 variability on its enzymatic activity, 

especially on most pharmacokinetic parameters, there is a paucity of information 

on the effect of some of these single nucleotide variations on the molecular, 

physicochemical, structural, and dynamic properties of the implicated enzymes 

(CYP3A4 variants).  

This study aimed to investigate the effects of single nucleotide polymorphism 

(SNP) on the structural, physicochemical, and general protein properties of the 

modelled 3D protein structures of selected CYP3A4 variants. The possible effects 

of the SNPs on the dynamic characteristics of selected variants of CYP3A4 via 

molecular dynamics were evaluated. A comparative study with the reported effect 

of SNP on the relative clearance of lidocaine as reported by Fang et al. (2017) was 

done to validate any correlation with the structural, physicochemical and dynamics 

properties. The overall aim was achieved, and the major findings from the research 

objectives were outlined below. 

5.1 The summary of the major findings 

1. Homology modelling and quality evaluation of the protein structures of 

the CYP3A4 selected variants: The sequences of the selected variants were 

successfully obtained with the biopython package on python. The obtained 

sequences were used to model the 3-dimensional protein structures of the selected 
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variants via homology modelling. The reliability and quality were all attested to by 

the various protein quality assessment procedures they were subjected to. 

2. Visualisation, structural and molecular comparisons to investigate the 

effect of single nucleotide polymorphism on modelled and validated protein 

structures of the selected CYP3A4 variants: The findings on the effect of single 

nucleotide polymorphism on the structural properties showed that the position of 

the heme ligand of all the variants’ structures did not indicate any significant 

difference from the wild type. None of the mutations likely affected the positioning 

of the heme moiety. The visualised superimposed structures of the modelled protein 

structures of the wild-type and the variants indicated that variants 2 and 23 had a 

mismatch at the helix.  It was estimated that the substitution at the position (S222P) 

with proline (a helix breaker) in CYP3A4*2 might interfere with the enzyme 

specificity and could account for the variation in the enzymatic activity (reduced 

intrinsic clearance relative to the wildtype) of CYP3A4*2 with lidocaine in the 

previous report (Fang et al.,2017). In CYP3A4*11 (T363M), it was estimated that 

the T363M substitution could lead to alteration in hydrogen interactions (the 

substituted Threonine 363 at the SRS-5 region functions majorly in hydrogen 

interaction in CYP3A4), this was estimated to be responsible for the varied rate of 

enzymatic activity (relative to the wildtype) in the metabolism of CYP3A4*11 with 

lidocaine as reported by Fang et al. (2017). In CYP3A4*23 (R162W), the 

substituted Arginine occurred at position 162 (very close to the active site). It was 

estimated that the substitution of hydrophilic residue (Arginine) with hydrophobic 

residue (Tryptophan) might account for the reported difference in the rate of 

metabolism of CYP3A4*23 with lidocaine (higher relative clearance of 206.96 as 

against the wildtype of 100) (Fang et al., 2017). 

It was discovered from the molecular lipophilicity potential (MLP)mean values and 

the variation in the surface colour of the (MLP) analysis, that the MLP might 

account for the reported variation in the rate of metabolism in the selected CYP3A4 

variants, with an estimation that the wild type was more lipophilic than the selected 

variants. The mean value of the molecular lipophilicity potential also suggested that 
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CYP3A4*23 was the most lipophilic of the selected variants with a high MLP mean 

value of (-3.372) which could explain the reported high relative clearance (206.96). 

The Coulombic electrostatic potential (ELP) selected variants varied significantly 

from the ELP value of the wild type, especially the CYP3A4*23, a prediction that 

SNPs might affect the ELP of a variant’s protein structure. It was also estimated 

that the Coulombic electrostatic potential might be a determining property in the 

reported difference in the rate of metabolism (clearance) of the selected CYP3A4 

variants. 

3. Study of the differences in the physicochemical properties, ligand and solvent 

interaction, and other general properties of “protein” of the selected CYP3A4 

variants, relative to the wild type: A total of thirty-five physicochemical and 

general protein properties of the selected CYP3A4 variants were studied out of 

which seventeen parameters indicated significant difference relative to the 

wildtype. It was predicted that single nucleotide polymorphism might affect the 

studied seventeen parameters with noticeable differences relative to the wild type. 

The study estimated that the single nucleotide polymorphism (SNPs) affected the 

stability of the selected variants' protein structures, from the prediction of the 

protein structure stability with the free energy change value. The relative solvent 

accessible (RSA) values of the selected CYP3A4 variants also indicated noticeable 

differences relative to the wildtype. A significantly varied negative binding energy 

was observed in the selected variants relative to the wild type. It was estimated that 

the single nucleotide polymorphism might affect the protein-ligand interaction and 

subsequently, the binding energy of the implicating enzymes. The calculated energy 

components (hydrogen, lipophilic, van der Waals and pi-pi energy) of the selected 

CYP3A4 variants differ significantly from the wild type. It was predicted that the 

calculated component energies could be influenced by SNPs. 

4. Investigate the dynamic properties of the modelled protein structure of the 

selected variants relative to the wild type of CYP3A4 by molecular dynamic 

simulations: The effects of single nucleotide polymorphism on the selected 

variants' enzymatic dynamics were investigated with molecular dynamics 
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simulation. The difference was observed in the average root mean square of the 

protein structures relative to the wild type; this agrees with the result obtained in 

the stability prediction carried out in the initial characterization study. There was 

an indication from the study that the variant’s protein structures were less rigid with 

more observable flexible regions. The fluctuation regions in two of the mutants 

(CYP3A4*11 and CYP3A4*23) were in the core active regions in the CYP3A4 

structures, this suggested that the mutation may affect the conformation of the 

active regions of the mutant’s protein structures of CYP3A4*11 and CYP3A4*23. 

An observed fluctuation in CYP3A4*24 at the position of the phenylalanine cluster 

in the CYP3A4 responsible for the oxidative allosteric regulation pathway indicated 

that single nucleotide polymorphism may affect the allosteric regulation of the 

implicated protein structure. There was a decrease in the average SASA for all 

selected variants with the wild type, which predicted a decrease in hydrophilic 

interaction in the variants, this finding agreed with the result obtained from the 

Gravy result in the physicochemical analysis study. The study predicted that 

mutation of the selected variants may not significantly affect the compactness of 

interacting protein structures from the values obtained from the radius of gyration. 

It was observed that the wild type had the highest percentage of a helix, while the 

mutated protein structures had a reduced percentage of the helix (It has been 

reported that the highest percentage of helix was found in the active site of the 

protein structures of the CYP3A4), this reflected in the result obtained in the 

binding energy of the interacting protein structures. The wild type with the highest 

helix percentage has the highest binding energy while CYP3A4*23 with the lowest 

helix percentage has the least binding energy. It was estimated that the mutation 

may affect the SSE, specifically the percentage helix. The complex protein-ligand 

interaction indicated a higher hydrogen bond interaction in CYP3A4*11 and 

CYP3A4*23. 

5. Study the potential correlation between the studied structural or 

physicochemical effects of SNPs and the reported effects of SNPs on the relative 

clearance of selected variants: Forty characterised properties from the total 

characterised parameters (sixty-one) of the 3D structures of the selected CYP3A4 
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variants properties indicated noticeable differences and were subjected to a 

correlation study.  From the correlation analysis, it was predicted that twelve of the 

studied parameters with noticeable variations had a good or strong linear positive 

correlation, these include the molecular weight, free energy change value, free 

binding energy, average solvent-accessible surface area, relative solvent accessible 

area, hydrophilic surface area, protein volume, protein dipole moment, 

RMSD(protein-ligand complex) molecular lipophilicity potential minimum, 

molecular lipophilicity potential mean and the molecular lipophilicity potential 

maximum. Nine parameters had a good or strong negative correlation, these include 

the Gravy, root mean square deviation, percentage strand total, secondary structure 

elements, protein mobility, protein net charge, coulombic electrostatic potential, 

hydrogen bond, protein charge at Debye length, protein dipole moment. Overall, 

forty of sixty-one of the total characterised parameters (physicochemical, structural, 

and dynamic properties) indicated noticeable differences because of the effect of 

SNPs, while twenty-one (21) of the parameters with noticeable differences 

indicated significant correlation with the varied rate of metabolism (relative 

clearance) in the selected variants. 

5.2 Conclusion and overall goal 

The overall aim was achieved, and the data obtained showed the effects of single 

nucleotide polymorphisms on the structural, physicochemical, and general protein 

properties of the modelled 3D protein structures of selected CYP3A4 variants. The 

effects of the SNP on the dynamic characteristics of selected variants of CYP3A4 

via molecular dynamics were also predicted. The comparative study with the 

reported effect of SNP on the relative clearance of lidocaine as reported by Fang et 

al. (2017) estimated the correlation between the structural, physicochemical and 

dynamics properties and the varied rate of metabolism in the selected variants. 

Overall, the knowledge and the data generated from this study provided insight into 

the effect of single nucleotide polymorphism on the structural, physicochemical 

properties, and dynamic characteristics of modelled and validated protein structures 

of selected variants of CYP3A4. This may serve as the determinant of the observed 
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differences in the functional activity (metabolism) of the selected variants of 

CYP3A4 enzymes. The established link between the molecular differences and the 

reported functional differences elucidated the basis of the observed differences in 

the functional activity (metabolism) of the different variants of CYP3A4 enzyme; 

this is applicable in drug design and discovery, to reduce the toxicity of drugs 

associated with genetic variation. This will also facilitate an increase in drug 

efficacy with appropriate implementation of the knowledge of the effects of single 

nucleotide polymorphism.  

5.3 Limitations of the study and recommendations for future 

work 

There has been an acceleration of sequencing data generated for African 

populations. The work in this study provides the basis for analysing CYP3A 

enzymes in African populations to understand the genetic variation and 

pharmacodynamics of drug metabolism in populations where there is a paucity of 

data. The research might also be used as a template in the characterization of other 

reported variants of CYPs isoforms. Further study with other major CYP3A4 

substrates is beyond the scope of this research study; it is therefore recommended 

for future research work.  
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Appendix 

A. The physicochemical and general protein properties of the 

selected CYP3A4 variants and the wild type. 

The physicochemical properties of each of the selected mutated sequences of 

CYP3A4 and the wild-type sequence investigated in this study are shown in Table 

A.0.1. 

Table A.0.1: The physicochemical and general protein properties of selected CYP3A4 

variants and the wild type. 

Protein 

Properties 
(Relative 

clearance) 

CYP3A4*1 
(100%) 

CYP3A4*2 
(27.93%) 

 

 

CYP3A4*1

1 
(206.96%) 

 

CYP3A4*2

3 
(213.61%) 

 

CYP3A4*

24 
(30.29%) 

 

Molecular 

Weight*(Da) 
57343.18 57353.22 57373.27 57373.20 57352.19 

Amino 

Acid(aa) 
503 503 503 503 503 

Isoelectric 

Point (pH) 
8.27 8.27 8.27 8.00 8.27 

Instability 

Index (Ii) 
41.19 41.57 41.19 41.19 40.42 

Aliphatic Index 

(Ai) 
95.47 95.47 95.47 95.47 95.47 

Gravy* -0.040 -0.042 -0.035 -0.033 -0.039 

Debye 

Screening 

Length(k)  

 

9.62 9.62 9.62 9.62 9.62 

Sequence-

based 

Isoelectric 

point 

7.62 7.62 7.62 7.40 7.64 
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Prediction(pH

) 

Structure-

based pI 

Prediction(pH

) 

8.46 8.47 8.46 8.22 8.46 

Extinction 

Coefficient 

(EC)M−1 

cm−1) 

46215 46215 46215 51715 46215 

 

Frictional 

Coefficient(kg

/s) 

53e-011 5.3e-011 5.3e_011 5.3e_-011 5.3e_-011 

Diffusion 

Coefficient(c
m2/s) 

7.8e-007 7.8e-007 7.8e-007 7.8e-007 7.8e-007 

Radius of 

gyration(Å) 

22.76 22.76 22.76 22.77 22.76 

Hydrodynami

c radius(Å) 

31.84 31.84 31.84 31.81 31.80 

Sedimentation 

constant(s) 

4.2e-013 4.2e-013 4.2e_013 4.2e_013 4.2e_013 

Protein 

Eccentricity 

0.74 0.74 0.74 0.74 0.74 

Accessible 

surface Area 

 (Water 

probe) *(Å2) 

20369.7 20407.5 20375.3 20419.1 20353.5 

Hydrophobic 

Surface Area* 
Å2 

11941.1 11973.5 11925.1 12037.4 11944.4 
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Hydrophilic 

surface Area* 
Å2 

7448.2 7448.2 74616.6 7433.2 7386.7 

Protein 

volume* Å3 

50087.6 50033.6 50083.6 50113.4 50098.0 

Protein 

mobility* 

(cm2/Vs) 

4.3 4.4 4.3 3.5 4.4 

Protein helix 

ratio (%) 

51.9 51.5 51.9 51.9 51.9 

Henry’s 

Function f(ka) 

1.11 1.11 1.11 1.11 1.11 

Protein Net 

charge* 

5.56 5.63 5.57 4.60 5.66 

Sum positive 

surface area 

(Å2 

) * 

12080.30 12090.82 12095.13 12254.23 12337.73 

Sum negative 

surface area 

(Å2 

) * 

6996.98 6860.53 6858.70 6591.23 6606.73 

Sum donor 

surface area 

(Å2 

) * 

3379.18 3296.91 3313.10 3134.33 3146.54 

Sum acceptor 

surface area 

(Å2 

) * 

4015.71 4048.43 4062.33 3973.62 4001.24 

Protein 

Charge at 

Debye 

Length* 

1.43 1.45 1.44 1.18 1.46 
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Sum of 

Aggregation 

score* 

630.13 621.64 611.90 687.59 687.17 

Debye 

screening 

length 
Κ-1 

1056.67 1039.69 1056.96 1152.37 1048.99 

Hydrophobici

ty Moment* 

2989.8 2070.2 2069.9 2038.0 2089.3 

Zeta potential 

at Debye 

Length*(mV) 

7.48 7.58 7.49 7.62 7.62 

Zeta Dipole 

Moment(mV) 

0.00 0.00 0.00 0.00 0.00 

Zeta 

Quadrupole 

Moment(mV) 

0.54 0.54 0.54 0.51 0.51 

*-parameters with notable differences that are subjected to further correlation study. 

Properties with notable differences are written in coloured fonts and indicated with 

asterisks. 
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B. The Correlation plotted graph 

The correlation graph from figure B.0.1 to B.0.33 shows the correlation between 

the reported functional difference (relative clearance) and the differences observed 

in the data obtained from the characterization investigation in Table 4.16. 

 

 

Figure B.0.1: The correlation plot of Molecular weight (Da) against the relative clearance 

(%) 

The green dots represent the molecular weight of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.2: The correlation plot of protein dipole moment (Debye) against the relative 

clearance (%) 

The green dots represent the protein dipole moment of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.3: The correlation plot of Gravy against the relative clearance (%) 

The green dots represent the Gravy of the selected CYP3A4 variants/wildtype 

against the reported relative clearance. The Bravis-Pearson correlation value is 

assigned as “r” 
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Figure B.0.4: The correlation plot of energy change value (Kcal/mol) against the relative 

clearance (%) 

The green dots represent the energy change value of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.5: The correlation plot of relative solvent area (Å2) against the intrinsic 

relative clearance (%) 

The green dots represent the relative solvent area of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.6:  The correlation plot of solvation energy (Kcal/mol) against the relative 

clearance (%) 

The green dots represent the solvation energy of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.7: The correlation plot of docking score (Kcal/mol) against the relative 

clearance (%) 

The green dots represent the docking score of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.8: The correlation plot of average root mean square fluctuation (Å) against the 

relative clearance (%) 

The green dots represent the average root mean square fluctuation of the selected 

CYP3A4 variants/wildtype against the reported relative clearance. The Bravis-

Pearson correlation value is assigned as “r” 

 

Figure B.0.9: The correlation plot of solvent accessible surface area (Å2) against the 

relative clearance (%) 

The green dots represent the solvent accessible surface area of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.10: The correlation plot of the radius of gyration (Å) against the relative 

clearance (%) 

The green dots represent the radius of gyration of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.11: The correlation plot of percentage strand (%) against the relative clearance 

(%) 

The green dots represent the percentage strand of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.12: The correlation plot of percentage helix (%) against the relative clearance 

(%) 

The green dots represent the percentage helix of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.13: The correlation plot of accessible surface area (water probe) (Å2) against 

the relative clearance (%) 

The green dots represent the accessible surface area (water probe) of the selected 

CYP3A4 variants/wildtype against the reported relative clearance. The Bravis-

Pearson correlation value is assigned as “r” 
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Figure B.0.14: The correlation plot of the hydrophobic surface area (Å2) against the 

relative clearance (%) 

The green dots represent the hydrophobic surface area of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.15: The correlation plot of the hydrophilic surface area (Å2) against the 

relative clearance (%) 

The green dots represent the hydrophilic surface area of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.16: The correlation plot of protein mobility (cm2/vs) against the relative 

clearance (%) 

The green dots represent the protein mobility of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.17: The correlation plot of protein volume against the relative clearance (%) 

The green dots represent the protein volume of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.18: The correlation plot of sum positive surface area (Å2) against the relative 

clearance (%) 

The green dots represent the sum positive surface area of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.19: The correlation plot of protein net charge against the intrinsic relative 

clearance (%) 

The green dots represent the protein net charge of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.20: The correlation plot of sum negative surface area (Å2) against the relative 

clearance (%) 

The green dots represent the sum negative surface area of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.21: The correlation plot of sum donors surface area (Å2) against the relative 

clearance (%) 

The green dots represent the sum donors’ surface area of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.22: The correlation plot of sum acceptor surface area(Å2) against the relative 

clearance (%) 

The green dots represent the sum acceptor surface area of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.23: The correlation plot of protein charge at Debye length against the relative 

clearance (%) 

The green dots represent the protein charge at the Debye length of the selected 

CYP3A4 variants/wildtype against the reported relative clearance. The Bravis-

Pearson correlation value is assigned as “r” 
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Figure B.0.24: The correlation plot of the sum of aggregation score against the relative 

clearance (%) 

The green dots represent the sum of the aggrescore of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.25: The correlation plot of protein dipole (Debye) moment against the intrinsic 

relative clearance (%) 

The green dots represent the protein dipole moment of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.26: The correlation plot of hydrophobicity moment against the relative 

clearance (%) 

The green dots represent the hydrophobicity moment of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.27: The correlation plot of zeta potential at Debye length (mV) against the 

relative clearance (%) 

The green dots represent the sum of Zeta potential at Debye length of the selected 

CYP3A4 variants/wildtype against the reported relative clearance. The Bravis-

Pearson correlation value is assigned as “r” 
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Figure B.0.28: The correlation plot of hydrogen bond correction (Kcal/mol)) against the 

relative clearance (%) 

The green dots represent the hydrogen bond of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B. 0.29: The correlation plot of pi-pi packing correction against the relative 

clearance (%) 

The green dots represent the pi-pi packing of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.30: The correlation plot of Van der Waals energy (Kcal/mol) against the 

relative clearance (%) 

The green dots represent the Van der Waals energy of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 

 

Figure B.0.31: The correlation plot of lipophilic energy (Kcal/mol) against the relative 

clearance (%) 

The green dots represent the lipophilic energy of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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Figure B.0.32: The correlation plot of percentage total secondary structure element (%) 

against the relative clearance (%) 

The green dots represent the percentage of total secondary structure elements of the 

selected CYP3A4 variants/wildtype against the reported relative clearance. The 

Bravis-Pearson correlation value is assigned as “r” 

 

Figure B.0.33: The correlation plot of average RMSD (Å) against the relative clearance 

(%) 

The green dots represent the average RMSD of the selected CYP3A4 

variants/wildtype against the reported relative clearance. The Bravis-Pearson 

correlation value is assigned as “r” 
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