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Abstract 

A surge of large-scale Distributed Denial of Service (DDoS) attacks has swept the internet 
in recent years, possibly presenting a serious threat to industry internet service 
offerings. These attacks take advantage of susceptible devices linked to the internet via 
the Transmission Control Protocol (TCP) and the Internet Protocol (IP). As a result, 
current Internet-of-Things (IoT) devices are no longer off-limits. DDoS attacks have 
become stealthier and more sophisticated as they aim to circumvent conventional 
detection systems as the number of connected devices has grown. They do this by 
deploying both low-rate and high-rate DDoS attack techniques. 

The higher prevalence of DDoS attacks has motivated academics to investigate detection 
approaches for large-scale DDoS attacks. As a result, the goal of this research is to 
conduct an experimental investigation and assessment of detection algorithms capable 
of detecting both low-rate and high-rate DDoS attacks with high accuracy and low 
detection delay. We do this by proposing a framework that makes use of statistical 
characteristics of the incoming IP address, as well as building a testbed that simulates 
low-rate and high-rate DDoS attacks, on which detection strategies may be evaluated. 
We investigated the performance of classic statistical change-point detection 
approaches, machine learning detection techniques, and contemporary deep learning 
detection techniques in this work.  

The study's findings can help researchers enhance the overall effectiveness of detection 
approaches for early detection of both low-rate and high-rate DDoS attacks with high 
accuracy and low detection latency. 
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Chapter 1:  Introduction 

1.1 Background  

The first distributed denial of service (DDoS) assault on the public Internet happened in 
August 1999 [1].  A year after the initial DoS event, in February 2000, a handful of 
commercial websites, including Yahoo, CNN, and eBay, saw their first DDoS attacks. A 
high number of requests overloaded the websites, forcing the company's services to go 
offline, resulting in considerable financial losses. The July 4 2009 cyber-attack is a well-
known example of a DDoS attack [2]. In South Korea and the United States, prominent 
government, news media, and financial websites were targeted in a series of cyber-
attacks. These attacks caused service interruptions and, in some cases, loss of millions 
of dollars each hour while companies fought to restore their internet services. 

Due to the Internet's phenomenal development over the last decade, attackers now 
have access to a growing number of vulnerable devices. Attackers may now use a large 
number of these susceptible devices to initiate an attack on the victim server. These 
attacks have various modes of intensity, more especially those attacks that are designed 
with low intensity of attack in order to evade detection from current detection 
techniques. Attackers have diverse motivations for instigating a DDoS attack and this 
thesis will explore more of these attacker motives in section 2.4.4. However, attackers' 
tools and attack methods have likewise become more sophisticated. Some of these tool 
and attack methods are also explored in detail in section 2.4.5 and section 2.4.7. 

Parallel to the attackers’ mode of operation becoming more sophisticated, researchers 
have been investigating and developing DDoS attack defence mechanisms. There are 
various types of defence mechanisms that have been developed so far, the details of 
which will be further explored in section 25. They all have different functions and 
locations in the network. However, the challenge for the researcher is to develop a 
detection technique that will detect the start of a DDoS attack accurately and efficiently.  

 

1.2 Problem Statement and Research Questions 

The ultimate objective of detection techniques is to identify DDoS attacks in real time in 
order to minimize potential network damage. Therefore, an ideal detection technique 
must be able to detect an attack with high accuracy (a high detection rate and a low 
false positive rate) and minimal detection delay.  

Designing and implementing an effective DDoS detection technique can be difficult. 
Even though modern computing capabilities can improve these detection techniques, 
there is a number of open challenges that still exist as described in [3, 4]. This thesis will 
focus on the following challenges that are faced by researcher when designing and 
implementing an effective detection technique: 

DDoS attacks can compromise a large number of devices very fast and can damage the 
network instantly. Almost every day new attack modes (often a variation of those 
described in section 2.4.5.4) come into existence and the nature of DDoS attacks keeps 
changing over time as attackers adapt their network attack strategies in order to evade 
detection. More especially those attack techniques that are designed to evade detection 
methods by launching low intensity and high intensity attacks. Therefore, the design and 
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implementation of detection techniques must be adaptable to high-rate and low-rate 
attacks. This gives rise to the following research question: 

 RQ 1 : How can we detect low-rate and high-rate DDoS attacks with accuracy 
and with minimal detection delay? 

 RQ 2 : How does the performance of statistics-based techniques, machine 
learning techniques compare to modern deep learning convolutional neural 
network techniques when detecting low-rate and high-rate DDoS attacks? 

Researchers have contended with the task of designing methods that identify optimal 
sets of features while not compromising on efficiency when designing detection 
techniques. 

Researchers also discovered that the source IP address of incoming packets can be used 
as a useful parameter for detecting the start of an attack. However, the high 
dimensionality of IP address features, as well as the complicated association between 
them, results in significant computational overheads, making identification difficult. This 
is as a result of the fact that many network traffic features typically have low variation 
or correlations that cause dependencies among the network traffic features. Moreover, 
the issue with scalability becomes more important when we consider the use of IPv6 
address space. Therefore, in this thesis we ask the following question: 

 RQ 3 : How can the onset of a DDoS attack be identified on the basis of simple 
features of the source IP address? 

Current DDoS attacks datasets have constraints: these are privacy and legal concerns 
involved with the sharing of recorded datasets. Thus, there is a lack of actual intrusion 
data that could be used to simulate attacks and to test and validate new detection 
techniques. From this challenge, we therefore ask: 

 RQ 4 : What are the key statistical features of a DDoS attack? 

 RQ 5 : How do we model the characteristics of DDoS attacks so that we can 
simulate and generate practical attack traffic datasets? 

 

1.3 Research Contributions 

The research conducted for this thesis has resulted in a number of research 
contributions that covers aspects of designing and implementing DDoS attack detection 
techniques, more specifically focused on the use of statistical and machine learning 
techniques. The research further investigated and developed a DDoS simulation testbed 
in MATLAB which uses synthetically generated attack datasets that simulate high 
intensity and low intensity attacks.  

Contribution 1: 

Chapter 2:  of the thesis presented a detailed background of DDoS attacks and an 
analysis of the security concerns that are presented by the modern digital 
transformation, more specifically on the Internet of Things (IoT). The chapter presented 
an investigation into the ubiquity of DDoS attacks in modern computing. It further 
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explored the background of DDoS in terms of the motives for initiating an attack and the 
targets of these attacks. It further investigated the methods, tools and mechanisms used 
to initiate these attacks. The background of strategies that are currently used to mitigate 
DDoS attacks were also studied, listing their advantages and disadvantages. Chapter 3: 
presented a theory base for the investigation, a literature survey that covers published 
research of common detection techniques for DDoS attacks. The chapter presented a 
comprehensive and critical review of detection techniques that are based on statistics, 
machine learning and the modern neural networks and deep learning techniques. The 
chapter further presented research challenges pertaining to DDoS detection and 
providing the rationale for attempting our research. 

The work presented in Chapter 2: and Chapter 3: highlights key insights into our 
attempts to partially answer the first research question (RQ 1). It provides an 
understanding of the work that other researchers in this field have already developed 
and published. Therefore, we provide a platform on which we carry out further 
investigation in this field. 

A significant part of the work presented in Chapter 2:  and Chapter 3: of this thesis was 
published in the following article and book chapter: 

 

 Machaka, P., & Nelwamondo, F. (2016). Data Mining Techniques for Distributed 
Denial of Service Attacks Detection in the Internet of Things: A Research Survey. 
In O. Isafiade, & A. Bagula (Ed.), Data Mining Trends and Applications in Criminal 
Science and Investigations (pp. 275-334). IGI Global. http://doi:10.4018/978-1-
5225-0463-4.ch010 

 

Contribution 2:  

Chapter 4: of the thesis describes in detail, the simulation modelling research design 
methodology that was used in this research. The chapter provided a critical analysis of 
the published literature on the use of the source IP address for detecting DDoS attacks, 
and it further justified the use of a source IP address as a key feature for modelling DDoS 
attacks. The work presented in this section of the chapter assisted with answering the 
third research question (RQ 3). The chapter further investigated reliable benchmark 
datasets that are used in DDoS attack detection. The insights gathered from the 
literature survey and investigations provided the basis for analysing and understanding 
the statistical properties of DDoS attacks. This section answered the fourth research 
question (RQ 4). The chapter also described, in detail, the modelling techniques and the 
methods used for generating synthetic attack traffic, together with the framework for 
the testbed.  The chapter then described the environmental setup for the development 
of the testbed and testing environment for the simulations. The work presented in this 
chapter assists with answering the fifth research question (RQ 5). 

A significant part of the work presented in Chapter 4: was further published in the 
following research article and book chapter: 

 Machaka P., Bagula A. (2021) Statistical Properties and Modelling of DDoS 
Attacks. In: Vinh P.C., Rakib A. (eds) Context-Aware Systems and Applications, 
and Nature of Computation and Communication. ICCASA 2020, ICTCC 2020. 
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Lecture Notes of the Institute for Computer Sciences, Social Informatics and 
Telecommunications Engineering, vol. 343. Springer, Cham. 
https://doi.org/10.1007/978-3-030-67101-3_4 

 

Contribution 3:  

Chapter 5: presents the core findings of the simulations that were proposed for the 
detection algorithms. It provides a performance analysis of the experiment that 
simulates a set of high intensity and low intensity DDoS flooding attacks on a network 
information system. The performance is then analysed for their accuracy and efficiency, 
and a contextual analysis of these findings is also presented. The research investigated 
the efficacy of statistical-based techniques, machine learning (supervised, unsupervised 
and semi-supervised) techniques, and deep learning techniques against low intensity 
and high intensity DDoS attacks simulation. In order to transfer IP network security from 
reactive to proactive, we investigated the effectiveness of regression models for 
predicting possible DDoS attacks. A semi-supervised learning model capable of auto-
labelling traffic and accurately classifying malicious traffic was built. This is accomplished 
through the integration of supervised and unsupervised machine learning models. The 
work presented in this chapter of the thesis assisted with answering the first research 
question (RQ 1) and the second research question (RQ 2). A significant part of the work 
presented in this chapter is now published in the following research articles and book 
chapter: 

 

 P. Machaka, A. Bagula and F. Nelwamondo, "Using the Exponentially Weighted 
Moving Average Algorithm to Defend against DDoS attacks," 2016 Pattern 
Recognition Association of South Africa and Robotics and Mechatronics 
International Conference (PRASA-RobMech), 2016, pp. 1-6, doi: 
10.1109/RoboMech.2016.7813157. 

 

 Machaka P., McDonald A., Nelwamondo F., Bagula A. (2016) Using the 
Cumulative Sum Algorithm Against Distributed Denial of Service Attacks in 
Internet of Things. In: Vinh P., Alagar V. (eds) Context-Aware Systems and 
Applications. ICCASA 2015. Lecture Notes of the Institute for Computer Sciences, 
Social Informatics and Telecommunications Engineering, vol 165. Springer, 
Cham. https://doi.org/10.1007/978-3-319-29236-6_7 
 

 Machaka, P., Ajayi, O., Maluleke, H., Kahenga, F., Bagula, A. and Kyamakya, K., 
2021. Modelling DDoS Attacks in IoT Networks using Machine Learning. arXiv e-
prints, pp.arXiv-2112 (submitted for review). 

 

 

1.4 Thesis structure 

The remainder of the thesis is organised as follows: 
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Chapter 2: presents an investigation into the security concerns of the Internet of Things 
(IoT), together with how the technology can be used as a platform to perpetrate DDoS 
attacks. The research further investigates the landscape of DDoS attacks.  

Chapter 3: presents some of the most important techniques that are used for DDoS 
detection. The chapter further presents an investigation into literature as to how 
researchers have used the classical statistics-based techniques, machine learning 
techniques and neural networks DDoS detection, their advantages and drawbacks. It 
further explores the use of modern deep learning techniques for DDoS techniques.  

Chapter 4: presents the simulation modelling and design that will be implemented in 
this research. It further describes the modelling techniques and the methods used for 
generating synthetic attack traffic, together with the framework for the testbed.   

Chapter 5: presents the core findings of the simulations and the algorithms performance 
is analysed for their accuracy and efficiency. A contextual analysis of these findings is 
also presented.  

Chapter 6: concludes and summarises the key research contributions and proposes 
possible directions for future research work.
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Chapter 2:  Background of DDoS Attacks 

2.1 Introduction 

We live in a fast evolving digital information age in which information is at our fingertips. 
The adoption of Information and Communications Technology (ICT) has enabled on-
demand access to information which is very simple and inexpensive. Computing has 
progressed from the age of the typical desktop computer to the Internet of Things (IoT) 
paradigm. Many of the items that surround us will be connected to the internet network 
in some form or another in the Internet of Things. The usage of technology in the IoT 
has resulted in massive volumes of data that must be saved, processed, and displayed 
in a flawless, efficient, and readily interpretable manner. Having so many gadgets linked 
to the internet, however, presents fascinating internet security concerns. 

The ubiquitous usage of the internet and network technologies has resulted in a 
substantial reliance on ICT systems by society. As a result, any failure or disruption in the 
services supplied by these systems has a direct impact on significant parts of society. 
Even if it is only for a brief duration, this interruption may be felt strongly. An 
interruption in a corporate organization's or government's ICT infrastructure, for 
example, may have a significant impact on their day-to-day operations. This might result 
in considerable financial losses (business and legal actions) as well as higher operating 
costs as a result of fraudulent operations. 

The resultant interruptions might be the consequence of a hacker attempting to disrupt 
systems through Denial of Service (DoS) attacks. A DoS attack is a malicious attempt by 
an attacker to disrupt a service provider's online services, rendering them inaccessible 
to legitimate users. The Distributed Denial of Service is a large-scale version of DoS 
(DDoS). This type of attack on a company might have disastrous consequences and result 
in an unsatisfactory service to consumers and significant financial losses. It may also lead 
to intellectual property losses for an organization, affecting the long-term 
competitiveness of corporations and governments in industrial and military espionage 
events [5]. As a result, it is critical that organizations and governments implement 
procedures and strategies that will assist them in correctly and reliably detecting the 
beginning and occurrence of DDoS attacks. 

This chapter investigates the Internet of Things phenomenon in relation to DDoS attacks. 
It gives a historical overview of the internet and how it developed into the Internet of 
Things. In addition, the chapter delves into the features of an IoT system. In addition, 
the present application of IoT applications in households and businesses is explored. The 
study delves deeper into the Internet of Things' security concerns, as well as how the 
technology may be utilized as a platform to perpetrate and even inject threats and 
attacks. The study expands on the environment of distributed denial-of-service attacks 
by seeking to address the following questions: 

 What are DDoS attacks? How pervasive are these attacks? 

 Why are DDoS attacks executed? How are DDoS executed? 

 What is the attack targeting? Which DDoS attacks are common? 

 What strategies and mechanisms are used for a successful DDoS attack? Which 
tools are used to conduct a DDoS attack? 

 What defence mechanisms are currently used to combat DDoS attacks? What 
are their advantages and disadvantages? 
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The sections that follow will give a background of how the internet evolved into the IoT. 
It will explore the characteristics and current applications of the IoT paradigm. The 
security concerns that are present with the IoT are also discussed. The chapter further 
introduces the concept of DDoS; the various attack types and its background. The 
rationale and motives, together with methods and tools used to conduct a large scale 
DDoS are also presented in this chapter. The various defence mechanisms that are 
currently implemented in industry are explored together with their advantages and 
disadvantages. The chapter further presents the state-of-the-art literature review of 
detection algorithms that are integrated into the defence mechanisms and network 
intrusion detection systems. The challenges of defending an information system against 
a DDoS in an IoT environment is also highlighted, together with the research questions 
that will be explored by this thesis. 

 

2.2 The Internet of Things 

To comprehend the (IoT) concept, one must first understand the evolution of the 
internet. 

 

2.2.1 Evolution of the internet 

The creation of the telegraph, telephone, radio, and electronic computer marked the 
beginning of communication technology. In the 1960s, the US Department of Defence 
granted contracts for ARPANET development (Advanced Research Projects Agency 
Network). The ARPANET was the first packet switching network to use the TCP/IP 
protocol suite. This technique formed the Internet's technological underpinning. The 
technology was commercialized in the early 1990s and evolved into what is today known 
as the World Wide Web (WWW). 

The WWW grew in popularity, with massive use and rapid expansion. Mobile devices 
became capable of connecting to the internet, resulting in the formation of the mobile 
internet. This technology enabled gadgets and people to be linked from remote areas, 
and social networking platforms arose as a result. This enabled an increasing number of 
devices to be linked and communicate with one another over the internet. This was the 
beginning of the internet of things (IoT). 

 

2.2.2 What is the Internet of Things (IoT)? 

The “Internet of Things” was first mentioned by Kevin Ashton in 1998 [6]; and the term 
was formally introduced by the ITU (International Telecommunications Union) in their 
internet report of 2005 [7]. Since then there have been several debates on the precise 
definition of the IoT. This is due to the influence of several contributing fields, from 
information technology engineering, academia and marketing. For the purposes of this 
work we will define IoT as [8]: 

“The Internet of Things allows people and things (or objects) to be connected 
Anytime, Anyplace, with anything and anyone; ideally using any path/network 
and any service.” 
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The number of gadgets that humans utilize to generate and receive information has 
increased dramatically during the last decade. According to reports, there were 500 
million devices in 2003, which rose to 12.5 billion internet-enabled devices in 2010. [9]. 
It is projected that by 2020, between 50 billion and 100 billion such gadgets would be 
connected to the internet [10]. 

 

2.2.3 Characteristics of IoT 

The key properties of the IoT are investigated in this section of the work. Although this 
is not an exhaustive list of IoT characteristics, those that are relevant to internet and 
network security are highlighted as follows: size and population; complexity and 
intelligence; heterogeneity and interoperability. 

2.2.3.1 Size and Population 

The number of devices or entities participating in IoT is rapidly increasing. It is projected 
that by 2020, there will be 50-100 billion internet-connected gadgets [10]. These are 
information-embedded devices with the capability of transferring data through a 
specific method or channel of transmission, which may be abused by an attacker. The 
growing number and population of internet-connected devices creates a sea of 
accessible options for an attacker to employ throughout the internet, in addition to that 
specific domain application, to launch an attack. 

2.2.3.2 Complexity and Intelligence 

IoT devices communicate with one another autonomously. The complexity and 
intelligence capabilities of the gadget determine how this interaction varies from one 
domain application to the next. A device's capabilities, such as storage and computing 
power, may be constrained. As a result, the device has low-complexity and has a narrow 
attack space. A device, on the other hand, may have a lot of storage and processing 
power, making it a highly sophisticated device with a lot of attack space. The population 
of these intelligent devices is growing, and they are becoming more affordable to 
purchase, posing a danger to the internet and the domain in which they are deployed. 

2.2.3.3 Heterogeneity and Interoperability 

Because of their pervasiveness, the demand for and population of sophisticated 
intelligent devices is projected to rise fast. They may function in heterogeneous 
environments and offer chances for interoperability between entities inside an 
environment as well as across the IoT platform. There are advocates for the need for 
universal interoperability and open standards in the IoT, but progress has been hindered 
by industries' unwillingness to collaborate. This is due to the fact that universal 
interoperability is accompanied with the difficulty of accountability and security 
management. As a result, industries and stakeholders are fully accountable and liable 
for identifying, preventing, and resolving security concerns in a decentralized form.  

 

2.2.4 IoT Applications Domain 

The vision and idea of IoT provide a wide range of capabilities that will allow ICT 
innovation in a variety of application fields. By spanning a wide variety of business areas, 
IoT has the potential to increase competitiveness across diverse application domains 
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and open up new venture opportunities. As a result, IoT technologies have an influence 
on a variety of application areas, which may be characterized based on the kind of 
network accessible, coverage, scalability, heterogeneity, repetition, user participation, 
and impact [11]. The work of authors in [12-14] attempted to identify IoT application 
areas, and all of their classifications have common components; hence, the classification 
below will be used for the sake of our study: 

 Personal and Home Applications 

 Utilities and Environment applications 

 Smart Business and Smart Cities Applications 

The subsections that follow will describe and offer examples of the various application 
domains. 

2.2.4.1 Home and Personal Applications 

The IoT platform also enables users to create smart homes by utilizing IoT technology. 
IoT may be utilized in household applications such as those that allow users to operate 
home appliances such as refrigerators, air conditioners, washing machines, and others. 
This enables the user to better control his or her house and energy consumption. 
Authors in [15] have created a prototype design and architecture for an internet-based 
application that automates functioning home gadgets. 

IoT technology may be used in home applications such as Ubiquitous Health and e-
Health to aid in the development of assisted-living solutions. These programs enable 
clinicians to monitor the elderly and sick in their own homes, lowering the expense of 
in-hospital monitoring and allowing for earlier treatment and intervention. For example, 
the elderly and sick will be equipped with medical sensors that will monitor health 
indicators such as blood pressure, body temperature, respiratory activities, and 
mobility. Smartphones and other wearable devices include accelerometer sensors, 
position and proximity sensors, and gyroscope sensors, which may be used to collect 
data about their patients' activities in their homes. Local medical staff utilize the 
observed data to make decisions about the patient's health and to respond quickly when 
necessary [16]. 

Wearable technology and personal body area networks are two more common 
examples of IoT personal applications. These sensor technologies are linked to cell 
phones using Wi-Fi or Bluetooth technology to measure everyday activities such as 
exercise routine performance, distance ran, steps walked, and calories burnt. This data 
may be used to track a patient's or user's progress toward certain goals in order to 
improve their lifestyle or prevent health issues [17]. 

2.2.4.2 Utilities and Environment Applications 

IoT provides a viable platform for utility and environmental monitoring applications. 
Municipalities and utility corporations use some of these applications in the form of 
smart metering for water and energy supply. These applications are made up of large 
networks of sensors, usually on a regional and national scale. These applications are 
used to monitor consumer consumption in order to better manage resources and 
optimise services [18].  

The same technology can be extended and applied to monitor drinking water and 
irrigation systems. Sensors are strategically positioned to monitor vital water and soil 
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characteristics. This can assist to avoid water and soil pollution, as well as make better 
decisions about drinking water and agriculture [19]. 

IoT technologies enable the widespread installation of sensors in a variety of critical 
locations in a seamless and self-managing way. Sensor technologies enable them to 
communicate with one another and report on real-time occurrences. These sensors can 
be put in high-risk regions where human presence could be hazardous (examples: 
volcanic areas and oceanic abysses). This can help monitor and detect anomalies in the 
environment (such as wildfires [20]) that can jeopardize human and animal life.  

2.2.4.3 Smart Business and Smart Cities Applications 

IoT technology has the potential to enable a wide range of innovative and diversified 
applications in smart city scenarios. Sensor technologies may be installed and used to 
offer sophisticated traffic control systems; this monitors vehicle traffic in large cities and 
on highways so that alternate traffic routing recommendations can be supplied in 
instances of congestion. This application may be expanded to include sensors that 
monitor the wear and tear on highway and road network infrastructure. Sensors may be 
installed in a metropolitan environment to further monitor and identify pollution levels 
in the air. They can accomplish this by measuring carbon dioxide, nitrogen oxide, 
ammonia, and other contaminants. [13].  

Businesses may also profit from the usage of IoT technology; for example, in the supply 
and delivery sectors, RFID and sensor technologies have been utilized for inventory 
management. These enable firms to trace the flow of commodities and products 
throughout the various stages of their life-cycle. RFID has been utilized in retail to 
minimize theft and the counterfeiting of items. Bio sensor technologies have been 
utilized to monitor the manufacturing process of products in the food industry. The 
sensors can assist in ensuring that the manufacturing process of food items fulfils the 
established quality requirements and, as a result, can determine the degradation or 
shelf-life of the products [12].  

Security surveillance is another significant application of IoT technology that helps both 
the government and companies. Security surveillance is a popular camera network 
technique in commercial buildings, retail malls, airports, road intersections, parking lots, 
and other public areas. When IoT technologies such as ambient sensors, infrared, and 
advanced video analytics are integrated, companies will be able to follow targets, detect 
suspicious activity, and locate left luggage, as well as prevent unauthorized access [12, 
13]. 

 

2.2.5 IoT Security Concerns  

The security of IoT technology and applications is a key problem for their mainstream 
adoption. Industries and stakeholders are reluctant to embrace IoT technology and 
applications if system and data security, privacy, and trust are not guaranteed. Several 
security issues have arisen as a result of the lobbying for an open IoT platform. We focus 
on security problems in terms of cyber-attacks and their implications for the IoT 
platform in our research.  
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2.2.5.1 Data Confidentiality 

Data is a valuable asset that must be safeguarded in various IoT application fields. In a 
business application domain, for example, data is an asset that is utilized to boost an 
organization's market competitiveness. In this instance, data confidentiality is crucial 
since it ensures that only those stakeholders and entities with permission may access 
and alter the data created by the program. Because of the nature of IoT, entities may be 
mobile and interoperable across application domains. This makes authentication and 
access control to the application system and information more difficult. This increases 
the vulnerability to the IoT application by allowing attackers with access to the system 
to compromise its entities and launch an attack against the environment.  

2.2.5.2 Privacy 

Privacy is another critical security problem for the IoT platform. Data privacy is 
concerned with setting data access rules; which types of data can be accessed by which 
person or organization in the application area. This is especially crucial in an application 
domain like Ubiquitous-Healthcare, because these apps handle personal and sensitive 
data. As a result, it is critical to put in place proper data privacy safeguards. The Internet 
of Things platform enables the usage of ubiquitous wireless communication channels. 
However, if these communication channels are used inappropriately, they may pose 
dangers and may violate data privacy regulations. This might be because remote access 
capabilities are susceptible to eavesdropping, masquerade assaults, and denial of 
service attacks.  

2.2.5.3 Trust 

Trust in information systems relates to security policies that govern access to resources 
and the credentials necessary to comply with the regulations [21]. To exchange 
credentials, trust negotiation techniques are employed. This is to allow persons or 
devices requesting services or resources to communicate with the device or entity 
delivering those services or resources. This is a typical decentralized and static approach 
to trust negotiation and management. It may not work well in an IoT environment where 
various individuals, entities and devices are heterogeneous, mobile and broadly 
distributed in physical space. Owing to the IoT's dynamic and decentralized nature, 
trustworthiness is particularly difficult to achieve because an attacker may construct a 
masquerade attack in order to acquire access and control of the physical and logical 
system, and therefore get access and control of the data created by the system. 

 

2.2.6 Summary 

The Internet of Things is a new paradigm of internet computing that is rapidly expanding. 
This constant progress in IoT technology will be interwoven into our lives, changing the 
way we live and the way businesses operate. However, as the number of networked and 
computational devices grows, so does the potential danger and attack space. As a very 
large number of these computer devices are becoming more mobile and dispersed in 
their design, present security methods and technologies may need to be significantly 
improved. 

Because of the features and structure of IoT, attackers have more possibilities and a 
wider range of target systems to exploit. As a result, more complex tools and attacks will 
become accessible for attackers to use in order to carry out an attack. This will make 
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ensuring data security, privacy, and trust a difficult endeavour. As a result, new security 
techniques for information systems must be continually investigated and developed in 
order to enhance and assure the safety and security of the IoT environment.  

The attacks and threats that are relevant to this research are those that interrupt, 
degrade, deny, or destroy the IoT application's services. Denial-of-Service (DoS) attacks 
are the most widely utilized suite of attacks for the goal of disrupting and degrading 
systems. Because of the distributed nature of the IoT platform, the attacker can utilize 
it to carry out and even insert a distributed denial-of-service (DDoS) attack in the IoT 
application. The next section will provide a thorough study of the nature of DDoS attacks 
and their defence methods. 

 

2.3 Introduction to DDoS Attacks 

The first DoS attack on the public Internet occurred in August 1999 [1].  A year after the 
initial DoS event, in February 2000, a handful of commercial websites, including Yahoo, 
CNN, and eBay, saw their first DDoS attacks. A significant number of requests overloaded 
the websites, forcing the company's services to go offline, resulting in considerable 
financial losses. The July 4th, 2009 cyber-attack is a well-known example of a DDoS 
attack. [2]. In South Korea and the United States, prominent government, news media, 
and financial websites were targeted in a series of cyber-attacks. These assaults caused 
service interruptions and, in some cases, loss of millions of dollars each hour while 
companies scrambled to restore their internet services. 

In 2009, Forrester Consulting conducted a survey [22] to investigate DDoS threats and 
prevention in the United States and Europe. Four hundred IT decision-makers and 
security experts participated in the survey. These responses came from a wide range of 
industries and organizations that conduct business online or have invested heavily in 
their online brand and reputation. Online banking (e-Banking), e-commerce, online 
multimedia (news, video, and audio), and entertainment were all covered (online 
gaming). DDoS attacks have been demonstrated to be so common that they have risen 
to the top of the list of IT security concerns. In the preceding 12 months, over 75% of 
respondents indicated they had suffered one or more "targeted" DDoS attacks on their 
companies. 

According to the Forrester survey [22], many companies are concerned about the 
potential of DDoS attacks. Only a few businesses have dedicated DDoS defence systems 
in place, according to the survey. Those that tackled the DDoS issue discovered that the 
existing systems lacked the capacity and agility to neutralize assaults quickly before they 
reached the whole network. The inability of standard DDoS defence systems to properly 
and quickly protect networks may be ascribed to the DDoS terrain's exceptional and 
rapid changes. 

The nature of DDoS evolves over time as hackers update their attack tactics to 
circumvent current intrusion detection measures. DDoS assaults have grown larger and 
are stealthier, more targeted and smarter than ever before. Almost every day, new and 
sophisticated DDoS attacks with unknown motivations are launched (for social, political 
or criminal motives). The difficult task is thus to design adaptive DDoS defence measures 
capable of detecting large-scale attacks adequately and quickly. As a result, it is critical 
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to create security systems capable of detecting DDoS attacks accurately (with a low false 
alarm rate) and reliably (with low detection delay).  

 

2.4 DDoS Attacks Background 

A DoS attack is one that is intended to render a computer or network incapable of 
providing normal services to its legitimate users. It is the outcome of malicious activity 
carried out by an attacker with the goal of preventing or degrading a computer's or 
network's functions. The next section examines the features of DoS attacks as well as 
the tools used to coordinate these operations. 

 

2.4.1 Denial of Service (DoS) Attacks 

A DoS attack is a malicious attempt by an attacker to disrupt a service provider's online 
services, rendering them inaccessible to legitimate users [23, 24]. These attacks 
constitute a serious threat to the provision of internet services. The attack renders 
certain network services (such as the internet and email) inaccessible by depleting 
the resources such that the targeted service is no longer accessible to its authorized 
users. The DoS attack might be directed against computing resources such as the CPU 
or a network resource such as bandwidth. 

The first documented DoS attack occurred during the week of 1 February 2000[1]. This 
was a premeditated attack targeting e-commerce sites such as Amazon.com and 
eBay.com. These attacks employed computers in various locations to overwhelm the 
merchants' systems and prevent legitimate commercial traffic from reaching their 
websites. A DoS assault can cause anything from a slight increase in service response 
time to full inaccessibility, as well as financial consequences for organizations that rely 
significantly on the availability of their internet services.  

 

2.4.2 Distributed Denial of Service (DDoS) Attacks 

The Distributed Denial of Service (DDoS) attack is a large scale variant of DoS attack. To 
generate a large-scale DoS, the attacker employs a network of compromised machines 
(bots, zombies, slaves, or agents) to attack a single target-victim. The compromised 
machines will be infected (without the owner's knowledge) with a Trojan or backdoor 
application that will allow the attacker (bot-master) to take control of them. The master-
bot will direct all bots to flood the target system with a high number of false requests at 
the same time and repeatedly. This will eventually result in a DDoS attack on genuine 
users of the targeted victim's system. This is seen in Figure 1, which depicts a typical 
DDoS assault architecture. 
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Figure 1 A typical DDoS architecture 

 

A DDoS attack depletes the victim's essential resources. This is accomplished by 
initiating a high-rate flooding (HRF) attack on the target with a huge number of packets, 
therefore depleting the victim's available network or computer resources. The most 
popular HRF attacks include buffer overrun, ping of death (PoD), TCP SYN floods, UDP 
floods, smurf, Neptune, teardrop, and land. For example, in February 2000, Yahoo 
suffered a large advertising income loss as a result of a two-hour-long DDoS attack. In 
December 2000, financial institutions such as PayPal, Visa.com, and MasterCard.com 
were subjected to a DDoS flooding attack. In another case, 9 major US banks were 
constantly subjected to a series of DDoS flooding attacks as of September 2012 [2]. 

DDos attacks have been used by hackers for a long time, and their attack patterns have 
evolved significantly in order to circumvent existing defence systems. DDoS assaults 
have become more sophisticated, diverse, and unconnected, making them a significant 
concern. 

 

2.4.3 The Prevalence of DDoS Attacks 

According to Prolexic Technologies' Q4 2012 study [25] on Global DDoS assaults [25], 
there has been a general increase in DDoS tools and attacks. The majority of assaults 
were directed against critical infrastructure services with a high volume of online service 
rendering. Clients include those in the financial industry, e-commerce, software-as-a-
service (SaaS), and energy sectors, as well as government agencies. When compared to 
the fourth quarter of 2011, the overall number of new DDoS attacks grew by 19% in 
2012. When compared to the third quarter of the previous year, the average duration 
of a DDoS attack has increased from 19.2 hours to 32.2 hours.  

The capability and ubiquity of DDoS attacks stems from the fact that DDoS attacks 
primarily exploit the Internet infrastructure. The Internet was created with usability in 
mind, not security. The Internet is a straightforward network designed for packet 
forwarding. The Internet's design adheres to the end-to-end paradigm. The duty for 
establishing security features is left to the sender and receiver (end-users) of the two-
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way connection in this architecture. As a result, many security flaws have arisen, which 
have been exploited by attackers for DDoS assaults. According to the authors' work in 
[26] and [23], the following architectural flaws render the internet vulnerable to DDoS 
attacks: 

 Internet security is highly interdependent – Regardless of how secure the victim's 
system is, it is still vulnerable to a DDoS attack since it is dependent on the overall 
security of the worldwide Internet. 

 Internet resources are limited - Each internet system has a finite quantity of 
resources that can be utilized by a sufficient number of users. 

 Accountability is not enforced – IP spoofing allows attackers to carry out attacks 
while avoiding accountability for their activities. 

 Intelligence and resources are not collocated – The Internet's end-to-end 
communication architecture has minimized the amount of processing on the 
intermediate network, allowing packets to be sent effectively and at a low cost. 
The end host was in charge of ensuring intelligence for service. Meanwhile, 
research and the need for high throughput have resulted in the development of 
high bandwidth paths in the intermediate network. As a result, attackers are 
given the chance to take advantage of the plentiful resources on an innocent 
network in order to overwhelm a victim with malicious messages. 

 

2.4.4 Attackers’ Motives 

The motives for DDoS attacks vary and few researchers [27] have attempted to analyse 
and infer attacker motives in order to improve decision-making, risk-assessment and 
proactive cyber defence. The attacker's motive for launching DDoS attacks may then be 
divided into the five categories listed below [23]:  

 Financial/economic gain: These sorts of attacks are a big source of concern for 
businesses which conduct their operations online or have made a considerable 
investment in their online branding. This is mostly due to the fact that the 
attacker who conducts this sort of assault is the most technically advanced and 
experienced. These assaults are hazardous, difficult to detect, and difficult to 
stop. 

 Revenge: Typically, the root of an attack is frustration. Attackers in this group are 
likely to be persons with few technical abilities who carry out the attack in 
response to a rumoured suppression. 

 Ideological belief: Some attackers are driven by ideological beliefs. For example, 
the political motives behind DDoS attacks on the Wikileaks website. 

 Intellectual Challenge: This group of attackers consists of young hackers who are 
experimenting and learning how to carry out various sorts of attacks. 

 Cyber Warfare: Cyber warfare attackers are thought to be extremely hazardous, 
well-trained, and well-equipped. They are generally political in nature and are 
members of a military or terrorist organization. They target telecommunications 
companies, energy infrastructure, and financial institutions. These sorts of 
attacks devote the majority of their time and resources to disrupting services. 
This may cause a country's vital services to be disrupted, and as a result, the 
organization may incur significant economic losses. 
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2.4.5 DDoS Attack Classifications and Targets 

DDoS attacks have various outcomes and target different locations in a network; 
nevertheless, they always aim to disrupt and terminate a service of their targets. DDoS 
attacks might vary depending on their target. A DDoS attack against a network is distinct 
from an attack against an application. DDoS attacks have been described in a number of 
ways in literature [4, 23, 24, 26, 28-32]; DDoS assaults are classified in the surveys based 
on their target, degree of automation, exploited weakness, attack rate dynamics, and 
impact on the victim. The various categories are discussed in the subsections that follow 
[26]. 

2.4.5.1 Classification based on DDoS Attack Targets 

DDoS attacks can target many places in the communication channel's OSI model. The 
attack may have different consequences at each location, but the ultimate goal is to 
degrade and interrupt services for their intended consumers. DDoS targets are classified 
as either network-transport layer targets or application level targets. 

2.4.5.1.1 Network-Transport Level Targeting DDoS Attacks 
The volume of traffic supplied to the victim, rather than the substance of the packets, is 
the primary objective of Network/Transport layer DDoS attacks. They are aimed towards 
the OSI model's Network Layer (Layer 3) and Transport Layer (Layer 4). The goal of these 
attacks is to exhaust the target victim's incoming network capacity by delivering 
enormous numbers of packets. An attacker may also use IP address spoofing techniques 
to avoid detection. TCP SYN, UDP, and ICMP flooding attacks are examples of this sort 
of attack (discussed in a section that follows).  

2.4.5.1.2 Application Level Targeting DDoS Attacks 
DDoS attacks at the application level take advantage of a flaw in the design and 
implementation of the program running on the target victim system. They are not 
'volume-based' attacks and they often use less bandwidth. They employ low-rate attack 
methods to deny legitimate users access to the services supplied by the target victim 
computer. They employ 'apparently genuine' attack packets and are difficult to detect. 
The HTTP request attack and the DNS Amplification assault are two examples of these 
attacks. 

This research will look at the most frequent DDoS flooding attacks, in which the attacker 
tries to interrupt a legitimate user's connectivity by depleting bandwidth, router 
processing capacity, or network resources (network and transport layer flooding 
attacks). This study does not focus on attacks that exhaust server resources such as 
sockets, memory, and database bandwidth (application layer flooding attacks).  

2.4.5.2 Classification Based on Degree of Automation 

Attacks can also be categorised based on how automated they are. There are several 
ways for launching an HRF DDoS attack; they can be conducted manually through human 
coordination or automatically through the deployment of botnets [26]. 

2.4.5.2.1 Attack Coordination 
Manual Attacks: The first DDoS attacks were launched manually. This sort of attack 
necessitates extensive human cooperation in order to be effective against the target. 
The attacker will actively search for susceptible and compromised remote workstations 
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and break into them in order to install an attack code/program that will control the 
attack's initiation. The overall volume of traffic delivered to the target may crush its 
online services, depending on the number of computers engaged in the attack, their 
computing power, and the sophistication of the attack tool utilized. This attack 
technique was used in early DDoS attacks. This coordinating method, however, has 
become outdated due to the availability of powerful computers and rapid internet 
connections. 

Semi-automated and Automated Attacks: A master machine and agents (slave, daemon, 
and zombie) machines are used in these attack launch techniques. The installed attack 
code pre-programmes the attack's initiation, length, attack type, and victim. Because 
the attacker is only involved at the beginning of the recruiting process, he is exposed to 
the least amount of risk. 

Amplification and reflection-based attacks are the most often employed automated 
attack methods [2]. 

2.4.5.2.2 Attack Strategy 
Amplification-based Attacks: Attackers take advantage of the network services to allow 
them to generate multiple messages, for every message sent (Internet Control Message 
Protocol-ICMP Echo request), in order to amplify traffic towards the victim. In this attack 
mechanism, the amplification network is a network of host machines that enable IP 
broadcast messages. The broadcast message is sent using a spoofed IP address, and it 
triggers a response from every host machine in the amplification network directed 
towards the victim. This is depicted by Figure 2. 

 

Figure 2 Amplification-based Attack Mechanism 

 

Reflection-based attacks: A group of hosts (reflector network) are employed to launch 
this attack. A reflector is one that may send a reply message (SYN+ACK) to the packet's 
spoofed source IP address in response to an incoming message (e.g. SYN) (of the 
intended victim). Reflectors are often web servers and DNS servers. The reflection attack 
will cause a huge amount of network traffic to be directed towards the chosen victim. 
Figure 3 illustrates this. 
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Figure 3 Reflection-based DDoS Attack Mechanism 

 

2.4.5.2.3 Attack Components 
To coordinate a large-scale DDoS assault, reflection and amplification attack methods 
may be employed together. Botnets have long been utilized to engage in both reflection 
and amplification attacks. Botnets are made up of three components: masters, handlers, 
and bots [23, 26, 33]. Figure 4 illustrates the elements of a Botnet-based attack [2].  

 Masters (Attackers): These are attackers who transmit command and control 
instructions to both handlers and bots in order to launch and carry out an attack. 

 Handlers: Malicious applications known as handlers are installed on infected host 
PCs. Attackers (the master) employ handlers to interface with and control the 
bots indirectly. Attackers interface with handlers and bots through a variety of 
techniques, most recently Instant Messaging (IM) and Internet Relay Chat (IRC). 

 Bots: These are infected host machines with the malicious handler software 
installed. They will be the machines employed to carry out the large-scale 
coordinated attack. 

 

Figure 4 Elements of a Botnet 
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2.4.5.2.4 DDoS Attack Process 
The coordination and launch of a DDoS attack include numerous phases [23, 34].  

 Recruitment and Selection of Agents. In this phase, the attacker chooses the 
agents who will carry out the attack. This choice is made depending on the nature 
of the machine's current vulnerabilities. These devices have been hacked in 
order to be deployed as agents. Normally, these machines are leveraged for their 
considerable resources in order to produce a strong attack stream.  

 Compromise. The attacker installs the attack software by exploiting security 
weak points in the agent machines. The attack software must be installed in such 
a way that it can elude detection and removal (in the form of a Trojan, malware 
or virus). Except when utilizing a sophisticated defence mechanism (for example 
anti-virus and anti-malware software), it is typically impossible for the users and 
owners of the agent machines to understand that they are engaging in a DDoS 
attack system. In terms of processing power, memory, and bandwidth, the attack 
software utilized to infiltrate the agent computers are highly cost efficient. As a 
result, they have little effect on the system's performance. 

 Communication. The attacker interfaces with a broad range of handlers using 
different protocols such as ICMP, TCP, and UDP. In this interaction, the attacker 
wants to know which agents are operational, when to launch attacks, and when 
to upgrade the handlers. In recent years, the attacker and the agents have 
interacted using an online, multi-user messaging system known as the Internet 
Relay Chat (IRC) channels. The use of IRC channels for DDoS attacks has grown in 
popularity owing to three primary advantages: it gives a high level of anonymity, 
it is difficult to detect, and it provides a robust, assured delivery mechanism. 

 Attack. To begin the attack, the attacker sends a command. The victim, duration 
of the attack, and unique aspects of the attack, such as type, length, TTL, and 
port numbers, can all be customized. If there are significant differences in the 
characteristics of attack packets, it is advantageous to the attacker since it resists 
detection. 

 

2.4.5.3 Classification based on Exploited Vulnerability 

DDoS attacks leverage a variety of system vulnerabilities; nevertheless, categorization 
based on exploited vulnerability might be semantic or brute-force attacks. Semantic 
attacks use a specific feature or implementation fault of a protocol or program installed 
on the target to deplete an excessive amount of the victim's available resources. Brute-
force attacks can be used instead of semantic attacks. They are carried out by sending a 
large number of ostensibly valid packets to the target. Because the intermediary 
network can supply higher amounts of traffic than the victim can manage, this will 
gradually or instantly exhaust the victim's available resources.  

There is a significant distinction between semantic and brute-force assaults. They both 
deplete the victim's limited resources. The distinction is that a victim can significantly 
reduce the impact of a semantic attack by changing the exploited protocol or using 
proxies. In a brute-force attack, the victim may be powerless to stop the attack. An 
attacker would typically decide to employ a brute-force technique if a victim mitigates 
a semantic attack by changing an exploited protocol or implementing proxies. 
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2.4.5.4 Classification based on DDoS Attack Rate Dynamics 

DDoS attacks may be categorized depending on attack rate dynamics: constant rate 
attacks and variable rate attacks. This classification is explained further below. 

2.4.5.4.1 Constant Rate Attacks 
This format is used by a large number of attacks. Attack packets from the attack agents 
are sent at a steady and consistent pace in this type of attack and from the start of the 
attack. The agent machines create attack packets leveraging all available resources at 
the same time, with no breaks or variations in attack rate. The effect of such an attack 
on a person is immediate, constant, and unexpected. 

2.4.5.4.2 Variable Rate Attacks 
Variable rate attacks do not employ an instantaneous offensive tactic. Their attack tactic 
has a variable rate of occurrence. They are able to evade detection in this manner. 
Variable rate attacks can modify a defence mechanism training model in such a way that 
it avoids detection. Variable rate attacks can be further classified as increasing rate 
attacks or fluctuating rate attacks.  

Increasing rate attacks begin with a modest rate of attack and steadily grow until all 
resources are depleted. This approach postpones discovery of the attack by gradually 
diminishing the victim's services over time. Fluctuating rate attacks change their attack 
rate dependent on the victim's behaviour and response to the attack. In this type of 
assault, the victim will experience intermittent service disruptions since the attacker 
may sometimes alleviate the attack impact from the victims in order to avoid detection. 

2.4.5.5 Classification based on DDoS Attack Impact on Victim 

A DDoS assault can have two effects on a victim. The effect might be disruptive or 
deteriorating. A disruptive attack is one that causes the victim's resources to be 
completely depleted, preventing service to the victim's clients. This category contains 
the vast majority of attacks. A degrading attack is one that depletes the victim's 
resources. The attack will slow down the victim's services, preventing genuine users 
from accessing them. Because the attack does not completely interrupt service, it can 
go unnoticed for a long time. 

 

2.4.6 Common Types of DDoS Attacks 

According to a Kaspersky Lab [35] 2020 second quarter report, the most prevalent 
attacks were TCP SYN flood, HTTP flood, UDP flood, and ICMP flood. These most 
prevalent forms of flooding attacks are detailed in the subsections that follow. 

2.4.6.1 TCP SYN Flooding Attacks 

TCP SYN flooding is a type of network layer flooding assault that is one of the most 
popular and potent flooding tactics. It makes use of the flaws in the TCP three-way 
handshake; this is illustrated by Figure 5 below. In a typical TCP connection, the client 
requests a connection by sending a SYN packet to the server. The server will start a 
connection session and respond with a SYN ACK packet upon receiving the connection 
request; by doing so, the server saves information of the desired TCP connection in the 
memory stack and assigns resources to this open session [23].  
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The connection is still half-open, i.e. in the SYN RECVD state. The client must confirm the 
connection and respond with an ACK packet to complete the three-way handshake with 
the server. The server will then examine the memory stack for an existing connection 
request before moving the TCP connection from the SYN RECVD to the ESTABLISHED 
state. If no ACK packet is provided within a certain amount of time, the connection will 
timeout, releasing the assigned resources [34].  

 

 

Figure 5 TCP Three-way Handshake 

The attacker sends a large number of SYN packets to the target server in a TCP SYN 
flooding attack. These packets typically include spoofed IP addresses, which are IP 
addresses that are either non-existent or are not in use. TCP SYN floods can also be 
launched from compromised computers with valid IP addresses; however, the machines 
must be configured so that they do not react to or acknowledge a SYN ACK packet from 
the target server. As a result, the server will not receive any ACK packets from clients in 
response to the ‘half-open' connection request.  

During a high-rate flooding attack, the server will keep a significant volume of unfinished 
three-way handshakes and assign resources to fake connection requests for a length of 
time. The server will continue to receive fake requests until its resources are depleted. 
This will prohibit the server from processing new requests as well as genuine client 
requests [36].  

2.4.6.2 HTTP Flooding Attacks 

HTTP flooding is an example of a high rate flooding attack that targets the application 
layer. The attacker employs a massive army of compromised computers and botnets to 
send a high volume of ostensibly valid HTTP requests (GET and POST) to the target server 
for a web page or a huge file. To fulfil this request, the server may dedicate substantial 
resources in the CPU, memory, and bandwidth. An attacker's HTTP requests may 
masquerade as legitimate requests. As a result, the server will treat them as usual, 
making them exceedingly difficult to filter and eventually exhausting the server's 
resources [2].  
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2.4.6.3 UDP Flooding Attacks 

A UDP Flooding attack sends a large number of UDP packets to the victim system. The 
attacker employs a large number of bots and agents to saturate the victim system's 
network and use up all of its available bandwidth for legitimate service requests. To send 
UDP packets to the victim, the attacker typically employs bots and agents with spoofed 
IP addresses.  

When the packet is received by the victim system, it determines which program is 
supposed to be waiting on the destination port. When it detects that no application is 
listening on the port, it will send a “destination unreachable” packet to the faked source 
address. The system will be saturated with an army of bots and a huge number of UDP 
packets transmitted to the victim's ports [36].  

2.4.6.4 ICMP Flooding Attack 

The Internet Control Message Protocol is used in this type of flooding attack (ICMP). A 
user computer can utilize the protocol to transmit an ICMP ECHO REPLY packet (also 
known as a "ping" message) to a target host or remote server. This is done to test the 
host's reachability and to assess the roundtrip time of the message delivered back to the 
user computer. If the destination host can be reached, a response will be returned to 
the user computer. Response packets will provide statistical information such as the 
packet roundtrip’s minimum, maximum, mean, and standard deviation. The target host 
uses its CPU (Central Processing Unit) and network resources to create a response 
packet [36]. 

The attacker employs an army of bots and agents with spoofed IP addresses in an ICMP 
flooding attack. The bots will send ICMP ECHO REPLY packets to the intended victim 
frequently and simultaneously. The victim's packet request response (to a spoofed IP 
address) has the effect of overburdening the victim's CPU and network resources [23].  

 

2.4.7 Commonly Used DDoS Tools 

DDoS attackers have access to a number of well-known DDoS tools. The literature has a 
comprehensive list of DDoS tools [23, 34, 37-41]. In architecture and design, these tools 
are similar to some extent. Some tools are hacker adaptations and enhancements to 
existing attack tools. This section examines the most prevalent DDoS tools employed by 
hackers. 

2.4.7.1 Trinoo 

Trinoo [42, 43] is a popular and extensively used hacking tool among hackers. It is a 
bandwidth depletion tool that is used to execute coordinated UDP flood assaults against 
a single or many IP addresses. The program employs fixed-size UDP packets that are 
delivered at random to the target machine's ports. It secures the communication 
channel through encryption and password protection. Trinoo does not allow source IP 
address spoofing by default, however it may be changed to support source IP spoofing.  

2.4.7.2 Tribe Flood Network (TFN) 

Another widely distributed and utilized DDoS attack tool is Tribe Flood Network (TFN) 
[44]. It is used to conduct coordinated UDP flooding attacks, TCP SYN flooding attacks, 
ICMP echo request flooding attacks, and directed ICMP flooding attacks. TFN may launch 
attacks against one or more target IP addresses. It is unable to encrypt the 
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communication route between attack components, making detection possible. It has 
the ability to generate spoofed source IP addresses. 

2.4.7.3 TFN2K 

The TFN2K [45] is a more sophisticated TFN version. It is constructed using the TFN 
architecture. The TFN2K is an improvement on the TFN, with characteristics developed 
particularly to make its traffic harder to detect and filter. It allows remote command 
execution and hides the real source of the attack by spoofing IP addresses. TFN2K traffic 
is routed through a variety of transport protocols, including UDP, TCP, and ICMP. Attacks 
entail flooding the victim's system and crashing or destabilizing it by delivering 
erroneous or invalid packets, such as those used in the Teardrop and Land attacks. 
TFN2K interfaces using the master-agent architecture, and all communications between 
the master and the agent are encrypted. 

2.4.7.4 Stacheldraht 

Stacheldraht [45] (a German term for ‘barbed wire’) is an attack tool that combines 
characteristics from the TFN and Trinoo attack tools. It eliminates some of the TFN's 
flaws and integrates the Trinoo's handler/agent feature. It is capable of conducting 
agent updates automatically. Stacheldraht additionally supports a secure telnet 
connection between the attacker and handler computers using symmetric key 
encryption. This aids in evading detection. The attack tools may carry out attacks such 
as UDP floods, TCP SYN floods, and ICMP echo request floods. 

2.4.7.5 Mstream 

Mstream [46] is a simple point-to-point attack program that sends TCP ACK Floods to its 
target. To attack the target, it sends spoofed TCP packets with the ACK flag set. It 
communicates between the master and the agent using UDP/TCP packets over an 
unencrypted telnet communication channel. 

2.4.7.6 Shaft 

Shaft [47] is based on the Trinoo attack tool and has a similar design (agent/handler). An 
unencrypted telnet connection is used by the handler to interact with the agent. It 
employs faked source IP addresses and has the capacity to change IP addresses in real 
time during an attack. It also has the capability of supplying the attacker with statistical 
information about the initiated flood attack. These statistics let the attacker determine 
when the victim's system is saturated. It is capable of carrying out UDP, ICMP, and TCP 
flooding attacks.  

2.4.7.7 Trinity v3 

Trinity v3 [48] is an advanced attack tool capable of conducting different sorts of 
flooding attacks against a victim system. UDP, TCP SYN, and other flooding attacks are 
among those that may be launched. It establishes a link between the handler and the 
agent through the IRC communication channel.  

2.4.7.8 Knight  

The Knight is a small yet strong IRC-based DDoS attack tool. The program can conduct 
TCP SYN attacks as well as UDP flooding attacks. It is intended to operate on Windows 
operating systems and is generally deployed through the use of a Trojan horse 
application known as Back Orifice. 
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2.4.7.9 Low Orbit Ion Cannon (LOIC) 

The Low Orbit Ion Cannon (LOIC) [49] is an attack tool that uses IRC. It has the ability to 
launch UDP floods, TCP floods, and HTTP floods. It is accessible in binary and web-based 
formats. 

 

2.5 DDoS Defence Mechanisms 

The nature of DDoS evolves over time as hackers modify their attack tactics to 
circumvent current intrusion detection measures. DDoS assaults have grown larger, are 
stealthier, more targeted, and smarter than ever before. Almost every day, new and 
sophisticated DDoS attacks with unknown intentions are launched (be it social, political 
or criminal motives). The difficult job is thus to create adaptive DDoS defence measures 
capable of detecting large-scale attacks adequately and quickly. To do this, one must 
first learn how a technique is created and implemented. We ask the following questions 
in this section: 

 Where is the attack detected? 

 What is the response mechanism? 

 How is the attack detected? 

 

2.5.1 Classification based on Defence Points (or Defence Location) 

It is critical to comprehend and recognize the point or location at which a defence 
mechanism is activated. A defence mechanism can be installed at the victim, source, or 
intermediary network. Each deployment site has benefits and drawbacks. DDoS attacks 
can be detected throughout the way between the target (attack victim) and the source 
of the attack. Because all traffic packets may be viewed at the target, detecting a DDoS 
assault might be comparably easy. In contrast, it is difficult for a single source network 
to identify an attack unless the majority or all attacks are launched from that source 
network. Although it would be preferable to detect an attack closer to its source, there 
is a trade-off between detection accuracy and the detection mechanism's closeness to 
the attack source. The next section examines the benefits and drawbacks of the three 
lines of defence.  

2.5.1.1 Victim-end Defence Mechanism 

Victim-end defence systems identify the attack at its target. Historically, most defence 
mechanisms were meant to function at the victim-end since the victim is the one who 
suffers the consequences of the attack. These methods are deployed at the target ISP's 
edge outside or access router. They may simulate the behaviour of the victim's network 
traffic and therefore distinguish attack activity from normal traffic. The authors 
suggested architectures and systems for victim-end defence mechanisms in [50-56]. 

2.5.1.2 Source-end Defence Mechanism 

Source-end defence systems identify attacks at the source in order to prevent an ISP's 
clients from participating in a large-scale DDoS attack. These methods might be 
deployed on the routers of the source network or on the access and edge routers of the 
ISP. The optimum point of defence is the source-end defence point because it is close to 
the source of the attack; the mechanisms can ease a trace back in an examination of the 
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attack and reduce the damage caused by the attack. Detecting attacks at their source 
has advantages; nevertheless, distinguishing genuine traffic from attack traffic at the 
source might be difficult for a variety of reasons [2]: 

 As sources are scattered across domains, it is difficult for a single source to 
identify an assault properly. 

 Also because the volume of traffic at the source is insufficient, distinguishing 
between genuine and attack traffic may be difficult. 

 While source-end defence measures prohibit the source network from taking 
part in a DDoS attack, the advantage is mostly for the potential victim and not 
fully for the source network. As a result of the high cost of deploying these 
systems, there is little incentive to do so.  

In the literature, many source-end defence mechanisms have been proposed [36, 50, 
57, 58]. 

2.5.1.3 Intermediate Network Defence Mechanism 

In most cases, intermediate network defence measures are deployed on an ISP's core 
routers. They are more effective than victim-end defence mechanisms because they can 
reduce the victim's impact on the attack. The core routers filter and rate-limit the traffic 
that passes through them separately. However, because core routers process highly 
aggregated and huge quantities of data, they are unable to detect and filter for every 
potential victim. Core routers will need a lot of storage and processing power to be able 
to distinguish between attacks in the intermediate network, because these routers 
handle a lot of data. As a result, intermediary network defence measures have the 
problem of properly distinguishing between attack and legitimate traffic. Zhang et al. 
developed an architecture for attack detection in the intermediate network in [59]. 

 

2.5.2 Defence Approaches and Strategies (Point in time defence) 

Defence techniques may be roughly categorized into three kinds based on reaction time, 
namely Prevention Approaches, Survival Approaches, and Responsive Approaches, 
which are addressed in the paragraph that follows. 

2.5.2.1 Prevention Approaches (Proactive Strategies) – Before the attack 

The best method to defend against a DDoS attack is to prevent it from happening in the 
first place. As a result, the goal of these techniques is to identify attacks and thwart 
attackers' attempts before they reach the target machine. With this method, the person 
is unaware that they are being attacked. Routers play a critical role in these techniques 
by detecting and filtering attack traffic before it reaches the target. These are routers 
that are closer to the source of the traffic (attack), core routers, or end-routers that are 
closer to the target computer. Routers use methods to identify and filter harmful traffic 
from legal traffic. The following are some of the specific methods: 

Ingress/Egress Filtering [50]. This is a filtering method used to block attack packets 
before they reach the target system. Ingress filtering is a technique that prevents 
inbound packets from illegal and spoofed IP address sources from accessing the 
network. This method can greatly minimize DDoS assaults by discarding packets from 
questionable IP addresses. It does, however, occasionally lose valid packets. Egress 
filtering is a similar process to Ingress, except it is concerned with outgoing-outbound 
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packets. It guarantees that traffic packets only originate from IP address space that has 
previously been assigned. The Egress filtering approach does not defend the network 
against attacks in particular, but it does prevent the domain network from participating 
in a DDoS attack on other domains.  

Route-based distributed packet filtering [53]. This filtering method extends the Ingress 
filtering function to internet core routers. The method filters spoofed IP packets using 
routing information. This method can filter a significant number of spoofed IP packets 
at the border router before they reach the target network.  

Disabling Unused Services [51]. Attackers may utilize unused services to launch a fully-
fledged DDoS attack. UDP echo, ping, and IP broadcast services are a few examples. As 
a result, it is critical that any unnecessary services be removed from the network. 

Beaver [54]. This is a defensive mechanism added to the application and session levels. 
To safeguard network services, it employs authentication and cryptography techniques. 
Authors in [60] implemented this method in client-server services, together with public 
and private keys, to reduce network traffic. The client must be registered with the 
Admission Server in order to initiate a communication session with a device on the 
server. By preventing non-registered devices from connecting the server, this approach 
is thought to prevent anomalous and attack traffic from reaching the network.  

History-based Filtering. This technique to DDoS attack avoidance was presented by Peng 
et al [27]. The edge router maintains a database of IP addresses based on past 
connection history in this method. Incoming packets with a source address that matches 
an IP address in the database will be allowed.  

Secure Overlay Services (SOS) [61]. This method is a distributed system that needs target 
systems to alter their design in order to provide DDoS prevention. In this design, a client 
must be authenticated with one of the SOAP (Service Overlay Access Points) nodes in 
order to obtain access. This gives the client access to the overlay network, which filters 
out all other unauthenticated traffic packets. The overlay network filters genuine traffic 
using servlets, and the target system will only accept traffic packets from the small 
number of servlet nodes.  

Puzzling Mechanisms. OverDose [62] is a technique that employs a unique 
computational perplexing architecture to block DDoS attacks before they reach the 
target network. Between the clients and the server in this network is a series of overlay 
nodes. To connect, the client selects one of the overlay nodes and requests a 
connection. The overlay node will react with a computational perplexing challenge that 
the requesting client must solve. Once the solution has been confirmed, the connection 
request is sent to the server. Cookies and flow specifications will be returned by the 
server. The overlay nodes enforce the flow requirements as a set of rules that govern 
the established connection between the client and the server. 

 

Table 1 Advantages and disadvantages of prevention approaches 

Advantages Disadvantages 
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 Effective in such a way that the 
victims are unaware that they are 
being attacked. 

 They are simple to deploy since 
the ISP is aware of the address 
space given to each client. 

 Filtering may be carried out 
depending on a variety of 
parameters, such as IP address, 
protocol type, port number, and 
so on. 

 It drastically reduces spoofed IP 
addresses before they reach the 
intended victim. 

 Filtering methods can prevent 
attack traffic from entering the 
source network. 

 More accurate attack signatures 
may be created with ISP 
participation. As a result, the false 
positive rate will be reduced. 

 The majority of the approaches 
may be used effectively with 
widespread deployment and 
coordination with other ISPs. 

 Attackers generate attacks using 
technologies that allow them to 
use non-spoofed IP addresses. 

 Some implementations may 
benefit the ISP but degrade 
network performance. 

 Some techniques provide no 
advantage to the deployed ISP but 
may prohibit them from engaging 
in a DDoS attack. 

 The majority of these techniques 
have a high false positive rate, 
which causes genuine traffic 
packets to be deleted from the 
network. 

 An attacker may be able to 
understand the preventive 
strategy and create techniques to 
defeat it. 

 

2.5.2.2 Responsive Techniques (Reactive Strategies) – During the Attack 

When an ISP experiences a DDoS attack on its services, it will implement (invoke) a 
detection and mitigation mechanism. The invoked process is intended to aid in the 
control of attack traffic flow by tracking and finding the source of the attack and filtering 
traffic based on the discovered source. The majority of DDoS defence methods fall into 
this category [63], and the most common are discussed below.  

Pushback Technique. A local Aggregate Congestion Control (ACC) detects congestion and 
creates an attack signature that may be utilized for router filtering at the router level. 
The signature defines a traffic aggregate for a collection of traffic flows having 
comparable characteristics. Given the established signature, a suitable rate limit for the 
ACC, which is shared by nearby routers, is also specified. If a router becomes congested, 
a rate limit request is issued to the neighbouring router in order to rate restricted traffic 
that fits the ACC's signature; this request is also broadcast to all upstream neighbouring 
routers [64, 65].  

Hop Count Packet Filtering (HCF). This method, proposed in [52, 66], is based on 
determining the time-to-live (TTL) value of packets. When a packet is transmitted to the 
target, it is launched with a TTL value from the sender (typical values: 30, 32, 60, 64, 128 
and 255). The victim guesses the packet's initial TTL value when it was launched. The 
hop count is calculated by the difference between the original and current TTL values. 
When the victim is not under attack, a database of the most frequent genuine users and 
their hop count is produced. During an attack, however, spoofed packets are ones that 
are not saved in the database and have a hop count that does not match their 
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appropriate launch address. It is difficult for an attacker to predict the TTL value of a 
forged packet in order to overcome the filtering mechanism using this technique.  

K-Max-Min. This technique, proposed in [67, 68] in which a DDoS attack is treated as a 
resource management challenge. This is a more advanced variant of the Pushback 
method. The recommended approach is to spread the victim's congested bandwidth 
resources among the level-k routers. Level-k routers are those that are directly linked to 
the host but are either k-hops or fewer than k-hops from the destination. To divide the 
congested bandwidth across the level-k routers, several approaches are deployed. 

IP Traceback. These approaches are used to determine the real source of the assault [69, 
70]. Because an assault consists of a large number of zombie computers with faked IP 
addresses, utilizing IP addresses to track the real location of the attacker machine may 
be ineffective. As a result, several trace back approaches, such as link testing [57, 71]; 
Probabilistic Packet Marking (PPM) [72, 73]; and Algebraic based trace back techniques 
[74], have been suggested. 

 

Table 2 Advantages and disadvantages of responsive techniques 

Advantages Disadvantages 

 The method works with routers 
near to the victim server. As a 
result, they can precisely filter 
attack packets. 

 They can successfully identify the 
edge network holding the DDoS 
sources. 

 When attacker machines are 
collected in close proximity, they 
may successfully mitigate DDoS 
attacks. 

 They are easy, lightweight, and 
inexpensive to deploy for DDoS 
prevention on a network. 

 Rate-limiting methods used during 
an attack may have a significant 
impact on genuine traffic. 

 For these approaches to be 
extremely effective, they must be 
widely deployed on the internet 
and supported by ISP 
collaboration. This results in 
significant implementation costs. 

 A large number of zombie 
computers with faked IP addresses 
can be used by an attacker, as can 
a reflector attack using genuine IP 
addresses. As a result, the trace 
back approach is rendered useless 
since the true source of the attack 
cannot be identified. 

 

2.5.2.3 Survival Techniques (Survival Strategies) After the Attack 

An ISP that employs survival tactics will acquire and deploy equipment and systems to 
increase their resources in the event of a DDoS attack [26]. More resources, such as CPU 
power, memory, and bandwidth, are obtained statically or dynamically with this 
method, allowing services to be duplicated.  

During an attack, the expanded resource pool provides the ISP with enough resources 
to service both legal and malicious packet requests. This guarantees that genuine users 
may continue to utilize the service even if the ISP is under attack. The replication 
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technique allows the ISP to successfully defend static services but not dynamic services 
from an attack. However, because dynamic services are targets for attackers, the 
replication method is no longer useful for DDoS defence.  

The success of this approach is determined by whether the increased resources 
outnumber the assault traffic volume. This may be difficult to do since an attacker can 
recruit thousands of zombie machines to assist them in continuing the attack and 
potentially depleting the increased victim resources. 

 

Table 3 Advantages and disadvantages of survival approaches 

Advantages Disadvantages 

 To deal with a DDoS attack, more 
resources are made accessible. 

 Even when the service is under 
assault, genuine users can still 
access it. 

 Strengthens resilience against 
DDoS attacks. 

 Provides effective DDoS 
protection and load balancing for 
static internet content. 

 Not all services can be replicated. 

 Replication for some services may 
need a significant amount of time 
and money, and the approach is 
costly to deploy. 

 They defend victims against small-
scale attacks, but they cannot 
deflect large-scale attacks. 

 May be ineffective if an attacker 
generates more traffic than the 
enhanced capacity of the 
resources. 

 

Given that acquiring more devices to extend network resources may be insufficient in 
the face of a large-scale DDoS attack, the victim may need to implement augmenting 
defence methods. These defence systems must detect and identify the source of the 
attack, as well as implement reaction methods. Because DDoS attacks cannot be entirely 
avoided or halted, most DDoS response tactics nowadays are aimed at reducing the 
impact of the attack on the target. Following the detection of an attack, there are two 
more phases in the defence process. These phases are attack source detection and 
attack defence reaction, which are described further below.  

Techniques for identifying the source of an attack have been presented in the literature 
[69, 70, 72, 74-78]. They attempt to determine the origin of the attack. Some approaches 
seek to address the issue of spoofing IP addresses. These trace back techniques detect 
the attack source by traversing all routers in reverse order from the victim to the source, 
distinguishing between valid routes and packets and illegitimate ones. 

Attack Defence Reaction is a stage in the defence against DDoS attacks that is intended 
to launch an appropriate response to the attack upon identifying its source. Throttling 
(rate limitation) and packet filtering are the most frequent response mechanisms. 
Various throttling or rate-limiting strategies [54, 55, 79-82] and packet filtering 
approaches [64, 68, 79, 83, 84] have been suggested in the literature. 
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2.6 Summary 

This chapter began with outlining society's widespread use of the Internet of Things (IoT) 
and how it helps society. It went on to investigate the key properties of IoT technology, 
as well as how attackers are exploiting these qualities to leverage it as a platform for 
distributing stealthier attacks. The chapter also included background information on 
DDoS attacks as well as the motives for attackers to conduct a DDoS attack. We also 
investigated DDoS attack categories based on their targets, the most prevalent types of 
DDoS attacks, and the most popular tools used by attackers to begin an attack. We 
carried out further investigations into the methods and techniques used by 
organizations to protect against DDoS attacks, as well as their classifications, benefits, 
and drawbacks. 

The next part searches the literature for relevant detection techniques and algorithms 
that have been effectively implemented and incorporated into Network Intrusion 
Detection Systems (NIDS). These are entropy-based detection approaches and 
algorithms, as well as change-point detection, artificial neural networks, and deep 
learning techniques.  
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Chapter 3:  Literature Review 

3.1 Introduction 

A Network Intrusion Detection System (NIDS) is a hardware or software program that 
monitors aberrant network traffic patterns or patterns that violate network protocols. 
Several Network Intrusion Detection Systems now include intrusion detection 
methodologies (NIDS) [85-89]. Signature-based NIDS and anomaly-based NIDS are the 
two forms of NIDS classifications. Signature-based detection systems try to create a 
collection of templates (signatures or rules) that may be used to determine if a particular 
network traffic pattern represents an intruder. If the attack falls into one of the attack 
classes specified in the database, it can be effectively detected or recognized. As a result, 
signature-based systems are capable of detecting intrusions with high accuracy and a 
low number of false positives. Signature-based detection, on the other hand, fails to 
detect novel attacks or variations of existing attacks [90].  

The limitations of signature-based intrusion detection motivated the development of 
anomaly-based NIDS. Anomaly-based intrusion detection systems (ABIDS) are 
concerned with detecting occurrences that appear to be out of the ordinary in terms of 
system behaviour. When a divergence from regular traffic behaviour is noticed, an 
attack is reported. 

Because signature-based NIDS look for known intrusions, whereas anomaly-based NIDS 
look for unexpected or suspicious patterns in network performance and behaviour, they 
are complimentary in their application. Since anomaly-based NIDS may identify both 
known and unknown attacks, the intrusion detection research community has focused 
on enhancing their performance (i.e. detection rate and detection latency) in recent 
years [34]. As a result, ABIDS are relevant in our planned investigation. 

Anomaly-based network intrusion detection systems seek to discriminate between 
regular network activity and abnormal network activity. This is accomplished by 
developing the system's normal profile based on previous data and monitoring for 
substantial departures from normal profile activities. Sudden variations in network 
traffic might be detected during a DDoS attack. Similarly, there is a sudden shift in the 
statistical characteristics of detection parameters. As a result, the challenge of anomaly 
detection may be modelled as a change point detection problem [91, 92]. 

Several strategies for defending against DDoS attacks have been developed over the last 
decade, but early and effective detection of DDoS attacks has remained a difficult 
problem. As a result, the development of systems for detecting DDoS attacks in a timely 
and effective manner remains an important field of study. It is critical to create ways for 
properly detecting an attack sooner, so that corrective steps may be performed before 
severe damage is incurred.  

For accurate detection, well-known and proven defence solutions are built on 
algorithms based on entropy, change point, neural network, and deep learning 
approaches. The next section will search the literature for noteworthy studies 
conducted by other researchers in these disciplines. 
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3.2 Change Point Statistical Techniques 

In the event of a DDoS attack, abrupt changes in network traffic data may be detected. 
Similarly, an abrupt change in statistical properties of detection parameters will be 
observed. Entropy in network traffic captures the abnormal distributional changes in 
traffic features in a single value, where adequate measurements of the changes in value 
will clearly identify the network anomalies. Entropy is used to accumulate useful 
features for distinguishing between attack and non-attack traffic. Entropy-based 
techniques are typically developed by applying the entropy metric to raw traffic data. 
For example, raw traffic data may include source and destination IP addresses as well as 
destination port numbers. Entropy can summarize the amount of traffic data within a 
given time bin as compared to a number of time bins. A high entropy measure of 
measured traffic data indicates a high variance, while a low entropy measure indicates 
a low variation in traffic data trends [93]. 

Entropy-based techniques for DDoS detection are commonly based on the Shannon 
[94], Tsallis [95] and Renyi [96] entropies. The Shannon entropy was developed to 
measure information gain and reduce ambiguity in communication. It has commonly 
been used to categorize network traffic anomalies and is defined by the equation below: 

H(X) = − ∑ P(xi) log2 P(xi)

N

i=1

 

Where X = x1, … , xn is a finite set and each element has a probability of 𝑃(xi).  

 

The Shannon entropy equation was generalized in [96] to produce the Renyi entropy, 
and the Tsallis entropy in [95] is likewise a one-parameter generalisation of the Shannon 
entropy. More variants of the entropy measure have been developed, and we 
investigate significant uses of these approaches in the realm of DDoS attack detection. 

Li et al. [97] proposed a technique for identifying DDoS assaults based on the generalised 
Renyi entropy. The technique examines variations in probability distribution changes 
over a particular time period for both the source IP address-based method and the IP 
packet size-based method. Then, rather than utilizing an a priori threshold value, it 
determines the change in information entropy value trends over a certain time frame. 
A trend is characterized as anomalous if there are substantial fluctuations in the 
information entropy values over a lengthy period of time. Experiments show that the 
Renyi entropy metric, as opposed to the traditional Shannon entropy meter, reduces 
both false positive and false negative rates.  

Qi et al. [98]  presented a new hierarchical entropy-based DoS detection methodology. 
The model is premised on the principle of "alive" communication and combines netflow 
conversation association features with the complicated entropy model. The authors 
generate “alive” network states by computing the request-to-response ratio in netflow. 
Their investigations indicate that dynamic entropy remains constant under normal 
traffic circumstances. However, it varies significantly during a DoS attack. The dynamic 
and static entropy shift rates were studied in anomaly detection, and it was revealed 
that the dynamic entropy technique is more robust and can forecast unexpected DoS 
attacks. The research does not indicate if the system was evaluated on a distributed or 
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large-scale DoS model, whether it was tested on low-rate DDoS attacks, or whether 
detection delay was recorded. 

For anomaly detection, the work of Gu et al [99] employs maximum entropy calculation 
and relative entropy. Two-dimensional packet groups were created for network packets. 
First, packets are organized according to packet protocol, and then packets are 
organized by destination port number. The authors generate a baseline distribution and 
the relative entropy of normal network traffic performance using feature selection and 
parameter estimation. The procedure demonstrated a high accuracy rate with low false 
positive and false negative rates; however, it demands a large amount of memory and 
processing time and therefore cannot be done in real time. 

Xinlei Ma et al. [100] illustrated a DDoS detection system that makes use of the Tsallis 
entropy and a variant of the Lyapunov exponent. The Tsallis entropy measures variations 
in the distribution of source and destination IP addresses. The Lyapunov Exponent 
variance quantifies the exponent distinction of the source and destination IP address 
entropies. The source and destination IP addresses will have equal entropy values over 
the same time period. The experimental findings reported a high true positive rate and 
a low false positive rate in detecting DDoS attacks; no comparisons with other datasets 
were made. 

 The work of Zhang et al. [101] detects low-rate DoS attacks and flash crowd events using 
an advanced entropy-based tool. To differentiate typical traffic from DoS attacks and 
Flash crowd incidents, the method employs the Shannon entropy at three levels of 
adaptive threshold. Each adaptive threshold value is modified and tailored on a regular 
basis to the current network conditions. While this approach produced reliable results, 
it requires significantly more computational resources than current DDoS attack 
detection systems. 

Xiang et al. [102] introduced a generalized entropy and a generalized information 
distance metric to differentiate between low-rate DDoS attacks and normal traffic. The 
approach calculates the information distance between valid traffic and low-rate attack 
traffic using packet header features such as source IP, destination IP, and protocol type. 
As compared to the current Shannon entropy and KL divergence metrics, the algorithm 
detects low-rate DDoS with a lower false positive rate. The researchers, however, did 
not consider the detection of high and low rate DDoS attacks, and they did not report 
on the algorithm's success in terms of detection delay. 

Bhuyan et al. [103] created an expanded entropy metric based on packet header 
features. This is a development on the work by authors in [102]. In order to detect high-
rate DDoS attacks, the method computes the entropy difference between the source IP 
and the incoming packet rate. To detect high-rate DDoS attacks, the algorithm employs 
a split window size sampling approach and three kinds of expanded entropy 
functionality, including the source IP address. The method demonstrated high accuracy 
in identifying four types of DDoS attacks: persistent, pulsing, increasing, and dynamic. 
However, this method has not been tested against DDoS attacks with low-intensity 
attack traffic.  

Mousavi et al. [104] devised an early warning system for DDoS attacks. To detect attack 
traffic, the method evaluates the destination IP address entropy of incoming packets 
within a given time frame. The authors choose a time window size of 50 packets to 
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reduce the amount of computing required for each time window. The detection 
methods begin by defining a standard traffic flow entropy value as a baseline. A DDoS 
attack is considered present in the network if the destination IP address entropy falls 
below the threshold five times in a row. The authors discovered that this approach 
would detect DDoS attacks as soon as the first 250 attack packets arrive. The system 
yielded a detection rate of 100%. It can, however, not be suitable for detecting low-rate 
DDoS attacks. Furthermore, the system computes the baseline threshold value at the 
start, but network traffic flows change often, necessitating a more constructive or 
continuous method of computing the baseline entropy threshold. 

We found that the entropy approaches are more effective with acquiring the detailed 
distributions and patterns that typical volume-based techniques cannot acquire. 
Entropy calculations are flexible and can be implemented across a number of network 
traffic features, like IP address, ports, protocol, network flows, and number of packets. 
The main advantage of using entropy-based techniques is for their low computational 
overheads. However, they have a few limitations. Entropy-based detection techniques 
compute and detect unexpected changes in distribution probability of network traffic 
data [105]. This change is represented using a single value and researchers are 
concerned that some information about the distribution change may be lost [106]. In 
some cases the anomaly may be concealed and go undetected [3].  

Change-point challenges are concerned with the identification of changes in the 
statistical behaviour of operations. This problem has a wide range of important 
applications, including biomedical signal and image processing, financial markets, 
anomaly and intrusion detection in communication and information systems, detection 
of the beginning of an infectious disease outbreak, surveillance systems, econometrics, 
and seismology, to name a few [107]. 

The aim of change detection techniques is to help detect a change in statistical 
properties of observed parameters with minimal detection delay and false positive rate 
[108]. The approach first starts by applying a filter to the traffic data according to desired 
parameters and arranging the data into time series data. For change detection, if there 
were a DDoS attack at time λ, the time series would show a significant statistical change 
around or at a time greater than λ [109].  

Detecting changes in statistical properties of observed parameters has been studied 
extensively and applied in various fields like image processing, network traffic and 
financial analysis. There are a number of techniques that are used for change detection 
and amongst them the most common techniques used for the detection of DDoS attacks 
are Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average (EWMA) 
[110].  

 

3.2.1 Cumulative Sum (CUSUM) Technique 

The CUSUM algorithm was first introduced by Page in [111]. The CUSUM algorithm is 
based on hypothesis testing and was developed for independent and identically 
distributed random variables {yi}. In the approach, an abrupt change occurring at any 
time can be modelled using two hypothesis, θ1 and θ2. The first hypothesis θ1 represents 
the statistical distribution before the abrupt change occurring; and the second 
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hypothesis θ2 represents the statistical distribution after the abrupt change has 
occurred. The test for signalling a change is based on the log-likelihood ratio 𝑆𝑛. 

𝑆𝑛 =  ∑ 𝑠𝑖 

Where, 

𝑠𝑖 = ln
𝑃𝜃1(𝑦𝑖)

𝑃𝜃2(𝑦𝑖)
 

According to Siris et. al. [112], the typical behaviour of the log-likelihood ratio Sn 
includes a negative divergence before an abrupt change and a positive divergence after 
the change. Therefore, the relevant information for detecting a change lies in the 
difference between the value of the log-likelihood ratio and its current minimum value 
[108]. The alarm condition for the CUSUM algorithm takes the form: 

If  gn ≥ h (h is a threshold parameter) then signal alarm at time n;    
  

where 𝑔𝑛 =  𝑆𝑛 − 𝑚𝑛          (1) 

and 𝑚𝑛 =  min
1≤𝑗≤𝑛

𝑆𝑗.         (2) 

In the above equations, it is assumed that {𝑦𝑖} are independent Gaussian random 
variables with known variance σ2

, and mean μ0 and μ1 represents the mean before and 
after the abrupt change, respectively. Accordingly, θ0  = N (μ0, σ2) and θ1  = N (μ1, σ2). 
Following an application of various calculations, Basseville et al [108] implemented the 
following CUSUM algorithm: 

 

𝑔𝑛 =  [𝑔𝑛−1 +  
µ0−µ1

𝜎2 (𝑦𝑛 −
𝜇1+µ0

2
)]

+

       (3) 

 

The above algorithm was adapted and applied to the problem of detecting SYN flooding 
attacks. This algorithm was applied as follows: 

x̃n =  xn −  µn−1          (4) 

where xn represents the number of SYN packets in the n-th time interval, and 
µn  represents the estimated mean rate at time n. The estimates mean rate is computed 

using an exponentially weighted moving average as follows: 

µ𝑛 =  𝛽 𝜇𝑛−1 + (1 − 𝛽)𝑥𝑛         (5) 

where β is the exponentially weighted moving average  factor. 

 

The mean value of x̃n prior to a change is zero, therefore the mean in (3) is µ0 = 0. The 
mean traffic rate after a change cannot be known in advance. It can therefore be 
estimated with α μn, where α is an amplitude percentage parameter. The parameter 

equates to the most likely percentage increase of the mean rate after an attack has 
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occurred. For purposes of detecting SYN flood attacks, the algorithm in (3) has been 
adapted to: 

gn =  [gn−1 + 
α μn−1

σ2  (xn −   μn−1 − 
α μn−1

2
)]

+

     (6) 

 

In the CUSUM algorithm, the tuning parameters are the amplitude factor, α, the 
weighting factor, β, and the CUSUM algorithm threshold, h. 

The CUSUM technique has been applied to various problems including DDoS detection. 
It calculates the cumulative sum of difference between actual and expected values of a 
sequence, the CUSUM value. This value is compared to a threshold value (an upper 
bound). A CUSUM value greater than the upper bound indicates a change in statistical 
properties of the parameter time series values.  

There are a number of variations of the CUSUM technique, and Tartakovsky et al. [91] 
proposed fully-sequential and batch-sequential algorithms. They are both non-
parametric variations of the CUSUM techniques adapted to detecting changes in 
multiple bins. The algorithms were found to be self-learning, which enables them to 
adapt to various network loads and usage patterns. They also allow for the detection of 
attacks with a small average delay for a given false-alarm rate and they are 
computationally feasible and thus can be implemented online.  

Bo et al. [113] also used an algorithm which was a variation of the CUSUM technique to 
help with quick detection of worm attack incidents. In their experiments they observed 
the computer’s degree of connection to estimate the CUSUM score. It was concluded 
that the algorithm could detect new attacks rapidly and effectively.  

Siris et al. [112] proposed and investigated a change point detection algorithm, which is 
also based on the CUSUM technique. The algorithm revealed robust performance over 
various attack types; it was computationally feasible and not costly to implement. Wang 
et al. [66] also proposed an algorithm which is a variation of the CUSUM technique on 
an application for detecting DDoS attacks. Protocol behaviours of TCP SYN – FIN (RST) 
pairs where used to make detections. The experiment results revealed that the 
algorithm had low detection delays and high detection accuracy.  

 

3.2.2 Exponentially Weighted Moving Average (EWMA) Technique 

EWMA was first introduced by Roberts [114], it analyses whether the value of the 
parameters being observed, in a given time interval, exceeds a particular threshold 
value. The algorithm adaptively calculates the threshold value (the parameter mean 
value of recent observations in each sampling interval) instead of using a predefined 
threshold value.  

 

If  𝑥𝑛    ≥   (𝛼 +  1) 𝜇𝑛−1 ,        (7) 

 

then an alarm is signalled at time n, where the tuning  parameter 0 < α ≤ 1 indicates the 
amplitude factor, a percentage above the mean value that is considered to be an 
indication of anomalous behaviour. This amplitude factor parameter is used for 
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computing the alarm threshold. The mean 𝜇n can be computed over some past time 
window or using an exponential weighted moving average of previous measurements.  

𝜇𝑛 =  β 𝜇𝑛−1 + (1 - β) 𝑥𝑛  ,     (8) 

Where the tuning parameter 0 < β ≤ 1, is the weighting factor parameter. The parameter 
β determines the rate at which “older” data enter into the calculation of the EWMA 
statistic. A value of β = 1 implies that only the most recent measurement influences the 
EWMA. Thus, a large value of β = 1 gives more weight to recent data and less weight to 
older data; a small value of β gives more weight to older data. 

However, if the algorithm is applied in its original format, it will yield a higher rate of 
false alarms. To improve the performance a modification to the algorithm was to raise 
an alarm after a minimum number of successive violations of the threshold. Therefore, 

 

If  ∑   1𝑥𝑖 ≥(𝛼+1)µ𝑖−1
 𝑛

𝑖−𝑛−𝑘+1 ≥ 𝑘       (9) 

 

Then an alarm is raised at time n, where k > 1 is a tuning parameter that indicates the 
number of successive intervals the threshold must be violated before an alarm is 
signalled. 

The tuning parameters for the EWMA algorithm are the threshold value (amplitude 
factor) α, the EWMA factor β, and k which signifies the number of successive threshold 
violations before raising an alarm. 

There have been a number of variations of the EWMA algorithm that was used for 
intrusion detection and flooding attacks. Siris et al [112] proposed an adaptive threshold 
algorithm, which is a variation of the EWMA technique. They used real traffic traces to 
analyse and compare the performance based on detection delay, false alarm rate and 
detection accuracy. The algorithm adaptively learns the normal behaviour of the 
network traffic. The algorithm revealed satisfactory results for high intensity attacks, 
however the performance declined for low intensity attacks. However, it is of 
paramount importance to detect the onset of an attack whose intensity increases 
slowly. 

Ye et al.  [56, 115] investigated and applied EWMA techniques to help detect anomalous 
changes in the events intensity for intrusion detections. The techniques were applied on 
the large DARPA datasets. Their findings revealed that the EWMA techniques can work 
well for detecting abrupt changes in event intensity, and also small mean shifts through 
the gradually increased or decreased event intensity. 

Mϋnz et al. [116] investigated and evaluated the network traffic anomaly detection 
capabilities of the CUSUM and EWMA techniques. To deal with seasonal and serial 
fluctuation, a time series of forecast errors was utilized instead of a straight time series 
of traffic data. The traffic information was obtained from an Internet Service Provider 
(ISP). When applied to time-series of prediction errors, their studies revealed that 
CUSUM did not outperform Shewart and EWMA. 

The subsection that follows will go into the literature for research on DDoS detection 
algorithms based on machine learning methods. 
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3.3 Machine Learning  

Detection methods based on various models and theories are developed in the DDoS 
attack detection research community. The three key technologies that form the basis of 
the majority of today's detection techniques are machine learning, information theory, 
and statistical models [117]. Artificial neural networks (ANN), support vector machine 
(SVM), and other machine learning techniques in cybersecurity are helpful for decision 
making analysis [118]. The passage that follows highlights some of the related work in 
the DDoS research field. 

The human brain is a densely packed network of around 100 billion biological neurons. 
Figure 6 depicts a network of biological neurons that aids in critical human body 
activities such as reading, breathing, mobility, and thinking [119]. Some neural 
structures are present in the human body from birth, whereas others are formed via 
experience [120]. All biological neural characteristics, including memory, are stored in 
neurons and their connections. Learning is thus seen as the formation of a new neuronal 
connection or the change of existing neurons. This changes over one's life. Humans refer 
to this as intelligence.  

 

 

Figure 6 A schematic drawing of the biological neuron 

Researchers in computer science have been working to enable computer systems to do 
analytical tasks, learn, and classify as precisely as the human brain. To begin with, the 
ability to see and interpret dynamic patterns of linked information from all dimensions, 
comparable to the human brain. Second, in order for a computer to achieve human-like 
intelligence, it needs have access to a massive amount of data. The perceptron was 
created by Frank Rosenblatt [121], and the perceptron represented in Figure 7 went on 
to serve as the framework for the construction of neural networks, which served as the 
foundation for what is now known as Deep Learning [122]. 

The perceptron is an artificial neuron that serves as the foundation for the biological 
model utilized in traditional Artificial Neural Networks (ANN). The perceptron has been 
utilized in several ANNs, including the well-known Multi-Layer Perceptron (MLP), a 
model that performs linear transformations with scalar weights and a weighted 
summation. The evolution of the MLP has led in well-known improvements in learning 
and generalization performance for a wide range of applications. This includes, among 
other things, aerospace, accountancy, medical, and voice recognition [123]. 
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Figure 7 The Artificial Neuron 

The MLP has a perceptron (or node) structure that is interconnected in layers, with the 
output from one layer becoming the input to the next. The model is composed of three 
layers: the input layer, the hidden layer, and the output layer. 

The Input Layer - this layer's nodes are input nodes; they encode and prepare raw 
network data for further processing. 

The Hidden Layer — this layer is hidden from the input and output layers. This layer's 
nodes or neurons compute an internal representation of the data. When MLP 
algorithms, such as back propagation, are used, the values of the connections (or 
weights) are adjusted appropriately, and algorithms may include non-linearity features, 
as opposed to linear best-fit algorithms, which try to minimize the distance between the 
misclassified or incorrectly predicted. 

The Output Layer - the neurons in this layer encode data representations based on the 
outcomes of the calculations performed in the hidden layer [123]. 

The essential structure of the MLP is that of a perceptron interconnected in layers with 
output from one layer as input into another layer. The general structure is made up of 
three layers i.e. the input layer, the hidden layer and the output layer. The first layer 
contains nodes of the input layer, which use an encoding scheme of zeros and ones and 
prepares the raw data for further processing. In other words, it is a more abstract 
representation of the data patterns. The second layer is the hidden layer and it holds 
nodes that use the various MLP algorithms to compute a more abstract and internal 
representation of the data. The output layer contains nodes that uses results from the 
hidden layer to encode the final data representations. 

In Li et al (2012 DDoS-neural) a Leaning Vector Quantization (LVQ) neural network was 
used to detect DDoS attacks. LQV is a supervised version of the vector quantisation; it 
uses known target output classifications for each input pattern. It has been applied to 
pattern recognition, multi-class classification and data compression tasks. In their 
simulations the dataset was pre-processed into numerical format so that it can be fed 
to the neural network for training and testing. The LVQ neural network achieved a 99.7% 
detection rate while Back Propagation (BP) neural network achieved 89.9% detection 
rate. However, the data collected was simulated using a small number of simulation PCs; 
and this may not be representative of a real DDoS attack. The pre-processing detail of 
the data was not clarified.  
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The work of authors in [124] proposed an attack traffic classification method that is 
based on Probabilistic Neural Network; a feedforward network that is used for non-
linear pattern classification. In this method, the network uses the Bayesian decision rule 
for Bayes inference; this was coupled with the Radial Basis Function Neural Network 
(RBFNN) because it is suitable for attack traffic classification problems. The proposed 
method was used to effectively classify attack traffic patterns from legitimate traffic 
using single and joint distributions of various packet attributes. It successfully classified 
TCP SYN, UDP and ICMP flooding attacks. In their experiments the average detection 
rate was below 80% with an average false alarm rate of 1%. However there is room for 
improvement in order to achieve a higher detection rate. 

The work of Siatelris et al. in [125] presented DDoS detection as a classification problem 
and they proposed a Multilayer Perceptron Neural Network as a data fusion algorithm. 
Current DDoS research attempts to identify a single detection metric that can reliably 
detect DDoS attacks, however in their research a multiple set of passive network 
measurements are used as input and fused with the MLP algorithm to successfully 
detect a DDoS attack. The proposed method was found to have a detection rate of 
greater than 74% and a false alarm rate of less than 3%. However, the authors used a 
self-generated dataset of traffic using DDoS tools, and it was not clear how the data was 
generated and what were the configuration details of the data generation tools.  

Ali et al. [126] developed an ANN-based machine learning strategy for detecting DDoS 
attacks. The backpropagation strategies employed by the ANN were Bayesian 
Regularization (BR) and Scaled Conjugate Gradient (SCG). The approach effectively 
detects DDoS attacks with an accuracy of 99.6% using BR and 97.7% using SCG 
backpropagation algorithms, according to their experiment results. Soe et. al [127] 
created a system for detecting numerous large-scale IoT attacks in sequential order. 
They proposed using different specified classifiers for each attack type instead of a single 
classifier. For experimentation, they presented a single-layered artificial neural network 
(ANN) on a publicly available dataset. They used a series of ANN models to detect 
specific assault types. They achieved a 99% accuracy by using the sigmoid function. 

In order to detect DDoS attacks, Wang et al. [128] proposed combining feature selection 
with an ANN MLP (multilayer perceptron) model, and the MLP was combined with the 
sequential feature selection technique. These strategies were used to choose the best 
features during the training phase, and they created a feedback system to reconstruct 
the detector when significant detection faults were detected dynamically. With a 98% 
accuracy rate, the proposed methodology proved effective. Ioannou  et al [129] 
proposed a supervised learning anomaly detection model that combines a Radial Basis 
Function (RBF) kernel with a C-support optimizer (c-SVM) to differentiate between 
benign and malicious traffic data. With Blackhole and Sinkhole attacks, the model was 
100% accurate, whereas with other attack types, it was 81% accurate. The researchers 
did not compare the outcomes of their experiment with those of other machine learning 
models. 

Chaudhary et al [130] further suggested a machine learning technique for detecting 
DDoS assaults that involves filtering crucial network packet parameters such as packet 
size, interval size, and so on. Support Vector Machine (SVM), Random Forest, Decision 
Tree, and Logistic Regression were all used. Random forest surpassed other machine 
learning approaches in their research study, detecting DDoS attacks with 99.17% 
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accuracy. Kokila et al. [131] created a method for detecting DDoS attacks using the SVM 
classifier. The SVM classifier has a 0.8% false alarm rate and a classification accuracy of 
95.11%. Wehbi et al. [132] used flow features of network traffic such as packet size, 
packet interval, protocol, bandwidth, and destination IP to construct a model to detect 
DDoS attacks. They used SVM, K-Nearest Neighbour (KNN), Random Forest, Decision 
Tree, and ANN in their models. The results of the experiment show that Random Forest 
and ANN have 99% accuracy in detecting malicious traffic. 

For detecting DDoS attacks in Software Defined Networks, Polat et al. [133] employed 
SVM, KNN, ANN, and Naive Bayes (SDN). Initially, the authors specified twelve features, 
and the algorithms chose a subset of these features based on threshold values provided 
to the algorithms. The algorithms analysed flow traffic data and detected DDoS with 
98.3% accuracy. In a study by Aytac et al [134], the Artificial Neural Networks (ANN), 
Support Vector Machine (SVM), Logistic Regression, K-nearest neighbour (KNN), 
Gaussian Naive Bayes, Bernoulli Naive Bayes, Multinomial Naive Bayes, Decision Tree 
(entropy-gini), and Random Forest algorithms were all investigated for DDoS attack 
detection. They looked at data from twelve different aspects and discovered that only a 
small fraction of them, such as cumulative count and descriptive statistics, was enough 
to detect a DDoS attack. In their tests, they discovered that the SVM algorithm had the 
highest accuracy rate of 99.7%. 

Tonkal et al [135] used 23 traffic flow features to look into DDoS attack detection in SDN. 
They employed the Neighbourhood Component Analysis (NCA) to determine the most 
important flow data characteristics for the pre-processing and feature selection stage. 
Following that, they classified DDoS attacks using the KNN, Decision Tree (DT), ANN, and 
SVM algorithms. They discovered 14 features to be important in their findings, and the 
DT algorithm was able to attain 100% detection accuracy. Churcher et al. [136] used 
KNN, SVM, decision tree (DT), naïve Bayes (NB), Random Forest (RF), ANN, and logistic 
regression (LR) algorithms to explore the detection of DDoS attacks in IoT networks. 
Their research looked into the effectiveness of algorithms for binary and multi-class 
classification. They also tested the algorithms' performance against a weighted and non-
weighted Bot-IoT dataset. For non-weighted datasets, their testing revealed that the RF 
algorithm has a 99% accuracy. The ANN performed better for binary classification 
accuracy on weighted datasets. KNN, on the other hand, surpassed other ML algorithms 
in multi-class classification, with an accuracy of 99%, which is 4% higher than RF. 

The work by Chung-Lung et al. [137] which presented an early warning system for DDoS 
attack detection was developed for integration into traditional IDS. The system 
developed was based on a Time Delay Neural Network (TDNN). TDNN is a kind of neural 
network that has the time delay factor integrated and implicitly represented inside the 
signal. In their experiments the TDNN was implemented in a two-layer structure; this 
enables the system to take proactive action against a DDoS attack like initiating an 
integrated IPS. In their implementation, nodes were dispatched at the demilitarized 
zone or between the first and second layer of the firewall. Each node’s activities are 
monitored by neighbouring nodes and attack data is conveyed to the expert module for 
further analysis. The approach was found to have an 82.7% detection rate; however the 
information about the false alarm rate was not available.  

In machine learning, artificial neural network algorithms are considered the best in 
classifying DDoS attack models [138]. Several researchers have proposed various 
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algorithms that are based on neural networks. However, these algorithms have resulted 
in high false positive rate and lengthy detection times. Traditionally, artificial neural 
networks have two or three layers in the network, and the general assumption is that 
the inputs and outputs are independent. However, this assumption may not be always 
true for some tasks, especially in anomaly detection.  

Researchers in [139] further found that traditional neural networks (with up to three 
layers) limit the use of data in its raw form, and it requires a feature extractor. Normally, 
developing a feature extractor requires decades of research work and expertise in order 
to transform raw data into a suitable abstract representation that will be processed for 
classification or prediction. Furthermore, they discovered that the ANN's architecture 
can be too simplistic for tasks with complex functional dependencies that cannot be 
represented analytically in a straightforward manner. Thus rose the need for a network 
architecture with more than three layers, called a deep neural network. This is detailed 
in the next section. 

 

3.4 Deep Learning Techniques 

Deep neural networks are a modern adaptation of artificial neural networks that 
integrate several nonlinear processing layers in the network to extract features from 
raw data.  As depicted in Figure 8, it consists of an input layer, several hidden layers and 
an output layer. These layers are connected to each other, and they use the output of 
the previous layer as input into the subsequent layers. Anomaly detection in network 
data normally uses sequential data, and a data point normally depends on the input of 
previous data points. It is for this reason that deep neural networks are ideal for anomaly 
detection in network data. 

 

 

Figure 8 Structure of a Deep Learning Neural Network 

Deep neural network models are used to learn and perform classification tasks on raw 
data such as images, text, and sound. Face recognition, text translation, voice 
recognition, driver assistance systems for lane classification, and traffic sign recognition 
are all examples of effective classification applications. The Convolutional Neural 
Network (CNN) and the Recurrent Neural Network (RNN) are two popular deep learning 
models that are extensively used in these applications. 
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Figure 9 Structure of a Recurrent Neural Network 

Figure 9 illustrates the basic structure of a RNN. The node A, which receives an input Xt 
and outputs a value ht. The loop allows information to be passed and memorised from 
one step of the network to the next. RNNs are originally designed to capture a sequence 
of inputs without a fixed limit on size. One input item from the sequence is connected 
to other inputs and probably has an effect on them. The loops in the neural network 
allows for memory. Therefore, the network has the ability to memorise past decisions 
and influence the outcome. 

 

 

Figure 10 Architecture of a CNN 

The CNN is analogous to the interconnection model of the neurons in the human brain 
and it was adapted from the visual cortex. It is a popular model and it is implemented 
successfully in various fields and one such field is computer vision, deep learning for 
images and video. Figure 10 shows the architecture of a CNN for video and image 
classification. The architecture uses various algorithms for feature learning. This stage 
of feature detection is repeated over many layers with each layer learning and detecting 
different features. Once features are detected, the classification layers compile 
probabilities for each classification class and produce the final classification output. 

The work of researchers in [140, 141]  had various detection modules infused to detect 
DDoS attacks. The initial detection module examines the relevant statistical features of 
the DDoS incoming traffic. This data is then streamed through multiple Bayesian 
classifiers that evaluate and predict the probability of an attack. These classifiers use the 
selected traffic features to estimate the probability density functions and the likelihood 
ratios for each traffic feature. For final decision making, the researchers further infused 
a RNN with the statistical data. When trained with sufficient data, the RNN has strong 
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classification and estimation capabilities. Therefore, this technique works well 
distinguishing normal traffic from attack traffic. The work of these researchers has 
achieved success, however, the researchers did not consider adaptive low-rate attacks. 

The work of researchers in [142] proposed an artificial intelligence based detection 
system that defends a system against SYN flooding DDoS attacks. The proposed method 
uses a RNN ensemble that detects attacks on the client side and its intermediary nodes. 
The detection method monitored the nodes for the volume of rejected connection 
requests and the deviations in resource usage (particularly for CPU usage, Physical 
Memory usage and NIC usage). The RNN ensemble processes the information in order 
to classify the state of the network into one of six states that range from ‘normal’ state 
to ‘attack’ state. The RNN ensemble promises to produce good results, however this is 
based on assumptions that an increase in volume of rejected packets and an increase in 
resources usage may signify an attack. However, this can also take place under normal 
state of the network, in the case of a flash crowd. Therefore there is a need to have a 
self-adaptive and methods that do not depend on predefined threshold states.  

The work of [143] proposed a solution that implements multiple agents which are 
distributed at different monitoring points of the network. These individual agents 
perform DDoS attack monitoring and detection from selected parameters observed in 
network traffic flows. The observations from the agents are occasionally synchronized 
and eventually aggregated in order to assist with an all-inclusive decision making of 
observed network traffic patterns. The solution is fault-tolerant and robust in that a 
failure from a single agent does not notably interrupt the functioning of the whole 
system. The researchers uses predefined network thresholds to model the network 
traffic flow patterns. These thresholds are based on the incoming traffic flows’ maximum 
number of packets that can be processed in a specified timeframe. The solution could 
perform well in DDoS attack detection, however it may not perform well against those 
DDoS attacks that adapt their rate of attack, in the case of low-rate attacks.  

The researchers in [144] proposed and implemented a DDoS detector that is made up 
of three components, the detection, defence and sharing components. The detection 
component was designed using ANN algorithm for detecting known and unknown 
attacks; the algorithm could detect, with 98% accuracy, the specific DDoS attacks and 
distinguish attack traffic from normal traffic in real time. The defence component would 
thwart forged packets from getting to the attack target. Since these DDoS detectors will 
be deployed across different parts of the network, the knowledge component will then 
share important DDoS information with other detectors in order to diminish the 
strength of the attack. The authors report that, in terms of accuracy, the detection 
technique performed 5% better than related techniques. In the experiments, they did 
simulate for low rate DDoS attacks, however, the authors do not report on how the 
techniques performed on detection delay. 

The work of Chuanlong et.al in [145] modelled an intrusion detection system based on 
RNN. They studied the performance of the detection system in binary classifications 
(normal and anomaly) and multiclass classifications (for Normal, DoS, R2L, U2R and 
Probe attacks). The experiment results reveal that the detection systems obtain an 
accuracy of 68.55% to 83.28% for binary classification. Meanwhile, for multiclass 
classification the detection system obtained an accuracy of 64.6% to 81.29%. Under the 
same experiment conditions, the authors found that the RNN had higher accuracy and 
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lower false positive rate. This performance was compared against previously used 
machine learning methods proposed by other researchers, namely ANN, naive Bayesian, 
random forest, multi-layer perceptron, support vector machine and other machine 
learning methods. The detection model looked at detecting the DoS attack, however, it 
did not incorporate the distributed variant of the DoS or its low-rate attack variant. 

The work of Yuan et al in [146] proposed a deep learning approach called DeepDefence. 
The proposed system makes use of Convolutional Neural Networks (CNN), Recurrent 
Neural Networks (RNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit 
Neural Networks (GRU). The author extracted the 20 features from packet data, 
transformed and concatenated them into a sequence classification problem that is 
based on window detection. The extraction of features is transformed into matrices of 
size m*n, where m represents the number of packets and n represents the new features. 
The CNN was then used to train the model for classification. The detection method 
realised a classification accuracy of 97.61% with an average error rate of 2.4%; the model 
outperformed the Random Forest detection method.  

Similarly, in [147], the authors proposed a lightweight CNN-based DDoS detection 
system with low processing overhead and a higher attack detection rate. The method 
gathers network traces into sliding time windows, which are then converted into feature 
arrays and fed to the CNN. The algorithm was effective in detecting DDoS attacks under 
the given conditions. It had a detection accuracy of 99.67% and a false alarm rate of 
0.59%. 

Roopak et. al. [148] further suggested several hybrid methods for detecting anomalous 
traffic packets and initiating an attack in an IoT network. In their testbed, the hybrid 
methods employed MLP, CNN, and LSTM. The combined LSTM and CNN algorithms 
performed better in the research experiments, with an accuracy of 97.16%. The 
subsection that follows will highlight research challenges for efficiently and accurately 
identifying high-rate and low-rate DDoS. 

 

3.5 Research Challenges 

The previous passage provided details of DDoS detection methods that have been used 
so far, however only a few of them have been effective. Designing and implementing an 
effective DDoS detection technique can be difficult, and even though modern computing 
capabilities can improve these detection techniques, there are a number of open 
challenges that still exist [3]. However, the work of this thesis will focus on the following 
research challenges: 

Internet technologies are continuously being developed to improve the lives of people, 
for example the introduction of the Internet of Things where almost any object could be 
connected to the internet. These improvements have also presented an opportunity for 
attackers to develop more sophisticated attack schemes day by day, more especially 
those attack techniques that are designed to evade detection methods by launching 
low-rate and high-rate attacks. These kind of attacks can vary between zeros to 
maximum and have the ability to cripple a service provider within a matter of seconds 
[34]. This gives rise to the following research question: 
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 How can we detect low-rate and high-rate DDoS attack with accuracy and with 
minimal detection delay? 

 How does the performance of statistical techniques and machine learning 
compare to modern deep learning convolutional neural network techniques 
when detecting low-rate and high-rate DDoS attacks? 

Researchers have contended with the task of designing methods that identify optimal 
sets of features while not compromising on efficiency when designing detection 
techniques. This is as a result of the fact that many network traffic features typically 
have low variation or correlations that causes dependencies among the network traffic 
features. Researchers also discovered that the source IP address of incoming packets 
can be used as a useful parameter for detecting the start of an attack. However, the high 
dimensionality of IP address features, as well as the complicated association between 
them, results in significant computational overheads, making identification difficult. 
Moreover, the issue with scalability becomes more important when we consider the use 
of IPv6 address space [4, 149]. Therefore, in this thesis we ask the following question: 

 How can the onset of a DDoS attack be identified on the basis of a simple feature 
of the source IP address? 

Current DDoS attacks datasets have constraints: these are privacy and legal concerns 
involved with the sharing of recorded datasets. Thus, there is a lack of actual intrusion 
data that could be used to simulate attacks and to test and validate new detection 
techniques [4, 150]. From this challenge, we therefore ask:  

 What are the key statistical features of a DDoS attack?  

 How do we model the characteristics of DDoS attacks so that we can simulate 
and generate practical attack traffic datasets? 

 

3.6 Summary 

This chapter of the dissertation explored some of the most important techniques that 
are used for DDoS detection. We investigated literature to observe how researchers 
have used the classical statistics based change-point detection techniques and machine 
learning for DDoS detection; these are the EWMA, CUSUM, ANN, SVM, Logistic 
Regression algorithms. We explored their advantages and drawbacks as described in 
literature. We further explored the use of modern deep learning techniques for DDoS 
techniques; we looked at the structures of the recurrent neural network and the 
convolutional network. We further highlighted the research gaps and challenges that 
the dissertation will address, more specifically towards the development of detection 
techniques that will detect low-rate and high-rate DDoS attacks accurately and within a 
reasonable detection time delay. The next chapter describes and highlights the 
methodologies that are used to carry out the research.
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Chapter 4:  Methodology 

4.1 Introduction 

The aim of this study is to design a testbed that will use comprehensible source IP 
address features to rigorously assess the efficacy of learning algorithms in detecting low-
rate and high-rate DDoS attacks. The testbed will compare efficacies of entropy-based 
techniques and deep learning techniques based on their ability to detect DDoS attacks 
accurately with minimal detection delay and low false positive rate. 

This chapter of the study describes the methods used in this research. 

 

4.2 Research Design  

In order to answer the research questions posed in this study the research design will 
follow a simulation modelling approach. The research will use statistical models that 
capture and describe the process of DDoS attack detection and run various simulation 
scenarios for both low-rate and high-rate DDoS attacks. This approach is best suited and 
widely used in the field of anomaly detection. The subsections that follow will explain 
the settings that were used to conduct various DDoS experiments for the purposes of 
learning and investigations. The experiments will further contribute towards 
understanding and determining the key distinguishing characteristics that differentiate 
authentic network traffic data from anomalous network traffic data. 

 

4.3 DDoS Attack Detection using IP Address 

The Internet Protocol (IP) is a standard internet communication protocol that devices 
utilize to connect across great distances. The IP address is a unique identifier for a device 
on the internet or a local network; researchers in [54, 149, 151-154] exploited its 
characteristics to identify abnormal behaviour. These academics' work highlights the 
significance of picking a feature or a variety of feature sets that may be utilized to 
distinguish normal network behaviour from abnormal network behaviour.  

Researchers have proposed different combinations, including utilizing basic data such as 
source IP address traffic volume, a variety of source and destination address pairs, and 
the fraction of new source IP addresses per client, to name a few. However, when more 
feature combinations are employed, the solution space gets more sophisticated and 
scaling challenges arise. This study will examine the usage of source IP addresses and a 
combination of methods to construct a TCP SYN DDoS attack detection testbed, building 
on the work of the researchers in [149, 152, 155].  

Feature selection is critical for information exploration in machine learning. In the 
feature selection process, researchers choose a subset of important data attributes to 
create robust and strong machine learning models for intrusion detection. By defining 
key data features and how they connect, we may gain a better understanding of the 
data. This will improve the learning model's efficiency in a variety of ways while also 
reducing the impact of the high dimensionality issue. With the rise of large data and the 
resulting requirements for effective machine learning techniques, new DDoS attacks 
have surfaced, and inventive detection measures are required [156]. 
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The significance of feature selection cannot be overstated. It is essential to any detection 
technique and algorithm since it aids in distinguishing between network attack traffic 
and normal network traffic. The primary problem that researchers confront in 
developing an effective detection approach is the issue of high dimensionality in 
network traffic data, as well as the significant computing costs that this entails. The high 
dimensionality of network traffic data, along with the intricate correlation between the 
characteristics, results in significant computing overheads, making the design of an 
anomaly detection system extremely challenging.  

The main difficulty with adopting IP addresses as a detection approach is scalability. For 
an IPv4, the researcher must compute and save statistical data for 232 elements of the 
IP address space. This necessitates significant computational and storage overheads, as 
well as monitoring fewer IP addresses both during regular traffic and during an attack. 
The design of detection techniques becomes considerably more difficult when dealing 
with an IPv6 address space, where the number of components in the address space 
grows to 2128 [149]. 

Researchers have utilized several factors linked to IP addresses to build detection 
algorithms for DDoS attacks over time. Attempts have been attempted to leverage IP 
address features such as traffic volume to change the number of distinct network flows, 
i.e. a grouping of destination and source IP, destination and source port, and protocol 
type [153]. Researchers in [138] concentrate their detection efforts on inbound traffic 
quantities and IP address dispersion. Entropy was also utilized by the researchers to 
assess the distribution and homogeneity of IP addresses. They categorize traffic flows 
based on their destination IP addresses and compare the traffic volumes of each 
category to the anticipated chi-square statistic. A deviation from the expected traffic 
profile indicates an attack. Researchers in [93, 157] examined entropy measurements 
across IP header characteristics as well. Entropy is a measure of feature distribution that 
is used to detect whether there is a divergence in network traffic performance. 

Some academics have created a list of legitimate IP addresses using historical database 
techniques. These are IP addresses that have completed a three-way TCP handshake. 
This approach employs a sliding window update to keep an up-to-date IP address 
database. Only packets from IP addresses specified in the database are allowed during 
an attack or when the network is overloaded [54]. A cunning attacker might outsmart 
this approach by initiating a TCP handshake with the intent of subsequently launching 
an assault with other IP addresses. 

Using the IP address, several researchers attempted to distinguish flash occurrences 
from DDoS attacks. Flash events (FE) occur when a network server experiences a surge 
in traffic requests from real and authentic clients; nonetheless, this surge can be 
compared to a high-rate DDoS attack. Researchers in [158] utilized an IP address 
aggregation method to distinguish FEs and identify DDoS attacks. The method assumes 
that during a FE, most customers' IP addresses would be geographically close together, 
but during a DDoS attack, IP addresses will be widely spread. The section that follows 
will look at how to simulate a DDoS attack using IP addresses and probability distribution 
fitting. 
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4.4 DDoS Attack Modelling 

The field of network anomaly detection research is evolving, and with excellent datasets, 
it is critical to assess established detection algorithms. Several network intrusion 
datasets have been generated by well-known research organizations. The attempts 
were made to aid in the evaluation and validation of created approaches and algorithms. 
A superior dataset aids researchers in determining the efficacy of established 
approaches for detecting attacks when used in real-world operational situations. 

Several public datasets, private datasets, and network simulation datasets were 
employed by the researchers. Most researchers, however, have cited publicly accessible 
datasets such as the DARPA Dataset, the KDD Cup dataset, the NSL-KDD Cup dataset, 
the DEFCON dataset, and the CAIDA dataset. These are yardstick datasets generated in 
experimental settings [156]. The DARPA dataset was chosen for this study owing to its 
prominence in the field of DDoS attack detection. This dataset, however, presents its 
own set of difficulties. 

The lack of freely available real-world network traffic statistics is a natural challenge for 
academics when assessing the proposed approaches for detecting DDoS attacks. The 
statistics that generally earn reference are frequently out of date in terms of accurately 
displaying the most recent traffic directions. They have been excluded from sensitive 
data due to legal and privacy concerns. As a result, the majority of research on this issue 
is assessed using open-source traffic generators, simulation-based testbeds, and 
publicly available statistics. Each of these evaluation techniques has its own set of 
constraints. As a result of these constraints, researchers have developed low-cost, 
configurable, and scalable testbeds [159]. 

We selected this dataset because we previously deduced that IoT systems have an 
underlying IP network on which they function, making them vulnerable to typical IP 
attacks like DDoS. All network activity, including the whole content of each packet, were 
captured and submitted for evaluation using the tcpdump format. Sniffed network 
traffic, Solaris BSM audit data, and Windows NT audit data were employed in these 
studies. Finally, the test network was comprised of both real and simulated machines, 
with the real and simulated machines artificially generating background traffic while the 
attacks were carried out on the real computers. 

 

4.4.1 TCP SYN DDoS Attack Modelling 

In anomaly-based detection systems, researchers design detection systems by 
modelling the normal behaviour of an attack free network traffic. If an abnormality in 
standard behaviour is observed, then an attack will be detected. A DDoS attack brings 
about unexpected changes in the network traffic. Likewise, an unexpected variation in 
the statistical features of network traffic performance can be noticed. Should there be 
a DDoS occurrence at a particular time λ, the data will depict a substantial statistical 
variation about or from the time which is greater than λ [92].  

The literature [160] has shown that statistical and mathematical behaviour of these 
attacks is usually regarded as entropy and the information theory of network traffic 
characteristics. These metrics capture the unusual distributional changes of the traffic 
data features in a single value. Therefore, sufficient observations of the changes in the 
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value can distinctly reveal the anomalies in the network therefore distinguishing attack 
traffic from normal traffic. Researchers have studied various probability distributions to 
capture the intricacy of the statistical properties of a DDoS attack. The Weibull, Gaussian 
and Logistic distributions are the most popular. The Weibull probability distribution 
function is generally used to represent and to model traffic features. To represent 
network traffic data, the Gaussian probability distribution model is often commonly 
used, while logistic regression distribution models are often used in the field of network 
traffic and attack modelling [161]. 

It is important for researchers to further understand which distribution model is best 
suited for DDoS attack detection. This will assist with building and designing more 
accurate detection techniques and algorithms. The work of researchers in [161] looked 
at implementing probability fitting and parameter estimation on many features of a 
DDoS attack. They provided probabilistic behaviour of traffic features of DDoS attacks. 
They found that the best fitted probability distribution for TCP SYN DDoS attacks is the 
Weibull, Gaussian and Logistic distribution. This is further confirmed by the work of 
researchers in [97]. Based on their analysis, they found that under normal legitimate 
network traffic, where humans were participating, and the probabilistic characteristics 
of the network data was that of a Gaussian distribution. In the instance where a DDoS 
attack is launched, where the network traffic data is auto-generated by bots or agents, 
the probabilistic character of the network data resembled that of a Poisson distribution. 
It is for this reason that for the design of the DDoS attack testbed, this study used the 
Poisson distribution for generating synthetic attack data. 

This study further models the attack detection problem as a sequence classification 
problem [162]. In a sequence classification problem, let us assume that you have an 
input sequence 𝑥0, … , 𝑥𝑇, and we want to classify an equivalent output 𝑦0, … 𝑦𝑇 at each 
time step. The primary drawback is that in order to estimate the output 𝑦𝑡 for any time 
𝑡, we can only use inputs that have previously been recorded, i.e. 𝑥0, … , 𝑥𝑡. In other 
words, the value of 𝑦𝑡 relies on past values of 𝑥0, … , 𝑥𝑡  and not on the future inputs of 
𝑥𝑡+1, … , 𝑥𝑇. Therefore, to model the sequence classification problem we use the 
function: 

𝑓: 𝑋𝑇+1 → 𝑌𝑇+1 

The function constructs the equivalent output: 

�̂�0, … , �̂�𝑇 = 𝑓(𝑥0, … , 𝑥𝑇) 

 

4.4.2 Synthetic DDoS Attack Traffic Modelling 

Researchers are faced with the challenge of obtaining realistic datasets, and the datasets 
that are currently available are too old and do not reflect the latest trends. To overcome 
this challenge many researchers have developed a customized traffic generation testbed 
simulation in order to evaluate designed techniques.  It is for this reason that we used a 
similar approach in this research. 

In this study, we evaluated attack-free data from multiple source IP addresses in the 
DARPA dataset to simulate attack traffic data. This is a dataset created by the MIT 
Lincoln Laboratory utilizing real-world traffic statistics. Trace data from network traffic 
captured during regular network operation is included in the data. In this experiment, 
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we looked at traffic data where there were notable traffic activities. As a result, 11 hours 
of traffic data were evaluated between 08h00 and 19h00. The dataset was filtered based 
on the source IP address and TCP protocol, and the TCP SYN was recorded. SYN packets 
were considered while examining the start of a TCP SYN flood attack. 

The investigation focused on the computation of SYN packets at 10-second intervals. 
This was done so that these attacks may be synthetically produced in order to 
investigate an algorithm's performance across multiple attack characteristic 
circumstances. They were generated using a homogeneous Poisson process, which 
creates independent and exponentially dispersed delays between packet arrivals. The 
attack was planned to last 300 seconds and span 30 time intervals (each period is 10 
seconds) (five minutes). Every five minutes of traffic was injected with attack data in 
order to consider all potential attacks employed in these experiments. In these studies, 
we analyse and simulate two types of assault characteristics: high and low intensity 
attacks. The specifics of these traffic characteristics will be discussed next. 

 

 

Figure 11 Low intensity attacks (red line) seen on interval 20-40. 

Low intensity (or low rate) attacks are those whose intensity gradually develops until all 
resources are exhausted. This approach delays the detection of the attack by gradually 
degrading the victim's services over a long period of time. In the simulations, we 
discovered that a low-intensity assault had a mean amplitude that is 50% greater than 
the mean of regular traffic throughout a five-minute attack timeframe. This is seen in 
Figure 11. Attacks were synthetically introduced at 20-40 second intervals. 

High rate attacks were discovered to have a sharp rise and the greatest amplitude in a 
single attack period. During the assault, packets are directed at a constant and 
continuous pace, with no interruptions or deviations in attack rate. The victim impact is 
rapid and abrupt [163]. In our experiments, high rate attacks were 250% higher than the 
typical packet rate in that particular timeframe. This may be seen between the same 
intervals 20 and 40 in Figure 12. 

We applied the Poisson distribution flow to simulate DDoS attack traffic in our 
experiments, while we assumed a Gaussian distribution for normal network traffic. The 
Poisson distribution flow employed the following function: 𝑓𝑃(𝑘; 𝜆) where the non-
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negative integer  𝑘 ∈ [0; ∞ ] and the positive real number 𝜆 is the average packet rate 
per second for a given timeframe. 

  

 

Figure 12 High Intensity attacks (red line) seen on intervals 20-40. 

A sliding time window approach was used for this investigation, as shown in Figure 11 
and Figure 12. Due to the assumption of stable time series used by the bulk of statistical 
and signal processing techniques, this approach is very beneficial for examining time 
series data. Time series, on the other hand, are never stationary in the actual world. A 
time series can be employed as long as it is at least locally stationary, that is, its statistical 
characteristics change slowly over time [164]. Previous research [138, 165-167] used the 
sliding time window technique to detect DDoS assaults and abnormal traffic data. 

 

4.5 Change Point Detection Algorithms: CUSUM and EWMA 

The CUSUM algorithm and the EWMA algorithm, which was adopted for this study, was 
described in detail in section 3.2.1 and section 3.2.2. Both algorithms share similar 
tuning parameters and these are the amplitude factor, α, the weighting factor, β, and 
the CUSUM algorithm threshold, h, and the EWMA algorithm factor, k. In order to 
address the research questions for this study, an investigation must be carried out to 
determine the optimum values for the tuning parameters for this specific study. The 
investigation assumed that other parameters are held constant in order to assess partial 
variation in the one parameter that is caused by variation in the other parameter while 
other variables do not change. The investigation tested the following parameter’s 
effects on both the detection rate and false positive rate: 

 The effect of the amplitude factor, α. The parameter value was modified to vary 
between 0.05 and 1.0, while all other parameters were held constant. 

 The effect of the weighting factor, β. The weighting factor was varied between 
0.8 to 1.0, while other parameters values did not change. 

The EWMA and CUSUM algorithms effects of parameter tuning and simulation for low-
rate and high-rate DDoS attacks will be presented in greater detail in the research 
findings section of the algorithms. 
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Figure 13 Change Point Detection Framework 

The change point framework and testbed design are depicted in Figure 13. Incoming 
traffic data is obtained from a variety of IP addresses. Attack detection sliding windows 
are established, and then packet statistics and packet intensity statistics are generated 
for each sliding window as a baseline for developing adaptive attacks. The attack 
detection module accurately classifies and detects attacks for each sliding time window 
using any of the algorithms. 

 

4.6 Machine Learning Techniques 

Figure 14 depicts the proposed machine learning system's primary components, which 
include data pre-processing, supervised learning, semi-supervised learning, 
unsupervised learning, and prediction. Each of these components is outlined below: 

 

Figure 14 Machine Learning System Architecture 

4.6.1 Data Processing and Labelling  

The raw dataset was processed by developing a Python script that recorded the number 
of network packets that arrived at a specific host each time interval of 10 seconds. We 
adopted this as the data baseline and labelled each interval (10-second block) as zero 
(0), indicating that there was no DDoS attack. The dataset was then injected with attacks 
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traffic by manually increasing the amount of packets arriving at randomly selected 
intervals. These intervals were labelled as one (1), signifying a DDoS attack. Figure 15 
visually represents the process and shows the packet count for the first 2 minutes (120 
seconds) of traffic flow. The first image shows genuine traffic, whereas the bottom 
image shows the presence of DDoS attack traffic (highlighted in yellow). 

 

 

Figure 15 Data Labels for Normal and Attack Traffic 

4.6.2 Supervised Learning 

The supervised learning component in Figure 14 is marked in yellow, and it involves 
manual labelling of data processing and machine learning modelling. Supervised 
learning is a type of machine learning (ML) in which an ML model is trained using labelled 
data that serves as "instances" for the ML model. Once trained, the model may be 
applied to test data for classification or prediction. We evaluated Logistic Regression 
(LGR) and Artificial Neural Network (ANN) models in our system. 

 
Figure 16 Data Frame Samples 

4.6.2.1 Data Framing 

Data framing was performed just for ANN, and three variations were explored. The first 
did not consider data framing, but the second divided the dataset into "data frames" of 
size 12, equivalent to 120 seconds of traffic flow (10 seconds interval). The standard 
deviation of the values in the data frame was computed and attached to the frame in 
the second, giving it a size of 13. The data frames were then supplied into the ANN model 
as input. The algorithm below summarizes the data framing procedure using 
pseudocode. 

LEGITIMATE TRAFFIC

Time 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 …

Packet# 2 7 0 2 0 2 9 0 1 3 10 9 8 10 5 9 8 6 7 2 9 8 8 4 …

ATTACK

Time 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 …

Packet# 2 7 0 2 0 20 90 100 110 75 90 9 8 10 5 9 8 6 7 2 110 88 91 4 …

DF1 Label = 0 DF3 Label = 1

2 7 0 σ = 3.86 2 7 0 σ = 45.94

2 0 2 2 0 20

9 0 1 90 100 110

3 10 9 75 90 9

DF2 Label = 0 DF4 Label = 1

8 10 5 σ = 2.34 8 10 5 σ = 40.98

9 8 6 9 8 6

7 2 9 7 2 110

8 8 4 88 91 4
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Algorithm 1: Data Framing Algorithm 

Divide the entire dataset into data blocks of 120 seconds. 

For each 120 second data block in the dataset: 

 Create a 3 by 4 data frame as follows: 

  Set t = 0 

  For row = 1 to 4 

 a. col1 = Packet_Count (t), t += 10 

 b. col2 = Packet_Count (t), t += 10 

 c. col3 = Packet_Count (t), t += 10 

 Calculate the standard deviation (σ) for the data block.  

end 

 

As an example, by executing Algorithm 1 on the sample data in Figure 15, we get four 
data frames, as shown in Figure 16. DF1 and DF2 in the figure are data frame 
representations of normal traffic (top image in Figure 15) and are labelled 0, indicating 
that there is no DDoS attack. Both DF3 and DF4 reflect traffic flows involving malicious 
attacks, and are thus labelled 1. The standard deviation (σ) is computed for each data 
frame. This standard deviation is used to confirm the likelihood of a malicious attack. If 
the data points deviate from the mean, the deviation within the dataset increases, 
indicating an attack. The reverse is true for nearby data points, which have smaller 
variance and are less likely to constitute an attack. Finally, a threshold value is applied 
when all 12 elements in a data frame are high (during high rate DDoS attacks) and near 
to each other, resulting in a decreased standard deviation value. If the estimated value 
is more than this threshold value, the frame is considered to be under attack. 

 

 

Figure 17 ANN Supervised Learning Process 

 

4.6.2.2 Machine Learning Models  

In this study, the LGR and ANN were considered. The One-vs-rest (OvR) training scheme 
and limited memory BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm solver were 
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adopted for LGR, with an 80:20 split for training and test data. ANN was modelled with 
3 layers – the input layer (13 nodes), the hidden layer (12 nodes) and the output layer 
(1 node). The data frames acquired from algorithm 1 are fed in, with the 13th node being 
the corresponding standard deviation value. The input and hidden layers were activated 
with the (Rectified Linear Unit) ReLu function, while the output layer was activated with 
the Sigmoid function. The processes involved in our ANN supervised learning 
component are depicted in Figure 16 and Figure 17.  

 

4.6.3 Unsupervised Learning 

We investigated using the K-means clustering algorithm to automatically label the 
dataset as an alternative to manually labelling it. In our system design, depicted in Figure 
14, this component is indicated in orange. K-Means is a centroid-based clustering 
technique that evaluates cluster membership based on data point closeness to a centre 
point (centroid) [168]. It has been used to solve a variety of classification challenges, 
including network classification [169], and intrusion detection [170]. Millions of packets 
pass the network every unit time in IP network security, and must be classified (labelled) 
as either genuine or malicious traffic. Manual labelling would be slow and arduous in 
such instances, thus using an automatic classifier, in our case K-Means, is preferable. In 
our work, traffic flow is classified as either genuine or malicious, hence the k value is set 
to 2. 

 

4.6.4 Semi-Supervised Learning 

Our semi-supervised learning component, shown in green in Figure 14, is identical to the 
supervised learning outlined previously. The main change is that instead of employing 
manually labelled data as input to the ML models, we supplied the models which are the 
result of unsupervised learning (k-Means clustering). K-Means is essentially used to 
automatically label (classify) the data, which is subsequently employed to train the 
supervised model. This results in a hybridization of a supervised and unsupervised 
model, or, in this case, a semi-supervised model. The output of this model is then 
compared to the output of the other two models (supervised and unsupervised). 

 

4.6.5 Prediction 

After successfully classifying and distinguishing between normal and malicious attacks, 
the next natural step may be to forecast the likelihood of such attacks occurring. This 
would assist the network administrator in implementing preventative steps to minimize 
them, basically shifting the defence strategy from reactive to proactive. In Fig. 2, this is 
indicated in grey. For prediction, three regression models were used in this study: 
Logistic Regression (LGR), Kernel Ridge Regression (KRR), and Support Vector Regression 
(SVR).  

LGR calculates the likelihood of an occurrence, known as the dependent variable, based 
on one or more independent variables (s). LGR was chosen because it is ideally suited 
for determining binary output probabilities, i.e. True or False (1 or 0), and it does not 
require a linear connection between the dependent and independent variables. When 
we applied it to our work, we employed it to predict whether an attack will occur at a 
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specific period in the future. The independent variables were traffic 'count' and 'status' 
(i.e. normal (0) or attack (1)), whereas the output variable was 'time'.  

SVR is a support vector machine variant proposed in [171] that attempts to reduce the 
predictor coefficient to a value less than or equal to a predefined threshold. To discover 
ideal settings, we employed the Gaussian Radial Basis Function (RBF) as the kernel and 
grid search. 

KRR, like SVR, employs the kernel technique (RBF), but instead of the epsilon employed 
by SVR, it employs a ridge as the loss function. KRR is quicker than SVR because it 
combines the kernel technique with least square regression [172, 173]. We selected KRR 
because it is comparable to SVR and because there are substantial variances (differences 
from the mean) between data points in the dataset. When the packet count in normal 
traffic flow (labelled 0) is compared to that of attacks, the differences become more 
noticeable (labelled 1). 

 

4.7 1D Convolutional Network for Time Series and Sequential 
Data Classifications 

Section 3.4 of this study looked at the CNN literature. Much of the research on CNNs has 
been concentrated on 2D signals such as image and video frame processing. Krizhevsky 
et al. launched the first Deep CNN model, AlexNet [174]. On the ImageNet benchmark 
database, the AlexNet reported a false positive rate of 16.4% (10% lower than 
conventional ML techniques), and it was designed with an 8-layer CNN (5 convolutional-
pooling layers and 3 fully-connected layers). The authors developed the Rectified Linear 
Unit (ReLU), a novel and now common architectural feature that replaced activation 
functions such as the Sigmoid (sigm) and Tangent Hyperbolic (tanh). In a brief period of 
time, their proposed deep learning CNN architecture rapidly displaced standard ML 
techniques. Their influence gradually led to them becoming the industry standard for a 
variety of ML applications such as computer vision, natural language processing, and 
speech recognition [175]. 

The CNN and LSTM architectures were used to simulate high and low rate DDoS attacks 
in our work. We experimented with different convolution layer settings in order to 
optimize the models proposed in [176] for time series classification tasks. We also 
experimented with and used two data feature preparation modelling approaches, lag 
features and window features, for data and feature modelling. Lag features is a time 
series transformation technique that predicts or classifies the current time value based 
on the value of the previous time value; and rolling window statistics features adds extra 
statistical features to the lag features. Lag features is a time series transformation 
technique that predicts or classifies the current time value based on the value of the 
previous time value; and rolling window statistics features adds extra statistical 
parameters to the lag features.  

The CNN was first intended for 2D signal processing, picture classification, and natural 
language processing applications. Meanwhile, LSTM includes feedback connections that 
can analyse numerous data points in pictures as well as sequence data such as voice and 
video. The modelling framework for our experimental testbed is most likely unsuitable 
for the CNN and LSTM architectures. Some researchers have adapted CNN and LSTM to 
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meet the problem description and specification, and we will offer a few examples below; 
further examples may be found in section 3.4. 

Chen et al [177], evaluated the performance of the Random Forest and SVM models and 
a CNN model for DDoS attack detection. In their tests, they created a multiclass 
classification CNN that separates benign traffic from five different forms of DDoS 
attacks: MSSQL, NETBIOS, NTP, SYN, and UDP Lag attacks. In these studies, they chose 
24 features that had a high correlation with the type of attack. The performance of CNN 
simulations was compared to that of SVM and Random Forest. The results show that the 
CNN models perform similarly to the Random Forest algorithm, with 94% precision and 
recall. In terms of accuracy, the CNN model achieved 98%, while the Random Forest 
model achieved 94%. Both models exceeded the SVM (92%) by a slight margin of 
accuracy. Since they selected 20 strongly correlated features in their investigations, the 
CCN model built for these studies may be resource intensive and hence suffer from high 
dimensionality of data features. The authors did not divulge the detection delay or the 
false positive rate performance of the CNN models in the investigations.  

McCullough et al. [178] deployed an LSTM CNN to identify TCP DDoS attacks in an IoT 
network setting. The detector's architecture is based on the idea that CNN was initially 
created for picture classification; hence, the approach of displaying network traffic data 
as a graphical heat map was introduced. They employed a 255x255 matrix with three 
colours to indicate the volume of traffic in a particular time frame as incoming and 
outgoing packets. In their studies, they discovered that this technique had a 99.8% 
accuracy rate and a 0.1% false alarm rate, outperforming the SVM simulation. The 
simulations did not show how the technique would perform on DDoS attacks with low 
and high attack intensities, nor did they provide the average detection delay for an 
attack. 

Deep CNN's popularity has motivated researchers to use it for 1D signal processing 
applications, which necessitated a 1D to 2D design conversion because deep CNN is 
modelled and configured for 2D signal processing. Applications such as 
electrocardiogram (ECG) beat classification and arrhythmia diagnosis are examples of 
these conversion methods. Kiranyaz et al. [179] suggested the first 1D CNNs capable of 
processing ECG signals. 1D CNNs achieved state-of-the-art efficiency in a limited period 
of time in a variety of signal processing applications, including structural damage 
detection, high-power engine fault detection, and real-time monitoring of high-power 
circuits [180]. 

The current study, as explained in section 4.4.1, resembles the sequence classification 
problem and it is for this reason that this study adopts the 1D CNN for DDoS attack 
detection. The significant advantage of adopting 1D CNNs over 2D CNNs is their 
computational complexities [180]. A 2D CNN application with 𝑁𝑥𝑁 dimensions will 
convolute with a 𝐾𝑥𝐾 kernel that will result in a computational complexity of 
~ 𝑂(𝑁2𝐾2). On the other hand, a 1D application with the same dimensions 𝑁𝑥𝐾 will 
result in a significantly lower computational complexity of ~ 𝑂(𝑁𝐾). There is very little 
published research on the topic of applying 1D CNN for DDoS attack detection, however, 
this study adopts the 1D fully convolutional (FCN) deep learning architecture that was 
designed by Bai et. al. [162]. 

The deep learning architecture adopted for this study is a variation of the CNN that is 
designed for sequence modelling problems and it is called Temporal Convolutional 
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Networks (TCN). With its temporality and broad receptive fields, the TCN architecture 
utilizes casual convolutions and dilated convolutions to be adaptive for sequential data 
[181]. Figure 18 depicts the building blocks of the architecture of a TCN, Figure 18 (a) is 
a dilated casual convolution with dilation factors 𝑑 = 1,2,4 and filter size 𝑘 = 3. Usually, 
several convolutional layers are stacked on top of each other. In order to cover the 
receptive field of all values from the input sequence, the dilation factor of subsequent 
convolution layers is exponentially increased. The dilated causal convolution layer, acts 
over each sequence's time steps. Figure 18 (b) is a TCN residual block each of which 
comprises two sets of dilated causal convolution layers of the same dilation factor, 
followed by normalization, ReLU activation, and spatial dropout layers. The 1x1 
convolutional residual block is appended when the input and output sequence have 
dimensions that do not match. Then a final activation function is applied. Figure 18 (c) 
is an example of a residual connection; the filters in the residual function are 
represented by the blue line, while identity mapping is represented by green lines. 

 

Figure 18 Architecture of a TCN [162] 

For the purposes of this study, the TCN architecture was designed with four residual 
blocks of 1D convolutional layers and a fully connected convolutional layer.  A residual 
block contained three input channels and each dilated causal convolution layer 
comprised 175 size 3 filters, and a dropout factor of 0.05. The training parameters of the 
study were setup such that each custom loop will train for 30 epochs with a one mini-
batch size. The initial learning rate was set to 0.001 and the learning rate drop-factor 
was set to 0.01 for every 12 epochs, and the gradient threshold was set to one. The 
training and testing data-spilt was set to 70:30 ratio, respectively. 

 

 

4.8 Summary 

This chapter has described methods that will be used in this study. The chapter began 
by describing the simulation modelling research design that will be implemented in this 
investigation. It further described the dataset that was used for this investigation, and it 
further justified the use of a source IP address as a key feature for modelling TCP SYN 
DDoS attacks. The modelling techniques and the methods used for generating synthetic 
attack traffic was also described, together with the framework for the testbed.  The 
chapter then described the environmental setup for the development of the testbed 
and testing environment for the simulations. The simulation parameters settings for the 
CUSUM, EWMA, machine learning (LGR, K-Means, ANN, KRR and SVR) and the 1D CNN 
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algorithms were also explained and the results obtained from these simulations are 
described in the chapter that follows.
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Chapter 5:  Research Findings and Discussions 

5.1 Introduction 

In the previous chapter we outlined the methods and the simulation modelling approach 
that will be applied in this study. In this chapter, we present the core findings of the 
simulations that were proposed for the three machine learning algorithms. The 
algorithms’ performance is analysed for their accuracy and efficiency, and a contextual 
analysis of these findings is also presented in this chapter.  

 

5.2 Algorithm Performance Metrics 

For statistical techniques we will measure the detection rate, false positive (FP) rate, 
false negative (FN) rate, and detection latency for the objectives of this study, and we 
will also employ Receiver Operating Characteristics (ROC) curves. (ROC) curves are a 
popular method for depicting the relationship between an intrusion detection system's 
True Positive (TP) and False Positive (FP) rates. It may also be used to compare the 
accuracy of two or more classifiers. It uses the orthogonal coordinate system to visually 
display a classifier's detection performance [4].  

For machine learning techniques, we further use the F1-score; the F1-score is another 
measure of accuracy for a binary classification model. It is the harmonic mean between 
precision and recall. For prediction, we will use regression models; therefore we will 
specifically use the accuracy, coefficient of determination (R2), and the Root Mean 
Square Errors (RMSE) to evaluate the performance of the machine learning techniques. 
R2 measures the percentage of variation that is explained by the relationship between 
the dependent variable and the independent variable. The RMSE measure represents 
the magnitude of the error of a model in predicting quantitative data. It is the standard 
deviation of the errors of predictions. 

The network anomaly detection algorithm should perform its duty and generate an 
alarm in a timely basis, allowing the system administrator to take necessary action 
before causing permanent harm to the system. The detection delay is the average time 
between the occurrence of an attack and the generation of an attack signal or reaction 
by the detection system. The formulae below define the evaluation metrics that will be 
used. 

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁) ∗ 100

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃) 𝑅𝑎𝑡𝑒 =  
𝐹𝑃 ∗ 100

(𝐹𝑃 + 𝑇𝑁)
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𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁) 𝑅𝑎𝑡𝑒 =  
𝐹𝑁 ∗ 100

𝐹𝑁 + 𝑇𝑃
 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)

 

 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑅2) = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟𝑠 =  √
∑ (𝑦𝑖 − �̅�𝑖)2𝑁

𝑖=1

𝑁
 

 

5.3 Algorithm Design (Environment Setup for Algorithm 
Development) 

This study's experiments were carried out in two technical settings. The testbed and 
algorithms were created in a desktop version of Matlab R2021a, and the simulations 
were run on the High Performance Computer (HPC). The desktop Matlab R2021a was 
run on a 64-bit Windows 10 Enterprise Operating System (OS), 8GB RAM, Intel ® Core ™ 
i5-8350U CPU @ 1.70GHz. For simulations of the EWMA, CUSUM and 1D CNN, the HPC 
runs the Red Hat Enterprise Linux 7.4 and is made up of 128 standard computer nodes, 
28 cores per node, and thus consists of 3584 cores. Each node uses 256GB RAM and the 
Intel ® Xeon ® E5-2690 v4 CPU @ 2.60 GHz. The Graphical Processing Unit (GPU) 
accelerator node consists of the NVidia ® Tesla ® P100 with 16GB on-board RAM. The 
simulations for the LGR, K-Means, ANN, KRR, and SVR algorithms were performed on 
Google Colab, which was operating on a Python 3 Google Compute backend with 12GB 
of RAM, a 2.3GHz 2 Core Intel Xeon CPU, and GPU hardware accelerators. For machine 
learning, Keras and Sci-Kit learn were used; Smote was employed for data balance; 
Pandas and NumPy were used for data manipulation; and Matplotlib was used for data 
visualization. 

 

5.4 Statistical Change Point Detection 

5.4.1 Cumulative Sum (CUSUM) Technique 

The CUSUM algorithm is a change detection technique that calculates the entropy and 
log-likelihood ratio for detecting abrupt changes in sequence data. It is based on the 
hypothesis that an abrupt change in statistical distribution properties will be observed 
at a point in time, before and after a DDoS attack has begun. The algorithm was 
developed for independent and identically distributed random variables; therefore, in 
the modelling and adaptation of the CUSUM algorithm we assumed that the TCP SYN 
sequence data are independent Gaussian random variables with known variance and 
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known mean. In the CUSUM algorithm, the tuning parameters are the amplitude factor, 
α, the weighting factor, β, and the CUSUM alarm threshold, h. 

The experiments setup in this study were designed to investigate the efficiency of the 
CUSUM algorithm for detecting both low and high intensity attacks. We further 
investigated the effect on the algorithm efficacy of the tuning parameters. 

 The effect of the amplitude factor α, on the detection rate.  

 The effect of the weighting factor β, on detection rate. 

 The trade-off analysis between detection rate and the false positive rate. 

 The trade-off analysis between the detection rate and detection delay.  

The findings and analysis from the experiments and simulations will be elaborated in the 
sub-sections that follow. 

 

5.4.1.1 The effect of the Amplitude factor (α) 

In this part of the simulation experiment, we seek to determine the effect of the 
amplitude factor (α) on the efficacy of the algorithm, i.e. the detection rate. The control 
variables for this experiment were the weighting factor, and it was held constant β = 0.8; 
the CUSUM alarm threshold, which was also held constant, h = 3. The independent 
variable of the experiment was the amplitude factor, for which a linear increment and 
iteration was applied from 0.05 up to 1.0. The dependent variable, in this case the 
detection rate, was then observed throughout the experiment. 

Figure 19 depicts a line chart of the results of this experiment. From the line chart it can 
be observed that for low-rate attacks, the detection algorithm yields a detection rate of 
between 0%-81% and a false positive of between 0%-7% for values of 0 < α ≤ 0.5.  Again, 
it can also be observed that for high-rate attacks and values of 0 < α ≤ 0.95, the detection 
algorithm yields a 32%-100% detection rate while having a false positive rate of between 
0%-6%.  

The above experiment signifies that when the value of the amplitude factor increases, 
the values of the detection rate and the false positive rate also increases simultaneously. 
The false positive rate for both low rate and high rate attacks increases sharply starting 
from α ≥ 0.25 and it plateaus at the point when α ≥ 0.5. For values of α ≥ 0.5, the 
algorithm experiences a higher accuracy rate and a plateaued false positive rate. 
Therefore, for further experiments in this investigation, the value of the amplitude 
factor will be set to 0.5. 
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Figure 19 Detection rate and False Alarm rate for  varied amplitude factor value (α) 
for both Low rate attacks and High rate attacks. 

 

 

Figure 20 Detection rate and False Alarm rate for varied Weighting factor (β), for 
both Low rate attacks and High rate attacks 

 

5.4.1.2 The effect of the Weighting factor (β) 

The aim of this simulation experiment is to determine the impact of the weighting factor 
(β) on the algorithm's detection rate. The control variables were the amplitude factor, 
which was constant α = 0.5; the CUSUM alarm threshold, which was also constant, h = 
3. The weighting factor was the independent variable, and a linear increment from 0.80 
to 1.00, was used. Throughout the experiment, we monitored the detection rate as the 
dependent variable. 
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From Figure 20 it was observed that the performance of the detection algorithm was 
generally poor and unsatisfactory. For low-rate attacks, the algorithm had a detection 
rate of between 14%-56%. For high-rate attacks, shown by Figure 20, the detection rate 
was between 85% and 100%; while the false positive rate was between 0% to 7%. The 
CUSUM algorithm reached a 100% detection rate for values of β ≥ 0.95. Even though the 
false positive rate for the experiment was admissible, the higher detection rate was 
accompanied by a sharp increase in the false positive rate. As a result, there is a trade-
off between a better detection rate and a higher false positive rate, and the weighting 
factor value will be adjusted to 0.98 for further experiments. 

 

5.4.1.3 False Positive Rate and Detection Rate 

In this set of experiments we investigated the trade-off between the false positive rate 
and the detection rate. As determined in past experiments, the values for the tuning 
parameters were as follows: the amplitude factor α = 0.5; the Weighting factor β = 0.98. 
The CUSUM alarm threshold h was varied from 1 to 10.  

Figure 21 and Figure 22 represent the receiver operating curves for both the low rate 
and high-rate attack experiments, with each point representing a distinct value of h. The 
operational points on the graph that are closest to the upper-left corner of the graph 
are the best. Figure 21 shows results for the experiments simulating low-rate attacks. 
When it came to low-rate attacks, an improvement in the algorithm's detection accuracy 
was followed by a significant rise in the false alarm rate. As a result, greater detection 
accuracy will result in a higher false alarm rate. This is not an ideal performance in a 
detection method. As a result, the CUSUM algorithm performed poorly in scenarios of 
low-rate attacks. 

 

Figure 21 ROC Curves for low rate attacks 
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Figure 22 ROC Curves for high rate attacks 

 

Figure 22 demonstrates the CUSUM algorithm's performance in the simulation of high-
rate attacks. The majority of the operational points are located in the graph's upper-left 
corner. This also suggests that a greater detection rate is associated with a modest rise 
in the false alarm rate. When compared to the low rate attack simulations, this 
represents an enhanced performance. 

 

5.4.1.4 Detection Rate and Detection Delay 

In the following set of experiments, we looked more closely at the trade-off between 
detection rate and detection latency. The outcomes are depicted in Figure 23 and Figure 
24. In this scenario, detection delay is the average time it takes the algorithm to 
effectively identify an attack from the start of that attack. Each point represents a 
detection rate and an average detection delay. The tuning parameter values were as 
follows: the amplitude factor α = 0.5; the weighting factor β = 0.98. The value of the 
alarm threshold h was varied from 1-10. 

 

Figure 23 Graph displaying the trade-off between Detection Rate and average 
Detection Delay for low rate attacks 
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Figure 23 displays the CUSUM algorithm's performance trade-off between detection 
rate and average detection delay for low-rate attack simulations. According to the 
graph, as the detection rate increases, so does the detection delay. The CUSUM failed 
to achieve a 100% detection rate in the simulation with low-rate attacks, although the 
best average detection delay was little under 80 seconds (73.3s). 

Figure 24 depicts the outcomes of simulations with high-rate attacks. For high-rate 
attacks, the algorithm showed improvement. The average detection times for a 100% 
detection rate were 26.94s and 44.71s for varied alarm threshold levels. It can also be 
shown that when the detection rate performance falls, so does the average detection 
delay. 

 

Figure 24 Graph displaying the trade-off between Detection Rate and average 
Detection Delay for high rate attacks 

5.4.1.5 Summary 

The CUSUM detection algorithm’s performance against low-rate attacks was not 
satisfactory. The ROC curves revealed that the algorithm was not able to attain a 100% 
detection rate for the varied set of low-rate DDoS attack simulations, and the highest 
detection rate for the simulations was 97.52%. However, for all low-rate DDoS attack 
simulations, the algorithms managed to maintain an average false positive rate of 3.75%, 
which is relatively low. The algorithm further attained a best detection delay that was a 
little under 80 seconds for low rate attacks.  

For high-rate DDoS attack simulations, the CUSUM algorithm attained a 100% detection 
rate on some of the simulations and at the same time maintained a relatively low 
average false positive rate of 6.01%. For simulations with 100% detection rate, the 
algorithm had the lowest detection delay under 27 seconds from the onset of an attack.  

 

5.4.2 Exponentially Weighted Moving Average (EWMA) Technique 

The EWMA algorithm is also a change point detection technique that assumes that the 
TCP SYN sequence data are independent Gaussian random variables with known 

https://etd.uwc.ac.za/



 

Page 68 of 112 
 

variance and known mean. In the CUSUM algorithm, the tuning parameters are the 
amplitude factor, α, the weighting factor, β, and the EWMA alarm threshold, k. 

The experiments setup in this study were designed to investigate the efficiency of the 
EWMA algorithm for detecting both low and high intensity attacks. We further 
investigated the effect on the algorithm efficacy of the tuning parameters. 

 The effect of the amplitude factor α, on the detection rate.  

 The effect of the weighting factor β, on the detection rate. 

 The trade-off analysis between detection rate and the false positive rate. 

 The trade-off analysis between the detection rate and detection delay.  

The findings and analysis from the experiments and simulations will be elaborated in the 
sub-sections that follow. 

5.4.2.1 The effect of the Amplitude factor (α) 

In this section of the simulation experiment, we would like to examine the impact of the 
amplitude factor (α) on the algorithm's efficacy, which is its false positive rate and 
detection rate. The independent variable of the experiment was the amplitude factor, 
for which a linear increment and iteration was applied from 0.05 up to 1.0. The control 
variables for this experiment were the weighting factor, and it was held constant β = 0.8; 
the EWMA alarm threshold, which was also held constant, k = 4. The dependent variable, 
in this case the detection rate, was then observed throughout the experiment. 

Figure 25 depicts the results of the experiments. From Figure 25 it was observed that for 
low-rate attacks, the detection algorithm yields a detection rate of between 60%-85%  
and a false positive of between 30%-60% for values of  0 < α ≤ 0.5. At the value of 0.5 < 
α ≤ 1.0 the detection rate deteriorates further while the false positive rate improves. 
Similar performance was also observed for high-rate attacks. For high-rate attacks and 
values of 0 < α ≤ 0.5, the detection algorithm yields a 100% detection rate while having 
a false positive rate of between 30%-60%. However, for values of 0.5 < α ≤ 1.0, the 
algorithm’s detection rate deteriorates while the false positive rate improves. These 
results are indicative of the trade-off between detection rate and false positive rate with 
respect to the effect of the amplitude factor on the efficacy of the algorithm. 

 

Figure 25 Detection rate for varied alarm threshold value (α), for both Low-rate 
attacks and High-rate attacks 
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5.4.2.2 The effect of the Weighting factor (β) 

The goal of this simulation experiment is to investigate the effect of the weighting factor 
(β) on the algorithm's detection rate. The weighting factor was the independent 
variable, and a linear increment from 0.80 up to 1.00, was applied. The control variables 
was the amplitude factor, and it was constant α = 0.5; the EWMA alarm threshold, was 
also constant, k = 4. The detection rate and the false positive rate performance was 
monitored throughout the experiment. 

From Figure 26 it can be observed that the performance of the detection algorithm 
performs better at high values of the EWMA factor (β). For low-rate attacks, the 
algorithm reached a 100% detection rate for β ≥ 0.98, while the false positive rate was 
below 40% for values of β < 0.98. For high rate attacks the detection rate is higher than 
that of low-rate attacks. The detection rate reached 100% for values of β ≥ 0.95 while 
the false positive rate remained below 40%. In both cases of low and high-rate attacks, 
for the values of β ≥ 0.99, the false positive rate deteriorated substantially. The improved 
detection rate was also accompanied by a sharp decline in false positive rate 
performance. 

 

Figure 26 Detection rate for varied EWMA factor (β), for both Low-rate attacks and 
High-rate attacks 

 

5.4.2.3 False Positive Rate and Detection Rate 

We were investigating the trade-off between the false positive rate and the detection 
rate in this set of experiments. The results of the previous experiments determined that 
the values for the tuning parameters for this set of experiment are as follows: the alarm 
threshold α = 0.5; the weighting factor β = 0.98. The value of k was varied from 1-10. 

Figure 27 depicts results for the experiments simulating low-rate attacks. Each point 
corresponds to a varying value of k. As previously stated, good functioning points on the 
graph are those that are closer to the graph's upper-left corner. In the case of low-rate 
attacks, an increase in the algorithm’s detection accuracy was accompanied by a sharp 
increase in the false alarm rate. Therefore higher detection accuracy will also result in a 
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higher false alarm rate. This is not a desirable performance in a detection method. As a 
result, the EWMA algorithm performed poorly in circumstances of low-rate attacks. 

Figure 28 depicts the performance of the EWMA algorithm in the case of high-rate attack 
simulation. Most of the operating points are closer to the upper-left corner of the graph. 
This is also indicative that for a higher detection rate there is a slight increase in the false 
alarm rate. This is an improved algorithm performance when compared with the low-
rate attack simulations. The average false positive rate using the set tuning parameters 
was 34%. 

 

Figure 27 ROC Curves for low-rate attacks 

 

Figure 28 ROC Curves for high-rate attacks 

 

5.4.2.4 Detection Rate and Detection Delay 

In the next set of experiments we further analysed the trade-off between detection rate 
and detection delay. The results are shown in Figure 29 and Figure 30 below. Detection 
delay in this case is the average time taken by the algorithm to successfully detect an 
attack, from the onset of that attack. Each point corresponds to a pair of detection rates 
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and average detection delay. The values for the tuning parameters were as follows: the 
alarm threshold α = 0.5; the EWMA factor β = 0.98. The value of k was varied from 1-10. 

Figure 29 depicts the EWMA algorithm's performance trade-off between detection rate 
and average detection delay for low-rate attack simulations. According to the graph, as 
the detection rate decreases, so does the detection delay. For the low-rate attack 
simulation, the detection delay was just under 40 seconds (36.9s) in the experiment with 
100% detection rate. 

Figure 30 shows the outcomes of simulations with high-rate attacks. The method 
performed better in high-rate attacks. For a 100% detection rate, the average detection 
delays were 11.75s, 23.83s, and 48.67s for varied k-values. It can also be seen that with 
lower detection rate performance, the average detection latency increases for some of 
the alarm threshold values. 

 

Figure 29 Graph displaying the trade-off between Detection Rate and average 
Detection Delay for low-rate attacks 

 

Figure 30 Graph displaying the trade-off between Detection Rate and average 
Detection Delay for high rate attacks. 
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5.4.2.5 Summary 

In the simulations for low-rate DDoS attacks, the EWMA detection algorithm’s 
performance was also not satisfactory. DDoS attack simulations with higher accuracy 
rates were also accompanied by an increased false positive rate. This means that the 
chances that the detector algorithm will classify a random network occurrence as an 
attack becomes equally probable as classifying that occurrence as a normal network 
occurrence. This is depicted by the performance point at the top right corner of Figure 
27: for a 100% detection rate, the classifier also experienced a 91.7% false positive rate. 
The detection delay performance for a 100% detection rate was slightly faster at 36.9 
seconds from the start of the attack. 

For experiments simulating high-rate DDoS attacks, the performance of the EWMA 
algorithm was an improvement from the experiments simulating low-rate DDoS attacks. 
For high-rate attack simulations, the algorithm also experienced a high false positive 
rate, ranging from 34.71% to 99.17%. For the simulation setup in these experiments, the 
algorithm was able to attain a 100% detection rate, with a 34.71% false positive rate and 
a detection delay of 48.67 seconds for high rate DDoS attacks. 

 

5.4.3 Summary of Statistical Change Point Detection 

For an overall performance on all experiments, the CUSUM algorithm attained an 
86.39% accuracy with a relatively high false positive rate, while the EWMA algorithm 
attained a 78.23% overall detection accuracy. For the applications in this research both 
algorithms may not be suitable as they produce a relatively high false positive rate and 
a lower accuracy rate. The overall performance for both EWMA and CUSUM algorithms 
for all experiments is depicted in Table 4. 

 

Table 4 CUSUM and EWMA Overall Performance 

 Accuracy (%) False Positive 
Rate (%) 

False Negative 
Rate (%) 

F1-Score 

CUSUM 86.392 80.149 3.126 0.92 

EWMA 78.225 29.583 19.601 0.85 

 

 

5.5 Machine Learning  

The findings of our experiments are presented in this section. The models' performance 
was measured using seven metrics: false positive, false negative, average detection 
latency, F1-score, accuracy, R2, and Root Mean Square Error (RMSE). The first five are 
unique to classification models, whereas the latter three (accuracy included) are unique 
to regression models. The number of malicious traffic misclassified as normal traffic is 
referred to as false positives. This is significant since it indicates how well the model 
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detects attacks. False negative measures the amount of normal traffic that was 
mistakenly labelled as an attack. The average execution time is the amount of time it 
takes the model to correctly classify traffic data as anomalous. Precision and recall are 
well-known measures in literature, however they are not evaluated in this study because 
they both assess how accurate a model is. Though this is significant, the inaccuracy of a 
model is more critical to us since undetected attacks might have negative consequences. 
Accuracy is a measure of the model's classification (or regression) performance, which 
is the number of times the model successfully detected traffic. R2 is used to compare a 
model's performance to a baseline, whereas RSME is the square root of the mean 
squared difference between predicted and actual values. 

 

5.5.1 Supervised Learning  

The results of the supervised learning models are summarized in Table 5. Logistic 
Regression (LGR) has the highest accuracy of 99.192% and the highest number of false 
positives in the table. In essence, despite the great accuracy, deploying LGR would allow 
more DDoS attacks to go undetected when compared to the other model. The LGR 
model, on the other hand, performed well in terms of false negative since no real traffic 
was misclassified. 

 

Table 5 Summary of Results for Supervised Learning Models 

 Accuracy 
(%) 

False Positives 
Rate (%) 

False Negatives 
Rate (%) 

F1-
Score 

LGR 99.192 1.622 0 0.999 

ANN  99.414 0.670 0 0.999 

ANN - Data framing 98.842 0.130 2.181 0.999 

ANN - Data framing + 
Standard Deviation 

99.405 0.297 0.957 0.999 

 

The ANN model variation without data framing yielded the highest accuracy (99.414%) 
but the highest false positive rate of the three ANN models investigated. This means 
that, similar to LGR, some harmful attacks will go undetected; but, not as many as LGR. 
When compared to the other two variations, the one with standard deviation had the 
highest accuracy (99.405%) and the fewest false positives. However, it misclassified 
nearly 1% of all normal traffic as an attack. The variation without the standard deviation 
appears to be a combination of results, since it decreased the number of false positives 
while nearly doubling the false negative rate (2.181%). This resulted in an overall 
accuracy of just 98.842%. 

In terms of execution time, Figure 31 reveals that the pure ANN model was the slowest 
of the four models, requiring more than 2 minutes to classify traffic flow. This would be 
undesirable in real-time applications requiring rapid data analysis and classification. 
ANN variants based on data framing, on the other hand, were substantially quicker than 
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both LGR and pure ANN, taking only 11 seconds in contrast to 51 seconds and 130 
seconds, respectively. This demonstrates that segmenting traffic into data frames or 
"windows" and processing them correspondingly may significantly reduce processing 
time. 

 

Figure 31 Average Detection Delay 

 

5.5.2 Unsupervised Learning 

Though we knew the number of clusters to expect in the dataset a priori, we still ran the 
Elbow method [29] to verify this. Fig. 7 shows the result of the Elbow method, with k 
being re-confirmed to be 2. Running the K-Means classifier with K=2, resulted in an 
accuracy of 96.76%, with zero false positives. 

 

 

Figure 32 K-Means Elbow Method 
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5.5.3 Semi-Supervised Learning 

The outcome from the labelled output of K-Means was fed into the supervised learning 
models, resulting in a semi-supervised model. The performance of this hybrid 
combination is shown in Table 6.  

 

Table 6 Summary of Results for Semi-Supervised Learning Models 

 Accuracy 
(%) 

False Positives 
Rate (%) 

False Negatives 
Rate (%) 

F1-Score 

K-Means + LGR  100 0 0 1.0 

K-Means + ANN 100 0 0 1.0 

K-Means + ANN + Data 
framing 

99.64 0 0.73 0.999 

K-Means + ANN - Data 
framing + Standard 
Deviation 

99.69 0 0.64 0.999 

 

According to the table, using the K-Means classifier resulted in a considerable 
improvement in the performance of all models. Both LGR and conventional ANN 
produced flawless accuracies with no false positives or false negatives. Similarly, the 
accuracies of both ANN with data framing variations rose from 98.842% to 99.64% and 
99.41% to 99.69%, respectively. 

It is worth noting that there are no false positives in any of the four models. This is 
noteworthy since it suggests that semi-supervised models can properly detect all 
malicious attacks. Some normal internet flows, on the other hand, were nevertheless 
labelled as malicious. Possible factors include the dataset not being split into an equal 
number of data frames, thus certain data frames (particularly those at the tail end of the 
traffic flow) included less data than others, i.e. less than 12 data points. 

 

5.5.4 Prediction 

Table 7 summarizes the outcomes of three prediction models that were evaluated. LGR 
performed the best of the three models investigated, with a prediction accuracy of 
98.6%. It was closely followed by KRR, which obtained around 98% accuracy. At 94.64%, 
SVR was the least accurate of the three. R2 values closer to 1 are preferable, because 
they represent the "closeness" of predicted values to actual values. The same pattern 
can be seen with R2 scores for the three models, with LGR leading with a score of around 
0.94, followed by KRR at 0.91. SVR had a score of 0.76, indicating that its prediction curve 
differed significantly from the actual curve. Finally, RMSE values near zero are preferable 
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since they show lower prediction errors. LGR was the least error prone once again, with 
the lowest RMSE values of 0.1183, followed by KRR with a score of 0.1439. With an RMSE 
of 0.2314, both models were less error prone than SVR. As a result, we may infer that 
LGR is the strongest predictor, with KRR a close second. With such a large RMSE, SVR is 
a less-than-ideal predictor in our applications.  

Table 7 Summary of Results for the Prediction Models 

 KRR LGR SVR 

Accuracy  97.93% 98.60% 94.64% 

R2 0.9054 0.9361 0.7555 

RMSE 0.1439 0.1183 0.2314 

 

To show these findings, we created graphs comparing actual values to those predicted 
by the prediction models (KRR, LGR and SVR). We captured images of each model 
indicating its predictions for the upcoming 15 minutes (900 seconds). Furthermore, to 
demonstrate the scalability of the predictive models, we gathered graphical 
representations of predictions for the upcoming 2 to 4 hours. These graphical 
representations are illustrated in Figure 33 to Figure 38, where the blue lines represent 
predicted values and the red lines reflect actual values. 

 

 

Figure 33 KRR predictions for upcoming 15 minutes 

 

Figure 33 to Figure 35 show status vs time charts for KRR, LGR, and SVR, respectively. 
Status values are binary and may only be 0 or 1, with 0 indicating that no attack is 
expected and 1 indicating that an attack may occur. For the 15-minute time window, 
matching graphs were observed for all three models. 
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Figure 34 LGR predictions for upcoming 15 minutes 

 

 

Figure 35 SVR predictions for upcoming 15 minutes 

 

 

Figure 36 KRR predictions for upcoming 3 to 4 hours 

https://etd.uwc.ac.za/



 

Page 78 of 112 
 

 

 

Figure 37 LGR predictions for upcoming 3 to 4 hours 

 

 

Figure 38 SVR predictions for upcoming 3 to 4 hours 

 

Figure 36 to Figure 38 depict the predictions of the three models over the next 3–4 
hours. KRR and LGR exhibited graphs that were identical, with both models incorrectly 
forecasting the appearance of an attack around the 11,260th second point. The 
outcomes of SVR's predictions for the same time are presented in Figure 38, with SVR 
predicting incorrectly on ten separate instances. Surprisingly, SVR, like KRR and LGR, 
incorrectly forecasted an impending attack at the same 11,260th second mark. 

Overall, these findings suggest that for our use case, LGR and KRR are stronger prediction 
models than SVR. With attack prediction accuracies of around 98 % for both the LGR and 
KRR models, regression models can be utilized to forecast potential DDoS attacks. Both 
LGR and KRR made erroneous forecasts in cases when they anticipated attacks would 
occur when none did. These incorrect predictions or false alarms, while resulting in the 
premature deployment of protective measures, are better than the alternative. In the 
other instance, as shown with SVR, the model provides a false sense of security by 
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forecasting that no attack would occur while there are several potential threats. As a 
result, we see KRR and LGR's incorrect forecasts as "erring on the side of caution". 

 

5.5.5 Summary 

Five machine learning algorithms were investigated in this section of the study for 
modelling DDoS attacks in TCP/IP networks. Logistic Regression (LGR), Artificial Neural 
Networks (ANN), K-Means, Kernel Ridge Regression (KRR), and Support Vector 
Regression (SVR) were deployed . Two supervised ML classifiers, LGR and ANN, were 
applied to differentiate between normal and attack traffic. LGR had a classification 
accuracy of 99.19%, a false positive rate of 1.62%, and an average detection delay of 51 
seconds after the start of an attack.  

The ANN model, on the other hand, exhibited higher accuracy (99.41%) and a lower false 
positive rate (0.67%), although it was relatively inefficient (130 seconds). We also 
investigated the K-Means unsupervised ML model, which had a classification accuracy 
of 96.76%. Finally, we created semi-supervised ML models by incorporating K-Means, 
ANN, and LGR. These combinations had a classification (detection) accuracy of 100 % 
with zero false positives. 

We also investigated the use of regression models to assist network managers in 
transitioning from a reactive to a proactive approach to network management. The 
ability of Logistic, Kernel Ridge, and Support Vector Regression models (LGR, KRR, and 
SVR) to properly predict an attack before it occurs was explored. LGR had the highest 
prediction accuracy at 98.6 %, followed by KRR at 97.9 %, and SVR had the lowest at 
94.64 %. The R2 values for the LGR and KRR were 0.94 and 0.91, respectively, indicating 
closeness to real values, while their RMSE values were 0.12 and 0.14, respectively. For 
these criteria, SVR was far off the mark. In essence, LGR and KRR are both capable of 
predicting impending dangers, with LGR marginally outperforming KRR. 

 

5.6 1D Convolutional Neural Network Technique 

The deep learning architecture adopted for this study is a variation of the CNN that is 
designed for sequence modelling problems and it is called TCN. This architecture utilizes 
casual convolutions and dilated convolutions to be adaptive for sequential data. As 
described in 4.7, for the purposes of this study, the TCN architecture was designed with 
four residual blocks of 1D convolutional layers and a fully connected convolutional layer.  
A residual block contained three input channels and each dilated causal convolution 
layer comprised 175 size 3 filters, and a dropout factor of 0.05. The training parameters 
of the study were set up such that each custom loop would train for 30 epochs with a 
one mini-batch size. The initial learning rate was set to 0.001 and the learning rate drop-
factor was set to 0.01 for every 12 epochs, and the gradient threshold was set to one. 

In order to improve the accuracy, the experiments further incorporated the sliding 
window method that was described in 4.4.2. The sliding window method was expanded 
to use lagged features. Lag feature is a classical time series technique that reconstructs 
a time series dataset given a sequence of numbers to seem more like a supervised 
learning problem by treating previous time steps as input features. This method is widely 
used in literature including authors in [145-147]. For the purposes of the 1D CNN 
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experiments, multiple sets of experiments were conducted using a sliding window width 
size from zero to fifteen. 

 

5.6.1 False Positive Rate and Detection Rate 

In these experiments we seek to examine the algorithm’s performance for detecting 
low-rate and high-rate DDoS attacks. We measure its performance based on the ROC 
curves, viz. the false positive rate and the detection rate. Figure 39 and Figure 40 indicate 
the ROC curves for low-rate and high-rate attacks, respectively.  

 

Figure 39 ROC Curves for Low Rate Attacks 

The results for the experiment that was simulating low-rate DDoS attacks are depicted 
by Figure 39. Each point on the graph represents a value of the sliding window width 
sizes from 0 to 15. The algorithm was able to obtain a 100% detection rate for some 
experiment and had an average false positive rate of 31.78%, while the minimum false 
positive rate was 22.09%.  

 

Figure 40 ROC Curves for High Rate Attacks 

Similarly, for high-rate DDoS attacks, the simulations results are represented in Figure 
40. For some sliding window width size, the algorithm was able to obtain a 100% 
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detection rate, however, this was also accompanied by a higher average false positive 
rate of 76.52%.  

 

5.6.2 Detection Rate and Detection Delay 

The next set of experiments seeks to examine the algorithm’s detection rate and 
detection delay performance for both low-rate and high-rate DDoS attacks. In this 
section of the simulations, multiple sets of experiments were conducted using the sliding 
window width size from zero to fifteen. Figure 41 and Figure 42 are visual 
representations of the results from this set of experiments.  

 

Figure 41 Graph displaying the trade-off between Detection Rate and average 
Detection Delay for low-rate attacks. 

For low-rate DDoS attacks, the algorithm was able to obtain a 100% detection rate for 
some experiments. The best detection delay performance was 35.92 seconds while the 
maximum was 65.48 seconds. The algorithm further displayed an average detection 
delay performance of 47.62 seconds. This means that for a low-rate DDoS attack, on 
average, it takes the algorithm 47.62 seconds to detect an attack from its onset. 

For high-rate DDoS attacks, the algorithm also managed to obtain a 100% detection rate 
performance for some experiments. The minimum detection delay performance was 
21.28 seconds while the maximum detection delay was 27.23 seconds. The average 
detection delay performance for the algorithm was 23.51 seconds. For high-rate DDoS 
attacks, on average, it took the algorithm 23.51 seconds to accurately detect an attack 
from the onset of that attack.  
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Figure 42 Graph displaying the trade-off between Detection Rate and average 
Detection Delay for high rate attacks. 

 

5.6.3 Summary 

The CNN algorithm presented an improved performance for the experiments simulating 
low-rate DDoS attacks. The CNN had a 100% detection rate for some simulations, an 
average false positive rate of 31.78% while the minimum false positive rate was 22.09%. 
From the onset of a low-rate DDoS attack, the CNN was able to detect the attack, in a 
minimum time of 35.92 seconds and 47.62 seconds on average.  

The experiments that simulate high rate DDoS attack displayed a higher average false 
positive rate of 76.52%. This signifies that for high-rate DDoS attacks, the CNN has a 
higher likelihood of classifying a normal network event as an attack. For these 
simulations, the CNN had an improved average detection delay of 23.51 seconds and a 
faster detection delay time of 21.28 seconds. 

 

Table 8 1-D CNN Overall Performance 

 Accuracy (%) False Positive 
Rate (%) 

False Negative 
Rate (%) 

F1-Score 

1-D CNN 99.662 2.253 0.326 0.998 

 

 

5.7 Discussions 

The simulation experiments conducted for these studies were aimed to evaluate the 
performance of the following algorithms: CUSUM, EWMA, LGR, ANN, K-means, KRR, SVR 
and the 1D CNN algorithms for detection of low-rate and high-rate DDoS attacks.  

For low-rate DDoS attack simulation experiments, the CUSUM algorithm performance 
can be categorised as poor. A rise in detection accuracy causes a rise in the false 
positives rate, therefore this increases the likelihood that the CUSUM algorithm may flag 
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each low-rate data point as an attack occurrence. The poor performance is also 
witnessed in the lengthy average detection delay for those accurately classified attacks. 
The average detection delay for the simulation experiment was more than sixty seconds 
from the start of the attack. The performance of the CUSUM algorithm for low rate is 
graphically displayed in Figure 21 and Figure 23.  

The CUSUM detection algorithm’s performance against low-rate attacks was not 
satisfactory. The ROC curves revealed that the algorithm was not able to attain a 100% 
detection rate for the varied set of low-rate DDoS attack simulations, and the highest 
detection rate for the simulations was 97.52%. However, the algorithm managed to 
maintain an average false positive rate of 3.75%, which is relatively low, for all low-rate 
DDoS attack simulations. The algorithm further attained a best detection delay that was 
a little under 80 seconds for low rate attacks.  

For high-rate DDoS attack simulations, the CUSUM algorithm attained a 100% detection 
rate on some of the simulations and at the same time maintained a relatively low 
average false positive rate of 6.01%. For simulations with 100% detection rate, the 
algorithm had the lowest detection delay under 27 seconds from the onset of an attack. 

A similar performance was also witnessed for low-rate simulation experiments for the 
EWMA algorithm. The EWMA algorithm detection rate was also accompanied by an 
increase in false positive rates, and this performance is graphically represented by Figure 
27. Therefore, for low-rate attacks, the EWMA algorithm has a high likelihood of 
classifying a random network occurrence as a low-rate attack. As an illustration, for 
values of k = 1, the EWMA was able to achieve 100% detection rate with an average 
detection delay of 36.9 seconds; however, the high detection accuracy and impressive 
detection delay was also accompanied by a 99.17% false positive rate.  

In the simulations for low-rate DDoS attacks, the EWMA detection algorithm’s 
performance was also not satisfactory. DDoS attack simulations with higher accuracy 
rates were also accompanied by an increased false positive rate. This means that the 
chances that the detector algorithm will classify a random network occurrence as an 
attack becomes equally classifying as a normal network occurrence. This is depicted by 
the performance point at the top right corner of Figure 27, for a 100% detection rate, 
the classifier also experienced a 91.7% false positive rate. The detection delay 
performance for a 100% detection rate was slightly faster at 36.9 seconds from the start 
of the attack. 

For experiments simulating high-rate DDoS attacks, the performance of the EWMA 
algorithm was an improvement from the experiments simulating low-rate DDoS attacks. 
For high-rate attack simulations, the algorithm also experienced a high false positive 
rate, ranging from 34.71% to 99.17%. For the simulation setup in these experiments, the 
algorithm was able to attain a 100% detection rate, with a 34.71% false positive rate and 
a detection delay of 48.67 seconds for high-rate DDoS attacks. 

For all experiments, CUSUM achieved an overall accuracy of 86.39%, however, it had a 
high false positive rate of 80.15%. The EWMA had a lower accuracy performance of 
78.23% and a false positive rate of 29.58%. The performance of both the CUSUM and 
EWMA were generally not satisfactory for a DDoS application that requires detection 
with high accuracy and low detection latency. 
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Machine learning techniques for identifying DDoS attacks were introduced and 
enhanced performance. The LGR and ANN algorithms were investigated for their 
efficacy to classify both high and low-rate DDoS attacks. When tasked with 
distinguishing between normal and malicious traffic data, the LGR algorithm achieved 
99.192% accuracy. LGR also exhibited a 1.62 % false positive rate and a detection delay 
of 51 seconds on average. The ANN, on the other hand, performed better, with an 
accuracy of 99.414 % and a false positive rate of 0.670 %. The average detection delay 
for the ANN was 131 seconds. The following series of tests sought to investigate whether 
data framing would enhance the ANN algorithm's performance. There was certainly an 
improvement in terms of average detection delay, with the ANN model with data 
framing improving to an average detection delay of 11 seconds, but there was a 
performance trade-off. The ANN model's accuracy was 98.842 %, with a false positive 
rate of 0.130 %. The following ANN experimental model enhanced accuracy to 99.405 % 
and the false positive rate to 0.207 % by using data framing and standard deviation in 
the design. 

Table 9 Summary of All Algorithm Performance 

Algorithm Accuracy (%) False Positive 
Rate (%) 

False Negative 
Rate (%) 

F1-Score 

CUSUM  86.392 80.149 3.126 0.92 

EWMA 78.225 29.583 19.601 0.85 

LGR 99.192 1.622 0 0.999 

ANN  99.414 0.670 0 0.999 

ANN - Data framing 98.842 0.130 2.181 0.999 

ANN - Data framing + 
Standard Deviation 

99.405 0.297 0.957 0.999 

K-Means + LGR  100 0 0 1.0 

K-Means + ANN 100 0 0 1.0 

K-Means + ANN + Data 
framing 

99.64 0 0.73 0.999 

K-Means + ANN - Data 
framing + Standard 
Deviation 

99.69 0 0.64 0.999 

1-D CNN 99.662 2.253 0.326 0.998 

 

Further experiments were carried out to evaluate the feasibility of building a hybrid 
model composed of supervised and unsupervised machine learning models. The K-
Means model was used to distinguish between attack traffic and normal network data, 
and it obtained a 99.76 % accuracy rate. The K-Means classifications were further 
applied to the same LGR model, ANN model and the variations. The findings suggest that 
using the unsupervised K-means method improved both the LGR and the ANN model's 
performance. The detection accuracy of the ANN models with variations increased from 
98.842 % to 99.64 % and 99.41 % to 99.69 %. 
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It is also crucial to make the transition from reactive to proactive network management. 
As a result, we went a step further and assessed the effectiveness of machine learning 
algorithms in predicting the occurrence of a network assault before it occurred. The 
challenge was determined to be better suited for the KRR, LGR, and SVR algorithms. The 
LGR had a greater accuracy rate of 98.60 %, a higher R2 of 0.9361, and a more favourable 
lower RMSE of 0.1183 than the other two models. The summary of results is presented 
in Table 7. Though the model included some false alarms that may result in defence 
measures being prematurely deployed when there was no assault, it would be a safer 
proactive network management technique than being reactive to DDoS attacks, which 
might bring down the entire network system. 

The CNN algorithm presented an improved performance for the experiments simulating 
low-rate DDoS attacks. The CNN had a 100% detection rate for all simulations, an 
average false positive rate of 31.78% while the minimum false positive rate was 22.09%. 
From the onset of a low-rate DDoS attack, the CNN was able to detect the attack, in a 
minimum time of 35.92 seconds and 47.62 seconds on average. 

The experiments that simulate high-rate DDoS attacks displayed a higher average false 
positive rate of 76.52%. This signifies that for high-rate DDoS attacks, the CNN has a 
higher likelihood to classify a normal network event as an attack. For these simulations, 
the CNN had an improved average detection delay of 23.51 seconds and a faster 
detection delay time of 21.28 seconds. 

 

5.8 Summary 

In this chapter of the thesis, we analysed the performance of CUSUM, EWMA and CNN 
algorithms in an experiment that simulates a set of high-rate and low-rate DDoS flooding 
attacks on a network information system. The details of the experiment setup are 
discussed in detail in Chapter 4:  The performance of the CUSUM, EWMA, LGR, K-Means, 
KRR, ANN, SVR and the 1D CNN was analysed in terms of accuracy and efficiency. It was 
found that the CUSUM and EWMA algorithm performance is not satisfactory for low-
rate DDoS attacks, whereas these algorithms performed well for high-rate DDoS attacks. 
The opposite performance was observed for the CNN algorithm. The CNN performed 
well for low-rate DDoS attacks simulations, while a lower performance was displayed for 
the high-rate DDoS attacks simulation. 

The chapter that follows will summarise the experiment simulations and highlight the 
key findings for the research. 
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Chapter 6:  Conclusion 

This final chapter will present a concluding and overall view of the work presented in 
this thesis. The chapter will present a summary of contributions to the body of 
knowledge and recommendations for future work. 

 

6.1 Summary of Contributions 

The main research question of this thesis as described in chapter 1 was “How can we 
detect low-rate and high-rate DDoS attacks with accuracy and with minimal detection 
delay?” (RQ1). In order to thoroughly address the main question, a sequence of four 
extra questions were also raised. 

To answer this issue, we performed a background investigation into how attackers 
leverage susceptible machines, including IoT applications, to launch a DDoS attack. The 
mechanism of execution for DDoS attacks was investigated, as well as common defence 
mechanisms deployed at various locations throughout the network and the sorts of 
defence measures employed. This is detailed in the thesis's Chapter 2. A literature 
survey of the types of detection algorithms designed to detect DDoS attacks was also 
undertaken in the research thesis. We identified three generally used algorithms in the 
class of statistical change point approaches, machine learning, and deep learning 
techniques in Chapter 3 of the thesis, which were employed for simulations in this thesis. 

To expand on RQ1, we pose additional sub-research questions RQ2-RQ5. These 
questions were addressed by the various sections of the study, and they are summarized 
in descending order in the next section. 

For RQ5, we asked “How do we model the characteristics of DDoS attacks so that we 
can simulate and generate practical attack traffic datasets?”. To answer this question, 
we adopted the work of the authors in [138, 164-167] and created a sliding time window 
framework that accepts incoming IP traffic packets and divides them into specified 
attack periods. We calculated packet intensity and packet statistics adaptively in each 
attack window. Adaptive attacks were created in each sliding time window depending 
on the accompanying sliding window's determined statistics. The intricacies of 
modelling a TCP SYN attack were detailed in further depth in section 4.4.1 of the study, 
while section 4.4.2 of the study revealed how synthetic DDoS attacks were constructed 
for our study. Figure 14 in Chapter 4 of the thesis illustrates this, and this modelling 
framework was extended for the CUSUM and EWMA algorithms. 

There were several modifications of the modelling methodologies depending on the 
algorithm design and parameters for the other algorithms employed in this study. For 
example, the machine learning models used in this work included supervised, semi-
supervised, unsupervised, and prediction models. Figures 15-18 show the adaption of 
this modelling. Each is distinct in their technique of modelling attributes. 

For RQ4, we asked “What are the key statistical features of a DDoS attack?”; and for 
RQ3, we asked ”How can the onset of a DDoS attack be identified on the basis of simple 
features of the source IP address?”. RQ4 and RQ3 are inextricably related with RQ5 in 
the sense that, in order to simulate DDoS assaults, one must first understand their 
statistical features. To answer these questions, we looked into the relevant literature, 
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and the authors' work in [92, 160-162] established the foundations and background 
context for understanding statistical features of DDoS assaults in preparation for the 
modelling task. Sections 4.4.1-4.4.2 go into detail into the statistical features and 
modelling of DDoS attacks. We also discovered that other studies employed different 
combinations of IP packet header information, however employing additional features 
always adds further dimensions to modelling a solution, as outlined in section 4.3 of the 
paper. In our case, we employed an adaptive sliding window to determine the initiation 
of an attack by calculating IP packet intensity and packet characteristics. When 
modelling an attack, the use of this method minimizes processing overheads and the 
curse of dimensionality. 

For RQ2, we asked “How does the performance of statistics-based techniques, machine 
learning techniques compare to modern deep learning convolutional neural network 
techniques when detecting low-rate and high-rate DDoS attacks”. To answer this 
question, we ran simulations of each technique and compared their performance. The 
design model for statistics techniques was described in depth in section 4.5, and the 
findings were presented in section 5.4. The design framework for machine learning 
techniques is explained in part 4.6, and the simulation results are detailed in section 5.5. 
Similarly, for deep learning techniques, we employed the 1D CNN algorithm, which was 
detailed in section 4.7, and the simulation results were explained in section 5.6. Section 
5.7 compares the performance of these strategies in an attempt to address RQ2. 

In summary, the work conducted in this study for RQ2-RQ5 was designed to answer the 
core research question, RQ1. We created a DDoS simulation framework that generates 
synthetic DDoS attacks in order to simulate low and high-rate DDoS attacks. To detect 
the onset of an attack, the system employed incoming IP address statistic entropy 
characteristics, as well as statistic-based change point detection approaches, machine 
learning, and deep learning techniques. The findings indicate that machine learning 
approaches are well suited for DDoS detection. The use of ANN in conjunction with a 
sliding window and data framing resulted in a more accurate DDoS detection 
performance. 

 

A significant part of the work presented in Chapter 2:  and Chapter 3: of this thesis was 
published in the following article and book chapter: 

 Machaka, P., & Nelwamondo, F. (2016). Data Mining Techniques for Distributed 
Denial of Service Attacks Detection in the Internet of Things: A Research Survey. 
In O. Isafiade, & A. Bagula (Ed.), Data Mining Trends and Applications in Criminal 
Science and Investigations (pp. 275-334). IGI Global. http://doi:10.4018/978-1-
5225-0463-4.ch010 
 

A significant part of the work presented in Chapter 4: was further published in the 
following research article and book chapter: 

 Machaka P., Bagula A. (2021) Statistical Properties and Modelling of DDoS 
Attacks. In: Vinh P.C., Rakib A. (eds) Context-Aware Systems and Applications, 
and Nature of Computation and Communication. ICCASA 2020, ICTCC 2020. 
Lecture Notes of the Institute for Computer Sciences, Social Informatics and 
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Telecommunications Engineering, vol 343. Springer, Cham. 
https://doi.org/10.1007/978-3-030-67101-3_4 
 

 P. Machaka, A. Bagula and F. Nelwamondo, "Using Exponentially Weighted 
moving Average algorithms to Defend against DDoS attacks," 2016 Pattern 
Recognition Association of South Africa and Robotics and Mechatronics 
International Conference (PRASA-RobMech), 2016, pp. 1-6, doi: 
10.1109/RoboMech.2016.7813157 
 

 Machaka P., McDonald A., Nelwamondo F., Bagula A. (2016) Using the 
Cumulative Sum Algorithm Against Distributed Denial of Service Attacks in 
Internet of Things. In: Vinh P., Alagar V. (eds) Context-Aware Systems and 
Applications. ICCASA 2015. Lecture Notes of the Institute for Computer Sciences, 
Social Informatics and Telecommunications Engineering, vol 165. Springer, 
Cham. https://doi.org/10.1007/978-3-319-29236-6_7 
 

 Machaka, P., Ajayi, O., Maluleke, H., Kahenga, F., Bagula, A. and Kyamakya, K., 
2021. Modelling DDoS Attacks in IoT Networks using Machine Learning. arXiv e-
prints, pp.arXiv-2112 (submitted for review). 

 

6.2 Future Work 

The work presented in this research was a step in the right direction and demonstrated 
advancement in the field of DDoS attack detection; nevertheless, it was faced with 
challenges that will be addressed in the future. 

 The study has mostly focused on identifying TCP SYN DDoS attacks. Nevertheless, 
future work should incorporate other forms of attacks, such as the HTTP flooding 
attacks, UDP flooding attacks, and ICMP flooding attacks discussed in section 
2.4.6. This would facilitate the development of an efficient and heterogeneous 
testbed for DDoS attacks and simulations. 

 Some security scientific institutions have released network intrusion datasets to 
aid in the evaluation of intrusion detection algorithms for both known and 
unknown threats. They have aided researchers in developing their own testbed 
for collecting, pre-processing, extracting various sorts of characteristics, and 
building an unbiased dataset. Nevertheless, the quality of the dataset against 
which the system is compared might limit the benchmark datasets. It is incredibly 
difficult to create an unbiased, realistic, and complete dataset. More specifically, 
benchmark datasets include a combination of IPv4 and IPv6 IP addresses, as well 
as network datasets that contain IoT devices. For future work in the creation of 
DDoS attack detection, this approach will assure resilience, scalability, and high 
performance. 

 Reducing false positives: The work presented revealed that the detection 
algorithms under investigation suffer from a high false positive rate. In an ideal 
world a detection algorithm should avoid a high false positive rate. In reality, it 
is very hard for a detection algorithm to completely avoid false positives, 
however, it should aim to keep false positives at a very low rate. This was a major 
challenge for the detection algorithms in this investigation. Therefore, it is very 
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important that for the future of this research we investigate and design detection 
algorithms that can reduce false positive rates to a very low rate.  

 Deep Learning for DDoS Detection: The research work that has been developed 
so far on deep learning has mostly focused on applications for processing images, 
video, text and sound. The research work has shown great potential for deep 
learning and its applications. However, very little research is available on 
intrusion detection, and more so, very little on DDoS attack detection 
techniques. The future direction would be to investigate and design accurate and 
efficient detection techniques that take advantage of the deep learning 
algorithms. 

 Computational overheads: from the simulations we learned that building a 
model that can then be used for detection requires a lot of computational 
resources and it is time consuming. However, once the model is built, it can be 
implemented on an already existing system. For future research, it would help 
the researcher to build a model that can be improved upon using transfer 
learning for deep learning models.
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