Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   ETD Home
    • Faculty of Natural Science
    • Department of Physics and Astronomy
    • Magister Scientiae - MSc (Physics)
    • View Item
    •   ETD Home
    • Faculty of Natural Science
    • Department of Physics and Astronomy
    • Magister Scientiae - MSc (Physics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterisation of natural radioactivity in Karoo Basin groundwater prior to shale gas exploration

    Thumbnail
    View/Open
    Botha_Characterisation-of_2017.pdf (13.63Mb)
    Date
    2017
    Author
    Botha, Ryno
    Metadata
    Show full item record
    Abstract
    The prospect of unconventional shale-gas development in the Karoo Basin (South Africa) has created the need to obtain baseline data on natural radioactivity in Karoo groundwaters. The Karoo Basin groundwater radiological baseline developed through this study could serve as a reference to research potential future radiological contamination effects due to hydraulic fracturing. The major naturally occurring radioactive material (NORM) studied was radon (222Rn), in particular in-water activity concentrations; however, supplementary radium (226Ra and 228Ra) in-water activity concentrations and uranium (238U) in-water concentrations measurements were also made. A total of 53 aquifers across three provinces were sampled for groundwater and measured, with three measurement series from 2014 to 2016. The aquifers were categorized as shallow, mixed, or deep source. The radon-in-water baseline of the Karoo Basin can be characterised by a minimum of 0.6 ± 0.9 Bq/L, a maximum of 183 ± 18 Bq/L and mean of 41 ± 5 Bq/L. The radon-in-water levels from shallow sources (with water temperature < 20 °C) were systematically higher (40 Bq/L) than for deep sources (with water temperature > 20 °C). The natural fluctuations in radon-in-water levels were predominantly associated with shallow aquifers compared to almost none observed in the deep sources. The uranium in-water baseline can be characterised by a minimum of below detection level, a maximum of 41 μg/L, and the mean of 5.10 ± 0.80 μg/L. Similar to radon-in-water levels, uranium in-water levels for shallow sources were systematically higher than for deep sources. The limited (six aquifers) radium (228Ra and 226Ra) in-water activity-concentration measurement results were very low, with a maximum of 0.008 Bq/L (226Ra) and 0.015 Bq/L (228Ra). The 228Ra/226Ra ratio baseline were characterised by a minimum of 0.93, a mean of 3.3 ± 1.3, and a maximum of 6.5. The radium isotopes’ activity concentration ratio is an isotopic tracer for hydraulic fracturing wastewater. Pollution and contamination (radiological), due to unconventional shale gas development, in water resources has been noticed in the Marcellus Basin (United States). Consequently, developing and improving continuous baseline monitoring are of importance to study the environmental radiological effect of hydraulic fracturing.
    URI
    http://hdl.handle.net/11394/5448
    Collections
    • Magister Scientiae - MSc (Physics)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV