Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | Quick Submission Guide | About Us | FAQs | Login
    View Item 
    •   ETD Home
    • Faculty of Natural Science
    • Department of Earth Science
    • Magister Scientiae - MSc (Earth Science)
    • View Item
    •   ETD Home
    • Faculty of Natural Science
    • Department of Earth Science
    • Magister Scientiae - MSc (Earth Science)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application Of environmental tracer methods to conceptualize groundwater recharge, West Coast, South Africa

    Thumbnail
    View/Open
    Andries_MSC_NSC_2019.pdf (5.030Mb)
    Date
    2019
    Author
    Andries, Clinton William
    Metadata
    Show full item record
    Abstract
    Drought and climate change will have adverse consequence for freshwater resources in water stressed South Africa. Diminishing surface water reserves increases the demand to exploit groundwater resources. The drought conditions experienced in South Africa in 2016 is exacerbated in semi-arid portions of the Western Cape, where freshwater resources are further limited. Traditional physical methods are proven to be inadequate in semi-arid and arid regions due to difficulties in accurate measurements of variables for recharge studies. Geochemical methodologies have become more attractive for recharge investigations in drought prone hydrogeological environments due to natural labeling of water throughout the hydrological cycle. Quantitative and qualitative information on aquifer recharge rates and mechanism are needed to manage groundwater resources in the West Coast. Therefore, the aim of this study is to design a hydrogeological conceptual model which describes recharge mechanism and estimates recharge by using combined environmental tracer techniques in coastal aquifer system, using the West Coast Aquifer System as a case study. Groundwater of the upper unconfined aquifer, confined Langebaan Road Aquifer Unit and the Elandsfontein Aquifer Unit, surface water and rainwater samples (n=239) were collected on a quarterly basis during wet winter season (May and August 2017) and dry summer season (November 2017 and February 2018) for stable isotopes and chloride. Tritium and carbon-14 were sampled at selected groundwater monitoring sites (n=31) once during the data collection period.The analysis of groundwater in the unconfined and confined units revealed a similar δ18O‰ and δ2H‰ values which suggests that all aquifer units have the same source of recharge which could possibly be rainfall but at different locations which correlates well with previous stable isotope investigations in the study area. The results revealed that the Berg River is a gaining stream due to significant differences in isotopic composition compared to groundwater. The study also revealed that groundwater at Geelbek Lagoon is not of the same groundwater system as the EAU due to its highly enriched stable isotopic composition which is supported by elevated chloride concentration. This led to the identification of a freshwater/saline water interface in the vicinity of the Geelbek Lagoon. The spatio-temporal assessment of stable isotopes revealed that change in isotopic composition shows a strong relationship with seasonality and amount, as groundwater mimics isotopic composition and evaporation effects of infiltrating in a particular season.
    URI
    http://hdl.handle.net/11394/7164
    Collections
    • Magister Scientiae - MSc (Earth Science) [155]

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV